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ABSTRACT

FREDERICK WILLIAM POE HECKEL. Dynamic behavior-based control and
world-embedded knowledge for interactive artificial intelligence. (Under the

direction of DR. G. MICHAEL YOUNGBLOOD)

Video game designers depend on artificial intelligence to drive player experience

in modern games. Therefore it is critical that AI not only be fast and computation-

ally inexpensive, but also easy to incorporate with the design process. We address

the problem of building computationally inexpensive AI that eases the game de-

sign process and provides strategic and tactical behavior comparable with current

industry-standard techniques.

Our central hypothesis is that behavior-based characters in games can exhibit effec-

tive strategy and coordinate in teams through the use of knowledge embedded in the

world and a new dynamic approach to behavior-based control that enables charac-

ters to transfer behavioral knowledge. We use dynamic extensions for behavior-based

subsumption and world-embedded knowledge to simplify and enhance game character

intelligence. We find that the use of extended affordances to embed knowledge in the

world can greatly reduce the effort required to build characters and AI engines while

increasing the effectiveness of the behavior controllers. In addition, we find that the

technique of multi-character affordances can provide a simple mechanism for enabling

team coordination. We also show that reactive teaming, enabled by dynamic exten-

sions to the subsumption architecture, is effective in creating large adaptable teams

of characters. Finally, we show that the command policy for reactive teaming can be

used to improve performance of reactive teams for tactical situations.
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CHAPTER 1: INTRODUCTION

In Reality is Broken, Jane McGonigal provides Bernard Suits’ definition of games

as “the voluntary attempt to overcome unnecessary obstacles”[51, 74]. The process

of overcoming these obstacles gives game players a sense of accomplishment and joy

when they succeed and even when they fail. Video games, as opposed to physical

games, allow game players to experience a truly novel and dynamic set of obstacles,

and provide the creativity of the designer to augment their own creativity in play.

Artificial intelligence techniques amplify this effect. AI characters provide companions

in play when none are available as well as additional dimensions to the game rule set.

For these reasons, AI is increasingly an important part of the biggest games on the

market.

Academic AI largely ignores the aspects of AI systems that are most important to

games. The important qualities for AI in games are that it must produce interesting—

not necessarily optimal—behavior that acts in a reasonable—but not necessarily error-

free—manner that does not require excessive computational resources. Game AI not

only may fail, but is expected to fail. If it did not, the player would be either faced

with an insurmountable challenge or no challenge at all, depending on whether the

AI controlled an enemy or a friend.

Artificial intelligence has become a more important factor in video games in recent
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years. Powerful graphics processing units (GPUs) have been developed for consumer

use, moving graphics processing off of the main processor, which leaves more process-

ing power available to the game logic, including the AI [56]. Recent games, such as

Left 4 Dead, have brought AI into the core of the game experience and have been

wildly successful [78, 3]. Left 4 Dead sold “almost 3 million copies” as of September

2009, less than a year after its release and has demonstrated just how important AI

can be in games for entertainment when used effectively [79]. Games are not just used

for entertainment though, as they are frequently used to create training simulations,

such as DARWARS Ambush! or Virtual Battle Space 2 [18, 39]. For many training

games AI is necessary to produce realistic environments.

Good game AI is difficult to produce. Even with the additional processor time

freed by the graphics pipeline, the resources available to AI are quite limited. While

graphics no longer dominate the CPU, game logic and animation are still very de-

manding. Furthermore, games are expected to run at very fast frame rates; Valve’s

popular Source engine uses a default tick rate (the rate at which the server updates)

of 66hz for its the multiplayer server [77]. Running one or two AI characters along

with game logic in this time frame is not difficult, but scaling may become a prob-

lem for large numbers of characters. In addition, game environments tend to be fast

paced and highly dynamic. Characters may be frequently injured or destroyed, and

events occur in real time. Achieving team coordination produces additional problems,

because team plans may be frequently invalidated as key characters are disabled or

situations require changes in roles.

Simulating intelligent adversaries and allies in games can be a very difficult task.
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Many different techniques for controlling game characters have been developed, in-

cluding scripting, planning, cognitive modeling, and reactive techniques. A class

of methods called reactive techniques in particular provide very fast control, allow-

ing many characters to be simulated at a time. Unfortunately, it can be difficult

to build teams of reactive characters that work together to provide interesting and

fun gameplay. This research aims to address the problem of building sophisticated

game characters using inexpensive reactive techniques and by enhancing the richness

of the game environment in which the characters live. We start from reactive con-

trol methods because they have the important quality of being computationally very

inexpensive.

Reactive control was recognized as a valuable paradigm for controlling robots

by Rodney Brooks when he developed the subsumption architecture in 1986 [5].

Like video game characters, robots must respond in real time in a highly dynamic

environment—the physical world. In addition, the CPU is frequently dominated by

other processes, though for robots these processes tend to be concerned with per-

ceiving the world. Due to battery constraints, robots may have very low-powered

processors, further limiting resources. The key observation underlying reactive con-

trol is that “the world is its own best model,” [6] so decisions should be based primarily

on the observed state of the environment. Reactive control techniques therefore make

decisions based on current perceptions of the environment and limit decision-making

to the immediate next action that the system should take.

In contrast, methods that reason primarily on a model of the environment, such

as planning methods, are known as deliberative control. Deliberative methods make
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decisions based on a model of the character’s environment, rather than immediate

perceptions of that environment. This allows deliberative models to make decisions

for not just immediate next actions, but a series of actions to take in the future.

They also frequently make more use of symbols, which are abstractions that pro-

vide a representation of some aspect of the environment (“chair”, for example, is

an abstract symbol describing the physical object that you are currently sitting on).

While reactive systems provide fast and computationally inexpensive response times

to environmental changes, their decisions may be less optimal than those made by

a comparable deliberative system. Deliberative control methods are typically better

at generating sequences of actions to overcome local minima problems, such as the

classic U-shaped obstacle in robotics (seen in Figure 1.1).

The local minima problem occurs because the reactive system is unable to look

into the future; when attempting to achieve a goal, it follows what appears to be the

shortest path, but does not anticipate that the obstacle will block its path. As it

attempts to move around the obstacle, it fails, because escaping the obstacle requires

moving away from the goal. The local minima problem is easily visualized with an

obstacle, but it also applies in other circumstances. Even if some path planning

is allowed, without considering any symbolic knowledge, a character will fall into a

local minima of taking the shortest path through a dangerous region of the map. A

group of characters acting together may all attack from the same direction, rather

than reasoning about flanking tactics that will produce a better, though less obvious,

result.

The local focus of reactive control decisions can clearly cause some difficulties for
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Figure 1.1: The local minima problem. One illustration of this is a reactive character
that attempts to achieve the goal by moving so it is always closer to the goal. The
system does not know how to handle the U shaped obstacle because going around
the obstacle would require moving away from the goal. Deliberative systems are able
to plan around the U-shaped obstacle.

game characters. It is recognized in the game industry that perfect tactics and strat-

egy is not desirable for game AI [47]. Even so, characters should exhibit some level

of tactical/strategic thinking. Without the ability to strategize, characters may fail

to recognize that a chosen path through the world is dangerous or a particular area

is important to guard. The sophistication of interaction with users may be dimin-

ished as well, with AI teammates unable to execute an attack plan with the player.

Frequently, without the ability to strategize effectively, AI characters will cheat by

making use of unlimited resources or perfect knowledge of players, which can cause

frustration if the player notices the cheating [14]. Another issue that can rise for re-

active control methods is difficulty in applying multi-agent techniques, since common
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reactive methods such as finite state machines, hierarchical finite state machines, and

subsumption architecture typically have static structures which are not modified at

run-time. When designing characters, representations for building these characters

can be difficult to manage as the structures can quickly grow very large, and individ-

ual components of the controller may interact in ways that reduce modularity. The

difficulty can be compounded when AI designers are not programmers and are less

experienced in managing this type of complexity. For training simulations, developing

realistic characters may require a domain expert who understands the cultural norms

of another society but does not have significant AI background. These shortcomings

reduce the sophistication of reactive characters, and can make reactive control less

appealing to designers.

An alternative method of control known as behavior-based control aims to solve

some of the problems of reactive control. The goal of behavior-based control is to

create systems with the speed and response times of reactive control but with more

flexibility. To achieve this, restrictions on the use of symbolic information and extra

internal state are relaxed, allowing better generalization of individual behavior compo-

nents. Better generalization leads to better modularity of the architecture, improving

the reusability of characters and reducing the complexity of their controllers [48]. The

components of a behavior-based controller are modular behaviors with a common in-

terface, designed so that direct behavior interaction is limited. In the game industry,

the same difficulties with reactive methods (especially finite state machines) inspired

methods such as behavior trees [35]. Behavior-based control makes characters easier

to manage and enables better reuse, but does not provide a complete solution to the
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problems of creating strategic characters or coordinating characters in teams.

This presents a serious question for reactive and behavior-based control: can the

strategic and multi-agent shortcomings be overcome while still providing a sim-

ple representation that is accessible to designers? Our central hypothesis is that

behavior-based characters in games can exhibit effective strategy and coordinate in

teams through the use of knowledge embedded in the world and a new dynamic ap-

proach to behavior-based control that enables characters to transfer behavioral knowl-

edge. The primary components of this research are:

1. Applying information compartmentalization to embedded world knowledge to

enhance the capabilities of intelligent characters and represent uncertainty in-

directly.

2. Applying the reactive paradigm to multi-agent coordination to achieve compu-

tationally inexpensive teams of intelligent characters that can produce tactical

and strategic behavior.

3. Comparing the use of world embedded knowledge together with reactive teaming

and behavior-based control to existing techniques from the game industry and

research community to evaluate the applicability in games.

These new methods are developed for and evaluated in real-time games. In par-

ticular, we use a combination of tactical first person shooter/3rd person shooter

(FPS/3PS) and role-playing game (RPG) environments. FPS and 3PS games tend

to be highly action focused, requiring the player to engage in fast-paced tactical en-
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counters. RPG games, by contrast, frequently have more exploratory and puzzle

components, and encounters with enemies are not as fast-paced.

These two general categories of games will test the ability of our work to use both

tactics and strategy. Tactics is, according to the Oxford English Dictionary, “the art

or science of deploying military or naval forces in order of battle, and of performing

warlike evolutions and manoeuvres [58].” Tactics focus on particular defined maneu-

vers that are used in a combat environment, usually to achieve a particular objective.

Strategy, on the other hand, is “the art of a commander-in-chief; the art of projecting

and directing the larger military movements and operations of a campaign [58].” The

key difference is that strategy has a more global focus; a strategy will direct groups

of characters, which themselves may employ tactics. In other words, tactics focuses

on the short term, fine-grained scale of character control and coordination, where

strategy focuses on the long term, broad scale of control. FPS games require careful

use of tactics, with less emphasis on strategy, while the puzzles of RPG games require

longer-term consideration of actions to overcome local minima.

The underlying control method used throughout this work is a behavior-based

subsumption architecture. Subsumption uses a prioritized list of behavior layers, as

seen in Figure 1.2. Layers are a 3-tuple, composed of a trigger, a behavior, and a

subsumption policy. Triggers read filtered information from the environment, referred

to as percepts, and return true when one or more conditions are met. Behaviors

may be a single primitive behavior, or composed of multiple behaviors structured

hierarchically. Behaviors make decisions based on the current state of the world and

output action requests. Because layers may be run in parallel (one of the primary
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Figure 1.2: Subsumption architecture representation. Layers represent behaviors,
which may be simple or composed of multiple behaviors. Higher layers have higher
priorities. Circles represent subsumption policies, which dictate whether higher layers
override lower priority layers or allow them to run.

benefits of subsumption), each layer is also required to have a subsumption policy

that dictates how its action requests are combined with the requests made by lower-

priority layers.

1.1 Environmental Intelligence

Embedding intelligence in the world can be done in a number of different ways. A

common approach that is used in the game industry is called influence mapping [75].

Influence mapping is used to annotate areas of the world where different players are

powerful, where battles have taken place, or that may be important to protect. One

problem with this approach is that it is based on an underlying grid-based map;

updating the influences can be very expensive if a fine-grained grid is used (in a 10

meter by 10 meter map, with 0.5 meter resolution, 400 values would be needed).

Multiple maps may be required to track different types of influences, and influences

may decay over time. These factors can make influence maps expensive to store and

maintain.
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It is important to note that perceptions of the game world are generated from the

underlying world representation. The choice of representation has consequences not

just for AI, but also general game logic as it is used for collision detection, graphical

culling, and other important tasks. Influence maps are used when the underlying

representation is a grid. Another representation that is frequently used in modern

games is the navigation mesh. Navigation meshes decompose navigable space in a

virtual environment to create a number of convex regions, as seen in Figure 1.3.

These regions, and the portals between them, can be transformed into a graph, which

allows navigation to be split cleanly into a global path planning problem (finding

a path from one convex region to another) and a local navigation problem (moving

within a region). An important quality of navigation meshes is they allow information

to be compartmentalized; calculations for visibility, collision, and other factors can

be accelerated by only considering objects and characters within the current region.

For AI, the navigation mesh can be used to provide additional information, such as

whether a region is inside or outside a building, and how the character can move from

one region to the next (it may need to climb a wall, or crawl on hands and knees, for

example). We have adapted the approach of influence mapping to navigation meshes

as influence points. Influence points can be far cheaper in terms of both computational

and space complexity due to the reduction in size provided by the navigation mesh

representation.

In addition to world representations, the action and perception space of characters

must be defined. Modeling actions and perceptions can be non-trivial when a large

variety of objects are present in the environment. Without additional information,
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Figure 1.3: Example navigation mesh. Geometric and graph representations are
shown. Regions must be convex. Gateways may be directed or undirected; in this
case, the gateways are undirected, allowing passage each way, as shown in the graph.

deciding whether an object can be picked up, for example, may require a great deal of

geometric computation. Instead, characters can carry the innate knowledge of what

objects are possible to pick up. This presents a problem when new objects are made

available, as the characters must be changed to be aware of them. One solution is to

attach affordances, or information about possible actions, to the objects themselves.

When a character is created, it may not possess any knowledge of what actions can be

applied with what objects, and receives this information from the objects themselves.

We extend this concept of simple affordances by adding context, enabling multiple

characters to coordinate through affordances, and representing uncertainty through

these smart objects. These techniques increase the power of even simple random

agents, and decrease the complexity of individual behaviors for crafted agents. We
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evaluate our affordance extensions by comparing the performance of agent controllers

that are aware of contextual affordances with controllers that are not.

1.2 Reactive Teaming

A key aspect of player immersion is team coordination. Achieving team coordi-

nation can be a real challenge, and may require the creation of specific team-based

behaviors. There are two major flaws with this approach. First, behaviors that are

team-based may be very different from solo behaviors. This means that redundant

behaviors must be created, first for solo characters, and then the same task for team-

based characters. Second, these team behaviors may not adapt well to varying number

of teammates. Ideally, behaviors should take advantage of as many teammates as are

available for the task, and adapt as the team size changes.

