
ENGINEERING CHARACTERIZATION OF WASTE DERIVED GEOPOLYMER 

CEMENT CONCRETE FOR STRUCTURAL APPLICATIONS 

 

 

 

by 

 

Brett Tempest 

 

 

 

 

A dissertation submitted to the faculty of 

The University of North Carolina at Charlotte 

in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy in 

Infrastructure and Environmental Systems 

 

Charlotte 

 

2010 

 

Approved by:  

 

 

       _______________________ 

Dr. Janos Gergely 

 

       _______________________ 

       Dr. Rajaram Janardhanam   

 

       _______________________ 

       Dr. Helene Hilger  

 

       _______________________ 

       Dr. Vincent Ogunro  

 

       _______________________ 

Dr. Jeff Ramsdell 

 

       _______________________ 

       Dr. David Weggel 



 

 

ii 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2010 

Brett Tempest 

ALL RIGHTS RESERVED 

 



 

 

iii 

iii 

ABSTRACT 

 

 

BRETT TEMPEST.  Engineering characterization of waste derived geopolymer cement 

concrete for structural applications.  (Under direction of DR. JANOS GERGELY) 

 

 

Geopolymer cements provide an alternative to the Portland cement used to 

manufacture structural concrete.  The material commonly used to produce geopolymers is 

fly ash, which is found in the waste stream of power generation facilities.  Therefore, 

replacing Portland cement with geopolymer cement improves the sustainability of 

concrete by reducing emissions and diverting waste from landfils.  In this study, 

geopolymer cements were used to create concrete having compressive strength in the 

range of 5,000 to 12,000 psi (34-83 MPa).  The mechanical properties of these concretes 

were evaluated to determine the compressive, tensile and elastic behaviors.  Durability 

tests were also performed to assess creep and shrinkage characteristics.  Prestressed and 

mild steel reinforced beams were made with the geopolymer cement concrete (GCC) and 

were tested to failure.  The results of these flexural tests were used to confirm the 

applicability of traditional concrete design criteria and techniques.  The GCC was found 

to perform in a similar manner to Portland cement concrete and the efficacy of existing 

design formulations was verified with small changes to some design values.  Finally, the 

processes and materials used to prepare the concretes were used to make a preliminary 

lifecycle assessment to verify the sustainability gains of GCC.  Reduced energy use and 

emissions generation were confirmed. 
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CHAPTER 1:  INTRODUCTION 

 

 

1.1 Background 

Concrete is one of the most ubiquitous construction materials in the world due to 

its durability, flexibility and economy.  The latter two of these features arise from the 

ability of concrete producers to incorporate a variety of source materials, while still 

guaranteeing suitable structural performance.  For instance, the aggregates used in 

concrete vary widely from granitic to calciferous materials depending on the geology 

local to the production site.  The cementitious constituents also tend to be locally 

produced from materials that are available in proximity to the cement mill.  Because of 

this tradition of local production and flexibility in the nature of source materials, concrete 

could become one of the most sustainable construction materials available.  However, 

even with modern production techniques it is extremely energy and emissions intensive 

to manufacture. 

The production of Portland cement for concrete is becoming an unattractive 

industrial process as concern mounts over energy use and greenhouse gas production.  In 

order to manufacture Portland cement, limestone is heated in a kiln until CaCO3 is 

reduced to CaO.  This results in the release of one molecule of CO2 for every molecule of 

CaO produced as well as an assortment of greenhouse gasses originating from the 

combustion of fuels used to heat the kiln.  In total, 0.8 tons of CO2 are released for every 

ton of cement produced (Gartner, 2004).  The manufacture of cement accounts for at least 
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7% of worldwide greenhouse gas generation on an annual basis (Chindaprasirt et al., 

2007). 

Two existing strategies to reduce the energy and greenhouse gas intensiveness of 

concrete use are to seek alternate energy sources for heat generation during cement 

manufacture and to reduce the quantity of Portland cement required to mix concrete of 

various strengths.  For instance, waste solvents and tires have been used in place of oil 

and natural gas in the kilns as energy sources.  Research and practice have also shown 

that up to 35% of the cement can be replaced by the pozzolan, fly ash (ACI, 2003). 

While the inclusion of fly ash represents some progress towards ―green‖ concrete, 

the energy intensiveness of Portland cement remains a major impediment to true 

sustainability.  However, despite the problems with Portland cement, concrete has an 

institutionalized role in economical construction and does provide many positive 

environmental features such as durability, recycleability and thermal mass.  A new 

material, geopolymer cement, appears to be an alternative to Portland cement that can 

continue to provide concrete, but with a reduction in carbon dioxide.   

As acceptance of global climate change grows, the motives for reducing 

greenhouse gas emissions are becoming imperatives for businesses.  Limits to greenhouse 

gas production in the form of economic penalties are already appearing on the regulatory 

horizons for industrial emitters.  Geopolymers could provide a solution to the challenges 

of manufacturing Portland cement (Duxson et al., 2007b). 

1.2 Geopolymers 

The term ―geopolymer‖ was instituted by Davidovits (1991)following research 

into inorganic-polymer technologies for industrial applications.  Geopolymers are formed 
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when alumino-silicates dissolve in a strong base, reorganize and precipitate in a hardened 

state (Davidovits, 1991; Duxson et al., 2007a).  They can have properties very similar to 

Portland cement when formed under suitable conditions (Sofi et al., 2007b).  

Geopolymers have been manufactured from industrial wastes, such as blast furnace slag, 

for more than 60 years and are also often referred to as alkali-activated cements or 

inorganic polymer cements (Duxson et al., 2007a).  Many researchers have produced 

geopolymer paste with kaolinite and metakaolinite as a source material of aluminates and 

silicates (Alonso and Palomo, 2001; Xu and Van Deventer, 2002). Construction silt and 

industrial waste products have also been successfully used (Lampris et al., 2009).  Slavik 

et al. (2008) produced geopolymer material that attained structural strength with coal 

bottom ash and demonstrated its durability with freeze-thaw tests as well as wet-dry tests.  

However, the bulk of research into the use of industrial waste in geopolymer cements has 

centered on pulverized fuel ash or fly ash due to its wide and plentiful availability 

(Andini et al., 2008; Buchwald and Schulz, 2005; Duxson et al., 2007a; Duxson et al., 

2007b; Jo et al., 2007; Palomo et al., 1999; Roy, 1999; Sun, 2005; van Deventer et al., 

2007).     

Of the more than 70 million tons of fly ash produced in the United States in 2006, 

much less than half was used; the remainder entered the waste stream.  The southeast 

alone produced more than 30 million tons (American Coal Ash Association, 2007).  

Landfilling fly ash has been shown to have negative environmental consequences, 

including leaching toxic compounds and heavy metals into groundwater.  The use of fly 

ash as an alumino-silicate source material for geopolymer gives rise to many 

environmental benefits.  Not only does it eliminate the pollution problems associated 
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with Portland cement production, it relieves the burden of safely disposing of fly ash 

(Roy, 1999).   

1.3 A civil engineering perspective on geopolymer research 

As the material science research community has continued to study geopolymers, it 

has established that these materials can match or surpass Portland cement concrete in 

areas of strength and durability (van Deventer et al., 2007).  Much of the research 

described in the literature is related to understanding the chemistry of inorganic polymer 

formation, reaction mechanisms and the relationship between base material composition, 

activating solution, curing conditions and characteristics of the hardened product 

(Fernandez-Jimenez and Palomo, 2003; van Jaarsveld et al., 2002).  More recently, study 

of the engineering properties of geopolymer in terms of modulus of elasticity, Poisson’s 

ratio and flexural strength has begun (Sofi et al., 2007b).  Research has also been 

conducted on reinforced concrete columns created from geopolymer concrete that 

verified the relevance of existing design protocols to geopolymer structural elements 

(Sumajouw et al., 2007).  Although there is a small body of research on the engineering 

properties of geopolymer cement, the quantity of data in this area is not sufficient to 

encourage its use in heavy construction.  It is this area that must be researched from a 

civil engineering perspective. 
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1.4 Background on geopolymers 

1.4.1 Geopolymerization process 

Most of the research into the reaction mechanisms present during the formation of 

geopolymers has been based on metakaolin as the alumino-silicate source material.  This 

is due to the greater homogeneity of metakaolin over fly ash.  However, it is expected 

that the general geopolymerization mechanism is similar for the two materials, with the 

addition of subprocesses related to contaminants in the case of fly ash.  The reaction of 

alumino-silicate materials in alkaline environments gives rise to the geopolymeric 

cements under consideration in this dissertation.  The basic conceptual model of the 

geopolymerization process is a series of three phases, which are (Glukhovsky, 1959): 

1) Dissolution- the aluminosilicate material is dissolved in an alkaline solution 

2) Reorientation- the liberated silicate and aluminate monomers form short 

aluminosilicate oligomers 

3) Solidification-  the three dimensional geopolymer matrix becomes rigid 

1.4.1.1 Dissolution 

Aluminate and silicate ions are provided in solution via the dissolution process.  

Various source materials have characteristically different levels of reactivity in alkaline 

solutions.  Panagiotopoulou (2007) dissolved pozzolana, fly ash, slag, kaolinite, 

metakaolinite and zeolite in solutions of varying alkalinity for varying amounts of time.  

It was found that the reactivity of the materials in decreasing order was, 

metakaolin>zeolite>slag>fly ash>pozzolana>kaolin.  The degree of reactivity is likely 

related to multiple source material characteristics, including fineness, capability of cation 
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exchange and Al coordination (Panagiotopoulou et al., 2007).  Panagiotopoulou et al. also 

found significant increases in the dissolution rates of Si by increasing the molarity of the 

alkaline solution from 2 to 5M.  Using NaOH as the alkalinity source was found to be 

more effective at dissolving greater amounts of Si and Al than KOH (Panagiotopoulou et 

al., 2007). 

The dissolution of fly ash in alkaline solutions has also been investigated by 

Mikuni et al. (2007).  By dissolving fly ashes from pulverized coal combustion plants as 

well as pressurized fluidized bed combustion plants, high dissolution rates were found for 

aluminates at alkalinities between 5 and 10N at 25⁰ C.  Silicates were found to dissolve at 

increasing rates with increasing alkalinity.   

The dissolution of aluminate and silicate into solution is described by the 

following three reactions: 

 

    Al2O3 + 3H2O + 2OH
-
 → 2[Al(OH)4]

-
   (1-1) 

    SiO2 + H2O + OH
-
  → [SiO(OH)3]

-
   (1-2) 

    SiO2 + 2OH
-
→ [SiO2(OH)2]

2-    
(1-3) 

1.4.1.2 Reorientation 

During the reorientation phase, the free aluminate and silicate monomers begin to 

form oligomers.  First, the [Al(OH)4]
-
 and [SiO(OH)3]

- 
groups form an attraction between 

the Al and OH.  As the two OH groups condense, an H2O molecule is released.  A similar 

reaction can occur between [Al(OH)4]
-
 and [SiO2(OH)2]

2-
.  This arrangement results in 

smaller oligomers than the condensation of [Al(OH)4]
-
 and [SiO(OH)3]

-
 (Weng and 

Sagoe-Crentsil, 2007).  Because the proportion of [SiO(OH)3]
-
/ [SiO2(OH)2]

2-
 is 
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dependent on the alkalinity of the activating solution, the formation of the whole 

geopolymer network is affected by the initial dissolution conditions. 

1.4.1.3 Hardening 

During the reorientation phase, a continuous gel network of three dimensional 

alumino-silicate structures is formed.  As polymerization and hardening begin to occur, 

the possibility for transport of monomer species is precluded.  Depending on the nature of 

the precursor groups, these structures may form the polysialate type (Si-O-Al-O-), 

polysialate-siloxo type (Si-O-Al-O-Si-O), or the polysialatedisiloxo type (Si-O-Al-O-Si-

O-Si-O), as termed by Davidovits (1991).   

Geopolymers have been cured at a variety of temperatures ranging from room-

temperature to nearly 212 ⁰F (100⁰C) depending on the source materials and strength 

development requirements.  Alonso and Palomo studied the effect of heat addition to the 

geopolymer gel.  Increased temperatures were found to accelerate the reaction and 

promote hardening (Alonso and Palomo, 2001).   Swanepoel and Strydom (2002) found 

that an unsuitably slow reaction rate occurred under 140⁰F (60⁰C) in fly ashes sourced 

from the SASOL steam station.  Others have developed geopolymers with compressive 

strengths suitable for structural application through room temperature curing (Sun, 2005). 

1.5 Source materials 

The precursors to geopolymer formation are sources of silicate and aluminate that 

form the backbone of the inorganic polymer.  During the history of geopolymer 

development, most research has revolved around a two-part mixture system in which an 

alumino-silicate powder is combined with an alkaline liquid activator in order to initiate 
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the dissolution reaction.  In this case, the alumino-silicate powder may consist of coal fly 

ashes or metakaolin.  Some research has investigated biomass ashes from rice husk 

combustion as a partial replacement for the fly ash (Songpiriyakij et al., 2009).  A second 

branch of geopolymer research is centered on the development of ―one-part‖ systems or 

―just add water‖ mixes, in which the powder contains sufficient soluable alkaline 

components to initiate dissolution of silica with the addition of water (Duxson and Provis, 

2008).  Research presented in this document utilized a two-part system. 

Although geopolymer materials can be reliably produced in the laboratory from 

pure reagents, the challenge comes in producing a consistent material from fly ash and 

other industrial byproducts that have variable compositions.  The fly-ash can be 

characterized in terms of its physical features and chemical composition.  Each of these 

features has an impact on the material properties of the hardened polymer.   

1.5.1 Fly ash 

Geopolymer made during the course of this research utilized fly ash as the source 

of aluminosilicates.  Difficulty arises in manufacturing geopolymer from fly ash because 

it is a waste product from a highly variable stream.  Even different samples from the 

same source have been known to produce final geopolymer concrete products with 

dissimilar rheology and strength development.  Due to the magnitude of its production, 

fly ash is widely regarded as the most viable source material for bulk production of 

geopolymer cement concrete, much work presented in the literature has focused on 

empirically determining the characteristics of the material that produce acceptable results. 

Ash characteristics that impact their usability in geopolymer applications are 

physical qualities, oxide composition and crystallography.  Each of these characteristics 
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impacts either the rheology and reaction rate of the fresh material or the mechanical and 

microstructural characteristics of the hardened material (Diaz et al., 2009).  Van Jaarsveld 

et al. found the particle size, calcium content, alkali metal content, amorphous content 

and origin of the fly ash to be important properties that contribute to the quality of the 

final geopolymer product (van Jaarsveld et al., 2003).  Fernández-Jiménez (2003) 

described an activatable fly ash as having LOI less than 5%, Fe2O3 less than 10%, low 

CaO, reactive silica between 40 and 50% and 80 to 90% of particles smaller than 

1.80X10
-3

‖ (45μm).  The following is a summary of fly ash characteristics that determine 

its suitability as a source material for geopolymer. 

1) Typical diameters for fly ash range between 3.9X10
-5

 and 7.9X10
-3

 in (1 μm - 1 

mm (Mehta, 1989).  However, the average size is highly dependent on the 

combustion process in the furnace where it is produced.  The gradation of the fly 

ash is also important.  Work done by Fernández-Jiménez and Palomo determined 

that removal of particle fractions larger than 1.80X10
-3

 in (45 μm) is related to 

substantial improvements in the 1-day compressive strength of samples and was 

able to develop 1-day strengths of over 10,000 psi (69 MPa) by removing these 

larger particles (Fernandez-Jimenez and Palomo, 2003).  Because the fly ash is 

formed as molten coal ash molecules condense in the exhaust flue of the furnace 

where they are produced, the shape tends to be spherical.   

2) The specific surface is often determined via the Blaine method or the BET 

method (named for its developers, Stephan Brunauer, Paul Emmett and Edward 

Teller).  During the polymerization reactions, the gel matrix may begin to harden 

before the dissolution of the fly ash is complete.  Therefore, surface reactions 
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most likely play a significant role in the set-up of the geopolymer matrix (van 

Jaarsveld et al., 2003).  Since small particle size corresponds to greater surface 

area in aggregate, this might explain the increase in specimen strength related to 

eliminating larger size fractions.  Using the BET method of nitrogen absorption, 

the specific surface areas of fly ashes are typically found in the range of 1,464 

ft
2
/lb to 2,440 ft

2
/lb (300 to 500 m

2
/kg) (Malhotra et al., 1989).   

3) Although most geopolymers are typically based on low calcium fly ashes, the 

reactivity of high calcium material has also been investigated.  The most 

immediately apparent effect of the addition of calcium is to increase the rate of set 

for the geopolymer.  It is known that as the solution pH begins to decrease from 

14 to lower values, the polycondensation reactions begin to occur (Lee and van 

Deventer, 2002).  Calcium in the fly ash tends to precipitate as Ca(OH)2 upon 

addition of the alkaline activation solution.  As OH
-
 ions are removed from the 

activating solution, the pH falls and the solidification begins.  van Deventer found 

that the Ca precipitates provide nucleation sites but also generate competition for 

crystal growth nutrients (van Deventer et al., 2007).  Fe present in the source 

materials has a similar effect, precipitating as a hydroxide or oxy-hydroxide.   

4) The bituminous coal that is most often burned in US steam plants typically 

produces an ash with SiO2 in the range of 45-60% and Al2O3 in the range of 4-

20% (Mehta, 1989).  While this chemical composition besides the loss on ignition 

and the calcium content is not a determinant of pozzolanic activity, it is important 

in the development of geopolymers.   The most effective ratio of silica to 

aluminum has been determined by Davidovits to be between 3.3 and 6.5 (1991).  
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This was confirmed by Sun in experiments that tested the strength of geopolymer 

specimens made with mortars that varied the ratio of silica to aluminum (Sun, 

2005).   

5) Although the x-ray fluorescence (XRF) method of chemical composition used in 

this research to determine the quantities of SiO2 and Al2O3 are accurate and 

accepted, the portion of these oxides that participate in the geopolymer reaction is 

referred to as the ―reactive‖ component.  The proportion of reactive silica is 

reported as a ratio with total silica.  The amorphous fraction of fly ash has been 

estimated between 60 and 80% of the total quantity.  Of this amorphous fraction, 

60-80% of the material is silicates and 10-20% is aluminates (Henry et al., 2004). 

1.6 Activating solutions 

The initiation of the geopolymerization phases described in the previous sections is 

caused by the addition of an activating solution to the source material.  The solution 

contains the alkalinity that causes the dissolution of the source material solids and 

sometimes also contains a supplementary source of soluble silicates.  Activating solutions 

must be carefully designed because their composition has several impacts on the 

development of the mechanical properties in the hardened geopolymer.   

 

1.6.1 Alkali species 

The two predominant alkaline salts used in geopolymer formation are NaOH and 

KOH.  Each of these results in slightly different dissolution rates and hardened 

geopolymer characteristics.  Greater dissolution rates for both Si and Al have been found 
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in solutions of NaOH.  The impact of the more effective dissolution ability of NaOH 

solutions is that equilibrium of dissolved species and undissolved species is reached at 

lower levels of alkalinity (Panagiotopoulou et al., 2007).  Comparison of the hardened 

properties of geopolymers formed with activating solutions containing either potassium 

or sodium have shown impacts to compressive strength and durability.  Van Jaarsveld 

and van Deventer (1999) demonstrated that potassium activating solutions produced 

slightly higher compressive strength geopolymers.  However, the potassium based 

activators also produced materials with higher specific surface area and lower resistance 

to acid attack.   

1.6.2 Alkalinity level 

The dissolution rates of aluminate and silicate species in the activating solution are 

affected by a combination of thermal conditions and the molarity of the alkaline solution.  

With both sodium and potassium based activating solutions, dissolution rates are known 

to increase with increasing alkalinity (Mikuni et al., 2007) (Sagoe-Crentsil and Weng, 

2007).  However, despite the dissolution capacity of higher alkalinity solutions, excessive 

presence of concentrations of sodium hydroxide have been found to reduce the 

compressive strength of hardened geopolymer.  This is due to the reduced degree of 

polymerization that is caused by excessive NaOH concentrations.  The balance of silicate 

species at high alkalinity levels tends to favor smaller monomers over the larger 

oligomers and therefore, less polycondensation (Panias et al., 2007).   
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1.6.3 Supplementary silica 

The initial assembly of the alumino-silicate matrix is heavily controlled by the 

availability of aluminum.  The supply of aluminum in the solution is known to dictate the 

setting time, durability and strength development (Duxson and Provis, 2008).  However, 

the dissolution of the aluminum is dictated largely by the specific phases that exist in the 

source material.  Because its bonds with oxygen in the source material are weaker, it 

tends to be provided more readily during dissolution.  The activating solution can be a 

source of soluble silica for the reaction in order to either supplement the amorphous silica 

in the source material or to provide sufficient silica to the gel formation prior to it being 

made available through dissolution.  Addition of soluble silica has been shown to 

increase the degree of polymerization in the hardened geopolymer and therefore improve 

the compressive strength (Criado et al., 2007). 

1.7 Performance in structural elements 

As the bulk of geopolymer research has been conducted on small specimens by 

material scientists and chemists, there are fewer reported studies on structural 

applications.  Most data has been published on either neat geopolymer pastes or on 

geopolymer mortar.  However, a small number of studies have been published on 

geopolymer concrete and geopolymer concrete in structural applications.  The extension 

of geopolymer formation research to structural applications research involves 

investigating the binder as it is mixed with aggregates to form concretes.  Once these 

materials are developed, the dimensions of research into structural uses include strength, 

durability, and performance in reinforced structural elements. 
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1.7.1 Interaction with other materials 

In order to be used as structural concrete, geopolymer paste must interact with 

aggregates and reinforcing steel.  The mechanical aspects of the cement-aggregate 

composite are of critical importance.  Equally important is the bond with reinforcing 

steel. 

1.7.1.1 Bond with aggregate 

The interfacial transition zone (IZT) is the boundary between binder gel and 

aggregate in PCC as well as in GCC.  A complex set of hydration processes affect the 

morphology of the IZT in PCC such that there is less gel present and the zone has greater 

porosity than gel at points away from the aggregate.  In geopolymeric systems, the 

absence of hydration reactions and the much different hardening and curing process result 

in an IZT that is not as strongly affected.  Lee et al. (2004) used a series of specimens 

with geopolymer paste bonded to polished slices of stone to measure the strength of the 

bond between the cement and aggregate.  Samples were also examined under an electron 

microscope to determine the effect of the geopolymer materials on the mineralogy of the 

aggregate.  It was found that systems activated with low soluble silicate activators formed 

low compressive strength bulk material and poor bonds with the stone (Lee and van 

Deventer, 2004).  Materials with higher soluble silicate had denser binder phases and 

better bonds with the aggregates.  The area near the aggregate surface had the same 

morphology as the bulk binder, indicating that there is not a heavily impacted ITZ as with 

PCC (Lee and van Deventer, 2004).   
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1.7.1.2 Bond with steel 

The primary tensile reinforcement in concrete is present in the form of 

longitudinal bars or tendons.  Stresses are transferred from the concrete to the tensile 

material through a bond at the surface.  Prior to substantial loading, the bond consists of 

adhesion, friction and bearing.  However, the first two of these mechanisms are typically 

broken after relatively low load application rates.  Therefore, bearing is the only 

mechanism considered in the design process and reinforcing bars are deformed in order 

to improve the surface for stress transfer (MacGregor and Wight, 2005).  ACI has given 

an equation to determine the development length for various sized bars in various 

strength concrete (ACI Committee 318. and American Concrete Institute., 2008). 

        
 

  

  

    
 

      

 
      
  

 
       (1-4) 

where:  

  : development length 

  : yield stress of bar 

 :  lightweight concrete reduction factor 

  : bar location factor 

  : coating factor  

  : bar diameter factor to favor smaller bars 

  : factor representing concrete cover around bar 

   : concrete confinement across splitting planes 

  : diameter of the reinforcing bar 

  
 : concrete compressive strength 

 

It can be seen from the terms in the equation that many of the factors affecting the 

development length of the reinforcing material are related to concrete properties that are 

similar for GCC and PCC.  For instance, the term,  
      

  
 , describes the propensity of 

beams to generate longitudinal cracks due to radial tensile forces transferred from the 
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steel to the concrete.  Since the relationship between tensile and compressive strength for 

GCC and PCC are relatively similar, it is expected that they will have similar responses 

to these radial forces.  The remaining geometric and tensile material surface and strength 

properties are also similar for GCC and PCC. 

Sofi et al. (2007a) conducted tests to verify the bond performance of steel 

reinforcing materials with geopolymer concrete.  The research group created geopolymer 

concretes from fly ashes from three steam generation units.  The concretes were tested 

with the direct pull-out method given in American Society for Testing and Materials 

(ASTM) C 234-91 as well as the beam-end specimen method given in ASTM A 944-99 

(ASTM, 1991; ASTM, 1999).  It was found that the provisions given in ACI 318-02 and 

AS3600 for predicting development length are applicable to GCC. 

