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ABSTRACT

XIAONAN WANG. Multiscale modeling of the properties of two-dimensional
materials. (Under the direction of DR. ALIREZA TABARRAEI)

The main objective of this dissertation is to study the thermal and mechanical

properties of two dimensional materials. For this purpose, we use and combine atomic

level simulations with continuum level simulations. In this dissertation, molecular

dynamics method is used to study the fracture properties of monolayer molybdenum

disulfide (MoS2) and hexagonal boron nitride (h-BN). Our results predict that the

critical stress intensity factor of single layer MoS2 and BN are 1.2∼1.8 MPa
√

m and

4.5∼7 MPa
√

m respectively. Moreover, our results predict that the chirality of the

crack edges, the tip configuration and loading phase angle can significantly impact

the critical stress intensity factor and the propagation path of the cracks.

Also, molecular dynamnics simulations are used to study the thermal conductivity

of single layer MoS2. The results show that by increasing the nanoribbon’s length, the

thermal conductivity of nanoribbons increases. For monolayer MoS2, zigzag nanorib-

bons have higher thermal conductivity than armchair nanoribbons. Our results show

that defect such as vacancies significantly impact the thermal conductivity of nanorib-

bons. By increasing the atomic vacancy density, the thermal conductivity of MoS2

nanoribbon is reduced. We have studied the impact of uniaxial stretching on the

thermal conductivity of MoS2 nanoribbons. The MD simulations predict that, the

thermal conductivity of MoS2 is independent of the axial strain.

The high computation cost of MD simulations imposes severe constrains on the
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size of modeling domain. To overcome this limitation, the molecular dynamics can be

used only on the part of the domain which needs a high accuracy, while finite elements

can be used in the rest of domain. Such coupling can reduce the computation cost

but the artifacts associated with the presence of an interface between MD and FE

zone should be removed. In this dissertation, a coupling technique is presented to

alleviate the atomic-continuum interface effect. The proposed method is based on

the bridging domain method (BDM). Using numerical examples, we show that the

proposed method significantly improves the performance of bridging domain method.

This is specially significant when discontinuities such as cracks are present in the

domain or when the integration time step is small.

Since the finite element method is a mesh-based method, special techniques are

required to simulate the fracture phenomenon. For example, a common way is to

split a cracked element into two new elements. However, this method requires the

re-meshing, which is not only time consuming, but also reduces the accuracy. Peridy-

namics is a more recently developed technique, which can resolve the issues associated

with modeling cracks using FEM. In a peridynamics formulation, the domain is dis-

cretized by node only. Thus, without the re-meshing, the peridynamics can simulate

the fracture phenomenon. In this dissertation, the peridynamics method is used to

simulate the fracture behavior of the single layer MoS2 and h-BN, at a continuum

level.

Since peridynamics is a nonlocal method, computationally, it is more expensive

than FEM. To reduce the computational cost, we propose to couple PD with FEM.

In this coupling technique, the peridynamics method is used to simulate the part
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which (may) contains cracks, while the finite element method is used for the rest

domains. Two dimensional and three dimensional examples are used to verify the

performance of the proposed method.
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CHAPTER 1: INTRODUCTION

1.1 MoS2 and h-BN

The advent of nanotechnology provides the tools to create materials which is com-

posed of only one or few layers of atoms [78, 81]. Such so-called two dimensional

(2D) materials exhibit properties different from their counterpart three dimensional

(3D) materials. Graphene is the first exfoliated two dimensional material. It contains

only one layer of carbon atoms and is nearly transparent. It has a high thermal con-

ductivity (5300 W/mK). It is one of the strongest material, with a 1 TPa Young’s

modulus. It is a zero-gap semiconductor. It is under development in the areas of elec-

tronics, biological engineering, filtration, lightweight and strong composite materials,

photovoltaics and energy storage.

Monolayer molybdenum disulfide (MoS2) is a more recently exfoliated graphene-like

two dimensional material, in which two atomic layers of sulfur (S) encompass a close-

packed layer of molybdenum (Mo) (see figure 1 and 2). Single layer MoS2 displays an

excellent electrical and optical properties which makes it appealing for a wide range of

applications, such as flexible optoelectronic devices, photodetectors, integrated logic

circuits, field effect transistors sensors and semiconductors [113, 161, 63].

Hexagonal boron nitride (BN) is another graphene-like two dimensional material. It

has a honeycomb atomic structure in which boron (B) and nitrogen (N) atoms occupy
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Figure 1: Atomic structure of MoS2 from the top view.

Figure 2: Atomic structure of MoS2 from the side view.

alternating sites (see figure 3 and 4). BN shows remarkable physical and mechanical

properties such as low dielectric constant, high temperature stability, high thermal

conductivity and high strength [37, 126, 20].

To ensure that nano devices contains these materials preserve their structural in-

tegrity during the service time, it is necessary to gain a fundamental understanding

of the fracture properties of monolayer MoS2 and h-BN. Moreover, various potential

application of these materials demand different requirements of the thermal proper-

ties. It is necessary to fundamentally understand the thermal transfer quality of these

materials.

In this study, the atomic and continuum level methods are used to investigate the
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Figure 3: Atomic structure of h-BN from the top view.

Figure 4: Atomic structure of h-BN from the side view.

fracture properties of single layer MoS2 and h-BN under mixed-mode loading. The

Nonequilibrium Molecular Dynamics (NEMD) method is used to study the thermal

properties of MoS2.

1.2 Brief review of molecular dynamics method

Molecular dynamics is a powerful tool of studying the mechanical, chemical and

electrical properties of materials by simulating the physical movements of atoms and

molecules.

In molecular dynamics, the atoms are the basic components. The interaction be-

tween atoms are considered using interatomic potentials. Different potentials have

been developed in the past for different materials. In this study, we use (1) the

AIREBO potential for the fracture study of MoS2 [85]; (2) the SW potential for the
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thermal conductivity study of MoS2 [58] and (3) the Tersoff potential for the fracture

and thermal studies of h-BN [139]. More details of the potentials and the reason we

choose these potentials can be found in chapter 2, 3 and 4.

Based on proper potential, molecular dynamics can represent atomic level phe-

nomena. It can be used to study the material’s response under different scenarios, for

example, different loading rates, temperatures, mix-mode loadings, different chiral di-

rections, different configurations and so on. It is very challenging to apply or observe

these nano-scale scenarios in the experiments. Thus, molecular dynamics is a pow-

erful tool to explore the nano-scale mechanism of many experimental phenomenon.

Moreover, the molecular dynamics simulation can even predict the materials prop-

erty earlier than the experimental observation. For example, our study of the fracture

property of single MoS2 layer was later proved by the experimental studies [147].

In this study, the LAMMPS [76] package is used to conduct the molecular dynamics

simulations of chapter 2, 3 and 4. LAMMPS is an open source code distributed

by Sandia National Laboratories. It is a widely used molecular dynamics package

for large scale parallel simulations. All the simulations are performed by the super

computer clusters at the University of North Carolina at Charlotte.

1.3 Brief review of peridynamics method

Peridynamics is a nonlocal method, which is developed to resolve some of the

deficiencies of classical continuum in modeling damage. In peridynamics, the equation

of motion for a point is:

ρ(X)d̈(X, t) = b(X, t) +

∫
H

(T [X, t] 〈X ′ −X〉 − T [X ′, t] 〈X −X ′〉)dVX′ , (1)
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Figure 5: The motion of a point x is based on an integration over its family. The
radius of the family domain is called the horizon.

where ρ is the mass density, ü is the acceleration, X is the original coordinate of the

current position and X ′ is the position of a neighbor point within the family of X, t

is the time and b is the body force density. T [X, t] 〈X ′ −X〉 is the force state, which

determines the interaction forces between the pairs of points.

1.4 Coupling the molecular dynamics and finite element methods

Finite Element Method (FEM) is a widely used numerical method which can do

the simulation of continuous problems with very high efficiency. Since, FEM is based

on the gridded mesh and elements, it is very simple to detect the free surfaces, which

are the surfaces who only have one attached element. As a result, it can simulate the

contact problem with a high accuracy. However, without advanced enrichments [99],

FEM can not simulate the discontinuity naturally. One common way to represent the

failure and fracture is to delete the element when its failure criterion is reached [55, 62,

57]. This method lead to the non-convergency of the global mass and energy. Another

common way to let the crack propagate is to split the nodes and elements, this method

requires the remeshing during the simulation and is computationally expensive [17,
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(a) (b)

Figure 6: (a) In FEM, the cracks propagation direction is in the compliance with
the mesh. (b) In PD, the crack can propagate by cutting through interaction

between points.

64, 127]. Whats more, the cracks propagation direction is in the compliance with the

mesh, which reduces the accuracy of the simulation. (Figure 6(a))

On the other side, for the molecular dynamics, it allows the discontinuity to pass

through the interactions of particles and the direction of the cracks propagation can

be arbitrary. Thus these methods can simulate the crack’s propagation and nucleation

naturally without remeshing (figure 6(b)).

Molecular dynamics simulations provide vast amount of information about material

behavior at nanoscale. They have been particularly used to study how defects such as

cracks, grain boundaries or dislocations affect macroscale processes such as elasticity

or plasticity. However, the high computational costs associated with atomistic simu-

lations limit their applicability to systems made of limited number of atoms. Coupled

atomistic-continuum methods have been introduced as a remedy to this limitation. In

the coupled methods, full atomistic resolution is maintained where deformations are

highly inhomogeneous (e.g., at the vicinity of defects) and continuum models are used

elsewhere [136, 96, 132, 118, 119, 2, 21, 144, 11, 152, 40, 122, 84, 121, 155, 15]. The
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challenge lies in appropriate gluing of atomistic and continuum zones such that the

atomistic region behaves as if the entire domain is atomistic. To achieve this objec-

tive, the effects of the atomistic-continuum interface should be minimized. In static

problems ghost forces can be generated at the coupling interface [91] and a number of

techniques have been developed to overcome this issue [11, 40]. In dynamic problems

an additional difficulty related to the passage of the propagating wave from atomistic

to continuum across the interface is encountered; the change of the constitutive equa-

tions from inherently nonlocal atomistic to local continuum along with the change

of the resolution from atomistic to continuum lead to spurious wave reflection at the

interface. Since in the coupling methods atomistic zone usually has a small size,

the spuriously reflected wave can quickly increase the temperature of atomistic zone,

whereby destroys the simulation. To avoid the spurious wave reflections, the interface

between the atomistic and continuum should be such that coarse scale information

(low frequency waves) can be accurately transmitted in both directions, whereas the

fine scale oscillations which cannot be transmitted into the continuum zone should be

eliminated at the interface. Several such interfaces have been developed in the past,

among those are coarse-grained molecular dynamics (CGMD) method [118, 119],

macroscopic-atomistic-ab initio dynamics (MAAD) method [2, 21], bridging scale

method (BSM) [144, 143], bridging domain method (BDM) [11, 152], concurrent AtC

coupling method [40, 8], embedded statistical coupling method (ESCM) [122] and

heterogeneous multiscale method (HMM) [33, 34]. Reviews on concurrent atomistic-

continuum multiscale methods can be found in [27, 98].

Belytschko et al. [11, 152] developed a bridging domain method (BDM) to couple
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continuum mechanics with molecular models. Bridging domain method lies in the cat-

egory of overlapping domain decomposition coupling methods, or Arlequin method,

which has been developed earlier by Ben Dhia [13, 10]. This method has been used

for modeling cracks and defects in graphene and carbon nanotubes [11, 152, 165, 164]

and has been combined with extended finite element method (XFEM) [100] to study

crack propagation and dislocation emission in nanomaterials [44, 104]. More recently,

BDM applications are extended to multiscale analysis at finite temperature [6, 120].

In the bridging domain method, continuum and atomistic domains overlap in a

bridging (handshaking) domain where a weight function is used to partition the atom-

istic and continuum energy. In the overlapping domain, the positions of atoms and

nodes are not necessarily coincident and the compatibility between atomistic and

continuum domain is imposed by Lagrange multipliers. This allows to use a uni-

form mesh in the entire domain and removes the need for mesh refinement in the

overlapping region.

In this dissertation, The impact of the discretization of Lagrange multipliers and

the time integration step size, on the performance of BDM method is studied. The

new technique is proposed.

1.5 Coupling the peridynamics and finite element methods

Peridynamics is more computational expensive than FEM. To reduce the compu-

tational cost, we propose to couple FEM and peridynamics. Some previous studies

discussed some simple ways to couple FEM and peridynamics. For example, Erkan

etl. studied a submodeling approach in which the boundary conditions of peridy-



9

namics are imported from FEM [107]. However they assume that the submodeling

details do not affect the FEM simulation and the boundary of the peridynamics is

far enough from the local features. Richard and Steward studied a way to implement

the peridynamics model in a conventional FEM code [92]. To save the computational

time, the displacement constraint between the FEM and peridynamics is applied in a

“fuzzy” zone [92]. Liu developed an interface element, in which the embedded points

are firmly attached to the interface element, while the interaction force between the

embedded points and the normal points are divided and assigned to the nodes of

the interface elements [88]. Similar studies have been done by [41, 65, 115]. These

coupling ideas are very similar: the overlapping zone of FEM and peridynamics is

divided into two parts. In one part, peridynamics points move following the FEM, in

the other part, the FEM nodes move following the peridynamics points. The attach-

ment criterion can be based on displacement or force. However, these simple ways of

coupling are only tested under the quasi-static loadings. In a real-world, for example,

a bullet hitting a shield, or in an explosion, the loadings can be much more complex.

In these cases, the coarsely meshed FEM zone can not resolve the high frequency

waves coming from the finely meshed peridynamics zone. Thus the high frequency

waves will be reflected back to the peridynamics zone and a redundant energy is

introduced and trapped inside the peridynamics. The redundant energy leads to a

subcritical nucleation or propagation of crack, it also may cause the failure near the

coupling zone [135].

In this dissertation, peridynamics is used in the zones where fracture may occur

and FEM is used in the rest of the domain. The purpose is to propose a seamless
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coupling methodology of FEM and peridynamics. In this method, not only the load

can be transferred from FEM, the FEM can also feel the feedback from peridynamics

simultaneously. The loading is able to be a high rate dynamic loading. The mesh of

the peridynamics and the overlapping can be generated easily without much artificial

effort. At the end, the peridynamics can be linked to a FEM software to simulate

real world problems by a general backgrounded user.



CHAPTER 2: MOLECULAR DYNAMICS STUDY OF THE FRACTURE
BEHAVIOR OF MOS2

2.1 Introduction

Monolayer molybdenum disulfide (MoS2) is a recently exfoliated two dimensional

material in which two atomic layers of close-packed sulfur (S) encompass a close-

packed layer of molybdenum (Mo) (see figure 1 and 2). Monolayer MoS2 displays

excellent electrical and optical properties which makes it appealing for a wide range

of applications, such as flexible optoelectronic devices, photodetectors, integrated

logic circuits, field effect transistors and sensors [160, 113, 93, 56, 110, 146]. Its

semiconducting nature [94] allows it to overcome the zerobandgap of graphene, while

still sharing many of graphenes advantages for electronic applications [106, 9]. Be-

sides fantastic physical properties, its remarkable mechanical properties such as high

Young’s modulus and high flexibility [80] make it a promising candidate as a filler in

nanocomposite materials.

To ensure that nanodevices and nanomaterials designed based on monolayer MoS2

preserve their structural integrity during fabrication and service time, it is necessary

to gain a fundamental understanding of the mechanical properties of monolayer MoS2.

In particular, to predict and prevent mechanical failure in the form of cracks, it is

essential to understand the failure properties of monolayer MoS2.

In contrast to three dimensional materials whose fracture properties have been
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widely studied, research on the fracture properties of two dimensional (2D) materials

is scarce. Most of the studies on the fracture properties of 2D materials are limited

to graphene [155, 162, 31, 77, 54], fracture properties of other 2D materials have been

rarely investigated. The failure mechanisms of MoS2 are more complex than those

of graphene. This is mainly due to the more complicated atomic structure of MoS2.

MoS2 has a binary system (composed of two elements) and in contrast to graphene,

which has a truly planar structure, a single sheet of MoS2 has a triple-layered atomic

structure. These differences in the atomic structure necessitate separate investigations

of the failure mechanism of monolayer MoS2.

2.2 Review of the REBO potential

The interactions among the atoms are modeled using a reactive empirical bond

order (REBO) potential [85]. The REBO potential has the form:

Eb =
1

2

∑
i 6=j

fCij (rij)[V
R(rij)−bijV A(rij)] =

1

2

∑
i 6=j

fCij (rij)[(1+
Q

rij
)A·e−α·rij−bijB·e−β·rij ],

(2)

where Eb is the binding energy of a system and rij is the distance between atoms i

and j. V R(rij) and V A(rij) are the pairwise repulsion and attraction, respectively.

fCij (rij) is the cutoff function and bij is the bond-order term. The bond-order term can

be regarded as a measure of bond strength, which is determined by the many-body

interactions of the environment on an atom. Two cutoff distances Rmin and Rmax are

used to allow a smooth transition of cutoff function from one to zero.
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Figure 7: Three types of cracks: (a) zigzag crack, (b) armchair crack with two S
atoms at the crack tip and (c) armchair crack with one Mo atom at the crack tip.

2.3 Geometry of the examples

Our MD model is a square domain with side lengths of 110 Å, consisting of about

4700 atoms. There are three types of cracks: zigzag crack, armchair crack with a

Mo atom at the crack tip and armchair crack with two S atoms at the crack tip (see

figure 7). These three types of cracks are initially generated by removing three or

four layers of atoms, respectively. Due to the lattice structure of MoS2, the edges of

zigzag cracks are not symmetric: one edge is composed of two S atoms at its outermost

atomic layer while the other surface is made of Mo atoms. On the other hand, the

surfaces of armchair cracks are symmetric. The effects of the crack tip structure on

its toughness are studied here.
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Figure 8: The loading phase angle is used to represent the ratio between KI and KII.

2.4 Mixed-mode loading of the examples

The molecular dynamics simulations are performed by applying crack tip asymp-

totic displacement fields to the outermost layers of atoms shown in figure 9. We

have assumed that the far field behavior is linear and isotropic since the crack tip

strain field reduces rapidly and MoS2 behavior is anisotropic only under large strains

[26, 79]. The crack tip asymptotic displacement fields for a linear isotropic material

under mixed mode I and II of fracture is given by

ux =
1 + υ

E

√
r

2π
[Kapp

I cos
θ

2
(κ− 1 + 2sin2 θ

2
)] +Kapp

II sin
θ

2
(κ+ 1 + 2cos2 θ

2
) (3a)

ux =
1 + υ

E

√
r

2π
[Kapp

I sin
θ

2
(κ+ 1− 2sin2 θ

2
)]−Kapp

II cos
θ

2
(κ− 1− 2sin2 θ

2
) (3b)

When the mode I and mode II are mixed, we use the loading phase angle to

represent the ratio between KI and KII: φ = atan
Kapp

II

Kapp
I

, as figure 8 shown. Thus, a

loading phase angle of 0◦ corresponds to a pure mode I loading and a loading phase

angle of 90◦ corresponds to a pure mode II loading.

