

MORE EFFICIENT LEARNING IN TRAFFIC GRIDS VIEWED AS COMPLEX

ADAPTIVE SYSTEMS USING AGENT BASED MODELING

by

Marion Charles Lane

A dissertation submitted to the faculty of

The University of North Carolina at Charlotte

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2017

 Approved by:

Dr. Mirsad Hadzikadic

Dr. Zbigniew Ras

Dr. Weichao Wang

Dr. Edd Hauser

 ii

©2017

Marion Charles Lane

ALL RIGHTS RESERVED

 iii

ABSTRACT

MARION CHARLES LANE. More efficient learning in traffic grids viewed as complex

adaptive systems using agent based modeling. (Under the direction of DR. MIRSAD

HADZIKADIC)

 Equation based modeling (EBM) is the most common form of scientific

modeling. However, the creation of an appropriate EBM for a large system is likely to be

complicated and computationally expensive. In contrast, consider the possibilities if even

a large system is treated as a complex adaptive system (CAS), applying the basic tenets

of a CAS to a model using the concepts of agent based modeling (ABM). ABM requires

only the definition of the model environment, the identification of key agents, and a

minimum number of key behaviors of those agents. It was a contention of this study that

a CAS/ABM model would be easier to design, implement, execute, and extend than an

EBM model. It was also a contention that the results would still be predictive and useful.

The ABM herein was based on the Uptown Charlotte, North Carolina, traffic grid using

traffic volumes based on actual Charlotte traffic counts. It operated with autonomous

traffic signals as an adaptive CAS.

 iv

DEDICATION

To ELD, a daughter of Algiers, my best friend, and my constant memory.

 v

ACKNOWLEDGEMENTS

I would like to acknowledge and give thanks to my advisor and dissertation

committee chairman, Dr. Mirsad Hadzikadic, a truly patient man.

I would also like to acknowledge the remaining members of my committee, Dr.

Zbigniew Ras, Dr. Weichao Wang, and Dr. Edd Hauser, for their insights and flexibility.

Finally, when I decided to model the environment for this project specifically to

the Uptown Charlotte traffic grid, I realized that I needed to use actual Charlotte data for

input. My initial assumption was that these data were available and easily accessible, but

this was not the case. As often is the case, the key to success is simply finding the right

people to ask and finding them took a circuitous route. Many thanks to Mr. Stephen P.

Piotrowski, Ms. Jan Murphy, and Mr. Anthony Tagliaferri of the North Carolina

Department of Transportation and Mr. Felix Obregon of the Charlotte Department of

Transportation for their help.

 vi

TABLE OF CONTENTS

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER 1: INTRODUCTION ... viii

CHAPTER 2: BACKGROUND RESEARCH .. 3

CHAPTER 3: PREVIOUS RESEARCH ... 8

CHAPTER 4: COMPLEX SYSTEMS .. 10

CHAPTER 5: AGENT BASED MODELING .. 16

5.1 Equation Based Modeling vs. Agent Based Modeling ... 16

5.2 Validation and Verification ... 18

CHAPTER 6: THE SIMULATION ENVIRONMENT .. 20

6.1 Autonomy .. 20

6.2 Time Slices and Simulation Modes ... 21

6.3 Parameters for Intersection Geometry... 22

6.4 Arrival Rates ... 24

6.5 Traffic Queues ... 25

6.6 Uptown Charlotte Model ... 26

6.7 Autonomous Light Agent Behavior Rules .. 29

6.8 Model Validation... 30

CHAPTER 7: SIMULATIONS – PLAN AND RESULTS ... 33

 vii

7.1 Baseline Simulations ... 33

7.2 Near Factor Simulations .. 34

7.3 Variable Min Go Simulations ... 34

7.4 Simulation Results... 35

CHAPTER 8: EVALUATION .. 38

8.1 CAS and Adaptation.. 38

8.2 Is This Model A CAS? .. 40

8.3 EBM vs. ABM .. 44

8.4 Platoons, Convoys, and Waves ... 45

CHAPTER 9: CONCLUSIONS .. 47

9.1 Contribution and Implications ... 47

9.2 Future Work .. 48

REFERENCES ... 50

APPENDIX A: MODEL INTERFACE... 54

APPENDIX B: FIXED VS. VARIABLE MIN GO SUMMARY TABLES................... 55

APPENDIX C: SELECTED SAMPLES OF SIMULATION DATA TABLES 57

 viii

LIST OF TABLES

TABLE 1: Traffic Arrival Rates by Time Slice ..21

TABLE 2: EarlyPeak Near – Summary Data from Near vs. Variable Min Go55

 simulations

TABLE 3: LatePeak Near – Summary Data from Near vs. Variable Min Go56

 simulations

TABLE 4: LatePeak Near – Data from Near factor group simulations57

TABLE 5: EarlyPeak, Variable Min Go, Initial 50 - Data from VMGF58

 group simulations, initial min go of 50

TABLE 6: LatePeak, Variable Min Go, Random Initial – Data from VMGR59

 group simulations, random starting min go

 ix

LIST OF FIGURES

FIGURE 1: Logistic Map, R = 2, x0 = 0.2 ...14

FIGURE 2: EarlyPeak Logistic Map Curve ...43

FIGURE 3: LatePeak Logistic Map Curve ...43

FIGURE 4: NetLogo model interface ...54

CHAPTER 1: INTRODUCTION

The purpose of this dissertation is to report the results of simulations run through

a computer model based on the street grid of the Uptown area of Charlotte, North

Carolina. This grid contained 29 roadways, one light rail line, and approximately 140

intersections controlled by a collection of traffic lights and stop signs. The traffic

volumes which passed through the simulations were based on actual traffic measured on

the streets of Uptown Charlotte.

At the outset the core contention was that this grid, implemented using the

principles of Agent Based Modeling (ABM), would operate effectively and efficiently as

a Complex Adaptive System (CAS) with autonomous agents (traffic lights), without

central control. Furthermore, the lights would be able to learn from previous success,

improving over time.

This contention was tested with a three-step process. Initially a performance

baseline was established using a simple, fixed-phase algorithmic control system. Second,

a basic, autonomous agent solution was implemented to demonstrate that the grid would

in fact act as a CAS. Third, the basic autonomous solution was augmented adding

functionality to allow the traffic light agents to learn from their past success and improve

the operation of the grid. In general the basic autonomous solution did prove to be

successful and superior to the fixed-phase system. Subsequently, learning improvements

were small but consistent.

 2

Previous research in the traffic control space had been done primarily with rule-

based and equation based modeling (EBM) disciplines. There had been little research

using the CAS/ABM approach. The initial expectation was to be able to show that a

CAS/ABM would be easier to design, implement, execute, and extend and that the results

would still be predictive and useful. As will be discussed later, the truth of this statement

is dependent on project design boundaries and the availability of developmental design

tools.

CHAPTER 2: BACKGROUND RESEARCH

There have been a number of research projects modeling the management of

traffic in a grid. Rochner (Rochner, 2006) provided a general description of the approach

that has normally been taken, proposing a three-tier structure. Layer 0 consisted of

preprogrammed local traffic lights at individual intersections. Layer 1 consisted of

controllers, still at the local level, but responsible for coordinating lights in the same

neighborhood. Level 2 consisted of an off-line generator which could be invoked when

current traffic presented a unique situation that had not already been preprogrammed into

Level 0 and Level 1. The system learned from the new traffic condition, computed a

solution for that condition, and loaded the new solution back into Level 1 to be

downloaded to Level 0 when the new situation recurred. However, this report stopped at

the proposal. It did not provide details of how such a structure would actually be

implemented; nor, significantly, did it provide simulation results or any suggestions for

scalability.

The majority the actual research that has been done was concentrated in the areas

of cellular automation, self-organization, and machine learning, specifically

reinforcement learning. The objectives of these studies were the same, more efficient

traffic flow; but the methodologies differed significantly. Reinforcement learning was

the most common approach. It was characterized by rule and/or equation systems that

attempted to improve the efficiency of the next execution of the model by rewarding

 4

system parameter settings that had shown improvement in the current execution. The

normal sequence of operations (similar to Rochner) was initialization, execution of the

simulator for an appropriate interval, recalibration of the model using the most successful

current system values (learning), execution of the simulator for another interval, and

repetition of the recalibration and execution steps, as needed.

Wiering, Steingrover, and Xu were worthy examples of reinforced learning.

Wiering (Wiering, 2000) described an environment where both traffic lights and cars

were agents. The grid was visualized as a network where intersections were nodes and

streets were edges. There were six intersections. The lights were connected and could

coordinate with each other. The cars were assigned destinations when they entered the

grid and made routing decisions based on traffic conditions. The lights and cars were

influenced by reinforcement learning algorithms that attempted to adjust light phases and

car routes to allow each car to reach its destination as quickly as possible. The authors

left it to future research to address “more realistic traffic simulators” which should be

interpreted to include larger, more complex traffic grids and more extensive

computational loads.

The Steingrover (Steingrover, 2005) environment was a sixteen node, right-

angled grid implemented using the Green Light District traffic simulator. Cars were

randomly assigned a destination node when they were “spawned” into the grid and then

planned the most efficient path to their destinations. Reinforcement learning based on the

traffic at neighboring lights and the degree of congestion at those lights was used to

improve traffic flow. The authors stated concern for possible “computational problems”

for networks larger than the tested sixteen-node grid.

 5

Xu (Xu, 2014) also described a fixed, right-angled grid. It had twenty nodes, and

was implemented with a multi-layer architecture on the RETSINA system. Each

intersection maintained data on the state of the lights at the intersection and its neighbors,

the state of individual lanes at the intersection, and a local coordinator. The local

controllers managed local neighbors and coordinated to manage the grid as a whole using

reinforcement learning. Once again, the authors expressed concern that unpredicted

traffic situations for larger grids would be “computationally hard.”

It was the assumption of this study that implementing rules and/or equation

systems to adequately simulate any large target system using reinforced learning would

be a significant task. Additionally, recalibration of the rule/equation systems after each

execution interval would become increasingly more computationally expensive when

required to scale up for larger systems. The parallel assumption of this study was that

implementation and recalibration factors for a CAS/ABM implementations would be less

costly than those for comparable reinforced learning systems. The anticipated reduction

was one justification for this research.

Brockfeld (Brockfeld, 2001) was an example of research based on a cellular

automaton model. It defined a simple square grid with intersections controlled by traffic

lights overlaid onto a lattice of cells representing the incremental movement relationship

boundaries among the agents. (This is the same type of layout lattice as the NetLogo

environment on which the Uptown Charlotte grid was deployed.) The results were based

on the cumulative progress of all cars. The length of the light phases was set, and the red

and green phases for all north/south lights alternated with the phases of the east/west

lights. Brockfeld found that the efficiency of traffic flow was dependent on the

 6

relationship between the length of the go phase of a light and the length of the street

segment being controlled by the light. These results were confirmed by my own research

(Chapter 3: Previous Research) and were part of the basis for this project.

