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ABSTRACT

REWA S. TIKEKAR. Using virtual fracture reduction software to explore features
for fracture severity prediction. (Under the direction of DR. ANDREW WILLIS)

Current medical treatment for comminuted bone fractures, i.e., traumatic bone frac-

tures that result in many bone fragments, is based upon fracture severity classi�ca-

tions that physicians determine subjectively. Due to the subjectivity in the inter-

pretation of the available information, the severity of a single fracture case may be

classi�ed di�erently by physicians. Accurate, reliable, and repeatable classi�cation of

fracture severity is an important factor in planning e�ective treatment and an overall

positive prognosis for di�cult fracture cases. Recent work has placed an emphasis

on developing computational tools to analyze CT image data and estimate fracture

severity.This research explores the statistical relationships between fracture severity

and quantities derived from a new virtual bone fracture reconstruction system. Many

of these quantities have not been previously available due to the lack of a system

capable of virtually reconstructing highly-fragmented bone fractures. The existence

of a new bone reconstruction system makes available a new set of measurable values

whose relationships to fracture severity have been discussed but never been quan-

titatively examined. The relation between fracture severity and these quantities is

heretofore unknown and this thesis provides an initial analysis of utility of these fea-

tures for fracture severity prediction via automated CT image analysis. This thesis

discusses the predictive capabilities of features for fracture severity for seven clinical

cases, ranked by three orthopaedic surgeons.
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CHAPTER 1: INTRODUCTION

Quantifying fracture severity for highly comminuted fractures is a challenging task

and is widely studied throughout the orthopaedic trauma literature [1, 2]. Research

in [3] states that accurately assessing fracture severity for a highly comminuted bone

fracture is a key factor in determining joint health. Having identi�ed the signi�-

cance of fracture severity assessment for treatment, many researchers [4, 5, 6] have

explored computational approaches that seek to estimate fracture severity from im-

age measurements. Approaches extract features from the image data automatically

or semi-automatically , and values of these features are used to infer severity. In-

ferencing methods typically exploit correlations between the extracted feature values

and limb trauma to predict the fracture severity. As a benchmark fracture severity

values provided by practicing physicians are used to evaluate the utility of a feature

for severity prediction. This thesis refers to these computationally-extracted features

as fracture features and investigates the utility of a number of novel fracture features

for their utility in predicting fracture severity.

1.1 Problem Statement

As noted in [7], fracture severity prediction places itself as the single most important

factor in predicting the long term a�ects of a highly comminuted bone fracture.

The primary approach for fracture severity assessment is to approximate the severity

from visual observations of the injury and CT imagery. However, fracture severity

is di�cult to evaluate by visual assessment for complex, multi-fragment fractures,

especially at joint locations. This is evident by the variability observed in fracture

severity ratings assigned by physicians for a complex fracture cases. Recent work
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seeks to analyze medical image data to predict fracture severity and potentially help

reduce variability now present. This thesis investigates �ve di�erent fracture features

from medical image data and provides an initial characterization of their utility for

predicting fracture severity. The analyzed bone fracture features are divided into

three distinct categories:

� Geometric features (2),

� Tissue related features (1),

� Mechanical features (2).

Fracture features are computed using a virtual fracture reconstruction system that

reconstructs unbroken bone and extract fracture features from the virtual bone frag-

ments . This system makes available a quantitative values for a number of heretofore

unexplored fracture features and this thesis explores several of these new features.

Statistical evaluation of their predictive performance provides new information re-

garding the relative importance of these quantities for predicting fracture severity.

1.2 Motivation

Fracture severity classi�cation is an important aspect of fracture treatment [4]. It

helps physicians to diagnose and plan treatment, establish a notion of the risk of

complications and allows one to estimate fracture recovery time. Fracture severity

is also useful for indicating whether a fracture will lead to Post Traumatic Osteo-

Arthritis(PTOA) [8]. Fracture measures help physicians to treat new cases by study-

ing fracture treatment patterns obtained from prior cases. Because fracture classi-

�cation plays an important role in fracture treatment and long term joint health,

accurately determining the fracture severity of a fracture becomes a crucial step in

fracture diagnosis. Fracture severity is often subjectively determined by one or more

physicians which can be subject to bias due to variability in each physician's back-

ground and experience. In complex and highly traumatic fractures it is possible that
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this variability in severity classi�cation may lead to a treatment plan that is not �best

practice.� Fracture severity classi�cation from CT image data can provide unbiased

estimates of fracture severity estimation [6] as they are based on computationally-

derived fracture measures extracted from medical image data. As such, it becomes

important to explore and evaluate quantitative approaches for fracture severity clas-

si�cation which may help build consensus and improve accuracy in di�cult fracture

classi�cation contexts.

1.3 Outline Of Approach

This thesis uses 3D CT images of the fractured limb and a virtual reconstruction

system to reconstruct the unbroken bone. Where appropriate, new functions were

added to the reconstruction system software to extract the analyzed fracture severity

features. The analysis approach used extracts �ve di�erent features from 3D CT im-

ages of seven clinical fracture cases and analyzes the utility of these features for the

purpose of predicting the severity of the fracture. The performance of each feature is

measured by a goodness-of-�t measure that correlates values of the extracted features

with quantitative severity measures assigned to each case by by three orthopaedic sur-

geons. Di�erent models for this correlation are explored including a linear regression

model. Those features found to minimize the error between the feature values and

the surgeon-assigned values are deemed to be the best predictors of fracture severity.

1.4 Goal And Contribution

This thesis provides the �rst comparative analysis of the predictive power of several

important features thought to be strongly linked to fracture severity. The features

capture distinct aspects of the fracture event and are categorized into three areas:

(1) geometric features and (2) tissue features, and (3) mechanical features. The

comparative analysis allows researchers to better understand the links between these

features and fracture severity as well as the inter-relationships between these features.
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In addition, some of the bone fracture features analyzed in this thesis have not been

previously evaluated. This is attributed to the lack of a system capable of virtually

reconstructing highly fragmented bone fractures which is integral to the analysis

methods of this thesis. The existence of this new bone reconstruction system makes

it possible to extract quantitative values for these features.



CHAPTER 2: BACKGROUND INFORMATION AND FEATURE SELECTION

This chapter discusses background information needed to understand our fracture

analysis approach. It explains the nature of the recorded CT image data, the novel

algorithms and technologies applied and provides descriptions of the clinical context

of the study which focuses on severe traumatic fractures of the tibia at the ankle

joint.

This thesis relies on the technologies developed in [9], which conceived a system

for virtually reconstructing bone fractures from 3D CT images of the fractured limb.

This system takes 3D CT images of a fracture case as input and outputs a virtual 3D

model of the reconstructed unbroken bone. The system accomplishes this task in a

series of three steps:

1. The system segments the CT images [10] to extract 3D models of the bone

fragments.

2. Each bone fragment is then partitioned into anatomic regions to allow their

surfaces to be matched during reconstruction.

3. A virtual reconstruction of the unbroken bone is computed by applying a puzzle-

solving algorithm on the anatomically partitioned fragments.

Using the reconstruction result, a number of features that have been suspected to be

good predictors of fracture severity assesmentcan be directly extracted. These are:

� Number of fragments.

� Bone density information for each fragment.

� 3D models for bone sub-surfaces by anatomic region.
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� Location for fragments with respect to each other and their geometric relation-

ship to the original unbroken bone.

This thesis describes methods to extract these fracture features and analyzes the

performance of these features for predicting fracture severity.

This thesis speci�cally focuses on tibial plafond fractures as shown in Figure 2.2 [6].

These fractures most commonly result from high energy trauma such as that caused

by vehicular accidents or falls from heights. Tibial plafond fractures are an important

sub-class of fracture cases. Accurate prediction of fracture severity is important for

this sub-class for the following reasons:

� Due to their complex structure, these fractures are di�cult to treat and are

more susceptible to fracture severity mis-classi�cation.

� These fractures form a signi�cant population of all traumatic fracture cases and

e�ective treatment can signi�cantly impact long-term limb function [7].

The assessment of fracture severity prediction performance in this thesis contributes

directly to state-of-art in image-based fracture analysis.

This thesis is structured as follows: Chapter 1 introduces the problem of frac-

ture severity prediction and states the motivation and goal that drives this research.

Chapter 2 elaborates on the background information leading to the fracture feature

selected for analysis and their speci�c de�nitions. It also describes medical image

data terminologies and bone feature properties as they relate to the goals of this

thesis. Chapter 3 discusses the virtual bone reconstruction system and related pre-

vious work. Chapter 4 describes the methodologies used to extract fracture features

from medical image data. Chapter 5 provides the feature extraction results and an

analysis of the measured feature values for seven clinical fracture cases. Chapter 6

and 7 discusses the case results, and analyzes the statistical information derived from
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case-wise analysis. It also compares the quantitative feature value results with the

observations made by orthopaedic surgeons.

Terminology:

Some terminology used throughout this write-up are de�ned here to simplify the

discussion. In this thesis, we denote the 3D CT image obtained from patient's frac-

tured limb as the fracture CT image, and the 3D CT image obtained from the patient's

healthy limb as the intact CT image. We denote the outer surface of bone excluding

articular surface as the periosteal surface, the smooth surfaces at the end of bones

used for joint movement are articular surface, and the fracture surface of a bone are

the surfaces generated when the bone broke apart. Finally, we denote unbroken bone

surface extracted from the intact CT image as the intact template, and the bone

fragment surfaces extracted from the fracture CT image as bone fragments.

2.1 Background Information

2.1.1 Medical Imaging

Medical imaging technologies capture measurements from the tissues of the body

represented by a collection of positions (usually a 2D or 3D grid) which is then

viewed as a digital image. The images are used as data to conduct bone fracture

analysis. Imaging tools are helpful for diagnosis of bone abnormalities and for fracture

treatment planning.

Bone images are an important source of quantitative data for bone fracture analysis.

As noted in [11, 12], the visual assessment of severity by physicians can widely disagree

on grading fracture condition. Highly comminuted bone fractures are more di�cult

to diagnose without the aid of imagery and can have more signi�cant disparity in

severity from visual assessment. Multiple imaging modalities can facilitate analysis

by providing di�erent views of a particular bone region. These varying modalities

can help explore image data for new fracture predicting features [10].
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2.1.2 Medical Imaging Modality

Computed Tomography (CT) is a powerful medical imaging modality for producing

2-D and 3-D images of tissues within the body using X-ray. CT scans are particularly

useful for bone tissue analysis because they provide a sharper image for bone tissue

than other modalities. As such, important characteristics of a bone such as the

dimension, shape, internal structure and density can be readily extracted from CT

images via automatic methods.

2.1.3 File Formats: The PLY Format And The DICOM Medical Image Format

This thesis makes use of 3D medical image and surface data to compute fracture

features. PLY is a 3D model �le format designed to represent three dimensional

surfaces. The PLY �le format is used to store representations of the geometry of the

fragment surfaces and key surface attributes including: color and transparency.

The Digital Imaging and Communications in Medicine (DICOM) standard is typ-

ically used to store image information from medical sensor devices, e.g., 3D CT. In

the case of 3D CT machines, the DICOM images appear as a stack of 2D gray scale

images which helps to view a bone in three dimension. The gray scale value of each

pixel is an indication of the x-ray attenuation coe�cient for the material occurring

at the pixel location. This thesis uses the gray scale intensity values stored in DI-

COM images to extract structural bone information, e.g., bone fragments surfaces,

at fracture locations which subsequently facilitate fracture severity estimation.