If creating team-specific behaviors is not the solution, then the architecture itself

needs to be modified to allow more dynamic behavior. Reactive architectures gener-

ally provide no clear mechanism for coordinating multiple solo characters to perform

a team-based task. Behaviors are predefined for each character, and usually static.

Subsumption architecture in particular was designed to mimic the operation of elec-

tronic circuits, and does not provide for dynamic changes to the character controller.

Working with modular behaviors in software provides more flexibility than subsump-

tion as originally defined, and dynamically changing the behaviors in a behavior-based

system is not as daunting a task. One of the major problems in multi-agent systems

is deciding how to assign tasks or behaviors between multiple agents on a single

team. This task is the commitment problem of Jennings, and the problem of se-

lection of agent activities as described by Lesser [36, 43]. The assignment problem
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is the focus of auctions, planning, free market and other approaches to multi-agent

coordination[8, 25, 37]. A secondary, related problem in games is how to create tasks

that generate more direct character interactions—not only must we assign character

behaviors, but we must make sure that the behaviors take advantage of the team.

Reactive teaming decides how to assign behaviors through interactions between pairs

of characters. By making this decision pairwise, rather than requiring information

from the entire team, individual behaviors can be assigned very inexpensively. In

addition, the choices of when to request a new assignment, and what assignment to

transfer, are local reactive decisions based on the current state of the agents.

We approach the problem of creating behaviors that coordinate with other members

of the team at both the individual behavior level and with world-embedded knowledge.

Individual behaviors can be divided so that both the originating character and the

receiving character each possess non-overlapping parts of the task. World-embedded

knowledge can be used by allowing characters to annotate the environment with

influence points, and can also provide multi-agent probabilistic affordances to enable

close character coordination. While reactive teaming does not provide guarantees

about the quality of the team assignments, it can create team coordination at a much

lower computational cost than other techniques.

Reactive teaming is evaluated by comparison with auction-based methods applied

to both behavior-based control and the industry technique of behavior trees, as well

as crafted teams that statically define the role of each character on the team. Because

it is extremely difficult to find objective measures for AI performance, we compare

the performance of our techniques with accepted game industry standards. This type
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of comparison only shows whether the techniques have a similar range of behavior

generation, so we also compare the complexity of characters in both design and run-

time computation. We chose this approach because it can capture improvements

in resource consumption and verify that our extensions do not compromise baseline

performance.

1.3 Overview

We begin this work with an overview of existing methods for embedding knowledge

into the world and accepted practices for building AI controllers. In Chapter 3, we

describe each technique in detail, including expected run-time and design complexity,

starting with intelligence embedded in the environment and continuing with dynamic

extensions to behavior-based subsumption. Chapter 4 provides details of our im-

plementation in two testing environments, DASSIEs and SPLAT. Evaluation of all

techniques is covered in Chapter 5, and we wrap up with a review of key findings as

applied to the thesis hypothesis in Chapter 6.

Throughout the proposal, we will generally use the terms character and agent to

mean the same thing. Character is preferred except in certain contexts, such as

the term multi-agent, when agent is a well-established term. We will refer to single

updates during a game loop as ticks.



CHAPTER 2: BACKGROUND

2.1 World-Embedded Knowledge

Embedding knowledge in the world is a powerful technique for making behav-

ioral information available to agents without individual programming. Embedding

knowledge requires an underlying world representation that is appropriate for these

techniques, as simple grid-base representations can be extremely expensive in terms

of computational resources.

Our methods use navigation meshes provide a topographical representation of vir-

tual worlds. As game worlds grow in size and complexity, it becomes important to

move away from standard occupancy-grid style maps, which provide fine resolution

but use large amounts of memory and can be expensive to update with dynamic infor-

mation. Navigation meshes provide decompositions of the world into negative space

(traversable) and positive space (obstacle) regions. These regions are usually much

larger than a single grid cell and different regions may vary in size and shape. Because

they can be represented as graphs instead of a large map grid, navigation meshes use

far less memory, and information can be stored with far less expense than in grid

maps. Each of our embedded knowledge techniques uses navigation meshes as the

underlying organizational representation for storing information (though affordance-

based techniques are possible to use without navigation meshes).
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There are a few methods of generating navigation meshes. The Hertel-Mehlhorn

algorithm decomposes the world into triangular regions, but can result in large num-

bers of very thin triangles [32]. Space-filling volumes places square seeds throughout

the world, and grows them until they reach an obstacle, at which point growth stops

in that direction [76]. This method works well for worlds where obstacles are axis-

aligned, but fails with more complex geometry. Other methods that can be used

include Voronoi diagrams and probabilistic road maps, but these are useful primarily

for agent navigation, and are not as effective for other purposes [66]. We use Adaptive

Space Filling Volumes (ASFV) to to generate navigation meshes [27]. This method is

based on Space Filling Volumes, but can handle complex world geometry that is not

axis-aligned. This method produces meshes which are far less complex than triangle-

based approaches. While we use ASFV-based navigation meshes, it should be noted

that our techniques are independent of the navigation mesh generation method.

2.1.1 Influence Mapping

Influence mapping is a technique to provide tactical information to agents in

games [75]. An influence map is a grid representation of the game world, with values

representing the local power, or influence of the different forces in the world. Influ-

ence values may be based on enemy unit locations, bases, resource banks, lines of fire,

or many other sources of information. They have been used in games such as Age

of Empires [63]. Often multiple influence maps are used to track different types of

tactical information, and the different types must be combined for decision making.

Influence map trees store influence maps as leaves in trees, which can be manipulated

at each level[52].
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While influence maps are extremely useful, the use of map grid representations

makes them very expensive. The full maps must be regenerated as conditions change;

if maps are implemented using a full size grid of the world, each insertion of an

influence and update of the map is an O(n) operation, where n is the number of cells

in the map grid. Furthermore, the memory cost is also O(n) if a single map is used, or

O(n∗m), where m is the number of influence types, if multiple maps are used. Given

the large size of virtual worlds, this cost can quickly become non-trivial. Loading only

part of a world at a time can improve this, but at the cost of additional complexity.

Our approach to annotating the world with influences shares many common features

with influence maps, but uses navigation meshes to greatly reduce the computational

and memory costs.

2.1.2 Affordances

The concept of affordances, as introduced by Gibson, describes all “action possi-

bilities” available in the environment [26]. For example, chairs have affordances for

sitting; a lightweight chair may also have an affordance for lifting, and a folding chair

has an affordance for folding. In design, Don Norman used the concept to describe

the importance of making the use of objects clear to consumers [57].

Affordances are a useful tool in virtual environments, as they can be used to reduce

the complexity of character intelligence by moving behavioral information out of the

character controllers. One of the most important examples of affordances in games is

from The Sims [71]. Apart from simplifying agents, The Sims also used affordances to

allow major content updates without having to make changes to the carefully tuned

AI controllers. Other games have used affordances to create smart objects. The game
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F.E.A.R used affordances in the form of smart objects [61]. The smart objects in

F.E.A.R provided all information about animations (and therefore actions), allowing

many different behaviors to be specified in a single state in conjunction with a plan-

ning system. This effectively decouples objects from the animation system, but does

not significantly reduce the decision space of characters. Cerpa described an architec-

ture that used smart objects in conjunction with behavior trees [11]. Cerpa’s smart

objects would dynamically add behaviors to the AI controller to perform different

actions. This is an effective way to reduce the decision space for agents using smart

objects, but requires adding full behaviors to objects, which may require an AI pro-

grammer. Our approach for contextual affordances strikes a compromise by filtering

the available actions reported by objects. This still provides animation information

to characters, but reduces the burden on the level designer for building full behaviors

to be attached to objects. In addition, we provide techniques for adding probabilistic

and multi-agent coordination information to objects, reducing the complexity of the

AI controller.

2.2 Agent Control Techniques

Agent control techniques broadly fall on a spectrum ranging from purely reactive

to purely deliberative. One particular type of technique, scripting, can be said to

fall on both sides. Depending on the script, it may be purely reactive (only having

reflexive responses to environmental stimuli) or purely deliberative (once started, it

will ignore environmental stimuli and execute its programming blindly). Scripting

can be used to implement other techniques as well, as some scripting languages are

general programming languages.
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From most deliberative to most reactive, excluding scripting, there are many types

of techniques: planning, cognitive models, behavior-based, reactive, and reflexive.

Examples of each of these techniques can be found throughout game AI.

2.2.1 Planning

Planning methods such as STRIPS allow the input of set of possible tasks with

preconditions and expected postconditions, along with the starting world state and a

goal world state (including agent state) [22]. From this input, a complete plan from

start to finish can be computed if it is possible. HTN (hierarchical task network)

planners search for plans using a hierarchical decomposition [67]. Initial plans are

decomposed into subplans, and subplans are further processed until an ordered set of

actions are discovered. HTN planning can use primitive tasks such as those required

by STRIPS planners, but is best used with a plan library of known task decomposi-

tions. Relationships between subplans are are expressed as a network rather than as

individual tasks with preconditions and postconditions.

Planning methods can be very expensive; in fact, without major restrictions, de-

ciding whether a plan exists for a given HTN planner is a PSPACE-hard problem

(though restrictions can be made to reduce it to a NP-complete problem) [20]. De-

spite this, in practice planning algorithms can be used quite effectively. The game

F.E.A.R. used a STRIPS-style planning system called GOAP (Goal-Oriented Action

Planning) [59, 61]. GOAP uses a number of modifications to allow the planning sys-

tem to run with sufficient speed. First, costs are applied to actions to represent that

some actions are preferable to others. In addition, instead of using add and delete

lists, GOAP uses a fixed-sized array to represent world state. Procedural precon-
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ditions are used when certain preconditions are expensive to calculate and are not

always needed in the world state array. Finally, because actions do not always have

an immediate effect, the actions required by a plan are executed by a finite state

machine to allow actions to take place in the correct order.

Killzone 2 used HTN planning for its bot AI [73]. The authors report that with 14

bots in a multiplayer game, they were able to generate about 500 plans per second,

with each plan requiring about 15 decompositions. These numbers indicate that at

this scale, planning can be achieved, but the authors do not provide how much further

the system is able to scale before it becomes infeasible.

While computational expense is a major concern for planning-based techniques, the

knowledge-engineering problem may be an even larger barrier to building planning

systems. Preconditions, expected postconditions, and models for handling uncertain

world state are frequently non-trivial to develop. Even for simple domains, the num-

ber of operators required for planning can be extremely large. Planning is frequently

used in games in ways that closely resemble reactive control methods. We do use some

minimal planning methods in our research, but this is limited to the use of planning

paths through the world. When used in combination with navigation meshes, path

planning is a very effective way to enable global navigation for intelligent characters.

2.2.2 Cognitive Architectures

The goal of cognitive architectures is to create cognitively plausible models of hu-

man cognition. They are typically rule-based systems. Some cognitive architectures

approach cognitive plausibility very carefully, including issues of timing, while others

primarily focus on processes while running at more expedient speeds. The ACT-R
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architecture, created by John Anderson, is a rule-based system that includes cogni-

tively plausible timing information [1]. Because of the attention to timing, agents

created in ACT-R sacrifice speed for plausibility.

Soar is another major rule-based architecture [41]. Unlike ACT-R, Soar allows

much faster execution of agent rules. Intelligent game characters have been written

in Soar, unlike ACT-R.

Apart from the computational costs and timing issues associated with cognitive

architectures, building models in cognitive architectures is a skill that requires a large

amount of experience to develop. Cognitive modeling is very different from usual

methods of programming, frequently resembling the process of knowledge engineer-

ing for planning. Unlike planning, though, these models are still building procedures

rather than models for discovering action sequences to achieve goals. Projects such as

Herbal attempt to make this process more accessible, but more work is necessary be-

fore cognitive modeling can be considered a generally accessible technique for building

intelligence [13].

Cognitive models have the potential to enable realistic human-like behavior in

games. This type of behavior is sometimes desirable, notably in training simulations.

Outside of high fidelity training simulations, though, there is little focus on generating

realistic behavior. Given the difficulty of building cognitive models, this greatly

reduces the value of cognitive modeling for the creation of intelligent characters.

The structures of cognitive architectures can still provide some useful insight and

mechanisms for other AI architectures. The overall structure of the BEHAVEngine

architecture was inspired by cognitive models, and we used concepts in the memory
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model that are derived from ACT-R and Soar.

2.2.3 Reactive and Behavior-based Control

Given the difficulty in building cognitive models, and the effort required to generate

world models to be used with planning systems, we chose techniques that fall into the

categories of reactive and behavior-based control for our architecture. Many different

reactive architectures for agent control exist, though only a few are commonly used for

games. In general, reactive agents can be said to map from an input of perceptions to

a set of output actions. Rather than relying on an internal model of the environment

and producing plans, reactive agents make decisions based on the world state directly.

An important distinction between planners and reactive controllers is that planners

build a sequence of actions to provide behavioral guidance through a point in the

future called the planning horizon, but reactive agents only make decisions for the

current time step.

Finite state machines (FSMs) and hierarchical finite state machines (HFSMs) are

a popular and simple to use method for building reactive agents. They are inher-

ently modular, allowing a library of primitive behaviors to be developed along with

transitions based on combinations of simple conditionals. The behaviors can then be

connected by these transitions using a graphical representation. While FSM-based

methods are simple as a concept, they suffer from the problem of becoming unman-

ageable past a certain size, since maintaining the O(n2) transitions between states

becomes an increasingly difficult problem. HFSMs reduce this issue by providing

super-states that encapsulate portions of the machine. Concurrency issues can be

addressed with non-deterministic finite state machines by treating ε transitions as
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indications of states that run in parallel. Without this convention, concurrency can

result in an exponential increase in the number of states. Note that nondeterministic

finite state machines can be converted to deterministic finite state machines, though

the number of states are much larger for the deterministic equivalent. Hierarchical

finite state machines have proven useful in games, and provide the basis for some

types of behavior tree [24]. The lack of built-in parallelism in both architectures is a

major limiting factor, and can be solved with other architectures.

Another reactive control method that may be used is subsumption architecture.

Subsumption was proposed by Rodney Brooks as a robot control architecture [5].

Agents are defined as a series of prioritized layers. Each layer is composed of a

triggering condition, a primitive behavior to run, and a policy for interacting with

other layers. Higher layers may adjust the control of lower layers, but lower layers

may not interact with higher layers. Higher priority layers may completely override

or subsume lower layers, or adjust their output in some way. Transitions need not

be explicitly specified, though the closest analog in subsumption is the subsumption

policy. Subsumption is inherently parallel, which eliminates the need for constructs

such as ε transitions or schedulers. The prioritized structure of the layers reduces

the number of subsumption policy decisions to be much smaller than the number of

transitions in an FSM. Behaviors can be executed in sequence by composing a layer

of multiple behaviors, but executing layers in a sequence is more complex than in a

standard FSM unless each layer has a perceivable effect on world state.

Nakashima and Noda introduced a version of a dynamic subsumption architecture

called Gaea [55]. Gaea uses organic programming, using cells instead of the usual
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layers. This organizes the subsumption into behavioral layers and functional layers.