Gershenson presented a traffic control simulation model also developed on

NetLogo that viewed traffic light control “not so much an optimization problem, but

rather an adaptation problem, since traffic flows and densities change constantly.”

(Gershenson, 2005). It was based on the right-angled grid of the Gridlock model

provided with NetLogo which includes single lanes of traffic in four directions.

Gershenson’s work included three traffic control methods that self-organized based on

how individual agents measured waiting traffic. The first, “request,” measured the

number of cars waiting behind red lights. When that count exceeded a predetermined

threshold, the light requested a go phase. The second, “phase,” introduced a minimum go

phase length to the request method. In order to get a new go phase the traffic waiting

count must have exceeded the threshold and the current go phase must have exceeded the

minimum go phase length. The third, “platoon,” extended “phase” by adding additional

checks to prevent traffic waves that were considered too long. Cools (Cools, et al., 2008)

was an extension of Gershenson’s work and aimed to further promote traffic waves. It

was based on the “platoon” method of Gershenson, but removed the minimum go phase

requirement and added additional conditions with the goal of keeping traffic waves

together.

The works of Brockfeld, Gershenson, and Cools were key predecessors of this

research. However, Gershenson and Cools focused specifically on producing traffic

waves on relatively simple traffic grids using traffic data generated specifically for their

 7

studies. The Charlotte grid was more complex, and traffic data were based on

measurements of from the actual grid. Based on my previous research, the expectation

was that waves (perhaps less structured) and self-organization would result organically

when produced through the simple behaviors of autonomous complex system agents that

are focused specifically on efficient learning. Specific details of the models used in this

research are described in Chapter 6: The Simulation Environment.

CHAPTER 3: PREVIOUS RESEARCH

My history with CAS began as a class project for a Complex Systems class at the

University of North Carolina Charlotte. My project choice was an ABM to manage a

single right-angled intersection with two lanes of traffic heading in each of the north,

south, east, and west directions plus a single east-to-north turn lane. The north and south

lanes were always in the same stop-go phase. The east and west lanes were always in the

opposite stop-go phase. The length of a go phase for each heading pair was fixed. The

turn lane had a go phase only if there were cars in the lane. The traffic arrival rate was

controlled with an external data file created specifically for this model. Unfortunately

this initial effort was strictly algorithmic, controlled at the overall system level, not a

CAS at all. However, it was an introduction to ABM, the NetLogo modeling tool, and a

systematic way of thinking about traffic management.

I have since implemented four additional NetLogo ABM models with more

ambitious goals for each successive effort. The second model was a modification of the

class project, replacing the fixed-phase length control for the intersection with one that

changed the phase only if there was traffic waiting in the opposite direction. Minimum

phases were still fixed-length. Once a green phase began, it remained green for a

minimum fixed time then changed only if there was traffic waiting in the opposite

 9

directions. Although more responsive to traffic conditions, I would still not consider this

a CAS. Control was still at the system level.

The third and fourth models expanded the environment. Instead of a single

intersection, each dimension of the new grid could range independently from one to six

streets; so the number of right angled intersections could vary from one to 36. Each

street had two lanes of traffic, one in each direction. The traffic arrival rate could be

determined by either of two modes: uniform, where a fixed number of cars was spread

uniformly among all entry points, or random, where rates and times were controlled

individually by heading by an external file. There were two operational modes (and thus,

two new models): fixed and thru. With fixed, all the north/south lights were always in

the same phase, and all the east/west lights were always in the opposite phase. Go phases

were of fixed length. With thru, each individual light could request a go phase based on

whether it had waiting traffic. Fixed mode showed some characteristics of autonomous

CAS behavior but was still centrally controlled. Thru mode was my first true CAS model

with each light acting simply but autonomously.

The fifth model was the Uptown Charlotte grid. It was an extension of the work

of models three and four on a more complex, less symmetric grid.

CHAPTER 4: COMPLEX SYSTEMS

Since the Scientific Revolution (mid-16th century – early 20th century) the

predominant belief was that the study of science required the object of study to be

subdivided into increasingly more elemental components. Scientific knowledge was

defined as gaining greater understanding of the composition and interaction of those

components, subdividing again, and repeating the process. This approach, Reductionism,

has been successfully used to increase scientific knowledge in a wide range of physical

and non-physical sciences. However it has been notably less successful with many

others. How does weather work? Why can we not predict it reliably more than a few

days in advance? Why does it seem that no two economists can seem to agree on how

the economy will respond to new stimuli? Why does the stock market seem to respond

irrationally to political and social changes? How do individuals in social insect colonies

adapt their roles to fit the current needs of the colony without the presence of a manager

to tell them what to do and when to do it? Why do traffic grids seem to work well some

of the time but become completely jammed at others? (Mitchell, 2009)

Complex Systems is a fairly new discipline. In the mid-20th century, when it was

becoming clear that new knowledge in physics and biology was requiring us to rethink

our understanding of the world, many scientists began to doubt that we could reduce our

way to scientific understanding of extremely complicated systems such as weather,

economics, or insect colonies. This line of thought coalesced with the formation of the

 11

Santa Fe Institute in 1984 to create what was called “the sciences of the twenty-first

century” to study systems that were simply too complex to understand every detail.

(Waldrop, 1992) (Santa Fe Institute, n.d.) Since its inception the Institute has been a

center for the study of the theory of complex systems and to discover real-world

applications.

Perhaps because of the newness of the discipline or perhaps because of the many

dispirit areas to which scientists have sought to apply it, there does not even seem to be a

concise, well-accepted definition of exactly what a complex system is. Melanie Mitchell

stated her definition in terms of large networks, no central control, simple interactions

among the components of the network, sophisticated information processing, and

adaptation; and then wrote an entire book explaining what it means. (Mitchell, 2009) If

we are not able to precisely define it, for this research at least we can enumerate the

components of a complex system and use that collective description as a suitable

definition.

A complex system has discrete agents. The agents interact autonomously with

each other with simple behaviors resulting in very complex interactions that define the

structure of the system. The operation of the system is non-linear, non-algorithmic. The

system is self-organizing and has no overall manager. Over time the agents adapt their

behavior and learn. The process to organization results from the autonomous interactions

of the agents which over time produces order. (Hadzikadic, 2015) (Mitchell, 2009) This

was the working definition of a complex system for this research.

The work of Mark Buchanan also addressed adaptive, self-organizing behavior.

He described individual people as “social atoms” interacting with other “atoms” within

 12

the human society. Ordinarily we think of these atoms as being compelled to act in their

own best interest, and it seems collectively this selfish behavior generally works for the

overall good. One could argue that in whatever ways these atoms are interacting this

society has been fairly successful. However, there also seem to be some common

behaviors such as charitable activities, wartime self-sacrifice, and risky rescue activities

during natural disasters that are decidedly not in an individual’s best interest. Buchanan’s

explanation for our tendency for these unselfish behaviors was that they have evolved

from adaptations our ancestors made centuries ago because they proved to be good for

the society. He also said that the best way to reveal these tendencies was not to observe

individuals, but rather to experimentally observe overall societal patterns. (Buchanan,

2007) Extending Buchanan’s analogy for the purpose of this study suggests that

autonomous traffic lights may be considered social atoms as well, operating in the

structured society of a traffic grid. Consider the lights to be initially operating selfishly

but adapting and learning over time for the ultimate good of the entire traffic grid. The

lights self-organize to a more efficient system without benefit of an overall manager,

confirming the definition of a complex system.

Another approach to a complex system was the concept of a cellular automaton as

first proposed by Stanislas Ulam in the 1940s and later extended by John Von Neumann,

Arthur W. Burks, and others. Melanie Mitchell defined a cellular automaton as being

“composed of large numbers of simple components (i.e., cells) with no central controller,

each of which communicates with only a small fraction of the other components.

Moreover, cellular automata can exhibit very complex behavior that is difficult or

impossible to predict”. (Mitchell, 2009, pp. 148-149) This seems to have much in

 13

common with the definition of a complex system which we laid out earlier. In the early

1980’s Stephen Wolfram proposed that all update rules for cellular automata (how the

cells interact) fall into one of four classes. In class one all cells quickly settle into the

same state after only a few cycles. In class two the cells, after briefly seeming to show

signs of organization, eventually stagnate and simply oscillate within unconnected

groups. The third class is characterized by continuing wild gyrations and failure to ever

organize. For our purposes, class four resides in some place between classes two and

three. It produces neither stagnation nor wild gyrations. Instead it does produce groups

of cells that seem to be continually interacting nicely with each other. In 1986 Mark

Langston, reviewing his own implementation of a cellular automaton, categorized classes

one and two as being Order and class three as being Chaos. Class four he called

Complexity. By fine tuning his update rules he was able to produce groups of cell

structures that organized themselves and “grew and split and recombined with eternally

surprising complexity”. Langston defined this as operating at some point between Order

and Chaos or at the “the edge of chaos”. I would suggest using Langston’s quote as an

alternate definition of complex systems: a system capable of operating at the edge of

chaos. (Waldrop, 1992)

 Although not strictly a definition, there is also a graphic signature, based on the

logistic map algorithm, found to be common to complex systems. Mitchell Feigenbaum

demonstrated in the 1980’s that the logistic map algorithm could be used to describe the

behavior of dynamic systems in general (Mitchell, 2009). It was anticipated that if the

Charlotte Uptown ABM did operate as a CAS, then it would produce that type of

signature, too.

 14

The algorithm is very simple:

 xt+1 = Rxt (1 – xt)

xt represents the items being measured over time with values in the range 0 - 1. t

represents succeeding time intervals. R is a constant with different values appropriate for

specific systems. As an example, iterating the equation for ten cycles with R = 2 and

x0 = 0.2 will produces the graph in Figure 1.

Figure 1: Logistic Map, R = 2, x0 = 0.2

In fact, with a value of R = 2, the graph will always converge to the fixed point, 0.5,

regardless of the initial value of x0. As the value of R increases the curve becomes

increasingly irregular. At values near 3.569 and higher, it becomes unstable, chaotic.

Based on Feigenbaum’s work, the logistic map can be used to describe the entire range of

dynamic systems from order to chaos. If we posit that the curve of the logistic map with

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

1 2 3 4 5 6 7 8 9 10

x t

t

Logistic Map
R=2, x0=.2

 15

R = 2 is the representation of the perfect complex system existing on that dynamic range

and showing adaptive, emergent behavior, then I submit we should also be able to say

that any system that operates with a similar signature has characteristics that are

necessary but not necessarily sufficient for it to be considered a complex system.

Let x represent the number of cars (normalized into the range 0 – 1) on a traffic

grid in serial time intervals. If the success of the grid control is defined as the ability of

cars to pass efficiently through it and to avoid traffic jams, then the number of cars

arriving into the grid must be offset by the number of cars leaving the grid. If we start as

cars arrive and begin to fill the empty grid, the curve will have a steep positive slope. If

more cars enter and remain in the grid than leave, the slope will remain positive. If

traffic control is working well, eventually cars will begin to exit the grid at a rate no less

than the arrival rate and the curve will flatten or turn downward. If the arrival rate and

exit rates are constant and equal for a period of time, the curve should flatten at some

steady state value, the fixed point. If the arrival rate rises or falls (normal ebbs and flows

of traffic), the curve should fluctuate up or down temporarily but eventually flatten again.

