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ABSTRACT 

 

 

PATRICK STUART TIMOTHY PHILLIPS.  Predicting costs for bridge replacement 

projects.  (Under the direction of DR. TARA CAVALLINE) 

 

 

 The North Carolina Department of Transportation (NCDOT) uses historical 

highway bridge records to make cost-effective decisions on which maintenance, repair, or 

replacement action is appropriate for a deficient bridge. The current method for 

estimating total bridge replacement cost does not provide reliable and consistent 

estimates, which impairs forecasting efforts. Updating the current prediction models to 

include additional factors that may influence cost would theoretically improve the fidelity 

of the models. Prior studies on bridge cost estimation models for NCDOT and INDOT 

(Indiana) served as a starting point for the modeling effort detailed in this study. A 

dataset of recent NCDOT bridge replacement projects was compiled to serve as a 

foundation for the updated models. Statistical software was used to perform multivariate 

regression analysis to identify statistically significant predictors and to build models to 

predict the geometric characteristics of new, replacement bridges (such as new bridge 

length, width, and span length), as well as right of way costs, engineering costs, 

construction costs, and total replacement costs.  Two approaches were explored in order 

to predict cost:  1) predicting new bridge characteristics from old bridge characteristics, 

then predicting bridge replacement costs from predicted new bridge characteristics, and 

2) predicting bridge replacement costs directly from old bridge characteristics.  New 

models developed as part of this work were compared to the previously utilized models 

based on how well the model fit the data (R
2
) and the confidence interval of the 

prediction. When both sets of models were used with current bridge replacement data, the 
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new models achieved better fits and yielded narrower confidence intervals than the 

previously utilized models.  Comparing the residual error distributions for the different 

modeling approaches, the models developed to predict costs directly from the bridge 

characteristics of the structure being replaced were found to out-perform the models 

developed to predict cost using forecasted characteristics of the replacement structure. 

Predicting replacement project costs as a total cost (instead of summing the predicted 

right of way, engineering cost, and construction cost amounts) avoided introducing 

compounded error from aggregated component cost predictions. For future work, it is 

recommended that changes with respect to how bridge information is logged into 

databases would streamline the data conditioning process and increase the usable number 

of entries for creation of the models. 
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CHAPTER 1: INTRODUCTION 

 

 

1.1  Introduction to Current NCDOT Bridge Management 

The North Carolina Department of Transportation (NCDOT) is responsible for the 

maintenance of over 13,500 bridge structures across the state (NCDOT, 2017). In order to 

effectively manage all of these structures, the NCDOT stores inspection data and other 

pertinent information for each bridge in a series of databases. As with most state 

transportation agencies, this data is used in a risk-based approach to prioritize future 

bridge projects and to make cost-effective maintenance, repair, rehabilitation (MR&R), 

and replacement decisions.   

Many decisions made by NCDOT with regards to bridge project selection and 

prioritization are driven by cost. To make fair comparisons, the BMS needs to associate a 

dollar value with each remediation alternative. When replacement of a bridge is a 

possible option (or identified as the necessary option), an accurate estimate of the 

replacement cost is needed.  Within the Bridge Management System software utilized by 

NCDOT, estimates for bridge replacements are made at a conceptual level, meaning that 

the estimates only consider a few known project parameters since a detailed design has 

not yet been made. Although only a conceptual estimate, an accurate estimated bridge 

replacement cost allows for state transportation agencies to prioritize upcoming projects 

and to determine which projects can be reasonably covered within a budget. 

NCDOT personnel indicate that current bridge replacement cost prediction 

methods and models used by NCDOT are reasonably accurate for medium-sized bridge 

projects. However, replacement cost estimates for smaller and larger bridge projects are 

typically inaccurate. Current cost prediction models employed within the BMS are quite 



2 
 

simple and are based upon roadway system classification (primary, secondary, or 

interstate), with a simple unit cost (dollars per square foot) multiplied by the deck area of 

the existing bridge (Table 1.1).  The inclusion of additional project factors within 

improved bridge replacement cost models could potentially improve the accuracy of the 

bridge replacement cost predictions. When utilized in bridge management for thousands 

of potential highway bridges projects, the needs forecasting analysis would be much 

improved at the network level. Currently, NCDOT desires a single dynamic model that 

considers additional project parameters, provides more accurate total bridge replacement 

project cost estimates, and can be readily updated when necessary.  

Table 1.1: Current bridge replacement unit costs in NCDOT BMS 

Roadway System Classification Unit Cost ($/SF deck area) 

Interstate $704.00 

Primary $664.00 

Secondary $529.00 

 

1.2  Research Significance 

Using an inaccurate cost estimation model that does not consider many important 

factors will produce highly variable results, affecting the ability of a state highway 

agency to effectively evaluate MR&R alternatives for bridges, to identify when 

replacement is the desired option, to prioritize projects, and to forecast agency needs. 

Estimates generated with a wide confidence interval make it difficult for state 

transportation agencies to correctly anticipate funding needs when requesting state 

resources for bridge replacement. Significantly overestimated bridge replacement costs 

may delay the letting of additional bridge projects.  Conversely, if a replacement cost is 

significantly underestimated, the agency is at risk of having to delay work on projects 

that have already been let or otherwise address this shortcoming.  Use of accurate bridge 
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replacement cost models, based on recent bridge characteristics and replacement cost 

data, will aid in both project prioritization and budget forecasting.   

As mentioned previously, current bridge replacement cost prediction models in 

the BMS utilize only roadway system classification and deck area of the existing bridge 

as predictor variables.  Changes in design loads and required capacity of bridges, 

waterway and floodplain requirements, and other factors often require replacement 

bridges to be longer and wider than the original bridge, causing the simplified 

replacement cost method programmed into the BMS to be inaccurate. Since bridge 

replacement costs are influenced by the design of the structure, the ability to make 

reliable predictions for the characteristics of the replacement structure could be useful in 

strengthening the accuracy of the final cost estimates. Another way to improve the 

accuracy of these models would be consideration of additional variables that can be 

statistically shown to be linked to bridge replacement cost.  These could potentially 

include factors such as location, design type, bridge materials, average daily traffic 

(ADT), and type of route carried. Additional factors that may affect bridge replacement 

cost are already stored in the BMS and other auxiliary databases available to NCDOT’s 

Structures Management Unit.  Since much of this data is collected regularly, these factors 

would be relatively easy to integrate into the forecasting models, if deemed to be 

significantly related to bridge replacement costs. 

Due to the changing nature of infrastructure design and construction cost 

prediction models should also be dynamic and easily updated. Changes in design loads, 

traffic demands, and highway regulations can render a static prediction model obsolete. 

These requirements also dictate bridge design, which ultimately has a driving influence 
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over cost. Providing a clear methodology for developing prediction models based on a 

number of years of recent data would allow for models to be adjusted and refined as 

necessary. The result of updating bridge replacement cost models over time could have 

effects as minor as changed coefficients, or as extensive as adding or removing variables 

from the equation. 

With a more accurate cost prediction model (or models), the NCDOT could make 

more informed decisions on funding and prioritizing their projects. On a single-project 

basis, a more accurate replacement cost estimate should lead to a lower likelihood of 

actual project cost exceeding the projected cost during the forecasting stage.  From a 

network standpoint, improved bridge replacement cost models would help improve the 

overall condition of the bridges owned and maintained by NCDOT by allowing for more 

projects to be let each year with fewer delays caused by inadequate funding. Successful 

development and implementation of bridge replacement cost models could also provide 

guidance to other state transportation agencies interested in adopting improved cost 

estimating models for their asset management programs. 

1.3  Objectives 

Below is a list of the objectives addressed in this thesis: 

1. Compile records of recently updated bridge characteristic and cost data from 

several NCDOT databases into a central dataset that is suitable for use in 

developing new bridge prediction models. 

2. Use data from the central dataset to evaluate the accuracy and appropriateness 

of older prediction models for project costs and new bridge attributes 

developed by other researchers. 
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3. Consider using one of the two approaches for estimating bridge replacement 

project costs: (1) by predicting the bridge characteristics for the replacement 

structure from those of the structure being replaced and then predicting cost 

from those estimated values, or (2) predicting cost directly from the bridge 

characteristics of the structure being replaced. 

4. Create a set of updated bridge replacement prediction models that improve the 

accuracy of estimates by inclusion of additional, statistically significant 

predictor variables. These models can be used to predict project costs or 

changes in bridge dimensions between the existing and replaced structures.  

5. Select one “recommended” model for each dependent (predicted) variable 

6. Identify the best approach for predicting cost, whether it be to predict directly 

from old bridge characteristics or to predict with forecasted new bridge 

characteristics (per Objective 2) 

1.4  Organization of Thesis 

This thesis consists of six chapters. The first chapter serves as an introduction to 

forecasting for bridge management and presents the need for accurate cost estimation 

models. The second chapter is a literature review of cost estimation methods for highway 

construction projects, with a focus on bridge replacement costs. The literature review also 

includes information on how costs that occur before, during, and after construction have 

an impact on the total project cost. This chapter also includes information on how other 

state agencies estimate highway bridge project costs. In the third chapter, the research 

methodology used for this project, including how the data was sourced, compiled, and 

conditioned, is presented.  The mathematical models created for each dependent variable 
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associated with new bridge characteristics and bridge replacement costs are presented in 

the fourth chapter. In this chapter, the recommended model for each dependent variable 

based on model complexity and standard error of the estimate is also identified. The fifth 

chapter describes the model validation process, in which two different modeling 

approaches are considered for each predicted variable. Final recommendations for each 

model and approach are included in this chapter. The sixth chapter provides a conclusion 

to the work performed by summarizing the steps taken to update the prediction models, 

the results, and future research needs that were identified during this study. 
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CHAPTER 2: LITERATURE REVIEW 

 

 

2.1  Cost Estimation for Construction Projects 

Cost estimation for construction projects has been described as a combination of 

art and science (Gould 2005). An estimator should be able to think creatively and use 

their experience and judgement to make assumptions for uncertain conditions. Estimators 

should also be methodical, organized, and able to manage complex calculations. The 

estimator’s strengths come in part from experience with similar projects and from an 

ability to visualize how conditions may change in the future, whether it be within the 

term of the project or years down the road. Collier (1984) describes this kind of 

knowledge as “experiential” information. In the absence of detailed design information, 

the estimator injects his or her experiential judgements that are made based on any 

general project information that is available. In the early stages of a project there is little 

design information available, so the estimator must rely heavily on their own personal 

experiences and rules-of-thumb to determine the general cost for the project (Collier, 

1984). 

Reliable cost estimates are an asset for owners. Even the most basic preliminary 

estimates can give the owner an idea of whether the project is economically feasible. As 

the design is developed, more detailed estimates can help an owner find a reasonable 

tradeoff between scope and quality. For projects procured with a bidding stage, a final 

estimate based on the completed design gives owners an idea of the project’s value to 

benchmark the contractor’s bid estimates (Gould, 2005). 

2.1.1  Types of Cost Estimates 
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When discussing cost estimates for construction, it is important to differentiate 

between the terms cost and price. For the owner, the price that they pay for a completed 

project is usually greater than the cost to construct the project. That is because the cost to 

the contractor includes more than just the materials and manpower needed to complete 

the project. The contractor also has to pay for mobilization, demobilization, idle time, 

small tools, insurance, and permitting. These “direct costs” have to be accounted for by 

the contractor and charged to the owner as “reimbursable” costs. Additionally, the 

contractor also charges the owner for indirect costs that are “non-reimbursable,” since 

they cannot be attributed to specific items of work at the site. Common indirect costs for 

the contractor include operational (home office) costs, contingency, and the contractor’s 

profit. Since these costs are less tangible than direct costs, the contractor estimates these 

as either a fixed percentage or as part of a lump-sum amount, depending on the type of 

contract with the owner. For the owner, the price that they pay for a project is the sum of 

the direct and indirect project costs charged to them by the contractor (Collier, 1984). 

It is important to remember that not all cost estimates are equal. Two estimates 

made at different points on a project’s lifespan are different because the quality of the 

project information improves along the pre-construction timeline. Even the least accurate 

type of estimate serves a purpose to the owner. The following sections introduce and 

describe the different types of estimates used by owners during each phase of the pre-

construction and construction stages of a project.  

 2.1.1.1  By Project Phase 

 The type of cost estimate that can be generated for a project is dependent on the 

amount of information available to estimators. As the design for the project matures, 
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more information becomes available to estimators, which allows for more detailed 

estimates. Figure 2.1 shows the type of estimate used for each phase of the project 

(Schexnayder et al., 2003). 

 
Figure 2.1: Estimate development in relation to project development (Schexnayder et  

al, 2003) 

In the conceptual stage of a project, not enough details are available to create a 

detailed cost estimate based upon material takeoffs or design documents. Conceptual 

estimates are typically developed based on the estimator’s knowledge and experience, 

and are calculated based upon cost per square foot, previous projects, or order of 

magnitude (i.e. cost per room, cost per parking space) (Levy 2006). Typically, the only 

known attributes for a bridge replacement project at this stage of the project are 

forecasted structure dimensions based on location and anticipated traffic demand (Abed-

al-Rahim & Johnston, 1995). To get a basis of understanding for how much the 

replacement project will cost, a mathematical model can be used to compute the 

estimated cost based on available known variables. 

Conceptual estimates can be created from gross historical bidding data. Without a 

complete design, there are many unknown factors still present that may affect cost. 

Estimates generated after design and before bid are sometimes referred to as a state’s or 

engineer’s estimate and are detailed enough to finalize project funding prior to bid 

solicitation (Schexnayder et al., 2003). When estimators create these estimates several 

key assumptions are made. Some of these key assumptions may be that the project scope 
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will not change, inflation has been accounted for, no unanticipated regulatory changes 

will occur, no strikes, no damaging weather, and that the project will not be mismanaged 

(Schexnayder et al., 2003). 

During the design development phase, the owner’s design team makes decisions 

on certain aspects of the design. For a bridge project, this may be the substructure design 

(piles versus post and sill), deck material, or number of spans. Each component of the 

design can be priced based on historic data and calculated as a percentage of the total 

project cost. The owner can make decisions on whether one of the components would 

cost too much and if there is a more economically feasible alternative for that part of the 

design. In some cases, the owner may elect to reduce the scope or size of the project to 

preserve quality (Gould, 2005). 

Before advertising a project for bidding, the owner or the owner’s construction 

manager will create a more detailed estimate for the project’s cost. Since the design is 

almost complete by this point, the estimator can use more accurate unit prices for each 

component of the project. Not only does this allow the owner to determine the “fair” 

price for the project, but it also helps familiarize the owner with the contents of the 

contract documents and allows the owner to project day-to-day cash flow needs with a 

cash flow analysis (Gould, 2005). 

 Bidders for a construction contract prepare detailed pre-bid estimates based on the 

contract documents provided with the bid advertisement. The contractor’s estimators 

create material takeoffs from design information found in the specifications and plans, 

such as cubic yards of concrete or linear feet of guardrail. Breaking down the project into 

smaller operations also allows estimators to estimate the manpower and equipment 
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required for that operation. A well-organized and comprehensive list of operations with 

item codes reduces the likelihood of an estimator omitting part of the project in their 

estimate. Additional amounts are added to each subtotal to cover overhead costs and 

profit, which are included in the final price that the owner pays for a work item. 

Typically, the contractor’s operational overhead costs and profit are calculated as a fixed 

percentage of the direct costs while job overhead items can be represented as a unit cost 

or lump-sum amount (Peurifoy, 1975; Collier, 1984).  

 As with the preliminary estimates prepared by the owner, the contractor or the 

contractor’s estimator must also consider project-specific factors that affect the material 

and labor rates for a project. A site visit allows for the estimator to identify site problems, 

such as accessibility, location, and site clearing, that would lead to higher mobilization 

costs. Knowledge of local material prices, wages, and availability of skilled workers 

helps estimators make more informed decisions when they assume a unit price for an 

operation (Foster, 1972). 

Change orders are a way for contractors to seek equitable adjustment for lost time 

or money during the construction phase. This typically happens whenever there are 

circumstances that delay the final completion date of the project. The cause of the delay 

will dictate whether the contractor is owed additional time or money from the owner. 

These causes can range from severe weather, worker illnesses, and labor shortages to 

inadequate drawings and delays in permitting (Levy, 2006). 

For instances where the delay was out of the control of the contractor but caused 

by the owner or members of the design team, the contractor can recover costs associated 

with that delay. This includes direct cost items, such as equipment rentals, labor, 
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materials, stocking, subcontractors, and transportation. Contractors can also be 

reimbursed for indirect costs incurred from the delay, which includes the additional 

operations costs for both their field office staff and any home office staff involved with 

the project. A third compensable cost category, known as impact costs, includes losses in 

productivity, shortages of skilled workers, and extended warranties that resulted from the 

delay in construction. When added up, the apparent and “hidden” costs of a compensable 

delay can have an extensive impact on the project’s budget (Levy, 2006). 

 2.1.1.2  Top-Down versus Bottom-Up Estimating 

 Top-down estimates are made by looking at the project from a macro level. These 

estimates can be made when most of the design has not yet been developed, which makes 

top-down estimating ideal for creating conceptual estimates. While top-down estimates 

can be helpful for understanding the “big picture” of the project, the reliability of the 

estimation is more difficult to control. In the absence of specific design information, the 

estimator must make educated assumptions about the project based on any general project 

parameters that are available. The quality of these assumptions can depend on the 

experience of the estimator (Gransberg et al., 2013). 

 As the project’s design becomes more developed, bottom-up estimating can be 

used to create more accurate predictions for both the total project cost and individual 

work items. Bottom-up estimating works in a similar fashion as top-down but on a much 

smaller scale. After the project has reached a point where the work items can be 

organized into a work breakdown structure (WBS), a top-down estimate is performed on 

each WBS item. The total predicted cost of the project can be found by adding up the 

individual estimates for all the items in the WBS (Gransberg et al., 2013).  
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 Figure 2.2 shows how top-down and bottom-up estimates are performed for pre-

construction services (PCS), which includes engineering and right-of-way acquisition 

costs (Gransberg et al., 2013). The process shown in Figure 2.2 could be applied to other 

individual aspects of a project. Both estimating methods produce an overall cost estimate, 

however the individual sources used to produce each estimate have different levels of 

detail. The three-point estimates in the bottom-up method are essentially smaller scale 

top-down estimates for specific tasks (Gransberg et al., 2013). 

 
Figure 2.2: Top-down and bottom-up estimating methods for PCS costs (from Gransberg  

et al., 2013) 

 During a construction project, the effectiveness of top-down and bottom-up 

estimates will vary depending on the current phase of the project. In Figure 2.3, the 
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change in effectiveness for both methods as the design matures is illustrated. Since top-

down estimates rely solely on generic project parameters, they are most effective at the 

very beginning of the planning stage where there is not enough detail to use the bottom-

up approach. As the design is being developed, the usefulness of the top-down method 

decreases since bottom-up estimates tend to be more accurate and useful for allocating 

and managing resources. Gransberg et al. (2013) found that bottom-up estimates for PCS 

were most useful right before the final design phase. At this point in the preconstruction 

phase, there is enough design information available to create a reliable estimate. Beyond 

that point, in-house departments or third-party consultants will manage the 

preconstruction services, so the risk of any further cost escalation is relatively low.  

 
Figure 2.3: Relative effectiveness of top-down and bottom-up estimating methods (from 

 Gransberg et al., 2013) 

Gransberg et al (2016) provides a six-step framework for state agencies to follow 

when creating a top-down or bottom-up cost estimating model for PCS costs. This 

general approach can be applied to other types of construction costs that would use their 

own prediction models, such as construction or right-of-way costs. The framework 

functions as a cycle, which allows for agencies to make continuous improvements to their 
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models. Figure 2.4 shows the six steps in the PCS cost estimating model creation 

framework.  

 
Figure 2.4: PCS cost estimating model framework (from Gransberg et al. 2016) 

 The first step of the model, Requirements Analysis, is where the state agency 

decides on whether they will be using a top-down or bottom-up estimating approach. 

Depending on the method chosen, the agency will also have to determine what historical 

data will be needed for the estimate and where the data can be sourced. In the second 

step, the state agencies collect historical project data from a variety of separate databases 

and compile it into a central database. During this stage, the estimators need to ensure 

that the data meets their standards of quality, quantity, and level of detail. The database 

should also be tailored to the end user of the data, whether it be an estimator that needs 

project-level historical data or a geotechnical engineer that needs specific information on 

soil conditions or regional geography (Gransberg et al. 2016). 
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 After the central database has been created, the next step of the process is to 

identify significant factors that affect PCS costs. This can be done through engineering 

judgement and expertise or with a structured statistical process. Following the 

identification of these factors, the agency can develop or update their PCS database with 

respect to the significant variables. Availability of historical data can potentially limit the 

effectiveness of the database if the data does not meet a certain level of granularity 

(Gransberg et al. 2016). 

 The fifth step is where the model is created from the historical data. The model 

consists of both qualitative and quantitative aspects. The qualitative portion of the model 

relies on the experience and judgement of the model’s creators and users to assess the 

quality of the data and interpret the results. Gransberg et al. (2016) discusses four 

different quantitative methods used in PCS cost estimating models: decision tree, 

multiple regression, artificial neural networks (top-down method), and three-point 

estimating (bottom-up method). The sixth and final step involves the validation and 

implementation of the new model. After the model has been validated and deemed 

satisfactory, it is recommended that the creators of the model set up a system to track 

how well the model’s estimate performs and compares to actual costs. If there are 

discrepancies between estimated and actual costs, the creators and end users should be 

able to identify the causes for the deviations and create a list of “lessons learned” that can 

be adapted into the next development cycle of the model (Gransberg et al. 2016). 

2.1.2  Sources of Data in Cost Estimates 

The source of data for a cost estimate will depend on what information is 

available at the time of the estimate. For conceptual estimates, historical data is used to 
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obtain typical unit costs per lane mile, interchange, or square foot of deck area. After the 

design has been developed to the point where specific units of work can be quantified, 

estimators can use the Historical Bid-Based estimating method to generate an estimate 

based on historic cost data. This data is often obtained from previously submitted bids for 

similar projects or work (WSDOT 2008). Cost estimates with the highest level of detail 

are created from assumed unit prices and quantity takeoffs (Foster, 1972; Peurifoy, 

1975). 

2.1.3  Sources of Error in Cost Estimates 

The high-profile nature of most bridge projects requires that schedule and budget 

performance be closely monitored (Wilmot and Cheng, 2003). It is in the best interest of 

state transportation agencies to provide accurate estimates, or else explain publicly why 

the public funding was mismanaged (Wilmot and Cheng, 2003). Underestimating the cost 

of a project leads to delays as agencies search for additional funding, while 

overestimating can cause missed opportunities for projects that could have been partially 

or fully funded from that excess amount (Kyte et al., 2004). 

According to Schexnayder et al. (2003), “an estimate is accurate if it is close to 

the actual final cost of the project.” In describing “close to the actual final cost,” 

Schexnayder et al. (2003) state that a good estimator will generate estimates that are 

reasonably close to actual costs with a reasonably small standard deviation. Acceptable 

confidence bounds will defend on the type of estimate and which stage of the project in 

which the estimate was compiled. As the project becomes more defined and more 

information becomes available, the confidence range becomes narrower. This is because 
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there is less uncertainty once the design has been complete, but since uncertainty always 

exists it is still incorporated into the engineering estimates to some extent. 

 Since cost estimates are predictions, they can be wrong. Early optimism can lead 

to false precision, which poses problems to the schedule and scope of work (Schexnayder 

et al., 2003). When cost goes up, the budget must be increased or the scope reduced to 

keep the project cost within budget limits. As a result, the project becomes more 

expensive and its overall value is reduced. When the final project cost exceeds the 

original low bid cost, the overrun can be caused by bidding errors, poor design, 

constructability issues, project complexity, poor construction management, site 

conditions, and labor and material availabilities (Wright and Williams, 2001). Since it is 

difficult to anticipate the presence of these factors at the very beginning of a project, it is 

even more difficult to predict the magnitude to which these factors will increase the 

project cost. 

 The estimated project cost may also fall short of the actual project cost when 

estimators fail to apply a cost inflation factor for future year estimates. Many state 

agencies estimate future costs by using a construction cost index or extrapolating trends 

from prior years. Both methods fail to consider characteristics that have an impact on 

contract cost, such as contract size, duration, location, bid variance, and changes in 

construction practices. Wilmot and Cheng (2003) proposed a model that accounts for 

additional variables that have a statistically significant impact on contract costs. The new 

model, developed for the Louisiana Department of Transportation and Development, 

tends to estimate greater cost escalation, which leads to more conservative cost estimates. 

Even in optimal economic conditions, the model anticipates that increases in the costs of 
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petroleum products and construction machinery will outpace the standard inflation rate. 

While this increase is inevitable, it can be managed and controlled by increasing contract 

size, reducing contract duration, minimizing plan changes, and letting fewer projects 

during the fourth financial quarter; all of which were shown to be significant factors in 

the construction cost prediction model (Wilmot and Cheng, 2003). 

 

 

2.2  Overview of Cost Estimation for Bridge Replacement Projects 

State transportation agencies have three alternatives to improve a deficient bridge: 

maintenance, rehabilitation, or replacement. Bridge replacement projects require the 

greatest proportion of funding (Abed-al-Rahim and Johnston, 1995). Cost predictions for 

replacement projects are used to estimate each bridge’s present and future funding needs 

and create a reliable highway construction program (Behmardi et al. 2015; Wilmot and 

Cheng 2003).  

 2.2.1  Components of Total Project Cost 

 The cost of a bridge replacement project reflects more than just the cost of 

building the new structure. Costs for demolition, detour routes, surveying, design, 

inspections, and approach roadway improvements should also be considered when 

estimating the total cost of a project. Parameters such as bridge functional classification 

and bridge size will likely also affect the final estimated cost (Abed-al-Rahim and 

Johnston, 1995).  

 2.2.1.1  Construction Cost 
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 The overall construction cost of a bridge involves several distinct work items. 

Before the new bridge can be constructed, the site must be cleared. This may involve 

demolition of an existing bridge structure, acquisition of right-of-way property, and 

relocation or removal of underground utilities (Behmardi et al., 2015; Heiner and 

Kockelman, 2005). Earthwork, erosion control, and construction of the bridge abutments 

and approach slabs are also part of the bridge construction process (Wahls, 1990). 

Transportation and installation of substructure and superstructure components also 

contribute to the overall construction cost (Saito et al., 1991).  

 In addition to the quantity of each material used in the bridge design, the location 

of the project can place additional constraints on the methods available to the contractor, 

which may drive up the cost of construction. For example, a bridge that crosses a 

waterway may have underwater substructure components that require dewatering and the 

installation of coffer dams to allow workers to work in dry conditions (Purvis, 1994). A 

shortage of fill material for the abutments may necessitate importing fill material from 

other areas, which can also inflate the cost of construction (Wahls, 1990).  

 As discussed previously, the contractor charges the owner for equipment, 

overhead, contingency, and profit. A more complex project may prompt the contractor to 

charge additional amounts for labor, specialized equipment, or greater contingency to 

cover the increased risk. As a result, owners will pay a greater price for construction of 

bridge replacement projects that are large, complex, or with less-than-optimal 

environmental constraints.  

 2.2.1.2  Roadway Cost 
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 The need for additional capacity and mobility during a bridge replacement 

project often requires state agencies to purchase private or public land for the 

improvements. The Right-of-Way (ROW) acquisition process involves the highway 

agency acquiring additional land from the legal property owner while providing the 

property owner a reasonable compensation based on fair market value of the parcel 

(Chang-Albitres et al. 2014). Right-of-Way acquisition can be time consuming and costly 

for transportation projects (Aleithawe 2017). Under ideal circumstances, the ROW 

property can be acquired quickly and at fair market value.  However, any delays in 

acquiring the property in a timely manner minimizes any potential savings for the 

highway agency and introduces additional risk of the project deviating from the budget 

and schedule (Chang-Albitres et al., 2014). 

The costs for acquiring parcels includes the value of the parcel (or portion of the 

parcel) and any damages that must be paid out to the owner for having to relocate (Heiner 

and Kockelman 2005). Rising acquisition prices have prompted state DOT’s to focus on 

minimizing ROW costs by prioritizing which parcels to purchase first (Chang-Albitres et 

al. 2014). These decisions are time-sensitive in nature, as land values can increase over 

the time that a decision is being delayed. 

When performing any sort of site work, interference with existing utilities can 

have lasting effects on a project’s schedule and budget. Utility Conflict Cost (UCC) is the 

combined direct and indirect estimated costs for the conflict resolution for each utility 

conflict (Aljadhai and Abraham 2016). If the utilities are relocated, potential costs 

include the relocation cost, risk to the project schedule, and impact on nearby facilities. If 

the utilities are left in place, cost items may include impacts on traffic, nearby facilities, 
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and pavement service life (Aljadhai and Abraham 2016). The UCC can be estimated with 

different equations depending on how critical the conflict is. 

 2.2.1.3  Design Cost 

The preliminary engineering (PE) phase of a highway project aims to accomplish 

two goals. The first goal is to minimize the physical, social, and human environmental 

impacts posed by the project. The second goal is delivery of the best solution by way of 

engineering design. Accurate PE estimates promote proactive allocation of funds and 

fiscal responsibility (Hollar et al. 2013). With tighter constraints on spending at the 

government level, the need for accurate and reliable cost estimates has made itself a 

priority (Gransberg et al. 2016). 

 2.2.2  Adjustment of Costs for Inflation and Productivity 

 When dealing with a set of historical cost data or predicting costs for future 

projects, it is necessary to apply a factor to the estimated amount to account for inflation 

and changes in productivity between years. There are several construction cost indexes 

that account for these factors and can be used to covert the value of a dollar from one 

year to another year, such as the RS Means Historical Cost Index, ENR Index, and the 

FHWA Price Index (Abed-al-Rahim and Johnston, 1995).  

 Values for the RS Means Historical Cost Index are based on a historical cost 

index where January 1, 1993 is equal to 100 and a current index where January 1, 2018 is 

estimated to be equal to 100. This allows for conversion of national average building 

costs between different time periods (RS Means, 2017). The ENR Index is available for 

20 specific US cities based on data from 1978 to 2012 and considers material and labor 

costs (Engineering News Record, 2017). The National Highway Construction Cost Index, 
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published by the FHWA, allows for conversion and prediction of construction costs for 

highway projects (FHWA, 2017). 

 The study conducted by Wright and Williams (2001) used data from 298 highway 

projects let by the New Jersey Department of Transportation (NJDOT) from 1989 to 

1996. To make comparisons between projects let in different years, Wright and Williams 

applied the ENR Construction Cost Index to Formula 2.1 to convert dollar values from all 

the projects to their 1999-equivalent values. 