Reconfiguration of the architecture is allowed by swapping cells. This is similar to

the dynamic extensions presented in this work, though we use failure monitoring to

inform the changes to the architecture and allow adding completely new behaviors

to the architecture. Also, our work differs in that low level behavior (performing

primitive actions) is completely separate from the subsumption controller.

Subsumption has been used in commercial game titles. Eric Yiskis describes a

subsumption architecture for games with layers divided into immediacy of goals [87].

The layer division used is Tactics, Behavior, Action, and Movement, with each layer

composed of a finite state machine. Each layer has a well-defined responsibility,

and no layers may overlap. Higher level behaviors send requests to the lower level

behaviors, and can only communicate with the layer immediately below. This can

greatly limit the flexibility of subsumption architecture, as controllers can generate

more complex behavior when layers are allowed to overlap. Loew and Hinkle have

also described a simple subsumption architecture to allow agents to execute multiple

actions in parallel, allowing opportunistic actions to be taken while other behaviors

are active [44]. Our approach is more similar to the work of Loew and Hinkle.

Many criticisms of reactive architectures assume the lowest possible level of abstrac-

tion, where the controller is responsible for all decision making, including low-level

animation execution and perception filtering. This is not a fault of reactive control

techniques, but rather of engineering. Highly integrated controllers can be easily sim-

plified by separating decision logic from control logic. When this distinction is made

(as it is in our work), working with reactive controllers is greatly simplified. Further
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improvements can be achieved by using behavior-based versions of common reactive

architectures.

Given the nature of game environments, reactive control places some unnecessary

limitations on character controllers. Notably, in games the environment is entirely

symbolic, which eliminates most of the problems associated with symbol grounding.

Since world state contains symbolic information, rather than the low-level sensor

readings that robots depend on, reactive systems in games typically fall into the

category of more state-rich behavior-based systems.

Even outside of games, reactive techniques are frequently implemented as behavior-

based control methods. Behavior-based control was initially proposed by Maja Mataric

as an alternative to pure subsumption for robot control [48]. Behavior-based tech-

niques differ in that the individual modules that make up a controller may not be

simple states, but could be full finite-state machines or other state-based controllers

themselves. In other words, behavioral components may contain state, including

simple world representations. Aaron Khoo described the use of behavior-based sub-

sumption as a game AI method with abstracted trigger/action modules [38]. While

subsumption in its basic form is perhaps the simplest type of behavior-based control,

as it provides a clear conflict resolution system in the use of prioritized layers, Khoo

describes other methods to resolve action conflicts without the use of static priorities.

Behavior-based hierarchical subsumption techniques are also in use [42]. Our work

uses hierarchical subsumption techniques, as the additional abstractions enabled by

hierarchical methods are extremely important for simplifying the character design

process.



26

Extensions to behavior-based HFSMs are provided in the behavior tree (BT) for-

mulation of Damian Isla [35]. In behavior trees, the HFSM is represented using a tree

structure. Internal nodes of the tree act as transitions between leaf nodes, which ex-

ecute behaviors. These internal nodes provide conditional tests and implicitly define

transitions between groups of nodes; for instance, a sequence decision node results

in child nodes being visited in order without explicitly creating transitions between

the children. The result is that transitions are only explicitly defined for parent-child

relationships and not for sibling relationships. Behavior trees also allow impulses,

which effectively reduce the number of common subgraphs. An example of an im-

pulse would be to give a subgraph multiple priorities in a prioritized-list decision

node; under most circumstances, subgraph A should be lower priority than subgraph

B, but given a particular set of percepts P, A should be considered before B. While

the resulting behavior tree controller is equivalent to a similar HFSM, these abstrac-

tions can potentially reduce authorial burden, but the resulting transition functions

have a higher complexity. Behavior trees also have a larger set of concepts that must

be understood by the AI designer prior to building agents. The behavior tree meth-

ods used heavily in industry frequently fall in the category of behavior-based control.

Two major aspects of behavior trees is that they are highly modular and the control

structures include additional state– more than is commonly used in state machines.

The popularity of behavior trees in industry make them a natural choice for com-

parison with our subsumption-based methods. In addition, several of the techniques

we describe in this work can be directly applied to behavior trees (or even FSM-based

controllers) with no modifications. The complexity of the representations created for
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behavior tree-based approaches is very similar to that of the complexity of subsump-

tion architecture.

2.2.4 Behavior Languages

Several approaches to agent control exist which do not fit cleanly into the other

categories. Notably, the family of approaches based on the Reactive Action Pack-

ages (RAPs) of Firby lie somewhere in between reactive, planning, and cognitive

architectures [23]. RAPs are similar to behaviors, and define a task net, which is a

partially ordered sequence of actions. RAPs may have preconditions which must be

true to run, constraints which must remain true for the behavior to continue run-

ning, and a success clause that can detect when the goal the RAP is meant to satisfy

spontaneously completes before the task net has finished running. These RAPs are

dynamically added to the behavior controller, and the executive system of the agent

decides which to run at any given time. The Hap architecture of Bryan Loyall is

based on RAPs, but simplifies the RAP language in some ways and adds support

for a number of additional features [45]. A further refinement of Hap is A Behavior

Language (ABL), which changes Hap to have a Java-based syntax and further ex-

tends the language to provide multi-agent coordination, specifically to support story

development in games [50].

While these techniques have their own approaches to controlling behavior execu-

tion, their languages can be used effectively to generate behaviors for many other

architectures. For example, an ABL interpreter embedded in a subsumption behav-

ior would enable the use of the ABL language structures for creating the building

blocks of a subsumption-based agent.
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2.2.5 Multi-Agent Control

Much of the research in multi-agent planning focuses on providing near-optimal

task assignments for teams. Multi-robot task assignment, a close parallel to game

team coordination, can be defined as a scheduling problem [17]. Scheduling defines

a number of jobs which must be executed by a number of machines, frequently by

a certain deadline. Many different approaches have been taking to finding near-

optimal solutions for team coordination, including planning, auctions, and free-market

methods [8, 25, 37]. These methods can be expensive to use, and provide optimality

guarantees that are frequently unnecessary for game characters. We seek to develop

approaches that can be used for coordinating teams of characters when optimality

guarantees are unnecessary or the team size is very large. In cases where traditional

coordination methods are needed, the extensions we have developed for subsumption

architecture allow the use of these methods.

Approaches to team coordination of behavior-based agents often avoid global meth-

ods, instead focusing on local approaches. Werger observed that some emergent team

behaviors developed from agents developed with no awareness of the team [85]. While

this is possible, it becomes difficult to design teams which coordinate through emer-

gent behavior. Learning and swarming approaches without explicit communication

have been successful [70]. Adding explicit communication which conveys a teammate’s

state provided success with a robotic box-pushing task [49]. Another approach di-

vided the working area of the robots in a team into territories, so that each robot

was responsible for one area; this approach also dealt with the problem of broken
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robots [68]. Our approach of reactive teaming integrates some of these ideas. Reac-

tive teaming is an emergent approach, but it uses explicit communication. In addition,

reactive teaming allows the designer to specify restrictions that limit the emergent

qualities of the team behavior.

In games, teams of agents are commonly coordinated through a combination of

decentralized and centralized AI. Decentralized team AI extends individual agent

controllers to take its teammates’ current observations and intentions into account

when make its own decisions [80]. Decentralized methods are considered to be too

weak to perform more sophisticated coordinated actions, so centralized methods typ-

ically provide an additional level of AI that issues commands to individual agents.

When centralized methods are used, the team coordinator can use either an author-

itarian or coaching style, depending on the responsiveness required [81]. Our main

focus is on providing decentralized methods, though our extensions do allow the use

of centralized techniques for controlling team behavior.

Decentralized teams may use blackboards to communicate information between

agents, which provide a central shared memory area that agents can read and update

with their current state [60]. The type of information shared by AI agents in the

game No One Lives Forever 2 includes requests for agents to move when they are

blocking another agent, messages to change pathfinding behavior, notifications of

events, and requests for particular behaviors to be executed. The blackboard provides

an advantage in that agents only need to query the blackboard rather than sending

individual messages. Instead of using a blackboard, our agents communicate either

through knowledge embedded in the virtual environment or through behavior (such
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as speaking to one another).

The GOAP architecture implements team coordination by providing different levels

of goal planning [62]. When an action is chosen by a high level unit, the action includes

suggestions of goals for the subordinate units under its command. Each level of the

command hierarchy filters goal suggestions down in this manner to the last units in

the chain of command. Note that in this implementation, goals cannot be added to

the controllers of lower level units, but instead importance modifiers are applied to

the goals which are already available to the units. Positive modifiers make a goal

more likely to be executed, while negative modifiers suppress goals. This approach

is more restrictive than reactive teaming with subsumption. Characters using our

reactive teaming approach can receive entire behaviors from other characters, allowing

them to execute behaviors that are not initially provided in their controller. In

addition, because reactive teaming characters instantiate their hierarchy behaviorally,

command structures are more flexible.

Orwellian State Machines provide an approach to using subsumption to coordinate

teams of agents [4]. In the OSM framework, higher level agents in the command hier-

archy subsume the lower level agents by sending orders to perform tasks or modifying

the actions taken by lower level agents. The framework also proposes a mechanism to

treat individual characters as a multi-agent OSM. The OSM is organized as a directed

acyclic graph (DAG), so multiple higher level agents may send commands to a single

lower agent. Our approach also allows multiple agents to command a single agent,

but the level of control is not as strict as OSM-based teams.

Other approaches to teaming use a combination of multiple techniques. One of
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the major domains for multi-agent coordination is that of robot soccer. Robot soccer

teams are of fixed size, and must deal with a large number of challenges in sensing

and control. Many of the techniques in robot soccer are directly applicable to sports

video games. Both domains require tightly coordinated teams, and characters are

more permanent than in other video games. This means that much of the work is

focused on developing skills such as passing the ball, shooting goals, and developing

play patterns. The CMU CMDragons team, which won the small-size competition in

2006 and 2007, had highly specialized roles in the team for offense and support [7].

One method the CMU team has used for coordinating the team and choosing the

appropriate play for the robots to execute applied case-based reasoning approaches,

which have also been applied to the simulation league [65, 84].

Another interesting approach to multi-agent coordination is an outgrowth of auction-

based methods, known as market-based coordination. This technique has agents bid

on tasks, and once tasks are assigned, the agents themselves can run additional auc-

tions to further split the task or exchange a task for another [19]. The market-based

approach combines centralized coordination (an auction) with decentralized tech-

niques (multiple agents may run auctions). Market based methods have been used

in the robot soccer simulation league, and even combined with other techniques such

as reinforcement learning [40]. These methods are applicable to video games, and

may be especially useful for sports games where individual character skills are well-

defined, and teams need to execute a variety of pre-defined plays. In addition, these

approaches are valuable to highly realistic tactical shooter games which require closer

adherance to real combat tactics. Our focus throughout this work is on less con-
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strained teams. The reactive teaming approach could be used in concert with some

of these methods through the use of the command transfer and request policies. We

do not focus on these types of teams, as we are more interested in introducing team

coordination for contrained situations which would otherwise have only minimal team

interactions.

2.2.6 Agent Failure Detection

Another important aspect of intelligent agent control is detecting failures. Failure

detection can be important for repairing agents that are exhibiting errors, or recog-

nizing when a team task should be reallocated. Plan-based methods need to detect

when a plan has been invalidated, and some (such as goal-driven autonomy) attempt

to identify not just when the current plan is failing, but also why, so that a new goal

can be chosen.

Several attempts have been made to identify the types of failures that can occur

and ways to detect them. Watanabe et al. provided a classification of different failure

modes in a subsumption-based robotic system [83]. They classified all errors as either

local or global. Local errors occur as part of the sensing process or behavior execution

process, and are sometimes detectable in the robot. Global errors are detectable with

additional monitoring systems. While this distinction is important, it only provides

two general classes, and we have found that it is possible to identify finer-grained

classes of errors.

Zang et al. use an emotion model that is affected by behavior success and failure

to detect when errors in a controller have become serious, and have several defined

operators to change the ABL-defined behavior [88]. Unlike the work presented here,
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Zang’s system relies on a concept ontology to repair behaviors. This is more flexible,

but requires significantly more metadata. Lussier et al. discuss different types of errors

that can arise in robotic systems and the common ways of handling these errors, but

dismiss subsumption architecture as a feasible choice of controller because it is too

simple [46]. On the contrary, we have found that only minor extensions are required

for discovering and handling errors in subsumption-based systems.

Goal driven autonomy is another approach to handling errors in an agent controller

that has been used in virtual environments [53]. The ARTUE agent is controlled with

a hierarchical task network planner, and is able to reason about failures to select new

goals when the controller experiences errors. It follows the goal driven autonomy

framework by using a discrepancy detector to detect goal failures, which are then

analyzed with the explanation generator. This explanation can be used to choose a

new goal that the planner will use to decide a new control strategy.



CHAPTER 3: METHODOLOGY

This work falls into two major areas: environmental knowledge representations and

dynamic extensions for behavior-based subsumption. New representations for placing

knowledge directly in the environment are discussed in the first section. Our exten-

sions to behavior-based control are discussed in the second section, first discussing

our choice of behavior-based subsumption, then giving an overview of the architecture

and the single-character extensions. The third section covers multi-agent extensions

for behavior-based subsumption.

3.1 Environmental Intelligence

Environmental intelligence refers to elements of artificial intelligence that are part

of the environment rather than part of the agent controller itself. We focus on three

major advantages of putting intelligence into the environment. First, it allows agents

to treat the world as a blackboard by posting information for other agents. Once the

information has been placed in the environment, the creating agent does not need

to manage it—transferring this information to other agents occurs through the game

engine rather than agent-to-agent communication. Embedded information can also

be used by the level designer to modify the behavior of AI characters in a particular

part of the world without having to change the AI specification.

Secondly, environmental intelligence allows objects to be annotated with informa-



35

tion about how to perform actions. It may be possible for characters to sit on a

couch, stand on it, lift it up to vacuum underneath, or push it over for cover; if the

object is not annotated with this information, the character itself must have pre-built

knowledge about couches. If a new object is then added to the world, a table, the

character itself must change to be given knowledge about how to use tables. As more

objects are added to the world, character AI must be updated. Attaching this action

information to the objects allows entirely new objects to be added to the world with-

out AI changes—so long as the agent knows how to perform the action, it need not

be aware of the specific object type.

Finally, any knowledge that is designed as part of the level or the objects in the

level is knowledge that is not necessary for the agents to maintain. If a particular

part of the world is noted as dangerous, the character can use that knowledge directly

rather than mapping out the locations of recent deaths or looking for sniper roosts

to discover the fact. Furthermore, it allows the creation of more general agents. A

guard character that is designed to use an object that is capable of the “threaten” and

“shoot” actions to defend its post may be used in different situations. This character

could guard a medieval castle with a longbow, an army post with a rifle, or a space

station with a phaser.

3.1.1 Influence Points

First, we consider representations that allow the world to be used as a blackboard.

