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ABSTRACT 
 
 

ZHENG XU. Quantitative fall risk assessment with wearable sensors.  (Under the 
direction of DR.NAIQUAN NIGEL ZHENG) 

 
 

Falling has become one of the leading causes to both fatal and non-fatal injuries among the 

elder adults and patients with dysfunctional mobility. The following consequence of a fall will be 

that the fear of falling can reduce the daily activities, leading to physical deterioration and social 

isolation. Falls and its related injuries can be predictable and preventable with specific interventions 

targeting the corresponding risk factors including muscle strength, balance and mobility. The initial 

step of an effective fall prevention program is to perform fall risk assessment to identify persons at 

high risk and then target specific interventions to reduce or eliminate falls. Due to several reasons 

such as unreliable subjective measures, high cost and clinical time constraints, effective fall risk 

assessment is still not routinely integrated into daily clinical practice. The inexpensive and easy-

to-use wearable inertial measurement unit (IMU) provides the promising technique to assess fall 

risk, however there are still many issues for clinical practice at present. This objective of this 

dissertation was to investigate the feasibility, reliability and repeatability of using IMU sensors to 

assess fall risk for clinical use. 

The accuracy of an IMU sensor was validated on the rigid body and human body using an 

optical motion capture system. A complimentary filter with gradient descent algorithm was used to 

verify the accuracy of built-in sensor fusion model. A simple template of magnetic mapping was 

built to quantify the magnetic disturbances and then a simplified interpolation model was developed 

to compensate the heading angle error in the complicated lab settings. Then different combinations 

of sensor configurations were evaluated among three different groups of subjects with six sensors 

placed on the body. The optimal configurations was explored according to the classification 

performance from three machine learning techniques. Sixty-five older adults from the senior center 

with single IMU placed in front of the chest were recruited. A self-report questionnaire was 
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provided as a common clinical assessment to divide sixty-five senior people into two risk levels. 

Meanwhile, three machine learning models were applied to classify the fall risk of these subjects 

according to their sensor data during three different physical tests  

Both of the static and dynamic orientation accuracy from rigid body tests were within 2° 

achieved by built-in sensor fusion model while the static and dynamic accuracy for sensor 

orientations on human body were within 2.5°. The accuracy and precision of IMU measurements 

are sufficient for human motion applications without excluding the soft tissue artifact and 

unexpected sensor movement on the human body. For the magnetic disturbances, the heading 

estimation errors from static tests were significantly larger than that of dynamic test. The 

compensation method did improve the accuracy of heading angles in the static test. When 

performing the test with IMUs, starting in an undisturbed magnetic field will reduce the heading 

angle error and the closer IMU is to the floor, the larger the heading angle error will be. The optimal 

sensor configuration was achieved by the sensors placed on chest, wrist and shank together. A 

single sensor configuration can also produce very high accuracy like the chest sensor. Timed-Up-

and-Go (TUG) test provided the best classification results for fall risk classification and the 

combination of multiple tests did not improve the classification performance. Support Vector 

Machine (SVM) model is the best machine learning technique among three models for fall risk 

classification. Overall, the wearable IMU sensor-based fall risk classification model has potential 

to improve the diagnosis of elder adults with risk of falling and allow pre-intervention to prevent 

future falls. 
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CHAPTER 1: INTRODUCTION 
 
 
1.1 Falling problems 

Falling has become one of the major causes to both fatal and non-fatal injuries among the 

elder adults and patients with postural impairments and traumatic injuries. According to the US 

Centers for Disease Control and Prevention, each year a quarter of older adults over age 65 fall 

down (National Council on Aging, 2016). Every 29 minutes, there is an older adult dead following 

a fall (National Council on Aging, 2018). In 2014, the total cost of fall injuries was $ 31 billion and 

it may reach $ 67.7 billion with the increase of aging population. Falls result in more than 2.8 

million injuries annually including 800,000 hospitalizations and more than 27,000 deaths (National 

Council on Aging, 2016). The fear of falling will also limit the old people’s daily activities which 

may result in further physical decline and social isolation (National Council on Aging, 2016). There 

was a report from the United Nation predicting that the senior population over 65 will reach 2.1 

billion by 2050 in the world (Pettinger, July 20, 2016). Except for the aging problem, some specific 

disease like stroke are potential factor leading to falls. For patients, every year about 700,000 to 

1000,000 patients fall in United States hospitals (Currie, 2008). It is estimated that around 30 to 35 

percent of those patients injured due to falls (Hitcho et al., 2004). The average cost for patients with 

a severe fall was $14,056 per patient (Haines et al., 2013; Morello et al., 2013). 

 

1.2 Fall risk assessment background 

Owing to the high cost caused by falling, it is necessary to figure out the factors related to 

the fall risk. In general, fall risk factors can be mainly categorized as extrinsic and intrinsic factors 

(Perell et al., 2001). Extrinsic factors are disturbances from outside environment which are primary 

causes for over 50% of all falls during experiment (Aurora Bueno-Cavanillas, Sep 1, 2000). The 

outside disturbances are difficult to predict due to the uncertainties and complication of 
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environment. Here, the study mainly focuses on the fall correlated with intrinsic factors. The 

intrinsic risk factors may include the chronic diseases, muscle weakness, cognitive impairment and 

aging problem (Perell et al., 2001). Many fall prevention techniques occurred to improve the safety 

of those people prone to fall, but a foundation should be built on the deep understanding of the fall 

risk assessment with various falling group. A simple example is that patients with Parkinson’s 

disease (PD) will exhibit distinctive motion characteristics and risk level as that of patients with 

ankle injury. After fall risk assessment, specific interventions can be assigned to each individual 

group of patients.  

Several physical performance tests have been introduced to assist clinicians to assess the 

mobility functions which is closely related to the prediction of fall risk since the 1970s. During the 

physical performance tests, the subjects are typically instructed to complete a series of basic motor 

tasks like level walking, turning, sit-to-stand and stand-to-sit (Rob van Lummel, Mar 30, 2017). 

Sometimes cognitive tasks were added to diagnose how multi-tasks would affect the motion. 

Nowadays many commonly used fall risk assessing methods consist of multiple tasks like Tinetti 

Test (Tinetti, 1986), Activities Balance Scale (ABC) (Powell, 1995) and Berg Balance Test 

(Thorbahn & Newton, 1996). These methods mainly measure the functional limitations and only 

some can test the risk of falling. They are widely performed by clinicians with regarding to medical 

diagnosis. 
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.  
Figure 1.1 left - The list of left table shows the score range of balance and gait assessment items in the 
Tinetti test (Tinetti, 1986); right - The list of right table shows the score range of sitting, standing and 

dynamic balance in the Berg Balance Test (Thorbahn & Newton, 1996). 

As we see from the list of tasks, it is truly time-consuming for the senior subjects to 

complete all the tests. Not to mention some patients, when they are required to walk, rise from chair 

and other activities, it is burdensome for them especially during some long tests. Of course, there 

are the other types of clinical assessment tools which takes a little time but still a promising 

evaluation way. Timed-up-to-Go (TUG) (Podsiadlo & Richardson, 1991) is a successful test. It 

requires the subject to start from sitting on a chair, stand up, walk forward, turn around a cone, 

walk back to the seat and sit down which usually takes normal people less than ten seconds to 

complete whole process. Besides, another two simple tests - Ten-meter Walking Test can be 

employed to determine functional mobility and vestibular function. It is used to assess walking 

speed in meters per second over a short distance. All these actions are basic daily movement often 

compromised for elderly with functional limitations and motor dysfunctional patients. However, 

no matter what kind of clinical measurements are, the performances are commonly recorded by 

measuring time with stopwatch or measure distance with tape measure and some visual judgment 
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by raters which introduce more human error. For example, the Tinetti test interprets that a score of 

zero indicates the most impairment, while the higher numbers one and two indicate less 

impairment. Patients who score below 19 are at a high risk of falls; patients who score in the range 

of 19 – 24 have a moderate risk of falls; patients who score between 24 and 28 have a minimal risk 

of falling (Tinetti, 1986). It is difficult to give an accurate score of the assessment for each test 

which have the inherent drawbacks of being subjective and evaluator-dependent, and thus 

associated with potential bias. Besides, the poor specificity and poor sensitivity of different 

methods may reduce the accuracy of the clinical assessment. A research study about faller 

classification with Tinetti Test in 2000 showed that the specificity was only 11% for non-fallers 

(Shumway-Cook, Brauer, & Woollacott, 2000). Another example of poor sensitivity with Berg 

Balance Test was proved by Thorbahn, LDB et al where the sensitivity is as low as 53% (Thorbahn 

& Newton, 1996). It will be of great value to develop more convenient and consistent measurement 

way to support the clinicians’ diagnosis and improve fall risk assessment.  

With the development of techniques, a lot of equipment have been used to quantitatively 

measure the balance and motion of human such as optical motion capture system and Gait Rite etc. 

Optical motion capture systems are commonly used to analyze human motion in a typical motion 

lab. It is accurate enough usually regarded as golden standard in many studies. However, it suffers 

from inaccuracies linked to soft tissue artefacts and marker displacement due to the difficulties of 

locating anatomical landmark (Carcreff et al., 2018). Moreover, this system is quite expensive and 

has little mobility due to its size and cable connection which is not suitable for outdoor test and 

daily monitoring. Gait Rite is a kind of movable mat with built-in force sensors which is basically 

utilized to perform gait analysis. Its output is mainly limited to some variables for lower extremity 

without considering much about upper body motion. To overcome these limitations, it is necessary 

to develop better system for clinical use.  
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1.3 Research challenges 

The state-of-art technology, wearable sensor, shows us other ways to assess fall risk of 

people in clinical use. Currently, wearable sensors are widely used in various fields such as robot 

control, medical server, human positioning, sports training and physical monitoring. For instance, 

wearable goniometer are light and cheap sensors but can only output angles while the other type of 

sensor – force sensitive resistor can only measure forces. These two wearable sensors are quite 

limited to measure the balance and gait of people.  

A more powerful wearable sensor - Inertial Measurement Units (IMU) showed up when it 

was originally developed for the rockets in the early 1950s. Then the IMUs were gradually used in 

the navigation and aerospace field. With the development of Micro-Electro-Mechanical Systems 

(MEMS) technology, IMUs have become a very important and wide spread sensor technology 

where they are applied in from industry to ergonomic, from biomechanics to life science and from 

animation to virtual reality (VR) / augmented reality (AR) (Oberländer, September 2015). The 

IMUs’ ease of use, light weight and mobility depending on miniaturized and wireless transmission 

technology have attracted high interest of scientists from different areas in its related technology. 

A common IMU consists of tri-axial accelerometer, tri-axial gyroscope and sometimes tri-axial 

magnetometer. With magnetometer, it is also called Attitude-Heading-Reference-System (AHRS). 

Attitude represents the roll and pitch angle, heading represents yaw angle. This combination makes 

it possible to track rotational and translational movements. In a 3D space, an accelerometer can 

only measure attitude relative to the direction of gravity. The importance of magnetometer is to 

provide an absolute heading angle relative to earth’s magnetic field. The accelerometers are used 

to determine the acceleration of a rigid body. Velocity and distance can be computed by integration 

but needs an external reference point due to the drift caused by accumulating noise in the signal. 
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They are very sensitive to vibration and mechanical noise. Gyroscopes in general are devices that 

measure angular rate along different axes. They are stable in the short term but has low-frequency 

drift in the long term. For magnetometers, they can be used to measure the angle between heading 

direction of a subject and the magnetic north of the earth. But they are easily interfered by external 

magnetic field in the vicinity.  

It is one of the reasons that IMUs are still not widely used in the clinical application. In a 

clinical setting, there are a lot of equipment which may cause magnetic disturbances to the 

magnetometer. Large magnetic disturbances will lead to large heading angle error. Also, the 

optimal configuration of IMUs such as number of IMUs, IMU placement on the human body when 

measuring human motion has not been investigated. No standardized variables have been defined 

by any studies to assess fall risks. The unknown connection between IMU data and clinical analysis 

limits the application to the use of fall risk assessment. 

 

1.4 Research goal 

This study aims to investigate the feasibility, reliability and repeatability of using IMU 

sensors to assess fall risk for clinical use. With so many gaps between usage of IMU and clinical 

use, it is important to find solutions to fill the gap. There are four major goals discussed in this 

dissertation. 

The first goal is to check the accuracy of IMU sensors and validate it with a reference 

system. For all the wearable inertial sensors, a full set of calibrations and validation tests are 

executed in the factory before sending to the customers. While these tests are unknown to the users, 

complete assessment of the new sensors are supposed to be done by the users prior to putting into 

action. As human body is not rigid, validation tests will be performed on the rigid body initially 
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compared to a stereo-photogrammetry system which is often regarded as the reference system. 

Then a follow-up test on a human body will be completed. The whole procedure will let us go 

through the detailed signal processing and coordinate transformation. Minimizing the noise and 

drift are main tasks in the signal processing. Comparison between IMU and the reference system 

requires the data converted in the same reference frame which is realized by coordinate 

transformation. After all these steps, it is necessary to verify if the accuracy of IMU fits the need 

of clinical use. 

The second goal is to build a template to quantify the magnetic disturbances and develop 

model to compensate the heading angle error in clinical settings. A custom-made device is built to 

carry out the mapping of magnetic field in the motion lab. The filming volume is divided into small 

grids and the magnetic field and heading angle at each grid point in static tests are measured. Time 

as an important factor is considered in the comparison between static and dynamic tests. A 

compensation model will be developed to adjust the error showing in the static tests. Then It will 

be applied on the dynamic test data to verify the function of the model. 

The third goal is to evaluate the measurement performance of various configurations and 

explore the optimal configurations for Parkinson’s disease patients (PKD). The measurement 

performance is going to be assessed by both data from the reference system and the output from 

clustering model. The error and correlation will be computed and compared. Sensitivity and 

specificity will be calculated in the evaluation of the clustering results.  

The fourth goal is to apply the model-based approach for the quantification of fall risk 

among the community-dwelling senior people. Only a single IMU is placed in front of the chest. A 

customized questionnaire will be provided as a common clinical assessment which can put the 

senior people into two groups. According to the difference of extract key features from two groups 

at different risk level, the proposed approach will quantify the fall risk using pre-trained classifier. 



8 
 

 

1.5 Significances 

This study provides a comprehensive understanding of wearable inertial sensors from 

multiple aspects, explores various current issues existing in the IMU for the clinical application and 

develops methods to solve these issues. The typical sensor fusion algorithm unexplained in the 

commercial IMUs are revealed here and validated by an optimization approach. It will be a nice 

reference to the sensor fusion techniques. The template for compensating the heading angle will 

benefit the users when using the IMUs to measure the patients’ walking directions in the clinical 

settings without worrying about the magnetic distortions. The optimal IMU configurations will 

provide some reference to the users before designing the experiment and accomplishing data 

analysis. The quantification of fall risk based on a machine learning approach displays the promise 

of future clinical diagnosis with the use of IMUs. 

Overall, if the IMUs can be used in the future clinical analysis, it will save time for 

clinicians. Besides, it can improve the accuracy and consistency of clinical diagnosis based on the 

sensor measurement instead of human subjective evaluations. Taking advantage of its simple 

operation, the sensor may provide an easy tool for elder individuals to measure their fall risk at 

home without going to the clinics. The most important part of this study is that it generates new 

knowledge from IMU data to assess the fall risk. 
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CHAPTER 2: INERTIAL MEASUREMENT UNIT 
 
 
2.1 Background 

In 1930s, IMUs began to be applied in aircraft navigation and large devices (Zhao & 

Yeatman, 2007). At that time, the usage of IMU was restricted to bulk application which is nothing 

related to human. MEMS IMU with an attractive feature of low cost, compact and low power 

consumption, was introduced to smaller size devices and human motion analysis. Nowadays, they 

are commonly built in many individual devices like smart phones, watch, wrist band and GPS 

devices. The broad usage of IMU can achieve this goal in terms of acceleration, angular velocity 

and angle rotations.  

A regular IMU usually contains accelerometers and gyroscopes which can measure 

translational and rotational motion. It requires the sensor to register three mutually orthogonal axes 

for measuring three-dimensional (3D) movements. Without magnetometer, IMUs can only measure 

the orientation relative to the direction of gravity including roll and pitch angles. To provide a 

complete measurement of orientation in 3D space, a tri-axial magnetometer is combined with the 

IMU to track the heading angle relative to the earth magnetic north based on the magnetic field. 

With magnetometer, IMU is also called AHRS which are used in this study. 

This chapter will discuss various components in the IMU. Some technical concepts and 

sensor fusion algorithm will be introduced prior to using IMU. A full schema about IMU data 

processing is going to be presented here as well. Validation tests are going to be completed to check 

if IMU’s accuracy fits the needs of clinical study. 
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2.2 IMU components 

As mentioned above, nine degree of freedom (DOF) IMU is composed by a tri-axial 

accelerometer, a tri-axial gyroscope and a tri-axial magnetometer. Each individual sensor has its 

own specific function which can be operated separately with proper settings. The following part 

will introduce the varieties and features of each component. 

2.2.1 Accelerometer 

An accelerometer is an electromechanical device used to measure accelerations according 

to the forces acting upon it. These forces can be static like the constant force of gravity or dynamic 

caused by moving or vibrating the accelerometer. It can provide the tilted angle with respect to the 

earth by measuring the amount of static or quasi-static acceleration due to gravity. To derive the 

velocity and distance from accelerometers, this can be simply done by integration of its 

measurements with an external reference point. In general, accelerometers can be classified as two 

groups: open-loop and closed-loop. Open-loop accelerometers have displaced proof masses with 

its displacement measurement while closed-loop accelerometers maintain the proof masses in a 

fixed position where the force (or current, power, etc.) to keep the position is gauged. According 

to the operational characteristics, there are three different types of accelerometers: mechanical 

accelerometer, capacitive accelerometer and piezoelectric accelerometer. The following image 

(Figure. 2-1) (Titterton, 2004) shows a simple mechanical accelerometer containing a proof mass 

and a spring. Based on the Newton’s second law of motion, it states that the force F exerted on an 

object of mass m with an acceleration a is equal to F = m * a. Then Hooke’s law states that the 

force F needed to extend or compress a spring by some distance x scales linearly with respect to 

that distance. The spring will generate an opposite force of same magnitude as the applied force to 

maintain its original state. The restoring force F can be expressed as F = k * x where k is the 
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stiffness of the spring. Therefore, the acceleration can be calculated through two equations if the 

mass, spring’s stiffness and the displacement are known. 

 
Figure 2.1 A typical accelerometer (Titterton, 2004) 

Next one is the capacitive accelerometer. As you can see from the image (Figure. 2.2) 

below, it consists of a pendulum with a proof mass attached to it. A flexible component such as a 

pivot or hinge is connected to the pendulum. On the side of accelerometer, there is a pick-off device 

to detect the pendulum motion based on the change of capacitance between the pendulum and two 

electrodes by using a bridge circuit. Two symmetrical coils mounted onto pendulum to restore the 

original position of pendulum. When a current is running through the coils, it will generate an 

electromagnetic force to maintain the pendulum’s original position and keeping the displacement 

at zero. The acceleration is proportional to the current which is the measurement for most device 

(Oberländer, September 2015). Usually, the case will be filled with low viscosity fluid to absorb 

shocks or vibrations. 
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Figure 2.2 A capacitive accelerometer (Oberländer, September 2015) 

The third type is the piezoelectric accelerometer. Piezoelectric effect is the ability of certain 

materials like quartz crystal to generate an electric charge in response to applied mechanical stress. 

The device is generally composed of a piezoelectric quartz crystal with the applied accelerative 

force on it. The crystal produces a voltage that is proportional to the accelerative force due to the 

special self-generating property (Oberländer, September 2015). 

 
Figure 2.3 A piezoelectric accelerometer (Sivaranjith, Mar 12, 2018) 
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2.2.2 Gyroscope 

A gyroscope is device measuring the angular velocity primarily for navigation before. 

Generally, most gyroscopes only measure along single axis. Three gyroscopes orthogonally 

mounted together are used to track 3-D angular motion (Oberländer, September 2015). There are 

three basic types of gyroscopes according to the working principles: mechanical gyroscope, 

vibratory gyroscope and optical gyroscope. 

Mechanical gyroscopes are the most common or familiar type of gyroscopes. The image 

below shows a tri-axial gyroscope which includes a spinning wheel mounted in a set of gimbals. 

These three gimbals provide additional degree of rotational freedom for the spinning wheel and can 

rotate with respect to one another. The angle pick-off devices are installed at each end of the rotating 

axis. Relying on the conservation of angular momentum, a rotating body without any torques 

applied will be forced to remain in its constant state. When external torques or rotations are present 

in these devices, the gyroscope will maintain its orientation and measure the angular velocity due 

to the phenomenon of precession. If a spinning object has an external torque applied in a direction 

perpendicular to the spin axis, then precession occurs. In accordance with Newton’s second law of 

motion, a torque will be applied to the wheel if the angular momentum will change to the direction 

of the applied torque vector. As the result of this torque, the wheel will rotate about the axis 

perpendicular to both the input axis (torque axis) and the spin axis of the wheel. A restraining spring 

attached to angle pick-off device acts against the torque while the angle pick-off devices will detect 

the angular changes relative to the original position (Oberländer, September 2015). 
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Figure 2.4 The schematic diagram of  tri-axial gyroscope (Titterton, 2004) 

Vibratory gyroscopes are MEMS devices on the foundation of Coriolis Effect stating that 

an inertial force acts on objects performing translation relative to a rotating reference frame. It 

usually contains a proof mass connected to an outer housing by a set of springs. This outer housing 

is connected to the fixed circuit board by a second set of orthogonal springs. The mass is 

continuously driven sinusoidally along the first set of springs. Any rotation occurring in gyroscope 

will induce the Coriolis acceleration to push the mass in the direction of the second set of springs. 

