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ABSTRACT

VIET PHONG TRAN. Methods for improving stability and power quality in networks
with high levels of power electronics. (Under the direction of DR. ROBERT COX)

Advanced power electronics are essential to the development of fully active electric

power systems. There are, however, potential problems that can arise when high levels of

power-electronic systems are distributed throughout a network. Most importantly, power

electronics can degrade the quality of the power that is delivered by utility companies;

furthermore, they can cause instabilities that lead to complete failures. New “smart” power

systems are highly dynamic, meaning that a regulated converter thought to be stable under

ideal conditions could easily become unstable for reasons well outside of the designer’s

control.

This thesis addresses the issue of improving power quality in networks with high levels

of power electronics. The core concept presented here is an effective on-line approach

for the estimation of network impedance, a time-varying quantity that plays a key role in

reducing power quality. Real-time information about the network impedance at the Point of

Common Coupling (PCC) can produce more stable power converters and pave the way for

new measurement techniques that help to monitor power quality. This thesis also examines

the application of network impedance measurements for producing model-based adaptive

controllers that allow power-electronic systems to remain stable when connected to “non-

stiff” networks. This work can be applied in any system that is heavily dependent on power

electronics, including terrestrial “Smart Grids,” all-electric ships, aircraft, and spacecraft.
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CHAPTER 1: INTRODUCTION

“To retrofit America for a global economy . . . means updating the way we get our

electricity by starting to build a new smart grid that will save us money, protect

our power sources from blackout or attack, and deliver clean, alternative forms of

energy to every corner of our nation.”

- President Barack Obama

Various forces are interacting to produce significant changes in the generation, delivery,

and use of electric power. Most importantly, society has become increasingly concerned

about the future availability of non-renewable resources, such as coal and petroleum, as

well as the deleterious environmental effects that they may cause. Additionally, there is

growing concern about the capability of our existing power infrastructure. Many power

plants are nearing the end of their design lifetimes, and many transmission lines often op-

erate near their capacity. Furthermore, concerns over global terrorism have led to increased

interest in protecting the world’s power infrastructure. To meet these challenges, nations

throughout the world are looking to new technologies that help to improve and modern-

ize the generation, delivery, and use of electric power. Numerous enabling technologies

have been developed, including information technology for real-time monitoring, analy-

sis, and control. Equally as important, however, are power electronic systems that enable

several critical functions. Power electronics, for instance, are necessary to interface most

distributed renewable sources with the grid. Furthermore, power electronics are now used

to optimize power flows throughout the transmission system. These components are known

as Flexible AC Transmission Systems (FACTS). Additionally, the need for improved effi-

ciency and advanced functionality has led to a tremendous dependence on loads that contain
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sophisticated power electronic interfaces.

Despite the tremendous benefits derived from using power electronics, they can cause

problems when deployed in high levels throughout a network. Most importantly, power

electronic systems can degrade the quality of the power that is delivered by utility compa-

nies. One source of this degradation are the harmonic currents produced by the converters.

Power electronics can also cause instabilities that lead to complete component failures. For

example, a data server connected via a converter with an active power-factor correcting

(PFC) converter can become unstable when connected to an AC system through a real ca-

ble with parasitic impedances. Furthermore, new “smart" power grids are highly dynamic,

meaning that converters thought to be stable under ideal conditions could easily become un-

stable as network conditions change. For instance, a sudden change in network impedance

resulting from the islanding of a microgrid could potentially cause otherwise stable con-

verters to become unstable. These issues and others must be addressed before making the

transition to fully active power systems.

This thesis addresses the issue of improving power quality in networks with high levels

of power electronic devices. The core concept presented here is an effective on-line ap-

proach for estimating network impedance, a time-varying quantity that plays a key role in

reducing power quality. Real-time information about network impedance can help to sta-

bilize the interaction between power converters and the grid. It can also pave the way for

new monitoring and measurement techniques. This thesis also examines the application of

network impedance measurements in model-based adaptive controllers that provide stabil-

ity when power electronic systems are connected to “non-stiff" networks. This work can be

applied in any system that is heavily dependent on power electronics, including terrestrial

“Smart Grids," all-electric ships, aircraft, and spacecraft.
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1.1. Applications of Power Electronics in Smart Grids

Advanced power electronics are considered to be essential for the development of fully

active electric power systems [3, 4, 5, 6, 7]. Power electronic devices are need to integrate

distributed generation resources, to control power flows, and to increase the efficiency and

controllability of loads. Such fully active power systems are termed "Smart Grids". This

section describes key power electronic applications in these networks. Although the focus

here is on terrestrial power systems, it is important to note that similar concepts are also

common in vehicles. Further details are provided in a later section.

1.1.1. Power Electronics in Generation

The use of decentralized generation in the form of gas turbines, hydroelectric genera-

tors, tidal energy devices, photovoltaic (PV) arrays, and wind farms is expected to increase

over the coming decades as concerns grow over fossil fuel consumption and as conven-

tional power plants near the end of their design lifetimes. Power electronic devices are

needed to connect these distributed resources into the host grid [8, 9, 10, 11, 12]. Connect-

ing significant non-conventional generation units throughout the grid will have a significant

impact on the overall operation of the power system. Intelligent interfaces are required in

order to achieve efficient power transfer as well as to maintain grid stability and to protect

the distributed generators from disturbances and faults. Depending upon the source and the

application, various power electronic circuits may be included in the overall power train.

In many applications, for instance, a PV array might include a DC-to-DC converter and

a DC-to-AC inverter designed to maximize power transfer. Wind turbines or high-speed

gas turbines might include appropriate AC-to-AC converters designed to ensure a proper

connection to the 50/60Hz grid. In all cases, the power electronics must provide high qual-

ity AC power, with frequency fluctuations limited to ±1.2Hz and total harmonic distortion

(THD) in the voltage limited to less than 5% [13].
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1.1.2. Power Electronics for Controlling Power Flow

Power electronic devices are also used to control power flows in the modern grid, and

the dependence upon these elements is expected to increase in the coming decades. Sev-

eral applications can be considered. First, there is a need to address the limited margin

between peak generation and peak demand. This issue consistently arises when demand

surges during the summer months. The most obvious solution is to build new power plants

and transmission infrastructure. The process of authorizing, locating, and constructing

new transmission lines, however, is expensive, time-consuming, and fraught with political

challenges. Power electronic systems can help in this situation. For example, they can

dynamically compensate reactive power flows, thus providing an opportunity to increase

real power flows. Such solutions help to increase margins without requiring massive in-

vestments in new infrastructure.

Power electronics in control applications are generally known as Flexible AC Transmis-

sion Systems (FACTS). Example include active filters that can dynamically compensate for

harmonics injected into the system, Unified Power Factor Compensators (UPFCs) that can

improve transient stability limits.

Power electronics are also proposed and used to improve High Voltage DC transmis-

sion, which is efficient and highly flexible.

1.1.3. Power Electronics for Efficient End-Use Conversion

Power electronics enable loads to become highly controllable and efficient; thus, the use

of advanced power electronics is expected to increase significantly in the coming decade.

According to research by the Natural Resources Defense Council (NRDC), for instance,

the total amount of electricity that flows through power supplies is more than 207 billion

kWh/year, or about 6% of the national electric bill. More efficient designs could save an

expected 15 to 20% of that energy. The resulting savings of 32 billion kWh/year would
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cut the annual national energy bill by $2.5 billion, displace the power output of seven large

power plants, and reduce carbon dioxide emissions by more than 24 million tons per year

[14].

The national consciousness over energy costs is driving the development of highly ef-

ficient end-use energy conversion. Electric motors and lighting, which were once the pri-

mary loads connected to the power system, are becoming increasingly likely to be con-

nected through a power electronic interface [3, 4, 10, 15, 16, 17, 18]. It is well known

that motor drives can drastically improve overall efficiency and controllability [9]. Motor

drives are even becoming common in relatively low-cost residential applications such as air

conditioning, washing machines, and refrigerators. Lighting, which represents about 20%

of energy consumption, is slowly becoming a power-electronic application. New legisla-

tion in the United States, for instance, calls for the end of the incandescent bulb, which is

likely to usher in the use of compact fluorescent and LEDs. In both cases, power electronic

interfaces are required.

1.2. Research Context

Although power electronics offer a number of benefits, they introduce new problems

and complications. These issues primarily arise from the interaction between power con-

verters and the equivalent impedance of the power system. For instance, many grid-

interfaced power electronic loads tend to have rectifiers that introduce harmonic currents.

When these currents flow through the non-zero impedance of the network, the resulting

voltage distortion can affect other loads. This phenomenon can be corrected with active

rectifiers, but the interaction between the grid and the converter can become unstable de-

pending upon the network impedance values. All of these issues are particularly important

in next-generation power electronic based power-distribution systems (PEBDS). In these

systems, most sources and loads are connected to the distribution network through active

power electronic devices. Figure 1.1 shows an example system with a DC bus. Such
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systems are becoming increasingly common in aircraft, spacecraft, and next-generation

all-electric ships. Such systems are fully active and thus highly dynamic. The equivalent

network impedance seen at any point in the network can vary significantly over time, thus

leading to instability. Microgrids, which consist of medium and/or low voltage distribution

systems with distributed energy sources, controllable loads, and energy-storage devices,

are a terrestrial incarnation that approaches a PEBDS. Figure 1.2 shows an example. Note

that these microgrids can be connected and disconnected from the wider power system

as needed, meaning that individual loads and sources are connected to a highly dynamic

system. This section provides a direct context for the work presented in this thesis. It in-

troduces several of the motivating issues, both for the existing terrestrial power system and

for future PEBDS and microgrids.

Filter
Rectifier

Filter
Inverter

Filter
Inverter

Filter
DC/DC

AC Bus
DC Bus

Mechanical Load

DC Load

Generator

Figure 1.1: A representative of power electronics based distributed system.
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MC PEI MC PEI

MC PEI

MC PEI

CC

PCC

Grid 

request

Feeder A

Feeder B

Feeder C

Zone 1
Zone 2

Zone 3 Zone 4

Zone 5

Zone 6

Zone 7

CB1

CB2

CB3

CB4

Figure 1.2: A typical microgrid configuration.

1.2.1. Power Electronics and Power Quality

The prolific growth of power electronic equipment in power systems has raised the need

to study power quality. In traditional power systems, customers expect utilities to provide

non-distorted and voltage waveforms with a single frequency component. In modern power

systems, power electronic loads with rectifiers are widely used and draw non-sinusoidal

currents. These disturbances can impact the operation of other loads connected to the same

portion of the power system. Therefore, electric power quality is a serious consideration.

Low power quality can impact electrical quantities such as current, voltage, and frequency.

In the majority of cases, equipment failures or misoperations are caused by significant de-

viations in the voltage wave shape. For this reason, it is the quality of the voltage waveform

that is typically being addressed in most cases involving low power quality.For this reason,

Fuchs [19] defines power quality as: “the measure, analysis, and improvement of the bus

voltage to maintain a sinusoidal waveform at rated voltage and frequency." The definition

includes both long term (i.e. steady state) and short term (i.e. transient) phenomena.

Network impedance plays a key role in power quality problems. Figure 1.3 shows a
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simple circuit that illustrates the problems. The equivalent impedance of the system is

represented by Zs = R+ jX . Note that a rectifier is connected in parallel with several other

loads. The utility is assumed to generate a 60 Hz sinusoidal voltage as indicated by the ideal

source. Since the rectifier is nonlinear, it will generate harmonic currents. If the currents

at the h-th harmonic has an amplitude Ih, then the voltage at the secondary side bus at the

same frequency will be

Vh = RIh + jhXIh. (1.1)

This voltage causes other linear loads to draw harmonic currents as well. The resulting

feedback loop further modified the value of Vh. The voltage drop in wiring impedance can

have very serious consequences on nearby loads. The resulting distortion can shutdown or

damage equipments, causing losses in productivity and materials. Some modern manufac-

turing and service industries require highly automated processes which are more complex

and more sensitive to supply disturbances. For example, semiconductor plants are probably

exposed to the highest risk of potential financial losses due to power quality disturbances,

as they concentrate enormously expensive facilities and equipment in a small area. Liq-

uid crystal industries, and data centers are particular sensitive to service interruptions since

they can cause information loss. Mission-critical customers such as hospitals, and air traffic

control must also be protected from power quality disturbances. Unfortunately, harmonic-

related disturbances are one of the more frequent and expensive power quality problems

[11, 20, 21]. In addition to impacting customers, these harmonics currents also increase

line losses thermal and stress throughout the network.

1.2.2. Active Power Electronic Interfaces and Instability

Harmonic current introduced by rectifiers can be reduced using various passive filter,

but the corresponding components tend to be bulky and expensive. In portable systems (i.e.

ships) the weight may be prohibited. Controlled AC/DC converters with active power factor
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Ih

Zs

M Lamp

Vh

Figure 1.3: A simple circuit representing the propagation of disturbances.

correction (PFC) are now widely used as a solution [11, 22, 23, 24]. In these circuits, the

input current is actively shaped to be sinusoidal using a boost-mode DC-to-DC converter

or another common DC-to-DC converter topology [25]. Active PFC converters can operate

over a wide range of input voltage, reduce THD to very low levels, increase efficiency, and

decrease weight.

Whenever active power electronic systems are connected to the network, dynamic sta-

bility problems can result from the interaction with the equivalent impedance. For ex-

ample, when a power electronic converter is tightly regulated so that it draws a constant

power, it will have an incrementally negative impedance characteristic at low frequency

[26]. Thus, if the input voltage changes by some amount, the input current will rise in

order to keep the power constant. This incremental negative impedance characteristic in-

teracts with source impedance and/or the input EMI filter stage to cause instability result

in unstable possibility of the power system [27, 28]. Instability is common in both DC

and AC power systems. The resulting oscillations degrade system performance, reduce

power quality, increase lo asses and potentially stress all devices sharing the same power

path. Low frequency oscillations have been observed in many applications such as those in-

volving uninterruptible power supplies (UPS), small controlled generators, and regulating

transformers with high internal impedance. Oscillations are increasingly likely in higher

frequency microgrid systems (i.e. those with 400/800Hz voltage) such as those found in
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airplane and warships [23, 29, 30, 31, 32, 33, 34, 35, 36].

Approaches have been developed to counteract the effects of instability. Typical ap-

proaches involve the use of conservative design criteria based on certain assumptions about

the line impedance. Other solutions involve the use of appropriate filter stages [37, 23].

These solutions can be limited in highly dynamic systems in which line impedance can

change. Consider for example a microgrid that is suddenly islanded. This will cause a

change in the equivalent impedance seen by various loads and sources, making it possible

for certain converters to become unstable. The resulting voltage instability can affect the

performance of other loads. It is thus wise to consider approaches that can dynamically

compensate for instability. The instability issues described above are not limited to active

PFC converters.

1.3. Thesis Contributions

The ultimate goal of this thesis is to improve power quality and stability in power sys-

tems with high levels of power electronics. To that end, a number of different topics have

been considered. The primary contributions are summarized here.

1.3.1. Network Impedance Estimation

The the most valuable contribution of this thesis is the development of a minimally in-

trusive on-line technique for grid impedance estimation. It is essential to all of the other

contributions described herein. The proposed technique estimates the network impedance

using very small disturbances in the power network. These disturbances can be either

actively or passively injected. The proposed approach has benefits over traditional ac-

tive measurement methods, which are generally the most popular in practice [38, 39, 40,

41, 42, 43, 44]. These methods are generally preferred because they allow for injections

at appropriate interharmonic frequencies at which negligible harmonic content is present.

Furthermore, the use of an active approach means that the impedance can be measured
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across a broad frequency spectrum [43, 40]. Traditional active methods suffer from several

limitations, however. The biggest issue is the need to supply disturbances large enough to

obtain accurate measurements. This requires the injection of relatively large disturbances

and thus causes power quality to be degraded. Depending upon the application, a dedicated

source may be needed, and this source can be both expensive and complicated, especially

at high voltage levels [43]. The proposed method, on the other hand, does not require a sep-

arate signal generator, and it can rely on disturbances that are several orders of magnitude

smaller than those required by existing methods. The proposed approach can be integrated

into existing power-electronic loads such as active PFC converters, and it can be applied

across a wide range of frequencies without any need for special test sources.

The impedance estimation procedure shown here can also be applied passively using

existing disturbances. Grid impedance is estimated at various interharmonic frequencies

already present in the power system. Such signals are common and are produced by loads

such as induction machines and power supplies. The proposed method can be integrated

into any existing power quality diagnostic instruments. In such cases, the passive approach

is extremely attractive.

It should be noted that the proposed method is developed and verified in single-phase

AC systems. In general, it could also be applied in DC systems, or to each phase in three

phase systems.

1.3.2. Adaptive Power Converter Control

Modern power systems feature active AC/DC converters that increase power quality and

improve overall energy efficiency. These active power factor correcting (PFC) converters

are common in data servers and motor drives. The drawback is that the interaction be-

tween the PFC converter and the rest of power system potentially result in instability. Most

existing research attempts to alleviate this instability by testing the system under all poten-

tial load conditions or by quantitatively calculating the relative stability margins based on
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knowledge of system parameters and expected loading conditions. These parameters and

conditions, however, continually change in practice, making it possible that instability can

result.

This research proposes a new adaptive control method to addresses the issue of insta-

bility when converters are connected to the system. First, we model a PFC stage based

on a boost converter operating in the Continuous Conduction Mode (CCM). The focus is

on the interaction between the power system and the PFC stage. Second, the possibilities

of instability as a result of a time varying system impedance is analyzed. Third, a new

control method is proposed that adapt to changes in network conditions. This method is

based on the impedance measurement technique described above. This adaptive controller

is demonstrated using a 350W single-phase boost-mode.

The proposed analysis and control method is general and topologically independent. It

can be implemented in many other grid-tied converter and inverter circuits (i.e. those based

on Cuk, SEPIC, etc.). The proposed method is also unlimited by the input filter stage, as

long as bandwidth limitations imposed by computations in the feedforward loop do not

affect overall stability.

1.3.3. Monitoring of Low Power Quality Sources

The need to precisely identify the source of harmonic disturbances is growing because

the damaging effects of harmonics can no longer be ignored. Assessment of low power

quality sources therefore increase accredits and responsibilities of all parts in power system

networks. In practical grid measurements, it is mostly difficult to assign the measured

disturbances values clearly from utilities or from loads due to the complicate and messy

networks. This research proposes a promising method to address such measurement of the

existing disturbances level in the grid without interruption load’s operation.

The main advantage of the proposed method is that only waveforms of voltages and

currents are required and they are applicable to both single and three phase systems. The
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conventional methods aimed at distinguishing between load harmonics and source harmon-

ics assume a radial feeder supplying a single load through a known feeder impedance, or

multiple loads connected to a point of common coupling which has a sinusoidal voltage and

with zero impedance in the supply feeder. Such assumptions are not correct in many cur-

rent and future of power systems, since the varying characteristics of network impedance.

The assumptions, however, are not required here since grid impedance can be measured at

any point of interest as described in

1.3.4. Monitoring of Low Power Quality Sources

Many researchers have addressed the desire to identify the source of harmonic dis-

turbances in power systems, and thus charge tariffs based on this information. In practical

applications, it is difficult to determine the cause of harmonic disturbances since even linear

loads will draw harmonic currents if other non-linear loads are drawing harmonic currents

that distort the voltage at the point of common coupling. This research proposes a promis-

ing method to address the measurement of existing disturbances levels without interrupting

load operation.

The main advantage of the proposed method is that only voltage and current waveforms

are required. Conventional methods aimed at distinguishing between load harmonics and

source harmonics assume a radial feeder supplying a single load through a known feeder

impedance, or multiple loads connected to a point of common coupling which has a sinu-

soidal voltage and with zero impedance in the supply feeder [45]. Such assumptions are not

correct in many cases because of the time varying characteristics of network impedance.

These assumptions, however, are not required here since grid impedance can be measured

at any point of interest as described previously. The primary benefit of the proposed method

is that it can be used to obtain results and draw conclusions about a customer’s harmonic

profile from a Thevenin equivalent circuit, without any a priori information about the net-

work structure. This method could be integrated into power measurement instruments.
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1.4. Thesis Outline

The remaining chapters of this thesis provide appropriate background and details about

the key contributions described above. Chapter 2 provides the fundamental information

needed to model network impedance and the interaction between power electronics and

the system. It describes the power quality degradation caused by power electronics, and

it analyzes instability phenomena in converters with active front ends. It is followed by

review of power quality and effects of the network impedance to the power quality of the

power systems.

Chapter 3 presents the proposed method for online estimation of network impedance.

The chapter begins with review of previous work. The remainder of this chapter is dedi-

cated to present theoretical development, simulation, and experimental verification.

Chapter 4 presents the first application of the proposed impedance estimation method,

which is an adaptive controller that prevents instability when active power electronic con-

verters are connected to the power network. A grid-connected boost-stage PFC converter

is modeled and the instability interaction is investigated via Matlab simulation. Two new

control methods are proposed to help the PFC converter to adapt to time-varying network

conditions. A 380 Watt PFC converter is used to verify the methods experimentally in the

laboratory.

Chapter 5 describes how the proposed impedance estimation method can be used to de-

tect the source of power quality disturbances. This chapter first reviews previous work and

describes deficiencies in practical applications. A new method for disturbance monitoring

is developed, and simulation results are provided.

Finally, Chapter 6 provides conclusions and recommendations for future work.



CHAPTER 2: RELEVANT MODELS FOR POWER DISTRIBUTION
SYSTEMS AND POWER ELECTRONIC LOADS

Equivalent grid impedance has a significant impact on the overall power quality in

modern electric power systems. It plays a key role in various transient events such as short-

term voltage sags and short circuits. It is also the conduit through which load-generated

harmonic currents impact the entire network. Grid impedance also has a major impact in

many outage scenarios, as it can allow large current oscillations to propagate throughout a

network, especially in so-called weak systems in which the impedance value is high [5, 46].

When power electronic loads are connected to a source through this grid impedance, var-

ious undesirable phenomena can occur, including harmonic generation and load instabil-

ity. A complete understanding of these effects requires an understanding of the equivalent

impedance model of the distribution system, as well as an understanding of the equivalent

input model for a power converter.

This chapter presents models for both the power system and the power electronic cir-

cuits connected to it. It begins by presenting an approximate model for the impedance of a

traditional power distribution network. The results of this modeling procedure are essential

to the development of the impedance estimation procedure described in Chapter 3. In ad-

dition, this chapter also describes how power electronic circuits affect the AC network. It

thus describes how passive power electronics (i.e. rectifier-type loads) generate harmonic

currents, and it also addresses the stability issues that arise when active wave shaping cir-

cuits are connected to the network. These discussions provide the necessary background

for understanding the work in Chapters 4 and 5. Given that the latter chapters focus on a

single-phase connections to the utility, the models presented here are generally focused on
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such systems.

2.1. A Model for the Impedance of the Electric Power Distribution System

Figure 2.1 shows a typical distribution circuit. Notice that most residential and com-

mercial customers are served from radial feeders and secondary distribution networks. In

the context of this thesis, the question of interest is the impedance seen by a load connected

at any one of the industrial, commercial, or residential load centers present in this network.

The development of a model for this impedance requires a detailed analysis of each of the

various elements that impact it. These include cables, transformers, and loads. Models for

these elements are presented here. Ultimately, they are synthesized to develop a suitable

lumped-element approximation for the impedance seen by any load connected to the net-

work. In this thesis, the primary focus is on single-phase connections to the utility such as

those that would be seen from one of the loads connected to the secondary of a distribution

transformer on one of the residential or commercial laterals shown in Figure 2.1.

2.1.1. The Equivalent Impedance of Power Distribution Lines

Power lines are typically characterized using four parameters, namely series resistance,

series inductance, shunt capacitance, and shunt conductance [47, 48, 49]. Since loads are

connected to the network through various cables, it is important to review the fundamental

phenomena giving rise to these parameters. Models for each are given below. Ultimately,

these are combined to create a complete power-line model.

