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ABSTRACT

THOMAS FASCIANO. Using occlusion to track multiple objects with similar
appearance. (Under the direction of DR. MIN C. SHIN)

Multiple object tracking is a fundamental problem within computer vision and

has a wide range of applications. Although well studied, it remains a difficult task

especially in scenarios which contain many occluding and highly similar appearing

objects such as in videos of social insects. Data association based tracking methods

have recently become popular due to improvements in object detection methods.

Rather than tracking sequentially, detections found independently in each frame are

first associated in short trackings or tracklets across adjacent frames which are further

associated into longer trackings. A key component of this tracking method is the

affinity model which measures the likelihood that two tracklets belong to the same

object and incorporates appearance, motion and temporal information. First, we

propose to improve the affinity model within insect videos by introducing a new

set of irregular motion features. Second, we propose a method for filtering nearby

confusing associations by using a sequence of foreground blobs called Occlusion Sub-

Tunnels. Finally, we propose a method for online learning of the full affinity model by

automatically generating a set of weakly labeled samples using connectivity within

occlusion sub-tunnels.
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CHAPTER 1: INTRODUCTION

Multi-object tracking is a fundamental problem within computer vision and has

wide ranging importance for applications [64, 16]. In addition, tracking is often a vi-

tal first step to many other applications such as action recognition [51] and automated

surveillance [64]. Although tracking has been well studied, tracking multiple objects

simultaneously within videos is still a challenging task. This problem becomes par-

ticularly challenging in scenarios that include many similar appearing objects which

frequently occlude.

Many frameworks exists for multi-object tracking [16]. Although sequential track-

ing methods, such as particle filter based trackers, have traditionally been the frame-

works of choice, data association based tracking methods have recently become pop-

ular. This is primarily due to two main reasons 1) object detection methods, which

these methods rely on, have been continually improving [19, 54] and 2) their use of

global information while solving over instances of occlusion. Rather than tracking

frames sequentially, data association based trackers begin by running an object de-

tector independently in each frame of the video. Detection in adjacent frames are

then associated together into tracklets (or short trackings). Tracklets which belong

to the same object are then iteratively associated together to form longer tracks.

An integral part of the association process is the affinity model which measures

the likelihood that two tracklets belong to the same object. Typically the affinity
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model is a combination of appearance, motion, and temporal measures comparing the

tracklets [27]. Machine learning has been applied to learn more robust combinations of

features offline [36] as well as learning more sophisticated appearance features [50, 32].

However, offline trained models and sophisticated features sets often do not transfer

well to new unseen videos. For example, the visual queues which best distinguish

between targets may change between datasets and may result in either poor tracking

performance or require the collection of large amounts of labeled training data to

retrain an appearance model. Methods for online training appearance models have

been proposed to alleviate this problem and has been shown to greatly improve the

performance of tracking algorithms in videos where appearance is a discriminating

feature between targets, such as pedestrians [32, 33, 61].

However, there exist many domains where appearance between objects is highly

similar. For example, multi-object tracking has been performed on sports videos such

as soccer games [4] and basketball games [15] which contain many people wearing

identical clothing. This causes appearance to be less reliable, especially during oc-

clusion. A frequent solution within sports videos is to use multiple camera views

simultaneously to disambiguate targets based on positional information [52, 4]. How-

ever, using multiple cameras isn’t always an option in many domains such as when

tracking biological objects.

Studying biological objects typically involves observing a large number of objects

within a confined space [11]. Typically, researchers will gather their observations by

recording videos which must be then analyzed which is traditionally a manual process.

As such, automated tracking algorithms are quickly becoming vital tools to the study
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(a) (b)

Figure 1: Example frames from videos representing my target video domain. (a) Paint
marked ants which undergo frequent, long occlusions and share similar appearances.
(b) Termites which show irregular motion and are identical in appearance.

of many biological objects including cells [7] and social insects such as ants [40] and

bees [14].

In this dissertation, I focus on the application to social insects, specifically ants and

termites, which are highly accessible models for studying complex systems [48, 20].

Like in sports videos, social insect videos contain a large number of highly similar

(if not identical) objects as shown in Figure 1. In addition, they often move highly

irregularly and occlude frequently due to their social behavior for long periods of

time where detections are often unreliable or missing entirely. This causes traditional

linear motion models to be unreliable during the association process. Additionally,

like appearance in pedestrian videos, motion behaviors and patterns can often vary

between experiments and datasets causing prior trained motion models to be unre-

liable thus requiring a large amount of manually labeled training data to train new

models.

In this dissertation, I propose three contributions to multiple object tracking in
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scenarios with irregular moving and similar appearing objects such as ants and ter-

mites. First, a new irregular motion feature based on random walks which is better

suited to predicting the motion patterns of targets such as ants and termites over long

occlusions. Second, leverage occlusion directly to help filter impossible associations

between nearby objects which are not occluding, to reduce tracking errors. Finally,

by leveraging the ability to filter incorrect associations based on occlusions, provide

a method to online learn motion affinity models in addition to appearance models to

improve tracking performance on new unseen datasets.

In the next chapter, I review related work to this dissertation. In Chapter 3, I

review the hierarchical data association based tracking method which my work builds

upon. In the following chapters, I discuss and evaluate each of my three stated

contributions. Finally, I conclude in Chapter 7 and discuss any possible future work

derived from this dissertation.



CHAPTER 2: RELATED WORKS

Multi-object tracking is a well studied area within computer vision [64]. For the

purposes of this dissertation, we view most tracking frameworks as fitting into two

broad categories: 1) sequential (or “real time”) methods and 2) global methods. The

goal of the sequential tracker is to obtain the target’s location by combining a prior

state model based on position, velocity and appearance information with a poten-

tially noisy observation in the current frame [64, 3]. For multi-target tracking, many

methods have been proposed to handle noisy observations such as Multi-Hypothesis

Tracking [43] and Joint Probabilistic Data Association Filters [22] which maintain

multiple hypothesis until enough evidence is collected to resolve ambiguities. How-

ever, these methods are unable to handle periods of missing observations. Kalman

Filters and more recently Extended Kalman Filters, have been applied to estimate the

target using a Gaussian estimated state model [8, 25, 45, 56]. Particle Filter methods

are another popular approach which, rather than relying on detectors for its current

state estimate, maintains each object’s current state as a set of weighted particles.

Every particle is updated at each frame based on prior motion and re-weighted using a

scoring function often based on appearance [28, 41]. To improve identity maintenance

during tracking, particle filters have been extended to measure the entire state space

(current state of all objects) and use Markov chain Monte Carlo (MCMC) sampling

to approximate the solution [21, 18, 30]. However, particle filters and Kalman filters
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are prone to drifting during long periods of occlusion (which are frequent in insect

videos), after which they rarely recover. For example in ant videos, reliable tracking

may only last up to 1,000 frames (approximately 30 seconds of video) which then

must be manually corrected [21, 42].

Global methods solve this drifting problem by incorporating information from the

entire video to solve the tracking problem. Although no longer suitable for real time

tracking, these methods often have lower tracking errors which is a reasonable trade

off for many tracking applications [16]. To handle noisy observations, [35] coupled the

detection and tracking problem by Quadratic Boolean Programming which is solved

by an expectation-maximization (EM) style algorithm. Due to its combinatorial

growth of the hypothesis search space, this method is limited to short videos.

Object detection methods have greatly improved in recent years [19, 53, 54, 57,

26, 13]. While still not perfect, this has lead to data association based tracking

(DAT) becoming more feasible. In DAT approaches, detections are first obtained

independently in all frames. These detections are then associated together across

adjacent frames to form tracklets or short trackings. Finally, the tracklets are then

associated together to form the final trackings. Because tracklets contain more than

one detection, this allows the use of higher order motion and appearance features as

well as past and future information when associating tracklets together. In addition to

solving the association problem, these DAT methods must also account for imperfect

detections (missing detections, noisy detections, and false alarms) and initialization

and termination of trackings.

Many frameworks have been proposed for solving the DAT problem. Some frame-
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works solve each object’s tracking independently through a greedy approach such

as iteratively solving for minimum cycles [46] or k-shortest paths [5]. However,

this greedy approach can often lead to tracking errors in cases of similar appear-

ing features. Rather than solving each tracking independently, global optimization

approaches solve all associations simultaneously. In [2], the global optimization task

was framed as an energy minimization problem. Another approach is to formulate the

global association problem as a linear assignment problem [58] which could be solved

using the Hungarian algorithm [31]. This formulation was further expanded to ac-

count for false alarms, initialization and termination of tracklets within a maximum-

a-posteriori (MAP) problem [27]. The MAP formulation can be efficiently solved

using the Hungarian algorithm [27], network flows [65] or linear programming [7].

A key component of the MAP formulation is the creation of the affinity score

which measures the likelihood that two tracklets belong to the same object. Initially,

the affinity score was a manually tuned combination of basic appearance (RGB his-

tograms), motion (motion smoothness), and temporal features [27, 65]. To improve

the robustness of the appearance modeling, offline trained appearance models com-

posed of histogram of gradient (HoG), covariance, and rgb histogram features have

been proposed [33, 50]. This was extended by [36] to include motion and temporal

features to train all parts of the affinity model which included appearance, temporal

and motion features using a hybrid classification and ranking machine learning ap-

proach called HybridBoost. To improve the robustness of appearance models between

different datasets, methods which online train appearance models models have been

proposed [32, 33, 62]. These methods train a detection level classifier which deter-
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mines if two detections belong to the same object. Training samples are generated

online through the observation that tracklets which overlap temporally cannot belong

to the same object. This idea has been extended to train individual classifiers for each

object in the video by using multiple instance learning [61] or by identifying globally

unique appearance features [4]. However, these methods still rely on manually tuned

linear motion models as part of their full affinity measure because the none of the

methods for generating labels for detection pairs can be used for generating labels of

the tracklet association pairs required for training a motion affinity model.

Even the most advanced affinity models are prone to failure in cases of highly simi-

lar appearing and moving objects. To further reduce ambiguity during the association

process, recent methods have accounted for association dependencies, or how taking

one association affect taking a second association. This task has been formulated

in a number of ways including conditional random fields [60, 63], rank-1 tensor ap-

proximations [49], and by a Lagrangian relaxation to minimum-cost network flows [9].

However, these problems typically grow exponentially with the number of targets and

must employ strict motion heuristics [60] or temporal constraints [49, 9] to reduce the

problem size which precludes their use when videos contain long occlusions.



CHAPTER 3: HIERARCHICAL DATA ASSOCIATION BASED TRACKING

The data association based tracking framework can be broken down into three

steps: 1) detection, 2) tracklet building, and 3) tracklet matching (or association) as

shown in Figure 2. First, detection is performed independently at each frame of the

video. The detection method used is independent of the overall tracking framework

and is typically unique for each type of target. Detections found in all frames create

the initial set of detections, D.