A detailed account of DICOM data structure, header format and various network

oriented services for information transfer is given in [13]. Certain open source appli-

cations are used to read and understand DICOM images so that relevant information

can be extracted [14]. It is established to facilitate secure image information exchange

over the network, between medical imaging equipment and other systems [15]. Pixel

intensity information is extracted from DICOM in order to compute tissue related
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severity feature.

2.1.4 Houns�eld Intensity

A HU is a 2D or 3D unit used to describe gray scale intensity value at a pixel loca-

tion. A CT image consists of array of x-ray data commonly converted to standardized

Houns�eld Units (HU) so that the images generated from di�erent CT imaging ma-

chines can be put into a format having a single characterization of tissues by their

intensity. Cancellous bone (spongy bone) tissue typically has a substantially lower

Houns�eld intensity than cortical bone (dense bone) tissue. We derive the Houns�eld

intensity by following conversion

H = I(m+ α) (2.1)

where, H denotes the Houns�eld intensity, I is pixel intensity, m denotes slope (as

indicated in DICOM header (ex: tag 0028, 1053)) and α is y − axis intercept (as

indicated in DICOM header (ex: tag 0028, 1052)). The Houns�eld intensity is used in

this thesis as e�ective way to normalize CT intensities, which are machine-dependent,

to a common physically-based intensity scale. This provides a more robust values for

processing the measured bone density information in a bone fracture and helps in

identifying anatomic location of that fracture [16].

2.1.5 The Intact Template And The Contra-lateral Limb

The virtual reconstruction system uses a 3D model of the unbroken bone as a

template into which the 3D bone fragments are �t during reconstruction. This model

is de�ned as the intact template and is estimated from a 3D CT image of the contra-

lateral limb. In this way the image of the contra-lateral limb serves as a reference

shape into which the broken fragments can be �t for reconstruction. The scans of

the intact contra-lateral limb also serves as an approximation of the fractured limb

prior to the fracture event. This study requires a scan of the intact contra-lateral

virtual reconstruction methods. Further, the reconstruction assumes that the intact
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anatomy of the fractured limb is well approximated by its limb's lateral counter part.

2.1.6 Ankle Joint

The ankle joint is a complex joint, formed by the connection of three bones. The

top of the talus (ankle bone) �ts inside a socket that is formed by the lower end of

the tibia (shinbone) and the �bula (the small bone of the lower leg) shown in Figure

2.1. The ankle joint permits two movements: i) Plantar �exion (�exion), in which

the foot is pointed downwards (normal range of motion is: 20-50°) ii) Dorsi�exion

(extension), in which the foot is raised (normal range motion: 10-30°) [17].

Such movements are possible due to the presence of cartilage [18], a connective

tissue, which facilitates a smooth motion of joints. The cartilage lining is about one-

quarter of an inch thick in most joints that carry body weight. It is soft to withstand

a shock but tough to last a lifetime. The thickness and the volume of the cartilage

is determined by genetic factors [19]. Ankle joints are more prone to post fracture

in�ammation due to thin cartilage lining. All the cases studied in this thesis are

traumatic fractures of the ankle joint.

(a) Ankle joint (b) Cartilage

Figure 2.1: Anatomy of the ankle showing thecartilage of the joint.
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2.1.7 Bone Fracture, Tibial Plafond Fracture Classi�cation And Their Treatment

A fracture occurs when a bone fails to withstand some force and breaks. A tib-

ial plafond fracture occurs when the fracture involves the tibia and the ankle joint.

Because there is little muscle and skin surrounding the ankle joint, tibial plafond

fractures are problematic. Tibial plafond fractures occur when extreme axial and/or

rotational forces are imparted to the bone causing varying degrees of displacement,

articular comminution (breaking of the joint articulating surface) and metaphyseal

disruption (breaking of the bone). Such axial and rotational forces cause transla-

tional and angular displacement of the fracture fragments which are the two fracture

features analyzed in this thesis.

Figure 2.2: Few typical bone fractures [20]

If the soft-tissues around the fracture are too swollen and damaged, surgery may

not be possible. In such cases, surgery may be delayed until the swelling subsides

and the soft-tissue condition improves. Proper fracture treatment procedures must

be followed to expedite the healing process [21, 6]. Following are the types of tibial

plafond fractures and their respective optimal recommended treatment strategies.
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Table 2.1: Tibial plafond fractures and their treatment

Severity

classi�cation

Condition Treatment

1 Simple fracture, no articular

displacement.

Closed treatment methods

2 Presence of articular

displacement, less metaphyseal

disruption

Rigid internal �xation (�x by

using screws, metal plates)

3 Large metaphyseal disruption Rigid internal �xation method

4 Large metaphyseal disruption,

less articular comminution

Rigid internal �xation method

5 Large articular comminution Rigid internal �xation

Rigid internal �xation has shown better results in treating type 3, 4, 5 fractures.

The clinical cases used in this thesis to explore fracture severity measures are tibial

plafond fractures of ankle joint.

2.1.8 Post Traumatic Osteo Arthritis (PTOA)

PTOA is a condition caused by in�ammation of a joint after an injury. Knee, ankle,

hip, spine and hand joints are susceptible to in�ammation and PTOA [22]. Clinical

studies show that mechanical forces, intra-articular fractures and joint dislocation are

some of the causes for joint failures [5, 23]. Progressive joint degeneration caused by

bone fractures lead to Post Traumatic Osteo Arthritis (PTOA) [8]. Joint degradation

is an irreversible, slow and continuous process which can a�ect any joint in the body.

Degradation cause irreparable cartilage damage and painful joint function [24].

Recent research has explored the links between fracture severity and PTOA [25, 26].

PTOA's serious health condition which leads to substantial pain, disability, loss of
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work and decreased general health status. Its overall adverse impact on an individual's

physical and psychological well-being is comparable to that of other major disorders

such as stroke, heart disease or diabetes [27]. The societal cost of PTOA is high

(estimated at $12 billion/year in the U.S.), since pain and loss of function frequently

leads to loss of work capacity [28, 29]. In order to reduce the possibility of PTOA,

certain treatment guidelines were researched to achieve ankle stability and reducing

the post-surgery joint incongruities [30].

2.2 Feature Selection

2.2.1 Bone Fracture Mechanics

Bone fracture mechanics is the study of how cracks are created and propagated

in a bone. For several decades, fracture mechanics principles have been utilized to

examine various aspects of bone failure [31, 32]. The theory of fracture mechanics

states that there is a direct relation between the energy absorbed by the fracture

and surface area liberated (surface area generated upon fracture event). Further, the

energy absorbed is also theoretically linked to the area of the generated bone fragment

fracture surfaces. The sum of these areas is referred to as the liberated surface area

for a fracture. Experienced clinicians generally relate injuries with large numbers of

fragments to �high energy� accidents. To understand this relationship quantitatively,

this thesis includes analysis of the fragment fracture surface area to better understand

the linkages between this feature and fracture severity.

2.2.2 Bone Material Properties

Bones, though light-weight, are hard and strong. They provide rigidity to the body

structure. Bone composition is complex and dependent on various cell interactions

and mineral deposition [33]. The two primary types of bones are i) cancellous bone

and ii) cortical bone. The cortical bone tissue tends to have a lamellar structure

acting as a dense outer shell (porosity- measure of void space: 5% to 30%). The can-
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Figure 2.3: Cancellous and compact (cortical) bone tissue [36]

cellous bone, i.e, spongy bone, is similar to a three dimensional honey-comb structure

(porosity: 30% to 90%). Bone tissue density varies depending on biological, dietary

and habitual factors. Fracture severity measures are material-dependent, and are

known to vary with bone density [34, 35]. CT images capture measurements of bone

tissue density throughout the body [16]. This thesis includes a method to compute

a feature that considers the density of the tissues separated when the bone tissue

was broken into fragments, referred to as a tissue feature. This feature is based on

the image intensities observed at the bone fragment fracture surface locations and its

utility for fracture severity analysis is investigated.

2.2.3 Bone Strength And Micro-fracturing

A single or repetitive load through daily activities a�ects the bone structure and

results in micro-fractures. Repetitive loading occurs in many activities, but most

notably it is a characteristic of walking, running, and most other sports activities.

The lamellar organization of the cortical bone prevents micro-fractures from migrating

to interior structure. Excessive micro-fracture causes transverse and longitudinal

crack formations which disrupt bone structure. Though being contained, these micro-

fractures decrease bone strength and the bone may fracture at much lower loads than
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it would have normally required [31, 37]. These micro-fractures pave way for larger

fracture surfaces, i.e., surfaces generated when bone breaks apart [34, 32, 35]. This

thesis analyzes fracture surface area and fracture surface perimeter as mechanical

indicators of fracture severity.

2.2.4 Bone Surface Segmentation

Bone surface segmentation is the process of partitioning a 3D surface model of a

bone into surface patches such that each patch is semantically distinct, i.e, di�erent

anatomically or by shape [38, 39, 40, 41, 42]. Bone surface segmentation sub-divides

the bone fragment models into parts which enable analysis of important bone fragment

sub-structures, e.g, the fragment fracture surface. Segmentation methods should be

accurate, reproducible and robust to ensure e�cient working of reconstruction algo-

rithms and accurate values for the computed fracture surface area and fracture surface

perimeter features. This thesis uses region growing and ridge walking segmentation

algorithms to segment 3D bone models described as follows:

Ridge walking algorithm: This surface segmentation algorithm results in number

of regions by computing boundaries that follow concave and convex valley like

structures within a geometric model [43]. Applications of this segmentation

method include surface compression and object recognition.

Region growing algorithm: Region growing is a simple pixel-based segmentation

algorithm. The surface patches are generated based on prede�ned classi�cation

factor like color [44]. Given an image or a group of pixels, number of regions

are formed which include the pixels that satisfy the prede�ned classi�cation

criteria. This method has wide range of application in image segmentation,

video segmentation and comparison of fMRI activation detection [45].

Above mentioned algorithms are instrumental in generating fracture surfaces that are

used as basis for running methods over to compute fracture features.
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Figure 2.4: A brief overview of 3D reconstruction system which takes fracture CT
images and intact CT images as input and provides a virtual reconstruction of bone
fragments which estimates the anatomy of patient's original bone. Solid color denotes
the process by which the data has been changed to allow for a reconstruction to be
computed.

2.2.5 3D Reconstruction Process

Reconstruction can be de�ned as a process of classifying fracture surfaces and

putting the fracture surface and fragment boundaries back together. Early e�orts to-

ward computer-aided bone fracture reconstruction include a system for reconstructing

a simple two-fragment bone fracture [46, 47]. Interactive approaches for bone frag-

ment alignment and reconstruction have since been proposed in [48] and in [49]. [48]

emphasizes development of a realistic bone reconstruction system that performs real-

time collision detection to prevent fragment collision. In [49], the authors describe

an interactive system to reconstruct a 5-fragment comminuted bone fracture, which

relies on manual interaction to position the bone [50][51]. Work in [16] describes an

automatic system capable of reconstructing bone fractures. [52] talks about improv-

ing inter-fragmentary alignment for virtual 3D reconstruction of highly comminuted

bones. This virtual reconstruction method is used in this thesis to reconstruct the

unbroken bone 2.4.