2.1.1.1. Conductor Resistance

Resistive losses in a conductor are impacted by various phenomena, including temper-

ature and frequency. The equivalent DC resistance of a line is proportional to its length and
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Figure 2.1: A typical distribution circuit [1].

inversely proportional to its cross-sectional area. By definition, this resistance is

RDC =
ρl
A
, (2.1)

where ρ is the resistivity of the conductor at a given temperature, l is its length, and A is

its cross-sectional area. This effective resistance is proportional to the power loss in the

line at DC. This model assumes that the distribution of current throughout the conductor is

uniform, which is the case at DC [25]. In AC systems, currents become concentrated near

the surface of the conductor. This phenomenon, which is known as the skin effect, reduces

the effective cross-sectional area used by the current. As a result, the effective resistance in-

creases. The AC resistance of any conductor including skin effect can be calulated directly
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from Maxwell’s Equations [50]. For frequencies above 1 kHz, this effective resistance is

approximated as

Rac

Rdc
= 0.009786

√
f µ

Rdc
+0.25, (2.2)

where f is frequency, µ is the relative permeability of the conductor, and Rdc is the DC

resistance of the conductor in Ω per 1000 ft (Ω/1000ft).

The resistivity of any conductive material varies linearly with respect to temperature

over the normal range of operation. In general, a hotter conductor provides more resistance

to the flow of current. Over normal operating temperatures, the dependence is

R2 = R1

(
T + t2
T + t1

)
. (2.3)

In this equation, R2 is the resistance at temperature t2, R1 is the resistance at temperature t1,

and T is a material-specific temperature coefficient. Resistivity and temperature coefficient

values depend upon the conductor material. Table 2.1 lists the resistivity and temperature

coefficients of some typical conductors [48].

Table 2.1: Resistivity and temperature coefficients of some typical conductor materials.

Material Resistivity at 20◦C ( Ω−m) Temp. Coefficient (◦C)
Silver 1.59×10−8 243.0

Annealed copper 1.72×10−8 234.5

Hard-drawn copper 1.77×10−8 241.5

Aluminum 2.83.×10−8 228.1

2.1.1.2. The Series Impedance of Power Distribution Lines

The series impedance of any set of distribution lines consists of the resistance and the

self and mutual inductans resulting from the magnetic fields surrounding the conductors.

In general, distribution systems consist of single-phase, two-phase, and three-phase lines
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serving unbalanced loads. The actual models for the series impedance depend upon where

the cables are placed, either above ground or below. For illustrative purposes, this thesis

considers overhead lines, although both types of cables are likely to be observed in many

distribution systems. The results are generally similar [48].

Analysis of the impedance on an overhead distribution line requires one to include the

self and mutual impedance terms of the conductors and the ground return path. In his clas-

sic paper [51], Carson developed a technique to determine the self and mutual impedances

of overhead conductors with a ground return path. The technique uses image conductors;

that is, every conductor at a given distance above ground has an image conductor the same

distance below ground. The earth return path is assumed to be an infinite, uniform solid

with a flat uniform upper surface and a constant resistivity [48].

As an example, Figure 2.2 shows a two-wire overhead line with solid cylindrical con-

ductors i and j separated by a distance Di j. The conductors are made of a nonmagnetic

material, and the current is assumed to be uniformly distributed (i.e. skin effect is ne-

gleged).

i

j

j’

i’

Dij

Sij

Sii

θij

Figure 2.2: Conductors and images.
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Carson’s formula for the self impedance per unit length of an overhead conductor is

ẑii = ri +4ωPiiG+ j2ωG
(

ln
Sii

GMRi
+2Qii

)
. (2.4)

Similarly, the mutual impedance per unit length is

ẑi j = 4ωPi jG+ j2ωG
(

ln
Si j

Di j
+2Qi j

)
(2.5)

In Equation 2.4 and Equation 2.5, the following definitions have been used:

G = 0.1609344x10−3 Ω/mile

ω = 2π f is the system angular frequency in radians per second

f = system frequency in Hertz

Di j = distance between conductors i and j in feet

Si j = distance between conductor i and image j in feet

In addition, we have used GMRi, which is the effective radius or geometric mean radius

of conductor i in feet. The P and Q terms in the preceding equations are often approximated

as

Pi j =
π

8
(2.6)

Qi j = 0.30797− 1
2

ln

(
8.565.10−4Si j

√
f
ρ

)
. (2.7)

Note that the resistivity ρ in Equation 2.7 represents the resistivity of the Earth.

Equations 2.4 and 2.5 can be used to calculate the complete impedance matrix for a

line with ncond conductors and mcond neutrals. This first requires the calculation of the

so-called primitive impedance matrix, which represents the combined effects of the con-

ductors, the neutrals, and the ground paths. For most three-phase, four-wire applications

the primitive impedance matrix needs to be reduced to a 3x3 matrix consisting of the self

and mutual impedances for the three phases and the multi-grounded neutral n. The flux

linkage of each phase conductor depends on the three currents, and therefore, three differ-
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ent inductances (i.e. one self and two mutuals) exist for each. Calculating the values from

the equations above and arranging the equations in matrix form, we obtain the primitive

impedance matrix

ẑprimitive=

 ẑij ẑin

ẑnj ẑnn

 , (2.8)

where

ẑij =


ẑaa ẑab ẑac

ẑba ẑbb ẑbc

ẑca ẑcb ẑcc

 , ẑnj=

[
ẑna ẑnb ẑnc

]
, ẑin=


ẑan

ẑbn

ẑcn

 , ẑnn = ẑnn.

If the neutral is grounded, the impedance can be solved by Kron’s reduction [48], i.e.

zabc = zi j− zin(znn)
−1zn j. (2.9)

The impedance matrix of a 3 phase line with a common grounded neutral is thus

zabc =


zaa zab zac

zba zbb zbc

zca zcb zcc

(Ω/mile) . (2.10)

In the applications considered in this thesis, we are focused on single phase connections

to the utility. For two-phase and single-phase lines in grounded wye systems, the modified

Carson’s equations can be applied, but they lead to simpler results. Kron reduction is again

applied to the primitive matrices in order to reduce them to either 2x2 or 1x1. These matri-

ces are expanded to 3x3 by the addition of rows and columns consisting of zero elements
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for the missing phases. The phase impedance matrix for a single-phase line would thus be

zabc =


0 0 0

0 zbb 0

0 0 0

(Ω/mile) . (2.11)

2.1.1.3. Capacitance and Capacitive Reactance

Since power lines are conducting bodies separated by a dielectric medium, there is

a shunt admittance between them. In a distribution line, the shunt admittance exists in

the form of conductance and capacitive susceptance among the phases, neutral lines, and

ground. The conductance, which represents leakage current, is usually ignored because it

is very small compared to the capacitive susceptance [48]. The capacitance of a line results

from the potential difference between conductors. To evaluate it, one computes the electric

field strength using Gauss’s Law [47]. In the calculation of capacitance for an overhead

distribution line, the earth effect is accounted for by the method of images as described for

the inductance. When the conductor has a positive charge, an equal quantity of negative

charge is induced on the image conductor under the earth. Again only overhead lines are

considered here, but the development is similar for underground cables.

Consider two conductors i and j carrying charges qi and q j and the image conductors

i′ and j′ that carry charges -qi and -q j. The potential difference between conductor i and

ground thus includes both a self and mutual potential. This voltage is defined as

Vig = P̂iiqi + P̂i jq j, (2.12)

where P̂ii and P̂i j are the self and mutual potential coefficients. These are defined as

P̂ii =
1

2πε
ln

Sii

RDi
, P̂i j =

1
2πε

ln
Si j

Di j
. (2.13)
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where ε is the permittivity of the medium between the cables, Sii is the distance between

conductor i and its image, Si j is the distance between conductor i and the image of conduc-

tor j, RDi is the effective radius of conductor i, and Di j is the distance between conductor i

and j.

To determine the complete capacitance matrix, we begin again with a set of primitive

matricies. For an overhead line consisting of ncond conductors, the primitive potential

coefficient matrix can be constructed. The primitive potential coefficient matrix will be an

ncond x ncond matrix. For a four-wire grounded wye line, the primitive coefficient matrix

will be of the form

P̂primitive=

 P̂ij P̂in

P̂nj P̂nn

 , (2.14)

where

P̂ij =


P̂aa P̂ab P̂ac

P̂ba P̂bb P̂bc

P̂ca P̂cb P̂cc

 , P̂nj=

[
P̂na P̂nb P̂nc

]
, P̂in=


P̂an

P̂bn

P̂cn

 , P̂nn = P̂nn. (2.15)

This primitive matrix is once again reduced using the Kron reduction method to a n phase

x n phase matrix, i.e.

Pabc = P̂i j− P̂in(P̂nn)
−1P̂n j (2.16)

The inverse of this potential coefficient matrix gives the nphase x nphase capacitance ma-

trix, i.e.

Cabc = Pabc
−1. (2.17)
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This a three-phase system, this is

Cabc =


Caa Cab Cac

Cba Cbb Cbc

Cca Ccb Ccc

 . (2.18)

Neglecting the shunt conductance, the overall phase shunt admittance matrix is

Yabc = 0+ jωCabc(S/mile). (2.19)

In systems with three phase conductors and one or two ground wires, Cabc may be very

complicated. In balanced situations, this matrix can be simplified. For a single-phase line,

Cabc has only a single element.

Distribution line capacitance is negligible in most applications, particularly those with

short lines. In some cases, however the capacitance should not be ignored. To see this,

carefully consider the capacitance relationship. The equations show that the capacitance

per unit length depends on the space between conductors and also on the permitivity of

the dielectric separating them. Thus, the capacitance per unit length of underground cables

may be much greater than the capacitance per unit length of overhead lines [48]. The effect

of such capacitance in terms of this thesis is addressed below.

2.1.2. The Complete Distribution Line Model

From the analysis above, we note that distribution line impedance mainly depends on

conductor size, conductor spacing, network configuration (i.e. with or without a neutral

line), the method of grounding, and earth resistivity. In general, all such lines are most

appropriately represented as distributed (i.e. non-lumped) systems. The use of lumped-

element impedances has been found to be accurate over line segments of appropriate length

[48]. The equivalent circuit model for a line sigment, which is known as the pi-line repre-
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sentation, is shown in Figure 2.3. In this thesis, we are focused on single phase connections.

The line to neutral representation of the single-phase equivalent circuit is shown in Figure

2.3. This model has been found to be quire accurate for short lines and for lines of medium

length. Here, R represents the complete resistance and L the complete series inductance.

The appropriate capacitance is placed at each end of the line.

a

b

c

zaa

zbb

zcc

zab

zab

zca

 

 

 
1

2
abcY  

1

2
abcY

 

Figure 2.3: Three-phase line segment model.

The focus in this thesis is on short-distance lines, such as those connecting loads to

distribution transformers. If a distribution line is classifed as short (li.e ess than about 80

km or 50 mi), the shunt capacitance is so small that it is often omitted entirely with little

loss of accuracy, even in underground cables wi[47]. Figure 2.4(b) shows the simplified

model in which the series resistance R and the series inductance L apply to the total length

of the line.
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Figure 2.4: (a) Single-phase equivalent of transmission line.
(b) Single-phase equivalent of short-length transmission line.
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Note that the models derived here assume operation at a constant temperature and nomi-

nal line frequency. In general, the series inductance and resistance are frequency dependent

due to the earth return effect and the conductor skin effect [48, 47]. Experience shows that

such frequency dependence is generally small for low-order harmonics of the fundamental.

A common analytical approach is thus to use the inductance and resistance parameters cal-

culated at the fundamental frequency over much of the frequency spectrum. An improved

approach is to use the parameters calculated at the key harmonic frequencies of interest. In

this case, it may be important to include the shunt element because the shunt admittance

can become quite significant at higher frequencies. The increased admittance could interact

with the series impedance of the line, thus causing harmonic resonance. This can be easily

modeled by returning to the more accurate equivalent pi-circuit.

2.1.3. Transformers Models

Transformers are used for various purposes in distribution systems, such as to convert

AC voltage from one level to another. Single-phase distribution transformers typically have

one high-voltage primary winding and two low-voltage secondary windings [50]. This

thesis focuses on networks with such transformers, and thus it is instructive to review the

equivalent model.

Figure 2.5 shows the single-phase equivalent circuit for a transformer. The main ele-

ment is the ideal transformer with transformation ratio n = N2/N1. Reactances Xp and Xs

account for leakage fluxes. Similarly, ohmic losses are expressed using the resistances Rp

and Rs. The effects of magnetization and core loss are represented by the elements Xm and

Gc, respectively.

In power system analysis, an equivalent circuit is achieved by reflecting parameters

from one side to the other and by making certain simplifying assumptions. Figure 2.6

shows an approximate equivalent circuit including primary side and reflected secondary

side impedances. In practical distribution transformers, typical values of magnetizing re-
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Figure 2.5: Single phase equivalent circuit of transformer.

actance are several orders of magnitude greater than typical values of leakage reactance.

As a result, the magnetizing current and the core loss component in a loaded transformer

tend to be very small with respect to I2/n. These components are thus often ignored. The

equivalent impedance of the transformer referred to the primary thus becomes

Zeq = (Rp + jXp)+n2(Rs + jXs) = Req + jXeq. (2.20)

Figure 2.7 shows this equivalent circuit. Using similar techniques, the primary side com-

ponents can be refered to the secondary side. This issue is relevant in this thesis and is

considered later when the complete system impedance is considered.

Rp Xp n2Rs n2Xs

Xm
Gc

IE

Ic Im

v1 nv2

+

-

+

-

I1 I2/n

n2RL

n2XL

Figure 2.6: Single-phase equivalent circuit of a loaded transformer with the
secondary parameters are referred to primary side.

The simplified transformer model shown in Figure 2.7 is used in most power system cal-
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Figure 2.7: Simplified single-phase equivalent circuit of a transformer with
magnetizing current neglected.

culations including load flows, short-circuit calculations, and motor starting. The primary-

referred equivalent reactance is normally given in percent of transformer rating [50] using

the following emprical formula

X% =
126 f (NI)2rw

1011hSkVA
, (2.21)

where f is system frequency, N is the number of turns on the primary, Id is the full load

primary current, r is the radius of the windings in inches, w is the width between windings

in inches, h is the height of the windings in inches, and SkVA is the transformer rating.

Note that the size and rating of a transformer have a significant impact on its reactance.

Large power transformers used in distribution substations tend to have a reactance to resis-

tance ratio (i.e. X/R) on the order of 10 to 40. Additional, series reactance is often added

to limit fault currents.

In this thesis, the primary focus is generally on the smaller distribution transformers

that are closer to the loads. These transformers tend to have lower X/R ratios because of

their lower rating and size. In general, these X/R ratios are on the order of 0.5 to 5, which

is consistent with laboratory measurements made in this thesis.

It is important to note that all parameters in the transformer model vary with temper-

ature, frequency, and aging. In pacticular, the core loss term can become significant as

frequency rises because of the dependence of hysteresis loss on frequency [48]. As with
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cables, an equivalent impedance can be measured at each relevant frequency.

2.1.4. Load Model

Parallel-connected electrical loads also have an impact on the equivalent upstream

impedance seen from any connection to the distribution system. In general, all loads are

non-linear, as they draw a current that depends upon voltage, operating temperature, age,

and the specifics of their particular power supply. Thus, it is difficult to represent loads via

equivalent impedances, and they are often represented in system studies using their real and

reactive power demands. In the context of this thesis, it is important to understand these

models as they can impact the measured grid impedance. For instance, a large capacitor

bank connected to a transformer secondary impacts the measured reactance. In this thesis,

impedance measurements are made at single point in time, when it is assumed that most

loads are in steady-state. In that instance, static load models are the most appropriate.

Static load models express the characteristics of the load as functions of the bus volt-

age magnitude and frequency. Table 2.2 presents static load models and their dependence

on variations of voltage and temperature. These component models express per-unit real

power and reactive power as a function of per-unit incremental voltage and/or incremental

temperature. Looking at the models, the reactive power from some of loads, e.g. fluorescent

lamps and mercury lamps, vary between inductive and capacitive based on the operating

conditions.

In common model, the per unit real and reactive power are expressed as

Pu =
P
P0

=

[
V
V0

]αv
[

f
f0

]α f

,

Qu =
Q
P0

=
Q0

P0

[
V
V0

]βv
[

f
f0

]β f

.

(2.22)
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Other static load models have been proposed use the following polynominals [48]

Pu =
P
P0

=

[
Zp + Ip

(
V
V0

)
+Pp

(
V
V0

)2
]
(1+Dp∆ f ) ,

Qu =
Q
P0

=
Q0

P0

[
Zq + Iq

(
V
V0

)
+Qq

(
V
V0

)2
](

1+Dq∆ f
)
.

(2.23)

In Equations 2.22 and 2.23, [(αv, α f ), (βv, β f )] are empricially derived exponents,∆ f

is per unit frequency deviation from nominal, V is the per unit voltage magnitude at the

bus, V0 is the initial per unit voltage magnitude before any variation, P0 is the initial per

unit active power, and Q0 is the initial per unit reactive power. In the polynominal model,

Zp + Ip +Pp = 1., and Zq + Iq +Qq = 1. Dp and Dq are damping coefficients. Values of

these coefficientsfor typical residential loads relevant to this thesis are presented in Table

2.3

Table 2.2 provides nominal damping coeffiency for example residential appliances,

which are directly relevant to this topic.
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Table 2.3: Static Load Frequency Damping Characteristics.

Component Dp Dq
Three-Phase Central AC 1.09818 -0.663828

Single-Phase Central AC 0.994208 -0.307989

Window AC 0.702912 -1.89188

Duct Heater w/blowers 0.528878 -0.140006

Water Heater, Electric Cooking 0.0 0.0

Clothes Dryer 0.0 -0.311885

Refrigerator, Ice Machine 0.664158 -1.10252

Incandescent Lights 0.0 0.0

Florescent Lights 0.887964 -1.16844

Induction Motor Loads 1.6 -0.6

Steady-state load models can be constructed at various frequencies using static P and

Q models. At the fundamental, for instance, one can derive the model shown in Figure 2.8,

where

Rload =
V 2

P
,Xload =

V 2

Q
. (2.24)

A emperically derived model for the hth harmonic is also shown in Figure 2.8. The param-

eters in that model are

Rloadh =
V 2

P
, Xloadh = 0.073Rloadsh, Xload ph =

hRloadh

6.7
(

Q
P

)
−0.74

. (2.25)

where P and Q are the load active and reactive powers, respectively, at the fundamental

frequency, and h is harmonic order.

2.1.5. Constructing the Complete Equivalent System Model

in a Time-Varying Environment

The previous sections introduced equivalent circuit models for distribution lines, trans-

formers, and electrical loads. These are the critical elements affecting the equivalent
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Xloadph

Rloadh

XloadshXload

Rload

Fundamental

Figure 2.8: Harmonics models of passive load.

impedance seen from a typical single-phase connection to the utility. This section assem-

bles these individual component models into a complete impedance model relevant to the

problems considered in this thesis.

Return again to the distribution system shown in Figure 1.1. Consider a single-phase

load connected to a transformer on one of the residential laterals. Assume that the voltage

on the primary side of the substation transformer is fixed (i.e. the primary side is assumed

to be an infinite bus) and that the load on all three phases is balanced. An equivalent single-

phase model for the system as seen by the load is of the form shown in Figure 2.9. This

model includes the effects of the substation transformer, distribution lines, the local trans-

former, and the effects of a parallel load impedance. In this case, distribution cabling has

been represented using an equivalent pi-model. Furthermore, the model assumes that all

loads draw only fundamental frequency currents and that that voltage at the primary side

of the feeder is free of any harmonics. The model shown in Figure 2.9 can be simplified

Distribution
Transformer

Cable

Parallel Load 
and Cable

Cable

Substation
Transformer

Figure 2.9: An equivalent single-phase model.
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significantly if the cabling is considered to be short and has a negligible capacitance. Sim-

ilarly, the magnetizing and core losse elements can be ignored. The model can thus be

simplified as shown in Figure 2.10. If all of the impedances are refered to the secondary of

the distribution transformer, the resulting reflections significantly reduce the primary side

impedances. The resulting model shown in Figure 2.11 includes only Req and Leq, which

represent the combined series resistance and inductance as seen from the load terminals.

Because of the reflections, Req and Leq may be dominated by the distribution transfer and

the secondary side cabling.

Distribution
Transformer

Cable

Parallel Load 
and Cable

Cable

Substation
Transformer

Figure 2.10: Simplified equivalent network model of Figure 2.9.

Figure 2.11: Simplified equivalent network model of Figure 2.10.

2.1.5.1. Introducing Non-Idealities into the Model

The model shown in Figure 2.11 is highly idealized. For example, the temperature

characteristics of individual components cause the equivalent impedance to change over

time. Furthermore, individual loads also connect and disconnect from the network. As

this happens, Req and Leq also change. As discussed previously, the impedances of each of
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the components depend upon frequency. Furthermore, many networks have non-negligible

stray capacitance at certain frequencies and Power Factor Correcting capacitors.

If we consider only frequency dependence, a more appropriate model for the impedance

can be determined emprically from the FFT. Equivalent impedance characteristics could be

expressed in terms of a parametric transfer function, or an equivalent network that has a

transfer function close to the measured model. If the model contains severval dominant

resonant frequencies, then it may be necessary to use a rational transfer function of the

form

z(s) =
ansn + ...+a2s2 +a1s+a0

bmsm + ...+b2s2 +b1s+b0
, (2.26)

An equivalent network consisting of lumped resistive, inductive, and capacitive elements

is shown in Figure 2.12. A simplified ladder network without resistances can also be used.

Two possibilities are shown in Figure 2.13. A gain would neet to be included to modify the

DC value to account for resistances [52].

C1

L1

R1

C2

L2

R2

C3

L3

R3

Figure 2.12: Aggregate impedance model in [2]

In general, even the parametric transfer function approach can be a gross simplification.

The measured impedance characteristics change with time, and thus any Z(s) is only valid

over some short time window. An equivalent short-time model is shown in Figure 2.14.

If one desires to determine the impedance over a certain range of frequencies, empirical

methods and curve fitting could be used. This is the viewpoint considered in Chapter 3.
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C1

L1

LNC2

L2

CN

L3

(a)

C0 L0

C1

L1

C2

L2

CN

LN

(b)

Figure 2.13: Aggregate impedance model. (a) Cauer model. (b) Foster model.

Z

Figure 2.14: Lumped impedance model.

2.2. The Relationship between Power Electronics and Power Quality

In general, customers desire for utilities to provide an undistorted, single-frequency

voltage waveform. In practice, however, system voltages become distorted as the result

of short-term transient phenomena (i.e. motor starting, lightning, etc.) and steady-state

effects (i.e. non-linear loads and system resonances). In the context of this thesis, a key

power-quality issue is that of harmonics introduced by power electornic loads. In general,

power electronics are non-linear, meaning they will produce harmonic currents. As these

currents flow through the equivalent system impedance, a corresponding harmonic voltage

drop is produced. This causes distorion in the point of common coupling to which multiple

loads are connected. As networks become more dependent on power electronic loads, this

is an issue that must be carefully considered and addressed.

This section provides a brief overview relevant to the interaction between power elec-

tronics and power systems. If first reviews basic concepts associated with harmonic cur-
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rents in power systems. It then describes how power electronics generate these harmonic

currents.

2.2.1. Harmonics in Power Systems

IEEE Standard 519-1992 [13] defines a harmonic component in an AC power system

as a sinusoidal component of a periodic waveform that has a frequency equal to an integer

multiple of the fundamental frequency of the system (i.e. 50/60Hz). In many cases, loads

generate other signals with frequencies that are non-integer multiples of the fundamental.

Components with frequencies below the fundamental are known as subharmonics. Other

non-integer frequency multiples are referred to as interharmonics [21]. In Chapter 3 of this

thesis, these interharmonics are used to estimate the system impedance.

Harmonic problems in power systems are generally analyzed using the principal of su-

perposition. Non-linear elements such as power electronics are viewed as current sources

at each appropriate harmonic frequency [21, 19]. These currents flow through power lines,

transformers, and other components, all of which have associated impedances. The result is

that harmonic voltages are produced at various busses throughout the network. The result-

ing distortion causes even linear loads to draw harmonic currents. A complete analysis of

the so-called harmonic pollution problem becomes difficult because the system impedance

serves as a mechanism through which a complex feedback system is created.

The susceptibility of a network to harmonic distortion has a significant depenedence

upon system impedance. So-called stiff systems with low impedances are far less suscepti-

ble to harmonic issues. Power system analysts often use a different term, namely the fault

current I f , to describe the stiffness of a network. This quanity is the ratio of the rated sys-

tem votlage to the magnitude of the system impedance. It is thus the current that would

flow into a short circuit. IEEE Standard 519 provides limits on the allowable harmonic

distortion in terms of the ratio of the fault current to the rated load current.