Next, detections in adjacent frames are linked together to form an initial set of

tracklets during the tracklet building step. To ensure there are no errors (e.g., identity

switches) within the initial set of tracklets, associations are performed conservatively

using a double threshold technique. For each pair of adjacent frames, an association

probability matrix, S, measuring the similarity between two detections is computed

where rows of S correspond to detections in frame f and columns to detections in

frame f + 1. The similarity measure, S(i, j), is the product of appearance, size, and

position similarity measures between the detections. Detection pairs, S(i, j), whose

similarity meet a minimum threshold, S(i, j) > θ1, and are also θ2 greater than any

other value in row i and column j in S are linked together to form a tracklet T . The

set of generated tracklets, as well as unassociated single detection tracklets, create

the initial set of tracklets T 0.

Finally, the initial set of short confident tracklets are iteratively associated (or
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Figure 2: The data association based framework of [27]. This framework is broken
into three steps: (1) Detections are found independently in each frame, (2) detections
in adjacent frames are conservatively linked together to form short, confident tracklets,
and (3) the tracklets are iteratively linked together over k rounds of matching to form
longer and longer trackings.

matched) into longer and longer tracklets. Huang et. al. formulated this matching

step as a MAP problem that takes into consideration the initialization and termi-

nation of full trackings, associations between pairs of tracklets, and likelihood of a

tracklet being a false alarm that should be discarded. The matching step is performed

iteratively in stages, k. At each stage k, the output from the previous stage, T k−1

becomes the input for the current stage of matching where associations of up to τk

frames apart are considered. Each tracklet, T k−1
i ∈ T k−1, is (1) matched to another

tracklet, (2) labeled as the start or end of an object trajectory and therefore not asso-

ciated to another tracklet, or (3) classified as a false alarm and ignored from further

matching. The final association problem is formulated as follows:

T k∗ =argmax
T k

∏
Tk−1
i :∀Tk

j ∈T k,Tk−1
i 6∈Tk

j

P−(T k−1
i )

∏
Tk
j ∈T k

[
Pinit(T

k−1
i0

)P+(T k−1
i0

) . . .

Plink(T
k−1
i1
|T k−1
i0

)Plink(T
k−1
ilk
|T k−1
ilk−1

)P+(T k−1
lk

)Pterm(T k−1
ilk

)
] (1)

where P−(T ki ) and P+(T ki ) indicate the probability of a tracklet being a false alarm

or real tracklet respectively, Pinit(T
k
i ) and Pterm(T ki ) is the probability of the tracklet

being the first or last tracklet in a real trajectory respectively, and Plink(T
k
j |T ki ) is the
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affinity score (or association probability) of linking the end of T ki to the start of T kj .

This MAP formulation is then solved using the Hungarian algorithm.

A key component of this framework is the affinity model Plink(Ti, Tj) and is the focus

of this dissertation. Our following chapters will describe in detail my contributions

to the affinity model.

First, I will introduce the datasets as well as the implementation details used to

generate the initial set of tracklets, T 0, through the detection and tracklet building

steps. These sets of tracklets are used as the input the the tracklet matching stage

for all future results in this dissertation.

3.1 Data Sets & Implementation Details

I evaluate my contributions on two insect datasets which are shown in Figure 1.

First, is a dataset of four 5,000 frame videos containing Temnothorax rugatulus ants

taken at thirty frames per second. Each video contains between 30 to 50 ants within

each frame. Some ants are painted to assist in identification, and most stay within

the colony for the entirety of the video with only a few ants entering and leaving.

Full groundtruths for each of the four videos was manually obtained.

The second dataset consists of two 5,000 frame videos containing Macrotermes

michaelseni termites taken at fifteen frames per second. Each video contains 22

unmarked termites which are confined within a circular dish for the entirety of the

video. A full groundtruth for each video was given by the biologists which provided

the videos.
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Detection - For both datasets, we look for foreground blobs which meet size and

shape constraints to use a detections. For the ant videos, we use color classification

to classify each pixel as foreground or background based on a Gaussian mixture model

within the L*a*b colorspace. To minimize noise, a morphological close is performed

on resulting foreground binary image. Connected components within the foreground

image which meet an area (460-1000 pixels) and aspect ratio (2.5-6.5) constraint are

kept as the initial detection set, D.

Because ants are often interacting and occluding, this detection method can miss a

large number of detections. To supplement the color classification based detections,

I exploit the fact that some ants tend to remain motionless for long periods of time.

First, the location of each ant is manually provided in the first and last frame of the

video. For each ant, a duration of no motion is found by examining the difference in

a SIFT feature [38] taken at the ant’s location in the first frame against subsequent

frames at the same location. Once the Euclidean distance between the SIFT features

exceed a threshold (empirically set to 290 in my experiments), the ant is designated as

moving. The manually initialized location in the first frame is duplicated as detections

through the duration of no motion. The no motion detections are then added to D.

This process is repeated searching backwards in time by starting at the last frame.

To ensure only one detection per ant, we remove any region detections in D which

overlap with the no motion ant detections.

For the termite data, a difference of Gaussians is used to classify pixels as fore-

ground and background. Connected component regions within the resulting fore-

ground binary image which meet an area (50 - 250 pixels) are kept as initial detec-
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tions, D. We do not perform the still region detection on the termites because unlike

the ants, most termites remain in motion almost the entirety of the video.

Tracklet Building - To define the association probability S, we use three affinity

measures based on affinity, position, and size. For appearance, we use the Bhat-

tacharyya coefficient between each detection’s RGB histogram. We use 8-bins per

color for the RGB histograms creating a 24 value feature vector. Size and position

are defined as zero mean Gaussian distributions based on the difference between the

detections values. Sigma values for each Gaussian are manually tuned based on a sub

sample of the groundtruth. The final association probability is the geometric mean

of the three similarity scores.

Finally, the two thresholds are manually tuned to create as long of tracklets as

possible, while minimizing the occurrence of ID switches or when detections which

belong to different objects are incorrectly associated together.



CHAPTER 4: IRREGULAR MOTION MODELS

The affinity model is the likelihood that two tracklets belong to the same target.

It is typically the combination of appearance, motion, and temporal affinity mea-

sures [27, 65]. In many cases, the final affinity score is the product of these three

measures [27]. However, it has become increasingly popular to train an affinity model

using a large array of features [60]. The appearance similarity measures can range in

complexity from color histogram comparison [27], to online learned individual part

based appearance models including histogram of gradients and covariance texture fea-

tures [61, 63]. While appearance is often a highly individualized and distinguishing

feature among pedestrians, insects may appear highly similar, or they may undergo

non-rigid deformation which drastically changes their visual appearance.

As such, motion is an important feature for matching within insect videos. Within

pedestrian videos, linear motion models often sufficiently model the behavior of the

targets [5, 27]. The motion smoothness metric is a popular linear motion based

affinity model used within DAT frameworks [27]. The motion smoothness of two

tracklets Ti and Tj is computed by predicting the velocity of Ti into the future and

comparing the predicted location of Ti to the actual location of Tj and vice-versa.

This metric is effective in pedestrian datasets where objects move in smooth linear

patterns. However, insects often move in highly irregular motion patterns changing

direction frequently [29]. In addition, occlusions are frequent and can often last for
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large numbers of frames (> 100 frames) due to insect’s social nature and close prox-

imity. During occlusions, insects become increasingly difficult to detect. Parts based

detectors may be employed to help detect ants within partial occlusion, but due to

the similarity of the ants parts as well as the requirement of rotation invariance this

becomes a highly challenging problem and often creates noisy detections which leads

to inaccurate tracking. This creates large gaps (or frames without detections) which

tracklets must be associated across. Due to insects’ highly irregular motion behav-

iors, linear motion models become increasingly less reliable in predicting the target’s

location over such long gaps. This ultimately leads to ambiguity when distinguishing

between correct and incorrect associations at the tracklet matching stage. Figure 3

shows and example of when a linear motion model will fail while trying to predict

an ants location after an occlusion. The green and blue painted ant enters into the

occlusion moving left to right, but abruptly changes direction while it is occluded

with an non-painted ant. A linear motion model would expect the painted ant to exit

the occlusion near where the occluding non-painted ant exists or near the similarly

colored green and and red painted ant is located.

We propose a set of new motion features based on random walk theory [12]. Ran-

dom walks have been used extensively by biologists to model the motion of ants [47]

and many other biological entities such as cells, fish and other animals [12, 59]. First,

we discuss how an affinity model can be learned using a set of affinity measures and

the HybridBoost algorithm of [36]. Next, we discuss some background of random

walk theory in Section 4.2 and how they can be used to create motion affinity models

appropriate for data association based tracking in Section 4.3. Finally, we evaluate
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Figure 3: Shown is are two ants about to move into occlusion. The blue and green
painted ant moves into the occlusion moving toward the right side of the image.
However, it abruptly changes direction during the occlusion returning from where it
entered into the occlusion. A linear motion model would be unable to predict this
motion and would expect the green and blue painted ant to end up closer to where
the occluding none painted ant or the nearby red and green painted ant are located
after the occlusion.

the proposed features in Section 4.4.

4.1 Learning an Affinity Model with HybridBoost

We use HybridBoost to learn the term Plink for the MAP formulation as described in

Chapter 3. HybridBoost combines the ranking ability of RankBoost [23] to determine

how good an association is with the classification power of AdaBoost [24] to ensure

poor associations are not given favorable scores. To collect training data in order

to train the strong rank classifier, H, output of the previous round is associated to

ground truth trajectories to determine good and bad associations to determine which

tracklets should (not) be associated together.

Like AdaBoost and RankBoost, HybridBoost relies on a set of weak rank classifiers

based on a set of features. We use the features proposed by [36] shown in Table 1.

Note, we only include the top seven performing features as recommended by the

authors of [36, 60]. These include features based on similarity in appearance and

the motion smoothness metric. An 8 bin per channel RGB histogram of the pixels

within an oriented bounding box is used to describe the appearance of the objects.
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𝑇𝑗 
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𝑇𝑙 

(a) (b)

Figure 4: When tracking is broken into multiple tracklets (Ti and Tj), a linear motion
model (a) will often be unreliable in determing the correct association due to the
insects irregular movements. A correlated random walk based measure (b), while no
longer able to predict direction, provides a much better displacement measurement
thus increasing the affinity score of the correct association due to its incorporation of
the objects prior directional changes.