As described in Figure 2.4, virtual reconstruction of the bone fragments can be
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described in �ve following steps:

1. Fragment surfaces are extracted from CT images.

2. Each fragment surface is then further decomposed into sub-regions.

3. The surfaces are classi�ed into anatomically meaningful patches.

4. Fragment patches are pieced back together in a virtual space with a puzzle-

solving algorithm.

5. Post analysis on reconstructed fracture helps to assess the severity of the

bone fracture.

This thesis elaborates on post analysis and explores various means to explore frac-

ture features. Fracture measures are investigated by fusing geometry and function,

at all steps of reconstruction process. Reliability of fracture feature value depends on

the accuracy of fragment segmentation and fracture reconstruction.



CHAPTER 3: LITERATURE REVIEW

3.1 Fracture Severity And Related Features

Various attempts have been made to de�ne computational methods that compute

fracture measures. These approaches use medical images of fractured bone as source

data for their computational approach [1, 6]. These approaches draw inspiration from

the key factors indicated by physicians to be indicative of fracture severity. These

key factors are:

� fragment displacement,

� fragment angular dislocation,

� number and size of fragments,

� soft tissue damage/skin disruption,

� location of fracture in bone.

where higher values for these measures suggests higher fracture severity.

Currently, many visually based classi�cation systems are based on the fracture loca-

tion in the bone (part of the bone), number of fragments (simple/multi-fragmentary),

skin disruption (open/close) [2], anatomic description and orientation of fracture

(transverse, spiral, oblique) [53, 54, 20]. This thesis uses two visually-assessed fracture

severity values from 3 di�erent orthopedic surgeons:

1. A quantitative severity score (0-100).

2. Kellgren-Lawrence (KL) grading scheme: is one of the oldest radiographic frac-

ture severity classi�cation systems which is used widely to classify fractures [55].
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It classi�es fracture severity to one of the �ve grades (0 - 4). Each grade (0 -

4) corresponds to increasing likelihood of PTOA (referred simply as OA) where

the indications are (0) no OA, (1) doubtful OA, (2) minimal OA, (3) moderate

OA and (4) severe OA respectively [56].

The fracture cases discussed in this thesis are also classi�ed according to AO/OTA

classi�cation as depicted in Figure 3.1. This classi�cation is not used for analysis but

it does provide an additional indication of the extent of the severity of each discussed

fracture case.

Figure 3.1: Broad AO/OTA classi�cation for tibial plateau fractures: B1, split frac-
tures only; B2, depressed fractures only; B3, combined split and depression; C1,
articular simple, metaphyseal simple; C2, articular simple, metaphyseal multi frag-
mentary; and C3, multi fragmentary articular.

3.2 Fragment Convex Hull: Displaced Soft Tissue Volume

In this research the authors detect the bone fragments in a CT image of afractured

limb and use the volume of the convex hull, i.e., volume encompassed by the smallest

convex envelope that includes the bone surfaces, to predict fracture severity. Severity

is computed by taking the di�erence in volume of the fracture convex hull previously

described and the convex hull of the intact bone obtained by a CT of the (presumed

intact) contralateral limb [2]. The authors found that higher volume di�erences is an

indicator of increased fracture severity [39].



CHAPTER 4: METHODOLOGY

This chapter discusses the methods used to compute the fracture features and assess

their performance. Towards this end, the chapter includes discussions of the clinical

data collected for analysis the de�nition of the fracture features computed and the

techniques applied to measure the performance of the fracture features for fracture

severity prediction.

4.1 Clinical Data Collection And Assessment

Clinical data used for the analysis of this thesis consists of patient data gathered

from seven clinical cases. The cases for this study range from low energy fracture

events such as 1.5 foot fall, to high energy fracture events such as speeding crashes

(80 mph), and includes a population having relatively younger patients (mean age 35

years). The focus of this research is tibial plafond fractures, which are obtained from

a set of patients enrolled in an NIH-funded grant that sponsors this research. The

enrollment criteria require patients to be less than 65 years of age and to be free of

presence of osteo-arthritis. The pool of plafond fractures included in this study varies

from simple articular fractures to highly comminuted and displaced fractures. The

selection of patients was done by an experienced orthopedic surgeon and e�ort has

been made to include a wide range of fracture variation.

Most of the injuries underwent a visual analysis performed by a set of orthopedic

surgeons based on CT scans and radiographs. In some cases, emergency measures

were taken to cater to severe dislocation after which a CT scan was taken. This

clinical study has seven of such fractures, which are OTA Figure 3.1 classi�ed as

follows:
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Table 4.1: Patient demographic and acute injury information for the rank 7 ordered
cases. MVA: Moving vehicular accident; ATV: All terrain vehicle accident.

Case# Sex Age OTA X ray Classi�cation Injury mechanism

6 F 38 C32 MVA (50mph)

7 M 21 B13 Fall (30 ft)

8 F 42 C21 MVA (30mph)

9 M 20 C13 ATV

10 M 24 C23 Fall (12 ft)

11 M 34 C11 Fall (18 ft)

12 M 29 B12 ATV

With repeated imaging studies collected from patients over the span of two years,

PTOA was assessed on weight bearing radiographs using KL grading scale. All the

seven cases were assigned overall severity score ranging from (1-100) by three or-

thopaedic surgeons (C1, C2, C3), KL scores and binary OA status by three surgeons

after studying radiographs Table 4.2. This grading was based on number of factors

like the number of fragments, size of fragments, displacement of the fragments, soft

tissue damage and articular damage.

Table 4.2: Kellgren-Lawrence (KL) scores for 7 cases (5 grades; 0 � no OA, 4 � severe
OA), binary OA status (1-OA; 0 - no OA) and overall severity (1-100) listing.

Case# KL score Binary OA status Overall Severity

C1 C2 C3 Savg

6 2 1 60 55 60 58

7 4 1 50 60 58 56

8 4 1 62 80 79 74

9 0 0 6 15 32 18

10 3 1 55 57 62 59

11 4 1 70 65 77 71

12 0 0 5 27 10 14

There is a general agreement between the ranking schemes with almost 90% ac-
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cordance between clinical observations. The fracture severity measures discussed in

this thesis are measured against average overall severity score and KL score. There is

about 60% correlation between those two ranking schemes for the cases under study.

Binary OA status is mentioned �agging the possibility of OA.

4.2 Fracture Feature Computation

Fracture features are computed as a function of the bone fragment segmentation

and from the virtual fracture reconstruction result. The bone fragment segmenta-

tion results provides the spatial locations where bone tissues broke apart due to the

fracture event. As such, the CT intensities observed at the segmented bone fragment

surface locations indicate both the types of tissues separated during the fracture event

and how much of these tissues were torn apart in this process. For this reason, fea-

tures derived from the bone fragment segmentation result are referred to as tissue

and mechanical fracture features. The reconstruction tool provides estimates for the

geometric transformations needed to move and orient each bone fragment from its

location in the fractured CT to its anatomic location within the unbroken bone. For

this reason, features derived from the virtual fracture reconstruction tool are referred

to as geometric features. The speci�c fracture features analyzed in this thesis, and

their respective categories, are listed below:

1. Geometric features:

(a) Translational displacement,

(b) Orientation displacement.

2. Tissue related feature:

(a) Skewness of fracture intensity histogram.

3. Mechanical features:
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(a) Fracture surface area,

(b) Fracture surface perimeter.

The following sections provide formal de�nitions for each of these features and de-

scribe the method/algorithm used to compute their values.

4.2.1 Geometric Features (Translational And Orientation Measure)

The bone fragment displacements provided by the virtual fracture reconstruction

result measure how much the fragment position and orientation changed due to the

fracture event. Non-anatomic motion of the bone fragments necessarily tear and

displace soft tissues and, as a result, these measures can also be perceived as an

approximate measure of soft tissue rupture and disruption. Due to these reasons, the

dislocation of a bone fragment from its normal anatomic position is considered as a

fracture measure.

Every fracture fragment follows a certain path, depending on the force of fracture

event, and upsets the integrity of the adjoining region. This displacement can be

measured as a combination of translational and rotational motion of fragments in a

fracture case. High energy fractures result in ruptures of the intact bone that cause

bone fragments to separate and disperse out of the initially intact bone composite

structure. This results in soft tissue wounds and localized damage. A precise depic-

tion of the shift is possible if a comparison is done between the intact, i.e., anatomic,

and fracture position of the fragment. The process of reconstruction involves moving

the bone fragments in a way similar that used to solve a 3D jigsaw puzzle. Here,

correspondences between the bone fragments in their fractured position and their

aligned/anatomic position provides an estimate of a plausible trajectory for the frag-

ment in terms of angular and translational motion. As shown in Figure 4.2b, the

change in centroid ‖C1 − C2‖ of the fragment as described in � 4.2.1.1 and the change

in angle of orientation [4.2.1.2] are computed from the reconstructed fracture. These
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Figure 4.1: Illustration of the geometric interpretation of the translational and angular
displacement features

provide measures of angular (‖θ‖) and translational (‖t‖) displacement, respectively

where, C1 is centroid of original object in space; C2 is the centroid of the displaced

object in space; ‖θ‖ is angular displacement and ‖t‖ is translational displacement.

4.2.1.1 Centroid

In 3D geometry, the centroid C is de�ned as the center of mass for the object.

For 3D models, the centriod is taken as the virtual center of mass given by assigning

equal weight to each 3D point in the model. In this case, the 3D model centroid is

then the average position of the 3D vertices of the model. This point changes when

the fragment position is displaced.

Cx,y,z =
xx,y,z1 + xx,y,z2 + xx,y,z3 + ....xx,y,zk

k
(4.1)

In the equation, are the �nite number of points that represent a particular fragment.

xxk,yk,zk are
′x′,′y′and ′z′ co-ordinates of kthpoint of a fragment. The change in centroid

of a displaced fragment gives an measure of its displacement. Higher translational

displacement suggests higher fracture severity.
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Cchange =
√
(xm − xa)(xm − xa) + (ym − ya)(ym − ya) + (zm − za)(zm − za) (4.2)

In the equation, Cchange is the change in fracture fragment centroid Cf (xf , yf , zf )

and intact fragment centroid Ci (xi, yi, zi).

The change in centroid position (translational displacement) is computed for every

fragment for all the seven fracture cases. The translational displacement feature is

taken as the sum of the centriod displacements for all the fracture fragments in a

fracture case.

4.2.1.2 Angle Of Orientation

In addition to translation, high energy fractures often cause the bone fragment

orientations to change. This �tumbling� action of the fragments is captured by mea-

suring the angular change (rotational displacement) in the x, y, z axis of a fracture

fragment between its aligned and misaligned position. The angular displacement is

measured using the three Euler angles: α, β and γ which provide angular rotation

actions on the fragment with respect to the z, y, x and axes respectively as depicted

in Figure 4.2b. The values of these angle are set such that, when these rotations

act on each fragment, they will change the fragment orientation from its fractured

orientation to its proper anatomic orientation. These values give an estimate of the

angular displacement of that particular fragment and indicate the amount of angu-

lar displacement. Once the change in the angle of orientation is obtained for every

fragment, it is added across all the fragments to obtain a single score of angular dis-

placement for that case. Assessment of the amount of displacement that the fracture

fragments undergo a�ects the fracture treatment and pre-operative planning.
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(a) (b)

Figure 4.2: Visual depiction of the angular displacement values (α, β, γ) as represented
by the 3D Euler rotation.