1.7.2 Durability 

1.7.2.1 Asr 

In PCC, alkali-silica reaction is a threat to the durability of concretes containing 

expansive aggregates.  Reactive aggregates are ones in which certain forms of silica 

engage in forming a swelling alkali-silicate-hydrate.  This resulting gel attracts water and 

increases in size to cause cracks in the concrete (Mindess et al., 2003).  Because of the 

high pH found in geopolymer pore solution, alkali-silica reaction ASR has been a 

concern for aggregates used in GCC.  The performance of aggregates in GCC was 

investigated by Garcìa-Lodeiro, et al. (2007).  ASR in several aggregates was measured 

by means of ASTM C1260-94 (ASTM, 1994).  Concretes were produced with 

geopolymer cement as well as Portland cement and a range of reactive and sTABLE 
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aggregates.  While all concretes exhibited some degree of expansion due to alkali-

aggregate reactions, the alkali-activated fly ash systems exhibited less expansion than 

OPC systems with similar aggregates.  The cause of the lesser expansion is speculated to 

be the low availability of calcium in class F fly ashes (Garcia-Lodeiro et al., 2007). 

1.7.2.2 Creep 

Creep behavior of GCC has been investigated by Wallah (2004).  Concretes with 

compressive strength in the range of 5,800-10,000 psi (40 to 70 MPa) were prepared 

using two levels of alkalinity in the activating solution and two curing procedures.  Half 

of the specimens were subjected to steam curing at 140
○
F (60

○
C) for 24 hours and the 

remaining specimens were cured at the same temperature, but under dry conditions.  All 

specimens were loaded at a load intensity of 40% of the cylinder compressive strength.  

Specific creep levels ranged from 15 to 29 microstrain.  Lower specific creep was found 

for concrete having higher compressive strength.  Wallah (2004) determined that the 

measured creep in geopolymer specimens was uniformly less than creep strains predicted 

using the Gillbert model specified in the Austrailian code AS3600 (Standards Association 

of Australia., 2001). 

1.7.2.3 Chemical resistance 

Portland cement concretes are frequently degraded when exposed to aggressive 

chemical environments.  This exposure may occur because they are intentionally exposed 

to elevated concentrations of chemicals due to the specifics of their intended service or 

unintentionally due to deleterious chemicals present in the environment.  Sulfates and 

acids are two substances that can cause significant durability issues for concrete.  When 
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exposed to sulfates, tri-calcium aluminate can form monosulfoaluminate.  The reaction 

products occupy 55% more volume than the precursors, which causes stresses in the 

concrete.  Further expansion can be caused by the reaction products absorbing water.  

Bakharev (2005) studied the sulfate resistance of geopolymer concrete by immersing 

specimens in solutions of sodium sulfate and magnesium sulfate.  The changes caused by 

exposure to these sulfate solutions were of a different type than would be expected of 

Portland cement specimens.  In the sodium sulfate solution, the alkali cations from the 

geopolymer matrix diffused out into the solution and caused significant microcracking.  

The magnesium sulfate solution caused magnesium and calcium to migrate into the 

matrix and improve the compressive strength (Bakharev, 2005a).  As has been shown by 

other authors, the finer pore structure of geopolymers activated by sodium hydroxide 

results in materials that have lower susceptibility to attack in aggressive environments. 

Acids can also cause problems in Portland cement mortars and concretes.  As the 

calcium phases of the Portland cement hydration products are exposed to acid, calcium 

salts are formed which immediately weaken the material.  Bakharev (2005) exposed 

geopolymer materials to acetic and sulfuric acid solutions to study their durability.  The 

degree of degradation was linked to several factors of the geopolymer microstructure and 

chemistry.  Polymer structures having lower Si/Al ratios were more heavily affected.  

Microstructural characteristics such as pore size and degree of polymerization were also 

correlated with greater resistance.  Thus, geopolymers activated with potassium solutions 

had coarser pore structures and were more subject to degradation in the sulfuric acid.  

The most stable materials were geopolymers activated by sodium hydroxide and heat 

cured (Bakharev, 2005b). 
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1.7.3 Use in structural elements 

Geopolymer cements have been used to create structural concretes by Hardjito 

and Rangan.  In the course of their preliminary research, mixing procedures similar to 

those developed for Portland cement concrete (PCC) were used.  The researchers found 

that PCC superplasticizers could be used effectively to manipulate the workability of the 

GCC.  Concretes were produced with compressive strength in the range of 6,400-13,000 

psi (44-90 MPa).  The authors also measured Poisson’s ratio and Young’s modulus and 

found them to be similar to expected values for OPC concretes with comparable 

compressive strength (Hardjito and Rangan, 2005).   

Sumanjouw et al. used fly ash geopolymer to build slender reinforced columns 

(Sumajouw et al., 2007; Sumajouw and Rangan, 2006).  The concrete was cured at 

elevated temperatures and achieved compressive strengths of 5,800 and 8,700 psi (40 - 60 

MPa).  The columns were tested by loading to failure with eccentricities of 0.6‖, 1.4‖ and 

2‖ (15, 35 and 50 mm).  The failure modes were as expected, and the failure loads were 

predictable using formulas available in ACI 318-02 and AS3600 (ACI Committee 318. 

and American Concrete Institute., 2002; Standards Association of Australia., 2001).   

Prestressed railway sleepers have been manufactured from geopolymer cement 

concrete.  The geopolymer provides advantages in terms of fast strength development, 

allowing rapid turn-around and the ability to transfer prestress at an early concrete age.  

Palomo et al. (2007) has reported that the further benefits of geopolymer in this 

application include better durability under the harsh chemical and physical service 

environment of railway sleepers.  The concrete also exhibits less drying shrinkage, and 

therefore lower prestress losses (Palomo et al., 2007). 
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Reinforced GCC columns have also been evaluated by Sarker (2009).  The 

experimental results of testing GCC columns to failure were compared with analytical 

results.  The columns were modeled with a moment-curvature relationship which relied 

on material properties determined by standard tests.  A modified version of the Popovics 

stress-strain relationship was used to estimate the concrete compressive behavior 

(Popovics, 1973).  The authors were able to predict the failure loads for the columns with 

a test/prediction ratio of 1.03, and the midspan deflections with test/prediction ratio of 

1.14.  This was seen as confirmation that conventional PCC design methodology may be 

applied to GCC applications (Sarker, 2009). 

The engineering properties of GCC have been investigated by a limited number of 

research teams.  In addition to the short supply of data regarding these characteristics, the 

composition of GCC materials is not consistent between the research groups.  Therefore, 

the available data has a considerable spread, which is a result of the mortar fraction, 

aggregate type, activator composition and curing schedule that each author used.   

1.8 Scope of research 

The research presented in this dissertation is oriented towards developing a 

structural-grade concrete that is as energy and emissions efficient as possible.  Further, 

the suitability of the concrete is demonstrated to the material producing community by 

the creation of typical and familiar structural elements.  In order to develop an energy 

efficient concrete, mix designs were studied that incorporate varying quantities of virgin 

and recycled materials.  After a structural strength (6,000-8,000 psi (41.4-55.1 MPa)) mix 

design was developed, its performance was tested through a variety of established 

material tests and structural component tests.   
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Fly ashes from multiple sources, collected at different times, were examined to 

determine the optimum mixing methods to account for their chemical and physical 

differences.  Since a rigorous physical and chemical analysis of fly ash characteristics is 

beyond the scope of this research, a single source of fly ash was selected for use 

throughout the remainder of the project.  The single source of fly ash was used to prepare 

concrete specimens and components.  Small specimens were used to establish the 

material characteristics f
’
c, Ec and fct via customary ASTM methods.  Specimens were 

also created to test the durability characteristics, creep and shrinkage, which are critical in 

prestressed applications.  Larger beam-column specimens were prepared in order to 

evaluate compressive stress response of the GCC.  Finally, four mid-sized beams (10 ft 

(3m) in length) were created to verify geopolymer performance in reinforced concrete 

applications.  Finally, three larger scale girders (18 ft (5.5m) in length) were produced 

from geopolymer to demonstrate geopolymer performance in prestressed concrete.   

Following this work, the results provide an initial engineering characterization of 

geopolymer concrete structural components.  The final analysis includes comparisons 

between the energy and material requirements to produce Portland cement concrete and 

those for producing geopolymer concrete.   

 



 

 

 

 

CHAPTER 2: DEVELOPMENT AND OPTIMIZATION OF GEOPOLYMER 

CEMENT CONCRETE MIX DESIGNS 

 

 

The source materials for geopolymer cement concrete (GCC), as with Portland 

cement concrete (PCC) are local in their origin.  The primary cementitious component, 

fly ash, is a byproduct of coal combustion which is captured by emissions control devices 

at power generation stations.  As such, its composition is highly dependent on a range of 

variables including the mine where the coal was collected and the operational particulars 

of the furnace that burned it.  In order to begin GCC research at UNC Charlotte, an initial 

exercise in collecting and characterizing the source materials was undertaken.  This 

chapter describes the following research activities: 

1) Developing activating solution and aggregate proportions for GCC 

2) Optimizing the aging and curing routine 

3) Scaling up to larger batches 

4) Determining the modulus of elasticity of the concrete 

5) Determining the splitting tensile strength of the concrete 

The research presented in this dissertation required the development and 

implementation of several types of material preparation and experimental techniques.  

Some of the techniques are based on existing and accepted material testing methods put 

forth by the American Society for Testing and Materials (ASTM).  Whenever possible, 

existing test methods were used so that the geopolymer concrete may be more readily 

accepted by the materials production and construction communities.  In other cases, no 
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suitable existing method was available and attempts were made to develop appropriate 

and reliable procedures for the purposes of this project. 

2.1 Development of activating solution and aggregate proportions 

2.1.1 Determining requisite ash quality 

In the summer of 2008, a series of experiments was conducted on a range of fly 

ashes available in proximity to Charlotte, North Carolina.  The goal in completing these 

tests was to arrive at a baseline set of mix designs and to determine the qualities of local 

ashes that indicated their acceptability for geopolymer manufacture.  In the first phase, 

ashes came from two primary local sources, designated MA and BL.   

Oxide analysis via XRD was carried out by an external lab and yielded the 

compositional data in TABLE 2-1.  As can be seen from the results, the ashes contained 

Si/Al ratios of roughly 2:1.  The MA ashes had very high carbon content as evidenced by 

a measured loss on ignition (LOI) of 10%.  The BL ashes had much lower LOI, with only 

3.3% carbon.  

A mix proportioning methodology was designed, which is organized in a similar 

manner to that developed by Sun (2005).  Various combinations of NaOH and Silica 

Fume were used to create the activating solution.  The specific proportions for the 

activating solution used in this study are presented in TABLE 2-2.  The quantities of 

NaOH and silica fume are presented as ratios to the weight quantity of fly ash used, 

which was 8.50 lb (3.90 kg) in all cases.  The water content was adjusted so that despite 

the increasing quantity of activating solids (NaOH and silica fume) the ratio between 

cementitous materials (activating solids and fly ash) and water was always 0.40. 
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TABLE 2-1:  Fly ash composition. 

% By Mass 
MA BL 

SiO2 51.51 54.92 

TiO2 1.34 1.44 

Al2O3 26.11 31.28 

Fe2O3 6.05 4.8 

MnO 0.02 0.01 

MgO 0.85 0.77 

CaO 1.22 0.83 

Na2O 0.27 0.31 

K2O 2.38 2.25 

P2O5 0.2 0.1 

LOI 10.05 3.29 

 

TABLE 2-2:  Activator design for preliminary batches. 

Mix ID NaOH/Fly Ash Silica Fume/Fly Ash Water, lb (kg) 

MA1 0.1 0.075 3.98 (1.81) 

MA2 0.16 0.075 4.19 (1.90) 

MA3 0.19 0.075 4.31 (1.95) 

MA4 0.1 0.1 4.07 (1.84) 

MA5 0.16 0.1 4.28 (1.94) 

MA6 0.19 0.1 4.39 (1.99) 

BC1 0.19 0.05 4.22 (1.92) 

BC2 0.16 0.05 4.11 (1.87) 

BC3 0.13 0.075 4.09 (1.86) 

BC4 0.16 0.075 4.19 (1.90) 

BC5 0.13 0.1 4.18 (1.89) 

BC6 0.16 0.05 4.11 (1.87) 
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The aggregates used in this phase of the work were sourced from local quarries.  

The coarse aggregate was a 3/8‖, granite stone and the fine aggregate was silica concrete 

sand.  The gradation for these aggregates is given in TABLE 2-3.  The quantity of 

aggregate used was proportioned so that it accounted for roughly 80% of the total mass of 

the concrete.  This ratio is typical of OPC concretes. 

 

TABLE 2-3:  Gradation of fine and coarse aggregates. 

 
% finer 

Sieve 

Opening 

in (mm) 

Coarse Fine 

5/8 100.0 100 

1/2 99.5 100 

3/8 85.3 99.77 

no. 4 28.8 99.54 

no. 8 5.5 97.94 

no. 16 1.3 90.37 

no. 40 0.7 37.16 

no. 50 0.7 19.95 

no. 100 0.5 1.61 

Pan 0.0 0.00 

 

2.1.2 Results of preliminary tests 

The results of the preliminary tests are partly anecdotal and partly quantitative.  

Although none of the mixes developed strength in the desired range of 4,500-6,000 psi 

(27.5-41.3 MPa) for structural use, there were clear trends in the relationship between the 
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activator solution make-up and strength development.  This information was useful in the 

development of subsequent procedures. 

2.1.2.1 Activating solution proportions 

The two ashes used in the preliminary tests had very different physical and 

chemical characteristics and produced concretes with various compressive strengths.  In 

general, the MA ashes produced lower strength concrete than the BL ashes.  This might 

be attributable to the very high LOI of the MA ashes.  Despite the difference in strength 

produced, both ashes showed improved strength development associated with similar 

activating solution compositions.  In this series of experiments, two variables were 

systematically manipulated- the ratio of NaOH to fly ash and the ratio of Silica Fume to 

fly ash.  The mix proportions shown in TABLE 2-2 were used.  11.2 lb (5.1 kg) of coarse 

aggregate and 11.2 lb (5.1 kg) of fine aggregate were used in each batch. 

Generally, nine 3‖x6‖ (76mmx152mm) cylindrical specimens were made from 

each batch.  These were tested in compression after seven and twenty-eight days.  The 

results of the compression tests are shown in TABLE 2-4.  The experiments revealed 

some important trends in the activator design and the development of compressive 

strength.  As is shown in FIGURE 2-1 and FIGURE 2-2, compressive strength increased 

up to the NaOH/Fly Ash ratio of 0.15 and then decreased for higher alkalinity solutions.  

Strength also increased with the addition of silica fume to the activating solution.  

However, the limited number of data points does not indicate an optimal amount of silica 

fume for strength development.  As is shown in FIGURE 2-3, there is no peak in the 

strength vs. silica fume addition for the ratios tested.  
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The compressive strength results given in TABLE 2-4 show uniformly higher 

values for the BL ashes over the MA ashes.  Since the oxide composition of the two ashes 

was very similar and the preparation and proportioning of the concrete was also alike, the 

main difference seems to be the LOI.  In the case of the MA ashes, the high LOI seemed 

to inhibit the development of compressive strength in the cylinders.  The appearance of 

the cylinders also seemed to be affected by the high carbon content.  Whereas the 

cylinders prepared with BL ashes had a grayish color very similar to PCC, the MA 

cylinders were very dark.   

TABLE 2-4: Compressive strength of concretes made with BC and MA ashes. 

Mix ID   
  , psi (MPa) 

MA1 476 (3.3) 

MA2 2,031 (14.03) 

MA3 1,854 (12.8) 

MA4 986 (6.8) 

MA5 2,680 (18.5) 

MA6 2,158 (14.9) 

BC1 1,265 (8.7) 

BC2 2,883 (19.9) 

BC3 1,285 (8.9) 

BC4 2,006 (13.8) 

BC5 2,521 (17.4) 

BC6 3,207 (22.1) 
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FIGURE 2-1:  Optimum NaOH Addition For MA Ashes. 

 

 

FIGURE 2-2:  Optimum NaOH Addition For BL Ashes. 
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FIGURE 2-3:  Activator Design and 7-Day Strength for MA Ashes. 
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2.2 Further mix development 

In the second round of tests, the lessons learned from round one were applied.  

Here, the w/c ratio was to be studied and controlled more closely and the mix designs 

used in the experiments were adjusted to include more silica fume.  Higher grade fly ash 

was also used in these experiments. 

2.2.1 New fly ash 

For the second round of tests, fly ashes of more verifiable quality were collected.  

These were from sources specifically designated for concrete use and were marketed by 

the supplier as Class F.  Once these ashes were collected, they were designated BC and 

CL.  An XRF analysis was completed and provided the results shown in TABLE 2-5.  

The ash was collected and stored in sealed 55 gallon steel drums. 

TABLE 2-5:  XRF analysis of BC and CL ashes. 

% by Mass 
BC CL 

SiO2 58.08 56.20 

TiO2 1.56 1.46 

Al2O3 28.63 28.00 

Fe2O3 4.12 5.22 

MnO 0.02 0.02 

MgO 0.94 1.00 

CaO 0.74 1.52 

Na2O 0.22 0.21 

K2O 2.44 2.74 

P2O5 0.10 0.18 

Totals 96.85 96.55 

LOI 3.03 3.32 
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2.2.2 W/c ratio 

The importance of the water/cement ratio was not fully appreciated until late in 

the experimental process.  In the first round of tests, water was often added in a 

measured, however, liberal manner.  The relationship between strength gain and w/c ratio 

from the first batch of tests is shown in FIGURE 2-4.  The data points plotted in this chart 

include many activator compositions.  However, despite the concurrent representation of 

a wide range of factors, a clear trend toward higher strength at lower w/c ratios is 

apparent. 

 

 

FIGURE 2-4:  w/c ratio and 28-day compressive strength. 
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strength development results can be seen in FIGURE 2-5.  For both activating solution 

concentrations, there was an improvement in strength achieved by reducing the w/c ratio.  

For the 0.13 NaOH/Fly ash activating solutions, the strength development with reduced 

water content was more pronounced. 

 

 

 

TABLE 2-6:  Mixing proportions for w/c ratio specimens, lb (kg). 

NaOH/Fly 

Ash 

Silica Fume NaOH Fly Ash Fine 

Aggregate 

Coarse 

Aggregate 

0.10 0.2 (0.091) 0.3 (0.1361) 3.1 (1.41) 3.7 (1.68) 3.7 (1.68) 

0.13 0.2 (0.091) 0.4 (0.181) 3.1 (1.41) 3.7 (1.68) 3.7 (1.68) 

 

 

FIGURE 2-5:  w/c ratio and strength development for two activator concentrations. 
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assessments were made.  The workability of mixes with w/c ratios below ~0.27 was very 

poor.  These concretes were difficult to mix and to mold into suitable specimens.  

Therefore, the w/c ratio selected for subsequent tests was 0.28.  This low w/c ratio 

required the use of high range water reducer. 

Based on lessons learned in the previous series of tests, the experiment parameters 

for the activator mix design were set as is shown in TABLE 2-7.  Each batch included 

11.2 (5.1 kg) and 11.5 lb (5.2 kg) of fine and coarse aggregate, respectively.  Following 

the conclusions from the water content tests described above, the w/c ratio was fixed at 

0.28, where weight of cementitous solids includes the sum of the fly ash, silica fume and 

sodium hydroxide.  In each batch, the total weight of cementitious solids is constant, 

although the relative proportions of fly ash, silica fume and sodium hydroxide change in 

each activator design.  10 ml of ADVA 190 superplasticizer was used in each batch. 

Nine cylinders were made from each batch.  Three were tested at seven days and 

three were tested at 28 days using the procedures for compression tests given in ASTM 

C39 (ASTM, 2005).  The remaining three were retained as alternates in case there were 

problems with any of the tests.  The results of the compression tests are given in TABLE 

2-9.  In the TABLE, ―No Data‖ implies that there was a problem mixing the batch and no 

cylinders were created.  This typically occurred with the higher alkalinity mixes that were 

either not workable enough to create cylinders, or set-up in the mixer. 

There are general similar trends for concretes made from the two types of fly ash.  

As shown in TABLE 2-5, the chemical composition of BC and CL ashes is very similar, 

although they were produced at different steam stations.  The results were analyzed to 



34 

 

3
4
 

determine trends in strength development and to select the best activator design for future 

work. 

 

TABLE 2-7:  Mix Designs, lb (kg). 

Activator 

# 

NaOH/

Fly 

Ash 

Silica Fume/ 

Fly Ash 

Fly Ash Water Silica 

Fume 

NaOH 

10 0.1 0.08 11.1 (5.05) 3.7 (1.68) 0.89 (0.4) 1.11 (0.5) 

11 0.1 0.11 10.8 (4.91) 3.7 (1.68) 1.19 (0.54) 1.08 (0.49) 

12 0.1 0.14 10.6 (4.82) 3.7 (1.68) 1.48 (0.67) 1.06 (0.48) 

13 0.13 0.08 10.8 (4.91) 3.7 (1.68) 0.87 (0.4) 1.41 (0.64) 

14 0.13 0.11 10.6 (4.82) 3.7 (1.68) 1.16 (0.53) 1.38 (0.63) 

15 0.13 0.14 10.3 (4.68) 3.7 (1.68) 1.45 (0.66) 1.34 (0.61) 

16 0.16 0.08 10.6 (4.82) 3.7 (1.68) 0.85 (0.39) 1.69 (0.77) 

17 0.16 0.11 10.3 (4.68) 3.7 (1.68) 1.14 (0.52) 1.65 (0.75) 

18 0.16 0.14 10.1 (4.59) 3.7 (1.68) 1.41 (0.64) 1.62 (0.74) 

19 0.19 0.08 10.3 (4.68) 3.7 (1.68) 0.83 (0.38) 1.96 (0.89) 

20 0.19 0.11 10.1 (4.59) 3.7 (1.68) 1.11 (0.5) 1.92 (0.87) 

21 0.19 0.14 9.9 (4.5) 3.7 (1.68) 1.38 (0.63) 1.87 (0.85) 

22 0.16 0.16 9.9 (4.5) 3.7 (1.68) 1.6 (0.73) 1.6 (0.73) 

23 0.16 0.18 9.8 (4.45) 3.7 (1.68) 1.8 (0.82) 1.6 (0.73) 

 

TABLE 2-8:  Ratios of NaOH to silica fume for optimal strength development. 

NaOH/Fly ash 
BC CL 

0.10 1.3 1.3 

0.13 1.6 1.2 

0.16 1.1 2.0 

Average 1.41 
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TABLE 2-9:  Compression test results for geopolymer made from BC and CL ashes. 

Mix ID NaOH/

Fly Ash 

Silica 

Fume/Fly 

Ash 

7-Day Strength 

psi (MPa) 

28-Day Strength 

psi (MPa) 

Standard 

Deviation 

BC-10 0.1 0.08 3,405 (23.5) 4,131 (28.5) 88.5 

BC-11 0.1 0.11 2,482 (17.1) 3,157 (21.8) 30.3 

BC-12 0.1 0.14 671 (4.6) 1,042 (7.2) 4.7 

BC-13 0.13 0.08 4,933 (34) 5,558 (38.3) 77.3 

BC-14 0.13 0.11 4,780 (33) 5,241 (36.1) 262.9 

BC-15 0.13 0.14 2,402 (16.6) 2,908 (20.1) 155.0 

BC-16 0.16 0.08 2,530 (17.4) 3,136 (21.6) 157.4 

BC-17 0.16 0.11 5,096 (35.1) 5,454 (37.6) 196.2 

BC-18 0.16 0.14 7,068 (48.7) 7,064 (48.7) 89.0 

BC-19 0.19 0.08 4,554 (31.4) 4,644 (32) 657.4 

BC-19b 0.19 0.08 3,846 (26.5) No Data   

BC-20 0.19 0.11 6,777 (46.7) No Data   

BC-21 0.19 0.14 6,621 (45.7) No Data   

BC-22 0.16 0.16 5,368 (37) 6,264 (43.2) 98.1 

BC-23 0.16 0.18 4,818 (33.2) 5,308 (36.6) 138.3 

CL-10 0.1 0.08 6,620 (45.6) 7,625 (52.6) 193.1 

CL-11 0.1 0.11 4,613 (31.8) 5,683 (39.2) 200.9 

CL-12 0.1 0.14 2,117 (14.6) 2,728 (18.8) 37.2 

CL-13 0.13 0.08 8,593 (59.2) 9,122 (62.9) 367.9 

CL-14 0.13 0.11 9,833 (67.8) 1,0665 (73.5) 353.0 

CL-15 0.13 0.14 8029 (55.4) 8962 (61.8) 440.0 

CL-16 0.16 0.08 9459 (65.2) 10337 (71.3) 327.9 

CL-17 0.16 0.11 8592 (59.2) 8956 (61.7) 209.1 

CL-18 0.16 0.14 9835 (67.8) 10281 (70.9) 158.5 

CL-19 0.19 0.08 No Data No Data   
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Mix ID NaOH/

Fly Ash 

Silica 

Fume/Fly 

Ash 

7-Day Strength 

psi (MPa) 

28-Day Strength 

psi (MPa) 

Standard 

Deviation 

CL-20 0.19 0.11 6501 (44.8) No Data   

CL-21 0.19 0.14 8062 (55.6) No Data   

CL-22 0.16 0.16 7413 (51.1) 8153 (56.2) 96.3 

CL-23 0.16 0.18 7224 (49.8) 8016 (55.3) 150.0 

 

2.2.3 Strength development 

2.2.3.1 CL ashes 

The CL ashes produced their highest compressive strength concrete of 10,665 psi 

(73.5 MPa) with activator #14, which is characterized by 0.13 NaOH/fly ash and 0.11 

silica fume/fly ash.  The plotted results of the compressive strength tests shown in 

FIGURE 2-6 indicate that 0.13 and 0.16 NaOH/fly ash activator solutions produce 

approximately the same results.  There is no clear trend towards a peak strength at either 

of these two alkalinity levels.  FIGURE 2-8 shows that for the lower alkalinity concrete 

mixes, greater amounts of silica fume were associated with increased development of 

compressive strength between the 7
th

 and 28
th

 day. 