The Bhattacharyya coefficient between the mean of the last third of Ti and the first

third of Tj is used as the appearance similarity measure. Only the first and last one

thirds as used to account for changes in appearance over time and only compares the

most temporally similar parts of each tracklet. The motion smoothness of Ti and Tj

is computed by predicting the velocity of Ti based on its most recent positions and

estimating where it will be by the start of Tj and vice versa. To reduce the effects

of noise, we estimate the velocity of each tracklet (both forwards and backwards in

time) using a Kalman filter.

4.2 Correlated Random Walks

A random walk follows the theory that a walker takes a series of discrete steps

with a set distance or speed and an orientation. In our case, the walker is an ant

whose step is the velocity traveled between adjacent frames. The simplest form of

a random walk assumes the walker is unbiased and is equally likely to move any
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direction with a set speed and it’s direction is uncorrelated with previous steps. A

more accurate model for ants is the Correlated Random Walk (CRW) model which

accounts for persistence, or the likelihood of a walker to continue moving in the same

direction [12]. Using the correlated random walk model, we can calculate an estimate

of a walker’s expected squared displacement, R2, which we can use for association

tracklets.

An expected displacement after a given number of steps, n, can be accurately

calculated based on a walker’s prior step history. Given the series of a walker’s

turning angles φf = αf+1 − αf where αf is the orientation of the ant in frame f ,

the persistence of the walk’s direction of movement, c, and the relative likelihood of

turning clockwise or counter-clockwise, s, are computed as c =
∫ π
−π cos(φ)g(φ) dφ and

s =
∫ π
−π sin(φ)g(φ) dφ where g(φ) is a PDF of the likelihood of each turning angle.

Then, the average turning angle of the walker is calculated as, φ0 = arctan( s
c
). Next,

I describe three formulations for calculating the expected displacement of a correlated

random walk given the walker’s persistence c, directional bias s, the set of step speeds

(or distances) LT and number of steps the walker will take n.

Asymmetrical Correlated Random Walks. - The asymmetric fixed CRW is the most

general formulation of a correlated random walk and is computed as:

R2
a(T, n) = nL̄2

T + 2(L̄T )2

×
(
n(c− c2 − s2)− c

(1− c)2 + s2
+

2s2 + (c2 + s2)(n+1)/2γ

((1− c)2 + s2)2

) (2)

where γ = ((1− c)2− s2) cos((n+ 1)φ0)− 2s(1− c) sin((n+ 1)φ0), LT is the set of all

instantaneous speeds for tracklet T , L̄T is the mean of the values in LT , L̄2
T is the
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mean of the squared values in LT , and n is the number of frames.

Symmetrical Correlated Random Walk. - The affect of turning tendency (s) on

Equation (2) is only significant for large n. Thus, we also include the symmetrical

CRW which assumes s = 0 in Equation 2 and reduces to,

R2
s(T, n) = (L̄T )2

(
n

(
1 + c

1− c

)
− 2c(1− cn)

(1− c)2

)
. (3)

Symmetrical Variable Speed Correlated Random Walk. - To model the variability in

speed, the coefficient of variation of step size b2 = L̄2
T/(L̄T )2− 1 may be incorporated

into to Equation 3 resulting in:

R2
v(Ti, n) = (L̄T )2

(
n

(
1 + c

1− c
+ b2

)
− 2c(1− cn)

(1− c)2

)
. (4)

4.3 Motion Features based on Correlated Random Walks

We formulate the CRW feature as a probability of Ti dispersing to the start of Tj

and vice-versa as follows:

PR∗(Ti, Tj) =N
(
d(Ti, Tj);

√
R2
∗(Ti, n),

√
σ2
R∗

(Ti, n)
)
×

N
(
d(Ti, Tj);

√
R2
∗(Tj, n),

√
σ2
R∗

(Tj, n)

) (5)

where N indicates a Gaussian distribution, d(Ti, Tj) is the point to point distance

between the end of Ti and the start of Tj, R
2
∗ can be Equation (2),(3), or (4), n is the

number of frames between the end if Ti and start of Tj, and σ2
R∗ is the variance of

the CRW measure. A good approximation of the CRW’s mean squared displacement
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variance can be calculated using the Mean Dispersal Distance (MDD) measure [59].

A closed form of the MDD for a CRW is an open problem; however, a good approxi-

mation of the MDD, we refer to as RD, is as follows

RD(T, n) =

√
πR2
∗(T, n)

2
. (6)

This formulation can be combined with any of the above R2
∗ measures (more infor-

mation on the MDD can be found in [12]). We use RD to calculate the expected

variance in displacement as follows:

σ2
R∗(T ) = R2

∗(T )− (RD(T, n))2 (7)

This approximation of the variance has been shown to only slightly over-estimate

the variance of simulated data [59] and is accurate enough for our purposes. We use

Equation (5) using Equations (2), (3), and (4) as Features 8, 9, and 10 in Table 1

respectively.

Because the CRW feature becomes more accurate as the length of the tracklets

increases, we supplement the CRW measure with a simple displacement measure,

D(T, n) = nL̄T , for the earlier stages when most tracklets are short. We use this mea-

sure in the same manner as the CRW measure, replacing
√
R2
∗(T, n) and

√
σ2
R∗

(T, n)

terms in Equation (5) with D(T, n) and σD (found empirically based on ground

truth) respectively and becomes Feature 11 in Table 1. Additionally, the differences

in the simple displacement measure and the actual distance between two tracklets,

|2d(Ti, Tj)−D(Ti, n)−D(Tj, n)|, is used as Feature 12, and we normalize this value
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Table 1: List of association cost features.

Id Description

F
ea

tu
re

s
p
ro

p
os

ed
b
y

[3
6] 1 Bhattachayrra Coefficient between RGB Histograms of Ti and Tj.

(App)
2 Frame Gap between tail of Ti and head of TJ
3 Number of miss detected frames in the gap
4 Number of frames occluded by other tracklets in the gap
5 Number of miss detected frames in gap divided by Frame Gap
6 Number of occluded frames in gap divided by Frame Gap
7 Motion Smoothness (MS)

Ir
re

gu
la

r
M

ot
io

n
F

ea
tu

re
s

8 Asymmetric CRW (PRa(Ti, Tj))
9 Symmetric CRW (PRs(Ti, Tj))
10 Variable Speed CRW (PRv(Ti, Tj))
11 Simple Displacement (PD(Ti, Tj))
12 Difference in D(T, n) and d(Ti, Tj), (D − d)
13 Feature 12 normalized over frame gap ((D − d)/n)
14 Difference in Mean Speed

over the frame gap, n, for Feature 13.

Finally, due to insects’ tendency to move at consistent speeds before and after

occlusions, we use the difference in mean speeds, |L̄Ti − L̄Tj | as our final motion

feature.

4.4 Evaluation

We evaluate the proposed irregular motion features on the termite and ant datasets

described in the previous chapter. First, we describe a few implementation details of

the tracklet matching step for each dataset. This is followed by a discussion of the

our evaluation metrics. Finally, we discuss the results of our method.

4.4.1 Implementation Details

For the ant dataset, we perform four stages of tracklet matching. The maximum

allowed frame gap at each stage, τk, is 8, 32, 128 and 512. For the termite dataset, we
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only perform the first three stages of tracklet matching because it does not contain

any gaps exceeding 128 frames within the data set.

For each stage, we train a strong rank classifier H by using a leave one out training

strategy for each video in the datasets (i.e., three videos for training in the ant

dataset and one video for training in the termite dataset). Each strong rank classifier

is trained to contain 100 weak rank classifiers and the combination coefficient is set

to 0.75 following [36]. Only associations which exceed a minimum threshold (set

to 0 for our experiments) out of the strong rank classifier are considered within the

tracking association process. Finally, true positive and false positive probabilities are

based on the precision for each dataset.

4.4.2 Evaluation Metrics

We use the commonly used metrics of [36, 33] to evaluate the performance of our

proposed method. They are as follows:

• Recall - The ratio of correctly matched detections to the total number of detec-

tions.

• Precision - The ratio of correctly matched detections to total detections in

tracking results.

• False Alarms per Frame (FAF) - Average false alarms per frame.

• Groundtruth Targets (GT) - Total number of ground truthed targets within

videos
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Table 2: The tracking performance on each dataset. Including our irregular mo-
tion features (w/ Irr. Motion) reduced Fragments by 31% and ID switches by 57%
compared to only using the baseline features proposed by [36] (w/o IrrFeat) on the
ant dataset, and reduced Fragments by 17% and ID switches by 3% on the termite
dataset.

Method Recall Prec FAF GT Frag IDS MT PT ML
Ant Dataset

w/o Irr. Motion 61.7% 99.0% 0.318 166 391 332 54 98 14
w/ Irr. Motion 61.6% 99.0% 0.310 166 269 143 54 98 14

Termite Dataset
w/o Irr. Motion 93.2% 94.5% 1.179 44 68 32 39 4 1
w/ Irr. Motion 93.6% 94.5% 1.192 44 56 31 39 5 0

• Fragments (Frag) - The total number of times a ground truth trajectory is

interrupted by tracking results.

• ID Switches (IDS) - The total number of times a tracked trajectory changes its

matched ground truth identity.

• Mostly Tracked (MT) - The number of ground truth trajectories successfully

tracked for more than 80% of their duration.

• Partially Tracked (PT) - The number of ground truth trajectories successfully

tracked between 20% and 80% of their duration.

• Mostly Lost (ML) - The number of ground truth trajectories which are tracked

for less than 20% of their duration.

4.4.3 Discussion of Results

Table 2 shows the comparison of tracking performance on each dataset using the

features of [36] and our proposed irregular motion features. Note that the measures

are the sum of the performance across all videos in the data set (e.g, there are 166 total



24

tracking targets across all four ant videos and 269 Fragments occurred during all four

videos when using our irregular motion features). The addition of the irregular motion

features decreased the number if ID switches by 57% and fragments by 31% in the

ant dataset. In the termite dataset, ID switches were reduced by 3% and fragments

by 17%. This is due to the ability of the proposed irregular motion features to more

accurately model the motion of the insects. The smaller reduction in the termite

dataset is primarily due to the shorter occlusion seen in the dataset which are often

shorter than 100 frames. This is in contrast to the ant dataset which often contains

occlusions lasting up to 500 frames. Figure 7 shows an example of correctly associating

tracklets over a long occlusion lasting over 200 frames. Although our irregular motion

features are accurate even with insects which dramatically change direction during

these occlusions, they still have trouble predicting when ants dramatically change

speed. Figure 8 and Figure 9 show two examples in the termite dataset where our

irregular motion features prevented ID switches. Many of the fragments remaining

are insects which suddenly begin moving after remaining still for several hundred

frames or vice-versa.