Faint lines(blue, red and green): Fixed frame (aligned fragment).

Solid lines(blue, red and green): Frame under rotation (displaced fragment).

α: Angle between the z-axis (in red) of aligned fragment and displaced fragment.

β : Angle between the y-axis (in blue) of aligned fragment and displaced fragment.

γ : Angle between the x-axis (in green) of aligned fragment and displaced fragment.

The amount angular shift just describes the shift in axes and not the actual sequence
of relocation Figure [4.2b]. This thesis considers change in angular orientation as one
of the fracture measures to predict fracture severity.

These two displacement values are computed for every fragment of the seven frac-

ture cases. Their respective summation act as two di�erent fracture measures used

to predict severity of a fracture. Higher displacement value suggests higher fracture

severity.

4.2.2 Tissue Related Feature (Skewness Of Fracture Intensity Histogram)

Every fracture surface consists of 3D points, which are described by x, y, z coor-

dinates. Fracture surface intensity pro�le of a fragment can be explained as a record

of the intensity values at the points that lie on the fracture surface of that fragment.

The intensity value captured at fragment points in its virtually reconstructed fracture
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location inscribed in the intact template suggests whether they lie in cancellous or

cortical tissue regions of the bone. High intensity values indicate that the points lie

in locations of dense bone tissue (cortical) and smaller values indicate that they lie

in locations of low-density bone tissue (cancellous). If a majority of the observed

points are found to lie in high intensity regions, then the fragment was generated by

fracturing, i.e., separating, rigid and strong cortical tissue area. If the majority of

the observed points are found to lie in low intensity regions then the fragment was

generated by fracturing weaker cancellous tissues. This behavior can be captured

quantitatively by the statistical skewness of the histogram intensities observed as

shown in Figure 4.4a

Figure 4.3: Fracture plate (surface) of a fragment inscribed in intact DICOM space.
The fragment appears in green, the fracture plate appears in pink and its orientation
is inscribed in intact space (DICOM) space in pink.

A bone fragment is segmented into numerous surfaces by applying ridge walking

algorithm [43]. Every surface depicts a part of the surface of the bone, generated after

the bone is fractured. Few surfaces are selected based on their anatomic signi�cance,

by observing and comparing the surface with the reference template, and are merged

to form a single surface patch. The fracture surface is taken as the union of the

articular and fracture patches. Those surface patches remaining are merged into a

single periosteal (outer) surface patch which approximated the outer/intact surface

of the fragment prior to the fracture event.
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For every fragment, a group of fracture surfaces is rendered in the intact space to

give their precise orientation. The intensity values of the CT image that lie along the

fracture surface are obtained as shown in Figure 4.4b. These intensities are compiled

into a fracture surface intensity histogram for every fragment in a given fracture case.

Skewness of these histograms indicates the types of tissues sundered by the fracture

event and is explored as a fracture feature for predicting fracture severity(Figure 4.5).

This intensity pro�le (or histogram) of a fragment surface gives anatomic information

of the fracture which can be used to evaluate the extent of fracture.

(a) (b)

Figure 4.4: (a) shows the fracture plate (surface) histogram. (b) shows the frac-
ture plate surfaces of all fragments inscribed in intact space. The fragment and its
respective orientation is displayed in intact space in same colors.
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(a) (b)

Figure 4.5: Case 6: Fracture surface intensity histograms

Plots for every fragment in each case are generated, and required statistical data

is gathered in chapter 5. This statistical data gives an idea as to where the fracture

disruption is maximum, i.e., cancellous or cortical, which may be an e�ective predictor

for fracture severity.

4.2.3 Mechanical Features (Fracture Surface Area And Fracture Surface

Perimeter)

Fracture surfaces are generated when bone tissue breaks apart. Segmentation of the

images of the bone fragments provides an estimate of the unknown bone fragment

surfaces. The 3D model of a bone fragment is a mesh structure of triangles. The

fracture surface obtained by performing ridge walking algorithm segmentation on

this 3D model also results in a mesh, which is a subset of the parent bone fragment.

The fracture surface area for the fracture surface is obtained by summing up the area

of individual triangles. Given three vertices of a triangle V0, V1 and V2 it's area is

obtained by the cross product of it's edge vectors.

Accurate segmentations of the fracture surfaces is a crucial factor in the e�ective

use of fracture surface area and fracture surface perimeter as features for predicting

fracture severity. Overall, the accuracy of representation of a fracture surface depends
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on the selection of a fracture region done by applying ridge walking algorithmic or

by manually selecting a region. The accuracy can be increased by increasing the

points i.e., by representing the 3D model of fracture surface by a denser set of points.

Some patches are relatively smaller due to running segmentation algorithm multiple

times. This is a tedious process and may lead to over segmentation. To avoid this, a

contiguous surface patch can be obtained by manually selecting the region.

The perimeter of the entire fracture surface is an independent indicator to the

fracture severity. It is de�ned as the summation of the lengths of the peripheral edges

of a fracture surface, represented by pink border in Figure 4.6.

Figure 4.6: Fracture surface perimeter marked in pink

4.3 Linear Regression Analysis

In this section the performance of the computed fracture features is measured

by exploring the correlation between these features and fracture severity values as-

signed by orthopaedic surgeons using linear regression. In this regard, we consider the

goodness-of-�t as a measure of the feature performance and �t a line to (x, y) data

where x values are taken as computed values of some fracture feature and y values

are taken as fracture severity values assigned by the surgeons. The errors between the

estimated line of best �t y = mx+ b and the measured data is taken as an indicator

of how well the fracture feature predicts to fracture severity.
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4.4 Correlation: Accuracy Of Reconstruction Measure

Correlation coe�cient is a statistical tool to establish a degree of linear relation

between two sets of observation. This re�ects the similarity of nature between the sets

of values. The correlation can range from -1 to 1. Positive correlation states a directly

proportional relationship and negative correlation states an inverse relation. This is a

dimensionless quantity and thus does not depend on units. The mathematical formula

for correlation coe�cient is given by

r =
n
∑
xy − (

∑
x) (

∑
y)√

n (
∑
x2)− (

∑
x)2

√
n (

∑
y2)− (

∑
y)2

(4.3)

In this equation, x are the fragment intensity values of the points constituting a

fragment at a speci�c location in the DICOM space, y are the intensity values of the

same fragment at a di�erent location in the DICOM space and n is the number of

points present in the fragment. The value of correlation coe�cient(r) varies between

-1 < 0 < 1. Ranges for these values indicate speci�c relative trends for the values of

x and y as follows:

� Positive correlation: A strong positive 'r' suggests a linear relation i.e, as the

fracture intensity values for a particular fragment remains similar for x and y.

� Negative correlation: A strong negative 'r' suggests an inverse relation i.e,

as the fracture intensity values for a particular fragment changes drastically for

x and y.

In this thesis correlation is used to evaluate the accuracy of virtually reconstructed

bone. The accuracy of an aligned fracture fragment is evaluated by computing two

correlation values. Given the tissues of the intact template bone model, the tissues of

the bone fragment are correlated to those tissues in the same space, i.e., coincident

location, in the template model. Before reconstruction Figure 4.4a, the bone fragment

tissue will di�er from the tissues at coincident locations in the intact template bone
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model resulting in a low or possibly negative correlation. After reconstruction Figure

4.4a, the bone fragment tissue will be similar to the tissues at coincident locations

in the intact template bone model resulting in a highly positive correlation value. If

this trend is not observed one can hypothesize that the bone fragment alignment in

the intact template bone model may not be accurate.

The correlation value for the base fragment remains same for both the cases as the

position of the base fragment does not change in the intact space or fracture space.

Computing correlation can be made more robust by increasing the number of sample

points that represents a fragment volume.



CHAPTER 5: CLINICAL CASE-WISE RESULTS AND ANALYSIS

This chapter discusses seven clinical fracture cases. For each case, the proposed

�ve fracture features: (1) total fracture translational displacement, (2) total fracture

angular displacement, (3) skewness of fracture surface intensity pro�le, (4) total frac-

ture surface area and (5) total fracture surface perimeter are extracted. Typically

these features are extracted from each bone fragment of the case separately and their

values are subsequently merged by summing or averaging the feature values across

the bone fragments of the case. The cases and their respective fracture feature values

are tabulated and an initial discussion and case-speci�c analysis is provided. The

numbering of each fracture case and of the fragments within the case is kept con-

sistent with those assigned in a global fracture study database. This restriction on

numbering results in a non-sequential numbering of the cases.

5.1 Case 6: MVA 50mph

5.1.1 Feature 1 And 2: Total Translational And Angular Displacement Measure

Every fragment undergoes translational and angular displacement depending on

the direction and magnitude of the force responsible for generating the fracture. Fig-

ure 5.1(c) shows the fragment translational displacement in intact space and Figure

5.1(a) shows how far it lies from the reference template in the intact space. As ob-

served from the following table, frag10 undergoes high translational as well as angular

displacement while frag8 undergoes minimum angular and translational displacement.

The translational and angular displacement (α, β, γ) of all the fragments is added

respectively to get fracture measure values.
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Table 5.1: Case 6: Fracture fragment-based translational and angular displacement
values with the translational and angular fracture feature values indicated in bold.

Frag no. Translational

measure (mm)

α (o) β (o) γ(o) Total angular

displacement

(o)

frag10 13.01 27.6 48.24 45.52 121.3

frag11 14.9 30.43 21.3 21.7 73.43

frag12 4.32 12.64 24.48 25.02 62.14

frag13 7.7 25.06 42.05 48.78 115.29

frag15 0.31 6.43 9.66 7.97 24.06

frag17 14.05 41.48 19.59 45.36 106.43

frag5 0 0 0 0 0

frag65 12.40 59.65 62.39 29.51 151.55

frag7 15.39 34.72 17.24 31.46 83.42

frag8 1.01 11.08 7.12 9.32 27.52

Total 83.09 885.66 252.07 264.64 765.74

5.1.2 Feature 3: Skewness Of Fracture Surface Intensity Pro�le

The statistical data obtained from all the fragments in this case is tabulated in

Table 5.2. The skewness value evaluates the intensity distribution of the CT intensities

that occur at fracture surface points and provides a coarse indication of whether the

fracture surface passes through mostly cancellous tissues or mostly cortical tissues. A

positive skew value indicates higher presence of cancellous bone tissue on the fracture

surface and a negative skew value indicates a high presence of cortical bone tissue

(Table 5.2). The average skewness value for this case suggests a dominant cancellous

bone presence along the fracture surface. Since, the fracture surface points dominantly

lie in the cancellous bone (less dense) region, the severity of the fracture is suggested
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to be not very high.

Table 5.2: Case 6: Key parameters of the fracture surface intensity distribution
including skewness and other statistical data for fracture surface intensity pro�le.
The skewness fracture feature value is shown in bold.