I consider this behavior to be a signature of a complex system. If the curve always has a

positive slope or simply fluctuates without ever flattening, this would be an indication

that the system is not acting as a complex system. In Chapter 8: Simulation Results as

part of the verification of the model I will show that the performance curves of the

Charlotte grid ABM did produce this signature.

 (The terms complex system and complex adaptive system are often used

interchangeably. The term complex adaptive system or CAS seems more appropriate for

this study, so from this point forward I will use it when possible.)

CHAPTER 5: AGENT BASED MODELING

5.1 Equation Based Modeling vs. Agent Based Modeling

Uri Wilensky and William Rand declare that equation based modeling (EBM) is

the most common form of scientific modeling. (Wilensky, 2015) EBM as described by

H. Van Dyke Parunak is based on “individuals” and “observables” where individuals are

system actors and observables are the measurable factors that describe system status. In

an EBM model, the macro-level operation of the system is represented by equations

which define the relationships among the observables. The individuals are recognized as

part of the system but are not unique. All individuals of the same type are considered the

same. Over time the repeated evaluation of these equations represents changes in system

status through changes in the values of the observables. The validity of such models is

directly related to how well the equations represent the overall system; and validation can

be done by comparing model results to actual system results. (Parunak, 1998)

CAS’s are by definition difficult if not impossible to understand on a macro level,

so it would be correspondingly difficult to create an EBM equation system to represent

them. However, it is possible to identify the key discrete individuals, agents, of complex

systems and the key behaviors with which those individuals interact with each another.

ABM requires the identification of the environment in which the agents exist, the agents,

and behaviors as the basis of a model. Running multiple simulations allows the agents to

 17

interact repeatedly with each other and for new values for the observables to emerge from

those interactions rather than being input at the outset. By focusing on the results of the

micro actions of individual agents rather the macro system as a whole, ABM is an

excellent tool for revealing the properties of a CAS. ABM’s can be validated at the

system level the same as EBM models; but because they operate at the individual agent

level individual agents can be observed, combined, and evaluated as well. (Parunak,

1998)

If we accept that generally CAS and ABM are a good match, should we assume

that together they are also a good match the model of Uptown Charlotte? Charles Macal

and Michael North suggest that the most import considerations for suitability are readily

identifiable agents and behaviors and that any process structure changes be internal to the

model. (Macal, 2006) Franziska Klugl and Ana Bazzan suggest that a complex system

should have flexible and local interaction, heterogeneous agents and behaviors, learning

at both the individual and overall levels, and allow for non-stationary equilibrium. (Klugl,

2012) The model for this project satisfied both Macal and North requirements. The

agents were the autonomous traffic signals on the grid. The behaviors were how those

traffic signals change based only on the grid environment with no external control. The

behaviors may have changed as the lights learned, but the grid itself, once finalized, was

constant. These agents, behaviors, and grid specifications also satisfied the first three

Klugl and Bazzan requirements. The fourth, non-stationary equilibrium, was addressed

by the fact that the model was able to respond to and recover from the ebb and flow of

normal traffic arrival rates. In summary, based on these criteria the proposed model was

a good fit for CAS and ABM.

 18

5.2 Validation and Verification

Once an ABM is created and used for actual simulations, how can we be certain

the results are relevant, accurate, and useful? Uri Wilensky and William Rand proposed

three processes for evaluation: validation, verification, and replication. (Wilensky, 2015)

Of the three, only validation and verification were germane to this project. Replication

was left to further research.

Validation is “the process of determining whether the implemented model

corresponds to, and explains, some phenomenon in real world.” (Wilensky, 2015) For

this study the real-world pattern for the model was the traffic grid of Uptown Charlotte.

The question was whether the model would be able to handle simulation traffic similarly

to the way the Charlotte grid handles actual traffic. The performance of any traffic grid is

dependent on the traffic arrival rate and how efficiently traffic is able to exit the grid.

The raw traffic data used for this project was obtained from the Charlotte Department of

Transportation (CDOT) (Obregon, 2016), so successfully using it was an excellent

validation test.

All of my previous research (Chapter 3. Previous Research) was concerned with

the efficiency of a symmetric, right-angled grid where cars traversed the entire grid,

entering on one side and exiting on the opposite side. The path all cars took was

essentially equivalent. The average time on the grid for all cars was used to measure the

efficiency of the grid. However, for the Uptown Charlotte grid, this was not a good

metric. For the morning and evening rush hours many cars should not follow that

traversal model. For instance, for the morning rush hour many of the cars should enter

 19

the grid at the periphery and disappear without traversing it to represent the cars that stay

within the boundaries of the grid for extended periods in parking lots or garages.

Conversely, for the evening rush hour many cars should not enter the grid at the

boundaries but rather from internal parking lots and garages where they were “stored”

throughout the day.

We can assume that data derived from CDOT data represented arrival rates

similar enough to actual external arrival rates and that traffic could be stored and released

from parking facilities to accurately represent internal entrances and exits. The total

number of arriving cars was those that entered from the edges plus those departing from

parking lots and garages. The total number of exiting cars was those that exit at the edges

plus those that entered parking lots and garages. The number of exiting cars was still a

reasonable validation metric. It is my position that favorable results using this metric

validated the model. Further discussion of steps that had to be taken to fine-tune and

further validate the model is detailed in Chapter 6.8: Model Validation.

Verification is “the process of determining whether an implemented model

corresponds to the targeted conceptual model.” (Wilensky, 2015) The core program

implementation that was the basis of the Charlotte grid model was my fifth version of a

NetLogo (Wilensky, 1999) program to control traffic lights. Each succeeding version

was a refinement of the previous. Each version produced either expected or explainable

results. I believe the Charlotte version performed similarly, therefore verifying the

model.

CHAPTER 6: THE SIMULATION ENVIRONMENT

This chapter discusses factors that must be reflected in the model and then

proceeds to the discussion of the model itself.

6.1 Autonomy

What does it mean for a CAS agent to be autonomous? Specifically, what does it

mean for a traffic light to be autonomous? In a laboratory environment it is easy to

assume that every light has access to and can make decisions from traffic data of the

entire grid. It is doubtful this would even be practical in real life without some sort of

central controller, and it could be argued that it is neither necessary nor desirable. A light

has direct control only over the cars behind it in its own block. Even if a light has

knowledge of traffic in blocks behind it or in front of it, many things can alter when and

if an individual car ever arrives at a light’s block. A car may turn. It may be slowed by

intervening lights. Cars ahead of it my turn, and new cars may turn into its path altering

the timing of when it will arrive at the light. There are related concerns for predicting the

arrival of traffic of opposing directions at the light’s intersection. For these reasons for

this study a light was considered autonomous when it made decisions based on traffic

behind it in its own block.

 21

6.2 Time Slices and Simulation Modes

Of a twenty four hour day three time slices were considered to be of interest for

simulations runs. The ability to accommodate and recover from peak arrival rates is a

good soft metric to measure the efficiency of a traffic grid. Therefore two time slices

were chosen around the morning and evening rush hours. The middle of the day is also

interesting because it starts with a morning peak and then could be expected to maintain

equilibrium at a lower level until reaching the evening rush. The hours between evening

rush and morning rush have relatively light traffic and are of little interest. The three

time slices that reflected that traffic flow for this study were EarlyPeak from 5:00 AM

through 9:00 AM, MidDay from 9:00 AM through 2:00 PM, and LatePeak from 3:00 PM

through 6:00 PM. Note that EarlyPeak and MidDay both included the 9:00 AM hour in

order to provide the peak and recovery situation mentioned earlier. All hours are

inclusive. Also note that Early Peak’s duration was five hours, MidDay’s duration was

six hours, and LatePeak’s duration was four hours.

Table 1: Traffic Arrival Rates by Time Slice

Arrival Rates

Time Slice
Hours

(Inclusive)

Total

Hours

Overall

Average

Car

Arrivals

Hourly

Average Car

Arrivals

EarlyPeak 5:00 AM - 9:00 AM 5 52,386 9,960

MidDay 9:00 AM - 2:00 PM 6 46,234 7,311

LatePeak 3:00 PM - 6:00 PM 4 48,741 11,789

 22

The heaviest hourly rate traffic occurred in LatePeak. EarlyPeak was the second heaviest

even though it was one hour longer. The heaviest single hour was 5:00 PM in LatePeak.

There were four simulation modes. Basic mode (BM) was non-autonomous and

algorithmic, simply a set duration go cycle. Near mode (NM) was based on a simple

autonomous decision by individual lights based on cars waiting. Variable minimum go

length modes (fixed, VMGF, and random, VMGR) tracked more environmental data

points and allow the lights to learn.

6.3 Parameters for Intersection Geometry

Before addressing the details of the ABM for this project we must first understand

in general how an intersection operates. The assumption was a standard four-way

intersection, north-south and east-west. All lights operated in a green-yellow-red-green

cycle with the north-south lights operating in tandem and always in the same phase. The

east-west lights operated similarly. There were three parameters which controlled when

the lights changed phase for both algorithmic and autonomous control.

The first was caution phase length. In actual intersections the caution phase is

present strictly as a safety measure to allow traffic traveling in one direction to clear the

intersection before traffic in the opposing direction is allowed in. The assumption for this

study was that all cars stop for caution lights and there were no red light runners. The

caution phase was essentially idle time for the intersection; so the performance of the grid

would logically improve by making it as brief as possible, the minimum amount of time

for the last car to cross when a light turns to caution. That would be the time required to

cross the width in patches of the intersection. Eighty four per cent of the intersections on

 23

the Uptown Charlotte grid were four by four. Adding one tick for a car that was only

partially past a light which had just changed to caution produced an ideal caution phase

length of five ticks. Earlier research also confirmed five as the optimum value, so all

simulations of this study were run with a caution phase length of five.

The second parameter was designated the near factor, and it was defined as a

number of patches behind a light. If there was at least one car in the near zone defined by

the near factor, then the light would consider itself a candidate for a go cycle. If the near

zone was not occupied, the light would not consider itself for a go. Intersection

efficiency was very dependent on the tight relationship between the light’s near factor

and the caution phase length. If the near factor was greater than the caution phase length,

the idle time of the intersection would be unnecessarily lengthened. If the near factor was

less than caution phase length, the light might rotate to green before traffic had cleared

the intersection. If the near factor and caution phase length were equal, opposing red-to-

green and yellow-to-red light changes occurred simultaneously, and the intersection

worked smoothly.

The third parameter defined the minimum length of a go phase, the min go length.

If there was traffic attempting to pass through an intersection in all directions, once a

light enters a go phase how long does it stay there? The objective was to avoid having

short, choppy go phases with accompanying delays for each intervening caution or

excessively long go phases which would unduly delay traffic in the opposite direction. In

practice the min go length became a factor only when traffic was heavy in both

directions, and we will discuss fine-tuning the min go length with caution phase length

and near factor when heavy traffic conditions did occur.