Total harmonic distotion is a typical measure of the power quality reduction caused by
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harmonics. The THD for voltage and current waveforms are respectively defined as

T HDV =

√
∞

∑
h=2

V 2
hrms

V1rms
×100%, (2.27)

and

T HDI =

√
∞

∑
h=2

I2
hrms

I1rms
×100%. (2.28)

In these equations, the subscript 1rms refers to the rms value of the fundamental component

and the subscript hrms refers to the rms value of the harmonic component of order h. THD

values are an indicator of the total level of harmonic distortion and hence the severity of

waveform distortion. These factors are often used to express the lim,its of distortion that a

utility is willing to accept from a given customer load. IEEE Standard 519 imposes limits

on these quanities. For supplies at 69kV and below, the voltage limit at any individual

harmonic is 3% of the fundamental and the THD is limited to 5%.

2.2.2. Power Electronics as a Primary Source of Harmonic Currents

Most power electronic elements connected to the AC power sytstem contain a recti-

fier. Examples include computer power supplies, motor drives, arc furnaces, arc welders,

flourescent ballasts, battery chargers, and cycloconverters. Figure 2.15 shows an example

schematic diagram relevant in a single-phase system. A front-end bridge rectifier BR1 and

a DC bus capacitor C1 supply a switch-mode power supply. The example supply shown in

Figure 2.15 includes a forward converter [25], which includes a high-frequency isolation

transformer, which thus avoids the need for a bulky power-line transformer at the front end.

Such a topology is used in the ubiquitous ATX power supply found in most desktop PCs.

Rectifier circuits such as the one shown in Figure 2.15 are typically analyzed using

the method of assumed states [53]. Current will only flow into the rectifier whenever the

AC-side voltage is greater than the voltage across C1 or when the AC-side votlage is more



39

Switcher and 

controls120 V

C1

BR1
D1

D1

L2

C2

DC load

Figure 2.15: Simplified block diagram of a switching mode power supply.

negative than the additive inverse of the voltage across C1. The resulting current waveform

asppears as shown in Figure 2.16. A Fourier analyis shows that this waveform contains

all odd harmonics with amplitudes that are inversely proportional to the harmonic number

[25]. Similar analyses can be included for phase-controlled rectifiers and various three-

phase topologies [25]. In system analyzes, these harmonics are viewed as current sources

[25].
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Figure 2.16: (a) Input current to front end rectifier. (b) Harmonics content
of the input current.

Harmonic currents generated by power electronics can be mitigated through the use

of either passive or active methods. In many low-cost components, no such strategies are

employed. In modern power electronic based power distribution systems, active methods
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are extremely common. The effects of these are considered in more detail below.

2.3. Stability Analysis of Grid Connected Converters

The power quality issues identified above led to the development of techniques for mit-

igating harmonic source injection. Passive filter techniques are simple, but the weight and

cost of the components can be high. In modern power supplies, active wave shaping is

commonly used to force the input current to be sinusoidal. In microgrids and power elec-

tronic based distribution systems, most of the power electronic loads feature such active

interfaces. Additionally, these systems also contain actively controlled sources. In such

cases, oscillation can result from the interaction between the converter and the equivalent

system impedance that it sees. Stability is one of the most fundamental issues in PEBDS

[54, 55, 56, 23, 57, 58], and it is thus analyzed in detail here. In the context of this thesis, the

emphasis is placed on the dynamic nature of the system. The methods proposed in Chapter

4 for adaptive compensation proceed from the discussions presented here. To understand

the stability problem, consider the PEBDS feeder shown in Figure 2.17. Additional mod-

ules that are not shown in the figure may be connected to the feeder as time advances.

Each module is designed individually based on standalone stability requirements. These

loads tend to have tightly regulated output stages and high efficiencies, meaning that they

appear to the network as constant power loads (CPLs) at low frequencies. Thus, if the input

voltage increase by some factor, the input current will correspondingly decrease by some

amount that maintains the overall power throughput. The result is an incrementally neg-

ative impedance. The interaction between the system impedance with this negative input

impedance can lead to instability [59, 26, 57, 60]. In PEBDS, where many CPLs may

connect and disconnect from the system, negative impedance instability can be particularly

troubling. This section reviews the corresponding modeling issues deemed relevant to this

thesis.
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Filter
Rectifier

Filter
Inverter

Filter
Inverter

Filter
DC/DC

AC Bus
DC Bus

Mechanical Load

DC Load

Generator

Figure 2.17: A representative of power electronics based distributed system.

2.3.1. Constant Power Loads and Negative Impedance

Figure 2.18(a) shows a DC/DC buck converter. A tight loop regulates the output at high

switching frequency so that a constant output voltage is provided. If the converter has unity

efficiency and the load current does not change, then Pin is constant determined by

Pin = vi≈ Pout = constant. (2.29)

At low frequency, the switch-mode converter acts as a ’DC transformer’ having some volt-

age conversion ratio µ . The relationship from input voltage to output voltage and from
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Figure 2.18: (a) DC/DC buck converter schematic with input filter.
(b) Negative incremental impedance.

input current to output current is thus

µ =
Vin

Vout
=

Iout

Iin
. (2.30)

When a small perturbation is applied to the input voltage, the differential change in the

input power may be expressed as

P+dP = (Vin +dvin)(Iin +diin). (2.31)
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By neglecting the second order terms we can express the incremental change in power as

dP =Vindiin + Iindvin. (2.32)

Assuming that the converter is tightly regulated, the converter should return to its qperating

point; thus, dP should become zero, i.e.

Vindiin + Iindvin = 0. (2.33)

This relationship defines the incremental impedance which is

Rin =
dvin

diin
= − Vin

Iin
. (2.34)

Similar arguments can be used to show that xonstnat power loads connected to AC sys-

tems through rectifiers also have incrementally negative impedances. In both DC and AC

systems, this incremental negative impedance only applied in transient conditions at low

frequency. In steady state, the impedance is always positive.

2.3.2. Negative Impedance Instability

The negative impedance phenomenon described above can cause problems when con-

nected to a real network with a non-zero impedance. Certain sources and line conditioners

may interact with a power electronic component in such a way that instability results. This

instability can affect other loads on the network and potentially cause component damage.

The standard analytical procedure is the so-called impedance criterion first applied by Mid-

dlebrook in 1976 [26] when he considered the interactions between a DC/DC converter and

its input-side EMI filter. This approach analyzes stability using the input impedance of each

load, and the apparent output impedance of the network as seen from the load terminals.

Small signal stability analysis around any operating point proceeds using the simplified
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Figure 2.19: Source input and load output impedance defined.

model shown in Fig 2.19. The system is said to have an equivalent output impedance

Zo(s) and the load has an equivalent input impedance Zin(s). The source load interaction is

modeled from the voltage divider relationship

V0

VS
=

Zin

Z0 +Zin
=

1
1+Z0Yin

. (2.35)

The stability of this system is governed by the loop gain Tm(s) = Zo/Zin. The simplest

approach to assuring stability is to assume that the magnitude of Zin is always much larger

than the magnitude of Zo. This rule is widely known, but it can lead to extremely conser-

vative and costly designs. In general, little is known about the two impedances in question,

and both are subject to variations as additional converters are connected in parallel across

the bus. This makes it difficult to specify how large |Zin| should be relative to |Zo| in order

to achieve a satisfactory level of stability. In many cases, a large capacitor across the con-

verter input terminals is sufficient to compensate for the destabilizing effects of the negative

impedance characteristic.

Other approaches have been considered to avoid the extreme conservatism of setting

|Zin| � |Zo|. Figure 2.20 shows a situation in which the magnitude of Zo exceeds that of

Zin over a certain frequency range. Assuming that the converter is stable prior to connection

to the network, then the stability condition at the two overlap frequencies can be defined as
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Figure 2.20: Impedance overlap at interface. (a) Impedance comparison.
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follows

|Z0|− |Zin|>−GMs(dB),−1800 +PM2s < 6 Z0− 6 Zin < 1800−PM1s. (2.36)

Where GM is the gain margin and PM1 and PM2 are the phase margins at frequencies A

and B, respectively. Using this information, various stability criteria have been considered.

One example is the Wildrick criterion, which assumes that PM1 and PM2 are to be the

same, 60 degrees. In addition, the gain margin is set to 6dB. This selection is less con-

servative than that proposed by Middlebrook, but it is still relatively robust given the large

margins. Figure 2.21 summarizes four common criteria found in the literature. Each defines

a so-called forbidden region that includes the (-1,0) point in the complex plane. Avoidance

of this region guarantees no encirclements, and thus sufficient margin for stability.
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2.3.3. Complications in Power Electronic Based Distribution Systems

Avoidance of negative impedance instability in PEBDS can be challenging. In these

systems, multiple sources and loads are connected to a bus through various power electronic

interfaces. Figure 2.22 shows a typical example. In this case, the stability of each individual

component-system interaction is governed by its own impedance facing the network and

the impedance that it sees looking into the network. From the perspective of the k-th load,

for instance, the closed-loop transfer function is

vink

v0k
=

1
1+ZokYink

= hk. (2.37)

The challenge is that Zok consists of the parallel combination of the impedances seen look-

ing into each currently operating component. This impedance is likely to change over time,

and is thus highly variable. Various forbidden-region criteria could be used to help achieve

stability, but these become difficult to apply if one cannot determine the worst-case scenario

for the impedances. It is this problem that motivates consideration of adaptive controllers

such as the one presented in Chapter 4 of this thesis.
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Source 1

Load 1

Zo0 Zin0

Zo1 Zin1

Load k

Load N

ZoN ZinN

vo1 vin1
h1

Zok Zink

vok vink
hk
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h0

voN vinN
hN

Source 2

Zo2 Zin2

vo2 vin2

h2

Figure 2.22: Typical power electronics based distributed power system and
interactions between components.



CHAPTER 3: A MINIMALLY INTRUSIVE ONLINE GRID IMPEDANCE
ESTIMATION METHOD

This chapter presents a minimally intrusive method for estimating grid impedance in

energized systems. The method uses naturally occurring interharmonic signals generated

by operational loads. Examples include signals produced by motor eccentricities and vi-

brations. These waveforms are, in general, significantly smaller than the fundamental com-

ponent of the current and its principal integer harmonics. Previous research has shown

that traditional approaches such as the Fast Fourier Transform cannot accurately measured

the amplitude and phase of such relatively small signals. These issues are overcome by

viewing the small injected signals as waveforms transmitted over a noisy communications

channel. A detector based on the maximum likelihood principle estimates key parameters

of the injected signals and then computes estimates of the real and imaginary parts of the

impedance. Both simulation and experimental results are presented. The signals used for

measurement in both the laboratory and in the field have an amplitude of approximately

10mA.

3.1. Introduction

The equivalent impedance of the electric power system directly impacts power quality

[61], electrical safety [62], and component performance [38, 63]. Many issues arise when

large or distorted currents are drawn through this impedance. Interactions between the sys-

tem and non-linear loads, for instance, produce steady-state voltage distortion throughout

the network [61, 64]. Short-term events such as faults and load-induced transients cause

voltage sag [61]. All of these activities ultimately affect and potentially degrade the per-

formance of various loads connected throughout the system [61, 64]. In the case of faults,
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line impedance limits the magnitude of the current and thus the energy released during any

resulting arc flash [62, 39]. Equivalent line impedance also impacts the behavior of grid-

connected power converters. Certain impedance values can degrade and even destabilize

grid-connected inverters [65, 66] and active power conditioners and regulators [67, 63].

In power-electronic systems used for distributed generation, line impedance measurements

are used to detect faults and initiate isolation [68].

In applications requiring knowledge of grid impedance, it can be helpful to have a priori

information. Short-circuit ratios at the point of common coupling provide one mechanism

for determining fundamental-frequency impedance. In many scenarios, however, such in-

formation is unavailable and actual installation details may differ significantly from design

specifications. Another issue is that fundamental-frequency values are often insufficient

[63, 69]. Impedance is, of course, frequency dependent, and capacitive effects can intro-

duce high-frequency resonances and other phenomena that can be highly detrimental to

load performance and power quality [63, 69]. Another challenge is that line impedance

varies with time, and the value depends on system configuration, loading, and temperature.

Power-electronic systems in microgrids, which are routinely connected and disconnected

from the larger power system, are particularly sensitive to these variations [68].

The frequency-dependent and time-varying nature of grid impedance motivates the

need for real-time estimation. Various approaches have been proposed, and are gener-

ally grouped into two categories. In the first of these, which are termed active methods, a

user-generated disturbance systematically perturbs the grid and the impedance is estimated

from the resulting measurements [40]. One strategy is to inject specific sinusoidal currents,

either at a single frequency near the fundamental or over a broad band [38, 70, 39, 43].

Transient perturbations can also be used [41, 71, 42, 72, 73]. These are introduced by con-

necting various linear and non-linear loads to the system. Impedance can also be estimated

by creating specific variations in active and reactive power [74, 67]. Passive methods for

impedance estimation, on the other hand, use existing non-fundamental signals within the
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power system [40, 75, 44]. Despite the fact that these approaches are minimally intrusive,

they can be difficult to implement because the amplitude of the available distortion tends

to be small and the repetition rate is low [40, 68, 38].

This chapter presents a procedure that reliably estimates grid impedance using exist-

ing interharmonic signals within the power system. Natural load-generated disturbances

are the key sources of distortion in this method. Common examples include the various

interharmonic signals generated by induction motors [76] and power converters [77]. In

the case of induction motors, for instance, signals are generated by effects such as eccen-

tricities, vibrations, and load imbalances [76]. These signals typically fall at non-integer

multiples of the fundamental frequency, and have amplitudes that are significantly smaller

than the fundamental component and its principal harmonics. When such small signals are

used for impedance estimation, it can be difficult to resolve their amplitude and phase with

sufficient accuracy. These limitations are clearly demonstrated in [38]. Measurement diffi-

culties are overcome in this paper by applying concepts used in communications systems.

Small load-generated current signals are viewed as waveforms transmitted over a noisy

channel. These "transmissions" are then recovered using a detector based on the maximum

likelihood principle [78, 79]. Experimental results make use of naturally occurring signals

with an amplitude of approximately 10mA, which is just within the rated accuracy of the

sensors employed. The proposed approach is minimally intrusive in the sense that it does

not degrade power quality or require special injection sources.

The chapter begins with a discussion of the utility model and the measurement pro-

cedure. The analytical approach used to implement the measurement technique, which

relies on maximum likelihood estimation (MLE) is then described. Simulation results and

experimental results from both a laboratory prototype and a field test are also shown.



52

3.2. System Model and Measurement Approach

To estimate grid impedance using point-of-load power distortion, we consider a single-

phase line-to-neutral connection to the electric utility as shown in Figure 3.1. The source

vs(t) might represent the voltage present at the secondary of a distribution transformer. In

general, this source contains a fundamental term as well as various harmonics and interhar-

monics. This source can thus be modeled as

vs(t) =
∞

∑
k=1

Vk sin(kωt +φ
v
k )+ vint(t), (3.1)

where the fundamental frequency is ω , φ v
k is the phase shift at the kth harmonic, and vint(t)

represents the series combination of any interharmonic and subharmonic sources.

+

-
vm(t)

Zs

vs(t)

i(t)

L
o
ad

Figure 3.1: A distribution-level model of the electric utility.

Loads are connected to vs(t) through a complex impedance Zs representing the com-

bined effects of transformers, cabling, protection devices, and other elements. In distribu-

tion networks, the reactive component of this impedance tends to be inductive at low fre-

quencies near the fundamental [38, 68, 42, 63, 43, 69]. In general, however, this impedance

will change with frequency and the reactive component may ultimately become capacitive

at higher frequencies because of the effects of cabling, power-factor correction, filtering,

and other elements. The current drawn through this impedance by the load is of the form

i(t) =
∞

∑
k=1

Ik sin
(
kωt +φ

i
k
)
+ iint(t), (3.2)
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where φ i
k is the phase shift at the kth harmonic and iint(t) represents any sub or interhar-

monics.

To estimate the impedance Zs, we assume that the load draws an interharmonic current

of the form

ic(t) = Ic sin(ωct +φ
i
c), (3.3)

where ωc is near but not equal to the fundamental frequency. This signal can be either

natural (i.e. an eccentricity-related signal produced by an induction machine) or specially

generated (i.e. a specific signal produced by a power-electronic load). Under steady-state

conditions, superposition can be applied to simplify the circuit model as shown in Figure

3.2. Note that the load is modeled as a current source with a single sinusoidal component,

and that the upstream voltage is

vs,c(t) =VS,C cos(ωct +φ
v
c ) . (3.4)

The lumped elements Rc and Lc represent the equivalent real and reactive components of

the line impedance at ωc, and are thus defined as

Rc ≡ Re{Zs|ωc} (3.5)

and

Lc ≡
Im{Zs|ωc}

ωc
(3.6)

In general, these definitions remain valid throughout the neighborhood of ωc; thus, if ωc

is close to the fundamental, Rc and Lc should approximate the impedance of interest. This

approach is used in various references, albeit with much larger values of Ic [38, 70]. For

impedance estimation to be effective, vs,c(t) should be negligible. This can be determined

via spectral analysis prior to the connection of the load, and it is issue that has not been

found to be problematic in the field.
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vm(t)

Lc Rc

vs,c(t)  sin i

c c cI t 

Figure 3.2: A simplified distribution-level model applicable at the frequency ωc.

If ic(t) is known and vs,c(t) is negligible, then Figure 3.2 suggests that measurement of

Rc and Lc is relatively straightforward. In practice, however, measurement can be difficult

because the terminal voltage contains numerous components several orders of magnitude

larger than ic(t). Measurement becomes even more challenging if the user does not have

explicit control over ic(t), which is the case if the signal is naturally generated. Figure 3.3

shows a process that overcomes these problems. This approach is adapted from radar ap-

plications in which one seeks to detect a sinusoidal signal transmitted over a noisy channel.

Note that the voltage measured at the point-of-load is first mixed with the current ic(t). For

the moment, we assume that ic(t) is known and that vm(t) has the form

vm (t) =
∞

∑
h=1

Vh sin(hωt +φ
v
h) +

∞

∑
n=1

Vn sin(ωnt +φ
v
n) − Rcic(t) − Lc

dic
dt

. (3.7)

Note that the first term in Eq. 3.7 contains components at integer multiples of the fun-

damental, while the remaining terms represent both source-side distortion and impedance

drops at all other frequencies. Only the relevant impedance drops (i.e. those at ωc) have

been written separately. Using Eq. 3.3, vm(t) expands to become

vm (t) =
∞

∑
h=1

Vh sin(hωt +φ
v
h)+

∞

∑
n=1

Vn sin(ωnt +φ
v
n)

−RcIc sin(ωct +φ
i
c)−ωcLcIc cos(ωct +φ

i
c). (3.8)

This signal is mixed with ic(t) and integrated over a measurement window of length Tm to
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vm(t)

ic(t)

Tm

0

1

Tm

Figure 3.3: Proposed measurement process. vm(t) is the measured line
voltage, and ic(t) is the interharmonic signal of interest.

yield

1
Tm

ˆ Tm

0
vm (t) ic(t)dt =

1
Tm

ˆ Tm

0

∞

∑
h=1

VhIc sin(hωt +φ
v
h)sin(ωct +φ

i
c)dt

+
1

Tm

ˆ Tm

0

∞

∑
n=1

IcVn sin(ωnt +φ
v
n)sin(ωct +φ

i
c)dt− RcIc

Tm

ˆ Tm

0
sin2(ωct +φ

i
c)dt

− ωcLcIc

Tm

ˆ Tm

0
cos(ωct +φ

i
c)sin(ωct +φ

i
c)dt. (3.9)

To simplify the detector output in Eq. 3.9, special consideration must be given to the

choice of the measurement window. To see this, consider each of the terms in the two infi-

nite series. Note that each integrand in these summations has the general form sin(x)sin(y).

Using an appropriate trigonometric identity (i.e. sin(x)sin(y)= 1
2 [cos(x− y)− cos(x+ y)]),

each integral expands into two terms of the form

1
2Tm

ˆ Tm

0
cos(αt +φ)dt, (3.10)

where α is one of the following choices: hω −ωc, hω +ωc, ωn−ωc, or ωn +ωc. When

evaluated, this integral becomes

1
2Tm

ˆ Tm

0
cos(αt +φ)dt =

1
2αTm

[sin(αTm +φ)− sin(φ)] . (3.11)

Note that this result approaches zero as the measurement window becomes much larger

than the period of the waveform (i.e. Tm� 2π/α). By imposing this constraint for all α ,
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we can thus simplify the correlator output as follows

1
Tm

ˆ Tm

0
vm (t) ic(t)dt ≈−RcIc

Tm

ˆ Tm

0
sin2(ωct+φ

i
c)dt−ωcLcIc

Tm

ˆ Tm

0
cos(ωct+φ

i
c)sin(ωct+φ

i
c)dt.

(3.12)

To further reduce Eq. 3.12, we note that the first integral on the right-hand side becomes

RcI2
c

Tm

ˆ Tm

0
sin2(ωct +φ

i
c)dt =

RcI2
c

2
+

RcI2
c

Tm

ˆ Tm

0
cos(2ωct +2φ

i
c)dt (3.13)

and that the second integral on the left-hand side becomes

ωcLcI2
c

Tm

ˆ Tm

0
cos(ωct + φ

i
c)sin(ωct + φ

i
c)dt =

ωcLcI2
c

Tm

ˆ Tm

0
sin(2ωct + 2φ

i
c)dt. (3.14)

Using the same arguments presented previously, the integrals in both Eq. 3.13 and Eq. 3.14

also approach zero if Tm� 2π

ωc
. We are thus left with the following simple result

1
Tm

ˆ Tm

0
vm (t) ic(t)dt ≈ 1

2
RcI2

c . (3.15)

Equation 3.15 provides a means to estimate Rc. Via similar logic, one can show that Lc

is estimated by mixing vm(t) with the a signal in quadrature with ic(t), i.e.

1
Tm

ˆ Tm

0
vm (t) Ic cos

(
ωct +φ

i
c
)

dt ≈ 1
2

ωcLcI2
c . (3.16)

Both of these results clearly rely on appropriately-sized measurement windows. A careful

analysis shows that Tm should be much longer than the period of the lowest frequency signal

to be integrated in Eq. 3.9. As a result of the mixer in Figure 3.3 this frequency is the one

whose frequency is nearest to ωc. Spectral analysis may thus be required to determine either

the appropriate measurement window or the need to select a different measuring signal. In

practice, three second measurement windows have been used to estimate the impedance at



57

or near the fundamental and several harmonics. No problems have been observed when

applied in an actual distribution system.

Computation of the terms in Eqs. 3.15 and 3.16 is relatively straightforward if ic(t) is

known exactly. Using either analog or digital techniques, one would mix ic(t) with vm(t)

and integrate. Recall, however, that we are interested in using a signal whose amplitude,

phase, and frequency are all outside of our control and are thus, in general, unknown. One

solution is to simply measure ic(t). As with any coherent measurement problem, however,

precise knowledge of the phase angle is critical to the distinct resolution of the real and

imaginary parts [80]. Synchronization is not an option here since ic(t) is deliberately sev-

eral orders of magnitude smaller than the fundamental. In fact, we typically have focused

on signals with amplitudes nearing the accuracy of the employed sensors (1̃0mA), which is

3 to 4 orders of magnitude smaller than the fundamental. The parameters of ic(t) must thus

be estimated and used to generate a test signal. Various parameter estimation approaches

can be used, and the most typical employ the FFT or the periodogram [81, 82]. In general,

these approaches have been found to yield modestly accurate estimates of the magnitude

and frequency, but have failed to provide adequate estimates of the phase. This sensitiv-

ity to phase estimates is explored in a later section. To determine the parameters of ic(t)

with sufficient accuracy, we thus turn to a different approach based on maximum likelihood

estimation (MLE) [78]. This method is described in the next section.