The average coefficient of variation for cylinders made in this series is 2.7%.  

Although ASTM does not publish guidelines for ―within-test precision‖ for 3‖x6‖ 

(76mmx152mm) cylinders, its acceptable coefficient of variation for 4‖x8‖ 

(102mmx205mm) cylinders is 3.2% (ASTM, 2005).  This indicates that the cylinders 

were made uniformly within tolerances set forth by ASTM.   
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2.2.3.2 BC ashes 

The BC ashes produced the highest compressive strength concrete with activator 

#18, characterized by 0.16 NaOH/fly ash and 0.14 silica fume/fly ash.  This resulted in a 

strength of 7,064 psi (48.7MPa).  As is seen in  

FIGURE 2-7, strength results for this mix up to and past the optimum form a clear 

peak.  Data for the other activator designs are less clear in their trends because the lower 

part of the curve is missing.   

The average coefficient of variation for compressive strength of cylinders made 

from BC ashes was 3.6%.  This includes BC-19, which had a strong outlier.  If this batch 

is removed from the data, the average coefficient of variation is 2.7%.   

2.2.3.3 General trends 

Since the overall objective of these experiments was to discover the optimum 

activator design to achieve structural strength concrete, it is necessary to study general 

trends in strength development between the two fly ash types used.   

Strength Development Over Time 

As is evident from FIGURE 2-8 and FIGURE 2-9, there is the greatest 7-28 day 

strength gain in concretes made with the lower alkalinity activator solutions.  For BC 

ashes, this increase ranged from <2% for activator #19, which is characterized by 0.19 

NaOH/fly ash and 0.08 silica fume/fly ash.  The greatest 7-28 day strength gain in BC 

ashes was >35% and occurred in the batch made with activator #12 , which is 

characterized by 0.10 NaOH/fly ash and 0.14 silica fume/fly ash.  The same trend held 

true for CL ashes, where the average strength gain for the 0.10 NaOH/fly ash activators 
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was 18%, 8% for the 0.13 activators and 6% for the 0.16 NaOH/fly ash activators.  This 

indicates that, while lower alkalinity activating solutions produce lower final compressive 

strengths, there is a greater degree of strength gain over the course of the first month than 

with higher alkalinity activating solutions. 

 Another disadvantage of the higher alkalinity activating solutions was found to be 

reduced workability.  Several times, activators with the 0.19 NaOH/Fly ash ratios caused 

concrete to set-up in the mixer before cylinders could be made.  When the concrete was 

workable enough to produce cylinders, these were always of lower visual quality than 

cylinders made with lower alkalinity activating solutions.  These had variations in color 

as well as more small voids near the surface.  Overall, the results of using the high 

alkalinity solutions were less predictable. 

For the same activator solutions, CL ashes tended to produce stronger concretes 

than the BC ashes.  Because their chemical compositions as determined by XRF are very 

similar, there is no data available on which to speculate about the cause of this trend.  In 

the literature, researchers have determined that amorphous content and particle size are 

important factors in fly ash performance as a source material for geopolymer (Sun, 2005; 

van Jaarsveld et al., 2003).  Tests for these two features were not been completed, but 

might illuminate the difference in strength development. 

For both sets of ashes, the results indicate that as the alkalinity of the solution 

increases, additional silica fume is also required to generate the maximum improvement 

in compressive strength.  Although the strength results plotted in FIGURE 2-6 and  

FIGURE 2-7 do not indicate a clear trend, when viewed in tabular form as in 

TABLE 2-8, they are more appreciable.   
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This indicates that the optimal strength is developed with the activating solution 

containing a mass ratio of NaOH to silica fume of 1.41.  If the process for producing the 

sodium silicate solution used in these experiments follows the reaction shown in Equation 

(2-1), the weight ratio should be 1.3.   

2NaOH + SiO2 + H2O → Na2O + SiO2 + 2H2O      (2-1) 

  

2.3 Conclusions  

1) Activators other than those with NaOH/silica fume ratios near 1.4 need not be 

tested. 

2) The 0.19 NaOH/fly ash activators should not be tested further as they do not 

produce workable mixes. 

3) The w/c ratio of 0.28 can produce workable concretes if superplasticizer is added 

to the mix. 

4) Ashes from the CL source should be used for further work as they seem to 

produce stronger concrete. 
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FIGURE 2-6:  Activator Design and 28-Day Strength for CL Ashes. 

 
FIGURE 2-7:  Activator design and 28-day strength for BC ashes. 
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FIGURE 2-8:  Increase in compressive strength between day 7 and day 28 for CL ashes. 

 

 
FIGURE 2-9:  Increase in compressive strength between day 7 and day 28 for BC ashes. 
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2.4 Preparation of concrete materials for constitutive property characterization 

Following the development of the guidelines presented in the previous section, 

several batches of GCC material were prepared in order to generate data on the 

constitutive properties of the concrete. 

2.4.1 Fly ash 

Fly ashes used in these experiments were sourced from a southeastern steam 

station.  They were collected in a silo used for distribution of concrete-grade, Class-F 

ashes to tanker trucks, as shown in FIGURE 2-10.  This allowed them to be transported 

and stored in a dry condition to preserve their reactivity.  Depending on the quantity 

sampled for research, the ashes were stored in a variety of containers including 3 cubic 

yard hoppers (2.3 cubic meter), 55 gallon steel drums (208 l) and 2 ton (1.8 tonne), 

polyethylene lined tote sacks.  The ash oxide characteristics are described in TABLE 

2-10 as determined by XRF analysis.  As many ashes were used in the course of this 

research, these ashes are identified by the initials ―CL.‖   

2.4.2 Aggregates 

The aggregates used in this phase of the work were sourced from local quarries.  

The coarse aggregate was a 3/8‖, granite stone and the fine aggregate was silica concrete 

sand.  The gradations for these aggregates are given in TABLE 2-3. 
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FIGURE 2-10:  Fly ash storage silo. 

 

TABLE 2-10:  XRF analysis of CL ashes. 

% by Mass 
CL 

SiO2 56.20 

TiO2 1.46 

Al2O3 28.00 

Fe2O3 5.22 

MnO 0.02 

MgO 1.00 

CaO 1.52 

Na2O 0.21 

K2O 2.74 

P2O5 0.18 

Totals 96.55 

LOI 3.32 
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2.5 Mixing process 

1) Preparing the Activating Solution 

The sodium silicate activating solution is prepared by mixing the required amount 

of sodium hydroxide in the specified amount of water, as is demonstrated in FIGURE 

2-11.  Next, the silica fume is added slowly.  The reaction between the silica fume 

and the sodium hydroxide is fairly violent and requires that additions be made slowly.  

After all the silica fume is included, the solution is mixed for two minutes at low 

speed with a paddle stirrer mounted in a hand drill.  The sodium silicate solution is 

placed in a polyethylene pitcher, partially sealed and placed in a 167⁰ F (75⁰ C) oven 

overnight (~20 hours).  A small amount of water 0.4-0.6 lb (200-500g) is usually 

withheld from the activating solution so that it can be used to disperse any admixtures 

through the dry ingredients immediately prior to mixing.  Adding this small amount 

of mixing water also helped reduce the dust and fly ash leaving the mixer. 

2) Preparing the Aggregate 

The coarse aggregate is brought to a saturated-surface-dry condition by soaking it 

overnight in tap water and then drying the surface of the stones with terrycloth 

towels.  The fine aggregate is oven-dried at 167 ⁰ F (75⁰ C) overnight.  Immediately 

before mixing, the aggregates and fly ash are measured out in the proportions 

specified for the mix under consideration, as is demonstrated in FIGURE 2-12.   

3) Mixing the concrete 

The dry ingredients are added to the mixer with the mixing water and admixtures, 

and the mixer is started.  After a two minute mixing session the activating solution is 
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added to the dry ingredients, seen in FIGURE 2-13.  Because the batches being 

created are fairly small, sometimes the material is tilled by hand in order to eliminate 

dry pockets in the mixer.  Once the activating solution is thoroughly dispersed (as 

evidenced by no more dry pockets), the mixer is allowed to operate for five minutes. 

4) Making Cylinder Specimens 

Once mixed, the concrete is placed in 3‖x6‖ (76mmx152mm) plastic cylinder 

molds as per the ASTM C192, ―Standard Practice for Making and Curing Concrete 

Test Specimens in the Laboratory‖ (ASTM, 2007) .  Cylinders are consolidated by 

rodding, as shown in FIGURE 2-14.  The cylinders are left to age at room 

temperature for a specified time period before being placed in a 167⁰ F (75⁰ C) oven 

for the elevated temperature curing period, as is shown in FIGURE 2-15.  Following 

elevated temperature curing, the cylinders are conditioned at ambient indoor 

conditions until required for testing. 

 

 

FIGURE 2-11:  Preparing activating solution. 
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FIGURE 2-12:  Measuring aggregates. 

 

 

FIGURE 2-13:  Adding activating solution. 
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FIGURE 2-14:  Consolidating geopolymer concrete in 3X6‖ cylinders. 

 

 

 

FIGURE 2-15:  Oven for curing geopolymer concrete specimens. 
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2.6 Experimental procedures 

Three 1.5 ft
3
 (0.04 m

3
) batches of geopolymer concrete were made in the lab.  The 

aggregates used were the same as described in TABLE 2-3.  The proportions for the three 

batches are presented in TABLE 2-11.  For mix #1 and #2, 60 3‖x6‖ (76mmx152mm) 

cylinders were made.  18 cylinders were made for mix # 3.  Mixing was performed in a 

3ft
3
 (0.08 m

3
) rotary mixer according to the procedure described in the previous section.  

Procedures for creating the cylinders followed ASTM C192 (ASTM, 2007).  For 

consistency, the step of vibrating all the cylinders for 1 minute after rodding was added.   

 

 

 

TABLE 2-11:  Mixing proportions lb/yd
3
 (kg/m

3
). 

Mix # 1 2 3 

Fly Ash 834 (495) 798 (474) 766 (455) 

Water 274 (163) 274 (163) 274 (163) 

NaOH 83 (49.5) 103 (61.6) 122 (72.7) 

Silica Fume 62 (37.1) 77 (46.2) 91 (54.5) 

Fine Aggregate 1336 (793) 1336 (793) 1336 (793) 

Coarse Aggregate 1336 (793) 1336 (793) 1336 (793) 

 

TABLE 2-12:  Number of cylinders made for each aging and curing regimen. 

Aging 
Curing 

 24 hours 48 hours 

0 hours 10 10 

24 hours 10 10 

48 hours 10 10 
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The cylinders were aged and cured according to the schedule presented in TABLE 

2-12.  The aging process occurred under ambient conditions in the structures lab at UNC 

Charlotte.  After the cylinders were made, the 0-hour aging batch was placed directly in 

the 167⁰F (75⁰C) curing oven.  The other cylinders were left out in the lab and added to 

the oven after either 24 or 48 hours of aging.  Cylinders were demolded immediately after 

they were removed from the oven and were stacked on a pallet under ambient conditions 

in the lab until testing on the 28
th

 day.   

From each batch and curing group, three cylinders were tested in compression in 

accordance with ASTM C39, three were tested in splitting according to ASTM C496 and 

three were tested for the static modulus of elasticity according to ASTM C469 (ASTM, 

2002a; ASTM, 2004b; ASTM, 2007).  The procedures were carried out on a universal 

testing machine at UNC Charlotte as depicted in FIGURE 2-16 and FIGURE 2-17.   

 

 

 

FIGURE 2-16:  Splitting tensile test set-up. 
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FIGURE 2-17:  Static modulus of elasticity test set-up. 

 

2.7 Material characteristics tests results 

The compression tests revealed that the material strength ranged from a minimum 

of 4,700 psi to a maximum of 9,800 psi (32-68 MPa).  The results show that strength 

development is related to all three variables that were manipulated in this experiment: 

activator concentration, aging time and curing time.  These results verify trends found by 

other researchers as well as provide insight into their interrelation. 

The average mix strength was highest for the Mix 2 group and lowest for the Mix 

3 group.  Thus, strength seemed to improve when the alkalinity of the activating solution 

was increased from 10% NaOH/fly ash to 13% NaOH/fly ash, but declined when the 

alkalinity was further increased to 16% NaOH/fly ash.  Despite these general trends with 

strength development related to the alkalinity of the activating solution, there is an 

important influence from the aging and curing schedule. 
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The results presented in TABLE 2-13 show two main trends in strength 

development for the aging and curing routines used in this course of experiments.  

Increasing aging time from 0 to 2 days improved the 28-day compressive strength in all 

cases.  Increased curing time at 167⁰ F (75⁰ C) also improved the 28 day strength in all 

cases.  These results are illustrated in FIGURE 2-18.  For the Mix 1 specimens, high 

temperature curing for an additional day improved the compressive strength an average 

of 12%.  For these same specimens, the impact of additional aging was an average of 6% 

increase in compressive strength.  For the Mix 2 specimens, the effect of additional high 

temperature curing time was an average compressive strength increase of 13%.  The 

impact of additional aging time on these specimens was an increase of strength by 8% on 

average.  Mix 3 showed the greatest improvement in strength with both increased aging 

time and 24 hours of curing.  However, the maximum strength was achieved for Mix 2.   

FIGURE 2-18 also shows that there might be room for further improvement in 

compressive strength by aging the specimens for more than two days prior to heat curing.  

Whereas the improvement in strength for Mix 1 has leveled off by day two, Mixes 2 and 

3 appear to still be increasing at day two.  Further experimental work would be required 

to examine this trend. 
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TABLE 2-13:  Results of compression and tension tests. 

Mix # Aging 

Time 

(days) 

Curing 

Time 

(hours) 

  
  psi, 

(MPa) 
   psi, 

(MPa) 

1 0 24 5,302 (37) 474 (3.3) 

1 0 48 6,010 (41) 558 (3.9) 

1 1 24 5,915 (41) 420 (2.9) 

1 1 48 6,465 (45) 544 (3.8) 

1 2 24 5,939 (41) 485 (3.3) 

1 2 48 6,978 (48) 550 (3.8) 

2 0 24 7,356 (51) 708 (4.9) 

2 0 48 7,983 (55) 764 (5.3) 

2 1 24 7,732 (53) 555 (3.8) 

2 1 48 9,308 (64) 696 (4.8) 

2 2 24 8,287 (57) 879 (6.1) 

2 2 48 9,787 (67) 851 (5.9) 

3 0 24 4,708 (32)  

3 0 48 6,336 (44)  

3 1 24 6,171 (43)  

3 1 48 6,780 (47)  

3 2 24 7,926 (55)  

3 2 48 8,094 (56)  

 

The benefit of aging for longer periods versus curing for longer periods is 

demonstrated in FIGURE 2-19 through FIGURE 2-21.  Mixes 1 and 2 both showed 

compressive strength gains of approximately 25% through the combination of increased 

aging and curing periods.  By comparing the batches that were aged for 0 days and cured 

for 24 hours with those aged for 2 days and then cured for 24 and 48 hours, it is possible 

to determine the effect of each process on the final strength development.  These 

differences are illustrated in FIGURE 2-19 by the regions labeled ―A‖ and ―B.‖  Region 

―A‖ is the difference in compressive strength of cylinders that were aged for 0 days and 

cured for 24 hours and the strength of cylinders that were aged for 2 days and cured for 

24 hours.  Thus, it describes the effect of two days of aging time.  Region ―B‖ quantifies 
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the difference in compressive strength of cylinders aged for two days and cured for 24 or 

48 hours.  For Mixes #1 and #2, 38% of the gains between the batch not aged and cured 

for only 24 hours and the batch aged for two days and cured for two days were related to 

aging while 62% were related to heat curing.  The higher alkalinity Mix #3 showed much 

different behavior with 95% of the strength gains being attributable to aging and only 5% 

attributable to heat curing.   

 

 

FIGURE 2-18: Compressive strength development with aging and curing time. 
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It would appear that heat is playing a role in two different reaction mechanisms.  

For instance, in the lower alkalinity concretes, the heat might help strength development 

by improving the dissolution processes by increasing the solubility of silica.  In higher 

alkalinity systems the heat is probably not required to improve dissolution due to the 

greater quantity of available OH
-
 ions.  This may be explained by the very small 

difference in strength between Mix #3 specimens aged for 2 days and cured for 24 hours 

versus those cured for 48 hours. 

 

 

 

FIGURE 2-19:  Compressive strength after 24 and 48 hours of curing for Mix #1. 
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FIGURE 2-20:  Compressive strength after 24 and 48 hours of curing for Mix #2. 

 

 

FIGURE 2-21:  Compressive strength after 24 and 48 hours of curing for Mix #3. 
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2.8 Mechanical properties 

2.8.1 Tensile strength 

As with Portland cement concrete, the split cylinder tensile strength of the 

geopolymer cement concrete specimens was found to be proportional to the compressive 

strength.  TABLE 2-13 shows that the tensile strength ranged from 7.1% to 10.6% of the 

compressive strength.  Large numbers of combined results from Portland cement split 

cylinder tests have revealed an average tensile strength,     , of (MacGregor and Wight, 

2005) 

                   [psi]          (2-2) 

                   [MPa]     (2-3) 

                      (2-4) 

where: 

     :  concrete cylinder splitting stress 

   
 :  concrete cylinder compressive strength 

FIGURE 2-22 shows a strong relationship between the tensile and compressive 

strength of GCC cylinders.  A non-linear multiple regression analysis was used to 

establish the value of the parameter ―X‖ in Equation (2-4) The value, X=0.616, creates the 

regression line shown in FIGURE 2-22 and matches the data with R=0.796 for 

compressive strength in MPa.  For English customary units, the parameter is 7.4.  These 

Equations are  

                   [psi]    (2-5) 

                     [MPa]   (2-6) 
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FIGURE 2-22:  Relationship between splitting tensile and compressive strength of GCC 

cylinders 

2.8.2 Modulus of elasticity 

 The modulus of elasticity of the concrete was measured using the procedure given 

in ASTM C469 ―Standard Test Method for Static Modulus of Elasticity and Poissons’s 

Ratio of Concrete in Compression‖ (ASTM, 2002a).  The results are plotted in FIGURE 

2-23 and show a clear trend towards increasing modulus with increased compressive 

strength.  It is typical in concrete design to estimate the modulus of elasticity of concrete 

by relating it to compressive strength via the formula given via the equations. 

          
          [psi]    (2-7) 

          
             [GPa]   (2-8) 

where: 

   :  unit weight of the concrete 

 

The unit weight of the geopolymer cement concrete has been found to be 140 

lb/ft
3
.  However, because all the concrete produced in this study had essentially the same 
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unit weight, there is no basis to use the unit weight as a predictor of GCC modulus of 

elasticity.  More data would be required to make such correlations.  The relationship 

between cylinder compressive strength and modulus of elasticity found for the materials 

produced in this study is given by 

                   [psi]       (2-9) 

                   [GPa]      (2-10) 

 

 

FIGURE 2-23:  Compressive strength and Young’s Modulus for Mix #1 and Mix #2. 
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strain measured in a concrete element is a combination of these constituent strains, as 

given by   

                               (2-11) 

 

The summation of these strains is the total measurable strain. 

The ratio of creep strain,    , to elastic strain,   , is known as the creep coefficient, C, as 

given by   

        
   

  
         (2-12) 

The creep coefficient changes over time as the strains attributable to creep 

processes become similar in magnitude to and greater than elastic strains.  For design 

purposes, ACI Committee 209 provides the equation 

        
    

      
       (2-13) 

where: 

t: time (days) 

D: constant usually taken as 10 (days) 

  .  Ultimate creep 

as a means of estimating the creep coefficient at a given time interval, t days, as a 

function of the ultimate creep,   .  Ultimate creep for Portland cement concrete is known 

to range from 1.30 to 4.15, with an average value of 2.35 (Branson, 1976).   

The measurement of creep in controlled laboratory settings is undertaken by 

preparing concrete cylinders, allowing them to cure for a specified period of time and 

then subjecting them to a stress that does not exceed the proportional limit for the 

material.  The range typically used is less than 40% of the cylinder’s compressive 

strength.  In order to compare the results of tests completed using differing stress 
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intensities the factor, specific creep  , is defined as the ratio between creep strain and 

applied stress  .  This relationship is given by 

        
   

 
     (2-14) 

where: 

  :  specific creep 

    :  creep strain 

  :  applied stress 

  

2.9.1 Creep measurement procedures 

In order to study the creep behavior of the materials developed in this work, 

specimens were prepared from two batches of concrete, GCC-2 and PCC-1.  The mix 

proportions for each of these batches are given in  

TABLE 2-14.  The PCC mix serves as a reference point to compare the results of 

the GCC batch.  Both concretes were mixed in a mixer truck, placed in 6‖X12‖ 

(152mmx305mm) cylinders and consolidated by rodding, as shown in  

FIGURE 2-24.  Gage studs were fixed along two opposite sides of the cylinder 

with an 8‖ (203mm) gage length, as shown in FIGURE 2-25. 

After mixing and placing, the GCC materials were aged for two days at ambient 

conditions in the lab and then cured for two days in a dry, 167
○
 F (75

○
 C) oven.  The PCC 

material was removed from the cylinder mold after 1 day and placed in a 100% humidity 

curing room until the time of the test.  All specimens, GCC and PCC, were initially 

loaded at an age of 28 days with a common load of 35,000 lb (156 kN).  This corresponds 

to a stress on the cylinder of 1,238 psi (8.5 MPa).  Strain measurements were made with a 
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demountable mechanical strain gage at the intervals specified in ASTM C512 (ASTM, 

2002b).   

The cylinders were capped with a sulfur compound and loaded in pairs into the 

frame shown in FIGURE 2-26.  The load was transmitted from the end plates to the 

cylinders through small cylinder slices of similar strength concrete, also visible in 

FIGURE 2-26.  The loads were maintained on the specimens via heavy springs to prevent 

small dimensional changes in the concrete from creating large reductions in stress.  The 

magnitude of the load was monitored with a load cell connected to a digital read-out.  If 

the load was found to differ from 35,000 lb (156 kN) by more than 2%, it was adjusted 

with a hydraulic pump. 

 

TABLE 2-14:  Mix proportions for creep specimens lb/yd
3
 (kg/m

3
). 

Material Mix Designation 

 
GCC-1 PCC-1 

Portland Cement 0 386 (229) 

Fly Ash 835 (495) 89 (53) 

Water 275 (163) 173 (103) 

NaOH 84 (50) 0 

Silica Fume 63 (37) 0 

Fine Aggregate 1,336 (793) 709 (421) 

Coarse Aggregate 1,336 (793) 1,127 (669) 
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FIGURE 2-24:  Consolidating creep specimens. 

 

Gage Studs

6" (152mm)

12" (305mm)8" (203mm)

 

FIGURE 2-25:  Gage stud layout for creep specimens. 
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FIGURE 2-26:  Creep specimen loading apparatus. 

 

2.9.2 Results 

Strains were measured at two points along opposite sides of each specimen.  These 

strains were then averaged across the two specimens that were prepared for each mix.  

The strains from the loaded specimens were reduced by the average strain found in the 

unloaded specimens in order to eliminate shrinkage strains from the measurements.  

Measurements taken immediately after the load was applied were used to compute the 

initial elastic modulus, Ei, shown in TABLE 2-15.  Also given in this TABLE is the 28-

day compressive strength of the concrete materials used in these specimens.   
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TABLE 2-15:  Compressive strength and initial elastic modulus of creep specimens 

Concrete 
28-day   

 , psi (MPa) Ei, psi (GPa) 

GCC 2 9,500 (65.5) 2,842,271 (19.6) 

PCC 11,200 (77.2)  5,170,922 (35.6) 

 

The concrete materials produced the expected hyperbolic curve relating creep strains 

with time.  FIGURE 2-27 and FIGURE 2-28 show the relationship of creep strain with 

total strain for the GCC and PCC specimens.  Included in the total strain are elastic 

strains, shrinkage strains and creep strains.  It is apparent that both the total strain and the 

creep strain were larger in magnitude for the PCC specimens despite their having a much 

higher initial elastic modulus.   

 

 

FIGURE 2-27:  Relationship of creep strain with time for GCC specimens. 
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FIGURE 2-28:  Relationship of creep strain with time for PCC specimens. 
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that the creep behavior of GCC is significantly improved over the expected behavior of 

PCC.   

 

 

FIGURE 2-29:  GCC and PCC creep compared to the range of ultimate creep values for 

Portland cement concrete. 

2.10  Shrinkage 

Removal of water from the concrete matrix causes shrinkage strains as the overall 

volume of the monolith is reduced.  When the water is removed from fresh concrete, the 

resulting shrinkage is known as plastic shrinkage.  The effects of plastic shrinkage are 

manifested in crack patterns that negatively impact the appearance and durability of 

concrete surfaces.  In hardened concrete, shrinkage processes are a result of the continued 

removal of water from the pore system of the concrete either by self-desiccation in 

autogenous shrinkage, by chemical reaction in carbonation shrinkage or by evaporation 

(Mindess et al., 2003).   