 24

VMGF and VMGR simulations also required the three basic parameters, but to

facilitate learning there were four additional as well. Learning was based on variations of

the light’s min go length due to traffic accumulating or dissipating behind the light. A

parameter, min go select factor, was used to determine whether the light’s block was

“full.” For each tick, if the block was full, the min go length parameter was incremented

by the value of the min go increment parameter. If the block was not full, the min go

length parameter was decremented by the value of the min go decrement parameter.

Each time the light went into a caution phase, the current value of the light’s min go

length was used in conjunction with the current through count of the intersection to

establish the optimum value for the best min go length parameter for the light. One

additional parameter was added for variable min go length simulations, min go max

factor, which was used to set the maximum value of min go length. When the min go

length parameter was being incremented, its upper limit was controlled by min go max

factor. When it was being decremented, its lower limit was not allowed below its starting

value.

6.4 Arrival Rates

A key component in determining the efficiency of any traffic grid is the traffic

arrival rate, which may vary widely depending on a number of factors. The rush hours at

the beginning and end of a business day are familiar. Weekday traffic might be heavier

than weekend traffic. Traffic might increase for special events. It might be seasonal. It

might also be affected by random events such as traffic accidents, detours, or road

closures.

 25

If a model uses a generic grid, it would be sufficient to simply create arrival rates

designed to illustrate the desired operation of the grid. For instance to establish a

performance baseline, a set of uniform arrival rates would be appropriate. To

demonstrate a morning rush hour it would be logical to identify the primary incoming

arteries and have the arrival rates increase on those arteries slowly from 4:00 AM until

6:30 AM. The rate of increase should then increase more rapidly until peaking around

8:30 AM before receding to a lighter, uniform rate between 9:00 AM and noon. The

same type of peak should occur in reverse for the evening rush hour.

For a more specific environment such as Uptown Charlotte as used for this study,

it was highly desirable to use actual traffic data from that grid; and the City of Charlotte

Department of Transportation (CDOT) made its traffic volume data available. CDOT has

used the Miovision system to gather traffic data for all intersections of Uptown Charlotte.

Miovision allowed CDOT to report intersection activity every fifteen minutes recording

right turns, left turns, and through traffic. For the simulations of this study these readings

were distilled into hourly traffic arrival rates for each of the grid’s entry points for each of

the model’s time slices. (Obregon, 2016)

6.5 Traffic Queues

At each entry point of the grid there was a designated entry patch. A car entered

the grid and was counted when it was created on an entry patch. The timing for creating

new cars was based on arrival rate of an entry point, and it was unlikely that the arrival

rate would require the creation of a car at every tick. During peak arrival times it was

possible that a newly created car would not be able to move off the entry patch because

 26

of heavy traffic ahead of it. NetLogo does allow multiple cars to occupy the same patch,

but obviously this does not occur on actual streets. Allowing it in the model would have

distorted the statistics of the grid. In real life the traffic would simply back up on the

streets leading into the grid, and that overflow would dissipate naturally as traffic was

eventually absorbed into the grid.

The model managed this situation by maintaining traffic queues at each entry

point. When the entry patch was not empty, instead of actually creating a new car it was

symbolically added to the patch’s queue. For subsequent ticks, if no new car was due and

there was a car in the queue, the queue count was decremented and the queued car was

created.

In practice the queues did not come into play unless traffic was heavy, and then

they prevented the grid itself from having to contain unrealistic traffic volumes.

However excessively large queue counts did indicate that the grid extended was being

stressed and might be an indication that light management was not performing efficiently.

6.6 Uptown Charlotte Model

In Chapter 5: Agent Based Modeling an ABM model was defined as having three

basic components: environment, agents, and behaviors. This simulation model met these

requirements. The environment was implemented with NetLogo and was based on the

traffic grid of Uptown area of Charlotte, North Carolina. The grid contained 29 streets,

one light rail line, and approximately 149 intersections. There were two-, three-, and

four-lane streets. There were one-way and two-way streets of each type. There were 54

entrances to the grid and 65 exits. (Entrances and exits were defined in terms of lanes.

 27

For instance, a street with two lanes leaving the grid counted as two exits.) There were

50 parking entrances and 132 parking exits. There were six streets that had been

converted over time to include internal dead ends. In some cases there were multiple

dead ends on what was once a through street. These dead ends could have in theory also

be considered entrances and exits although all their entrance counts for this study were

zero.

The grid was drawn to scale based on the dimensions of the 2015 Charlotte

Uptown map by Jeff Simpson. (Simpson, 2015) It was bounded on the north by 11th

Street, on the south by Stonewall Street, on the east by McDowell Street, and on the west

by Graham Street. An image of the model interface is included as Appendix A.

To meet the ABM agent requirement there were two types of agents in the model:

traffic signals and cars. There were three types of traffic signals: traffic lights, stop

signs, and train signals. In total, the number of signals was approximately 700.

(Similarly to the way entrances and exits were counted, each signal controlled a single

lane. If there was a two-lane, one-way street being controlled by a traffic signal, it was

be counted as two lights.) All signals were represented by colors on appropriate

environment patches.

Stop signs and train signals operated the same in all modes. Cars approached a

stop sign, stopped, and then merged into traffic when there was an opening. Train signals

were triggered to turn red when a train approached a crossing and turn green when the

train cleared the crossing.

Cars were agents of secondary interest. Each car was represented by a car-like

icon that was scaled to match the Simpson map. Car movement was simulated by

 28

relocating the icon from patch to patch across the grid. Cars stopped, sped up, slowed

down, or moved as allowed by the signals and other traffic. When a car at rest began to

move, it gradually accelerated from zero miles per hour to a scaled maximum speed of 20

miles per hour.

All vehicles were seen as cars or trains. Trains operated only on train tracks.

Only cars operated on streets. All cars were considered the same. There were no high-

priority emergency cars. There were no bicycles, motorcycles, large trucks, large vans,

buses, or pedestrians. All agents operating on the streets were cars scaled to a length of

fifteen feet.

Cars did not make autonomous decisions and as such were not considered

autonomous agents. Car behaviors were not defined or considered in this model. In

normal traffic, cars might turn depending on decisions of their drivers. It was not the

intent of this project to investigate the motives of drivers or to optimize the routes to

destinations; but in order to represent normal traffic patterns, some cars should turn. This

was accomplished by generating random turn decisions for each car, based on random

turn tendencies assigned when a car entered the grid. Cars did not learn.

To complete the ABM requirements, behaviors were identified for the light

agents. The behaviors of primary interest were the basis for the lights to decide when to

demand a go cycle. In BM mode the go decision was made by an overall system

controller not by the lights. In NM mode that decision was made by individual lights

based on the number of cars waiting in its near zone. Learning in VMGF and VMFR

modes required that the light’s decision factors to expand to include the variation of the

 29

count of cars waiting in its block. The behaviors of the lights are discussed in detail in

the next section

6.7 Autonomous Light Agent Behavior Rules

Referring to the working definition of a CAS from Chapter 4: Complex Systems,

a key component is a preferably small, preferably simple set of behavior rules of the

agents. This is the cornerstone of the goal stated in Chapter 5: Introduction that an ABM

will be “easier to design, implement, execute, and extend” than a comparable EBM.

No rules were required for BM simulations. There were only three rules for NM

simulations. For VMGF and VMGR simulations there were four rules, the original three

plus one additional. NM simulations were controlled by the lights of an intersection by

the relationship between the caution phase length and the near factor. There was a single

min go length for all lights which came into play only during time of very heavy traffic

around the intersection. There were three original rules:

1. If there is near traffic only in the current go direction, change nothing.

2. If there is near traffic only in the current stop direction, begin the caution/stop

phase regardless of the current go phase duration.

3. If there is near traffic in both directions and the current go phase duration is less

than or equal to min go length, change nothing. If there is near traffic in both

directions and the current go phase duration is greater than min go length, begin

the caution/stop phase.

VMGF and VMGR simulations had the same relationship between caution phase

length and near factor, but they also reacted to the accumulation or reduction of cars

 30

behind the light. Each light had its own min go length, and under certain conditions the

value of min go length was incremented or decremented. The additional rule for VMGF

and VMGR simulations was as follows:

4. Count all the cars in the block behind the light. If the count is greater than the

count from the previous tick, increment min go length. If the count is less than

the count from the previous tick, decrement min go length. At the beginning of

each caution phase for the light, recover the count of cars through the light during

the previous go phase. If the count is greater than current best through count,

update the best through count and the best through count min go length. For both

VMBF and VMGR the up-side value of min go length is limited by the min go

max factor parameter.

6.8 Model Validation

Does the model “correspond and explain some phenomenon in real world” is the

question posed earlier when we introduced the concept of validation. At that point the

only factors we had to consider were a grid arranged and scaled to match Uptown

Charlotte and traffic data derived from official CDOT readings. That seemed like an

excellent start, but the results of initial BM and NM simulation runs were abysmal.

Study of the bottlenecks then present on the grid revealed obvious design and

implementation errors. The review of those errors and their resolutions were instructive

toward model validation, and correcting those problems produced a better model.

The original version of the grid was drawn in such a way that when matched with

the NetLogo environment, the top scaled speed for a car was ten miles per hour. In

 31

retrospect, this was not realistic and simply too slow to allow cars to clear the grid. (This

was definitely not a good limitation if the primary validation metric was to be exit

count.). The model simply bogged down. Rescaling and redrawing the grid to provide

for a 20 miles per hour top speed was a significant improvement, but it was not a final

fix. It solved the speed problem, but then revealed other flaws.

Even when using official arrival rates, some of the model’s intersections were

simply overwhelmed. Typically each situation was different, so there were several

solutions. For instance one intersection considered through traffic to be just entering the

grid when actually it had entered at an upstream intersection. Entry traffic was

essentially being doubled at the problem intersection. At another intersection the traffic

counts were for four lanes, but it was being forced to enter via only two. Still another

instance was a single lane that should have been one straight lane plus a dedicated turn

lane. Correcting these errors improved but still did not completely solve the overall

problem. There were still too many cars trying to occupy too small a space.

Refining the random selection process for turning cars allowed more cars

opportunities to turn off the main entrance arteries. Allowing cars to change lanes

avoided the occurrence of full lanes alongside empty lanes behind lights and produced a

natural clumping of waiting cars at red lights. Adding parking lot entrances allowed cars

to exit as they would normally do in large numbers during EarlyPeak. The converse was

true for parking exits which allowed parkers to quickly enter and exit the grid during

LatePeak.

The result was a model which handled Charlotte traffic well. It would be

expensive to design a traffic system to handle the short peaks with absolutely no

 32

congestion. It would be more reasonable to design a system that might struggle a bit at

short peak demand, but recover when the peak subsided. That is what the actual Uptown

Charlotte grid does. That is what this model did, further evidence it was validated.

CHAPTER 7: SIMULATIONS – PLAN AND RESULTS

Simulations were run in four sequential groups corresponding to the four

simulation modes. Each succeeding group built on the results of the previous. The

simulations were run on a variety of Windows 10 PC computers using the model built on

the NetLogo Version 5.1.0.