The material coefficient of single layer MoS2 is shown in table 1.

The boundary conditions are applied incrementally in increments of ∆Kapp
eff = 0.01

MPa
√

m. After each loading increment, the position of the boundary atoms are kept
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Table 1: Material coefficient of single layer MoS2 for generating the displacement
field on the boundary.

Young’s modulus 200 GPa
Poisson’s ratio 0.29

Figure 9: A pre-cracked MoS2 sheet. The asymptotic crack tip displacement fields
are applied to the boundary atoms shown in red.

fixed while the position of internal atoms are relaxed for 60000 time steps, which

corresponds to a strain rate of 5×10−5 ps−1. The velocity-Verlet scheme with a time

step of 1 fm is utilized for the purpose of time integration.

To obtain the critical stress intensity factors, the bonds lengths are checked at the

end of each load increment. If the length of any bonds at the crack tip is larger than

the Rmax (equal to 3.05 Å for Mo−S interactions), the bonds are considered broken,

and the Kapp
eff corresponding to that load increment is considered as the critical stress

intensity factor (Kcr
eff). All the MD simulations are conducted using LAMMPS package

and a Nosé-Hoover thermostat is used to maintain the temperature at 300 K.
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Figure 10: Crack propagation path of zigzag cracks. The first row is shown in the
deformed configuration, the second row is shown in the undeformed configuration

and the third row is shown in the out of plane deformation.

2.5 Simulation results

The crack propagation paths of zigzag cracks under mixed-mode loading are shown

in figure 10. When the loading phase angle is not zero, the crack extends via a kink

forming at an angle with the initial crack. The kink angle depends on the mixed

mode phase angle and by increasing the phase angle, the kind angle also increases.

The crack trajectories of an armchair cracks with two S atoms at the crack tip shown

in figure 11. These figures indicate that even under pure mode I loading (opening

load), armchair cracks propagate via a kink. Similar to zigzag cracks, an increase in

the loading phase angle leads to increase in the kink angle. Investigation of the crack
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Figure 11: Crack propagation path of armchair cracks with two S atoms at the
crack tip. The first row is shown in the deformed configuration, the second row is
shown in the undeformed configuration and the third row is shown in the out of

plane deformation.

propagation paths of armchair and zigzag cracks shows that both cracks propagate

mostly along a zigzag surface, suggesting that zigzag crack has a smaller surface

energy than armchair crack. For the armchair cracks with a Mo atom at the crack

tip, the results are very similar as figure 11 shows. This observation is later proved

by experimental studies [147].

The crack tip configurations under the pure mode I critical stress intensity factors

are shown in figure 12 , in both the deformed and undeformed configuration. The

very first broken bonds are shown in red demonstrating that under mode I loading,

the crack propagates by braking Mo-S bonds at the crack tip.
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Figure 12: Snapshots near the crack tips at the critical stress intensity factors for
(a) zigzag crack in a undeformed shape, (b) zigzag crack in a deformed shape, (c)
armchair with two S atoms at the crack tip in a undeformed shape, (d) armchair
crack with two S atoms at the crack tip in a deformed shape, (e) armchair crack

with a Mo atom at the crack tip in a undeformed shape. (f) armchair crack with a
Mo atom at the crack tip in a deformed shape.

It can be seen in figure 10 and 11 that when loading phase angle is large, which

means when the mode II loading is dominant, the MoS2 sheet undergoes the out-

of-plane buckling. The buckling is due to the compressive stress generated by mode

II component of loading. Since the thickness of the MoS2 sheet is very small, the

compressive stress induces out-of-plane deformation (buckling), a phenomenon rem-

iniscent of buckling of thin cracked plates under tensile and shear loading. The

magnitude of out-of-plane buckling is shown in figure 13, which clearly shows that

the out-of-plane deformation is negligible when mode I component is dominant and

becomes more severe when the phase angle increases.

As are shown in figure 10 and 11, if the out-of-plane buckling is excessive, buckling

cracks nucleate away from the surface of the initial crack. The buckling cracks might
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Figure 13: Maximum difference of the coordinates in the z-direction.

nucleate before or after the initial crack advances. In this dissertation, for each

loading phase, two critical stress intensity factors are reported. One corresponds to

the critical stress intentisy factor at which the initial crack propagates (Kcr
cp) , and

the other corresponds to the critical stress intensity factor at which a bond breaks

due to the buckling (Kcr
bp) of a crack surface.

Table 2: Critical stress intensity factors Kcr
eff(MPa

√
m) of cracks at different loading

phase angles. The number in black corresponds to the stress intensity factor at
which the initial crack propagates. The numbers in purple corresponds to the value
at which the buckling crack nucleates.Critical stress intensity factors Kcr

eff (MPa
√

m)
of cracks at different loading phase angles. The number in black corresponds to the
stress intensity factor at which the initial crack propagates. The numbers in purple

corresponds to the value at which the buckling crack nucleates.

φ 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

Kcr
eff

ZZ 1.3 1.3 1.3 1.5 (4.6) 1.2 (2.9) 1.8 (2.5) 1.3 (2.3)
ZZ(neg) 1.3 1.7 1.4 1.8 (4.0) 1.5 (2.8) 1.6 (2.7) 1.2 (2.8)

(MPa
√
m)

AC-S 1.8 1.8 1.3 1.8 (4.0) 1.5 (3.2) 1.6 (2.0) 1.8 (2.2)
AC Mo 1.5 1.3 1.3 1.5 (5.7) 1.3 (4.5) 1.2 (2.5) 1.6 (2.6)
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The critical effective stress intensity factors of the armchair and zigzag cracks are

presented in figure 14 and table 2. Due to the unsymmetry of the zigzag crack edges,

the loading phase angles is varied from the -90◦ to 90◦. Plots of figure 14 show that

the Kcr
cp of armchair crack with two S atoms at its crack tip is larger than that of

armchair cracks with one Mo atom at its crack tip. This is mainly due to different

interatomic interactions between the Mo-Mo and S-S atoms in MoS2. In the current

potential, the cut-off distance of Mo-Mo interactions is 3.8 Å whereas the cut-off

distance of S-S interactions is just 3.0 Å. In an armchair crack with one Mo atom

at the crack tip, the distance between the four S atoms at the immediate vicinity of

the tip (see figure 12) is larger than S-S cut-off distance, hence they don’t interact

with each other. On the other hand, if two S atoms are located at the crack tip, the

distance between the two Mo atoms located in the immediate vicinity of the crack

tip (see figure 12) is less than their cut-off distance, hence they interact with each

other. Due to this extra interatomic interaction, more energy is required to deform

the crack tip neighborhood which in turn leads to an increase in the crack toughness.

Plots of figure 14 also indicate that in general Kcr
cp of zigzag cracks are larger when

the crack surface with Mo atoms at its outermost layer is under compression, i.e.,

loading phase angle is less than zero. Furthermore, comparing Kcr
cp of armchair and

zigzag cracks show that under pure mode I loading, armchair cracks are tougher than

zigzag cracks.

When the loading phase angle is smaller than 45◦, i.e., when mode I loading is

dominating, no buckling crack is observed. By increasing the loading phase angle,

the magnitude of the out-of-plane deformation increases and buckling cracks nucleate.
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Figure 14: Critical stress intensity factors of armchair and zigzag cracks. Kcr
cp are

shown with solid lines they represent the moment when the initial crack is about to
propagate. Kcr

BP are shown with the dashed lines, they represent the moment when
the buckling is about to occur.

Plots of figure 14 show that by increasing the loading phase angle, the magnitude of

the Kcr
cp reduces. The intersection point of the dashed curves and their corresponding

solid lines represent the loading phase angle at which the nucleation of the bucking

crack and the propagation of the initial crack occur simultaneously.

2.6 Conclusion

Our molecular dynamics simulations predict that, similarly to graphene, both the

armchair and zigzag cracks prefer to propagate in the direction which makes a new

zigzag crack. The critical stress intensity factors for MoS2 sheets are in the range

of Kcr
cp = 1 ∼ 2.5 MPa

√
m. Buckling cracks have been observed. Buckling cracks

develop only if the loading phase angle is larger than 45◦.



CHAPTER 3: MOLECULAR DYNAMICS STUDY OF THE FRACTURE
BEHAVIOR OF H-BN

3.1 Introduction

The current interest to graphene and the need to introduce an electronic bandgap

to the gapless pristine graphene has brought intense interests to other graphene-like

two dimensional materials such as hexagonal boron nitride [42, 29, 24]. Hexagonal

boron nitride (h-BN) has a honeycomb atomic structure in which boron (B) and nitro-

gen (N) atoms occupy alternating sites. Despite similar morphology with graphene,

the binary atomic structure of hexagonal boron nitride leads to mixed ionic-covalent

atomic bonding. Such atomic bonding which is different from the covalent sp2 bond-

ing of graphene gives h-BN distinct physical and mechanical properties than graphene.

Opposed to graphene which displays a zero bandgap and is semimetallic [108], h-BN

shows a band gap and is an insulator with a wide band gap of 5.6 eV [74]. Such differ-

ences in the physical properties of h-BN and graphene, has motivated the synthesize

of hybrid grapheneboron nitride sheets with properties which are complementary to

both graphene and boron nitride [24, 90].

Besides being complementary to graphene, the remarkable physical and mechanical

properties h-BN such as low dielectric constant [20], high temperature stability [37],

high thermal conductivity [126] and high strength [109, 49] make it appealing for a

wide spectrum of applications in its own right. The wide spectrum of applications
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of h-BN expose it to different thermal, electrical and vibrational loadings. For a

reliable usage of h-BN in such sensitive devices it is essential to ensure that h-BN can

sustain such loadings. This necessitates a fundamental understanding regarding the

mechanical and fracture properties of h-BN.

Opposed to graphene whose mechanical and fracture has been studied in the past

[156, 162, 114], the studies on the fracture properties of graphene-like two-dimensional

materials is scarce. Considering that graphene-like two-dimensional materials such as

h-BN have a more complex atomic structure than graphene, their fracture properties

can be quite different from graphene. Such differences necessitate a separate study

of the fracture of h-BN. Ideally, the fracture and mechanical properties of h-BN

should be characterized experimentally, e.g., by uniaxial test. However, designing and

conducting test at nanoscales is very complicated; to date no uniaxial test on two-

dimensional materials has been reported. Computational studies such as molecular

dynamics, on the other hand, can provide valuable insights regarding the behavior of

twodimensional materials. In this dissertation, the molecular dynamics simulations

with a Tersoff potential [140] is used to study the fracture properties of single layer

boron nitride sheets under mixed mode I and II loading.

3.2 Tersoff potential

The molecular dynamics simulations are conducted using the LAMMPS package

[76]. The interatomic interaction between the boron and nitrogen atoms in the BN

sheets are prescribed using the Tersoff potential [140]. The Tersoff potential can be
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written as

Vij = fC(rij)[fR(rij) + bijfA(rij)], (4)

where fC is a cut-off function defined as

fC(r) =



1 r ≤= R−D

0.5− 0.5sin(π
2
r−R
D

) R−D < r < R +D

0 r ≥ R +D

, (5)

The function fr is a two body term and represents a repulsive pair potential whereas

fA is a three body term and represents the attractive pair potential due to the atomic

bonds. The function fR(rij) and fA(rij) are given by

fR(rij) = A · exp(λ1rij), (6)

and

fA(rij) = −B · exp(λ2rij). (7)

Function bij represents a measure of the bond order which depends on the local

coordination of the neighbors of atoms i and the angle θijk between atoms i, j and k.

Function bij is defined by

bij = (1 + βnζnij)
− 1

2n (8a)

ζij =
∑
k 6=i,j

fC(rij) · g(θijk) · exp(λ3
3(rij − rik)3) (8b)

g(θ) = 1 +
c2

d2
− c2

d2 + (cosθ − h)2
(8c)

In the above equations, the summation is taken over all the neighbors j and k of
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atoms i which are located within a cutoff distance of R +D.

Several sets of Tersoff potential parameters for interaction between B an N atoms

have been developed in the past [126, 125, 142, 69]. Sekkal et al. [125] modified the

Tersoff set of parameters of carbon [140] to describe the B and N interactions in cubic

boron nitride (c-BN) systems. Verma et al. [142] modified this set of parameters to

describe the interactions of B and N in hexagonal BN (h-BN) systems. More recently,

adjusted set of Tersoff potential parameters for boron nitride are developed by fitting

the obtained interatomic forces, bond lengths, cohesive energy and phonon dispersion

curves to the experimental and ab initio modeling data [126, 69, 86]. Furthermore,

Tersoff potential parameters have been extended to describe the interaction among

carbon, boron and nitrogen [69, 102]. Such parameters are used to study the ther-

mal transport and mechanical properties of more complex materials such as hybrid

graphene-boron nitride [69] or graphitic carbon nitride [102].

In this dissertation, the potential parameters and their corresponding values for

BN are provided by [69]. This potential parameter set has been successfully used in

accurate reproduction of structural, mechanical, vibrational and thermal transport

properties of hexagonal boron nitride nanostructures [126] and hybrid graphene-boron

nitrid nanoribbons [69].

3.3 Numerical examples

Our molecular dynamics model is a circular domain cut around the crack tip as

shown in figure 15. The circular domain is chose large enough that its boundary

falls in the K-dominant zone. The initial zigzag and armchair cracks are generated
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by eliminating respectively three and four rows of atoms. We investigate the effect

of crack edge chirality on the fracture properties by considering both armchair and

zigzag cracks. As are shown in figure 16(a), the edges of zigzag cracks are not alike.

In one of the edges, boron atoms occupy the outermost layer while in the other edge,

nitrogen atoms are located at the outermost layer. Since when loading phase angle is

not zero, the deformation of the top and bottom edges of the crack is not symmetric.

For example, under pure mode II loading, one edge is under the compression and the

other edge is under tension. To take into account the crack edge unsymmetry, the

loading phase angle is varied from -90◦ to 90◦. This allows us to consider the effect

of tension or compression in either of the edges on the critical stress intensity factor,

Kcr.

The edges of cracks with armchair chirality are symmetric. However, the armchair

cracks can have different tip configurations. The impact of tip configuration on the

critical stress intensity factors and crack propagation paths are studied by considering

the four different crack tips shown in figure 16. Depending on the location of the crack,

a B or a N can occupy the crack tip. Furthermore, the crack tip can have a blunt

shape or can have a sharp configuration. We refer to blunt and sharp cracks with a

boron atom at the tip as AC-BB and AC-BS and to the blunt and sharp cracks with

a N atom at the tip as AC-NB and AC-NS, respectively.

The equilibrim configuration of the cracked domain is obtained by first applying

the crack tip asymptotic field to all the atoms in the domain and then while the

boundary atoms are kept fixed the position of the interior atoms are relaxed. The

crack tip asymptotic displacement fields for a linear isotropic material under combined
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Figure 15: Molecular dynamic domain. The boundary atoms are shown in cyan.

mode I and II loading are shown in equation 3a in chapter 1.

Our goal is to model the crack propagation under quasi-static loading. For this

purpose, the loading is increased in increments of ∆Keff = 0.01 MPa
√

m. After each

loading increment, the position of boundary atoms are kept fixed while the position

of interior atoms are relaxed using the conjugate gradient method. The temperature

of interior domain is then increased to 300 K, using the velocity-rescaled Berendsen

thermostat. After relaxing for 3 ps using a microcanonical (NVE) ensemble, a Nosé-

Hoover thermostat is used to maintain the temperature at 300 K for 60 ps in a

canonical (NVT) ensemble. The velocity-Verlet algorithm with a time step of 1 fs is

used for the purpose of time integration of atoms trajectory.

The material coefficients for single layer h-BN are shown in table 3. These values

are obtained based on the DFT simulations [109].
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Table 3: Material coefficients of single layer h-BN for generating the displacement
field on the boundary.

Young’s modulus 925 GPa
Poisson’s ratio 0.23

(a) (b)

(c) (d) (e)

Figure 16: Five crack types: (a) zigzag crack, (b) a blunt armchair crack with a B
atom at the crack tip, (c) a sharp armchair crack with a B atom at the crack tip,
(d) a blunt armchair crack with a N atom at the crack tip, (e) a sharp armchair

crack with a N atom at the crack tip.

Figure 17: A buckling crack under pure mode II loading in h-BN sheet.
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Figure 18: Crack propagation paths in a BN sheet, zigzag crack.

3.4 Results

The crack propagation path of the zigzag and armchair cracks are shown in figure

17. These figures show that loading phase angle, crack edge chirality and crack

tip configuration affect the cracks growing path. An important observation is that

regardless of the loading phase angle or crack geometry, cracks tend to advance along

a zigzag path, which is similar to the observation in chapter 2 for MoS2 and previous

studies of graphene sheets ([155, 162]). The propagation paths show in figure 18 ∼

22, indicate that as the cracks grow, they can kink. In that case the crack path might

include segments of armchair direction. To clearly separate the armchair and zigzag

segments of the propagation paths, the zigzag crack surfaces are shown in green and
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Figure 19: Crack propagation paths in a BN sheet, A blunt armchair crack with a B
atom at the crack tip.

armchair atoms are shown in red. These figures show that the length of armchair

segments are much smaller than the zigzag segments of the crack path.

The only condition in which the crack propagates along a self-similar path is a

zigzag crack under the pure mode I loading (loading phase angle equals to zero).

Armchair cracks kink even under mode I loading to propagate in a zigzag direction.

Besides crack edge chirality and loading phase angle, crack tip configuration also

impacts the propagation path.

Out-of-plane deformation occurs in the boron nitride sheet when the loading phase

angle is not zero. The out of plane deformation is due to the buckling of BN sheet

under compressive loading; since BN sheet is very thin, compressive stress can gen-

erate local buckling in the sheet. The out-of-plane deformation releases some energy
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Figure 20: Crack propagation paths in a BN sheet. A sharp armchair crack with a
B atom at the crack tip.

through bending and can postpone the crack’s propagation. Such a phenomenon

has been observed previously in the thin plates under the tensile or shear loading

[95, 128, 18, 19] as shown in chapter 2 [148]. The maximum out-of-plane deformation

as a function of the loading phase angle is shown in figure 23. The plots of this

figure indicate that the out-of-plane deformation is negligible when the loading phase

angle is close to zero and increases as the loading phase angle approaches 90◦, i.e.

out-of-plane deformation is considerable when mode II loading is dominant.

Excessive out-of-plane deformation can induce buckling cracks (BC) in the sheet.