3.3. Parameter Estimation for Small Sinusoidal Signals

To estimate the parameters of the small interharmonic signal ic(t), we turn again to a

concept often applied in signal-detection theory. In this case, we view ic(t) as a signal

that has been generated by the load and transmitted over a noisy communications channel,

i.e. the power system. The received waveform is thus the signal measured by the current

transducer. We consider the signal received over the time interval (0,Tm). In general, this



58

signal can be written as

r(t) = ii(t)+ ic(t)+n(t), (3.17)

where ic(t) is the signal of interest, ii(t) is a signal consisting of all of the other components

of the current, and n(t) is random measurement noise. Note that this noise is assumed to be

zero-mean Gaussian with a variance N0/2. As in signal-detection theory, we consider two

possible conditions at the receiver. These are expressed mathematically as the hypotheses

H0 and H1, which are

H0 : r(t) = ii(t)+n(t) (3.18)

H1 : r(t) = ii(t)+ ic(t)+n(t). (3.19)

Note that H0 is the null condition and thus assumes that ic(t) has not been transmitted;

hypothesis H1 assumes that it has.

In detection theory, one seeks to determine which hypothesis is true given measure-

ments of r(t) over the interval (0,Tm). In the simplest case, one develops a decision rule for

a particular hypothesis using the probability densities p0(r) and p1(r) for the observations

r(t) [78, 83]. The subscripts in these expressions denote the fact that each is conditioned on

either H0 or H1 being true. These densities are typically referred to as likelihood functions

[78, 83]. In this case, the densities also depend upon unknown signal parameter values,

which include the amplitudes, frequencies, and phases of all of the various sinusoidal com-

ponents of the current. In general, we consider each parameter to be a random variable

whose value is constant over the measurement window. Thus, we must define conditional

likelihood functions for both hypotheses [78, 83]. These are

p1(r|I1, f1,ϕ1) = F exp{−(1/N0)

Tmˆ

0

[r(t)− (ii(t)+ ic(t))]2dt} (3.20)
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and

p0(r|I0, f0,ϕ0) = F exp{−(1/N0)

Tmˆ

0

[r(t)− ii(t)]2dt}, (3.21)

where F is an undetermined constant [78]. Note that these densities are conditioned on

the values of the unknown parameters, which are expressed as the sets I1(Ic, I0, I1, ...),

I0(I0, I1, ...), f1( fc, f0, f1...), f0( f0, f1...), ϕ1(φc,φ0,φ1, ...), and ϕ0(φ0,φ1, ...), respectively.

For simplicity, the parameters associated with each hypothesis are aggregated and written

as θ0 for H0 and θ1 for H1. The decision rule is to choose H1 if

´
θ 1

p1(r |θ 1 )w1 (θ 1)dθ 1´
θ 0

p0(r |θ 0 )w0 (θ 0)dθ 0
≥ λ0. (3.22)

In Eq. 3.22, the functions w0(θ 0) and w1(θ 1) are the joint a priori probability density

functions associated with θ 0 and θ 1, respectively. The integral in the numerator is an

n-fold integration over the possible range of θ 1. A similar argument holds true for the

denominator. In general, the constant λ0 depends upon the available a priori knowledge.

In general, Eq. 3.22 is difficult to use as a decision rule because little is known about the

distributions of the random parameters associated with each hypothesis. A typical solution

is to use the maximum-likelihood principle. In that approach, one computes the generalized

likelihood ratio (GLR), which is

λ (r) =
maxθ 1 {p1(r |θ 1 )}
maxθ 0 {p0(r |θ 0 )}

. (3.23)

We then find the value of θ 1, call it θ̂1, that maximizes p1(r|θ1), and similarly we find the

value of θ 0, call it θ̂0, which maximizes p0(r|θ0). The computation of parameter estimates

under this approach is known as maximum-likelihood estimation. Ultimately, the estimates

are used as if they were known, true values. We can thus rewrite the GLR as

λ (r) =
p1(r|θ̂ 1)

p0(r|θ̂ 0)
, (3.24)
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where both pdfs depend on the parameter estimates.

Using the result from Equation 3.24, we rewrite the GLR as

λ (r|Î, f̂ , ϕ̂) =
F exp{−(1/N0)

Tḿ

0
[r(t)− (îi(t)+ îc(t))]2dt}

F exp{−(1/N0)
Tḿ

0

(
r(t)− îi(t)

)2dt}
(3.25)

Note that this expression depends only upon the parameter estimates, which are considered

to be known. After expanding and cancelling terms, this result becomes

λ (r|I, f ,ϕ) = exp

−(1/N0)

Tmˆ

0

[−2r(t)îc(t)+2îi(t)îc(t)+ î2c(t)]dt

. (3.26)

Using the same arguments presented in Section 3.2, we know that the integral of îi(t)îc(t)

cancels over the interval (0,Tm). Similarly, with îc(t) of the form

îc(t) = Îc sin(2π f̂ct + ϕ̂
i
c
), (3.27)

we know that the integral of î2c(t) over the same window is Î2
c Tm/2. The GLR thus simplifies

to

λ (r|Î, f̂ , ϕ̂) ≈ exp
(
− Î2

c Tm

2N0

)
× exp

 Îc

N0

Tmˆ

0

2r (t)sin
(
2π f̂ct + ϕ̂

i
c
)
dt

 . (3.28)

Estimates for Îc, f̂c, and φ̂c are obtained by maximizing Eq. 3.28. For a given Îc, Eq. 3.28

maximizes when the integral term maximizes. We thus analyze this term separately. This

process simplifies if we use the definition

Tmˆ

0

r (t)sin
(
2π f̂ct + ϕ̂c

)
dt = s( f̂c). (3.29)
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Note that s( f̂c) can be rewritten as

s2( f̂c) = p2( f̂c) + q2( f̂c) =

 Tmˆ

0

r(t)sin2π f̂ctdt

2

+

 Tmˆ

0

r(t)cos2π f̂ctdt

2

(3.30)

where we have used the definitions

p( f̂c) = s( f̂c)cos ϕ̂c =

Tmˆ

0

r(t)sin2π f̂ctdt (3.31)

and

q( f̂c) = s( f̂c)sin ϕ̂c =

Tmˆ

0

r(t)cos2π f̂ctdt. (3.32)

A simple and efficient algorithm for maximizing Eq. 3.30 with respect to the frequency f̂c

is shown in the next section.

Estimation of the remaining parameters becomes trivial once f̂c is known. The maxi-

mum likelihood estimate of Îc solves the equation

∂λ (r|Î, f̂ , ϕ̂)
∂ Îc

= 0. (3.33)

Using f̂c, this result is simply

Îc =
(
2
/

Tm
) Tmˆ

0

r (t)sin
(
2π f̂ct + ϕ̂c

)
dt =

(
2
/

Tm
)

s( f̂c). (3.34)

Similarly, the maximum likelihood estimate of the phase φ̂c solves the equation

∂λ (r|Î, f̂ , ϕ̂)
∂ φ̂c

= 0. (3.35)
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This result is

φ̂c = tan−1


Tḿ

0
r (t)cos2π f̂ctdt

Tḿ

0
r (t)sin2π f̂ctdt

= tan−1
{

q( f̂c)

p( f̂c)

}
. (3.36)

3.3.1. An Algorithm for the MLE Method

The parameter estimation method outlined above relies heavily on the value of f̂c that

maximizes Eq. 3.30. In communications theory, this value is traditionally determined using

either brute-force methods or matched filter banks [78, 79]. Note that both the Newton-

Raphson algorithm and the Quasi-Newton method are commonly used to reduce the cal-

culation burden [84]. These methods, however, can still be computationally burdensome

because the accuracy of the final estimate depends heavily upon the step size. The choice

of a smaller increment thus becomes a key trade-off.

Because time is of the essence when measuring grid impedance, an efficient algorithm

was developed to maximize Eq. 3.30. The motivation for this algorithm stems from the

fact that one typically has a general sense of the the value of fc based on certain a priori

information about the load. In addition, it is clear that Eq. 3.30 is very similar in form to the

evaluation of the continuous-time Fourier transform over a window Tm [80]. Equation 3.30

should thus take the form of a sinc function in the neighborhood of f̂c and will have a

single peak [80]. With this information, the search range can be narrowed significantly.

Furthermore, it is true that any real number f can be represented in the form of a continued

fraction using a power-series expansion [85]. For example, the frequency f = 30.12345Hz

can be expressed using the set of power-series coefficients { fk}= {30,1,2,3,4,5}. We use

these facts to express f̂c as

f̂c ≈ f0 +
N

∑
k=1

fk10−k (3.37)

where N is an arbitrary integer number selected based on some desired level of accuracy

and f0 is a constant chosen based on a priori information about the load. Figure 3.4 shows
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how one can use this equation to determine f̂c. When compared to a brute-force search,

the proposed algorithm reduces the search space from 10N to 2(10N). This represents a

significant reduction in computation time.

k = 1

i = -10

f ik = f ik-1 + i*10 -k

si
k
2
 = p2(f ik) + q2(f ik)

k = k + 1

-1

ˆ   
ˆ   (2 / ) 
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Figure 3.4: Algorithm for estimating f̂c, Îc, and φ̂c. Note that most of the
effort is focused on estimating the k-th term in Eq. 3.37.

3.3.2. Overall Approach to Impedance Estimation

Figure 3.5 shows a partial implementation of the complete estimation algorithm for

the resistance Rc. As shown, vm(t) is continually shifted and placed through the corre-
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lator. Note that the output at the i-th time step is referred to as pc,i. Ultimately, we

compute the average of the set {pc,0, pc,1, pc,2, ..., pc,M} as well as the average of the set

{Îc,0, Îc,1, Îc,2, ..., Îc,M}. Denoting these averages as pc and Ic, respectively, we modify

Eq. 3.15 to solve for Rc, i.e.

Rc =
2pc

I2
c

. (3.38)

The inductance Lc is calculated in a similar manner. Note that averaging has been used to

help reduce the effects of noise, and its use is common in such applications [86, 87, 88]. In

general, the time step to can be much larger than the sampling interval and the averaging

windows can be overlapped so that the calculation of the impedance at any specific time

only requires the calculation of one new value of pc.

Pc,Mvm(t-(M-1)t0)

i(t-(M-1)t0) Est. 

Params
 , -1 , -1 , -1 , -1

ˆ ˆˆˆ ( ) sin 2c M c M c M c Mi t I f t  
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1
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1

Tm
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Tm

0

1

Tm

…..

Figure 3.5: Partial implementation of the complete estimation algorithm for the
resistance Rc. Each block represents the computations performed at each time step.
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3.4. Simulation Results

A simulation model was built to demonstrate the performance of the proposed estima-

tion method. This model is based on the physical system shown in Figure 3.6, which was

constructed in the laboratory. Section 3.5 presents experimental results for the correspond-

ing test setup. The load in this system is a 1/4hp, 4-pole, single-phase induction machine.

This motor, like any other, injects various currents due to eccentricities and other effects.

To simulate these phenomena, the simulated machine was given a slightly imbalanced load

torque of the form

T (t) = T0 +T1 cos(2π flt +φ) . (3.39)

This torque produces interharmonic currents at the frequencies f ± fl , where f is the fun-

damental [89]. In the simulation model, the upper sideband in the current is placed at

89.87655Hz and the lower sideband is placed at 30.12345Hz. The constant T1 is adjusted

so that the actual interharmonic currents have the same magnitudes relative to the funda-

mental as they do in the laboratory setup. The grid impedance is modeled by a resistance

R in series with an inductance L. A saturable transformer is mounted in parallel with the

voltage source. Simulation was performed using Simulink.

vm(t)

R

vs(t)

i(t)

M

Isolation

Transformer

L

Figure 3.6: Schematic representation of the physical system used for
testing in the laboratory. This same system was modeled in Simulink.

Figure 3.7 shows the zoomed-in frequency spectra of both the terminal voltage and

current. Note that the injected interharmonics are considerably smaller than the fundamen-

tal and the principal harmonics. Table 3.1 lists several of the magnitudes. Note that the
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Table 3.1: Harmonics data of the simulation circuit.

Frequency (Hz) Voltage (V) Current (A)

30.1 7.12(10−3) 11.07(10−3)

60.0 157. 25 6.06

89.9 3.62(10−3) 5.41(10−3)

180.0 6.86 0.56

300.0 1.06 0.06

420.0 0.72 0.03

injected signals are approximately 3 orders of magnitude smaller than the fundamental.
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Figure 3.7: Top: Current spectral density. Bottom: Details of the
interharmonics used for impedance estimation.

Table 3.2 demonstrates the action of the MLE algorithm presented in Section 3.3. Note

that each row shows the amplitude, phase, and frequency estimates as additional terms are

added to the power series expressed in Eq. 3.37. With N = 5, i.e. 5 digits after the decimal,

the error in the estimates of Rc and Lc are are extremely small.

The results presented in Table 3.2 show that estimates of Rc and Lc are highly depen-
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Table 3.2: Simulation results as k is incremented from 1 to 5 in
Eq. 3.37 with R = 0.65Ω and L = 0.25mH.

k Îc (mA) φ̂c (rad) R̂(Ω) Error(%) L̂(mH) Error(%)

1 11.08752 0.60568 0.0148 -97.71 3.4472 1278.89

2 11.18365 -0.06194 0.1601 -75.37 3.3403 1236.12

3 11.18581 0.94077 0.6415 -1.30 0.6178 147.12

4 11.18586 1.02608 0.6500 0.01 0.2728 9.15

5 11.18586 1.03290 0.6504 0.06 0.2489 -0.40

Table 3.3: Simulation Results as R is varied.

R̂(Ω) R(Ω) Error(%) L̂(mH) L(mH) Error(%)

1.6517 1.65 0.10 0.4503 0.45 0.07

1.3994 1.40 -0.00 0.4485 0.45 -0.33

1.1610 1.15 0.96 0.4469 0.45 -0.69

0.9006 0.90 0.07 0.4476 0.45 -0.53

0.6502 0.65 0.03 0.4515 0.45 0.33

dent on an accurate measurement of f̂c. In practice, we have found that similarly accurate

estimates cannot be obtained using the DFT or an interpolated DFT. Note that other re-

searchers have reached similar conclusions [38]. The typical solution to this problem has

been to increase the magnitude of the injected signal.

Table 3.3 presents results as R is varied. Note that the estimation errors are low in all

cases.

3.5. Experimental Results

The proposed method has also been applied in two different experimental setups. In

the first of these, an induction motor was connected to a test source through a transformer

and a controllable resistance. In the latter, the same machine was connected to a standard

electrical outlet and tests were performed as the actual line impedance varied throughout a

typical summer day.
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3.5.1. Controlled Test

Figure 3.6 shows the test arrangement for the first set of validation experiments. The

source is an Agilent 6813B programmable power supply and the load is a 1/4hp, 4-pole,

single-phase induction machine. The motor is connected to the supply through a 1 kVA,

1:1 isolation transformer, 16AWG cabling, and a high-power potentiometer. Following

each experiment, the motor was disconnected and the impedance was measured using a

high-accuracy impedance analyzer through a set of Kelvin probes. The transformer leak-

age inductance, which is 0.45mH, was found to dominate the reactance in all cases. The

variable resistance was adjusted to demonstrate the effectiveness of the method. The volt-

age and current were sampled at 10kHz using a 16-bit A/D converter.

Impedance estimation was performed using an interharmonic signal produced by ec-

centricity in the rotor. The frequencies of such naturally-occurring signals are given by the

expression [76, 89]

fh = f
[

k
(

1− s
p

)
± s
]

(3.40)

where k/p = 1,3,5,7, ..., f is the supply frequency, s is the slip, and p is the number of

pole pairs. For a four-pole machine, the two relevant signals exist at approximately 30Hz

and 90Hz, respectively. Other terms in Eq. 3.40 can be used to estimate the impedance

at higher frequencies. Note that the fundamental current was approximately 6A, and that

the 30Hz interharmonic was approximately 11mA. Figure 3.8 shows the measured current

spectrum.

Table 3.4 shows the results as the resistance was varied between 1.65Ω and 0.65Ω.

Note that the errors were less than 5% in all cases.

3.5.2. Line-Connected Test

The proposed method has also been tested in the field. Measurements were performed

at a standard 120V electrical outlet in a campus building. The load was the same motor de-
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Figure 3.8: Top: Current spectral density for the test motor.
Bottom: Details of the interharmonics used for impedance estimation.

Table 3.4: Test results for Pure source - Transformer - Resistor - Motor Configuration.

R̂(Ω) R(Ω) Error(%) L̂(mH) L(mH) Error(%)

1.6977 1.65 2.89 0.4586 0.45 1.92

1.4524 1.40 3.74 0.4343 0.45 -3.48

1.1729 1.15 1.99 0.4528 0.45 0.63

0.9160 0.90 1.78 0.4401 0.45 -2.18

0.6306 0.65 -3.08 0.4438 0.45 -1.38
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scribed in Sec. 3.5.1. Measurements were performed at various times throughout a typical

July day in Charlotte, North Carolina. Figure 3.9 shows the voltage recorded at the outlet

during two different motor starts. Note that the voltage sag during the inrush period is sig-

nificantly larger during the afternoon. This difference is the direct result of a higher line

impedance during the afternoon, and it provides clear evidence of the need for measure-

ments over time. Such variations are to be expected as line impedance increases as loading

and temperature increase. Furthermore, it is expected that the impedance is impacted to

some degree by voltage regulation at the feeder level.
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Figure 3.9: Line voltage during motor starting at two different times on a
typical July day. The effect of the changing line impedance is clear.

The line impedance was estimated for both the morning and afternoon cases presented

in Figure 3.9. In the morning, R̂c was 0.60Ω and L̂c was 0.16mH; in the afternoon, R̂c

was 3.55Ω and L̂c was 0.57mH. To validate these results, a simulation was performed in

Matlab. The measured current and impedance values were used to predict the voltage at

the outlet both during and after the motor start. This prediction is given from the equation

v̂(t) = v̂s(t)− R̂ci(t)− L̂c
di(t)

dt
. (3.41)

The source voltage is, of course, difficult to access and thus difficult to measure. Its value

was estimated using the same procedure presented in [42], which assumes that vs(t) is stiff
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Figure 3.10: Predicted (+) and measured (solid line) voltages at the outlet during
the two motor starts considered in Figure 3.9. (a) shows results from the morning, and (b)

shows results from the afternoon.

and that :

vs(t)≈ vs(t−nT ) (3.42)

for small multiples n of the fundamental period T . Using this assumption, measurements

of the outlet voltage prior to the connection of the load provide an estimate of the source

voltage. Denote this estimate as v̂s(t).

Figure 3.10 compares the measured and predicted outlet voltage in the morning and

afternoon cases considered above. Note the close agreement in both cases.
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3.6. Conclusion

This chapter proposes a new nonintrusive method to estimate online grid impedance us-

ing harmonic sources are available in the system. The method was experimentally verified

on many configurations. In simulation, there exists a relatively good correspondence be-

tween the estimated and setting values. As can be observed in experiment case, there also

have a good agreement between the measured voltage and the calculated voltage during

transient. The method does not account for the cases that harmonics source varies to much

during measurement, as well as the case of other loads generate harmonics close to the

frequency of interest. Beyond these assumptions, the estimates using the proposed algo-

rithm are quite match to expectations. The ease of installation, lower cost, and reasonable

accuracy of the method are very valuable features from the utility perspective.



CHAPTER 4: A STABILITY ANALYSIS AND DESIGN FOR GRID-TIED
DIGITAL PFC CONVERTERS

A positive current feedforward compensator for a PFC converter is proposed and demon-

strated. This compensator is applied to a converter with a boost topology operating in con-

tinuous conduction mode with average current control. The compensator adjusts the current

reference in order to counteract the effects of the time-varying source impedance. Experi-

mental measurements verify that the compensator improves the stability of a converter that

is connected to a source with a time-varying impedance. The controller is modified to adapt

with changes of working condition to assure stability of overall system.

4.1. Introduction

The boost topology is a popular choice for single-phase AC-DC preregulators with

high power factor and low current harmonic distortion [25], [37], [23]. The most common

implementation, particularly in high power applications, uses a two-loop control system

with average current mode control [37]. The use of so-called active power factor correction

(PFC) has become increasingly common in response to concerns over the harmonic currents

produced by the many electronic devices now distributed throughout AC power systems.

The performance of a PFC converter depends heavily on the interaction between the

converter and its source [23]. Problems arising from this interaction are common in power

electronic systems. In the past, much attention has been given to the analysis and mitigation

of such interactions in DC systems [26], [60], [28]. Problems can also occur, however,

when PFC converters are placed in AC systems. High-frequency interactions well above

the fundamental line frequency have been reported in several sources, including [23] and

[32]; low frequency interactions resulting from the connection to sources such as small
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generators and UPS devices are reported in [30], [31].

Several approaches have been proposed for mitigating the stability issues that can be

caused by converter-source interactions. Reference [23], for instance, discusses the addi-

tion of an RC damping filter. The simplicity of this approach makes it attractive, but its

effectiveness is limited because the bandwidth of the overall system depends on the output

power, input voltage, and source impedance. If any of these parameters change, as they

often do in practice, the degree-of-stability could still be compromised. Other approaches

include various feedforward compensators [37], [23]. These methods tend to improve per-

formance but do not necessarily guarantee stability if the source impedance is time-varying,

which occurs frequently in practice [90], [91].

This paper demonstrates the effectiveness of a feedforward compensation approach that

is based on input condition monitoring. In the proposed system, the reference current is

modified based on measurements of the time-dependent source impedance. The approach

is shown to prevent instabilities that can result when there are changes in system conditions

or converter loading.

The paper begins by presenting the model for the interaction between the converter and

its source. After analyzing the complete system model, Section III proposes and analyzes

the new feedforward compensator. Section IV demonstrates the effectiveness of the new

approach using several experimental measurements. Conclusions are presented in Section

V.

4.2. Modeling the Source-Converter Interaction

Figure 4.1 shows the block diagram of a typical PFC converter as modified to include

the proposed compensator. The converter itself has a boost topology and is operated using

average current control. The design of the input compensator block is discussed in more

detail in Section III. The focus is first placed on modeling the interaction between the

system and the converter.
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Figure 4.1: Block diagram of a PFC converter using a boost stage
with average current control and an input capacitor C f . Both the source impedance and

the proposed compensator have been included. k1 f , k2 f , and k3 f represent scale factors for
the input voltage, input current, and output voltage, respectively.

4.3. PFC Converter Input Impedance

The PFC converter in Figure 4.1 utilizes a two-loop control structure with an outer

voltage-regulating loop providing a reference to an inner current-shaping loop. The aver-

aged state-space model for the input current is [92]

L
dīg (t)

dt
= v̄g (t)− (1−d(t))v̄o (t) , (4.1)

where the overbars denote local averages and d(t) is the continuous duty ratio. In a well

designed converter operating near periodic steady state, the output voltage exhibits only

small variations and can be treated as a nearly constant voltage source [25], i.e.

v̄o(t) =Vo + v̂o(t) (4.2)

where

|v̂o(t)| � |Vo| . (4.3)
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Substituting Eq. 4.2 into Eq. 4.1 yields

L
dīg (t)

dt
= v̄g (t)− (1−d(t))Vo− (1−d(t))v̂o. (4.4)

When Eq. 4.3 is satisfied, the nonlinear term (1− d(t))v̂o is much smaller in magnitude

than the linear term (1−d(t))Vo. Therefore, the nonlinear term can be discarded to obtain

L
dīg (t)

dt
= v̄g (t)− (1−d(t))Vo. (4.5)

The input current can be expressed in Laplace domain as follows

ig(s) = Gvi(s)vg(s)+Gdi(s)d(s), (4.6)

where the line-to-current transfer function Gvi(s) is

Gvi =
ig(s)
vg(s)

∣∣∣∣
d=0

=
1
Ls

(4.7)

and the control-to-current transfer function Gdi(s) is

Gdi =
ig(s)
d(s)

∣∣∣∣
v̄g=0

=
Vo

Ls
(4.8)

Using the assumptions and results presented previously, the dynamic model of the converter

can be simplified as shown in Figure 4.2. Note that the voltage-loop compensator output

Vc has been assumed to be constant. This is a reasonable approximation since the output

voltage has a very small ripple. Additionally, note that the proposed input compensator has

been removed to simplify the initial analysis.

The simplified block diagram shown in Figure 4.2 can be used to determine the signal
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Figure 4.2: Block diagram for the analog implementation of the control of
the PFC converter shown in Figure 4.1. k1 f (s) and k2 f (s) represent signal-conditioning

filters for the input voltage and input current, respectively. Gdi(s) and Gvi(s) are the
control-to-current and the line-to-current transfer functions, respectively. Gci(s) is the
compensator for the current loop and Fm(s) is the transfer function for the pulse-width

modulator, which is simply a scalar.

relationships inside the converter

ierr(s) = k1 f (s)Vcvg(s)− k2 f (s)ig(s) (4.9)

and

ig(s) = Gci(s)Fm(s)Gdi(s)ierr(s)+Gvi(s)vg(s) (4.10)

Substitute ierr(s) from Eq. 4.9 into Eq. 4.10 and solve for input admittance of the converter.