Predicting the magnitude of shrinkage is important to the design of concrete 
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against shrinkage, cracks can be eliminated or limited to acceptable locations.  Passive or 

prestressing reinforcement is also a design requirement to restrain shrinkage in concrete 

structures, with minimum steel ratios given by ACI 318 (American Concrete Institute, 

2008).   

Shrinkage of concrete is a process that involves many variables for structures in 

service.  These include the duration of wet curing, air content, aggregate characteristics 

and temperature, and relative humidity around the structure.  ACI committee 209 

provides guidelines for estimating shrinkage of concrete after periods of time.  Prediction 

of the magnitude of the shrinkage is made with   

            
  

    
          (2-15) 

where:   

       :  shrinkage strain at time, t       =800x10
-6

 in/in (mm/mm) for PCC 

  :  power of t ~1.0  

  :  constant taken as 20-130 days  

       :  ultimate shrinkage, 800x10
-6

 in/in [mm/mm] 

 

Although shrinkage can cause serious durability and aesthetic problems in all types 

of concrete structures, it presents a special concern in prestressed concrete sections.  As 

shrinkage strains increase in the concrete, the elongation of the prestressing steel tendons 

is reduced, causing a net reduction in the effective prestress.  The magnitude of this 

reduction is related to the modulus of the steel as given by  

                       (2-16) 

where: 

     : change in stress in the prestressing steel due to concrete shrinkage, psi or 

  MPa 

    :  shrinkage strain 
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    :  modulus of elasticity for prestressing steel, psi or MPa 

 

2.10.1 Measurement of shrinkage 

In order to determine shrinkage experimentally, concrete is cured and aged under 

controlled environmental conditions that are set at temperature and humidity levels of 

interest.  Generally, the environmental conditions used to establish baseline shrinkage 

magnitudes are 73
○
F (22.7

○
C) and 50% relative humidity.  General procedures for 

conducting shrinkage measurements are given by ASTM 157 (ASTM, 2008b).  

3‖x3‖x11.25‖ (76mmx76mmx286mm) concrete prisms are formed and outfitted with 

gage studs in each end.  The length of the prism is measured after the concrete initially 

sets, again after the primary curing is completed and then at intervals through 64 weeks. 

Three batches of concrete were prepared using the mixing proportions given in 

TABLE 2-16.  Data were collected for the shrinkage behavior of three concrete mix 

types.  PCC is a Portland cement concrete mix, GCC-2 represents a geopolymer cement 

concrete with virgin aggregates and GCC-R represents a geopolymer cement concrete 

with 45% of the virgin aggregates replaced by recycled aggregates.  Four prisms were 

prepared from each concrete mix.  In order to not confound the results with processes that 

are not related to drying shrinkage, the PCC specimens were handled in accords with 

ASTM 157 (ASTM, 2008b).  The specimens were removed from the molds after 24 

hours, placed in lime-saturated water for 1 hour and then an initial measurement was 

made.  The specimens were stored in the lime water for a period of 28 days, after which 

readings were made at 4, 7, 14, 28 and 56 days.   
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GCC-2 and GCC-R were handled slightly differently from the ASTM procedures 

since these guidelines do not have provision for geopolymer cement concretes.  The 

specimens were consolidated in the forms by rodding, covered with plastic and allowed 

to age for two days.  Following the aging period, they were cured at 167
○
F (75

○
C) for 48 

hours.  During preparation of GCC-R, there were problems with the heating apparatus 

and the temperature in the curing chamber did not reach the target temperature during the 

initial 24 hours of the curing period.  Therefore, it was permitted to cure for additional 

time to allow at least 48 hours at the target temperature, 167
○
F (75

○
C). 

Following removal from the forms after curing at elevated temperature, the GCC 

specimens were measured immediately with a length comparator and then stored for the 

duration of the test in an environmental chamber set at 73
○
F (22.7

○
C) and 50% relative 

humidity.  Length measurements were made at 4, 7, 14, 28, and 56 days.   

TABLE 2-16:  Mixing proportions for shrinkage specimens lb/yd
3
 (kg/m

3
). 

Component Mix Designation 

 
PCC-1 GCC-2 GCC-R 

Portland Cement 386 (229) 0 0 

Fly Ash 89 (53) 835 (495) 815 (483) 

Water 173 (103) 275 (163) 268 (159) 

NaOH 0 84 (49.5) 81 (48) 

Silica Fume 0 63 (37.1) 61 (36) 

Fine Aggregate 709 (421) 1,336 (793) 1304 (773) 

Coarse Aggregate 1127 (669) 1,336 (793) 718 (426) 

Recycled Coarse 

Aggregate 
    587 (348) 
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2.10.2 Shrinkage test results 

Data was available for 224 days of post-curing shrinkage for PCC and GCC-2.  

However, data only extend 56 days for the GCC-R batch.  TABLE 2-17 provides the 

average strain for each group of four prisms.   FIGURE 2-30 through 2-32 illustrate the 

increase in shrinkage strain with time.  The largest shrinkage strains were found in the 

PCC mix.  Shrinkage increased rapidly between day 0 and day 28.  The strains appear to 

be approaching 700 X 10
-6

 %, which is within the typical range for Portland cement 

concrete.  Moist-cured Portland cement concrete has an average ultimate strain of 800 X 

10
-6

 %.   

The GCC-2 concrete indicates a more gradual approach to an upper value of 

220X10
-6

% at 112 days.  Some data from cylinders created for creep testing was 

supplemented in FIGURE 2-31 since the data from the shrinkage tests 4, day 14 and day 

28 were strong outliers.  The cylinders were stored in the same environmental chamber 

and were instrumented for precision measurements over a gage length of 8‖ (203 mm).  

The same shrinkage trends are seen in the cylinders as in the shrinkage prisms and the 

proximity of the data points along the curve in FIGURE 2-31 verify the behavior in place 

of the missing measurements.   

TABLE 2-17:  Shrinkage test results. 

Batch Microstrain at Day 

 0 4 7 14 28 56 112 224 

PCC-1 -40 180 230 430 480 510 630 760 

GCC-2 0 - 60 - - 120 240 220 

GCC-R 0 260 130 - 260 270 - - 
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FIGURE 2-30:  PCC-1 shrinkage strain versus time. 

 

 

 

FIGURE 2-31:  GCC-2 shrinkage strain versus time. 
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FIGURE 2-32:  GCC-R shrinkage strain versus time. 

 

 

 

FIGURE 2-33:  Comparison of shrinkage in PCC-1, GCC-2 and GCC-R specimens. 
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aggregates have made some impact on the shrinkage characteristics of the concrete.  

Without mineralogical or microstructural data to evaluate, the exact cause of the 

additional shrinkage is not apparent.  However, it may be related to the proportion of 

concrete mortar in the matrix which could have undergone swelling and shrinkage as a 

result of remixing in the geopolymer.  Also, the presence of calcium from the old cement 

particles in the recycled aggregate could have also lead to the formation of C-S-H phases 

that coexist with the geopolymer.  The C-S-H could make the concrete more prone to 

autogenous shrinkage. 

 

2.10.3 Analysis of gcc-2 results 

In order to use Equation (2-15) to estimate shrinkage in concrete, the terms   and 

  must be determined.  As Equation (2-15) is simply a hyperbolic equation, reducing   

below values of 1.0 will tend to steepen the ascending branch of the curve.  Values of   

affect how quickly the curve approaches the asymptotic value,       .  Using a multi-

parameter curve fitting tool in MathCAD, values for   and   were found to describe the 

behavior of the GCC-2 materials.  In the model        was taken to be 300 X 10
-6

.  With 

values of  =0.8 and  =0.9, the curve fits the data with R=0.952.  A plot showing this 

curve is given in FIGURE 2-34. 
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FIGURE 2-34:  Prediction of shrinkage using  =0.8 and  =0.9. 
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It is important to note that the test procedure is only set-up to measure shrinkage in 

the GCC that occurred after high temperature curing.  However, it will be important to 

understand and predict any volume changes that occur in the GCC as it undergoes the 

aging process and the high temperature curing process.  These changes could be 

attributable to both the action of water evaporation from pore spaces in the GCC as well 

as to the formation of polymeric bonds during the hardening phase.  A technique to 

measure these strains would need to account for the thermal expansion that occurs during 

elevated temperature curing. 

 



 

 

 

 

CHAPTER 3: RECYCLED AGGREGATES IN GEOPOLYMER CEMENT 

CONCRETE 

 

 

The sustainability benefits of geopolymer cement concretes (GCC) are related to its 

use of the waste material, fly ash.  By incorporating the fly ash into the concrete, the dual 

environmental challenges of landfilling the ash and reducing the amount of Portland 

cement-related greenhouse gas emissions are addressed.  One means of improving the 

sustainability farther is by the incorporation of recycled material for aggregate.  Once mix 

designs were developed using virgin, granite aggregates as described in 0, portions of the 

aggregate were replaced by crushed demolition rubble.  This chapter describes the 

process of collecting and evaluating the rubble as well as developing mix designs that 

incorporate it in the GCC.   

3.1 Background on recycled concrete aggregate use 

Demolition rubble comprises 8% of the construction and demolition waste 

produced in Mecklenburg County, North Carolina.  In 2005, this equaled more than 

31,000 tons (Mecklenburg County Land Use and Environmental Services Agency, 2006).  

When it is diverted from the landfill, its current uses are largely restricted to low-grade, 

non-structural applications such as road sub-base and erosion control.  While researchers 

have used RCA to manufacture structural strength concretes, there have been problems 

associated with the high water absorption capacity and interrupted interfacial transition 

zone of reclaimed aggregates (Topçu and Sengel, 2004; Tu et al., 2006).  These 

challenges might not have the same impacts in geopolymer concretes due to the absence 
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of hydration processes and the ability of geopolymer to bond with Portland cement 

mortar. 

RCA is used in concrete in order to reduce the natural resource demands of 

concrete production as well as to create an outlet for a large waste stream.  The 

aggregates are produced by crushing pieces of concrete that are generated from 

demolition projects.  This sort of demolition work is often aligned with large-scale 

material disposal undertakings.  Examples include clean-up in the aftermath of 

earthquakes and other natural disasters as well as wrecking large facilities like the 

Stapleton Airport in Denver, Colorado.  Elias-Ozkan (2001) suggests that municipalities 

can control the quantities of concrete rubble destined for landfills or unsuitable dumping 

grounds by more tightly controlling the issuance of demolition permits.  The 

opportunities for reclaiming material for aggregate in this manner could include 

production of aggregates on-site in the case of demolition-rebuild projects (Elias-Ozkan, 

2001).  Doing so would reduce the energy required for transporting construction 

materials to the site and would control the source content.  

The crushed pieces may be regraded in order to produce material suitable for use 

in concrete.  However, there are other quality issues related to using a material of such 

variable consistency.  Oikonomou (2005) surveyed the current state of RCA knowledge 

and determined that industrial and municipal requirements for greater use include a 

control system for collection and sorting of demolition waste, greater public support, 

more technical studies and development of specifications.  While there are preliminary 

documents published by RILEM and BRE, Oikonomou categorizes the information 

required for the safe and sustainable use of RCA as: 
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1) Historical data on the make-up of antiquated concretes 

2) Physical characteristics- presence of contaminants, water absorption, specific 

gravity 

3) Mechanical characteristics- abrasion, degradation 

4) Environmental characteristics- leaching potential 

Although the original, virgin aggregates might be visible, between 25 and 60% of 

volume occupied by a single RCA particle is the mortar paste that remains adhered (Tu et 

al., 2006).  The presence of this paste affects the performance and characteristics of the 

aggregate in several ways.  The absorption capacity of recycled aggregates tends to be 

higher and can require larger amounts of water to achieve adequate workability (Topçu 

and Sengel, 2004).  Hydration might also be delayed as a result of the absorption 

capacity.  The workability of the mix is also affected by the greater angularity of RCA. 

Tam et al. (2007) conducted research whereby the cement mortar was removed 

from the aggregate particles by treating them with acidic solutions.  The acid attacks the 

CaO in the mortar and was found to be effective at reducing some of the negative 

physical characteristics of the RCA surrounding absorption capacity and affected surface 

at the interfacial zone.  The process was determined to be cost effective when the benefits 

of waste diversion from the landfill were included (Tam et al., 2007). 

The impact of RCA use on compressive strength has been well researched.  In 

general, researchers have found that compressive strength decreases as the ratio of 

recycled aggregate to virgin aggregate increases.  Tupcu and Sengel (2004) created 

concrete specimens with target strengths of 2300 psi and 2900 psi (15.9 MPa -20.0 MPa) 

and then replaced virgin aggregates with RCA at the rate of 30, 50, 70 and 100%.  The 
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specimens were subjected to compressive testing, freeze-thaw cycling and flexural 

testing.  It was found that the compressive strength decreased at a rate relative to the 

addition of RCA.  However, the freeze-thaw cycling had little effect on the flexural or 

compressive strength of the specimens (Topçu and Sengel, 2004). 

Tu et al explored the use of RCA in high performance concrete (HPC).  The 

research group tested concretes in strength ranges suitable for structural applications 

(3,000-6,000 psi) (20.7-41.4 MPa) that had been created with either recycled coarse or 

recycled coarse and fine aggregates.  It was determined that, while a strength reduction of 

20-30% could be expected due to aggregate replacement, the durability of the concrete 

matrix and its ability to protect steel from chloride intrusion was suitable for reinforced, 

structural applications (Tu et al., 2006). 

The challenges to maintaining stringent mechanical performance standards while 

using RCA in concrete mixes have been overcome by adapting either the batching 

process or reducing the proportion of recycled material.  Tam et al. (2005) have adapted 

the mixing process into two stages- the first to coat the aggregate in a rich cement slurry, 

and the second to complete the addition of mixing water.  The author found that this 

technique filled microcracks along the interfacial transition zone and also allowed fresh 

paste to reach the surface of the mineral aggregate.  The problem of high water 

absorption capacity in RCA has been addressed by simple techniques such as presoaking 

aggregates prior to batching (American Concrete Pavement Association, 2009). 

State departments of transportation as well as national level agencies, such as the 

National Cooperative Highway Research Program (NCHRP), National Ready Mix 

Concrete Association (NRMCA), the American Concrete Pavement Association (ACPA) 
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and the Federal Highway Administration (FHWA) have produced guidance on the 

implementation of projects that permit or encourage recycled concrete aggregates in new 

PCC applications.   

Control of concrete quality when RCA is used is achieved via several strategies 

that are given in state department of transportation materials specifications or in the 

guidance published by the previously listed agencies.  These strategies include the 

following major themes: 

1) Limitation to the quantity of RCA in the concrete 

2) Preparation and handling guidelines 

3) Limits to the source of acceptable materials 

4) Restrictions on the type of elements permitted to contain RCA 

5) Characterization requirements 

TABLE 3-1 provides a sampling of the specifications and guidelines given by 

various groups.  Perhaps the most conservative risk reduction technique for specifying 

RCA concrete products is to limit the type or allowable proportion of recycled material in 

the mix design.  For instance, Texas Department of Transportation (TXDOT) permits a 

maximum of 20% recycled fine aggregate in certain non-structural concrete elements 

(Texas Department of Transportation, 2004).  A strategy introduced in Europe 

encourages the segregation of incoming material by source or quality so as to maintain 

stockpiles of rubble having known origins and quality.  The Michigan Department of 

Transportation (MDOT) specification only permits RCA that was collected from MDOT 

demolition projects.  In this way, the source material is known to have met Michigan 

quality standards when it was originally created (Michigan Department of Transportation, 
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2003).  The NRMCA has proposed similar recommendations for returned concrete 

aggregates- suggesting that they be divided by the grade of concrete in the truck (Obla et 

al., 2007). 
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Other waste stream constituents have also been researched as virgin aggregate 

replacements.  Kou et al. studied the possibility of replacing fine aggregates with small 

particles of discarded PVC pipe.  By mixing the material into a concrete at river-sand 

replacement rates of 5, 15, 30 and 45%, it was found that the PVC granules reduced the 

compressive strength, modulus of rupture, elastic modulus and workability.  However, 

quantity of charge passed by the concrete was reduced, indicating that PVC could 

improve the durability of concrete.  It was also found that drying shrinkage was reduced 

by adding PVC pieces.  The author suggests PVC for use in non-structural applications at 

a sand replacement rate of 15% (Kou et al., 2009). 

3.2 Collecting recycled concrete aggregates for gcc use 

UNC Charlotte researchers observed the demolition of an elementary school facility 

in order to study the physical processes included in the tear-down as well as the decision 

making process for the disposal or the recycling methods applied to the demolished 

materials.  The construction of the school was typical for a wide range of commercial and 

institutional buildings at the time.  Therefore, the information presented here regarding 

the demolition process should be relevant to many of the buildings in the local inventory.  

Walls were reinforced and unreinforced masonry, the roof was a combination of 

prestressed concrete double-tees and steel framing, and the floor system was a concrete 

slab-on-grade.  The demolition process was found to be very orderly and included many 

techniques that simplified the separation of materials such that contamination of the 

rubble destined for the crusher was minimized.  General steps followed in the demolition 

(in sequential order) were: 

1) Removal of hazardous materials such as asbestos 
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2) Removal of valuable metals such as copper and non-critical steel structures (such 

as awnings) 

3) Demolition of non-masonry partition walls, drop ceilings, and fenestration 

4) Collection and disposal of materials listed in #3 

5) Demolition and removal of roof framing, decking and covering 

6) Demolition and removal of masonry partition walls 

7) Demolition and removal of the concrete slab 

 

The demolition strategy used in the case of the elementary school is referred to as 

―top-down.‖  The non-rubble generating materials such as gypsum wall board, wood 

finishings, fixtures, and the like are removed first.  Secondly, the masonry materials that 

constitute the walls are crushed and removed separately.  Third, the concrete floor slab is 

crushed and hauled off-site.  While the top-down process may not be used for smaller 

projects in which separation of wastes is not economical, it is a practical technique for 

mid to large scale demolition work and also lends itself to source separation.  The 

concrete slab was used as a sorting pad for demolished materials before they were hauled 

to the crusher, landfill, steel recycling facility or other location.  In addition to providing 

a surface for the loading equipment to drive on, the concrete slab could be cleared 

between phases to prevent the introduction of foreign materials such as cellulose, plastics 

and metals into the rubble for RA.   UNC Charlotte researchers found that segregating the 

rubble materials before they were crushed helped improve the quality and predictability 

of the RA. 

Prior to the commencement of demolition, 2.5‖ (64mm) diameter core specimens 

were removed from the section of slab that would be crushed to produce aggregate.  A 

portable coring drill was used to obtain the samples.  A total of seven core samples were 
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removed from three locations in the slab.  Of these, due to the relatively shallow 

thickness of the slab-on-grade, five core samples were found to be suitable for 

compression testing.  The ends of the cylinders were trimmed with a wet diamond saw 

and the specimens were tested to failure in a universal testing machine.  Due to the 

location of the reinforcing mesh and the slab thickness, the length to diameter ratios of 

the trimmed cylinders were typically less than two.  The compressive strength was 

discounted by interpolating between the values given in TABLE 3-2, which are provided 

in ASTM C42 (ASTM, 2004a).  The results of these compression tests are given in  

TABLE 3-3.  The average adjusted compressive strength was found to be 6,800 psi (47 

MPa).  This indicates that the aggregates should be suitable for concrete products in the 

range of 5,000-7,000 psi (34-48 MPa). 

In addition to collecting compressive strength information from core specimens, 

Schmidt Hammer readings were taken from the slab in proximity to the location of the 

core specimens.  The procedure is outlined in ASTM C805 (ASTM, 2008a).  No clear 

correlation was found between the rebound hardness measured in situ and the 

compressive strength of the core specimens determined in the lab.   

TABLE 3-2:  Strength reduction factors for specimen aspect ratios less than 2.0. 

Length to 

Diameter 

Ratio 

Strength 

Reduction 

Factor 

1.75 0.98 

1.50 0.96 

1.25 0.93 

1.00 0.87 
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TABLE 3-3:  Compressive strength of cores removed from the slab. 

Specimen 
L/D Reduction Factor   

 , psi (MPa) Adjusted  
  
  [MPa] 

1 1.1 0.90 7,411 (51.1) 6,672 (46.0) 

2 1.3 0.94 6,396 (44.1) 6,034 (41.6) 

3 1.2 0.92 8,528 (58.8) 7,817 (53.9) 

4 1.2 0.93 7,934 (54.7) 7,368 (50.8) 

5 2.0 1.00 6,469 (44.6) 6,454 (44.5) 

 

Concrete slab-on-grade materials from the demolition case study were separated 

on-site, transported, and then crushed at the demolition contractor’s aggregate production 

facility.  Once crushed, these aggregates were taken to UNC Charlotte for study.  The 

crushed aggregate was characterized in terms of gradation, bulk density and absorption 

capacity.  The sieve analysis is presented in TABLE 3-4.   

TABLE 3-4:  Gradation of recycled aggregates produced from Idlewild Elementary 

School demolition rubble. 

 Sieve Opening, in (mm) 
% Finer 

0.75‖  (19) 100 

0.50‖  (13) 100 

0.375‖  (9.5) 85.0 

0.187‖  (4.75) 14.0 

0.0935‖  (2.36) 3.0 

Pan 0.0 

 

The bulk density of the recycled concrete aggregates was found to be 80.0 lb/ft
3
 

(1,281 kg/m
3
), which is lower than typical granite aggregates used in the region.  The 
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absorption rate of the recycled aggregate was found to be 7.6%, which is considerably 

higher than locally available granite aggregate.     

3.3 Incorporation of recycled aggregate in GCC 

The materials collected from the demolition project described in the previous section 

were incorporated at various rates into the GCC-1 mix devised in 0 and using the same 

procedures presented there.  Concrete cylinders were prepared from the recycled 

aggregate mixes and were tested after 7 and 28 days.  The compressive strength 

developed after 28 days as well as the ease of mixing was used to select a mix design to 

employ in the creation of mild steel reinforced and prestressed concrete beam specimens. 

3.3.1 Production process 

Since it is known that recycled aggregates have very high absorption rates, all 

aggregates were prepared by soaking them overnight in water.  Prior to weighing the 

aggregates, they were towel dried on their surface to bring them to saturated surface dry 

(SSD) conditions.  The weight quantity of the recycled aggregates was adjusted because 

of the lower bulk density relative to virgin aggregates.  This was done to maintain a 

consistent volume between batches.  The mixing proportions are shown in TABLE 3-5. 

3.3.2 Compressive strength of recycled aggregate mixes 

Two sets of cylinders were made using the mix designs given in TABLE 3-5.  

Thus, two batches representing each virgin aggregate replacement ratio was mixed two 

times.  The cylinders were aged for two days and then cured at 167
○
F (75

○
C) for two 

days.  The cylinders were tested in compression using ASTM C39 procedures at cylinder 

ages of 7 days and 28 days (ASTM, 2005).  The results of the compression test are 
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provided in TABLE 3-6.  The strength ranged from 4,997 psi (34.5 MPa) to 7,290 psi 

(50.3 MPa) at 7 days.  28 day cylinder strengths ranged from 5,310 psi (36.6 MPa) to 

8,359 psi (57.6 MPa).  All mix designs showed an increase in compressive strength 

between the 7
th

 and 28
th

 day. 

TABLE 3-5:  Mixing proportions for GCC containing recycled aggregate, lb/yd
3
 (kg/m

3
). 

 Virgin Aggregate Replacement Ratio 

Component 100% 80% 50% 40% 30% 20% 10% 

 Fly Ash  815 

(484) 

815 

(484) 

815 

(484) 

815 

(484) 

815 

(484) 

815 

(484) 

815 

(484) 

 Water  268 

(160) 

268 

(160) 

268 

(160) 

268 

(160) 

268 

(160) 

268 

(160) 

268 

(160) 

 NaOH  82 (48) 82 (48) 82 (48) 82 (48) 82 (48) 82 (48) 82 (48) 

 Silica Fume  61 (36) 61 (36) 61 (36) 61 (36) 61 (36) 61 (36) 61 (36) 

 Fine Aggregate  1304 

(774) 

1304 

(774) 

1304 

(774) 

1304 

(774) 

1304 

(774) 

1304 

(774) 

1304 

(774) 

 Coarse 

Aggregate  

0 (0) 261 

(155) 

652 

(387) 

783 

(464) 

913 

(542) 

1044 

(619) 

1174 

(697) 

Recycled 

Coarse 

Aggregate 

1305 

(774) 

1044 

(619) 

652 

(387) 

522 

(310) 

391 

(232) 

261 

(155) 

131 

(77) 

 

TABLE 3-6:  Compressive strength results for GCC mixes containing recycled aggregate, 

psi (MPa). 