7.1 Baseline Simulations

The baseline group was designed to contribute to model validation and to

compare elemental BM and NM performance. It was composed of individual simulations

for each hour for each time slice in both BM and NM modes. The objective was to

exploit all appropriate combinations of the basic intersection geometry parameters

described in Chapter 6, caution phase length, near factor, and min go length. The value

of caution phase length for all simulations was set at five.

There were 75 BM hourly simulations (15 hours x 5). The near factor parameter

was not used for BM. There was a simulation run with min go length parameter values of

20, 35, 50, 65 and 90 for each hour.

There were 300 NM hourly simulations (15 hours x 4 x 5). The near factor

parameter values were 5, 10, 15, and 20. The min go length parameter values were 20,

35, 50, 65 and 90.

 34

7.2 Near Factor Simulations

The near factor group was designed to evaluate performance over an entire time

slice varying near factor, and min go length. Again, the value of caution phase length for

all simulations was set at five.

There were 84 NM slice simulations (3 slices x 4 x 7). The near factor parameter

values were 5, 10, 15, and 20. The min go length parameter values were 20, 35, 50, 65,

90, 105, and 120.

7.3 Variable Min Go Simulations

The variable min go simulation group was designed to allow a light to improve its

performance by learning the optimum value of its min go length parameter. Simulations

were run over an entire time slice for the most promising parameter combinations from the

Near Factor group. Caution phase length and near factor were both set to five for all

simulations. The min go length parameter varied based on learning.

Meaningful variations of the min go length parameter occur only during times of

high volume traffic. This threshold was seldom reached during MidDay. To determine if

a full set of variable min go simulations for MidDay was justified, a small subset of

simulations across a representative set of parameters values was run (six selected three-run

sets). These runs showed that while the exit percentage was very high (99+ percent) Rule

4 was invoked less than 1 percent of the time. The conclusion drawn was that the MidDay

traffic volumes were not high enough to benefit from learning. Therefore no further

 35

MidDay simulations were run. VMGF and VMGR simulations were run only for

EarlyPeak and LatePeak.

There was a total of 162 three-run sets of VMGF simulations, 81 each for

EarlyPeak and LatePeak (2 slices x 3 x 3 x 3 x 3). For each of three starting values for the

min go length parameter, 50, 65 and 90, values for the min go select factor parameter were

set in turn to 0.65, 0.75, and 0.85. The values for the min go increment parameter were

three, five and eight. For a min go increment of three, the min go decrement parameter

had values of one, two and three. For a min go increment of five the min go decrement

parameter had values of one, three, and five. For a min go increment of eight, the min go

decrement parameter had values of one, four, and eight.

Using the best three VMGF results for each of the starting min go lengths for both

time slices, three VMGR three-run simulation sets were run with the same parameter

combinations except for a random starting min go length. The best result for each time

slice was rerun for an extended six-run simulation set.

7.4 Simulation Results

At the end of the Baseline simulations corresponding BM and NM exit

percentages were compared for each individual hour of the three time slices. The NM

runs were superior in all cases. In general, the queue counts for the BM runs were high,

and the NM queue counts were very low. The exit percentage for NM simulations was in

the 90 – 94 percent range.

The Near Factor simulations were run with the same parameter combinations over

all three time slices. The objective was to find the combinations that produced the best

 36

exit percentages for an entire time slice. The exit percentages for all time slices were in

the 95 – 99 percent range. Generally, all exit percentages within a time slice were

similar. The queue counts for MidDay and LatePeak were zero. The queue counts for

EarlyPeak were not zero, but neither were they alarming. The best NM parameter

combinations, designated the Variable Min Go Test Set, were chosen from those with

min go lengths of 50, 65, and 90 based on a combination of factors: exit percentage, a

contiguous range of parameter combinations, and queue count.

The Variable Min Go simulations were designed to demonstrate that autonomous

lights could learn from past success and adapt their behavior. There were nine three-set

VGMF simulation runs for each of the Variable Min Go Test Set parameters from the

Near Factor simulations. All of the VMGF runs for EarlyPeak with min go length of 50

and 65 improved the exit percentage by small but consistent amounts. For min go length

of 90, only one of the nine results failed to exceed the best NM result. The remainder

improved by small but consistent amounts. Results were similar for LatePeak. Only one

LatePeak VMGF simulation (from the min go length 65 group) failed to improve

corresponding NM results. As with EarlyPeak, the improvements were small but

consistent. Generally the overall exit percentage range was 98 – 99 percent. The queue

counts for LatePeak were all zero. There were some occasional high queue counts in

EarlyPeak, but most were zero to low.

The six best VMGF simulations were rerun as three-segment VMGR simulations

with randomly generated initial min go lengths. The best three-segment for each time slice

was re-run for an extended six-segment simulation. The VMGR exit percentages were

essentially the same as the standard set by the VMGF runs, but none exceeded the VMGF

 37

runs. The extended VGMR runs generally matched their shorter mates. The exit

percentages were in the same range as the VMGF results, but there were a number of

queue counts that indicated that traffic was not moving smoothly outside the grid.

There are two appendices at the end of this document containing data tables from

these simulations. Appendix B contains two tables, Table 2 and Table 3. Table 2

summarizes the progression of results from Near Factor, Variable Min Go Fixed, and

Variable Min Go Random simulations for the EarlyPeak slice. Table 3 contains a similar

progression from LatePeak. Appendix C contains samples of the data collected from

individual from Near Factor, Variable Min Go Fixed, and Variable Min Go Random

simulations.

CHAPTER 8: EVALUATION

During the course of this research we have defined a complex adaptive system

and identified a signature performance characteristics of such a system. We have defined

agent based modeling and related it to complex adaptive systems. We have discussed

what is necessary to validate and verify such a model. We have described the design and

implementation of a specific ABM of the Uptown Charlotte traffic grid and laid out

justifications for its validation and verification. We have described a series of

simulations run through that model, and I contend those simulations confirm that the

model did operate as a CAS.

8.1 CAS and Adaptation

The concept of adaptation is key for a CAS, and two types should be considered.

In our definition of a CAS we required that the operation be non-linear, non-algorithmic.

The agent behavior rules should allow the agents to react but should not absolutely

dictate their behavior. (An example of algorithmic behavior would be a traffic light with

fixed phase lengths which after a specific time interval always changes from green to red

regardless of the environment.) In general, if the agent begins in state zero (s0), and

could possibly move to any of n other states (s1…sn), the rules should not require moves

to other states in a specific time or sequence. The classic sheep-wolf-grass model is an

example of this type of simple adaptive but non-learning behavior.

 39

However, traffic lights are a special case. The sequence of the states is always the

same (go, caution, stop, go), but the duration of the go/stop phases might vary. The rules

should allow the light to gather environmental data and change state based on its

interpretation those data. The agents adapt, but those adaptations are always based on the

same rules and parameter values. The length of a state may vary, but the rules do not.

The second type of adaptation is related to learning. Instead of having a set of

rules and values that are static, the light keeps track on an ongoing basis of the set of light

parameters that have produced the best throughput results and when necessary

dynamically changes the rules or parameter values themselves based on those results.

As the simulations of this study progressed from group to group, the level of

adaptation progressed. The BM simulations were algorithmic. There was no adaptation

at all. The original three rules of the NM simulations allowed a light to progress from

green to yellow to red and back to green state in an unalterable sequence, but the times

spent in the green and red phases were unpredictable. The lights adapted the length of

the green and red phases based on a static rules set and changing environmental

conditions. They were autonomous and adaptive but did not learn.

The VMGF and VMGR simulations extended the behavior rule set. Where the

NM simulations had a system-wide, fixed min go length parameter, the VMGF and

VMGR simulations allowed each individual light’s min go length parameter to increase

and decrease as the traffic behind the light rose and fell. Theoretically, the minimum

time for a go phase would increase to allow more of that waiting traffic to pass through

the light. The light would store the through count/best min go length combination that

produced that highest through count. That most productive best min go length value

 40

would be used for subsequent phases until a new high through count was recorded.

Rule 4 allowed individual lights to dynamically improve their performance by learning

which parameter combinations were most efficient. In a different sense, they were also

autonomous and adaptive. They also learned. I consider both the adaptive and

adaptive/learning types to be CAS.

8.2 Is This Model A CAS?

Does the Uptown Charlotte model “correspond to the targeted conceptual model”,

the real Charlotte grid. I believe it does on the basis of the same criterion I used

previously with earlier models: Generally it performs as expected; but when there are

unexpected results, they logically lead to corrected assumptions.

A model grid scaled to match the actual grid responding to traffic loads derived

from actual data failed to perform adequately when there were implementation errors.

However, when the errors were corrected it operated easily when traffic was moderate to

light, strained when anticipated peaks arrived, and then returned to normal quickly when

the peaks passed.

Is it a CAS? We have asked this question at various stages in the discussion of

this project, and each time my answer has been yes. At this time I would like to refer

back to Chapter 4 and present more CAS-supporting evidence.

In Chapter 4 we introduced a pair of analysis tools that could be used to assess the

degree to which a given system has characteristics of a CAS, the cellular automata of

Wolfram and Langston and Feigenbaum’s logistic map. NetLogo and therefore this

model are examples of a cellular automata. Wolfram observed there are four classes that

 41

can be used to describe the behavior rules of any cellular automaton. Classes one and

two might initially show a tendency toward a dynamic self-organization, but eventually

stagnate. Class three exhibits wild gyrations and lack of organization. Class four

produces cells that self-organize and continually interact with each other. Langston

named class four Complexity and described it as acting on the edge of chaos. (Waldrop,

1992)

During the early development of the model there were, of course, logic bugs in

the code for the agent behavior rules. Some versions of the behavior code produced

simulation runs where certain lights changed phase perhaps one time or two times and

then seemed to lock and never change again. There were other versions where lights

seemingly changed phase every tick, and the changes were not necessarily in the proper

sequence. It produced turmoil on the grid. Certainly the lights did not “know” their

behavior did not match the behavior of an efficient traffic grid. The lights did not

“know” there were errors in the definition of the rules, nor did they “know” when they

were operating properly after the errors had been corrected. They were merely operating

with the rules as defined. I suggest that the miscoded rules that quickly locked up the

grid were simply an indication that at that time the grid was operating as a class one or

class two cellular automaton, Langston’s Order. Erroneous rules that produced a grid

with seemingly too many phase changes with no apparent purpose was actually as a class

three cellular automaton, Langston’s Chaos. When the errors were corrected, the lights

began interacting smoothly and dynamically managed the traffic. I believe at that point

the grid began operating as a class four cellular automaton, Langston’s Complexity, and

has been operating as a CAS at the edge of chaos since.

 42

Further evidence of CAS behavior can be found in the analysis of the logistic map

function. Figures 2 and 3 show plots of the number of cars on the grid over time during

characteristic EarlyPeak Near and LatePeak Near simulations. If the model operated as a

CAS and if the logistic map is a valid indicator of a CAS, then obviously the plots of

Figures 2 and 3 should resemble the earlier plot of the logistic map (Chapter 4: Complex

Systems, Figure 1). Casual comparisons might indicate this is not the case, but a closer

inspection is warranted.