Since increase in the loading phase angle leads to increase in the out-of-plane de-

formation, it is expected that buckling cracks initiate when the loading phase angles

are close to 90◦. A buckling crack is shown in figure 17. As shown, buckling cracks
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Figure 21: Crack propagation paths in a BN sheet. A blunt armchair crack with a
N atom at the crack tip.

start at the crack edge in a direction orthogonal to the initial crack. The buckling

crack ends at the tip of the original crack. Hence, due to the buckling crack, a segment

of the boron nitride sheet is separated from the rest of the sheet.

The effective critical stress intensity factor (Keff
cr ) associated with the propagation

of the original crack (CP) and nucleation of buckling cracks (BC) are shown in figures

24, 25 and 26 for zigzag and armchair cracks. The plots of figure 24 show that the

mode I critical stress intensity factor for a zigzag crack is about 5.56 MPa
√

m. This

can be used to find the surface energy of a armchair crack by using the Griffith

relation for brittle materials which relates the critical stress intensity factor to the

surface energy density γ, by
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Figure 22: Crack propagation paths in a BN sheet. A sharp armchair crack with a
N atom at the crack tip.

Kcr =
√

2γE (9)

Using equation 9, the armchair surface energy density is 18.06 J/m2 which is bout

50 % higher than the zigzag surface energy of 12 J/m2 for graphene [50]. The critical

stress intensity factors are larger when the loading phase angle is less than zero, i.e.

the edge with nitrogen atoms at its outermost layer are in compression. The pure

mode II (φ = 90◦ or -90◦) critical stress intensity factor for a zigzag crack is about

6.60 MPa
√

m. This indicates that crack propagation under shearing mode demands

more energy compared to the energy required for crack propagation under opening

load. This is partly due to the out-of-plane deformation generated when mode II is
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Figure 23: Maximum out-of-plane deformation of cracked boron nitride sheet as a
function of loading phase angle.

Figure 24: Critical stress intensity as a function of loading phase angle for a zigzag
crack.
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Figure 25: Critical stress intensity as a function of loading phase angle for an
armchair crack with a boron atom at its tip.

Figure 26: Critical stress intensity as a function of loading phase angle for an
armchair crack with a nitrogen atom at its tip.
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dominant. Some of the energy of the applied loading is used by the elastic energy of

buckling bending, hence more external energy should be applied to the system before

a bond at the crack tip breaks.

The dashed curve in figure 24 corresponds to the stress intensity factor at which

a buckling crack nucleates. These curves show that when loading phase angle is less

than 45◦, no buckling crack is generated. This is in consistency with the out-of-plane

deformation curves shown in figure 26, i.e. the amount of out-of-plane deformation is

negligible when the loading phase angle is less than 45◦. Moreover, buckling cracks

nucleate before the propagation of the original crack when loading phase angle is

larger than 52◦.

The effective critical stress intensity factors for armchair cracks with boron and

nitrogen atoms at their tips are shown in figure 25 and figure 26; respectively. Com-

paring the plots of these figures with the plots of figure 24 show, that in general the

critical stress intensity factors of zigzag cracks is higher than those of armchair cracks.

The plots of these figures indicate that crack tip configuration can affect the critical

stress intensity factor. Mode I stress intensity factor is almost the same for sharp and

blunt configurations. The mode I critical stress intensity factor of an armchair crack

is 5.35 MPa
√

m and 5.15 MPa
√

m for tips with a boron and nitrogen atom at their

tips; respectively. The mode II critical stresss intensity factor is higher than of mode

I and depending of the tip configuration varies from 6.2 MPa
√

m to 7.2 MPa
√

m. For

both cases of cracks with a boron or nitrogen atom at the tip, when the loading phase

angle is less than 30◦, the critical stress intensity factor of cracks with a blunt tip is

larger than Keff
cr of cracks with a sharp tip and when the loading phase angle is larger
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than 30◦ cracks with a sharp tip configuration have a higher critical stress intensity

factor.

The crack tip configuration also impacts the formation of buckling cracks. Buckling

cracks are not generated for armchair cracks with a sharp crack tip. Buckling cracks

initiate only if the crack tip is blunt and the loading phase angle is larger than 75◦.

Therefore; the formation of buckling cracks is a more sever issue for sheets with in

initial zigzag cracks in them.

3.5 Conclusion

The simulations show that the crack edge chirality, crack tip configuration and

loading phase angle affect the critical stress intensity factor and crack propagation

path of the boron nitride sheet. The initial cracks prefer to propagate in a direction,

which can form a new zigzag crack surface. Besides the propagation of main crack,

excessive out-of-plane deformation of BN sheet under mixed mode loading can lead

to the formation of buckling cracks.



CHAPTER 4: MOLECULAR DYNAMICS STUDY OF THE THERMAL
CONDUCTIVITY OF MOS2

4.1 Introduction

Monolayer molybdenum disulfide (MoS2) is a graphenelike two dimensional ma-

terial. Monolayer MoS2 displays remarkable features such as excellent electrostatic

coupling [113], tunable bandgap [94], gate tunable superconductivity [159], and high

mechanical strength [23, 148, 5] properties which bring it a wide spectrum of appli-

cations in polymer composites [163, 87], nanoelectronics [145], and optoelectronic10

devices. Monolayer MoS2 posses a large value of Seebeck factor in the range of -

4×102 to -1×105µV/K [39, 22]. Such a high Seebeck coefficient makes monolayer

MoS2 desirable for thermoelectric applications such as on-chip thermopower genera-

tion and waste thermal energy harvesting. The ability of thermoelectric materials to

produce thermoelectric power is inversely related to their thermal conductivity [43].

To improve the performance of MoS2 based thermoelectric devices, it is necessary

to develop techniques for tuning the thermal conductivity of MoS2 ribbons. This

necessitates a fundamental understanding of the mechanism of thermal conductivity

of MoS2 ribbons.

The strain engineering of two and three dimensional materials has been studied in

the past [111, 14, 117, 82, 134, 52] and the reported results show that the impact

of tensile strain on the thermal conductivity of two and three dimensional materials
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is not the same. While the application of normal tensile strain to three dimensional

materials reduces their thermal conductivity, [111, 14, 117, 82] tensile strain increases

the thermal conductivity of two-dimensional materials such as monolayer hexagonal

boron nitride [134] or silicene [52]. The differences in the response of two-dimensional

materials to strain necessitate a separate investigation of the strain effects on the

thermal conductivity of monolayer MoS2.

Due to the difficulties of conducting experiments at nanoscale, computational meth-

ods such as molecular dynamics (MD) and density functional theory have attracted

intense attentions to study the behavior of two dimensional materials [133, 60, 38,

73, 59, 135]. In this dissertation, we use reverse nonequilibrium molecular dynamics

method (RNEMD) to investigate the thermal conductivity of monolayer MoS2 layers.

We study how the geometry of ribbons including length and chirality affect the ther-

mal conductivity of nanoribbons. Moreover, we investigate the impact of longitudinal

uniaxial strain on the thermal conductivity of MoS2 ribbons.

4.2 Stillinger-Weber interatomic potential

In this chapter, the molecular dynamics study using a Stillinger-Weber (SW) in-

teratomic potential is conducted. Modified SW potential for single layer MoS2 is

used to model the interaction between atoms in single layer MoS2 sheets [58]. SW

potential considers two types of interactions between atoms: bond-stretching and

angle-bending. The potential energy due to bond stretching and angle bending is,

Vbond = A · exp(
ρ

(r − rmax)
) · ( B

r4 − 1
) (10a)
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Vangle = K · exp(
ρ1

r12 − rmax12

+
ρ2

r13 − rmax13

) · (cosθ − cosθ0)2, (10b)

where Vbond and Vangle are the potential of bond-stretching and angle-bending; r

is the bond length. rmax, rmax12 and rmax13 are cutoff distances beyond which the

interaction disappears. A, B, K, ρ1 and ρ2 are five parameters, which are determined

by considering both the phonon spectrum and stress-strain relation of single layer

MoS2. Thus, this potential can represent both thermal and mechanical properties of

single layer MoS2 nanoribbon with high precision, especially when the nano ribbon is

under large strain and the material undergoes nonlinear deformation.

Before evaluating the thermal conductivity of nanoribbons, the thermal equilibrium

is established in the system by conducting a 250 picosecond Nosé-Hoover thermal bath

coupling at a temperature of 300 K. Atoms trajectories are obtained by integrating

the equations of motion using a velocity-Verlet scheme at a fixed time step of 0.5

fs. The ribbon is periodic along its longitudinal axis and the spurious rotation of

nanoribbons is prevented by fixing the first row of atoms at the top and bottom of

the ribbons.

4.3 Nonequilibrim molecular dynamics method and Müller-Plathe’s algorithm

The Müller−Plathe’s algorithm is developed in 1997 [105]. It is a nonequilibrim

molecular dynamics method to calculate the thermal conductivity of materials. The

main idea is to generate a heat flux on the system and measure the resulting tem-

perature gradient (see figure 27). Here are the steps of applying the Müller-Plathe’s

algorithm in this study:

1. In the longitudinal direction, periodic boundary is applied. It means that the
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atoms on the left end can interact with the atoms on the right end of the boundary,

and they can move across the left and right boundaries of the simulation box. The

Top and bottom atoms are fixed to prevent the spurious rotation of the nanoribbons.

The nanoribbon’s energy is minimized at zero temperature. Then the temperature is

increased to 300 K by generating random velocities of the atoms. The Nosé-Hoover

thermostat is used to maintain the temperature of the ribbon at 300 K.

2. The nanoribbon is divided into 50 slabs in the longitudinal direction. As shown

in figure 27(a), the center slab is the “hot” slab, and the slabs on the edge are the

“cold slabs”. During the simulation, in every 25 fs, the kinetic energy of the coldest

atom in the hot slab and the kinetic energy of the hottest atom in the cold slab are

exchanged. This procedure runs 750 ps to make sure the temperature profile and heat

flux are stabled through the whole ribbon. An example of a stabilized temperature

profile is shown in figure 27(b).

3. After the temperature profile is equilibrated, during the last 500 ps, the heat

flux and the temperature profile are recorded each 50 ps for 10 times. These data is to

be used to calculate the thermal conductivity. The 10 values of thermal conductivity

are averaged as the thermal conductivity for the current example.

The thermal conductivity is calculated using:

κ =
J

2A∂T
∂x

(11)

where A is the cross area through which the heat flux flows and T is the temperature

profile throughout the x direction. Here the thickness of the nanoribbons is taken as

the distance between the two atomic layers in bulk MoS2. J is the heat flux between
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(a)

(b)

Figure 27: The simulation box of reversed nonequilibrim molecular dynamics
method follows the Müller-Plathe’s algorithm. The hot slab (shown in red) is placed
at the middle of the ribbon, whereas the cold slabs (shown in blue) are located at

the edges of the ribbons. The bottom figure shows a typical example of the
temperature profile along the ribbon axis. The linear part shown in red is used to

find the temperature gradient with respect of the x coordinate.
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the first and middle slabs as shown in equation 12:

J =
1

t

∑
Ntransfer

1

2
(mv2

hot −mv2
cold) (12)

where Ntransfer is the total number of moment exchanges occurred during the simula-

tion time t. m is the mass of the atoms, vhot and vcold are the velocities of the hottest

atom of the cold slab and the coldest atom of the hot slab, respectively.

4.4 Results and discussion

4.4.1 Impact of nanoribbon’s length on thermal conductivity

The simulations are conducted on both armchair and zigzag nanoribbons. The

nanoribbon is in the x–y plane with the ribbon axis being in the x direction. We

first study the impact of ribbons length on their thermal conductivity. Thermal

conductivity of armchair and zigzag ribbons of lengths between 9Å to 2700Å and

a width of approximately 22Å is plotted in figure 28. As expected, by increasing

the length of ribbons their thermal conductivity increases. The increase in thermal

conductivity by increase in the length is attributed to the excitation of phonons

with lower frequency (long wave length) phonon modes in larger ribbons. Since low

frequency phonons play the dominant role in the thermal transfer process, excitation

of more low frequency waves (which can not exist in short ribbons) will facilitate the

thermal transfer process and increase the thermal conductivity of ribbons.

The thermal conductivity of ribbons of finite length is related to the thermal con-

ductivity of infinitely long ribbons through [124],

1

κ
=

1

κ∞

(
l

L
+ 1

)
, (13)
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Figure 28: Thermal conductivity of ribbons versus their length.

Figure 29: Inverse of thermal conductivity versus inverse of length.



45

Table 4: Thermal conductivity of infinity long MoS2 ribbon from different studies.

current study 33∼54 W/mK
[123] 52 W/mK
[137] 62.2 W/mK
[158] 30.5∼38.5 W/mK

where κ is the thermal conductivity of a ribbon of length L, κ∞ is the thermal

conductivity of infinitely long ribbons and l is the phonon mean free path in the

ribbons. Based on this equation the inverse of thermal conductivity of ribbons is

linearly related to the inverse of their lengths. The inverse of thermal conductivity

is plotted versus the inverse of the length of ribbons in figure 28. By comparing the

equation of the fitted lines in figure 28 with figure 29, the thermal conductivity and

phonon mean free path of infinitely long armchair ribbons are respectively 33 W/mK

and 98 nm; whereas the corresponding values for the infinitely long zigzag ribbons are

54 W/mK and 114 nm. These are in close agreement with the experimental results

[123, 158, 137] (see table 4). The curves in figure 28 indicates that zigzag ribbons

have a higher thermal conductivity of armchair ribbons. This is in agreement with the

reported results on the thermal conductivity of other grahene-like two-dimensional

materials such as graphene [157] or hexagonal boron nitride [134, 4]. The difference in

the thermal conductivity of armchair and zigzag ribbons can be attributed to different

phonon scattering effects induced by armchair and zigzag edges.

4.4.2 Impact of nanoribbon’s width on thermal conductivity

Next we investigate the influence of the nanoribbon’s width on thermal conduc-

tivity. For this purpose, nanoribbons are fixed at the length of about 240 Å and

the width changes from 11 Å to 180 Å. The thermal conductivity versus width for
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Figure 30: The thermal conductivity is stable when the strain changes from zero to
the failure limit.

armchair and zigzag ribbons are shown in figure 30. The plots in this figure shows

that κ is insensitive to width unless the width is smaller than 11 Å. When nanorib-

bons are narrower than 11 Å, κ increases slightly. It is probably because, when the

width is very small, the mean free path is bigger since the number of phonons are lim-

ited, which reduces the phonon-phonon combinations and the three phonon scattering

[167, 4].

4.4.3 Impact of atomic vacancy on thermal conductivity

In both mechanical exfoliation and chemical vapor deposition preparations, atomic

vacancy as shown in figure 31 are generated, especially the sulfur vacancy [166, 51, 71].

Meanwhile, defect engineering provides a viable tool to tune the material behavior.

To observe how the thermal conductivity varies based on different vacancy densities,

we randomly delete S or Mo atoms on a 125×30 Å2 MoS2 nanoribbon (except the top
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Figure 31: The thermal conductivity of MoS2 naoribbon as a function of the
nanoribbons width. It is insensitive to the change of the width, unless the width is

extremely small.

Figure 32: Thermal conductivity of armchair and zigzag MoS2 ribbons with the
atomic vacancy.
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and bottom boundary atoms which are not accounted in the calculation). Figure 32

shows the trend of the thermal conductivity with the increase of the atomic vacancy

density. The vacancy density is calculated by dividing the number of vacancies by

total number of atoms. Each data point is the average of results of three examples. We

also fitted the data into second order polynomials separately for zigzag and armchair

nanoribbons.

These curves indicate that the thermal conductivity of both armchair and zigzag

ribbons reduce in the presence of defects. Molybdenum vacancies have a more im-

pact on the thermal conductivity than sulfur vacancies. Specially, the presence of

molybdenum defects in armchair nanoribbons have a very deteriorating impact on

the thermal conductivity.

Based on the kinetic theory, the contribution of each phonon mode to the thermal

conductivity κ is κ = Cvl, where C is the heat capacity which is a function of phonon

frequency ω, l is the phonon mean free path, v = dω/dk is the phonon group velocity

and k is the wave vector. The reduction in thermal conductivity can be attributed

to a decrease in the phonon mean free path (PMFP) of ribbons. In the presence of

defects the phonon mean free path l can be obtained from

1

l
=

1

lpp

+
1

lpd
, (14)

where lpp denotes phonon–phonon scattering length and lpd is the phonon–defects

scattering length. Defects can induce considerable phonon-defect scattering which

reduces the phonon mean free path. The plots of figure 32 show that by increasing
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defects concentration f the sensitivity of κ on f reduces, i.e, at high concentrations

l is less sensitive to f which indicates a transition from propagation to diffusive in

heat transfer mechanism.

4.4.4 Impact of longitudinal strain on thermal conductivity

Although the impact of strain on the thermal conductivity of three dimensional

materials has been widely studied in the past [111, 116], recently, studies show that

the strain effects on the thermal conductivity of two-dimensional materials is different

than their counterpart 3D materials [134, 4]. This necessitate a separate investigation

of the strain effects on the thermal conductivity of monolayer MoS2.

We calculated the thermal conductivity of a 250×30 Å nanoribbon under longitudi-

nal strains of 0∼0.08. Figure 33 shows that the thermal conductivity of MoS2 nanorib-

bon does not change under strains. This trend is opposed to the impact of strain on

thermal conductivity of three dimensional materials and other two-dimensional ma-

terials [83, 53, 149].

To further investigate the main cause of such trend of thermal conductivity of

MoS2 under tensile strain, we investigate how strain influences the phonon dispersion

curves. The phonon dispersion curves of zigzag MoS2 nanoribbon with 0.00, 0.03,

0.06 strain are plotted in figure 34. The phonon dispersion curves are constucted by

using the method in [72], in which the dynamical matrices are constructed directly

from MD analysis. This method can be called by using “fix phonon” command in

LAMMPS.

The phonon dispersion curves indicate a softening of the in-plane longitudinal and
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Figure 33: Thermal conductivity of armchair and zigzag ribbons as a function of
longitudinal strain.

acoustic modes (LA and TA) and a slight stiffening of out-of-plane acoustic (ZA)

mode. The phonon softening tends to decrease the thermal conductivity, and the

phonon stiffening tends to enhance the thermal conductivity. Moreover, the group

velocity of each phonon modes is shown in figure 35. It can be seen that by increasing

the tensile strain, the group velocity of ZA mode increases whereas the group velocity

of all the other modes reduces slightly.

Therefore, under the application of strain, the stiffening mechanism of acoustic

flexural mode competes with the softening mechanism of in–plane LA and TA modes.

The two mechanism counterbalance each other and the thermal conductivity of MoS2

does not significantly change under tensile strain.
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Figure 34: Phonon dispersion curves of armchair MoS2 ribbons at three strain levels.

Figure 35: Group velocities of armchair MoS2 ribbons at three strain levels.
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4.5 Conclusion

The thermal conductivity for an infinity long MoS2 nanoribbon is about 33˜54

W/mK. The zigzag nanoribbon is more thermal conductive than armchair ribbon.