That admittance can be found as

Yin =
ig(s)
vg(s)

=
1

1+Ti(s)

(
Gvi(s)+

k1 f (s)
k2 f (s)

VcTi(s)
)
, (4.11)

where the open loop transfer function Ti(s) of current loop controller is

Ti(s) = k2 f (s)Gci(s)Fm(s)Gdi(s). (4.12)

To reduce noises in the feedback paths, two first-order filters k1 f and k2 f are applied to the
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measured input voltage and inductor. They are of the forms

k1 f (s) =
k1

τ f vs+1
, k2 f (s) =

k2

τ f is+1
(4.13)

The compensator for the inner current loop Gci is

Gci(s) = Kpi

(
1+

1
τiis

)
(4.14)

It is important to note that the figure depicts an analog implementation of the control sys-

tem. In practice, however, control is often implemented using a digital signal processor. In

those cases, the required bandwidth of the current control loop is comparable to the Nyquist

frequency [90]. This implies that relevant poles and zeros are introduced by both the com-

putational delays and the discretization caused by the digital pulse-width modulator. In this

case, we use continuous-time models of the sample-and-hold at the output of the discrete

controller and the computational delays inside the microcontroller. These models are then

treated as part of the plant model. The zero-order hold at the output of the controller is

modeled by the transfer function

GZOH(s) =

(
1− e−sTs

)
sTs

≈ 1
(1+ sTs/2)

, (4.15)

where Ts is the time between samples [90]. Although the delay between the sampling of

the feedback signals and the application of the resulting reference signal takes less than a

single sampling period, it is difficult to determine how much time is actually required. As

a conservative estimate, we assume that computation requires an entire sampling period.

This is modeled as a time delay of Ts. In the frequency domain, we approximate this using

a first-order Pade approximation[90], i.e.

Gdelay(s) = e−sTs ≈ (1− sTs/2)
(1+ sTs/2)

. (4.16)
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Adding these components, the open-loop transfer function Ti(s) becomes

Ti(s) = k2 f (s)Gci(s)Fm(s)Gdi(s)GZOH(s)Gdelay(s), (4.17)

and the input admittance is modified accordingly.

4.3.1. Source Model

The system to which the converter is connected is modeled as an ideal source behind

a resistance Rs and an inductance Ls. Typically, a filter capacitor C f is also placed on the

input side of the rectifier. The equivalent impedance of this combination is

Zs =
Lss+Rs

LsC f s2 +RsC f s+1
. (4.18)

4.3.2. Model for the Complete System

Although the PFC is designed to work over a large range of input voltages, its perfor-

mance may become degraded or even unstable when it is connected to the power source.

This problem is caused by the interaction with the source impedance, Zs. To model this in-

teraction, we need to know the admittance looking into the input side of the rectifier. This

impedance is defined as vin(s)/iin(s), where vin(s) and iin(s) are the Laplace transforms

of the voltage and current on the input side of rectifier, respectively. Assuming minimal

distortion at the input, this voltage will be of the form

vin(t) =V sin(ωt). (4.19)
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If the converter is operating properly, there should be minimal phase shift between vin(t)

and iin(t) and minimal current harmonic distortion; thus,

iin(t) = I sin(ωt). (4.20)

Under these conditions, the average voltage and current at the output side of the rectifier

will be

v̄g(t) = sgn(vin(t))V sin(ωt) (4.21)

and

īg(t) = sgn(vin(t))I sin(ωt). (4.22)

To determine the input admittance, we can take the ratio of the Laplace transforms of

Eqs. 4.21 and 4.22. Regardless of the sign of vin(t), this ratio will be

iin(s)
vin(s)

=
ig(s)
vg(s)

. (4.23)

According to this result, Eq. 4.11 can be used to represent the overall input admittance of

the converter. Other researchers have made similar assumptions [30],[23].

If we include the source impedance Zs, the system can be modeled as shown in Figure

4.3. The input signal in that model is the source voltage vs and the output signal is the

current ig. The overall source-converter interaction transfer function is thus

Y (s) =
iin(s)
vs(s)

=
Yin(s)

1+Zs(s)Yin(s)
=

Yin(s)
1+Tm(s)

, (4.24)

where Tm(s) is

Tm(s) =
Zs

1+Ti

(
Gvi(s)+

k1 f

k2 f
VcTi

)
. (4.25)

These equations show that the interactions with the source impedance can reduce the

degree-of-stability of the overall system. The Nyquist criterion shows that stability is con-
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Figure 4.3: Analog block diagram of the complete system including
the source impedance Zs.

trolled by the the transfer function Tm(s). Because this function depends on Vc, the overall

degree-of-stability is affected if there is a change in either the power demand or the input

voltage level. In addition, Tm(s) also depends on the source impedance, which is often

unknown. Changes in this quantity, which often occur in practice, can thus impact the

degree-of-stability as well [30], [23]. To demonstrate the impact, we simulated a 350W

converter connected to a single-phase 60Hz source. Figure 4.4 describes the impact of

changes in the source impedance and the input voltage. Frequency responses are shown for

the four different sets of input conditions outlined Table 4.1.

Table 4.1 shows that under normal conditions (i.e. Case 1), the simulated converter

is stable but has a limited phase margin. The worst case scenario is one in which both the

impedance and the voltage are low (i.e. Case 3). Given measurements of the system voltage

and input impedance, the bandwidth of the system can be adapted and such instability can

be prevented. If |Zin(s)| � |Zs(s)| for all frequencies, then the overall system should be

stable and the effect of the source impedance becomes negligible. In practice, it is difficult

for this to be true in all cases, as one does not often typically know the system impedance in

advance. If one designs so that |Zs(s)| is smaller than the magnitude of the input impedance

at all interfaces, then it can become difficult to meet all of the other relevant performance

specifications for the converter. In cases where |Zs(s)| is larger than |Zin(s)|, the Nyquist
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Figure 4.4: Frequency response of Tm as a function of input voltage
and line impedance. Case 1 is indicated with +, Case 2 is a solid line, Case 3 is indicated

with asterisks, and Case 4 is indicated with circles.

Table 4.1: Simulation cases for different input of the PFC converter.

Case # Vin (VAC) Rs (Ω) Ls (mH) PM (deg)
1 120 1.0 0.45 10.2
2 90 1.0 0.45 0.4
3 90 0.25 0.25 -9.5
4 90 3.0 0.65 8.2

criterion must be carefully applied to determine if stability is a problem.

In practice, issues tend to arise because of the nature of Zs. As seen in Eq. 4.18, this

impedance is resonant at a particular frequency. In the neighborhood of this resonant peak,

the magnitude of Zs may rise above the magnitude of Zin. When this happens, instability

can result. Knowing the source impedance, one can use the Nyquist criterion to prevent

such instability. One issue that can arise, however, is that the source impedance is time-

dependent. A method for overcoming this problem is proposed in the next section.
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4.4. Compensator Design

To reduce the effect of the input impedance, one could refer the input voltage feedfor-

ward loop to the voltage source vs as shown in Figure 4.5. The difficulty of measuring vs is

an obstacle, but it can be overcome. To do so, we modify the control system in figure. 4.5

to include the feedforward compensator Gc(s) as shown in Fig. 4.6. The transfer function

vg/vs is the same for both systems as long as the feedforward compensator Gc(s) is of the

form

Gc(s) = kcZs(s), (4.26)

where kc is a fixed scale factor whose value is given by

kc =
IgRMS,nominal

VgRMS,nominal
. (4.27)

With this compensator, the system shown in Figure 4.5 modifies the reference current to

counteract the effects of the source impedance. The difficulty, however, is that this new

component requires periodic measurements of the source impedance. The authors mea-

sure this quantity using the method demonstrated in [93]. In that approach, the source

impedance is determined using small interharmonic currents that are injected by the con-

verter.

With the new compensator, the overall converter input admittance becomes

YinFF(s) =
ig(s)
vg(s)

=
1

1+Ti−GcTi

(
Gvi +

k1 f

k2 f
VcTi

)
. (4.28)

Adding the feedforward term in Eq. 4.28 modifies both the magnitude and the phase of

the admittance in the vicinity of the resonance in Zs. At frequencies well above and below

the resonance, the effect of the term Gc(s)Ti(s) becomes relatively negligible. In those

frequency ranges, the magnitude of Gc(s) is relatively small because it depends on the

magnitude of Zs, which is also also small in those same regions. In the neighborhood of
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Figure 4.5: Analog block diagram of the complete system with the input voltage
feedforward referred to the ideal source vs.
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Figure 4.6: Analog block diagram of the complete system with
the proposed new feedforward compensator.

the resonance, however, the effect of the compensator becomes more significant and both

the magnitude and the phase of the input impedance are changed accordingly. This effect

is observed in Figure 4.7, which shows the magnitude and phase of ZinFF(s), Zin(s), and

Zs(s) for an example converter with the specifications presented in Table 4.2. Note that for

frequencies well above and below the the resonant peak in Zs, ZinFF ≈ Zin.

Although it is clear that the compensator modifies the converter input impedance in

the vicinity of the resonance in the source impedance, stability is best analyzed using the
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Figure 4.7: Magnitude and phase of ZinFF(s), Zin(s), and Zs(s) for the
example converter with the specifications presented in Table 4.2.

Table 4.2: Parameters for the Experimental Converter.

Parameter Value
Nominal Input Voltage, Vin 120VRMS
Nominal Output Power, Po 350W

Output Voltage, Vo 380V
Switching Frequency, fSW 80kHz
Sampling Frequency, fS 40kHz

Inductance, L 1.2mH
Output Capacitance, C 1000µF

Input Filter Capacitor, C f 3.2µF
Source Inductance, Ls 0.75mH
Source Resistance, Rs 0.45Ω

Nyquist criterion. With the compensator, the closed-loop transfer function becomes

Y (s) =
iin(s)
vs(s)

=
YinFF

1+ZsYinFF
=

YinFF

1+TmFF
, (4.29)

where

TmFF(s) =
Zs

1+Ti−GcTi

(
Gvi +

k1 f

k2 f
VcTi

)
. (4.30)
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Figures 4.8 and 4.9 present Nyquist plots for the same converter considered in Fig-

ure 4.7. In the first of these plots, results are shown for a converter without a compensator.

In the latter, the results are shown for the condition in which a compensator has been added.

Clearly, both the phase margin and the gain margin have increased.
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Figure 4.8: Nyquist plot analysis of Tm(s) for the example converter
without the compensator.
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Figure 4.9: Nyquist plot analysis of TmFF(s) for the example converter
with the compensator.

The primary benefit of the proposed approach is that it improves the stability of the
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source-converter interaction without sacrificing the stability of the converter itself. For

instance, it would be possible to modify Zin(s) to prevent instabilities due the source-

converter interaction at all frequencies. The result, however, could likely be a degradation

of the converter’s individual performance. Furthermore, any controller designed to prevent

instability for a known source impedance is not necessarily robust enough to compensate

for changes in the impedance over time. The proposed compensator is able to respond to

such changes.

4.5. Voltage Compensator Design

The outer voltage loop is needed to maintain the output voltage at the desired level.

Because the output voltage contains inevitable second harmonic distortion in single-phase

system [25], bandwidth of voltage loop must be sufficiently lower than line frequency. In

this case it is around 10Hz. Without this, the second harmonics distortion would combine

with the line frequency to create harmonics at the input reference of the current control

loop. The result would be harmonic distortion input current. By restricting the voltage

loop bandwidth, however, the output voltage will respond very slowly to the load changes.

Sags or overvoltages at the output may thus occur. Voltage drops below the maximum input

voltage, controllability may be lost. If the overvoltage on the other hand can overstress the

power components.

To reduce harmonic distortion in the input current and improve dynamic response of

output voltage, several methods were developed. One technique samples the output volt-

age at twice line frequency, where output voltage ripple is zero and DC output voltage is

extracted [94] [95]. The other common method uses a notch filter to attenuate the second

harmonic distortion in the voltage loop [96]. In the lab, a digital notch filter was used to

reduce the second harmonic ripple before the voltage error amplifier input. Because of the
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quantization errors in its coefficients, the digital notch filter is chosen as

H(z) =
1−1.8596z−1 + z−2

1−1.7576z−1 +0.8934z−2 , (4.31)

where voltage sampling frequency is 2 kHz. This frequency was below the switching fre-

quency because the bandwidth of the voltage loop is much lower than the bandwidth of the

current loop controller. With this filter, the voltage loop bandwidth is expanded to 80Hz.

Detailed analysis of the notch filter design is shown in [96]. Experimental results show dy-

namic response of the PFC converter is much faster than the 10Hz bandwidth of the voltage

loop.

4.6. Experimental Results

Impedance 

Estimation - µC1

Power 

Source
PFC Power 

Stage

Zs

PFC 

Controller - µC2

Load

v(t)i(t)

Figure 4.10: Digitally controlled PFC converter with line impedance measurement.

An experimental prototype was constructed in the laboratory. Specifications for this

converter were presented in Table 4.2. Control was performed using the dsPIC30f6010a

microcontroller. The input power source was a Model 6813B single-phase supply from Ag-

ilent. This source was placed behind an adjustable impedance consisting of an inductance

and resistance. To demonstrate the effectiveness of proposed PFC system, we initially de-

signed the current loop bandwidth to be 4kHz, and the voltage loop bandwidth to be 10Hz.

A softstart procedure was implemented to gradually raise the output capacitor voltage from

its precharged level to its final level to limit the current surge. In this example, and line

impedance is estimated during softstart. Estimation of the line impedance is performed by
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injecting a small current at 75 Hz. Figure 4.11 shows the waveforms of PFC converter at

startup. From the figure, it is clear that the converter is stable at the low output levels used

during the early stages of the soft start period (region 1 in the Figure 4.11). For Figure

4.11, the line inductance was 0.75mH, the line resistance was 0.45Ω, and the input voltage

was 120 V. As the output power increased during region 2 in the Figure 4.11, PFC be-

came unstable because of the interaction between line impedance and the converter. After

several seconds, the line impedance was known and ready to be used for the feedforward

compensator. In region 3, PFC was stable again.

Figure 4.11 shows FFT data for input current and voltage during the soft start . Note

that the input voltage contains signal spectral content, one must be careful to inject current

at a frequency at which vin has negligible content. This can be verified prior to injection

using FFT.

Figure 4.11: Voltage and current waveforms during soft start.

Various experiments were conducted to demonstrate the effectiveness of the proposed

compensator. Figures 4.13 and 4.14 show how the system responded following a step
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Figure 4.12: FFT data of voltage and current during soft start.

change in load from 440Ω to 280Ω without the compensator. Instability is apparent in

both figures. Details of the input voltage, input current, and output voltage following the

transient are presented in Figure 4.14. A similar step change in load was applied when

the compensator was in use. The results are presented in Figures 4.15 and 4.16. Clearly,

stability was maintained using the proposed approach. Figure 4.17 shows results for both

a drop in load and a step in load. These were recorded without the notch filter. Current and

voltage waveforms recorded with the notch filter are shown in Figure 4.18. Note that the

output dynamic response is much faster with the notch filter.

4.7. Conclusion

The proposed method cannot cancel all of the effects of the source-converter interaction

because the input impedance has effectively become a part of the power stage. It is clear,

however, that this adaptive method significantly increases the overall degree-of-stability.

The proposed analysis and control method is general and can be implemented in many

other grid-tied converter and inverter topologies, such as Cuk, SEPTIC, and Buck-Boost.

The proposed method is also unlimited by input filter stage, as long as the bandwidth
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Figure 4.13: Input current in response to a step change in load
without the proposed compensator. The load was changed from 440Ω to 280Ω.

Figure 4.14: Input voltage, input current, and output voltage following
the step change shown in Figure 4.13. The input current displays clear instability.

changes due to computational requirements of the current feedforward loop during real-

time operation do not affect the stability of the overall system. This means that the input

filter can be designed as expected to suppress inrush current, and EMI in the grid.
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Figure 4.15: Input current in response to a step change in load with the proposed
compensator. The load was changed from 440Ω to 280Ω.

Figure 4.16: Input voltage, input current, and output voltage following
the step change shown in Figure 4.15. The input current, which is the larger AC waveform

in the figure, is clearly stable.
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Figure 4.17: Current and voltage waveforms when step load changes up and down.

Figure 4.18: Current and voltage waveforms when step load changes up and down
with new voltage loop controller.



CHAPTER 5: DETERMINATION OF HARMONIC SOURCES USING
ONLINE IMPEDANCE MEASUREMENT

5.1. Introduction

Pure sinusoidal waveforms are expected at customer sites. As nonlinear loads have

become more prevalent in the power system, the voltage at the Point of Common Cou-

pling (PCC) is no longer sinusoidal. Harmonic related problems continue to increase due

to the continued growth of power electronics at the point-of-load. These power electronics

include diode rectifiers, and adjustable speed drives that tend to draw harmonic and inter-

harmonic currents at many different frequencies. Harmonic currents injected by nonlinear

loads flow through the network impedance to cause voltage distortion at the PCC. This

voltage distortion affects various locally-connected loads. Figure 5.1, for example, shows

N customers connected to a single PCC. The kth load is connected through impedance

Zk, which represents the equivalent impedances of cables, transformers, circuit breakers,

and other elements. Clearly, a harmonic injected by customer one would impact the cur-

rent drawn by the other N-1 loads because of the harmonic voltage drops in the network

impedance.

Utilities desire to charge customers that cause harmonic distortion. If utilities simply

charge for harmonic distortion, even customers with linear loads will be charged because

of the resulting voltage distortion produced by nearby nonlinear loads. In commercial

buildings and industrial sites, utilities will charge based on the amount of reactive power

which includes harmonics generated in the line [97, 98, 99]. To do so fairly, the true

sources of harmonic currents need to be determined. Without such information, the cause of

harmonic problems cannot be identified, and mitigation schemes cannot be designed until
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the source of harmonics has been identified. Practical and reliable methods for identifying

the polluters are needed to accelerate the mitigation process.

Customer 1

Customer k

Customer n

Power Source

Z0

Z1

Zk

Zn

PCC

Figure 5.1: An example of a distribution power system feeding N customers at the PCC.

The problem with identification is that most customers are using linear loads together

with non-linear loads. The harmonics injected by the nonlinear loads can thus even can-

celled out under these circumstances. Therefore, it is not easy to share the responsibility

for power quality degradation. This problem has been the subject of many publications,

several of which are reviewed below.

5.2. Overview of the Existing Methods

There are several methods designed to determine the source of harmonics in power

systems. This section describes some of the most common.

5.2.1. Active Power Direction Based Method

The most common method to identify harmonic sources is the active power direction-

based method [100],[101],[102]. This is described using the instantaneous power at the
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PCC of a given customer site, which is 1.

p(t) = v(t)i(t). (5.1)

Instantaneous voltage and current at the PCC contain the fundamental component and all

other harmonic components, which are presented as:

v(t) =
∞

∑
h=1

√
(2)Vh cos(hω1t +ϕ

v
h), (5.2)

and

i(t) =
∞

∑
h=1

√
(2)Ih cos(hω1t +ϕ

i
h), (5.3)

where ω1 is the fundamental angular frequency of the supply, Vh and Ih are the respective

rms values of the voltage and current at harmonic frequency hω1, and ϕv
h and ϕ i

h are the

respective phase shifts of the hth harmonic with respect to a common reference.

The active power at the customer’s PCC is thus

PPCC =
1
T

T̂

0

p(t)dt (5.4)

where T is the period of the supply voltage in seconds. If we substitute v(t) and i(t) into

this equation, we obtain

PPCC =
∞

∑
h=1

VhIh cos
(
ϕ

v
h−ϕ

i
h
)

(5.5)

This active power can be divided into active power at the fundamental frequency (P1) and

the active power at all other harmonics (PH); i.e.

PPCC = P1 +PH =V1I1 cos
(
ϕ

v
1−ϕ

i
1
)
+

∞

∑
h6=1

VhIh cos
(
ϕ

v
h−ϕ

i
h
)
. (5.6)

1This section assumes that each customer has several loads at their own internal PCC. The aggregate
current is i(t) and the customer’s PCC voltage is v(t)
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To determine the source of the harmonics, once examines the sign of PH . If PH is

positive, then harmonics flow from upstream to the load side, and thus the utility is the

source. If PH is negative, then harmonics flow upstream and the load is responsible. PH is

zero if linear loads are supplied from ideal sources, where harmonic components are zero.

This method is intuitive and is very common in power quality devices. It has also been

criticized, however, by some researchers. PH depends on the phase shift between voltage

and current at each harmonic. In general, some components will have a positive sign and

some components have negative sign. It follows that the resulting active power PH can

be positive or negative and it can also be zero if the positive and negative components of

the power are equal to each other. For example, an induction machine generates positive

harmonics orders at 3rd , 7th, 11th ..., and negative sign harmonics orders at 5th, 9th, 11th ....

The total harmonic power PH could be negative, positive, or zero depending on the values

of these harmonics. It follows that PH cannot exactly resolve if an induction machine is the

source of harmonics [98].

To avoid cancellation problems, the harmonic phasor index (HPI) was proposed [98].

The harmonic phasor index is defined as

ξHPI =

√
∑

h|Ph<0
I2
h√

I2
1 + ∑

h 6=1|Ph>0
I2
h

=
IT HDL√
1+ I2

T HDs

, (5.7)

where IT HDL denotes the norm of harmonic orders h for which harmonic active power is

negative (Ph < 0) and IT HDS denotes the norm of harmonic orders for which harmonic

active power is positive (Ph > 0). If the loads generate harmonics and the supply system

has background distortion, the harmonic phase index is generally greater than zero. The

greater the index, the greater the responsibility of the customer; conversely, the lower the

index, the greater the responsibility of the utility. This method refers only to currents, and

the separation of terms in the numerator and the denominator depends on the sign of the
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active power components. If the components contain errors, the final conclusion could be

far from the correct answer as a result of the ratio effect.

If the contribution of harmonic distortion at the h-th harmonic frequency is a concern,

then one could attempt to use a variation on the active power direction method [103] to

measure the magnitude of the harmonic voltage Vuh at the utility side and the magnitude

of the voltage Vch at the customer side. This is done in [103]. If Vuh is large, the utility

is the primary pollutant; otherwise it is the customer. the active power method is not an

indicator of the main harmonic source [103]. This method can fail because active power

depends on the phase angle between two harmonic sources, rather than the magnitude of

the contribution. The equation for the simple case of a power system with only significant

reactive impedance is

P =VuhIh cosθ =
VuhVch

X
sinδ (5.8)

where Vuh and Vch are the harmonic voltages contributed by the utility and the customer

at the PCC, respectively, and δ is the phase angle between the two voltages at the h-th

harmonic frequency. From this equation, it is clear that this variant of the active power

direction-based harmonic source detection method is incorrect theoretically, as it cannot

reveal the difference between the magnitudes of the two sources.

A new single-point method based on harmonic powers different from the active power

was published recently. This proposal has the aim of identifying the harmonic source by

comparing some non-active powers, i.e. the fundamental reactive power, Fryze’s reactive

power, and the quadrature reactive power proposed by Sharon [104]. Mazumda proposed

a method to determine current THD and harmonics sources based on neural network the-

ory [45].

5.2.2. Critical Impedance based method

The critical impedance based method has been proposed to determine whether the util-

ity or the customer is the main source of current harmonics. Rather than evaluating the
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active power direction, this method estimates reactive power at each harmonic order.

In the Thevenin equivalent circuit shown in the Figure 5.2, the problem of determining

the dominant harmonic source is equivalent to the investigation of the relationship between

magnitude of harmonic voltages Vch and Vuh. In this circuit, the phase angle of Vuh is

defined to be zero and that of Vch is denoted as δ . The total impedance Zh is the sum of

the customer side impedance Zch and the utility side impedance Zuh referred to the PCC. In

order to calculate the Critical Impedance index, the utility impedance Zuh and the customer

impedance Zch should be approximately known.

Vch /δ Vuh /0

Zh = Zch +Zuh

Ih /-θ PCC

Zch Zuh

Figure 5.2: Thevenin equivalent circuit for utility and load system.