Table 3 and Table 4 shows the top three features used by the strong rank classifier

H at each association stage when training with the entire ant and termite datasets

respectively. For all but one stage, one of our proposed irregular motion features was

the first picked (most discriminating) feature. Of note, the first selected weak ranker

had double the weight of the next selected weak ranker for every model. Figure 5 and

Figure 6 shows a more granular breakdown of the effectiveness of each feature. On the

ant dataset, one of our proposed irregular motion features had the highest cumulative
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Table 3: Shown are the top three features selected at each stage of training from
Table 1 when a HybridBoost ranker is trained with the entire ant dataset. One of our
proposed irregular motion features is the top selected feature in all stages. Of note,
the first selected weak ranker at each stage was weighted more than double the next
selected weak ranker.

Max Feature
Frame Gap 1st 2nd 3rd

8 PRs PRv MS
32 PRs MS (D − d)/n
128 PRs MS D − d
512 PRs MS # Occ. Frames

Table 4: Shown are the top three features selected at each stage of training from
Table 1 when a HybridBoost ranker is trained with the entire termite dataset. One
of our proposed irregular motion features is the top selected feature in all stages.

Max Feature
Frame Gap 1st 2nd 3rd

8 PRa MS (D − d)/n
32 PRs PRa PD
128 PRv (D − d)/n D − d

weight at any given stage with the exception of the first stage (max allowed gap of

8) where the motion smoothness metric showed most useful. As the gaps increase

in size, the usefulness of the motion smoothness metrics lessens while our proposed

metrics, especially the correlated random walk based metrics, continue to provide

useful information in determining associations. The same trends can be seen in the

termite dataset. Although the motion smoothness metric is more generally useful

at all stages in the termite dataset, the combined weights of our three proposed

correlated random walk based metrics are larger than the cumulative weight of the

motion smoothness metric.
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Figure 5: The cumulative weights of all the selected weak rankers based on each
feature when a HybridBoost model is trained using the entire ant dataset. With the
exception of the first stage of tracking (maximum allowed gap size of 8), our proposed
irregular motion features, specifically the correlated random walk features (features
8 to 10), provide more information than the initial set of features proposed by [36].
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Figure 6: The cumulative weights of all the selected weak rankers based on each
feature when a HybridBoost model is trained using the entire termite dataset. At each
tracking stage, our proposed features (features 8 to 14) provided more information
(higher weights) than the features of [36]. Although the motion smoothness feature
(feature 7) had a higher weight than any individual irregular motion feature in the
first and last stages, our proposed correlated random walk features (features 8 to 10)
provided more information combined.

Frame 990 Frame 1070 Frame 1150 Frame 1215

Figure 7: Sample tracking results of using our irregular motion features (bottom row)
and only using the features proposed by [36](top row). In the top row, tracking 14
in green produces an ID switch due to the similarity in appearance (both have green
paint) and the length of the occlusion. Our proposed irregular motion features are
able to better predict how far the ant will move during the occlusion and taking the
correct association at the end of the occlusion.
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Frame 565 Frame 610 Frame 655 Frame 705

Figure 8: Sample tracking results of using our irregular motion features (bottom row)
and only using the features proposed by [36](top row) in the termite dataset. In the
top row, tracking 6 in pink (indicated by arrow) produces an ID switch due to an
abrupt change in position right before tracking is lost and tracking is reappears later
on a different in the final frame (indicated by arrow). Our irregular motion features
are able to reduce the effect of the noisy detection and track through the duration as
tracking 4.

Frame 990 Frame 1070 Frame 1150 Frame 1215

Figure 9: In the top row, tracking 42 in pink (indicated by arrow) produces an ID
switch as it changes direction quickly to move around other targets and is incorrectly
associated to another termite on the other side of the image. Our irregular motion
features are able to track continually through these quick directional changes.



CHAPTER 5: FILTERING ASSOCIATIONS WITH OCCLUSION
SUB-TUNNELS

Due to the density and frequency of occlusions within the social insect videos, each

tracklet can have a large number of potential associations. The advanced features

described in the previous chapter can, at best, reduce the ambiguity between potential

associations by increasing the difference between the correct and incorrect matches.

Similarity in appearance and motion between the many nearby, occluding insects

may still cause the affinity model to confuse two or more objects. This can lead to

incorrect associations (ID Switches) or early termination (fragments).

One approach to reduce this ambiguity further is to incorporate dependencies be-

tween associations [60, 9, 49]. However, the size of the problem grows exponentially

with the number of objects present within the video. It is not uncommon for insect

videos to contain 50+ objects, often making these methods intractable.

We propose a method to filter incorrect associations by leveraging occlusion. Al-

though tracking individual objects through occlusions can be difficult, the occlusion

itself can provide information on spatial paths available for tracklets. By limiting

associations between tracklets which enter and exit from the same occlusion, we can

filter many impossible nearby associations from being considered during the tracklet

matching process. We call these distinct instances of interacting tracklets occlusion

tunnels. However, finding distinct occlusion tunnels is challenging, therefore we ap-
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(a) Typical Matching Problem (b) Proposed Occlusion Sub-Tunnel Filtering

Figure 10: Due to the difficulty of detection during occlusion, trackings are often
fragmented into many smaller tracklets. Due to similarity of features (shown as
color) between targets in, identity switches may occur as shown by the red arrows in
(a). Even though detections are difficult to obtain, foreground is still relatively easy
to obtain and can be used to find instances of occlusion as shown by the gray region
in (b). The occlusion sub-tunnels based on foreground blobs (shown in dark gray)
can be used to filter incorrect association between tracklets.

proximate these areas of by using occlusion sub-tunnels as shown in Figure 10.

In the following section, we describe our method for finding and exploiting occlu-

sion sub-tunnels. Next, we demonstrate the effectiveness of occlusion sub-tunnels in

Section 5.2.

5.1 Occlusion Sub-Tunnels

The occlusion sub-tunnel approach aims to improve the data association process

by filtering incorrect associations. Occlusion tunnels are a sequence of spatial regions

of occlusion which are defined by the assumption that a set of targets 1) enter into

an occlusion, 2) move through the occlusion, and finally 3) exit from the same oc-

clusion. Therefore, tracklets which enter into a given occlusion must be associated

with a tracklet which exits the same occlusion as shown in Figure 10b. Tracklets not

involved within the same occlusion (defined by gray regions in Figure 10b), cannot
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Frame 2055 Frame 2447 Frame 2686 Frame 2780 Frame 2890

(a) The top row shows the original frames where each colored bounding box is a tracklet (only
tracking from two ants are shown for clarity). Detected foreground blobs are shown below
(foreground blobs involved with the occlusion are colored). Note that each foreground blob can
contain one or more ant.

T2 
tail

T1 
tail

T3 
head

T4 
head

T1 
head

(b) The foreground tunnel F generated based on the foreground blobs for Figure 11a. Each
foreground blob becomes a vertex in the graph (e.g, the yellow foreground blob from Frame
2055 is represented as the yellow circle). Edges between nodes denote the foreground blobs meet
the temporal and spatial constraint. Next, the head and tail detections of each tracklet are
corresponded with a node in the F denoted by text and outline color of the vertex pixel.

Figure 11: Example of constructing foreground tunnels on an occlusion involving five
ants over 800 frames.
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be associated and therefore have their associations filtered from the tracking process.

Note, the goal of occlusion tunnels is not to perform tracking explicitly, but to filter

associations based on a spatial constraint irrespective of features.

First, it is assumed that a set of tracklets, T = {Ti}, and set of foreground blobs

at each frame are given. We make a distinction between foreground blobs and de-

tections. For our purposes, foreground blobs are simply connected foreground pixel

regions within a frame which may contain one or more objects where as detections

are assumed to only reference a single object. This is demonstrated in Figure 11a

where the top row show detections of tracklets which correspond to a single object

and the second row shows foreground responses (colored regions) which contain no

objects, one object or multiple objects. (Note, our method is agnostic to the par-

ticular method used for detecting foreground blobs and details of the methods used

for our datasets are described in Section 5.2.1). If the foreground blobs are viewed

as being stacked over time, they form “tunnels” through the video which targets can

move through. These tunnels are represented as a directed graph F = (V,E) where

V = {v1, ..., vp} denotes the set of nodes (or vertices) and E = {e1, ..., eq} denotes the

set of edges. Each node, vi = {pi, ti}, in F represents a foreground blob containing

the set of pixels, pi, at frame ti. Next, an edge is added between nodes which are con-

sidered to contain one or more of the same targets. This is approximated by a spatial

and temporal proximity. Two nodes vi, vj are temporally close if 0 < tj − ti ≤ n

where n is a temporal threshold. For our datasets, nodes are considered spatially

close if pi ∩ pj 6= ∅. This is due to the relatively high frame rate of our videos which

limits the distance objects are able to move between frames. More sophisticated mea-
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sures may be used to determine spatial proximity in cases of faster moving targets

or slower frame rates. Figure 11b shows a foreground graph constructed from the

colored foreground regions in Figure 11a. Note that more than one detection can be

corresponded to a single foreground blob in F . In the case that a foreground blob

does not exist at the location of a detection, a foreground blob based on the size and

location of the detection may be inserted into F .

Occlusion tunnels exist as a set of disjoint subgraphs within F . However, in order

to find these subgraphs directly, each node in F would have to be accurately identified

as containing an occlusion (foreground blob contains more than 1 object), contains a

single object or contains no object (e.g., noise).This is a challenging task, especially

within insect videos where severe and total occlusions between objects are not un-

common. Instead, we approximate the location of the occlusion tunnels by finding

occlusion sub-tunnels.

The occlusion sub-tunnels are represented as a directed graph, Os, which contains

groups of tracklets which are connected (or reachable) through the foreground blob

tunnels, F , and their associations. The occlusion sub-tunnels are found by finding

groups of tracklets which are connected through the foreground blob tunnels, F .

First, we create a directed graph C = {T , A} which has a node for each tracklet in

T . The set of edges A = {a(i, j)} indicates the head (first detection) of Tj is reachable

by the tail (final detection) of Ti through the foreground tunnels, F . To determine

the set of the edges A, the tracklets are first corresponded to nodes in the graph, F .

Next, we must correspond detections within T to foreground blobs in F . Because

our criteria for A is based on reachability between the heads and tails of tracklets,
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Figure 12: Given the graph of foreground blob tunnels F (shown on the left as a
network of white circles) and a set of tracklets, {T1, ..., T10}. The heads (triangles)
and tails (squares) of each tracklet are mapped to nodes in F . The middle graph
shows all potential associations between tracklets with only a temporal constraint
(e.g., τk at each tracking stage). Then, potential associations between tracklets are
filtered based on reachability between tail and head nodes through the foreground
blob tunnel. The resulting graph, C (right most graph), contains two disjoint sub-
graphs each with its own sub-tunnel network, Os. This filters confusing associations
across separate occlusions (T2 to {T8, T10}, and {T3, T4} to T8) and within occlusion,
(T3 to T10).
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we only correspond each tracklet’s head and tail detections. Each detection di is

corresponded to a single foreground blob vi where vi and di exist in the same frame

and di is located within the foreground region represented by vi. This correspondence

is demonstrated in Figure 11b.