 Virgin Aggregate Replacement Ratio 

 100% 80% 50% 40% 30% 20% 10% 

Batch 1, 7-

Day 

5,490 

(37.9) 

4,997 

(34.5) 

6,388 

(44) 

6,964 

(48) 

5,218 

(36) 

4,607 

(31.8) 

6,771 

(46.7) 

Batch 1, 

28-Day 

6,336 

(43.7) 

6,220 

(42.9) 

7,505 

(51.7) 

8,127 

(56) 

5,310 

(36.6) 

6,111 

(42.1) 

7,570 

(52.2) 

Batch 2, 7-

Day 

6,715 

(46.3) 

6,157 

(42.5) 

7,290 

(50.3) 

6,694 

(46.2) 

6,657 

(45.9) 

6,517 

(44.9) 

7,163 

(49.4) 

Barch 2, 

28-Day 

7,209 

(49.7) 

6,677 

(46) 

8,359 

(57.6) 

7,310 

(50.4) 

7,318 

(50.5) 

7,324 

(50.5) 

7,938 

(54.7) 
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As is apparent in FIGURES 3-1 and 3-2 compressive strength declined as the 

proportion of virgin aggregates replaced increased from 10 to 30%.  However, in both 

batches, there was a spike in compressive strength with the addition of 40-50% recycled 

aggregates.  Following the peak, compressive strength tended to decline with each 

increase in recycled aggregate content until the virgin aggregates were fully replaced. 

 
 

FIGURE 3-1:  Batch 1 compressive strength at 7 and 28 days. 
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FIGURE 3-2:  Batch 2 compressive strength at 7 and 28 days. 

3.4 Discussion of results 

The results from the two sets of GCC mixed with recycled aggregates indicate that it 

is possible to develop compressive strength suitable for structural applications while 

using significant proportions of recycled aggregates.  All replacement ratios from 10% 

through 100% provided concrete with greater than 6,000 psi (41.4 MPa) at 28 days.  For 

strength development purposes, the optimal quantity of recycled aggregate to replace, as 

determined by this study, is between 40 and 50% by weight.   

The spike in compressive strength when 40-50% of the virgin aggregate is replaced 

by recycled aggregate could result from numerous factors.  Many of these would not be 

differentiable without chemical or microanalysis of the mortar structure to determine 

what type of binding materials have formed.  However, one probable reaction that is 

occurring is related to the calcium brought to the mix by the old cement in the recycled 

aggregate.  The presence of calcium is known to accelerate the hardening of geopolymer 
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matrices.  Although not quantified, stiffening of the fresh material was experienced by 

the research team during sample preparation.  The extent of the reduced workability was 

directly related to the proportion of recycled aggregate contained in the mix.  Researchers 

have detected the formation of C-S-H gels in geopolymer matrices formed in the 

presence of calcium.  In some cases, the calcium was found to improve the mechanical 

strength characteristics of the hardened product.  This was characterized by finer pore 

structures, lower setting temperatures and improved compressive strength (Guo et al., 

2009; Temuujin et al., 2009).   

In systems with moderate alkalinity (<7.5 M), C-S-H gel was detected as forming in 

conjunction with the geopolymer gels (Yip et al., 2005).  The improvements in 

compressive strength were thought to have resulted from the C-S-H gel bridging 

geopolymer gel phases with unreacted particles.  The formation is much reduced in 

systems having alkalinity greater than 7.5M (Yip et al., 2005). 

The results of this study indicate that adding recycled aggregate can improve the 

mechanical properties of the GCC.  This may be for the reasons presented by other 

research teams with regards to calcium modifying the microstructure of the geopolymer 

matrix.  To proceed with the practical study of GCC in this research, a mix incorporating 

45% recycled aggregate was selected for further analysis.  The mix is referred to as GCC-

R throughout this dissertation. 



 

 

 

 

CHAPTER 4: BEAM TESTS 

 

 

The ability of geopolymer cement concrete (GCC) to be formed into structural 

members that are common in precast concrete construction, as well as its ability to 

develop compressive strength similar to that of Portland cement concrete (PCC) make 

structural uses a prime application.  The engineering properties of geopolymer cement 

concrete have been evaluated using small specimens, but they have only rarely been 

demonstrated in scaled structural concrete elements.  In this phase of the research, a 

series of mild steel reinforced concrete beams and prestressed concrete beams were 

created and destructively tested to demonstrate the performance of GCC in structural 

applications as well as to verify the relevance of existing concrete design formulas.   

4.1 Concrete for demonstration beams 

4.1.1 Concrete mixture proportions 

The concrete mix used to create the demonstration beams featured the mix designs 

developed and described in CHAPTERS 2 and 3 of this dissertation and are summarized 

in TABLE 4-1.  Each series of beams (the mild steel reinforced beams and the prestressed 

beams) included a GCC with virgin aggregates mixture, a GCC with recycled aggregates 

mixture and a PCC with virgin aggregates mixture as a reference.   
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TABLE 4-1:  Mix designs for concrete used to prepare beam specimens, lb/yd
3
 (kg/m

3
). 

 
Mix Designation 

Component GCC-1 GCC-2 PCC-1 GCC-R 

Portland Cement 0 0 386 (229) 0 

Fly Ash 834 (495) 835 (495) 89 (53) 815 (483) 

Water 274 (163) 275 (163) 173 (103) 268 (159) 

NaOH 83 (49.5) 84 (49.5) 0 81 (48) 

Silica Fume 62 (37.1) 63 (37.1) 0 61 (36) 

Fine Aggregate 1,336 (793) 1,336 (793) 709 (421) 1,304 (773) 

Coarse Aggregate 1,336 (793) 1,336 (793) 1,127 (669) 718 (426) 

Recycled Coarse Aggregate       587 (348) 

 

4.1.2 Mixing the concretes  

The dry ingredients were weighed out into 55 gallon (200 liter) drums several days 

ahead of time and left in the ambient conditions of the workshop to equilibrate.  The 

activator was similarly proportioned and mixed in a 55 gallon (200 liter) drum that was 

fitted with a special valve for dosing it into the mixer truck in a controlled fashion.  The 

activator drum was placed into an oven and held at 167
○
F (75

○
C) overnight.   

The GCC was mixed in a ready-mix truck designed for delivering small batches of 

PCC.  As much as was practicable, the same mixing procedure designed for the smaller 

batches of GCC made during previous phases of the research was used here.  The dry 

ingredients were added to the drum of the truck with 1/3 of the water, as shown in 

FIGURE 4-1.  After the dry ingredients were well combined, the activator was added and 

the mixer ran for 250 revolutions.  The mixing period lasted approximately ten minutes 

beyond the addition of the activating solution. 
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FIGURE 4-1:  Adding materials to mixing truck. 

 

After the mixing period, the truck was able to enter the lab facility where the 

formwork and reinforcing had been prepared.  GCC was added to the molds and a 

vibrator was used to ensure proper consolidation.  Due to the flowable nature of the GCC, 

the truck was able to pause at just a few positions along the beam in order to deliver 

concrete to the whole length.  As the beams were filled, an assortment of 3‖x6‖ 

(76mmx152mm) cylinder specimens was also prepared.  A curing oven was assembled 

over the specimens and they were left to age for two days before heaters inside the oven 

were started.  The heaters maintained a 167
○
F (75

○ C) curing condition for two more 

days.  The oven is shown in FIGURE 4-2.  The beams were identified as per the 

descriptions in TABLE 4-2. 

The PCC used to prepare the reference beams was sourced from a local ready-mix 

plant and delivered in the same mixer truck that mixed the GCC batches.  The mix design 

is given as PCC-1 in TABLE 4-1. 
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FIGURE 4-2:  Beam and heater inside curing oven. 

 

4.2 Mild steel reinforced beams 

Four mild steel reinforced concrete beams were prepared.  Each beam reflected a 

variation either in the concrete materials or the reinforcing.  TABLE 4-2 describes the 

characteristics of each beam.  The cross-section GCC-1-B1 is shown in FIGURE 4-3 with 

reinforcing details in TABLE 4-3.  Elevations, cross sections, and reinforcement details 

of GCC-2-B2, PCC-1-B3 and GCC-R-B4 are shown in FIGURE 4-4 and TABLE 4-4.   

TABLE 4-2:  Concrete cylinder compressive strength at time of testing. 

Beam ID Concrete 

Mix 

Characteristic Compressive 

Strength, psi 

(MPa) 

GCC-1-B1 GCC-1 First batch of geopolymer 

cement concrete with virgin 

aggregates 

11,000 (75.8) 

GCC-2-B2 GCC-2 Second batch of geopolymer 

cement concrete with virgin 

aggregates 

11,900 (82.0) 

PCC-1-B3 PCC-1 Portland cement concrete 12,500 (86.2) 

GCC-R-B4 GCC-R Geopolymer cement  concrete 

with 45% recycled aggregates 

9,200 (63.4) 
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The beams were designed to achieve a ductile, flexural failure, with the 

longitudinal reinforcing steel reaching yield in tension well before the compression 

concrete began compressive crushing.  For preliminary design, a speculative strength of 

6,500 psi (45 MPa) was assumed, although much higher strengths were ultimately 

obtained.  This affected the applicability of the initial design calculations, however, all 

beams achieved ductile failures. 

 

  



97 

 

9
7
 

TABLE 4-3:  Reinforcing steel schedule for GCC-1-B1, inches (mm). 

 
  Dimension 

Bar 

Type 

Grade Diameter 1 2 3 4 5 6 

A 40 0.625 (15.9)  140 (3,560)     

B 60 0.375 (9.5) 4.5 (114) 5.0 (127) 9  ( 2 2 9 ) 5  ( 1 2 7 ) 9  ( 2 2 9 ) 4.5 (114) 

 

 

 

 

8" (203mm)

12" (305mm)

1.5" 38mm

9" (230mm)

12' (3.66m)

12" (305mm)

A

B

Section

Section

 Stirrups spaced 5‖ (127mm) on center 

 

 

 

 

FIGURE 4-3:  Placement and size of reinforcing steel in GCC-1-B1. 
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TABLE 4-4:  Reinforcing steel schedule for GCC-2-B2, PCC-1-B3 and GCC-R-B4. 

 
  Dimension 

Bar 

Type 

Grade Diameter 1 2 3 4 5 6 

A 60 0.5 (12.7)  140 (3,560)     

B 60 0.375 (9.5) 4.5 (114) 5.0 (127) 9  ( 2 2 9 ) 5  ( 1 2 7 ) 9  ( 2 2 9 ) 4.5 (114) 

 

 

 

 

8" (203mm)

12" (305mm)

1.5" 38mm

9" (230mm)

12' (3.66m)

12" (305mm)

A

B

Section
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 Stirrups spaced 5‖ (127mm) on center 

 

 

 

 

 

 

 

 

FIGURE 4-4:  Placement and size of reinforcing steel in GCC-2-B2, PCC-1-B3, 

and GCC-R-B4. 
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4.2.1 Test set-up for the mild steel reinforced beams 

Beams were supported and loaded as shown in FIGURE 4-5.  Equal loads were 

applied at the 1/3 span points.  Displacements were measured at the beam centerline as 

well as directly under the loading points.  The load was applied through a deep steel 

spreader beam and was generated with a hydraulic cylinder mounted to the load-frame.  

The application rate was metered with a manually controlled hydraulic pump and metered 

such that it increased at 100 lb per second (445 N per second).  FIGURE 4-6 shows an 

example of the beam loaded in the test frame.  Also visible in the picture are the spreader 

beam, as well as the loading jack.  At the beams end supports, plates were provided 

between the support rollers and the bottom of the beams to prevent crushing.  These are 

shown in FIGURE 4-7. 

 

P/2 P/2

120" (305 cm)

40" (102 cm) 40" 40"

 

FIGURE 4-5: Beam loading and support geometry. 
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FIGURE 4-6:  Mild steel reinforced beam loaded in the test frame. 

 

 

FIGURE 4-7:  Support conditions for mild steel reinforced beams. 

 

4.2.2 Instrumentation 

Four general purpose strain gages were mounted on the reinforcing bars.  Two 

gages were on the bottom bars and two gages on the top bars.  The gages were protected 
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with vinyl adhesive tape as shown in FIGURE 4-8.  The load was measured with a 

pressure transducer capable of readings from 0-10,000 psi (0-69 MPa) attached to the 

pump.  Displacements were measured directly beneath the load application points and at 

midspan by cable extension transducers.  All data was recorded at the rate of 1 Hz with a 

National Instruments data acquisition system attached to a PC. 

 

FIGURE 4-8:  Strain gage mounted to reinforcing steel. 

 

4.2.3 Performance of the mild steel reinforced beams 

The response of reinforced concrete beams to increasing loads can be observed by 

deflection measurements along the length of the beam.  FIGURE 4-9 depicts the 

relationship between load and deflection that is typical of reinforced concrete beams.  

The load history is marked by the events labeled ―A‖ through ―D‖ on the diagram and 

described in TABLE 4-5.   
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TABLE 4-5:  Description of reinforced concrete beam load history. 

Event 
Description 

A First crack 

B Initiation of tensile steel yielding  

C Initiation of concrete crushing in 

compression 

D Rupture of concrete in compression 

 

 

A

B

C

DL
o

ad

Midspan Deflection
 

FIGURE 4-9:  Load-deflection relationship for reinforced concrete beams. 

 

As the beams were designed to achieve a ductile failure, they all exhibited similar 

behavior.  Each failure was characterized by a long period of steel yielding, during which 

cracks grew and the deflection increased prominently.  Completion of the test was 

marked by the rupture of concrete in the compression zone.   

The moment-midspan deflection charts are given in FIGURE 4-10 through 

FIGURE 4-13.  In the case of GCC-1-B1, the test was inadvertently discontinued prior to 

ultimate failure, so a full load-deflection profile is not available.  However, all other 

beams exhibited the type of behavior anticipated (see FIGURE 4-9).   
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FIGURE 4-14 provides a comparison of the four beams’ load-deflection behavior.  

There is a large variation in the magnitude to the load which caused initial concrete 

cracking and also the magnitude of the ultimate moment.  However, the deflection 

behavior which is related to the elastic and inelastic properties of the steel reinforcing is 

uniform for all beams.  This is reflected in the slope of the load-deflection curve between 

points A and B, and B and C (as identified in FIGURE 4-9). 

 

FIGURE 4-10:  GCC-1-B1 load vs. mid-span deflection. 
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FIGURE 4-11:  GCC-2-B2 load vs. mid-span deflection. 

 

 

FIGURE 4-12:  PCC-1-B3 load vs. mid-span deflection. 
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FIGURE 4-13:  GCC-R-B4 load vs. mid-span deflection. 

 

 

 

FIGURE 4-14:  Combined plots of load vs. mid-span deflection. 
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FIGURE 4-15:  GCC-1-B1 at maximum load. 

 

 

 

FIGURE 4-16:  Crushing failure in GCC-2-B2. 
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FIGURE 4-17:  Crushing failure in PCC-1-B3. 

 

 

 

FIGURE 4-18:  Crushing failure near load application in GCC-R-B4. 
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4.3 Prestressed concrete beams 

Three prestressed concrete beams were prepared.  As with the mild steel reinforced 

beams, each beam featured a different concrete mix, as described in TABLE 4-6.   

TABLE 4-6:  Prestressed beam concrete details. 

Beam ID Concrete Mix Characteristic   
 , psi (MPa) 

GCC-2-P2 GCC-2 Second batch of geopolymer 

cement concrete with virgin 

aggregates 

11,900 (82.0) 

PCC-1-P3 PCC-1 Portland cement concrete 12,500 (86.2) 

GCC-R-P4 GCC-R Geopolymer cement concrete with 

45% recycled aggregates 

9,200 (63.4) 

 

4.3.1 Beam design and construction 

FIGURE 4-21 shows the cross section and reinforcing details of the prestressed 

concrete beams.  In addition to the stirrups shown in the figure, extra 8‖ (200 mm) steel 

hoops were placed around the prestressing strands within 300 mm of the end of the beam 

to prevent rupture of the concrete during prestress transfer, as shown in FIGURE 4-20.  

All steel was grade 60.  Stirrups were #3 (71 mm
2
) bars and longitudinal steel was #4 

(129 mm
2
) bars.  Prestressing tendons were 0.5‖ (13mm) diameter, seven wire, grade 

270, low relaxation strand.  Stress-strain profiles for all the reinforcing steel products are 

available in Appendix A. 

As with the mild reinforced concrete beams, the formwork was lined with 

polyethylene sheeting to preserve the wood, as shown in FIGURE 4-19.  Cover blocks 

were used on the sides and bottom of the reinforcing cage in order to maintain the desired 

geometry and cover.  Since the forms were 18‖ (457mm) tall, cross-ties braced the top of 
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the formwork from bowing under the pressure of the fresh concrete.  These ties are also 

visible in FIGURE 4-19.   

 

 

FIGURE 4-19:  Reinforcing cage and prestressing tendons in formwork. 
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FIGURE 4-20:  Extra reinforcing near the end of the prestressed beams. 
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TABLE 4-7:  Reinforcing steel schedule for GCC-2-B2, PCC-1-B3 and GCC-R-B4, in 

(cm). 

 
  Dimension 

Bar 

Type 

Grade Diameter 1 2 3 4 5 6 

A 60 0.5 (1.27)  212 (538)     

B 60 0.375 (.95) 4.5 (114) 8.0 (20) 16 (41) 8   (20) 16 (41) 4.5 (11) 

C 270 0.5 (1.27)  216 (549)     

18' (5.49m)

18" (457mm)

X

X

X

X

18" (457 mm)

2" (51 mm)

8" (203 mm)

10" (254 mm)

A

B

C

C

A

 Stirrups spaced 12‖ (305mm) on center 

FIGURE 4-21:  Reinforcing steel placement and beam cross section for prestressed 

beams. 
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4.3.2 Prestressing the beams 

The three beams were prestressed in-house.  This was accomplished by 

constructing the formwork and reinforcing cage between two abutments in a strong-wall 

load frame.  The strands were secured to the abutments with reusable prestressing strand 

chucks and were tensioned with a hollow-core hydraulic jack.  The configuration of the 

jack and chucks is shown in FIGURE 4-22.  The chucks and abutments are shown in 

FIGURE 4-23.  During the prestressing operation, tension on the strand was measured 

with a pressure transducer attached to the hydraulic hose as well as by a load cell 

mounted between the strand chuck and the jack.  The tension was maintained by the 

abutment throughout the casting and curing phase of beam construction.  Once cylinder 

tests ensured that the concrete had developed sufficient strength to transfer prestress from 

the abutments to the beam, the strands were cut with an acetylene torch.   

After prestressing beams GCC-2-P2 and PCC-1-P3, it was noted that some 

prestress was being lost as the load was transferred from the jack to the chuck.  This loss 

occurred as the jaws of the chuck slid into the bore of the chuck.  For GCC-R-P4 a set of 

rudimentary load cells were fabricated by attaching strain gages to thick steel tubes that 

were mounted between the chuck and the abutment.  With these load cells, it was 

possible to continue monitoring tension in the strand after the jack was removed.  It was 

noted that approximately 30% of the prestress was lost due to chuck seating.  This was 

accounted for in subsequent computations requiring values for effective prestress. 
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FIGURE 4-22:  Jacking configuration used to tension prestressing tendons. 

 

 

FIGURE 4-23:  Prestressing tendons passing through the abutment. 
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4.3.3 Prestressed concrete beam test set-up 

Using the test set-up shown in FIGURE 4-24, the beams were loaded until they 

failed.  Load was applied through the spreader beam that is visible in FIGURE 4-25 and 

was generated by a hydraulic jack attached to a manually controlled hydraulic pump.  

The load application was monotonic and proceeded at a rate of 3,000 lb/sec (13 kN/sec) 

during the linear portions of the load-deflection history.   

P/2 P/2

18' (5.49 m)

64" (163 cm) 64" 64"

 

FIGURE 4-24:  Prestressed beam test set-up. 

 

 

FIGURE 4-25:  Prestressed beam loaded in the test frame. 
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4.3.4 Prestressed beam instrumentation and test monitoring 

Strain gages were placed on the upper and lower mild steel reinforcing bars at 

midspan.  Although the gages were protected with a vinyl adhesive tape, many of them 

failed to function during the test.  External instrumentation included three cable extension 

displacement transducers set at midspan, and points directly under the load application 

plates, as shown in FIGURE 4-24. 

The load was measured with a pressure transducer capable of readings from 0-

10,000 psi (0-69 MPa) attached to the pump.  Displacements were measured beneath the 

load application points and at midspan by cable extension transducers.  All data was 

recorded at the rate of 1 Hz with a National Instruments data acquisition system attached 

to a PC.  Additionally, the development of crack patterns along the beam was monitored 

until the beam approached 80% of its predicted failure load, after which the research 

assistants moved away from the beam for safety.   

4.3.5 Prestressed beam test results 

FIGURE 4-26 through FIGURE 4-28 present the load-deflection history of the 

prestressed beams.  As is apparent in FIGURE 4-30 through FIGURE 4-32, all beam 

failures occurred by crushing of the concrete on the compression face of the beam.  It 

should be noted that the crushing originated near one of the loading points for all three 

prestressed beams.  Broad steel plates were used beneath the spreader beam, however 

localized bearing stresses may have been involved in the failure mechanism for the 

compression concrete.  The failure loads were very similar for all three beams, as is 

reported in TABLE 4-8.  Here the forces have been expressed as midspan flexural 
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moments as determined by beam geometry and the magnitude of the measured point 

loads. 

 

 

FIGURE 4-26:  GCC-2-P1 beam load vs. midspan deflection. 

 

 

FIGURE 4-27:  PCC-1-P2 beam load vs. midspan deflection. 
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FIGURE 4-28:  GCC-R-P3 beam load vs. midspan deflection. 

 

 

 

FIGURE 4-29:  Load deflection curves for prestressed beams plotted together. 
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FIGURE 4-30:  GCC-2-P1 beam failure by concrete crushing. 

 

 

 

FIGURE 4-31:  PCC-1-P2 beam failure by concrete crushing. 
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FIGURE 4-32:  GCC-R-P3 beam failure by concrete crushing. 

 

 

TABLE 4-8:  Critical points in prestressed beam load histories. 

Beam ID 
Mcr kip-in (kN-m) Mn kip-in (kN-m) 

GCC-2-P1 989 (118) 3,125 (353) 

PCC-1-P2 Not observed 3,112 (352) 

GCC-R-P3 1,261 (142) 3,124 (353) 



 

 

 

 

CHAPTER 5: FLEXURAL BEAM-COLUMN TESTS 

 

 

5.1 Analysis of stress and strain under compressive loading 

As stresses in concrete increase beyond approximately 30-40% of the compressive 

strength, microcracks begin to form.  Once this cracking is initiated, the load response of 

the concrete shifts from one that is essentially linear and elastic to one that is non-linear 

and inelastic.  Thus, the stress-strain relationship resembles that shown in FIGURE 5-1, 

where the peak stress,   
 , occurs well beyond the linear and elastic portion of the stress-

strain curve.  Beyond   
  stress reduces with increasing strain, until a limiting strain,   , is 

reached.  The magnitude of    is taken as 0.003 % for purposes of design (American 

Concrete Institute, 2008). 

fc

f’c

 εu

ε

 

FIGURE 5-1: stress-strain relationship of concrete in compression. 

 

In concrete beams, ultimate failure is typically marked by crushing of concrete at 

the compression face once strain in this region has reached εu.  Although it is assumed 
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that the strain distribution at points throughout the beam cross-section remains linear, the 

non-proportional relationship between stress and strain results in stress distributions that 

resemble parabolas.  The hatched area in FIGURE 5-2a represents the compression zone 

of a beam in positive flexure.  The strain distribution for this segment of the cross-section 

is linear as in FIGURE 5-2b; however, these strains are related to stresses as per the curve 

shown in FIGURE 5-1 and so create the stress distribution shown in FIGURE 5-2c.   

εc

c

fc

β1c

α1f’c

β1c/2

a) b) c) d)

T

d
h

b

C

 

FIGURE 5-2:  Stresses and strains in concrete beams. 

 

For design purposes, the Whitney Stress Block, shown in FIGURE 5-2d is used as 

an approximation of the area enclosed by the parabolic area shown in FIGURE 5-1c 

(Whitney, 1937).  The block is defined by the factors shown in FIGURE 5-3, where: 

k1: ratio of average compressive stress to maximum compressive stress 

k2:  ratio of distance from top of beam to the force C, and the depth to the neutral

 axis, c 

k3 : ratio of cylinder concrete strength to beam concrete strength 
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k3f’c

k2c

C=k1k3f’cbc

c

 

FIGURE 5-3:  Relationship of k1, k2 and k3 to the resultant compressive force. 

 

There are many challenges in determining the stress-strain relationship shown in 

FIGURE 5-1 experimentally.  Although concentric compression tests can be used to 

determine stress-strain relationship through the initiation of crushing, the post-peak 

behavior is typically obscured by the rapid release of strain energy stored in the testing 

device.  In unreinforced beams, the tensile limit of the concrete is reached well in 

advance of the ultimate compressive stresses developing.  Even in reinforced beams, the 

impact of tensile stresses and cracks developing below the neutral axis is sufficient to 

make analysis very difficult.  For purposes of estimating k1 k2 and k3 as well as measuring 

the stress-strain relationship, a combined axial-flexure test was developed by Hognestad 

(1955). 

In this procedure, a short beam-column is loaded axially while an eccentric load is 

applied through two ―arms‖ attached to the ends of the specimen.  The eccentric load 

produces a moment that maintains a neutral face on one side of the beam-column while 

the opposite side approaches the compressive strain limit.  In this way, the area between 
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the compression face and the neutral axis of a flexural beam is simulated without the 

effects of tensile stresses and a shifting neutral axis as would be found in a reinforced 

beam.  As is not possible in concentric tests, the stress and strain gradient that is found in 

flexural components is duplicated in the test piece.  The test geometry is shown in 

FIGURE 5-4 with    representing the primary axial load and    representing the 

eccentric load. 