Frag # mean median mode skewness std

Frag 10 -1419.9 -1484 -1496 2.32 303.00

Frag 11 -1247.1 -1401 -1736 1.09 460.16

Frag 12 -527.54 -460.50 -347 -0.70 308.73

Frag 13 -1477.1 -1500 -1498 1.29 211.02

Frag 15 -1042.6 -1147.5 -1281 1.40 299.59

Frag 17 -1537.1 -1510 -1504 0.12 125.14

Frag 5 -939.93 -1004 -1024 2.39 284.58

Frag 65 -1335.5 -1422 -1495 0.61 256.07

Frag 7 -1157.4 -1264 -1024 1.15 444.25

Frag 8 81.4206 166 191 -2.29 222.62

Average 0.738

5.1.3 Feature 4 and 5: Total Fracture Surface Area (FSA) And Total Fracture

Surface Perimeter (FSP)

Higher surface area indicates high disruption in the intact anatomy and thus a

higher severity. Table 5.3 tabulates the FSA and FSP values for all the fragments

involved in this case. Their total FSA and FSP are considered as fracture measures

to evaluate severity. These measures are shown in Table 5.29. Articular area and

articular perimeter is also computed in an e�ort to analyze the extent of fracture

severity. Higher articular damage suggests high fracture severity as articular damage

is known to cause signi�cant damage to joint structure and functionality. However,

they are not considered as separate fracture features as the are a part of FSA and
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FSP fracture features.

Table 5.3: Case 6: Fracture surface area and surface perimeter features are computed
for each fracture fragment. These values are summed to generate the case FSA and
FSP fracture feature values which are shown in bold.

Frag # FSA Articular

Area

Total FSA FSP Articular

perimeter

Frag 10 1562.09 666.26 2228.35 8031.73 3574.13

Frag 11 456.31 - 456.31 2360.34 -

Frag 12 124.57 - 124.57 614.61

Frag 13 2081.15 273.91 2355.06 10160.67 1462.11

Frag 15 161.42 - 161.42 841.93 -

Frag 17 1227.78 234.75 1462.53 8581.57 1277.09

Frag 5 698.32 - 698.32 3795.59 -

Frag 6 292.07 - 292.07 1445.42 -

Frag 7 1129.64 - 1129.64 5802.65 -

Frag 8 53.84 - 53.84 241.99 -

Total (10) 7787.19 1174.92 8962.11 41876.5 6313.33

5.1.4 Correlation: Accuracy Of Reconstruction Measure

After reconstruction, the aligned fragments must have a high agreement with re-

spect to their position in intact template. As expected, Table 5.4 shows an increase

in correlation, for all the fragments, after virtual reconstruction. Higher values of the

correlation coe�cients generally indicate a better quality in the geometric reconstruc-

tion.
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Table 5.4: Case 6: Correlation between the gray scale intensities at the fragment
positions in the intact and fracture DICOM, before and after the alignment.

Case 6 Correlation

Frag # No. of surface

points

Before align5.1(b),(c) After align5.1(c),(d)

Frag 10 8987 0.47 0.57

Frag 11 2373 0.12 0.72

Frag 12 594 0.12 0.64

Frag 13 9595 0.47 0.52

Frag 15 732 0.12 0.21

Frag 17 6168 0.31 0.39

Frag 5 16359 0.54 0.54

Frag 65 1515 0.13 0.24

Frag 7 5312 0.72 0.68

Frag 8 223 0.44 0.46
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(a)

(b) (c) (d)

Figure 5.1: Case 6: Correlation computation and evaluation. (a) shows a 3D vi-
sualization of the fracture case before reconstruction. (b) shows fragment contours
superimposed on an axial CT image of the intact bone template. The contours appear
far away from the intact bone suggesting signi�cant fragment displacement 5.1.1. (c)
shows fragment contours superimposed on an axial CT image of the fracture. The
contours of bone fragments coincide with the fragment surfaces in the CT suggesting
that the segmentation of these fragments is acceptable.(d) shows fragment contours
superimposed on an axial CT of the intact bone template. Here, the fragments have
been moved to reconstruct a model of the bone prior to the injury.

'Before Align' suggests correlation between Figure 5.1(b) and Figure 5.1(c). 'After

align' lists correlation between Figure 5.1(c) and Figure 5.1(d).

5.1.5 Analysis

As shown, even though the correlation numbers display a good virtual reconstruc-

tion of the fractured bone, the number of fragments and high displacement of a
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fragment with a large surface area indicate that this was a severe fracture involving

a large force. The extent of surface disruption of the articular joint surfaces indi-

cate that this case fracture will be predisposed to developing OA. Overall, fragment

displacement and large articular tissue rupture indicate severe fracture. It can be

inferred that this given case su�ered severe fracture.

5.2 Case 7: A 30 Foot Fall

5.2.1 Feature 1 and 2: Total Translational And Angular Displacement Measure

Figure 5.2(c) and Figure 5.2(a), depictvisually the degree of dispersion/translation

of the bone fragments. The large amount of dispersion observed visually is con�rmed

by the feature values shown in Table 5.5. Here one can see that fragment 4 (frag 4)

undergoes high translational as well as angular displacement while fragment 2 (frag

2) undergoes a small amount of angular and translational displacement.

Table 5.5: Case 7: Fracture fragment-based translational and angular displacement
values with the translational and angular fracture feature values indicated in bold.

Frag no. Translational

measure (mm)

α (o) β (o) γ (o) Total angular

displacement

(o)

Frag 1 0 0 0 0 0

Frag 2 8.82 16.46 16.44 19.02 51.92

Frag 3 8.04 26.98 26.21 28.88 82.07

Frag 4 18.17 127.45 71.75 141.04 340.24

Frag 5 15.14 102.76 73.42 130.23 306.41

Frag 6 12.95 63.83 57.13 62.14 183.1

63.12 337.48 244.95 381.31 963.74
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5.2.2 Feature 3: Skewness Of Fracture Surface Intensity Pro�le

The statistical data obtained from all the fragments in this case is tabulated in

Table 5.6. The skewness value evaluates the distribution of the fracture surface points

between cancellous region and cortical region. The average skewness value for this

case suggests a dominant cancellous bone presence along the fracture surface. Note

that frag4, frag5, frag6 are not visible in Figure 5.1 due to the fact that they are small

fragments that are internal to the bone, hence not visible from an exterior view.

Table 5.6: Case 7: Key parameters of the fracture surface intensity distribution
including skewness and other statistical data for fracture surface intensity pro�le.
The skewness fracture feature value is shown in bold.

Frag # mean median mode skewness std var

Frag 1 -1.1344e+03 -1101 -1024 1.2868 278.4192 7.7517e+04

Frag 2 -1.1389e+03 -1151 -1024 1.6197 333.5329 1.1124e+05

Frag 3 -1.1541e+03 -1141 -1024 0.6895 250.2770 6.2639e+04

Frag 4 -1.5057e+03 -1542 -1582 0.5584 119.4907 1.4278e+04

Frag 5 -1.5890e+03 -1595 -1627 0.5545 45.8385 2.1012e+03

Frag 6 -1.5616e+03 -1581 -1729 0.5500 144.1817 2.0788e+04

Average 0.87

5.2.3 Feature 4 and 5: Total Fracture Surface Area (FSA) And Total Fracture

Surface Perimeter (FSP)

Table 5.7 tabulates FSA and FSP values for all the fragments involved in this case.
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Table 5.7: Case 7: Fracture surface area and surface perimeter features are computed
for each fracture fragment. These values are summed to generate the case FSA and
FSP fracture feature values which are shown in bold.

Frag no. FSA Articular

Area

Total FSA FSP Articular

perimeter

Frag 1 2336.15 331.25 2667.4 25742.41 894.65

Frag 2 1941.06 100.59 2041.65 17991.76 984.73

Frag 3 959.45 93.28 1052.73 8187.37 950.24

Frag 4 651.13 103.03 754.16 4301.01 877.92

Frag 5 265.18 73.58 338.76 1611.64 751.69

Frag 6 94.09 - 94.09 408.79 -

6247.06 701.73 6948.79 58242.98 4459.23

5.2.4 Correlation: Accuracy Of Reconstruction Measure

For case 7, in Table 5.8 as expected, there is an increase in correlation after align-

ment, for all the fragments. Better alignment indicates better reconstruction.

Table 5.8: Case 7: Correlation between the gray scale intensities at the fragment
positions in the intact and fracture DICOM, before and after the alignment.

Case 7 Correlation

Frag # No. of surface

points

Before align 5.2 (b),

(c)

After align 5.2 (c), (d)

Frag 1 87844 0.59 0.59

Frag 2 34119 0.76 0.63

Frag 3 17970 0.73 0.84

Frag 4 4299 0.21 0.66

Frag 5 2716 0.03 0.83

Frag 6 325 0.66 0.80
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(a)

(b) (c) (d)

Figure 5.2: Case 7: Correlation computation and evaluation (a) shows a 3d visualiza-
tion of the misaligned fragments of case 7. (b) shows misaligned fragments' contour
inscribed in its intact template in DICOM. The fracture contours appear away from
the intact bone suggesting signi�cant fracture displacement. (c) shows misaligned
fragments' contour inscribed in its fracture DICOM image. The contours of frac-
ture fragments coincide with the fracture contours in DICOM suggesting acceptable
amount of accuracy in the inscription process. (d) shows fracture fragments' location
of 3d reconstructed model inscribed in an intact DICOM template.

'Before Align' suggests correlation between Figure 5.2(b) and Figure 5.2(c). 'After

align' lists correlation between Figure 5.2(c) and Figure 5.2(d).

5.2.5 Analysis

The correlation numbers display a good virtual reconstruction of the fractured

bone. With a medium number of fragments, the average translational displacement
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and large angular displacement this case suggests trauma that is less severe than case

6. Large angular displacements disturb local tissue structures dominantly in cancel-

lous region indicating long healing process. Overall, medium number of fragments,

fragment displacement and local tissue damage indicate medium severity fracture.

5.3 Case 8: MVA 30mph

5.3.1 Feature 1 and 2: Total Translational And Angular Displacement Measure

Figure 5.3(b) and Figure 5.3(d), gives a graphical reference to view the fragment

translational displacement in intact space. As observed from the following table, frag

5 undergoes high translational as well as angular displacement while frag 7 undergoes

minimum angular and translational displacement.

Table 5.9: Case 8: Fracture fragment-based translational and angular displacement
values with the translational and angular fracture feature values indicated in bold.

Frag no. Translational

measure

α(o) β(o) γ(o) Total angular

displacement

(o)

Frag 1 0 0 0 0 0

Frag 2 11.94 89.59 68.48 101.5 259.57

Frag 4 14.96 54.47 42.28 54.63 151.38

Frag 5 26.77 16.07 9.34 18.59 44

Frag 7 4.62 39.45 21.15 43.02 103.62

Frag 8 12.16 40.50 76.34 76.82 193.66

70.45 240.08 217.59 294.56 752.23

5.3.2 Feature 3: Skewness Of Fracture Surface Intensity Pro�le

The statistical data obtained from all the fragments in this case is tabulated in

Table 5.10. The average skewness value for this case suggests a dominant cancellous

bone presence along the fracture surface.
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Table 5.10: Case 8: Key parameters of the fracture surface intensity distribution
including skewness and other statistical data for fracture surface intensity pro�le.
The skewness fracture feature value is shown in bold.