Consider the simplified case in which the impedances are purely reactive, that is |Zch|

= Xch, |Zuh| = Xuh. Reactive power exchanged in the power system mainly depends on the

magnitude of the voltage sources and is calculated as [47]

Quh = Im(V̄uhĪ∗h ) =
Vuh

Xuh +Xuh
(Vch cosδ −Vuh) . (5.9)

From this equation, reactive power can be used to determine the direction of harmonic

voltage and therefore, harmonic current between the utility and the customer. For exam-

ple, if the utility absorbs reactive power Quh > 0, Vuh must be smaller than Vch. In other
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words, one can conclude that the customer side has a larger contribution to the harmonic

current distortion Ih at the PCC. If Quh < 0, the reactive power from the utility may not

reach the customer because the total reactive impedance Xuh+Xch absorbs reactive power.

Thus, additional investigation must be performed to determine which source of harmonics

is dominant in the power system.

This method presumes the total impedance Zh = jXh defined as ‘line impedance’ is

uniformly distributed between the sources Vch and Vuh. The amount of impedance in this

line which absorbs all of reactive power Quh from the utility is:

x =−Quh

I2
h

(5.10)

The necessary and sufficient condition for Quh < 0 is proven as [105]:

• If x is located closer to the customer side (x > Xh/2), the utility source is expected

to have a larger magnitude (Vuh > Vch) since the source can ‘push’ its reactive power

output beyond half (Xh/2) of the ‘line impedance’.

• If x < Xh/2 or x is located closer to the utility side, the customer source is expected

to have a large magnitude (Vch > Vuh).

A method to determine the relative magnitude of the two sources can, therefore, be es-

tablished on the basis of comparing the magnitudes of x and Xh/2. The Critical Impedance

index is defined as:

CI =−2x = 2
Quh

I2
h

(5.11)

Knowledge of the utility impedance Zuh and customer impedance Zch is required, though

these values change unpredictably in the power system. Thus, the method assumes that
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these values lie in a known range, in this case [Xhmin, Xhmax]. In order to determine whether

the utility or customer is mainly responsible for the harmonic current distortion, the fol-

lowing procedure is proposed:

1. If CI > 0 (Quh > 0), the customer side is the dominant harmonic current source at the

PCC.

2. If CI < 0 (Quh < 0), the following cases are considered:

(a) if |CI| > Xhmax, then x > Xhmax/2, and the utility side is the dominant harmonic cur-

rent source at the PCC;

(b) if |CI| < Xhmin, then x < Xhmin/2 , and the customer side is the dominant harmonic

current source at the PCC;

(c) if Xhmin < |CI| < Xhmax, it is not possible to conclude which entity is the dominant

harmonic current source at the PCC.

In general, the resistance of the power line is not negligible, and the impedance has the

form of Z = R+ jX . The Critical Impedance index derived above can be generalized by

taking into account the total harmonic impedance Zh and its phase angle β . A transformed

reactive power Qt
uh will replace Quh to investigate the dominant harmonic source. The

generalized Critical Impedance index becomes:

CI = 2
Qt

uh

I2
h

= 2
Vuh

Ih
sin(δ +β ) (5.12)

Once the approximate range of the total impedance Zh is known, the CI index value can

be obtained and the above procedure can be applied by substituting the impedances for the

reactances.

The Critical Impedance (CI) index can be used to determine the responsibility of har-

monic current at the PCC. To determine which harmonic voltage source is the dominant

harmonic source at the PCC, the similar Critical Admittance (CA) index can be used.

As previously shown, the relationships defining the indices require knowledge of the

measured voltage and current waveforms at the PCC, as well as the harmonic impedances
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of both the utility supply system and the customer installation as seen from the PCC. While

the two former quantities are measured easily, for example, using Fourier analysis, the har-

monic impedances of the utility and the customer are time varying and difficult to measure.

This chapter utilizes the online impedance measurement method proposed in Chapter 3 to

determine whether the utility or the customer is the dominant harmonic source in the power

system.

5.3. Proposed Method for Determination of the Main Harmonics Sources

This section presents a method for determining the main harmonic source using the

‘critical impedance’ based method. The Thevenin equivalent circuit seen by the k-th cus-

tomer is shown in the Figure 5.3(a) where Vks is the equivalent source voltage at the k-th

customer, Zks is the equivalent grid impedance at k-th customer, Zkl is the load impedance

of the k-th customer, and Ikl is the harmonic current injected by the k-th customer.

Vks

Zks

ZklIkl

(a)

Zks

ZklIm

IklIks

a

b

+

-

Vkl

(b)

Figure 5.3: (a) Equivalent circuit at k-th load
(b) The impedance measurement architecture.

The original paper about this method assumed that impedances of the source side and

load side are known. This assumption may be reasonable in some cases, but not always.

As loads and sources are connected/disconnected at any time, the value of impedances also
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vary unpredictably. Consequently, the need to assume impedances in the source side and

load side limit the ‘critical impedance’ based method.

5.3.1. Load and source impedance measurement

One of the main advantages of the method discussed in this section is the ability to

determine harmonic sources at any point in the power system. For instance, the utility can

install a device at the PCC to determine whether customers inject harmonics into the grid

or if the distortion is preexisting. On the other hand, a customer who wants to avoid extra

charges for the amount of harmonics they do not consume can integrate the measuring unit

at its power entry module.

Figure 5.3(b) shows the architecture for measuring both the utility and load side impedances

at the same time. A small alternating current Im is injected between point a and point b. A

current Ikl flow to the load and an current Iks flows to the utility. These currents are moni-

tored along with the voltage vkl to estimate Zks and Zkl . It is wroth noting that to estimate

the impedance at certain harmonics, the frequency of the injected current should be close

to the harmonic frequency. In the example considered below, the 3rd harmonic component

is monitored and the injected frequency is at 175 Hz.

In general, the load impedance is much larger than the source impedance, so that the

current flowing to the load is much smaller than the current flowing to the source, making

the measurement an obstacle. This difficulty can be overcome by using the MLE impedance

measurement method presented in Chapter 3.

5.3.2. Application of ‘critical impedance’ based method

Using the ‘critical impedance’ based method requires calculation of the equivalent pa-

rameters at the appropriate harmonic frequency. Figure 5.4(a) shows an equivalent circuit

for h-th harmonic at the k-th consumer load.

The phasor diagram shown in Figure 5.4(b) indicates that the voltage drop on the grid
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Figure 5.4: (a) Equivalent circuit for h-th harmonic at the k-th customer.
(b) Phasor analysis of the circuit.

impedance Zks is calculated as

VZks =
√

V 2
Lks

+V 2
Rks. (5.13)

The magnitude of the equivalent voltage source is

Vks =
√

V 2
Zks

+V 2
abk−2VZksVabk cos(π−ϕ3−ϕ4). (5.14)

The phase shift between the source voltage and vabk is determined trigonometrically as

sin(ϕ2) =
VZks

Vabk
sin(π−ϕ3−ϕ4) . (5.15)

The phase angle of the equivalent voltage source is

ϕ1 = ϕ3−ϕ2, (5.16)

so that the equivalent voltage source at the hth harmonic will be in the form of

vks =Vks cos(hωt +ϕ1). (5.17)
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where ω is the angular velocity of the fundamental frequency. The ‘critical impedance’

based method determines the sources of harmonics by comparing the critical impedance

(CI) index with the magnitude of system impedance |Ztotal |. The CI is calculated from:

CI = 2
Vabk

Ik
sin(ϕ1 +β ) . (5.18)

where

β = tan−1
(

Xkl +Xks

Rkl +Rks

)
. (5.19)

The magnitude of the total system impedance is:

|Z|=
√

(Xkl +Xks)
2 +(Rkl +Rks)

2. (5.20)

The conclusions are thus:

• If CI > |Z|, then the utility side is the main source at the h-th harmonic.

• If CI < |Z|, then the load side is the main source at the h-th harmonic.

In addition of measuring impedances, this proposed method has other advantages over the

method in the original paper [105]. Most importantly, the accuracy and online nature of the

proposed measurement scheme are highly beneficial. The error in determining the source

of harmonics can thus be reduced.

5.3.3. Simulation Results

In order to verify the proposed method, a simulation circuit was built using Mat-

lab/Simulink as shown in the Figure 5.5. In this example, three types of loads were con-

nected to the PCC and supplied by the pure sinusoidal source. One load is purely resistive

load (i.e. lamp load), one load is a DC motor connected through a full bridge rectifier;

the other load is an AC induction machine connected through an AC/AC converter. The
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Table 5.1: Simulation results for determining of harmonic sources.

Load V1 I1 φ1R V1S φ1 β CI |Z|
Lamp 11.39 0.12 0.0 11.39 0.0 1.56 −194.30 97.16

Rectifier 12.38 3.02 0.58 14.56 0.32 0.72 −8.29 17.12
Drive 11.72 2.64 1.13 11.79 0.75 1.34 −7.71 6.08

impedances take into account all cables, transformers, and circuit breakers. A non-interrupt

meter measures current, voltage, and estimates equivalent load and source impedances. The

simulation results for determining the source of 3rd harmonic at 3 different loads measured

are shown in the Table 5.1.

Lamp

Rectifier Load Machine Drive

Zsource

Zline1 Zline2 Zline3

Figure 5.5: Simulation circuit for determination of harmonics sources.

Several conclusions about harmonic sources can be drawn from the Table 5.1

• Load 1 absorbs 3rd harmonic power from the utility (because |CI| > |Z|).

• Load 2 is the main 3rd harmonic source (because |CI| < |Z|).
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• Load 3 absorbs 3rd harmonic power from the utility, but also generate harmonics to

grid (because |CI|≈|Z|). This conclusion can not be drawn by previous Critical Index

method [105], because the method shown in this section has be able to measure

absolute value of impedance and does not need to assume range of impedances.



CHAPTER 6: CONCLUSIONS AND FUTURE WORKS

6.1. Conclusions

The sustainability and reliability of modern power systems has necessitated the use of

switched-mode converters and power electronics based distributed systems. Despite the

many advantages of the PEBDS, they have also presented challenges for system designers

in guaranteeing reliable operations, stability and performance of the systems in terms of

different design issues and impedance interactions that must be considered. The interaction

of impedances within the systems may compromise the stability and performance of the

individual converters and systems. Previous work on this topic focused relied heavily on

the a priori information of impedances to proposed conservative requirements of power

electronics designs. As the modern power systems are highly dynamic, the systems can be

changed unpredictably; any change thus leads to instability of the power electronics and

the instabilities can propagate throughout the network. Moreover, conventional impedance

measurement schemes require complex, expensive devices and large disturbances signals.

These have been limiting factors in many applications. This thesis presents a possible

solution for the incorporation of high levels of power electronics in power systems.

The first contribution of this thesis is a practical and systematic technique to determine

one of the key harmonic parameters in power systems, network impedance. The method

is practical, efficient and experimental results shown better accuracy than other popular

methods. The implementation cost is not significant, and can be implemented with hand-

held clip-on devices. Additional scientific contribution on this topic can be summarized as

follows:
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• Network impedance is measured under energized conditions without any requirement

of external disturbances. The signals used to estimate of network impedance already

existed in a network with high levels of power electronics.

• Only input current is needed, so the error of the measurement process is much re-

duced in compared with the traditional FFT method, which calculates ratios of FFT

for both input voltage and current.

• The proposed method for detection of small signals is benefited from a technique

common in non-coherent receivers, a so-called Maximum Likelihood Estimation

(MLE). The power line is the communications channel, a small interharmonic signal

is circulated on this channel between the nonlinear load and the network. The in-

terharmonic signals that needs to be detected is several orders of magnitude smaller

than the fundamental and other harmonics components.

• A new MLE algorithm is proposed to increase the accuracy of estimation of the small

signal and to avoid burdensome calculations. Compared to a brute-force search, the

proposed algorithm for the detection of small signal reduces significant search space,

e.g., hundred thousand times for 1µHz frequency resolution.

The second contribution of the thesis is to improving the stability of a grid-connected

Power Factor Converting (PFC) converter in the modern power systems. This work demon-

strates common interaction problems and provides a solution which can be applied for sta-

bility of many power converters connected in the highly dynamic power systems. With

this method, the power converter controller can be autotuned adaptively on-line with few

additional resources and minimum interfering with the current system, paving the way to

successful commercial application. The main scientific contribution on this topic can be

summarized as follows:

• Modeling input impedance of the boost PFC converter is block-based method. The
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model explains the structure of the converter input admittance, and set a groundwork

for development of stability analysis for power converters.

• A new adaptive compensator is proposed for stabilization of the PFC converter, when

the input voltage, output power or network impedance are change. The method ben-

efits from online impedance information which is measured in the previous work,

and an adaptive compensator contains that information as a reflection of network

dynamic.

• A digitally controlled PFC converter is built in laboratory which embedded new adap-

tive compensator. This digital power converter provides a flexible ability, and can be

applied for different network impedance models and also different input filter stages.

This method is straightforward, can be implemented in many other power converter

topologies.

• This method is useful in applications of high level of power electronics such as all

electric ship, vehicle, and aircraft power system. The adaptive converter is load-

invariant and line-voltage-invariant.

The third contribution of this thesis is the determination of source harmonics in the

power systems. Standards like IEEE 519 provide guidelines for controlling harmonic dis-

tortion levels that divide the responsibility between the utility and the customer. The utility

has to maintain voltage distortion at the PCC below the specified limits and the customer

has to limit the amount of harmonic current injection onto the utility system. However,

disputes may arise between utilities and customers regarding who is responsible for the

harmonic distortions due to the lack of a reliable single index which can precisely point

out the source of the harmonic pollution. The information about the source of harmon-

ics using a ’Critical impedance’-based method could be used to penalize the offending

customer. The measurement of load impedance and source impedance proposed in this re-

search avoids disconnecting or disrupting the operation of any loads from the system. On a
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practical system the determination of network disturbance sources could be carried out on a

DSP. A suitable A/D interface is required for acquiring the measured values of voltages and

currents. Such a system could be installed permanently or be portable from one customer

to another in order to simply monitor pollution levels at a particular PCC in the network.

6.2. Future Works

The accurate estimation of network impedance is fundamental in characterizing fre-

quency responses, power flow analysis, and stability analysis of power systems. The on-

line impedance measurement method can be extended to unbalanced three phase systems.

Working with real measurements significantly increases the difficulty level of power sys-

tem parameter estimation. Implementation issues such as the energy of the disturbance,

phase shift, channel synchronization and load variation have an important influence on the

reliability of the results.

Network impedance studies are important stepping stone for developing potential appli-

cations such as harmonics propagations, and assessing harmonic limits, harmonic sources

determination, which has been explored in the thesis. Future research could focus on quan-

tifying the relative impact of each source. After the harmonic sources contained in both

the customer and utility systems have been determined, the harmonic contributions due to

a customer and its supply system could be the next step in the harmonic analysis.

Microgrid systems can operate in grid-connected mode or isolated mode. Some tran-

sient problems occur during the transition between stand-alone mode and grid-tied mode.

Islanding detection and resynchronization methods could be a good research topic for the

future. Improving the stability of other power electronics in grid-tied applications such as

FACTS (STATCOM, UPFC, etc.) could also be looked at in the future. These devices are

designed assuming a strong source, and the dynamics of the grid are ignored. However, in

many cases, the grid is not stiff, and the dynamics will affect the control performance as

well. Impedance, capacitance and resistance are the fundamental components of all power
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systems and power electronics. Knowledge about these components will have numerous

applications in practice. These components are dependent upon time, frequency, tempera-

ture, power level and so on; more powerful methods taking account to these factors could

be a future research topic.
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APPENDIX A: IMPEDANCE MEASUREMENT SYSTEM

A.1. Simulation Model for Impedance Measurement

A simulation model of in MATLAB/SIMULINK has been considered for the evaluation

of the performance of the proposed estimation method, taking into account a complete

circuit model which emulates the physical system available in the laboratory. The model

consists of a 2 pole pairs single phase induction machine 1/4Hp in the type of Capacitor

start - Capacitor run connected to grid. To simulate the current disturbances generated by

the induction machine, a sinusoidal varying load is applied to the machine as described in

the Chapter 3. A isolation transformer operating in the saturation mode to generate 3rd, 5th,

7th, ... harmonics as observed in the practical voltage and current at the PCC. Quantizers

with step of 10ms are used for simulating of the ADC converters. Figure A.1 shows a

simulink diagram.

Figure A.1: Simulation model for impedance measurement system.

A.2. Laboratory Measurement Setup

The controlled-test for impedance measurement system was constructed in labratory

with the same configuration as using in simulation. Figure A.2 represents this measurement
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system. A power function generator Agilent 6813B supplies 120VAC to an induction ma-

chine Dayton 6K438BA 1/4Hp. The function generator provides abilities of programmable

output impedance and programmable output voltage harmonics. Isotation transformer

Stancor GIS-1000 115V/115V connects the induction machine and the the power func-

tion generator. A variable power transistor and inductor are also used in the controlled-test

phase. Source impedance thus accounts for impedance of wire, transistor, inductor, trans-

former and programmable output impedance from the power suply. In controlled-test, this

impedance is measured by a high accurate Ohm-meter. LEM sensors LV-20P and LA-55P

collect voltage and current at the induction machine terminals. A 16 bits ADC converter

ECON DT9816 sampled at 10kHz is used to convert these voltage and current signal and

transfer to a PC. In the figure, Rc and Rv are the measurement resistors.

Transformer

LV20-P

ADC

DT9816

LA55-P R L

Function 

Gen.

Ch 0

Ch 1

Rc Rv

USB

Figure A.2: Impedance measurement system in laboratory.

A.3. MATLAB Code for Grid Impedence Estimation

This section contains the variety of code needed to estimate the grid impedence.

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

% G r i d I m p e d a n c e E s t i m a t i o n P r o g r a m

% C r e a t e d b y : V i e t − P h o n g T r a n

% L a s t e d i t e d : 2 0 1 0 F e b r u a r y , 1 2

% @ C o p y r i g h t @ r e s e r v e d
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% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

f u n c t i o n G r i d E s t i m a t i o n ( f i l e n a m e )

x = load ( f i l e n a m e ) ; % v − i

v o l t = x ( : , 1 ) ;

c u r r = x ( : , 2 ) ;

Rm_v = 820 ;

R _ l i n e = 33000 ;

Rm_i = 2000 ;

s f = 1000 ;

u0 = r e s c a l e _ v _ d a t a ( v o l t , Rm_v , R _ l i n e ) ;

i 0 = r e s c a l e _ i _ d a t a ( c u r r , Rm_i , s f ) ;

% = = = = = = = = = = = = = = = = = = = = = V a r i a b l e s = = = = = = = = = = = = = = = = = = = = =

f s = 10000 ;

L = 30000 ;

i f 9 0 = 2 1 0 . 0 ;

f o r n = 0 :25

M90 = round ( 1 / mean ( i f 9 0 ) ∗ f s ∗n ∗9 0 + 0 . 5 ) ;

L90 = round ( 1 / mean ( i f 9 0 ) ∗ f s ∗360) ;

t 9 0 = ( 0 : 1 : L90 ) ∗1 / f s ;

[ i 9 0 ( n +1) , i f 9 0 ( n +1) , i p90 ( n +1) ] = ↘

→FFT_iMag_ iFreq_ iPhase_Sea rch ( t90 , 9 0 . 0 , i 0 (M90 : 1↘

→ : M90+L90 ) ) ;

vc90 ( n +1) = V o l t a g e _ C o r r e l a t i o n ( t90 , i f 9 0 ( n +1) , ↘

→ i p90 ( n +1) , u0 (M90 : 1 : M90+L90 ) ) ;
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vs90 ( n +1) = V o l t a g e _ C o r r e l a t i o n _ Q u a d r a t u r e ( t90 , ↘

→ i f 9 0 ( n +1) , i p90 ( n +1) , u0 (M90 : 1 : M90+L90 ) ) ;

r90 ( n +1) = vs90 ( n +1) / i 9 0 ( n +1) ;

x90 ( n +1) = vc90 ( n +1) / i 9 0 ( n +1) ;

l 9 0 ( n +1) = x90 ( n +1) / ( 2 ∗ pi ∗ i f 9 0 ( n +1) ) ;

end

R = mean ( r90 )

L = mean ( l 9 0 )

c l e a r a l l ;

f u n c t i o n [ mag , f r e q , phase ] = FFT_iMag_ iFreq_ iPhase_Sea rch (↘

→ t , f _ i n i t , Data )

[ mag , f r e q , phase ] = f i n e _ s e a r c h ( t , Data , f _ i n i t ) ;

f u n c t i o n [ mag , f r e q , phase ] = f i n e _ s e a r c h ( t , Ysearch , ↘

→ f _ i n i t )

f _ m i d l e = f _ i n i t ;

f o r j = 1 : 5

f o r i = −10:10

f = f _ m i d l e + i ∗ ( 0 . 1 ) ^ ( j ) ;

i r e f _ c o s = 2∗ cos (2∗ pi ∗ f ∗ t ) ;

c o r r _ c o s = i r e f _ c o s ’ . ∗ Ysearch ;

yn_cos = 2∗ c o r r _ c o s ;

a v e r _ y n _ c o s = mean ( yn_cos ) ;

i r e f _ s i n = 2∗ s i n (2∗ pi ∗ f ∗ t ) ;
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c o r r _ s i n = i r e f _ s i n ’ . ∗ Ysearch ;

y n _ s i n = 2∗ c o r r _ s i n ;

a v e r _ y n _ s i n = mean ( y n _ s i n ) ;

q ( i +11) = ( a v e r _ y n _ c o s ^2 + a v e r _ y n _ s i n ^2 ) ;

end

[ out , i ndx1 ] = max ( q ) ; % s e a r c h f o r m a x i m u m o f q , ↘

→ r e t u r n i n d e x o f m a x ( q )

k = indx1 −11; % t r u e v a l u e o f i

f _ m i d l e = f _ m i d l e + k ∗ ( 0 . 1 ) ^ ( j ) ;

end

f r e q = f _ m i d l e ;

mag = s q r t ( o u t ) ;

phase = atan ( a v e r _ y n _ c o s / a v e r _ y n _ s i n ) ;

f u n c t i o n [ vmag , v f r e q , vphase ] = FFT_vMag_vFreq_vPhase ( t , ↘

→ f r e q , v o l t a g e )

vs = 2∗ s i n (2∗ pi ∗ f r e q ∗ t ) ;

v c o r s = vs ’ . ∗ v o l t a g e ;

y c o r s = 2∗ v c o r s ;

v s i n = mean ( y c o r s ) ;

vc = 2∗ cos (2∗ pi ∗ f r e q ∗ t ) ;

v c o r c = vc ’ . ∗ v o l t a g e ;

y c o r c = 2∗ v c o r c ;

vcos = mean ( y c o r c ) ;

vphase = atan ( vcos / v s i n ) ;

vmag = s q r t ( vcos ^2+ v s i n ^2 ) ;

v f r e q = f r e q ;
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f u n c t i o n vcos = V o l t a g e _ C o r r e l a t i o n ( t , f r e q , phase , v o l t a g e ↘

→ )

v r e f = 2∗ cos (2∗ pi ∗ f r e q ∗ t + phase ) ;

vco r = v r e f ’ . ∗ v o l t a g e ;

yco r = 2∗ vco r ;

vcos = mean ( yco r ) ;

f u n c t i o n v s i n = V o l t a g e _ C o r r e l a t i o n _ Q u a d r a t u r e ( t , f r e q , ↘

→phase , v o l t a g e )

v r e f = 2∗ s i n (2∗ pi ∗ f r e q ∗ t + phase ) ;

vco r = v r e f ’ . ∗ v o l t a g e ;

yco r = 2∗ vco r ;

v s i n = mean ( yco r ) ;

A.4. MATLAB Code to Rescale Current Data

f u n c t i o n i o u t = r e s c a l e i d a t a ( i i n , Rm, s f )

i o u t = i i n / (Rm∗ ( 1 / s f ) ) ; % T h i s i s t h e R M S v a l u e o f t h e ↘

→ c u r r e n t

A.5. MATLAB Code to Rescale Voltage Data

f u n c t i o n vou t = r e s c a l e v d a t a ( vin , Rm, R _ l i n e )

vou t = v i n /Rm∗ ( 1 / 2 . 5 ) ∗R _ l i n e ; % T h i s i s t h e R M S v a l u e o f ↘

→ t h e c u r r e n t
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APPENDIX B: PROTOTYPE OF THE ADAPTIVE PFC CONVERTER