 

 𝐶2 =  𝐶1 × (
𝐼2

𝐼1
) (2.1) 

Where:  C1 = Cost in Year 1 dollars 

C2 = Cost in Year 2 dollars 

I1 = ENR Construction Index value for Year 1 

I2 = ENR Construction Index value for Year 2 

Since cost indexes are based on data from construction projects, there are no 

values available for future years. To estimate the adjusted cost of a project for a future 

year, the index data can be extrapolated using regression techniques. For early work 

using the NCDOT BMS, Abed-al-Rahim and Johnston (1995) used the FHWA Structures 

Index to convert their bridge cost data to a common year. The first step of the conversion 

was used to bring the bridge project costs to a common base year, using an equation 

similar to Equation 2.5. The limitation to this method is that the base year must fall 

within the range of years from which the construction index data is sourced. To bring 

these common base year costs to present or future values, Abed-al-Rahim and Johnston 

(1995) developed a linear regression equation from the construction index data that 

extrapolated future year index values with a relatively good fit (R
2
 = 0.84). The future 
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year index value found in Equation 2.2 can be plugged back into Equation 2.1 to solve for 

the cost in Year 2 dollars. 

 𝐼𝑁𝐷(𝑌𝐹,𝑌𝐵) =  102.21 − 3.9(𝑌𝐵 − 𝑌𝐹) (2.2) 

Where:  IND(YF,YB) = Cost index for future year YF and base year YB 

YB = Base year 

YF = Future year 

2.3  Cost Prediction Modeling Approaches 

 Demand for accurate cost forecasting methods for highway projects has prompted 

several state transportation agencies to fund research projects on cost prediction 

modeling.  In this section, an overview of several different approaches is presented, along 

with background information required to develop these models. This section also covers 

how predictions from the models are used in the real world through implementation into a 

bridge management system. 

 2.3.1  Types of Variables 

 Variables can be classified by the way their data is recorded. Continuous or 

quantitative variables are numerical values that can be measured at any point along a 

range of possible values. The granularity of the data is only limited by the precision of 

the instrument which provided the original measurement. Many variables included in a 

BMS, such as daily traffic, length, and width, can be considered continuous or 

quantitative variables.  Discrete variables can also be expressed as numerical values, 

however there is no smooth transition between values. One example of this would be the 

number of spans for a bridge. This field can only be expressed in whole numbers, since 

half-span bridges do not exist. The distinction between continuous and discrete numerical 

variables can become blurred whenever the precision of the continuous variable is limited 
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or the steps between the discrete values become very small (Tabachnick and Fidell, 

2006). 

 Discrete variables can also describe non-numerical qualitative data. In a BMS 

database, this could be deck material, functional classification of the route, or whether the 

bridge crosses over water or a grade change. Dichotomous variables have only two 

possible values (Tabachnick and Fidell, 2006). Categorical variables can be used to set up 

discrete variables into grouped categories.  

 2.3.2  Types of Models 

The cost for bridge replacement projects can be estimated through traditional cost 

estimation or aggregated statistical modeling. Traditional cost estimates are calculated by 

listing all of the work items and multiplies their quantities by a unit price. The sum of all 

the costs for the work items is the estimated value for the complete project. Aggregated 

statistical modeling uses historical data on bridge costs and attributes to predict the 

project cost based on models developed through linear regression analysis (Behmardi et 

al. 2015).   

 2.3.3  Regression Analysis 

 Regression can be described as a statistical method that can be used to investigate 

the relationship between variables (Dodge and Marriott, 2003). Regression analyses are 

often performed to answer the following question: “How do changes in x affect the value 

of y?” If a relationship exists between the dependent variable (y) and the one or more 

independent variables (x1, x2…xn), the value of the dependent variable can be predicted 

using a mathematical model (Dowdy and Wearden, 1991).  
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 There are several different types of models to choose from. In simple linear 

regression, the relationship between one dependent variable and one independent variable 

can be modeled with a straight line, as seen in Equation 2.3. Ideally, this straight line 

should “fit” the actual data on a scatter plot and minimize the sum of the squares of the 

vertical differences between the line and the data points. The coefficient of determination 

(R
2
) measures how well the regression model fits the data. The value of R

2
 ranges from 0 

to 1, with higher values indicating a better fit (Dodge and Marriott, 2003; Dowdy and 

Wearden, 1991). 

 𝑌′ = 𝐴 + 𝐵𝑋 (2.3) 

Where:  Y’ = Predicted Score 

  A = Value of Y when X is equal to zero 

  B = Slope of best-fit line 

  X = Value from which Y’ will be predicted 

To solve for the predicted score of Y’, values for both A and B must be found. 

First, the bivariate regression coefficient (B) is calculated by using Equation 2.4. The 

coefficient is a ratio of the covariance of the two variables (X and Y) and the variance of 

X and is also the slope of the best-fit line (Tabachnik and Fidell, 2006). After B has been 

found, the x-intercept (A) can be calculated from Equation 2.5. 

 𝐵 =
𝑁 ∑ 𝑋𝑌−(∑ 𝑋)(∑ 𝑌)

𝑁 ∑ 𝑋2−(∑ 𝑋)2  (2.4) 

Where:  B = Bivariate regression coefficient 

  X = Independent Variable 

  Y = Dependent Variable 

 𝐴 = �̅� − 𝐵�̅� (2.5) 

Where:  A = X-Intercept 

  �̅� = Sum of values used for the prediction 

  �̅� = Sum of values to be predicted 
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Multiple regression is an extension of bivariate regression in which more than one 

independent variable is used to predict values of a dependent variable (Tabachnik and 

Fidell, 2006). For example, in the case of this project, it is useful to predict the 

construction cost of a bridge replacement project (DV) based on the several independent 

variables available in the data set, such as structure length, number of spans, material, or 

design type. The multiple linear regression equation (Equation 2.6) is an extension of the 

bivariate regression equation (Equation 2.3) that is designed to be used with more than 

just one independent variable. Each independent variable has its own regression 

coefficient, which is used to bring the predicted values of Y as close as possible to the 

values from the data set and maximize the correlation between the predicted and obtained 

values for Y.   

 𝑌′ = 𝐴 + 𝐵1𝑋1 + 𝐵2𝑋2 + ⋯ + 𝐵𝑘𝑋𝑘 (2.6) 

Where:  𝑌′ = Predicted score for dependent variable 

  A = Value of Y when all X values equal zero 

  Bn = Regression coefficient for n-th variable 

  Xn = n-th independent variable 

  k = Number of independent variables 

Collinearity is another consideration for regression equations that involve 

multiple independent variables. This condition exists when there is a high amount of 

correlation between two or more predictor variables. In layman’s terms, the two variables 

are measuring the same thing (or highly interrelated things). In a multiple regression 

analysis, collinearity that is not addressed will cause variables that truly affect the 

dependent variable to not appear in the regression equation while the other predictor 

variable may have a large impact on the equation. There are several ways to deal with 

collinearity between variables. After the collinear variables have been identified, the two 

variables can be combined into one single variable by converting each of the variables 
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into a z score and them using the sum of the z scores as the total for the new variable. 

Another approach is to use a factor analysis that will identify the set of factors within the 

collinear variables and use the factors in the regression analysis (Cramer and Howitt, 

2004). Collinearity can also be addressed by removing one of the collinear variables from 

the regression model.  

 Performing multivariate regression with a bridge dataset containing hundreds of 

entries would be burdensome if done by hand. Fortunately, there are several computer 

programs that can perform the calculations automatically and provide an equation for the 

best fit line for a set of data. Minitab, Matlab, SPSS, and SAS are all popular computer 

software programs that can manage large quantities of data and perform different types of 

regressions. 

 2.3.4  Use of Cost Prediction Models in Bridge Management Systems 

 All state transportation agencies are required to comply with the Intermodal 

Surface Transportation Efficiency Act of 1991 by implementing a BMS that logs bridge 

data and considers the costs of repairing, rehabilitating, or replacing deficient bridges 

(Abed-al-Rahim and Johnston, 1995). The three alternatives are typically evaluated based 

on a variety of considerations, including ownership and user costs, as well as budget 

constraints and the preferences of state/local personnel. The decision to replace a 

functionally obsolete or deteriorated bridge will bring the user cost back to zero at the 

beginning of the new bridge’s service life (Chen and Johnston, 1987). 

 Currently, the NCDOT BMS computes the bridge replacement cost using the 

bridge deck area and a unit cost based on functional classification.  The deck width and 

length for a new bridge is calculated based on the desired level of service. Design and 
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planning of the new structure is estimated as a fixed percentage of the base construction 

cost. Costs associated with roadway improvements can be added onto the subtotal as a 

fixed amount (Chen and Johnston, 1987). 

2.4  Existing Cost Prediction Models 

 Conceptual cost estimating is hardly a new concept. The term “conceptual 

estimate” was first recognized in 1975 by a federal government publication that urged 

construction managers to familiarize themselves with the technique (Collier, 1984). 

Around this time, computerized bridge management systems were being developed to 

catalog bridge inspection data and prioritize bridge maintenance needs (Chen and 

Johnston, 1987). The ability of a BMS to estimate the cost to replace a bridge helps the 

system users to evaluate whether it is more feasible to repair, rehabilitate, or replace the 

bridge (Abed-al-Rahim and Johnston, 1995). By 1992, these systems had been 

implemented by several states, providing these agencies with the ability to consider user 

costs, owner costs, level-of-service goals, or life-cycle activity profiles to estimate 

replacement costs (Organization for Economic Co-operation and Development, 1992). 

The following sections identify and discuss some of the cost modeling approaches 

developed for North Carolina bridges and for bridge systems in other states. 

 2.4.1  Usage of Cost Prediction Models in North Carolina 

 At the time of the research conducted by Chen and Johnston (1987), NCDOT 

estimated bridge replacement costs with a fixed unit cost of $43 per square foot of deck 

area. This same unit cost would be applied to all bridge replacement projects without 

regard to project size, location, design, or traffic volume. Further research was conducted 

by Abed-al-Rahim and Johnston in the early 1990s to develop models that will produce a 
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unit cost based on different project characteristics.  Additional research by NCDOT 

focused on evaluation of PE costs and development of models (Hollar et al., 2013).  

 2.4.1.1  NCDOT, 1995 

In 1995, researchers working on behalf of North Carolina State University 

(NCSU) developed a framework for the NCDOT to estimate unit costs for bridge 

replacement projects based on bridge-specific factors cataloged in a BMS database. 

Abed-al-Rahim and Johnston (1995) also developed models that would predict new 

bridge characteristics. The North Carolina Bridge Index (NCBI) contained the total 

bridge project cost for each bridge record, as well as the costs for preliminary 

engineering, construction, and roadway improvement. Miscellaneous items, such as right-

of-way purchases, field operations, and legal fees were estimated by subtracting the three 

cost categories from the total project cost, as seen in Equation 2.8. 

 

 

 

 𝑇𝑂𝑇𝐶𝑂𝑆𝑇 = 𝑀𝐼𝑆𝐶𝐶𝑂𝑆𝑇 + 𝑆𝑇𝑅𝐶𝑂𝑆𝑇 + 𝑅𝑂𝐴𝐷𝐶𝑂𝑆𝑇 + 𝐸𝑁𝐺𝐶𝑂𝑆𝑇 (2.8) 

Where:  TOTCOST = Total project cost 

MISCCOST = Miscellaneous costs  

STRCOST = Bridge structure cost 

ROADCOST = Roadway improvement cost 

ENGCOST = Engineering cost 

Abed-al-Rahim and Johnston used the FHWA Structures Index for North Carolina 

to convert costs to a present value. Equation 2.1 was used to convert dollar values from 

the year of construction (YC) to the latest available year (YL), using 1987 as a base year 

(YB). It was also possible to extrapolate data from the FHWA Index for future years, as 

shown in Equation 2.2, which was developed based upon linear regression conducted by 
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Abed-al-Rahim and Johnston (1995). The linear model yielded an R
2
 value of 0.84. After 

using Equation 2.2 to determine the future year (FY) cost index, Equation 2.1 was used to 

calculate the future year cost. 

Before a detailed bridge design is created, specific bridge characteristics such as 

structure length, deck width, and maximum span length are typically not known with 

certainty. These variables will have an impact in the overall replacement cost of a bridge, 

especially in cases where there is a large change in one of these characteristics for the 

new bridge relative to the old bridge (Abed-al-Rahim and Johnston, 1995). A set of 

models that can predict these new bridge characteristics based on those of the existing 

bridge can help estimators identify structures that would undergo a relatively large 

increase in size and therefore have a potentially higher cost to replace.  Using the 

Generalized Linear Method (GLM), Abed-al-Rahim and Johnston (1995) performed 

regression analysis to develop an equation that could be used to predict new bridge length 

based on several existing bridge parameters. With new bridge length as the sole 

dependent variable, Abed-al-Rahim and Johnston considered several independent 

variables, such as existing bridge length, waterway adequacy, and under-clearance 

ratings. Ultimately, old bridge length was the independent variable that provided the best 

fit (R
2
=0.9854), so the following regression equation (2.9) was developed: 

 𝑁𝐵𝐿𝐸𝑁𝑁𝐶 = 8.45 + (1.013 × 𝐿1) (2.9) 

Where: 

 NBLENNC: New bridge length based on NC data (in meters) 

 L1: Old bridge length (in meters) 

Abed-al-Rahim and Johnston also utilized the FHWA Expansion Factor to predict 

new bridge length. These factors are based on nationwide averages of new bridge length 

as a function of existing bridge length. To use the expansion factor, Abed-al-Rahim and 
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Johnston (1995) took various original lengths from the curve (Fig. 2.5) and found their 

corresponding expansion factors. Multiplying the original lengths by their respective 

expansion factors provided the writers with a list of new lengths. A linear regression was 

performed with the original lengths (independent variable) and new lengths (dependent 

variable) to generate a regression equation (Eq. 2.10). 

 
Figure 2.5: FHWA length expansion factor graph (from Abed-Al-Rahim and Johnston 

1995) 

 

 𝑁𝐵𝐿𝐸𝑁𝑈𝑆 = 7.32 + (1.032 × 𝐿1) (2.10) 

Where:  NBLENUS: New bridge length based on US data (in meters) 

  L1: Old bridge length (in meters) 

Abed-al-Rahim and Johnston (1995) used Equation 2.11 to estimate the new 

bridge out-to-out deck width. Abed-al-Rahim and Johnston stated that the predicted clear 

deck width for the new bridge (NBCDWi) was determined in OPBRIDGE by considering 

future level-of-service and ADT needs. OPBRIDGE was a computer program developed 

by Al-Subhi et al. (1989) to forecast and prioritize future bridge replacement projects. 

The second part of the equation exists to add the difference between current out-to-out 
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width and current deck width to the predicted clear deck width. This assumes that the 

difference in width between out-to-out and clear deck widths will remain the same for the 

new bridge.  

 𝑁𝐵𝑊𝐼𝐷𝑖 = 𝑁𝐵𝐶𝐷𝑊𝑖 + (𝑊𝐼𝐷𝑇𝐻𝑖 − 𝐶𝐷𝑊𝑖) (2.11) 

Where:  NBWIDi = Predicted out-to-out width for new bridge i 

NBCDWi = Predicted clear deck width for new bridge i 

WIDTHi = Out-to-out width for bridge i that is to be replaced 

CDWi = Clear deck width of bridge i that is to be replaced 

As one of the significant factors in predicting replacement cost, a bridge’s 

maximum span length can also be predicted by its original maximum span length, 

waterway adequacy rating, structure length, and number of spans (Abed-al-Rahim and 

Johnston, 1995). The research team found that it was best to create two separate models 

for bridges over waterways and bridges over grade separations. Both models used old 

total length and maximum span of the bridge being replaced as independent variables and 

applied a logarithmic transformation to allow the models to meet the two assumptions for 

regression analysis: 

 

1. Normal distribution of residuals 

2. Variance is consistent along the regression line 

After developing the two models, the research team was unable to prove that the 

coefficients in both equations were statistically different. The dataset of bridges used by 

Abed-al-Rahim and Johnston included 442 waterway crossings but only 39 grade 

separation crossings. Using a single, logarithmic-transformed model instead of two 

separate models yielded an R
2
 value of 0.53, resulting in Equation 2.12. Both Equation 

2.12 and Figure 2.6 show that new maximum span length are predicted to be shorter if the 
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original span length is greater than 75 feet. Conversely, bridges with an original 

maximum span length less than 75 feet are predicted to have an increase in maximum 

span length for the new bridge (Abed-Al-Rahim and Johnston 1995). 

 𝑀𝐴𝑋𝑆𝑃𝐴𝑁2 = 4.31 × 𝑀𝐴𝑋𝑆𝑃𝐴𝑁10.196 × 𝐿10.216 (2.12) 

Where:  MAXSPAN2 = Predicted maximum span length 

  MAXSPAN1 = Original maximum span length 

  L1 = Original bridge length 

 

 
Figure 2.6: FHWA maximum span length expansion factor graph (from Abed-Al-Rahim  

and Johnston, 1995) 

Abed-al-Rahim and Johnston (1995) developed a total cost prediction model 

under the assumption that the total cost would be a function of bridge length and width 

(unit cost) while other additional costs (engineering, roadway construction, etc.) could be 

added as a fixed percentage of that total cost. The resulting equation is shown in Equation 

2.13. 

 𝑇𝐶𝑂𝑆𝑇𝑖 = 𝑈𝑅𝐸𝑃𝐵(𝑁𝐵𝐿𝐸𝑁𝑖 × 𝑁𝐵𝑊𝐼𝐷𝑖) × (1 + 𝐸𝑃𝐶) + 𝐹𝐼𝑋𝐸𝐷𝐶 (2.13) 
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Where:  TCOSTi: Total cost for replacing bridge i in present year value 

  UREPB: Unit cost for bridge construction per square meter of deck area 

  NBLENi: Predicted length of bridge i in meters 

  EPC: Engineering cost as a ratio of structural costs 

  FIXEDC: Fixed cost for roadway and other incidental costs 

 The NCSU research team took historical cost data from 32 NCDOT bridges to 

find a unit structure cost based on new bridge deck area (Equation 2.14). All costs were 

converted to 1990 dollar-values to adjust for inflation and productivity changes. After 

determining which independent variables were significant (Table 2.1), the research team 

developed Equation 2.15 to estimate the unit structure cost for future bridges. Equation 

2.14 can be rewritten in the form of Equation 2.16 to find structure cost using a predicted 

unit structure cost.  

Table 2.1: Significant variable parameters in bridge structure cost (from Abed-Al-Rahim 

and Johnston, 1995) 

 Parameter Level of Significance 

Grouping 

Parameters 

Highway Functional Classification P > 5.0% 

Rural vs. Urban P > 5.0% 

Water vs. Grade Separation P > 5.0% 

Independent 

Variable 

Parameters 

Width P > 5.0% 

Length P > 5.0% 

ADT P > 5.0% 

Maximum Span Length P = 2.6% 

Number of Spans P > 5.0% 

 

 𝑈𝐶𝑂𝑁𝑆𝑇(𝑌𝑃,𝑖) =
𝑆𝑇𝑅𝐶𝑂𝑆𝑇(𝑌𝑃,𝑖)

𝑁𝐵𝐿𝐸𝑁𝑖×𝑁𝐵𝑊𝐼𝐷𝑖
 (2.14) 

Where:  UCONST(YP,i) = Unit cost of structure construction for bridge i in present  

  year dollar value 

STRCOST(YP,i) = Structure construction cost for bridge i in present year  

   dollar value 

  NBLENi = Predicted length of bridge i in meters 

  NBWIDi = Predicted width of bridge i in meters 

  

 𝑈𝑁𝐼𝑇𝑆𝑇𝑅 = 919 − 40.6(𝑀𝐴𝑋𝑆𝑃𝐴𝑁) + 0.927(𝑀𝐴𝑋𝑆𝑃𝐴𝑁)2 (2.15) 

Where:  UNITSTR = Total cost for replacing bridge i in present year value 

  MAXSPAN = Unit cost for bridge construction per square meter of deck  
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          area 

 

 𝑆𝑇𝑅𝐶𝑂𝑆𝑇𝑖 = 𝑈𝑁𝐼𝑇𝑆𝑇𝑅 ×  𝑁𝐵𝐿𝐸𝑁𝑖  ×  𝑁𝐵𝑊𝐼𝐷𝑖 (2.16) 

 Roadway improvement costs and miscellaneous costs are more difficult to predict 

due to the number of influencing factors. The amount of roadwork is not always 

necessarily linked to bridge deck area.  Changing the elevation of a bridge can result in 

significant amounts of roadwork on one or both sides of the structure. On the other hand, 

miscellaneous costs (pavement markers, field office, etc.) can be calculated as the 

difference between the total project cost and the sum of the structure, roadway, and 

engineering costs (Equation 2.8).  

 Abed-al-Rahim and Johnston (1995) developed the following regression 

equations to estimate roadway improvement cost, miscellaneous cost, and engineering 

costs. The research team found that Equation 2.18 and Equation 2.19 tended to 

underestimate costs for smaller bridges and overestimate costs for larger bridges. The 

equation for engineering costs (Equation 2.20) had a relatively low R
2
 value (0.60) but 

was judged by the NCSU researchers to perform rather well considering all the factors 

that usually affect engineering cost. The R
2
 values for Equation 2.18 and 2.19 were not 

reported. For the regression analysis, structure cost was the only significant parameter 

identified for prediction of engineering cost (Equation 2.20).  

  𝑅𝑂𝐴𝐷𝐶𝑂𝑆𝑇 = (177,900 × 𝑁𝐵𝑊𝐼𝐷) − 1,198,500 (2.18) 

Where:  ROADCOST = Roadway improvement cost 

  NBWID = Predicted bridge width in meters 

  𝑀𝐼𝑆𝐶𝐶𝑂𝑆𝑇 = 0.56(𝑆𝑇𝑅𝐶𝑂𝑆𝑇) + 42,500(𝑁𝐵𝑊𝐼𝐷) − 364,000 (2.19) 

Where:  MISCCOST = Miscellaneous costs 

  STRCOST = Bridge structure cost 

  NBWID = Predicted bridge width in meters 
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  𝐸𝑁𝐺𝐶𝑂𝑆𝑇 = 65,384 + 0.136(𝑆𝑇𝑅𝐶𝑂𝑆𝑇) (2.20) 

Where:  STRCOST = Bridge structure cost 

  ENGCOST = Engineering cost 

2.4.1.2 NCDOT, 2013 

 Preliminary engineering costs for a bridge replacement project are typically 

estimated as being a fixed percentage of the total project cost. This technique does not 

address project-specific parameters that would cause PE costs to increase. According to 

the 2008 auditor’s report for schedule and budget performance of NCDOT highway 

projects, PE costs for a set of 292 highway projects completed between April 1, 2004 and 

March 31, 2007 typically increased by 59% over the original estimated amount. This 

specific area had not received much attention from researchers due to the lack of reliable 

information available for PE costs (Hollar et al., 2013). 

  Hollar et al. (2013) compiled a database of 461 NCDOT bridge projects from 

several sources, such as online bid tabulations and construction plans, National Bridge 

Inventory System (NBIS) data, 12-month letting lists, meeting minutes, and funding 

authorizations. The bridges in the compiled database were usually three-span, two-lane 

concrete structures that crossed water features in rural areas. The dependent variable for 

this analysis was the ratio of actual PE cost to the estimated Statewide Transportation 

Improvement Program (STIP) construction cost. The research team used estimated costs 

instead of actual costs because estimators would not know the actual cost of a project 

during the conceptual planning stage. Using the correct PE cost ratio for a project would 

reduce the likelihood of cost escalation. The distribution of the PE cost ratio for the 461 

NCDOT bridge projects ranged from 0.8% to 152% of estimated construction cost. The 
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shape of the distribution was skewed to the left and needed to be transformed to improve 

normality to satisfy linear regression assumptions (Hollar et al., 2013). 

The 461 database projects were divided into a validation set of 70 projects and a 

modeling set of 391 projects. The validation projects were used to test and quantify the 

model’s performance in predicting the ratio of PE to STIP. Each candidate model was 

tested over the validation set by comparing the predicted PE cost values to the actual 

historical values for those projects. The models with lowest Mean Absolute Percentage 

Error (MAPE) and Average Absolute Error (AAE) were preferred over models with 

higher error values (Hollar et al. 2013). 

The response variable (PE cost ratio) was transformed by applying an exponential 

power and using the Box-Cox procedure to identify the optimal transformation to get 

normality. In this case, the cubed root of the response variable was used to attain 

normality, which was then verified using a goodness-of-fit test. Since the dependent 

variables were normalized using the power transformation, results had to be transformed 

back using Equations 2.21, 2.22, and 2.23. The equations were solved using a variance 

value of 0.0229 for the data set (Hollar et al. 2013). 

 𝐸. 𝑀. 𝑅. = (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑢𝑏𝑒𝑑 𝑟𝑜𝑜𝑡 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒)3 (2.21) 

Where:  E.M.R. = Estimated Median Response 

 

𝑇. 𝐶. 𝐹 = 1 + {[(𝑣𝑎𝑟) × (1 − 1
3⁄ )]/[2(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑢𝑏𝑒𝑑 𝑟𝑜𝑜𝑡 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒)2]} (2.22) 

Where:  T.C.F. = Transformation Correction Factor 

  var = Variance 

 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝐸. 𝑀. 𝑅 ×  𝑇. 𝐶. 𝐹 (2.23) 

Where:  E.M.R. = Estimated Median Response 

  T.C.F. = Transformation Correction Factor 
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 The one-way ANOVA technique was applied to the 16 categorical variables in the 

compiled database to identify those which were statistically significant. The seven 

significant categorical variables are listed in Table 2.2. The two categorical variables with 

the highest level of influence on the cubed root of the PE cost ratio were year-related. 

The researchers assumed that any fluctuations in STIP estimated costs over time would 

be mirrored by the actual PE costs, so these two variables were not used as predictor 

variables in the analysis (Hollar et al., 2013). 

 

Table 2.2: Statistically significant categorical variables (Hollar et al., 2013) 

Categorical Variable R
2
 F-value p-value 

Year of letting 0.3037 20.83 <0.0001 

Year of environmental doc. approval 0.1220 3.47 <0.0001 

Road system 0.0443 8.80 0.0002 

Project construction scope 0.0322 6.45 0.0017 

Geographical area of state 0.0361 4.84 0.0026 

Division 0.0728 2.28 0.0068 

Design live load 0.0302 3.00 0.0185 

 

To determine which of the numerical variables should be used in the regression 

model, Hollar et al. (2013) used the Pearson correlation coefficients and p-values to 

identify which variables were statistically significant. The correlation coefficient, which 

ranges between -1 to +1, indicates the strength of the correlation with the cubed root of 

PE cost ratio. The sign of the coefficient reflects whether the independent and response 

variables move together (positive slope) or move apart from each other (negative slope). 

Table 2.3 contains the eight numerical independent variables that were determined to be 

statistically significant.  

Table 2.3: Pearson correlation coefficients for numerical variables (Hollar et al. 2013) 

Numerical Independent Variable Pearson Coefficient p-value 

Project length -0.3263 <0.0001 
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STIP-estimated construction cost -0.3130 <0.0001 

ROW cost to STIP-estimated 

Construction cost 

+0.3089 <0.0001 

Structure length -0.1944 <0.0001 

Roadway percentage of construction 

cost 

-0.1849 <0.0001 

Spans in primary unit -0.1766 <0.0001 

Horizontal clearance for loads -0.1592 0.0006 

PE duration after environmental 

document approval 

-0.1053 0.0237 

 

After selecting the statistically-significant categorical and numerical variables for 

the linear regression, the research team used the GLMSELECT procedure within SAS to 

create a multiple linear regression (MLR) model. Excluding all date-related variables, the 

completed MLR model achieved an adjusted R
2
 value of 0.2745 using the following 

variables: 

1. ROW cost to STIP-estimated construction cost (Numerical) 

2. Roadway percentage of construction cost (Numerical) 

3. STIP-estimated construction cost (Numerical) 

4. Bypass detour length (Numerical) 

5. Project construction scope (Categorical) 

6. NCDOT division (Categorical) 

7. Geographical area of state (Categorical) 

8. Responsible party for the planning document (Categorical) 

When applied to the data set of 70 projects, the MLR provided a MAPE of 

0.1889. This was compared to the MAPE of 0.9137 that was achieved by a single-point 

estimate using the mean PE cost ratio of the remaining 391 projects. This single-

parameter estimating method is commonly used by the NCDOT to estimate PE costs and 

also served as a baseline target to measure the MLR model’s prediction capability. After 

obtaining the regression coefficients (Table 2.4), Equation 2.24 can be used to find the 

predicted cube root of the PE cost ratio to STIP construction cost (Hollar et al. 2013).  

Table 2.4: Regression coefficients for MLR model (Hollar et al. 2013) 
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Parameter Coefficient 

 Intercept β0 0.6471 

x1 NCDOT division = D12 and project construction scope = new location; 1 if true, 

0 if false 

β1 -0.1657 

x2 NCDOT division = D06 and responsible party for the planning document = DOT; 

1 if true, 0 if false 

β2 -0.1087 

x3 Geographical area of state = very mountainous and responsible party for the 

planning document = DOT; 1 if true, 0 if false 

β3 0.0701 

x4 ROW cost to STIP-estimated construction cost  β4 0.2909 

x5 STIP-estimated construction cost if NCDOT division = D12 β5 4.45 × 10
-8 

x6 Roadway percentage of construction cost multiplied by STIP-estimated 

construction cost 

β6 -1.88 × 10
-

7 

x7 Bypass detour length if NCDOT division = D07 β7 -0.0159 

 

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑢𝑏𝑒𝑑 𝑟𝑜𝑜𝑡 =  𝛽0 + 𝛽1(𝑥1) + 𝛽2(𝑥2) + 𝛽3(𝑥3) + 

 𝛽4(𝑥4) + 𝛽5(𝑥5) + 𝛽6(𝑥6) + 𝛽7(𝑥7) (2.24) 

Ideally, the MLR model would follow a 45-degree positive slope, which would 

mean that the predicted values would be close to the actual values. The slope of the MLR 

model is positive but smaller than the ideal slope. Compared to the mean-value of the PE 

cost ratio for the set of 391 projects, the MLR model overestimated PE cost ratios at the 

lesser percentages (<20%) and underestimated ratios at higher percentages (>35%). The 

MLR model had a MAPE value of 42.7%. Compared to the mean value’s MAPE of 

48.7%, the MLR had slightly better performance over the single-point estimator (Hollar 

et al. 2013). 

Despite the relatively high prediction error percentage for the MLR model 

(42.7%), the results of the modeling confirmed the research team’s assertions that PE 

costs for bridge projects were often underestimated. The historical mean reported by 

Hollar et al. (2013) for NCDOT bridge projects was 27.8%, which was greater than the 

WSDOT estimate of 10.3%, VDOT estimate range of 8-20%, and Georgia DOT estimate 

range of 6-12%. The data used to create the model should be readily available for most 

state agencies. Hollar et al. found that state agency procedures and processes could 

compromise the quality of PE cost data. In the case of this study, the research team found 
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that PE costs were often charged as an overhead burden and not accurately assigned to 

the individual bridge projects. For this reason, it is important that databases should be 

expanded and updated often to create a solid data set for creating regression models 

(Hollar et al. 2013). 