Frag # mean median mode skewness std var

1 -982.5588 -1060 -1024 2.2816 311.2765 9.6893e+04

2 -421.1793 -579.5000 -1111 0.2384 673.8425 4.5406e+05

4 -396.0615 -302 -91 -0.0847 551.6681 3.0434e+05

5 -1.2201e+03 -1239 -1137 1.4273 357.2718 1.2764e+05

7 -1.1248e+03 -1169 -1197 1.7585 156.8803 2.4611e+04

8 -1.5003e+03 -1548 -1628 0.3733 175.9812 3.0969e+04

Average 0.99

5.3.3 Feature 4 and 5: Total Fracture Surface Area (FSA) And Total Fracture

Surface Perimeter (FSP)

Table 5.11 tabulates FSA and FSP values for all the fragments involved in this

case. Minimal presence of articular region can also be inferred from the table below.
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Table 5.11: Case 8: Fracture surface area and surface perimeter features are computed
for each fracture fragment. These values are summed to generate the case FSA and
FSP fracture feature values which are shown in bold.

Frag no. FSA Articular

Area

Total FSA FSP Articular

perimeter

Frag1 3192.78 - 3192.78 20673.64 -

Frag2 380.76 - 380.76 2362.82 -

Frag4 237.98 - 237.98 1462.23 -

Frag 5 2454.19 481.26 2935.45 16005.76 3017.42

Frag 7 132.76 - 132.76 856.91 -

Frag 8 1474.03 473.99 1948.02 9471.46 3295.80

7872.5 955.25 8827.75 50832.82 6313.22

5.3.4 Correlation: Accuracy Of Reconstruction Measure

From Table 5.12 for case 8, an increase is seen in correlation after alignment for all

the fragments. Better alignment indicates better reconstruction.

Table 5.12: Case 8: Correlation between the gray scale intensities at the fragment
positions in the intact and fracture DICOM, before and after the alignment.

Case 8 Correlation

Frag # No. of surface

points

Before align 5.3 (b),

(c)

After align 5.3 (b), (c)

Frag 1 29007 0.27 0.27

Frag 2 3105 0.05 0.47

Frag 4 1600 0.01 0.49

Frag 5 23779 0.10 0.18

Frag 7 945 0.14 0.06

Frag 8 11652 0.06 0.29
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'Before Align' suggests correlation between Figure 5.3(b) and Figure 5.3(c). 'After

align' lists correlation between Figure 5.3(c) and Figure 5.3(d). With decrease in total

number of points in the fragment, the correlation value gets a�ected. Thus, Frag 7

shows a decrease in its correlation value.

(a)

(b) (c) (d)

Figure 5.3: Case 8: Correlation computation and evaluation (a) shows a 3d visualiza-
tion of the misaligned fragments of case 8. (b) shows misaligned fragments' contour
inscribed in its intact template in DICOM. The fracture contours appear away from
the intact bone suggesting signi�cant fracture displacement. (c) shows misaligned
fragments' contour inscribed in its fracture DICOM image. The contours of frac-
ture fragments coincide with the fracture contours in DICOM suggesting acceptable
amount of accuracy in the inscription process. (d) shows fracture fragments' location
of 3d reconstructed model inscribed in an intact DICOM template.
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5.3.5 Analysis

The correlation numbers display a average quality of virtual reconstruction of the

fractured bone since maximum correlation value increase is ~0.5. With medium num-

ber of fragments, average translational displacement and large angular displacement

this case suggests a low force trauma. Large angular displacement disturbs the lo-

cal tissue structure, dominantly in cancellous region indicating long healing process.

Overall, medium number of fragments, fragment displacement, local tissue damage

indicate medium severity fracture.

5.4 Case 9: All-Terrain Vehicle Accident

5.4.1 Feature 1 and 2: Total Translational And Angular Displacement Measure

Figure 5.4(b) and Figure 5.4(d) gives a graphical reference to view the fragment

translational displacement in intact space. As observed from the following table,

frag 2 undergoes high translational whereas low angular displacement while frag3

undergoes large angular and low translational displacement.

Table 5.13: Case 9: Fracture fragment-based translational and angular displacement
values with the translational and angular fracture feature values indicated in bold.

Frag no. Translational

measure (mm)

α(o) β(o) γ(o) Total angular

displacement

(o)

Frag 1 0 0 0 0 0

Frag 2 4.2 8.03 7.08 5.38 20.49

Frag 3 3.52 20.06 8.22 20.72 49

7.72 28.09 15.3 26.1 69.49
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5.4.2 Feature 3: Skewness Of Fracture Surface Intensity Pro�le

The statistical data obtained from all the fragments in this case is tabulated in

Table 5.14. The skewness value suggests a dominant cancellous bone presence along

the fracture surface.

Table 5.14: Case 9: Key parameters of the fracture surface intensity distribution
including skewness and other statistical data for fracture surface intensity pro�le.
The skewness fracture feature value is shown in bold.

Frag # mean median mode skewness std var

Frag 1 -1.1951e+03 -1260 -1323 1.1054 394.6038 1.5571e+05

Frag 2 -1.3847e+03 -1442 -1690 1.3853 311.8241 9.7234e+04

Frag 3 -1.5650e+03 -1588 -1606 0.4521 150.9959 2.2800e+04

0.97

5.4.3 Feature 4 and 5: Total Fracture Surface Area (FSA) And Total Fracture

Surface Perimeter (FSP)

Table 5.15 tabulates FSA and FSP values for all the fragments involved in this

case.

Table 5.15: Case 9: Fracture surface area and surface perimeter features are computed
for each fracture fragment. These values are summed to generate the case FSA and
FSP fracture feature values which are shown in bold.

Frag no. FSA Articular

Area

Total FSA FSP Articular

perimeter

Frag 1 7712.39 86.30 7798.69 19542.56 601.34

Frag 2 3101.19 567.45 3668.64 13440.06 3850.30

Frag 3 1805.71 194.55 2000.26 8015.28 1175.52

12619.29 848.31 13467.59 40997.9 5627.17
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5.4.4 Correlation: Accuracy Of Reconstruction Measure

Similar to Case 6, an observation is drawn from Table 5.16 for case 9. As expected,

an increase is seen in correlation, for all the fragments, from scenario 1 to scenario 2.

Better alignment indicates better reconstruction.

Table 5.16: Case 9: Correlation between the gray scale intensities at the fragment
positions in the intact and fracture DICOM, before and after the alignment.

Case 9 Correlation

Frag # No.of surface

points

Before align5.4 (b), (c) After align5.4 (c), (d)

Frag 1 36046 0.54 0.54

Frag 2 15194 0.79 0.86

Frag 3 8324 0.68 0.89

'Before Align' suggests correlation between Figure 5.4(b) and Figure 5.4(c). 'After

align' lists correlation between Figure 5.4(c) and Figure 5.4(d).
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(a)

(b) (c) (d)

Figure 5.4: Case 9: Correlation computation and evaluation (a) shows a 3d visualiza-
tion of the misaligned fragments of case 9. (b) shows misaligned fragments' contour
inscribed in its intact template in DICOM. The fracture contours appear away from
the intact bone suggesting signi�cant fracture displacement. (c) shows misaligned
fragments' contour inscribed in its fracture DICOM image. The contours of frac-
ture fragments coincide with the fracture contours in DICOM suggesting acceptable
amount of accuracy in the inscription process. (d) shows fracture fragments' location
of 3d reconstructed model inscribed in an intact DICOM template.

5.4.5 Analysis

The correlation numbers display a very good quality of virtual reconstruction of the

fractured bone since maximum correlation value increase is ~0.88. With three large

size fragments and small translational and angular displacement this case suggests a

low force trauma. Overall, with almost 90% accurate reconstruction and very minimal

articular damage this fracture case can be inferred to be not very severe.
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5.5 Case 10: Fall 12 feet

5.5.1 Feature 1 and 2: Total Translational And Angular Displacement Measure

Figure 5.5(b) and Figure 5.5(d) gives a graphical reference to view the fragment

translational displacement in intact space. As observed from the following table, frag

5 undergoes high translational as well as angular displacement while frag 2 undergoes

minimum angular and translational displacement.

Table 5.17: Case 10: Fracture fragment-based translational and angular displacement
values with the translational and angular fracture feature values indicated in bold.

Frag no. Translational

measure (mm)

α(o) β(o) γ(o) Total angular

displacement

(o)

Frag 1 0 0 0 0 0

Frag 2 2.89 4.04 8.59 8.26 20.89

Frag 3 1.51 4.82 8.08 8.16 21.06

Frag 5 5.61 27.36 34.91 33.88 96.15

10.01 36.22 51.58 50.3 138.1

5.5.2 Feature 3: Skewness Of Fracture Surface Intensity Pro�le

The statistical data obtained from all the fragments in this case is tabulated in

Table 5.18. The skewness value suggests a dominant cancellous bone presence along

the fracture surface.
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Table 5.18: Case 10: Key parameters of the fracture surface intensity distribution
including skewness and other statistical data for fracture surface intensity pro�le.
The skewness fracture feature value is shown in bold.

Frag # mean median mode skewness std var

Frag 1 -396.9180 -647 -1024 0.2556 599.4591 3.5935e+05

Frag 2 -649.6017 -844.5000 -1014 1.3683 476.1138 2.2668e+05

Frag 3 -493.0478 -772 -1024 0.6778 526.7173 2.7743e+05

Frag 4 -922.9415 -934 -1024 1.5384 312.4488 9.7624e+04

Average 0.97

5.5.3 Feature 4 and 5: Total Fracture Surface Area (FSA) And Total Fracture

Surface Perimeter (FSP)

Table 5.19 tabulates FSA and FSP values for all the fragments involved in this

case.

Table 5.19: Case 10: Fracture surface area and surface perimeter features are com-
puted for each fracture fragment. These values are summed to generate the case FSA
and FSP fracture feature values which are shown in bold.

Frag no. FSA Articular

Area

Total FSA FSP Articular

perimeter

Frag 1 3717.74 - 3717.74 13138.49 -

Frag 2 7042.83 567.99 7610.82 31580.42 3120.53

Frag 3 2991.58 - 2991.58 15062.89 -

Frag 5 4210.26 340.52 4550.78 17961.77 1928.67

17962.41 908.51 18870.92 77743.58 5049.20

5.5.4 Correlation: Accuracy Of Reconstruction Measure

From Table 5.20 for case 10, as expected, an increase is seen in correlation for all

the fragments, after alignment. Better alignment indicates better reconstruction.
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Table 5.20: Case 10: Correlation between the gray scale intensities at the fragment
positions in the intact and fracture DICOM, before and after the alignment.

Case 10 Correlation

Frag # No. of surface

points

Before align5.5 (b), (c) After align5.5

(c), (d)

Frag 1 20299 0.59 0.59

Frag 2 36385 0.25 0.38

Frag 3 14388 0.35 0.61

Frag 4 18255 0.31 0.47

(a)

(b) (c) (d)

Figure 5.5: Case 10: Correlation computation and evaluation (a) shows a 3d visu-
alization of the misaligned fragments in case 10. (b) shows misaligned fragments'
contour inscribed in its intact template in DICOM. The fracture contours appear
away from the intact bone suggesting signi�cant fracture displacement. (c) shows
misaligned fragments' contour inscribed in its fracture DICOM image. The contours
of fracture fragments coincide with the fracture contours in DICOM suggesting ac-
ceptable amount of accuracy in the inscription process. (d) shows fracture fragments'
location of 3d reconstructed model inscribed in an intact DICOM template.
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'Before Align' in correlation between Figure 5.5(b) and Figure 5.5(c), i.e., intensities

of misaligned fracture point position in intact and fracture DICOM. 'After align' lists

correlation between Figure 5.5(c) and Figure 5.5(d).