B.1. Simulation of Adaptive Control PFC Converter

The stability analysis is done first on MATLAB. Gain Margin, Phase Margin are re-

ceived by Nyquist or Bode plot. This section shows the code to test the feasibility of the

proposed adaptive control method.

f u n c t i o n S t a b i l i t y _ A n a l y s i s _ F u l l

c l e a r a l l

syms s Kv Tv Kcs C R L Dp Io Vo Fm Vc kso hso Po Ug wn Qn ↘

→Ts Tk k T f i Tfv ;

Gci = Kcs∗Kv∗ ( 1 + 1 / ( Tv∗ s ) ) ;

Gvi = (R∗C∗ s +1) / ( R∗L∗C∗ s ^2 + L∗ s + R∗Dp^2) ;

Gdi = Vo∗ (R∗C∗ s +2) / ( R∗L∗C∗ s ^2 + L∗ s + R∗Dp^2) ;

He = 1 + s / ( Qn∗wn ) + s ^ 2 / wn ^ 2 ;

GZOH = 1 / ( 1 + s ∗Ts / 2 ) ;

eTsk = (12−6∗ s ∗Tk +( s ∗Tk ) ^2 ) / ( 1 2 + 6∗ s ∗Tk +( s ∗Tk ) ^2 ) ;

Hf i = 1 / ( T f i ∗ s + 1) ;

Hfv = 1 / ( Tfv∗ s + 1) ;

hs = hso ∗Hfi ;

ks = kso ∗Hfv ;

Ti = hs ∗Gci∗Fm∗Gdi∗GZOH∗k∗ eTsk ;
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Yin = Gvi / ( 1 + Ti ) + ( ks / hs ) ∗Vc∗Ti / ( 1 + Ti )

%

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

c l e a r a l l

g l o b a l s Kv Tv Kcs C R L Dp Io Vo Fm Vc kso hso Po Ug wn Qn↘

→ Ts Tk k T f i Tfv ;

Vo = 380 ;

Io = 0 . 9 0 4 8 ;

Po = Vo∗ Io ;

R = 420 ;

L = 1 . 2 e−3;

C = 1e−3;

hso = 1 / 9 . 6 ;

Fm = 1 ;

kso = 1 / 2 0 0 ;

T f i = 1 . 232 e−6;

Tfv = 5 . 6 e−6;

k = 0 . 8 5 1 ;

f s = 40 e +3;

Ts = 1 / f s ;

Tk = 0 .45∗ Ts ; % c a l c u l a t i o n + p h o t o i s o l a t i o n

Qn = −2/ pi ;

wn = pi / Ts ;
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Ug = 120 ;

Ls = 0 . 4 5 e−3;

Rs = 1 . 0 ;

Cs = 3 . 2 2 e−6;

Rc = 470 e +3;

Kv = 0 . 4 5 ;

Tv = 409 .45 e−6;

Kcs = 1 ;

Vc = ( hso / kso ) ∗Po / Ug ^ 2 ;

Ugt = 115 ;

Dp = Ugt / Vo ;

s = t f ( ’ s ’ ) ;

Yin = Tmx( Ug , Kcs ) ;

Zin = 1 / Yin ;

Zs = Rc ∗ ( Ls∗ s+Rs ) / ( Rc∗Ls∗Cs∗ s ^2 + ( Ls+Rs∗Rc∗Cs ) ∗ s + Rs + Rc↘

→ ) ;

Tm = Yin∗Zs ;

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

Ug = 9 0 ;
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Kcs = 1 ;

Yin = Tmx( Ug , Kcs ) ;

Ls = 0 . 4 5 e−3;

Rs = 1 . 0 ;

Zs2 = Rc ∗ ( Ls∗ s+Rs ) / ( Rc∗Ls∗Cs∗ s ^2 + ( Ls+Rs∗Rc∗Cs ) ∗ s + Rs + ↘

→Rc ) ;

Tm2 = Yin∗Zs2 ;

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

Ug = 9 0 ;

Kcs = 1 ;

Yin = Tmx( Ug , Kcs ) ;

Ls = 0 . 2 5 e−3;

Rs = 0 . 2 5 ;

Zs3 = Rc ∗ ( Ls∗ s+Rs ) / ( Rc∗Ls∗Cs∗ s ^2 + ( Ls+Rs∗Rc∗Cs ) ∗ s + Rs + ↘

→Rc ) ;

Tm3 = Yin∗Zs3 ;

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

Ug = 9 0 ;

Kcs = 1 ;

Yin = Tmx( Ug , Kcs ) ;
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Ls = 0 . 6 5 e−3;

Rs = 3 . 0 ;

Zs4 = Rc ∗ ( Ls∗ s+Rs ) / ( Rc∗Ls∗Cs∗ s ^2 + ( Ls+Rs∗Rc∗Cs ) ∗ s + Rs + ↘

→Rc ) ;

Tm4 = Yin∗Zs4 ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

p = b o d e o p t i o n s ;

p . MagUnits = ’dB ’ ;

p . F r e q U n i t s = ’Hz ’ ;

p . gr id = ’ on ’ ;

p . XLimMode = { ’ Manual ’ } ;

p . x l im = {[2 e+3 1 e + 4 ] } ;

h2 = f i g u r e ( 2 ) ;

hold on

b o d e p l o t (Tm, ’−+k ’ ,Tm2 , ’−.k ’ ,Tm3 , ’−∗k ’ ,Tm4 , ’−ok ’ , p ) ;

[Gm, Pm, Wg, Wp] = margin (Tm) ;

Phase1 = Pm

f c i = Kv∗ 1 / 9 . 6 ∗ 3 8 0 / ( 2 ∗ pi ∗1 . 2 e−3)

[Gm, Pm, Wg, Wp] = margin (Tm2) ;
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Phase2 = Pm

[Gm, Pm, Wg, Wp] = margin (Tm3) ;

Phase3 = Pm

[Gm, Pm, Wg, Wp] = margin (Tm4) ;

Phase4 = Pm

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

Ug = 9 5 ;

Kcs = 1 ;

Yin = Tmx( Ug , Kcs ) ;

Ls = 0 . 2 5 e−3;

Rs = 0 . 4 5 ;

Zs3 = Rc ∗ ( Ls∗ s+Rs ) / ( Rc∗Ls∗Cs∗ s ^2 + ( Ls+Rs∗Rc∗Cs ) ∗ s + Rs + ↘

→Rc ) ;

Tm3 = Yin∗Zs3 ;

Kcs = 0 . 7 5 ;

Yin = Tmx( Ug , Kcs ) ;

Tm31 = Yin∗Zs3 ;

Kcs = 0 . 5 ;

Yin = Tmx( Ug , Kcs ) ;

Tm32 = Yin∗Zs3 ;
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Kcs = 0 . 2 ;

Yin = Tmx( Ug , Kcs ) ;

Tm33 = Yin∗Zs3 ;

f c i = Kcs∗Kv∗ 1 / 9 . 6 ∗ 3 8 0 / ( 2 ∗ pi ∗1 . 2 e−3)

h2 = f i g u r e ( 3 ) ;

hold on

b o d e p l o t (Tm3 , ’−y ’ ,Tm33 , ’−k ’ , p ) ;

[Gm, Pm, Wg, Wp] = margin (Tm3) ;

Phase3 = Pm

f c i = Kv∗ 1 / 9 . 6 ∗ 3 8 0 / ( 2 ∗ pi ∗1 . 2 e−3)

[Gm, Pm, Wg, Wp] = margin ( Tm31 ) ;

Phase31 = Pm

[Gm, Pm, Wg, Wp] = margin ( Tm32 ) ;

Phase32 = Pm

[Gm, Pm, Wg, Wp] = margin ( Tm33 ) ;

Phase33 = Pm

f u n c t i o n o u t = Tmx( Ug , Kcs )

g l o b a l s Kv Tv C R L Dp Vo Fm Vc kso hso Po Ts Tk k T f i Tfv↘

→ ;
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Vc = ( hso / kso ) ∗Po / Ug ^ 2 ;

o u t = (R∗C∗ s +1) / ( R∗L∗C∗ s ^2+L∗ s+R∗Dp^2) / ( 1 + hso / ( T f i ∗ s +1) ∗Kcs↘

→∗Kv∗ ( 1 + 1 / Tv / s ) ∗Fm∗Vo∗ (R∗C∗ s +2) / ( R∗L∗C∗ s ^2+L∗ s+R∗Dp^2)↘

→ / ( 1 + 1 / 2∗ s ∗Ts ) ∗k∗(12−6∗ s ∗Tk+s ^2∗Tk ^2) / ( 1 2 + 6∗ s ∗Tk+s ^2∗Tk ^2) )↘

→+kso / ( Tfv∗ s +1) ∗Vc∗Kcs∗Kv∗ ( 1 + 1 / Tv / s ) ∗Fm∗Vo∗ (R∗C∗ s +2) / ( R∗L∗C↘

→∗ s ^2+L∗ s+R∗Dp^2) / ( 1 + 1 / 2∗ s ∗Ts ) ∗k∗(12−6∗ s ∗Tk+s ^2∗Tk ^2)↘

→ / ( 1 2 + 6∗ s ∗Tk+s ^2∗Tk ^2) / ( 1 + hso / ( T f i ∗ s +1) ∗Kcs∗Kv∗ ( 1 + 1 / Tv / s ) ∗↘

→Fm∗Vo∗ (R∗C∗ s +2) / ( R∗L∗C∗ s ^2+L∗ s+R∗Dp^2) / ( 1 + 1 / 2∗ s ∗Ts ) ∗k↘

→∗(12−6∗ s ∗Tk+s ^2∗Tk ^2) / ( 1 2 + 6∗ s ∗Tk+s ^2∗Tk ^2) ) ;

B.2. Laboratory Measurement Setup

The PFC converter was constructed with the parameters shown in the Chapter 4. The

schematic for PFC converter is shown in the Figure B.1. The components were placed on

the printed circuit board (PCB). The controller features the dsPIC30F6010A chip, which

is manufactured by Microchip. The boost rectifier circuit on the prototype PCB uses the

topology and control strategy described in Chapter 4.
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B.3. Controller Code for PFC Converter

This section lists the code for control of PFC converter and the adaptive control.

B.4. PFC Project Main Code

/ / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

/ / H e a d e r f i l e s / /

# i n c l u d e " G e n e r a l . h "

v o l a t i l e unsigned i n t SampleCountMin = 300 ; / / M i n i n u m o f ↘

→ f r e q u e n c y c o u n t S a m p l e C o u n t = 3 3 4 i f f = 6 0 H z

v o l a t i l e unsigned i n t SampleCount = 333 ; / / I n i t i a l i z e ↘

→ s a m p l e c o u n t

v o l a t i l e unsigned i n t AverageVacMinimum = 0x1DCF ; / / M i n i m u m ↘

→ v a l u e f o r ~ 1 0 0 V p k : ( 2 / p i ) ∗ 1 0 0 V p k / 4 1 0 V p k ∗ 3 2 7 6 7

v o l a t i l e unsigned i n t AverageVac = 0x517C ; / / I n i t i a l i z e ↘

→ a v e r a g e V a c a n d V p e a k ( 0 x 7 F F F ) f o r s t a r t u p

/ / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

/ / M a i n F u n c t i o n / /

i n t main ( void )

{
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S e t u p P o r t s ( ) ; / / I n i t i a l i z e a l l t h e G P I O p o r t s

SetupBoard ( ) ; / / C o n f i g u r e t h e b o a r d f o r R e s e t C o n d i t i o n

I n i t O u t p u t C o m p a r e 6 ( ) ; / / C o n f i g u r e a n d i n t i a l i z e t h e ↘

→ O u t p u t C o m p a r e M o d u l e

configADC ( ) ; / / C o n f i g u r e t h e A D C M o d u l e

I F S 0 b i t s . ADIF = 0 ; / / C l e a r A D C I n t e r r u p t F l a g

I E C 0 b i t s . ADIE = 1 ; / / E n a b l e A D C I n t e r r u p t s

OC6CONbits .OCM = 0 b110 ; / / S e t t h e O u t p u t C o m p a r e M o d u l e ↘

→ f o r PWM M o d e

T3CONbits .TON = 1 ; / / S t a r t T i m e r − 3 M o d u l e

whi le ( 1 ) ; / / L o o p I n f i n i t e l y

}

/ / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

/ / A D C I n t e r r u p t S e r v i c e R o u t i n e / /

/ / A l l D a t a a r e c o l l e c t e d w i t h i n 2 t i m e r p e r i o d s , a f t e r 2 ↘

→ t i m e r p e r i o d s , _ A D C I n t e r u p t o c c u r s .

void _ _ a t t r i b u t e _ _ ( ( _ _ i n t e r r u p t _ _ , a u t o _ p s v ) ) ↘

→_ADCIn te r rup t ( void )
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{

I F S 0 b i t s . ADIF = 0 ; / / C l e a r A D C I n t e r r u p t F l a g

V o l t a g e P I C o n t r o l ( ) ; / / V o l t a g e E r r o r C o m p e n s a t o r

c a l c I a c R e f ( ) ; / / C a l c u l a t i o n o f C u r r e n t R e f e r e n c e

C u r r e n t P I C o n t r o l ( ) ; / / C u r r e n t E r r o r C o m p e n s a t o r

pinLED1 = 1 ;

}

/ / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

/ / S e t u p t h e HV P o w e r M o d u l e f o r R e s e t S t a t e

void SetupBoard ( void )

{

unsigned char b ;

I E C 0 b i t s . ADIE = 0 ; / / C l e a r A D C I n t e r r u p t F l a g

p i n F a u l t R e s e t = 1 ; / / R e s e t a l l f a u l t s t a t e s t o d e f a u l t

f o r ( b =0; b <10; b ++)

Nop ( ) ;

p i n F a u l t R e s e t = 0 ; / / A c t i v a t e a l l f a u l t s
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p inPFCFi re = 0 ; / / D i s a b l e P F C M O S F E T g a t e p u l s e s

p i n B r a k e F i r e = 0 ; / / D i s a b l e B r a k e C h o p p e r M O S F E T g a t e ↘

→ p u l s e s

}

/ / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

/ / C o n f i g u r e t h e A t o D C o n v e r t e r

void configADC ( void )

{

ADCON1 = 0 ;

ADCON1bits .FORM = 3 ; / / S i g n e d F r a c t i o n a l R e s u l t s

ADCON1bits . SSRC = 2 ; / / G P T i m e r − 3 t o t r i g g e r A D C

ADCON1bits .SIMSAM = 1 ; / / S i m u l t a n e o u s S a m p l i n g e n a b l e d

ADCON1bits .ASAM = 1 ; / / A u t o S a m p l i n g e n a b l e d

ADCON2 = 0 ;

ADCON2bits . CHPS = 3 ; / / C o n v e r t C H 0 , C H 1 , C H 2 a n d C H 3

ADCON2bits . SMPI = 1 ; / / I n t e r r u p t o n s e c o n d s a m p l e / ↘

→ c o n v e r t s e q u e n c e

ADCON2bits .CSCNA = 1 ; / / C h a n n e l S c a n n i n g e n a b l e d

ADCON3bits .SAMC = 8 ; / / A u t o − S a m p l e t i m e = 8 ∗ T a d

ADCON3bits .ADCS = 8 ; / / AD C o n v e r s i o n t i m e = 8 ∗ T c y
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ADCHS = 0 ;

ADCHSbits . CH123NA = 0 ; / / C h a n n e l s C H 1 , C H 2 a n d C H 3 ↘

→ n e g a t i v e r e f e r e n c e i s V r e f −

ADCHSbits .CH0NA = 0 ; / / C h a n n e l C H 0 n e g a t i v e r e f e r e n c e ↘

→ i s V r e f −

ADCHSbits . CH123SA = 0 ; / / C o n v e r t A N 0 , A N 1 a n d A N 2

ADPCFG = 0xFFFF ;

ADPCFGbits . PCFG2 = 0 ; / / A N 2 ( A N 6 ) p i n i n a n a l o g m o d e

ADPCFGbits . PCFG9 = 0 ; / / A N 9 p i n i n a n a l o g m o d e

ADPCFGbits . PCFG11 = 0 ; / / A N 1 1 p i n i n a n a l o g m o d e

ADCSSL = 0 ;

ADCSSLbits . CSSL9 = 1 ; / / S e l e c t A N 9 f o r i n p u t s c a n n i n g

ADCSSLbits . CSSL11 = 1 ; / / S e l e c t A N 1 1 f o r i n p u t s c a n n i n g

ADCON1bits .ADON = 1 ; / / T u r n −ON t h e A D C M o d u l e

}

/ / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

/ / C o n f i g u r e t h e O u t p u t C o m p a r e 6 M o d u l e

; Ou tpu t Compare 6 and Timer 3 C o n f i g u r a t i o n

; OC6 c o n f i g u r e d f o r PWM mode
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; Timer 3 used as c o u n t e r

; PWM P e r i o d = ( PRx + 1) ∗Tcy ∗ (TMRx P r e s c a l e r )

; PWM P e r i o d = ( PR3 + 1) ∗33 ns ∗ ( 1 : 1 )

; OCxRS Updates PWM Duty Cycle

; PRx g i v e s PWM p e r i o d

; For a PWM f r e q u e n c y of 80KHz , s e t PRx = d #368

void I n i t O u t p u t C o m p a r e 6 ( void )

{

OC6CON = 0 ; / / C l e a r t h e c o n f i g r e g i s t e r

OC6RS = 0 ; / / C l e a r t h e i n i t i a l d u t y c y c l e r e g i s t e r

OC6R = 0 ; / / C l e a r t h e d u t y c y c l e r e g i s t e r

OC6CON = 0 x0009 ; / / S e t t h e o p e r a t i n g m o d e f o r t h e ↘

→ o u t p u t c o m p a r e m o d u l e

PR3 = 368 ; / / S e t t h e p e r i o d v a l u e f o r t h e PWM ↘

→ p u l s e s

I F S 0 b i t s . T3IF = 0 ; / / C l e a r t h e t i m e r 3 i n t e r r u p t ↘

→ f l a g

I F S 2 b i t s . OC6IF = 0 ; / / C l e a r t h e O C 6 i n t e r r u p t f l a g

I E C 0 b i t s . T3IE = 0 ; / / D i s a b l e t i m e r 3 i n t e r r u p t

I E C 2 b i t s . OC6IE = 0 ; / / D i s a b l e O C 6 i n t e r r u p t
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}

/ / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

/ / T 3 I n t e r r u p t S e r v i c e R o u t i n e / /

void _ _ a t t r i b u t e _ _ ( ( _ _ i n t e r r u p t _ _ , a u t o _ p s v ) ) _ T 3 I n t e r r u p t ↘

→ ( void )

{

I F S 0 b i t s . T3IF = 0 ; / / C l e a r t i m e r 3 i n t e r r u p t f l a g

}

/ / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

/ / O C 6 I n t e r r u p t S e r v i c e R o u t i n e / /

void _ _ a t t r i b u t e _ _ ( ( _ _ i n t e r r u p t _ _ , a u t o _ p s v ) ) ↘

→_ O C 6 I n t e r r u p t ( void )

{

I F S 2 b i t s . OC6IF = 0 ; / / C l e a r O C 6 i n t e r r u p t f l a g

}
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/ / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

/ / M a t h E r r o r T r a p I S R

void _ _ a t t r i b u t e _ _ ( ( _ _ i n t e r r u p t _ _ , a u t o _ p s v ) ) _MathEr ro r (↘

→void )

{

/ / I N T C O N 1 b i t s . M A T H E R R = 0 ;

whi le ( 1 ) ;

}

/ / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

/ / A d d r e s s E r r o r T r a p I S R

void _ _ a t t r i b u t e _ _ ( ( _ _ i n t e r r u p t _ _ , a u t o _ p s v ) ) ↘

→_ A d d r e s s E r r o r ( void )

{

/ / I N T C O N 1 b i t s . A D D R E R R = 0 ;

whi le ( 1 ) ;

}

/ / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

/ / S t a c k E r r o r T r a p I S R
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void _ _ a t t r i b u t e _ _ ( ( _ _ i n t e r r u p t _ _ , a u t o _ p s v ) ) _ S t a c k E r r o r (↘

→void )

{

/ / I N T C O N 1 b i t s . S T K E R R = 0 ;

whi le ( 1 ) ;

}

/ / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

B.5. PFC Code

. i n c l u d e " g e n e r a l . i n c "

. i n c l u d e " PI . i n c "

; =========================================================

; De f i ne b i t v a l u e s

. e q u i v f l a g 1 , 0 x0000

. e q u i v f l a g 2 , 0 x0001

. e q u i v f l a g 3 , 0 x0002 ; S o f t S t a r t

. e q u i v f l a g 4 , 0 x0003 ; s w i t c h c u r r e n t r e a d i n g b u f f e r ( BUF7 , ↘

→ BUF3)

. e q u i v f l a g 6 , 0 x0005

. e q u i v f l a g 7 , 0 x0006

; =========================================================

; D e c l a r e I n i t i a l i z e d l o c a l v a r i a b l e s
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. d a t a

f l a g : . word 0 x0067 ; 0 x0000 0000 0110 ↘

→0111

; =========================================================

; D e c l a r e Non I n i t i a l i z e d l o c a l v a r i a b l e s

. b s s

VacByVpk : . s p a c e 2

I a c R e f : . s p a c e 2

I a c : . s p a c e 2

Vdc : . s p a c e 2

Ein : . s p a c e 2

Evn : . s p a c e 2

U0inH : . s p a c e 2

U0inL : . s p a c e 2

U0vnH : . s p a c e 2

U0vnL : . s p a c e 2

Usin : . s p a c e 2

Uin : . s p a c e 2

Usvn : . s p a c e 2

Uvn : . s p a c e 2

IPIH : . s p a c e 2

TempSampleCount : . s p a c e 2

TempSumVac : . s p a c e 4

V d c S o f t S t a r t : . s p a c e 2
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VpiCount : . s p a c e 2

ucn : . s p a c e 2

ucn1 : . s p a c e 2

ucn2 : . s p a c e 2

uks : . s p a c e 2

I a c 1 : . s p a c e 2

; =========================================================

; D e c l a r e g l o b a l s

. g l o b a l VacByVpk

. g l o b a l I a c R e f

. g l o b a l I a c

. g l o b a l Vdc

. g l o b a l Ein

. g l o b a l Evn

. g l o b a l U0inH

. g l o b a l U0inL

. g l o b a l U0vnH

. g l o b a l U0vnL

. g l o b a l Usin

. g l o b a l Uin

. g l o b a l Usvn

. g l o b a l Uvn

. g l o b a l V d c S o f t S t a r t

. g l o b a l VpiCount

. g l o b a l ucn
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. g l o b a l ucn1

. g l o b a l ucn2

. g l o b a l uks

. g l o b a l I a c 1

; =========================================================

; D e c l a r e c o n s t a n t s

. equ AdcConvFactor , 0 x8000 ; F a c t o r f o r s c a l i n g t h e ADC↘

→ R e s u l t s

. equ Kpi , 16383 ; Kp f o r c u r r e n t compensa to r

. equ Kii , 3476 ; Ki f o r c u r r e n t compensa to r

. equ Kci , 4119 ; Kc f o r c u r r e n t compensa to r

. equ Kpv , 32766 ; Kp f o r v o l t a g e compensa to r

. equ Kiv , 4 ; Ki f o r v o l t a g e compensa to r

. equ Uimax , 27850 ; a f t e r s c a l i n g by 100 , ↘

→maximum o u t p u t i s pfcMaxDuty = 275 ~ 83%

. equ Uimin , 800 ; f o r Turn−o f f s n u b b e r

. equ pfcMaxDuty , 278 ; f o r Turn−on s n u b b e r

. equ VdcRef , 30369 ; 380V o u t p u t r e f e r e n c e

. equ NKio , 0

. equ NKvo , 0

. equ Nio , 1 ; C u r r e n t s c a l e t o g e t maximum ↘

→ADC r a n g e

. equ D u t y S c a l i n g F a c t o r , 100

. equ PIby4 , 0 x6487 ; p i / 4 w i l l be s c a l e d by 2 ↘

→ f o r peak Vac
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. equ vol tMinRef , 0 x2000 ; C o r r e s p o n d s t o ~25V i n p u t ↘

→ r e f e r e n c e = 25 /410 Vpk∗32767

. equ VrefIncTime , 10000

. equ VRefIncrement , 0xFF

. equ VdcScale , 31250 ; KH = 0 .946 Compensate f o r ↘

→Vdc o f f s e t

. equ c1 , 25917 ; Ls = 7 . 5mH; Ls = 4 . 5mH

. equ c2 , 12862 ;