So the Coriolis force direction depends on the mass linearly moving direction along the first set of 

springs. The Coriolis force is detected by the capacitive sense fingers along the outer housing and 

the rigid structure. According to the different capacity for different sets of sense fingers, the sensor 

can track both magnitude and direction of angular velocity of the system with the mass moving 

back and forth perpendicular to the rotating axis (jadmin, April 19, 2016; Oberländer, September 

2015). 
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Figure 2.5 Left figure shows the schematic diagram of a typical vibratory gyroscope; Right figure shows 

the principle when vibratory gyroscope works (jadmin, April 19, 2016) 

The discovery of laser technology led to the invention of optical gyroscopes in 1976 (Eric 

Udd, Nov 2, 2016). The advantage of optical gyroscopes is that there are no moving parts inside 

which makes it not susceptible to mechanical wear or drifting. Their functionality depends only on 

the constancy of the speed of light instead of conservation of angular momentum. It is operated on 

the basis of Sagnac effect stating that if a stationary light source emits two beams of light following 

the same path but in opposite directions, it will take same time for two beams of light arrive back 

to the source; one beam of light will slow down with respect to the other beam of light when the 

light source rotates. The difference in traveling time is proportional to the angular velocity. For 

these optical gyroscopes, they are typically used in naval and navigation applications, not 

commercially available (jadmin, April 19, 2016). 

 
Figure 2.6 The working principle of a optical gyroscope (jadmin, April 19, 2016) 
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2.2.3 Magnetometer 

A magnetometer is a device measuring the magnetic flux density at certain location which 

can be used to locate the magnetic north pole of the earth. It is capable of detecting fluctuations in 

the earth magnetic field because the magnetic flux density is proportional to magnetic field strength. 

Materials that possess magnetic fields or distort magnetic flux lines will distort the magnetic field 

generated by earth. During the test, the measurement of magnetometer is easily interfered by these 

materials in the environment. In general, magnetometers are classified into two categories. Scalar 

magnetometers measure only the scalar value of the magnetic flux passing through the sensor 

regardless of the direction while vector magnetometers measure the magnitude and direction of the 

magnetic field. For the scalar magnetometers, they are mostly used in the industry due to its size 

and function so they will not be introduced here. A typical example of vector magnetometers is the 

fluxgate magnetometer that can measure the strength of earth magnetic field in 3-D space by 

orienting the sensor along the direction of desired component (Preeti Jain, 2012). It basically 

contains a magnetically susceptible core lies within two excitation coils. One coil is excited by the 

AC supply where the core is magnetically saturated proportional to the alternate peaks of the signal 

(Oberländer, September 2015). The constantly changing field induces an electrical current in the 

second coil. Without external magnetic fields, the induced output current will be proportional to 

the original current. When the sensor is subjected to an external magnetic field, it will alter the 

current patterns. Therefore, it all depends on the strength of the background magnetic field. 
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Figure 2.7 The schematic diagram of a typical vector magnetometer (Preeti Jain, 2012) 

The most commonly used magnetometers nowadays are Hall effect magnetometers 

(Oberländer, September 2015). The basic idea of the Hall effect is that a force – known as Lorentz 

force will be generated to act upon the charge carrier with current flowing through in a magnetic 

field. The Lorentz force will compel the charge carriers to one side of the conductor, creating a 

voltage called Hall voltage (Leccadito, 2013; Oberländer, September 2015). The Hall voltage is a 

low level of signal and linear with respect to the field for given current and dimensions. Meanwhile, 

the detection of Hall voltage has low sensitivity and temperature stability. 



18 
 

 

 
Figure 2.8 The principle of Hall effect for sensors (Oberländer, September 2015) 

Hard/Soft Iron effect is described as the distortions of the earth’s magnetic field due to 

external magnetic influences. Hard-iron distortion is created by materials that produce a constant, 

additive field to the earth’s magnetic field. A speaker or magnetized iron, for example, will produce 

a hard-iron distortion. If this magnetic material is physically attached to the sensor without any 

relative orientation and position, the field and relative changes will be constant which causes a 

constant bias in the sensor output. Therefore, it is simple to compensate the hard-iron distortion 

through subtracting the constant offsets from the raw magnetometer data. Unlike hard-iron 

distortions additive to the earth’s magnetic field, soft-iron distortion is considered as the deflections 

or alterations to the magnetic field by some materials. This type of materials does not necessarily 

produce magnetic field themselves so they will not be additive to the earth field. For instance, iron 

and nickel will generate soft-iron distortion to the surrounding magnetic field. The magnetic 

measurement of a sensor depends on the acted direction of soft-iron distortion whether it stretches 

or deflects the magnetic field which is totally different with the constant hard-iron distortion 

regardless of orientation. Thus, the compensation model for soft-iron distortion will be more 

complicated than that of hard-iron distortion. In most cases, hard-iron distortion will contribute 
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more to the total error than soft-iron distortion (VectorNav Technologies, 2011). To reduce the 

external magnetic disturbances, all the commercial sensors develops their own 3D calibration 

models to remove the Hard/Soft Iron distortions. 

 

2.3 Commercial IMUs and its application 

Accurate motion tracking of rigid objects is greatly important in some areas like 

autonomous cars, space-crafts and robotics. For ambulatory human analysis, it may be used ranging 

from daily monitoring of human activities to VR/AR (Sabatini, 2011a). In general, motion tracking 

systems derive the orientation estimates from electrical measurements of inertial, magnetic and 

optical sensors (Welch & Foxlin, 2002). In the human motion analysis, the inertial sensors 

combined with magnetic sensors are becoming popular. The latest MEMS technology succeeds to 

make the inertial sensors more miniaturized, lower cost and less power consumption which makes 

it possible to attach to human body. Compared to those stereo-photogrammetry systems, these 

wearable sensors are much more convenient and more portable to use in the daily movement 

monitoring. Nowadays, there are many commercial IMUs available in the market. The following 

table shows the features of some typical IMUs. 

For most sensors, they all have their own specific areas for applications. To choose the 

wearable sensors for the study, a lot of factors were considered such as battery life, wireless 

connectivity, weight and number of sensors per system etc. Here, APDM Opal sensors (APDM 

Inc., Portland, OR, USA) are used in this study. These Opal IMU sensors encases 3-axis 

accelerometer, 3-axis gyroscope, 3-axis magnetometer, and a temperature sensor. The mass is 22 g 

and the dimensions are 48.4mm x 36.1 mm x 13.4 mm. 
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Table 2-1 Overview of commercial IMUs in the market 

IMU Name Sensor 
Fusion IMU applications Angle Accuracy 

3D 
Calibration 

for Hard/Soft 
Iron effects  

MTx (Xsens) Kalman 
Filter  

biomechanics; VR; 
animation 

static (attitude): 0.5 
deg; (heading): 1.0 

deg; Dynamic: 2 deg 
Yes 

VN100 
(VecNav) 

Extended 
Kalman 

Filter 

robotics; aerospace; 
VR 

static (attitude): 0.5 
deg; (heading): 2.0 

deg; Dynamic 
(heading): 2 deg; 
(attitude): 1 deg 

Yes 

3Dm-Gx25-35 
(MicroStrain) 

Auto 
Adaptive 
Extended 
Kalman 

Filter 

unmanned vehicle 
navigation, platform 

stabilization, 
personnel Tracking 

±0.25° RMSE roll 
and pitch, ±0.8° 

RMSE 
heading 

Yes 

InertialCube2 
(InterSense) 

Adaptive 
Kalman 

Filter 
No specific 

±0.4° RMS roll and 
pitch, ±1.0° RMS 

heading 
Yes 

Sentral_09 
(PNI) 

Multi-state 
Kalman 

Filter 

cell phones, tablets, 
TV remote controls 

and video game 
controls 

±0.4° RMSE roll 
and pitch, ±2.0° 

RMSE 
heading 

Yes 

Opal (APDM) Kalman 
Filter 

Biomechanics; 
Motion capture 

static (attitude): 1.15 
deg; (heading): 1.50 
deg;  Dynamic: 2.80 

deg 

Yes 

 

2.4 Experiment design 

To identify the noise and drift level in the IMU data, static and dynamic tests were carried 

out on the rigid body. In many previous studies, inertial sensors were commonly placed on the 

trunk like sternum, low back, thigh and foot etc (Allseits et al., 2017; Bergamini et al., 2014; Esser, 

Dawes, Collett, & Howells, 2009; Keijsers, Horstink, & Gielen, 2006; Luinge & Veltink, 2005b; 
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Seel, Raisch, & Schauer, 2014; Tanaka, Motoi, Nogawa, & Yamakoshi, 2004; Trojaniello, 

Ravaschio, Hausdorff, & Cereatti, 2015a). As human body is a non-rigid body, sensors attached on 

these locations may shift and tilt due to skin stretch and elasticity of surface. A transparent box 

with plastic on the surroundings and wood on the bottom was used in the test to eliminate some of 

potential factors (Figure 2.9). Plastic box and wood use eliminates the disturbance otherwise may 

be created by used metals. Since a system error may occur in the test, multiple sensors were needed 

to check their validity. Besides, a pure rotation test was proposed to make sure the motion in a 

single plane so that the accuracy of sensors can be evaluated. 

 
Figure 2.9 Front view, side view and top view of the rigid body 

Front Side 

Top 



22 
 

 

A larger triad was made of plastic with seven single markers attached to it which will 

increase the accuracy of reference system (Figure 2.10). A single IMU was placed onto the surface 

of the triad regarded as a rigid body. Also, there was a wood block attached to the bottom of triad 

used to fit in the track during controlled linear motion. The track was fully made of wood without 

any metal screws. 

 

Figure 2.10 (a) Constrained Linear Motion: Large triad with seven markers attached with IMU along wood 
track; (b) Pure Rotation: Large triad on the top slope of plastic box 

The lab coordinate is the coordinate of VICON system. In the VICON system based on 

Figure 2.9, X axis is forward, Y axis is to the left, Z axis is upward. Pure rotation tests that is 

manually rotated 90 degrees about each lab axis were accomplished. The bottom line of box close 

to the floor was aligned with lab axis first and then the box was rotated by hands about the bottom 

line. In the validation test, in addition to same pure rotation tests with large triad on the same 

transparent box (Figure 2-10(b)), constrained linear motion was completed with manually push 

large triad along the wood track. Each constrained linear motion was repeated three times along the 

bottom edge of the box. Besides, rigid body was kept still to check the offset error of VICON and 

IMU in both tests.  

(a) (b) 
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After the validation on the rigid body, ten subjects including five young healthy subjects 

and five patients after ankle surgery. Each patient was instructed to walk three meters four times 

with normal speed. During walking, two inertial sensors attached with two triad respectively were 

placed on the front chest and low back. Ten single spherical retro-reflective markers were placed 

on the upper body: bilaterally on the shoulders, elbows, wrists, anterior super-iliac spine (ASIS) 

and posterior super-iliac spine (PSIS) (Figure 2.11). All the subjects offered their consents before 

testing. A static T-pose was performed followed by walking. 

 
Figure 2.11 Front and back view of marker placement and sensor attachment in the experiment 

A ten-camera optical tracking system (VICON, Oxford Metrics Ltd., Oxford, UK) was 

used as reference system to validate the accuracy of IMU sensor for monitoring the tests on both 

rigid body and human body. Data about the markers trajectory were collected at sampling frequency 

120 Hz while IMU data were collected under Robust Synchronized Streaming Mode at sampling 

frequency 128 Hz. To synchronize the signal from VICON and Opal IMU, an external signal box 

(Figure 2.12) was used to send out signal from IMU. VICON will receive a pulse signal when IMU 

starts and ends. This external box was only used in the validation test. 
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Figure 2.12 External Sync Box which has three types of BNC connections 

 

2.5 Data processing 

To analyze the IMU data, a regular flowchart you can follow is shown below. Gyroscope, 

accelerometer and magnetometer have different calibration model respectively. ω, a, h are raw 

angular rate, acceleration and magnetic field. ωc, ac, hc are calibrated angular rate, acceleration and 

magnetic field. Sensor fusion techniques are algorithms designed to integrate real-time data and 

measurement outputs into a unified interpretation for multiple sensors which are proprietary and 

unknown to the public in all the commercial inertial sensors. Sensor fusion are used to estimate the 

orientation of IMUs mainly regardless of the disadvantages of each individual component. In the 

next subsections, some sensor fusion techniques will be clearly explained. For all the calibrated 

signal from sensors, it is crucial to apply noise reduction process to minimize the error caused by 

noise. The main noise reduction technique used in the IMU data processing is low-pass filter with 

optimal cut-off frequency. Optimal cut-off frequency was determined by residual analysis (Winter, 

1990). 
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Figure 2.13 The flowchart of sensor data processing 

There are two main coordinate frames related to the data measured by IMU. Sensor frame 

s is the coordinate frame fixed to the moving IMU. It is aligned with the casing. All the 

measurements by IMU are gauged in this frame. Navigation frame n is an absolute coordinate frame 

which is usually defined stationary with respect to the earth. Many researchers also call it global 

frame. The orientation of a rigid body in 3D space is actually the orientation of body frame in the 

navigation coordinate. In order to compare with the VICON reference system, all IMU data in the 

global frame needs to be transformed to the same VICON reference frame.  

Markers position data was low-pass filtered with fourth-order Butterworth filter at cut-off 

frequency of 6 Hz. The same low-pass filtering with a cut-off frequency of 6 Hz was applied to 

IMU accelerometer data and gyroscope data to remove noise without losing signal integrity. Due 

to the different sampling frequency, the IMU data and VICON data need to be synchronized to 

calculate consistency. IMU measurements was resampled to 120 Hz first and then aligned with 

VICON angular velocity through cross correlation function. Since there was an external box used 

in the validation part, IMU data after resampling were synchronized with VICON through trigger 

signal received by VICON box. The signal will show rectangular pulse shape once IMU is triggered 

on and off (Figure 2.14). 
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Figure 2.14 IMU External Sync Box trigger signal received by VICON system 

In the process of resampling, function ‘resample’ will apply antialiasing finite impulse 

response (FIR) low-pass filter to data and compensates for the delay introduced by the filter. Large 

deviations from zero at the endpoints of data can result in big spikes for resampled data as FIR 

filter assumes that the input sequence is zero before and after the given samples. Here, ten frames 

of data points before the end point were usually taken off to reduce the error caused by resampling. 

The cross-correlation will measure similarity between IMU data and VICON data. Here, vertical 

accelerations from both system were applied with cross-correlation. Then the number of shifted 

frames between two measurements was computed from maximum cross-correlation value. 

 

2.6 Sensor fusion 

IMU is widely used to estimate the orientation of human body in the 3D space. Obviously, 

the integral of angular velocity from gyroscope can compute the orientation with known initial 

conditions. However, the gyroscope signal is prone to error due to low-frequency drift which will 

increase infinitely with time (Sabatini, 2011b). A gyroscope usually can provide accurate data in a 

short term while accelerometer can only provide accurate data in the long term. The accelerometer 

alone can measure inclination angles including pitch angles and roll angles, but it cannot always be 
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fully trusted due to its sensitivity to vibration and mechanical noise. Besides, the orientation 

estimates were computed referring to the gravity field. When the motion of objects shows high 

acceleration component, it is difficult to correctly calculate the orientation through acceleration 

signals.  Therefore, the accelerometer alone to measure inclination angles is only reliable during 

static or slow motion (Veltink, Bussmann, de Vries, Martens, & Van Lummel, 1996). Adding with 

a tri-axial magnetometer, the heading angle can be measured in the horizontal plane. Nevertheless, 

there will be another problem that the magnetometer signal is critically disturbed in the vicinity of 

ferromagnetic materials especially acute within some indoor environments (Bachmann, Yun, & 

Peterson, 2004; de Vries, Veeger, Baten, & van der Helm, 2009). Since no single type of sensors 

can provide precise orientation estimates, it is of great importance to develop optimal sensor data 

fusion methods to compute the orientation more accurately.  

The attitude of a rigid body in 3D space can be represented by rotation matrix, axis angle, 

Euler angle, quaternion (Diebel, 2006). In the most commercial IMU sensors, the orientation output 

are usually Euler angles and quaternion. The direct Euler angle calculation may lead to singularity 

problems and ambiguous results due to multiple rotation sequences although it can show the 

orientation more explicitly and visually. The quaternion will not have singularity and need higher 

computational load which is more widely used in the commercial sensors. 

Many data fusion algorithms were developed to estimate the orientation of IMU mainly 

non-linear complimentary filter (Euston, Coote, Mahony, Kim, & Hamel, 2008; Hajdu, Brassai, & 

Szekely, 2017; Islam, Islam, Shajid-Ul-Mahmud, & Hossam-E-Haider, 2017; Madgwick, Harrison, 

& Vaidyanathan, 2011; Wu, Zhou, Chen, Fourati, & Li, 2016) and Kalman filter (Chang, Zha, & 

Qin, 2017; J. K. Lee & Choi, 2017; Sabatini, 2006; Trawny, 2005; Yun & Bachmann, 2006). 

Typical Kalman filter is a recursive filter processing linear dynamic system with Gaussian noise. 

But in lots of practical applications, the system can be non-linear and very complex which is 
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challenging to apply regular Kalman filter. To adjust to the real-world problems, multiple types of 

Kalman filters have been developed and were utilized in fusing inertial sensor data especially 

extended Kalman filter (EKF) (Sabatini, 2006; Trawny, 2005) and unscented Kalman filter (UKF) 

(de Marina, Espinosa, & Santos, 2012; Shiau, 2013; Zampella, 2012).  In the EKF, non-

linearization can be applied on both the state model and the measurement model. Nevertheless, if 

the non-linearity of model is so high, EKF will have particularly poor performance since the error 

covariance was computed from the non-linear model which can be complicated to determine the 

Jacobian matrix (Wikipedia, 2018). Taking advantage of unscented transform deterministic 

sampling technique, UKF was developed to help us reduce the calculation of Jacobians and deal 

with non-linear systems (Wikipedia, 2018).  

The wide-spread use of Kalman filter has proved its accuracy and effectiveness, however, 

they have some disadvantages. It is complicated to implement the whole algorithm. The foundation 

to the basic Kalman process – linear regression iterations demand high sampling rate far exceeding 

the bandwidth of the subject (Madgwick et al., 2011). The real-world problems do not have good 

linear relations which usually requires large state vectors and a complicate model to linearize them. 

For example, the description of rotational kinematics in 3-D space typically demands large state 

vectors and an EKF implementation which leads to higher complexity. As all the Kalman filter 

built in the sensors are proprietary algorithms, it is necessary to use another simple way to verify 

the accuracy of the sensors. Here, the sensor fusion method using gradient descent algorithm 

developed by Madgwick was utilized (Madgwick et al., 2011). 

Quaternion is usually defined as 

                                                                 𝑞𝑞 = [𝑞𝑞0, 𝑞𝑞1,𝑞𝑞2, 𝑞𝑞3]                                                      (2-1) 
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𝑞𝑞0 is the scalar part, 𝑞𝑞1 ∗  i �⃗ + 𝑞𝑞2 ∗  j �⃗ + 𝑞𝑞3 ∗  k ��⃗  is the vector part.  So quaternion can also be 

represented by  

                                                         𝑞𝑞 = 𝑞𝑞0 + 𝑞𝑞1 ∗  i �⃗ + 𝑞𝑞2 ∗  j �⃗ + 𝑞𝑞3 ∗  k ��⃗                                    (2-2) 

In the commercial IMU, the quaternion represents the rotation of navigation frame relative 

to body frame. The derivative of quaternion obeys the vector differential equation denoted by 

angular velocity  𝜔𝜔��⃗ = (𝜔𝜔𝑥𝑥 ,𝜔𝜔𝑦𝑦,𝜔𝜔𝑧𝑧) in the body frame relative to navigation frame (Trawny, 2005) 

                                                                        𝑑𝑑
𝑑𝑑𝑑𝑑

𝑞𝑞𝑛𝑛𝑠𝑠 = 1
2
Ω(𝜔𝜔��⃗ ) 𝑞𝑞𝑛𝑛𝑠𝑠                                                  (2-3) 

where Ω(𝜔𝜔��⃗ ) is a 4 x 4 skew symmetric matrix as 

                                               Ω(𝜔𝜔��⃗ ) =  �

0 𝜔𝜔𝑧𝑧 −𝜔𝜔𝑦𝑦 𝜔𝜔𝑥𝑥
−𝜔𝜔𝑧𝑧 0 𝜔𝜔𝑥𝑥 𝜔𝜔𝑦𝑦
𝜔𝜔𝑦𝑦
−𝜔𝜔𝑥𝑥

−𝜔𝜔𝑥𝑥
−𝜔𝜔𝑦𝑦

0
−𝜔𝜔𝑧𝑧

𝜔𝜔𝑧𝑧
0

�                                            (2-4) 

                                                         =  �−[𝜔𝜔��⃗ ×] 𝜔𝜔��⃗
−𝜔𝜔��⃗ 𝑇𝑇 0

�                                                                 (2-5) 

To solve the first order differential equation, 𝜔𝜔��⃗  is assumed to be constant over the 

integration interval ∆𝑡𝑡 . Then the solution will be the following (Trawny, 2005). 

                                                 𝑞𝑞𝑛𝑛𝑠𝑠  (𝑡𝑡𝑘𝑘+1) = exp (1
2
Ω(𝜔𝜔��⃗ 𝑘𝑘)∆𝑡𝑡) 𝑞𝑞𝑛𝑛𝑠𝑠 (𝑡𝑡𝑘𝑘)                                         (2-6) 

The initial conditions 𝑞𝑞(0) are assumed to known or computed from the sensors. The 

derivative of quaternion can also be represented as  

                                                             𝑑𝑑
𝑑𝑑𝑑𝑑

𝑞𝑞𝑛𝑛𝑠𝑠 =  1
2
Ξ( 𝑞𝑞𝑛𝑛𝑠𝑠 )𝜔𝜔��⃗                                                           (2-7) 

where                                    Ξ( 𝑞𝑞𝑛𝑛𝑠𝑠 ) = �

𝑞𝑞4 −𝑞𝑞3 𝑞𝑞2
𝑞𝑞3 𝑞𝑞4 −𝑞𝑞1
−𝑞𝑞2
−𝑞𝑞1

𝑞𝑞1
−𝑞𝑞2

𝑞𝑞4
−𝑞𝑞3

�                                                        (2-8) 
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The main idea of Madgwick’s method are derived from the knowledge that there are 

infinite solutions instead of a unique solution representing the sensor orientation when any 

measurement are given. Meanwhile, there is only one unique solution of quaternion to represent 

the orientation. Under this circumstance, a formulation of an optimization problem can be achieved 

through the combination of three parameters including the orientation of the sensor in the global 

frame 𝑞𝑞𝑛𝑛𝑠𝑠 , a pre-defined reference field in the global frame  𝑑𝑑 𝑛𝑛  and the measured field in the sensor 

body frame 𝑥𝑥 𝑠𝑠 . The objective function can be determined as follows according to the relation that 

the orientation of sensor is output as that aligns 𝑑𝑑 𝑛𝑛  with 𝑥𝑥 𝑠𝑠 . 