The Table 1 logistic map chart depicts one continuous time interval with constant

input. Both the EarlyPeak and LatePeak charts depict multi-hour simulations (five-hour

for EarlyPeak and four-hour for LatePeak) with different traffic arrival rates for each

hour. Looking specifically at the EarlyPeak chart, notice that it initially arises from zero

and quickly reaches a plateau where it stays until it begins to rise again near tick 3,600.

(Tick 3,600 is the end of the first hour and the beginning of the second hour.) The second

hour ends at tick 7,200 when the rise-plateau sequence repeats again two more times for

hours three and four, respectively. At the end of hour four the curve falls and plateaus

again at a lower level. This behavior matches the typical arrival rate for EarlyPeak. The

EarlyPeak curve is actually a combination of five hourly curves; and if the hourly curves

are compared individually to the logistic map curve, they adequately match. Each hour

of EarlyPeak individually has the CAS signature. Analyzing the LatePeak curve reveals

a similar pattern. The ragged nature of the simulation curves when compared to the

smooth logistic map curve is due to the fact that traffic arrivals are not continuous.

 43

Figure 2: EarlyPeak Logistic Map Curve

Figure 3: LatePeak Logistic Map Curve

 44

In NetLogo terms, at an individual entry point cars are not necessarily created at every

tick.

8.3 EBM vs. ABM

If the structure of an EBM is visualized as a graph, then the basis of the model is

the relationship among the vertices of the graph, edges expressed as equations. If there

are edges connecting each pair of vertices, then the graph is complete. If the number of

vertices is n, then the number of equations required to build the EBM is
𝑛(𝑛−1)

2
 . If the

number of vertices is increased, the number of equations grows quickly. A graph of five

vertices would require ten relationship equations. If five additional vertices are added to

that model, the number of equations jumps to 45. If the Uptown Charlotte grid with

approximately 700 traffic signals and signs as agents were to be implemented as an EBM,

more than 200,000 equations would possibly be required. Obviously maintaining such a

model would be cumbersome and executing it would be computationally expensive.

At the outset, creating the Uptown Charlotte model as an ABM was much more

straightforward. Identify the agents, the 700 lights and stop signs. Create their behavior

rules, the original three were subsequently increased to four. The code for all four rules

was implemented with fewer than 40 lines of well-spaced, well-documented NetLogo

code. Expectations stated earlier in Chapter 1 Introduction was that an ABM would be

“easier to design, implement, execute, and extend”, and I initially expected it would be an

easy call. That may still be true, but there are some qualifications.

NetLogo is a cellular automaton. Its design and implementation are very good for

models with turtles on a patch interacting equally with the eight surrounding patches.

 45

NetLogo seems featured and tuned to facilitate that type of relationship. However, traffic

grids require the turtles (cars) to proceed in straight lines, turn at right angles, and stop

and start in response to traffic signals and other turtles on specific patches. It is not

reasonable for multiple turtles to occupy the same patch. A turtle directed in error is not

necessarily constrained by roadways and lights indicated only by color.

I came to NetLogo as an experienced designer, programmer, and implementer. I

would describe NetLogo and its syntax as feature-rich but idiosyncratic and difficult to

use. It has hints of object oriented principles, but it is not object oriented. The

documentation is limited: a dictionary and a brief hit-and-miss programming guide. It

works well for refreshing one’s knowledge on a specific feature but is of limited use as a

general learning tool or an overall architecture or design guide. It is a rich but ultimately

frustrating platform. It is, however, free.

The conceptualization of the Uptown Charlotte model was straight forward, but

the implementation was a frustrating struggle. Building the model as a one-off was more

difficult than it needed to be. Much of that frustration was having to build the tools to

build the model within NetLogo, and at this point I do not believe building an ABM vs.

an EBM is a simple decision. If there were easily accessible front-end tools to build the

environment interface, I would likely believe differently. Building the ABM model is

easier…building a one-off graphic environment is not.

8.4 Platoons, Convoys, and Waves

Earlier discussion (Chapter 2: Background Research) mentioned self-organizing

groups of cars variously called platoons, convoys, or waves. Some of the cited research

 46

projects had tooled their models to promote these groups with the assumption that they

increased the efficiency of the grid. I pointed out that my experience was that these

groups tended to self-organize organically, spontaneously when the focus was only on the

efficiency of the autonomous lights. This was true with the various simulation groups

with the Uptown Charlotte model as well when four key conditions were met.

First, obviously there must be sufficient traffic volume. It is just not a platoon

with only three of four cars. Second, the stop phases of the light must be long enough for

the cars to congregate behind a light. Third, the go phase must be long enough to allow

the platoon to stay together moving through the light. Finally, subsequent lights must

repeat conditions two and three. My observation is that the autonomous lights operating

as described earlier effectively did just that without communicating with each other.

Platoons spontaneously self-organized without special prompting.

CHAPTER 9: CONCLUSIONS

9.1 Contribution and Implications

The stated goal at the beginning of this research was to build an ABM model of

the Uptown Charlotte grid and test whether it could operate as a basic CAS with the

traffic lights operating as autonomous agents. The second goal was to test whether the

agents could learn from past success and improve their individual performance and thus

collectively the performance of the entire grid. The third goal was that this learning

could be real-time, without a recalculation-reload step associated with EBM models and

that the ABM model would be easier to design, implement, and execute than a

comparable EBM model.

The grid, scaled to represent Uptown Charlotte and tested with actual Charlotte

data, did perform as the actual grid performs. For each time slice it was able to absorb

and recover promptly from peak loads; and it did so operating as a CAS.

As designed, during the NM simulations the agents adapted but did not learn.

During the VMGF simulations the traffic light agents adapted, learned, and improved

their performance by monitoring the traffic accumulating in the block behind the light

and modifying the value of a key parameter to take advantage of productive parameter

combinations. The learning improvements were not large, but they were consistently

 48

better than the results of the non-learning rule set. There was no significant difference

between VMGF and VMGR results.

I believe there were three factors that influenced the size of the improvements.

The first was that the actual Charlotte grid (and thus the model grid) was relatively

efficient even without learning. There was not much room for improvement. For

EarlyPeak and LatePeak both the pre-learning and post-learning exit percentages were in

the 98 percent range, but the post-learning percentages were typically 0.01 – 0.03 percent

higher.

The hours within each time slice influenced the near 100 percent exit count as

well. Recall that each slice was designed to show the response to and recovery from a

traffic peak. There were no double peaks. The peak within a slice was always followed

by at least one hour with less traffic allowing the peak level to dissipate. If the grid were

not inherently efficient, it would not have recovered post-peak; and the exit percentage

would not have approached 100.

The third factor was that the learning rule, Rule 4, was invoked at an intersection

only when traffic began to increase in opposing directions. In practice even for the

EarlyPeak and LatePeak slices this happened at fewer than ten intersections.

Most of the intersections never met the traffic volumes required to learn, and Rule 4 was

never invoked.

9.2 Future Work

The model works for Charlotte, but it is still a general model. The grid itself is

designed to match Charlotte, but the agent behavior rules are not specific to any

 49

particular grid. In theory, applying the model to a grid designed to match another city

using actual data from that city would produce results specific for that city. In fact if that

new grid were less efficient than the Charlotte grid, it would be an interesting question to

pose whether the learning delta would be larger for the new grid due to the greater

opportunity for improvement. For this project there was no effort put to creating another

grid. That will be left to future work. If such a project were undertaken my suggestion

would be to resist the impulse to begin creating the grid itself at the outset. The first

tasks should be to develop the front-end tools to automate the definition of the model

environment anticipating the creation and future maintenance of the grid itself.

 50

REFERENCES

Barrero, F. et al., 2010. Internet in the development of future road-traffic control systems.

Internet Research, 20(2), pp. 154-168.

Bazzan, A., 2009. Opportunities for multiagent systems and multiagent reinforcement

learning in traffic control. Autonomous Agents and Multiagent Systems, Volume 18, pp.

342 - 375.

Bazzan, A. L., de Oliveira, D. & daSilva, B. C., 2010. Learning in groups of traffic

signals. Engineering Applications of Artificial Intelligence, Volume 23, pp. 560 - 568.

Bazzan, A. L. & Klugl, F., 2013. A review on agent-based technology for traffic and

transportation. The Knowledge Engineering Review, 29(3), pp. 375-403.

Brockfeld, E. B. R. S. A. S. M., 2001. Optimizing traffic lights in a cellular automaton

model for city traffic. Physical Review E, 64(5), p. 56132.

Buchanan, M., 2007. The Social Atom Why the Rich Get Richer, Cheaters Get Caught,

and Your Neighbor Ususlly Looks Like You. 1 ed. New York: Bloomsbury.

Cai, C., Wong, C. K. & Heydecker, B. G., 2009. Adaptive traffic signal control using

approximate dynamic programming. Transportation Research Part C, Volume 17, pp.

456-474.

Cools, S.-B., Gershenson, C. & D'Hooghe, B., 2008. Self-organizing traffic lights: a

realistic simulation. Advances in Applied Self-organizing Systems, pp. 41 - 50.

Cui, C., Takamura, M. & Lee, H., 2011. Traffic signal control for a multi-forked road.

Artificial Life and Robotics, Volume 16, pp. 253-257.

De Martino, A., Marsili, M. & Mulet, R., 2004. Adaptive drivers in a model of urban

traffic. Europhysics Letters, 65(2), pp. 283-289.

de Oliveira, D. & Bazzan, A. L., 2006. Traffic Lights Control with Adaptive Group

Formation Based on Swarm Intelligence. ANTS 2006, LNCS 4150, pp. 520-521.

de Oliveira, D., Bazzan, A. L. & Lesser, V., 2005. Using Cooperative Mediation to

Coordinate Traffic Lights: A Case Study. AAMAS '05.

de Oliveira, D., Ferreira, P. R. J., Bazzan, A. L. & Klugl, F., 2004. A Swarm-Based

Approach for Selection of Signal Plans in Urban Scenarios. ANTS 2004, LNCS 3172, pp.

416-417.

Dong, C., Ma, X. & Wang, B., 2010. Advanced information feedback strategy in

intelligent two-route traffic flow systems. Science China, 53(11), pp. 2265-2271.

 51

enotes, n.d. Approximately How Many Cars Were Registered. [Online]

Available at: http://www.enotes.com/homework-help/approximately-how-many-cars-

were-registered

[Accessed 7 September 2016].

Gershenson, C., 2005. Self-organizing traffic lights. Complex Systems, Volume 16, pp. 29

- 53.

Hadzikadic, M., 2015. ITIS8500-091 Class Notes. s.l.:UNCC.

Hare, M. D. P., 2003. Further towards a taxonomy of agetn-based simulation models in

environmental management. IMACS, Volume 64, pp. 25-40.

Jacob, C. & Abdulhai, B., 2010. Machine learning for multi-jurisdictional optimal traffic

corridor control. Transportation Research Part A, 44(2), pp. 53-64.