In addition to suggesting means to improve the quality of PE cost data recording 

procedures, Hollar et al. (2013) also recommended that future researchers analyze PE 

costs in terms of monetary units instead of ratios. To do this, it is necessary to convert all 

costs to a common year. The research team expressed a need for future research into 

reasons why PE costs were driven up for projects, such as the instances where the project 

PE cost ratio was 152% of the construction cost. An analysis of case studies may provide 

qualitative data on how certain factors drive up PE costs (Hollar et al. 2013). 

2.4.2  Usage of Cost Prediction Models in Other State Agencies 

Since bridge maintenance and replacement programs are managed by state 

departments of transportation, many of these agencies have funded research projects that 

determine the most effective way to forecast bridge replacement costs that work best for 

the state bridge inventories. Publications exist on the many different approaches 

researchers have employed to create state-specific prediction models. The techniques 

used by researchers to develop cost prediction models for Indiana DOT and Texas DOT 

are covered in more detail in the following sections. 

 2.4.2.1  Indiana Department of Transportation 

 Saito et al. (1991) developed a series of regression models for predicting costs for 

bridge replacement projects in Indiana. A dataset of 279 Indiana Department of 

Transportation (INDOT) bridges replaced between 1980 and 1985 was compiled by the 
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researchers. Bridge attributes used for the model, such as structure length, deck width, 

vertical clearance, approach length, and earthwork needed, could be easily identified by 

inspectors and included in the database. Cost data were the dependent variables for the 

study, and all prices were converted to 1985 values using the FHWA construction price 

index. Cases where multiple bridges were included on one contract or where replacement 

costs were extremely high or low were removed from the data set to avoid influence from 

outliers. 

To develop the replacement cost model, the ANOVA (analysis of variance) 

technique was used to determine the effect that the independent variables, such as 

structure length, deck width, and number of spans, had on the actual contract costs. SPSS 

and SAS statistical software packages were then used to take the results of the ANOVA 

and develop a regression model. The ANOVA was done based on three primary 

classification factors that were currently being used by INDOT to estimate bridge 

replacement cost: superstructure type, substructure type, and highway type. At the time of 

the study, the FHWA required state agencies to provide separate unit costs for each of the 

different highway types and superstructure types (Saito et al. 1991). 

The ANOVA test confirmed that both superstructure and substructure types were 

statistically significant (5% level) in predicting unit substructure cost and that both 

factors should be used to generate estimates. A separate ANOVA test was performed for 

approach construction costs, but with total contract costs instead of unit costs. This test 

was based on two factors: amount of earthwork (small, medium, or large) and approach 

length (short, medium, or long). Results from this ANOVA test showed that amount of 
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earthwork and approach length can and should be used as factors in predicting approach 

construction costs (Saito et al. 1991). 

The results from both ANOVA tests were then used by the research team to 

develop bridge replacement cost models that required as few independent variables as 

possible. The models developed by Saito et al. (1991) were nonlinear and log-linear in 

nature, and used predictor variables that could be easily determined by engineers on the 

site, such as designed structure length, width, and vertical clearance. Results from 

ANOVA and the scatter plots showed that regressions could be done for the four cost 

categories (superstructure, substructure, approach, and other costs) using a multiplicative 

regression model, shown in Equation 2.25. Usage of the multiplicative model works 

under the same logic as unit costs, where structure length and width are multiplied by that 

unit price to determine the total cost. Since the regression coefficients are fixed values, 

Saito et al. (1991) cautioned users of this model (INDOT) against using it for bridges that 

were outside the data range used in the creation of the prediction models. 

 𝑌 = (𝑋1
𝛽1𝑋2

𝛽2 … 𝑋𝑛
𝛽𝑛) 𝜖 (2.25) 

Where:  Y = Dependent Variable (Replacement Cost) 

  Xn = Independent Variable 

  Βn = Regression coefficient 

  ϵ = Error coefficient 

 With a non-linear regression, it is possible to transform the raw data to see if it is 

possible to perform a linear regression analysis. Equation 2.26 was transformed into 

Equation 2.27 using log10 transformation (Saito et al. 1991). The new equation could be 

used provided that it met the key assumptions of linear regressions (Nau 2009): 
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1. Linearity and additivity of relationship between independent and dependent 

variables 

2. Statistical independence of errors 

3. Heteroscedasticity (constant variance) 

4. Normality of error distribution  

If the transformed model met all of the four key assumptions, it was returned to 

the non-linear form shown in Equation 2.27. Once this was performed, the non-linear cost 

model and transformed log-linear model were compared to see if one model is preferable 

for use in estimating replacement costs. In making the comparison, the research team 

assumed that error terms were independent, variance was constant along the regression 

line, linearity of the model, and the residuals were distributed normally. When comparing 

the two models, residual plots were used to test the constancy of variance. Normal 

probability plots of the residuals were used to test normality of the error term distribution 

(Saito et al. 1991). 

 𝑌′ = 𝛽0
′ + 𝛽1𝑋1

′ + 𝛽2𝑋2
′ + ⋯ + 𝛽𝑛𝑋𝑛

′ + 𝜖′ (2.26) 

Where:  Y’ = log10(Y) 

  β
'
0 = log10(β0) 

  X’i = log10(Xi) 

  ϵ’ = log10(ϵ) 

 𝑌 = 10𝛽0
′
𝑋1

𝛽1
′

𝑋2
𝛽2

′

… 𝑋𝑛
𝛽𝑛

′

 (2.27) 

 Log-linear models were developed to predict bridge replacement, superstructure, 

substructure, approach, and “other” costs. Separate equations were developed for 

significant categorical variables alongside an overall equation for all bridge types. The 

log-linear equations for bridge replacement total cost (BRTC) (Table 2.5), superstructure 

cost (Table 2.6), substructure cost (Table 2.7), and approach cost (Table 2.8) were 

validated with a set of bridge data for projects between January and June 1986. Out of the 
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37 bridges in the validation set, only 26 of the bridges had complete cost data for the 

other cost components while the remaining 11 bridges only had information on total 

project cost. After adjusting the predicted values to 1986-dollar equivalents, Saito et al. 

(1991) found that the models were reasonably precise. Cost values for these equations 

were rounded to the nearest $1,000 while bridge length (BL), deck width (DW), and 

vertical clearance (VC) were reported in feet. 

 

 

 

Table 2.5: BRTC regression equations (in 1985 dollars) 

Component Type Model R
2
 F Value n 

Other All types OTHC = 0.0721(BL)
0.696

(DW)
0.932

 0.524 100.60 186 

 

Bridge Total 

All types BRTC = 0.155(BL)
0.903

(DW)
0.964

 0.951 1861.28 196 

RC Slab & Box 

Beam 
BRTC = 0.0781(BL)

0.748
(DW)

1.319
 

0.874 380.74 113 

Concrete I-Beam BRTC = 1.255(BL)
0.809

(DW)
0.534

 0.913 205.34 42 

Steel Beam BRTC = 0.128(BL)
0.785

(DW)
1.210

 0.971 317.50 22 

Steel Girder BRTC = 0.353(BL)
1.015

(DW)
0.603

 0.950 150.91 19 

 

Table 2.6: Superstructure cost regression equations (in 1985 dollars) 

Type Model R
2
 F Value n 

All types SUPC = 0.0107(BL)
1.122

(DW)
1.084

 0.524 1861.28 196 

     

RC Slab & Box Beam SUPC = 0.0137(BL)
1.001

(DW)
1.161

 0.874 380.74 113 

Concrete I-Beam SUPC = 0.0330(BL)
0.907

(DW)
1.043

 0.913 205.34 42 

Steel Beam SUPC = 0.0102(BL)
1.120

(DW)
1.117

 0.971 317.50 22 

Steel Girder SUPC = 0.8550(BL)
0.906

(DW)
0.747

 0.950 150.91 19 

 

Table 2.7: Substructure cost regression equations (in 1985 dollars) 

Type Model R
2
 F Value n 

All types SUBC = 0.00168(BL)
0.906

(DW)
1.255

(VC)
0.487 

0.725 168.35 196 

     

Steel Girder SUBC = 0.00354(BL)
0.744

(DW)
1.205

(VC)
0.515

(T)
0.156 

0.751 143.62 196 
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 Note: T = 1 for solid stem piers, T = 0 for pile-type piers 

 

Table 2.8: Approach cost regression equations (in 1985 dollars) 

Models R
2
 F Value n 

APC = 0.769(APL)
0.823

 0.566 248.08 192 

APC = 39.876(EW)
0.378

 0.633 328.20 192 

APC = 4.715(APL)
0.403

(EW)
0.250

 0.696 215.93 192 

Note: APL = Approach cost and EW = Earthwork (in 100CY) 

2.4.2.2  Texas Department of Transportation, 2005 

 Chou et al. (2005) developed a probabilistic cost estimation tool for the Texas 

Department of Transportation (TxDOT). An analysis of TxDOT bridge data from 2001 to 

2003 showed that there were 22 major work items in a bridge project that accounted for 

roughly 80.2% of the total cost (Table 2.9). The estimation tool was created under the 

assumption that estimators would be able to control at least 80.2% of the total project 

cost.  

Table 2.9: High Cost Major Work Items for TxDOT Bridge Projects (FY 2001-FY 2003) 

WORK ITEM COST % ITEM DESCRIPTION 

100 ITEMS: EARTHWORK AND LANDSCAPE 

100 1.51% PREPARING RIGHT-OF-WAY 

110 1.67% EXCAVATION 

132 3.09% EMBANKMENT 

200 ITEMS: SUBGRADE TREATMENTS AND BASE 

247 2.62% FLEXIBLE BASE 

300 ITEMS: SURFACE COURSES AND PAVEMENT 

340 0.76% HOT MIX ASPHALTIC CONCRETE PAVEMENT 

360 1.55% CONCRETE PAVEMENT 

400 ITEMS: STRUCTURES 

409 1.21% PRESTRESSSED CONCRETE PILING 

416 11.67% DRILLED SHAFT FOUNDATIONS 

420 12.69% CONCRETE STRUCTURES 

422 7.13% REINFORCED CONCRETE SLAB 

432 0.86% RETAINING WALL 

435 9.28% PRESTRESSED CONCRETE STRUCTURAL MEMBERS 

430 2.79% EXTENDING CONCRETE STRUCTURES 

432 1.29% RIPRAP 

442 2.55% METAL FOR STRUCTURES 

450 1.65% RAILING 

462 2.65% CONCRETE BOX CULVERTS AND SEWERS 
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500 ITEMS: MISCELLANEOUS CONSTRUCTION 

500 8.28% MOBILIZATION 

502 1.79% BARRICADES, SIGNS, AND TRAFFIC HANDLING 

508 1.54% CONSTRUCTING DETOURS 

534 0.73% STRUCTURE APPROACH SLABS 

SPECIAL SPECIFICATION WORK ITEM 

3146 2.91% QA/QC OF HOT MIX ASPHALT 

              Total = 80.22% 

Source: Chou et al., 2005 

 The unit cost for each work item was expressed as a cost per lane-kilometer. 

Equation 2.28 was used to calculate the total project cost by adding up the unit costs for 

all 22 major work items. The sum of the major work item unit costs is divided by 80.2% 

to account for the 19.8% of the project cost covered by the minor work items. A 

contingency amount is added to the quotient to account for engineering costs (Chou et al., 

2005). 

 

 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝐶𝑜𝑠𝑡 =  
∑ 𝐼𝑡𝑒𝑚𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐿𝑎𝑛𝑒𝐾𝑚𝑖

22
𝑖=1

80.2%
(1 + 𝐸𝑛𝑔𝐶𝑜𝑛𝑡%) (2.28) 

Where:  ItemCostPerLaneKmi = Cost per lane-km for each of the 22 major work  

   items 

  EngCont% = Engineering contingency expressed as a percentage 

 Chou et al. (2005) performed Monte Carlo simulations for five scenarios to create 

charts that can be used by estimators to determine the unit cost for a bridge project with 

knowledge of market conditions, need for work, location, scope changes, geological 

conditions, and constructability challenges. Figure 2.7 is a graph of the probability 

density functions (PDFs) for all five scenarios tested in the Monte Carlo simulation. 

Since the variables used in the Monte Carlo simulation were random and continuous, the 

area under each PDF curve from 0 to x is equal to the probability of getting a value that is 
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less than or equal to x. The total area under each PDF curve is equal to one (Andrews and 

Phillips, 2003).  

 

 
Figure 2.7: Comparison of PDF’s (Chou et al. 2005) 

 The cumulative distribution functions (CDFs) shown in Figure 2.8 can also be 

used to calculate the probability of the random variable being less than or equal to x in 

real-world conditions (Chou et al., 2005). This probability is found by selecting the y-axis 

value for the chosen CDF curve at x (Andrews and Phillips, 2003). The total project costs 

are calculated from the CDFs and PDFs by multiplying the x-axis value ($/lane-km) by 

the length of the bridge (Chou et al., 2005). 
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Figure 2.8: Comparison of CDFs (Chou et al., 2005) 

 Unlike other traditional models that are affected by untreated historical data, the 

probabilistic model developed by Chou et al. (2005) provides confidence bounds for an 

estimate, which helps control error, accounts for probability, and considers the 

independent or correlated relationships between the major work items. As with any other 

estimating method, the effectiveness of probabilistic models hinges on the quality of the 

data available to estimators. 

2.5  Research Needs 

 Like most state agencies, NCDOT employs two methods of estimating project 

costs. The first method uses BMS-sourced data in an algorithm based solely on deck area 

and a unit cost allocated by type of roadway (interstate, primary, or secondary) to 

produce a conceptual-level estimate that can be used for prioritizing and allocating 

funding for future projects. This method, currently programmed into the NCDOT BMS 
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using unit costs identified in the early 2010s, is not providing accurate estimates per 

NCDOT personnel.   

 The second method, cost-based estimation, considers labor and material costs as 

well as prevailing market rates to create a more detailed project-specific cost estimate. 

The estimated construction costs are generally close to the actual construction costs 

(within 2%), while the BMS estimates are less reliable, especially for small and large 

projects.  Since the project-specific factors involved in a cost-based estimate cannot be 

easily integrated into the BMS, there is currently a need to identify strategies and 

databases used in cost-based estimates that could be used to improve the accuracy of 

BMS-based estimates. This can be done by analyzing the discrepancies that exist between 

the BMS estimates, cost-based estimates, and actual costs. This analysis should show 

where the BMS estimates fall short of the cost-based estimates in terms of accuracy.  

Once the inaccuracies in the BMS cost estimation algorithms are found, the 

associated algorithms will need to be adjusted and updated. Some of refined strategies 

used for cost-based estimates cannot be easily integrated into an automated BMS 

estimating process. However, information on the appropriate contract costs can 

potentially be used alongside BMS data.  Recent research by Hollar et al. (2013) 

provided insight into PE costs that can be used to support development of more 

comprehensive bridge replacement costs.  However, more recent data on preconstruction 

costs (preliminary engineering, right-of-way, and utility costs) could be used to further 

improve current cost estimating models and improve the accuracy of their results. 
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Chapter 3:  DATA SOURCING AND PRECONDITIONING 

 

 

3.1  Data Sources 

 As discussed in the previous chapter, aggregated statistical models use a dataset 

of relevant historical project data to create regression equations (models) that predict a 

subset of known bridge parameters (Behmardi et al., 2015). The quality of the historical 

project dataset used by estimators can also influence the quality of their predictions 

(Gransberg et al., 2013). The dataset serves as a foundation for development of regression 

equations that can be used to predict costs. If data is missing or improperly recorded, the 

assumptions made by the regression equations are not as sound, since they do not 

accurately reflect the true conditions. Likewise, atypical projects included in a regression 

database may improperly bias prediction models design to project costs for typical 

projects. 

 The two modeling approaches utilized in this study are illustrated in Figure 3.1. 

One approach is to develop models that will predict the geometry of the replacement 

bridge based on the old bridge characteristics. The estimated dimensions for the new 

structure are then used to predict the costs associated with the bridge replacement. An 

alternative to this approach is to find a way to model the cost for the new bridge solely 

from information on the old bridge without needing to predict increases in bridge size.  
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The models for predicting cost can be developed by following one of the 

approaches in Figure 3.1. With the first approach, two types of prediction models are 

developed: models that predict new bridge characteristics from old bridge characteristics 

and models that predict bridge replacement contract cost from new bridge characteristics. 

Both models would be validated with actual data on old and new bridge characteristics 

and contract cost data.  

The second approach omits the prediction of new bridge characteristics by 

modeling a relationship between bridge characteristics of the structure being replaced and 

replacement contract cost. This simplified approach provides the advantage of relying 

upon both existing data (for the original bridge) as well as the advantage of involving 

fewer models so, if found to be reasonably accurate, this approach would be more user-

friendly and easier to incorporate into the BMS. However, prediction errors between the 

two approaches need to be analyzed to prevent selection of lower-quality models. 

 In order to support both regression modeling approaches shown in Figure 3.1, 

datasets needed to be assembled from various sources.  The following sections provide 

information on these sources, the types of data imported from these sources to support 

this work, and preconditioning of the data prior to regression modeling. 

 3.1.1  NCDOT BMS Network Master 

 The Network Master is sourced from the NCDOT Bridge Management System 

(BMS). It contains information on location, structural characteristics, and performance 

ratings for every NCDOT-maintained bridge, culvert, and overhead sign in the state. The 

Performance Master is updated annually. The dataset used for this project used 

information sourced from the Network Master, exported in May of 2017 to an Excel 
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spreadsheet. At the time of export for this work, the NCDOT Network Master contained 

21,698 records. 

 3.1.2  NCDOT BMS Performance Master 

 The Performance Master catalogs detailed inspection data for all NCDOT-

maintained structures. Condition ratings and appraisals for superstructure, substructure, 

deck, guardrails, and expansion joints are included for each structure. A new 

Performance Master annual record is updated in the BMS every year to serve as a 

historical record of bridge condition and status over time. Older versions of the 

Performance Master can be used to search for general bridge data prior to bridge 

replacements. The earliest version of the Performance Master used was from 2006, so old 

and new bridge data was available for bridge projects completed between 2007 and 2016. 

The 2013 Performance Master was also used to provide recent old bridge data for 

structures replaced between 2014 and 2016. The 2006 NCDOT Performance Master used 

for the central dataset contained 20,690 entries, while the 2013 Performance Master 

contained 22,226 entries. 

 The National Bridge Inventory (NBI) was used as a source for additional bridge 

data. The NBI includes bridge inspection information submitted to the FHWA by state 

and federal transportation agencies (FHWA, 1995). Maximum span length was not 

included for bridge entries in the 2006 and 2013 Performance Masters, so this 

information had to be obtained from the NBI.  

 3.1.3  Historical Bridge Replacement Cost Data 

 NCDOT provided HiCAMS-sourced data for 1,165 bridge replacement projects 

let between 2008 and 2016. The entries were categorized by funding source and the 
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letting approach for the project. The 17BP projects were state-funded and were let from 

the NCDOT Central Office or by the NCDOT Division from where the project 

originated. TIP projects received federal funding and were typically centrally let. This 

dataset contained contract information on each replacement project, including contract 

cost and letting dates. A breakdown of the types of projects in this dataset is provided in 

Table 3.1. 

Table 3.1: Breakdown of entries sourced from HiCAMS 
By letting method Count 

17BP 86 

TIP 235 

Total 321 

  

3.1.4  Supplementary Sources 

 In addition to the NCDOT BMS Performance Master, Network Master, and 

historical bridge replacement cost data, NCDOT also provided additional information 

from their Highway Construction and Materials System (HiCAMS) database. After the 

size of the central dataset was reduced to 334 entries, NCDOT provided cost data for 

each bridge entry. The cost data included contract amount, actual expenditure amount, 

preliminary engineering cost, right-of-way cost, and construction cost. All 17BP project 

entries did not have component costs for the preliminary engineering, right-of-way, and 

construction costs, so those entries were not used for development of regression models 

that used those variables.  

 NCDOT also provided contract information for 12 bridge replacement projects on 

structures with high traffic volumes. Each of these bridges had an ADT greater than 

15,000 cars per day. Including these entries in the central dataset allowed for 
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development of models that would be useful for predicting characteristics and costs of 

larger bridge replacement projects.  

 

 3.2  Data Conditioning 

 To facilitate the development of the regression models, data from five sources 

was merged into two central datasets. The sheer volume of bridge entries in each data 

source precluded the possibility of manually entering the data in the central datasets, so 

formulas were used to pull in specific values from the sources based on a matching 

bridge structure numbers. The contract cost data provided by NCDOT did not include 

structure numbers, so these values were determined by cross-referencing county, route 

name, feature crossed, and TIP number between the contract cost data and the BMS data 

to find a match. Typographical errors, misspellings, or empty cells would cause the 

formulas to return incorrect or empty values. Columns that contained descriptive data 

was often recorded in the source datasets in an inconsistent manner, which led to 

instances where a word was spelled, capitalized, or abbreviated in several different ways. 

In these cases, records were modified manually, changing the values to a consistent 

format.  After all data was imported, an additional review of the dataset was performed to 

ensure that the data was a correct match and that the formulas were entered in properly. 

This issue was addressed by performing spot checks on random bridge entry rows in the 

central datasets and comparing values side-by-side with those in the source datasets. 

Entries that were missing data that could not be found in the source datasets were 

eliminated from the central dataset. 

 3.2.1  Creation of Central Datasets 
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 Central datasets containing records useful to support this work were created by 

merging specific data fields from other NCDOT databases. While data on bridge 

structural characteristics was readily available from the BMS to support development of 

models predicting new bridge characteristics from old bridge characteristics, records 

providing data on replacement project costs was limited, providing far fewer records to 

support development of the cost prediction models. The new bridge characteristic 

prediction models did not require cost-related information, so those models could be 

developed using a larger dataset (the full combined dataset) than the cost prediction 

model dataset.  

 The two central datasets were created by the following process. An initial list of 

bridge records was created based on the dataset that would control the number of entries. 

For the historical cost-based central dataset, this was the historical contract cost dataset. 

The central dataset for the characteristic prediction models began with the 2006 

Performance Master. Entries in this initial list were removed if their data was not 

representative of a typical bridge replacement project. Examples of non-typical bridge 

replacement project included bridges with more than nine spans, moveable bridges, and 

replaced bridges that experienced very small or large relative changes in length or width 

from the original bridge size. Once the entries on the initial list were conditioned, 

additional data was imported from supporting datasets. Table 3.2 illustrates the process 

that was followed to create both central datasets. 
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Table 3.2: Actions taken to create central datasets 

Actions Taken: Characteristic Prediction 

Central Dataset: 

Cost Prediction Central 

Dataset: 

Initial List:  2006 Performance Master  17BP/TIP Projects 

Filter out:  Entries that do not appear in 

the 2016 Network Master 

 “Basket projects” (3.2.2) 

 Bridge rehabilitation projects 

 Bridge preservation projects 

Import 

information 

from: 

 2013 Performance Master 

(ADT) 

 2016 Network Master  

(new bridge characteristics) 

 2006 Performance Master 

(old bridge characteristics) 

 2016 Network Master  

(new bridge characteristics) 

 Supplementary sources 

(project cost data) 

Additional 

filtering: 
 Entries where structure type is 

not a bridge 

 Bridges replaced prior to 2007 

 Bridges with more than 7 

spans 

 Entries where structure type is 

not a bridge 

 

 

 3.2.1.1  Structure Numbers 

 Each NCDOT bridge is identified by a unique six-digit structure number. The first 

two numbers are for the county code (00 to 99, coding North Carolina’s 100 counties in 

alphabetical order) and the last four numbers of the structure number are the bridge’s 

number within that county (0000 to 9999). Information could be pulled from the 

Performance Master and Network Master by writing INDEX-MATCH formulas that 

would search for rows with a matching structure number. Unfortunately, the historical 
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cost dataset did not include structure numbers for the entries, so structure numbers for 

each of the entries in the historical cost dataset had to be found using other methods. 

 The first method was to find the structure number based on the contract number, 

county, and route in the Network Master. These three fields were present in both the 

Network Master and historical cost spreadsheets. A column was created in both 

spreadsheets that had the concatenated county, route, and project number for each bridge. 

The chance of more than one bridge having the same county code, route, and contract 

number was perceived as being relatively low. A VLOOKUP function was then used to 

pull the matching structure number from the 2016 Network Master into the historical cost 

dataset. 

  This method of merging the data for each structure from the two databases was 

successful for 787 out of the initial 1,165 entries (67.6%) in the historical cost 

spreadsheet. A second method was applied to the remaining 378 bridge entries for which 

a matching structure number was not identified using the first method. Several entries in 

the historical cost spreadsheet had the four-digit bridge number listed in the comments 

field. Assuming that the number was entered correctly, the four-digit number could be 

appended to the two-digit county code to provide the bridge’s structure number. This 

process had to be performed manually, but allowed for better quality control. This 

method also served as a check for the first method to verify that the VLOOKUP returned 

the correct structure number. 

 In cases where those two methods failed to identify a common field for merging 

of the datasets, entries with no known structure number were looked up in the Network 

Master by County and Route Carried. For most cases, searching with these two criteria 
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usually returned only one entry in the Network Master, which was presumed to be the 

corresponding bridge from the historical cost dataset. In cases where there was more than 

one result, the Year Built for the Network Master entries were compared to the entry in 

question from the historical cost dataset. There were a few rare cases where the bridge 

information had to be found using sources on the internet. In total, structure numbers 

were found for 814 of the bridge entries in the historical cost dataset, which accounted for 

69.9% of the total entries in the original dataset. These 814 entries could then be linked to 

physical bridge characteristics and location information from the Network Master and 

Performance Master. This connection allowed for further filtering based on known bridge 

parameters. 

3.2.1.2  Linking Bridge Characteristic Information to Historical Cost Records 

 For both central datasets, data on bridge characteristics for the old and new 

structures were imported from the other datasets and paired to the corresponding entries 

in each central dataset. Data from the 2006 Performance Master, 2013 Performance 

Master, and the 2016 Network Master was imported as separate files.  Once the historical 

cost data entries had structure numbers, the bridge characteristic data from the Network 

Masters and Performance Masters could be imported into a central dataset by matching 

the structure numbers.  

 The lookup formulas consisted of a combination of the INDEX and MATCH 

functions. The INDEX function defined a column to use as a lookup array and the 

MATCH function selected the row based on a structure number that matched the value on 

the central dataset (Table 3.3). This setup has an advantage over VLOOKUP since the 
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reference column, which in this case is the list of structure numbers, does not have to be 

the leftmost column in the sheet.  

Table 3.3: Typical format for data lookup formula 

 

= INDEX(‘PM’!C:C,MATCH(A[x],’PM’!A:A,0)) 

 

Where:   

‘PM’!C:C = Column of variable to be imported from sheet ‘PM’ 

A[x] = Structure number for row [x] entry receiving the data 

‘PM’!A:A = Range of structure numbers on sheet ‘PM’ 

0 = Return exact match 

 

 

3.2.1.3  Variables  

Both the Network and Performance Masters contained dozens of variables 

pertaining to bridge structural characteristics. Ultimately, some of the variables were 

judged to be more useful for prediction models than others. Decisions had to be made 

regarding which variables were important and should be imported into the central dataset, 

and which variables likely had no logical link to predicting bridge cost. Too many 

variables would clutter the central dataset with useless information while too few 

variables would defeat the purpose of introducing new variables into prediction models to 

create better predictions. The first step in making the decision was to compile a list of all 

available variables between the three datasets (Table 3.4) 
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Table 3.4: Fields available in NCDOT BMS databases 

Field P
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Substructure Rating  X   Structure Length X X  

Superstructure Rating  X   Deck Width X X  

Deck Condition  X   Roadway Width X X  

Division Number X X X  Through Lanes On X X  

Tier ID X X   Min. Clearance Under  X  

County X X X  Replacement Cost  X  

Structure Number X X X  Maint. Resp. X X  

Structure Type X X   Owner X X  

Facility Carried X X X  Service Type On  X  

Intersected Features X X   Service Type Under  X  

Maintenance History X X   Span Type  X  

TIP Bridge Number  X X  Superstructure Type X X  

Bridge Replacement Status  X   Substructure Type X X  

Replacement Status (TIP)  X   Latitude  X  

Route Name  X   Longitude  X  

PRI  X   Structure Type Main X X  

Sufficiency Rating X X   Structure Type Approach X X  

Deficiency Points X X   Deck Structure Type X X  

Structurally Deficient? X X   Culvert Type  X  

Approach Roadway Width X X   Service Type X X  

Approach Trway Width X    Brng. Assy (Girder) Grade X   

Functionally Obsolete? X X   Sorting Code X X  

Posted SV X X   Scour Critical Bridge X X  

Posted TTST X X   Last Routine Insp. Date  X  

Bearing Grade X X   Structure Appraisal X X  

Posting Score (#) X X   Deck Geometry Appraisal X X  

Bridge Health Index (BHI) X X   Approach Alignment App. X X  

BHI Score (#) X X   Underclearance Appraisal X X  

Average Index (BMS)  X   Waterway Adequacy App. X X  

Temp. Struct. Designation  X   Culvert Condition  X  

Detour Length X X   Paint Condition X X  

Bridge Age X X   Min. Vert. Clearance Over  X  

Year Built X X   Max. Clearance Under X X  

Est. Remaining Life X X   Water Depth X X  

Bridge Length (NBIS) X X   Height Crown to Bed X X  

National Highway System  X   City X X  

Strahnet Designation  X   Bridge Name X X  

Deficient? X X   Road System X X  

Green Line Route X X   Traffic Direction  X  

Posted? X X   Bridge System X X  

No. Thru Lanes (Under) X    Left Guardrail Mat’l Type X   

Federal Skew X    Rght Guardrail Mat’l Type X   

 



64 
 

Table 3.4: Fields available in NCDOT BMS databases (continued) 
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Functional Classification X X   Annual User Cost  X  

ADT X X   Consider Replacement?  X  

Funct. Class. (Sys. under) X X   Built By (Original)  X  

Funct. Class (Sys. on) X    Location X   

ADT Year X X   Project No. (Original) X X  

% ADT Truck X X   Contract No.   X 

ADT (Under) X X   Contract Description   X 

ADT Year (Under) X X   Contract Comments   X 

Milepoint X X   WBS Number   X 

Att.  X   Contract Bid Amount   X 

Comments  X   Letting Date   X 

Wearing Surface Type X X   Work Start Date   X 

Wearing Surface Grade  X   Availability Date   X 

Substructure Mat’l (Det)  X   Acceptance Date   X 

No. of Main Spans X    Operating Rating X   

No. of Approach Spans X    Region X   

Exp. Jnt. Facility Carried X    Inventory Rating X   

Last Routine Insp. Date X    Inventory Type X   

Vert. Overclear. Goal X    Lane Desirable X   

Vert. Underclear. Goal X X   Project Type   X 

NCB Deck Width GL ID  X   Consider Replacement? X   

Bridge Type  X   Bridge Status X   

Bearing Grade (#) X X   Channel Condition X   

SD Calc  X   Deck Approach Slabs X   

Undet. BHI ID  X   Deck Condition X   

Undet. BHI Score  X   From MP X   

Route Type   X  Deck Material Type (Det) X   

Federal Aid Number   X  Floor Beams X   

NCB Min. Vert. Und. Ft. 
X    Superstr. Dsgn Type 

(Det) 

X   

Safe Load Appraisal X    Substr. Mat’l Type (Det) X   

Scour Analyzed X    Special Materials X   

Substructure Condition X    Stringer Connection X   

Substr. Condition (#) X    Timber Replacemnt 

Status 

X   

Superstructure Condition X    Total Horiz. Clearance X   

Superstr. Condition (#) X    County Owner X   

Corridor X    Statewide Owner X   

Encroachments X    Left Sidewalk Width X   

Desired Cap. Goal X    Right Sidewalk Width X   

Deck - Concrete Grade X    Exp Jnt – Compr. Seal 

Gr. 