                                             𝐦𝐦𝐦𝐦𝐦𝐦𝑓𝑓( 𝑞𝑞𝑛𝑛𝑠𝑠 , 𝑑𝑑 𝑛𝑛 , 𝑥𝑥 𝑠𝑠 ) =  𝑞𝑞𝑛𝑛𝑠𝑠 ⊗  𝑑𝑑 𝑛𝑛  ⊗  𝑞𝑞𝑛𝑛𝑠𝑠 −  𝑥𝑥 𝑠𝑠                               (2-9) 

As gradient descent algorithm is one of the simplest optimization algorithms to implement 

and compute, it was used to solve this objective function. To start with gradient descent algorithm, 

an initial guess orientation 𝑞𝑞𝑛𝑛𝑠𝑠 0 and the step-size µ are determined to compute the estimate of 

orientation after n iterations (equation 2-10). An error direction is computed on the solution surface 

defined by objective function 𝑓𝑓 and Jacobian 𝐽𝐽. 

                                 𝑞𝑞𝑛𝑛𝑠𝑠 𝑘𝑘+1 = 𝑞𝑞𝑛𝑛𝑠𝑠 𝑘𝑘 −  µ ∇𝑓𝑓( 𝑞𝑞𝑛𝑛𝑠𝑠 𝑘𝑘, 𝑑𝑑 𝑛𝑛 , 𝑥𝑥 𝑠𝑠 )
‖∇𝑓𝑓( 𝑞𝑞𝑛𝑛𝑠𝑠 𝑘𝑘, 𝑑𝑑 𝑛𝑛 , 𝑥𝑥 𝑠𝑠 )‖

 , k = 0, 1, 2…n                                    (2-10) 

                                  ∇𝑓𝑓( 𝑞𝑞𝑛𝑛𝑠𝑠 𝑘𝑘 , 𝑑𝑑 𝑛𝑛 , 𝑥𝑥 𝑠𝑠 ) = 𝐽𝐽𝑇𝑇( 𝑞𝑞𝑛𝑛𝑠𝑠 𝑘𝑘 , 𝑑𝑑 𝑛𝑛 )𝑓𝑓( 𝑞𝑞𝑛𝑛𝑠𝑠 𝑘𝑘 , 𝑑𝑑 𝑛𝑛 , 𝑥𝑥 𝑠𝑠 )                                       (2-11) 

The general form of the algorithm (equations 2-10 and 2-11) will be simplified if the 

direction of the field can be assumed to have less components in the principal axis in the global 

frame. Initially, an assumption is made that an accelerometer will only measure gravity and a 

magnetometer will only measure the earth’s magnetic field. Here, 𝑑𝑑 𝑛𝑛  can be represented by two 

reference field 𝑔𝑔 𝑛𝑛  - field of gravity along vertical z axis and 𝑏𝑏 𝑛𝑛 - earth’s magnetic field with two 
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components in horizontal axis and the vertical axis. 𝑥𝑥  
𝑠𝑠 can also be substituted by two normalized 

measurement – accelerometer measurement 𝑎𝑎 𝑠𝑠  and magnetometer measurement 𝑚𝑚 𝑠𝑠 .  

                                                      𝑞𝑞𝑛𝑛𝑠𝑠 = [𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3, 𝑞𝑞4]                                                            (2-12) 

                                                         𝑔𝑔 𝑛𝑛 = [0,0,0,1]                                                                  (2-13) 

                                                     𝑎𝑎 𝑠𝑠 = [0,𝑎𝑎𝑥𝑥 ,𝑎𝑎𝑦𝑦,𝑎𝑎𝑧𝑧]                                                              (2-14) 

                                                     𝑏𝑏 𝑛𝑛 = [0, 𝑏𝑏𝑥𝑥 , 0, 𝑏𝑏𝑧𝑧]                                                                 (2-15) 

                                                 𝑚𝑚 𝑠𝑠 = [0,𝑚𝑚𝑥𝑥 ,𝑚𝑚𝑦𝑦 ,𝑚𝑚𝑧𝑧]                                                              (2-16) 

Substituting these variables into the objective function and Jacobian, the simplified 

equations will be as follows. 

                                       𝑓𝑓𝑔𝑔( 𝑞𝑞 𝑛𝑛
𝑠𝑠 , 𝑎𝑎 𝑠𝑠 ) =  �

2(𝑞𝑞2𝑞𝑞4 − 𝑞𝑞1𝑞𝑞3) − 𝑎𝑎𝑥𝑥
2(𝑞𝑞1𝑞𝑞2 + 𝑞𝑞3𝑞𝑞4) − 𝑎𝑎𝑦𝑦
2 �1

2
− 𝑞𝑞22 − 𝑞𝑞32� − 𝑎𝑎𝑧𝑧

�                                              (2-17) 

                                  𝐽𝐽𝑔𝑔( 𝑞𝑞 𝑛𝑛
𝑠𝑠 ) = �

−2𝑞𝑞3 2𝑞𝑞4 −2𝑞𝑞1 2𝑞𝑞2
2𝑞𝑞2 2𝑞𝑞1 2𝑞𝑞4 2𝑞𝑞3

0 −4𝑞𝑞4 −4𝑞𝑞3 0
�                                               (2-18) 

                 𝑓𝑓𝑏𝑏( 𝑞𝑞 𝑛𝑛
𝑠𝑠 , 𝑏𝑏 𝑛𝑛 , 𝑚𝑚 𝑠𝑠 ) = �

2𝑏𝑏𝑥𝑥(0.5 − 𝑞𝑞32 − 𝑞𝑞42) + 2𝑏𝑏𝑧𝑧(𝑞𝑞2𝑞𝑞4 − 𝑞𝑞1𝑞𝑞3) −𝑚𝑚𝑥𝑥
2𝑏𝑏𝑥𝑥(𝑞𝑞2𝑞𝑞3 − 𝑞𝑞1𝑞𝑞4) + 2𝑏𝑏𝑧𝑧(𝑞𝑞1𝑞𝑞2 + 𝑞𝑞3𝑞𝑞4) −𝑚𝑚𝑦𝑦

2𝑏𝑏𝑥𝑥(𝑞𝑞1𝑞𝑞3 + 𝑞𝑞2𝑞𝑞4) + 2𝑏𝑏𝑧𝑧(0.5 − 𝑞𝑞22 − 𝑞𝑞32) −𝑚𝑚𝑧𝑧

�                    (2-19) 

𝐽𝐽𝑏𝑏( 𝑞𝑞 𝑛𝑛
𝑠𝑠 , 𝑏𝑏 𝑛𝑛 ) = �

−2𝑏𝑏𝑧𝑧𝑞𝑞3 2𝑏𝑏𝑧𝑧𝑞𝑞4 −4𝑏𝑏𝑥𝑥𝑞𝑞3 − 2𝑏𝑏𝑧𝑧𝑞𝑞1 −4𝑏𝑏𝑥𝑥𝑞𝑞4 + 2𝑏𝑏𝑧𝑧𝑞𝑞2
−2𝑏𝑏𝑥𝑥𝑞𝑞4 + 2𝑏𝑏𝑧𝑧𝑞𝑞2 2𝑏𝑏𝑥𝑥𝑞𝑞3 + 2𝑏𝑏𝑧𝑧𝑞𝑞1 2𝑏𝑏𝑥𝑥𝑞𝑞2 + 2𝑏𝑏𝑧𝑧𝑞𝑞4 −2𝑏𝑏𝑥𝑥𝑞𝑞1 + 2𝑏𝑏𝑧𝑧𝑞𝑞3

2𝑏𝑏𝑥𝑥𝑞𝑞3 2𝑏𝑏𝑥𝑥𝑞𝑞4 − 4𝑏𝑏𝑧𝑧𝑞𝑞2 2𝑏𝑏𝑥𝑥𝑞𝑞1 − 4𝑏𝑏𝑧𝑧𝑞𝑞3   2𝑏𝑏𝑥𝑥𝑞𝑞2
�(2-20) 

Since the gravity or the earth’s magnetic field cannot provide the unique 3D orientation of 

sensor individually, it is essential to combine two reference fields as described by equation (2-21) 

and (2-22). The solution surface defined by equation (2-21) has a global minimum point on the 
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condition that 𝑏𝑏𝑥𝑥 ≠ 0 which is different from the minimum line found on the solution surface 

defined by equations (2-17) and (2-19). 

                                        𝑓𝑓𝑔𝑔,𝑏𝑏( 𝑞𝑞 𝑛𝑛
𝑠𝑠 , 𝑏𝑏 𝑛𝑛 , 𝑎𝑎 𝑠𝑠 , 𝑚𝑚 𝑠𝑠 ) = �

𝑓𝑓𝑔𝑔( 𝑞𝑞 𝑛𝑛
𝑠𝑠 , 𝑎𝑎 𝑠𝑠 )

𝑓𝑓𝑏𝑏( 𝑞𝑞 𝑛𝑛
𝑠𝑠 , 𝑏𝑏 𝑛𝑛 , 𝑚𝑚 𝑠𝑠 )�                                          (2-21) 

                                                 𝐽𝐽𝑔𝑔,𝑏𝑏( 𝑞𝑞 𝑛𝑛
𝑠𝑠 , 𝑏𝑏 𝑛𝑛 ) = �

𝐽𝐽𝑔𝑔𝑇𝑇( 𝑞𝑞 𝑛𝑛
𝑠𝑠 )

  𝐽𝐽𝑏𝑏𝑇𝑇( 𝑞𝑞 𝑛𝑛
𝑠𝑠 , 𝑏𝑏 𝑛𝑛 )

�                                                  (2-22) 

For the multiple iterations of equation (2-10), it will calculate new orientation and sensor 

measurements each time. The following equations show the computing process of new orientation 

represented by quaternion.  

                                                   𝑞𝑞 𝑛𝑛
𝑠𝑠
∇,𝑑𝑑 = 𝑞𝑞 𝑛𝑛

𝑠𝑠
est,𝑑𝑑−1 − 𝜇𝜇𝑑𝑑

∇𝑓𝑓
‖∇𝑓𝑓‖

                                                   (2-23) 

                            ∇𝑓𝑓 = 𝐽𝐽𝑔𝑔,𝑏𝑏
𝑇𝑇 ( 𝑞𝑞 𝑛𝑛

𝑠𝑠
est,𝑑𝑑−1, 𝑏𝑏 𝑛𝑛 )𝑓𝑓𝑔𝑔,𝑏𝑏� 𝑞𝑞 𝑛𝑛

𝑠𝑠
est,𝑑𝑑−1, 𝑏𝑏 𝑛𝑛 , 𝑎𝑎 𝑠𝑠 𝑑𝑑 , 𝑚𝑚 𝑠𝑠 𝑑𝑑�                                 (2-24) 

In equations (2-23) to (2-24), 𝑞𝑞 𝑛𝑛
𝑠𝑠
est,𝑑𝑑−1 is the previous estimated orientation at time t-1 

which is used to compute the estimated orientation 𝑞𝑞 𝑛𝑛
𝑠𝑠
∇,𝑑𝑑 at time t. The subscript ∇ in quaternion 

means the quaternion is computed by gradient descent algorithm. ∇𝑓𝑓 indicates the objective 

function error determined by accelerometer measurements 𝑎𝑎 𝑠𝑠 𝑑𝑑 and magnetometer 

measurements 𝑚𝑚 𝑠𝑠 𝑑𝑑. If only the accelerometer measurements are used, the form of ∇𝑓𝑓 will be 

simplified without the magnetic field. The choice of appropriate value of 𝜇𝜇𝑑𝑑 will ensure the 

convergence rate of 𝑞𝑞 𝑛𝑛
𝑠𝑠
∇,𝑑𝑑 not to overshoot due to a large step size. Therefore 𝜇𝜇𝑑𝑑is calculated based 

on the following equation where 𝛼𝛼 is an augmentation of 𝜇𝜇𝑑𝑑 accounting for the noise in 

accelerometer and magnetometer, 𝑞𝑞𝜔𝜔,𝑑𝑑𝑛𝑛
𝑠𝑠 ̇  is the angular rate measured by gyroscopes and t∆ is the 

sampling time interval. 

                                                            𝜇𝜇𝑑𝑑 = 𝛼𝛼� 𝑞𝑞𝜔𝜔,𝑑𝑑𝑛𝑛
𝑠𝑠 ̇ �∆𝑡𝑡,𝛼𝛼 > 1                                               (2-25) 
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In reality, the initial orientation 𝑞𝑞𝜔𝜔,𝑑𝑑𝑛𝑛
𝑠𝑠  derived from gyroscope may start from incorrect 

condition due to the measurement noise. Besides, the instable accelerometer or the magnetometer 

exposed to magnetic disturbances will cause incorrect estimate for 𝑞𝑞 𝑛𝑛
𝑠𝑠
∇,𝑑𝑑 . A fusion algorithm is 

adopted to reduce the error and drift in the estimate orientation. The high frequency errors in 𝑞𝑞 𝑛𝑛
𝑠𝑠
∇,𝑑𝑑  

will be filtered out by 𝑞𝑞𝜔𝜔,𝑑𝑑𝑛𝑛
𝑠𝑠  and the integral drift from 𝑞𝑞𝜔𝜔,𝑑𝑑𝑛𝑛

𝑠𝑠  will be compensated by 𝑞𝑞 𝑛𝑛
𝑠𝑠
∇,𝑑𝑑 . The 

estimated orientation 𝑞𝑞 𝑛𝑛
𝑠𝑠
est,𝑑𝑑 is obtained through fusing the orientation integrated from gyroscope 

𝑞𝑞𝜔𝜔,𝑑𝑑𝑛𝑛
𝑠𝑠  and the orientation computed from gradient descent algorithm 𝑞𝑞 𝑛𝑛

𝑠𝑠
∇,𝑑𝑑 . Meantime, a weight 

factor 𝜆𝜆𝑑𝑑 is implemented in the equation (2-26). 

                                                 𝑞𝑞 𝑛𝑛
𝑠𝑠
est,𝑑𝑑 = 𝜆𝜆𝑑𝑑 𝑞𝑞 𝑛𝑛

𝑠𝑠
∇,𝑑𝑑 + (1 − 𝜆𝜆𝑑𝑑) 𝑞𝑞𝜔𝜔,𝑑𝑑𝑛𝑛

𝑠𝑠                                          (2-26) 

The optimal value of 𝜆𝜆𝑑𝑑 occurs when the weighted rate of divergence of 𝑞𝑞𝜔𝜔,𝑑𝑑𝑛𝑛
𝑠𝑠  induced by 

integral drift is equal to the weighted rate of convergence of 𝑞𝑞 𝑛𝑛
𝑠𝑠
∇,𝑑𝑑 . Substituting 𝜇𝜇𝑡𝑡

∆𝑑𝑑
 and 𝛽𝛽 for the 

convergence rate of 𝑞𝑞 𝑛𝑛
𝑠𝑠
∇,𝑑𝑑  and the divergence rate of 𝑞𝑞𝜔𝜔,𝑑𝑑𝑛𝑛

𝑠𝑠  respectively, yields the new equation 

below. 

                                                                𝜆𝜆𝑑𝑑 = 𝛽𝛽
𝜇𝜇𝑡𝑡
∆𝑡𝑡+𝛽𝛽

                                                                 (2-27) 

Since 𝛼𝛼 has no upper bound, Madgwick assumed 𝛼𝛼 to be very large then 𝜇𝜇𝑑𝑑 is large which 

means a negligible 𝑞𝑞 𝑛𝑛
𝑠𝑠
est,𝑑𝑑−1 in the equation (2-23) leading to the re-written equation (2-28). 

Another assumption is that 𝛽𝛽 is negligible so that the equation (2-27) can be simplified as equation 

(2-29) where 𝜆𝜆𝑑𝑑  can also be assumed as zero.   

                                                            𝑞𝑞 𝑛𝑛
𝑠𝑠
∇,𝑑𝑑 ≈ −𝜇𝜇𝑑𝑑

∇𝑓𝑓
‖∇𝑓𝑓‖

                                                          (2-28) 

                                                              𝜆𝜆𝑑𝑑 ≈
𝛽𝛽∆𝑑𝑑
𝜇𝜇𝑡𝑡

                                                                       (2-29) 
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                                                 𝑞𝑞𝜔𝜔,𝑑𝑑𝑛𝑛
𝑠𝑠 = 𝑞𝑞 𝑛𝑛

𝑠𝑠
est,𝑑𝑑−1 + 𝑞𝑞𝜔𝜔,𝑑𝑑𝑛𝑛

𝑠𝑠 ̇ ∆𝑡𝑡                                                   (2-30) 

Then the estimated orientation 𝑞𝑞 𝑛𝑛
𝑠𝑠
est,𝑑𝑑−1 can be represented by equation (3-31) through 

substituting the equations (2-28), (2-29) and (2-30) into the equation (2-26). The equation (2-30) 

represents another form of the relationship between the integrated orientation from gyroscope and 

the estimated orientation 𝑞𝑞 𝑛𝑛
𝑠𝑠
est,𝑑𝑑−1 which is derived from equation (2-7). In the substitution of 

equation (3-31), 𝜆𝜆𝑑𝑑 is used as two forms: one is zero, the other is the equation (2-29).  

                                  𝑞𝑞 𝑛𝑛
𝑠𝑠
est,𝑑𝑑 = 𝛽𝛽∆𝑑𝑑

𝜇𝜇𝑡𝑡
�−𝜇𝜇𝑑𝑑

∇𝑓𝑓
‖∇𝑓𝑓‖

� + (1 − 0) 𝑞𝑞 𝑛𝑛
𝑠𝑠
est,𝑑𝑑−1 + 𝑞𝑞𝜔𝜔,𝑑𝑑𝑛𝑛

𝑠𝑠 ̇ ∆𝑡𝑡                       (2-31) 

The equation (2-31) can be re-written as equation (2-32) where 𝑞𝑞𝑒𝑒𝑠𝑠𝑑𝑑,𝑑𝑑𝑛𝑛
𝑠𝑠 ̇  is defined as the 

estimated orientation rate represented by equation (2-33). 

                                                    𝑞𝑞𝑒𝑒𝑠𝑠𝑑𝑑,𝑑𝑑𝑛𝑛
𝑠𝑠 = 𝑞𝑞𝑒𝑒𝑠𝑠𝑑𝑑,𝑑𝑑−1𝑛𝑛

𝑠𝑠 + 𝑞𝑞𝑒𝑒𝑠𝑠𝑑𝑑,𝑑𝑑𝑛𝑛
𝑠𝑠 ̇ ∆𝑡𝑡                                             (2-32) 

                                                      𝑞𝑞𝑒𝑒𝑠𝑠𝑑𝑑,𝑑𝑑𝑛𝑛
𝑠𝑠 ̇ = 𝑞𝑞𝜔𝜔,𝑑𝑑𝑛𝑛

𝑠𝑠 ̇ − 𝛽𝛽 ∇𝑓𝑓
‖∇𝑓𝑓‖

                                                     (2-33) 

It is noticeable that the estimated rate of orientation change 𝑞𝑞𝑒𝑒𝑠𝑠𝑑𝑑,𝑑𝑑𝑛𝑛
𝑠𝑠 ̇  is computed from the 

angular rate 𝑞𝑞𝜔𝜔,𝑑𝑑𝑛𝑛
𝑠𝑠 ̇  measured by the gyroscope with subtracting the magnitude of gyroscope 

measurement error 𝛽𝛽 along the direction based on accelerometer and magnetometer measurements. 

It can be seen that the whole algorithm only contains one adjustable parameter 𝛽𝛽. In the 

Madgwick’s method, he defined 𝛽𝛽 in equation (2-34) based on 𝜔𝜔𝛽𝛽 - the estimated angular velocity 

error of each axis from gyroscope.  

                                                𝛽𝛽 = �1
2
𝑞𝑞 ⊗ [0,𝜔𝜔𝛽𝛽 ,𝜔𝜔𝛽𝛽 ,𝜔𝜔𝛽𝛽]� = �3

4
𝜔𝜔𝛽𝛽                                   (2-34) 

The results of gradient descent algorithm during static and dynamic tests were compared 

with those computed from the proprietary Kalman filter algorithm in the sensors. The sensor 
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measurements from ten subjects were used to validate the orientation accuracy of built-in Kalman 

filter in Opal. A common way to evaluate the orientation sensor performance is using RMSE 

between sensor angle output and reference system measurements to describe the roll, pitch and 

heading components (corresponding to the rotations around the sensor frame X, Y, Z respectively) 

in the decoupled Euler angles during static and dynamic tests (Madgwick et al., 2011). 

 

2.7 Results 

It is obvious that the accuracy during static T-pose are much lower compared to the 

computed root-mean-square-error (RMSE) in the dynamic tests from the results of both algorithms. 