The thermal conductivity of MoS2 nanoribbon is insensitive to width and strain. At

3% vacancy density, the thermal conductivity is reduced by about 50% (knowing that

hexagonal BN can be reduced by 80% at 3% vacancy density).



CHAPTER 5: THE COUPLING OF MOLECULAR DYNAMICS AND FINITE
ELEMENT METHODS

5.1 Introduction

Molecular dynamics simulations provide vast amount of information about material

behavior at nanoscale. They have been particularly used to study how defects such as

cracks, grain boundaries or dislocations affect macroscale processes such as elasticity

or plasticity. However, the high computational costs associated with atomistic simu-

lations limit their applicability to systems made of limited number of atoms. Coupled

atomistic continuum methods have been introduced as a remedy to this limitation.

In the coupled methods, full atomistic resolution is maintained where deformations

are highly inhomogeneous (e.g., at the vicinity of defects) and continuum models are

used elsewhere [136, 96, 70, 118, 119, 2, 21, 144, 12, 153, 40, 122, 84, 121, 155, 15].

The challenge lies in appropriate gluing of atomistic and continuum zones such that

the atomistic region behaves as if the entire domain is atomistic. To achieve this

objective, the effects of the atomistic-continuum interface should be minimized. In

static problems ghost forces can be generated at the coupling interface [91] and a

number of techniques have been developed to overcome this issue [12, 40]. In dy-

namic problems an additional difficulty related to the passage of the propagating

wave from atomistic to continuum across the interface is encountered; the change

of the constitutive equations from inherently nonlocal atomistic to local continuum
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along with the change of the resolution from atomistic to continuum lead to spurious

wave reflection at the interface. Since in the coupling methods atomistic zone usually

has a small size, the spuriously reflected wave can quickly increase the temperature

of atomistic zone, whereby destroys the simulation.

To avoid the spurious wave reflections, the interface between the atomistic and

continuum should be such that coarse scale information (low frequency waves) can

be accurately transmitted in both directions, whereas the fine scale oscillations which

cannot be transmitted into the continuum zone should be eliminated at the interface.

Several such interfaces have been developed in the past, among those are coarse-

grained molecular dynamics (CGMD) method [118, 119], macroscopic-atomistic-ab

initio dynamics (MAAD) method [2, 21], bridging scale method (BSM) [144, 143],

bridging domain method (BDM) [12, 153], concurrent AtC coupling method [40, 8],

embedded statistical coupling method (ESCM) [122] and heterogeneous multiscale

method (HMM) [33, 34]. Reviews on concurrent atomistic-continuum multiscale

methods can be found in [27, 35, 97, 98].

Belytschko et al. [12, 153] developed a bridging domain method (BDM) to couple

continuum mechanics with molecular models. Bridging domain method lies in the cat-

egory of overlapping domain decomposition coupling methods, or Arlequin method,

which has been developed earlier by Ben Dhia [2628]. This method has been used for

modeling cracks and defects in graphene and carbon nanotubes [12, 153, 165, 164]

and has been combined with extended finite element method (XFEM) [101] to study

crack propagation and dislocation emission in nanomaterials [44, 103]. More recently,

BDM applications are extended to multiscale analysis at finite temperature [6, 120].
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In the bridging domain method, continuum and atomistic domains overlap in a

bridging (handshaking) domain where a weight function is used to partition the atom-

istic and continuum energy. In the overlapping domain, the positions of atoms and

nodes are not necessarily coincident and the compatibility between atomistic and

continuum domain is imposed by Lagrange multipliers. This allows to use a uni-

form mesh in the entire domain and removes the need for mesh refinement in the

overlapping region.

In this chapter, we first numerically show that the type of the discretization of

Lagrange multipliers and the time integration step size significantly impact the suc-

cess of BDM method in suppressing spurious reflections. Then, we present a new

technique to enhance the performance of BDM and to alleviate the effects of the two

aforementioned factors. In this method, the total displacement field of atoms located

in the overlapping zone is decomposed into a fine and a coarse scale displacement

field. The fine scale displacements corresponds to the oscillations which cannot be

resolved by the finite element mesh and need to be damped. The elimination of fine

scale oscillations is accomplished by deriving their equations of motion and inserting

a damping term into their equations of motion.

The outline of this chapter is as follows. In section 5.2, we review the bridging

domain method. In section 5.3, we numerically study the performance of the BDM

method and will provide the motivation of the proposed enhancement. The formu-

lation of the new enhancement is presented in section 5.4. The effectiveness of the

method in removing spurious reflections and in modeling crack propagations will be

investigated using numerical examples in section 5.5. Some conclusions are made in



56

section 5.6.

5.2 Brief review of bridging domain method

5.2.1 Reference model and notations

In the bridging domain method (BDM), the domain Ω is composed of an atomistic

subdomain, ΩA, and a continuum subdomain, ΩC , which overlap in a bridging or

handshaking subdomain, ΩB = ΩA
⋂

ΩC , as shown in figure 36. The edges of the

atomistic and continuum subdomains in the bridging subdomain are denoted by ΓA

and ΓC , respectively. In this paper, the superscripts “A”, “C”, and “B” identify

the variables associated with the atomistic, continuum, and bridging subdomains

respectively. Accordingly, ΩA
0 , ΩC

0 , and ΩB
0 denote the atomistic, continuum, and

bridging subdomains in the initial configuration, respectively, where the subscript 0

refers to quantities defined at t = 0. We denote the material coordinates by X or Xi,

i = 1, ..., nd in component notation, where nd is the number of spatial dimensions,

and the current coordinates by x. We use subscripts I and J to refer to FE-nodes,

and α and β to refer to atoms. The displacement of atom α is denoted by dα (or diα

in component form). The continuum subdomain is spatially discretized by a finite

element (FE) mesh and its displacement field is approximated by

ui(X, t) =
∑
J∈S

Nj (X)uiJ (t), (15)

where S is a set of finite element nodes, NJ is the FE shape function of node J and

uiJ is the i th displacement component of node J .
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Figure 36: Three subdomains in a BDM simulation: atomistic, continuum, and
bridging subdomains.

5.2.2 Governing equations

In the bridging domain method, the total Hamiltonian of the entire domain is

obtained by adding up the Hamiltonian of the continuum and atomistic domains. To

avoid double counting in the overlapping domain, the Hamiltonian of continuum and

atomistic domains are weighted by a scaling factor ϑ(X) defined as

ϑ =



0 in (ΩC
0 − ΩB

0 )

[0, 1] in ΩB
0

1 in (ΩA
0 − ΩB

0 )

(16)

In our numerical calculations, we use a linear scaling factor defined as [153]

ϑ =
‖ X −Xp ‖
‖ Xq −Xp ‖

(17)
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where Xp is the orthogonal projection of X onto ΓA and Xq is the intersection point

of line XpX and ΓC . The total Hamiltonian of the domain is given by

H(u,d, λ) = HC(u) +HA(d) +GB(u,d, λ) (18)

where HC is the continuum domain Hamiltonian, HA is Hamiltonian from the atom-

istic domain, and GB is the Hamiltonian associated with the Lagrange multiplier

constraint that imposes displacement compatibility of the atomistic and continuum

domain at the overlapping domain.

The contribution of the continuum domain in the total Hamiltonian is given by

HC =
∑
I,J∈S

∫
ΩC0

(1− ϑ)
pCiIp

C
iJNINJ

2ρ0

dΩ +

∫
ΩC0

(1− ϑ)WC(F )dΩ, (19)

where pCiI is the ith component of the linear momentum of node I, ρ0 is the initial

density of the continuum domain, WC is the internal energy (strain energy) density

and Fij = ∂xi/∂Xj is the deformation gradient. The Hamiltonian of the atomistic

domain is

HA =
∑
α∈M

(ϑ
pAiαp

A
iα

2mA
α

+
∑

β∈M>α

ϑαβVαβ) (20)

where M is the set of all atoms, pAiα is the ith component of the linear momentum

of atom α, mA
α is the mass of atom α, Vαβ = V (rαβ) is the potential of the bond

between atoms α and β which is a function of the bond length of two atoms (i.e.

rαβ), ϑα = ϑ(Xα) and ϑαβ = (ϑ(Xα) + ϑ(Xβ))/2.

The compatibility of deformation between atomistic and continuum domain in the

overlapping zone can be imposed in different ways [12, 153, 46, 45]. For example, the

compatibility of deformations can be obtained by requiring displacement of the atoms
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conform to the continuum subdomain displacement field at the location of atoms [153]

∑
I∈S

NIαuiI − diα, ∀α ∈M (21)

The compatibility of deformation can also be obtained by requiring the atoms ve-

locities match with the continuum velocity at the atoms location. In this case, the

constraint on velocity is given by

∑
I∈S

NIαu̇iI − ḋiα, ∀α ∈M (22)

where ḋiα and u̇iI are the ith component of the velocity of atom α and finite element

node I, respectively. The Lagrange multiplier constraints corresponding to equations

21 and 22 are given by

GB =
∑
α∈M

λiα(
∑
i∈S

NIαuiI − diα), (23a)

GB =
∑
α∈M

λiα(
∑
i∈S

NIαu̇iI − ḋiα), (23b)

where λiα is the Lagrange multiplier associated with the constraint in the ith degree

of freedom of atom α. Lagrange multipliers can be approximated using any λ-mesh

which satisfies the LBB condition

λ(X, t) =
∑
K∈Sλ

Nλ
K(X)λK(t) (24)

where Sλ is the set of λ-mesh nodes, Nλ
K denotes the shape functions associating with

the λ-mesh and λK are the λ-mesh nodal value.

Total Lagrangian of the system can be obtained from Legendre transformation

of Hamiltonian, from which the equations of motion (EOM) of the system can be
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obtained as

MA
α d̈iα = −(f int

iα )A + (fG
iα)A, ∀α ∈M (25)

MC
I üiI = −(f int

iI )C + (fG
iI )C, ∀I ∈ S (26)

where d̈iα and üiI are the ith components of the accelerations of atom α and FE-node

I respectively, and

MA
α = ϑαm

A
α , (27)

(f int
iα )A = ϑαβ

∑
β∈M

∂Vαβ
∂diα

, (28)

(fG
iα)A =

∑
K∈Sλ

Nλ
KαλiK (29)

MC
I =

∑
J∈S

∫
ΩC

0

(1− ϑ)ρ0NINJdΩ, (30)

(f int
iI )C =

∫
ΩC

0

(1− ϑ)
∂NI

∂Xj

PijdΩ, (31)

(fG
iI )C = −

∑
α∈M

∑
K∈Sλ

Nλ
KαNIαλiK , (32)

where P is the nominal stress tensor, and MC
I is a row-sum lumped mass matrix.

The Lagrange multipliers are obtained by enforcing

∂H

∂λiK
= 0, ∀K ∈ Sλ, (33)

which leads to

∑
α∈M

∑
I∈S

Nλ
KαNIαuiI −

∑
α∈M

Nλ
Kαdiα = 0, ∀K ∈ Sλ. (34)
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5.2.3 Time integration scheme

Since equations 25 and 26 are coupled with equation 34, it is not possible to si-

multaneously update both the displacements and Lagrange multipliers. Therefore,

we employ a predictor-corrector velocity Verlet algorithm to update the atomistic

and continuum displacement and velocity fields. In the velocity Verlet algorithm, the

acceleration field is obtained using central difference method

d̈niα =
1

(∆t)2
(dn+1
iα − 2dniα + dn−1

iα ) (35)

üniI =
1

(∆t)2
(un+1

iI − 2uniI + un−1
iI ) (36)

in which ∆t is the time-step size. By substituting equations 35 and 36 into equations

25 and 26, respectively, the displacement fields at step n+ 1 can be calculated as

dn+1
iα = (dn+1

iα )pre − (∆t)2

MA
α

∑
K∈Sλ

Nλ
KαλiK (37)

un+1
iI = (un+1

iI )pre − (∆t)2

MC
I

∑
α∈M

∑
K∈Sλ

Nλ
KαNIαλiK (38)

in which the predicted displacements are

(dn+1
iα )pre = −(∆t)2

MA
α

(f int
iα )A + 2dniα − dn−1

iα , (39)

(un+1
iI )pre = −(∆t)2

MC
I

(f int
iI )C + 2uniI − un−1

iI , (40)

Therefore; predicted displacements are obtained by ignoring Lagrange multipliers.

The predicted displacements are used to find the Lagrange multipliers. To find La-

grange multipliers we use predicted displacements from equations 37 and 38 into
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equation 34

∑
L∈Sλ

AKLλiL =
∑
α∈M

∑
I∈S

Nλ
KαNIα(un+1

iI )pre −
∑
α∈M

Nλ
Kα(dn+1

iα )pre (41)

where AKL is called consistent constraint matrix and is defined as

AKL =
∑
α∈M

∑
I∈S

∑
β∈M

(∆t)2

MC
I

Nλ
KαN

λ
LβNIαNiβuiI

−
∑
α∈M

(∆t)2

MA
α

Nλ
KαN

λ
Lα, ∀K,L ∈ Sλ

(42)

An essential step in the bridging domain method is to use diagonalized constraint

matrix AK instead of consistent constraint matrix [154]. The diagonalized constraint

matrix is obtained from the consistent matrix as

AK =
∑
L∈Sλ

AKL (43)

Although the diagonalization step might seem arbitrary at first, however it is shown

in Ref. [154], and will be shown in section 5.3, this step is quite essential in eliminat-

ing spurious wave reflections, and a consistent constraint matrix cannot remove the

spurious reflections.

Our predictor-corrector algorithm can be summarized as follows: (1) we update the

MD and FE displacement and velocity fields without considering the Lagrange mul-

tipliers, i.e. by ignoring (fGiα)A and (fGiα)C in equations 25 and 26. The displacement

field obtained at this stage is called“predicted displacement field”. (2) The predicted

displacements will be used in equation 34 to find the Lagrange multipliers. (3) After

finding the Lagrange multipliers, the predicted atomistic and finite element fields will

be corrected by considering the Lagrange multiplier forces in equations 25 and 26.
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These steps can be repeated until the displacement fields and Lagrange multipliers

(d; u and λ) converge.

5.3 Motivations

In this section, we discuss two issues associated with standard bridging domain

method which motivated its enhancement with the proposed technique.

5.3.1 Discretization of lagrange multipliers

In the bridging domain method the compatibility of displacements between atom-

istic and continuum domains in the overlapping domain is enforced using Lagrange

multipliers, as described in section 5.2. Lagrange multipliers can be discretized using

any λ-mesh which satisfies the LBB condition. However, two forms of discretization

are more common: (1) the Lagrange multiplier field is discretized to the atomistic

spacing i.e. each atom in the bridging subdomain coincides with a λ-node. In this

form the Lagrange multipliers are approximated as

λ(X, t) =
∑
α∈B

λαδ(X−Xα), (44)

where B is the set of atoms in the overlapping domain, and δ(•) is the Dirac delta

function. This form of approximation imposes a strict displacement compatibility

between atomistic and continuum and is the form we will refer to as “BDM-strict”

throughout this paper, (2) Lagrange multipliers are discretized by the same mesh as

the FE-mesh i.e. each FE-node in the bridging subdomain coincides a λ-node. This

form imposes a weaker compatibility between atomistic and continuum and is the

form we will refer to as “BDM-weak”. In the BDM-weak the λ-shape function of



64

each λ-node is the same as the corresponding FE-node shape function

Nλ
K(X) = NIK (X), ∀K ∈ Sλ (45)

where IK is the FE-node which coincides with the K-th node in the λ-mesh.

BDM-strict is more efficient in removing spurious wave reflections [153] and is

the form which is often preferable. However, to enforce strict compatibility λ-mesh

should be as fine as the atomistic distance. This can significantly increase the de-

grees of freedom associated with Lagrange multipliers which in turn can lead to a

higher computational cost. Furthermore, when discontinuities are available in the

overlapping zone, the displacement compatibility should be enforced weakly to allow

crack surface relaxation [44]. Since the weak compatibility is not as efficient as strict

compatibility in removing the spurious wave reflections, in this paper, we propose a

method to enhance the performance of weak compatibility to match or supersede the

performance of strict compatibility.

5.3.2 Impact of the integration time step size on the performance of BDM

In this section, we investigate how integration time step affects the performance of

consistent and diagonalized constraint matrix in eliminating spurious wave reflections

in a one-dimensional problem. For this purpose we study a 1D domain consisting of

292 atoms in the pure molecular dynamics zone and 60 finite elements of length h

= 8r0 in the continuum domain. The length of overlapping subdomain is 4h. The

Lennard−Jones interatomic potential is used to describe the nearest neighbor atoms
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interaction

V (rαβ) = 4ε[(
σ

rαβ
)12 − (

σ

rαβ
)6] (46)

in which rαβ is the distance between atoms α and β, and ε and σ are material specific

input parameters. Here, we use atom mass ma = 1 amu, ε = 0.2 eV and σ = 0.11

nm. This set of Lennard−Jones parameter leads to an equilibrium bond length of

r0=0.135 nm. The constitutive equations of the continuum domain are obtained via

the Cauchy−Born rule using the quasicontinuum approach [136].

The following initial displacements and velocities are applied to the atoms in the

MD zone [154]:

u(X, 0) = a1(1 + cos(
2π

Ncr0

(X) + π))(1 + a2cos(
π

2r0

X)), X ≤ Ncr0 (47a)

v(X, 0) =
2πa1c

Ncr0

sin(
2π

Ncr0

(X) + π)(1 + a2cos(
π

2r0

X)), X ≤ Ncr0 (47b)

u(X, 0) = v(X, 0) = 0, X > Ncr0 (47c)

in which a1 = 3 × 10−4 nm, a2 = 0.3, Nc = 120, and c = 37.28 nm/ps is the

wave speed of a wave with infinite wavelength. The initial displacement field of

the domain is shown in figure 37. The problem is solved using both diagonalized

and consistent constraint matrix employing a small (∆t = 0.00025 ps) and a large

(∆t = 0.002 ps) integration time step. Since the time it takes for a wave to propagate

one atomic spacing is ∆t0 = r/c = 0.0036 ps, the large integration time step used

in this example is in the same order as ∆t0, while the small integration time step

is two order of magnitude less than ∆t0. To obtain the reference solution, and for

the sake of comparison, the problem is also solved using full MD description for the
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Figure 37: The initial displacements in the one-dimensional example (MD and
continuum domains are shown respectively in green and black).

entire domain. The snapshots of the simulation results at t = 2 ps are depicted

in figure 38. The snapshots of figure 38(a) and (b) show that consistent constraint

matrix is not very successful in eliminating spurious reflections of high frequency

waves into the MD domain using either large or small integration time steps. These

results are in agreement with those reported by [154]. In contrast, the efficiency of

diagonalized constraint matrix in damping out the high frequency components of the

wave depends on the integration time step. Snapshot of figure 38(c) and (d) indicates

that when larger integration time step is used, the diagonalized constraint matrix can

suppress the wave reflections, however when smaller integration time step is used, the

diagonalized constraint matrix is not capable of eliminating spurious wave reflections.