X   

Deck – Timber Grade X    Exp Jnt – Opn Jnt Grade X   
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Deck – Stl Open Grid 

Grde 

X    Exp Jnt – Prefab Device X   

Deck – Stl Plank Grade     Exp. Jnt. – Std. Jnt Grade X   

  

Table 3.4: Fields available in NCDOT BMS databases (continued) 
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Concrete Backwalls 

Grade 

X    Bottom Lat Bracing 

Guide 

X   

Concrete Int. Bent Pile Gr X    Bottom Slab Grade X   

Concrete Bent Ftg Grade X    Railing Grade – Alum. X   

Concrete Bnt Col Grade X    Railing Grade – Timber X   

Concr. Abut Int Bent Cap X    Railing Grade – Steel X   

Opening Desc 5
th

 X    Railing Grade - Concrete X   

Opening Desc 4
th

 X    Nav Horiz. Clearance X   

Opening Desc 3rd X    Nav Vert Clearance X   

Opening Desc 2nd X    Type Floor & Wear Surf. X   

Channel Condition (#) X    NCB OFFICE X   

Project No. (Reconst) X    Bearing Grade X   

 

 Many of the continuous variables relating to bridge performance and condition 

ratings were not used in either central dataset. A cursory glance at the Network and 

Performance Masters showed that some of those performance-related fields were blank or 

not complete. Specific location information, such as city or route carried would not be 

useful in a regression. The supporting datasets also included qualitative variables for each 

bridge entry that could be used as categorical variables. Categorical variables were only 

useful for analysis if they met both requirements listed below: 

1. The number of entries in each category was large enough to develop a model   

for that specific category that would apply to similar bridges outside of the 

analysis. 
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2. The categories in the variable are distinct in that each category would have a 

different impact on the predicted value. 

Categorical variables that failed to meet the first requirement could be used in the 

analysis by combining two or more smaller groups to make a larger group. This was only 

done if that variable met the second requirement. The second requirement was utilized so 

that adding extra groups within a categorical variable would be statistically significant 

enough to warrant the added complexity. This was assessed initially through basic 

assumptions (i.e. deck material type may affect width change while region might not) and 

verified during the regression by comparing p-values and coefficients of the different 

categorical groups. 

The categorical and continuous variables included in both datasets are listed in 

Table 3.5, along with the type of variable and the source(s). Both the characteristic 

prediction and cost prediction datasets included each of the variables listed in Table 3.4.  
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Table 3.5: Variables in central dataset 

Variable Variable Type Source 

Structure Number Continuous HCD, PM, NM 

Functional classification Categorical PM, NM 

Bridge system Categorical PM, NM 

Region Categorical PM, NM 

Division Categorical PM, NM 

Water Depth Continuous PM, NM 

Crown to Bed Height (CTB) Continuous PM, NM 

Year Built Continuous PM 

Year Replaced Continuous NM 

Age at replacement (BRIDGEAGE) Continuous PM*, NM* 

ADT Continuous NM 

Old bridge length (OBLEN) Continuous PM 

New bridge length (NBLEN) Continuous NM 

Length expansion factor (LEF) Continuous PM*, NM* 

Old bridge width (OBWID) Continuous PM 

New bridge width (NBWID) Continuous NM 

Width expansion factor (WEF) Continuous PM*, NM* 

Superstructure type Categorical NM 

Substructure type Categorical NM 

Deck material type Categorical NM 

Number of spans: original bridge  Categorical PM 

Number of spans: new bridge Categorical NM 

Original bridge maximum span length Continuous NBI 

New bridge maximum span length Continuous NM 

Deck Geometry Appraisal Discrete PM 

Underclearance Appraisal Discrete PM 

Roadway Alignment Appraisal Discrete PM 

Waterway Adequacy Discrete PM 

Unit cost (total) Continuous Other 

Unit cost (construction) Continuous Other 

Construction cost Continuous Other 

Preliminary engineering cost Continuous Other 

Right of way cost Continuous Other 

*Variable was calculated in central dataset using variables from other sources 

3.2.1.3.1  Continuous Variables 

The continuous variables used in the analysis were typically measurements of 

physical attributes of each structure in imperial units (feet and inches). Most variables are 

defined in the 1995 NBI Recording and Coding Guide, which was published by the 
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Federal Highway Administration (FHWA, 1995). Since all of the bridge data for the 

central datasets were sourced from the NCDOT BMS, there was some minor variation 

between the quantities for the variables included in those sources.  

3.2.1.3.1.1  Structure Length 

The structure length for bridges is the distance measured between the backwalls 

of the end abutments or between expansion joints. The NBI coding uses metric units 

rounded to the nearest tenth (0.1) of a meter. The data in the NCDOT BMS records the 

structure length measurements in imperial units. This was verified by comparing the 

structure length field to the “Span Type” description in the Network Master. While the 

Network Master did not have specified units, the description of the span lengths in “Span 

Type” specified length measurements in feet and inches. 

The terms OBLEN and NBLEN were adopted from the Abed-al-Rahim and 

Johnston (1995) study to represent the respective lengths of the old and new bridge 

structures. A unitless length expansion factor (LEF) was calculated as a ratio of NBLEN 

to OBLEN to identify instances where the length change was unusual. Entries with 

abnormal LEF values could be filtered and removed from the regression so that the 

prediction models would not be based upon cases with atypical increases or decreases in 

structure length.  

3.2.1.3.1.2  Deck Width 

The NBI Recording and Coding Guide calls for bridge decks to be out-to-out deck 

measurements, as shown as measurement 2 in Figure 3.2, rounded to the nearest tenth of 

a meter. The NCDOT BMS provides bridge dimensions in feet instead of meters. As with 

bridge structure length, OBWID and NBWID represent the old and new deck widths for a 
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bridge that has been replaced. The width expansion factor (WEF) is the ratio of new to 

old bridge widths that was used to identify outlier projects that had an unusually small or 

large change in width.  

 

Figure 3.2: Out-to-out bridge deck measurements (from NBI Coding Guide 

(1995)) 

3.2.1.3.1.3  Maximum Span Length 

According to the NBI Recording and Coding Guide (FHWA, 1995), the length of 

the maximum bridge span should be measured along the bridge’s centerline. This 

measurement can either be between the centerlines of the supports or the clear distance 

between the supports, although the measuring points that were used should be noted. 

MAXSPAN1 and MAXSPAN2 represent the maximum span lengths of the old and new 

structures (respectively). Maximum span length information for the structures being 

replaced was not readily available in the Performance Master, so data for MAXSPAN1 

was imported from the NBI database.  
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3.2.1.3.1.4  Bridge Age 

The age of the bridge when it was replaced was considered in the development of 

the prediction equations. BRIDGEAGE was calculated with the NCDOT BMS data as the 

difference between the year the structure was originally built and the year it was replaced. 

In theory, an older bridge could potentially require more extensive improvements when 

reconstructed in order to meet modern bridge performance standards than a structure that 

was built in a later year. 

3.2.1.3.1.5  Water Depth 

All 305 of the bridge records in the cost prediction dataset and 975 of the bridge 

records in the characteristic prediction dataset cross a body of water, which could range 

in size from a small creek to a deep river or bay inlet. WATERDEPTH was considered as 

a possible predictor variable because of the role that flood plains play in many bridge 

replacement designs. An existing bridge that crosses a river may be more prone to 

flooding and, when replaced, may require a height and length increase to comply with 

standards. Waterway adequacy (discussed in a later section) rates a structure’s 

susceptibility to flooding. Bridges that have piers in deep water may also cost more to 

remove or install during a bridge replacement project as special equipment and methods 

need to be employed. For this analysis, WATERDEPTH used imperial units and was 

rounded to the nearest foot. 

3.2.1.3.1.6  Approach Roadway Width 

Based on the year replaced, the approach roadway width (APPWID) for the 

original structure was found in either the 2006 or 2013 version of the Performance 
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Master. APPWID includes the roadway width plus any useable shoulder areas on either 

side. “Useable shoulder area” is defined in the 1995 NBI Recording and Coding Guide as 

being stabilized, normally maintained, and structurally capable of handling the same 

traffic and weather conditions as the facility that is being carried. The 1995 NBI Coding 

Guide calls for approach roadway width to be measured to the nearest tenth of a meter, 

however the information from the Performance Master utilized imperial units rounded to 

the nearest foot. 

3.2.1.3.1.7  Crown-To-Bed Height 

The “crown” of a bridge is defined as the apex of its arch (Kassler, 1949). The 

crown-to-bed height for bridges is not stored in the NBI and was not included in the 

Coding Guide. For the purposes of this work, it was inferred that the measurement from 

the bed of the feature that the bridge is crossing to the top of the bridge crown represents 

the maximum height of the bridge structure.  

3.2.1.3.2  Categorical Variables 

While Abed-al-Rahim and Johnston (1995) explored the possibility of creating 

separate models for different bridge types, their final prediction models utilized only 

continuous predictor variables. Saito et al. (1991) used categorical variables indirectly by 

developing separate prediction models for different types of bridges. This study tested a 

new approach for using categorical variables to improve the accuracy of the prediction 

equations. Instead of creating separate equations for different bridge categories, the 

categorical variables were added directly into the equation during the stepwise process. 

The stepwise function in Minitab was used to identify and remove categorical variables 
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that were not statistically significant. The remainder of the categorical variables were 

assigned numerical values in the equation based on their possible values. 

Before analysis, the number of bridge entries in each group within a category was 

counted. For the regression equation to be reliable, each of the groups within a category 

needed to contain a minimum number of bridge entries. A minimum of 30 entries per 

classification was judged to be a reasonable number of entries to warrant a classification. 

Smaller groups were merged with larger groups, which in several cases resulted in binary 

categorical variables. The processes for binning each categorical variable is described in 

the following sections. 

3.2.1.3.2.1  Functional Classification 

Several factors are considered when assigning the functional classification for a 

route, such as mobility, accessibility, ADT, continuity, and system continuity (FHWA, 

2013). FUNCTCLASS for the route carried by a bridge had six possible values: Interstate, 

Principal Arterial, Minor Arterial, Major Collector, Minor Collector, or Local. The 

characteristic prediction central dataset had a very small population of Interstate bridges, 

so that category was merged with Principal Arterial.  

3.2.1.3.2.2  Bridge System 

Bridge system (BRIDGESYS) is used by NCDOT to describe the highway system 

for the route that a bridge is carrying. In the BMS, BRIDGESYS could be recorded as 

either Interstate, Primary, or Secondary. The NCDOT defines secondary routes as DOT-

maintained routes that do not carry a “US” or “NC” route number and fall outside the 

borders of any incorporated municipality (NCDOT, 2017). 

3.2.1.3.2.3  Crossing Type 
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As described earlier in Section 3.2.1.3.1.5., water depth could influence changes 

in new bridge’s size or replacement costs. Following this logic, the significance of 

including CROSSINGTYPE was to see whether the bridge crossed a body of water or a 

grade separation. In instances where a bridge crossed a roadway and a body of water, the 

bridge entry defaulted to “not a waterway crossing.” This approach was utilized due to 

the underclearance and waterway adequacy appraisals, which are described in greater 

detail in sections 3.2.1.3.2.10 and 3.2.1.3.2.11. 

3.2.1.3.2.4  Superstructure Material Type 

The BMS uses a three-digit code that describes the superstructure material and 

design type for a bridge. The first digit of this code signifies the material used for the 

superstructure of the bridge. For this analysis, material and design type were separated 

into two categories. In the characteristic prediction central dataset, material type was 

ultimately condensed to two groups (concrete or non-concrete), making SUPERSTRMAT 

a binary variable. 

3.2.1.3.2.5  Superstructure Type 

The last two digits of the three-digit superstructure code mentioned in Section 

3.2.1.3.2.4 indicates the design type of the superstructure. This code was also deciphered 

using information from the NBI coding guide. The different groups within 

SUPERSTRTYPE were consolidated as necessary to ensure that each group had a large 

enough population for the analysis. During the regression, further consolidation was done 

if the coefficients or p-values (discussed in Section 3.2.2) indicated that two or more 

groups could be grouped together to simplify the equation. Since SUPERSTRMAT and 

SUPERSTRTYPE were sourced from the same column in either the Network or 
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Performance Masters, it was expected that there might be a degree of collinearity 

between those two variables. In cases where this occurred, SUPERSTRMAT was retained 

for the analysis.  

3.2.1.3.2.6  Substructure Material 

The substructure material type is coded as a one-digit value in the Network 

Master and Performance Master. Both the Network Master and Performance Master 

recorded SUBSTRMAT as a text description as well as a numerical value. Timber, 

concrete, and steel were the most prevalent substructure material types included in the 

central databases. 

3.2.1.3.2.7  Deck Material Type 

The deck material for each bridge is coded as a single-digit numerical code in 

both the Network Master and Performance Master. The NBI Recording and Coding 

Guide was used to translate the numerical code into material types for the structures prior 

to replacement. Regrouping of deck material types was performed if the number of 

bridges within in a certain group (having a certain deck material type) was too small to 

use in the regression analysis. Typically, the decks on the original structures were either 

made of concrete, steel, or timber. 

3.2.1.3.2.8  Deck Geometry Appraisal 

Deck Geometry for a bridge is evaluated by the bridge’s clear deck width and the 

minimum vertical clearance over the bridge, with the lower rating dictating the deck 

geometry appraisal (FHWA, 1995). The numerical rating for deck geometry was already 

included in the Performance Master, so the ratings were binned to create large enough 

groups for regressions and to also reduce equation complexity. The rating value for each 
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bridge was imported from the 2006 or 2013 Performance Master, depending on which of 

the two versions was published before the year the bridge was replaced. 

DECKGEOMAPP was classified as being either “Acceptable” or “Unacceptable.” 

The cutoff for an “Acceptable” rating was a rating of 4 or higher. This number was 

chosen because the NBI Recording and Coding Guide dictated corrective action for a 

bridge with a vertical clearance rating of 3 or below. Despite the seemingly low cutoff 

value for acceptable DECKGEOMAPP ratings, there were still enough bridge entries that 

fell within the “Unacceptable” group to warrant the creation of the two groups.  

3.2.1.3.2.9  Roadway Alignment Appraisal 

The roadway alignment for a bridge is appraised by the change in speed required 

for vehicles due to the alignment of the approach roadway with respect to the bridge 

deck. The 1995 NBI Recording and Coding Guide indicates an appropriate rating of 6 for 

a structure that requires a minor reduction in speed and an 8 for a structure that requires 

no reduction in speed. In the central dataset, values in ROADWAYALIGNAPP were 

grouped as “Acceptable” (rated 6 or higher) or “Unacceptable” (rated below 6). In theory, 

bridges with poor approach roadway alignment will need wider bridge decks or 

expensive modifications to the approach roadway. 

3.2.1.3.2.10  Waterway Adequacy 

The NBI Recording and Coding Guide defines waterway adequacy as the 

appraisal of waterway openings with respect to its passage of flow through the bridge 

(FHWA, 1995). This rating identifies the likelihood of water “overtopping” the bridge 

and the extent of traffic delays caused by the flooding. The numerical adequacy rating 

also depends on the functional classification of the route carried by the bridge. Interstates 
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and Principal Arterials receive a lower score for the same waterway conditions as would 

a Local or Minor Collector. The cutoffs for acceptable and unacceptable waterway 

adequacy ratings in the central dataset are dependent on FUNCTCLASS. 

Waterway adequacy ratings only apply for bridges that cross over a waterway, 

and bridges that do not cross water receive an “N” rating. Another set of bridges crossed 

over water and roadways, so those entries had both waterway and underclearance 

adequacy ratings (refer to Section 3.2.1.2.2.11). The UNDERAPP category was created to 

reduce the confusion associated with using two categorical variables to describe the same 

attribute. UNDERAPP uses whichever adequacy rating (waterway or underclearance) is 

appropriate, and defaults to using underclearance adequacy in cases where both ratings 

are used. 

3.2.1.3.2.11  Underclearance Adequacy 

The 1995 NBI Coding Guide describes underclearance adequacy as the horizontal 

and vertical clearances from the bridge superstructure and substructure for the route 

travelling beneath the bridge. The sufficiency of the horizontal and vertical clearances are 

evaluated using tables in the coding guide and the lower of the two scores is used as the 

underclearance adequacy rating. As mentioned in the previous section, underclearance 

adequacy and waterway adequacy were combined to form UNDERAPP for the purposes 

of this project.  

3.2.1.3.2.12  Number of spans 

Multi-span bridges introduce an extra layer of complexity that may drive up cost 

or the dimensions of the new structure. The number of spans for each original bridge was 

found in the Performance Master by taking the sum of the number of approach spans and 
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the number of main spans. A histogram of SPAN1 for the original bridges showed that 

bridges with more than nine (9) spans were uncommon in the dataset. The singular 

structures with 17, 24, and 35 spans became a concern for the analysis, since these large 

and complex bridges might skew the regression. Before the regression was performed, 

bridges with more than nine (9) spans on the original structure were treated as atypical 

cases and were filtered from the dataset. The remaining bridge entries were grouped 

within SPAN1 as 1, 2, 3, 4, or 5+ span bridges. 

 
Figure 3.3: Residual of SPAN1 values in central characteristic dataset 

 

3.2.2  Basket Projects 

 The term “basket project” was used to describe larger contracts that included the 

replacement of multiple bridges along a route or within an area. In the historical cost 

dataset, the individual cost for each bridge included in the basket project was calculated 

by dividing the total contract amount by the number of replaced bridges in the contract. 
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Since the bridges included in basket projects are likely not identical, the recorded cost 

data for each bridge does not reflect the bridge’s size, location, or design. Since the 

creation of cost prediction models depends on linking bridge replacement cost to bridge 

characteristics, the inclusion of basket project bridges would skew the results. 

 Basket projects were identified in the central dataset by using simple manual and 

formulaic data checks. Contract numbers that appeared more than once in the “Contract 

Number” column meant that there was more than one bridge associated with that 

contract. Bridges that had the same exact dollar value for “Contract Cost” were often 

basket projects. The dollar value would typically be a rounded amount that was could 

reasonably be assumed to have been calculated by division of a larger contract amount 

(i.e. a contract cost of $5,000,000.00 or $3,333,333.33). Before labeling a bridge as being 

part of a basket project, both checks were performed to eliminate false positives and to 

preserve the size of the dataset. Basket projects were filtered from the dataset by 

including a dichotomous variable that indicates whether an entry is part of a basket 

project. A filter was applied to hide all entries with variables equal to “Y”.   

 Another approach utilized to find basket projects was a search of the 

ConnectNCDOT.com website. The contract or TIP number for each entry in the cost 

prediction central dataset was researched on that website to find a general project 

description for that project. Bid documents, construction drawings, and meeting minutes 

were reviewed to identify projects where the scope included more than just a bridge 

replacement. There were several instances where a bridge replacement project also 

included the construction of nearby roadways or interchanges. This manual approach 

resulted in identification of approximately 250 records associated with basket projects. 
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 3.2.3  Culverts 

 There were instances in the Network and Performance Masters where a bridge 

was converted into a culvert or an existing culvert was replaced by another culvert. Since 

these structures are also maintained by NCDOT, they are included in the Network and 

Performance Masters. If culverts were not identified prior to regression analysis, then the 

regression would be skewed since culverts have no deck area and carry no traffic. Since a 

culvert replacement or conversion project would appear the same way as a bridge project 

in the historical cost spreadsheet, several checks were employed to identify the culverts. 

A culvert meets any of the following conditions: 

1. “Culvert Type” = 1 

2. “Deck Width” = 0 

3. “Deck Geometry Appraisal” = N 

4. “Culvert Condition” ≠ N 

5. “Structure Type” = 1 

As with the basket projects, culverts were filtered from the historical cost dataset. 

An IF statement for one of the above conditions automatically identified all culverts and 

assigned those entries a binary value. Entries with this value could be filtered out in 

Excel. The Network Master was used for identifying culverts so that any bridge-to-

culvert conversion projects would also be filtered. 

3.2.4  Treatment of Atypical Values 

Before performing the regression analyses, Abed-al-Rahim and Johnston (1995) 

removed entries with unit costs outside of the 5
th

 and 95
th

 percentiles. A similar approach 

was tested with the central dataset for use on this project. The 5
th

 and 95
th

 percentile 
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values for certain dependent variables were filtered out prior to the regression for that 

dependent variable, and then the results were reviewed to determine if this filtering 

approach was suitable for use with the current data and dependent variable. The intended 

application for the updated regression models was for typical bridge projects, so the 

filtering of atypical values was done to prevent fitting of the models to the outliers at the 

expense of fit for the rest of the typical values.    

For bridge length and deck width, the 5
th

 and 95
th

 percentile filtering was used to 

condition the dataset. Instead of filtering the independent variable, the filtering was 

applied to a unitless expansion factor related to that independent variable. In theory, 

replacement projects with little to no change in a characteristic (low expansion factor) or 

an extreme change in a characteristic (high expansion factor) would be treated as 

abnormal cases. This also covered instances in the central dataset where a typo would 

cause an artificially high or low expansion factor value. 

3.3  Summary of Dataset 

 The central cost database created for the new models had to contain bridge cost 

and characteristic information. Detailed geographical and physical attributes for all 

NCDOT highway bridges was available from the BMS. The cost information was 

obtained from a separate historical cost dataset and contained fewer entries, so it 

controlled the size of the central historical cost dataset.  

 Each data source was reviewed to identify atypical entries that could adversely 

affect the quality of the regression models. These atypical entries included basket 

projects, culverts and other non-bridge structures, and replacement projects with atypical 
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costs or changes in dimensions. The result was a characteristic database with 1,506 

entries and a cost database with 305 entries. 
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CHAPTER 4: MODELING PROCESS 

 

 

4.1  Overview of Modeling Process 

 The new models created as part of this work are intended to be used by NCDOT 

personnel in the conceptual stage of a project or for budget forecasting purposes. At this 

stage in a project, specific characteristics of the new bridge are uncertain, whereas old 

bridge characteristics are known and recorded in the BMS. Models that use predictor 

variables that are readily accessible to estimators at the conceptual stage are likely more 

useful than models that require assumptions of unknown new bridge parameters.  For this 

work, both types of models were developed and evaluated.  As a reminder to the reader, 

this approach was shown schematically in Figure 3.1. 

 4.1.1  Selection of Models to be Updated 

 Over time, the reliability of a given prediction model can decrease. In order to 

keep up with changes in bridge project management and trends in the construction 

industry, the prediction models should be updated periodically using more current data. 

As part of this research effort, one of the first steps in updating prediction models was 

replication of the older prediction models. Using the same independent variables from an 

older model with a new set of bridge replacement project data shows how applicable the 

older models are for accurately predicting today’s typical bridge replacement projects. 

Results of this effort also set a benchmark for prediction accuracy.  

The regression models developed by Abed-al-Rahim and Johnston (1995) were 

excellent candidates for replication because they were also developed using data from 

prior NCDOT bridge replacement projects. To set a benchmark for the updated models, 

the NCSU NCDOT prediction models were replicated with the original predictor 
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variables and current NCDOT bridge replacement project data.  As described in Chapter 

2, Abed-al-Rahim and Johnston (1995) followed Approach 1 in Figure 3.2 by developing 

models that predict new bridge characteristics and then developing cost prediction 

models that used these new bridge characteristics as predictors. 

The inputs used for some of the regression models developed by Saito et al. 

(1991) for INDOT also allowed them to be used to predict total bridge replacement cost. 

These models were replicated with NCDOT bridge data using the same predictor 

variables. Other INDOT models published in the literature predicted costs for different 

components of bridge replacement projects. Since there was no NCDOT data available 

for the cost of those components, those INDOT models were not selected for replication.  

 4.1.2  Model Development Process 

 Each model was updated and evaluated by following a uniform modeling 

framework developed for this project (Figure 4.1). The first step of the modeling process 

was to replicate an existing prediction model using the newer project data from the 

NCDOT BMS. Once this step was completed and the baseline performance for the 

replicated model was determined, a backward elimination stepwise regression was 

performed on the data using Minitab. All available categorical and continuous variables 

were initially used as possible predictors, and as the backward elimination stepwise 

regression progressed, at each step the least statistically-significant variable was 

eliminated.  Since the desirable alpha threshold was identified by the research team as 

0.05, variables with p-values greater than 0.05 were removed one-at-a-time until no 

variables with low statistical significance remained in the equation. 
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 If a group within a categorical variable still had a p-value greater than 0.05, the 

categorical variable would either be consolidated or removed depending on the 

population size, coefficients, and p-values of the remaining groups. Removing or 

consolidating a categorical variable during the third step would typically increase the p-

value of one or more other model variables after the regression was run again. When this 

occurred, the variable with the highest p-value above 0.05 was manually removed from 

the equation in a manner consistent with the stepwise process in Minitab. This process 

continued until no variables remained with p-values greater than 0.05. The consolidation 

process for categorical variables is outlined in Section 4.1.2.1 with an example 

demonstrated in Table 4.1.  

 Adjusted-R
2
 and standard error of regression (S) were chosen as metrics for model 

performance. The adjusted-R
2
 statistic accounts for the degrees of freedom in models 

with multiple predictors and can be calculated using Equation 4.1. The standard error of 

regression (S) represents the average distance each data point was located from the 

regression line. For a model with relatively good fit, the S value should be low. This 

metric was important to the analysis because it can be used to estimate the 95% 

confidence interval for a model’s prediction. This information was used to evaluate 

whether increasing a model’s accuracy justifies the added complexity. The 95% 

confidence interval was calculated from S using Equation 4.2. 

 𝑅2(𝑎𝑑𝑗) = 1 − [
(1−𝑅2)(𝑛−1)

(𝑛−𝑘−1)
]  (4.1) 

Where:  R
2
 = Unadjusted R

2
  

n = Total sample size 

  k = Degrees of freedom in model 
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 𝐶. 𝐼.95 = ±(1.96 × 𝑆) (4.2) 

Where:  C.I.95 = 95% Confidence Interval 

  S = Standard error of regression 

 Variable coefficients were also considered during the supplemental stepwise 

process. For categorical variables, two groupings within that category with similar 

coefficients may be candidates for consolidation. Consolidation was useful for cases 

where one or more of the groupings within a categorical variable had high p-values and 

the grouping had to be condensed to avoid having to remove the entire variable. 

Comparing coefficients helped establish logical consolidations of groupings due to 

similar influences on the predicted variable. 

 4.1.2.1  Preparation of Datasets 

 Before bridge data from the NCDOT BMS was used for modelling, it was pre-

processed (filtered, consolidated, and formatted). The processes used to import data from 

different sources and measure data quality are described in Chapter 3. For this project, 

two separate datasets were created for characteristic prediction models and cost 

prediction models.  

In the original datasets, a categorical variable may include five or six different 

categories. The population within each of these categories was not always equally 

distributed and some categories had too low of a population to be useful in the analysis. 

Based on populations within each category, some were combined to simplify the 

categorical variable and preserve the integrity of the regression equations by eliminating 

statistically-insignificant categories. Categories that were merged were done so in a 

logical manner. For example, Interstate bridges were grouped with Principal Arterials to 

form a single predictor variable Principal Arterial/Interstate, since the two functional 
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classifications are closest to each other in traffic capacity. It was reasonable to 

consolidate prestressed concrete and cast-in-place concrete material classifications, since 

both categories are made from the same material (concrete).  

After running an initial regression, a categorical variable was sometimes further 

condensed to remove statistically insignificant groupings by looking at each category’s 

model coefficients. Two categories with similar coefficients indicated that the distinction 

between the two categories did not have a significant effect on the final model prediction. 

Merging those categories simplified the model and lowered or eliminated the high p-

values that stemmed from the unnecessary distinction. Typical groupings for categories 

of the categorical variables can be seen in Table 4.1. 

Table 4.1: Typical grouping of categories 
Categorical 

Variable 

Original Grouping Grouping 1 Grouping 2 

Progression of consolidation  → → → 

FUNCTCLASS 

Local Local 
Local/Minor Collector 

Minor Collector Minor Collector 

Major Collector  Major Collector Major Collector 

Minor Arterial Minor Arterial Minor Arterial 

Principal Arterial Principal 

Arterial/Interstate 

Principal 

Arterial/Interstate Interstate 

REGION 

Mountains Mountains 

 Piedmont 
Piedmont/Coastal 

Coastal 

BRIDGESYS 

Interstate 
Interstate/Primary 

 Primary 

Secondary Secondary 

SUPERSTRMAT 

Steel 
Steel Steel/Timber 

Steel, continuous 

Concrete 

Concrete 

Concrete 

Concrete, 

continuous 

PS Concrete 

PS Concrete, cont. 

Wood/Timber 

Timber 
Masonry* 

Aluminum* 

Other* 

* indicates groupings that were not represented in the dataset and therefore not used in the 

analysis 
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Table 4.1: Typical grouping of categories (continued) 
Categorical 

Variable 

Original Grouping Grouping 1 Grouping 2 

Progression of consolidation  → → → 

SUBSTRMAT 

Steel 
Steel Other 

Steel, continuous 

Concrete 

Concrete Concrete 
Concrete, continuous 

PS Concrete 

PS Concrete, continuous 

Wood/Timber 

Timber 
Timber 

Masonry* 

Aluminum* 

Other Other 

SUPERSTRTYPE 

Slab Stringer/Multi-Beam 

or Girder Girder & 

Floor 

-beam System 

Stringer/Multi-Beam or 

Girder 

Girder & Floorbeam System Girder & Floorbeam 

System 

Tee Beam 

Other 

Other 

Box Beam or Girders 

(mult.)* 

Box Beam or Girders 

(single)* 

Frame* 

Orthotropic* 

Truss (deck)* 

Truss (thru) 

Arch (deck) 

Arch (thru)* 

Suspension* 

Stayed Girder* 

Moveable (lift)* 

Moveable (bascule)* 

Moveable (swing)* 

Tunnel* 

Culvert* 

Mixed types* 

Segmental Box Girder* 

Channel Beam Channel Beam 

Other 

* indicates groupings that were not represented in the dataset and therefore not used in the 

analysis 
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Table 4.1: Typical grouping of categories (continued) 
Categorical 

Variable 

Original Grouping Grouping 1 Grouping 2 

Progression of consolidation  → → → 

DECKMAT 

CIP Concrete 

Concrete 

 

Precast Concrete 

Open Grating* 

Closed Grating* 

Steel 
Steel Plate 

Corrugated Steel 

Aluminum* 

Wood/Timber 

Timber Other 

N/A* 

SPAN1 

1 Span 1 Span 1 Span 

2 Spans 2 Spans 

2+ Spans 
3 Spans 

3+ Spans 4 Spans 

5+ Spans 

* indicates groupings that were not represented in the dataset and therefore not used in the 

analysis 

 Histograms were constructed for each of the independent variables to identify 

potential outliers. For the characteristic prediction models, length and width-related 

outliers were identified by expansion factors, which were ratios of the new to old 

dimensions. Bridge entries with length or width expansion factors outside of the 5
th

 and 

95
th

 percentiles were flagged and not used in the regression analyses. It is important to 

note that the only expansion factors excluded from a regression analysis were related to 

the independent variable. In other words, only flagged length expansion factor values 

were removed from the dataset when performing regressions for new bridge length and 

only flagged width expansion factor values were removed when performing regressions 

for new bridge width. For development of models for maximum span length, an 

unfiltered dataset was used, since there was no reliable way to identify outliers for 
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maximum span length since the number of spans changing for a new structure could 

greatly impact the relative increase or decrease in maximum span length. 