Influence points allow the addition of tactical information to the environment. Influ-

ence points are similar to the idea of influence maps, but take advantage of navigation

mesh decompositions. Individual influences are placed in regions instead of using a
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Figure 3.1: Example world with player influences in which influence mapping can
provide useful tactical information.

high resolution grid map. Because a region includes an area that would be covered by

a much larger number of map cells, this allows much greater efficiency than influence

maps. The influence of an entity on a map may not be limited to a single region—in

these cases, additional child influence points are added to neighboring regions. To

demonstrate the idea, we present an example.

A character, Alice, is attempting to make it to a goal, the gold mine, to fetch

resources (see Figure 3.1). Alice starts at her home base, and has a choice between

two paths. The longer path is defended by a friendly turret. The other path is short,

but unknown. Alice travels the short path, and is ambushed by enemy forces. After

retreating from the battle, she updates her knowledge by adding an enemy influence

to the area where she was attacked.

Now the path passes through an area where the enemy is powerful. The longer
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path, on the other hand, passes through an area that is well protected by a defensive

turret. After running her pathfinding algorithm a second time, Alice finds that the

least expensive path (incorporating chance of injury) is the longer path that passes

the defensive turret. Alice now follows the longer path, and makes it to the gold mine

successfully, returning valuable resources to home base.

In this example, if a grid-based technique is used, Alice must spend a nontrivial

amount of time inserting influence into the map, and potentially updating the large

number of cells affected by the enemy and ally forces. If a navigation mesh is used,

however, the insertion and update steps could be far less expensive.

3.1.1.1 Insertion

The first operation on influence points is insertion. This adds an influence point,

as well as any child influence points, to the navigation mesh. In our example, as Alice

heads towards its goal, she discovers the ambush point. After she escapes, she then

adds an influence point to the region where she was ambushed. This initial influence

point is the prime point, and the initial region is the prime region. The influence

point stores its information type (from a defined set of types), a strength value, a

unique identifier, and the exact point source of the threat.

The insertion algorithm can be seen in Algorithm 1. First, the region of the point

is discovered. This point is appended to the region’s list of influence points, and then

the strength of the influence at each gateway is checked. If the strength is still high at

the gateway, the connected region is retrieved and added to the visited list. A child

influence point is then added to the connected region. This child point will use the

midpoint of the gateway as its location.
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Algorithm 1: AddInfluencePoint Algorithm

Region r = findRegion(influencePoint);
r.influencePoints.append(influencePoint);
foreach gateway in r.gateways() do

if strength(influencePoint,gateway) > 0) then
connectedRegion = gateway.getRegion();
visited.append(connectedRegion);
connectedRegion.addChildPoint(gateway, influencePoint,visited);

Adding a child point is a similar operation, as seen in Algorithm 2. First the dis-

tance from the gateway to the the prime influence point is calculated. The distances

between regions (gateway to gateway) are already pre-calculated. The child point is

created with this total distance value and a reference to the prime influence point.

Then it is added to the region’s list of influence points. Finally, the strength of the

influence at each gateway in the region is checked. If the influence is strong enough,

the next region is added to the visited list, and addChildPoint is called again with

the gateway and the prime influence point.

Algorithm 2: AddChildPoint Algorithm

d = distance(gateway,influencePoint);
ChildPoint c = new ChildPoint(influencePoint,d);
region.influencePoints.append(c);
foreach gateway in region.gateways do

if strength(c,gateway) > 0 then
connectedRegion=gateway.getRegion();
if connectedRegion 6∈ visited then

visited.append(connectedRegion);
connectedRegion.addChildPoint(gateway,influencePoint,visited);

Note that the location of all child points is the midpoint of the gateway closest

to the prime point, but the child point is appended to the region’s list of influence
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points.

In practice, to be certain that influence points are added to the closest gateway

of a region, if there are cycles in the navigation mesh, a priority queue should be

used, and child points added in order of where influence is strongest. The visited list

insures that the influence point is never added to a region more than once. Insertion

is O(n) in the number of regions, since no more than n points total must be added

to the mesh. Insertion is the most expensive operation, but is still significantly less

expensive than influence map insertion, because the number of regions is far smaller

than the number of map cells.

3.1.1.2 Updates

At times, the strength of a particular source of influence may need to change. For

example, our agent may return to the ambush point with a strike force, and eliminate

half of the enemy force at that location. The strength of that source now should be

reduced, since the force is less of a threat.

Decreasing the strength of an influence point is very fast: first, find the the prime

point in the region’s influence point list, and then change the strength value. While

the child points could be updated at this time, it is not necessary. Because each

child point includes a reference to the prime influence point, the child points can be

updated when they are used by agents. This avoids extra work to update points that

may never be accessed before the next update to the influence point. This makes

the influence point update a constant time operation. A similar operation with an

influence map is O(n) in the size of the map.

If the influence update actually increases the influence, this advantage is lost. The
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cost of updates can be reduced, though. When creating influence points, instead of

basing the decision of when to stop placing children on the actual strength of the

prime influence point, an estimated maximum strength can be used if the strength

is expected to increase. Even if the estimate is poor, and this maximum strength

is exceeded, using this method will reduce the number of updates that require new

child points to be added. A heuristic can be used that looks one region beyond each

stopping point, and stores the strength value required for that region to have an

influence point. Once all stopping points have been reached, a second pass can insert

extra estimated child points based on the maximum heuristic strength value.

3.1.1.3 Using Influence Points

While influence point insertions are much faster than influence map insertions

because the number of regions will be much smaller than the number of map cells,

and influence point updates are much faster constant time operations, actually using

the influence points is slightly more expensive.

If the agent is in the region of the prime influence point, it must first find its

distance to the prime point, then calculate the influence fall-off f(Da,p, I), where Da,p

is the distance of the agent to the influence point, and I is the strength of the influence

point. f(D, I) is the strength fall-off function, which will be discussed below.

If the agent is in the region of a child influence point, first the strength of the child

point is compared to the strength of the prime point and updated if necessary. Next

the distance of the agent to the child point is calculated. For static world geometry,

the distance of the gateway to which the child point is attached to the region of the

prime point should be pre-calculated, making it a simple lookup. The influence decay
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f(Da,c + Dc,p), where Da,c is the distance of the agent to the child point and Dc,p

is the distance of the child point to the prime point, can then be calculated. The

calculation for a single influence point, prime or child, is still constant time.

For regions with n multiple influence points present, the agent can determine a

single tactical value using the equation

n∑
i=1

αif(Da,ci +Dci,pi)

where αi is a weight value for influence i.

While this is more expensive than a simple table lookup, the only additional costs

are an inequality check for the child point, a possible value assignment to update

the child point, and a single distance calculation. For multiple points, these three

operations must be performed for each influence. The weighted sum of the influence

values is also necessary with influence maps.

Because influence maps are typically recalculated on a regular basis, the additional

minor costs of the influence point calculations are more than made up for by the

savings in the insertion and update steps.

The influence fall-off function may be tied to attributes of the forces or objects

in the world, just as with influence maps, so that within weapons range of enemy

forces, the strength decreases slowly to take into account greater inaccuracy. Outside

of that range, it may fall off very quickly. Other possibilities may take sight lines

into account, or use a function such as radioactive decay, using a linear fall-off with

distance within the prime region, and a squared fall-off in child regions.
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3.1.2 Extended Affordances

The term affordance was introduced by Gibson to describe all “action possibilities”

available in the environment [26]. For example, if there is an unoccupied chair sitting

upright in the world, there is also an opportunity for sitting in the chair. In artificial

intelligence, this can be used to sidestep the symbol grounding problem, at least in

virtual environments; rather than define the quality of chairness, we merely require

that anything that can be used as a chair should have a sit affordance defined.

Affordances can be directly implemented in games as entities that provide infor-

mation about what sorts of actions can be taken using the objects they are attached

to. Affordances may exist separate from objects in the environment. If a character

possesses a hang glider, for example, it will state that it can be used as a tool to

enable flight, but that it requires a launch point. A launch point affordance could

then be placed at spot on a cliff edge.

In our system, basic affordances provide two key pieces of information: an action

that can be taken with this object, and the action slot the object will fill when the

action is executed. There are three types of action slots that an object can fill: source,

object, and target. The source means that the given object (which may be a character)

initiates the object execution. Usually the action source is a character. The object

slot is used to specify that the given object is used as a tool to perform the action. If

unlocking a door requires a key, then the key will be used to fill the object slot. The

target indicates that the given object or character is affected by the action, frequently

by changing its state. In the door unlocking example, the door is the target. The
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unlock action will change the state of the door. This is represented by an affordance

of the form (unlock, target) embedded with the door, and an affordance of the form

(unlock, object) embedded with the key. Finally, the character must have (unlock,

source) in its action space to be able to use the key to unlock the door.

By placing this information in the world, the character needs no additional knowl-

edge about keys and door locks, or even the difference between a swipe card and a

skeleton key. This basic concept is useful in itself, but it does not address differences

in characters, or how world state may affect affordances. The character still must

choose between multiple actions that are available with the item, deciding which are

possible and which are appropriate for the situation. If the action space for these

objects could be reduced to just the possible and appropriate actions in the given

context, the character has a simpler decision to make. Simpler decisions then reduce

the complexity of the intelligent controller. To further simplify character decisions,

we have developed three extended types of affordances: contextual affordances, multi-

character affordances, and probabilistic affordances. Each of these types of affordances

build upon the (action, slot) specification of basic affordances.

3.1.2.1 Contextual Affordances

Contextual affordances are affordances that take the current state of the world

and character into account. When a character queries a contextual smart object,

instead of returning the full action space of the object, a contextual affordance will

only include its action if certain conditions are currently true. For example, our hero,

Alice, is carrying a ball. There are a few things that the ball can be used for. It can

be dropped on the ground, it can be picked up off the ground, it can be thrown to
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break a window or push an out of reach button, or it can be used to bonk Bob, who

Alice does not like. The complete action space of this ball is then:

(drop, object) (pickup, target) (break, object)

(push, object) (bonk, object)

Now consider that Alice is in a room with her friend Carl. This room has no exit,

but there is an out of reach button which she can hit with the ball. In this context,

Alice really only has two choices: drop the ball, or push the button. She could bonk

her friend Carl with it, but this would not be appropriate since they are friends. It is

already in her inventory, so attempting to pick the ball up would fail. There are no

windows, so there is nothing to break. If we add an open window to the world, she

could now also use the ball to break the window—but it should not show up as an

affordance, because breaking an open window would not be appropriate (unless Alice

was a vandal). So the contextual action space is:

(drop, object) (push, object)

Alice uses the ball to push the button, and a secret door opens. Now, since the button

state has changed, the contextual action space of the ball is further reduced, so the

only option left is to drop the ball. Just as Alice thinks to do so, Bob runs into the

room, and she has a better option: the bonk affordance becomes available, and Alice

throws the ball at Bob’s head.

At each step, Alice must query the ball to discover what actions are currently

appropriate. Obtaining this list of appropriate affordances of an object requires a
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query that examines a set of condition/affordance pairs to filter out the options that

are not currently relevant. Conditions filter on the object state, the character state,

and the local environment. Contextual affordances are simple to add to an existing AI

system, as the same set of conditions available for building the character controllers

can be used to build the contextual affordance filters. This makes adding contextual

affordances to a system minimally invasive, as existing AI components can be reused.

Now when using contextual affordances, the ball action-space will look like:

(condition: haveBall? (drop, object))

(condition: ¬ haveBall? ∧ ballInReach? (pickup, target))

(condition: haveBall? ∧ lockedWindow? (break, object))

(condition: haveBall? ∧ outOfReachButton? (push, object))

(condition: haveBall? ∧ unfriendlyCharacter? (bonk, object))

When a character makes a behavioral decision, it queries the game engine for

currently available affordances. The engine uses the list of local objects, including

the character’s inventory, and evaluates the conditions on each contextual affordance.

When a contextual affordance test returns true, the engine adds the related affordance

to the list of possible affordances for the character. This reduces the amount of

reasoning the character must perform and also reduces the number of errors that

occur when characters attempt to perform actions that are not appropriate to the

current situation.
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3.1.2.2 Probabilistic Affordances

Contextual affordances rely on the character to reason about actions to be taken,

and do not provide any information to goal-based agents as to whether taking a

particular action will actually provide a helpful result. One easy fix for this problem

is to tag affordances with information about what the action will accomplish—the

(push, target) affordance on the button from the previous example could be tagged

with (outcome: (action:changeState, target:secretdoor, value:open) ) to represent that

the door will open once the button has been pushed. Sometimes, especially in games,

outcomes are not as certain. Either an action has a chance to produce different

outcomes (they may have stochastic outcomes), or it is unknown what a particular

object will do (the character has limited knowledge).

To enrich these interactions, affordances can be extended to include probabilis-

tic information. Probabilistic affordances include an expected outcome distribution,

which provides the character a notion of the expected change in world state after the

action has been executed. This is a probability distribution to allow the specification

of outcomes that are uncertain.

In the previous example, we assumed that the ball Alice had was sturdy, and the

button smooth. Instead, Alice may have picked up an old playground ball, and the

button itself could actually be surrounded with spikes. Now when Alice throws the

ball at the button, there are a few possibilities: the linked door could open with

a 90% probability, the ball could hit the spikes and pop with a 5% probability, or

the ball could just be too flat to apply sufficient force to push the button with 5%
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probability. Now Alice will have to consider the possibility she will lose the ball, or

that nothing could happen at all. If she has a long pointy stick, she may choose to use

that to push the button instead. The outcomes for using the ball are conditionally

independent of the outcomes for using the stick, but each set of outcomes must

be created by the level designer. When using probabilistic affordances to create a

stochastic outcome, and not just to represent limited knowledge on the part of the

character, the probability distributions must be created by hand. In this case, they

never need to be recalculated.

When used to represent limited character knowledge, probabilistic affordances store

the character’s interaction history so the probabilities can be recalculated as a char-

acter interacts with the world. This allows additional interesting scenarios if we link

multiple affordances together, and is our primary use of probabilistic affordances.

Imagine that our hero has just entered a dungeon room, and in this room there are 4

levers, 3 doors, and a trap door leading to the Pit of Infinite Doom. The affordances

on the levers have outcomes of opening the door to the exit, the treasure, or a peckish

dire badger. In addition, one of the levers triggers the trap door to the Pit of Infinite

Doom. In this case, the probabilities of the different outcomes are conditionally de-

pendent. As Alice tries pulling the different levers, she should adjust her expectations

for what will happen when the next lever is pulled.

Rather than making Alice record this information herself, her interactions with the

levers are recorded with the probabilistic affordances. This means that when Alice

queries the game engine for the likely result of pulling a lever, it will check to see

if she has pulled this lever before. In addition, it will check the other linked levers
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to see how she has interacted with them in the past. This information is then used

to adjust the probabilities that Alice sees. If she has interacted with the lever that

activates the pit trap, this will not be reported as a likely result of pulling one of the

other three levers.