Hence, reducing the size of the integration time steps deteriorates the performance of

the method. This is in contrast with our expectation of obtaining a higher accuracy

when a smaller integration time step is used.

The problem is more studied by investigating the variation of the Hamiltonian of the
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Figure 38: Snapshots of the 1D problem using consistent and diagonalized
constraint matrix.

Figure 39: Total Hamiltonian (×10−6 eV) of the entire system, pure MD zone and
continuum subdomain of the one-dimensional simulation using consistent and

diagonalized constraint matrix.
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system over time. The Hamiltonian of the entire domain along with the Hamiltonian

of the atomistic and continuum subdomains are shown in figure 39. If the waves travel

out of the atomistic zone, i.e. spurious reflections do not occur, the Hamiltonian of

the atomistic zone should go to zero. The plots of figure 39(a) and (b) show that

when consistent constraint matrix is employed, the Hamiltonian of the entire system

remains constant and the Hamiltonian of atomistic zone does not go to zero. These

indicate that no component of the wave is damped, hence spurious reflection is not

eliminated and high frequency components of the wave are trapped in the atomistic

zone. These are in agreement with the snapshots presented in figure 38(a) and (b).

The Hamiltonians obtained using diagonalized constraint matrix are shown in figure

39(c) and (d). Plots of figure 39(c) show that when diagonalized constraint matrix

with larger integration time step is used, the Hamiltonian of the atomistic zone goes

to zero after about 1.6 ps. Therefore, no wave component is trapped in the atomistic

zone. The wave coarse components have traveled into the continuum domain and

the high frequency components are eliminated, as is shown in figure 38(c). The

plots of figure 39(b) show that when the integration time step size is reduced, the

initial oscillations of Hamiltonian seen in figure 39(b) are removed. However, the

Hamiltonian of atomistic zone does not go to zero, indicating that spurious wave

reflection of high frequency waves is not prevented.

The plots of figure 39(c) and (d) show that by reducing the integration time step

the performance of the diagonalized constraint matrix becomes similar to the perfor-

mance of the consistent constraint matrix, i.e. high frequency waves which cannot

travel into continuum subdomain spuriously reflect back into the atomistic zone,
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hence the Hamiltonian of atomistic zone never goes to zero. The deterioration of

the performance by reduction of integration time step size is not desirable because

large integration time steps can lead to large oscillations in system energy which can

significantly reduce the computational accuracy.

To resolve the two above-mentioned issues, we propose an enhanced bridging do-

main method (EBDM). Although the proposed enhancement can be applied to both

weak and strict compatibility, in this study we apply the enhancement to the weak

compatibility form. Using numerical examples we show the effectiveness of the pro-

posed method.

5.4 Proposed enhancement of the bridging domain method

The basic idea of our proposed method is to decompose the total displacement of

the atoms located in the overlapping zone into fine and coarse scale components. The

fine scale oscillations corresponds to high frequency oscillations which cannot pass

into the finite element zone, and will spuriously reflect back if they are not damped

out. To remove spurious reflections, the fine scale oscillations need to be removed.

For this purpose, we obtain the equations of motion of fine scale oscillations and

modify it to include a damping term.

The decomposition of atomistic displacement field into coarse and fine scales was

first proposed by Liu et al. [144, 89] in developing bridging scale method. This idea

was later used to develop other multiscalemethods such as perfectly matchedmulti-

scale method [141]. More recently, Sadeghirad and Tabarraei [121] used this idea to

develop a multiscale technique which can effectively remove spurious reflections. In
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this section, we apply the technique developed in Ref. [121] to BDM. We first derive

the equations off motion of fine scale oscillations in the BDMformulation and present

a numerical algorithm for the implementation of the proposed enhancement in the

BDM framework.

5.4.1 Formulation of the enhanced bridging domain method

In the enhanced bridging domain method (EBDM), the total displacement field of

atoms located in the overlapping zone is decomposed into a fine and a coarse scale

displacement field

diα = (diα)coarse + (diα)fine, ∀α ∈M, (48)

where diα is the total displacement of atom α in the ith direction, and (diα)coarse and

(diα)fine are its coarse and fine components, respectively. We correspond the coarse

scale field to the oscillations which can be resolved by the continuum mesh and

smoothly pass into the continuum zone without difficulty. Therefore, the continuum

displacement field can be used to constitute the coarse scale part of the displacement

field. Using standard finite element interpolation, the coarse scale displacement field

of atoms can then be approximated as

(diα)coarse = ui(Xα) =
∑
I∈SB

NIαuiI , ∀α ∈MB (49)

By substituting equation 49 in equation 48, the fine scale component of the displace-

ment field is obtained

(diα)fine = diα −
∑
I∈SB

NIαuiI , ∀α ∈MB. (50)
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The fine scale accelerations are obtained by taking the time derivatives of equation

50 twice

(d̈iα)fine = d̈iα −
∑
I∈SB

NIαüiI , ∀α ∈MB. (51)

Multiplying equation 51 with atoms mass yields

Mα(d̈iα)fine = Mαd̈iα −
∑
I∈SB

NIαMαüiI (52)

Using equations 25 and 26 in 52 gives

MA
α (d̈iα)fine = (fA

iα)fine, ∀α ∈MB (53)

where

(fA
iα)fine = MA

α

[
(f int
iα )A + (fG

iα)A

MA
α

−
∑
I∈SB

NIα
(f int
iI )C + (fG

iI )C

MC
I

]
. (54)

This is the equation of motion of fine scale oscillations. The fine scale displacements

cannot be resolved by the continuum mesh and should be eliminated. This is accom-

plished by adding a viscous damping term to 52

MA
α (d̈iα)fine = (f̄A

iα)fine −MA
α C

A
α (ḋiα)fine, (55)

where CA
α is the damping coefficient. Using viscous damping, a damping force pro-

portional to fine velocity of the atom is applied to the fine motion of each atom. The

selection of an appropriate damping coefficient is described in section 5.4.3.

5.4.2 Implementation of the enhanced bridging domain method

Assume that displacements are known at time step n and we intend to proceed

to time step n + 1. For this purpose, first the equations of section 5.2.3 are used
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to find the total atomic and finite element displacements at step n + 1. After the

total displacement fields are found, the technique proposed in this paper is applied

only to the atoms located in the overlapping zone. Since, these atoms compose a

small fraction of the total atoms of the domain, the additional computational cost

introduced by this extra step is negligible.

The velocity Verlet algorithm can be used to integrate equation 55 in time

(dn+1
iα )fine = (dniα)fine + ∆t(ḋniα)fine +

1

2
∆t2(d̈niα)fine (56a)

(ḋ
n+1/2
iα )fine = (ḋniα)fine +

1

2
∆t(d̈niα)fine (56b)

(d̈n+1
iα )fine =

1

Mα

(fn+1
iα )fine − Cα(ḋ

n+1/2
iα )fine (56c)

(ḋn+1
iα )fine = (ḋ

n+1/2
iα )fine +

1

2
∆t(d̈n+1

iα )fine (56d)

After calculating the fine scale displacements, the total atomic displacements are

obtained by adding the coarse and fine scale components together

dn+1
iα = (dn+1

iα )fine +
∑
I∈SB

NIαu
n+1
iI , ∀α ∈M. (57)

This gives the total atomic displacement after the elimination of fine scale oscillations.

5.4.3 Conditions for damping coefficient

The choice of the damping coefficient plays an important role in the success of the

method in reducing spurious wave reflections. This necessitates some considerations

to be taken into account when the damping coefficient is chosen. Application of the

damping term can change the band structure of the overlapping subdomain which

in turn can increase the spurious wave reflections. More specifically, the damping
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can increase the spurious reflections at the interface of bridging domain and pure

atomistic zone (i.e. ΩA − ΩB). To overcome this issue, the damping should not be

applied suddenly, instead the damping should gradually increases from zero at ΓC to a

maximum value at ΓA (see figure 36). Although different forms of damping function

can be constructed which satisfy this condition, however in this paper, by getting

insights from the semi-empirical damping function proposed by Collino and Tsogka

[25] we approximate the damping coefficients using a parabolic equation in this form

CA
α = C̄

c

LB
(1− ϑ(X))2, ∀α ∈MB. (58)

In equation 58 c is the wave speed, LB is the width of the bridging subdomain, ϑ(X)

is the linear weight function of equation 16, and C is a user-defined parameter. Using

this approximation, very little spurious reflections are developed near ΓC, and the fine

scale displacements are effectively eliminated. A small value of C = 30 will lead to

inefficient damping, whereas if C = 30 is too large, numerical instability will occur.

In this paper, based on our experience in solving an extended number of numerical

examples, we adopt a value of C = 30 in the numerical simulations presented in the

next section.

5.5 Numerical simulations

We solve one and two dimensional examples to investigate the performance of the

proposed enhancements. The problems are solved numerically using BDM-strict,

BDM-weak and the proposed enhance bridging domain method (EBDM). Diagonal-

ized constraint matrix is used to solve all the problems. All the numerical simulations
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are conducted at an absolute zero temperature and the reference solution of all the

problems are obtained by using a fully atomistic description of the entire domain.

5.5.1 One-dimensional example

The first problem solved in this section is the one-dimensional problem presented

in section 5.3.2. The initial boundary conditions presented in equation 47 are applied

to the atomistic zone. A Lennard-Jones potential with the same material parame-

ters of section 5.3.2 is used to consider the interaction between atoms. To study the

effect of time integration step size on the performance of the method, this problem

is solved using three different time steps. The effect of overlapping length on elim-

inating spurious reflections is studied by solving the problem using three different

overlapping lengths of size nbh, with nb =1,2,4. Also, we solve the problem using

both displacement constraint and the velocity constraint.

The snapshots of the wave propagation obtained using a time step size of ∆T =0.002

ps at t = 2 ps are shown in figure 40. These snapshots show that BDM-weak is not

capable in removing spurious reflections, whereas both BDM-strict and EBDM are

able to remove spurious reflections.

The total Hamiltonian of the atomistic zone versus time obtained using displace-

ment and velocity constraints are shown in figures 41 and 42, respectively. For the

sake of comparison, the results obtained from a full MD simulation are also presented.

Since the initial waves are traveling out of the atomistic zone, the Hamiltonian of the

pure atomistic zone should go to zero. This can be seen in the plots of figure 41a

obtained using full MD simulations.
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Figure 40: Four snapshots of the one-dimensional model at t = 2 ps obtained using
a time step of 0.002 ps. (a) Full MD, (b) BDM-strict, (c) BDM-weak, (d) and

BDM-weak with damping.

The results obtained from strict and weak BDM are shown in figure 41(b)∼(g) and

figure 42(b)∼(g). These plots show that, as expected, strict compatibility is more

successful in eliminating spurious wave reflections than weak compatibility. These

plots also confirm that regardless of the size of the overlapping domain, standard BDM

methods are more successful in removing spurious reflections when the integration

time step is large. An important observation can be made by comparing results

presented in figure 41(b)∼(d) with those presented in figure 42(b)∼(d). These plots

indicate that when velocity constraint is used, the size of integration time step does

not influence the performance of standard BDM methods as severely and adversely

as when displacement constraint is used.

The results obtained using the proposed enhanced bridging domain method are

presented in figure 41(h)∼(j) and figure 42(h)∼(j). These plots show that EBDM is

more efficient than both strict and weak-BDM method in eliminating spurious reflec-
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Figure 41: Total Hamiltonian (×10−6 eV) of the molecular dynamics zone versus
time (ps) of the one-dimensional simulation obtained using displacement constraint.

(a) Full MD, (b) BDM-strict and nb = 1, (c) BDM-strict and nb = 2, (d)
BDM-strict and nb = 4, (e) BDM-weak and nb = 1, (f) BDM-weak and nb = 2, (g)

BDM-weak and nb = 4, (h) EBDM and nb = 1, (i) EBDM and nb = 2, and (j)
EBDM and nb = 4.
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under uniaxial tensile loading. The atomistic subdomain is made of
a triangular lattice which corresponds to the [111] plane of an FCC
crystal. The interatomic interactions are modeled using the Len-
nard–Jones interatomic potential presented in Eq. (32). Only
nearest neighbor atoms are used in the evaluation of interatomic
potentials. For this problem, we use ϵ¼0.467 eV and σ¼0.2296 nm

which leads to an equilibrium bond length of r0¼0.2577 nm of the
triangular lattice. An atom mass of ma¼64 amu is used in the
simulations. The initial geometry and boundary conditions of the
domain are shown in Fig. 9. The entire domain dimensions
are 63.02 nm�60.49 nm and the initial crack length is 10 nm.
A linearly rising velocity ramp followed by a plateau (Fig. 8) is

Fig. 7. Total Hamiltonian (�10�6 eV) of the molecular dynamics zone (i.e. ΩA�ΩB) versus time (ps) of the one-dimensional simulation obtained using velocity constraint.
(a) Full MD, (b) BDM-strict and nb¼1, (c) BDM-strict and nb¼2, (d) BDM-strict and nb¼4, (e) BDM-weak and nb¼1, (f) BDM-weak and nb¼2, (g) BDM-weak and nb¼4,
(h) EBDM and nb¼1, (i) EBDM and nb¼2, and (j) EBDM and nb¼4.

A. Tabarraei et al. / Finite Elements in Analysis and Design 92 (2014) 36–4944

Figure 42: Total Hamiltonian (×10−6 eV) of the molecular dynamics zone versus
time (ps) of the one-dimensional simulation obtained using velocity constraint. (a)
Full MD, (b) BDM-strict and nb = 1, (c) BDM-strict and nb = 2, (d) BDM-strict
and nb = 4, (e) BDM-weak and nb = 1, (f) BDM-weak and nb = 2, (g) BDM-weak

and nb = 4, (h) EBDM and nb = 1, (i) EBDM and nb = 2, and (j) EBDM and nb =
4.
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tions. The enhancement in the performance is more significant when the overlapping

length size is small (nb = 1). Furthermore, these plots indicate that our enhancement

removes the adverse effect of reduction in the size of time step; by reducing the time

step size the performance of EBDM improves, showing the same exact trend as is

observed in the results obtained from full MD simulations.

5.5.2 Propagation of a centeral crack under dynamic tensile loading

The effectiveness of the proposed method in modeling crack propagation is inves-

tigated by simulating growth of a crack located at the middle of a two-dimensional

domain which is under uniaxial tensile loading. The atomistic subdomain is made

of a triangular lattice which corresponds to the [111] plane of an FCC crystal. The

interatomic interactions are modeled using the Lennard- Jones interatomic potential

presented in equation 46. Only nearest neighbor atoms are used in the evaluation

of interatomic potentials. For this problem, we use ε =0.467 eV and σ =0.2296 nm

which leads to an equilibrium bond length of r0 = 0.2577 nm of the triangular lat-

tice. An atom mass of ma=64 amu is used in the simulations. The initial geometry

and boundary conditions of the domain are shown in figure 44. The entire domain

dimensions are 63.02 nm×60.49 nm and the initial crack length is 10 nm. A linearly

rising velocity ramp followed by a plateau (figure 43) is applied to the upper and

lower edges of the continuum domain. The two side edges of the domain are traction

free. The effect of overlapping width on the performance of the method is studied by

solving the problem using two overlapping size of length LB =1.78 nm and LB =7.06

nm as are shown in figure 44.
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Figure 43: The velocity boundary condition applied to the top and bottom edges of
the continuum domain.

Figure 44: Schematic of the initial geometry and boundary conditions of a square
domain containing a central crack. The MD zones are shown in pink color. The
overlapping width LB is (a) 1.78 nm and (b) 7.06 nm. (For interpretation of the

references to color in this figure caption, the reader is referred to the web version of
this article.)
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Figure 45: Total Hamiltonian of the two-dimensional domain with a central crack
under tensile loading. (a) LB =1.78 nm and (b) LB =7.06 nm.

Figure 46: Number of broken bonds of the two-dimensional domain with a central
crack under tensile loading. (a) LB =1.78 nm and (b) LB =7.06 nm.

The variation in total Hamiltonian of the domain versus time is shown in figure

45. The graphs of figure 45 show that the Hamiltonian of the system obtained from

EBDM is in close agreement with the full MD simulations using both small or large

overlapping subdomain. However, when standard weak or strict bridging domain

methods are used, the Hamiltonian of the system will approach the full MD results

only when the size of the overlapping domain is large.

The number of broken bonds of the pure MD zone versus time is shown in figure

46. It can be observed that when the overlapping width is small, standard BDM

methods vastly overestimate the number of broken bonds. However, the number of

broken bonds obtained from EBDM is in agreement with full MD results using both

small and large overlapping size.
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Figure 47: Crack path of the full MD and the BDM simulations for LB =1.78 nm.
(a). Crack path from the full MD and enhanced BDM simulation at t = 70 ps. (b).

Crack path from the strict BDM and weak BDM at t=63 ps.

We further compare the performance of the techniques by investigating the crack

path obtained from each method. The crack growth paths obtained using small over-

lapping length are schematically shown in figure 47. This figure clearly shows that

when full MD or EBDM method are used, the initial crack grows self-similar (copla-

nar) from the initial crack. However, when standard BMD methods are employed

to model crack growth, the initial crack does not grow, instead atomic bonds break

at the interface of continuum and overlapping zone, leading to the generation of new

cracks along ΓA. The new cracks then grow along ΓA to the side edges of the domain.

By increasing the size of overlapping zone, the crack growth path obtained from stan-

dard BDM approaches that of pure MD, however this example clearly shows that

EBDM is more efficient in modeling problems involving discontinuities.
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Figure 48: Initial geometry and boundary conditions of a domain with an edge
crack under tensile and shear loading.

5.5.3 Edge crack propagation under mixed mode loading

In the previous example, crack growth under uniaxial tensile test was studied. In

this example we examine the capability of the method in modeling crack propagation

under mixed mode loading. For this purpose we consider a cracked domain under

mixed tensile-shear loading.

The initial geometry and boundary conditions of the problem are shown in figure

48. The domain dimensions are 32.41 nm × 60.50 nm and the initial crack length is

5.0 nm. A tensile and shear loading act simultaneously at the top and bottom edges

of the domain. The velocity function shown in figure 43 is used to prescribe both

tensile and shear components of the external loading. The side edges of the domain

remain traction free. The same lattice structure and interatomic potential used for

the example of section 5.5.2 are used to solve this problem.
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Figure 49: Crack path of an edge crack under combined shear and tensile loading.
(a) Short overlapping width, LB=1.78 nm and (b) large overlapping width, LB=7.06

nm.