We refer to the set of nodes of F corresponded to tracklet heads as {vhi } where vhi is

the node in F corresponded to the head detection of tracklet Ti. The set of nodes of F

corresponded to tracklet tails are referred to as {vti}. A toy example of this mapping

is shown in the left half of Figure 12. With the heads and tails corresponded, the

conditional for adding edges can be stated as follows: an edge a(i, j) is added to C if

there exists a path through F from vti to vhj . This condition is easily checked using

a breadth first search through F from the tail node, vti . Because F is directed, this

conditional is both a temporal (all edges in F are directed forward through time) and

spatial (edges in F define the foreground tunnels within the video) constraint on the

set of potential associations between tracklets. Figure 12 demonstrates the process

of finding occlusion sub-tunnels.

5.2 Evaluation

As in the prior chapter, we start by describing the implementation details used for

our datasets in Section 5.2.1. A discussion of the performance of the two proposed

methods are discussed in Section 5.2.2.

5.2.1 Implementation Details

Tracklet Matching - We use the same tracklet matching details as described in the

prior chapter. Four rounds of tracklet matching are performed with maximum gaps
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of 8, 32, 128 and 512 allowed at each stage for the ant dataset and only three rounds

of matching for the termite dataset. We continue to use the trained HybridBoost

affinity model with the described irregular motion features following the same training

method as in Chapter 4.

Foreground Blob Detection - As mentioned in Section 5.1, our occlusion tunnel and

occlusion sub-tunnel finding methods are agnostic to the foreground blob detection

method. It is only assumed that the method has a high recall and moderate precision.

We use the same color classification method used to perform ant detection as described

in Section 3.1. Color classification is chosen due to its high recall of foreground within

the video. Background subtraction is not usable due to the number of motionless ants

which makes it difficult to generate an accurate background image. Only blobs which

do not meet a minimum size constraint of 50 pixels (approximately the size of an

ant’s head) are discarded. All other blobs are used to create the foreground tunnels,

F .

For the termite data, we use background subtraction as it provides a high recall

within these videos. The average image of the video is used as the background and

empirically set a threshold that maximized the recall of foreground blobs. We again

set a minimum size threshold of 25 pixels (approximately the size of a termite’s head)

on the set of foreground blobs.

5.2.2 Discussion of Results

Results of the Occlusion Sub-Tunnels method is shown in Table 5. By using oc-

clusion sub-tunnels to filter associations, we were able to reduce fragments by an
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Table 5: The tracking performance on each dataset while. Our proposed occlusion
tunnel and occlusion sub-tunnel methods reduced fragments by an additional 5% and
ID Switches by an additional 21% over using the irregular motion features alone in the
ant dataset. On the termite dataset, ID Switches were reduced by 23% but fragments
increased by 14%.

Method Recall Prec FAF GT Frag IDS MT PT ML
Ant Dataset

Irregular Motion 61.6% 99.0% 0.310 166 269 143 54 98 14
Occ. Sub-Tunnels 61.7% 99.0% 0.318 166 256 113 54 98 14

Termite Dataset
Irregular Motion 93.6% 94.5% 1.192 44 56 31 39 5 0
Occ. Sub-Tunnels 94.6% 95.6% 1.173 44 64 24 39 5 0

additional 5% and ID switches by an additional 22% compared to tracking without

filtering. This is due to the occlusion tunnel and occlusion sub-tunnel methods’ abil-

ity to to filter incorrect associations as shown in Table 6. At each matching stage,

on average 4,000 associations are considered and scored by the trained affinity model

with the vast majority of these being incorrect associations. The occlusion sub-tunnel

method is able to filter nearly 85% of the incorrect associations at each tracking stage

while only incorrectly filtering 0.25 correct associations per tracking stage. Filtering

of correct associations occurs when a series of frames has poor foreground response

which breaks paths through the foreground tunnel F . Figure 13 shows three prevented

ID switches due to occlusion sub-tunnel filtering. As the ant in the top right occludes

with each of the three subsequent ants, tracking without occlusion sub-tunnels has a

chain reaction of ID switches (one tracklet takes another tracklets correct match and

therefore takes an incorrect “good enough” association instead). By filtering incorrect

associations, all three tracklets are associated correctly over the occlusions.

In the termite dataset, ID switches were reduced by 23% as well, but increased
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Table 6: Filtering ability of proposed occlusion sub-tunnels (OsT) on the ant and ter-
mite datasets. Average of all tracking stages and and videos are shown. On average,
occlusion sub-tunnels filter almost 85% of incorrect associations and only incorrectly
filter one correct association on the ant dataset. In the termite dataset, 58% of as-
sociations are filtered, but due to lower recall of the foreground blob detection, it
incorrectly removes 4.6 correct associations per tracking stage.

# Associations % Filtered # Correct Assoc. Filtered

Ant Video 4,145 84.9% 0.25
Termite Video 357 58.0% 4.6

fragments by 14%. As in the ant dataset, the occlusion sub-tunnel method is able

to filter 85% of associations, but often filters a larger number of correct associations

than in the ant video (Table 6) due to lower recall of foreground blobs in these

videos.. However, even with the increased fragments, both precision and recall were

increased by 1% in the termite video. Precision is increased when fewer false positive

tracklets exist at the end of tracking. Our occlusion sub-tunnel helped by eliminating

associations between these false positive tracklets and actual tracklets thus allowing

the algorithm to correctly remove them. At the same time, this also allowed for more

difficult associations between shorter tracklets preventing them from being filtered as

false positives and increasing recall. The same response can be seen in the precision

of the ant video, however, because most of the false positive tracklets are very short

they do not have a appreciable affect on the percentage values. Figure 14 shows an

instance where an ID switch was prevented but remained as a fragment.
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Without Occlusion Sub-Tunnels
Frame 580 Frame 600 Frame 630 Frame 665

Frame 683 Frame 720 Frame 785 Frame 815

With Occlusion Sub-Tunnels
Frame 580 Frame 600 Frame 630 Frame 665

Frame 683 Frame 720 Frame 785 Frame 815

Figure 13: The top series of images shows a series of three ID switches which occur
when not using Occlusion Sub-Tunnel filtering. As the unmarked ant in the top right
corner moves to the bottom right, it occludes with trackings 9 (cyan), 36 (white)
and 31 (yellow) which all switch to a different ant after the occlusions. By using
occlusion sub-tunnels, these incorrect associations are prevented, thus allowing each
the trackings to maintain their identities (trackings 20, 15, and 12) after the occlusion
as shown in the bottom series of images.
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Frame 2585 Frame 2640 Frame 2690 Frame 2715

Figure 14: The top row of images show an ID switch which occurs when no using
occlusion sub-tunnel filtering. The termite tracking by tracking 31 presses against
the outside of the enclosure in frame 2640 and stops where detection is lost. Due to
the the prior motion of the termite, it is incorrectly associated to a different termite
at frame 2690. Occlusion sub-tunnels prevent this association occurring and instead
leaves a fragment.



CHAPTER 6: ONLINE LEARNING AFFINITY MODELS

There are a few options in relation to the affinity model when tracking on a dataset

which is different from the exiting set of groundtruthed videos used for training. First

option is to train a model using a the exiting dataset which has a groundtruth and

apply it to the new video domain (e.g., train a model using the ant dataset and apply

it to the termite dataset). However, affinity models do not always transfer between

datasets well as motion patterns and descriptive appearance indicators can change

between datasets leading to decreased tracking performance. Second, a new model

can be trained, but this requires collecting a large number of training labels. For

example, the HybridBoost models trained in prior chapters use in excess of 70,000

training samples when training an affinity model on the ant dataset. Active learning

can be applied to reduce the number of samples required [44], but this still requires a

user to label upwards of 200 training samples per tracking stage (or 800 labels total)

to achieve reasonable performance.

Recently, methods which train an appearance affinity online without user labels

have been investigated. These methods automatically generating training data based

on the current state of tracking. In DAT tracking, the observation that tracklets

which overlap temporally out of the tracklet building stage cannot belong to the same

object can be used to generate a large set of training labels. Using this observation,

[33, 32, 63] trained a classifier to determine if two detections belong to the same
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object using pairs of detections within a tracklet as positive samples and pairs of

detections between temporally overlapping tracklets as negative samples. This was

later extended by [61] which used a motion heuristic to identify a set of potential future

matches for each tracklet. Pairs of detections between a tracklet and a potential future

match are given a weak positive label as some pairs are actually negative samples.

Multiple instance learning is used with the weakly labeled positive samples to an

appearance model.

However, appearance is not a reliable metric in tracking social insects due to their

similarity. Motion features (as demonstrated in Chapter 4) are important features

in tracking insects, but the methods for obtaining training labels do not extend to

labeling association between tracklets which are required to train motion features.

Put simply, any machine learning method would merely learn the motion heuristic

used for generating the training data. However, the occlusion sub-tunnel method

(Chapter 5) is suitable for creating such weak labels for training motion features

online because it is based on a spatial constraint. In the next section, we describe

how the occlusion sub-tunnel method can be used to generate the weakly labeled

bags suitable for training motion affinity models. Next, in Section 6.2 we describe

a number of multiple instance learning methods which may be suitable for training

an affinity model. Finally, we evaluate our proposed online affinity model training

method in Section 6.3.
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6.1 Using Occlusion Sub-Tunnels to Generate Weak Labels

Multiple Instance Learning (MIL) is a variation of the classification task for prob-

lems with incomplete knowledge of training labels [17]. Rather than each instance of

an absolute positive or negative, individual instances are only weakly labeled indi-

cating that some labels could be incorrect. Instances are then grouped together into

sets, or bags. In the binary case, a bag is given a positive label if at least one instance

in that bag is thought to be positive, and a bag is labeled as negative if all instances

in the bag are negative. The goal of MIL is to label new unseen instances or bags of

instances using the labeled bags as training data (where again, no individual instance

is given a hard label) [17, 55]. These methods work by assuming that there exists

overlap in the feature space between the hard labeled negative instances in negative

bags and the negative instances which are placed in the positive bags.

The occlusion sub-tunnel method described in the previous chapter is capable of

producing the weak labels usable by MIL and suitable for training motion models.

Associations which are temporally valid but are filtered by the occlusion sub-tunnel

method are given a negative label. Unfiltered associations are given a weakly positive

label. Because our filtering is based on occlusion, associations between objects which

are close by but in separate occlusions (as shown in Figure 16) can be filtered and

given negative labels as shown in Figure 15. These nearby filtered associations are

what allow the MIL method to learn a decision boundary as they will be near incorrect

associations which are not filtered by occlusion sub-tunnels in feature space.