So as Alice pulls the levers and observes the results, the probabilities adjust to

reflect her experiences so far. If the first lever opens the exit, the probabilities for

the other levers then report as 33% chance to find the treasure, 33% to encounter the

monster, and 33% chance of certain death. Deciding that this is an acceptable risk,

Alice chooses to open one more door. Her second attempt releases the dangerously

hungry dire badger. After defeating the monster, Alice can decide that her threshold

for danger has been surpassed, and she is not willing to risk the 50% chance of falling

in the pit for the chance to retrieve the treasure. If she fails, and falls into the pit of

infinite doom, the history of her interactions with this set of affordances is carried with

her to her next life. So long as the history of interactions is maintained, no other

changes need to be made to character controller to allow her to make the correct

choices when she next enters this room. In effect, learning occurs, but without the

need to explicitly model a learning process for the agent.

Probabilistic affordances require additional modifications to contextual affordances,

and may not be as reusable as contextual affordances. When using probabilistic

affordances, we create a set of contextual affordances for each object that can be

activated (in our example, the four levers). These affordances are then linked together

by giving each affordance a reference to the related affordances. Each affordance then

must also be tagged with a set of outcomes. In the example with the lever, this means
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that each of the levers is tagged with a single outcome—the true outcome for the given

lever. Finally, a history is added to each object. This history records how characters

have interacted with it. The history is not visible to the characters, and is only used

when calculating the outcome probabilities. The history may be used per-character or

per-team, depending on the game design. Note that multiple affordances on the same

object could be linked together, so if a lever has two different outcomes depending on

whether it is pushed or pulled, this can be represented.

When Alice queries a given lever, it checks the possible outcomes of all linked

affordances. The lever then discards any outcomes that have been achieved by Alice,

based on the interaction histories. The remaining outcomes are then reported as

having equal probabilities. At this time, we do not perform additional weighting of

the outcomes, so outcomes are reported as a uniform distribution. The advantage to

using a uniform distribution is that it is not necessary to specify any probabilities

when the affordance is created, as they are calculated directly when characters query

the affordance.

3.1.2.3 Multi-Character Affordances

Some actions are only possible with the assistance of others. Affordances as dis-

cussed so far only support a single character; one character queries the affordance

for the details of the action that are possible, and then can attempt it alone. Multi-

character affordances extend contextual affordances by allowing two or more affor-

dances to be linked together. This link is not used to adjust probabilities of different

outcomes, as in probabilistic affordances, but to specify that a given action requires

multiple characters to execute. This link then allows characters to work together
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without an internal model of team coordination.

To return to the levers example, a multiple agent affordance might be required to

pull a particularly rusty lever. This lever has three action affordances, two of which

are required, and the third is optional. One agent does not have the strength to pull

this lever, but two can. However, if only two agents attempt to pull the lever, it only

has a 60% chance of working. A third agent can join and improve the chance of the

lever pull opening the door.

As in probabilistic affordances, creating a multi-character affordance requires cre-

ating two or more contextual affordances. The first affordance is marked as required,

and is marked as a normal action from the attached object’s action space. Each linked

affordance in a multi-character affordance is either required or optional. Required af-

fordances must be filled for the action to be successful while optional affordances may

enable it to complete faster, or provide a better chance of success for results that

are uncertain. Secondary affordances, after the first required affordance, are marked

as having an assist action. If the action/animation for the secondary affordance is

different from the primary, it is reported with a different action. In all cases, sec-

ondary affordances use contextual triggers that prevent them from being reported

unless the primary slot is reserved. Optional affordances are not reported until all

required affordances have been reserved. A character which is designed to prioritize

assist affordances will then try to help when a teammate undertakes a large task.

Another addition is necessary for implementation of multi-character affordances.

Since exeuting the affordance requires multiple characters working together, the char-

acters must reserve the affordance during their decision cycle. Once the decision cycle
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completes for the team, the AI engine then attempts to execute all reserved affor-

dances.

3.2 BEHAVEngine and Dynamic Subsumption Extensions

This section describes the BEHAVEngine architecture. The first subsection intro-

duces the concept of representational complexity, and provides background on the

choice of behavior-based subsumption as the architecture used for BEHAVEngine.

The second subsection introduces the basic BEHAVEngine architecture.

3.2.1 Analysis of Reactive Methods

Different agent architectures have different strengths and weaknesses. Qualita-

tively, we may talk about the difficulty of creating a specific behavior or type of

behavior using each model. Our initial choice of subsumption architecture was based

on an earlier pilot study that showed individuals with no AI experience found sub-

sumption architecture easier to manage than finite state machines. This was an

unexpected result, as the expressiveness of the architectures is similar. User studies

with the BehaviorShop interface confirmed that novice users had very little difficulty

grasping the concept of subsumption architecture, but we had no metric for comparing

the differences between different representations [29].

To demonstrate these differences, we present a scenario. While this scenario is

very simple, it is possible to visualize each controller type and it sufficiently shows

the difference in complexity of each architecture we are demonstrating. A simple

scavenger agent lives in a world with three percepts: hunger, presence of food, and

presence of a predator. This scavenger is only aware of three actions: search for food,

eat food, and flee from predators. Its preternatural ability to sense food allows it to
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Figure 3.2: Finite state machine representation of the scavenger agent. Note that
only a few of the transitions are included for the sake of clarity. The total number of
transitions, including those omitted, is 25.

both flee from predators and search for food at the same time. A basic controller for

this creature as a finite state machine can be seen in Figure 3.2. Since basic FSMs

do not allow concurrency, five states are required. The creature can be idle, perform

any of its three actions alone, or perform both search food and flee at the same time.

This requires 25 transitions, as every state is accessible from every other state.

Figure 3.3 shows the same scavenger agent, but presented as a HFSM. The HFSM

reduces the overall complexity of the agent by creating three high level states instead

of five. The find food and flee superstates are each composed of two state FSMs. While

the total number of states increases, the overall number of transitions is reduced to

17, since the search, eat, run, and run/search states are no longer fully connected.

The overall representation of the agent is simpler to understand, and it is easy to see

that the super-states could be treated as separate modules to be inserted into other



53

characters.

Figure 3.3: Hierarchical finite state machine representation of the scavenger agent.
Self transitions are not included for clarity. The total number of transitions in this
case is 17.

Figure 3.4: HFSM-style behavior tree, composed of prioritized lists and sequences.
The use of these structures reduces the number of transitions, but the complexity of
the individual elements is greater. The number of transitions is 8, but this does not
account for the full complexity of the model.

As a behavior tree, this agent is simpler still to understand, as seen in Figure 3.4.

In this case, the agent is a tree with four internal nodes and five leaf nodes. The

leaf nodes represent the primitive behavior to be executed, while the internal nodes

represent decision points. The main decision to be made is first to choose from the
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prioritized list providing the high level behaviors of flee, find food, and idle. If a

predator is seen, flee is chosen, and another prioritized list decision is made. If no

predator is seen, it falls through to the find food branch, which will activate if the

agent is hungry. If the find food branch is entered, the agent will simply activate

search and eat in sequence. The priorities simplify the decision that is made at each

stage, and eliminate the need for transitions between siblings. There are only seven

explicit transitions in this case, though the individual nodes are more complex.

HTN-style behavior trees are very similar in structure to HFSM-style behavior

trees, but may be executed differently. Depending on implementation, rather than

performing conditional checks in the selector nodes, conditionals may be checked at

the leaf nodes. Execution is then performed as a greedy search through the tree.

While execution is different from the HFSM-style behavior tree, the structure of the

tree itself is very similar, and so will be treated the same as the HFSM-style behavior

trees for the sake of this analysis.

The subsumption agent in Figure 3.5 is even simpler. The available actions are

listed in order of importance, and each is assigned an activating stimulus. The circles

to the right of the layers represent the subsumption policy. The top layer cannot

run simultaneously with eat or idle, so it must provide two override policies. The eat

layer cannot run simultaneously with search or idle, so it also provides two. Finally,

the search layer only specifies that it cannot run simultaneously with idle. This is a

total of five suppression policies that must be specified, and three stimulus triggers

(since the bottom layer must always be active if no other layer is active).

More complex subsumption architectures can be created using hierarchical sub-
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Figure 3.5: Subsumption architecture representation of the scavenger. Counting trig-
gering conditions and the individual components of the subsumption policies, there
are 8 transitions. Three for the predator, food, and hungry triggers, two for the flee
subsumption policy (since search can run concurrently), two for the eat subsumption
policy, and one for the search subsumption policy.

sumption, which allows a single top-level layer to be composed of two or more sub-

layers. To demonstrate hierarchical subsumption, a more complex example is needed.

For this example, the creature being controlled can see much further than it can

reach, so if food is seen, it may be far away. To control this agent, when food is seen,

first the food must be approached, then it can be eaten. This approach reduces the

number of overrides that must be specified; if this was added as an additional layer,

up to an additional four subsumption override policies would need to be added, but

by making it hierarchical, only a single additional policy is required.

3.2.1.1 Quantifying Representational Complexity

Representational complexity can be measured by considering the number of archi-

tectural elements which must be specified when creating a given agent. In addition to

the number of elements, the complexity of the elements themselves must be accounted

for. For FSMs, HFSMs, and both hierarchical and non-hierarchical subsumption ar-
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Figure 3.6: Hierarchical subsumption architecture representation of the scavenger
with limited reach. The two layers composing the dine hierarchical layer only add
two transitions: one for the close food triggering condition, and one for the eat sub-
sumption policy overriding go to. In this case, the eat subsumption policy could be
omitted since go to will not generate any actions once the agent has approached the
food.

chitecture, the elements are of equivalent complexity. Behavior Trees present an

additional challenge because individual elements may be significantly more complex.

In all cases, architectural elements can be divided broadly into two categories: be-

havior entities and relationships. Behavioral entities represent the modular behaviors

used to generate actions, while relationships represent the transitions from one be-

havior to another. For FSM, subsumption, and behavior tree-based architectures,

these map directly to preprogrammed behaviors. Hierarchical architectures include

compound behaviors as entities as well, though they may only provide an abstraction

and not instantiated as behaviors in code. Complexity is measured as the growth rate
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of relationships in terms of behavior entities.

3.2.2 Representational Complexity of Reactive Methods

In order to make our intuitions about representational complexity more precise, we

introduce some notation. We assume that we have a set of percepts P and a set of

actions A that the agent can perceive and perform respectively. It follows that the

specification of a reactive agent is a mapping of the form P∗ to A∗ where P∗ and A∗

are power sets with cardinality 2|P | and 2|A| respectively. Note that, in this particular

setting the agent is able to perceive one or more percepts and able to simultaneously

perform one or more actions. This is quite typical in the case of agents in a virtual

world of computer games and training simulations. A simple example of this is an

agent that perceives a friend wants to exchange greetings (waves or says hello) while

walking towards a goal.

Given this setting, our intention is to investigate the complexity of the agent spec-

ification. In order to introduce a metric for such representational complexity, we

simply count the number of entities and relationships between the entities for a par-

ticular framework like finite state machines or subsumption architectures. In the case

of FSMs, states are entities, and state transitions are relationships. For subsump-

tion controllers, layers are entities while relationships are the subsumption policies

between layers.

We can use these definitions to compare the representational complexity of finite

state machines and subsumption architectures by comparing the number of entities

and relationships in an agent specification. As far as the number of entities are

concerned, it is easy to see that a finite state machine would require one state for every
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possible subset of actions. The number of entities would therefore be equal to 2|A|. Of

course, in certain cases, it may not be possible to perform all actions simultaneously,

so this is a worst case estimate. In contrast, observe that subsumption architectures

would require a total of A layers as they inherently allow for parallel execution of

actions. As far as relations among entities are concerned, as there are |P | percepts

and the agent can perceive any subset of them, a finite state machine will have a

total of |P | × 2|A| transitions. HFSMs may have an equally large number of states,

and (in the worst case) may grow as large as a standard FSM if no abstraction of the

behavior is possible. The best case for an HFSM may be better than that of its FSM

equivalent, assuming that the specified behavior can be decomposed hierarchically,

but the main improvement for the HFSM is in the number of transitions in the model.

In the case of HFSMs the explosive increase in the number of transitions is con-

trolled by grouping states into super-states. The intuition is to group states that have

relatively high intrastate transitions and relatively low interstate (at the meta-level)

transitions. By grouping states in this manner the number of transitions to be spec-

ified can be largely reduced. This reduction in the number of transitions is highly

domain dependent as in certain problem domains it is possible to exploit the natural

hierarchy among states, while in others it may not be possible to group states. So

in the worst case scenario there might be as many states as a FSM, but in the best

case scenario it is possible to organize the underlying FSM as a structure that largely

resembles a binary tree. In such a case it is possible to group states such that each

meta-state has two child states, resulting in a drastic reduction in the total number

of transitions.
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To get a quantitative measure of the number of transitions in such a HFSM consider

the following reasoning. First, note that there are three distinct types of transitions,

parent-child transitions, sibling transitions, and self transitions. If the underlying

finite state machine contains a total of n states and is organized as a binary tree,

there are a total of 2(n − 1) parent-child transitions. In addition to this, we have a

total of (n− 1) sibling transitions and a total of n− 1 self transitions. Thus the total

of 4n − 4 number of transitions, which is a large reduction from the n2 transitions

in a FSM. It is important to note that this is a best case scenario and, in practice,

the number of transitions in a HFSM is between 4n − 4 and n2, depending on the

problem domain.

Behavior trees have more complex elements than HFSMs, and the behavior tree

technique differs from the others discussed because it is as much a set of common

design and engineering principles as it is a control method. Though behavior trees

may differ greatly across implementations, the main building blocks are still behav-

iors, conditionals, and parent/sibling relations. The parent/sibling relations are com-

pounds instead of simple relations, and can be reduced. The sequence relation can be

reduced to a parent relation and a set of direct sibling relations, so that for a parent

with c children, there are c relations. Selectors are similar, and many of the decora-

tor patterns such as preconditions and parallels have the same attributes. Therefore,

while individual implementations will vary, the core behavior tree technique will have

approximately n− 1 relations for n entities in the best case balanced binary behavior

tree. Note that a behavior tree with n entities may have fewer behavior or action enti-

ties; because conditionals are frequently stored as nodes in the tree, they are counted
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as entities rather than relations.

In the case of subsumption architecture, each layer will have a percept and action

but the major component of the relationships among the layers is that of the override

between the layers. If every layer could override every other layer, then the number

of relationships, |R|, is given by 1.

|R| = |A|2 + |A| (1)

Since no layer can override itself or the layers above it, we actually have a smaller

number of relationships. Specifically, we subtract |A| overrides from the base layer,

|A| − 1 from the second layer, |A − 2| from the third layer, and so on. In addition,

we subtract 1 because the base layer always trigger never needs to be specified. So

the actual number of relationships is given by Equation 2.

|R| = |A|2 + |A| − 1−
|A|∑
i=1

i (2)

If we combine the trigger and override terms:

|R| = |A|2 − 1−
|A|−1∑
i=1

i (3)

Observing that the summation of consecutive numbers is given by Equation 4, we

can perform substitution to find Equation 5.

n∑
i=1

i =
(1 + n) ∗ n

2
(4)
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|R| = |A|2 − 1− (1 + |A| − 1) ∗ (|A| − 1)

2
(5)

Combining terms gives us a final expression for the number of relationships in the

subsumption architecture, as seen in Equation 6.

|R| = |A|2 − |A|(|A| − 1)

2
− 1 (6)

So a two layer subsumption agent has two relationships, a three layer subsumption

has five, a four layer subsumption has nine, and so on.