The crack propagation path obtained from all the simulations are shown in figure

49(a) and (b). These figures clearly show that if the overlapping width LB is small,

only EBDM is able to predict the crack path correctly. On the other hand, when

overlapping width is small, not only the crack paths obtained from BDM-strict and

BDM-weak do not coincide with the MD result, but also atom bonds along the top

and bottom of the MD zone are also breaking. Therefore, standard BDM methods

are capable of predicting the correct crack path only when the overlapping length

is large. These results clearly demonstrate the superior efficiency of the enhanced

bridging domain method (EBDM) proposed in this paper with respect to the standard

bridging domain method.
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5.6 Conclusion

In this paper, we investigated the performance of standard bridging domain method

as a function of overlapping length size, the form of Lagrange multipliers discretiza-

tion (strict versus weak compatibility), the type of constraint matrix (consistent ver-

sus diagonalized), the integration time step size, and the type of constraint between

atomistic and continuum domain in the overlapping zone (displacement versus veloc-

ity constraint). Our numerical simulations indicate that:

(1) by increasing the width of overlapping zone, the performance of bridging domain

method improves.

(2) Strict compatibility is more efficient than weak compatibility in removing spu-

rious reflections.

(3) Performance of diagonalized constraint matrix in removing the spurious reflec-

tions is significantly better than consistent constraint matrix.

(4) By reducing the size of time step the capability of standard BDM in eliminating

spurious reflections reduces.

(5) Velocity constraint is less sensitive to time integration step size and is the form

of constraint which should be used.

The key contribution of the chapter is to testify the new technique to enhance the

performance of bridging domain method in eliminating the spurious wave reflections

at the interface of atomistic and continuum domain. In our proposed enhancement

the overlapping zone plays two important roles: (a) it glues the continuum domain

to atomistic domain, and (b) it is used as a damping zone which damps the high
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frequency waves that cannot travel into the continuum domain. To damp the high

frequency waves, we decomposed the total displacement field of atoms located within

the overlapping zone into a fine and coarse scale. The fine scale oscillations correspond

to the small wavelength (high frequency) components of the wave and need to be

eliminated. To damp the fine scale oscillations, we included a viscous damping term

in their equations of motion.

Our numerical results showed that the proposed enhancement significantly im-

proves the capability of the bridging domain method in removing the spurious reflec-

tions. In contrast to the standard bridging domain methods, by reducing the time

step size, the performance of enhanced bridging domain method improves. Also, the

numerical results obtained from one and two-dimensional problems indicate that the

proposed technique is capable in eliminating spurious reflections using a much smaller

overlapping length than those required by the standard BDM.



CHAPTER 6: PERIDYNAMICS STUDY OF THE FRACTURE BEHAVIOR OF
MOS2 AND H-BN

6.1 Introduction

Recently, fracture modeling techniques based on peridynamics nonlocal continuum

theory have been developed. In peridynamics, the forces acting at a particle are

obtained by an integral operator that sums pairwise internal forces exerted on the

particle by all the particles located at a finite distance from the particle of interest.

In contrast to classical continuum theory, peridynamics theory does not make any

assumption on the differentiability of displacement field for obtaining the forces. The

main advantage of peridynamics is that no assumption is made on the continuity of the

displacement field hence discontinuity in the displacement field due to the presence of

cracks does not necessitate special treatments. Peridynamics performance has been

validated by applying it to several sophisticated applications including polycrystals

fracture [7], fracture of composite materials [66, 150, 151, 61, 36], structure stability

and failure analysis [68], modeling of structure response under extreme loading [30],

material fragmentation under impact [129] dynamic fracture analysis [1, 131, 67, 48,

47], simulation of the kinetic of phase transformation [28] and modeling heat transition

in bodies with evolving cracks [16]. In addition to the numerical verifications, rigorous

mathematical analysis have been used to examine the properties of peridynamics.

Silling and Lehoucq [130] showed that in the limit when nonlocal region around a point
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goes to zero, peridynamics converges to classical elasticity theory. Du and Zhou [75]

developed a functional analytical framework for peridynamics and demonstrated the

connections between peridynamics and classical elastic theory, and Alali and Lipton

[3] analytically investigated the multiscale dynamics of heterogeneous media using

peridyanmic formulation.

In this chapter, 2D peridynamics is used to simulate the crack’s propagation process

in single layer MoS2 and h-BN sheets under mix-mode loadings.

6.2 Basic formulation of peridynamics

Peridynamic is a nonlocal continuum theory in which a point x interacts with other

points in its vicinity. The interaction zone of a node is called horizon and is denoted

by δ. The vector from a point x to point x′ is called a bond defined by ξ = x′ − x

and the bond length is denoted by ξ = |ξ|. The deformation state of a bond ξ at

time t is defined as

Y[x, t] 〈ξ〉 = y(x + ξ, t)− y(x, t) (59)

where

y(x, t) = x + u(x, t), (60)

and u is the displacement vector field. Y[x, t] acts on bond ξ and produces the image

of the bond under deformation.

The peridynamic equation of motion of point x is

ρ(x)ü(x, t) =

∫
H

(T[x, t] 〈x′ − x〉 −T[x′, t] 〈x− x′〉)dVx′ + b(x, t), (61)

where T is the force state and H is the set of all the bonds connected to x. The force
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Figure 50: The motion of a point x is based on an integration over its family. The
radius of the family domain is called the horizon.

state T[(x, t)] takes the bonds connected to point x as input and produces a force

density vector as the output. Since T acts on a vector and produce a vector, T is

similar to a tensor with the difference that T is not necessarily linear or continuous.

For an elastic material T only depends on Y([x, t]) and can be obtained from the

strain energy function W by

T(Y) = ∇ψPD(Y), (62)

where ∇ denotes the Fréchet derivative with respect to Y. The strain energy function

of a linear elastic material is

ψPD(θ, ed) =
Kθ2

2
+

15µ

2q
(ωed) • ed (63)

where K and µ are respectively the bulk modulus and shear modulus of material, θ

is the volume dilatation obtained from

θ(e) =
3

q
(ωx) • e, (64)
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where x is the bond length before deformation, m is the weighted volume defined by

q = (ωx) • x, (65)

and ω is the influence function which depends only on |ξ|, ω = 1 for an unbroken

bond and ω = 0 for a broken bond. The extension scalar state e measures the change

in the bond length due to deformation

e = y − x, y = |y| , x = |ξ| , (66)

and ed is the deviatoric part of e

ed = e− θx

3
, (67)

Using equation 63 in equation 62 the magnitude of the force state vector acting along

the deformed bond direction is

t =
3Kθ

q
ωx+

15µ

q
ωed. (68)

The “•” acts on two scalar states is the integration of their regular product over

the neighbor region. For example, for a point x,

(ωed) • ed =

∫
H

[ω(x,x′) · ed(x,x′)] · ed(x,x′). (69)

6.2.1 Plane stress peridynamic

The volumn dilatation in a plane stress state is

θ =
2(2v − 1)

(v − 1)

ωr • e
q

, (70)
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and the force state is

t =
2(2ν − 1)

(ν − 1)

(
k′θ − β

3
(ωed) • r

)
ωr

q
+ βωed, (71)

where

β =
8µ

q
, (72a)

k
′
= k +

µ

9

(v + 1)2

(2v − 1)2
(72b)

6.2.2 Numerical discretization

Numerical implementation of peridynamic continuum model requires the discretiza-

tion of the domain. The most common discretization scheme employed in peridynam-

ics is the meshfree method. Opposed to the finite element discretization, in meshe-

free method the domain is discretized by nodes instead of elements. In a meshfree

discretization, nodes are not connected to each other by elements or any other ge-

ometrical constraints. The discretized form of the peridynamic equation of motion

is

ρ(xI)ü(xI , t) =
K∑
J=1

(T[xI , t]〈xJ−xJ〉−T[xJ , t]〈xI−xJ〉)VJ+b(xI , t), ∀I = 1, 2, ..., N

(73)

where xI denotes a peridynamic discrete node, xJ is a node within the horizon of xI ,

K is the total number of nodes within the horizon H of xI , VJ is the volume of xJ

in the initial configuration and N is the total number of nodes in the peridynamic

domain. The discretized equation of motion can be integrated in time using an explicit

time integration scheme such as the velocity Verlet method.
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Table 5: Material coefficients of MoS2 for the peridynamics simulation.

Young’s modulus 200 GPa
ν 0.29
ρ 5.06 g/cm3

Ko 1.482 MPa
√
m

Table 6: Material coefficients of h-BN for the peridynamics simulation.

Young’s modulus 925 GPa
ν 0.23
ρ 2.3 g/cm3

Ko 5.4 MPa
√
m

6.2.3 Hamiltonian of peridynamics

The Hamiltonian of peridynamics is

Hp = W kin
p +W int

p −W ext
p . (74)

where the kinetic energy is given by

W kin
p =

N∑
I

1

2
ḋ
T

I ρḋIVI =
N∑
I

Pp
I ·P

p
I

2Mp
I

(75)

The internal strain energy is given by

W int
p =

∑
I∈N

VIψ
PD
I =

∑
I∈N

dI ·

(
K∑
J=1

(T[xI , t]〈xJ − xJ〉 −T[xJ , t]〈xI − xJ〉)VJ

)
VI ,

(76)

and the potential energy of the external forces is

W ext
p =

∑
I∈N

dI · bVI , (77)

where ḋI is the velocity of node I.
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Figure 51: Crack path of MoS2 under the mix-mode loadings.

6.3 The numerical simulations and results

We use peridynamics to model the fracture of 2D panels of MoS2 and h-BN. Table

5 and 6 shows the materials coefficients which are used for the simulations. The

configuration of the subject is shown as the figure 51. It is a 2D panel whose size is

equaled to 50 cm×50 cm. An mix-mode loading follows the equation 3a in chapter

1 (with a loading rate of 0.5 cm/s), is applied on the boundary. The initial edge

crack is on the left side of the panel and the crack tips are at the center of the panel.

Initially, the edge crack is developed by deleting a row of points and cutting through

all the interactions across the edge crack. To show the settling of the initial crack

and the propagation progress of the crack, any point with a broken bond is marked

in the red.

From figure 51 and figure 52, we can see that the crack propagates in the different
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Figure 52: Crack path of h-BN under the mix-mode loadings.

directions according to the loading phase angles. Figure 53 shows a zoom in of a zone

near the center of the panel. Even though the mesh is very regular, the cracks paths

are not just straight lines, which means that the cracks propagation is not constraint

by the mesh. Figure 54 shows the cracks kinking angle as a function of the loading

phase angle. The curve based on the peridynamics simulation and the curve based

on the maximum circumferential stress criterion match very well, especially when the

loading phase angle is smaller than 50◦. The results of MoS2 and h-BN are very

similar. Figure 54 represents the results for both MoS2 and h-BN.

Note that in the previous molecular dynamics simulation, the kinking angle can

only be multiples of the 30◦. However here in the continuum level simulation, the

kinking angle is changing smoothly according to the change of the loading phase

angle.
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Figure 53: Zoom in of the domain near the kinking angle. Any point who has a
broken bond is marked by the red color.

Figure 54: Kinking angle of MoS2 as a function of the loading phase angle.
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(a)

(b)

Figure 55: The effective critical stress intensity factor of (a) MoS2 and (b) h-BN of
each example. It matches the materials critical stress intensity factor, which is a

material coefficient.
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Figure 55 shows the effective critical stress intensity factor of MoS2 and h-BN of

each example. They are compared with the K0, which is the critical stress intensity

factor of the material. The critical stress intensity factor obtained from peridynam-

icsis matching the material critical stress intensity factor.

6.4 Conclusion

These examples show that,

(1) The peridynamics is able to represent the fracture phenomenon of the MoS2

and h-BN materials from the continuum level. The cracks propagation path is not

constrained by the mesh, thus it can accurately capture the cracks propagation process

without remeshing. Before the simulation, the Youngs modulus, the Poissons ratio,

the mass density, the critical stress intensity factor of the material are required.

Especially the critical stress intensity factor is used as the criterion to determine if a

pair of points still have the interaction. The new crack surfaces are naturally formed

without any specific criterion to predict the cracks propagation direction.

(2) The fracture behavior of the MoS2 and h-BN in the continuum level is similar.

It is not influenced ty the atomic structure. Since the peridynamics is a continuum

level method, it can not capture the size effect of the nano materials.



CHAPTER 7: THE COUPLING OF PERIDYNAMICS AND FINITE ELEMENT
METHODS

7.1 Introduction

Although the peridynamic theory is capable of modeling damage formation and

growth without resorting to any external criteria, numerical simulations using peri-

dynamics are computationally expensive. The high computational cost is attributed

to the nonlocality of the theory. In nonlocal theories each particle interacts with

a large group of particles, resulting in costly assembly operations of the nonlocal

discrete systems.

Another issue associated with peridynamics is the prescription of displacement and

traction boundary conditions. Since the variation formulation of the peridynamics

does not include tractions, the forces acting on the surface are prescribed as body

forces acting within a fictitious boundary layer under the surface. Similar to tractions,

displacements boundary conditions are imposed by constraining the displacement of

material points within a fictitious boundary layer. A linear interpolation is used

to approximate the value of the displacement of material points in the boundary

layer based on the boundary conditions and the displacement of the points within

the domain. The inaccuracy in prescribing the boundary conditions in peridynamics

reduces the accuracy of modeling predictions.

In this chapter, we propose a technique for coupling peridynamics with finite el-
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ements for dynamic fracture modeling. In our proposed coupling technique, peridy-

namics description is used only in the areas of the domain where nucleation or growth

of discontinuities is probable, and finite elements are used elsewhere. Therefore, fine

scale behavior is captured by the peridynamics zone and finite elements are used

in the zones where solution is smooth. The proposed method takes advantages of

the salient features of both techniques i.e. straight forward application of boundary

conditions along with lower computational cost of finite elements and peridynamics

superiority in fracture simulation.

The main challenge associated with developing coupled peridynamics–finite element

methods is to minimize the fictitious interface effects. In static problems, special con-

siderations need to be taken to remove ghost forces, while in dynamic problems, the

spurious wave reflections at the interface of peridynamics and finite element domains

must also be eliminated. The main source of wave reflections can be attributed to the

change of constitutive behavior between an inherently nonlocal peridynamic domain

and a local continuum domain, and the significant difference between the resolution

of finite element mesh and the resolution of peridynamic zone. Since the minimum

wave length which can be supported by FE is much larger than the minimum wave

length which can be resolved by the peridynamic zone (PD), the FE/PD interface acts

as a rigid boundary for those components of the wave which can not be resolved by

the finite element mesh. So instead of passing smoothly into the finite element zone,

the short wavelength (high frequency) components of the wave will reflect back into

the PD domain. This will lead to spurious growth of the energy of the peridynamic

domain, and will drastically reduce the computational accuracy.
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Coupling between peridynamics and finite element has received attention recently.

Erkan etl. studied a submodeling approach in which the boundary conditions of PD

are imported from FEM [107]. However they assume that the submodeling details do

not affect the FEM simulation and the boundary of the PD is far enough from the

local features. Richard and Steward studied a way to implement the PD model in a

conventional FEM code. To save the computational time, the displacement constraint

between the FEM and PD is applied in a fuzzy zone [92]. Liu developed an interface

element, in which the embedded points are firmly attached to the interface element,

while the interaction force between the embedded points and the normal points are

divided and assigned to the nodes of the interface elements [88]. Similar studies has

been done by [41, 65, 115]. These coupling ideas are actually straightforwardly similar:

in the overlapping zone of FEM and PD, part of the points are firmly attached on the

mother element meanwhile part of the nodes are firmly attached to their surrounding

points. The attaching criterion can be based on displacement or force. However, these

rough ways of coupling are only tested under the linearly increased and quasi-static

loadings. In a real-world example, for example, a bullet hitting a shield, or in an

explosion, the loadings may be with a high rate and the increasing format can be

more complex. In these cases, the coarsely meshed FEM can not represent the high

frequency waves, which comes from the finely meshed PD. Thus the high frequency

waves will be reflected back to the PD zone and the redundant energy is introduced

and trapped inside the PD. The unexpected redundant energy does not only introduce

the accumulated error, the earlier nucleated or propagated crack, it also may cause

the failure near the coupling zone [135]. In this study, the PD is used to simulate the



100

part where fracture may occur and FEM is used to simulate the loading and boundary

condition. The purpose is to discover the possibility and methodology of the coupling

of FEM and PD seamlessly and smoothly. Not only the load can be transferred from

FEM, the FEM should also feel the feedback from PD simultaneously. The loading

is able to be a high rate dynamic loading. The mesh of the PD and the overlapping

can be generated easily without much artificial effort. At the end, the PD can be

inserted to a FEM software to simulate pragmatic real world problems by a general

backgrounded user.

In developing our coupling techniques we aim at satisfying the following two main

criteria:

1. The peridynamic zone should be properly glued to the finite element subdomain

such that a smooth enough wave can travel between subdomains without getting

distorted at the interface.

2. Spurious wave reflections should be eliminated. For this purpose, the high fre-

quency waves (fine scale oscillations) which cannot travel into the finite element

zone should be appropriately damped.

In this chapters, we propose a concurrent coupling technique in the framework of

Arlequin approach [13, 32], which uses Lagrange multipliers to glue two disparate

subdomains. The Arlequin approach has been used previously for coupling atomistic

zone to finite element zone [153, 112, 164, 121, 135]. In this paper, we use this

approach to couple two continuum zones to each other. To simplify the formulations,

we present the coupling for linear elastic materials, however the proposed method is
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Figure 56: The overlapping zone required by EBDM.

generic and is not restricted to linear elastic materials.

7.2 Formulation of the Arlequin method

In this section we describe a method based on the Arlequin framework for coupling

finite elements with peridynamics. Following the Arlequin approach, the domain

is subdivided into three subdomains: a pure peridynamics (or molecular dynamics)

zone, a pure finite element zone (classical continuum zone) and an overlapping zone.

The domain decomposition is shown in figure 56. To reduce the computational costs,

the peridynamics is used only around cracks and finite elements is used elsewhere.

In the Arlequin method the energy of the system is obtained as a linear combination

of the energy from both models, i.e peridynamic (or molecular dynamics) elasticity

and classical elasticity

H(u, u̇) = Hc(u, u̇) +Hp(d, ḋ)

= α(x)
(
W kin
c +W int

c −W ext
c

)
+ (1− α(x))

(
W kin
p +W int

p −W ext
p

)
,

(78)



102

where u denotes the displacement field of the finite element zone and d represents the

displacement field of the peridynamics (or molecular dynamics) zone. The weighting

coefficients α should be chosen such that

α(x) =


1 ∀x ∈ Ωc\Ωo

0 ∀x ∈ Ωd\Ωo

(79)

The simplest form of coefficient α which satisfies the criteria of equation 79 is a

piecewise linear function

α(x) =
l1

l1 + l2
∀x ∈ Ωo (80)

where l1 and l2 are respectively the distance from point x to the nearest points with

α = 0 and α = 1. The variation of coefficient α over the domain is schematically

shown in figure 56.