In the Madgwick’s method, the heading angle always showed the largest error (static RMSE: 1.50 

± 0.61 deg; dynamic RMSE: 2.56 ± 1.21 deg) among three components in the sensor angle output 

in both static and dynamic tests while only the static heading error (1.15 ± 0.59 deg) from Opal 

were larger than the other two static error (roll: 0.79 ± 0.30 deg, pitch: 1.15 ± 0.59 deg). The error 

of roll, pitch and heading did not present any significant differences (p > 0.1) between Opal Kalman 

filter and Madgwick’s method. All the static and dynamic RMSE values of three Euler angles were 

within 2 deg for both algorithm implementations which means the level of accuracy is sufficient 

for human motion applications. 
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Table 2-2 The RMSE between IMU and VICON from two different sensor fusion techniques 
during static and dynamic tests 

  

RMSE (deg) 

  

Static Test Dynamic Test 

Roll Pitch Heading Roll Pitch Heading 

Opal Kalman Filter 0.79 ± 0.30 0.76 ± 0.50 1.15 ± 0.59 1.89 ± 1.06 1.98 ± 0.98 1.95 ± 1.99 

Madgwick’s Method 0.87 ± 0.45 0.69 ± 0.29 1.50 ± 0.61 1.95 ± 0.76 1.68 ± 0.78 2.56 ± 1.21 

 

For the static test results (Table 2-2), it is obvious that VICON is more accurate and less 

noise compare to IMU in measurement from all aspects. The range error of triad position after 

system calibration in VICON is 0.2156 ± 0.0198 mm overall. It proves that VICON system can 

provide accurate position after calibration. Then average acceleration, angular velocity and angle 

were computed according to the markers’ trajectory in three static tests. The offset error of VICON 

measurements including acceleration and angular velocity are almost zero where the average 

acceleration offset are all 0.0000 ± 0.0000 m/s^2 along three directions and the average angular 

velocity about three directions (XYZ) are -0.0001 ± 0.0005 deg/s, -0.0000 ± 0.0005 deg/s, -0.0001 

± 0.0005 deg/s respectively. Meanwhile, the average angle measured by VICON system are also 

quite small (X: -0.0092 ± 0.0103 deg, Y: -0.0071 ± 0.0098 deg, Z: -0.0008 ± 0.0095 deg) in the 

static test. Compared to VICON acceleration, IMU has higher bias on the acceleration in the X 

(0.0704 ± 0.0485 m/s^2) and Y direction (-0.1428 ± 0.0181 m/s^2). The angular velocity about X 

axis (0.9553 ± 1.0152 deg/s) in IMU are much larger than that about other two axes (Y: -0.0691 ± 

0.1832 deg/s, Z: -0.2432 ± 0.1855 deg/s). Static angles measured by IMU about each axis are all 

lower than 0.25 deg which is accurate enough for clinical study. The large SD of angular velocity 

about X axis and angle about Z axis from IMU means the outputs are unstable and may have large 
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error range. Then the error range of each parameter were also checked for potential error. The error 

range of angular rate and angles are around 1 deg/s and 1 deg separately in 3D space. Overall, the 

static orientation of Opal IMU is superior to the manufacturer’s orientation accuracy estimates of 

1.15 deg (roll/pitch) and 1.5 deg (heading). The sensor measurement including acceleration and 

angular velocity are validated by VICON which are accurate enough for future clinical test. 

Table 2-3 The bias and error range of both IMU and VICON in the static test 

  X Y Z 

Average Acceleration 

(m/s^2) 

IMU 0.0704 ± 0.0485 -0.1428 ± 0.0181 0.0000 ± 0.0000 

VICON 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 

Average AngVel (deg/s) 
IMU 0.9553 ± 1.0152 -0.0691 ± 0.1832 -0.2432 ± 0.1855 

VICON -0.0001 ± 0.0005 -0.0000 ± 0.0005 -0.0001 ± 0.0005 

Average Angle(deg) 
IMU -0.2303 ± 0.1704 -0.1415 ± 0.2940 -0.2084 ± 0.5183 

VICON -0.0092 ± 0.0103 -0.0071 ± 0.0098 -0.0008 ± 0.0095 

Error Range Acc (m/s^2) 
IMU 0.0086 ± 0.0011 -0.0091 ± 0.0004 0.0089 ± 0.0023 

VICON 0.0122 ± 0.0021 0.0169 ± 0.0027 0.0209 ± 0.0058 

Error Range AngVel (deg/s) 
IMU 1.0998 ± 0.0470 0.9747 ± 0.3528 1.0705 ± 0.0668 

VICON 0.3594 ± 0.0231 0.5342 ± 0.1571 0.2903 ± 0.0505 

Error Range Angle (deg) 
IMU 0.8648 ± 0.2045 0.5882 ± 0.5185 1.2732 ± 0.7116 

VICON 0.0181 ± 0.0009 0.0263 ± 0.0072 0.0135 ± 0.0014 
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The constrained linear motion along each direction showed that the correlation coefficient 

‘r’ between IMU acceleration and VICON acceleration were all extremely high (r > 0.88) meaning 

that the acceleration measured by IMU has high agreement with that measured by VICON. The 

RMSE indicated the precision in each test and the absolute difference between IMU and VICON 

represented the accuracy here [Taylor,L_2017].  The average RMSE of IMU for Z acceleration 

(0.769 ± 0.410 m/s^2) was much higher than that of other two axis (X: 0.052 ± 0.012 m/s^2, Y: 

0.048 ± 0.018 m/s^2) which means it has lower precision along Z axis. Similarly, the higher mean 

difference in the Z direction (0.363 ± 0.222 m/s^2) implied lower accuracy compared to the 

accuracy in the other two directions (X: 0.041 ± 0.009 m/s^2, Y: 0.035 ± 0.006 m/s^2).  

All the correlation coefficients of angular velocity and angles are higher than 0.95 which 

means IMU and VICON almost had greatly similar curve pattern on the angular velocity and angles 

during each main angular motion. The precision on angular velocity between IMU and VICON 

was all less than 4.039 deg/s. And the accuracy of angular velocity was within 2.706 ± 3.00 deg/s. 

The mean accuracy and precision of IMU for angles were within 2.42 ± 2.50 deg and 1.91 ± 1.48 

deg., respectively. 

Table 2-4 The correlation coefficient (r), RMSE and mean difference (mean_diff) of acceleration 
between IMU and VICON on the rigid body along each axis in the constrained linear motion test 

  X only Y only Z only 

 r 
RMSE  
(m/s^2

) 

Mean_dif
f  

(m/s^2) 
r 

RMSE 
(m/s^2

) 

Mean_dif
f  

(m/s^2) 
r 

RMSE 
(m/s^2

) 

Mean_dif
f  

(m/s^2) 

Test
1 

0.952*
* 0.052 0.040 0.941*

* 0.039 0.033 0.962*
* 1.170 0.579 

Test
2 

0.913*
* 0.065 0.050 0.884*

* 0.069 0.041 0.999*
* 0.351 0.136 

Test
3 

0.971*
* 0.041 0.033 0.972*

* 0.038 0.030 0.973*
* 0.787 0.374 

* p < 0.1, ** p < 0.05 
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In the walking tests with sensors on the human body, the average precision (RMSE) of 

angles about three axes were all within 2 deg (X: 1.89 ± 1.06 deg, Y: 1.98 ± 0.98 deg, Z:  1.95 ± 

1.99 deg). The measurements of accuracy along each direction were slightly lower than those 

precision values (X: 1.47 ± 0.77 deg, Y: 1.63 ± 0.81, Z:  1.64 ± 1.70 deg). The consistency of angles 

between Opal and VICON were comparatively lower than that from tests on the rigid body as the 

correlation coefficients were within 0.82. The mean precision along Z direction (0.60 ± 0.35 m/s^2) 

during walking was the best among those in three directions (X: 1.09 ± 0.44 m/s^2, Y: 1.06 ± 1.10 

m/s^2). Similarly, the acceleration along Z direction was the most accurate among the 

measurements from three directions (X: 0.84 ± 0.31 m/s^2, Y: 0.81 ± 0.44m/s^2, Z: 0.48 ± 0.28 

m/s^2). IMU had the highest agreement (r= 0.97 ± 0.04) with VICON measurements along Z 

direction while the agreements along the other two directions were relatively lower (X: 0.60 ± 0.26, 

Y: 0.66 ± 0.29). 

 

2.8 Conclusion 

The static and dynamic orientation accuracy (both RMSE < 2 deg) of built-in Kalman filter 

in Opal was validated by reference method where the two algorithm implementations had no 

significant difference of RMSE values comparing to the stereo-photogrammetry measuring system. 

The heading angle exhibited the largest error among the angle measurements around three axes in 

both static and dynamic tests from the Opal sensor. Besides, this chapter has demonstrated that the 

commercial Opal IMU has excellent accuracy and precision of acceleration, angular velocity and 

angle output. In the controlled rotation tests on the rigid body, the average accuracy and precision 

of angles were within 2.42 ± 2.50 deg and 1.91 ± 1.48 deg respectively. Meanwhile, the controlled 

linear tests on the rigid body showed reasonable results of acceleration with mean accuracy 0.77 ± 

0.41 m/s^2 and mean precision 0.36 ± 0.21 m/s^2. The static and dynamic RMSE values for sensor 
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orientations on human body were within 2.0 deg, which is quite close to manufacturer’s reported 

static (roll/pitch: 1.15 deg., heading: 1.5 deg.) and dynamic accuracy (2.80 deg.) estimates. Overall, 

the accuracy and precision of IMU measurements are sufficient for human motion applications 

without excluding the soft tissue artifact and unexpected sensor movement on the human body. 

Table 2-5 The correlation coefficient (r), RMSE and mean difference (Mean_diff) of angular 
velocities and angles between IMU and VICON on the rigid body along each axis in the pure 

rotation test 

  
 Pure Rotation 

  

AngVel (deg/s) Angle (deg) 

Test1 Test2 Test3 Test1 Test2 Test3 

X only 

r 0.997** 0.998** 0.997** 0.999** 0.998** 0.999** 

RMSE  2.085 1.395 1.285 3.480 1.179 1.366 

Mean_diff 1.749 1.256 1.167 2.421 0.865 0.981 

Y only 

r 0.996** 0.997** 0.997** 0.999** 0.999** 0.999** 

RMSE  2.405 4.039 3.424 1.712 2.823 2.857 

Mean_diff 1.82 2.706 2.29 1.248 1.997 2.071 

Z only 

r 0.998** 0.999** 0.996** 0.997** 0.996** 0.997** 

RMSE  2.154 2.121 2.396 0.539 1.085 0.825 

Mean_diff 2.018 2.027 2.162 0.373 0.924 0.565 

* p < 0.1, ** p < 0.05 
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Table 2-6 The correlation coefficient (r), RMSE and mean difference (Mean_diff) of acceleration 
and angles between IMU and VICON on the human body along each axis in the walking 

  

Walking 

  

Angle (deg) Acceleration (m/s^2) 

X Y Z X Y Z 

RMSE  1.89 ± 1.06 1.98 ± 0.98 1.95 ± 1.99 1.09 ± 0.44 1.06 ± 1.10 0.60 ± 0.35 

Mean_diff 1.47 ± 0.77 1.63 ± 0.81 1.64 ± 1.70 0.84 ± 0.31 0.81 ± 0.44 0.48 ± 0.28 

r 0.69 ± 0.32 0.59 ± 0.33 0.82 ± 0.34 0.60 ± 0.26 0.66 ± 0.29 0.97 ± 0.04 

* p < 0.1, ** p < 0.05 

  



42 
 

 

CHAPTER 3: MAGNETIC DISTURBANCES COMPENSATION 
 
 
3.1 Background 

With low-cost and more portable features the IMU including accelerometer, gyroscope and 

magnetometer are more desired compared to stereo-photogrammetry systems. Since the gyroscopes 

has low-frequency drift, it is not accurate to output the orientation simply using gyroscope. To 

overcome the limitation of gyroscope, the other two sensors – accelerometer and magnetometer are 

needed to compensate the angle measurements from gyroscope. In 3D space, accelerometer can 

only measure attitude (roll/pitch) relative to the direction of gravity. The magnetometers are applied 

to measure the heading angle. Unfortunately, they are sensitive to magnetic disturbances causing 

unexpected error to the heading angle. It is reported that IMU heading error was up to 30° near the 

floor in the motion lab (de Vries et al., 2009). Compared to the measurements of low limb 

kinematics outdoors, it yielded a lower repeatability on the transvers plane of each joint measured 

in the lab (Palermo, Rossi, Marini, Patane, & Cappa, 2014). The type of different mobility aiding 

device where IMUs were placed on and the IMUs positions would cause orientation errors up to 

35.3 deg (Kendell & Lemaire, 2009). In 2007, Roetenberg et al. investigated that the root mean 

square error between IMU angle output and reference optical system could reach around 50 deg 

when placing nearby a large metal object while the RMSE would be reduced to 2.6 deg without 

any magnetic disturbances (Roetenberg, Baten, & Veltink, 2007). The timing related to the 

magnetic disturbance was revealed that the heading angle would return to the baseline with a 30-

second delay after removing the magnetic disturbances (Robert-Lachaine, Mecheri, Larue, & 

Plamondon, 2017). What’s more, the distance from the magnetic source plays an important role in 

producing the disturbances which stated that the magnetic disturbances can turn into negligible 

effect at a distance of one meter and exceed the Earth’s magnetic field strength within a few 

centimeters from the source (Bachmann, Yun, & Brumfield, 2007). In a typical motion lab, there 



43 
 

 

are many kinds of metal equipment which will potentially generate magnetic disturbances to IMU 

heading angles. Therefore, it is necessary to map the indoor magnetic field before using IMUs 

which would help identify and possibly avoid the most disturbed area in the testing space. However, 

It is often unrealistic or quite cumbersome to adapt a wide range of settings like the ceilings, doors 

and walls for motion analysis in the test space (Robert-Lachaine et al., 2017). In the measurement 

volume, if the sources of the magnetic disturbance like constructive ferrous material or equipment 

containing iron are stationary relative to the sensor, the magnetic distortion can be calibrated 

depending on the theory of soft/hard iron effect; on the contrary, the generated magnetic field in 

the measurement volume will be affected (de Vries et al., 2009). 

Several studies focused on developing novel Kalman-based sensor fusion techniques to 

manage the problem of magnetic disturbances. The main algorithms dealing with the magnetic 

disturbances are divided into two types: one is to reject the magnetic disturbances based on the 

threshold method or various sensor fusion models, the other one is to estimate the orientation 

without using the data from magnetometer (Ligorio et al., 2016). Nevertheless, all these methods 

have various limitations. The threshold-based method requires a priori knowledge of Earth’s 

magnetic field used to discard the measurements when the differences are large enough to exceed 

the chosen threshold. The limitation of this method is that it is difficult to find the optimal threshold 

and if the threshold values are close to the values of actual magnetic features, the algorithm will 

exhibit erratic behavior which may lead to large errors (Ligorio et al., 2016). The disadvantage of 

the model-based method is that the augmented state vector with extra components for estimation 

of the magnetic disturbances will take more computational cost. The magnetic-free method for 

orientation estimation can only provide a relative heading angle relative to the initial posture instead 

of an absolute heading angle relative to Earth Magnetic North. Considering the limitations of all 

present methods, it is essential to develop a novel algorithm for compensating the sensor heading 
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errors in the environment surrounded by magnetic disturbances. The goal of this chapter is to build 

template to quantify the magnetic disturbances and develop a method to compensate heading angle 

error in the complicated lab or clinical settings. To reach the goal, checking the magnetic field and 

heading angle consistency at different time and locations will be helpful to find the potential 

relationship. 

 

3.2 Method 

3.2.1 Relationship between magnetic field and heading angle 

The heading angle, which is an important variable to evaluate the path of walking in clinical 

assessment, can be regarded as the angle between the facing direction of a person and the direction 

along magnetic north. To investigate the algorithm linked with magnetic disturbances affecting 

heading angle, a comprehensive understanding of conversion from magnetic field measured by 

magnetometer to heading angle is crucial for later development. As seen from the figure, only 

magnetic field components in X and Y direction are used to determine the heading angle. To find 

the Hx and Hy components (Figure. 3-1 (a)) of the earth’s magnetic field in the horizontal plane is 

the key point to accurately compute the heading from a compass or magnetometer (Caruso, 1997). 

In a real case, the sensors are often tilted in the 3D space which makes it more difficult to calculate 

the horizontal components of earth’s magnetic field. Tilt angles can introduce large errors 

depending on the value of dip angle. A typical way of compensating the tilt angle is to take 

advantage of roll and pitch angles measured by accelerometer. Here, roll represents the orientation 

about X axis, and pitch refers to the orientation about Y axis (Figure. 3-1 (b)). 
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Figure 3.1 (a) Heading angle defined in the flat plane without any tilt angles; (b) A tilted compass 
referenced to the earth’s horizontal plane (Caruso, 1997) 

To correct the compass tilt, all three magnetic components (Mx, My, Mz) measured by 

compass are relied on so that the earth’s magnetic field is fully rotated back to the horizontal plane 

with the assistance of roll and pitch. The equations (3-1) and (3-2) shown below indicate the whole 

procedure of transforming the magnetic reading from magnetometer back to the horizontal plane 

where 𝑋𝑋𝐻𝐻 and 𝑌𝑌𝐻𝐻 represent the forward and side magnetic field of earth in the global frame (Caruso, 

1997). Then the heading angle can be determined according to the relationship showing in the 

Figure 3.1(a). 

                      𝑋𝑋𝐻𝐻 = 𝑀𝑀𝑋𝑋 ∗ cos(∅) + 𝑀𝑀𝑌𝑌 ∗ sin(θ) ∗ sin(∅) −   𝑀𝑀𝑍𝑍 ∗ cos(θ) ∗ sin(∅)                (3-1) 

                                                 𝑌𝑌𝐻𝐻 =  𝑀𝑀𝑌𝑌 ∗ cos(θ) + 𝑀𝑀𝑍𝑍 ∗ sin(θ)                                             (3-2) 

                                                     𝐻𝐻𝐻𝐻𝑎𝑎𝑑𝑑𝐻𝐻𝐻𝐻𝑔𝑔 =  tan−1(𝑌𝑌𝐻𝐻
𝑋𝑋𝐻𝐻

)                                                         (3-3) 

After a comprehensive understanding the relationship between magnetic field and heading 

angle, the initial step is to confirm if the magnetic distortion does exist in the lab checked by the 

sensor. Two IMUs were respectively placed on the shoulder and the foot of one subject. Then the 

subject was asked to randomly walk around the test volume in the lab (Figure. 3.2(a)). The total 

(a) (b) 
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magnitude of the magnetic field was computed from the three components measured by the sensor 

(Figure. 3.2(b)). The overall plot of magnetic field magnitude indicated that there exists large 

magnetic disturbance (magnitude deviation up to 50 uT) in the lab settings.  

  

Figure 3.2 (a) The equipment settings in a typical motion lab; (b) The total magnitude of magnetic field 
measured by two IMUs in the motion lab. Red line represents the IMU on the shoulder, blue line represents 

the IMU on the foot 

 

3.2.2 Experiment design 

The inertial sensors were commonly placed on the body locations like sternum, pelvis and 

knee etc (Aminian, Najafi, Bula, Leyvraz, & Robert, 2002; Bolink et al., 2016; Cooper et al., 2009; 

Cuzzolin et al., 2017; Grimpampi et al., 2015; Kavanagh, Morrison, James, & Barrett, 2006; Mazza, 

Donati, McCamley, Picerno, & Cappozzo, 2012; Zijlstra, 2004).  To investigate the magnetic field 

at these specific locations, a custom-made wood bar was inserted with three wood plates for sensor 

placement at different height around knee (50 cm), pelvis (100 cm) and sternum (150 cm) (Figure. 

3.3(a)). The values of heights were set based on a standard human model (Clauser, 1969). At each 

height, the plane was evenly divided into eight grids including fifteen dots. The whole volume 

(a) (b) 
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could cover the measurement area for our regular experiment. To perform mapping, three sensors 

were simultaneously attached on the wood bar at each height during static and dynamic tests.  

For static test, the wood bar attached with three IMUs was placed on the different locations (Figure. 

3.3(b)) for 30 seconds stationary in the lab. All the sensors were fixed horizontally on the wood 

plate ensuring that its local sensor frame was manually aligned with lab frame. The static tests were 

performed three times on different days to check if the magnetic disturbances from the surroundings 

would change with time. In addition, the mid-points located between each grid point along X axis 

were found and the heading angles at each mid-point were collected for later validation of 

compensation method. In dynamic test, the wood bar with IMUs was held vertically by hand to 

slide along the X axis of the lab. The subject who held the bar was instructed to walk three times 

at two speeds: normal and slow starting at different locations (Figure 3.3(b)). When moving the 

wood bar to the other location, it is important to assure no relative motion between sensors and 

wood bar during both tests. 

To validate the heading angle, six retro-reflective single markers (10 mm in diameter) were 

placed on the wood bar where the plane at each height had two markers on the edges separately 

and three extra triads were fixed on the top of IMUs. A ten-camera stereo-photogrammetry system 

(VICON, Oxford Metrics Ltd., Oxford, UK) is used to record the motion of the IMU at sampling 

frequency 120 Hz and define the lab reference frame. As seen from Figure 3-3(b), the lab coordinate 

system consists of forward X axis, side Y axis, upward Z axis. The origin of the testing volume 

was set as the right corner point as in the Figure 3-3(b).  The sensors used here were Opal IMU 

(APDM Inc., Portland, OR, USA) that encases 3-axis accelerometer, 3-axis gyroscope and 3-axis 

magnetometer. The mass is 22 g and the dimensions are 48.4mm x 36.1 mm x 13.4 mm. Data were 

collected under Robust Synchronized Streaming Mode at sampling frequency 128 Hz. Before the 
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experiment, all the sensors were calibrated following the magnetometer calibration tutorial 

provided by the manufacturer.  

 
Figure 3.3 Mapping test set-up: left - vertical location; right - horizontal location  

3.2.3 Data analysis 

A low-pass filter with fourth-order Butterworth filter at cut-off frequency of 6 Hz was used 

to process markers position data in order to get rid of the high frequency noise. Then the same low-

pass filter with a cut-off frequency of 6 Hz was applied to IMU accelerometer data and gyroscope 

data to remove noise without losing signal integrity. Since IMU data and VICON data were 

collected at different sampling frequency, a process of synchronization was completed that IMU 

measurements was resampled to 120 Hz first and then aligned with VICON vertical acceleration 

through cross correlation function. The cross-correlation will measure similarity between IMU data 

and VICON data. The maximum cross-correlation value can be used to compute the shifted frames 

between two measurements. The absolute heading angle of lab frame X is about 43.8° relative to 

Magnetic North of Earth. 

Z X 

Y 
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The standard deviation of the heading angles at each location on different days was 

calculated to check if the consistency of magnetic field was affected by time. The static heading 

error was quantified as the average difference between mean VICON heading angle and mean IMU 

heading angle at each location, while the dynamic heading error was defined as the RMSE between 

VICON heading and IMU heading. One-way analysis of variance (ANOVA) method was applied 

to test the difference of heading errors among static tests, normal walking and slow walking and 

the deviation of heading angles on different days. Post-hoc test was then used to check the 

difference for each two groups. 

The spline interpolation method was utilized to compensate the heading angle error in the 

static test. Then the heading errors computed at the mid-points from the compensation method were 

compared with the heading errors recorded by IMU and VICON on the same location. Paired t-test 

was employed to examine the difference between compensation heading errors and real-time 

heading errors. A custom-developed MATLAB (R2017a, MathWorks Inc., Natick, MA, USA) 

code was used to perform all the data analysis. 