Consider the intelligent agent described earlier (see Figure 3.7). It has four percepts

(including the null percept), and four predefined actions. Given these basic percepts

and actions, the agent design has a number of key features that affect the represen-

tational complexity. First, note that each of the layers maps percepts to actions. For

example, layer L3 maps the percept food onto the action eat. Furthermore, note that

the layers are prioritized. If we assume that we do not want any layers to execute

concurrently, Layer L1 is overridden by layer L2, which in turn is overridden by layer

L3. Finally, layer L3 is subsumed by layer L4. Also note that layer L1 does not have

a percept and corresponds to a default action that is performed when no percepts are

received by the agent.

This simple agent designed using behavior-based control has the following overall

behavior. When there are no percepts available, it maintains an idle state. When

the L1 layer is triggered by hunger, the agent explores new regions. In the case

where the agent perceives food, the L1 layer is overridden by the L2 layer, and the

agent consumes the food. If the agent perceives a predator, the L3 layer is triggered,
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Figure 3.7: Subsumption architecture example

the L2 layer is overridden, and the agent flees from the predator. Note that the

prioritization of the layers is the most important part of the agent definition and that

higher layers can selectively override lower layers (combinations of layers producing

blended actions are permissible). In addition, the L3 layer, in overriding the L2 layer,

does not necessarily override the L1 layer.

Figure 3.8: Finite state machine example
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While the example discussed here is only for the purposes of illustration, it does

demonstrate the key aspects of behavior based control, namely, the mapping of per-

cepts to actions via layers, the prioritization of layers, and the ability to override or

combine actions from multiple layers. Subsumption architectures have a number of

advantages over the use of other architectures for game agents, such as finite state

machines (FSMs), hierarchical finite state machines (HFSMs), and behavior trees.

Behavior-based control is inherently parallel, as multiple active behaviors can be run

at once. The representational complexity of a behavior-based control agent, which is

an important consideration for the agent authoring process, is far lower than other

architectures. As shown in 3.2, the corresponding finite state machine for the pre-

vious example requires many more transitions. If multiple behaviors are allowed to

be active at once, the finite state machine becomes increasingly more complex, as

each allowable combination of behaviors requires an additional state. HFSMs and

behavior trees reduce this complexity over simple FSMs, but still require more com-

plex models to represent the same agent due to the increased number of states. The

reduced complexity of behavior-based control makes it simpler and faster to create

intelligent agents.

If hierarchical subsumption is compared to hierarchical finite state machines and

behavior trees, an additional improvement is seen. The number of transitions for this

case is better than HFSMs. To correspond to the best case FSM, consider a binary

subsumption. In a binary subsumption architecture, every layer is a hierarchical layer

composed of two layers (so that if the layers are depicted as a tree with parent/child

relationships, it would become a binary tree).
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In this ideal case of a binary subsumption, the only transitions are between sib-

lings. Because one layer of each sibling pair is the base layer, it has no transitions.

This leaves only one override relationship and one trigger condition per sibling pair,

creating n transitions in hierarchical subsumption. Like HFSMs, the worst case is

when no hierarchical organization is possible. In this case, the complexity is identical

to standard subsumption. It is also important to note that this best case is not a

realistic scenario, and it is difficult to estimate an average subsumption controller, so

the expected number of entities will generally be higher.

Figure 3.9: Growth of non-hierarchical models. Number of relationships between
entities vs. the number of entities. Y scale is 0 to 1,000,000

The growth of the upper-bound worst case number of relationships (transitions or

overrides) between entities with the number of entities is visualized in Figure 3.9.

Figure 3.9 compares non-hierarchical finite state machines and subsumption architec-

tures. For FSMs, the worst case is a fully connected controller, while for subsumption,
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Figure 3.10: Growth of hierarchical models. Number of relationships between entities
vs. the number of entities. Y scale is 0 to 4,000.

the worst case is a controller in which each layer fully subsumes all layers below. Best

case for each architecture is simply the number of entities. This is equivalent to a

FSM that runs a series of actions and stops, or a subsumption controller that allows

every layer to run at the same time.

In Figure 3.10, the hierarchical models are assumed to be binary trees, which pro-

vides the best case number of relationships for the hierarchical models. The hierarchi-

cal layers are assumed to be fully connected (two transitions for HFSMs, one override

relationship for hierarchical subsumption). Hierarchical models that are poorly bal-

anced have relationship growth similar to their non-hierarchical counterparts, except

for behavior trees, which do not degrade strongly from their best case (though in

practice, behavior tree complexity will grow in other ways). Note that the growth of

entities as A increases will produce higher numbers of entities for HFSMs than hier-

archical subsumption, even though the relationships for an ideal HFSM grow slower
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than the relationships in non-hierarchical subsumption.

3.2.2.1 Practical Implications

Representational complexity should be viewed as a guide to help choose between re-

active architectures. Each of the architectures considered have similar capabilities,but

models are built very differently. Finite state machine architectures provide a very

simple set of elements and paradigm for creating intelligence, but if large agents are

required, the complexity of the model may grow too great. Behavior trees provide a

great deal of flexibility and expressivity for advanced users who are trained in the use

of its decorator patterns and other features, but are not as easily accessible to novice

users.

Furthermore, representational complexity may affect models created in other ways;

if models are learned, there is a trade-off between the simplicity of the input grammar

of the model and the size. It may be more difficult to learn behavior trees than finite

state machines because there is a larger set of possible options for each element of

the model, but the final model will have fewer entities. This aspect of representation

needs to be explored more fully to consider the complexity of the individual elements

before any strong conclusions can be made.

Other factors may also affect the choice of architecture to be used. FSMs are simple

to implement, and FSM/HFSM-based systems make it easier to create sequences of

actions than subsumption-based systems. This allows tight control over agents in

situations where scripts might otherwise be used, but more responsive behavior is

desired. In some cases FSMs may have fewer relations than subsumption controllers,

such as when the controller is primarily composed of state sequences that rarely
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branch, as may occur with scripted characters—in these cases, FSMs are a better

choice than subsumption.

Subsumption provides inherent parallelism and lower overall complexity in the

model, but there are still some concerns about managing emergent behavior. If the

action model of agents being created is simple, emergent behavior is less of an issue,

making subsumption a good choice for novice users. The behavior tree representation

is a commonly used standard throughout the game industry, making it a widely

understood architecture. If expert users are the target, behavior tree and HFSM

editors can be quickly implemented using standard tree control widgets available

in most graphical toolkit libraries. These editors will be very basic, but provide a

substantial improvement for users who are well-versed in the architectures.

Many factors do contribute to the choice of architecture, but representational com-

plexity can provide a useful metric of the difficulty involved in managing agent defini-

tions. Based on the goals for our character engine, we chose to use the subsumption

architecture as the basis for BEHAVEngine. Two major factors affected this choice.

First, the subsumption architecture provides inherent parallelism, which we identified

as an important aspect for our characters. Second, BEHAVEngine is also designed to

be used with the BehaviorShop character builder [29]. More information on character

and behavior builders in general, and BehaviorShop in particular, can be found in

Appendix A.

3.2.3 Hierarchical Subsumption Architecture

Our primary model for agent control throughout this work is a hybrid behavior-

based subsumption architecture. We have augmented the basic subsumption model
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in several ways to allow the use of the higher level symbolic concepts generated by

our simulation environment. We also chose to work with hierarchical subsumption,

as it allows better abstraction, reusability, and a more powerful representation. Ele-

ments from cognitive modeling have been added to our subsumption architecture as

well. These provide a perceptual model, an action model, and a memory model (see

Figure 3.11). Some very limited planning methods are also used.

Figure 3.11: The BEHAVEngine Architecture.

The perceptual model accepts raw environmental state information from the simu-

lation and processes them to create symbolic perceptions that are used by the agents.

This includes filtering so that agents do not have perfect information, calculating com-

monly used values, and storing some perceptual information in the memory model

to provide a short history. Agent capabilities and effectors are represented in the

action model. This provides an abstraction layer over the direct interface to the sim-

ulation environment. The memory model provides a working memory for behaviors.
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Behavior state is stored in memory chunks that allow arbitrary types of data.

At the core of our architecture is the subsumption controller. Agents are built up

from a collection of triggers and behaviors. Percepts are received from the perceptual

model to activate the triggers. Triggers may also be activated by items in working

memory. The percepts that cause a trigger to fire are passed on to the connected

behavior. Actions requests are generated by the behavior and sent to the action

model. The action model checks the feasibility of the action before placing it in a

queue. After all behaviors run, the subsumption controller then evaluates items in

the queue from highest to lowest priority, and discards any low priority requests that

conflict. In this way, only actions that will actually be executed are fully processed.

The requests are fully evaluated by the action model and passed on to the simulation.

3.2.3.1 Perceptual Model

The perceptual model receives raw world information from the simulation. This

is composed of dynamic and static information. Information about other agents,

objects, and other dynamic entities is updated every game tick. Static information

about world geometry is read from the navigation mesh as needed, as well as from

other sources such as a database of object information. These sources are treated as

part of the memory model, and are used to build perceptual information. Percepts

are generated by filtering this information according to the perceptual abilities of each

agent being controlled. The amount of filtering required can be reduced if visibility

filtering already occurs in the game engine. Some of the information that may be

added to the raw percepts include the distance of the object or agent from this agent,

or a relationship value between two agents based on past events. Generating some of
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these values requires storage of prior percepts, which is enabled through the Memory

Model.

Percepts are divided into seven types: objects, agents, communication, locations,

actions, world events, and vehicles. Objects provide information about dynamic ob-

jects in the world. Dynamic objects are any objects that are movable and can be

acted upon, as opposed to static geometry, with which agents have limited inter-

action apart from collisions. Agent percepts represent other agents in the world,

including the player. Messages between agents, or the player and the agent, are

conveyed through communication percepts. Location percepts are used to represent

regions or coordinates in the world along with symbolic information about the lo-

cation. Actions are transitory percepts to represent actions taken by other agents

in the world. The world event percept is used in limited circumstances to provide

information about global events such as earthquakes. Finally, the vehicle percept is a

special type of object percept to describe dynamic objects that the player can enter

and use to navigate through the environment.

3.2.3.2 Memory Model

The memory model provides storage for past percepts, agent attributes, and arbi-

trary memory chunks. Past percepts are important, as this information allows the

perceptual model to calculate whether an object is approaching, or keep track of the

last known position of an object or agent that has since left the agent’s line of sight.

Agent attributes are values that may affect decisions made by behaviors or how

the action model generates actions. This may include basic information such as the

size of the agent (which affects where the agent can go) or more complex personality
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traits such as bravery/cowardice and cultural parameters.

Memory chunks provide storage for behavior state that may be shared between

different layers. These chunks are initially created by particular behaviors, and may

be modified by higher priority layers. This allows high priority layers to modify the

operation of lower priority layers, or provide information such as action targets to

lower priority layers. We provide four types of memory chunks: percept, numeric,

string, and point. Percept chunks store world percepts of any type. Numeric chunks

store floating point or integer values. String chunks store character strings, while

point chunks store three-dimensional coordinates.

3.2.3.3 Action Model

The action model provides the functionality to turn the action requests generated

by behaviors into simulation commands. A behavior can create a request specifying a

particular action and a percept representing the object it should act upon. The action

model handles the particulars of the simulation environment to generate a correctly

formatted command that can be passed on. In addition, the action model provides

the details of steering and navigation so that behaviors can avoid implementing global

and local navigation. This approach can make higher-level cognition much easier to

manage, as the designer does not need to focus on generating action commands or

combining actions carefully. Many algorithms exist for path planning and obstacle

avoidance, and these can be implemented directly in the action model.

The action model also allows different types of agents to be implemented at different

levels of abstraction. For example, depending on the action model, behaviors may

output direct vector controls that translate to motor commands, or take a more
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abstract approach and provide goals for path planning through a navigation mesh.

3.2.3.4 Subsumption Model

The subsumption model at the core of BEHAVEngine allows simple layers, com-

pound layers, and hierarchical layers. Each type can be activated with one or more

triggers combined with conjunctions and disjunctions. The subsumption policy allows

layers to completely subsume specific lower layers, subsume only specific modalities,

or allow all layers to execute.

Simple layers are composed of a single behavior. Behaviors are typically either

direct perception to action mappings or finite state machines, though this is not

enforced. Behaviors store state in the memory model as chunks so that state may

be modified by higher priority behaviors. Completion and failure are also stored for

behaviors. Completion allows discrete behaviors that may take more than one time

step to execute. This prevents a behavior from deactivating before it fully executes.

Failure information is also important, as it allows the behavior to notify the agent

when an action cannot be performed and abort gracefully (such as when an agent

attempts to pick up an object that disappears between the time the behavior activates

and the time the agent reaches the object).

All layers execute actions by making requests to the action model. The action

model handles the process of transforming the action into a valid command for the

simulation. When a layer is activated, it may suppress any lower layers to prevent

them from running. This is the subsumption policy.

Compound layers are composed of multiple behaviors linked in serial. When a be-

havior completes, the next execution of the layer will continue with the next behavior
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in the sequence. After all behaviors complete, the layer will be marked as complete,

and on the next execution will return to the first layer in the sequence.

Hierarchical layers are composed of several sub-layers that are executed as an ad-

ditional subsumption controller. The subsumption policy for the parent layer applies

first so that the child layers need only specify subsumption policies for their siblings.

3.2.3.5 Affordances

Agents need information not just about where objects are in the world and how

to navigate, but also how objects can be used. Rather than hard-coding information

about objects and actions, this information is loaded from object descriptions at

run time. Objects provide specifications of what actions they can support, and this

information is combined with descriptions of the agent models being used. This is

combined with the affordances provided by the environment to create a more dynamic

simulation.

3.2.4 Failure Detection Extensions

The behavioral errors that can be generated by a failing reactive agent are as

numerous as the number of behaviors that can be expressed in the architecture. For-

tunately, the general types of errors that are generated by reactive controllers fall into

a small number of distinct classes. We have identified four classes of errors: activation

failures, capability failures, behavior interaction failures, and environmental failures.

Each of these failures can be detected in a well-defined manner, though some are

more expensive than others to detect.

Monitoring for failures adds additional metadata to each layer. This ranges from a

simple value added to the behavior state to additional sets of triggers. Behaviors must
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be capable of returning an error value to convey the success or failure of behavior

execution. An important aspect of this metadata is that it can be constructed from

existing components. There is no need for major architectural extensions to support

new constructs.

Monitoring for failures can be achieved by adding a single layer with a trigger

that always returns true. By adding this as the highest priority layer and giving it

a subsumption policy that does not override any lower layers, the failure monitor-

ing component is guaranteed to execute. This does require that the architecture is

designed with reflection capabilities in mind, as the layer must be able to check the

status of all other behavior layers for failures.