Based on static analysis of the system, k1k3 and k2 can be calculated directly from 

the beam dimensions and the magnitude of the loads    and    shown in FIGURE 5-4 

and 5-5.  When the maximum stress in the concrete reaches   
 , the resultant compression 

force, C (as shown in FIGURE 5-3) is equal to the sum of the applied forces,    and   .  

From the free body diagram given in FIGURE 5-5 

               
              (5-1) 

and, solving for k1k3 

          
     

  
   

     (5-2) 

where   and   are the cross sectional dimensions shown in FIGURE 5-2.   
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FIGURE 5-4:  Hognestad flexural beam-column test set-up. 
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FIGURE 5-5:  Free body diagram of the beam-column specimen cut at midheight. 
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Summing moments about the neutral face of the beam generated by the forces 

shown in FIGURE 5-5, leads to  

                                  (5-3) 

 

          
         
        

    (5-4) 

 

The relationship between stress and strain must be determined by a process of 

numerical integration.  It is necessary to assume that fc is a function of εc, such that 

fc=F(εc) and that εc is a linear distribution across c as shown in FIGURE 5-6.  However, 

since the function       is not known, some substitution of known or measurable 

quantities must be made to determine fc from data collected during experiments.   

fc

c
F(εx)

x

εc

εx

 

FIGURE 5-6: Quantities fc, εc and c. 

 

C, the resultant compressive force, may be defined by using  

               
  

  
      
  
 

 
 

 
               (5-5)  
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and the moment, M, by using 

 

              
   

   
      
  
 

   
 

 
                 

  (5-6) 

 

The average stress on the cross-section is,  

 

        
     

  
     (5-7) 

and from Equation (5-6), a term for average moment is, 

        
         

   
    (5-8) 

 

Differentiating the third and last terms of Equation (5-5) with respect to    results in 

Equation (5-9).  Substituting the relationship in Equation (5-10), which is obtained by 

manipulating the third and fifth terms of Equation (5-5), into Equation (5-9) leads to 

Equation (5-11), in which 
   

   
 is approximately equal to 

   

   
, two quantities that are 

measured during testing.  The unknown function       has been removed from the 

analysis, permitting the measured quantities P1, P2 and    to be used to directly calculate 

  . 

 

           
  
 

            (5-9) 

   

        
   

   
         (5-10) 

Using the same strategy 
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          (5-11) 

 

 

5.2 Flexural beam-column test procedure 

5.2.1 Specimen preparation 

In order to carry out the flexural test to collect the quantities described above, a 

series of five beam-columns were constructed.  The specimens had the cross sectional 

and elevation details shown in FIGURE 5-7.  The formwork was constructed of ¾‖ 

(19mm) thick oriented strand board and was heavily braced in order to maintain its 

geometry under the pressure of the fresh concrete.  The forms were also lined with 

polyethylene sheeting in order to prohibit the absorption of water or the alkaline activator 

by the wood.  The beam-columns were cast in an upright orientation as shown in 

FIGURE 5-8. 

Sleeves fabricated from 3/8‖ (9.5mm) thick 8‖X8‖  (203mmx203mm) square 

tubing were cast onto each end of the specimen.  The holes were precisely located to 

accommodate the bolting pattern from the moment arm end-plates (FIGURE 5-9). 

Passages for the bolts were blocked out with lengths of PVC pipe that were 

removed after the concrete hardened.  Hoops bent in grade 60, #3 (metric #10) rebar 

provided reinforcing inside of the sleeve.  #4 (metric #13) bars extended 9‖ (229mm ) 

beyond the end of the sleeve in order to transfer forces from the loaded ends of the beam-

column into the unreinforced central portion of the specimen.  The end reinforcing is 

shown in FIGURE 5-10.   
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The specimens were instrumented with five concrete strain gages manufactured by 

Vishay, as shown in FIGURE 5-11.  Two gages were mounted on the compression face 

of the beam-column and two were mounted on the neutral face within 2‖ (51mm) of the 

centerline.  A single gage was also mounted on one of the side faces.  These gages were 

attached with the AE-10 epoxy kit manufactured by Vishay.   

 

8" (203mm)

14" (356mm)

44" (1118mm)

14"

7.25" (184mm)

b=7.25" (184mm)

c=7.5" (191mm)

Moment 

Arm

Moment 

Arm

Steel Sleeve

A-A
A-A

 

FIGURE 5-7:  Beam-column specimen dimensions. 
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FIGURE 5-8:  Casting beam-column specimens.  

 

 

1"X12" Plate 

(25mmX305mm)

3/8"X11" Plate 

(9.5mmX279mm)

C12X30

1"Bolt (25mm)

Side View End View

Moment Arm

 

FIGURE 5-9:  Moment arm section and end-plate details. 
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FIGURE 5-10:  Reinforcing at the ends of the beam-columns. 
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22" (559mm)

Compression and 

Tension Faces Side Face

 

FIGURE 5-11:  Strain gage locations on beam-column specimens. 

 

5.2.2 Loading apparatus 

Cross sectional details for the steel moment arms are given in FIGURE 5-9.  The 

arms were fixed to the specimens with six, 1‖ (25.4mm) diameter bolts.  The arms were 

secured to the load frame with loose chains that did not impede their movement during 

the test but kept them under control after specimen failure.  The beam-columns were 

loaded in an apparatus that was built into the load frame at UNC Charlotte.  Two 4’ 

(1.2m) sections of steel were bolted to the bottom rung of the load frame to form 

abutments, as shown in FIGURE 5-12.  Also in FIGURE 5-12 is the 420 ton (4,000 kN) 



132 

 

1
3
2
 

jack that applied the primary axial load, P1.  The end-plate of the abutment was stiffened 

to prevent deformation as the axial load was applied.  The force was transferred to the 

specimen through a roller system consisting of 3‖ (76mm) thick steel plate with a trough 

machined along the middle to accept a 2‖ (51mm) diameter bar (FIGURE 5-12).  

Although the top surface of the specimen had been float finished during casting, a sheet 

of ¾‖ (19mm) plywood was placed between the roller and the specimen in order to 

accommodate any high spots.  Force was generated by a manually controlled hydraulic 

pump.  The flow-rate was regulated to apply approximately 500 lb/sec (2.2 kN/sec) to the 

specimen and the load was measured with an electronic pressure transducer. 

 

 

FIGURE 5-12:  4’ abutment, primary axial load application piston and end roller. 

 

The secondary, moment load was applied via heavy steel cantilevers bolted to the 

specimen through the holes in the end sleeve, as shown in FIGURE 5-7.  The steel 

sections used to create the moment arm are shown in FIGURE 5-9.  A 30 ton (300 kN) 

hollow core jack applied the load P2 to the moment arms through a 0.6‖ (15.2mm) 
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diameter prestressing strand anchored with a strand chuck as shown in FIGURE 5-13.  

Force was generated by a hand-operated pump connected to the jack.  The load was 

applied as needed to maintain the lower face of the beam-column at zero strain within 50 

millionths.  The magnitude of P2 was measured with a 50,000 lb (222 kN) load cell. 

 

FIGURE 5-13:  Application of P2 with a 30 ton jack and prestressing strand.   

 

FIGURE 5-14:  Full test set-up for flexural beam columns. 
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5.3 Test results and data reduction 

A set of 3‖x6‖ (76mmx152mm) cylinders was cast with each of the five beam-

column specimens.  These cylinders were tested to determine the cylinder compressive 

strength on the same day as the beam-column tests.  The compressive strength results are 

given in TABLE 5-1.  Although all mixes followed the same proportioning, there is great 

variation in the compressive strength.  During the mixing process, small amounts of 

water were added to the concrete to improve workability.  This addition was not closely 

monitored but seems to have sufficiently affected the w/c ratio to cause reductions in 

concrete strength. 

 

TABLE 5-1:  Cylinder compressive strength for beam-column concrete. 

Beam-Column 
  
  , psi (MPa) 

GCC-3-BC1 7,900 (54) 

GCC-4-BC2 9,000 (62) 

GCC-5-BC3 6,700 (46) 

GCC-6-BC4 7,300 (50) 

GCC-7-BC5 4,000 (28) 

 

During the testing process, measurements were recorded by a data acquisition system 

set to make a reading twice per second.  The system recorded the loads P1 and P2, strain 

from each of the five strain gages and displacement at the inside and outside of the beam 

at midspan.  As each test required approximately 15 minutes to complete, the quantity of 

data recorded was too great for the numerical integration technique that was to be 

employed to analyze the results.  Small errors in each collected data point, which are 

caused by the accuracy limits of the instruments as well as electromagnetic interference, 
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translated into considerable scatter in the analysis output.  Therefore, prior to performing 

the integration, each data set was reduced in size by 95% by selecting one point out of 

each 20 that was defined by the average value of the 10 points ahead and 10 points 

behind.  This provided a moving average while reducing the number of data points from 

approximately 1,800 per test to fewer than 100, based on the actual duration of each test. 

The displacement data recorded during the test was used to compute additional 

stresses caused by secondary moments.  These additional stresses were calculated with 

       
                 

   
    (5-12) 

where   is eccentricity (in) (mm) 

 

5.3.1 Neutral face strain and midspan eccentricity 

FIGURE 5-15 through 5-24 display the strain recorded on the neutral face of the 

beam during the loading as well as the midspan deflection due to the applied forces.  In 

all cases, the eccentricity was less than 0.1‖ (2.54mm).  Strains were controlled within 

about 20 millionths at points prior to the failure approach.   
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FIGURE 5-15:  Midspan deflection vs. P2 for GCC-3-BC1. 

 

 

FIGURE 5-16:  Neutral face strain vs. P2 for GCC-3-BC1. 
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FIGURE 5-17:  Midspan deflection vs. P2 for GCC-4-BC2. 

 

 

FIGURE 5-18:  Neutral face strain vs. P2 for GCC-4-BC2. 
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FIGURE 5-19:  Midspan deflection vs. P2 for GCC-5-BC3. 

 

 

 

FIGURE 5-20:  Neutral face strain vs. P2 for GCC-5-BC3. 

 

 

0 20 40 60

-0.4

0.6

1.6

2.6

3.6

4.6

5.6

6.6

7.6

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5000 10000 15000

P2 [kN]

M
id

sp
an

 e
cc

en
tr

ic
it

y
 [

m
m

]

M
id

sp
an

 e
cc

en
tr

ic
it

y
 [

in
]

P2 [lb]

0 20 40 60

-1.00E-04

-5.00E-05

-1.00E-18

5.00E-05

1.00E-04

0 5000 10000 15000

P2 [kN]

N
eu

tr
al

 f
ac

e 
st

ra
in

 [
%

]

P2 [lb]



139 

 

1
3
9
 

 

FIGURE 5-21:  Midspan deflection vs. P2 for GCC-6-BC4. 

 

 

FIGURE 5-22:  Neutral face strain vs. P2 for GCC-6-BC4. 
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FIGURE 5-23:  Midspan deflection vs. P2 for GCC-7-BC5. 

 

 
FIGURE 5-24:  Neutral face strain vs. P2 for GCC-7-BC5. 
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0 20 40 60

-0.4

0.6

1.6

2.6

3.6

4.6

5.6

6.6

7.6

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5000 10000 15000

P2 [kN]

M
id

sp
an

 e
cc

en
tr

ic
it

y
 [

m
m

]

M
id

sp
an

 e
cc

en
tr

ic
it

y
 [

in
]

P2 [lb]

0 20 40 60

-1.00E-04

-5.00E-05

-1.00E-18

5.00E-05

1.00E-04

0 5000 10000 15000

P2 [kN]

N
eu

tr
al

 f
ac

e 
st

ra
in

 [
%

]

P2 [lb]



141 

 

1
4
1
 

cracking.  FIGURE 5-25 through 5-29 illustrate the failure modes of each of the five 

beam-column specimens. 

 

 

FIGURE 5-25:  Failure of GCC-3-BC1. 

 

 

FIGURE 5-26:  Failure of GCC-3-BC2. 
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FIGURE 5-27:  Failure of GCC-5-BC3. 

 

 
FIGURE 5-28:  Failure of GCC-6-BC4. 
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FIGURE 5-29:  Failure of GCC-7-BC5. 

 

The stress in the concrete,   , was computed numerically using both    from 

Equation (5-12) and    from Equation (5-7).  These two calculation methods resulted in 

slightly different values for   , as seen in FIGURE 5-30.  Therefore, an average value was 

used as the final result as plotted in FIGURE 5-31 through FIGURE 5-35, the results of 

all five beam-columns. 
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FIGURE 5-30:     computed from    and from    and average values. 

 

 

FIGURE 5-31:  GCC-3-BC1 stress-strain relationship from flexural tests. 
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FIGURE 5-32:  GCC-4-BC2 stress-strain relationship from flexural tests. 

 

 

FIGURE 5-33:  GCC-5-BC3 stress-strain relationship from flexural tests. 
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FIGURE 5-34:  GCC-6-BC4 stress-strain relationship from flexural tests. 

 

 
FIGURE 5-35:  GCC-7-BC5 stress-strain relationship from flexural tests. 
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5.3.2 Discussion of beam column results 

The five beam-columns provided a spectrum of stress-strain response that appears 

to be related to concrete compressive strength.  As is apparent in FIGURE 5-36, the slope 

of the stress strain curve increases as the concrete compressive strength increases.  

TABLE 5-2 also shows this relationship and provides a comparison with the slope of 

each curve between zero strain and 0.001% strain and the estimated modulus of elasticity 

for each concrete compressive strength using Equations (2-9) and (2-10).  These formulas 

verify the linear portion of the results curves by accurately predicting the slope within 

5%.   

 

 

FIGURE 5-36:  Relative slopes of stress strain curves. 
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TABLE 5-2:  Slope of stress-strain curves versus estimated modulus of elasticity, psi 

(GPa). 

Specimen   
 , psi 

(MPa) 

Estimated E psi 

(Gpa) 

Slope of Stress-

Strain curve 

% 

Difference 

GCC-3-BC1 7,900 (54) 3.66x10
6
 (25.26) 3.82 x10

6
 (26.33) 4% 

GCC-4-BC2 9,000 (62) 3.91 x10
6
 (26.96) 4.13 x10

6
 (28.48) 5% 

GCC-5-BC3 6,700 (46) 3.37 x10
6
 (23.27) 3.54 x10

6
 (24.44) 5% 

GCC-6-BC-4 7,300 (50) 3.52 x10
6
 (24.28) 3.76 x10

6
 (25.94) 6% 

GCC-7-BC-5 4,000 (28) 2.61 x10
6
 (17.98) 2.48 x10

6
 (17.13) -5% 

5.3.3 Analysis of beam-column test data 

Equations (5-2) and (5-4) allow the computation of k1k3 and k2, respectively.  The 

data presented in the FIGURES above was used to compute these values and is presented 

in TABLE 5-3.  k3 was found as the ratio of   
  to the maximum concrete stress fc 

determined during the test. 

TABLE 5-3:  Calculated values of k1k3, k2 and k3 for beam columns. 

Beam-Column 
  
 , psi (MPa) k1k3 k2 k3 α1 β1 

GCC-3-BC1 7,900 (45) 0.513 0.228 1.03 1.13 0.46 

GCC-4-BC2 9,000 (62) 0.519 0.231 0.98 1.12 0.46 

GCC-5-BC3 6,700 (46) 0.644 0.240 1.21 1.34 0.48 

GCC-6-BC4 7,300 (50) 0.593 0.275 1.10 1.08 0.55 

GCC-7-BC5 4,000 (28) 0.539 0.266 0.97 1.01 0.53 

 

In order to use these values for practical design purposes, the quantities α1 and β1 are 

used to define a rectangular area that has the same volume as the parabolic shape 

depicted in FIGURE 5-37.  Based on the relationships in FIGURE 5-37, α1 and β1 were 

computed using Equations (5-13) and (5-14) and are presented in TABLE 5-3. 
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     (5-13) 

                (5-14) 

 

k3f’c

k2c

C=k1k3f’cbc

c c

a

α1f’c 

β1c/2

C=α1β1f’cbc

 

FIGURE 5-37:  Relationship between k1,k2, k3 and α1 and β1. 

 

The relationship of    and    to the cylinder compressive strength of the concrete 

in the beam-columns is shown in FIGURE 5-38 and FIGURE 5-39.  For    there is a 

trend towards increasing    with increasing cylinder strength.  This implies that the 

maximum stress attained by concrete in the column was greater than the maximum stress 

attained by concrete in cylinder tests.  As the concrete became stronger, the ratio of 

cylinder strength to element strength increases.  In PCC structural elements, this 

phenomenon is often related to the altered proportion of mortar and aggregate found in 

concrete before and after vibratory consolidation.  The consolidation process causes 

lighter, fluid constituents of the fresh concrete to rise towards the upper surface of the 

element, while aggregate and less mobile constituents remain on the bottom.  Such 

segregation could have occurred in the beam-column elements tested here.  Unlike PCC, 

these beam-columns were cured under elevated temperatures.  Fans inside the curing 
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chamber vigorously circulate the heated air, however it remains possible that a 

temperature stratification could have developed.  In this case, the cylinders, which were 

placed on the bottom of the oven during curing, may have achieved lower temperatures 

than the beam-columns, which extended higher into the oven. 

All    were in the range of 1.0, with an upper bound of 1.33 and a lower bound of 

1.02.  For design purposes it is proposed that    be taken as 1.0, which provides 

conservative estimates of the concrete strength in the concrete element.  Although 

FIGURE 5-38 indicates that    varies with concrete strength, the variation is not 

pronounced.  There is not sufficient data to justify proposing a design value of    based 

on the cylinder compressive strength until further research can illuminate the causes of 

this difference. 

   also shows a tendency to be reduced slightly as cylinder compressive strength 

increases.  For normal strength PCC, ACI 318 provides a range of    0.85 for concrete 

between 2,500 and 4,000 psi (17-28 MPa) to    0.65 for concrete above 8,000 psi [55 

MPa].  The beam-columns tested here ranged in strength from 4,000 to 9,000 psi [28-62 

MPa], however the range of    values was not nearly as broad.  For the GCC beam-

columns,    values ranged from 0.54 for the 4,000 psi [28 MPa] concrete to 0.46 for the 

higher strength concrete.  Although this seems to imply that the depth of the stress block 

should become smaller with increasing concrete compressive strength, there is not 

sufficient resolution in the data to justify creating a variable   .  The average value of 

  =0.5 can be used for design purposes. 

When plotted, the data point representing GCC-5-BC3 appears to be an outlier.  

This column achieved much higher compressive stress in the flexural specimen than was 
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expected considering the cylinder tests.  These results show    and    that are higher 

than the rest of the specimens. 

 

FIGURE 5-38:     related to cylinder compressive strength for beam-columns. 

 

FIGURE 5-39:     related to cylinder compressive strength for beam-columns. 
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stress distribution shown in FIGURE 5-37 to the area of a rectangle fitted around its 

border.  For a triangular distribution, the appropriate factor would be 0.5, meaning that 

the triangle occupies half the area of the rectangle.  Similarly, for parabolic distributions 

the appropriate factor is 0.67.  The k1 for the GCC materials was 0.54, indicating that the 

distribution was very nearly triangular. 

The factor k2 describes the depth of the resultant force, C (defined in FIGURE 

5-37), from the extreme compressive fiber.  The average computed value for k2 found 

here was 0.25, which indicates a more strongly linear portion to the lower-strain portions 

followed by a plateau near the upper strain regions of the stress-strain relationship.  This 

is apparent from the plots shown in FIGURE 5-31 through FIGURE 5-35. 

These conclusions presuppose that the entire range of stress-strain behavior for 

the GCC beam-columns was captures during the test.  PCC materials would be expected 

to exhibit a descending branch of the stress-strain relationship.  The GCC beam columns 

did not produce this descending branch, but there is not sufficient data to conclude 

whether the test was not capable of measuring it, or whether GCC materials do not 

undergo strain softening. 

5.3.4 Generalized stress-strain relationship for gcc 

The stress strain profiles given in FIGURE 5-31 through FIGURE 5-35 are only 

directly applicable to concrete having similar composition and compressive strength as 

the concretes that were tested in these experiments.  However, there is a trend of 

increasing slope with increasing compressive strength.  Therefore, it may be possible to 

relate the shape of the stress-strain profile with a generalized, continuous function whose 

slope is defined by the compressive strength of the material. 
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The basic contour of the stress-strain profiles that of a very shallow parabola.  The 

model function given in Equation (5-15) was used as an input to a curve-fitting routine in 

MathCAD to determine the parameters a and b for each of the profiles in FIGURE 5-31 

through FIGURE 5-35.  The basic form of the equation is a power function.  The slope of 

the function can be increased or reduced with the parameter a, and the degree of 

curvature is fixed by adjusting parameter b.  The curve fitting routine returned the values 

in TABLE 5-4.  These values were further parameterized with the relationships shown in 

FIGURE 5-40 and FIGURE 5-41. 

           
      (5-15) 

 

TABLE 5-4:  Parameters a and b for GCC stress-strain relationship 

  
  ksi 

a b 

8.7 2.45 0.26 

7.9 2.74 0.26 

7.3 3.83 0.38 

6.7 4.89 0.36 

4.0 4.10 1.07 
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FIGURE 5-40:  Formula to determine parameter a based on compressive strength. 

 

 

FIGURE 5-41:  Formula to determine parameter ―b‖ based on compressive strength 
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in FIGURE 5-42 through FIGURE 5-46.  The correlation coefficients for Equation (5-15) 

with each of the experimentally derived relationships are given in TABLE 5-5. 

           
          (5-16)  

                    (5-17)  

 

 

FIGURE 5-42.  Experimental results and Equation 5-15 for 9.0 ksi concrete. 

 

 

FIGURE 5-43:  Experimental results and Equation 5-15 for 7.9 ksi concrete. 
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FIGURE 5-44.  Experimental results and Equation 5-15 for 7.3 ksi concrete. 

 

 

 

 

FIGURE 5-45:  Experimental results and Equation 5-15 for 6.7 ksi concrete. 
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FIGURE 5-46:  Experimental results and Equation 5-15 for 4.0 ksi concrete. 

 

TABLE 5-5:  Correlation coefficient for concrete stress estimation curves. 

Concrete Compressive 
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Pearsons’s Correlation 

Coefficient 

9.0 0.998 

7.9 0.998 

7.3 0.998 

6.7 0.998 

4.0 0.997 
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specimen GCC-6-BC4.  The terminal strain recorded in the tests was not linked to 

concrete compressive strength.   

Difficulty measuring the ultimate strain could have arisen from several issues related 

to the specimen construction or the test protocol.  The specimens did not fail in the 

instrumented zone of the beam.  This means that when crushing was initiated, the strains 

local to the instrumented area actually would have reduced due to the declining loads on 

the specimen and the peak strain would not likely be recorded.  Since data is not available 

in the literature regarding post peak or ultimate strain behavior of GCC materials, more 

specialized tests are required to ascertain whether the full range of elastic and post elastic 

response was measured by these tests. 

 



 

 

 

 

CHAPTER 6: VERIFICATION OF BEAM PERFORMANCE AND DESIGN 

COMPUTATIONS 

 

 

In previous chapters of this dissertation, several material properties and design 

values have been presented for geopolymer cement concrete.  A variety of test specimens 

have been utilized to experimentally determine these material characteristics.  In this 

chapter, the flexural performance of the beams reported in CHAPTER 4 will be used as a 

check of the applicability of the material characteristics to the design of GCC beams.  

Two main cross-checking strategies are used for this purpose.  In the first pass, the 

traditional ACI flexural design calculations for mild-steel reinforced concrete beams and 

prestressed concrete beams are used to compare expected beam capacity with observed 

beam capacity.  The checkpoints in this first method are cracking moment and ultimate 

load.   

In the second pass, a more complex moment-curvature model is used with the 

material characteristics determined in previous chapters.  The moment-curvature method 

allows the analysis of stresses and strains in the beams at points prior the beam reaching 

ultimate moment, so a richer set of checkpoints is available for comparison.  In this 

second method, the checkpoints will include midspan deflection at several points prior to 

beam failure as well as the predicted ultimate moment. 

6.1 Moment-curvature models 

Most design computations for reinforced concrete flexural components are made at 

the limit state.  This means, they use the assumption that either the concrete is at its 
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compression failure strain or the steel is at its tension yield strain.  This strategy 

eliminates the more complicated process of predicting the nonlinear response of the 

materials at points prior to failure.  In order to model the full range of beam behavior up 

to failure, a more complex computation strategy is required.  Moment-curvature analysis 

is one such method for modeling reinforced concrete beam behavior throughout a loading 

range. 

The model assumes that as a moment is applied to a segment of a beam, as in 

FIGURE 6-1a, strains develop which lead to the deformation of the cross section 

(FIGURE 6-1b).  The strain distribution across the section is linear, as shown in FIGURE 

6-1c, even after the concrete is cracked.  The linear distribution of strain is 

experimentally verifiable.  The assumed strain can then be related to stresses in the 

constituent materials via their known elastic and inelastic properties.  To create such a 

model numerically, the cross-section of the concrete beam is divided into many 

horizontal strips as shown in FIGURE 6-2.  Each strip is assumed to have uniform strain 

over its depth, which is taken as the average of the range of strains found in the 

continuous cross-section.  The constitutive properties of the material in the strip are used 

to compute stress from the strain, and the area of the strip can be used to determine the 

force generated at the centroid of each strip, also shown in FIGURE 6-2. 