After each association is given a negative or weak positive label, they must be
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Figure 15: The assumption for online learning an affinity model is that associations
filtered by occlusion sub-tunnels (red arrows) can be used to learn which remaining
unfiltered associations (green arrows) are incorrect matches. For example, the filtered
association between tracklet A and 3 may be similar in feature space to the unfiltered
association between A and 1. This will allow the trained model to learn that the
association between A and 1 is incorrect and take the association between A and 2.

bagged together for multiple instance learning. We propose two methods for gener-

ating positive and negative bags which satisfy the MIL bag constraints listed prior as

shown in Figure 16.

• Occlusion Level - For each occlusion sub-tunnel Os, all unfiltered associations

within the occlusion sub-tunnel (a(i, j) ∈ Os) are placed into a positive bag, Bi.

All filtered associations which involve a tracklet in Os (a(i, j)|Ti ∈ Os or Tj ∈

Os and a(i, j) 6∈ {Os}) are placed into a negative bag, Ni.

• Tracklet Level - For each tracklet Ti, the set of filtered associations are placed

into a negative bag, Ni, and all of its unfiltered associations placed into a positive

bag, Bi.

The two bagging methods provide different types of bag compositions which can
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have a dramatic effect on the learned affinity model. The occlusion sub-tunnel bags

generate fewer bags overall but each bag will contain large number of samples. In

contrast, tracklet level bags will generate a larger number of bags with each bag

containing fewer samples. In particular concern to learning an affinity model is the

existence of positive bags which do not contain any positive associations which we call

“bad” positive bags. Bad positive bags occur when all the samples inside a positive

bag relate to a single tracklet and the tracklet either 1) is a false positive tracklet which

should not link to anything or 2) the tracklets correct link occurs at a larger gap size

(e.g., when training an affinity model at the first stage with a maximum allowed gap

of 8 frames, this tracklet’s correct link is 10 frames in the future). The composition

of the bags (number, size and presence of “bad” bags) can have a dramatic effect of

the classification boundary learned. We discuss the effects of each bagging method

on one of our datasets in the results section.

6.2 Multiple Instance Learning Methods

Once the bags are generated, a multiple instance learning method can be used to

learn an affinity model. We test four different multiple instance learning methods for

training. They are as follows:

• mi-SVM - This is the support vector machine based multiple instance classifica-

tion method of [1]. Specifically, this is the mi variant of the training algorithm

which is detailed in Algorithm 1. This is an iterative approach to solving the

MIL problem while using the standard SVM model as a sub-routine. Initially,

all instances are given the same label as their bag and used to train a standard
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Figure 16: The left images shows the labeled associations for using occlusion sub-
tunnels where red indicates a negative label and green indicates a weak positive label.
On the right are the results of the two bagging methods. On top, weakly positive
associations are grouped together by occlusion sub-tunnels (bags indicated by dark
rectangles). Tracklet bags are grouped by individual tracklets.

SVM model. Next, labels for instances in positive bags are updated based on

the trained SVM. Instances in positive bags which are classified as negative

by the model are given a negative label and instances in positive bags which

are classified as positive by the model are given a positive label. At least one

instance in each positive must have a positive label, therefore if all instances in

a given positive bag are classified as negative by the model the “most positive”

instance in the bag is given a positive label Labels for instances in negative bags

do not change. A new SVM model is then trained on the instances with their

updated labels. This is repeated until labels labels on instances stop changing.

We use libSVM [10] to solve for the support vectors at each iteration.
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Input: Training Bags, Bi = {xj, yj}&N i = {xj, yj}; Bag Labels, Y i ∈ {1, 0}
set yj = Yi where yj ∈ Bi

repeat
train SVM model, f , using current labels, yj
foreach xj ∈ Bi such that Yi = 1 do

yj = sgn(f(xj))
end
foreach positive bag Bi do

if
∑
yj∈Bi

(1 + yj)/2 == 0 then

find x∗j = argmax
xj∈Bi

f(xj)

set yj = 1

end

end

until labels yi do not change
Output: SVM model f

Algorithm 1: mi-SVM

• MIC - Another multiple instance classification problem by [39]. Rather then

using a heuristic to solve for the support vectors, MIC formulates the multiple

instance learning problem as a bilinear problem. First, we assume we are given

m training bags consisting of k positive bags {B1, . . . , Bk}, and m− k negative

bags {Nk+1, . . . , Cm}. the positive and negative bags are represented as ma-

trices Bi ∈ Rmi×n and N i ∈ Rmi×n respectively, where each row of the matrix

represents a sample in the bag Bi
l ∈ Rn and mi is the number of samples in the

bag. The non-linear separating hyper plane is represented denoted as

K(x′, H ′)u = β (8)

where u ∈ Rm is a dual variable and the m × n matrix H is defined as H ′ =

[B1′ , . . . , Bk′ , Ck+1′ . . . Cm′ ] and K(x′, H ′) denotes a kernel map function. For

example, if a linear kernel is used then K(x′, H ′) = x′H ′. The problem for



48

solving the classification problem is formulated as follows:

min
u,β,γ,vi,...,vk

υe′γ + ||u||1

s.t. vi
′
K(Bi, H ′)u− β + γi ≥ 1, i = 1, . . . , k,

−K(N i
l , H

′)u+ β + γil >= 1, i = k + 1, . . . ,m, l = 1, . . . ,mi,

e′vi = 1, vi ≥ 0, i = 1, . . . , k,

γ ≥ 0

(9)

Here, the vector γ with components γi, i = 1, . . . , k and γil , k = k+1, . . . ,m, l =

1, . . . ,mi represents the non-negative slack variables that are driven towards

zero by the object function and e denotes a vector of ones. The vectors v1, . . . , vk

are denote the convex combination of points within positive bags such that

vi ∈ Rmi
. Finally, the value υ is the Cost Factor which measure the trade off

between the model error and generality of the learned model.

Solving this optimization problem is done iteratively in a bilinear manner. First,

the the convex combination vectors, vi are fixed and the solution is optimized

for β, γ, and u. Next, u is fixed and the solution is optimized for β, γ, and the

combination vectors vi

One issue with this formulation is it’s scaling with large numbers of samples as

the kernel matrix grows quadratically. To solve this issue, we implemented the

reduced support vector machines approach to drastically decrease the memory

requirements during runtime [34]. This method has shown that a set of samples
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can be sub selected as potential support vectors rather than having to use all

samples as potential support vectors. This reduces the the matrix H from Rn×m̄

to Rn×m̂ where m̂� m̄. We implemented this method in Matlab using the open

source COIN-OR Linear Programming library (CLP) to solve the optimization

subroutines [37].

• MIRank - A ranking variant of the multiple instance problem by [6]. Rather

then trying to classify bags, the goal is to determine which bags or instances are

preferred to other bags. To do this, sets of bags are placed into boxes, where one

bag is “preferred” to all other bags within the box. For our method, bags which

are generated from the same occlusion tunnel or tracklet are placed within a

box. We denote these boxes by ordered pairs (I, J) which indicates bag Bi is

preferred to bag Cj.

Following the same notation as MIC, the formulation for MIRank is as follows:

min
u,β,γ,vi,...,vk

υe′γ + ||u||1

s.t. vi
′
K(Bi, H ′)u−K(N j

l , H
′)u ≥ 1− γI,J , ∀(I, J)

e′vi = 1, vi ≥ 0, i = 1, . . . , k,

γ ≥ 0

(10)

This is solved in the same bilinear fashion as MIC. Again, we implemented this

algorithm within Matlab using CLP library and also used the reduced support

vector machine algorithm to reduce memory requirements.
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• MIHybrid - This is a hybrid approach of ranking and classification which we

have devised. This combines the constraints of both MIC and MIRank. During

optimization, we weight the errors from the MIC and MIRank formulations such

as done in HybridBoost.

6.3 Evaluation

In this section, we evaluate our online affinity model learning method. First, we de-

scribe some implementation details for our online learning method. Next, we describe

the methods we compare against, this include transferring offline trained models as

well as a number of online appearance model training methods. Finally, we discuss

the results in Section 6.3.3.

6.3.1 Implementation Details

For the described online method, an affinity model is trained for each stage of

tracking just as was done for the offline training method. All four of our MIL methods

are support vector machine based and we use the same parameters across each model.

We use the radial basis function (RBF) for our kernel function and set the Cost Factor

to 75 (found empirically).

6.3.2 Comparison Method

We compare our online training method to the following:

• Offline HybridBoost Model - This is the same method as used in Chapter 5

including irregular motion features and filtering of associations using occlusion

sub-tunnels. First, we compare our method to the scenario described at the start
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of the Chapter where training data consisting of the same dataset is unavailable.

We train an affinity model using videos in the ant dataset and apply it to videos

in the termite dataset and vice versa. Finally, we compare when training and

testing using videos from within the same dataset as done in prior chapters.

• OLDAM - This is the Online Learned Discriminative Appearance Model (OLDAM)

method of [32]. First, labels for detection pairs are generate by the observation

that tracklets which overlap temporally cannot belong to the same tracklet. Two

detections which belong to the same tracklet are labeled as a positive pair, and

detections pairs from separate tracklets which overlap temporally are labeled

negative. Each detection is represented by a collection of RGB Histograms,

Histogram of Oriented Gradients [13], and Covariance texture features sampled

from a set of discrete parts locations within the detection. A classifier is trained

on a vector of similarity scores between each detections feature representations

(e.g., the correlation coefficient between the histogram of oriented gradients fea-

ture at part i of each detection is an element of the vector). The classifier is

then applied at run time as the appearance affinity component of the affinity

score. This is combined with a manually tuned linear motion model based on

motion smoothness.

• PIRMPT - This is the Person Identity Recognition based Multi-Person Tracking

(PIRMPT) of [33]. Rather than training a single global classifier to determine if

pairs of detections belong to the same object as done in OLDAM [32], PIRMPT

trains a single classifier for each tracklet that meets a minimum length threshold.
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For tracklets which do not meet the minimum threshold, a single classifier is

made combining the training labels generated by these tracklets. Labels for

detection pairs are collected using the same methodology of OLDAM. Again,

this is coupled with a manually tuned linear motion model to form the full

affinity score.