The mechanical compatibility between the peridynamics and finite element zones

requires that the classical continuum displacement u(x) be conforming with the peri-

dynamics displacement field d(x) on the overlapping zone. The conformity between

the displacements can be satisfied by defining constraints on the two displacement

fields. Different form of constraints can be considered. For example, the following con-

straint requires that the displacement of peridynamic (or molecular dynamics) points

should be equal to the displacement of finite elements at the location of peridynamics

nodes

gI = u(xI)− dI =
∑
J∈S

NJ(xI)uJ − dI = 0, ∀I ∈Mp, i = 1, 2, 3 (81)

where gI = {g1I , g2I , g2I} is the set of constraints imposed on displacement of point I,
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Mp is the set of all the peridynamic (or molecular dynamics) points in the overlapping

zone and S is the set of all the finite element nodes whose support intersects the

overlapping zone.

This constraint in applied using Lagrange multipliers. For this purpose, the total

Hamiltonian of the system is modified to

HL(u,d,λ) = α(x)Hc(u) + (1− α(x))Hp(d) +
∑
I∈Mp

λI · gI , (82)

where λTI = {λ1I , λ2I , λ2I} is the Lagrange multipliers at peridynamic (or molecular

dynamics) point I. Lagrange multipliers are approximated using a λ–mesh which is

constructed over the overlapping zone

λI(x) =
∑
J∈Q

Nλ
J (xI)λJ , (83)

where Nλ
J is the shape function of node J of the Lagrange multiplier filed, Q is the

set of Lagrange multiplier nodes and λJ is the value of Lagrange multiplier at λ–node

J . Using equation 81 and equation 83 in equation 82 we obtain

HL(u,d,λ) = α(x)Hc(u)+(1−α(x))Hp(d)+
∑
I∈Mp

∑
K∈Q

Nλ
K(xI)λK ·

(∑
J∈S

NJ(xI)uJ − dI

)
,

(84)

A Lagrange multiplier mesh along with the finite element mesh and peridynamic

(or molecular dynamics) grid is shown in figure 57. Any mesh which satisfies the

Ladyzhenskaya-Babuska-Brezzi (LBB) condition can be used to construct Lagrange

multipliers shape functions. We consider two types of λ–mesh. A λ–mesh whose
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Figure 57: Lagrange multiplier interpolation.

nodes coincides with the finite element nodes, i.e Nλ
J (xI) = NJ(xI), and a λ–mesh

whose nodes coincide with the peridynamic nodes, i.e Nλ
J (xI) = δIJ where δIJ is the

Kronecker delta. We refer to the former method as weak BDM; we call the second

method as the strict BDM.

7.2.1 Equations of motion

The Hamiltonian of the FEM domain is

α(x)Hc(u) = α(x)W kin
c + α(x)W int

c − α(x)W ext
c (85a)

α(x)W kin
c =

∑
I∈M

αI
Pc
I ·Pc

I

2M c
I

(85b)

α(x)W int
c =

∫
Ωc

α(x)ψcdΩ =
∑
I∈M

(
f
int

I

)
c
· uI (85c)

α(x)W ext
c =

∫
Ωc

α(x)uTbdΩ +

∫
Γt

α(x)uT tdΓ =
∑
I∈M

(
f
ext

I

)
c
· uI (85d)

where αI = α(xI) and the internal and external forces are

(
f
int

I

)
c

=

∫
Ωc

α(x)
∂NI

∂xj
σjidΩ (86a)

(
f
ext

I

)
c

=

∫
Ωc

α(x)NIρbdΩ +

∫
Γt

α(x)NItdΓ (86b)
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Similarly, by using equations 74–77 we obtain

(1− α(x))Hc(u) = (1− α(x))W kin
p + (1− α(x))W int

p − (1− α(x))W ext
p (87a)

(1− α(x))W kin
p =

∑
I∈N

(1− αI)
Pp
I ·P

p
I

2Mp
I

(87b)

(1− α(x))W int
p =

∑
I∈N

(1− αI)ψPDI VI =
∑
I∈N

(
fint
I

)
p
· dI (87c)

(1− α(x))W ext
p =

∑
I∈N

(1− αI)dI · bVI =
∑
I∈N

(
fext
I

)
p
· dI (87d)

where
(
fint
I

)
p

and
(
fext
I

)
p

are given by

(
fint
I

)
p

= (1− αI)

(
K∑
J=1

(T[xI , t] 〈xJ − xJ〉 −T[xJ , t]〈xI − xJ〉)VJ

)
VI , (88a)

(
fext
I

)
p

= (1− αI)bVI . (88b)

The equations of motion can be uniquely defined by Hamilton’s equations

αIṖ
c

I = −∂HL

∂uI
=
∂ (α(x)W ext

c )

∂uI
−
∂
(
α(x)W int

c

)
∂uI

−
∑
J∈Q

GIKλK (89a)

αIu̇I =
∂HL

∂Pc
I

= αI
∂Hc

∂Pc
I

= αI
Pc
I

M c
I

(89b)

(1− αI)Ṗ
p

I = −∂HL

∂dI
=
∂
(
(1− αI)W ext

p

)
∂dI

−
∂
(
(1− αI)W int

p

)
∂dI

+
∑
I∈Mp

∑
K∈Q

Nλ
k (xI)λK

(89c)

(1− αI)ḋI =
∂HL

∂Pp
I

= (1− αI)
∂Hp

∂Pp
I

= (1− αI)
Pp
I

Mp
I

(89d)

where

GIK =
∑
J∈Mp

Nλ
K(xJ)NI(xJ) (90)
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Combining equations 89a and 89b and using equations 85c and 85d we obtain

αIM
c
I üI =

(
f
ext

I

)
c
−
(
f
int

I

)
c
−
∑
K∈Q

GIKλK (91)

Similarly, combining Equations 89c and 89d and using Equations 87c and 87d we

obtain

(1− αI)Mp
I d̈I =

(
f
ext

I

)
p
−
(
f
int

I

)
p

+
∑
K∈Q

Nλ
k (xI)λK . (92)

Equations 91 and 92 provide the complete equations of motion for finite elements

and peridynamic (or molecular dynamics) points.

7.2.2 Explicit time integration

The time integration is conducted using the velocity Verlet algorithm. Since the

value of Lagrange multipliers at the beginning of each time step is not known we

use a prediction–correction method similar to that proposed in [152] to update the

nodal displacements and velocities. In this algorithm the displacements at step n+ 1

obtained using the displacement, velocity and acceleration of step n by

un+1
I = unI + u̇nI∆t+

1

2
ünI∆t2 ∀I ∈M (93a)

dn+1
I = dnI + ḋ

n

I∆t+
1

2
d̈
n

I∆t2 ∀I ∈ N (93b)

The half step velocities are calculated using

u̇
n+ 1

2
I = u̇nI +

∆t

2
ünI ∀I ∈M, (94a)

ḋ
n+ 1

2

I = ḋ
n

I +
∆t

2
d̈
n

I ∀I ∈ N . (94b)
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The trial accelerations at step n + 1 are calculated by ignoring the force due to the

Lagrange multipliers

ü∗n+1
I =

1

αM c
I

[(
fext
I

)n+1

c
−
(
fI int

)n+1

I

]
∀I ∈M (95a)

d̈
∗n+1

I =
1

αMp
I

[(
fext
I

)n+1

c
−
(
fint
c

)n+1

c

]
∀I ∈ N . (95b)

The trial velocities at step n+ 1 are obtained from

u̇∗In+1 = u̇
n+ 1

2
I +

∆t

2
ü∗n+1
I ∀I ∈M, (96a)

ḋ
∗I
n+1 = ḋ

n+ 1
2

I +
∆t

2
d̈
∗n+1

I ∀I ∈ N . (96b)

The trial constraint is obtained by substituting the trial velocities in the time deriva-

tive of constraint equation 81

ġ∗n+1
I = u̇(xI)

∗n+1 − ḋ
∗n+1

I =
∑
J∈S

NJ(xI)u̇
∗n+1
J − ḋ

∗n+1

I ∀I ∈Mp, (97)

The correct velocities are obtained by considering the Lagrange multipliers force in

the calculation of accelerations

u̇n+1
I = u̇nI +

∆t

2

[
ünI −

1

αIM c
I

∑
K∈Q

GIKλ
n

K + ün+1
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αIM c
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∑
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K
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∑
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GIKλ
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2
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(98a)
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∑
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Nλ
k (xI)λ
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]
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I +
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Nλ
k (xI)λ

n+ 1
2

K

(98b)
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Figure 58: The displacement of PD is discomposed into a fine and a coarse part.

where λ
n+ 1

2
K = 1

2

(
λ
n

K + λ
n+1

K

)
. By using equation 98 in the time derivative form of

equation 81 we obtain

ġn+1
I = u̇(xI)

n+1 − ḋn+1
I = ġ∗n+1

I − ∆t

αIM c
I

∑
J∈S

NJ(xI)
∑
K∈Q

GJKλ
n+ 1

2
K

+
∆t

(1− αI)Mp
I

∑
K∈Q

Nλ
K(xI)λ

n+ 1
2

K

(99)

which can be simplified as ∑
AIKλK = ġ∗n+1

I , (100)

where

AIK =
∆t

αIM c
I

∑
J∈S

NJ(xI)GJK −
∆t

(1− αI)Mp
I

Nλ
K(xI)I, (101)

where I is the identity matrix.

To save in the computational costs, matrix A is diagonalized by

AII =
∑
K∈Q

[
∆t

αIM c
I

∑
J∈S

NJ(xI)GJK −
∆t

(1− αI)Mp
I

Nλ
K(xI)

]
(102)

The Lagrange multiplier of each λ-node is obtained from

λK = A−1
II ġ

∗n+1
I . (103)
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7.3 Removing the spurious reflections

The method presented in section 7.2 provides mechanical coupling between the

classical elasticity and peridynamics zones and significantly reduces the spurious wave

reflections if the overlapping size is reasonably large. In this section, we improve

the efficiency of the method in removing the spurious wave reflections by adding

a damping term to the equations of motion of the fine scale oscillations. For this

purpose, we decompose the oscillations of the damping nodes into fine and coarse

oscillations as shown in figure 58. The decomposition can be written as

dI = dcoarse
I + dfine

I . (104)

It is assumed that the fine scale oscillations can not transmit into the finite element

zone and reflect back if they are not appropriately damped. We assume that the

coarse scale displacement of each peridynamic node is equal to the displacement of

the classical elasticity subdomain at the location of the peridynamic node. Using the

finite element shape functions the coarse scale displacements can be approximated as

dcoarse
I =

∑
J∈S

NJ(xI)uJ . (105)

By combining equation 105 and equation 104 the fine scale displacements are

dfine
I = dI −

∑
J∈S

NJ(xI)uJ , (106)

and subsequently the fine scale oscillations are

d̈fine
I = d̈I −

∑
J∈S

NJ(xI)üJ . (107)
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By multiplying both sides of 107 with αIM
p
I and using Equations 91 and 92 we obtain

(1− αI)Mp
I d̈

fine
I = ffine

I , (108)

where ffine
I is

ffine
I =

(
f ext
I

)
p
−
(
f int
I

)
p

+
∑
K∈Q

Nλ
K(xI)λK

−
∑
J∈S

(1− αI)Mp
INJ(xI)

(f ext
J )c −

(
f int
J

)
c
−
∑

K∈QGIKλK

αIM c
J

.

(109)

Since the fine scale oscillations cannot be transferred into the finite element zone, we

damp the fine scale oscillations by modifying the equation of motion (equation 108)

to include a viscous damping term as

(1− αI)Mp
I d̈

fine
I = ffine

I − (1− αI)Mp
ICIḋ

fine
I , (110)

where ḋfine
I is the velocity of fine scale oscillations obtained from

ḋfine
I = ḋI −

∑
J∈S

NJ(xI)u̇J , (111)

and CI is the damping coefficient. The choice of damping coefficient can affect the

success of the method in eliminating spurious reflections. In this paper, we approxi-

mate the damping function using the following parabolic equation

CI = C
c

L1 + L2

(1− αI)2 (112)

The velocity Verlet algorithm is used to integrate the fine scale equation of motion
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Figure 59: Schematic mechanisms of a bad connection. It only has the FEM
dominate zone and peridynamics dominate zone without an interaction zone. It

causes the spurious reflection problem.

(equation 108) in time.

(
dn+1
I

)fine
= (dnI )fine + ∆t

(
ḋnI

)fine

+
1

2
∆t2

(
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)fine

, (113a)(
ḋ
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2
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)fine

=
(
ḋnI
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2
∆t
(
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)fine

, (113b)(
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=
1

(1− αI)Mp
I

(
fn+1
I

)fine − CI
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2
I
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, (113c)

(
ḋn+1
I

)fine

=
(
ḋ
n+ 1

2
I

)fine

+
1

2
∆t
(
d̈n+1
I

)fine

. (113d)

7.4 2D examples —spurious reflection problem

In this section, we compare three ways of the coupling of peridynamics and FEM.

The first one is a bad connection, in which the overlapping zone is simply divided into

two parts. In one part, the nodes are firmly attached to their neighbor points, while

in the other part, the points are firmly attached to its covering element as shown in

figure 59. Currently, many studies couple FEM and peridynamics in similar ways.

We will show that this coupling technique may introduce spurious reflection.

The second way of coupling is to use strict BDM. In this method, the Lagrange

multipliers are solved for each point, and the constraint from the FEM to the peri-
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Table 7: Material coefficients for the 2D examples, they represent the Al.

Young’s Modulus 69 GPa
Poisson’s ratio 0.3
mass density 2700 kg/m3

dynamics reaches the maximum state. We will show that this excessive constraint

also may introduce the spurious reflection problem. The third way of coupling is to

use the weak BDM, in which the Lagrange multipliers are for each node, thus the

constraint from the FEM to the peridynamics is minimized. This is the recommended

way of the coupling in this study.

The coupling configuration is shown in figure 60, where the length and width of

the panel are L1 = 400 cm, L2 = 220 cm and W = 8 cm. Peridynamics is used at the

center part and FEM is used at the left and right parts. The mesh sizes of FEM and

peridynamics are about 2 cm and 0.25 cm respectively. The material properties are

provided in table 7, which represents aluminum.

In these examples, a combination of fine and coarse waves are initialized in the

center of a 2D ribbon as described in equation 114 (see figure 61(a)). where a1 =

0.0003, a2 = 0.3, w1 = 48, w2 = 3.

dx|t=0 =


a1 +

(
cos2π|x|

w1
+ 1
)

+
[
1 + a2cos 2π

w2(x+0.5w1)

]
(−0.5w1 ≤ x ≤ 0.5w1)

0 (x < −0.5w1 or x > 0.5w1)

(114)

We firstly run a pure peridynamics example as a reference. As expected, the waves

split into two groups and propagate to the left and right (see figure 61(b)).

We test the examples in two step times: ∆t = 10−7 s and ∆t = 10−8 s. From

figure 61 we can see that, the “bad connection” causes spurious reflection of the high
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Figure 60: Configuration of the 2D examples and the zooming of the mesh around
the overlapping zone.
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Figure 61: Snapshots of the central line of points and nodes. The height represent
the displacement in the x direction. The initial waves are supposed to split and

transfer to the ends. However, a bad connection causes the spurious reflection of the
high frequency waves. EBDM effectively reduces the reflection.
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frequency waves, only the low frequency waves can be passed to the FEM domains.

When the time step is smaller, the spurious reflection is even worse. For the strict

BDM, the coarse wave can be passed to the FEM, but the fine waves are reflected

back to the peridynamics domain as well. Similar to the “bad connection” simu-

lations, the spurious reflection is worse when the time step is smaller. Due to the

overexerted constraint from FEM, the fine waves can not “penetrate” into the center

of the overlapping zone, thus the damping can not be effectively applied to the fine

waves. However, the amplitudes of the reflected waves are smaller than the ones in

the “bad connection” examples.

For the enhanced BDM examples, the coarse waves are transferred to the FEM

smoothly, meanwhile the fine waves are reduced by the damping. The result is not

influenced by the steptime. The result is much better than the strict BDM, simply

because the constraint from FEM is minimized, and the points have much more

freedom to oscillate in a high frequency when they “penetrate” into the overlapping

zone. Thus the high frequency movements can be detected and eliminated by the

damping.

Figure 62 compares the results from the energy perspective. We plot the total strain

energy, kinetic energy and Hamiltonian of all the peridynamics points (expressed as

equation 74). The initial kinetic energy and strain energy are introduced by the initial

waves. The energies of all the points remain constant until the split waves reach the

overlapping zones. The decrease of the energy indicates that the waves are passing

into the FEM domains. Finally, the energy should be reduced to zero, since the waves

should be transferred to the FEM.
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Figure 62: Energies of the peridynamics part. After the waves passed into the FEM
zones, the strain energy, kinetic energy and the total Hamiltonian of the EBDM

example are all zero. Meanwhile the bad connection causes redundant oscillations
which are tracked inside the peridynamics zone.
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If the “bad connection” is used, because of the spurious reflection, the high fre-

quency waves are trapped inside the peridynamics domain and Hamiltonian of peridy-

namics doesn’t become zero. There are nonnegligible oscillations between the strain

energy and kinetic energy whenever the fine waves reach the overlapping zones. Note

that the first group of the unexpected oscillations represent the moment that both

the fine waves and coarse waves first reach the overlapping zone. The second group

of the unexpected oscillations represents the moment that, after the left and right

fine waves being reflected back to the center and meet each other, they get separated

and transfer towards the left and right directions, and again get reflected back by the

overlapping zones. It means that the energies are trapped in the peridynamics domain

forever, no matter how many times the high frequency waves reach the overlapping

zone. When the time step is smaller, the trapped redundant Hamiltonian is larger

and the amplitude of the oscillation between the kinetic energy and strain energy is

more significant.

The strict constraint shows a similar issue. But the redundant Hamiltonian is

smaller and the oscillation amplitude is smaller.

Ideal results are obtained when weak constraint is used. The Hamiltonian reduce

to zero when waves travel out of the peridynamics zone. Moreover, there is no energy

oscillation when the waves are passing the overlapping zones, which means the waves

are transferred smoothly and seamlessly. We have the same energy curves for both

large and small steptimes.
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7.5 Smart Layer method

Developing the overlapping meshes, indicating the edge of FEM and peridynamics

and describing the nonlocal scalar functions –these steps require users to have special

training of numerical analysis. Here we firstly introduce a Smart Layer method. It

automatically formulate the overlapping zone, peridynamics mesh and scalar function,

based on only four integer arguments given from FEM users. Thus, the BDM can be

plugged into a FEM software.

Here are the steps of the Smart Layers (shown in figure 63):

1. Initially, after the FEM mesh, different parts are formulated. The Part ID to

be transferred into peridynamics and overlapping zone is the first argument of Smart

Layers.