James, R., 2009. America: Still Stuck in Traffic. Time, 09 07.

Kammoun, H. M. et al., 2014. Adapt-Traf: An adaptive multiagent road traffic

management system based on hybrid ant-hierarchical fuzzy model. Transportation

Research Part C, Volume 42, pp. 147-167.

Klugl, F. B. A. L. C., 2012. Agent-Based Modeling and Simulation. Association for the

Advancement of Artificial Intelligence, Volume Fall 2012, pp. 29-40.

Macal, C. M. N. M. J., 2006. Introduction to Agent-Based Modeling and Simulation.

MCS LANS Informal Seminar, 29 11.

Mitchell, M., 2009. Complexity A Guided Tour. 1 ed. New York: Oxford University

Press.

North Carolina Department of Transportation, n.d. Traffic Surveys. [Online]

Available at: https://www.ncdot.gov/projects/trafficsurvey/

[Accessed May 2016].

North Carolina Department of Transportation, n.d. Traffic Volime Maps. [Online]

Available at: https://www.ncdot.gov/travel/statemapping/trafficvolumemaps/

[Accessed May 2016].

Obregon, F. A., 2016. Personal email. s.l.:Charlotte Department of Transportation

(CDOT).

Parunak, H. V. D. S. R. R. R. L., 1998. Agent-Based Modeling vs. Equation Based

Modeling: A Case Study and Users' Guide. Proceedings of Multi-agent systems and

Agent-based Simulation, pp. 10-25.

Piotrowski, S. P., 2016. Personal email. s.l.:North Carolina Department of Transportation

(NCDOT).

 52

Rochner, F. B. J. M.-S. C. S. H., 2006. An Organic Architecture for Traffic Light

Controllers. Proceedings of the Informatik 2006 - Informatik fur Menschen, P-93(Lecture

notes in informatics), pp. 120-127.

Santa Fe Institute, n.d. Santa Fe Institute. [Online]

Available at: http://www.santafe.edu

[Accessed May 2016].

Simpson, J., 2015. Charlotte Uptown. Charlotte: SimpsonMaps.com.

Steingrover, M. S. R. P. S. N. E. B. B., 2005. Reinforcement Learning of Traffic Light

Controllers Adapting to Traffic Congestion. Proceedings of the 17th Belgium-

Netherlands Conference on Artificial Intelligence, Volume October 2005, pp. 216-223.

Stoller, G., 2012. New Report: Road congestion wastes 1.9 billion gallons of gas. USA

Today, 25 03.

U.S Department of Transportation - Federal Highway Administration, n.d. Traffic Signal

Timing Manual Chapter 6 - Office of Operations. [Online]

Available at: http://www.ops.fhwa.dot.gov/publications/fhwahop08024/chapter6.htm#6.3

[Accessed 22 November 2015].

U.S. Department of Transportation - Federal Highway Administration, 2009. Manual on

Uniform Control Devices (MUTCD). [Online]

Available at: http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/pdf_index.htm

[Accessed 22 November 2015].

Waldrop, M. M., 1992. Complexity The Emerging Science at the Edge of Order and

Chaos. 1 ed. New York: Simon & Schuster.

Werbach, A., 2013. The American Commuter Spends 38 Hours a Year Stuck in Traffic.

The Atlantic, 06 02.

Wiering, M., 2000. Multi-Agent Reinforcement Learning for Traffic Light Control.

Proceedings of the 17th Conference on Machine Learning, pp. 1151-1158.

Wilensky, U., 1999. NetLogo. s.l.: Center for Connected Learning and Computer-Based

Modeling, Northwestern University. Evanston, IL..

Wilensky, U. W., 2015. An Introduction to Agent-Based Modeling: Modeling Natural,

Social, and Engineered Complex Systems with NetLogo. 1 ed. Cambridge, MA: The MIT

Press.

Xu, Y. Z. Y. L. M., 2014. Multiagent Based Decentralized Traffic Light Control for

Large Urban Transportation System. Mathematical Problems in Engineering, Volume

2014, p. ID 104349.

 53

Zheng, X., Recker, W. & Chu, L., 2010. Optimization of Control Parameters for

Adaptive Traffic-Actuated Signal Control. Journal of Intelligent Transportation Systems,

14(2), pp. 95-108.

 54

APPENDIX A: MODEL INTERFACE

F
ig

u
re

 4
:

 N
et

L
o

g
o
 m

o
d

el
 i

n
te

rf
ac

e

 55

APPENDIX B: FIXED VS. VARIABLE MIN GO SUMMARY TABLES

Table 2: EarlyPeak Near – Summary Data from Near vs. Variable Min Go simulations

EarlyPeak Near

Fixed vs. Variable Min Go

Fixed Min Go Parms

Fixed

Initial
Random

Initial

Min

Go

Near

High

Exit

Per

Cent

Min

Go

Incre.

Min

Go

Decre.

Min Go Select

Factor

High Exit

Per Cent

High

Exit

Per

Cent x3

High

Exit

Per

Cent x6

50 5 98.51 3 1 0.85 98.53

50 10 98.44 3 2 0.65 98.55

50 15 98.19 3 3 0.65 98.53

50 20 97.98 5 1 0.65 98.55 98.49

 5 3 0.65 98.54

 5 5 0.65 98.57 98.49

 8 1 0.85 98.54

 8 4 0.65, 0.85 98.55 98.52 98.05

 8 8 0.85 98.53

65 5 98.47 3 1 0.65, 0.75, 0.85 98.52

65 10 98.39 3 2 0.85 98.53

65 15 98.19 3 3 0.85 98.53

65 20 97.64 5 1 0.75 98.52

 5 3 0.75 98.52

 5 5 0.75 98.55 98.52

 8 1 0.65, 0.75 98.55 98.53 98.54

 8 4 0.65 98.56 98.51

 8 8 0.75 98.53

90 5 98.55 3 1 0.85 98.54

90 10 98.29 3 2 0.75, 0.85 98.52

90 15 98.07 3 3 0.65 98.55 98.50

90 20 97.24 5 1 0.75 98.53

 5 3 0.75, 0.85 98.53

 5 5 0.85 98.54

 8 1 0.75 98.55

 8 4 0.65 98.56 98.55 98.42

 8 8 0.65 98.55 98.51

 56

Table 3: LatePeak Near – Summary Data from Near vs. Variable Min Go simulations

LatePeak Near

Fixed vs. Variable Min Go

Fixed Min Go Parms

Fixed

Initial
Random

Initial

Min

Go

Near

High

Exit

Per

Cent

Min

Go

Incre.

Ming

Go

Decre.

Min Go

Select

Factor

High Exit

Per Cent

High

Exit Per

Cent x3

High

Exit Per

Cent x6

50 5 98.76 3 1 0.65 98.76

50 10 98.65 3 2 0.85 98.77

50 15 98.53 3 3 0.85 98.78 98.74

50 20 98.07 5 1 0.65, 0.85 98.77

 5 3 0.85 98.76

 5 5 0.65 98.78 98.76

 8 1 0.85 98.78 98.76 98.76

 8 4 0.85 98.77

 8 8 0.85 98.77

65 5 98.77 3 1 0.75 98.78 98.73

65 10 98.72 3 2 0.65 98.77

65 15 98.41 3 3 0.65 98.78 98.73

65 20 97.64 5 1 0.75 98.76

 5 3 0.75, 0.85 98.74

 5 5 0.75 98.77

 8 1 0.75 98.76

 8 4 0.65 98.77

 8 8 0.65 98.80 98.77 98.78

90 5 98.72 3 1 0.85 98.76

90 10 98.66 3 2 0.65 98.76

90 15 98.54 3 3 0.85 98.77

90 20 97.54 5 1 0.75 98.77

 5 3 0.75 98.76

 5 5 0.85 98.77 98.75

 8 1 0.75 98.76

 8 4 0.75 98.79 98.60

 8 8 0.85 98.80 98.77 98.77

 57

APPENDIX C: SELECTED SAMPLES OF SIMULATION DATA TABLES

Table 4: LatePeak Near – Data from Near factor group simulations

LatePeak Near

Start

Hour

Stop

Hour

Min

Go

Length

Near
Arrival

Count

Exit

Count

Exit

Per

Cent

Avg

Ticks

on

Grid

Avg

Idle

Queue

Count

Exit

Per

Cent

Rank

15 18 20 5 46,514 45,910 98.70 225 794 0 8

15 18 20 10 46,292 45,655 98.62 242 1,183 0 13

15 18 20 15 46,091 45,419 98.54 267 1,616 0 16

15 18 20 20 46,006 45,201 98.25 300 2,298 0 22

15 18 35 5 46,620 46,041 98.76 222 715 0 3

15 18 35 10 46,371 45,761 98.68 237 1,046 0 9

15 18 35 15 46,252 45,594 98.58 265 1,642 0 15

15 18 35 20 46,022 45,147 98.10 317 2,755 0 23

15 18 50 5 46,632 46,055 98.76 221 718 0 2

15 18 50 10 46,358 45,734 98.65 239 1,123 0 11

15 18 50 15 46,121 45,443 98.53 276 1,907 0 18

15 18 50 20 45,869 44,983 98.07 314 2,679 0 24

15 18 65 5 46,614 46,041 98.77 222 725 0 1

15 18 65 10 46,393 45,798 98.72 239 1,114 0 6

15 18 65 15 46,045 45,314 98.41 289 2,238 0 19

15 18 65 20 45,829 44,746 97.64 345 3,424 0 25

15 18 90 5 46,624 46,029 98.72 221 721 0 5

15 18 90 10 46,371 45,750 98.66 243 1,232 0 10

15 18 90 15 45,983 45,310 98.54 302 2,535 0 17

15 18 90 20 45,676 44,552 97.54 366 4,014 0 26

15 18 105 5 46,610 46,026 98.75 219 676 0 4

15 18 105 10 46,254 45,620 98.63 246 1,299 0 12

15 18 105 15 45,890 45,103 98.29 318 2,861 0 21

15 18 105 20 45,588 44,433 97.47 383 4,269 0 27

15 18 120 5 46,609 46,006 98.71 221 712 0 7

15 18 120 10 46,238 45,589 98.60 254 1,509 0 14

15 18 120 15 45,898 45,118 98.30 306 2,600 0 20

15 18 120 20 45,328 43,991 97.05 417 5,110 0 28

 58

Table 5: EarlyPeak, Variable Min Go, Initial 50 – Data from VMGF group simulations,

initial min go of 50

Start

Hour

Stop

Hour

Min Go

Length
Near

Min Go

Incre.

Min Go

Decre.