• MILPIRMPT - This method further extends PIRMPT by incorporating more

temporally distant detection pairs for training [61]. Many tracklets in PIRMPT

often suffer from having few positive training samples with minimal diversity

causing the learned affinity models to over fit. For each tracklet, MILPIRMPT

employs a motion heuristic to generate a list of potential matching tracklets

in the future. The pairs of detections which contain one detection from the

original tracklet and one detection from a potential match, are given a weak

positive label and placed in a positive bag. Negative detection pairs a collected

using the same temporal overlap method as OLDAM and PIRMPT. Multiple

instance learning is then used to train a classifier for each tracklet which exceeds

a minimum length threshold. Following PIRMPT, a single classifier is trained

and used by all the tracklets which do not meet this minimum length. Following

PIRMPT, this is coupled with a manually tuned linear motion model to form

the full affinity score.

6.3.3 Discussion of Results

Comparison of MIL and Bagging Methods - First, we discuss the affect of the two

bagging methods proposed and the multiple instance learning methods on tracking
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Table 7: Composition of bags generated by occlusion sub-tunnels as described in
Section 6.1 occlusion sub-tunnel level (OsT) and tracklet level (Tlet) from a video
in the ant dataset. OsT level bagging produces fewer, larger bags where Tlet level
bagging produces a much larger number of smaller bags.

Bag
Method

# of Pos
Bags

Median Bag
Size

% Pos Samples in
Bag

% “Bad”
Bags

OsT 802 13.59 84.1% 7.5%
Tlet 4696 2.32 82.4% 10.3%

performance. First, we discuss the composition of the bags generated by each method.

The choice of the bagging method can have a large effect on the performance of the

learned affinity model as our MIL method of choice can be sensitive to bag compo-

sition. Table 7 shows how the weakly labeled positive samples out of the occlusion

sub-tunnels are broken into bags. Bagging based on occlusion sub-tunnels generally

creates fewer but larger bags where bagging based on tracklets produces more but

smaller bags. The presence of “bad” positive bags or positive bags which do not

contain any positive samples. The occlusion sub-tunnel bagging method reduces the

chances of such bags existing as each bag often contains associations between many

pairs of tracklets.

Table 8 shows the tracking performance when using each of the bagging methods

and multiple instance learning methods described. As shown in the table, tracklet

level bagging performs better overall for all training methods with only an increase in

ID switches. The MIL methods produce fewer ID switches while using occlusion sub-

tunnel bagging, but at the expense of far more fragments and a reduction in recall.

For example, when using the mi-SVM methods, occlusion sub-tunnel bagging results

in 35% fewer ID switches than tracklet bagging but results in 40% more fragments
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and one more mostly lost target. Using MIRank the difference is more significant

with occlusions sub-tunnel bagging resulting in 122% more fragments, 8 fewer most

tracked targets and 3 additional mostly lost targets compared to tracklet bagging.

The mi-SVM method is the least sensitive to the bagging method of the tested MIL

methods having the smallest variation between the results of the two bagging methods.

This is mostly due to the fact that MIC, MIRank, and MIHybrid represents each

positive bag as a single point, therefore in occlusion sub-tunnel bagging there exist

fewer positive points for solving the optimization routines while the number negative

samples remains the same. From the results, we see that the MIL methods perform

better with a larger number of smaller bag even with the increased number of “bad”

positive bags. Based on these results, the results of mi-SVM with tracklet level

bagging are used as the final results for our proposed online training method for the

remainder of the evaluation section.

Tracking Performance - Next, we assess the effectiveness of our online learning method

compared to training a HybridBoost model using video from a different dataset than

the testing video. The results from offline training a HybridBoost affinity model

with 5,000 frames and 10,000 frames of video from one data set and then testing on

the videos in the other dataset are shown in Table 9. Our online learning method

(using the mi-SVM method with tracklet bagging) produced 17% fewer ID switches

and only 1 additional fragment compared to offline training an affinity model using

the termite dataset and testing on the ant dataset. When the training and testing

sets are reversed, our online training method resulted in 21% fewer ID switches and

4% fewer fragments. When the amount of data provided for training HybridBoost
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Table 8: Comparison of the two bagging methods described in Section 6.1 Occlusion
Sub-Tunnel (OsT) level bagging and Tracklet (Tlet) level bagging on the ant dataset
using the four described MIL methods. Tracklet level bagging provides overall better
performance with more ID switches than occlusion sub-tunnel bagging for all methods
which results in fewer ID switches but a greater number of Fragments and lower recall.

Bag
Method

MIL
Method

Rec Prec FAF GT Frag IDS MT PT ML

OsT mi-SVM 61.2% 99.0% 0.301 144 470 64 54 97 15
Tlet mi-SVM 61.7% 99.0% 0.304 144 336 99 54 98 14
OsT MIC 60.1% 98.8% 0.350 144 691 42 48 102 16
Tlet MIC 61.7% 98.8$ 0.381 144 409 116 54 97 15
OsT MIRank 59.6% 98.7% 0.383 144 721 30 46 103 17
Tlet MIRank 61.7% 99.0% 0.313 144 324 115 54 98 14
OsT MIHy-

brid
59.6% 98.8% 0.354 144 711 27 46 104 16

Tlet MIHy-
brid

61.6% 98.9% 0.346 144 371 118 54 98 14

Table 9: Comparing the tracking performance of our proposed online learning method
versus transferring an offline learned affinity model to a different dataset (HB). For
the ant datset, the HybridBoost model was trained using video from the termite
dataset and vice versa. Our online method produces 18% fewer ID switches and only
one additional fragment on the ant dataset when training with 5k frames of video.
On the termite dataset, our method produces 3% fewer fragments and 21% fewer
ID switches. When using 10,000 frames to train the offline model, our method still
produces 4% fewer ID Switches and only 4% additional fragments while requiring no
manual labels for training on the ant dataset. On the termite dataset, our method
produces 27% fewer ID switches and only one additional fragment.

Dataset Method Recall Prec FAF GT Frag IDS MT PT ML
Training with 5k Frames

Ant HB 61.7% 98.8% 0.382 166 335 120 55 97 14
Ant Proposed 61.7% 99.0% 0.302 166 336 99 54 98 14
Termite HB 94.3% 94.6% 1.174 44 78 26 39 5 0
Termite Proposed 94.6% 94.6% 1.180 44 76 20 39 5 0

Training with 10k Frames
Ant HB 61.7% 98.8% 0.384 166 322 103 54 98 14
Ant Proposed 61.7% 99.0% 0.302 166 336 99 54 98 14
Termite HB 94.5% 94.6% 1.181 44 75 28 39 5 0
Termite Proposed 94.6% 94.6% 1.180 44 76 20 39 5 0
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Table 10: The tracking performance of the online learning approaches on each dataset.

Method Recall Prec FAF GT Frag IDS MT PT ML
Ant Dataset

OLDAM 60.6% 98.7% 0.320 166 476 110 50 99 17
PIRMPT 60.0% 98.6% 0.419 166 624 112 49 99 18
MILPIRMPT 57.6% 99.0% 0.289 166 689 35 44 101 21
Proposed 61.7% 99.0% 0.302 166 336 99 54 98 14

Termite Dataset
OLDAM 91.5% 94.6% 1.151 44 73 10 39 4 1
PIRMPT 90.5% 94.6% 1.143 44 128 16 39 4 1
MILPIRMPT 86.1% 94.3% 1.138 44 225 16 39 3 2
Proposed 94.6% 94.6% 1.180 44 76 20 39 5 0

increased to 10,000 frames, our online learning method still resulted in 4% fewer ID

switches but increased fragments by 4%. When testing on the termite dataset, our

the online training method still outperformed the HybridBoost model with 27% fewer

ID switches. The poor performance when transferring is due to two main reasons:

1) difference in motion behavior and 2) difference in appearance reliability. However,

the largest difference is in appearance. Because the ants are painted, appearance is

more reliable in this dataset, but the learned reliance on appearance does not transfer

over to the unmarked low resolution termite videos. Our method is able to learn the

best set of metrics for each video online.

Our method also outperforms previous online appearance learning approaches (Ta-

ble 10). On the ant dataset, our method reduced fragments by 41%, ID Switches

by 11% and increased mostly tracked targets by 4 over the best performing online

appearance learning method, OLDAM. The performance of the prior online training

methods is primarily due to their reliance on manually tuned linear motion model. As

we demonstrated in Chapter 4, linear motion models are not well suited to tracking
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Table 11: Tracking performance (with standard deviation) on one ant video with
varying amounts of training labels per tracking stage.

# Labels
per Stage

Pro-
posed

(0)

200 400 600 800 1000 All

Frag 140 178.3±
54.14

123.9±
22.4

125.3±
16.9

118.3±
11.3

115.5±
14.7

99

IDS 49 89.9±
57.7

66.1±
17.7

53.7±
10.9

54.4±
8.7

52.9±
5.9

47

in insect videos and even though the ants are painted, appearance is not a reliable

feature within this dataset. Figure 17 and Figure 18 show instances where the lin-

ear motion model used by prior were insufficient and lead to either an ID switch or

fragment, but our proposed method was able to learn a motion model and prevent

these errors. However, our proposed method is able to learn an affinity model which

incorporates our irregular motion features. On the termite dataset, our method out-

performed both PRIMPT and MILPRIMPT by reducing fragments by at least 68%

and mostly lost targets by at least 2 while increasing ID switches by only 4. Compared

to OLDAM, our method does increase both fragments and ID switches by 14% and

58% respectively, but OLDAM achieves these at the expense of mostly lost targets

and recall.

Finally, we determine the amount of manual labels our method is able to save. Ta-

ble 11 shows the tracking performance on one ant video when using varying amounts

of labeled data for each tracking stage. Our method maintains fewer ID switches

than with training and offline model with 1,000 manually labeled samples per stage

(or 4,000 labels total). For fragments, our method performs performs within the
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Frame 1030 Frame 1035 Frame 1090 Frame 1130

Figure 17: The tracking results of the OLDAM method are shown in the top row.
At frame 1035, the detection becomes noisy and throws off the learned appearance
model, thus creating a fragment Track 27. This fragment is later associated to a
different ant which contains many of the colors captured by the noisy detection. Our
online affinity model learning method (bottom row) correctly tracks over the entirety
of the frames.

standard deviation of using 400 tracking samples per stage (or 1,600 samples total).

However, our method does not require any manually labeled samples and trains solely

on automatically generated weak labels.



59

Frame 2135 Frame 2290 Frame 2425 Frame 2520

Figure 18: The top row shows the results of the OLDAM tracking method. The linear
motion model is unable to cope with the almost 400 frame occlusion and generates
two fragments. Our method is able to learn a motion model which correctly associates
the tracklets over the long gap preventing two fragments.