 The historical cost central datasets were pre-filtered based on total unit costs 

(dollars per square foot of deck area). The 5
th

 and 95
th

 percentiles were calculated 

separately for TIP and 17BP projects. The histograms for the unit costs (Figure 4.1 and 

Figure 4.2) showed that the unit costs were skewed toward the left of the x-axis with a 

few outliers toward the right. It did not make sense to remove the unit costs below the 5
th

 

percentile ($200.32 for 17BP and $334.67 for TIP) since those unit costs were not 

significantly different than the median values and followed a normal distribution. For this 

dataset, filtering was only applied for those outliers above the 95
th

 percentile. The 

thresholds for each subset of bridges are listed in Table 4.2. 

 
Figure 4.1: Distribution of unit costs for TIP projects prior to prefiltering 
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Figure 4.2: Distribution of unit costs for 17BP projects prior to prefiltering 

Table 4.2: Statistics for unit costs in dataset prior to prefiltering ($/SF) 
 PROJECT TYPE 

STATISTIC 17BP TIP ALL 

Number of Entries 86 235 321 

5
th
 Percentile $200.32 $334.67 $238.03 

Mean $298.57 $501.33 $447.01 

Median $274.48 $456.72 $423.30 

95
th
 Percentile $468.80 $792.44 $737.44 

Standard Deviation $84.32 $243.67 $231.07 

 

4.1.2.2  Updating of Original NCSU and INDOT Models and Evaluation 

 Each of the original regression equations were replicated in Minitab using the 

bridge data from the respective central dataset. The same dependent and independent 

variables from the original equations were used whenever possible. In the decades 

following the work by Saito et al. (1991) and Abed-al-Rahim and Johnston (1995), some 

bridge parameters have been added, modified, or removed from the BMS. Saito et al. 

(1991) used cost data for specific project components (superstructure, substructure, etc.), 

while the central dataset only had subtotals for more general components of the project. 

Since the historical cost dataset provided limited component cost data, the component 

cost models created by Saito et al. (1991) were not replicated. The total replacement cost 

model created by Saito et al. (1991) was chosen instead for replication. The component 
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cost models created by Abed-al-Rahim and Johnston (1995) were a closer match to the 

component cost data in the historical cost dataset, so those models were chosen for 

replication Some variables from Abed-al-Rahim and Johnston (1995) were substituted 

with variables from the historical cost dataset that were similar in nature. These 

substituted variables are listed in Table 4.3. 

Table 4.3: Independent variable substitutions 

Original Variable
1
: Substituted with

2
: Comments 

Unit Structure Cost 

(UNITSTR) 

Construction Cost 

(CONSTCOST) 

 Data for structure cost was not 

available 

 

 Unit costs were found to be unsuitable 

for prediction models due to 

collinearity with predictors 

Roadway Cost 

(ROADCOST) 

Right-of-Way Cost 

(ROWCOST) 
 Data for roadway improvement cost 

was not available 

Miscellaneous 

Cost 

(MISCCOST) 

Right-of-Way Cost 

(ROWCOST) 
 Data specifically for miscellaneous 

costs was not available 

Structure Cost 

(STRCOST) 

Construction Cost 

(CONSTCOST) 
 Data for structure cost (alone) was not 

available 
1
: Dependent variables utilized by Abed-al-Rahim and Johnston (1995) 

2
: Component cost variables available from historical cost dataset 

4.1.2.3  Stepwise Regression 

 Each of the original prediction equations created by Saito et al. (1991) or Abed-al-

Rahim and Johnston (1995) utilized fewer than three predictor variables. If a replicated 

model has a significantly lower adjusted-R
2
 value than the original equation, adding 

predictor variables to the model may increase the fit of the regression equation to the 

data. Minitab can perform stepwise regressions by adding or removing predictor variables 

based on their statistical significance in the model. 

 The Stepwise function in Minitab can be used to perform both forward and 

backward stepwise regressions. With the forward pass method, the program initially 
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begins with zero predictor variables, and then adds predictor variables one at a time until 

a target alpha value has been reached. Backward elimination starts with all possible terms 

included in the model and removes one term at a time until the alpha value has been 

reached. The alpha value sets the threshold for the minimum amount of statistical 

significance a term must have in order to be retained in the equation. For this project, the 

backward elimination method was used with an alpha value of 0.05. The backward 

elimination method was chosen in an effort to err on the side of caution (considering the 

potential for each variable to be significant) and allow for as many terms to be included 

in the model as possible. Backward elimination is recommended for making models that 

include as many statistically-significant independent variables as possible (Duke, 2017). 

When performing a regression, Minitab can create several different models for 

different groups within the categorical variables provided for the analysis, or it can create 

one model where each categorical case is treated as a binary variable. For example, the 

possible deck types for a bridge can be steel, concrete, or timber. Instead of creating three 

separate equations for each material type, Minitab can present the model as one equation 

where each possible option for a categorical variable is represented as a set of binary 

variables represented with either a zero or non-zero coefficient depending on the 

configuration of the model. This method was chosen because of the number of 

categorical variables that were considered for the analysis. 

 The grouping of categorical variables (Section 4.1.2.2) and the stepwise 

regression were an iterative process. The stepwise selection process eliminated 

statistically insignificant terms from the models, but it did not remove terms with high 

degrees of collinearity or condense categories with extraneous groupings. These two 
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cases were checked manually by reviewing regression coefficients and p-values for each 

of the terms in each of the stepwise-generated models. When looking at groupings within 

a categorical variable, two groupings with similar coefficients could be consolidated with 

a less significant impact to the rest of the model. When coupled with high p-values, 

similar coefficients between groupings suggested that the distinction between the two 

groupings did not have a statistically-significant impact on the rest of the model. This 

approach typically had minimal to no effect on adjusted-R
2
 of a model and in certain 

cases improved the fit of the model. Reducing the number of groupings also simplified 

the model and made it more user-friendly. The iterative model revision process was 

considered complete when all p-values were below 0.05. 

 4.1.2.4  Supplemental Stepwise Process 

 When the stepwise process in Minitab failed to produce an initial model where all 

terms had p-values lower than 0.05, a supplemental stepwise process was employed to 

consolidate or remove variables with low statistical significance. This process consisted 

of identifying the variable with the highest p-value above 0.05 and either consolidating it 

with other groupings (if categorical) or removing it from the model. After this was done, 

the standard regression was performed again with the remaining variables. If any of the 

p-values from this new regression were above the alpha threshold of 0.05, the process 

was repeated. Once no more variables with high p-values remained in the model, the 

supplemental stepwise process was deemed complete. 

 For categorical variables with high p-values, several considerations factored into 

the decision to consolidate or remove the variable. Ideally, the decision to consolidate a 

categorical variable into fewer groups would improve the accuracy of the model. The 
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nature of the consolidation was dictated in part by the coefficient of the group or groups 

with the highest p-value. If the coefficient of the group with the highest p-value was close 

to the coefficient of another group, the two groups were combined before re-running the 

regression. Consolidation of groups was also done in a logical manner, such as 

combining cast-in-place concrete structures with precast concrete structures, or placing 

obscure or uncommon design or material types into an “other” group. Categorical 

variables that became binary and still had p-values greater than 0.05 were removed from 

the equation. 

4.2  Updated Bridge Characteristic Prediction Models 

 When creating a set of cost prediction models that considers new bridge 

characteristics, it is necessary to also utilize a set of new bridge characteristic prediction 

models since specific data on a new bridge’s design is not known at the planning stage of 

a project. New bridge characteristic prediction models were developed to predict changes 

in structure length (NBLEN), deck width (NBWID), and maximum span length 

(MAXSPAN2) when a bridge is replaced. The characteristic prediction models from 

Abed-al-Rahim and Johnston (1995) were replicated and served as a benchmark for 

further improvement of the models. 

 The characteristic prediction models were subjected to the stepwise modeling 

process twice. To develop the first model, the stepwise regression was performed without 

any quadratic or cubic terms or variable interactions considered. Variable interactions 

were limited to products of the continuous variables. To develop the second model, the 

stepwise regression was performed again but included variable interactions. This was 

done to test whether adding quadratic and cubic terms and variable interactions would 

benefit the performance of the models enough to justify the added complexity. 
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Table 4.4: Continuous old bridge characteristics considered in stepwise process 
Variable Square Cube Products (Variable Interactions) 
OBLEN OBLEN2 OBLEN3 OBLEN*OBWID OBLEN*APPWID 

   OBLEN*MAXSPAN1 OBLEN*WATERDEPTH 
   OBLEN*BRIDGEAGE OBLEN*ADTr 

   OBLEN*CTB  

OBWID OBWID2 OBWID3 OBWID*MAXSPAN1 OBWID*APPWID 

   OBWID*BRIDGEAGE OBWID*WATERDEPTH 
   OBWID*CTB OBWID*ADTr 

MAXSPAN1 MAXSPAN12 MAXSPAN13 MAXSPAN1*BRIDGEAGE MAXSPAN1*WATERDEPTH 

   MAXSPAN1*CTB MAXSPAN1*ADTr 
   MAXSPAN1*APPWID  

BRIDGEAGE BRIDGEAGE2 BRIDGEAGE3 BRIDGEAGE*CTB BRIDGEAGE*WATERDEPTH 

   BRIDGEAGE*APPWID BRIDGEAGE*ADTr 

CTB CTB2 CTB3 CTB*APPWID CTB*ADTr 
   CTB*WATERDEPTH  

APPWID APPWID2 APPWID3 APPWID*WATERDEPTH APPWID*ADTr 

WATERDEPTH WATERDEPTH2 WATERDEPTH3 WATERDEPTH*ADTr  

ADTr ADTr2 ADTr3   

 

 4.2.1  Predicting New Bridge Length 

 The new bridge length (NBLEN) prediction model created by Abed-al-Rahim and 

Johnston (1995) used original bridge length as the sole predictor variable. Before 

modeling, bridge entries with length expansion factors outside of the 5
th

 and 95
th

 

percentiles were filtered from the analysis. Statistical significance of the relationship 

between old and new bridge length was performed in Minitab (Eq. 4.1). The adjusted-R
2
 

for Equation 4.1 was 86.3%. With an S value of 24.86, the 95% confidence interval for 

the predicted new bridge length in Equation 4.1 is ± 48.7 feet. 

 𝑁𝐵𝐿𝐸𝑁 = 30.95 + 1.0267(𝑂𝐵𝐿𝐸𝑁) (4.1) 

Where:  NBLEN = New bridge length (ft) 

  OBLEN = Old bridge length (ft) 

 The stepwise modeling process was performed for NBLEN with variable 

interactions excluded. The supplemental stepwise process required five steps to meet the 

desired goals (p-values below 0.05 as described above) (Table 4.5). The second trial of 

the stepwise modeling process, with variable interactions included, did not require the 



96 
 

removal of additional variables beyond the Minitab stepwise output. The results of this 

stepwise regression can be seen in Table 4.6.  

Table 4.5: Supplemental stepwise process for NBLEN (without variable interactions) 
Trial # 

Terms/Predictors 
Action Adj-R

2
 S 95% C.I. Max. P 

1 12 5 ~Began SSP~ 88.0% 23.3068 ± 45.68 ft 0.456 

2 12 5 
Consolidated SUPERSTRTYPE 
(Coded as “girder/beam system” or 
other type) 

88.0% 23.3250 ± 45.72 ft 0.107 

3 12 5 
Consolidated FUNCTCLASS 
(Combined Local and Minor 
Collector) 

87.9% 23.4024 ± 45.87 ft 0.074 

4 11 4 Removed ADTr 87.9% 23.4217 ± 45.91 ft 0.135 

5 10 3 Removed OBWID 87.8% 23.4326 ± 45.93 ft 0.038 

 

Table 4.6: Supplemental stepwise process for NBLEN (with variable interactions) 
Trial # Terms/Predictors Action Adj-R

2
 S 95% C.I. Max. P 

1 37 8 ~Began SSP~ 90.1% 21.1010 ± 41.38 ft 0.044 

 

 The recommended model for predicting NBLEN without considering interactions 

between variables (Table 4.7) was generated from the fifth and final step of the 

supplemental stepwise process. The recommended NBLEN prediction model that 

included variable interactions was generated directly from the stepwise process in 

Minitab and did not require elimination or consolidation of additional variables (Table 

4.8). The adjusted-R
2
 for the recommended models without and with variable interactions 

(87.8% and 90.1% respectively) both fell short of the values reported by Abed-al-Rahim 

and Johnston (1995) (98.5%) but were improved, if slightly, over the replicated 

equation’s (Eq. 4.1) adjusted-R
2
. 
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Table 4.7: Recommended NBLEN prediction equation (without variable interactions) 

 
NBLEN = 40.058 + 0.83879(OBLEN) + 0.52909(MAXSPAN1) + 1.8584(WATERDEPTH) + (REGION)     
                + (FUNCTCLASS) + (CROSSINGTYPE) + (SUPERSTRMAT) + (SUPERSTRTYPE) + (DECKGEOMAPP)  
                + (SPAN1) 
 
R

2
 (adj) = 87.8% 

n = 1,356 
S = 23.4326 
C.I.95 = ± 45.93 ft 
    

REGION = 

0.0 Mountains 

9.2727 Piedmont 

9.8538 Coastal 

FUNCTCLASS = 

0.0 Local/Minor Collector 

4.2494 Major Collector 

7.4988 Minor Arterial 

12.205 Principal Arterial/Interstate 

CROSSINGTYPE = 
0.0 Not a waterway crossing 

- 14.446 Waterway crossing 

SUPERSTRMAT = 

0.0 Concrete 

- 20.860 Steel 

- 19.876 Timber 

DECKGEOMAPP = 
0.0 Acceptable  

6.6421 Unacceptable 

SPAN1 = 

0.0 1 Span 

7.0231 2 Spans 

6.8442 3 Spans 

9.2313 4 Spans 

13.890 5+ Spans 
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Table 4.8: Recommended NBLEN prediction equation (with variable interactions) 

 
NBLEN = 112.91 + 0.45919(OBLEN) – 4.2444(OBWID) + 1.1315(MAXSPAN1) + 4.7761(WATERDEPTH) 
              - 1.7940(BRIDGEAGE) + 3.7412(CTB) + 0.0083855(ADTr) + 0.0026151(OBLEN

2
) – 0.12119(CTB

2
) 

              - 0.062324(APPWID
2
) + 0.00000018114(ADTr

2
) – 0.0000017175(OBLEN

3
)      

             + 0.0027856(WATERDEPTH
3
) + 0.000038388(BRIDGEAGE

3
) + 0.0019823(CTB

3
)   

              - 0.0000000000015426(ADTr
3
) – 0.0023589(OBLEN*BRIDGEAGE) – 0.011408(OBLEN*CTB)   

             + 0.0093819(OBLEN*APPWID) – 0.000029465(OBLEN*ADTr) + 0.024576(OBWID*MAXSPAN1)   
             + 0.022220(OBWID*BRIDGEAGE) + 0.078222(OBWID*APPWID) – 0.00011673(OBWID*ADTr)   
             + 0.10987(MAXSPAN1*WATERDEPTH) - 0.037515(MAXSPAN1*CTB)  
              - 0.050918(MAXSPAN1*APPWID) – 0.17884(WATERDEPTH*CTB)  
              - 0.23405(WATERDEPTH*APPWID) + 0.00033224(WATERDEPTH*ADTr)      
             + 0.031391(BRIDGEAGE*CTB) + 0.050072(BRIDGEAGE*APPWID)   
              - 0.000081444(BRIDGEAGE*ADTr) + 0.000045257(CTB*ADTr) + (REGION) + (CROSSINGTYPE)  
             + (SPAN1) 
 
R

2
 (adj) = 90.1% 

n = 1,356 
S = 21.1010 
C.I.95 = ± 41.36 ft 
    

REGION = 

0.0000 Mountains 

6.5414 Piedmont 

10.823 Coastal 

CROSSINGTYPE = 
0.000 Not a waterway crossing 

-32.716 Waterway crossing 

SPAN1 = 

0.0000 1 Span 

8.8601 2 Spans 

12.168 3 Spans 

15.180 4 Spans 

21.273 5+ Spans 

  

4.2.2  Predicting New Bridge Width 

 In their original study, Abed-al-Rahim and Johnston (1995) did not develop a 

prediction model for new bridge width. For their research, new bridge width (NBWID) 

was estimated in OPBRIDGE by the NCDOT-based on level-of-service goals. The 

dataset of more recent bridge replacement projects included information pertaining to 

how the bridges were utilized, such as ADT, functional classification, bridge system 

classification, and the old and new bridge widths. The stepwise process was conducted 
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for new bridge width with hopes that some of those data fields would be identified as 

suitable predictors via the regression analysis. 

 Before any regressions were performed, bridge entries with width expansion 

factors outside of the 5
th

 and 95
th

 percentiles were filtered out and excluded from the 

analysis. In the absence of an original new bridge width prediction equation, simple 

linear regression on the relationship between old and new bridge width was performed to 

serve as a benchmark for further model development. The simple linear model, which 

had an R
2
 of 56.5% and an S value of 5.285, is shown below in Equation 4.2. 

 𝑁𝐵𝑊𝐼𝐷 = 8.292 + 1.0454(𝑂𝐵𝑊𝐼𝐷) (4.2) 

Where:  NBWID = New bridge width (ft) 

  OBWID = Old bridge width (ft) 

The stepwise modeling process was performed for NBWID with variable 

interactions excluded. The supplemental stepwise process required seven steps (Table 

4.9). The second run of the stepwise modeling process, with variable interactions 

included, required an additional four steps. The results of this stepwise regression can be 

seen in Table 4.10. 
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Table 4.9: Supplemental stepwise process for NBWID (without variable interactions) 
Trial # Terms/Predictors Action Adj-R

2
 S 95% C.I. Max. P 

1 13 6 ~Began SSP~ 73.4% 4.13603 ± 8.11 ft 0.773 

2 13 6 
Consolidated DECKMAT 
(Coded as “steel” or other 
type) 

73.4% 4.13460 ± 8.10 ft 0.535 

3 13 6 
Consolidated REGION 
(Coded as “piedmont” or 
other region) 

73.4% 4.13364 ± 8.10 ft 0.089 

4 13 6 
Consolidated SUPERSTRMAT 
(Coded as “concrete” or 
other type) 

73.4% 4.13821 ± 8.11 ft 0.060 

5 12 6 Removed SUPERSTRMAT 73.3% 4.14214 ± 8.12 ft 0.052 

6 12 6 
Consolidated SUPERSTRTYPE 
(Coded as “girder/beam 
system” or other type) 

73.1% 4.16023 ± 8.15 ft 0.910 

7 11 6 Removed SUPERSTRTYPE 73.1% 4.15869 ±  8.15 ft 0.012 

 

Table 4.10: Supplemental stepwise process for NBWID (with variable interactions) 
Trial # 

Terms/Predictors 
Action Adj-

R
2
 

S 95% C.I. Max. 
P 

1 26 8 ~Began SSP~ 78.6% 3.70872 ± 7.27 ft 0.959 

2 26 8 Consolidated FUNCTCLASS 
(Combined Local and Minor Collector) 

78.6% 3.70892 ± 7.27 ft 0.199 

3 26 8 
Consolidated SUPERSTRTYPE 
(Coded as “girder/beam system” or other 
type) 

78.4% 3.72536 ± 7.30 ft 0.638 

4 25 8 Removed SUPERSTRTYPE 78.4% 3.72427 ± 7.30 ft 0.061 

 

 The recommended NBWID prediction models without variable interactions (Table 

4.11) and with variable interactions (Table 4.12) both had adjusted-R
2
 values greater than 

that of Equation 4.2 (73.1% and 78.4% respectively).  
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Table 4.11: Recommended NBWID prediction equation (without variable interactions) 

 
NBWID = - 13.899 - 0.018451(OBLEN) + 0.70895(OBWID) + 0.091028(MAXSPAN1) 
                 + 0.15516(WATERDEPTH) + 0.14022(APPWID) + 0.00074050(ADTr) + (FUNCTCLASS) 
                 + (SPAN1) + (DECKMAT) + (REGION) 
 
R2 (adj) = 73.1% 
n = 1,354 
S = 4.15869 
C.I.95 = ± 8.15 ft 
    

FUNCTCLASS = 

0.000 Interstate 

21.348 Local 

21.779 Minor Collector 

22.360 Major Collector 

23.336 Minor Arterial 

19.548 Principal Arterial 

SPAN1 = 

0.0000 1 Span 

1.5368 2 Spans 

1.2823 3 Spans 

2.6969 4 Spans 

2.5320 5+ Spans 

DECKMAT = 
0.0000 Other material 

- 1.1725 Steel 

REGION = 
0.00000 Mountain/Coastal 

0.69413 Piedmont 
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Table 4.12: Recommended NBWID prediction equation (with variable interactions) 

 
NBWID = 18.425 + 0.89625(CTB) + 0.0015005(ADTr) + 0.016848(OBWID

2
) - 0.0024443(MAXSPAN1

2
) 

               - 0.050350(WATERDEPTH
2
) - 0.036797(CTB

2
) - 0.000000063522(OBLEN

3
) 

               - 0.00011639(OBWID
3
) + 0.000012774(MAXSPAN1

3
) + 0.0019365(WATERDEPTH

3
) 

              + 0.00045756(CTB
3
) - 0.000089372(APPWID

3
) - 0.00000000000034776(ADTr

3
)    

              + 0.0017984(OBLEN*OBWID) - 0.00056837(OBLEN*BRIDGEAGE) - 0.027340(OBWID*CTB)   
              + 0.000019513(OBWID*ADTr) + 0.0021289(MAXSPAN1*BRIDGEAGE) 
              + 0.0069695(WATERDEPTH*BRIDGEAGE) - 0.000010663(BRIDGEAGE*ADTr) 
              + 0.030081(CTB*APPWID) - 0.000015101(APPWID*ADTr) + (FUNCTCLASS) + (CROSSINGTYPE) 
              + (DECKGEOMAPP) 
 
R

2
 (adj) = 78.4% 

n = 1,354 
S = 3.72427 
C.I.95 = ± 7.30 ft 
    

FUNCTCLASS = 

0.0000 Local/Minor Collector 

7.7432 Major Collector 

1.9887 Minor Arterial 

- 1.7308 Principal Arterial/Interstate 

CROSSINGTYPE = 
0.0000 Not a waterway crossing 

- 3.4204 Waterway crossing 

DECKGEOMAPP = 
0.0000 ACCEPTABLE 

1.2151 UNACCEPTABLE 

 

4.2.3  Predicting New Bridge Maximum Span Length 

 The original MAXSPAN2 prediction equation created by Abed-al-Rahim and 

Johnston (1995) was replicated with the newer bridge characteristic dataset. The 

replicated equation (Eq. 4.3) had an adjusted-R
2
 of 35.2% after being adjusted for the 

natural-log transformation. With an S-value of 21.3973, this model had a 95% confidence 

interval for the predictions of ±41.9 feet.  

 𝑀𝐴𝑋𝑆𝑃𝐴𝑁2 = 10.3068(𝑀𝐴𝑋𝑆𝑃𝐴𝑁1)0.2804 ∗ (𝑂𝐵𝐿𝐸𝑁)0.1977 (4.3) 

Where:  MAXSPAN2 = New bridge maximum span length (ft) 

  MAXSPAN1 = Old bridge maximum span length (ft) 

  OBLEN = Old bridge length (ft) 

 The variable transformation from linear to non-linear was done outside of 

Minitab. Key statistics for both models, such as R
2
, adjusted-R

2
, S, and the 95% 
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Confidence Interval were computed manually. After the coefficients were found in 

Minitab, the model variables and their log-transformed counterparts were exported to a 

separate spreadsheet. The log-transformed model was used as a formula to calculate a 

fitted value for each entry. Comparing the fitted value to the actual values made it 

possible to estimate certain model statistics. Equation 4.3 was used to calculate R
2
 based 

on the residual sum of squares (SSres) and the total sum of squares (SStot). Equation 4.1 

was used to find adjusted-R
2
 and Equation 4.4 was used to estimate S.  

 𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 (4.3) 

Where:  SSres = Residual sum of squares: Ʃ(actual value – fitted value)
2
 

  SStot = Total sum of squares: Ʃ(actual value – mean of actual values)
2
 

 𝑆 = √
𝑆𝑆𝑟𝑒𝑠

𝑁
 (4.4) 

Where:  SSres = Residual sum of squares: Ʃ(actual value – fitted value)
2
 

  N = Number of entries 

 One of the limitations with using natural-log transformations for the stepwise 

modeling process lies in how the categorical variables are integrated into the model. One 

of the advantages of the updated models is the possibility of incorporating several 

different categorical variables into one model. The coefficients are coded so that one 

group within each categorical variable has a coefficient of zero. In the transformed 

natural-log model, the predicted value is the product of all the model’s predictor variables 

and coefficients, so a term with a zero coefficient would cause the predicted value to also 

equal zero. It was presumed that the new modeling approach would allow for sufficient 

improvement to the MAXSPAN2 prediction model to preclude the need for complex 

variable transformations. 
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With variable interactions considered as possible predictors, the supplemental 

stepwise process for MAXSPAN2 required two additional steps beyond the Minitab 

stepwise regression to produce a model with acceptable p-values. A summary of the steps 

is shown in Table 4.13. The supplemental stepwise process performed with quadratic and 

cubic terms and variable interactions is summarized in Table 4.14. 

Table 4.13: Supplemental stepwise process for MAXSPAN2 (without variable 

interactions) 
Trial # Terms/Predictors Action Adj-R

2
 S 95% C.I. Max. P 

1 12 5 ~Began SSP~ 48.4% 19.0707 ± 37.4 ft 0.659 

2 12 5 Consolidated SUBSTRMAT 48.4% 19.0656 ± 37.4 ft 0.146 

3 12 5 Consolidated SUPERSTRTYPE 48.4% 19.0555 ± 37.3 ft 0.048 

 

Table 4.14: Supplemental stepwise process for MAXSPAN2 (with variable interactions) 
Trial # Terms/Predictors Action Adj-R

2
 S 95% C.I. Max. P 

1 24 8 ~Began SSP~ 53.8% 18.0383 ± 35.4 ft 0.292 

2 24 8 Consolidated REGION 53.8% 18.0390 ± 35.4 ft 0.206 

3 24 8 Consolidated SUBSTRMAT 53.8% 18.0427 ± 35.4 ft 0.035 

 

  

Table 4.15 contains the recommended model for predicting MAXSPAN2 without 

considering interactions between variables. Predictions made with variable interactions 

can be made with the model in Table 4.16. Both linear models had higher adjusted-R
2
 and 

lower S than the transformed natural-log model, albeit with more variables. 
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Table 4.15: Recommended MAXSPAN2 prediction equation (without variable 

interactions) 

 
MAXSPAN2 = 73.099 + 0.53443(MAXSPAN1) + 0.42766(CTB) – 0.4458(WATERDEPTH) 
                        + 0.18300(BRIDGEAGE) + 0.31932(APPWID) + (FUNCTCLASS) + (CROSSINGTYPE) 
                        + (SPAN1) + (REGION) + (DECKMAT) + (SUBSTRMAT) + (SUPERSTRTYPE)       
 
R2 (adj) = 48.4% 
n = 1,506 
S = 19.0555 
C.I.95 = ± 37.3 ft 
    

FUNCTCLASS = 

0.0 Interstate 

- 17.213 Local 

- 19.048 Minor Collector 

- 16.868 Major Collector 

- 24.385 Minor Arterial 

- 20.978 Principal Arterial 

CROSSINGTYPE = 
0.0 Not a waterway 

- 35.505 Waterway 

SPAN1 = 

0.0 1 Span 

15.987 2 Spans 

17.126 3 Spans 

15.555 4 Spans 

19.576 5+ Spans 

REGION = 

0.0 Mountains 

6.0209 Piedmont 

- 3.7617 Coastal 

DECKMAT 

0.0 Other type 

- 5.5290 Steel 

- 4.2567 Timber 

SUBSTRMAT 
0.0 Other type 

- 7.3787 Concrete/Timber 

SUPERSTRTYPE 
0.0 Other type 

- 6.0483 Channel Beam 
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Table 4.16: Recommended MAXSPAN2 prediction equation (with variable interactions) 

 
MAXSPAN2 = 57.888 + 2.1620(MAXSPAN1) – 0.60896(OBLEN) + 1.6182(CTB) + 0.0014671(ADTr) 
                       + 0.002875(OBLEN

2
) – 0.01772(MAXSPAN1

2
) + 0.001868(BRIDGEAGE

2
) 

                       + 0.000000013241(ADTr
2
) – 0.0000018177(OBLEN

3
) + 0.000079622(OBWID

3
)        

                       + 0.000078033(MAXSPAN1
3
) – 0.0033249(OBLEN*OBWID) 

                       - 0.0021610(OBLEN*MAXSPAN1) – 0.0044436(OBLEN*CTB)  
                       + 0.0027994(OBLEN*APPWID) – 0.029635(MAXSPAN1*WATERDEPTH)  
                       - 0.000020301(MAXSPAN1*ADTr) – 0.000050951(CTB*ADTr) + (FUNCTCLASS) + (REGION) 
                      + (CROSSINGTYPE) + (SUBSTRMAT) + (ROADWAYALIGNAPP) + (SPAN1)             
 
R

2
 (adj) = 53.8% 

n = 1,506 
S = 18.0427 
C.I.95 = ± 35.4 ft 
    

FUNCTCLASS = 

0.0 Interstate 

- 23.858 Local 

- 25.745 Minor Collector 

- 22.970 Major Collector 

- 28.917 Minor Arterial 

- 26.965 Principal Arterial 

REGION = 
0.0 Mountains/Coastal 

4.9739 Piedmont 

CROSSINGTYPE = 
0.0 Not a waterway 

- 33.451 Waterway 

SUBSTRMAT = 
0.0 Other type 

- 7.7541 Concrete/Timber 

ROADWAYALIGNAPP = 
0.0 ACCEPTABLE 

- 4.4703 UNACCEPTABLE 

SPAN1 = 

0.0 1 Span 

27.209 2 Spans 

36.643 3 Spans 

40.129 4 Spans  

46.464 5+ Spans 

 

4.3  Updated Bridge Replacement Cost Prediction Models 

As discussed previously and shown graphically in Figure 3.1, two types of cost 

prediction models were developed for each type of bridge cost. The first type of cost 

models used a combination of old and new bridge characteristics as predictors. The new 

bridge variables used were continuous variables estimated using the equations developed 

in Section 4.1. The estimated values from those equations can be used in the cost 
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prediction models. The second type of cost model developed uses only old bridge 

characteristics and does not require prediction of the new bridge’s physical attributes. 