In order to determine the magnitude of the strains in the cross-section, a value is 

assumed for strain in the extreme compression fiber.  Once maximum strain is 

established, the curvature, φ (FIGURE 6-1b,c), is computed based on maintaining force 

equilibrium.  The moment acting on the section may be computed by summing the 

moments generated by the force acting in each strip about any convenient point, such as 
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the top of the beam.  Thus, the iterative steps used to prepare the moment curvature 

response curve are 

1. Assume the maximum compressive strain in the cross-section 

2. Determine φ to maintain internal force equilibrium 

3. Compute the internal moment that corresponds to φ determined in step 2 

By considering the range of moments from zero through ultimate that would be 

imposed on the beam, a plot relating moment and curvature is generated, as shown in 

FIGURE 6-3.  The points A, B, C and D represent important discontinuities in the 

behavior of the beam.  Point ―A‖ corresponds with the initial tension cracking of the 

concrete.  Point ―B‖ marks the initiation of tension steel yielding and point ―C‖ denotes 

the beginning of crushing in the extreme compression fibers of the concrete.  ―D‖ 

indicates beam failure by rupture of the compression concrete which is generally caused 

by the compression rebars buckling. 

In addition to modeling the distribution of strains and stresses in a beam 

undergoing loading, the moment curvature analysis technique is also used to model 

deflections.  The moment-curvature relationship shown in FIGURE 6-3 can be mapped 

directly onto the moment diagram of a beam to produce a plot of the distribution of 

curvature along the length of the beam, as in FIGURE 6-4.  The beams tested in these 

experiments were simply supported and symmetrically loaded.  This indicates that the 

deflection of the beam at midspan relative to the support is given by  

                     (6-1) 

 



162 

 

1
6
2
 

which can be solved numerically by summing the moment of area beneath the 

curve in FIGURE 6-4.  For instance, to determine the deflection at point x in FIGURE 

6-4, the moment of area, A1   , between the support and x would be summed by numerical 

integration. 

dx

a)

b)

εc

φ

c)

h

φ

dx

ds

h

h

dx

c

x

 

FIGURE 6-1a,b,c.  Moment-curvature analysis. 
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FIGURE 6-2:  Distribution of forces in the moment curvature model. 
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FIGURE 6-3:  Moment curvature plot. 
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FIGURE 6-4:  Moment-curvature relationship plotted along beam length. 

 

Moment curvature models were used in this study to verify the applicability of the 

concrete stress-strain characteristics measured via the flexural beam-column tests with 

the component tests of reinforced concrete beams.  In the model prepared for this study, 

the beams were divided into 0.25‖ (6.4mm) horizontal strips.   
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6.1.1 Traditional analysis methods 

Two points in the load history, ―A‖- initial cracking of the concrete section, and 

―C‖- initiation of concrete crushing at the compression face of the beam, are important to 

the design process and are calculated using formulas provided by ACI 318 (American 

Concrete Institute, 2008).  For the purposes of determining the cracking moment, ACI 

gives  

         
    

  
     (6-2) 

where: 

       
   

  
 (for rectangular beams)   (6-3) 

                [psi]    (6-4) 

or                 [MPa]    (6-5) 

 

For ultimate moment capacity, ACI gives 

 

               
 

 
     (6-6) 

where: 

  : area of steel 

  : steel yield stress 

 : depth of steel in the beam relative to the extreme compression fiber 

 :  depth of the compressive stress block 

 

Inputs to the ultimate moment calculations are presented in TABLE 6-1. The 

computed ultimate moment values for the four beams reported here are given in TABLE 

6-2.   It can be seen that for all the mild steel reinforced beams the design values are very 

conservative in comparison to the recorded performance.  In order to make the 
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calculations in TABLE 6-2, the actual steel yield stress values determined by tensile tests 

were used rather than the assumption that grade 60 steel would yield at 60 ksi .  Plots of 

these values are provided in APPENDIX A.  Also, stresses in the compression steel were 

considered.  Since the beams were highly underreinforced, the neutral axis was above the 

top bars and they acted as tensile reinforcement near beam failure.   

 

6.1.1.1 Example calculation method for ultimate moment 

Step 1:  Determine the depth of the compressive stress block, a 

Balancing compressive and tensile forces in the concrete cross section gives  

            
      

    
  
 

  

             (6-7) 

which can be used to solve for a by simplifying and using the quadratic formula.  In the 

case of GCC-1-B1, geometric and material strength quantities In this example, traditional 

ACI 318 values were used         and        .  For GCC-1-B1, geometric and 

material strength quantities are: 

 =10.5 

  =3 

  =10.5‖ (267mm) 

  =0.31 in
2
 (398mm

2
) 

  
 =0.31 in

2
 (398mm

2
) 

   =54,000 psi (558 MPa) 

  
 =11,000 psi (372 MPa) 

 

Solving Equation (6-7),  =1.06‖ (26.9mm) and   
 = 0.00252%.  Since this indicates that 

the top steel has yielded, the depth of the stress block must be recalculated using 

             
      

            (6-8) 
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Solving for  , the depth of the stress block is found to be 1.09‖ (27.7mm) and   
 = 

0.00233%. 

 

Step 2:  Determine the moment, Mn 

Considering that the top steel acts in tension rather than compression, the ultimate 

moment is computed with  

              
 

 
    

     
     

 

 
   (6-9) 

Therefore, using the section and material qualities for the beam, 

          
 

 
    

     
     

 

 
  

                    
    

 
                

    

 
  

                 

              

             

 

The same computation strategy was used for all the mild steel reinforced beams.  

Input values and calculation points are listed in TABLE 6-1.  Results are reported in 

TABLE 6-2.  The cracking moment was computed by estimating the modulus of rupture 

using ACI methods.  Results are presented in TABLE 6-3. 
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TABLE 6-1:  Beam ultimate moment calculation inputs. 

          and                and         

Beam    
  psi (MPa) a, in (mm)   

  a, in (mm)   
  

GCC-1-B1 11,000 (75.8) 1.10 (27.9) 0.00233 1.29 0.00049 

GCC-2-B2 11,900 (82.0) 1.00 (25.4) 0.00286 0.82 0.00251 

PCC-1-B3 12,500 (86.2) 1.00 (25.4) 0.00298 - - 

GCC-R-B4 9,200 (63.4) 1.16 (29.5) 0.00205 0.94 0.00178 

 

TABLE 6-2:  Computed and observed values for,   . 

Beam     
           

        and                and         

   kip-in, 

(kn-m) 

             

              
     kip-in, 

(kn-m) 

             

              
  

GCC-1-B1 600 (68) 423 (47.8) 1.42 416 (47.0) 1.44 

GCC-2-B2 760 (85.9) 567 (64.1) 1.34 566 (63.9) 1.34 

PCC-1-B3 670 (75.7) 568 (64.2) 1.18 - - 

GCC-R-B4 682 (77.0) 540 (61.0) 1.26 540 (61.0) 1.25 

 

TABLE 6-3:  Computed and observed values for   ,    . 

Beam 
   psi, (MPa)    in

4
, (cm

4
)                  

k-in, (kN-m) 
                

k-in, (kN-m) 

GCC-1-B1 787 (5.4) 1,152 

(47,950) 

151 (17.1) 160 (18.1) 

GCC-2-B2 818 (5.6) ― 157 (17.7) 187 (21.1) 

PCC-1-B3 838 (5.8) ― 161 (18.2) 80 (9.0) 

GCC-R-B4 719 (5.0) ― 138 (15.6) 144 (16.3) 

 

ACI design formulas conservatively predicted the performance of the GCC beams in 

all cases.  TABLE 6-4 provides the ratios of predicted to observed flexural performance 

for the four mild-steel reinforced beams.  The ultimate moment predictions for the GCC 

beams were conservative by an average factor of 1.29.  This is similar to the same ratio 
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for the PCC beam of 1.18.  For cracking moments, the predictions were very accurate in 

the case of the GCC beams.  Only for the PCC beam were the design formulations 

unconservative.  The first crack appeared in the PCC beam at half the expected load.  

This could have been caused by damage to the beam during transportation.  Since the 

value is so different from expected, it should be treated as an outlier. 

 

TABLE 6-4:  Ratio of observed to predicted cracking moment and ultimate moment. 

Beam 
               

              
 
              

             
 

GCC-1-B1 1.06 1.42 

GCC-2-B2 1.19 1.34 

PCC-1-B3 0.50 1.18 

GCC-R-B4 1.04 1.26 

 

Similar flexural tests conducted by Sumajouw et al. (2005) resulted in very 

comparable results.  Beams having the same reinforcement ratio, ρ=0.64 defined by  

       
                

                     
   (6-10) 

displayed the ratios of predicted to observed flexural capacity given in TABLE 6-5.  As 

with the results collected in this study, Sumajouw found that over-estimates are made for 

beams with very low reinforcement ratios.  As the ρ increases, the design formulations 

result in smaller overestimates.   
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TABLE 6-5:  Ratio of observed and calculated flexural strength as reported by 

Sumajouw(2006). 

  
  psi (MPa) ρ              

              
 

5,531 (37) 0.64 1.24 

6,876 (46) 0.64 1.28 

11,361 (76) 0.64 1.42 

 

6.2 Flexural performance assessed by moment-curvature models 

The moment-curvature model was used to predict the failure load as well as the 

deflection of the reinforced concrete beams.  Inputs to the models were the concrete 

compressive strength for each beam, the stress-strain curve given by Equation (5-16) and 

the beam geometry presented in FIGURE 4-3.  The model, executed in the spreadsheet 

application Excel, used the techniques described in Section 6.1.1 to make midspan 

deflection estimates as well as maximum moment computations.  These were compared 

with the results given in CHAPTER 4.   

6.2.1 Ultimate moment 

The ultimate moment is defined as the maximum resisting moment achieved by 

the reinforced concrete beams during the flexural tests.  The experimental results of these 

tests were presented in CHAPTER 4, and are summarized in TABLE 6-6.  It can be seen 

that the moment curvature model provided slightly conservative results for the strength of 

the beams. 
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TABLE 6-6:  Ultimate moment predictions made with the moment-curvature model. 

Beam                 
kip-in (kn-m) 

              
kip-in (kn-m) 

             

              
 

GCC-1-B1 494 (55.8) 600 (68) 1.21 

GCC-2-B2 615 (69.5) 760 (85.9) 1.24 

PCC-1-B3 657 (74.2) 670 (75.7) 1.02 

GCC-R-B4 589 (66.5) 682 (77.0) 1.16 

 

6.2.2 Correlation of moment-curvature model results with beam performance 

The moment-curvature model was used to predict midspan deflection of the 

reinforced concrete beams.  The predicted and actual deflection is plotted in FIGURE 6-5 

through FIGURE 6-8.  Based on the changes in slope along the load history displayed in 

these charts, the model does accurately predict cracking and the onset of reinforcement 

yielding.  However, it loses accuracy in the upper regions of the beam’s moment 

capacity.  TABLE 6-6 gives the accuracy of the models in terms of the ratio of actual to 

predicted deflection.   

FIGURES 6-5 through 6-8 also provide model results using a stress-strain 

relationship sometimes applied to PCC.  Due to uncertainty in the results of the flexural 

beam-column tests, the stress-strain relationship proposed by Popovics and refined for 

high strength concrete by Mertol was used to model the GCC stress-strain response 

(Mertol, 2006; Popovics, 1973).  This equation is give as 

                                      
   

   

 

     
  
   

 
        (6-11) 

where 
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          (6-12) 

             
            (6-13) 

                     (6-14) 

 

Since reliable values for     were not determined during the flexural beam 

column tests, this value was taken as 0.0035 for all tests, rather than the variable value 

proposed by Mertol (2006). 

TABLE 6-7:  Ratio of  predicted and actual deflections for mild steel reinforced beams at 

different moment levels (Δpredicted/ Δobserved). 

 
Maximum Moment, kip-in (kN-M) 

Beam 100 (11.3) 200 (22.6) 300 (33.9) 400 (45.2) 500 (56.5) 

GCC-1-B1 (GCC) 0.88 1.11 1.11 1.91 1.14 

GCC-1-B1 (Popovics) 0.76 0.79 1.03 1.56 1.08 

GCC-2-B2 (GCC) 1.15 3.12 1.62 1.37 1.74 

GCC-2-B2 (Popovics) 1.04 2.58 1.52 1.25 1.55 

PCC-1-B3 (Popovics) 0.41 0.44 0.82 0.84 1.13 

GCC-R-B4 (GCC) 0.51 0.75 1.02 1.00 1.45 

GCC-R-B4 (Popovics) 0.62 1.04 1.09 1.09 1.51 
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FIGURE 6-5:  Modeled and actual deflection for GCC-1-B1. 

 

 

FIGURE 6-6:  Modeled and. actual deflection for GCC-2-B2. 
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FIGURE 6-7:  Modeled and actual deflection for PCC-1-B3. 

 

 

FIGURE 6-8:  Modeled and actual deflection for GCC-R-B4. 
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6.2.3 Discussion of moment-curvature modeling results 

Because the concrete beams used in this study were very under-reinforced, the 

depths of the compression zones in the beam were small.  This resulted in the ultimate 

moment calculations having a high sensitivity to quantities that are not well defined for 

the GCC, such as ultimate strain and post-peak stress-strain relationships.  The results of 

the deflection-correlation study had less sensitivity to the ultimate and post-peak stress 

characteristics of the GCC and therefore, provided more reliable results for moment loads 

less than the ultimate moment.  The results in TABLE 6-7 as well as in FIGURE 6-5 

through 6-8 show that the moment-curvature models typically predicted larger deflections 

than were observed during the tests.  At service load levels (300 kip-in) the ratio of 

predicted to observed deflections ranged from 1.02 to 1.62.  Although the difference 

between using Popovic’s stress-strain relationship and the one presented in CHAPTER 5 

is fairly small, Popovic’s relationship produced more accurate models.  This is most 

likely due to its inclusion of post-peak strains.   

6.3 Prestressed concrete beams 

For the prestressed concrete beams, two points in the load-deflection history were 

used to verify the applicability of design formulations and material properties to GCC 

beam components.  These were cracking moment Mcr and nominal ultimate moment Mn.  

The ultimate moment was predicted using both existing ACI design values for    and    

as well as the special GCC values presented in CHAPTER 5.  Shrinkage and creep 

parameters for GCC were used to estimate the effective prestress at the time of the test.  

The magnitude of the measured cracking moment was further used to estimate the 



175 

 

1
7
5
 

accuracy of the calculation.  For purposes of making the design calculations presented in 

this chapter, the geometric quantities given in TABLE 6-8 were used.   

 

TABLE 6-8:  Geometric quantities used for prestressed beam analysis. 

Quantity Notation Value Units 

Beam width bw 10 In 

Beam length L 18 Ft 

Beam height h 18 In 

Depth to the centroid 

of the  prestressing 

steel 

dp 14 In 

Depth to the mild 

steel reinforcing  

ds 16.25 in 

Moment of inertia I 4860 in
4
 

Cross sectional area ac 180 in
2
 

Distance from beam 

centroid to beam top 

ytop 9 in 

Distance from beam 

centroid to beam 

bottom 

ybot 9 in 

Section modulus for 

beam bottom 

Sbot 540 in
3
 

Section modulus for 

beam top 

Stop 540 in
3
 

Radius of gyration r
2
 27 in

2
 

Length l 216 in 

Prestressing steel 

eccentricity 

e 5 in 

 

6.3.1 Ultimate moment 

The prestressed beams contained both prestressing steel at two depths in the beam as 

well as mild steel reinforcing at the top and the bottom as shown in FIGURE 4-21.  All 

four of these steel groups were considered as contributing to the ultimate moment 

capacity of the beam.  The depth to the neutral axis was computed by balancing the 
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forces from each of these reinforcing groups as well as the compressive zone of the 

concrete.  Analysis accounted for increasing strain in the prestressing steel and related the 

magnitude of the stress to stress-strain test results provided by the manufacturer.   

TABLE 6-9 gives the results of the ultimate moment computation using the ACI 318 

design guidelines for    and    where 

  =0.85 

  =0.65 

Also in TABLE 6-9 are the results of the same computation using the updated design 

quantities developed in CHAPTER 5:.  These were given as 

  =1.0 

  =0.5 

TABLE 6-9:  Computed ultimate moment values, kip-in. 

Beam     
           

ACI 

318    

and    

             

              
 

Updated 

   and    

             

              
 

GCC-2-P1 3,125 3,255 0.96 3,126 1.00 

PCC-1-P2 3,112 3,350 0.93 - - 

GCC-R-P3 3,124 2,805 1.11 2,988 1.05 

 

The ratio of experimental to calculated results shows a very good ability to predict 

the ultimate moment for GCC prestressed flexural beams.  Using the     and    values 

proposed in CHAPTER 5, calculations are slightly more accurate than when using values 

proposed for general Portland cement concrete design.  It is important to note that using 

the ACI values provides a risk of over-estimating the flexural strength, as seen in the case 

of GCC-1.  However, the ACI values also over estimated the strength of the PCC beam. 
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6.3.2 Creep and shrinkage 

Long term creep and shrinkage tests were performed on all three concretes used in 

this study.  In order to verify the results of these tests, presented in CHAPTER 3, they 

were applied to a prestressed concrete design problem that was verified experimentally.  

The creep and shrinkage values were used to estimate prestress losses in three prestressed 

concrete beams.  The cracking moment observed during flexural testing was compared 

with the cracking moment computed using the effective prestress.  

For the calculation, losses from elastic shortening, creep and shrinkage were 

considered.  Steel relaxation was not considered because its magnitude for the stress 

levels in the steel and the duration of the load would be negligible.  Also of note, the 

initial prestress was measured with a pressure transducer attached to the prestressing jack.  

For GCC-R-P1, individual load cells were placed under each strand-chuck in order to 

verify that the tension remaining after the chucks seated was at the intended level.  By 

using the individual load cells, it was determined that each strand lost approximately 30% 

of its pre-seating load once the jack was removed.  Therefore, the initial prestress for 

beams GCC-2-P1 and PCC-1-P1 has been prorated by 30% prior to the loss calculations 

presented here.  Inputs to the loss calculations are given in TABLE 6-10. 

 

TABLE 6-10:  Inputs to prestress loss calculations. 

Beam 
Initial 

Prestress, 

fpi, psi 

Age of 

Beam, 

days 

  
 , psi Ec, psi Ct     

GCC-2-P1 147,700 229 11,900            0.310 0.000278 

PCC-1-P2 147,700 209 12,500            0.870 0.00060 

GCC-R-P3 211,000 30 9,200            0.184 0.00026 
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Losses were calculated with the following equations 

         
  

  
   

  

  
  

  

  
     (6-15) 

where     is the stress at the centroid of the steel and all other quantities are given in 

the preceding TABLEs.  

                    (6-16)  

where: 

   
  

  
 

      :  change in prestress due to elastic shortening 

             
  

  
       (6-17) 

where: 

      :  change in prestress due to creep 

                    (6-18) 

where: 

      :  change in prestress due to shrinkage 

TABLE 6-11 gives a summary of the calculations related to prestress losses.  

Computations make use of the equations presented above.  Mcr, given by  

                    
  

  
   

   

  
     (6-19) 

 

and are presented in the last column of TABLE 6-11 using the values for effective 

prestress presented in the same TABLE.  It is compared with the observed cracking 

moment in TABLE 6-12.  This test involves the interaction of the multiple variables: 

concrete strength, creep coefficient and shrinkage coefficient.  However the results 



179 

 

1
7
9
 

indicate a fairly good correlation of calculated values and experimentally determined 

values.  The largest calculated losses were a result of shrinkage, followed by elastic 

shortening.  The strains due to creep were very nearly negligible in comparison.   

TABLE 6-11:  Prestress loss calculations, psi (MPa). 

 
                      Total 

losses 
    Mcr k-in, 

(kN-m) 

GCC-

1-P1 

147,700 

(1,018) 

-5,525 

(-38) 

-1,712 

(-12) 

-8,006 (-

55) 

-15,243 

(-105) 

132,457 

(913) 

1,077 

(121) 

PCC-

1-P2 

147,700 

(1,018) 

-3,896 

(-27) 

-3,391 

(-23) 

-17,280 

(-119) 

-24567 (-

169) 

123,134 

(849) 

1,049 

(118) 

GCC-

R-P3 

211,000 

(1,455) 

-9,269 

(-64) 

-1,704 

(-12) 

-7,488 (-

52) 

-18462 (-

127) 

192,539 

(1328) 

1,315 

(149) 

 

 

TABLE 6-12:  Observed cracking moment versus calculated  

cracking moment, k-in (kN-m). 

Beam 
    Observed     Calculated     Observed/    

Calculated 

GCC-1-P1 989 (111.7) 1,077 (121.7) 0.92 

GCC-R-P3 1,261 (142.5) 1,315 (148.6) 0.96 

 

6.4 Conclusions 

Material properties determined from tests of GCC specimens, have been used in 

conjunction with reinforced concrete design formulas and methods to predict the 

performance of a series of reinforced and prestressed GCC beams.  Overall, there was 

very good correlation between the predicted and observed results as measured by the 

deflection predictions, cracking moment predictions and ultimate moment predictions.   

In order to verify the applicability of    and    values, ACI 318 design provisions 

were used to predict the ultimate moment for the mild steel reinforced beams.  The 
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average ratio of predicted to observed performance was 1.34.  This indicates that the 

design provisions are slightly conservative.  However, since the beams were 

underreinforced, the design calculations are not very sensitive to changes in the value   .   

The traditional ACI design formulations were also used to analyze the ultimate 

capacity of the prestressed beams.  Since the depth of the compressive stress block a for 

the prestressed beams is deeper, this exercise provided a better assessment of the    and 

   values proposed in 0.  The average ratio of predicted to observed moment capacity 

was 1.025.  This indicates that the existing design formulations for reinforced concrete 

may be applied to GCC beams when values of    and    modified for geopolymer 

applications are used. 
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CHAPTER 7: LIFE CYCLE ANALYSIS OF GEOPOLYMER CEMENT CONCRETE 

 

 

Geopolymer cement concrete (GCC) can be used to make many of the structural 

members that are commonly formed from Portland cement concrete (PCC).  The Portland 

cement binder in PCC requires large inputs of energy and natural resources during its 

manufacture whereas the binder in GCC is sourced from the waste stream and less energy 

is required to develop its cementitious properties.  The GCC and PCC materials are very 

similar in many aspects aside from the make-up of their binders. A life cycle assessment 

can be used to compare the lifecycle impacts of each material in order to verify the 

improved environmental performance of GCC.   

 

7.1 Life cycle assessment for geopolymer cement concrete production 

The results of GCC development presented in CHAPTER 3 were used to generate 

the inputs to a lifecycle model for the production of geopolymer cements.  These inputs 

include the materials and energy that were used to manufacture the mix designs that were 

presented.  The diagrams in FIGURE 7-1 and FIGURE 7-2 depict the inputs to the 

manufacture of each material.   The quantities of the inputs and outputs shown in the 

FIGUREs are given in the description of each process later in this dissertation. 

In order to compare the results of a life cycle analysis for different materials, it is 

necessary to define a functional unit.  This is an especially critical step when comparing 

radically different systems, such as timber columns versus steel columns.  But, since 
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concrete bound with geopolymer cement can be used in an overwhelmingly similar 

capacity as precast Portland cement concrete, the functional unit used for this analysis is 

simply 1.3 yd
3
 (1 m

3
) of 7,300 psi (50 MPa) concrete.  The two materials can be cast into 

identical shapes that can be expected to offer similar structural performance.  Therefore, 

the LCA comparison that is presented here is solely related to the development of the 

concrete strength and does not include the energy required for other concreting tasks.  

The main differences in the two processes relate to the preparation of the cement.  In the 

case of Portland cement, manufacturing energy is applied prior to mixing the concrete.  

For geopolymer cement, the energy used to develop strength is applied to prepare the 

activating solution and to heat the concrete after it is mixed and placed.  However, the 

mixing processes, formwork preparation, reinforcing requirements, concrete placement 

and consolidation practices are very similar.  Therefore, the boundaries of the comparison 

for the two materials are simplified by considering the following stages for each: 

Geopolymer Cement Concrete 
Portland Cement Concrete 

 Preparation of cementitious 

material 

 Manufacture of Portland cement 

 High temperature curing 

 

 

 

The mixing process and delivery of structural components from the precasting plant 

to the jobsite is considered to be similar for both materials. 
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FIGURE 7-1:  Manufacture processes for geopolymer cement concrete. 

 

FIGURE 7-2:  Manufacture processes for Portland cement concrete. 
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7.1.1 Energy requirements 

The energy necessary to collect fly ash and silica fume used to produce 

geopolymer was neglected from this study.  Because these are both industrial byproducts 

that must be collected for compliance with air quality regulations, it is customary to 

neglect their upstream energy requirements.  An important energy input to the use of 

these materials is that for transportation.  However, since transportation energy is not 

considered in the comparison of geopolymer cement concrete with Portland cement 

concrete production, it is left out of the analysis altogether. Also not considered are the 

energy requirements for making the concrete admixtures used because their quantities are 

small enough as to not be significant in the overall analysis.   

The ingredients used to manufacture 1.3 yd
3
 (1 m

3
) of the GCC considered in this 

analysis are given in TABLE 7-1. 