3.2.4.1 Activation Failures

Activation failures are the simplest types of failures to detect. These failures occur

when a component of the controller fails to execute. This indicates that anticipated

conditions never occur or that a higher-level behavior is preventing the execution of

the layer. Activation failures can be easily detected in both virtual characters and

robots, as even in robots they depend entirely on software state without consideration

of hardware failures. While they are simple to detect, they may be unreliable if a

given behavior is not expected to execute frequently. These failures can be detected

by adding an activation history to the layer state.

When activation failures are present, key behaviors will not occur in the game

world. The character may appear to be idle when it should be performing an ac-

tion. In the worst case, this can affect gameplay when characters do not respond

appropriately to important points in the story.
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3.2.4.2 Capability Failures

Capability failures occur when an agent is not capable of executing a given behav-

ior. These directly correspond to unanticipated changes in agent state; in a virtual

character, it may be an item missing from the character’s inventory, or an action

which is no longer allowed. In robotics, this could correspond to a hardware failure

or a partial loss of power. Detection of capability failures can be achieved by adding

metadata to behaviors. This metadata can be built from trigger components. While

precondition triggers can also be added to the conditions for layer activation, using

them to detect failures as metadata eases the agent design task and may provide

better information for debugging agent failures.

If capability failures are not detected and handled, characters may execute a partial

set of behaviors. This can be disruptive to game play if a character performs all the

behaviors to set up for a key behavior, but then cannot perform the key behavior.

An example might be a character locating and climbing to a sniper roost, but then

being out of ammunition. If it is not apparent to the player why the character is not

performing an expected action, it can interfere with suspension of disbelief.

3.2.4.3 Environmental Failures

Environmental failures occur when agent capabilities are correct and the behavior

executes, but the behavior action fails in the environment. An environmental failure

may indicate that the expectations for the behavior are incorrect given the environ-

ment (e.g., a lift behavior may fail if objects in the environment are heavier than

expected by the behavior) or that another agent has interfered with the execution
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of the behavior. Environmental failures are detected by the perception model. In

virtual environments, we expect the environment to give direct feedback about error

conditions, while in real world environments, the perception model will have to do

additional work. Detection of environmental failures due to other agents is feasible

in real-world environments, but other types of failures may not be easily detected.

When an environmental failure occurs, it can result in looping behaviors. A given

behavior will trigger and execute, but, due to the failure, there will be no state change.

This will leave the character in the same behavior. If a full animation plays this can

look especially bad, while in the best case the character will become unresponsive

and appear to be idle. This leads to an AI that appears not to respond correctly to

the environment and its situation.

3.2.4.4 Behavior Interaction Failures

Behavior interaction failures are potentially the most difficult failures to detect.

This type of failure occurs when a behavior can be executed correctly, does not gen-

erate an environmental error, but also does not achieve the expected result. Failures

of this type are due to behaviors interacting in a way that causes one behavior to

undo or cancel out the effects of another. Detecting behavior interaction failures

requires specifying expected pre- and post-conditions for a given behavior. Precon-

ditions may be the same as the prerequisites for the behavior, if the behavior has an

effect on agent state. If the behavior affects environmental state, then the triggers

for the layer should be used. Postconditions can be added as additional triggers to

check for expected changes in either the agent or environmental state. Detection is

complicated if the failure is not instantaneous or the effect of the behavior is intended
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to be short-term. Some behaviors may already be written to have completion criteria

(such as achieving a navigation goal), in which case these completion criteria can be

used for the postconditions.

As with environmental failures, behavior interaction failures can lead to looping

behaviors. In this case, each behavior is successful, but is immediately undone by

the next. This can manifest as a character opening and closing a door repeatedly,

or picking up an object and dropping it. This type of behavior appears entirely

irrational, and can have a negative effect on suspension of disbelief.

3.2.4.5 Applying Failure Detection

Augmenting subsumption layers with the information required for failure detection

is relatively easy. Prerequisites and expected results can be described in the same

manner as the triggering conditions already used to decide when to activate a behav-

ior. Tracking activation history adds a constant amount of additional state to each

layer. The most invasive addition is detection and handling of environmental failures,

but most systems will already watch for these error states.

Adding failure detection provides opportunities for major extensions to subsump-

tion. Some of these can be applied to other reactive architectures, such as FSM-based

controllers, but we focus on the application of failure detection to subsumption. A

major application of failure detection that we have implemented is reactive teaming,

which uses behavior insertion and removal.

3.2.5 Dynamic Priorities

Subsumption architecture controllers are typically defined as static structures. In

a static controller, if a behavior should have different priorities in different situations,
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it must be repeated in the specification with more complex triggers. We have created

an alternative by allowing layers to have dynamic priorities.

The priority of a layer in subsumption is usually described as a static value. Instead

of using a static value, we can instead describe the priority as a function. This function

can map the current set of percepts to a priority value or in terms of other behaviors.

Simple priority values indicating the index of the layer may be incorrect if reactive

teaming is used to insert new behaviors at runtime, so describing the static behaviors

directly above and below the dynamic location of the layer will be more robust.

Using dynamic priorities does increase the complexity of the controller. Because it

is difficult to automatically adjust subsumption policies, the dynamic layer must have

a subsumption policy defined for all layers which could possibly run as lower priority.

Likewise, all layers that could possibly run as higher priority than the dynamic layer

should also define a subsumption policy for interacting with it.

Dynamic priorities provide two advantages, though. First, while this extension

potentially increases the number of relations between layers in the architecture, it

simplifies the controller by reducing the number of layers. From a controller design

standpoint, this can help reduce errors as it eliminates the need to duplicate particular

layers in some cases. Second, this extension provides a natural way to enable some

team coordination. If an auction-based method for teaming is used to distribute

tasks to characters, each behavior capable of fulfilling team tasks can be created as

a dynamic layer. When a task is assigned, the priority mapping function then raises

the priority of the appropriate layer.

This provides a simple way to enable team coordination between characters with-
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out deeper architectural changes. If more invasive changes are possible, other team

coordination methods that avoid the expense of auction coordination can be used

instead.

3.3 Reactive Teaming

Individual agents do not always provide rich enough behavior for a particular game

or simulation. A given scenario may require multiple agents to work together to create

a convincing environment, either through a strict command structure or a coopera-

tive team. An extension to our architecture allows multi-agent coordination without

significant additional complexity in the authoring process or heavy consumption of

resources.

Agents in reactive teams coordinate with one another by exchanging behavior lay-

ers. These layers can be transferred in their entirety, or subdivided to reduce the

burden of each agent and possibly improve the speed of the task. Reactive teaming

can also make use of environmental information to provide convincing cooperation

without explicit task division.

3.3.1 Behavior Transfer

The core technique of reactive teaming is agent-to-agent transfers. Typically agents

in teams will be selected to perform a particular behavior based on their suitability.

This requires evaluation of each agent with respect to each behavior. If all behaviors

are assigned at once, the computational complexity is typically O(mn) for n agents

and m tasks. The number of messages required to communicate utility values is also

typically the same. Online assignments, where one task is assigned at a time, will

still require O(n) complexity and communication to assign individual tasks.
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Just as reactive control greatly reduces the complexity of individual character con-

trollers, reactive teaming reduces the complexity of team coordination. Instead of

assigning behaviors globally, all assignments are local. Furthermore, for a character

to be assigned a task, it must request one. The core technique of reactive teaming is

a one-to-one behavior transfer. Take two characters in a virtual environment, Alice

and Bob. Alice has no current behaviors, or may have simple placeholder behaviors

(we will refer to Alice as a generic character, and assume that all generic characters

have a single default wander behavior). Bob has one or more defined behaviors (we

will refer to Bob as a fully-defined character).

When Alice encounters Bob, she will request a behavior from Bob. Then Bob will

choose a behavior to transfer to Alice, offer the transfer, and if Alice can execute the

behavior, she will accept it. Otherwise, Alice will reject the behavior. No utility value

is calculated, and no other characters are considered during the process. The result is

that while it may take up to O(n2) character interactions to distribute behaviors in the

worst case (n-1 generic characters, and each generic character queries all other generic

characters before the fully-defined character, with no child behavior transfers), these

interactions are amortized over multiple game ticks. This amortization is important as

it prevents the task distribution process from dominating the limited CPU resources

available during each frame of the game.

In heterogeneous environments, this method of behavior assignment may result

in non-optimal assignments; related to this problem is that this technique does not

allow behaviors to be pushed to other characters, as receiving characters must request

behaviors. Behaviors may also be distributed unevenly, depending on the policy for
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choosing which behavior to transfer. Additional refinements can address each of these

problems in different ways. Behavior pushing may be important in situations where

teams of characters are organized in hierarchies. These hierarchies can be created

through high-level user logic to issue team commands through the environment. The

distribution problem is solved through transfer policies.

3.3.2 Request Policies

Agents must decide when to request a behavior transfer. We have defined four

approaches to deciding when to request a transfer: failure, cooperative, greedy, and

command.

An agent using the failure policy will request a behavior transfer when one or

more layers are failing to execute properly. This may occur in a number of different

cases. First, a layer may no longer be able to activate correctly because one or

more prerequisites are no longer available. An example of when this may occur is if a

behavior requires a specific object (or object with specific affordance), and that object

is no longer available. The subsumption controller can check behavior prerequisites

to discover this without attempting to execute the behavior, so that behaviors which

are failing to trigger at all can be detected. In other cases, a behavior may attempt

to execute and fail; this can occur when an agent attempts to navigate to a part of

the world which is no longer accessible. Another more rare condition that can occur

is if too many agents are attempting to use a limited resource in the world, such as an

object. An example is a scenario in which several agents are attempting to perform an

object removal behavior. If the agents are grouped together and repeatedly attempt

to pick up the same object, the behavior will fail. Repeated failures will result in
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the behavior being chosen for replacement, and so the team can self-correct if too

many agents have the same behavior in this case. Failure cases will not monitor the

behavior which failed to check if it is available once more.

The cooperative policy will request a behavior transfer if it does not currently have

a transferred behavior. If the transferred behavior fails, it will look for a new behavior

transfer. It will not monitor behaviors which have been replaced due to failures.

The greedy policy is similar to the failure policy. It will request a behavior if one

of its own is failing, but unlike the failure policy, it will monitor the failed behavior.

In case of a prerequisite failure, it will restore the behavior if the prerequisites are

restored. In other types of failures, it will periodically attempt to restore the failed

behavior; if it succeeds, the replacement behavior will be removed.

A final policy is possible, which is the command policy. In this case, the agent is

part of a command hierarchy, and will respond to requests from commanding agents.

When the agent receives an order from a commanding agent, it will request a layer

transfer from the commander. Note that the actual layer transfer is still initiated by

the receiving (subordinate) agent, and the command-response layer could potentially

be placed below other layers, allowing for insubordinate agents.

3.3.3 Transfer Policies

Once a request to transfer a behavior is received by an agent, it must decide which

behavior to transfer. Before transferring a behavior, the agent must have at least one

layer marked as transferable and which has not exceeded the maximum number of

transfers. The transferable flag and the maximum number of transfers are defined

when the agent is authored. We define four possible transfer policies: priority, failure,
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distribution, and command.

The priority policy will always choose the highest priority transferable layer. A

variation on this will always transfer the lowest priority transferable layer. The layer

transferred may be one which was transferred to the agent from another. Behaviors

which have exceeded their maximum number of transfers may not be transferred.

Failure policies will transfer the highest priority transferable layer which is currently

failing. If no layers are failing, it will fall back on the priority transfer policy.

A distribution policy is one which aims for a target distribution of its layers. The

distribution policy will transfer a layer which has not yet reached its target number

of transfers, choosing layers which are far from their goal first with priority as a

tiebreaker.

Finally, the command policy is the complement to the request policy of the same

name. Command policies will transfer behaviors according to the mapping determined

by a command behavior layer. Note that this effectively allows auction and planning

teaming methods to be used as a layer of abstraction over reactive teaming– the

alternate team coordination method can be implemented as a behavior.

3.3.4 Insertion Policies

While placement of received layers is defined primarily by the request policy, the

subsumption policy must also be defined. Possible strategies to choose subsumption

policies are override all, override none, replacement, or modality. The default policy

is for a transferred layer to override all. The opposite of this policy is, naturally,

override none which will only override conflicting output produced by lower layers.

Replacement uses the subsumption policy of the layer being replaced, or falls back
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on override all if the transfer is not a replacement. Modality policies override one or

more of the effector modalities to suppress only specific channels of action.

3.3.5 Behavior Coordination

While layer transfer provides a simple level of team coordination, it generally does

not create tight interactions between agents to execute a task. Additional coordina-

tion methods are needed to achieve this.

Environmental intelligence provides methods to coordinate behavior. Influence

points can be used either per-agent or per-team. If per-team influence points are

applied to the environment, then characters can use the world as a blackboard to

share information.

Affordances are particularly valuable for teams of characters. Multi-character af-

fordances provide a mechanism through which multiple characters can cooperate.

Tasks may be actions that cannot be performed with one character, or actions that

are improved through the use of multiple characters. As described in Section 3.1.2.3,

multi-character affordances do not require additional specialized logic for each type

of task on which they will coordinate. This provides significant savings in character

complexity over hand-crafted behaviors for specific tasks.

Finally, some tasks are not easily shared with affordances or influences, and must

be modified when transferred. Behavior division provides an additional solution.

Some behaviors in the BEHAVEngine behavior library are written to include methods

which can divide and merge behaviors. The simplest example of this is division of

an explore behavior, which maintains a list of regions to visit. When the explore

behavior is transferred to an additional agent, the current list of regions is broken
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into two parts, so that two agents will work together to cover the area faster. The

division task is most appropriate to spatial tasks, though it is possible to apply to

others.

3.3.6 Self-Preservation Layers

One danger with reactive teaming is that certain layers which should be high prior-

ity will be subsumed inappropriately by team behaviors. In games, a major concern

is self-preservation behaviors for characters. A character in a FPS action game should

never have its behaviors to attack hostile characters subsumed, but if it is given a

cooperative strategy, these behaviors may be subsumed by the transferred behavior.

To solve this problem, a set of fixed layers needs to be protected from team sub-

sumption. Depending on implementation, this is done by marking a layer as the

ceiling for team transfers, so that no behaviors will be inserted above it, or by main-

taining part of the subsumption stack separately.



CHAPTER 4: IMPLEMENTATION

The techniques described in Chapter 3 are implemented in two different game

testbeds. Our first testbed, DASSIEs, uses a 3D simulation and a high-resolution spa-

tial environment. While working in a high-resolution environment such as DASSIEs

demonstrates that our methods can be used in realistic game environments, most of

the development time focuses on building the environment (including the creation of

art assets). The second testbed is the Subsumption and Python-based Lightweight

Artificial Intelligence Testbed (Splat). Splat focuses on core game and AI logic, and,

unlike DASSIEs, has no graphical representation. Because there is no need to develop

3D art assets, manage 3D animation, or optimize the graphics pipeline, Splat makes

it simpler to focus on the performance of the AI techniques.