 The cost prediction models also consider quadratic and cubic terms and 

interactions between continuous variables. While this approach introduced additional 

complexity to the models, it was also shown to improve the fit of the models. This was 

especially important for the cost prediction models, as a seemingly small decrease in 

adjusted-R
2
 could translate into a much larger increase in the model’s 95% confidence 

interval for predictions.   

 Possible continuous variable combinations for the first cost model type (old and 

new characteristics) are listed in Table 4.17. The variable combinations considered when 

making the second model type (old characteristics only) are listed back in Table 4.4. Both 

model types also included the categorical variables listed in Table 4.18 as possible 

predictors. One exception to this is the PROJECTTYPE variable. Since the component 

cost models (ROWCOST, ENGCOST, and CONSTCOST) use cost data from only TIP 

projects, there was no need to include this variable in those equations. The component 

costs values recorded for each TIP project entry did not add up to the total cost amount, 

which precluded using the summation of the three component cost estimates as a 

substitute for the TOTCOST prediction model. Only the total cost models used 

PROJECTTYPE as a potential predictor. 
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Table 4.17: Continuous new bridge characteristics considered in stepwise process 
Variable Quadratic Cubic Products (Variable Interactions) 
NBLEN NBLEN2 NBLEN3 NBLEN*NBWID NBLEN*APPWID 
   NBLEN*MAXSPAN2 NBLEN*WATERDEPTH 

   NBLEN*BRIDGEAGE NBLEN*ADTr 

   NBLEN*CTB NBLEN*DECKAREA 

NBWID NBWID2 NBWID3 NBWID*MAXSPAN2 NBWID*WATERDEPTH 
   NBWID*BRIDGEAGE NBWID*ADTr 

   NBWID*CTB NBWID*DECKAREA 

   NBWID*APPWID  

MAXSPAN2 MAXSPAN22 MAXSPAN23 MAXSPAN2*BRIDGEAGE MAXSPAN2*WATERDEPTH 

   MAXSPAN2*CTB MAXSPAN2*ADTr 

   MAXSPAN2*APPWID MAXSPAN2*DECKAREA 

BRIDGEAGE BRIDGEAGE2 BRIDGEAGE3 BRIDGEAGE*CTB 
BRIDGEAGE*APPWID 

BRIDGEAGE*ADTr 
BRIDGEAGE*DECKAREA 

   BRIDGEAGE*WATERDEPTH  

CTB CTB2 CTB3 CTB*APPWID CTB*ADTr 
   CTB*WATERDEPTH CTB*DECKAREA 

APPWID APPWID2 APPWID3 APPWID*WATERDEPTH 

APPWID*ADTr 

APPWID*DECKAREA 

WATERDEPTH WATERDEPTH2 WATERDEPTH3 WATERDEPTH*ADTr WATERDEPTH*DECKAREA 

ADTr ADTr2 ADTr3 ADTr*DECKAREA  

DECKAREA DECKAREA2 DECKAREA3   

 

Table 4.18: Categorical variables considered in stepwise process 
REGION (Region) DECKMAT (Deck Material) 

FUNCTCLASS (Functional 

Classification) 

DECKGEOMAPP (Deck Geometry Appraisal) 

BRIDGESYS (Bridge System) ROADWAYALIGNAPP (Roadway Align. Appraisal) 

CROSSINGTYPE (Crossing Type) UNDERAPP (Underclearance or 

Waterway Adequacy) SUBSTRMAT (Substructure Material) 

SUPERSTRMAT (Superstructure Material) SPAN1 (Original number of spans) 

SUPERSTRTYPE (Superstructure Type) PROJECTTYPE* (Project Type) 

* only considered for TOTCOST models 

 4.3.1  Predicting Construction Cost 

 The structure cost prediction model created by Abed-al-Rahim and Johnston 

(1995) served as the foundation for the construction cost (CONSTCOST) prediction 

model. The R
2
 for the original structure cost prediction model was not reported, but the 

replicated equation had a 95% confidence interval of ± $94 per square foot of bridge deck 

area (Equation 4.5).  

  𝑈𝑁𝐼𝑇𝐶𝑂𝑁𝑆𝑇𝐶𝑂𝑆𝑇 = 199.1 + 0.31(𝑀𝐴𝑋𝑆𝑃𝐴𝑁2) 

                                    −0.0007(𝑀𝐴𝑋𝑆𝑃𝐴𝑁2)2 (4.5) 

Where:  UNITCONSTCOST = Unit Construction Cost ($/ft
2
) 

  MAXSPAN2 = Maximum span length of new bridge (ft) 
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 For both Approach 1 and Approach 2, the final models generated from the 

stepwise process in Minitab did not require the removal of any additional predictors or 

further consolidation of categorical variables. The Minitab regression models using new 

bridge characteristics (Table 4.19) and old bridge characteristics (Table 4.20) are the 

recommended models for the approaches that they represent.  

Table 4.19: Recommended CONSTCOST prediction equation (Approach 1) 

 
CONSTCOST = 15,902,000 – 351.48(ADTr) + 21,457(DECKAREA) + 884.64(NBLEN2) 
                      + 1.2998(DECKAREA2) - 71.247(DECKAREA*NBLEN) - 320.29(DECKAREA*NBWID) 
                      - 345,960(NBLEN) - 673,730 (NBWID) – 99,508(MAXSPAN2) + 0.42151(NBLEN3)  
                     + 170.63(NBWID3) + 20.003(BRIDGEAGE2) - 0.0000082626(DECKAREA3)  
                     - 36.647(DECKAREA*MAXSPAN2) - 0.081224(DECKAREA*ADTr) 
                    + 1168.6(NBLEN*MAXSPAN2) + 2.9097(NBLEN*ADTr)  
                    + 3094.3(NBWID*MAXSPAN2) + 8.4513(NBWID*ADTr) + 5.7811(ADTr*CTB)  
                    + (BRIDGESYS) 
 
R2 (adj) = 99.2% 
n = 224 
S = 95233.4 
C.I.95 = ± $186,700 
    

BRIDGESYS = 
0 Primary/Interstate 

- 84,962 Secondary 

 

 

Table 4.20: Recommended CONSTCOST prediction equation (Approach 2) 

 
CONSTCOST = 278,480 + 17,595(OBWID) - 133.80(ADTr) + 1.1866(OBLEN*ADTr)  
                      + 214.97(OBLEN*CTB) - 102.48(OBWID*MAXSPAN1) - 5.9873(OBWID*ADTr) 
                      - 655.79(OBWID*APPWID) + 2.3045(MAXSPAN1*ADTr) + 10.923(ADTr*APPWID) 
                      - 0.00000017159(ADTr3) + 28.497(BRIDGEAGE2) - 18.234(CTB3) + (FUNCTCLASS) 
 
R2 (adj) = 98.9% 
n = 224 
S = 111275 
C.I.95 = ± $218,100 
    

FUNCTCLASS = 

0 Local/Minor Collector 

124,550 Major Collector 

362,950 Minor Arterial 

- 963,770 Principal Arterial/Interstate 
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 4.3.2  Predicting Right-Of-Way Cost 

 The original roadway cost prediction model developed by Abed-al-Rahim and 

Johnston (1995) was replicated using right-of-way acquisition cost (ROWCOST) as the 

dependent variable and new bridge width (NBWID) as the independent variable. The 

replicated equation, shown in Equation 4.6, had an R
2
 value of 8.4% and an S value of 

around 23,000. This translated into a 95% confidence interval of ± $45,100.  

 𝑅𝑂𝑊𝐶𝑂𝑆𝑇 = −17,023.3 + 1,084.2(𝑁𝐵𝑊𝐼𝐷) (4.6) 

Where:  ROWCOST = Right-of-way cost 

NBWID = New bridge deck width (ft) 

During the stepwise modeling process, an outlier was identified from among the 

group of 305 bridge entries. This specific entry had a ROWCOST value greater than 

$500,000, which was significantly larger than the rest of the bridge entries (Figure 4.3). 

Models generated with this outlier included would fit the outlying data point well at the 

expense of the rest of the data points. Since it was clear that this outlier heavily 

influenced the resulting model, this outlier was removed in the development of further 

ROWCOST prediction models. This entry was also filtered out during the initial 

replication of the prediction model shown in Equation 4.6. 
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Figure 4.3: Distribution of ROWCOST values in central cost dataset 

 The two recommended ROWCOST models using new bridge characteristics 

(Approach 1, Table 4.21) and with old bridge characteristics (Approach 2, Table 4.22) 

had low adjusted-R
2
 values (34.1% and 30.1% respectively). The original R

2
 for the 

NCSU ROADCOST equation was not published, so it was not possible to make a 

comparison between the performance of the two generations of models. 

Table 4.21: Recommended ROWCOST prediction equation (Approach 1) 

 
ROWCOST = - 684280 – 2564.7(DECKAREA) – 214.60(NBLEN2) - 0.31190(DECKAREA2) 
                      + 16.443(DECKAREA*NBLEN) + 45.554(DECKAREA*NBWID) + 36962(NBLEN)    
                      + 15145(BRIDGEAGE) - 0.087767(NBLEN3) + 1360.3(NBWID2) - 30.730(NBWID3)  
                      - 0.0032239(ADTr2) – 259.99(BRIDGEAGE2) + 1.4136(BRIDGEAGE3)  
                     + 0.0000033660(DECKAREA3) - 0.15841(DECKAREA*MAXSPAN2) 
                     + 0.031507(DECKAREA*ADTr) - 0.69633(DECKAREA*APPWID)  
                     - 0.88218(NBLEN*ADTr) - 1.0757(NBWID*ADTr) – 93.985(NBWID*WATERDEPTH)  
                    + 0.55852(MAXSPAN2*ADTr) + 1.7606(ADTr*WATERDEPTH) + (DECKMAT)  
 
R2 (adj) = 35.7% 
n = 198 
S = 19258.4 
C.I.95 = ± $37,700 
    

DECKMAT = 
0 Steel or Timber 

9578.9 Other type 
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Table 4.22: Recommended ROWCOST prediction equation (Approach 2) 

 
ROWCOST = - 32,103 + 6,609.8(APPWID) + 7.4531(ADTr) – 11.556(OBLEN*MAXSPAN1) 
                      + 0.16900(OBLEN*ADTr) – 21.804(OBLEN*APPWID) – 0.30355(OBWID*ADTr) 
                      + 83.036(MAXSPAN1*CTB) – 475.86(WATERDEPTH*CTB) 
                      - 25.408(BRIDGEAGE*CTB) + 4.0711(OBLEN2) – 176.14(APPWID2) 
                      + 575.51(WATERDEPTH2) 
 
 
R2 (adj) = 30.1% 
n = 198 
S = 20073.3 
C.I.95 = ± $39,300 
    

 

 4.3.3  Predicting Engineering Cost 

 Development of an engineering cost (ENGCOST) prediction model started with 

replication of the original ENGCOST model developed by Abed-al-Rahim and Johnston 

(1995). The replicated model (Eq. 4.6) had an adjusted-R
2
 of 35.9% when predicted with 

CONSTCOST. 

 𝐸𝑁𝐺𝐶𝑂𝑆𝑇 = 40,189 + 0.06875(𝐶𝑂𝑁𝑆𝑇𝐶𝑂𝑆𝑇) (4.7) 

Where:  ENGCOST = Preliminary Engineering Cost ($) 

CONSTCOST = Construction Cost ($) 

The recommended model for predicting ENGCOST with new bridge 

characteristics (Approach 1) had an adjusted-R
2
 of 83.6%. This value for this equation 

(Table 4.23) is higher than the R
2
 value reported by Abed-al-Rahim and Johnston (1995) 

(60%) and the adjusted-R
2
 of their replicated equation (35.9%), indicating a better fit of 

the regression line to the actual data points. When using only old bridge characteristics 

(Approach 2), the recommended ENGCOST prediction model had a lower adjusted-R
2
 

(Table 4.24) (79.2%) than that of the recommended equation that used new bridge 

characteristics. The goodness-of-fit for Table 4.24 was still an improvement over the 

original NCSU equation and its replicated counterpart. 
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Table 4.23: Recommended ENGCOST prediction equation (Approach 1) 

 
ENGCOST = - 3,633,100 + 39,517(APPWID) + 409.85(ADTr) – 3179.5(DECKAREA)  
                     - 163.85(NBLEN2) - 0.15970(DECKAREA2) + 10.299(DECKAREA*NBLEN) 
                    + 29.203(DECKAREA*NBWID) + 71,228(NBLEN) + 94,908(NBWID) 
                    + 59,978(BRIDGEAGE) + 0.0073228(ADTr2) - 0.00000050021(ADTr3) 
                    + 0.10569(DECKAREA*ADTr) + 22.096(DECKAREA*BRIDGEAGE) 
                    - 3.2093(NBLEN*ADTr) - 40.041(NBLEN*WATERDEPTH)  
                    - 697.11(NBLEN*BRIDGEAGE) - 13.872(NBWID*ADTr)  
                    - 1429.9(NBWID*BRIDGEAGE) – 808.29(APPWID*BRIDGEAGE)       
                  
R2 (adj) = 83.6% 
n =  224 
S = 43360.5 
C.I.95 = ± $85,000 
    

 

Table 4.24: Recommended ENGCOST prediction equation (Approach 2) 

 
ENGCOST = 346,660 – 3,578.1(OBLEN) – 34,374(OBWID) – 92.278(ADTr)  
                     + 37.853(OBLEN*MAXSPAN1) + 233.94(OBLEN*APPWID) – 118.63(OBLEN*CTB) 
                     - 38.327(MAXSPAN1*BRIDGEAGE) + 2.4308(ADTr*APPWID)  
                    + 0.94241(ADTr*BRIDGEAGE) – 329.07(APPWID*BRIDGEAGE)  
                    + 114.06(BRIDGEAGE*CTB) + 0.035132(OBLEN3) + 1,544.1(OBWID2)  
                    - 20.378(OBWID3) – 0.000000041497(ADTr3) + 149.16(BRIDGEAGE2)  
                    - 1.1790(BRIDGEAGE3) + (DECKGEOMAPP) + (SPAN1) 
 
R2 (adj) = 79.2% 
n = 224  
S = 48808.9 
C.I.95 = ± $95,700    

DECKGEOMAPP = 
0 ACCEPTABLE 

- 27,908 UNACCEPTABLE 

SPAN1 = 
0 1 or 2 Spans 

- 29,735 3+ Spans 

 

 4.2.4  Predicting Total Replacement Cost 

 The original Bridge Replacement Total Cost (BRTC) model developed by Saito et 

al. (1991) used bridge length and deck width as predictors. The first equation (Eq. 4.8) 

uses old bridge length and width while the second equation (Eq. 4.9) uses new bridge 

length and width. These models were originally created in log-log form, so it was 
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necessary to adjust the coefficients, adjusted-R
2
, and S values that were generated in 

Minitab. As with MAXSPAN2, the method of coding categorical variables in this 

modeling process is incompatible with log-transformations.  

 𝑇𝑂𝑇𝐶𝑂𝑆𝑇 = 104,930 ∗ (𝑂𝐵𝐿𝐸𝑁)0.47233 ∗ (𝑂𝐵𝑊𝐼𝐷)0.16097 (4.8) 

Where:  OBLEN = Old bridge length (ft) 

  OBWID = Old bridge width (ft) 

 𝑇𝑂𝑇𝐶𝑂𝑆𝑇 = 1,201.2 ∗ (𝑁𝐵𝐿𝐸𝑁)0.6957 ∗ (𝑁𝐵𝑊𝐼𝐷)1.0775 (4.9) 

Where:  NBLEN = New bridge length (ft) 

  NBWID = New bridge width (ft) 

 The adjusted-R
2
 and S values for both transformed equations were calculated after 

determining the coefficients for the linear model. Equation 4.3 was used to calculate R
2
, 

from which adjusted-R
2
 was calculated by Equation 4.1. The standard error of regression 

(S) was found from Equation 4.4. For the replicated TOTCOST model using old bridge 

data (Equation 4.7), the adjusted-R
2
 of the transformed equation was 27.6% with an S 

value of 890,752. This translates to a 95% confidence interval of ± $1,745,900. When 

using new bridge data to estimate TOTCOST (Equation 4.8), the adjusted-R
2
 of the 

transformed equation was calculated to be 78.2% with an S value of 487,910. This 

signifies a narrower 95% confidence interval of plus or minus $956,000. 

 The recommended equation for predicting TOTCOST with new bridge 

characteristics is shown below in Table 4.25. When using only old bridge characteristics, 

the recommended model for predicting TOTCOST is shown in Table 4.26. 
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Table 4.25: Recommended TOTCOST prediction model (Approach 1) 

 
TOTCOST = 433,650 – 260.32(NBLEN*BRIDGEAGE) – 3.4234(ADTr*APPWID) + 119.90(NBLEN2) 
                    - 0.00000024817(ADTr3) + 328.75(CTB2) – 3.2296(DECKAREA*NBLEN)  
                    + 0.035682(DECKAREA*ADTr) + 9.7269(DECKAREA*BRIDGEAGE) + (FUNCTCLASS) 
                    + (PROJECTTYPE)              
 
R2 (adj) = 96.1% 
n = 305 
S = 207149 
C.I.95 = ± $406,000 
    

FUNCTCLASS = 
0 Other classification 

- 145900 Local 

PROJECTTYPE = 
0 17BP 

525570 TIP 

 

Table 4.26: Recommended TOTCOST prediction model (Approach 2) 

 
TOTCOST = 13,363 + 5,746.2(OBLEN) + 14,016(OBWID) + 1.3327(OBLEN*ADTr)  
                  - 1,363.2(OBWID*CTB) - 0.000000097673(ADTr)3 + 56.500(BRIDGEAGE)2  
                 + 1,427.5(CTB)2 + (FUNCTCLASS) + (PROJECTTYPE)               
 
R2 (adj) = 94.9% 
n = 305 
S = 237169 
C.I.95 = ± $464,900 
    

FUNCTCLASS = 

0 Local or Minor Collector 

250,080 Major Collector 

477,600 
Minor Arterial, Principal Arterial, 
or Interstate 

PROJECTTYPE = 
0 17BP 

551,350 TIP 

 

4.3  Summary of Findings 

 For each of the characteristic models developed as part of this work, the models 

that incorporated variable interactions as predictors had larger adjusted-R
2
 values than 

their counterparts that did not include variable interactions, showing an improved model 

fit. However the increase in model fit was relatively small (between 2 to 5%) and at the 

expense of added model complexity. For example, the difference in adjusted-R
2
 between 
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the NBLEN prediction model that included interactions between variables (90.1%) and 

the model that excluded interactions between variables (87.8%) represents a change of 

only 2.3 percent. The difference between the S values, which was 2.33 feet, shows that 

the inclusion of variable interactions in the prediction model narrows the 95% confidence 

interval by only ± 2.33 feet. Introducing variable interactions to the NBLEN prediction 

model increased the number of predictor terms from 10 to 37. To simplify the models and 

make them user-friendly, the characteristic prediction models that do not include variable 

interactions are recommended for implementation into the BMS. 

 Table 4.27: Results of modeling approaches for dependent variables 

 
Replicated 

With Variable 

Interactions 
No Variable Interactions 

R
2
 S R

2
 S R

2
 S 

NBLEN 86.3% 24.86 90.1% 21.10 87.8% 23.43 

NBWID 56.5% 5.285 78.4% 3.724 73.1% 4.159 

MAXSPAN2 35.2%  53.8% 18.04 48.4% 19.06 

 

 
Replicated 

New bridge 

characteristics 

Old bridge 

characteristics 

R
2
 S R

2
 S R

2
 S  

CONSTCOST - 48.06 99.2% 95,300 98.9% 111,300 

ENGCOST 35.9% 90,600 83.6% 43,400 79.2% 48,800 

ROWCOST 8.4% 23,000 35.7% 19,300 30.1% 20,100 

TOTCOST 78.2% 487,900 96.1% 207,100 94.9% 237,200 

 

During the modeling process, cost prediction was explored by project component 

(ROWCOST, CONSTCOST, ENGCOST) and as a total project cost (TOTCOST). While 

the recommended CONSTCOST and ENGCOST models had adjusted-R
2
 values greater 

than 80%, the ROWCOST models did not. This can reduce the accuracy of a cost 

prediction that is made by summing up component costs. The errors for each component 

cost are additive, and the accumulated error could result in total cost predictions that fall 

outside the confidence interval for the TOTCOST prediction models. Component costs 
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were also only provided for TIP bridge replacement projects, so those models were 

developed from those type of projects and may not accurately predict costs associated 

with 17BP projects. As seen with both TOTCOST models, PROJECTTYPE was a 

significant predictor for project cost. For that reason, the accuracy of the component cost 

models for 17BP projects is unclear. The models for TOTCOST can be applied to both 

project types and do not require the summation of predicted costs for project components. 

 The question of whether the final recommended cost models should use old 

bridge characteristics, or instead utilize new bridge characteristics predicted from the old 

bridge characteristics will be addressed in the following chapter, after additional analysis 

of model residuals and validation using the existing dataset is performed. Before 

selecting an approach, each pair of models should be compared to quantify the effects 

that error from the characteristic prediction models have on the cost models that use new 

bridge data.  
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CHAPTER 5: MODEL VALIDATION 

 

 

5.1  Overview 

 The recommended prediction models from the previous chapter can be used with 

two different approaches. The first approach (Approach 1) involves predicting cost with 

predicted new bridge characteristics, which are predicted with their own set of models 

from known old bridge characteristics. The second approach (Approach 2) is used to 

predict costs directly from old bridge characteristics, thereby eliminating the need for 

new bridge characteristic prediction models. After developing the models using actual old 

and new bridge characteristics, the prediction models that incorporated actual new bridge 

characteristics were stronger models for predicting cost in terms of goodness-of-fit and 

having a narrower prediction confidence interval. This is because replacement costs are 

more closely tied to the characteristics of the new structure that is being built. To use 

these models in actual practice, however, the new bridge characteristics need to be 

estimated by NCDOT since the actual characteristics are not known prior to the 

development of the design. When utilizing predicted characteristics from a first 

prediction model in a second prediction model, there is potential for prediction error from 

the first stage of forecasting to be compounded into the final estimate.  For these reasons, 

the results from Approach 1 and Approach 2 need to be computed and compared, in order 

to provide a recommendation regarding the best means of estimating bridge replacement 

costs and replacement cost components. 

Error within a model can be classified as being either systematic or stochastic. 

The values of stochastic (random) errors in a model will vary for each trial, while 

systematic errors remain the same. Model validation as a process involves quantifying 
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systematic errors within a model and deciding whether that amount of error in the model 

is acceptable for its intended application (Blischke and Murthy, 2000).  

The goal of model validation for this project was to determine whether there is an 

acceptable tradeoff between the higher accuracy of the cost prediction models that use 

new characteristics and the potential prediction error from those estimated new 

characteristics. Using the same datasets, predicted values for predicted NBLEN, NBWID, 

and MAXSPAN2 were calculated using their respective recommended prediction 

equations. Those predicted values took the place of the actual values in the cost 

prediction models that used new bridge characteristics. 

 Residual analysis is an important step in a regression analysis, during which the 

differences between the observed and estimated values, or residuals, are evaluated to 

identify underlying trends or outliers in the regression model (Toit et al., 1986). Losses in 

model prediction quality are assessed with histograms of residuals and the standard error 

of regression (S). In this text, model prediction quality encompasses fidelity, which is 

how well the model represents what it is simulating (Cross, 1999); fit, which is how close 

the model estimates are to actual data points (Karen, 2017); and predictive accuracy, 

which is measured by the amount of prediction error in the model (Penn State Eberly 

College of Science, 2017).  Histograms can be compared to look for changes in residual 

error distribution between the two modeling approaches for a dependent variable. While 

adjusted-R
2
 can be used as a metric to compare goodness-of-fit between models, standard 

error of regression (S) is quantified in the same terms as the dependent variable. This 

makes S more useful for validating models and determining the best prediction approach 

for each application.  
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 The residuals and histograms were computed outside of Minitab to allow for more 

flexibility in how the data was binned and displayed.  To accomplish this, the fitted 

values for were calculated using coefficients in scientific notation out to the fourth 

decimal place. Since these coefficients used more significant figures, fitted values and 

residuals varied slightly from the original Minitab values, but reflect residuals associated 

with implementation of the prediction models with regression coefficients truncated to 

precisions suitable for use in the BMS.  

5.2  Comparison of Approaches 

In this analysis, three sets of residual error values were compared for each 

predicted cost variable. The cost prediction models for Approach 1 were developed from 

a set of known new bridge characteristics sourced from a historical dataset. Determining 

the spread of the residual errors for those models was done to verify that the mean 

residual error values were close to zero, with a relatively normal distribution. This would 

have meant that the errors were “random” in nature and would, for the most part, cancel 

each other out.  

While evaluating the distribution of residual errors for Approach 1 was useful, 

using actual new bridge characteristic values as predictors would not be an accurate 

reflection of how the Approach 1 models are to be used outside of this project. The point 

of using Approach 1 is to be able to estimate new bridge characteristics that would not be 

known before the design is complete and use those estimated values to predict cost. Aside 

from predicting cost, the characteristic predictions from Approach 1 can be used for 

forecasting and design purposes. Residual error distributions for Approach 1 were also 

found after substituting actual (known) new bridge characteristic values for predicted 
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values generated from the recommended and updated characteristic prediction models 

from Chapter 4 of this thesis. This set of histograms is a more accurate reflection of how 

residual error would be distributed when using Approach 1 as it was intended. The 

residual error distribution histograms for Approach 2 serve the same purpose as with 

Approach 1 and allow for fair comparisons to be made in deciding on a preferred 

approach for a particular cost variable.   

Histograms were created of the residual error distributions for predicted NBLEN, 

NBWID, and MAXSPAN2 values. These predicted values were calculated from the 

recommended characteristic equations from Chapter 4: Table 4.7 (NBLEN), Table 4.11 

(NBWID), and Table 4.15 (MAXSPAN2). The residual error distributions for these 

predicted characteristics are shown in Figure 5.1 (NBLEN), Figure 5.2 (NBWID), and 

Figure 5.3 (MAXSPAN2).  

 
Figure 5.1: Residual error for predicted NBLEN 
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Figure 5.2: Residual error for predicted NBWID 

 
Figure 5.3: Residual error for predicted MAXSPAN2 

Using the recommended characteristic prediction equations and the recommended 

cost prediction equations with new bridge characteristics for Approach 1 and the 

recommended cost prediction equations with old bridge characteristics for Approach 2, 

the fitted values and residuals were calculated for each final ROWCOST prediction. Bin 

sizes were determined by dividing the difference between the minimum and maximum 

values by the number of bins. The number of bins required was calculated by taking the 

square root of the number of data points (√𝑁) and rounding up to the nearest whole 
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number. This is the default method used by Microsoft Excel to set up histogram bins 

(Cameron, 2009). 

For some histograms, an extreme outlier would influence the bin sizing. Having 

an artificially wide range of residual error values meant that the range in which most 

values lay would be represented by a very small number of bins. This was expected in the 

histograms for cost predictions with predicted characteristics (Approach 1) since the 

compounded errors would cause a shift in the mean residual values and a larger standard 

error (S). In cases where outliers were removed to increase the number of bins 

representing the majority of the data, the quantity and approximate values of the removed 

entries were recorded. 

The mean residual error was found by taking the average of the residuals for each 

approach. Residuals were calculated by subtracting the actual value from the predicted 

value, so a positive mean residual error indicates a tendency of a model to over-estimate 

its predictions for the given dataset. Conversely, a negative mean residual error shows 

that the approach tends to under-estimate its predictions for the given dataset. For the 

dataset used for the creation of the models, the mean residual error will be close to zero. 

The mean and relative distribution of the residual errors will shift if applied to a different 

dataset or even with different rounding of model coefficients. 

 5.2.1  Construction Cost 

 Histograms of residual error for predicting CONSTCOST through Approach 1 

with actual new bridge characteristics (Figure 5.4) and predicted new bridge 

characteristics (Figure 5.5) are shown below. Using old bridge characteristics to predict 

cost as part of Approach 2 resulted the distribution of residual error shown in Figure 5.6.  
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Figure 5.4: Residual error for CONSTCOST (with actual new bridge characteristics) 

 
Figure 5.5: Residual error for CONSTCOST (with predicted new bridge characteristics) 

 
Figure 5.6: Residual error for CONSTCOST (with old bridge characteristics) 
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Table 5.1: Comparison between approaches (CONSTCOST) 

 Approach 1 

actual 

(Figure 5.4) 

Approach 1 

predicted 

(Figure 5.5) 

Approach 2 

 

(Figure 5.6) 

Mean Residual Error - $901.43 $130,564.19 - $22.04 

Standard Deviation $90,400 $1,298,800 $107,200 

95% Confidence Interval ± $177,300 ± $2,545,600 ± $210,200 

 

Table 5.2: Residual error outliers not displayed in histograms (CONSTCOST) 

 Below Range Displayed Above 

Approach 1 (w/ actual) (5.4) 0 

- $660,000 to $660,000 

0 

Approach 1 (w/ predicted) (5.5) 2 3 

Approach 2 (5.6) 0 0 

 

 Based on Table 5.1, Approach 2 is the recommended approach for predicting 

CONSTCOST, indicating that although replacement bridge characteristics can be 

reasonably predicted from existing bridge characteristics, construction costs for the 

replacement bridge are best predicted from old bridge characteristics. Initially, Approach 

1 appeared to have a narrower confidence interval and a lower standard deviation. Figure 

5.4 shows residual error for Approach 1 when using actual new bridge characteristics. 

Using known new bridge characteristics for Approach 1 was helpful in seeing how well 

the cost prediction models were developed to fit the data, however estimates from 

Approach 1 use predicted new bridge characteristics. Compounding error from the 

characteristic predictions into the final cost prediction was evident in an increase in 

standard deviation and the widening of the confidence interval. The shifting of the mean 

residual error in the positive direction states that this approach will tend to generate cost 

estimates that are higher than the actual amount. The presence of the residual error 

outliers that are beyond the extents of the x-axis display range influenced the shifting of 

the mean error and widening of the confidence interval for this approach. Approach 2 had 

a standard deviation and confidence interval close to Approach 1 with actual old bridge 
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characteristics. Approach 2 is also simpler to use since there is no need to estimate any 

bridge characteristics.  