Min Go

select

factor

Arrival

Count

Exit

Count

Exit Per

Cent

Queue

Count

Total

Caution

Cycle

Count

High

Exit Per

Cent

5 9 50 5 3 1 0.65 52,523 51,696 98.43 0 176,559 98.53

5 9 50 5 3 1 0.65 52,528 51,750 98.52 0 174,258

5 9 50 5 3 1 0.65 52,225 51,425 98.47 302 174,662

5 9 50 5 3 1 0.75 52,430 51,654 98.52 88 175,370

5 9 50 5 3 1 0.75 52,284 51,484 98.47 239 174,933

5 9 50 5 3 1 0.75 52,329 51,522 98.46 199 174,186

5 9 50 5 3 1 0.85 52,427 51,654 98.53 108 177,355

5 9 50 5 3 1 0.85 52,528 51,746 98.51 0 177,951

5 9 50 5 3 1 0.85 52,527 51,747 98.52 0 177,594

5 9 50 5 3 2 0.65 52,526 51,746 98.52 0 177,046 98.55

5 9 50 5 3 2 0.65 52,437 51,645 98.49 88 174,144

5 9 50 5 3 2 0.65 52,405 51,646 98.55 120 173,529

5 9 50 5 3 2 0.75 52,521 51,719 98.47 0 178,940

5 9 50 5 3 2 0.75 52,523 51,737 98.50 0 175,596

5 9 50 5 3 2 0.75 52,523 51,721 98.47 0 173,544

5 9 50 5 3 2 0.85 52,527 51,752 98.52 0 180,517

5 9 50 5 3 2 0.85 52,526 51,754 98.53 0 177,247

5 9 50 5 3 2 0.85 52,532 51,738 98.49 0 177,884

5 9 50 5 3 3 0.65 52,524 51,751 98.53 0 176,683 98.53

5 9 50 5 3 3 0.65 52,520 51,746 98.53 0 177,439

5 9 50 5 3 3 0.65 52,524 51,743 98.51 0 178,347

5 9 50 5 3 3 0.75 52,526 51,753 98.53 0 177,400

5 9 50 5 3 3 0.75 52,523 51,726 98.48 0 179,056

5 9 50 5 3 3 0.75 52,520 51,732 98.50 0 178,617

5 9 50 5 3 3 0.85 52,523 51,733 98.50 0 179,409

5 9 50 5 3 3 0.85 52,521 51,744 98.52 0 179,831

5 9 50 5 3 3 0.85 52,519 51,735 98.51 0 178,417

EarlyPeak, Variable Min Go
Initial 50

 59

Table 6: LatePeak, Variable Min Go, Random Initial – Data from VMGR group

simulations, random starting min go

Start

Hour

Stop

Hour

Min

Go

Length

Near

Min

Go

Incre.

Min

Go

Decre.

Min Go

select

factor

Min Go

max

factor

Arrival

Count

Exit

Count

Exit

Per

Cent

Queue

Count

Total

Caution

Cycle

Count

High

Exit Per

Cent

15 18 50 5 3 3 0.85 1.25 46,062 44,675 96.99 0 203,318 98.74

15 18 50 5 3 3 0.85 1.25 46,006 44,532 96.80 0 201,745

15 18 50 5 3 3 0.85 1.25 46,000 44,577 96.91 0 202,995

15 18 50 5 3 3 0.85 1.50 46,382 45,794 98.73 0 195,774

15 18 50 5 3 3 0.85 1.50 46,428 45,845 98.74 0 195,220

15 18 50 5 3 3 0.85 1.50 46,382 45,794 98.73 0 195,186

15 18 50 5 3 3 0.85 1.75 46,617 46,029 98.74 0 199,922

15 18 50 5 3 3 0.85 1.75 46,628 46,024 98.70 0 199,551

15 18 50 5 3 3 0.85 1.75 46,619 46,027 98.73 0 198,654

15 18 50 5 5 5 0.65 1.25 46,532 45,957 98.76 0 200,968 98.76

15 18 50 5 5 5 0.65 1.25 46,558 45,981 98.76 0 196,784

15 18 50 5 5 5 0.65 1.25 46,570 45,975 98.72 0 196,771

15 18 50 5 5 5 0.65 1.50 46,465 45,866 98.71 0 196,879

15 18 50 5 5 5 0.65 1.50 46,417 45,831 98.74 0 196,340

15 18 50 5 5 5 0.65 1.50 46,463 45,858 98.70 0 194,645

15 18 50 5 5 5 0.65 1.75 46,632 46,025 98.70 0 196,328

15 18 50 5 5 5 0.65 1.75 46,687 46,096 98.73 0 195,002

15 18 50 5 5 5 0.65 1.75 46,626 46,015 98.69 0 194,984

15 18 50 5 8 1 0.85 1.25 46,345 45,742 98.70 0 204,629 98.76

15 18 50 5 8 1 0.85 1.25 46,367 45,770 98.71 0 204,989

15 18 50 5 8 1 0.85 1.25 46,303 45,705 98.71 0 204,694

15 18 50 5 8 1 0.85 1.50 44,235 43,079 97.39 1198 174,066

15 18 50 5 8 1 0.85 1.50 42,844 40,214 93.86 2432 166,916

15 18 50 5 8 1 0.85 1.50 42,777 39,537 92.43 2609 164,236

15 18 50 5 8 1 0.85 1.75 46,420 45,843 98.76 0 193,748

15 18 50 5 8 1 0.85 1.75 46,415 45,807 98.69 0 193,346

15 18 50 5 8 1 0.85 1.75 46,382 45,798 98.74 0 192,441

LatePeak, Variable Min Go
Random Starting

 60

Table 6 (Continued)

Start

Hour

Stop

Hour

Min

Go

Length

Near

Min

Go

Incre.

Min

Go

Decre.

Min Go

select

factor

Min Go

max

factor

Arrival

Count

Exit

Count

Exit

Per

Cent

Queue

Count

Total

Caution

Cycle

Count

High

Exit Per

Cent

15 18 65 5 3 1 0.75 1.25 44,562 43,013 96.52 816 170,862 98.73

15 18 65 5 3 1 0.75 1.25 44,884 44,264 98.62 610 175,760

15 18 65 5 3 1 0.75 1.25 45,018 44,324 98.46 464 174,842

15 18 65 5 3 1 0.75 1.50 44,741 43,236 96.64 846 177,361

15 18 65 5 3 1 0.75 1.50 44,097 42,227 95.76 1217 167,123

15 18 65 5 3 1 0.75 1.50 43,848 42,423 96.75 1493 172,726

15 18 65 5 3 1 0.75 1.75 46,546 45,952 98.72 0 188,128

15 18 65 5 3 1 0.75 1.75 46,519 45,930 98.73 0 187,552

15 18 65 5 3 1 0.75 1.75 46,539 45,936 98.70 0 187,517

15 18 65 5 3 3 0.65 1.25 46,439 45,847 98.73 0 195,688 98.73

15 18 65 5 3 3 0.65 1.25 46,413 45,801 98.68 0 195,054

15 18 65 5 3 3 0.65 1.25 46,399 45,792 98.69 0 195,729

15 18 65 5 3 3 0.65 1.50 46,409 45,807 98.70 0 186,935

15 18 65 5 3 3 0.65 1.50 46,360 45,750 98.68 0 186,832

15 18 65 5 3 3 0.65 1.50 46,412 45,804 98.69 0 185,577

15 18 65 5 3 3 0.65 1.75 46,182 45,595 98.73 0 191,853

15 18 65 5 3 3 0.65 1.75 46,182 45,576 98.69 0 191,645

15 18 65 5 3 3 0.65 1.75 46,254 45,666 98.73 0 189,760

15 18 65 5 8 8 0.65 1.25 46,685 45,923 98.37 0 211,494 98.77

15 18 65 5 8 8 0.65 1.25 46,644 45,884 98.37 0 193,946

15 18 65 5 8 8 0.65 1.25 46,631 45,872 98.37 0 191,718

15 18 65 5 8 8 0.65 1.50 46,660 46,059 98.71 0 193,986

15 18 65 5 8 8 0.65 1.50 46,648 46,076 98.77 0 193,706

15 18 65 5 8 8 0.65 1.50 46,705 46,114 98.73 0 192,160

15 18 65 5 8 8 0.65 1.75 46,444 45,867 98.76 0 195,335

15 18 65 5 8 8 0.65 1.75 46,474 45,890 98.74 0 195,066

15 18 65 5 8 8 0.65 1.75 46,492 45,906 98.74 0 194,863

LatePeak, Variable Min Go
Random Starting

 61

Table 6 (Continued)

Start

Hour

Stop

Hour

Min

Go

Length

Near

Min

Go

Incre.

Min

Go

Decre.

Min Go

select

factor

Min Go

max

factor

Arrival

Count

Exit

Count

Exit

Per

Cent

Queue

Count

Total

Caution

Cycle

Count

High

Exit Per

Cent

15 18 90 5 5 5 0.85 1.25 46,688 46,096 98.73 0 191,898 98.75

15 18 90 5 5 5 0.85 1.25 46,668 46,071 98.72 0 191,113

15 18 90 5 5 5 0.85 1.25 46,670 46,071 98.72 0 192,342

15 18 90 5 5 5 0.85 1.50 46,623 46,041 98.75 0 190,239

15 18 90 5 5 5 0.85 1.50 46,626 46,038 98.74 0 189,990

15 18 90 5 5 5 0.85 1.50 46,632 46,029 98.71 0 191,099

15 18 90 5 5 5 0.85 1.75 46,574 45,974 98.71 0 186,923

15 18 90 5 5 5 0.85 1.75 46,581 45,996 98.74 0 188,659

15 18 90 5 5 5 0.85 1.75 46,584 45,985 98.71 0 188,187

15 18 90 5 8 4 0.75 1.25 46,361 45,459 98.05 0 190,113 98.60

15 18 90 5 8 4 0.75 1.25 46,422 45,551 98.12 0 189,207

15 18 90 5 8 4 0.75 1.25 46,366 45,484 98.10 0 190,003

15 18 90 5 8 4 0.75 1.50 46,097 45,105 97.85 375 195,788

15 18 90 5 8 4 0.75 1.50 45,583 44,753 98.18 794 184,920

15 18 90 5 8 4 0.75 1.50 45,574 44,738 98.17 804 183,598

15 18 90 5 8 4 0.75 1.75 46,684 46,032 98.60 0 185,981

15 18 90 5 8 4 0.75 1.75 46,654 46,000 98.60 0 186,023

15 18 90 5 8 4 0.75 1.75 46,641 45,978 98.58 0 187,867

15 18 90 5 8 8 0.85 1.25 46,643 46,060 98.75 0 186,495 98.77

15 18 90 5 8 8 0.85 1.25 46,601 46,026 98.77 0 189,181

15 18 90 5 8 8 0.85 1.25 46,647 46,053 98.73 0 188,919

15 18 90 5 8 8 0.85 1.50 46,574 45,971 98.71 0 197,071

15 18 90 5 8 8 0.85 1.50 46,547 45,969 98.76 0 196,914

15 18 90 5 8 8 0.85 1.50 46,566 45,982 98.75 0 197,196

15 18 90 5 8 8 0.85 1.75 46,337 45,733 98.70 0 189,513

15 18 90 5 8 8 0.85 1.75 46,331 45,734 98.71 0 188,832

15 18 90 5 8 8 0.85 1.75 46,316 45,680 98.63 0 188,893

LatePeak, Variable Min Go
Random Starting