 

TABLE 7-1:  Materials to create 1unit of GCC. 

Raw Material  
lb/yd

3
 (kg/m

3
) 

Fly Ash 834 (495) 

Water 274 (163) 

NaOH 83 (49.5) 

Silica Fume 62 (37.1) 

Fine Aggregate 1336 (793) 

Coarse Aggregate 1336 (793) 

 

The processes involved in preparing the cementitious materials for GCC are the 

following: 

1) Manufacture of Alkalinity 



185 

 

1
8
5
 

NaOH is most commonly produced by electrolysis of brine solution.  The reaction 

produces chlorine gas at the anode and a weak alkali at the cathode.  The alkaline 

solution is typically concentrated to 50% strength for shipment.  The SPLINE 

LCA dataset quantifies the energy required to produce sodium hydroxide as 8,917 

BTU/lb (20.74 MJ/kg) (Center for Environmental Assessment of Product and 

Material Systems, 2008).   

 

2) Production of the activator solution 

The method of producing alkaline activator solution for the concretes made in this 

set of experiments was to mix water, silica fume and the sodium hydroxide 

together and then to heat the solution overnight.  To estimate the energy required 

for this process only the energy required to maintain an elevated temperature of 

167⁰ F (75⁰ C) in a well insulated tank was included.  The energy required to heat 

the solution to 167⁰ F (75⁰ C) was not included because the dissolution of the 

sodium hydroxide in the water produces temperatures that far exceed 167⁰ F 

(75⁰C).  The reaction with the silica fume is also quite violent and elevates the 

temperature further.  It was estimated that a well insulated tank will lose heat 

energy at the rate of 0.194 MJ m
-2 

h
-1

 when the contents are maintained at 167⁰ F 

(75⁰ C) and the ambient conditions outside the tank are 70⁰ F (21⁰ C).  In the lab, 

small quantities of activator are produced in an oven.  However, in an industrial 

setting it would be produced in a much different manner.  In this work, the 

quantity of activator solution required to produce 1.3 yd
2
 (1 m

3
) of concrete is 

about 26 gallons (100 L).  A cylindrical 26 gallon (100 L) tank with a height 



186 

 

1
8
6
 

twice its diameter would have a surface area of 13.5 ft
2
 (1.25 m

2
).  Thus, the 

energy required to maintain the sodium silicate solution at 167⁰ F (75⁰ C) for 24 

hours would be 5,497 BTU (5.8 MJ).   

The second process within the boundaries of this LCA is the high temperature curing 

of the GCC.   

3) High Temperature Curing 

In the absence of measured quantities, the specific heat of geopolymer concrete 

was assumed to be similar to that of Portland cement concrete, 0.88 J G
-1

 K
-1

.  

Other researchers have determined the specific heat of geopolymer-sand mortars 

to range between 0.7 and 1.0 J G
-1

 K
-1

 (Geopolymer Institute, 2009).  As the bulk 

of constituents in both materials is aggregate (~80%), this assumption is felt to be 

reasonably valid.  However, properly measuring the specific heat of geopolymer 

concrete would refine the accuracy of this energy analysis.  The heat required to 

raise the geopolymer concrete from 70 ⁰ F to 167⁰ F (21⁰ C to 75⁰ C) is calculated 

as 97,436 BTU (102.8 MJ).  The concrete must then be held at an elevated 

temperature for 24-48 hours.  As with the activating solution production, heat 

losses from a well insulated oven wall were estimated at 1,979 BTU ft
-2

 hr
-1

 

(0.194 MJ m
-2 

h
-1

).  An oven slightly larger in volume than the concrete would 

show losses of 2,464 BTU hr
-1

 (2.6 MJ h
-1

).  Longer curing durations will require 

greater inputs of energy to maintain elevated temperatures for longer periods of 

time.  In total, the energy required to develop the cementitious component of 1.3 

yd
2
 (1 m

3
) of this concrete is estimated at 1,178,137 BTU (1.243 GJ). 
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7.1.2 Energy required to produce portland cement concrete 

The Portland Cement Association (PCA) has published a lifecycle inventory of 

the energy and material inputs to concrete (Nisbet and Portland Cement, 2007).  In this 

document the Portland cement products ready-mix concrete, precast concrete and 

concrete masonry units are analyzed.  Due to the heating requirements of the geopolymer 

cement concrete presented in this paper that require it to be produced in a factory setting, 

it is most directly comparable to a 7,300 psi (50 MPa) precast concrete that is studied in 

the PCA document.  The mix design for this concrete is shown in TABLE 7-2, below. 

 

TABLE 7-2: Mix design for 7,300 psi (50 MPa) concrete. 

Raw Material  
lb/yd

3
 (kg/m

3
) 

Cement 849 (504) 

Water 300 (178) 

Coarse Aggregate 1770 (1,050) 

Fine Aggregate (935) 555 

 

In order to compare the energy requirement for manufacturing the two concretes, 

it is assumed that the primary differences in the production process are in the preparation 

of the cement and the necessity for elevated curing temperatures in the case of the 

geopolymer cement concrete.  Thus, the other processes such as mixing, transporting, 

facility lighting and maintenance, etcetera, are similar.  The embodied energy of Portland 

cement averaged over the many production methods is 2,063 BTU/lb (4.798 MJ kg
-1

) 

(Marceau et al., 2006).  In order to produce the 1,111 lb (504 kg) of cement required for 

1.3 yd
3
 (1 m

3
) of concrete, 2,085,200 BTU (2,200 MJ) of energy would be required. 
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7.1.3 Comparison of production energy of geopolymer and portland cement concrete 

The difference in energy required to produce 50 MPa Portland cement concrete 

and 7,000 psi (48 MPa) geopolymer cement concrete is 909900 BTU (0.96 GJ) or 44%.  

TABLE 7-4 lists emissions associated with Portland cement manufacture and NaOH 

manufacture.  The quantities are adjusted for the proportions of each material necessary 

to mix 1.3 yd
3
 (1 m

3
) of material having similar compressive strength.  The geopolymer 

cement concrete is characterized by lower emissions.  This is due in part to the CO2 

intensive calcination process used to manufacture Portland Cement.  The rotary kilns 

required for manufacture are heated with fossil fuels and waste hydrocarbons that 

produce large amounts of greenhouse gas.  However, the process of manufacturing NaOH 

requires electricity for a hydrolosis reaction that emits Cl and H.  Both of these products 

are captured for sale on the commodity market.  The emissions listed for the production 

of the NaOH include those released during electricity generation, proportioned by the 

percentage coming from fossil sources, hydroelectric sources and nuclear sources. 

 

TABLE 7-3:  Energy and water inputs for geopolymer and Portland cements. 

Inputs 
Geopolymer Cement Portland 

Cement 

Energy Inputs to Materials Manufacture, BTU 

(GJ) 

955,400 (1.008) 2,085,000 (2.2) 

Energy Inputs to Curing, BTU (GJ) 221,800 (0.234) 0 

Total Energy Inputs, BTU (GJ) 1,178,000 (1.243) 2,085,000 (2.2) 

Water Inputs, lb (kg) 282 (128) 951 (431.5) 
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TABLE 7-4:  Emissions for geopolymer and Portland cements. 

Emissions 
Geopolymer Cement Portland Cement 

CO, lb (kg) 0.037 (0.017) 1.19 (0.538) 

CO2, lb (kg) 59.7 (27.1) 1,008 (457) 

NOx, lb (kg) 0.384 (0.174) 2.49 (1.13) 

Particulates, lb (kg) 0.165 (0.075) 3.09 (1.4) 

 

7.2 Environmental impact 

The environmental impact of GCC is related to the energy use and emissions as 

listed in TABLE 7-3.  A brief description of the emissions is provided below. 

 Carbon Monoxide - CO is hazardous to humans in concentrations over 5,000 parts 

per million. In the atmosphere, however, it is likely transformed into CO2 by 

reacting with hydroxyl radicals. As CO2 it contributes to global warming. 

 Carbon Dioxide - perhaps the most ubiquitous emission, CO2 has a natural place 

in earth’s atmosphere. In the quantities that it is currently produced and emitted 

by industrial processes, it is a major contributor to both acid rain and global 

warming. CO2 acts as a greenhouse gas by trapping long wave radiation (heat) 

from the surface of the earth. Most CO2 in the atmosphere has come from the 

burning of fossil fuels. It is removed from the air by plants, which convert it into 

biomass. 

 Nitrogen Oxides - when combustion gasses are cooled in the atmosphere NO 

reacts with free oxygen or ozone to form NO2 and NO3. These molecules form 

particulates that dissolve in atmospheric water to form nitric acid (HNO3). The 

resulting acid is one component of acid rain. 
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 Particulates come from smoke and dust. They can cause respiratory difficulty and 

contribute to smog. 

The environmental aspects of the GCC lifecycle are not known as accurately as 

those for PCC.  This is because there are very few examples of the material being 

exposed in the environment for long periods.  Laboratory leaching tests have indicated 

that arsenic leaching might be an issue for fly-ash based geopolymers (Olanrewaju et al., 

2009).  This would particularly be a problem at the end of a GCC structural element’s 

service life.  If GCC components were crushed and landfilled in the same fashion typical 

for PCC components, the loose arsenic would present a hazard to soils and groundwater.  

Also, maintenance of GCC components would be hazardous if personnel attempted to 

refinish the surface by grinding. 

 

7.3 Reducing the life cycle impact of geopolymer concrete 

The main lifecycle impacts to the production, use and disposal/recycling of 

geopolymer cement concrete are related to emissions generation, energy consumption 

and leaching.  The following are strategies that could be instituted to improve the 

environmental performance of geopolymer cement concrete. 

1) Locate Waste Sources of Alkalinity – if alkalinity sources could be located in the 

waste stream, geopolymer cement production could become a recycling strategy 

for their disposal.  Currently wastes that are too alkaline to enter the municipal 

wastewater system are neutralized with acid to reduce their pH.  Mixing them in 

with geopolymer would be a safe means of recycling them as well as reducing the 
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demand for virgin materials in the GCC.  Manufacturing the alkalinity source 

accounts for 80% of the energy input to developing the cementitious properties of 

the fly ashes.  A waste source of alkalinity could greatly reduce the energy inputs. 

2) Use Waste or Solar Heat for Curing – the LCA provided in this report shows that 

20% of the energy inputs to developing GCC strength are due to elevating 

temperature curing.  However, the temperature range required (<212⁰ F (100 ⁰C) 

is attainable by collecting solar heat or locating the production facility near a 

source of waste heat.  Since most sources of fly ash are also sources of waste heat, 

an optimal way to capitalize on industrial synergies is to situate the precasting 

plant near such a source.  This will also eliminate the additional energy (not 

considered in this dissertation) required to transport fly ash or other 

aluminosilicates from their production point to the precasting facility. 

 



 

 

 

 

CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER 

STUDIES 

 

 

Geopolymer cement concretes offer an alternative to Portland cement concrete that 

can provide many of the same structural functions but in a more sustainable fashion by 

reducing the energy inputs and emissions outputs of the manufacturing process.  A series 

of studies were performed to assess the mechanical performance of geopolymer material 

test specimens and structural components.  These tests have verified the applicability of 

some design methods for flexural Portland cement concrete components to GCC.   

Small specimen studies of GCC materials have correlated splitting tensile strength 

and compressive elastic modulus with concrete compressive strength.  These studies have 

indicated that the splitting tensile strength of GCC is approximately 15% higher than for 

similar strength PCC.  However, the elastic modulus is slightly lower than for PCC.  This 

implies that while cracking moments for reinforced and prestressed concrete beams 

would be higher for GCC materials, expected deflections would likely also be higher. 

Five flexural beam-columns were prepared in order to study the compressive stress-

strain behavior of GCC material under the influence of a strain gradient similar to the 

gradient that would be developed in a beam undergoing flexure.  These tests indicated 

that GCC concretes are characterized by a long, linear stress-strain relationship followed 

by a period of diminishing slope.  This behavior is similar to the stress-strain response of 

PCC prior to the onset of strain softening.  The experiments reported in this dissertation 

did not capture a descending branch of the stress-strain relationship.  However, they were 
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also not sufficiently conclusive to rule out the existence of post-peak stress response.  As 

applied to beam analysis, the results were used to prepare modified values of    and    to 

be used with traditional ACI 318 analysis and design methodologies.  The magnitude of 

these two factors reflected the reduced slope of the stress-strain relationship as compared 

to similar strength PCC.   

A series of reinforced and prestressed concrete beams were fabricated with GCC 

materials along with similar control beams made from PCC.  The beams were tested to 

failure under controlled loading.  The performance of these GCC beams versus PCC 

beams was qualitatively very similar with steel yielding prior to rupture of concrete in the 

compressive zone of the beam.  The design factors,    and   , were applied to analyses 

of the GCC beams and found to provide accurate predictions for the beam behavior 

determined experimentally. 

Finally, a life cycle assessment was completed to verify the sustainable aspects of the 

concrete.  Using inputs to the concretes prepared for this study, the energy requirements 

and emissions generation related to manufacturing the GCC were quantified.  The results 

were compared to a similar life cycle assessment for Portland cement concrete.  It was 

determined that manufacturing GCC produces fewer emissions and requires less energy 

than manufacturing a similar quantity of similar strength PCC for precasting use. 

These results indicate that GCC is a feasible material for structural concrete 

applications.  This study has focused on concretes made from only a few batches of 

source materials and has evaluated the performance of concretes under limited 

conditions.  In order to improve the quality of some of the results, as well as to increase 

confidence in some of the conclusions, the following are suggested for further study: 
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 The gradation of aggregates should be optimized more rigorously for the 

concretes under evaluation.  It may be possible to improve the workability 

and some mechanical characteristics of the concrete by studying the 

interaction of mortar and aggregate in both the plastic material as well as 

cured material.   

 The tests presented here did not give a conclusive correlation between 

compressive strength and ultimate strain due to the limited post-peak data 

recorded in the flexural beam-column tests.  The columns tended to fail away 

from the instrumented zone and may have suffered unintended slenderness 

effects.  For future study, a smaller cross-section should be coupled with 

shorter overall specimen length to reduce the slenderness effects as well as 

the required compressive loads.  The termination of reinforcement should 

also be designed to eliminate abrupt stiffness discontinuities and stress 

concentrations. 

 The lifecycle assessment for geopolymer use should extend beyond the 

manufacture phase.  Further work is required on the risks associated with 

GCC materials exposure to the environment, where they can leach potentially 

hazardous heavy metals.  It is possible that the mix proportions can be further 

optimized to eliminate this phenomenon.   

 Although there was not sufficient data recorded in this study to provide a 

correlation, it appears that the age of the concrete may have a significant 

impact on the stress-strain relationship or the ultimate strain.  Higher ultimate 

strains may be found in GCC materials at later ages.  This was evidenced by 
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the very large deflections recorded in the test of the 229 day-old beam GCC-

2-B2 prior to reaching its ultimate moment.  Mineralogical changes over time 

might cause such a change in the macro-performance of the material and 

should be investigated. 
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APPENDIX A:  STEEL STRESS-STRAIN CURVES 

 

 

FIGURE A-1:  Grade 60 steel fs vs.ε. 

 

TABLE A-1:  Grade 60 steel characteristics, psi (MPa). 
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FIGURE A-2:  Grade 40 steel fs vs.ε. 

 

TABLE A-2:  Grade 40 steel characteristics, psi (MPa). 
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FIGURE A-3:  Grade 270 prestressing steel fs vs.ε. 

 

TABLE A-3:  Grade 270 prestressing steel characteristics, psi (MPa). 
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APPENDIX B:  MOMENT-CURVATURE MODEL DESCRIPTION 

 

 

The moment-curvature model used to analyze the moment-deflection behavior of 

the beams includes two components.  The first component is an iterative routine that 

relates moment to curvature for the beam cross-section broken into 50 horizontal strips in 

the manner depicted in FIGURE B-1.  48 elements are horizontal strips and two elements 

represent the compression and tension reinforcing steel.  The second component of the 

model relates curvature to deflection.  The following sections of this APPENDIX present 

the computation technique used for each of these model components.  

 

Strip 1

Strip 2

Strip 3

Depth of strip

b

Strip n

 

FIGURE B-1:  Division of beam into horizontal strips. 

 

a. Preparation of the moment-curvature model 

The reinforced concrete beams described in this dissertation featured the cross-

sectional details shown in FIGURE B-2.  In order to model them the cross section was 

divided into 48 horizontal strips having a depth of 0.25‖.  Steel in the beam is placed in 

two layers, which are assigned adjacent to the strip at the same depth in the beam.  As is 
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shown in the first three columns of TABLE B-1, each layer is described by its cross-

sectional area and material properties. 

8"

12" 

1.5"

9" 

 

FIGURE B-2:  Cross-sectional dimensions and position of steel reinforcing. 

 

An initial value of φ and      (as defined in FIGURE B-3) is selected and used to 

determine the strain at the mid-depth of each segment    by 

                                  (B-1) 

In the example presented in the TABLE B-1, the strain in the extreme compressive fiber 

   was assumed to be 0.0021.  Based on the strain in each strip, the stress in the concrete 

regions is calculated using the formula,  

          
   

   

 

     
  
   

 
       (B-2) 

where 

             
          (B-3) 

             
            (B-4) 

                     (B-5) 
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Because the compression steel never yielded, the formula 

                  ksi    (B-6) 

is used for steel with compressive strains. For steel in tension the actual stress-strain 

curve, as measured by direct tension testing, was used to determine stress.  The steel 

stress-strain curves are given in APPENDIX A.   

After the concrete cracks in tension it cannot contribute to the development of 

tension stresses in the cross-section and is no longer considered in the model.  Most of 

the cracked strips are not listed in TABLE B-1 in order to improve readability.  The 

concrete in the beam is assumed to have a limiting compressive strain of 0.0035%.  

Therefore, a range of maximum compressive strains from 0-0.0035 were modeled to 

establish the complete range of moment-curvature response.   

Once stress is computed, the cross-sectional area of each strip may be used to 

determine the horizontal force contribution from the strip.  The stress associated with 

each horizontal concrete strip as well as the steel reinforcing is plotted in FIGURE B-3.  

Also apparent in FIGURE B-3 is the absence of stress in concrete strips beneath the 

neutral axis since the model has determined that they have cracked.   

Using static equilibrium, the angle φ is adjusted so that the sum of the horizontal 

forces equals 0.  Once equilibrium is achieved by balancing φ, the internal moment is 

computed by taking the moment of the forces from each strip about the compression face 

of the beam.  This process is repeated for each of the    values shown in TABLE B-2 and 

the results are used to generate the moment-curvature plot given in FIGURE B-4. 
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FIGURE B-3:  From left a) concrete strips and steel areas; b) strain distribution, c) stress 

in each strip and in steel bars. 

 

TABLE B-1:  Computation of section curvature and associated moment for      

      . 

  a b c d e f 

Strip Material Area, 

in
2
 

Depth 

of 

strip, 

in 

    
(x10

-5
 %) 

Stress in 

Strip, ksi 

Force from 

strip, kip 

Moment, 

kip-in 

        
       

       
        

Results of 

column c 

applied in 

Equations  

     
       

     
       
        

1 Concrete 2.0 0.25 -19.45 -9.38 -18.75 -2.34 

2 Concrete 2.0 0.5 -16.35 -7.89 -15.78 -5.92 

3 Concrete 2.0 0.75 -13.25 -6.39 -12.79 -7.99 

4 Concrete 2.0 1 -10.15 -4.90 -9.80 -8.57 

5 Concrete 2.0 1.25 -7.05 -3.40 -6.81 -7.66 

6 Concrete 2.0 1.5 -3.96 -1.91 -3.82 -5.25 

7 Concrete 2.0 1.75 -0.86 -0.41 -0.83 -1.34 

8 Concrete 2.0 2 2.24 0 0 0 

12 Steel 0.4 3 14.64 41.96 16.79 50.36 

13 Concrete 2.0 3 14.64 0 0 0 

42 Concrete 2.0 10.25 104.51 0 0 0 

43 Steel 0.6 10.5 107.61 86.29 51.77 543.63 

44 Concrete 2.0 10.5 107.61 0 0 0 

50 Concrete 2.0 12 126.21 0 0 0 
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TABLE B-2:  Extreme compression fiber strain, moment and curvature. 

   Moment φ 

0 0 0 

-0.0001 104 1.5E-05 

-0.0006 280 0.00022 

-0.0009 415 0.00035 

-0.0012 476 0.00053 

-0.0015 506 0.00075 

-0.0018 530 0.00099 

-0.0021 555 0.00124 

-0.0024 578 0.00149 

-0.0027 602 0.00173 

-0.003 628 0.00203 

-0.0033 642 0.00233 

-0.0036 653 0.0026 

-0.0039 657 0.0028 

-0.0042 655 0.00293 

-0.0045 650 0.003 

-0.005 637 0.00305 

-0.006 608 0.00314 

-0.009 539 0.00365 

 

 

FIGURE B-4:  Moment curvature relationship through failure. 
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b. Computation of beam deflection from moment-curvature relationships. 

The beams tested in this study were supported and loaded with the geometry 

shown in FIGURE B-5a.  The beam moment diagram is given in FIGURE B-5b.  Using 

the moment-curvature relationship computed in the previous section, the distribution of 

curvatures may be assigned to the beam as shown in FIGURE B-5c by relating the 

magnitude of the moment to the moment curvature relationship.  Since this was achieved 

numerically in the model, the beam was divided into 1‖ vertical strips oriented 

perpendicular to the longitudinal axis as shown in FIGURE B-6.  The average curvature 

of each strip is found by relating the moment at that segment with the moment-curvature 

diagram. 

For the simple support conditions used in the experiment, deflection at the 

midspan is equal to the moment of area about the support of the curvature diagram 

between the support and midspan.  In order to determine the deflection at the midspan, 

the sum of the moment of area about the west support for each vertical strip in the 

curvature diagram was computed.  For the moment-curvature relationship described in 

section a), the distribution of curvature for each strip is given in TABLE B-3.  The sum 

of the rightmost column of TABLE B-3 is equal to the deflection of the midspan of the 

beam.  The load P corresponding to a midspan moment of 555 kip-in is  

555 kip-in/60 in=9.25 kip    (B-7) 
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Moment, kip-in

Curvature, radians

 

FIGURE B-5: :  (from top) a) loading geometry, b) moment diagram, c) distribution of 

curvature. 
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x
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FIGURE B-6:  Division of beam and curvature diagram into vertical segments. 
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TABLE B-3:  Curvature for each beam segment. 

Beam 

Segment 
   (in) Moment 

(k-in) 

φ 

(radians 

x10
-5

) 

Moment of area for 

segment (x10
-2 

in) 

1 0.5 7 0.010 0.000 

2 1.5 21 0.031 0.000 

3 2.5 35 0.052 0.001 

4 3.5 49 0.073 0.003 

5 4.5 63 0.094 0.004 

6 5.5 77 0.114 0.006 

7 6.5 91 0.135 0.009 

8 7.5 105 0.165 0.012 

9 8.5 119 0.326 0.028 

10 9.5 133 0.487 0.046 

11 10.5 147 0.647 0.068 

12 11.5 160 0.808 0.093 

13 12.5 174 0.968 0.121 

14 13.5 188 1.128 0.152 

15 14.5 202 1.288 0.187 

16 15.5 216 1.448 0.224 

17 16.5 230 1.608 0.265 

18 17.5 244 1.768 0.309 

19 18.5 258 1.928 0.357 

20 19.5 271 2.088 0.407 

21 20.5 285 2.236 0.458 

22 21.5 299 2.366 0.509 

23 22.5 313 2.497 0.562 

24 23.5 327 2.628 0.618 

25 24.5 340 2.759 0.676 

26 25.5 354 2.889 0.737 

27 26.5 368 3.020 0.800 

28 27.5 382 3.150 0.866 

29 28.5 396 3.281 0.935 

30 29.5 409 3.411 1.006 

31 30.5 423 3.706 1.130 

32 31.5 437 4.124 1.299 
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Beam 

Segment 
   (in) Moment 

(k-in) 

φ 

(radians 

x10
-5

) 

Moment of area for 

segment (x10
-2 

in) 

33 32.5 451 4.541 1.476 

34 33.5 464 4.958 1.661 

35 34.5 478 5.461 1.884 

36 35.5 492 6.459 2.293 

37 36.5 505 7.455 2.721 

38 37.5 519 8.792 3.297 

39 38.5 533 10.147 3.907 

40 39.5 547 11.544 4.560 

41 40.5 553 12.249 4.961 

42 41.5 554 12.265 5.090 

43 42.5 554 12.280 5.219 

44 43.5 554 12.293 5.348 

45 44.5 554 12.307 5.476 

46 45.5 554 12.319 5.605 

47 46.5 554 12.330 5.734 

48 47.5 554 12.341 5.862 

49 48.5 554 12.351 5.990 

50 49.5 555 12.360 6.118 

51 50.5 555 12.368 6.246 

52 51.5 555 12.375 6.373 

53 52.5 555 12.382 6.500 

54 53.5 555 12.387 6.627 

55 54.5 555 12.392 6.754 

56 55.5 555 12.396 6.880 

57 56.5 555 12.400 7.006 

58 57.5 555 12.402 7.131 

59 58.5 555 12.404 7.256 

60 59.5 555 12.405 7.381 

           

 