 5.2.2  Right-Of-Way Cost 

 Histograms of residual error for predicting ROWCOST through Approach 1 with 

actual new bridge characteristics (Figure 5.7) and predicted new bridge characteristics 

(Figure 5.8) are shown below. Using old bridge characteristics to predict cost as part of 

Approach 2 created the distribution of residual error shown in Figure 5.9. 

 
Figure 5.7: Residual error for ROWCOST (with actual new bridge characteristics) 

 
Figure 5.8: Residual error for ROWCOST (with predicted new bridge characteristics) 
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Figure 5.9: Residual error for ROWCOST (with old bridge characteristics) 

Table 5.3: Comparison between approaches (ROWCOST) 

 Approach 1 

actual 

(Figure 5.7) 

Approach 1 

predicted 

(Figure 5.8) 

Approach 2 

 

(Figure 5.9) 

Mean Residual Error - $137.85 $22,612.51 - $0.78 

Standard Deviation $18,100 $197,100 $19,400 

95% Confidence Interval ± $35,400 ± $386,300 ± $38,000 

 

Table 5.4: Residual error outliers not displayed in histograms (ROWCOST) 

 Below Range Displayed Above 

Approach 1 (w/ actual) (5.7) 0 

- $130,000 to $130,000 

0 

Approach 1 (w/ predicted) (5.8) 0 2 

Approach 2 (5.9) 0 0 

 

 Despite Approach 1 having a slightly narrower confidence interval than Approach 

2, the usage of predicted new bridge characteristics in Approach 1 widened the 

confidence interval by reasonably a large amount (approximately 10x). The shifting of 

the mean residual error for Approach 1 with predicted characteristics appeared to be 

driven by the two error outliers in Table 5.4 that had magnitudes greater than the display 

range of ±$130,000. These two outliers also influenced the widening of the confidence 

interval. 
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 5.2.3  Engineering Cost 

 Histograms of residual error for predicting ENGCOST through Approach 1 with 

actual new bridge characteristics (Figure 5.10) and predicted new bridge characteristics 

(Figure 5.11) are shown below. Using old bridge characteristics to predict cost as part of 

Approach 2 created the distribution of residual error shown in Figure 5.12. 

 
Figure 5.10: Residual error for ENGCOST (with actual new bridge characteristics) 

 
Figure 5.11: Residual error for ENGCOST (with predicted new bridge characteristics) 
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Figure 5.12: Residual error for ENGCOST (with old bridge characteristics) 

 

Table 5.5: Comparison between approaches (ENGCOST) 

 Approach 1 

actual 

(Figure 5.10) 

Approach 1 

predicted 

(Figure 5.11) 

Approach 2 

 

(Figure 5.12) 

Mean Residual Error $324.44 $44,230.60 $14.10 

Standard Deviation $41,300 $590,200 $46,600 

95% Confidence Interval ± $80,900 ± $1,156,800 ± $91,300 

 

Table 5.6: Residual error outliers not displayed in histograms (ENGCOST) 

 Below Range Displayed Above 

Approach 1 (w/ actual) (5.10) 0 

- $165,000 to $165,000 

2 

Approach 1 (w/ predicted (5.11) 2 10 

Approach 2 (5.12) 0 1 

 

 Based on the results in Table 5.5, Approach 2 is the recommended method for 

predicting ENGCOST. Initially Approach 1 appeared to have the narrowest confidence 

interval when using actual new bridge characteristics. While actual characteristics were 

used to create the models for Approach 1, the Approach 1 cost models are intended to be 

used with estimated characteristics. Substituting predicted new bridge characteristics for 

the actual characteristics used to create the model resulted in a drastic widening of the 

95% confidence interval and a shift in the mean residual error. The presence of twelve 

residual error values with magnitudes larger than $165,000 indicate that the shift in mean 
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residual error and widening of the confidence interval were influenced by these atypical 

residual values. The positive value for Approach 1’s mean residual error ($44,230.60) 

indicates that this approach, when used with predicted characteristics, will tend to 

generate under-predictions of ENGCOST. Approach 2 has a confidence interval that is 

only slightly wider than that of Approach 1 (when using actual new bridge 

characteristics) and uses a more streamlined modeling process that eliminates the need to 

predict new bridge characteristics. 

 5.2.4  Total Replacement Cost 

 Histograms of residual error for predicting TOTCOST through Approach 1 with 

actual new bridge characteristics (Figure 5.13) and predicted new bridge characteristics 

(Figure 5.14) are shown below. Using old bridge characteristics to predict cost as part of 

Approach 2 created the distribution of residual error shown in Figure 5.15. 

 
Figure 5.13: Residual error for TOTCOST (with actual new bridge characteristics) 
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Figure 5.14: Residual error for TOTCOST (with predicted new bridge characteristics) 

 
Figure 5.15: Residual error for TOTCOST (with old bridge characteristics) 

 Table 5.7: Comparison between approaches (TOTCOST) 

 Approach 1 

actual 

(Figure 5.13) 

Approach 1 

predicted 

(Figure 5.14) 

Approach 2 

 

(Figure 5.15) 

Mean Residual Error $26.68 $142,771.49 $20.00 

Standard Deviation $203,400 $777,200 $232,900 

95% Confidence Interval ± $398,600 ± $1,523,300 ± $456,400 

 

 Table 5.8: Residual error outliers not displayed in histograms (TOTCOST) 

 Below Range Displayed Above 

Approach 1 (w/ actual) (5.13) 0 

- $1,300,000 to $1,300,000 

0 

Approach 1 (w/ predicted) (5.14) 2 1 

Approach 2 (5.15) 0 0 
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Based on the results in Table 5.7, Approach 2 is again the best prediction 

approach for TOTCOST when considering the 95% confidence interval. If actual new 

bridge characteristics were to be known for a future bridge project, using those values in 

Approach 1 would still generate predictions with a slightly wider confidence interval than 

with Approach 2. As seen with the other dependent cost variables, introducing predicted 

new bridge characteristics compounds further error into the final cost estimates, resulting 

in a relatively wide confidence interval range (increased by approximately 3x). The 

changes in mean residual error and confidence interval when using predicted bridge 

characteristics appeared to be influenced by the three residual error outliers seen in Table 

5.8. Each of these outliers had a magnitude larger than the display range of ±$1,300,000, 

which could affect the mean residual error and confidence interval. Using Approach 1 as 

intended (with predicted new bridge characteristics) will tend to over-predict TOTCOST, 

as seen in the positive values for its mean residual error. The mean residual error values 

for Approach 1 (with actual characteristics) and Approach 2, while non-zero, are 

significantly smaller in magnitude in comparison to their respective standard deviations. 

Approach 2 for TOTCOST also possesses the inherent advantage of its simplicity, since 

there is no need for an intermediate prediction step as with Approach 1. 

A comparison of the TOTCOST predictions using the current BMS unit cost 

method (Table 1.1) and the regression model developed from old bridge characteristics 

(Table 4.25) shows how the two methods predict costs differently for the same 

replacement projects (Figure 5.16 and Figure 5.17). Points on the red-dashed line in 

Figure 5.17 would denote equal predictions from both estimation methods for the same 

project. Since most of these points appear to be above the red line towards the positive y-
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axis, this confirms that the predictions from the regression model tend to be higher than 

the unit cost-based estimates for the same projects. 

 
Figure 5.16: Plot of TOTCOST predictions by current versus updated methods 
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Figure 5.17: Plot of TOTCOST predictions by current and updated methods  

(zoomed-in) 

5.3  Summary of Findings 

The comparison between the new bridge characteristic-based cost predictions 

from Approach 1 and the old bridge characteristic-based cost predictions from Approach 

2 showed that the Approach 1 models had a slight advantage over the Approach 2 

models. The Approach 1 residuals were also calculated with the predicted new bridge 

characteristics instead of the actual values. The residuals from those histograms showed a 

significant widening of the confidence interval and a shift in the mean residual error away 

from zero. This shift was, in most cases, toward the positive direction on the x-axis, 

which signified a tendency for the model to over-predict costs and create positive residual 

values. It is speculated that error in each characteristic prediction model prediction from 

Approach 1 was compounded into the final cost estimate. The three predicted 

characteristics (NBLEN, NBWID, and MAXSPAN2) each appear several times in the 
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Approach 1 cost models as solitary variables, squares, cubes, or products with other 

predictors. The effects of any biases and error from the characteristic models would be 

additive and influence the final cost estimate. 

The Approach 2 models for each of the cost variables had reasonable values for 

mean residual error and confidence intervals. The limited availability of component costs 

for all bridge replacement projects used in the project meant that the universal 

applicability of the component cost models is limited to TIP projects. The component 

cost values for each TIP bridge replacement project did not add up to the recorded total 

project cost, so the component cost prediction models cannot be used for aggregated total 

cost estimates. In terms of simplicity, the Approach 2 total cost model showed good mean 

residual error and a reasonable confidence interval for both 17BP and TIP bridge 

replacement projects. 

With the models in Approach 2, there is the inherent possibility that future data 

will follow different trends than what is modeled in the equations presented in this 

chapter. This condition can be checked by performing additional residual analyses with 

newer datasets to observe shifts in mean residual error or widening of the confidence 

interval. Changing relationships between old bridge characteristics and new bridge costs 

may require that the Approach 2 models be periodically updated to retain model fidelity. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

 

 

6.1  Conclusions 

 The current cost estimation method used by NCDOT considers deck area and 

bridge system classification for predicting bridge replacement cost. While conceptual-

level estimates are expected to have degree of variability, NCDOT reported that their 

model typically failed to make accurate predictions for bridges on the high and low ends 

of the cost scale, possibly indicating that more location or bridge design factors need to 

be considered for the cost estimates.  This work aimed to provide improved bridge 

replacement models for NCDOT by updating existing models with new data and by 

developing new models that consider additional predictor variables and more complex 

forms (such as models with quadratic and cubic terms and variable interactions).  Direct 

approaches to model replacement costs using old bridge characteristics were explored, as 

well as approaches using an intermediate step – predicting new bridge characteristics 

from old bridge characteristics, then predicting replacement costs from these predicted 

new characteristics. 

 In replicating approaches proposed by Saito et al. (1991) and Abed-al-Rahim and 

Johnston (1995), the original models were updated in Minitab using the same predictor 

variables and a new bridge dataset. As presented in Chapter 3, two different datasets were 

used in this project: one for the characteristic prediction models and one for the cost 

prediction models, and both datasets were preconditioned to identify and filter out entries 

that did not represent typical bridge replacement projects. The original cost and 

characteristic prediction models created for NCDOT and INDOT were replicated by 
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preserving the original predictor variables and using the newer datasets of NCDOT 

bridge replacement projects to determine the coefficient values and assess model 

performance. With the newer NCDOT bridge replacement data, the predictor variables 

utilized in the existing NCDOT and INDOT prediction models were not able to provide 

consistently accurate predictions for the dependent variables, as evidenced by reduced 

adjusted-R
2
 and increased S values compared to the initial values reported in their parent 

literature. 

 It was presumed that the poorer performance of the original NCDOT and INDOT 

prediction models with the newer bridge data was due to (1) changes over time with 

respect to the design of new structures and with how replacement projects are managed 

and (2) the limited number of predictor variables utilized for each prediction model. To 

address these shortcomings, new models were developed.  The process involved 

performing a stepwise regression for each dependent variable using the newer NCDOT 

bridge replacement datasets and a more robust list of possible predictor variables. From 

this list, the stepwise process automatically rejected predictor variables that did not have 

a strong enough statistical significant link to the dependent variable.    

The characteristic prediction models that included quadratic and cubic terms and 

interactions between predictor variables had higher adjusted-R
2
 and S values than their 

counterparts without variable interactions. These improvements were typically between 

2.3-5.4% for goodness-of-fit (adjusted-R
2
) and 0.43-2.33 for standard error (S). However, 

between each pair of models (with and without the quadratic and cubic terms and variable 

interactions) the difference between the goodness-of-fit and standard error statistics was 

judged to be not enough to justify introducing more complexity into the models with the 
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variable interactions. The models without quadratic and cubic terms and variable 

interactions are recommended.  

 The four dependent variables for cost (right-of-way cost, engineering cost, 

construction cost, and total cost) were modeled with new bridge characteristics as 

predictors (Approach 1) or with old bridge characteristics as predictors (Approach 2). A 

comparison of the residual errors from each approach was done to observe trends in mean 

residual error and changes in the confidence interval. Since Approach 1 utilizes new 

bridge characteristics as predictors, the histogram of residuals was created twice for this 

approach: once with actual new bridge characteristics and once with predicted new bridge 

characteristics that were calculated from the recommended characteristic prediction 

models.   Outside of this project, actual new bridge characteristics will not be available 

for use in cost prediction models. However, since actual new bridge characteristic data 

was available within the dataset, those known values were used to develop models which 

provided a performance baseline to help evaluate and validate the models produced using 

the old bridge characteristics. 

While Approach 1 with the actual new bridge characteristics initially had a 

narrower confidence interval compared to Approach 2, the confidence interval became 

much wider with the predicted characteristics as predictors for cost. It is believed that 

error in the characteristic models compounded into the final estimate from Approach 1, 

sometimes increased the magnitude of the confidence interval up to 15 times, as seen 

with CONSTCOST. The increases in mean residual error magnitude and confidence 

interval range was driven by a handful of extreme residual error outliers in each analysis. 

Approach 2 offered a confidence interval comparable to Approach 1 with the actual 
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variables but with less complexity since intermediate characteristic predictions were not 

required as part of this approach. The mean error for Approach 2 did not shift far from 

zero, indicating that the models did not have a strong tendency to under or over-predict. 

Data on component costs was provided for a limited set of projects and the sums 

of the component costs did not appear to account for the entire total cost. As a result, the 

component cost prediction models developed from this dataset cannot be used to provide 

an accurate aggregated estimate for total cost. Further research into the unaccounted costs 

not captured in the HiCAMS-based historical cost dataset would be required before 

developing aggregated cost models. 

In summary, the central datasets created from NCDOT bridge data were 

successfully used to develop models for predicting new bridge characteristics and 

replacement project costs for typical bridge replacement projects. One limitation of these 

models is that they were not designed for bridge replacement projects that would be 

considered atypical. Having a large set of potential predictor variables, considering 

interactions between the variables as additional predictors, and the handling of multiple 

categorical variables within a single model allowed for improved R
2
 and narrower 

confidence intervals for the predictions. The recommended models for each predicted 

variable can be easily implemented into the NCDOT BMS and can be used to provide 

improved bridge replacement cost forecasting. 

6.2  Recommendations 

 To retain prediction accuracy, the models recommended in this study should be 

updated periodically using data from recent bridge replacement projects. The 
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recommendations outlined in this section, if implemented, could streamline the modeling 

process for any future model updates.   

 6.2.1  Inclusion of Bridge Structure Number in Contract Databases 

When creating or updating a regression model, a dataset of the highest quality 

reasonably obtainable is essential for ensuring that the model can produce reliable and 

accurate estimates. The dataset creation process used in this project involved several 

additional steps because of the lack of a structure number in the provided contract 

database from HiCAMS. The various methods used to find structure numbers was 

successful for about 70% of the provided entries. If structure numbers had been provided 

with the HiCAMS-sourced dataset, a large number of the remaining 30% of entries could 

have been retained for use in the central cost dataset, potentially improving the models. 

 6.2.2  Identification of Basket Projects 

 The existence of basket projects (multiple bridge replacements let under the same 

contract) in the HiCAMS-sourced dataset presented an issue during the data conditioning 

phase. Basket project entries did not provide reliable cost information for those bridges 

and had to be filtered from the central cost dataset. Many of these basket projects were 

identified during data pre-processing. However there were cases of other basket projects 

being found in the central cost dataset later on in the project. Identifying contracts that 

cover more than one bridge replacement would make it easier to flag and remove these 

entries for future model updates. 

 6.2.3  Consistent Terminology for Text Entries 

 To prepare the datasets for use in Minitab, some qualitative variables had to be 

converted to quantitative scores. In other cases, groups within categorical variables had to 
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be consolidated based on group size or perceived similarities between the groups. During 

this process, it was noted that many of these qualitative entries in the Network and 

Performance Masters were not phrased in a consistent manner. One single value would 

have several different spellings, capitalizations, or abbreviations. This complicated the 

data conditioning process and, during future model updates, could potentially cause extra 

entries to be erroneously filtered from the dataset. Using a consistent terminology or 

abbreviation convention for qualitative text fields in the Network Master and 

Performance Master would streamline this process. 

 6.2.4  Recording Project Cost Components in Databases 

 Bridge replacement projects that included component cost information could not 

be used to develop aggregated total cost models. This was because the values for each 

component cost did not add up to the recorded total cost amount. This is possibly due to 

additional project costs (demolition, inspection, miscellaneous) that were not recorded in 

the historical cost dataset. Structuring the component cost data so that it sums up to the 

total project cost value could allow for future development of aggregated total cost 

models as an alternative to predicting total cost with one model. 
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APPENDIX A: SUPPLEMENTAL MODEL INFORMATION 

 

 

 
Figure A.1: Screenshot of 2017 NCDOT Network Master 

 

 
Figure A.2: Screenshot of 17BP/TIP project information from HiCAMS. (Structure 

number field was added for this project) 
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Figure A.3: Locations of replaced bridges in cost dataset (yellow), characteristic dataset 

(blue) or in both datasets (green). 
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Figure A.4: Minitab model summary for NBLEN, with variable interactions  

 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

21.1010 90.44% 90.14% 80.84% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 112.9 21.4 5.28 0.000    

OBLEN 0.459 0.128 3.59 0.000 183.60 

OBWID -4.244 0.789 -5.38 0.000 88.16 

MAXSPAN1 1.131 0.260 4.35 0.000 45.03 

WATERDEPTH 4.78 1.52 3.14 0.002 57.36 

BRIDGEAGE -1.794 0.330 -5.43 0.000 40.99 

CTB 3.741 0.829 4.51 0.000 94.32 

ADTr 0.00839 0.00117 7.19 0.000 128.87 

OBLEN^2 0.002615 0.000317 8.24 0.000 262.51 

CTB^2 -0.1212 0.0272 -4.45 0.000 262.75 

APPWID^2 -0.0623 0.0260 -2.39 0.017 223.69 

ADTr^2 0.000000 0.000000 6.80 0.000 259.12 

OBLEN^3 -0.000002 0.000000 -6.14 0.000 106.83 

WATERDEPTH^3 0.00279 0.00138 2.01 0.044 4.90 

BRIDGEAGE^3 0.000038 0.000016 2.36 0.018 14.33 

CTB^3 0.001982 0.000260 7.61 0.000 120.02 

ADTr^3 -0.000000 0.000000 -6.72 0.000 126.33 

OBLEN*BRIDGEAGE -0.00236 0.00105 -2.24 0.025 48.93 

OBLEN*CTB -0.01141 0.00243 -4.69 0.000 138.15 

OBLEN*APPWID 0.00938 0.00306 3.06 0.002 104.65 

OBLEN*ADTr -0.000029 0.000003 -9.28 0.000 39.53 

OBWID*MAXSPAN1 0.02458 0.00543 4.52 0.000 35.68 

OBWID*BRIDGEAGE 0.02222 0.00932 2.38 0.017 61.46 

OBWID*APPWID 0.0782 0.0288 2.72 0.007 380.76 

OBWID*ADTr -0.000117 0.000027 -4.40 0.000 126.65 

MAXSPAN1*WATERDEPTH 0.1099 0.0246 4.47 0.000 28.97 

MAXSPAN1*CTB -0.0375 0.0105 -3.57 0.000 136.10 

MAXSPAN1*APPWID -0.0509 0.0106 -4.80 0.000 73.60 

WATERDEPTH*CTB -0.1788 0.0514 -3.48 0.001 40.33 

WATERDEPTH*APPWID -0.2341 0.0710 -3.29 0.001 56.90 

WATERDEPTH*ADTr 0.000332 0.000070 4.73 0.000 5.87 

BRIDGEAGE*CTB 0.03139 0.00923 3.40 0.001 50.36 

BRIDGEAGE*APPWID 0.0501 0.0106 4.74 0.000 51.12 

BRIDGEAGE*ADTr -0.000081 0.000017 -4.68 0.000 76.54 

CTB*ADTr 0.000045 0.000012 3.93 0.000 8.88 

REGION                

  Piedmont 6.54 1.71 3.81 0.000 2.12 

  Coastal 10.82 2.26 4.80 0.000 3.64 

CROSSINGTYPE                

  Waterway -32.72 7.64 -4.28 0.000 6.19 

SPAN1                

  2 8.86 2.78 3.18 0.001 3.58 

  3 12.17 3.87 3.14 0.002 9.82 

  4 15.18 5.13 2.96 0.003 8.91 

  5 21.27 6.08 3.50 0.000 11.98 
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Figure A.4: Minitab model summary for NBLEN, with variable interactions (continued) 

NBLEN = 112.9 + 0.459 OBLEN - 4.244 OBWID + 1.131 MAXSPAN1 + 4.78 WATERDEPTH 

- 1.794 BRIDGEAGE + 3.741 CTB + 0.00839 ADTr + 0.002615 OBLEN^2 

- 0.1212 CTB^2 - 0.0623 APPWID^2 + 0.000000 ADTr^2 

- 0.000002 OBLEN^3 + 0.00279 WATERDEPTH^3 + 0.000038 BRIDGEAGE^3 

+ 0.001982 CTB^3 - 0.000000 ADTr^3 - 0.00236 OBLEN*BRIDGEAGE 

- 0.01141 OBLEN*CTB + 0.00938 OBLEN*APPWID - 0.000029 OBLEN*ADTr 

+ 0.02458 OBWID*MAXSPAN1 + 0.02222 OBWID*BRIDGEAGE 

+ 0.0782 OBWID*APPWID - 0.000117 OBWID*ADTr 

+ 0.1099 MAXSPAN1*WATERDEPTH - 0.0375 MAXSPAN1*CTB 

- 0.0509 MAXSPAN1*APPWID - 0.1788 WATERDEPTH*CTB 

- 0.2341 WATERDEPTH*APPWID + 0.000332 WATERDEPTH*ADTr 

+ 0.03139 BRIDGEAGE*CTB + 0.0501 BRIDGEAGE*APPWID 

- 0.000081 BRIDGEAGE*ADTr + 0.000045 CTB*ADTr + 0.0 REGION_Mountains 

+ 6.54 REGION_Piedmont + 10.82 REGION_Coastal 

+ 0.0 CROSSINGTYPE_Non-waterway - 32.72 CROSSINGTYPE_Waterway 

+ 0.0 SPAN1_1 + 8.86 SPAN1_2 + 12.17 SPAN1_3 + 15.18 SPAN1_4 

+ 21.27 SPAN1_5 
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Figure A.5: Minitab model summary for NBLEN, without variable interactions 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

23.4326  87.99%     87.84%      87.34% 

 

Coefficients 

 

Term                                   Coef   SE Coef  T-Value  P-Value    VIF 

Constant                          4.0058E+1   6.56      6.11    0.000  

OBLEN                             8.3879E-1 0.0289     29.07    0.000   7.60   

MAXSPAN1                          5.2909E-1 0.0955      5.54    0.000  4.91 

WATERDEPTH                        1.8584E+0  0.273      6.81    0.000  1.50 

REGION 

  Piedmont                        9.2727E+0   1.77      5.23    0.000  1.84 

  Coastal                         9.8538E+0      2.23      4.43 0.000  2.87 

FUNCTCLASS 

  Major Collector                 4.2494E+0    2.04      2.08 0.038   1.10 

  Minor Arterial                  7.4988E+0      2.99      2.51 0.012   1.18 

  Principal Arterial/Inter.       1.2205E+1      4.40      2.78 0.006   1.23 

CROSSINGTYPE 

  Waterway                       -1.4446E+1      4.04     -3.57 0.000   1.41 

SUPERSTRMAT 

  Steel                          -2.0860E+1      5.78     -3.61 0.000  19.66 

  Timber                         -1.9876E+1      5.77     -3.44 0.001  15.08 

SUPERSTRTYPE 

  Other (Not Girder/beam sys)    -2.1740E+1      5.68     -3.83 0.000 10.22 

DECKGEOMAPP 

  UNACCEPTABLE                    6.6421E+0      1.42      4.68 0.000  1.23 

SPAN1 

  2                               7.0231E+0      2.30      3.05 0.002   1.98 

  3                               6.8442E+0      2.53      2.71    0.007  3.39 

  4                               9.2313E+0      3.42      2.70 0.007   3.22 

  5                               1.3890E+1      4.34      3.20 0.001   4.94 

 

 

Regression Equation 

NBLEN = 40.058 + 0.83879 OBLEN + 0.52909 MAXSPAN1 + 1.8584 WATERDEPTH  

+ 0.0 REGION_Mountains + 9.2727 REGION_Piedmont 

+ 9.8538 REGION_Coastal + 0.0 FUNCTCLASS_Local/Minor Collector 

+ 4.2494 FUNCTCLASS_Major Collector  

+ 7.4988 FUNCTCLASS_Minor Arterial 

+ 12.205 FUNCTCLASS_Principal Arterial/Interstate 

+ 0.0 CROSSINGTYPE_Non-waterway - 14.446 CROSSINGTYPE_Waterway 

+ 0.0 SUPERSTRMAT_Concrete - 20.860 SUPERSTRMAT_Steel 

- 19.876 SUPERSTRMAT_Timber + 0.0 SUPERSTRTYPE_Girder/Beam System 

- 21.740 SUPERSTRTYPE_Other type + 0.0 DECKGEOMAPP_ACCEPTABLE 

+ 6.6421 DECKGEOMAPP_UNACCEPTABLE + 0.0 SPAN1_1 + 7.0231 SPAN1_2 

+ 6.8442 SPAN1_3 + 9.2313 SPAN1_4 + 13.890 SPAN1_5 
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Figure A.6: Minitab model summary for NBWID (with variable interactions) 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

3.72427 78.84% 78.41% 75.92% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 18.42 1.27 14.52 0.000    

CTB 0.896 0.165 5.45 0.000 99.78 

ADTr 0.001500 0.000208 7.20 0.000 59.07 

OBWID^2 0.01685 0.00181 9.32 0.000 60.67 

MAXSPAN1^2 -0.002444 0.000601 -4.06 0.000 73.98 

WATERDEPTH^2 -0.0503 0.0142 -3.54 0.000 36.78 

CTB^2 -0.03680 0.00688 -5.35 0.000 265.87 

OBLEN^3 -0.000000 0.000000 -4.57 0.000 6.66 

OBWID^3 -0.000116 0.000027 -4.29 0.000 75.70 

MAXSPAN1^3 0.000013 0.000004 3.43 0.001 40.57 

WATERDEPTH^3 0.001937 0.000425 4.56 0.000 14.83 

CTB^3 0.000458 0.000103 4.46 0.000 123.52 

APPWID^3 -0.000089 0.000032 -2.81 0.005 37.33 

ADTr^3 -0.000000 0.000000 -5.83 0.000 5.51 

OBLEN*OBWID 0.001798 0.000270 6.65 0.000 33.08 

OBLEN*BRIDGEAGE -0.000568 0.000124 -4.57 0.000 22.20 

OBWID*CTB -0.02734 0.00327 -8.35 0.000 61.80 

OBWID*ADTr 0.000020 0.000007 2.94 0.003 117.78 

MAXSPAN1*BRIDGEAGE 0.002129 0.000472 4.51 0.000 16.86 

WATERDEPTH*BRIDGEAGE 0.00697 0.00194 3.59 0.000 11.74 

BRIDGEAGE*ADTr -0.000011 0.000003 -3.82 0.000 38.11 

CTB*APPWID 0.03008 0.00437 6.88 0.000 78.38 

APPWID*ADTr -0.000015 0.000007 -2.20 0.028 95.95 

FUNCTCLASS                

  Major Collector 0.774 0.354 2.19 0.029 1.31 

  Minor Arterial 1.989 0.578 3.44 0.001 1.66 

  Principal Arterial/Interstate -1.731 0.923 -1.88 0.061 2.21 

CROSSINGTYPE                

  Waterway -3.42 1.08 -3.16 0.002 4.16 

DECKGEOMAPP                

  UNACCEPTABLE 1.215 0.273 4.45 0.000 1.79 

Regression Equation 

NBWID = 18.42 + 0.896 CTB + 0.001500 ADTr + 0.01685 OBWID^2 

- 0.002444 MAXSPAN1^2 - 0.0503 WATERDEPTH^2 - 0.03680 CTB^2 

- 0.000000 OBLEN^3 - 0.000116 OBWID^3 + 0.000013 MAXSPAN1^3 

+ 0.001937 WATERDEPTH^3 + 0.000458 CTB^3 - 0.000089 APPWID^3 

- 0.000000 ADTr^3 + 0.001798 OBLEN*OBWID - 0.000568 OBLEN*BRIDGEAGE 

- 0.02734 OBWID*CTB + 0.000020 OBWID*ADTr 

+ 0.002129 MAXSPAN1*BRIDGEAGE + 0.00697 WATERDEPTH*BRIDGEAGE 

- 0.000011 BRIDGEAGE*ADTr + 0.03008 CTB*APPWID 

- 0.000015 APPWID*ADTr + 0.0 FUNCTCLASS_Local/Minor Collector 

+ 0.774 FUNCTCLASS_Major Collector + 1.989 FUNCTCLASS_Minor Arterial 

- 1.731 FUNCTCLASS_Principal Arterial/Interstate 

+ 0.0 CROSSINGTYPE_Non-waterway - 3.42 CROSSINGTYPE_Waterway 

+ 0.0 DECKGEOMAPP_ACCEPTABLE + 1.215 DECKGEOMAPP_UNACCEPTABLE 
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Figure A.7: Minitab model summary for NBWID, without variable interactions 

 

 

 

 

 

 

 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

4.15869 73.44% 73.08% * 

 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant -1.3899E+1 4.72 -2.95 0.003    

OBLEN -1.8451E-2 0.00509 -3.62 0.000 7.10 

OBWID 7.0895E-1 0.0385 18.39 0.000 3.86 

MAXSPAN1 9.1028E-2 0.0158 5.75 0.000 3.82 

WATERDEPTH 1.5516E-1 0.0447 3.47 0.001 1.26 

APPWID 1.4022E-1 0.0451 3.11 0.002 3.20 

ADTr 7.4050E-4 0.000051 14.39 0.000 2.89 

FUNCTCLASS                

  Local 2.1348E+1 4.70 4.55 0.000 393.63 

  Major Collector 2.2360E+1 4.67 4.78 0.000 182.97 

  Minor Arterial 2.3336E+1 4.65 5.02 0.000 86.32 

  Minor Collector 2.1779E+1 4.70 4.64 0.000 218.43 

  Principal Arterial 1.9548E+1 4.53 4.31 0.000 41.59 

DECKGEOMAPP                

  UNACCEPTABLE 2.2631E+0 0.281 8.05 0.000 1.51 

SPAN1                

  2 1.5368E+0 0.379 4.05 0.000 1.70 

  3 1.2823E+0 0.411 3.12 0.002 2.77 

  4 2.6969E+0 0.568 4.75 0.000 2.72 

  5 2.5320E+0 0.722 3.51 0.000 4.27 

DECKMAT                

  Steel -1.1725E+0 0.468 -2.50 0.012 1.07 

REGION                

  Piedmont 6.9413E-1 0.251 2.77 0.006 1.18 

 