5.5.5 Analysis

The correlation numbers display a very good quality of virtual reconstruction of

the fractured bone since maximum correlation value increase is ~0.65. With large size

fragments and small translational and angular displacement this case suggests a low

force trauma. Overall, with almost 70% accurate reconstruction and very minimal

articular damage this fracture case can be inferred as not very severe.

5.6 Case 11: Fall 18 Feet

5.6.1 Feature 1 and 2: Total Translational And Angular Displacement Measure

Figure 5.6(b) and Figure 5.6(d) gives a graphical reference to view the fragment

translational displacement in intact space. As observed from the following table, frag2

undergoes minimum angular and translational displacement.
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Table 5.21: Case 11: Fracture fragment-based translational and angular displacement
values with the translational and angular fracture feature values indicated in bold.

Frag # Translational

measure (mm)

α(o) β(o) γ(o) Total angular

displacement

(o)

Frag 1 0 0 0 0 0

Frag 10 10.31 24.16 17.02 27.54 68.72

Frag 2 2.39 2.21 6.22 6.59 15.02

Frag 4 7.56 26.55 29.88 26.05 82.48

Frag 5 6.53 20.17 20.27 16.41 56.85

Frag 6 8.57 30.15 16.66 29.29 76.1

Frag 8 7.52 13.87 11.92 7.38 33..17

Frag 9 8.05 37.28 15.00 39.93 92.21

52.27 154.41 116.97 153.19 362.55

5.6.2 Feature 3: Skewness Of Fracture Surface Intensity Pro�le

The statistical data obtained from all the fragments in this case is tabulated in

Table 5.22. The skewness value suggests a dominant cortical bone presence along the

fracture surface.
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Table 5.22: Case 11: Key parameters of the fracture surface intensity distribution
including skewness and other statistical data for fracture surface intensity pro�le.
The skewness fracture feature value is shown in bold.

Frag # mean median mode skewness std var

Frag 1 -12.309 -73 -81 1.78 200.77 4.0310e+04

Frag 10 -451.9138 -416 -743 0.1005 226.50 5.1304e+04

Frag 2 65.269 -25 -166 0.899 258.06 6.6598e+04

Frag 4 -259.94 -222 -166 -0.6804 208.5734 4.3503e+04

Frag 5 -363.4124 -308 -341 -0.2055 259.036 6.7100e+04

Frag 6 -438.4335 -356 -319 -0.7821 172.9495 2.9912e+04

Frag 8 -323.1215 -237 -166 -0.4500 307.9565 9.4837e+04

Frag 9 -525.5003 -478 -265 -1.1139 258.6549 6.6902e+04

Average -0.06

5.6.3 Feature 4 and 5: Total Fracture Surface Area (FSA) And Total Fracture

Surface Perimeter (FSP)

Table 5.23 tabulates FSA and FSP values for all the fragments involved in this

case.
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Table 5.23: Case 11: Fracture surface area and surface perimeter features are com-
puted for each fracture fragment. These valeus are summed to generate the case FSA
and FSP fracture feature values which are shown in bold.

Frag # FSA Articular

Area

Total FSA FSP Articular

perimeter

Frag 1 5123.81 - 5123.81 31465.78 -

Frag 10 616.72 28.22 644.94 4138.16 244.13

Frag 2 3307.45 - 3307.45 21943.04 -

Frag 4 5535.61 115.38 5650.99 36287.29 1020.82

Frag 5 1079 - 1079 7800.56 -

Frag 6 1229.24 132.73 1361.97 6292.47 1139.71

Frag 8 3933.73 321.69 4255.42 23223.59 2822.30

Frag 9 2340.51 204.16 2544.67 18017.42 1713.146

23166.07 802.18 23968.25 149168.3 6940.106

5.6.4 Correlation: Accuracy Of Reconstruction Measure

From Table 5.24 for case 11. As expected, an increase is seen in correlation, for all

the fragments, after alignment. Better alignment indicates better reconstruction.
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Table 5.24: Case 11: Correlation between the gray scale intensities at the fragment
positions in the intact and fracture DICOM, before and after the alignment.

Case 11 Correlation

Frag # No. of surface

points

Before align5.6 (b), (c) After align5.7 (c), (d)

Frag 1 39160 0.73 0.73

Frag 10 4305 0.30 0.79

Frag 2 20307 0.71 0.76

Frag 4 33488 0.40 0.59

Frag 5 7045 0.42 0.70

Frag 6 5548 0.54 0.69

Frag 8 30423 0.44 0.66

Frag 9 16476 -0.28 0.11
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(a)

(b) (c) (d)

Figure 5.6: Case 11: Correlation compuation and evaluation (a) shows a 3d visualiza-
tion of the misaligned fragments in case 11. (b) shows misaligned fragments' contour
inscribed in its intact template in DICOM. The fracture contours appear away from
the intact bone suggesting signi�cant fracture displacement. (c) shows misaligned
fragments' contour inscribed in its fracture DICOM image. The contours of frac-
ture fragments coincide with the fracture contours in DICOM suggesting acceptable
amount of accuracy in the inscription process. (d) shows fracture fragments' location
of 3d reconstructed model inscribed in an intact DICOM template.

'Before Align' in correlation between Figure 5.6(b) and Figure 5.6(c), i.e., intensities

of misaligned fracture point position in intact and fracture DICOM. 'After align' lists

correlation between Figure 5.6(c) and Figure 5.6(d).
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5.6.5 Analysis

The correlation numbers display a very good quality of virtual reconstruction of

the fractured bone since maximum correlation value increase is ~0.80. With large

translational and angular displacement, this case suggests a high force trauma. Al-

though, with almost 80% accurate reconstruction and very minimal articular damage,

with large number of fragments and dominant cortical damage this fracture case can

be considered as severe .

5.7 Case 12: All-Terrain Vehicle Accident

5.7.1 Feature 1 and 2: Total Translational And Angular Displacement Measure

Figure 5.7(b) and Figure 5.7(d) gives a graphical reference to view the fragment

translational displacement in intact space. As observed from the following table,

frag5 undergoes low translational and high angular displacement suggesting localized

rotational displacement.

Table 5.25: Case 12: Fracture fragment-based translational and angular displacement
values with the translational and angular fracture feature values indicated in bold.

Frag # Translational

measure (mm)

α(o) β(o) γ(o) Total angular

displacement

(o)

Frag 1 0 0 0 0 0

Frag 2 6.14 10.44 12.92 12.61 35.97

Frag 3 3.37 5.64 14.74 13.63 34.01

Frag 4 4.30 3.78 4.13 5.44 13.35

Frag 5 1.9 67.03 42.79 80.35 190.17

15.71 86.89 74.58 112.03 273.5
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5.7.2 Feature 3: Skewness Of Fracture Surface Intensity Pro�le

The statistical data obtained from all the fragments in this case is tabulated in

Table 5.26. The skewness value suggests a dominant cancellous bone presence along

the fracture surface.

Table 5.26: Case 12: Key parameters of the fracture surface intensity distribution
including skewness and other statistical data for fracture surface intensity pro�le.
The skewness fracture feature value is shown in bold.

Frag # mean median mode skewness std var

Frag 1 -1.0905e+03 -1137 -1024 2.4210 235.5147 5.5467e+04

Frag 2 -1.0430e+03 -1099 -1024 1.9982 298.7278 8.9238e+04

Frag 3 -1.2687e+03 -1293 -1399 1.0533 133.9976 1.7955e+04

Frag 4 -812.7879 -937 -1024 1.5247 317.0797 1.0054e+05

Frag 5 -1.1633e+03 -1148 -1216 -0.2663 132.5000 1.7556e+04

Average 1.3

5.7.3 Feature 4 and 5: Total Fracture Surface Area (FSA) And Total Fracture

Surface Perimeter (FSP)

Table 5.27 tabulates FSA and FSP values for all the fragments involved in this

case.



62

Table 5.27: Case 12: Fracture surface area and surface perimeter features are com-
puted for each fracture fragment. These valeus are summed to generate the case FSA
and FSP fracture feature values which are shown in bold.

Frag # FSA Articular

Area

Total FSA FSP Articular

perimeter

Frag 1 6484.86 158.90 6643.76 14269.45 857.08

Frag 2 1478.39 207.20 1685.59 9694.12 1108.41

Frag 3 1244.11 173.46 1417.57 6574.93 737.02

Frag 4 575.31 - 575.31 3212.02 -

Frag 5 164.05 - 164.05 981.29 -

9946.72 539.56 10486.28 34731.81 2702.51

5.7.4 Correlation: Accuracy Of Reconstruction Measure

From Table 5.28 for case 12. As expected, an increase is seen in correlation, for all

the fragments, after alignment. Better alignment indicates better reconstruction.

Table 5.28: Case 12: Correlation between the gray scale intensities at the fragment
positions in the intact and fracture DICOM, before and after the alignment.

Case 12 Correlation

Frag # No. of surface

points

Before align5.7 (b), (c) After align5.7

(c), (d)

Frag 1 34751 0.57 0.57

Frag 2 9035 0.19 0.48

Frag 3 8491 0.46 0.29

Frag 4 2241 0.07 0.59

Frag 5 470 -0.08 0.04
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(a)

(b) (c) (d)

Figure 5.7: Case 12: Correlation computation and evaluation (a) shows a 3d vi-
sualization of the misaligned fragments. (b) shows misaligned fragments' contour
inscribed in its intact template in DICOM. The fracture contours appear away from
the intact bone suggesting signi�cant fracture displacement. (c) shows misaligned
fragments' contour inscribed in its fracture DICOM image. The contours of frac-
ture fragments coincide with the fracture contours in DICOM suggesting acceptable
amount of accuracy in the inscription process. (d) shows fracture fragments' location
of 3d reconstructed model inscribed in an intact DICOM template.

5.7.5 Analysis

The correlation numbers display a average quality of virtual reconstruction of the

fractured bone since maximum correlation value increase is ~0.60. With average

translational and angular displacement this case suggests a average force trauma.

Overall, with almost 60% accurate reconstruction and very minimal articular damage,

this fracture case can be considered as medium severe.
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5.8 Cases And Feature Values

Following table lists various features and their values obtained for every case.

Table 5.29: Condensed matrix where, α, β, γ are angular displacements; FSA is
surface area; FSP is surface perimeter; Art% is articular percentage in the fracture;
Corr is correlation; Trans is translational motion; skewness is the intensity histogram
skewness; N is number of fragments.

Case Angle FSA FSP Art% Corr Trans Skewness N

6 765.4 8962.11 48189 13 0.48 83.09 0.73 10

7 963.4 6948.79 62701 10 0.50 63.12 0.87 6

8 752.23 8827.75 57145 10 0.26 70.45 0.99 6

9 69.49 3467.59 46624 24 0.76 7.72 0.97 3

10 138.1 18870.92 82792 4 0.51 10.01 0.95 4

11 362.5 2544.67 156108 3 0.62 52.27 -0.06 8

12 273.5 10486.28 37433 5 0.39 15.71 1.13 5

This thesis uses the fracture feature values extracted above (in bold) and eval-

uates them based on their performance when used to predict the clinical fracture

severityeach of these fracture cases.



CHAPTER 6: FRACTURE SEVERITY PREDICTIVE PERFORMANCE FOR

SELECTED FRACTURES

This chapter evaluates the performance of the �ve selected fracture feature values

for predicting fracture severity. The values of these features were extracted from 3D

CT image data of seven clinical fracture cases using a computational fracture recon-

struction system and several custom built functions to tabulate the speci�c features

of interest. Here, the performance of these features for the purpose of predicting

fracture severity is analyzed by comparing the feature values against KL-scores and

overall severity values assigned to these cases by practicing orthopaedic surgeons [57].