 

3.3 Results 

The standard deviation of heading angle at each location on different days is up to 5.63° 

which indicated that the heading angle in the testing volume was relatively consistent in the time 

domain. One-way ANOVA results showed that the standard deviation of heading angles at each 

height on different days had no significant difference (Knee: 2.54° ± 1.58°, Pelvis: 1.68° ± 0.98°, 

Sternum: 1.47° ± 1.07°).  

As seen from the 3D plot of heading angles in the lab (Figure 3-4), there were certain patterns 

of heading angles on each path along X axis during static test. Then the 2D plots of heading angles 
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on each plane exhibited the pattern clearly where the front area close to the origin of testing volume 

had less magnetic disturbances than the further side. Besides, the closer the sensor is to the ground, 

the higher heading angle errors are, which means more magnetic disturbances close to the floor. 

Table 3-1 The standard deviation of heading angles at different location among different days 
(unit: °) 

(x,y) Knee Pelvis Sternum 
(0,0) 3.10 2.28 1.93 
(0,2) 1.46 1.53 1.96 
(0,4) 2.32 1.21 1.29 
(3,0) 4.15 0.44 1.24 
(3,2) 3.17 1.23 1.44 
(3,4) 5.63 1.48 1.86 
(6,0) 4.56 0.46 1.43 
(6,2) 0.91 1.13 0.53 
(6,4) 0.00 1.63 0.10 
(9,0) 3.90 1.32 1.19 
(9,2) 3.18 3.03 4.55 
(9,4) 1.20 0.87 1.96 

(12,0) 1.53 2.89 0.50 
(12,2) 0.99 3.97 0.23 
(12,4) 2.00 1.76 2.00 
Mean 2.54 1.68 1.47 

SD 1.58 0.98 1.07 

 



51 
 

 

 
Figure 3.4 3D plot of heading angle at different height during static test where the plane is the standard 

reference heading angle, the red dot represents the heading angle at knee height, the green dot represents 
the heading angle at pelvis height and the blue dot represents the heading angle at sternum height.  

 

 

Figure 3.5 (a) The heading angle difference between IMU and VICON frame by frame during three times 
normal walking; (b) The heading angle difference between IMU and VICON frame by frame during three 

times slow walking. 

(a) (b) 
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Figure 3.6 2D plots of heading angle direction at each location on three planes (a) plane at knee height (b) 
plane at pelvis height (c) plane at sternum height  

Overall, the mean heading error in the static tests at different height were 9.46° ± 2.17° at 

knee, 5.24° ± 2.03° at pelvis and 4.20° ± 1.84° at sternum. The heading angle errors at both pelvis 

(p < 0.05) and sternum (p < 0.01) height were significantly lower than that at knee height. The 

heading error during static tests were much greater than those during dynamic tests (within 3°). In 

the dynamic tests, the mean heading errors at pelvis height were significantly higher (p < 0.05) than 

those at other two heights while the subject walking slowly. On the pelvis plane, the heading errors 

during normal walking were significantly higher (p<0.05) than those from slow walking while the 

heading errors on the knee and sternum planes had no significant different between normal walking 

(a) (b) 

(c) 

True North True North 

True North 
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and slow walking. During slow walking the scale factor at each height had high positive correlation 

(>0.75) with static heading error in the central line aligned with lab frame X while correlations 

along other two lines were not strong.   

 
Figure 3.7 The heading errors at different heights during static tests and dynamic tests 

The heading errors at validation points were compared between compensation results and 

measurement results. From Table 3-2, it is obvious that all the compensation results on three planes 

had significantly improved the accuracy of heading angles (Knee: 3.51 ° ± 1.57°, Pelvis: 2.24 ° ± 

1.85°, Sternum: 1.98 ° ± 0.69°) in comparison with the measurement results (Knee: 8.71° ± 4.49°, 

Pelvis: 4.18° ± 2.13°, Sternum: 4.50° ± 1.37°). In the measurement results from the validation 

points, the heading errors at knee height showed significantly (p < 0.01) larger than the heading 

errors at pelvis and sternum height. On the contrary, the heading errors from compensation results 

did not show any significant difference (p > 0.05) among the three planes. 
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Table 3-2 The heading errors from both measurement results and compensation results on three 
planes 

Heading Error (°) Measurement Compensation 

Knee** 8.71° ± 4.49° 3.51 ° ± 1.57° 

Pelvis** 4.18° ± 2.13° 2.24 ° ± 1.85° 

Sternum* 4.50° ± 1.37° 1.98 ° ± 1.69° 

* represents p < 0.05, ** represents p < 0.01 

 

3.4 Discussion 

This chapter proposes a simple method to compensate the heading angles during static test 

in the typical motion lab. The variation of the magnetic field (up to 10 uT) was considerable in our 

lab indicated by both measurement from magnetometer and heading angle errors (up to 30°). The 

magnetic disturbances were quantified through the errors of heading angles by a straightforward 

mapping technique. Then the heading errors of the IMUs were tested under dynamic tests evaluated 

with an external stereo-photogrammetry system.  

In a typical motion lab, it is necessary to do magnetic mapping first and then avoid some 

high magnetic disturbances spot if possible. Similarly, in a clinical setting, there are also a lot of 

ferrous equipment around which requires a detailed mapping of the magnetic disturbances before 

any tests. One study claimed that the test should start in an area with minimum magnetic 

disturbances and continue within 20 – 30 seconds in a heavily distorted area to lower the heading 

angle errors (de Vries et al., 2009). In our case, the area close to the origin of the measurement 

volume can be considered as a ‘safe’ location to initiate the test.  
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When placing IMU on the human body, the larger distance to the ground will increase the accuracy 

of heading angle during the test since a variety of construction materials in the building contains 

ferrous metal. In our study it indeed exhibited that the average heading angle errors at knee height 

(9.46° ± 2.17° ) were significantly higher than those at pelvis (5.24° ± 2.03°) and sternum (4.20° ± 

1.84°) height. This finding matches the results one of the previous studies where the homogeneity 

of the magnetic field at 180 cm was about 3° significantly lower than the heading errors 30° at 5cm 

close to the floor (de Vries et al., 2009). However, in the another study it showed that the distortions 

of heading angle at the pelvis can reach 9.8° while the maximum errors occurring at lower leg and 

foot were 4.1° and 4.3° respectively (Robert-Lachaine et al., 2017) which are totally opposite to 

our findings.  

The heading errors during static test were significantly improved by the spline interpolation 

method based on the certain pattern in our motion lab. The dynamic tests during normal walking 

and slow walking had very small heading error (within 3°) which was unexpected because the 

distortions (up to 30°) in the static tests were significantly higher in the same measurement area. 

The initial hypothesis would be that the heading errors at these pre-defined points during dynamic 

tests would exhibit similar accuracy as those from the results of static test. However, the results did 

not support the initial hypothesis. There are two main reasons related to this unexpected condition: 

one reason is the initial state of heading angles during the dynamic tests which includes little 

magnetic disturbances. The initial heading angles with minimum distortions did not quickly 

respond to the heavy magnetic disturbances when passing by each location due to the limited 

amount of time. Another reason is the convergence rate of built-in Kalman Filter in Opal IMU. The 

errors of heading estimation from will be affected by different convergence rate in the Kalman filter 

stated in the previous study (Rhudy, 2015). In our study, it is possible that the convergence rate 

was so slow that the heading angle estimated by Kalman filter could not reach the optimal state 
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which is closest to the real heading angle and simply keep the prior measurement from the initial 

state.  

In the several previous studies, they mainly focused on the modification of the Kalman 

filter algorithm to enhance the accuracy of heading angles under the surroundings of magnetic 

disturbances (Roetenberg, Luinge, Baten, & Veltink, 2005; Sabatini, 2011b; Yuan, Yu, Zhang, 

Wang, & Liu, 2015). These methods can increase the accuracy to some degree. For instance, the 

mean heading estimation errors from a quaternion-based unscented Kalman filter algorithm were 

around 10° (Yuan et al., 2015). The average static errors and dynamic errors from a complementary 

Kalman filter in the controlled magnetically disturbed area was reduced from big errors up to 40° 

to 1.4° and from 11.9° to 2.6° respectively (Roetenberg et al., 2005). These results greatly varied 

from our measurements due to the different conditions of magnetic field. In addition, the 

complicated magnetic field in the real environment is extremely different with the controlled 

conditions performed in the previous studies. It is difficult to justify that the same algorithm with 

certain assumptions under controlled conditions will also work in the environment of a typical 

motion lab.  

The future study can perform more kinds of dynamic tests which may present totally 

different results of heading errors, instead of only analyzing the walking test. It may improve the 

accuracy of compensation results if the process of mapping can be divided into more grids along X 

direction and more planes along Z direction for additional measurements. More subjects can be 

recruited to do the dynamic tests since the walking speed will affect the heading angle errors.  

In conclusion, it is essential to map the magnetic field in the test area before experiment. 

When performing a test with inertial sensors, make sure it starts in an undisturbed field. The 

compensation methods can improve the accuracy of heading angles in the static test. The heading 

estimation errors from static tests are larger than that of dynamic test. Since the sensor placement 
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will influence the heading angles, it is recommended that placing the IMUs away from the floor is 

better option. 
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CHAPTER 4: OPTIMAL CONFIGURATION 
 
 
4.1 Background 

Parkinson’s disease (PD) is a type of chronic disease with progressive neurodegenerative 

disorder that affects the patient’s movement. It often occurs among people around age 60 or older, 

especially in the men’s group (Mayo Clinic, 2018). There are many symptoms related to this disease 

including tremor in a limb or hand, bradykinesia (slow movement), rigid muscle, impaired posture 

and balance (Zago et al., 2018). In the United States, every year about 60,000 people are diagnosed 

with PD and approximately one million people will live with PD by 2020 (Parkinson's Foundation, 

2018). A report in 2005 stated that the number of patients with PD over age 50 was around 4.1 - 

4.6 million from five Western Europe countries and ten most populated countries in the world 

(about two thirds of the world population). By 2030, the number of PD population will reach 8.7 - 

9.3 million (Dorsey et al., 2007). Since those symptoms of PD may cause potential falls to the 

patients, it is necessary to monitor their movement and assess the risk of falling for the PD group.  

With the development of MEMS technology, many studies investigated the monitoring and 

diagnosis of PD symptoms and evaluate the patients’ mobility in various activities with wearable 

sensors (Godinho et al., 2016; Kleiner et al., 2018; Mancini, Priest, Nutt, & Horak, 2012; Zago et 

al., 2018). The wearable sensors are recommended to be used in a lot of clinical applications owing 

to its portability, low-cost and easy implementation. Three wearable sensors positioned on the low 

back close to body center mass and both anterior shank succeeded to differentiate the freezing of 

gait between healthy subjects and PD patients by analyzing the frequency ratio from the anterior-

posterior (AP) shank acceleration signals (Mancini et al., 2012). A common mobility test – Timed 

Up and Go (TUG) was carried out on thirty subjects with PD wearing portable IMUs which showed 

excellent reliability, accuracy and precision in quantifying the TUG duration (Kleiner et al., 2018). 
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Recently, a new study looked into the agreement of spatiotemporal gait parameters computed with 

both optical motion capture system and IMUs simultaneously in the PD patients through comparing 

eight parameters. It claimed that commercial IMUs needs further improvement on the accuracy of 

embedded algorithms to be applied for gait analysis in the population of subjects with PD (Zago et 

al., 2018). However, the inaccuracy arose caused by not only the insufficient accuracy of algorithms 

but also the selection of output parameters and activities. A proper choice of parameters and 

activities will definitely affect the accuracy and reliability of IMU output.  

A company named Ambulatory Parkinson’s Disease Monitoring (APDM) mainly 

concentrated on the development of gait and balance analysis system for PD patients. The system 

consists of up to six inertial sensors which are recommended to be attached on various locations, 

but without any reference related to the selection of output variables and activities. Except this type 

of specific wearable sensor in clinical application, many other devices with built-in inertial sensors 

like Apple watch and Fitbit are in the market, primarily for the home use. All these IMU-based 

systems in the home settings usually adopts single sensor which can only provide limited number 

of parameters and reduced accuracy and precision (Zago et al., 2018).  

So far, only two studies have explored the topic of wearable sensor configurations mainly 

focusing on the sensor positioning (Bo et al., 2015; Carcreff et al., 2018). One study investigated 

the optimal IMU placement on the spine using the RMSE between IMU and optoelectronic system 

to determine when standing, walking and running (Bo et al., 2015); The other study examined the 

spatiotemporal gait parameters measured by wearable sensors at three different locations on the 

lower extremity among children with cerebral palsy to evaluate the measurement performances and 

determine the optimal configuration of sensor positioning (Carcreff et al., 2018). However, it is still 

unknown to the researchers how to choose the optimal sensor configurations on the whole body for 

the diversified subjects. Nowadays, with the wide use of Artificial Intelligence algorithms, some 
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studies have applied classification algorithms on the investigation of the best sensor location on the 

human body in the fall detection (Bourke, O'Brien, & Lyons, 2007; Bourke et al., 2010; Kangas, 

Konttila, Lindgren, Winblad, & Jamsa, 2008; Ozdemir, 2016; Ozdemir & Barshan, 2014; Yuwono, 

Moulton, Su, Celler, & Nguyen, 2012). However, there were conflicts among some reports where 

two reports stated that waist is the best location to detect falling due to its closest distance to center 

of gravity (Bourke et al., 2010; Ozdemir, 2016) while other reports claimed that chest or head place 

is better (Bourke et al., 2007; Kangas et al., 2008). Several studies concluded that arms or legs are 

not suitable segments of the human body to carry wearable sensors to predict fall risk since these 

segments are associated with higher accelerations (Bianchi, Redmond, Narayanan, Cerutti, & 

Lovell, 2010; Kangas, Konttila, Winblad, & Jamsa, 2007). Most of the studies associated with 

classification algorithms commonly extracted some features like maximum value, minimum value 

and mean value directly from the raw signal (Bourke et al., 2010; Ozdemir, 2016; Yuwono et al., 

2012). From the point biomechanics of views, it will be more meaningful to compute more features 

like step time, body tilted angle, and step length which can directly exhibit the motion of human 

body. 

The goal of this chapter is to explore the various combinations of sensor configurations and 

figure out the optimal configuration for the monitoring and diagnosis of PD. A machine learning 

algorithm will be utilized in this chapter to assist to evaluate the performance in the final decision-

making.  
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4.2 Method 

4.2.1 Experimental protocol 

Eighteen subjects including six female and twelve male were recruited. All the subjects 

were divided into three groups: six young healthy subjects (height: 1.59 ± 0.71 m, weight: 67.41 ± 

14.94 kg), six old healthy subject (height: 1.56 ± 0.65 m, weight: 87.41 ± 14.23 kg) and six old 

patients with PD (height: 1.58 ± 0.94 m, weight: 83.41 ± 8.41 kg). All the healthy subjects had no 

history of functional disorders or postural control problems. The patients with PD should have the 

ability to perform daily activities like walking and standing without any external assistance from 

other people. Patients walking with a cane or other type of assistive device could still be considered 

as potential subjects. An IRB protocol was approved related to this study and all the subjects were 

required to sign an informed consent form before testing.  

According to some previous studies, the inertial sensors were commonly placed on the 

body locations like sternum, low back, wrist and foot etc (Aminian et al., 2002; Bolink et al., 2016; 

Cooper et al., 2009; Cuzzolin et al., 2017; Grimpampi et al., 2015; Kavanagh et al., 2006; Mazza 

et al., 2012; Zijlstra, 2004). In this study, six IMUs were placed on the both wrist, both ankle, low 

back and sternum respectively for all the subjects. On the top of each IMU, a single triad were 

attached for the validation of sensor motion. In addition, fourteen retro-reflective single markers 

(diameter 10 mm) were placed on the human body including four on the pelvis, four on both sides 

of the knee, eight on both sides of the foot (Figure 4.1(b)). All the subjects were asked to perform 

a static T-pose test before the experiment. Then the subjects were instructed to perform one of 

commonly used tests – walking. Each gait section was performed four times by the subjects with 

normal walking speed. For the safety issues, a metal frame with safety harness attached on was 

built to protect the subjects from falling down.  
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Here, the sensor configuration is defined as the sensor placement on the human body. As 

there are six sensors placed on the body, the combinations of sensor configurations can reach up to 

63 possible options in theory. In this study, only 15 combinations out of 63 options were analyzed 

according to the feature of test and the symmetry of the segment. The following table (Table 4-1) 

showed the different combinations of sensor configurations for different tests. The wrist and shank 

locations both include two sensors on the left and right side of body.    

Table 4-1 Combinations of sensor locations on the human body during walking. A – chest, B – 
low back, C – wrist, D – shank. COMB is combinations. 

# Chest Low Back Wrist Shank COMB 
1 1 0 0 0 A 
2 0 1 0 0 B 
3 0 0 1 0 C 
4 0 0 0 1 D 
5 1 1 0 0 AB 
6 1 0 1 0 AC 
7 1 0 0 1 AD 
8 0 1 1 0 BC 
9 0 1 0 1 BD 

10 0 0 1 1 CD 
11 1 1 1 0 ABC 
12 1 0 1 1 ACD 
13 1 1 0 1 ABD 
14 0 1 1 1 BCD 
15 1 1 1 1 ABCD 

0 represents not used, 1 represents used. 
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Figure 4.1 (a) Static T-pose before the test (b) whole marker set on the human body 

 

(a) 

(b) 
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A ten-camera stereo-photogrammetry system (VICON, Oxford Metrics Ltd., Oxford, UK) 

is used at sampling frequency 120 Hz to monitor the trajectory of markers as a golden standard 

reference system. The sensors used here were Opal IMU (APDM Inc., Portland, OR, USA) that 

encases 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer. The mass is 22 g and the 

dimensions are 48.4mm x 36.1 mm x 13.4 mm. Data were collected under Robust Synchronized 

Streaming Mode at sampling frequency 128 Hz. 

 

4.2.2 Data analysis 

Data analysis was split into three steps: preprocessing, feature extraction and classification. 

To compare the sensors from different body segments and different subjects, it is necessary to 

preprocess the accelerations, angular velocities and angles. A low-pass filter with fourth-order 

Butterworth filter at cut-off frequency of 6 Hz was applied on the raw acceleration and angular 

velocity. Then all the sensor signals were transformed to the global coordinate frame with X – 

forward direction, Y – pointing to the left, Z – pointing up initially. After transformation into the 

global frame, the gravitational accelerations were subtracted from the vertical accelerations. A 

custom-developed MATLAB (R2017a, MathWorks Inc., Natick, MA, USA) code was used to 

perform all the data analysis. 

For walking test, the maximum, minimum, mean and variance values of accelerations, 

angular velocities and angles from all sensors were extracted. The step time was computed by 

locating the key frame at peak on the shank angular velocity in the sagittal plane. The asymmetrical 

ratio of step time, arm swing angular velocity and leg swing angular velocity were calculated from 

the following equation (Yogev, Plotnik, Peretz, Giladi, & Hausdorff, 2007). 

                            Gait asymmetry = 100 * |right parameter/left parameter|                               (4-1) 
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With fifteen combinations of sensor configurations, three types of machine learning 

techniques were used to differentiate the three groups. Accuracy, sensitivity and specificity were 

utilized to evaluate the performances of machine techniques. To determine the performance 

parameters, four possibilities need to be considered in a confusion matrix. The first one is the true 

positive (TP) where the classification technique shows the occurrence of PD matching the actual 

result that the subject is real PD. Second case is the true negative (TN) when a subject is healthy 

and the algorithm does not show the disease. TP and TN are true decision given by the 

classification. Then the false decisions given by algorithms are false positive (FP) and false 

negative (FN). FP, known as ‘Type I error’, refers to the case that the subject does not have PD but 

the algorithm predicts that the subject has PD while FN , ‘known as Type II error’, refers to the 

reversed condition of FP which is the most dangerous and unwanted case.  

The performance parameters can be formulated using the definitions above. Accuracy 

measures how well the algorithm predicts the TP and TN overall.  

                                                  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

∗ 100                                           (4-2) 

Sensitivity measures the proportion of positives that when the subject is PD, the classifier 

also grouped this subject into PD group. This is an important parameter to evaluate the performance 

of a model for diagnosis of PD which indicates how well the classifier predicts the PD.  

                                                  𝑆𝑆𝐻𝐻𝐻𝐻𝑆𝑆𝐻𝐻𝑡𝑡𝐻𝐻𝑆𝑆𝐻𝐻𝑡𝑡𝐴𝐴 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

∗ 100                                                     (4-3) 

Specificity measures the proportion of negatives that are correctly identified as healthy 

group. It refers to the ability of correctly identify healthy people and indicates how well the 

algorithm predicts the healthy group. 

                                                       𝑆𝑆𝑆𝑆𝐻𝐻𝐴𝐴𝐻𝐻𝑓𝑓𝐻𝐻𝐴𝐴𝐻𝐻𝑡𝑡𝐴𝐴 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

∗ 100                                               (4-4) 
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A good classifier is expected to provide high accuracy, sensitivity and specificity. For the 

specific case related to diagnosis of PD, the success of the algorithm relies on the frequency of FN 

decisions mostly. A missed diagnosis of PD, FN, is a serious mistake for the model. Meanwhile, a 

false diagnosis of healthy people, FP, should be avoided in the algorithm since it may cause many 

troubles to the users. For an ideal classifier in this study, FP and FN are expected to be 0. There is 

always a tradeoff between sensitivity and specificity for any classification algorithm.  

Due to the limited number of subjects, the training data set from the formulation of the 

decision rule was used to estimate the classifier error which is known as re-substitution. In general, 

the re-substitution may introduce bias and provide optimistic results. The reason using re-

substitution in this study is that the main goal is to use the classification performance from the 

various sensor configurations to determine the optimal sensor configuration.  

Three different machine learning techniques including k-Nearest Neighbor (KNN) 

Classifier, Naïve Bayesian (NB) Classifier, and Random Forest (RF) were used to classify the 

subjects into three groups based on various sensor configurations. Each algorithm will be briefly 

introduced in the following part. 