CHAPTER 7: CONCLUSION

In this dissertation, we have described three contributions to multi-object tracking

within videos containing frequently occluding and similar appearing objects. First,

we introduced new irregular motion features based on correlated random walks to

improve motion prediction over long occlusions. These motion features were able to

reduce ID switches by up to 57% and fragments by up to 31% in insect videos. Next,

we formulated a spatial constraint based on occlusion which can filter a large number

of incorrect associations between tracklets called occlusion sub-tunnels. By filtering

many potentially confusing incorrect associations, ID switches were reduced by 22%

in insect videos. However, occasionally poor foreground responses could lead to errors

in the occlusion sub-tunnel construction which lead to an increase in fragments (up

to 14% in the termite dataset). Finally, we introduced a method to online train

an affinity model by leveraging the filtering ability of occlusion tunnels. This new

method is capable of learning both appearance and motion features as compared to

previous online learning methods which were limited to learning appearance only.

Our described method outperforms the previous online learning methods in almost

every metric on the ant dataset with 41% fewer fragments and 11% fewer ID switches

than the next best performing online method.

There a few areas for future work within each of these methods. Additional motion

features can be explored to handle extremely long gaps between tracklets. More
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importantly would be exploring features which can account for drastic changes in

speed. Many of the remaining fragments and ID switches are due to objects either

suddenly stopping after longs periods of motion or vice versa.

Within occlusion sub-tunnels, work needs to be done to work around periods of

poor foreground blob recall. For example, our current method is unable to handle

static scene occluders (e.g., a pillar in a pedestrian video which objects move behind).

Being able to handle such situations is required for extending this method to other

domains.

Finally, for the online affinity model learning method a challenge for learning an

model with MIL is the presence of “bad positive” bags. These are positively labeled

bags of instances which do not actually contain a correct association. Currently,

approximately 10% of the positive bags generated fall into the “bad positive bag”

category. Methods to either identify and remove these bags before training could

greatly improve performance. Another alternative is to adapt the multiple instance

learning methods directly to account for this type of noisy data.
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Noldus, A. Pérez-Escudero, P. Perona, A. D. Straw, M. Wikelski, et al. Auto-
mated image-based tracking and its application in ecology. Trends in Ecology &
Evolution, 29(7):417–428, 2014.

[17] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multiple
instance problem with axis-parallel rectangles. Artificial Intelligence, 89(1):31–
71, 1997.

[18] A. Feldman, M. Hybinette, and T. Balch. The multi-iterative closest point
tracker: An online algorithm for tracking multiple interacting targets. Journal
of Field Robotics, 29(2):258–276, 2012.

[19] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object
detection with discriminatively trained part-based models. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 32(9):1627–1645, 2010.

[20] J. H. Fewell. Social Insect Networks. Science, 301(5641):1867–1870, Sept. 2003.

[21] M. Fletcher, A. Dornhaus, and M. C. Shin. Multiple Ant Tracking with Global
Foreground Maximization and Variable Target Proposal Distribution. In Appli-
cations of Computer Vision (WACV), 2011 IEEE Workshop on, pages 570–576.
IEEE, 2011.

[22] T. E. Fortmann, Y. Bar-Shalom, and M. Scheffe. Sonar tracking of multiple
targets using joint probabilistic data association. Oceanic Engineering, IEEE
Journal of, 8(3):173–184, 1983.

[23] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm
for combining preferences. The Journal of machine learning research, 4:933–969,
2003.

[24] Y. Freund, R. Schapire, and N. Abe. A short introduction to boosting. Journal
of Japanese Society For Artificial Intelligence, 14(771-780):1612, 1999.

[25] A. Gelb. Applied optimal estimation. MIT press, 1974.



64

[26] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Computer Vision and
Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 580–587. IEEE,
2014.

[27] C. Huang, B. Wu, and R. Nevatia. Robust object tracking by hierarchical asso-
ciation of detection responses. In Proceedings of the 10th European Conference
on Computer Vision: Part II, pages 788–801. Springer-Verlag, 2008.

[28] M. Isard and A. Blake. Condensationconditional density propagation for visual
tracking. International Journal of Computer Vision, 29(1):5–28, 1998.

[29] P. Kareiva and N. Shigesada. Analyzing insect movement as a correlated random
walk. Oecologia, 56:234–238, 1983.

[30] Z. Khan, T. Balch, and F. Dellaert. MCMC-based particle filtering for tracking
a variable number of interacting targets. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 27(11):1805–1819, 2005.

[31] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2(1-2):83–97, 1955.

[32] C.-H. Kuo, C. Huang, and R. Nevatia. Multi-target tracking by on-line learned
discriminative appearance models. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 685–692. IEEE, 2010.

[33] C.-H. Kuo and R. Nevatia. How does person identity recognition help multi-
person tracking? In Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 1217–1224. IEEE, 2011.

[34] Y.-J. Lee and O. L. Mangasarian. Rsvm: Reduced support vector machines. In
Poc. SIAM Int’l Conf. Data Mining, volume 1, pages 325–361, 2001.

[35] B. Leibe, K. Schindler, and L. Van Gool. Coupled detection and trajectory
estimation for multi-object tracking. In Computer Vision, 2007. IEEE 11th
International Conference on, pages 1–8. IEEE, 2007.

[36] Y. Li, C. Huang, and R. Nevatia. Learning to associate: Hybridboosted multi-
target tracker for crowded scene. In Computer Vision and Pattern Recognition,
2009, IEEE Conference on, pages 2953–2960. IEEE, 2009.

[37] R. Lougee-Heimer. The common optimization interface for operations research:
Promoting open-source software in the operations research community. IBM
Journal of Research and Development, 47(1):57–66, 2003.

[38] D. Lowe. Object recognition from local scale-invariant features. In iccv, page
1150. Published by the IEEE Computer Society, 1999.



65

[39] O. L. Mangasarian and E. W. Wild. Multiple instance classification via suc-
cessive linear programming. Journal of Optimization Theory and Applications,
137(3):555–568, 2008.

[40] D. P. Mersch, A. Crespi, and L. Keller. Tracking individuals shows spatial fidelity
is a key regulator of ant social organization. Science, 2013.

[41] K. Okuma, A. Taleghani, N. De Freitas, J. J. Little, and D. G. Lowe. A boosted
particle filter: Multitarget detection and tracking. In European Conference on
Computer Vision (ECCV) 2004, pages 28–39. Springer, 2004.

[42] C. Poff, H. Nguyen, T. Kang, and M. Shin. Efficient tracking of ants in long
video with gpu and interaction. In Applications of Computer Vision (WACV),
2012 IEEE Workshop on, pages 57 –62, jan. 2012.

[43] D. B. Reid. An algorithm for tracking multiple targets. Automatic Control,
IEEE Transactions on, 24(6):843–854, 1979.

[44] L. Rice, A. Dornhaus, and M. C. Shin. Efficient training of multiple ant tracking.
In Applications of Computer Vision (WACV), 2015 IEEE Winter Conference on,
pages 117–123. IEEE, 2015.

[45] R. Rosales and S. Sclaroff. 3d trajectory recovery for tracking multiple objects
and trajectory guided recognition of actions. In Computer Vision and Pattern
Recognition, 1999. IEEE Computer Society Conference on., volume 2. IEEE,
1999.

[46] D. Salvi, J. W. Waggoner, A. Temlyakov, and S. Wang. A graph-based algorithm
for multi-target tracking with occlusion. In Applications of Computer Vision
(WACV), 2013 IEEE Winter Conference on, pages=489–496, year=2013.

[47] F. Schweitzer, K. Lao, and F. Family. Active random walkers simulate trunk
trail formation by ants. BioSystems, 41(3):153–166, 1997.

[48] T. D. Seeley. Honeybee democracy. Princeton Univ. Press, 2010.

[49] X. Shi, H. Ling, J. Xing, and W. Hu. Multi-target tracking by rank-1 tensor
approximation. In Computer Vision and Pattern Recognition (CVPR), 2013
IEEE Conference on, pages 2387–2394. IEEE, 2013.

[50] G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M. Shah. Part-based multiple-
person tracking with partial occlusion handling. In Computer Vision and Pattern
Recognition, 2012, IEEE Conference on. IEEE, 2012.

[51] S. Spurlock, J. Shan, and R. Souvenir. Discriminative poses for early recognition
in multi-camera networks. In Proceedings of the 9th International Conference on
Distributed Smart Camera, pages 74–79. ACM, 2015.



66

[52] S. Spurlock and R. Souvenir. Dynamic subset selection for multi-camera tracking.
In Proceedings of the 50th Annual Southeast Regional Conference.

[53] M. Villamizar, F. Moreno-Noguer, J. Andrade-Cetto, and A. Sanfeliu. Efficient
rotation invariant object detection using boosted random ferns. In Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 1038–
1045. IEEE, 2010.

[54] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. In Computer Vision and Pattern Recognition (CVPR), 2001 IEEE
Conference on, volume 1, pages I–511. IEEE, 2001.

[55] J. Wang and J.-D. Zucker. Solving multiple-instance problem: A lazy learning
approach. 2000.

[56] S.-K. Weng, C.-M. Kuo, and S.-K. Tu. Video object tracking using adaptive
kalman filter. Journal of Visual Communication and Image Representation,
17(6):1190–1208, 2006.

[57] B. Wu and R. Nevatia. Detection of multiple, partially occluded humans in
a single image by bayesian combination of edgelet part detectors. In Computer
Vision, 2005. (ICCV). Tenth IEEE International Conference on, volume 1, pages
90–97. IEEE, 2005.

[58] B. Wu and R. Nevatia. Detection and tracking of multiple, partially occluded
humans by bayesian combination of edgelet based part detectors. International
Journal of Computer Vision, 75(2):247–266, 2007.

[59] H. Wu, B. Li, T. Springer, and W. Neill. Modelling animal movement as a persis-
tent random walk in two dimensions: expected magnitude of net displacement.
Ecological Modeling, 132(1):115–124, 2000.

[60] B. Yang, C. Huang, and R. Nevatia. Learning affinities and dependencies for
multi-target tracking using a crf model. In Computer Vision and Pattern Recog-
nition (CVPR), 2011 IEEE Conference on, pages 1233–1240. IEEE, 2011.

[61] B. Yang and R. Nevatia. Multi-target tracking by online learning of non-linear
motion patterns and robust appearance models. In Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on, pages 1918–1925. IEEE, 2012.

[62] B. Yang and R. Nevatia. An online learned crf model for multi-target tracking.
In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on, pages 2034–2041. IEEE, 2012.

[63] B. Yang and R. Nevatia. Online learned discriminative part-based appearance
models for multi-human tracking. In European Conference on Computer Vision
(ECCV) 2012, pages 484–498. Springer, 2012.



67

[64] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Computing
Surveys (CSUR), 38(4):13, 2006.

[65] L. Zhang, Y. Li, and R. Nevatia. Global data association for multi-object tracking
using network flows. In Computer Vision and Pattern Recognition, 2008, IEEE
Conference on, pages 1–8. IEEE, 2008.