6.1 Linear Regression Analysis

Linear regression hypothesizes that a linear relationship exists between a scalar

dependent variable, Y , and a second explanatory variable, X. Analysis is done by

performing linear regression, i.e., computing a linear �t between the X and Y values

under the assumption that these values are related by the equation Y = mX+b, where

both the slope of the line, m, and the Y − axis intercept b are unknown. For per-

formance analysis, the Y values are taken as severity scores assigned by orthopaedic

surgeons and X values are taken as the values of a fracture feature. Estimates for the

unknownsm and b are obtained by computing the least-squares �t between the (X, Y )

data points as indicated in equation [4.2] where alpha = [m, b]t, Y =



Y0

Y1
...

YN−1


and
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M =



X0 1

X1 1

...
...

XN−1 1


for a set of N (X, Y ) pairs of measured data. The error is taken

as the absolute di�erence between the measured Y values and the Y values that lie

on the best-�t line as indicated in 6.2.

α = inv(M t ∗M) ∗M t ∗ Y ) (6.1)

absError = abs(Y t −M ∗ α) (6.2)

6.2 Total Fracture Fragment Translational And Orientation Change Measure

The displacement of every fragment in each case is studied and total translation

and total orientation in (α, β, γ) are taken as parameters to independently predict

fracture severity for every case. Linear �t error is computed with respect to overall

severity and KL score for all the cases.
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Table 6.1: Best-�t error computation for total translation and total orientation fea-
tures for all fractures cases.

Case # Total

Trans-

lational

Total

Orienta-

tion

Linear

Best-Fit

Error

(Transla-

tion Vs

Savg)

Linear

Best-Fit

Error

(Transla-

tion Vs

KL)

Linear

Best-Fit

Error

(Orien-

tation

Vs Savg)

Linear

Best-Fit

Error

(Orien-

tation

Vs KL)

6 83.09 1401.7 12.9 1.8 9 0.8

7 63.12 962.4 4.4 0.8 2.2 0.9

8 70.45 751.3 9.7 0.6 19.9 1.3

9 7.72 69.5 13.39 1.2 22.2 1.9

10 10.01 138.1 26.4 1.7 17.3 0.2

11 52.27 273.7 16.2 1.2 26.6 0.8

12 15.71 272.8 21.5 1.4 30.3 2.6

Total 104.4 8.0 127.3 8.5

Table 6.2: Correlation coe�cient (R) comparison between displacement parameters
and average overall ranking and KL score.

R Overall severity KL-score

Translation 0.68 0.28

Orientation 0.55 0.25
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Figure 6.1: Linear �tting translational displacement to average overall severity (Savg)
and KL score.
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(a) Graph for total orientationVs Savg-Linear �t.

(b) Graph for total orientationVs KL-Linear �t.

Figure 6.2: Linear �tting total orientation to average overall severity (Savg) and KL
score.
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6.3 Skewness Of Fracture Surface Intensity Pro�le

Histogram of intensity values of a virtually reconstructed fracture surface are plot-

ted in intact space and di�erent statistics like mean, median, mode, skewness and

standard deviation are calculated Table 6.2a. The histograms are computed for every

fragment of the case and then averaged to obtain a single value. Out of these statis-

tical parameters skewness is taken as an indicator of the extent of fracture severity.

Table 6.3: Fracture measure: Skewness.

(a) Best �t error computation of skewness values for all the cases.

Case # mean median mode skewness std Skewness

Best-Fit

Error

(Savg)

Skewness

Best-Fit

Error (KL)

6 -1059 -1102 -1121 0.738 291.2 10.8 0.38

7 -1346 -1351 -1335 0.87 194 1.38 1.5

8 -940 -982 -1031 0.995 370 17.88 1.6

9 -1381 -1430 -1539 0.97 285 32.8 2.4

10 -615 -799 -1021 0.95 478 11.4 0.54

11 -288 -264 -280 -0.06 236 25.11 1.5

12 -1075 -1122 -1137 1.308 223 33.8 2.4

Total 132.6 10.2

(b) Correlation coe�cient comparison between the skewness and overall severity and KL

score.

R Overall severity KL score

Skewness -0.52 -0.63

Skewness values listed in Table 6.2a are correlated with their KL-score and overall
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severity values and result is in Table 6.2b. Negative correlation values in Table 6.2b

reveal that the negative skew value is an indication of higher severity. Negative

skewness indicates presence of large number of fracture points in the denser region

or the cortical region. A fracture that causes damage to the denser bone can be

considered as severe due to the account of the high energy involved in breaking apart

a denser bone. As perceived, the fracture to cortical bone indicates high intensity

fracture Table 6.3b.

This observation is also validated by observing linear �t polynomial between scores

and skewness values as shown in Figure 6.3. The inverse relation in the graphs indicate

that negative skewness evaluates to higher severity.
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Figure 6.3: Linear �tting skew values to KL and Average overall severity.

This stresses on the fact that severity mostly depends on the cortical damage than

cancellous bone.

6.4 Total Fracture Surface Area And Total Fracture Surface Perimeter

The fracture surface area for every fragment in the case is computed and then

added to get a total fracture surface area value. Conceptually, fracture surface area is

expected to be a predictor of fracture severity because the surface area generated by

the fracture is directly proportional to the force responsible for the fracture. Larger
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force result in larger fracture surface hence higher severity. Similar logic applies for

fracture surface perimeter computation.

Table 6.4: Total FSA and FSP.

(a) Total FSA and FSP for all fracture cases.

Case

#

FSA FSP Best-Fit

Error

(FSA Vs

Savg)

Best-Fit

Error

(FSA Vs

KL)

Best-Fit

Error

(FSP Vs

Savg)

Best-Fit

Error

(FSP Vs

KL)

6 8962 41876 12.4 0.32 15.6 0.42

7 6948 58242 13.7 0.41 8.1 1.2

8 8827 50832 28.6 2.02 28.6 2.33

9 3467 40997 18.5 1.1 24.0 2.18

10 18870 77743 2.9 1.00 4.6 0.80

11 23968 149168 0.69 0.39 7.1 0.27

12 10486 34731 34.0 2.2 25.9 2.0

Total 110.79 7.3 113.9 9.0

(b) Correlation coe�cient (R) comparison between fracture surface parameters and average

overall severity and KL score.

R Overall

severity

KL-score

FSA 0.49 0.59

FSP 0.56 0.68

Fracture surface area (FSA) and fracture surface perimeter (FSP) act as an inde-

pendent measure for predicting fracture severity. The direct relation in the following

graphs indicate that higher FSA and FSP evaluates to higher fracture severity.
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Figure 6.4: Linear �tting fracture surface area to KL and Average overall severity.



75

0 2 4 6 8 10 12 14 16

x 10
4

20

40

60

80

100

Fracture surface length

A
v
e

ra
g

e
 o

v
e

ra
ll 

s
e

v
e

ri
ty

(0
−

1
0

0
)

 

 

 
y = 0.00034*x + 26

Data

Linear fit

Y=f(X)
linear evaluation

39

45.6
42.6

78.9

47.5
54.2

42.1

(a) FSP Vs Savg-Linear �t.

0 2 4 6 8 10 12 14 16

x 10
4

−1

0

1

2

3

4

5

Fracture surface length

K
e

llg
re

n
−

L
a

w
re

n
c
e

 s
c
o

re

 

 

 
y = 3.1e−05*x − 0.33

Data

Linear fit

Y=f(X)
linear evaluation

1.17

1.45

1.12
0.83

1.63

2.25

4.5

(b) FSP Vs KL score-Linear �t.

Figure 6.5: Linear �tting fracture surface length to KL and Average overall severity.

6.5 Best-Fit Error Analysis

For each fracture feature, the best-�t error is taken as the total error observed

between the best-�t line and the fracture severity values assigned to each case by the

orthopaedic surgeons. Low total error indicates that a feature is a better predictor of

the fracture severity assigned by the orthopaedic surgeons. Feature values are plotted

against clinically-assigned fracture severity scores and linear �t that hypothesizes a

linear correlation between the computed feature values and the clinically-assigned
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fracture severity scores. The slope of the �t line indicates whether the feature is

positively or negatively correlated to the clinically-assigned feature values. Apart

from skewness, all other features bear a positive correlation to clinically-assigned

severity scores. Using this metric, the translational displacement fracture feature

shows the least total �t error.

6.6 Correlation

The correlation obtained between the intensities of aligned fracture fragments in

the intact and the fracture DICOM templates is used as a measure of reconstruction

accuracy. For each case, the correlation of intensity values between the intact bone

intensities and the reconstructed bone fragment intensities is computed as a mea-

sure of reconstruction accuracy for that case. The correlation is computed for each

fragment and then averaged over all fragments as indicated in (6.3) below

Ravg =

N∑
i=1

ρi

N
(6.3)

where N denotes number of fracture fragments and ρi denotes correlation value of a

fragment in a fracture case, value of i goes from 1 to N . For this measure, higher

values indicate that the reconstruction solution includes a better alignment of the

bone fracture fragments. Better alignment imply better reconstruction and thus cor-

relation values are positive as shown in equation [6.3] Table 6.4a. Complex fractures

have larger reconstruction error and are prone to having less accurate fracture feature

values. Cases 6, 8 and 12 show lower correlation values indicating that their recon-

struction may be less accurate than other reconstructions. Table 5.29 shows that

cases 6, 8 and 12 are all severe fractures with high translation, FSA and FSP feature

values. These cases also have a large number of fragments which make reconstruction

more complex and indicates that the quality of the reconstruction degrades for more

severe fractures.
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Table 6.5: Correlation comparison between the gray scale intensities at the fragment
positions in the intact and fracture DICOM, after the alignment.

(a) Average correlation.

Case # 6 7 8 9 10 11 12

Correlation in aligned

position of fragments

0.48 0.50 0.29 0.76 0.51 0.62 0.39

(b) Correlation coe�cient comparison: correlation vs overall severity/ KL score.

Overall severity (Savg) KL

score

(KL)

R (correlation) -0.33 -0.24

R > 0.50 -0.71 -0.63

Correlation values are correlated with their KL-score and overall severity values

Table 6.4b. As shown, correlation is inversely proportional to severity scores. Thus,

higher correlation value suggests better reconstruction and lower fracture feature

values; lower fracture feature values imply lower fracture severity.

6.7 Summary

Sections 6.2 - 6.4 elaborate on the best �t errors computed for all �ve fracture

features. For every feature the error (or disturbance) of an observed value is the

deviation of the observed value from the true function value (linear equation). This

statistical error is based of the entire population of the data set, i.e, the fracture

values considered for computing linear error.



CHAPTER 7: CONCLUSION

This thesis proposes �ve new fracture features and provides an initial analysis that

indicates the performance of these features for automatic fracture severity assessment.

Linear best-�t errors are computed between the computed feature values and severity

assessment values provided by orthopaedic surgeons for seven clinical fracture cases.

The performance score for each fracture feature is taken as the total error observed

between the best-�t regression model and the fracture severity values assigned to each

case by the surgeons. For the fracture features analyzed and the performance metric

adopted the translational displacement fracture feature was found to have the highest

predictive performance.
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