As one of the simplest methods in machine learning, KNN algorithm is basically used to 

classify the most similar data points in the training dataset (Duda, 2001). The nearest neighbor k (k 

> 0) which is a user-defined value is the most important parameter to make decision of the classes 

through the majority voting. A proper k value should be defined specifically for the specific 

problem since the KNN algorithm is sensitive to the composition of local dataset. The bias will be 

increased with the increasing of k value but the sensitivity will be reduced. A smaller k value 

provides less stable results with the increasing of the variance. Therefore, the choice of k value is 

quite essential in the KNN method. Here, k was set as 3 after trying the k values in the range from 

1 to 10. 
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NB algorithm is a probabilistic classifier using maximum likelihood in the Bayesian 

settings (Duda, 2001). The likelihood in NB is defined by the normal density discriminant function. 

The class decision is made by using the maximum likelihood indexes for the given test vector. 

There are two main parameters for each class in the function: one is the mean of the training vectors, 

the other is the covariance matrix of training vectors.  

RF algorithm is a popular ensemble method to build predictive models for both 

classification and regression problems. It uses multiple learning models to gain better results where 

the algorithm consists of an entire forest of random uncorrelated decision trees. A random subset 

of features are considered in each decision tree in the forest which will increase the diversity in the 

forest leading to more robust predictions overall. In this study, the max depth for all trees was set 

as 3 in the forest and the number of trees was set as 20.  

4.3 Results & Discussion 

The following three tables (Table 4-2, 4-3, 4-4) presented the classification performance 

of three machine learning algorithms based on sensor combinations. Overall, KNN shows the 

lowest average sensitivity (57.78%), specificity (74.29%) and accuracy (68.52%) compared to the 

results of NB (average sensitivity – 96.67%, specificity – 89.44% and accuracy – 80.37%) and RF 

(average sensitivity – 86.67%, specificity – 94.24% and accuracy – 87.41%). The best classification 

results (sensitivity – 100%, specificity – 100% and accuracy – 100%) among all the sensor 

combinations under three algorithms is achieved with the sensor combination of chest, wrist and 

shank using NB algorithm. As mentioned above, higher sensitivity is better choice for this study. 

Among three algorithms, NB algorithm will be recommended to the similar study in the future.  

In the results of KNN algorithm, the best accuracy (77.78%) is achieved by using single 

sensor on the chest meanwhile the specificity (91.67%) from single chest sensor is highest among 
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all the combinations. When the features of all six sensors are used for classification, the KNN 

algorithm gives 72.22% accuracy. The single sensor on the low back and two sensors on both wrist 

provides the highest sensitivity (66.67%) as that from the seven different sensor combinations, 

which are chest_lowback, chest_shank, wrist_shank, chest_wrist_shank, chest_lowback_shank, 

lowback_wrist_shank and all sensor included. The phenomenon proves that the increasing of 

number of sensors does not guarantee the best classification results. The lowest sensitivity (16.67%) 

is given by sensor combination of low back and wrist.  

Table 4-2 The classification performances of KNN based on fifteen combinations of sensor 
configurations. A – Chest, B – Low Back, C – Wrist, D – Shank, COM - Combination. 

COMB Sensitivity Specificity Accuracy 

A 50.00 91.67 77.78 

B 66.67 72.73 66.67 

C 50.00 75.00 66.67 

D 66.67 66.67 66.67 

AB 66.67 66.67 66.67 

AC 50.00 83.33 72.22 

AD 66.67 75.00 72.22 

BC 16.67 75.00 55.56 

BD 50.00 66.67 61.11 

CD 66.67 75.00 72.22 

ABC 50.00 83.33 72.22 

ACD 66.67 75.00 72.22 

ABD 66.67 66.67 66.67 

BCD 66.67 66.67 66.67 

ABCD 66.67 75.00 72.22 
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The performances of NB algorithm are promising and satisfactory. When six sensors are 

used in the calculation, NB produces good results with 100% sensitivity, 100% specificity and 

94.44% accuracy, however, the best sensor combination is chest_wrist_shank giving all 100% for 

three evaluation parameters. When each single sensor combination is examined, it is clear that chest 

sensor, labeled as A, gives alone the best sensitivity (100%), specificity (91.67%) and accuracy 

(94.44%) with NB algorithm. Twelve out of fifteen total sensor combinations reaches the highest 

sensitivity (100%) with NB algorithm which will be quite useful for diagnosis of PD in the future. 

The lowest sensitivity (83.33%) from NB algorithm is even higher than that (66.67%) from KNN 

algorithm. Two individual sensor combination wrist and shank produces the lowest sensitivity 

respectively. 

Table 4-3 The performances of NB based on fifteen combinations of sensor configurations. A – 
Chest, B – Low Back, C – Wrist, D – Shank. 

COMB Sensitivity Specificity Accuracy 

A 100.00 91.67 94.44 

B 100.00 33.33 38.89 

C 83.33 83.33 83.33 

D 83.33 77.78 66.67 

AB 100.00 100.00 66.67 

AC 100.00 91.67 94.44 

AD 100.00 91.67 94.44 

BC 100.00 88.89 77.78 

BD 100.00 100.00 61.11 

CD 83.33 83.33 83.33 

ABC 100.00 100.00 88.89 

ACD 100.00 100.00 100.00 

ABD 100.00 100.00 72.22 

BCD 100.00 100.00 88.89 

ABCD 100.00 100.00 94.44 
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RF produces 100% sensitivity, 100% specificity and 94.44% accuracy with all sensors used 

in the classification process which is the same as NB. The best accuracy (94.44%) is achieved by 

four different sensor combinations which all includes chest sensor and shank sensor. The chest 

sensor gives the best classification results (100% sensitivity, 90.91% specificity and 88.89% 

accuracy) among four individual sensor location while low back sensor alone produces the worst 

classification performances (50% sensitivity, 83.33% specificity and 72.22% accuracy).  

Table 4-4 The performances of RF based on fifteen combinations of sensor configurations. A – 
Chest, B – Low Back, C – Wrist, D – Shank. (unit : %) 

COMB Sensitivity Specificity Accuracy 

A 100.00 90.91 88.89 

B 50.00 83.33 72.22 

C 83.33 100.00 83.33 

D 100.00 83.33 88.89 

AB 100.00 90.91 88.89 

AC 100.00 100.00 94.44 

AD 100.00 90.91 88.89 

BC 66.67 100.00 88.89 

BD 50.00 83.33 72.22 

CD 83.33 100.00 83.33 

ABC 100.00 100.00 94.44 

ACD 100.00 100.00 94.44 

ABD 100.00 90.91 88.89 

BCD 66.67 100.00 88.89 

ABCD 100.00 100.00 94.44 
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The best result among double, triple and quadruple sensor configurations are 66.67% 

sensitivity, 75.00% specificity and 72.22% accuracy for KNN where four different combinations 

all including shank sensor achieve this result. Then all 100% for sensitivity, specificity and 

accuracy is achieved by ‘ACD’ combination under NB. The sensor combinations containing chest 

and shank gives the best results (100% sensitivity, 100% specificity and 94.44% accuracy) using 

RF algorithm.  

Overall, the best performance (100% sensitivity, 91.67% specificity and 94.44% accuracy) 

of single sensor combination is produced by the chest sensor using NB algorithm. Table 4-5 

summarizes the average sensitivity, specificity and accuracy of each single sensor combination for 

three machine learning techniques. It is clearly seen that chest sensor has the best average 

classification performance (83.33% sensitivity, 91.41% specificity and 87.04% accuracy) while the 

low back sensor produces the worst classification results (72.22% sensitivity, 63.13% specificity 

and 59.26% accuracy). The reason for this performance is because low back does not produce much 

movement relative to the whole trunk which is not affected much by interpersonal differences in 

the body movement of the subjects while the position of chest sensor varies depending on the 

subjects’ gender, posture and body shape which causes an increase of interpersonal differences and 

directly increases the classification performances of differentiating the PD patients. 

Table 4-5 The average sensitivity, specificity and accuracy of three machine learning techniques 
at each individual sensor location (unit: %) 

Location Sensitivity Specificity Accuracy 

Chest 83.33 91.41 87.04 

Low back 72.22 63.13 59.26 

Wrist 72.22 86.11 77.78 

Shank 83.33 75.93 74.07 
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The overall results proved that it is possible to gain very high accuracy with single sensor 

configuration. The classification performance and the number and location of sensor units does not 

show any strong relationship since the accuracy is not improved apparently with the increasing of 

the number of sensors.  

Compared to the previous study, one report about the sensitivity analysis of sensor location 

claimed that the best results were obtained with the knee range of motion using four IMUs placed 

on the shank and thigh bilaterally and range of motion (ROM) appeared as a key contributor for 

the classification accuracy. Besides, this study also declared that the increasing number of sensors 

does not determine a direct increase in classification accuracy which matches the findings in our 

study (Caramia, Bernabucci, D'Anna, De Marchis, & Schmid, 2017).  

 There are several limitations of this study. The features were all extracted from the 

processed data, thus inherently compressing the information coming from raw data. Excluding the 

feature set from raw data may hide possible effects at different level since the whole feature set was 

quite ample. The classification performance in this study was related to re-substitution error which 

is overestimated compared to the true error, even though it could be still used to differentiate the 

PD patients. To solve this issue, more subjects need to be recruited and more activities need to be 

performed for future study so that the data set can be divided as training data and test data for cross 

validation. In the future, it is necessary to include the different extracted parameters combining 

with different sensor configurations to comprehensively investigate the diagnosis of PD patients. It 

is still one of the great research challenges to find the optimal balance among sensor locations, 

number of sensors, test activities and specific computed parameters in wearable sensors for clinical 

applications. Last but not least, the PD patients can be assigned to different stages which shows 

different motion feature. It is essential to classify the PD patients into different stages for more 

accurate diagnosis. 
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4.4 Conclusion 

This study has shown that the ability of wearable sensors based on gait features can assist 

to discriminate the patients with PD from the young healthy and old healthy individuals depending 

on the number and location of sensors placed on the human body. The classification accuracies are 

not directly affected by the increasing number of sensors. The optimal sensor configuration was 

achieved by the sensors placed on chest, wrist and shank together. A single sensor configuration 

can also produce very high accuracy like the chest sensor. The choice of machine learning 

techniques did have influence on the final classification performances. Here, the Naïve Bayesian 

algorithm was recommended to differentiate the PD patients.  

 It is possible for the clinicians to choose the features and the sensor placement to define 

the gait-related manifestations, not specifically for PD patients, when referring to the research of 

this study. The use of wearable sensors for motion capture has represented a big step towards the 

digital monitoring process in a variety of clinical applications. Integrated with advanced machine 

learning techniques, the wearable sensors may move the clinical application closer to the 

decentralization of diagnostic decisions as well. 
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CHAPTER 5: FALL RISK ASSESSMENT 
 
 
5.1 Feasibility of single IMU during walking 

5.1.1 Introduction 

Gait is one of most common and highly demanding movement in daily life. Patients with 

some postural control diseases and traumatic injuries, like Parkinson’s disease and trauma brain 

injury, may have gait disorders. Features of various pathological gait can be used for diagnosis of 

injury/diseases, assessing treatment outcomes, and designing rehabilitation protocols. Gait analysis 

is also used for assessing balance system and risk levels for fall (Bergamini et al., 2014). Thus, gait 

analysis plays an important role in clinical study and biomechanics research. Optoelectronic motion 

capture systems using stereo-photogrammetry are widely used in gait analysis  (Bergamini et al., 

2014; Bolink et al., 2016; Buckley, Galna, Rochester, & Mazza, 2017; Cuzzolin et al., 2017; Esser 

et al., 2009; Gonzalez, Lopez, Rodriguez-Uria, Alvarez, & Alvarez, 2010). Unfortunately, these 

systems are expensive and have limited use in non-lab setting environment. A gait laboratory often 

needs a large space, a skilled biomechanist, and not accessible to many clinicians.  

With rapid development of MEMS, sensors are becoming cheaper, lighter and smaller. 

These advantages bring inertial sensors – one of the most important members of MEMS to human 

motion analysis field. Inertial sensors including accelerometer, gyroscope and magnetometer are 

usually combined as IMU. Compared to complex and expensive camera-based motion capture 

system, IMUs are low-cost and often can be used in an office or a hallway. IMUs have obvious 

advantages for monitoring outdoor activity and tracking a body movement for a much longer period 

(hours, even days). Many researchers placed single IMU on the lower trunk where is close to center 

of mass of whole body to quantify the gait movements (Bergamini et al., 2014; Bolink et al., 2016; 

Buckley et al., 2017; Cuzzolin et al., 2017; Esser et al., 2009; Gonzalez et al., 2010; Grimpampi, 
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Bonnet, Taviani, & Mazza, 2013; Henriksen, Lund, Moe-Nilssen, Bliddal, & Danneskiod-Samsoe, 

2004; Johnston, Patterson, O'Mahony, & Caulfield, 2016; Kavanagh, Barrett, & Morrison, 2004; 

Kavanagh et al., 2006; Kose, Cereatti, & Della Croce, 2012; Luinge & Veltink, 2005a; Trojaniello, 

Ravaschio, Hausdorff, & Cereatti, 2015b; Zijlstra, 2004) and distinguish healthy people and 

patients with movement dysfunction (Cuzzolin et al., 2017; Grimpampi et al., 2013; Parisi et al., 

2016; Trojaniello et al., 2015b; Yang, Zhang, Novak, Brouwer, & Li, 2013). Meanwhile, other 

IMU placement locations were also popular in the gait analysis especially on the lower limb which 

can easily provide step length, cadence, speed etc (Bolink et al., 2016; P. Esser, Dawes, Collett, 

Feltham, & Howells, 2012; Grimpampi et al., 2013; Johnston et al., 2016; Kavanagh et al., 2006; 

Kose et al., 2012; McCamley, Donati, Grimpampi, & Mazza, 2012; Moon et al., 2017; Sabatini & 

Mannini, 2016; Zijlstra & Hof, 2003).  However, only a few studies carried out gait analysis with 

IMU put on the upper body like sternum (Keijsers et al., 2006; Luinge & Veltink, 2005a; Tanaka 

et al., 2004). In the study of Tanaka, S. et al., they placed three IMUs on the shank, thigh and 

sternum during gait, nevertheless walking speed was computed only from lower limb IMUs. 

Gyroscopes and accelerometers on the pelvis and trunk were used by Luinge et al. to measure 

orientation of human body compared with optokinetic system which is only limited to orientation 

measurement (Luinge & Veltink, 2005a). Keijsers et al. put multiple accelerometers on the body 

including one sensor on the sternum to distinguish on and off states for patients with Parkinson’s 

disease rated by a trained observer (Keijsers et al., 2006).  

The aim of this paper is to investigate the feasibility of single IMU on the sternum during 

gait validated with reference system for assessing movement of patients with dysfunctional motion 

and healthy people. It is also necessary to understand what kind of meaningful information can be 

provided by single IMU on the sternum in walking.  
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Table 5-1 Description of some representative studies with IMU in gait analysis 

Study Subject
s Sensor Type 

Sensor 
Locatio

n 

Samplin
g rate 
(Hz) 

Gold 
Standard 

Estimated 
Parameters 

Zijlstra,W 
(Zijlstra & 
Hof, 2003) 

25 
healthy 

tri-axial 
Acceleromete

r 

dorsal 
pelvis 100 Force Plates step time; 

step length 

McCamley,J 
(McCamley, 

Donati, 
Grimpampi, 
& Mazza, 

2012) 

18 
healthy IMU 

lower 
lumbar 
spine 

100 Instrumente
d mat step time 

Esser,P 
(Esser, 
Dawes, 
Collett, 

Feltham, & 
Howells, 

2012) 

10 PD IMU L4 100 SP system 

step time; 
stride 

length; 
vertical 

velocity and 
displacemen

t 
Grimpampi,

E 
(Grimpampi 
et al., 2013) 

13 
Stroke, 
11 PD 

IMU 
lower 

lumbar 
spine 

100 SP system pelvic 
angles 

 

5.1.2 Method 

Ten subjects (eight males and two females) were recruited in this study, including five 

control subjects and five patients (after orthopedic surgery on the ankle) with a mean age of 32.3 ± 

8.9 years, height of 67.9 ± 3.7 inch, and body mass of 170.4 ± 31 lbs. The protocol was approved 

by IRB and all subjects gave their informed consent.  

After attaching an IMU (Opal, APDM Inc., Portland, OR, USA) above their sternum 

through elastic straps, subjects were required to perform static T-pose trial with their upper-body 

straight upward for three seconds. Participants were then instructed to complete three-meter 

walking wearing single IMU on the sternum at self-selected speed as they normally do. Two level 
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walking trials were recorded. Between walking trials, subjects were asked to pause for three 

seconds.  

The IMU that encases 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer 

weighted 22 g and is 48.4mm x 36.1 mm x 13.4 mm in dimension. Data were collected at sampling 

frequency 128 Hz. A ten-camera stereo-photogrammetry tracking system (VICON, Oxford Metrics 

Ltd., Oxford, UK) was used as reference system to validate the accuracy of IMU sensor for 

monitoring gait. Five single spherical retro-reflective markers and one triad attached on IMU on 

the upper trunk (Figure 5.1). VICON motion data were collected at 120 Hz.  

 
Figure 5.1 IMU placed on the sternum with triad attached to it and other markers on the upper body 

Markers position data was low-pass filtered with fourth-order Butterworth filter at cut-off 

frequency of 6 Hz. Then the same low-pass filtering with an optimal cut-off frequency for each 

individual determined by a residual analysis was applied to IMU accelerometer data and gyroscope 

data to remove noise without losing signal integrity. Since IMU data and VICON data were 

collected at different sampling frequency, synchronization processing was performed by 

resampling IMU data at 120 Hz and aligning with VICON data through cross correlation. To 

compare IMU data with VICON data, all the data should be transformed into the same reference 

frame. For VICON data, a least root mean square method (Spoor & Veldpaus, 1980) was carried 

out to determine trunk orientation from markers’ positions. For IMU data, the IMU local frame was 
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set to align with that of VICON. With magnetometer in the Opal IMU, it provides quaternion data 

‘q’ of orientation in the earth magnetic coordinate system (EMS) with built-in Kalman filter 

reducing orientation error. To reset the initial orientation to zero,  

                                                                        𝑞𝑞𝑖𝑖𝑛𝑛𝑖𝑖 = 𝑞𝑞𝑗𝑗 ∗  𝑞𝑞0′                                                      (5-1) 

𝑞𝑞0′  is the conjugate of initial quaternion at T-pose and 𝑞𝑞𝑗𝑗  is the quaternion of each frame. 𝑞𝑞𝑖𝑖𝑛𝑛𝑖𝑖 is the 

initialized quaternion through quaternion product. To convert quaternion to Tait-Bryan angles 

(second type of Euler angles) directly, a certain rotation sequence ‘Z-Y-X’ was set for the 

conversion. All the gyroscope and accelerometer data were converted to EMS through the 

quaternion first.  

                                                            𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸 = 𝑞𝑞𝑗𝑗 ∗  𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗 ∗ 𝑞𝑞𝑗𝑗′                                                (5-2) 

                                                        𝐴𝐴𝐻𝐻𝑔𝑔𝐴𝐴𝐻𝐻𝐴𝐴𝐸𝐸 = 𝑞𝑞𝑗𝑗 ∗  𝐴𝐴𝐻𝐻𝑔𝑔𝐴𝐴𝐻𝐻𝐴𝐴𝑗𝑗 ∗ 𝑞𝑞𝑗𝑗′                                           (5-3) 

𝑞𝑞𝑗𝑗 is the same as that in the previous equation and 𝑞𝑞𝑗𝑗′  is the conjugate of 𝑞𝑞𝑗𝑗from the sensor fusion. 

𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗 and 𝐴𝐴𝐻𝐻𝑔𝑔𝐴𝐴𝐻𝐻𝐴𝐴𝑗𝑗 are the local acceleration and angular velocity from IMU. 𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸 and 𝐴𝐴𝐻𝐻𝑔𝑔𝐴𝐴𝐻𝐻𝐴𝐴𝐸𝐸  

are the acceleration and angular velocity in the EMS. Then the transformation matrix was applied 

to transform all data to the same global lab coordinate system (GLS) of VICON. The transformation 

matrix ‘R’ was created through the fixed rotation angle ‘α’ (about 43 deg in our lab) between earth 

magnetic coordinate and VICON lab coordinate. 𝐴𝐴𝐴𝐴𝐴𝐴𝐺𝐺  and 𝐴𝐴𝐻𝐻𝑔𝑔𝐴𝐴𝐻𝐻𝐴𝐴𝐺𝐺  are the acceleration and 

angular velocity in the GLS in the following equations. 

                                                          𝑅𝑅 = �
cos𝛼𝛼 − sin𝛼𝛼 0
sin𝛼𝛼 cos𝛼𝛼 0

0 0 1
�                                                 (5-4) 

                                                                 𝐴𝐴𝐴𝐴𝐴𝐴𝐺𝐺 = 𝑅𝑅 ∗  𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸                                                     (5-5) 
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                                                              𝐴𝐴𝐻𝐻𝑔𝑔𝐴𝐴𝐻𝐻𝐴𝐴𝐺𝐺 = 𝑅𝑅 ∗  𝐴𝐴𝐻𝐻𝑔𝑔𝐴𝐴𝐻𝐻𝐴𝐴𝐸𝐸                                             (5-6) 

To evaluate the feasibility of single IMU on the chest, VICON measurement of the sensor 

from three markers attached to it was set as reference data. Two methods were used to calculate 

angles from IMU consisting of direct integration of 𝐴𝐴𝐻𝐻𝑔𝑔𝐴𝐴𝐻𝐻𝐴𝐴𝐺𝐺  (IMU_INT) and direct quaternion 

jq  to Euler angles (IMU_Quat). Acceleration (𝐴𝐴𝐴𝐴𝐴𝐴𝐺𝐺) were integrated twice to obtain position for 

IMU measurements in three directions. Since the integration error increases proportionally with 

time (Maklouf, 2014), a simple ‘detrend’ function (MATLAB, The Mathworks Inc., Natick, MA, 

USA) was added to remove the linear drift after integration. 