Regression Equation 

NBWID = -13.899 - 0.018451 OBLEN + 0.70895 OBWID + 0.091028 MAXSPAN1 

+ 0.15516 WATERDEPTH + 0.14022 APPWID + 0.00074050 ADTr 

+ 0.0 FUNCTCLASS_Interstate + 21.348 FUNCTCLASS_Local 

+ 22.360 FUNCTCLASS_Major Collector  

+ 23.336 FUNCTCLASS_Minor Arterial 

+ 21.779 FUNCTCLASS_Minor Collector  

+ 19.548 FUNCTCLASS_Principal Arterial + 0.0 DECKGEOMAPP_ACCEPTABLE 

+ 2.2631 DECKGEOMAPP_UNACCEPTABLE + 0.0 SPAN1_1 + 1.5368 SPAN1_2 

+ 1.2823 SPAN1_3 + 2.6969 SPAN1_4 + 2.5320 SPAN1_5 

+ 0.0 STEELDECKMAT_0 - 1.1725 DECKMAT_Steel 

+ 0.0 REGION_Mountains/Coastal + 0.69413 REGION_Piedmont 
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Figure A.8: Minitab model summary for MAXSPAN2, with variable interactions 

 

 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

18.0427 54.72% 53.77% 49.13% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 57.9 10.6 5.45 0.000    

MAXSPAN1 2.162 0.316 6.85 0.000 111.38 

OBLEN -0.6090 0.0818 -7.45 0.000 125.71 

CTB 1.618 0.188 8.62 0.000 7.51 

ADTr 0.001467 0.000337 4.36 0.000 19.02 

OBLEN^2 0.002875 0.000331 8.68 0.000 429.68 

MAXSPAN1^2 -0.01772 0.00508 -3.49 0.000 374.86 

BRIDGEAGE^2 0.001868 0.000378 4.95 0.000 1.30 

ADTr^2 0.000000 0.000000 3.48 0.001 8.22 

OBLEN^3 -0.000002 0.000000 -7.95 0.000 99.55 

OBWID^3 0.000080 0.000024 3.33 0.001 5.72 

MAXSPAN1^3 0.000078 0.000026 3.06 0.002 167.44 

OBLEN*OBWID -0.00332 0.00118 -2.82 0.005 41.01 

OBLEN*MAXSPAN1 -0.002161 0.000980 -2.21 0.028 180.84 

OBLEN*CTB -0.004444 0.000909 -4.89 0.000 27.00 

OBLEN*APPWID 0.002799 0.000927 3.02 0.003 16.31 

MAXSPAN1*WATERDEPTH -0.02963 0.00631 -4.69 0.000 2.69 

MAXSPAN1*ADTr -0.000020 0.000006 -3.50 0.000 24.88 

CTB*ADTr -0.000051 0.000007 -7.22 0.000 4.63 

REGION                

  Piedmont 4.97 1.08 4.59 0.000 1.30 

FUNCTCLASS                

  Local -23.86 9.63 -2.48 0.013 98.57 

  Major Collector -22.97 9.53 -2.41 0.016 45.29 

  Minor Arterial -28.92 9.36 -3.09 0.002 22.52 

  Minor Collector -25.75 9.66 -2.67 0.008 51.38 

  Principal Arterial -26.97 9.22 -2.93 0.003 11.40 

CROSSINGTYPE                

  Waterway -33.45 3.97 -8.43 0.000 3.79 

SUBSTRMAT                

  Concrete/Timber -7.75 2.70 -2.87 0.004 7.16 

ROADWAYALIGNAPP                

  UNACCEPTABLE -4.47 2.11 -2.12 0.035 1.06 

SPAN1                

  2 27.21 3.48 7.82 0.000 8.26 

  3 36.64 4.25 8.63 0.000 17.54 

  4 40.13 5.13 7.82 0.000 13.85 

  5 46.46 5.85 7.95 0.000 16.23 
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Figure A.8: Minitab model summary for MAXSPAN2, with variable interactions 

(continued) 

 

Regression Equation 

MAXSPAN2 = 57.9 + 2.162 MAXSPAN1 - 0.6090 OBLEN + 1.618 CTB + 0.001467 ADTr 

+ 0.002875 OBLEN^2 - 0.01772 MAXSPAN1^2 + 0.001868 BRIDGEAGE^2 

+ 0.000000 ADTr^2 - 0.000002 OBLEN^3 + 0.000080 OBWID^3 

+ 0.000078 MAXSPAN1^3 - 0.00332 OBLEN*OBWID 

- 0.002161 OBLEN*MAXSPAN1 - 0.004444 OBLEN*CTB 

+ 0.002799 OBLEN*APPWID - 0.02963 MAXSPAN1*WATERDEPTH 

- 0.000020 MAXSPAN1*ADTr - 0.000051 CTB*ADTr 

+ 0.0 REGION_Mountains/Coastal + 4.97 REGION_Piedmont 

+ 0.0 FUNCTCLASS_Interstate - 23.86 FUNCTCLASS_Local 

- 22.97 FUNCTCLASS_Major Collector - 28.92 FUNCTCLASS_Minor 

Arterial - 25.75 FUNCTCLASS_Minor Collector 

- 26.97 FUNCTCLASS_Principal Arterial  

+ 0.0 CROSSINGTYPE_Non-waterway - 33.45 CROSSINGTYPE_Waterway 

+ 0.0 SUBSTRMAT_Other - 7.75 SUBSTRMAT_Concrete/Timber 

+ 0.0 ROADWAYALIGNAPP_ACCEPTABLE 

- 4.47 ROADWAYALIGNAPP_UNACCEPTABLE + 0.0 SPAN1_1 

+ 27.21 SPAN1_2 + 36.64 SPAN1_3 + 40.13 SPAN1_4 + 46.46 SPAN1_5 
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Figure A.9: Minitab model summary for MAXSPAN2, without variable interactions 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

19.0555 49.15%   48.43%     46.60% 

 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 7.3099E+1 8.44 8.66 0.000    

MAXSPAN1 5.3443E-1 0.0466 11.46 0.000 2.18 

CTB 4.2766E-1 0.124 3.44 0.001 2.96 

FUNCTCLASS                

  Local -1.7213E+1 6.28 -2.74 0.006 37.63 

  Major Collector -1.6868E+1 6.26 -2.69 0.007 17.52 

  Minor Arterial -2.4385E+1 6.29 -3.88 0.000 9.13 

  Minor Collector -1.9048E+1 6.35 -3.00 0.003 19.90 

  Principal Arterial -2.0978E+1 6.37 -3.29 0.001 4.89 

CROSSINGTYPE                

  Waterway -3.5505E+1 3.95 -9.00 0.000 3.36 

SPAN1                

  2 1.5987E+1 3.09 5.17 0.000 5.85 

  3 1.7126E+1 3.09 5.54 0.000 8.33 

  4 1.5555E+1 3.36 4.62 0.000 5.33 

  5 1.9576E+1 3.52 5.56 0.000 5.28 

WATERDEPTH -4.4458E-1 0.225 -1.98 0.048 1.62 

BRIDGEAGE 1.8300E-1 0.0517 3.54 0.000 1.43 

APPWID 3.1932E-1 0.131 2.44 0.015 1.80 

REGION                

  Piedmont 6.0209E+0 1.34 4.49 0.000 1.78 

  Coastal -3.7617E+0 1.81 -2.08 0.038 3.10 

DECKMAT                

  Steel -5.5290E+0 2.36 -2.35 0.019 1.41 

  Timber -4.2567E+0 1.63 -2.61 0.009 2.75 

SUBSTRMAT                

  Concrete/Timber -7.3787E+0 2.84 -2.60 0.009 7.10 

SUPERSTRTYPE                

  Channel Beam -6.0483E+0 2.16 -2.80 0.005 1.38 

 

Regression Equation 

MAXSPAN2 = 73.099 + 0.53443 MAXSPAN1 + 0.42766 CTB 

+ 0.0 FUNCTCLASS_Interstate - 17.213 FUNCTCLASS_Local 

- 16.87 FUNCTCLASS_Major Collector 

- 24.385 FUNCTCLASS_Minor Arterial  

- 19.048 FUNCTCLASS_Minor Collector 

- 20.978 FUNCTCLASS_Principal Arterial  

+ 0.0 CROSSINGTYPE_Non-waterway - 35.505 CROSSINGTYPE_Waterway 

+ 0.0 SPAN1_1 + 15.987 SPAN1_2 + 17.126 SPAN1_3 + 15.555 SPAN1_4 

+ 19.576 SPAN1_5 - 0.4458 WATERDEPTH + 0.18300 BRIDGEAGE 

+ 0.31932 APPWID + 0.0 REGION_Mountains + 6.0209 REGION_Piedmont 

- 3.7617 REGION_Coastal + 0.0 DECKMAT_Concrete 

- 5.5290 DECKMAT_Steel - 4.2567 DECKMAT_Timber 

+ 0.0 SUBSTRMAT_Other type - 7.3787 SUBSTRMAT_Concrete/Timber 

+ 0.0 SUPERSTRTYPE_Other type - 6.0483 SUPERSTRTYPE_Channel beam 
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Figure A.10: Minitab model summary for ROWCOST, Approach 1 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

19258.4  43.19%     35.68%       0.00% 

 

 

Coefficients 

 

Term                    Coef   SE Coef  T-Value  P-Value          VIF 

Constant         -6.8428E+05    236636    -2.89    0.004 

DECKAREA         -2.5647E+03       732    -3.50    0.001   1592748.34 

NBLEN^2          -2.1460E+02      51.8    -4.14    0.000    150464.77 

DECKAREA^2       -3.1190E-01    0.0860    -3.63    0.000  13778279.67 

DECKAREA*NBLEN    1.6443E+01      4.32     3.81    0.000   4892427.16 

DECKAREA*NBWID    4.5554E+01      12.9     3.53    0.001   3631803.61 

NBLEN             3.6962E+04     10558     3.50    0.001     75727.72 

BRIDGEAGE         1.5145E+04      7079     2.14    0.034      1958.82 

NBLEN^3          -8.7767E-02    0.0358    -2.45    0.015      5379.37 

NBWID^2           1.3603E+03       523     2.60    0.010     71622.02 

NBWID^3          -3.0730E+01      11.1    -2.77    0.006    267912.48 

ADTr^2           -3.2239E-03  0.000954    -3.38    0.001      5670.39 

BRIDGEAGE^2      -2.5999E+02       120    -2.16    0.032      7801.71 

BRIDGEAGE^3       1.4136E+00     0.659     2.15    0.033      2070.43 

DECKAREA^3        3.3660E-06  0.000001     3.22    0.002   1352380.24 

DECKAREA*MAXSPAN2-1.5841E-01    0.0477    -3.32    0.001        77.18 

DECKAREA*ADTr     3.1507E-02   0.00704     4.47    0.000    114659.80 

DECKAREA*APPWID  -6.9633E-01     0.268    -2.60    0.010      1004.71 

NBLEN*ADTr       -8.8218E-01     0.211    -4.18    0.000     13709.37 

NBWID*ADTr       -1.0757E+00     0.353    -3.05    0.003      4720.05 

NBWID*WATERDEPTH -9.3985E+01      30.8    -3.05    0.003         3.36 

MAXSPAN2*ADTr     5.5852E-01     0.139     4.02    0.000       740.29 

ADTr*WATERDEPTH   1.7606E+00     0.602     2.93    0.004         8.32 

DECKMAT  

  STEEL/TIMBER    9.5789E+03      3567     2.69    0.008         1.60 

 

 

Regression Equation 

 

ROWCOST = -684280 – 2564.7 DECKAREA - 214.60 NBLEN^2 - 0.31190 DECKAREA^2 

          + 16.443 DECKAREA*NBLEN + 45.554 DECKAREA*NBWID + 36962 NBLEN  

 + 15145 BRIDGEAGE - 0.087767 NBLEN^3 + 1360.3 NBWID^2  

 - 30.730 NBWID^3 - 0.0032239 ADTr^2 – 259.99 BRIDGEAGE^2 

          + 1.4136 BRIDGEAGE^3 + 0.0000033660 DECKAREA^3 

 - 0.15841 DECKAREA*MAXSPAN2 + 0.031507 DECKAREA*ADTr  

 - 0.69633 DECKAREA*APPWID - 0.88218 NBLEN*ADTr - 1.0757 NBWID*ADTr  

 - 93.985 NBWID*WATERDEPTH + 0.55852 MAXSPAN2*ADTr     

 + 1.7606 ADTr*WATERDEPTH + 0.0 DECKMAT_Concrete  

 + 9578.9 DECKMAT_Steel/Timber 
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Figure A.11: Minitab model summary for ROWCOST, Approach 2 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

20073.3  34.38%     30.13%      14.90% 

 

 

Coefficients 

 

Term               Coef  SE Coef  T-Value  P-Value     VIF 

Constant    -3.2103E+04    26923    -1.19    0.235 

APPWID       6.6098E+03     2503     2.64    0.009   92.95 

ADTr         7.4531E+00     2.20     3.39    0.001   24.18 

OBLEN*MAXSPAN1 

            -1.1556E+01     4.80    -2.41    0.017   31.97 

OBLEN*ADTr   1.6900E-01   0.0493     3.42    0.001  563.19 

OBLEN*APPWID-2.1804E+01     9.80    -2.23    0.027  152.02 

OBWID*ADTr  -3.0355E-01   0.0855    -3.55    0.000  220.36 

MAXSPAN1*CTB 8.3036E+01     21.7     3.83    0.000   15.83 

WATERDEPTH*CTB      

            -4.7586E+02      156    -3.05    0.003   19.40 

BRIDGEAGE*CTB      

            -2.5408E+01     10.5    -2.42    0.017    5.21 

OBLEN^2      4.0711E+00     1.22     3.34    0.001   53.08 

APPWID^2    -1.7614E+02     59.0    -2.99    0.003  347.11 

WATERDEPTH^2 5.7551E+02      202     2.85    0.005   15.60 

 

 

Regression Equation 

 

ROWCOST = -32103 + 6609.8 APPWID + 7.4531 ADTr - 11.556 OBLEN*MAXSPAN1  

 + 0.16900 OBLEN*ADTr - 21.804 OBLEN*APPWID - 0.30355 OBWID*ADTr  

 + 83.036 MAXSPAN1*CTB – 475.86 WATERDEPTH*CTB          

- 25.408 BRIDGEAGE*CTB + 4.0711 OBLEN^2 - 176.14 APPWID^2 

+ 575.51 WATERDEPTH^2 
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Figure A.12: Minitab model summary for ENGCOST, Approach 1 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

43360.5  85.04%     83.56%       0.00% 

 

 

Coefficients 

 

Term                     Coef   SE Coef  T-Value  P-Value        VIF 

Constant          -3.6331E+06    806777    -4.50    0.000 

APPWID             3.9517E+04     10518     3.76    0.000     380.43 

ADTr               4.0985E+02      66.3     6.18    0.000    8273.87 

NBLEN*NBWID       -3.1795E+03       496    -6.42    0.000  243244.24 

NBLEN^2           -1.6385E+02      47.1    -3.48    0.001   36916.65 

DECKAREA^2        -1.5970E-01    0.0266    -6.00    0.000  573598.31 

DECKAREA*NBLEN     1.0299E+01      2.24     4.60    0.000  511419.31 

DECKAREA*NBWID     2.9203E+01      4.68     6.24    0.000  179016.14 

NBLEN              7.1228E+04     12364     5.76    0.000   26362.26 

NBWID              9.4908E+04     21429     4.43    0.000    2985.59 

BRIDGEAGE          5.9978E+04     13764     4.36    0.000    1677.35 

ADTr^2             7.3228E-03   0.00222     3.29    0.001   12708.10 

ADTr^3            -5.0021E-07  0.000000    -6.72    0.000   21589.89 

DECKAREA*ADTr      1.0569E-01    0.0177     5.98    0.000  385117.31 

DECKAREA*BRIDGEAGE 2.2096E+01      4.34     5.09    0.000   60577.17 

NBLEN*ADTr        -3.2093E+00     0.661    -4.86    0.000   66176.31 

NBLEN*WATERDEPTH  -4.0041E+01      12.1    -3.30    0.001       1.82 

NBLEN*BRIDGEAGE   -6.9711E+02       143    -4.87    0.000   12832.21 

NBWID*ADTr        -1.3872E+01      1.86    -7.44    0.000   50322.07 

NBWID*BRIDGEAGE   -1.4299E+03       350    -4.09    0.000    4051.74 

APPWID*BRIDGEAGE  -8.0829E+02       187    -4.31    0.000     605.00 

 

 

Regression Equation 

 

ENGCOST = -3633100 + 39517 APPWID + 409.85 ADTr – 3179.5 NBLEN*NBWID

 - 163.85 NBLEN^2 - 0.15970 DECKAREA^2 + 10.299 DECKAREA*NBLEN  

 + 29.203 DECKAREA*NBWID + 71228 NBLEN + 94908 NBWID + 59978 BRIDGEAGE  

 + 0.0073228 ADTr^2 - 0.00000050021 ADTr^3 + 0.10569 DECKAREA*ADTr  

+ 22.096 DECKAREA*BRIDGEAGE - 3.2093 NBLEN*ADTr 

- 40.041 NBLEN*WATERDEPTH – 697.11 NBLEN*BRIDGEAGE 

- 13.872 NBWID*ADTr – 1429.9 NBWID*BRIDGEAGE 

– 808.29 APPWID*BRIDGEAGE 
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Figure A.13: Minitab model summary for ENGCOST, Approach 2 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

48808.9  80.94%     79.17%      32.87% 

 

 

Coefficients 

 

Term                     Coef   SE Coef  T-Value  P-Value      VIF 

Constant           3.4666E+05    108946     3.18    0.002 

OBLEN             -3.5781E+03       955    -3.75    0.000   126.72 

OBWID             -3.4374E+04     10692    -3.21    0.002   524.10 

ADTr              -9.2278E+01      16.4    -5.62    0.000   400.07 

OBLEN*MAXSPAN1     3.7853E+01      13.7     2.77    0.006    76.99 

OBLEN*APPWID       2.3394E+02      48.1     4.86    0.000   733.35 

OBLEN*CTB         -1.1863E+02      31.7    -3.74    0.000   223.67 

MAXSPAN1*BRIDGEAGE       

                  -3.8327E+01      16.5    -2.32    0.021    10.42 

ADTr*APPWID        2.4308E+00     0.815     2.98    0.003  2996.64 

ADTr*BRIDGEAGE     9.4241E-01     0.309     3.05    0.003   466.65 

APPWID*BRIDGEAGE  -3.2907E+02      71.3    -4.61    0.000    69.09 

BRIDGEAGE*CTB      1.1406E+02      44.4     2.57    0.011    18.80 

OBLEN^3            3.5132E-02    0.0133     2.64    0.009   140.83 

OBWID^2            1.5441E+03       379     4.08    0.000  5492.87 

OBWID^3           -2.0378E+01      4.61    -4.42    0.000  6034.16 

ADTr^3            -4.1497E-08  0.000000    -2.88    0.004   639.45 

BRIDGEAGE^2        1.4916E+02      34.9     4.28    0.000   113.16 

BRIDGEAGE^3       -1.1790E+00     0.295    -3.99    0.000    69.98 

DECKGEOMAPP 

  UNACCEPTABLE     2.7908E+04     10290     2.71    0.007     2.48 

SPAN1 

  3+              -2.9735E+04     11850    -2.51    0.013     3.26 

 

 

Regression Equation 

 

ENGCOST = 346660 – 3578.1 OBLEN - 34374 OBWID - 92.278 ADTr  

 + 37.853 OBLEN*MAXSPAN1 + 233.94 OBLEN*APPWID - 118.63 OBLEN*CTB  

 - 38.327 MAXSPAN1*BRIDGEAGE + 2.4308 ADTr*APPWID  

 + 0.94241 ADTr*BRIDGEAGE - 329.07 APPWID*BRIDGEAGE 

          + 114.06 BRIDGEAGE*CTB + 0.035132 OBLEN^3 + 15441 OBWID^2  

 - 20.378 OBWID^3 - 0.000000041497 ADTr^3 + 149.16 BRIDGEAGE^2  

 - 1.1790 BRIDGEAGE^3 + 0.0 DECKGEOMAPP_ACCEPTABLE  

 + 27908 DECKGEOMAPP_UNACCEPTABLE + 0.0 SPAN1_1or2 

          - 29735 SPAN1_3+ 
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Figure A.14: Minitab model summary for CONSTCOST, Approach 1 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

95233.4  99.27%     99.19%       7.87% 

 

 

Coefficients 

 

Term                     Coef   SE Coef  T-Value  P-Value          VIF 

Constant           1.5902E+07   2938571     5.41    0.000 

ADTr              -3.5148E+02       101    -3.49    0.001      3966.23 

NBLEN*NBWID        2.1457E+04      4360     4.92    0.000   3903336.18 

NBLEN^2            8.8464E+02       208     4.25    0.000    149385.79 

DECKAREA^2         1.2998E+00     0.267     4.87    0.000  11986750.24 

DECKAREA*NBLEN    -7.1247E+01      15.2    -4.69    0.000   4878338.09 

DECKAREA*NBWID    -3.2029E+02      67.9    -4.72    0.000   7807562.36 

NBLEN             -3.4596E+05     68885    -5.02    0.000    169646.02 

NBWID             -6.7373E+05    128813    -5.23    0.000     22363.85 

MAXSPAN2          -9.9508E+04     28276    -3.52    0.001      4167.37 

NBLEN^3            4.2151E-01     0.112     3.76    0.000      3864.61 

NBWID^3            1.7063E+02      36.8     4.63    0.000    203612.27 

BRIDGEAGE^2        2.0003E+01      7.27     2.75    0.007         1.29 

DECKAREA^3        -8.2626E-06  0.000002    -4.34    0.000    497501.33 

DECKAREA*MAXSPAN2 -3.6647E+01      9.05    -4.05    0.000    172316.42 

DECKAREA*ADTr     -8.1224E-02    0.0162    -5.02    0.000     66975.11 

NBLEN*MAXSPAN2     1.1686E+03       293     3.99    0.000     28874.31 

NBLEN*ADTr         2.9097E+00     0.618     4.71    0.000     12002.50 

NBWID*MAXSPAN2     3.0943E+03       878     3.52    0.001     14920.87 

NBWID*ADTr         8.4513E+00      2.69     3.15    0.002     21639.17 

ADTr*CTB           5.7811E+00      1.84     3.15    0.002      2667.50 

BRIDGESYS 

  Secondary       -8.4962E+04     23927    -3.55    0.000         1.30 

 

 

Regression Equation 

 

CONSTCOST = 15902000 – 351.48 ADTr + 21457 NBLEN*NBWID + 884.64 NBLEN^2  

 + 1.2998 DECKAREA^2 - 71.247 DECKAREA*NBLEN - 320.29 DECKAREA*NBWID  

 - 345960 NBLEN - 673730 NBWID - 99508 MAXSPAN2 + 0.42151 NBLEN^3  

+ 170.63 NBWID^3 + 20.003 BRIDGEAGE^2 - 0.0000082626 DECKAREA^3 

- 36.647 DECKAREA*MAXSPAN2 - 0.081224 DECKAREA*ADTr    

+ 11686 NBLEN*MAXSPAN2 + 2.9097 NBLEN*ADTr + 3094.3 NBWID*MAXSPAN2 

+ 8.4513 NBWID*ADTr + 5.7811 ADTr*CTB + 0.0 BRIDGESYS_Not Secondary 

            - 84962 BRIDGESYS_Secondary 
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Figure A.15: Minitab model summary for CONSTCOST, Approach 2 

Model Summary 

 

     S    R-sq  R-sq(adj)  R-sq(pred) 

111275  98.97%     98.89%           * 

 

 

Coefficients 

 

Term                         Coef   SE Coef  T-Value  P-Value       VIF 

Constant               2.7848E+05     68183     4.08    0.000 

OBWID                  1.7595E+04      7484     2.35    0.020     49.40 

ADTr                  -1.3380E+02      39.5    -3.38    0.001    446.66 

OBLEN*ADTr             1.1866E+00     0.123     9.65    0.000    299.76 

OBLEN*CTB              2.1497E+02      24.8     8.68    0.000     26.20 

OBWID*MAXSPAN1        -1.0248E+02      49.1    -2.09    0.038      7.17 

OBWID*ADTr            -5.9873E+00      2.13    -2.81    0.005   5093.96 

OBWID*APPWID          -6.5579E+02       302    -2.17    0.031    444.03 

MAXSPAN1*ADTr          2.3045E+00     0.786     2.93    0.004    566.22 

ADTr*APPWID            1.0923E+01      3.89     2.81    0.005  13147.21 

ADTr^3                -1.7159E-07  0.000000    -4.48    0.000    866.38 

BRIDGEAGE^2            2.8497E+01      8.43     3.38    0.001      1.27 

CTB^3                 -1.8234E+01      5.90    -3.09    0.002     79.46 

FUNCTCLASS 

  Major Collector      1.2455E+05     32195     3.87    0.000      1.66 

  Minor Arterial       3.6295E+05    124216     2.92    0.004      1.24 

  Principal Arterial/Int.  

                      -9.6377E+05    287305    -3.35    0.001     26.19 

 

 

Regression Equation 

 

CONSTCOST = 278480 + 17595 OBWID - 133.80 ADTr + 1.1866 OBLEN*ADTr  

 + 214.97 OBLEN*CTB - 102.48 OBWID*MAXSPAN1 - 5.9873 OBWID*ADTr  

 - 655.79 OBWID*APPWID + 2.3045 MAXSPAN1*ADTr 

            + 10.923 ADTr*APPWID - 0.00000017159 ADTr^3 + 28.497 BRIDGEAGE^2  

 - 18.234 CTB^3 + 0.0 FUNCTCLASS4_Local/Minor Collector  

 + 124550 FUNCTCLASS4_Major Collector  

 + 362950 FUNCTCLASS_Minor Arterial 

            - 963770 FUNCTCLASS_Principal Arterial/Interstate 
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Figure A.16: Minitab model summary for TOTCOST, Approach 1 

Model Summary 

 

     S    R-sq  R-sq(adj)  R-sq(pred) 

207149  96.25%     96.12%      68.86% 

 

 

Coefficients 

 

Term                     Coef   SE Coef  T-Value  P-Value     VIF 

Constant             4.3365E+5    64329     6.74    0.000 

NBLEN*BRIDGEAGE     -2.6032E+2     51.3    -5.08    0.000   87.43 

ADTr*APPWID         -3.4234E+0    0.398    -8.60    0.000   40.02 

NBLEN^2              1.1990E+2     15.1     7.93    0.000  183.52 

ADTr^3              -2.4817E-7 0.000000    -6.50    0.000  249.44 

CTB^2                3.2875E+2      149     2.21    0.028    7.38 

DECKAREA*NBLEN      -3.2296E+0    0.446    -7.24    0.000  911.98 

DECKAREA*ADTr        3.5682E-2  0.00380     9.39    0.000  783.04 

DECKAREA*BRIDGEAGE   9.7269E+0     1.48     6.59    0.000  324.08 

FUNCTCLASS 

  Local/Minor Collector 

                    -1.4590E+5    47074    -3.10    0.002    1.56 

PROJECTTYPE 

  TIP                5.2557E+5    27107    19.39    0.000    1.02 

 

 

Regression Equation 

 

TOTCOST = 433650 - 260.32 NBLEN*BRIDGEAGE - 3.4234 ADTr*APPWID + 119.90 NBLEN^2 

          - 0.00000024817 ADTr^3 + 328.75 CTB^2 - 3.2296 DECKAREA*NBLEN  

 + 0.035682 DECKAREA*ADTr + 9.7269 DECKAREA*BRIDGEAGE  

 + 0.0 FUNCTCLASS_Other Classification  

 - 145900 FUNCTCLASS_Local/Minor Collector 

          + 0.0 PROJECTTYPE_17BP + 525570 PROJECTTYPE_TIP 
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Figure A.17: Minitab model summary for TOTCOST, Approach 2 

 

 
Figure A.18: Screenshot of central characteristic dataset 

 
 

 

 

Model Summary 

 

     S    R-sq  R-sq(adj)  R-sq(pred) 

237169  95.09%     94.92%      93.70% 

 

 

Coefficients 

 

Term                                   Coef   SE Coef  T-Value  P-Value    VIF 

Constant                          1.3363E+4    135842     0.10    0.922 

OBLEN                             5.7462E+3       609     9.44    0.000   2.69 

OBWID                             1.4016E+4      5825     2.41    0.017   7.20 

OBLEN*ADTr                        1.3327E+0    0.0658    20.25    0.000  19.01 

OBWID*CTB                        -1.3632E-3       199    -6.84    0.000  19.65 

ADTr^3                           -9.7673E-8  0.000000   -11.28    0.000   9.79 

BRIDGEAGE^2                       5.6500E+1      14.6     3.87    0.000   1.15 

CTB^2                             1.4275E+3       274     5.20    0.000  19.18 

FUNCTCLASS 

  Major Collector                 2.5008E+5     49666     5.04    0.000   1.15 

  Minor Arterial/Principal Arterial/Int.   

                                  4.7760E+5    184811     2.58    0.010   2.99 

PROJECTTYPE 

  TIP                             5.5135E+5     31790    17.34    0.000   1.07 

 

 

Regression Equation 

 

TOTCOST = 13363 + 5746.2 OBLEN + 14016 OBWID + 1.3327 OBLEN*ADTr  

 – 1363.2 OBWID*CTB - 0.000000097673 ADTr^3 + 56.500 BRIDGEAGE^2  

 + 1427.5 CTB^2 + 0.0 FUNCTCLASS_Local/Minor Collector  

 + 250080 FUNCTCLASS_Major Collector  

 + 477600 FUNCTCLASS_Minor Arterial/Principal Arterial/Interstate  

 + 0.0 PROJECTTYPE_17BP + 551350 PROJECTTYPE_TIP 
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Table A.1: Category counts for both central datasets 
Categorical Variable Categories Cost Dataset Characteristic Dataset 

FUNCTCLASS 

Local 224 967 

Minor Collector 47 208 

Major Collector  29 185 

Minor Arterial 1 89 

Principal Arterial 3 45 

Interstate 1 12 

REGION 

Mountains 31 378 

Piedmont 152 599 

Coastal 122 529 

BRIDGESYS 

Interstate 3 19 

Primary 34 286 

Secondary 268 1201 

SUPERSTRMAT 

Steel 188 922 

Concrete 49 231 

Timber 68 353 

SUBSTRMAT 

Steel 111 460 

Concrete 42 237 

Timber 152 809 

SUPERSTRTYPE 

Stringer/Multibeam 

or Girder 
236 1194 

Girder & Floorbeam 

System 
21 84 

Tee Beam 25 111 

Channel Beam 23 117 

DECKMAT 

Concrete 122 678 

Steel 25 99 

Timber 158 729 

SPAN1 

1 99 411 

2 72 271 

3 78 452 

4 30 197 

5+ 23 175 

 