. equ c3 , 2420 ;

. equ c4 , 2384 ;

; =========================================================

; D e c l a r e r e f e r e n c e s t o r e g i s t e r s

. equ PfcPwm , OC6RS ; Outpu t Compare Duty Cycle

; =========================================================

. s e c t i o n . t e x t

; =========================================================

; C a l c u l a t e I a c R e f

; I a c R e f = ( VPI ∗ | Vac | / Vpk )

. g l o b a l _ c a l c I a c R e f

. g l o b a l c a l c I a c R e f
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_ c a l c I a c R e f :

c a l c I a c R e f :

push . d w0

push . d w2

push . d w4

; C a l c u l a t e Vac peak from measurement

c a l l ca lcVavg

mov .w _AverageVac , w4

mov .w # PIby4 , w5

mpy w4∗w5 , A

s f t a c A, #−1

s a c . r A, w3 ; w3 = Vpeak

; S e t d e f a u l t i s 5V or 0x7FFF f o r 110VRms AC i n p u t

; mov .w #0x6BFF , w3 ; 160V

; mov .w #0x67FF , w3 ; 154V

; Get t h e Vac i n s i g n e d Q15 f o r m a t : 0 x8000 − 0x7FFF

mov .w ADCBUF0, w0

mov .w # AdcConvFactor , w1 ; c o v e r t i t t o ↘

→ t h e u n s i g n e d Q15 f o r m a t : 0 x0000 − 0x7FFF

xor w0 , w1 , w0
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l s r w0 , #1 , w4

; C a l c u l a t e Vac / Vpk ,

cp w3 , w4

b r a LE , I a c R e f L i m i t

b r a IacRefNormal

I a c R e f L i m i t :

; mov .w w3 , w4

; sub .w w4 , #0 x02

mov .w #0x7FFF , w0

b r a I a c R e f C o n t i n u e

IacRefNormal :

r e p e a t #17

d i v f w4 , w3 ; s i g n e d f r a c t i o n a l ↘

→ d i v i s i o n w0 / w3 , t h e r e s u l t s h o u l d be 0↘

→x0000 − 0x7FFF

I a c R e f C o n t i n u e :

; ( Vac / Vpk ) ∗Vpih , s i g n e d f r a c t i o n a l m u l t i p l i c a t i o n

mov .w w0 , w4

mov .w Uvn , w5

mpy w4∗w5 , A

s a c . r A, w0

; I f S o f t S t a r t t h e n jump t o I a c R e f C o n t i n u e

b t s c f l a g , # f l a g 3

b r a I a c R e f O u t p u t
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; E l s e c a l c u l a t e I a c r e f C o m p e n s a t o r

mov .w w0 , uks

c a l l CalDutyComp

mov .w ucn , w1

mov .w uks , w0

add .w w0 , w1 , w0

I a c R e f O u t p u t :

mov .w w0 , I a c R e f

pop . d w4

pop . d w2

pop . d w0

r e t u r n

; =========================================================

; C u r r e n t l oop PI C o n t r o l l e r

. g l o b a l _ C u r r e n t P I C o n t r o l

. g l o b a l C u r r e n t P I C o n t r o l

_ C u r r e n t P I C o n t r o l :



152

C u r r e n t P I C o n t r o l :

push . d w0

push . d w2

push . d w4

push . d w6

; Measured v a l u e o f R e c t i f i e d AC C u r r e n t

; ADC i n p u t from 0 : 5V, e q u i v a l e n t I a c = −9.6A: 9 . 6A (LEM ↘

→ s e n s o r ) , SCALED ADC b u f f e r i s 0 x8000 : 0 x7FFF

b t s s f l a g , # f l a g 4

b r a f i r s t _ p e r i o d

mov .w ADCBUF7, w0

b r a c o n t i n u e _ r e a d i n g

f i r s t _ p e r i o d :

mov .w ADCBUF3, w0

c o n t i n u e _ r e a d i n g :

b t g . b f l a g , # f l a g 4

mov .w w0 , I a c

nop

; I n i t PI

; I f s t a r t program t h e n r e s e t c u r r e n t o u t p u t and sum

b t s s f l a g , # f l a g 6

b r a I P I _ C a l

c l r w1

mov .w w1 , U0inH
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mov .w w1 , U0inL

mov .w w1 , Uin

mov .w w1 , Ein

mov .w w1 , ucn

mov .w w1 , ucn1

mov .w w1 , ucn2

mov .w w1 , I a c 1

b c l r f l a g , # f l a g 6

; C u r r e n t PI C a l c u l a t i o n

I P I _ C a l :

; R e c a l l P r e v i o u s e r r o r , e ( n−1) = o l d Ein

mov .w Ein , w0

; C a l c u l a t e new e r r o r e ( n ) = InRef−InMeas

mov .w Iac , w5

; s l w5 , #Nio , w5 ; LTS 6NP r a n g e i s ↘

→ [−9.6 , 9 . 6 ] ~ [−1 , 1 ] .

mov .w IacRef , w7 ; I i n max = 2∗P0 / Vmin = ↘

→2∗400/170 = 4 . 7A ~ [−0.5 , 0 . 5 ] . So f o r ↘

→ f u l l s c a l e , m u l t i p l y 2

; s l w7 , #Nio , w7 ; s c a l e I a c R e f . See ↘

→PSIM

sub .w w7 , w5 , w4

mov .w w4 , Ein ; e ( n ) = Ein
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; C a l c u l a t e D i f f e r e n t i a l E r r o r : dEin = e ( n ) − e ( n↘

→−1)

sub .w w4 , w0 , w6

; Load p r e v i o u s c o n t r o l u0 ( n−1) [−1 , 1 ]

mov .w U0inH , w0

l a c w0 , B

mov .w U0inL , w1

mov .w w1 , ACCBL

; Add u0 ( n−1) + dEin ∗ Kp∗2^NKio

mov .w #Kpi , w5

; l s r w5 , #Nio , w5 ; s c a l e by 0 . 5 t o ↘

→compensa te t o I a c and I r e f

mpy w5∗w6 , A

s f t a c A, #−NKio ; s c a l e A i f n e s s e c e r y (↘

→Q12−>Q15 ) , A = A∗2^NKio

; Add u 0 i ( n−1) + dEin ∗Kp

add A

; u0 ( n ) = u0 ( n−1) + Kp∗ ( e ( n )−e ( n−1) ) + Ki ∗ e ( n )

mov .w # Kii , w5

mac w4∗w5 , A

s a c A, w6
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mov .w w6 , Usin ; s t o r e u0 ( n ) b e f o r e t e s t s

; Compare u0 ( n ) and Uimax

mov .w #Uimax , w0

cp w6 , w0

b r a GT, j P I 5 ; u0 ( n ) > Umax ; u (↘

→n ) = Umax

mov .w #Uimin , w0

cp w6 , w0

b r a LE , j P I 5 ; u0 ( n ) < Umin ; u (↘

→n ) = Umin

mov .w Usin , w0 ; u ( n ) = u0 ( n )

j P I 5 :

mov .w w0 , Uin ; u ( n ) = [ Umax , u0 ( n ) , o r ↘

→Uin ] Th i s i s t h e c o n t r o l o u t p u t

; e s ( n ) = u ( n ) − u0 ( n )

sub .w w0 , w6 , w4

; mov .w w4 , e s i n

; A d j u s t u0 ( n ) = u0 ( n ) + Kc ∗ es ( n )

mov .w #Kci , w5

mac w4∗w5 , A

; S t o r e u0 ( n ) f o r t h e n e x t s t e p



156

s a c A, w0

mov .w w0 , U0inH

mov .w ACCAL, w0

mov .w w0 , U0inL

; End of PI C a l c u l a t i o n

; Outpu t o f I P I C o n t r o l l e r

mov .w Uin , w0

; S c a l i n g IPIH t o match t h e du ty c y c l e from [ 8 0 0 , 32000] t o↘

→ f i t i n PWM s e t t i n g r a n g e [ 0 , 368]

mov .w w0 , w2

mov .w # D u t y S c a l i n g F a c t o r , w3

r e p e a t #17

d i v . u w2 , w3

mov .w w0 , IPIH

; Compare I P I o u t p u t t o t h e Maximum Duty Cycle

mov .w #pfcMaxDuty , w1

cp w1 , w0

b r a LE , s a t u r a t e P f c

mov .w IPIH , w0

mov .w w0 , PfcPwm

b r a goback

s a t u r a t e P f c :
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mov .w #pfcMaxDuty , w1

mov .w w1 , PfcPwm

goback :

pop . d w6

pop . d w4

pop . d w2

pop . d w0

r e t u r n

; =========================================================

; Compute Duty R a t i o Compesator

. g l o b a l _CalDutyComp

. g l o b a l CalDutyComp

_CalDutyComp :

CalDutyComp :

push . d w0

push . d w2

push . d w4
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; uc ( n ) = c1∗uc ( n−1) − c2∗uc ( n−2) + c3∗ i ( n ) − c4∗ i ( n−1)

; uc ( n ) = c1∗uc ( n−1)

mov .w ucn1 , w4

mov .w #c1 , w5

mpy w4∗w5 , A

; uc ( n ) = c1∗uc ( n−1) − c2∗uc ( n−2)

mov .w ucn2 , w4

mov .w #c2 , w5

msc w4∗w5 , A

; uc ( n ) = c1∗uc ( n−1) − c2∗uc ( n−2) + c3∗ i ( n )

mov .w Iac , w4

mov .w #c3 , w5

mac w4∗w5 , A

; uc ( n ) = c1∗uc ( n−1) − c2∗uc ( n−2) + c3∗ i ( n ) − c4∗ i ( n−1)

mov .w Iac1 , w4

mov .w #c4 , w5

msc w4∗w5 , A

s f t a c A, #−1 ; c o e f f i c i e n t s by 2

s a c A, w0
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mov .w w0 , ucn

; s t o r e v a r i a b l e s

mov .w ucn1 , w1

mov .w w1 , ucn2

mov .w w0 , ucn1

mov .w Iac , w1

mov .w w1 , I a c 1

pop . d w4

pop . d w2

pop . d w0

r e t u r n

; =========================================================

; V o l t a g e loop PI C o n t r o l l e r

. g l o b a l _ V o l t a g e P I C o n t r o l

. g l o b a l V o l t a g e P I C o n t r o l

_ V o l t a g e P I C o n t r o l :

V o l t a g e P I C o n t r o l :
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push . d w0

push . d w2

push . d w4

push . d w6

; Measured v a l u e o f DC Bus V o l t a g e

mov .w ADCBUF4, w0

mov .w # AdcConvFactor , w1

xor w0 , w1 , w0

l s r w0 , #1 , w0

; I n i t PI

; I f s t a r t program t h e n : ( 1 ) r e s e t c u r r e n t o u t p u t and sum , ↘

→ ( 2 ) l o a d VdcReference , and ( 3 ) Load Delay

b t s s f l a g , # f l a g 7

b r a C o n t i n u e V P I C o n t r o l

c l r w1

mov .w w1 , U0vnH

mov .w w1 , U0vnL

mov .w w1 , Uvn

mov .w w1 , Evn

mov .w w0 , V d c S o f t S t a r t

mov .w # VrefIncTime , w1

mov .w w1 , VpiCount ; 50ms f o r each ↘

→ i n c r e m e n t o f VdcReference

b c l r f l a g , # f l a g 7

b s e t f l a g , # f l a g 3
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C o n t i n u e V P I C o n t r o l :

; S o f t S t a r t c a l c u l a t i o n f o r r a i s i n g t h e DC Bus V o l t a g e ↘

→ g r a d u a l l y up to t h e r a t e d v a l u e o f 400 v o l t

mov .w V d c S o f t S t a r t , w2

mov .w #VdcRef , w3

cp w2 , w3

b r a GE, VPI_Cal

mov .w VpiCount , w2

cp w2 , #0 x0000

b r a GT, WaitCount ; i f Less / Equal t o ↘

→Zero t h e n SP = 340V ; e l s e 380V

b r a S o f t S t a r t V d c

WaitCount :

dec w2 , w1

mov .w w1 , VpiCount

b r a VPI_Cal

S o f t S t a r t V d c :

mov .w # VrefIncTime , w1 ; R e s e t VpiCount

mov .w w1 , VpiCount

mov .w V d c S o f t S t a r t , w1

add # VRefIncrement , w1 ; I n c r e a s e ↘

→VdcReference

cp w1 , w3
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b r a GE, V r e f S t e a d y S t a t e

mov .w w1 , V d c S o f t S t a r t

b r a VPI_Cal

V r e f S t e a d y S t a t e :

b c l r f l a g , # f l a g 3

mov .w w3 , V d c S o f t S t a r t

; V o l t a g e PI C a l c u l a t i o n

VPI_Cal :

mov .w # VdcScale , w4 ; c a l i b r a t e f o r Vdc ↘

→ o f f s e t t o have 380Vdc

mov .w w0 , w5

mpy w4∗w5 , A

s a c . r A, w0

mov .w w0 , Vdc

; R e c a l l P r e v i o u s e r r o r , e ( n−1) = o l d Ein

mov .w Evn , w0

; C a l c u l a t e new e r r o r e ( n ) = InRef−InMeas

mov .w Vdc , w5

mov .w V d c S o f t S t a r t , w7

sub .w w7 , w5 , w4

mov .w w4 , Evn ; e ( n ) = Evn
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; C a l c u l a t e D i f f e r e n t i a l E r r o r : dEvn = e ( n ) − e ( n↘

→−1)

sub .w w4 , w0 , w6

; Load p r e v i o u s c o n t r o l u0 ( n−1) [ 0 , 1 ]

mov .w U0vnH , w0

l a c w0 , B

mov .w U0vnL , w1

mov .w w1 , ACCBL

; Add u0 ( n−1) + dEvn ∗ Kp∗2^NKvo

mov .w #Kpv , w5

mpy w5∗w6 , A

s f t a c A, #−NKvo ; s c a l e A i f n e s s e c e r y (↘

→Q12−>Q15 ) , A = A∗2^NKvo

; Add u0v ( n−1) + dEvn∗Kp

add A

; u0 ( n ) = u0 ( n−1) + Kp∗ ( e ( n )−e ( n−1) ) + Ki ∗ e ( n )

mov .w #Kiv , w5

mac w4∗w5 , A

s a c A, w6

; s a c . r A, w6 w6 i s added by 1 , so U0vnH : U0vnL i s ↘

→ added 0 x00010000 , which i s two much
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; S t o r e u0 ( n ) f o r t h e n e x t s t e p

mov .w w6 , U0vnH

mov .w ACCAL, w0

mov .w w0 , U0vnL

; End of PI C a l c u l a t i o n

; Outpu t o f VPI C o n t r o l l e r

mov .w w6 , Uvn

VPIback :

pop . d w6

pop . d w4

pop . d w2

pop . d w0

r e t u r n

; =========================================================

; Compute SUM ( | Vac | ) f o r 1 c y c l e , F requency and Average Vac

. g l o b a l _ca lcVavg

. g l o b a l ca lcVavg
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_ca lcVavg :

ca lcVavg :

push . d w0

push . d w2

push . d w4

push . d w6

push . d w8

; c o n v e r t i n p u t Vac r a n g e

; Vac i s c o l l e c t e d i n Q15 f o r m a t (ACON1 = 0) . Range : 0 x8000↘

→ (0V) : 0x7FC0 (5V) ( s e e dsPIC30F D a t a s h e e t )

mov .w ADCBUF0, w0 ; Conve r t s i g n e d Q15 ↘

→ f o r m a t t o u n s i g n e d Q15 f o r m a t f o r a dd i ng

mov .w # AdcConvFactor , w1 ; w0 r a n g e : 0↘

→x0000 (0V) : 0x7FC0 (5V)

xor w0 , w1 , w0

l s r w0 , #1 , w0

; Check Vac i f i t i s be l l o w a t h r e s h o l d f o r c a l c u l a t i n g ↘

→ s t a r t c o u n t i n g p o i n t

mov .w # vol tMinRef , w2

cp w0 , w2

b r a N, tempsum ; i f so , jump t o tempsum↘

→ t o c a l c u l a t e lower p a r t
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; e l s e i f Vac > VREF

; Check s t a t u s o f f l a g 1 and f l a g 2 f o r c l e a r c o n d i t i o n

b t s s f l a g , # f l a g 1 ; i f f l a g [ 0 ] = 1 , jump↘

→ t o t h e c a s e 2

b t s c f l a g , # f l a g 2 ; e l s e i f f l a g [ 1 ] = 0 ,↘

→ go t o t h e case1 , u p d a t e SampleCount and ↘

→SumVac

b r a c a s e 2

; Update i f bo th f l a g 1 and f l a g 2 a r e c l e a r

c a s e 1 :

mov .w TempSampleCount , w4 ; Update ↘

→SampleCount

; Check i f SampleCount i s s m a l l e r t h a n t h r e s h o l d t o a v o i d ↘

→ d i v i d e by 0 , t h i s c a s e i s e r r o r c o u n t i n g

mov .w _SampleCountMin , w1

cp w4 , w1

b r a N, S a t u r a t e M i n C o u n t ; i f so , s e t ↘

→SampleCount = SampleCountMin

b r a cont inueSumVac ; o t h e r w i s e , keep ↘

→go ing

S a t u r a t e M i n C o u n t :

mov .w _SampleCountMin , w4

cont inueSumVac :
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mov .w w4 , _SampleCount

mov #TempSumVac , w1

mov . d [ w1 ] , w2 ; w2 = TempSumVac_L , w3 = ↘

→TempSumVac_H

r e p e a t #17

d i v . ud w2 , w4 ; w0 i s AverageVacTemp

; Check i f AverageVacTemp i s s m a l l e r t h a n t h r e s h o l d t o ↘

→a v o i d d i v i d e by z e r o

mov .w _AverageVacMinimum , w1

cp w0 , w1

b r a N, Sa tu ra teMinVavg ; i f so , jump t o↘

→ Sa tu ra teMinVavg

b r a c o n t i n u e L o o p ; e l s e keep go ing

Sa tu ra teMinVavg :

mov .w _AverageVacMinimum , w0

c o n t i n u e L o o p :

mov w0 , _AverageVac

; f l a g [ 0 ] = 1 , f l a g [ 1 ] = 1

b s e t f l a g , # f l a g 1

b s e t f l a g , # f l a g 2
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; TempSampleCount = 0

c l r w2

c l r w3

mov .w w2 , TempSampleCount

; TempSumVac = 0

mov .w #TempSumVac , w4

mov . d w2 , [ w4 ]

b r a o u t o f l o o p

c a s e 2 :

; Vac i s c o l l e c t e d i n Q15 f o r m a t (ACON1 = 0) . Range : 0 x8000↘

→ (0V) : 0x7FC0 (5V) ( s e e dsPIC30F D a t a s h e e t )

mov .w ADCBUF0, w0

mov .w # AdcConvFactor , w1

xor w0 , w1 , w0

l s r w0 , #1 , w0

; TempSumVac = TempSumVac + Vac

mov .w w0 , w8

mov #TempSumVac , w0 ; TempSumpVac

mov . d [ w0 ] , w2

add w8 , w2 , w2 ; TempSumpVac + Vac

addc #0 , w3
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mov .w #TempSumVac , w4 ; move a d d r e s s o f ↘

→TempSumVac t o r e g i s t e r w4

mov . d w2 , [ w4 ] ; move c o n t e n t o f r e g i s t e r ↘

→ w2 t o t h e a d d r e s s o f c o n t e n t o f w4 , which↘

→ i s a d d r e s s o f TempSumVac

; I n c r e a s e SampleCount t o 1

mov .w TempSampleCount , w6

i n c w6 , w6

mov .w w6 , TempSampleCount

; f l a g [ 0 ] = 0

b c l r f l a g , # f l a g 1

b r a o u t o f l o o p

tempsum :

b t s c f l a g , # f l a g 1 ; i f f l a g [ 0 ] = 1 t h e n ↘

→ e x i t

b r a o u t o f l o o p

mov .w ADCBUF0, w0

mov .w # AdcConvFactor , w1

xor w0 , w1 , w0 ; Conve r t s i g n e d Q15 ↘

→ f o r m a t t o u n s i g n e d Q15 f o r m a t f o r a dd i ng
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l s r w0 , #1 , w0 ; w0 r a n g e : 0 x0000 (0V) : ↘

→0x7FC0 (5V)

; TempSumVac = TempSumVac + Vac

mov .w w0 , w8

mov #TempSumVac , w0 ; TempSumpVac

mov . d [ w0 ] , w2

add w8 , w2 , w2

addc #0 , w3

mov .w #TempSumVac , w4

mov . d w2 , [ w4 ]

; I n c r e a s e SampleCount t o 1

mov .w TempSampleCount , w6

i n c w6 , w6

mov .w w6 , TempSampleCount

; f l a g [ 1 ] = 0

b c l r f l a g , # f l a g 2

o u t o f l o o p :

pop . d w8

pop . d w6
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pop . d w4

pop . d w2

pop . d w0

r e t u r n

B.6. PI Code

; =========================================================

; PI

;

; D e s c r i p t i o n : C a l c u l a t e PI c o r r e c t i o n .

;

; =========================================================

;

. i n c l u d e " G e n e r a l . i n c "

; E x t e r n a l r e f e r e n c e s

. i n c l u d e " PI . i n c "

; R e g i s t e r usage

. equ BaseW0 , w0 ; Base o f parm s t r u c t u r e

. equ OutW1 , w1 ; Outpu t
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. equ SumLW2, w2 ; I n t e g r a l sum

. equ SumHW3, w3 ; I n t e g r a l sum

. equ ErrW4 , w4 ; E r r o r te rm : InRef−InMeas

. equ WorkW5 , w5 ; Working r e g i s t e r

. equ UnlimitW6 , w6 ; U: u n l i m i t e d o u t p u t

. equ WorkW7 , w7 ; Working r e g i s t e r

;=================== CODE =================================

. s e c t i o n . t e x t

. g l o b a l _ I n i t P I

. g l o b a l I n i t P I

_ I n i t P I :

I n i t P I :

mov .w w1 , [ BaseW0+PI_qOut ]

r e t u r n

. g l o b a l _Ca lcPI

. g l o b a l C a l cP I

_Ca lcPI :

Ca l c P I :

; ; E r r = InRef − InMeas
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mov .w [ BaseW0+PI_qInMeas ] , WorkW5

mov .w [ BaseW0+ PI_q InRef ] , WorkW7

sub .w WorkW7 , WorkW5 , ErrW4

; ; U = Sum + Kp ∗ E r r ∗ 2^NKo

l a c [++BaseW0 ] ,B ; AccB = Sum

mov .w [−−BaseW0 ] , WorkW5

mov .w WorkW5 ,ACCBLL

mov .w [ BaseW0+PI_qKp ] , WorkW5

mpy ErrW4∗WorkW5 ,A

s f t a c A,#−NKo ; AccA = Kp∗E r r ∗2^NKo

add A ; Sum = Sum + Kp∗E r r ∗2^NKo

s a c A, UnlimitW6 ; s t o r e U b e f o r e t e s t s

mov .w [ BaseW0+PI_qOutMax ] , OutW1

cp UnlimitW6 , OutW1

b r a GT, j P I 5 ; U > Outmax ; OutW1 = Outmax

mov .w [ BaseW0+PI_qOutMin ] , OutW1

cp UnlimitW6 , OutW1

b r a LE , j P I 5 ; U < Outmin ; OutW1 = Outmin

mov .w UnlimitW6 , OutW1 ; OutW1 = U

j P I 5 :

mov .w OutW1 , [ BaseW0+PI_qOut ]
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; ; Ki ∗ E r r

mov .w [ BaseW0+PI_qKi ] , WorkW5

mpy ErrW4∗WorkW5 ,A

; mac ErrW4∗WorkW5 ,A

; ; Exc = U − Out

sub .w UnlimitW6 , OutW1 , UnlimitW6

; ; Ki ∗ E r r − Kc ∗ Exc

mov .w [ BaseW0+PI_qKc ] , WorkW5

msc WorkW5∗UnlimitW6 ,A

; ; Sum = Sum + Ki ∗ E r r − Kc ∗ Exc

add A

s a c A, [ + + BaseW0 ] ; s t o r e Sum

mov .w ACCALL, WorkW5

mov .w WorkW5,[−−BaseW0 ]

r e t u r n

. end
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