From the acceleration data, peak-to-peak vertical acceleration (P2P_VA) and step time 

were calculated. P2P_VA was the average of the ranges from positive peaks to successive negative 

peaks. Step time of IMU was defined as the time between two consecutive peaks of vertical 

acceleration (McCamley et al., 2012). The precision and accuracy of IMU on the basis of VICON 

measurements was represented with RMSE and average of absolute value of difference 

(Mean_diff) (Taylor, Miller, & Kaufman, 2017). Also, the consistency between IMU and VICON 

was expressed by the correlation coefficient (r). Bland-Altman plots were applied to show the 

agreement of step time and P2P_VA between two systems. Paired t-test was used to assess the 

difference of two systems. All the data analysis was performed using our custom MATLAB codes 

(The Mathworks Inc., Natick, MA, USA). 

 

5.1.3 Results 

Overall, IMU_Quat angles have high accuracy (all within 1.64° ± 1.70°) and precision (all 

within 1.98° ± 0.98°) about three directions. However, yaw angles from IMU_INT have larger error 

and difference (11.89° ± 3.59° and 10.07° ± 3.01°) with reference data while roll and pitch angles 
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show better precision and accuracy (both within 2.54° ± 1.69°). Average correlation coefficient 

indicates that angles from IMU_Quat display higher consistency than that of IMU_INT in all the 

directions. Among three directions of IMU_Quat angle, yaw angle exhibits highest consistency 

with reference data (Table 5-2).  

In the Anterior-posterior (AP) and Medial-Lateral (ML) direction, the IMU acceleration, 

velocities and displacement had greater error and differences than those in the vertical (V) direction. 

Besides, the average correlation coefficient of the IMU acceleration, velocities and displacement 

in vertical direction is highest (Acc: r = 0.96 ± 0.04, Vel: r = 0.98 ± 0.03, Disp: r = 0.90 ± 0.06) 

among three observed directions.  

The paired t-test revealed that step times from both VICON and IMU were consistent in 

patients group (VICON step time: 0.53 ± 0.08s, IMU step time: 0.54 ± 0.08s) and control group 

(VICON step time: 0.51 ± 0.06s, IMU step time: 0.51 ± 0.05s) and had no significant differences 

(p > 0.05). Meanwhile, no significant difference (p > 0.05) was found for P2P_VA between VICON 

and IMU in patients (VICON P2P_VA: 7.99 ± 3.05 m/s^2, IMU P2P_VA: 7.71 ± 2.85 m/s^2) and 

control (VICON P2P_VA: 8.97 ± 2.87 m/s^2, IMU P2P_VA: 8.64 ± 2.49 m/s^2).  The Bland-

Altman plot (Fig. 2) indicated that VICON and IMU had good agreement on the measurement of 

step time and P2P_VA and most subjects are within two standard deviation (Mean ± 2*SD).  
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Table 5-2 Means and SD of RMSE, mean difference and correlation coefficient between different 
groups of angles for all subjects 

Angle RMSE (°) Mean_diff (°) r 

IMU_INT  Roll 2.19 ± 1.37 1.74 ± 1.10 0.64 ± 0.33 

vs Pitch 2.54 ± 1.69 2.10 ± 1.39 0.38 ± 0.50 

VICON  Yaw 11.89 ± 3.59 10.07 ± 3.01 0.21 ± 0.44 

IMU_Quat  Roll 1.89 ± 1.06 1.47 ± 0.77 0.69 ± 0.32 

vs Pitch 1.98 ± 0.98 1.63 ± 0.81 0.59 ± 0.33 

VICON  Yaw 1.95 ± 1.99 1.64 ± 1.70 0.82 ± 0.34 

 

Table 5-3 Means and standard deviations (SD) of RMSE, mean difference and correlation 
coefficient between different groups of accelerations, velocities and displacement for all subjects 

  Acceleration (m/s^2) Velocity (m/s) Displacement (m) 

Direction RMSE  Mean_diff  r RMSE  Mean_diff  r RMSE  Mean_diff  r 

AP 1.10 ± 
0.43 

0.85 ± 
0.31 

0.60 
± 

0.26 

0.18 ± 
0.09 

0.15 ± 
0.09 

0.39 
± 

0.23 

1.74 ± 
0.29 

1.54 ± 
0.25 

0.32 
± 

0.74 

ML 1.07 ± 
0.59 

0.83 ± 
0.42 

0.66 
± 

0.29 

0.12 ± 
0.07 

0.10 ± 
0.06 

0.66 
± 

0.30 

0.03 ± 
0.02 

0.03 ± 
0.02 

0.43 
± 

0.38 

V  0.70 ± 
0.34 

0.55 ± 
0.28 

0.96 
± 

0.04 

0.04 ± 
0.02 

0.03 ± 
0.02 

0.98 
± 

0.03 

0.009 
± 

0.006 

0.007 ± 
0.005 

0.90 
± 

0.06 

* AP is anterior-posterior direction, ML is medial-lateral direction, V is vertical direction. 
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5.1.4 Discussion 

Gait analysis with low-cost and easy-to-go IMUs has become one of the commonly used 

tests in biomechanics and clinical research. Previously, gait speed, cadence, step length and step 

time were usually generated in these studies according to the IMU placement location mainly 

including lower limb and pelvis (Esser et al., 2012; McCamley et al., 2012; Moon et al., 2017; 

Sabatini & Mannini, 2016; Zijlstra & Hof, 2003). No one has finished the feasibility study of gait 

analysis with single IMU on the upper trunk like sternum. The upper trunk normally has greater 

swing than the lower trunk during activities of daily living, which will be easier for clinicians to 

observe.  This paper presented a feasibility study of single IMU placed on the sternum in level 

walking validated with a reference stereo-photogrammetry system and provided meaningful 

information of gait for bio-mechanists and clinicians.  

Table 5-4 Mean and SD of range of angles and accelerations of patients and control in three 
directions.  

Axis  
Angle (°) Acceleration (m/s^2) 

Patient Control Patient Control 

X 
VICON 11.00 ± 4.09 7.06 ± 1.71 4.41 ± 1.31 5.11 ± 1.82 

IMU 12.63 ± 6.43 9.50 ± 3.39 5.41 ± 1.97 6.15 ± 2.95 

Y 
VICON 11.26 ± 6.32 8.99 ± 3.54 4.39 ± 0.86 5.03 ± 1.43 

IMU 11.57 ± 6.35 7.99 ± 1.96 7.46 ± 4.23 7.06 ± 3.11 

Z 
VICON 16.55 ± 7.98 9.99 ± 2.85 10.33 ± 3.00 10.19 ± 3.07 

IMU 17.48 ± 5.66 10.32 ± 3.45 11.12 ± 3.43 10.54 ± 3.11 
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Figure 5.2 (a) Top plot is the Bland-Altman plot of step time between VICON and IMU; (b) Bottom plot is 
the Bland-Altman plot of P2P_VA between VICON and IMU. In both plots, blue circle represent control 
group, and red cross represent patient group. The dashed lines on the right plots represent the lower and 

upper limits of agreement (Mean ± 2*SD) respectively 
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In clinical applications, the body segment orientation is one of the important variables 

(Muro-de-la-Herran, Garcia-Zapirain, & Mendez-Zorrilla, 2014). Acceleration was also used in the 

gait analysis especially vertical acceleration of trunk (Buckley et al., 2017; Gonzalez et al., 2010; 

Henriksen et al., 2004; Kavanagh et al., 2006; Steins, Sheret, Dawes, Esser, & Collett, 2014; 

Zijlstra, 2004). Therefore, accelerations and orientation angles of the trunk in 3D space were 

selected as key parameters for this IMU feasibility study. There were two methods of orientation 

calculation presented in this study. The results evidently showed us that angles determined from 

magnetometer were more accurate than that from gyroscope and magnetometer fusion, especially 

in the yaw angle, due to a larger drift of angular velocity. Here the angles calculated from the 

magnetometer was suggested in the future angle calculation during gait analysis. The results of 

angles from magnetometer are in accordance to outputs from other studies. Previously, a study 

completed by Bolink et al. focused on validating pelvic angle with single IMU compared with an 

optoelectronic motion capture system which found average RMSE of range of motion (ROM) for 

frontal plane and sagittal plane were 2.68°~4.44° and 2.70°~8.89°. However, the Pearson’s 

correlation coefficients were between 0.85 and 0.94 for two angles which are higher than results in 

this paper (Bolink et al., 2016).  It may occur due to Bolink et al. only analyzed healthy subjects’ 

data while five traumatic patients after surgery were included in this study. Patients may have much 

greater range of motion which is related to unstable gait. Favre et al. demonstrated a functional 

calibration procedure for 3D knee angles using IMU with magnetic markers’ validation and 

obtained all mean errors of knee angles below 2° in three planes (Favre, Aissaoui, Jolles, de Guise, 

& Aminian, 2009). In the report by Bauer et al., they assessed the lumbar spine ROM with IMU 

and presented that RMES of sagittal plane ROM and frontal plane ROM were 4.1°~4.4° and 

1.8°~1.9° correspondingly (Bauer et al., 2015).  
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Considering the linear motion parameters, vertical position, velocity and acceleration are 

most accurate and reliable based on precision, accuracy and correlation coefficients among three 

directions during gait. This is consistent with the results of average relative difference between 

IMU and optoelectronic system from all healthy subjects including acceleration -0.190 ± 0.088 

m/s^2, velocity -0.012 ± 0.025 m/s and position -0.047 ± 0.060 m by Esser et al. (Esser et al., 2009). 

To estimate the displacement in the walking direction during gait, some researchers placed IMUs 

on the foot to estimate the step length with a popular algorithm – ‘Zero Velocity Update’ (Alvarez, 

Gonzalez, Alvarez, Lopez, & Rodriguez-Uria, 2007; Bae & Tomizuka, 2013; Sabatini & Mannini, 

2016) while other researchers compute step length from IMUs attached to the pelvis with an 

inverted pendulum model (Esser et al., 2012; Steins et al., 2014; Trojaniello et al., 2015b; Zijlstra 

& Hof, 2003). In this study it is not recommended to use similar algorithm to compute step length 

due to the reason that sternum is far away from the center of mass in the body and trunk motion 

pattern is totally different from foot motion pattern. Here it can be seen that large bias was shown 

in the walking direction which will lead to underestimated walking speed and step length for IMU. 

The side position of body from IMU had good accuracy and precision but low correlation with 

VICON caused by tiny motion in the sideway. Meanwhile, yaw angles displayed the largest range 

of motion and vertical acceleration plays a major role of total acceleration after removing the 

gravity. It indicated that single IMU on the sternum during gait will exhibit higher accuracy and 

precision along the dominant axis (vertical direction) while the measurement in the non-dominant 

axis will enlarge the error. This kind of consequences might be caused by the ability of the sensors 

and algorithm to detect and use gravity to produce accurate orientation estimates (Godwin, Agnew, 

& Stevenson, 2009).  

As stated above, it will be greatly beneficial in clinic if IMU can assist clinicians to 

distinguish patients and healthy people. The upper trunk orientation in three directions 
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demonstrated that patients possess larger range of angles which is consistent with our common 

knowledge. Step time and P2P_VA are two main parameters to tell patient from healthy controls. 

Post-hoc analysis did not show significant difference between patients and control which was 

affected by the patient group containing three patients almost recovered and two patients severely 

injured with bracelet on. The different severity of patients also leads to the large SD of data for the 

patient group. In addition, three subjects in control group are above ten years older than the other 

two subjects resulting in apparently longer step time and lower peak vertical acceleration. Even 

though this study did not succeed to distinguish patients and control through IMU measurements, 

it is still reliable and accurate to use single IMU on the sternum to evaluate abnormal gait according 

to the high agreement between IMU and VICON in the patients group. 

A few limitations should be recognized in this study. To begin with, the level of injury should 

be assessed to eliminate the potential source of error when recruiting patients. The size of sample 

needs to be increased to improve the range of different motion pattern. Another limitation of this 

study was the orientation angles calculated from IMU. No matter the angle from integration of 

angular velocity after combining the quaternion or the angle from quaternion only was used, they 

both take advantage of quaternion data from IMU which were combined signals from 

accelerometer, gyroscope and magnetometer fusion. This fusion algorithm performing data 

filtering to remove drift and noise was from the development of the manufacturer which is unknown 

to the users (Buckley et al., 2017). Overall, our study results demonstrate that it is feasible to apply 

single IMU on the sternum in the gait analysis to measure orientation angles of trunk and vertical 

acceleration, velocity and position. Step time from vertical acceleration and peak-to-trough vertical 

acceleration of IMU also works for assessing gait among patients and healthy controls. 
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5.2 Feasibility of single IMU during FTSTS 

5.2.1 Introduction 

As one of a highly demanding movement of daily living, sit-to-stand (STS) is often 

compromised for elderly with functional limitations which is frequently used as assessment method 

to evaluate stability of dysfunctional patients. Quantification of STS for people with pathological 

movements will be helpful to appraise the degree of impairment. Meanwhile, the understanding of 

the chair-rise strategies may lead to improved treatment recommendations. The strategies of STS 

mainly include momentum transfer (MT), exaggerated trunk flexion (ETF) and dominant vertical 

rise (DVR) (Scarborough, McGibbon, & Krebs, 2007). Previous studies usually measure STS 

movement and determine the type of chair-rise strategy with common motion lab equipment like 

force plate and stereo-photogrammetry system (Galli, Cimolin, Crivellini, & Campanini, 2008). It 

will have a promising usage if a cheaper and more portable IMU can provide similar function as 

well. The goal of this study was to explore the feasibility of quantifying STS transition with IMU 

and investigate whether single IMU on the chest can identify chair-rise strategy. 

 
Figure 5.3 Three main chair-rise strategies: (a) momentum transfer (b) exaggerated trunk flexion (c) 

dominant vertical rise (Scarborough et al., 2007) 
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5.2.2 Method 

Nine healthy subjects (six males and three female, age 27.5 ± 8.2 years, height 1.70 ± 0.35 

meters) were instructed to complete Five-Time-Sit-to-Stand (FTSTS) wearing single Opal IMU 

(APDM, sampling frequency 128 Hz) on the sternum with each leg on a separate force plate. 

Between each sit-to-stand and stand-to-sit, subjects were asked to pause for three seconds. Two 

force plates (AMTI) were applied to measure ground reaction force (GRF) at sampling frequency 

1500 Hz. A ten-camera optical tracking system (VICON, sampling frequency 128 Hz) was used as 

reference system to validate the accuracy of IMU sensor for monitoring FTSTS. Correlation 

coefficients were computed among various parameters from IMU and other equipment. 

Three types of chair-rise strategies were defined based on the observation of VICON model 

during STS. The investigator classified all the subjects’ chair-rise strategies based on the definitions 

of each strategy (Figure 5.4). Then K-means cluster was used to identify different strategies 

according to the following sensor measures: peak trunk flexion angle, peak trunk flexion angular 

velocity, peak trunk forward acceleration, peak trunk vertical acceleration. All these variables are 

average values from FTSTS for each subject. 
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Figure 5.4: Experiment set-up: Top left - front view; Top right back view; Bottom - VICON model with all 

the markers 

 

5.2.3 Results 

The time of peak vertical acceleration occurred almost at the same time as peak total 

vertical ground reaction force according to high correlation coefficient (0.993±0.014). However, 
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the correlation (0.735±0.202) between peak acceleration and peak total force is comparatively 

lower. Significantly high consistency was found between IMU and VICON for vertical acceleration 

(0.990±0.004) and pitch angular velocity (0.982±0.011). 

From observation results by VICON model, most of subjects (number = 5) used MT 

strategy. Both ETF strategy and DVR strategy were performed by two subjects respectively. The 

Spearman’s rank-order correlation coefficient between observation strategy groupings and K-

means clustering groupings was notable (r = 0.50, p = 0.18). Both peak trunk flexion angle and 

peak trunk flexion angular velocity differed significantly across the three chair-rise strategy groups 

(p < 0.05) while no significant difference was noted in peak trunk forward acceleration and peak 

trunk vertical acceleration across the strategy groupings (p > 0.1).  

Table 5-5 Correlation coefficient between IMU peak acceleration vs Force Plate and IMU vs 
VICON 

Subject 
ID 

peak acceleration 
keyframe vs Total peak 

Force keyframe 

peak acceleration 
vs peak Total 

Force 

IMU VertAcc 
vs VICON 
VertAcc 

IMU Pitch 
AngVel vs 

VICON Pitch 
AngVel 

1 0.9906 0.8215 0.9798 0.9883 

2 0.9999 0.3910 0.9875 0.9910 

3 0.9999 0.3975 0.9909 0.9722 

4 0.9996 0.8820 0.9961 0.9923 

5 0.9996 0.8367 0.9967 0.9923 

6 0.9942 0.8275 0.9892 0.9884 

7 0.9950 0.8111 0.9929 0.9824 

8 1 0.9002 0.9907 0.9742 

9 0.9999 0.9082 0.9916 0.9791 

Mean 0.9934 0.7353 0.9902 0.9818 

SD 0.0135 0.2022 0.0049 0.0110 
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Table 5-6 Cluster analysis results of chair-rise strategy groupings based on four variables from 
IMU 

Variable MT EFT DVR 

Peak Trunk Flexion Angle (deg) * 37.98 ± 0.01 58.30 ± 10.10 24.94 ± 4.00 

Peak Trunk Flexion AngVel (deg/s) * 84.79 ± 5.83 104.35 ± 5.92 72.38 ± 11.58 

Peak Trunk Forward Acc (m/s^2) 0.67 ± 0.17 0.62 ± 0.20 0.83 ± 0.34 

Peak Trunk Vertical Acc (m/s^2) 4.63 ± 1.48 4.02 ± 0.53 4.05 ± 0.94 

* One-Way ANOVA across strategies, p < 0.05 

 

 

Figure 5.5 The plots of typical example for IMU and VICON during FTSTS. Top graph is the vertical 
acceleration; Bottom graph is the pitch angular velocity 
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Figure 5.6 The silhouette value of K-means clusters 

 

5.2.4 Discussion 

It is feasible to monitor STS with single IMU according to excellent agreement with VICON 

and force plate. With the help of K-means cluster, it is possible to automatically identify the three 

strategies based on the four variables of trunk from the IMU. Other possible variables from the 

sensor can be further investigated to perform clustering. Besides, more IMUs may be put on the 

other locations of body like thigh and shank which can be used to estimate the hip and knee 

moment. It is necessary to recruit more subjects due to the small sample size at present. 

 

5.3 Fall risk prediction among the seniors 

5.3.1 Introduction 

Falling has become one of the major causes to both fatal and non-fatal injuries among the 

elder adults. There is a high possibility that one third in adults over age 65 and half of the elder 

over 85 years old will fall in the next year, and a large portion of them will suffer an injury due to 

falling (Stevens, 2005). The following consequence after a fall will be that the fear of falling can 
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reduce the daily activities, leading to physical deterioration and social isolation (R. Y. Lee & 

Carlisle, 2011; Masud & Morris, 2001). Considering the adverse consequences of falls in the older 

adults, many research has been performed mainly focusing on identifying the factors of fall risk 

and targeted fall prevention (Buatois et al., 2008; Mirelman et al., 2012; Podsiadlo & Richardson, 

1991; Rantz et al., 2015). One research revealed that falls and its related injuries can be predictable 

and preventable with specific interventions targeting the corresponding risk factors including 

muscle strength, balance and mobility (Gillespie et al., 2012). The initial step of an effective fall 

prevention program is to perform fall risk assessment to identify persons at high risk and then target 

specific interventions to reduce or eliminate falls. The Centers for Disease Control and Prevention 

(CDC) has recommended the older adults to perform fall risk screening at least annually by 

physicians (Stevens, 2013). However, due to several reasons such as unreliable subjective 

measures, high cost and clinical time constraints, effective fall risk assessment is still not routinely 

integrated into daily clinical practice (Sun & Sosnoff, 2018). Therefore, an accurate, inexpensive 

and easy-to-use fall risk assessment technique is needed. 

With the development of Micro-Electro-Mechanical-System (MEMS), sensors became 

smaller and smaller. Then the sensors were gradually used in the biomechanics and human motion 

analysis due to its low cost, portability and convenience while the most commonly used 

optoelectronic motion capture system at present are very expensive, space-limited and complicated 

to implement. Taking advantage of wearable sensor technology, there have been a few studies 

focusing on fall risk assessment using some simple tests such five-time-sit-to-stand (FTSTS), gait 

and Timed-Up-and-Go (TUG) etc (Anwary, Yu, & Vassallo, 2018; Bautmans, Jansen, Van 

Keymolen, & Mets, 2011; Begg, Palaniswami, & Owen, 2005; Caby, Kieffer, de Saint Hubert, 

Cremer, & Macq, 2011; Doheny et al., 2013; Duncan, Leddy, & Earhart, 2011; Howcroft, Lemaire, 

& Kofman, 2016; Whitney et al., 2005), instead of the burdensome and time-consuming typical 
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clinical fall risk assessment tool like Tinetti test and Berg Balance Scale (Thorbahn & Newton, 

1996; Tinetti, 1986).  

FTSTS is a clinically accepted assessment for lower limb strength which is closely 

associated with balance dysfunction (Lord, Murray, Chapman, Munro, & Tiedemann, 2002) and 

fall risk (Doheny et al., 2013; Najafi, Aminian, Loew, Blanc, & Robert, 2002). In clinical 

application, the total time of FTSTS is often used as an indication marker for fall risk that the slower 

time indicates a higher risk of falling (Buatois et al., 2008; Doheny et al., 2013). Compared to old 

healthy group, the elder adults prone to fall have high possibility to show abnormalities in postural 

stability and balance control (Maki, 1997). Among older adults, the gait features such as gait speed 

and gait asymmetry are possibly reduced with the increasing of age which is related to future falls 

(Ejupi, Lord, & Delbaere, 2014). The results from several studies have suggested that gait 

assessment with wearable sensors can discriminate the fallers from non-fallers (Caby et al., 2011; 

Howcroft et al., 2016; Riva, Toebes, Pijnappels, Stagni, & van Dieen, 2013). As a standard mobility 

assessment tool, TUG test has been recommended by American Geriatrics Society (AGS) 

guidelines to identify the older adults with high fall risk (Greene, Doheny, Kenny, & Caulfield, 

2014). The performing time of TUG is recorded to assess fall risk in the clinical practice. The 

classification performance of TUG between fallers and non-fallers have been significantly 

improved through extracting more spatiotemporal and kinematical data from wearable sensors 

(Greene et al., 2014). 