2. A group of surface nodes can be simply picked by the mesh tool (for example,

LS-prepost). Any elements attached to these nodes are marked as the 1st layer, then

any elements attached to the i layer elements are marked as the i+1 layer, until N1

layer of elements are marked. The Group ID of the surface nodes and number of the

overlapping layers N1 is the second and third argument.

3. All elements of this part transfer into peridynamics points. In this thesis, I

studied two transfer criteria (figure 64). The first criterion to transfer a FEM element

into the peridynamics points is called the “samescale” transfer. It transfer each FEM

node into a peridynamics point. The second criterion is called the “multiscal” transfer.

It transfers each Gauss point into a peridynamics point. In this study, each hexahedral

element has 8 Gauss points. The overlapping elements (N layers of elements) are kept
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while the unmarked elements are deleted.

4. Note that when the scalar factor α=1.0, it represents the domination of FEM.

This domination from FEM to peridynamics should cover a distance, which is longer

than the radius of the horizon of peridynamics. N2 represents the number of layers

that α=1.0. It is the last arguments. For the scalar factor α, it equals: (a) 1.0 if

the nodes and points are within the 1 ∼ N2 layer. (b) 0.0 if the nodes and ponts are

within the N1 layer. (c) l1/(l1 + l2), where l1 is the distance from the current location

to its nearest α=1.0 point, l2 is the distance from the current location to its nearest

α=0.0 point. The schematic distribution of α is shown in figure 56.

Figure 63: The schematic idea of the smart layer method, which is used to transfer
a finite element part into the peridynamics points and the overlapping of the finite

elements and points.

7.6 3D Examples —impact

In this section, we show an example in which a steel bar hits a steel plate. The

material coefficients are shown in table 8. The mesh is shown in figure 66. A square
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Figure 64: There are two criteria to transfer each element into points. One is to
transfer the Gauss points into the peridynamics points, the other one is to transfer

the nodes into the points.

Table 8: Material coefficients for the 3D impact examples, they represent the steel.

Young’s Modulus 200 GPa
Poisson’s ratio 0.3
mass density 7823 kg/m3

bar (1×1×10 cm3) with an initial velocity vz=100 cm/s moves towards an independent

plate (1.4 × 1.4 × 0.2 cm3) at a small distance (= 0.01 cm) from the bar. The

peridynamics is in the center (with a length of 4 cm) and the FEM are on the left

and right of the bar. The time step is ∆t = 5.0× 10−8 s.

Initially, the whole mesh was generated using the FEM software Velodyne [138].

The bar was divided into three parts: the left, middle and right parts. We then used

the Smart Layer method to convert the middle part into the overlapping zone and

the peridynamics mesh (see figure 65). Figure 66 shows the after-transferred mesh

following the multiscale transfer criterion.

After the impact, initially, the velocity on the right end reduces to a very small

value, this reduction of velocity is then spread from the right end of FEM to the

peridynamics zone, after that it is pread from the center peridynamics zone to the
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Figure 65: Initial finite element mesh from software Velodyne. The center part is to
be transfered. The selected surface nodes are marked by yellow.

Figure 66: The multiscale mesh of FEM and peridynamics. for each overlapping
zone, there are 8 layers of elements overlapping with peridynamics points. The steel

bar has an initial velocity towards an independent plate.
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Figure 67: Snapshots of contours of velocities. The velocity reduces after the bar
hits the plate. This reduction of velocity is then spreaded from the right to the left

of the bar. Enhanced BDM transfers the wave smoothly.

left end of FEM; and again, from the left FEM to the peridynamics and to the right

FEM. Based on the multiscale transfer criterion example, figure 67 shows 8 snapshots

from t = 1.005× 10−4 s to t = 1.180× 10−4 s with the vz contour. These snapshots

show the progress that the waves are generated, and then smoothly transferred in the

sequence of FEM-peridynamics-FEM.

To verify and compare our results, the vz of three points are tracked and compared

with the result from a pure FEM simulation (figure 68, 69 and 70). The first point is

within the right overlapping zone, the second point sites in the middle of the bar, the

third point is within the left overlapping zone. Using the multiscale transfer criterion,

the vz vs. time curves match the FEM results. Note that the first suddenly drop of
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Figure 68: The time history of the velocity of a point within the right overlapping
zone. The result comes from the enhanced BDM simulation is very closed to the

pure FEM simulation.

the velocity represents the moment when the wave is transferred from the right FEM

to peridynamics for the first time, and the second drop represents the moment that

after the wave reached the left end, it goes through the left FEM and peridynamics,

and reaches this point again. It shows that for the multiscale example, the waves

pass through the overlapping zones for 4 times without much error. However, if the

FEM nodes are simply transfered into the peridynamics points, it accumulates error

during the progress when the waves pass through the peridynamics part.

This example also shows an advantage of enhanced BDM, in which the contact is

simply simulated by FEM, and the error due to the surface problem of peridynamics

is avoided.
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Figure 69: The time history of the velocity of a point within the middle of the
peridynamics zone. The result comes from the enhanced BDM simulation is very

closed to the pure FEM simulation.

Figure 70: The time history of the velocity of a point within the left overlapping
zone. The result comes from the enhanced BDM simulation is very closed to the

pure FEM simulation.
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Table 9: Material coefficients for the 3D mixed-mode fracture simulations, they
represent the Al.

Young’s Modulus 69 (GPa)
Poisson’s ratio 0.29
mass density 2.3 g/cm3

G0 36 KJ·m2

7.7 3D examples —mixed-mode fracture

In this section, we simulate the mixed-mode fracture phenomenon of an aluminum

panel (figure 71). The Young’s modulus and Poison’s ratio are 29 GPa and 0.29. The

critical energy release rate G0=36 KJ/m2. The panel with an edge crack is initially

meshed with 2 parts. Based on the argued surface nodes, Part 1 is transferred into the

peridynamics and overlapping zones. For peridynamics, any bond that pass through

the initial edge crack are marked as broken bond. The points that are related to any

broken bond are shown in red. The mixed-mode loadings are described by equation

3a and 3b in chapter 2.

We use the ∆Keff = 1011 dyne
√

cm
cm2·s as the effective stress intensity factor per second,

which is equivalent to a low loading rate (≈ 0.5 cm/s). The step time is ∆t =

5.0× 10−8.

Figure 77 compares the cracks propagation directions with the maximum circum-

ferential stress criterion, which assumes that the cracks propagate along the direction

which makes minimum strain energy. The results from out simulation are close to the

theoretical values. Figure 76 shows the critical energy release rate for each example,

all the values are close to the G0.



126

Figure 71: The initial mesh from the FEM software “Velodyne”. It has two parts.
Part 1, which is in the center of the panel, is to be transfered into the peridynamics

points and the overlapping zone.

Figure 72: Users should pick a group of “surface points”. They are a group of
certain points on the surface of the to-be-transfered part. Based on these surface

points, the overlapping zone will be developed.
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Figure 73: The mixed-mode loadings are applied on the boundary FEM nodes of
the panel.

Figure 74: Zoom in around the initial crack tip. Any point who has a broken bond
is marked as red.
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Figure 75: The crack’s propagation path with the quasi-static mixed-mode loadings.
The FEM mesh is shown in green, the peridynamics points are shown in blue.

Especially, the broken points are shown in the red color.

Figure 76: In a small loading rate, the critical energy release rate from the
simulations are close to the critical energy release rate of the material.
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Figure 77: The crack′s kinking angles match the maximum circumferential stress
criterion.

7.8 Conclusion

In this study, we discussed different ways of coupling the finely meshed Peridy-

namics and coarsely meshed FEM. It showed the necessity of applying an advanced

coupling method: if the peridynamics and FEM are badly linked, spurious reflection

may occur and cause error. The enhanced weak BDM is proved to be able to de-

tect and eliminate the high frequency waves, which are moving from peridynamics

towards FEM. Differently from connecting MD with FEM, the scalar factor here is

not simply a linear function. It keeps equaled to 1 for a distance. In our 2D examples,

the combination of low and high frequency waves are transferred from peridynam-

ics to FEM. It presented the spurious reflection problem, which can be reduced by

enhanced BDM. Our 3D example simulated the impact and fracture problems. In

the impact problem, the waves are transferred between FEM and peridynamics for 4

times with validated accuracy. In the fracture problem, our simulations are validated
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by the theoretical criterion. The enhanced weak BDM can be applied to other similar

local (for example, XFEM) and nonlocal (for example, MD and SPH) methods as

well. Note that in the 3D example, we used the Smart Layer method to automati-

cally transfer a FEM part into the mesh of peridynamics and the overlapping zone.

We show that the multi-scale criterion to transfer a FEM element into peridynamics

points performs better than same-level transfer criterion.



CHAPTER 8: SUMMARY

8.1 Atomic level studies with the molecular dynamics method

8.1.1 Fracture study of MoS2

In the chapter 2, we have employed the molecular dynamics simulations to study

the failure mechanism of the armchair and zigzag cracks in the monolayer MoS2

sheets under the mixed fracture mode I and II loadings. Our molecular dynamics

simulations predict that, similar to graphene, both the armchair and zigzag cracks

prefer to propagate in the direction which makes a new zigzag crack. The direction of

the cracks propagation depends on the loading phase angle. By increasing the loading

phase angle, the kind angle increases. Depending on the loading phase angle and the

crack chirality, the critical stress intensity factors for MoS2 sheets are in the range of

Kcr
cp = 1 and 2.5 (MPa

√
m). A main difference between the fracture in MoS2 sheets

and the graphene is the buckling fracture. Although under mode II loading, both the

graphene and the MoS2 sheets undergo the out-of-plane deformation, buckling cracks

have not been observed in graphene. This might be due to a higher stiffness of the

graphene which limits the amplitude of the buckling. The amplitude of buckling in

MoS2 depends on the loading phase angle and no buckling is observed if the loading

phase angle is less than 45◦, and buckling cracks develop only if the loading phase

angle is larger than 45◦.
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8.1.2 Fracture study of h-BN

In the chapter 3, we have studied the fracture properties of monolayer boron ni-

tride sheet using molecular dynamics method. The results show that the crack edge

chirality, crack tip configuration and loading phase angle affect the critical stress in-

tensity factor and crack propagation path of the boron nitride sheet. In all the cases

studied in this paper, the critical stress intensity factor corresponding to pure mode

II loading is higher than that of pure mode I loading. Furthermore, all the cracks

propagate along a zigzag direction, although some cracks kink during growth in which

case a short path of crack growth can be along armchair direction. Besides the prop-

agation of main crack, excessive out-of-plane deformation of BN sheet under mixed

mode loading can lead to the formation of buckling cracks. Buckling cracks are more

important in sheets with a zigzag crack since in such sheets buckling cracks can form

when the loading phase angle is larger than 45◦. In BN sheets containing armchair

crack, buckling cracks can only initiate when the crack tip configuration in blunt and

the loading phase angle is larger than 75◦.

8.1.3 Thermal conductivity study of MoS2

In chapter 4, we used the nonequilibrium molecular dynamics method to study the

thermal conductivity with different configurations, strains, and defect densities. Our

result shows,

(1) the thermal conductivity for an infinity long MoS2 nanoribbon is about 33∼54

W/mK. The zigzag nanoribbon is more thermal conductive than armchair ribbon.

(2) The thermal conductivity of MoS2 nanoribbon is very stable. It is insensitive
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to width and strain. The nanoribbon’s length and defects are the ways to tailor

MoS2 nanoribbons thermal conductivity. When more sulphur vacancies introduced,

the thermal conductivity reduces moderately. Molybdenum vacancy influences the

thermal conductivity more than S vacancy. At 3% vacancy density, the thermal

conductivity is reduced by about 50 % (knowing that hexagonal BN can be reduced

by 80% at 3% vacancy density). Larger length improves κ effectively. Even with a

length of 300 nm, the nanoribbon is still almost within the ballistic region.

(3) The similarity of our result and experimental value verifies that the modified SW

potential for single layer MoS2 is precise for the analysis of the thermal conductivity

of single layer MoS2. It is because that, this potential is developed based on the

phonon dispersion curve of bulk MoS2. At the same time, the parameters of this

potential also consider the nonlinear mechanical behavior of single layer MoS2. So

it is recommended for later study of single layer MoS2 considering mechanical and

thermal loadings. However, this potential also has some drawbacks. For example, it

can not be used to simulate several layers of MoS2 or bulk MoS2; it can not represent

the antisite defects like Mo-S2 or Mo-S, which are the observed defects in single layer

MoS2 obtained using chemical vapor deposition. When we tried to simulate these

defects, the system can not converge into a proper morphology after minimize.

Our simulation procedure and result can be a reference for further study of single

layer MoS2. For example, the design of relative thermoelectric materials and devices

or the tailor of composite nano materials contains MoS2 nanoribbon.
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8.2 Continuum level studies with the peridynamics method

In chapter 6, we used the peridynamics method to simulate the crack’s propagation

under the mixed-mode loadings. Our results show that, peridynamics is able to

represent the fracture phenomenon of the MoS2 and h-BN materials at the continuum

level. The crack’s propagation path is not constrained by the mesh, thus it can

accurately capture the crack’s propagation process without remeshing. To conduct

the simulation, Young’s modulus, Poisson’s ratio, mass density and the critical stress

intensity factor of the material are required. Especially the critical stress intensity

factor is used as the criterion to determine if a pair of points still have the interaction.

The new crack surfaces are naturally formed without any specific criterion to predict

the cracks propagation direction.

8.3 Comparison of different numerical methods

In this dissertation, different levels of the numerical simulations are studied, used

and coupled . Table 10 summarizes the difference between these methods.

The molecular dynamics simulation is on the atomic level. It can capture the size

effect of the nano materials. In molecular dynamics, it uses a potential function to

describe the interaction forces between the atoms. Since it is a nonlocal method, an

atom interacts with its neighbor atoms, hence the molecular dynamics simulation is

computationally expensive. It is impossible to use the molecular dynamics to simulate

macro size domains with the current computational power.

The finite element simulation is on the continuum level. FEM can not capture

cracks propagation and nucleation without remeshing. However the computational
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cost of FEM is significantly lower than MD.

Peridynamics is a continuum level model. In peridynamics, points interact with

each other based on the force density function. Since it is a particle based method, it

can simulate the fracture phenomenon without remeshing and with a high accuracy.

However, since it is a nonlocal method, it is much more time consuming than the FEM.

On the other hand, the force density function is obtained based on the continuum level

assumption, so that the peridynamics can not capture the atomic level phenomenon.

In this dissertation, the different material properties are observed based on different

scale level simulations. For the mix-mode fracture simulations of MoS2 and h-BN, in

the continuum level, the crack’s propagation direction smoothly changes according to

the loading phase angles. However, in the atomic level, the crack’s kinking angle is

always a multiple of 30◦, due to the hexagonal atomic structures.

Based on the thermal conductivity quality studies, we observe that, in the atomic

level, the thermal conductivity of single layer MoS2 is effected by the configuration

and chiral direction. The thermal conductivity of different nano materials – for ex-

ample, h-BN, MoS2 and graphene – are different from each other, even if their atomic

structures are very similar. Under the longitudinal tensile strain, the thermal con-

ductivity of a MoS2 ribbon is very stable; while under the same loading, the thermal

conductivity of a h-BN ribbon should increase at first and then decrease; meanwhile

for a graphene, the thermal conductivity should decrease. In the continuum level, for

the bulk materials, the thermal conductivity should not be influenced by the length

and width of a ribbon, and there is no chirality effect. Under a tensile strain, the

thermal conductivity of a bulk material should decrease.
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8.4 Multi-level simulations with the EBDM coupling method

8.4.1 Coupling the molecular dynamics and finite element methods

In chapter 5, we investigated the performance of standard bridging domain method

as a function of overlapping length size, the form of Lagrange multipliers discretiza-

tion (strict versus weak compatibility), the type of constraint matrix (consistent ver-

sus diagonalized), the integration time step size, and the type of constraint between

atomistic and continuum domain in the overlapping zone (displacement versus veloc-

ity constraint). Our numerical simulations indicate that:

(1) by increasing the width of overlapping zone, the performance of bridging domain

method improves.

(2) Strict compatibility is more efficient than weak compatibility in removing spu-

rious reflections.

(3) Performance of diagonalized constraint matrix in removing the spurious reflec-

tions is significantly better than consistent constraint matrix.

(4) By reducing the size of time step the capability of standard BDM in eliminating

spurious reflections reduces.

(5) Velocity constraint is less sensitive to time integration step size and is the form

of constraint which should be used.

The key contribution of the chapter is to propose the new technique to enhance the

performance of bridging domain method in eliminating the spurious wave reflections

at the interface of atomistic and continuum domain. In our proposed enhancement

the overlapping zone plays two important roles: (a) it glues the continuum domain
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to atomistic domain, and (b) it is used as a damping zone which damps the high

frequency waves that cannot travel into the continuum domain. To damp the high

frequency waves, we decomposed the total displacement field of atoms located within

the overlapping zone into a fine and coarse scale. The fine scale oscillations correspond

to the small wavelength (high frequency) components of the wave and need to be

eliminated. To damp the fine scale oscillations, we included a viscous damping term

in their equations of motion.

Our numerical results showed that the proposed enhancement significantly im-

proves the capability of the bridging domain method in removing the spurious reflec-

tions. In contrast to the standard bridging domain methods, by reducing the time

step size, the performance of enhanced bridging domain method improves. Also, the

numerical results obtained from one and two-dimensional problems indicate that the

proposed technique is capable in eliminating spurious reflections using a much smaller

overlapping length than those required by the standard BDM.

8.4.2 Coupling the peridynamics and finite element methods

In chapter 7, we discussed different ways of coupling peridynamics and FEM. It

showed that the necessity of applying an advanced coupling method: if the peridy-

namics and FEM are not appropriately linked, spurious reflection may occur. The

enhanced weak BDM is proved to be able to detect and eliminate the high frequency

waves, which are moving from peridynamics towards FEM. Differently from connect-

ing MD with FEM, the scalar factor here is not simply a linear function. It keeps

equaled to 1 for a distance. In our 2D examples, the combination of low and high
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frequency waves are transferred from peridynamics to FEM. It presented the spuri-

ous reflection problem, which can be reduced by enhanced BDM. Our 3D example

simulated the impact and fracture problems. In the impact problem, the waves are

transferred between FEM and peridynamics for 4 times with validated accuracy. In

the fracture problem, our simulations are validated by the theoretical criterion. The

enhanced weak BDM can be applied to other similar local (for example, XFEM) and

nonlocal (for example, MD and SPH) methods as well. Note that in the 3D example,

we used the Smart Layer method to automatically transfer a FEM part into the mesh

of peridynamics and the overlapping zone. We show that the multi-scale criterion

to transfer a FEM element into peridynamics points performs better than same-level

transfer criterion.
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