Some previous studies evaluated the sensor-based fall risk prediction model compared to 

the data from clinical questionnaire and found that adding wearable sensors improved the fall risk 

prediction on the basis of clinical data from questionnaire (Greene et al., 2014; Rispens et al., 2015; 

van Schooten et al., 2015). A fall risk prediction model usually considers the sensor type, sensor 

location, number of sensors and type of machine learning algorithm (Howcroft, Kofman, & 
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Lemaire, 2013). One study has investigated the different combinations of two sensor types, four 

sensor locations and three types of models to classify the fallers among older adults. According to 

the results from chapter 4, it was shown that chest sensor alone can also achieve very good 

classification performance. So far, no studies investigated the classification performance using 

single sensor for fall risk prediction. Meanwhile, the selection of different activities may affect the 

fall risk prediction results. 

This section presents a comprehensive investigation of a single sensor on the chest to 

predict the fall risk with three types of machine learning algorithms (k-Nearest Neighbor, Support 

Vector Machine and Naïve Bayesian) during three activities (FTSTS, Ten-meter Walking and 

TUG) among the older adults in the senior center. The goal of this study is to determine which 

activity is more effective for fall risk prediction and examine the accuracy of various classifiers 

provided by single chest sensor. 

5.3.2 Method 

A group of the older adults over age 60 including 18 males and 47 females were recruited 

from the senior centers in Charlotte, NC. The participants were divided into two groups - low fall 

risk (score < 4) and high fall risk (score >=4) according to a fall risk assessment questionnaire 

(Figure 5.7) suggested by Center for Disease Control and Prevention (CDC) (Rubenstein, Vivrette, 

Harker, Stevens, & Kramer, 2011). There were 49 subjects (37 females, 12 males, mean age 72.9 

± 7.0) in the low fall risk group and 16 subjects (12 females, 6 males, mean age 70.6 ± 8.5) in the 

high fall risk group. Potential subjects were excluded if they could not perform all the three 

activities without any assistive device. The study was conducted following an IRB approved 

protocol. All the participants were given an information sheet with verbal consent. 
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Figure 5.7 The self-report questionnaire for fall risk assessment (Rubenstein et al., 2011) 

Participants were instructed to perform three tests consecutively – FTSTS, Ten-meter 

Walking (10MWT) and TUG with single sensor placed on the sternum (Figure 5.8). The local 

coordinate of the sensor was set as anatomical coordinate of human body where X is aligned with 

superior-inferior (SI) direction, Y is aligned with medial-lateral (ML) direction and Z is aligned 

with anterior-posterior (AP) direction. A standard height (46 cm) chair with no arm rest was used 

in the FTSTS. The participants were asked to keep arms folded in front of chest. Each participant 

performed the sit-to-stand and stand-to-sit five times under the instructions. Between each standing 

up and sitting down participant rested three seconds for the safety problems. During the 10MWT, 

each participant was asked to walk at their normal speed. TUG is a combination of sit-to-stand, 

walking (3 meter), turning and stand-to-sit test. All three tests were performed two times by each 
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subject. Before each test, subjects were required to keep static with their upper-body straight 

upward for three seconds.  

The sensor used here was Opal IMU (APDM Inc., Portland, OR, USA) that encases 3-axis 

accelerometer, 3-axis gyroscope and 3-axis magnetometer. The mass is 22 g and the dimensions 

are 48.4mm x 36.1 mm x 13.4 mm. Data were collected under Robust Synchronized Streaming 

Mode at sampling frequency 128 Hz. A fourth-order Butterworth filter at cut-off frequency 6 Hz 

was applied to raw acceleration and angular velocity from sensor.   

 
Figure 5.8 Test set-up with sensor placed on the sternum 
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For the FTSTS, each individual sit-to-stand and stand-to-sit time were computed through 

a threshold algorithm applied on the pitch angular velocity (Figure 5.9). Then the mean and 

coefficient of variation (CV) of the individual transition time were calculated. The maximum 

flexion/extension angular velocity in each sitting and standing trial were extracted and then mean 

and CV were computed. The root-mean-square (RMS) and jerk of the acceleration were computed 

for each individual trial along each direction (Doheny et al., 2013). Then mean and CV of these 

two features were also examined.  

 
Figure 5.9 Typical example of the pitch angular velocity during FTSTS 

In the 10MWT, the average and CV of peak and trough (P2T) values were obtained from 

acceleration along SI direction and angular velocity about ML direction. The step time was defined 

as the interval time between two consecutive peaks based on the vertical acceleration. And jerk of 

the acceleration along ML direction was used to determine the left/right step. Then the asymmetry 

of step time and P2T acceleration were calculated using the following equation (Balasubramanian, 

Bowden, Neptune, & Kautz, 2007). The percentage of acceleration frequencies in the first quantile 

of a Fast Fourier Transform (FFT) frequency plot was computed since a lower percentage indicates 

that more high frequency acceleration component exists in the signal which is linked to instability 
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of walking (Drover, Howcroft, Kofman, & Lemaire, 2017; Howcroft, Kofman, & Lemaire, 2017; 

Prieto, Myklebust, Hoffmann, Lovett, & Myklebust, 1996). Here the raw acceleration without low-

pass filter was used to compute first quantile of FFT frequency. 

                   𝐴𝐴𝑆𝑆𝐴𝐴𝑚𝑚𝑚𝑚𝐻𝐻𝑡𝑡𝐴𝐴𝐴𝐴(%) = |(𝑅𝑅𝐻𝐻𝑔𝑔ℎ𝑡𝑡 − 𝐿𝐿𝐻𝐻𝑓𝑓𝑡𝑡)|/ max{𝑅𝑅𝐻𝐻𝑔𝑔ℎ𝑡𝑡, 𝐿𝐿𝐻𝐻𝑓𝑓𝑡𝑡} × 100                        (5-7) 

 
Figure 5.10 Top: typical example of the vertical acceleration during walking; Bottom: typical example of 

the pitch angular velocity during walking 

For the TUG, the whole test was divided into three sections according to the pitch angular 

velocity of trunk (Figure 5.11): sit-to-stand, walking and stand-to-sit. The same features from each 

individual sit-to-stand/stand-to-sit and walking test were applied in each TUG segment. The two 

turning sections were located based on the yaw angular velocity about SI direction (Figure 5.12). 
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Then the mean maximum yaw angular velocity was obtained to examine the turning ability. The 

time for each phase: sit-to-stand, walking forward, turning I, walking backward, turning II and 

stand-to-sit were also calculated. 

 
Figure 5.11 Typical example of pitch angular velocity during TUG 

Sit-to-Stand Stand-to-Sit 
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Figure 5.12 Typical example of yaw angular velocity during TUG 

The descriptive statistics features including maximum, minimum, mean, variance and 

RMS of acceleration and angular velocity for all three directions were also computed as features 

input for classification model. All the features were applied with max-min normalization before 

inputting to the model.   

Three machine learning algorithms were used here for fall risk classification: k-Nearest 

Neighbor (KNN), Support Vector Machine (SVM), Naïve Bayesian (NB). The models were 

developed with built-in machine learning algorithms in the MATLAB 2017a. The target variable 

is the level of risk – low or high determined by the fall risk assessment questionnaire. The whole 

data set was randomly separated into 80% training data and 20% testing data on the basis of target 

variable for all models. Accuracy, sensitivity and specificity were utilized to evaluate the 

performances of machine techniques. To determine the performance parameters, it is necessary to 

learn four academic terms including true positive (TP), true negative (TN), false positive (FP) and 

false negative (FN) from a confusion matrix. TP are the cases that the classification technique 

Turning I 

Turning II 
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shows the risk level of the subject matching the actual result that the subject is high risk. TN are 

cases when the algorithm predicted the subject as low fall risk which are the same as actual results. 

TP and TN are true decision given by the classification. Then the false decisions given by 

algorithms are false positive (FP) and false negative (FN). Accuracy measures how well the 

algorithm predicts the TP and TN overall (equation 4-2). Sensitivity (equation 4-3) measures the 

proportion of positives that when the subject is in the high fall risk group, the classifier also grouped 

this subject into high risk group. This is an important parameter to evaluate the performance of a 

model for fall risk classification which indicates how well the classifier predicts the risk level. 

Specificity (equation 4-4) measures the proportion of negatives that are correctly identified as low 

risk group. It refers to the ability of correctly identify low fall risk people and indicates how well 

the algorithm predicts the low fall risk group. A good classifier is expected to provide high 

accuracy, sensitivity and specificity.  

For the KNN algorithm, the nearest neighbor k (k>0) needs to be selected properly for each 

specific problem due to its sensitivity to the composition of local dataset. The value of k was set as 

3 to produce the best classification performance after ten trials of k from 1 to 10. SVM is originally 

designed to solve binary classification problems (Cortes & Vapnik, 1995; Greene et al., 2012; 

Shawe-Taylor, 2004). It is regarded as an important example of kernel methods which is one of the 

key areas in machine learning (Begg et al., 2005). The basic idea of SVM is to transform the input 

data into a higher dimensional space by means of a kernel function and then construct an optimal 

separating hyperplane between two classes in the transformed space (Liu, Zhang, & Lockhart, 

2012; Ma et al., 2015). The kernel function used in this study was polynomial function with degrees 

three after trying the degree from one to seven. NB algorithm is a probabilistic classifier using 

maximum likelihood in the Bayesian settings which mainly relies on the mean of the training 

vectors and the covariance matrix of training vectors (Duda, 2001). All the data were processed 
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with custom MATLAB (The Mathworks Inc., Natick, MA, USA) code and the machine learning 

algorithms were adjusted based on the standard model in MATLAB. 

 

5.3.3 Results & Discussion 

Overall, the best classification result was achieved by TUG test with KNN model 

(sensitivity: 83.33%, specificity: 94.74%, accuracy: 92%). Among three classifiers, SVM showed 

the best average classification performance (sensitivity: 57.78% ± 15.40%, specificity: 88.89% ± 

19.25%, accuracy: 82.06% ± 13.52%). In both KNN and SVM models, the mean sensitivity was 

significantly (p < 0.01) lower than the mean specificity while the sensitivity and specificity were 

almost identical in the NB model. The KNN model has largest variance (33.39%) of sensitivity 

with different test so it is essential to choose the proper test for feature extraction when using KNN 

algorithm. As NB algorithm achieved the best average sensitivity (70.68% ± 15.85%), it is 

recommended to use NB algorithm to assess the fall risk level when using single inertial sensor on 

the chest. The specificity indicating the true prediction rate of low risk group in the KNN and SVM 

algorithms were significantly higher than that of NB which means that to reach a better prediction 

results of low risk subjects, KNN and SVM can be either one of the options. 

Among three tests, the features from TUG test produced the best mean sensitivity and 

accuracy (sensitivity: 70.00% ± 12.02%, accuracy: 85.33% ± 11.55%) for fall risk classification 

while 10MWT test achieved the best specificity (98.25% ± 3.04%). Since the main goal of the 

study is to predict if the participant has high fall risk according to the sensor measurement, TUG 

would be the recommended test. The combination of all the tests did not show any significant 

improvement of classification performance compared to each individual test with KNN and SVM 

models. This finding is different from the conclusion reported by Greene et al that the combining 
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sensor data from TUG, Balance test and FTSTS could significantly improve the accuracy of falls 

classification using SVM algorithm (Greene et al., 2014). There were two main reasons to explain 

this difference: one reason is the use of different features input and kernel functions in SVM model 

which will affect the final accuracy, the other reason is the different test like Balance test included. 

However, the combination sensor data did slight improve the accuracy of classification results 

using NB algorithm in this study. 

Table 5-7 The performance of each classifier model using different features from three activities 
(unit: %) 

KNN model Sensitivity Specificity Accuracy 

FTSTS 33.33 77.78 66.67 

TUG 83.33 94.74 92.00 

10MWT 20.00 94.74 79.17 

Combination 33.33 77.78 66.67 

NB model Sensitivity Specificity Accuracy 

FTSTS 88.89 33.33 75.00 

TUG 60.00 75.00 72.00 

10MWT 63.16 100.00 70.83 

Combination 66.67 100.00 75.00 

SVM model Sensitivity Specificity Accuracy 

FTSTS 66.67 66.67 66.67 

TUG 66.67 100.00 92.00 

10MWT 40.00 100.00 87.50 

Combination 88.89 60.00 66.67 
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Compared to previous studies, the classification accuracy of each individual test from 

single chest IMU in this study were similar to the accuracy from multiple sensors in other fall risk 

classification research (Doheny et al., 2013; Greene et al., 2010; Howcroft et al., 2016). For the 

FTSTS, Doheny et al reported 74.4% accuracy of logistic regression model through data from two 

accelerometers on the thigh and sternum (Doheny et al., 2013). The accuracy of TUG test using 

logistic regression model from two shank IMUs was 76.8% slightly lower than the accuracy 

(85.33%) of TUG test achieved by this study (Greene et al., 2010). Then a multi-layer perceptron 

neural network with input parameters from pressure sensors and head, pelvis, and left shank 

accelerometers could only provide a slightly higher accuracy (84%) than the mean accuracy 

(79.17%) of gait test from single chest IMU. 

Table 5-8 The mean and standard deviation of sensitivity, specificity and accuracy for each 
individual test and their combination using three different classifiers (unit: %) 

Test Sensitivity Specificity Accuracy 

FTSTS 62.96 ± 27.96 59.26 ± 23.13 69.44 ± 4.81 

TUG 70.00 ± 12.02 89.91 ± 13.18 85.33 ± 11.55 

10MWT 41.05 ± 21.60 98.25 ± 3.04 79.17 ± 8.33 

Combination 62.96 ± 27.96 79.26 ± 20.04 69.44 ± 4.81 

 

There were a few limitations about this study. Due to the limited sample size, the 

classification performance could be varied from the true accuracy. The accuracy may be largely 

enhanced with more participants involved. In this study, the number of females was about three 

times higher than that of the male which might also affect the results. Because the female may have 

higher risk of falling from the statistic that the fall-related injury and death of women are twice 
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than those of men (Greenberg et al., 2016), the influence of gender factor should be included in 

future. The other limitation is that the features were directly input to the model without any 

selection. As so many features exist in each test, the importance of each feature is unknown to the 

model and some features may have strong correlations which can be removed from the feature 

vector. It will be promising to improve the performance of classifiers through dimension reduction 

techniques like Principal Component Analysis (PCA) or filter feature selection methods like Relief-

F. In addition, the self-report questionnaire to evaluate fall risks may overestimate the risk level. 

The future study can examine the performance of each subject with inertial sensors in a longitudinal 

study design. 

5.3.4 Conclusion 

A single chest sensor-based fall risk assessment method was developed using different 

types of tests and classification models. Based on the clinical assessment questionnaire, the sensor-

based model could predict the fall risk level through sensor data. The TUG test provided the best 

classification results for fall risk classification. The combination of multiple tests did not improve 

the classification performance. SVM model is the best machine learning technique among three 

models for fall risk classification. Future work could focus on developing more complicated 

machine learning techniques and using various feature selections methods to choose the optimal 

features. Overall, the wearable sensor-based fall risk classification model has potential to improve 

the diagnosis of elder adults with risk of falling and allow pre-intervention to prevent future falls. 
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CHAPTER 6: SUMMARY AND FUTURE WORK 

6.1 Summary 

This objective of this dissertation was to investigate the feasibility, reliability and 

repeatability of using IMU sensors to assess fall risk for clinical use. It is important to find the gaps 

between usage of IMU and clinical use and develop methods to fill the gaps. Four major 

contributions were made in this dissertation. 

The first contribution was to examine the accuracy of IMU sensors if it meets the need of 

clinical use and to validate with a stereo-photogrammetry system. The validation tests were 

performed on both rigid body and human body. The rigid body tests have demonstrated that the 

commercial Opal IMU has excellent accuracy and precision of acceleration (mean accuracy 0.77 ± 

0.41 m/s^2 and mean precision 0.36 ± 0.21 m/s^2) and angle (average accuracy 2.42° ± 2.50° and 

average precision 1.91° ± 1.48°) output which fits the requirement of clinical study. The static and 

dynamic RMSE values for sensor orientations on human body were within 2.5°, which is quite 

close to manufacturer’s reported static (roll/pitch: 1.15°, heading: 1.5°) and dynamic accuracy 

(2.80°) estimates. During the data processing procedure, the detailed signal processing, which 

mainly focused on minimizing the noise and drift and coordinate transformation were revealed 

here. A simple method of coordinate transformation was used to compare IMU data and data from 

the reference system in the same global frame. The proprietary built-in sensor fusion algorithm was 

verified by a simple complementary filter using gradient descent algorithm. Both of the static and 

dynamic orientation accuracy from rigid body tests were within 2° achieved by built-in Kalman 

filter. The two sensor fusion algorithms exhibited no significant difference of RMSE values 

comparing to the stereo-photogrammetry measuring system. The heading angle showed the largest 

error among the angle measurements around three axes in both static and dynamic tests from the 

Opal sensor. Overall, the accuracy and precision of IMU measurements are sufficient for human 
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motion applications without excluding the soft tissue artifact and unexpected sensor movement on 

the human body. 

The second contribution was that a simple template of magnetic mapping was built to 

quantify the magnetic disturbances and a simplified interpolation model was developed to 

compensate the heading angle error in the lab settings. A custom-made device was built to carry 

out the mapping of magnetic field in the motion lab. Two important factors including the location 

in three dimensional space and time were considered in the comparison of magnetic field and 

heading angle error between static and dynamic tests. The heading estimation errors from static 

tests were significantly larger than that of dynamic tests. The time factor did not show significant 

influence to the heading angle errors. The simplified interpolation model was derived from multiple 

locations in the static tests and then was applied on the new locations in-between to validate the 

model. The compensation method did improve the accuracy of heading angles in the static test. It 

was concluded that it is essential to map the magnetic field in the test area before experiment and 

start in an undisturbed field when performing the test with inertial sensors. It was recommended 

that placing the IMUs away from the floor is better option due to the larger heading angle errors 

close to the floor. 

The third contribution was that multiple sensor configurations were evaluated among young 

healthy subjects, old healthy subjects and Parkinson’s disease (PD) patients with six sensors placed 

on the body. Then the optimal configurations was explored according to the classification 

performance from three machine learning techniques. It was shown that the ability of wearable 

sensors based on gait features can assist to discriminate the patients with PD from the young healthy 

and old healthy individuals depending on the number and location of sensors placed on the human 

body. The classification accuracies were not directly affected by the increasing number of sensors. 

The optimal sensor configuration was achieved by the sensors placed on chest, wrist and shank 
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together. A single sensor configuration can also produce very high accuracy like the chest sensor. 

The choice of machine learning techniques did have influence on the final classification 

performances. Here, the Naïve Bayesian algorithm was recommended to differentiate the PD 

patients.  

The fourth contribution was to apply various machine learning techniques to classify the fall 

risk among sixty-five older adults from the senior center using only a single IMU placed in front 

of the chest. Before the fall risk classification test, the feasibility of single chest IMU on the subjects 

during walking and sitting and standing was validated with a VICON motion capture system. It 

was concluded that it is feasible to apply single IMU on the sternum in the gait analysis to measure 

orientation angles of trunk and vertical acceleration, velocity and position. Step time from vertical 

acceleration and peak-to-trough vertical acceleration of IMU could be used to differentiate the gait 

between patients and healthy people. Five-time-sit-to-stand could be applied to identify the various 

chair-rise strategy among the healthy group. A self-report questionnaire was provided as a common 

clinical assessment to divide sixty-five senior people into two risk levels. The overall results have 

shown that TUG test provided the best classification results for fall risk classification and the 

combination of multiple tests did not improve the classification performance. SVM model is the 

best machine learning technique among three models for fall risk classification. Overall, the 

wearable IMU sensor-based fall risk classification model has potential to improve the diagnosis of 

elder adults with risk of falling and allow pre-intervention to prevent future falls. 

 

6.2 Future work 

This dissertation is a starting point for wearable inertial sensors in clinical application. It 

presents a promising analysis tool - IMU that can potentially assess the fall risk and diagnose the 
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various disease associated with motor dysfunction. Compared to regular physical performance test 

in clinic, IMU can quantitatively measure the balance and gait of people through consistent and 

accurate sensor data and continuously monitor the subject’s motion and health status, instead of 

subjective evaluation by clinicians based on their experience. The experimental results of sensor 

validation, configuration and fall risk classification has proved the feasibility and reliability of 

proposed technique. However, more work are still needed for further application in clinic. The 

following section lists the future works. 

1. Even though the accuracy and precision of IMU on the rigid body and human body have 

been validated in the chapter 2, the IMUs used are developed by commercial company 

which owns their proprietary algorithm and specification. There is no way to improve the 

accuracy of commercial sensors through the internal hardware part. So it is necessary to 

develop our own sensor system including hardware and software under the control. A piece 

of jacket with multiple pre-installed sensors on different locations can save time of set-up 

and increase the consistency of sensor placement. Then a well-developed software can not 

only collect the raw data but also preprocess the data and output the specific parameters 

for different types of test and sensor location. 

2. For the magnetic disturbances problem, the compensation algorithm at present is only 

provided for the static test. The fact that the heading angle errors at the pre-defined points 

during dynamic tests did not exhibit similar accuracy as those from the results of static test 

still needs more investigation. There are two possible reasons related to this situation: 

initial heading angle and convergence rate of Kalman filter. An external magnetic field 

detector can be used to confirm the starting position without any magnetic disturbances. 

With self-developed sensors, the convergence rate could be adjusted to verify the reason. 
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3. The optimal sensor configuration was determined among several locations on the body 

which is quite limited. In the future, all the subjects will be instructed to take full body scan 

to generate CAD model. Then this human model can be used in the simulation software 

through adding the sensors at any locations on the body and providing all kinds of motion 

test. The error caused by soft tissue artefact can be considered in this rigid human body 

model based on certain model. This will help the clinicians determine the best sensor 

placement location for each individual before each test. 

4. A large number of subjects is highly recommended to validate the fall risk classification 

performance of wearable sensors. In this dissertation, only sixty-five elder adults from 

senior center were recruited. More subjects including healthy seniors and patients with 

various motion-related disease need to be recruited for future evaluation of fall risk 

classification with wearable sensors. Different machine learning algorithms can be tested 

in the later study. Various feature selection methods will be applied to choose the 

comparatively important features which may improve the classifier performance. A long-

term tracking of fall status with IMUs for each subject will be implemented to estimate the 

risk level, instead of the self-report fall risk questionnaire. 
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