4.1 DASSIEs

DASSIEs is composed of four major components. First is the FIrst and 3rd-person

Realtime Simulation Testbed (FI3RST) to evaluate AI techniques, which incorpo-

rates navigation meshes and embedded intelligence from the ground up. FI3RST is a

real-time 3D simulation that provides a high-resolution environment. The Common

Games Understanding and Learning Toolkit (CGUL) includes various libraries and

utilities used across DASSIEs, including the Static Spatial Perception Service (SSPS),

which provides information access to navigation mesh information. Our AI engine
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itself is the Behavior Emulating Hierarchically-based Agent Vending Engine (BE-

HAVEngine). BEHAVEngine implements hierarchical behavior-based subsumption,

including reactive teaming extensions. More information about BehaviorShop, the

fourth component of DASSIEs, can be found in Appendix 6.4. The major strength

of DASSIEs is that it provides a testbed with all the constraints of real 3D games.

Controlling characters in DASSIEs requires interacting with a 3D animation system,

user interface, and dealing with heavily constrained resources.

4.1.1 FI3RST

FI3RST is our testbed for evaluating game AI techniques. The initial version of

FI3RST was written in Python using the Panda3D game engine and used with the

first BehaviorShop study [29]. We found several shortcomings in our initial implemen-

tation, especially due to the fact that navigation meshes were not fully integrated and

the environment needed to be more data driven. FI3RST 2.0 resolves these issues.

Our new game environment is written in C++ using the Irrlicht game engine.

Irrlicht provides basic support for loading 3D models, including a level file format

and creation of a scene graph. In addition to using these basic facilities, we have

added support for navigation meshes and integrated AI debugging visualizations.

Navigation meshes are used in FI3RST to help manage dynamic objects—meaning

characters, objects, and vehicles. Characters include the player character and any

AI characters controlled by BEHAVEngine. Objects are loaded by the game scenario

separate from the level or created by characters. Vehicles are a special type of object

which can be used by characters to move around the world. Each dynamic object type

is maintained in a separate list and individual objects each have their own update
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calls. At each game tick, every dynamic object is updated, and at this time, the game

locates the object in the navigation mesh using the SSPS library. When world state

is read by the AI controller, this information is used to help determine visibility and

used to aid pathfinding.

A data-driven approach is taken to characters, objects, and vehicles in FI3RST.

While actions that can be performed by characters are necessarily defined using code,

the action definitions do not include the animations or objects to be used. Instead,

when a character is loaded, an action-to-animation map is included in the charac-

ter metadata file. This includes an action model which specifies which actions are

available to the character. Likewise, the object meta-data file includes not just the

location of the 3D model to be loaded, but also information about actions which can

be performed with the object. This means that simple affordances are built directly

into FI3RST.

The interface between FI3RST and BEHAVEngine uses shared memory. State for

all dynamic objects is stored in shared memory, and the state data includes fields for

the AI engine to make requests. The action model and object built-in affordances

are not currently read from shared memory, and the navigation mesh is also loaded

separately by both FI3RST and BEHAVEngine.

FI3RST also has an extensive logging system that can record the movement and

actions of all AI characters into XML-based logs which can be easily consumed for

analysis. Additional debugging facilities include an overlay of the navigation mesh and

character waypoint indicators, as seen in Figure 4.1. One of the most important tools

is the character controller overlay, which is shown with more detail in Figure 4.2. This
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Figure 4.1: FI3RST contains multiple overlays to assist with AI debugging. Agent
controllers are visualized as boxes, with color changes to indicate active layers. Flags
in the world show agent waypoints. The navigation mesh is overlaid on the world
terrain.

overlay shows the subsumption controller for the different characters including the

activation and failure rates for each layers. When layers are active, the color changes,

so that character behavior can be understood with a glance. Team behaviors are

given identical colors so that it is easy to see which characters are running behaviors

that have been transferred.

An additional design consideration taken into account with FI3RST was the need

to easily create new scenarios, some of which may use different rule sets. FI3RST
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Figure 4.2: Detail view of the FI3RST console output and agent controller display.

consumes a scenario file which defines the level to use, the dynamic objects to load,

any game events that should occur and the timing of those events, and the navigation

mesh file to be used. This information is also loaded into shared memory by FI3RST

at startup so that it is accessible to other game components.

Game assets used in FI3RST were created as part of the DASSIEs project. Char-

acter models are animated using motion capture animations from the CMU Motion

Capture Library [10].
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4.1.2 CGUL

CGUL is a collection of libraries to provide information to AI at runtime as well as

preprocess environment information and analyze player data. These libraries include

MemStore, which provides communication between game components, and SSPS,

which provides an API for accessing navigation mesh data. Other services are pro-

vided as part of the AgentUtilities library which provides assorted functionality such

as common types, a logging framework, and wrappers around the libxml2 library.

Several test programs were created in CGUL to assist in debugging the other game

components, and CGUL was used to experiment with an early implementation of

contextual affordances.

4.1.2.1 Agent Utilities

The agent utilities library of CGUL provides various useful common data struc-

tures and methods. Data structures include a single-precision floating point Point

class, a single-precision floating point Orientation class (using Euler angles), and

structures for holding information about behaviors, objects, and the BEHAVEngine

query system information. The object library used by FI3RST, BEHAVEngine, and

BehaviorShop is part of this library, as well as a unified logging system for run-time

information and data collection. Finally, a set of wrappers around the libxml2 C

library are provided to simplify the process of loading the XML configuration and

data files used by other packages.
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4.1.2.2 MemStore

MemStore is a shared memory service, implemented as libMemStore and the Mem-

Store server. The library provides a cross-platform interface to shared memory, pro-

viding a communication method for other applications in the DASSIEs project.

4.1.2.3 SSPS

The SSPS library provides access to the navigation mesh. The mesh itself is repre-

sented in two ways: as a collection of geometric entities and also as a directed graph.

The geometric representation is useful for local region navigation and storage of com-

partmentalized information, while the graph includes A* planning functionality to

allow global navigation.

When SSPS loads, it reads the navigation mesh from an XML file. It constructs

a default graph to plan through which assumes a default sized agent bounding box.

When an agent is instantiated, the SSPS service can generate a new graph based on

the actual size of the agent bounding box.

The main SSPS query is findPoint(location,hint). This query searches for location

in the navigation mesh, returning the unique ID of the region in which it is contained,

or BAD REGION if it is not contained in any regions. The hint provides a starting

point for the search; if provided, this region will be checked first, followed by all of

its adjacent regions. The search continues, breadth-first, until the point is found or

all regions have been checked.

A* path planning is provided by the findPath(start, end, starthint, endhint) query.

This query returns a stl::list of region ids. If no path is found the returned list is
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empty, otherwise there is a path through the navigation mesh from the starting point

to the end point that passes through each of the regions in order.

Several other SSPS queries exist to support other needs. generateRandomValid-

Point(&region,ground) will generate a random point, guaranteed to be in a negative

space (navigable) region. The region reference is filled with the ID of the region in

which the new point is contained. The ground parameter is a boolean value specifying

whether the point should be on the ground; if it is false, the generated point will have

a z (height) value between the region’s zmin and zmax values. If a point is believed

to be within a positive space (non-navigable) region, the findPointInObject(location)

query will search all positive space regions for the given location.

4.1.3 BEHAVEngine

BEHAVEngine is implemented in C++, using several libraries from the CGUL

toolkit. Multi-threading capabilities are provided by a thread pool implemented as

a wrapper over the boost::thread library. In addition to the boost libraries, BE-

HAVEngine also makes use of the C++ standard template library and libxml2, an

open source XML library which includes schema validation.

The major components of BEHAVEngine are the AgentCore, the SimInterface, the

ThreadManager, and the Agent (see Figure 4.3). The AgentCore is responsible for

loading all agent descriptions from XML, initializing the SimInterface, and initially

creating AIControllers. The SimInterface connects to the simulation environment

being used, and provides basic services for communicating with the simulation. A

custom thread pool is implemented in the ThreadManager to provide multithread-

ing capabilities for BEHAVEngine. For each Agent, there is an AgentController, an
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Figure 4.3: Major components of the BEHAVEngine AI engine. The AgentCore
provides an execution loop and services to load individual agents. The SimInterface
connects to the simulation environment. A worker thread pool is provided by the
ThreadManager. Individual agents are composed of AgentControllers, which have an
ActionModel, a PerceptionModel, a MemoryModel, and an AI controller.

AIController, and a set of models for processing agent inputs, outputs and memory.

The AgentController schedules updates to the perceptual model and AIController,

and ensures that commands are passed from the action model back to the SimInter-

face. Each agent is allocated a thread, which may be shared with other agents.

Generally one thread per available CPU core is created, but this default can be over-

ridden.

The main controller for BEHAVEngine is a separate entity from the simulation-

specific behavior and trigger libraries, as seen in Figure 4.4. These libraries are

statically linked and can be replaced if different capabilities are required. At this time,

only the behaviors and triggers are provided as an external library, but the controller
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Figure 4.4: BEHAVEngine AI Controller. The AI Controller implements a specific
AI architecture. The components of the AI Controller are designed as modules that
can be loaded in from an external library, allowing different architectures to be im-
plemented.

is written to allow future support for modules which implement agent architectures

other than subsumption.

BEHAVEngine supports reactive teaming and complex layer types. Layers can

be constructed as hierarchies of other layers or from sets of behaviors and triggers.

Behaviors can be used singly or linked in a series so they run one after the other when

the layer executes. Triggers can be composed with conjunctions and disjunctions of

tests.

Characters are specified using XML files. Building new intelligent characters does

not require writing any code, as they are loaded at run-time. BEHAVEngine has an

initial configuration which is loaded from an XML file at startup, but the simulation

environment can request the creation of additional characters after the initial startup

phase.

BEHAVEngine can provide information about character controllers to the simula-
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tion environment so that it may be used for debugging interfaces, such as the overlay

in FI3RST. As with FI3RST, character debugging information can be captured to a

XML-based log. Data captured includes information about behavior transfers that

can be processed to show how behaviors spread through teams over time. Navigation

mesh information is provided to BEHAVEngine by SSPS, while scenario information

is provided by FI3RST.

Agent Building Interface Support

A major feature of BEHAVEngine is the capability to export information about

the agent architecture and available domain-specific behaviors. This information

can be imported by the BehaviorShop agent builder and combined with additional

language information provided separately. Different domains can then be supported

by BehaviorShop through the use of different behavior information files, and the

language used in the interface can likewise be modified independently.

Figure 4.5: The static behavior information tree stored each valid configuration of a
behavior or trigger as a separate node in the tree. In this case, B and C are behaviors,
and their children are behavior options, such as patrol points for a patrol behavior
or object types for a pick-up object behavior. Note that the static nature of the tree
means that nodes H and I are repeated three times.

Information is exported as a non-deterministic hierarchical finite state machine–

effectively a dynamic tree. Initially, behavior information was exported as a large
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static tree. Each valid configuration of a behavior and its options was represented as

a separate node in the tree, as seen in Figure 4.5. This meant that building a behavior

was as simple as traversing the tree to a node marked terminal. Unfortunately, the

tree itself became unmanageably large.

Figure 4.6: The dynamic behavior information tree stores each option for a behavior
exactly once, and includes information about options that are mutually exclusive.

The dynamic version of this tree provides a similar structure, as seen in Figure 4.6.

This tree is built dynamically, and stores each behavior option exactly once. The data

structure also stores information about options that are incompatible. This enables

the tree to be expanded as required when queries are made for behavioral information.

This behavioral information can then be combined with an additional source of

language information that specifies how individual option types should be specified

in natural language. An example of this language information is shown in Figure 4.7.

Distance is one of the basic option types that can be used with behaviors and triggers

(useful in, for example, the see object trigger to specify how close the character should

be to the object for the trigger to activate), and the language source provides a more

understandable representation for the option values than ungrounded numeric values.

This representation can be used to build user interfaces, such as BehaviorShop, that
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Figure 4.7: Language filters are loaded separately from behavioral information to
provide natural language translations of the behaviors and triggers that are built
into BEHAVEngine. The resulting translations can be used in character-building
interfaces to provide more intuitive behavioral components.

provide intuitive tools to build character intelligence.

4.2 Splat

Splat (Subsumption and Python-based Lightweight Artificial Intelligence Testbed)

provides a simulation environment that can focus on evaluating problems in artificial

intelligence. While testing in full 3D environments is important, the process of cre-

ating art assets, debugging animation systems, and handling other related issues of

game development can interfere with developing new AI techniques. Splat focuses on

only the core game and AI logic, making it ideal for testing many of the techniques

developed as part of this work. Additional information about using Splat can be

found in the Appendix.

The major parts of Splat are the simulator, the extended affordances, the character
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controllers, and the team coordination methods.

4.2.1 Splat Simulator

Environments in Splat are composed of multiple rooms linked together with doors

and windows. These rooms can either be low resolution or high resolution. High

resolution Splat environments use the room layout as a navigation mesh, and char-

acters use local navigation to move inside the rooms (as in FI3RST). Low resolution

Splat environments treat rooms more like the graph representation of a navigation

mesh– characters move from room to room, and may interact inside rooms, but do

not navigate locally inside rooms.

The Splat simulator is contained in the World object. The World contains a list

of rooms as well as dynamic object and agent lists. All actions are executed through

the World, and it provides all percepts to the Splat characters. The World is respon-

sible for initial setup of the environment and tracking the current time step of the

simulation.

Splat simulations vary widely depending on whether the simulation is a single-

agent, multiple-agent, or team scenario, whether high resolution or low resolution

rooms are being used, and the goals of the particular simulation. For this reason,

individual simulators are built as python scripts that specify the layout of the envi-

ronment, the objects in the environment, and the simulation rules.

Several different objects are commonly used in Splat simulations, and it is simple

to create new objects. Our scenarios use doors, windows, tables, balls, boxes, and

treasures. Doors can be opened, locked, unlocked, and closed. Windows are like

doors, but they can also be broken with a ball. Both windows and doors can be
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used to move between rooms. Tables can be flipped over and used for cover, but

can also be destroyed using a ball. Characters who take cover behind a table cannot

be hit with the ball. Balls can be used to break windows and tables or knock out

other characters by bonking them. When a ball is used to bonk another character, it

is removed from the inventory and lands on the ground by the target. Objects can

be stored in boxes; when a box is opened and searched, its contents are revealed.

Finally, the treasure object is a completely useless item that a character must have

in its inventory to complete most scenarios. Rooms may be marked as sanctuaries.

In sanctuaries, characters are not allowed to attack one another.

Other objects are also available in RPG/Puzzle scenarios. These objects are used

to create traps and puzzles for characters to solve and include levers, pit traps, and

keys. RPG/Puzzle scenarios also have angry badgers which will attack characters on

sight, but go back into hiding when no characters are nearby. Badgers will not leave

the room they live in.

4.2.2 Affordances

Affordances are implemented in Splat as Python objects. An affordance stores the

object it is attached to, the action it represents, and other information about the

action. When a character uses an affordance, it first reserves the affordance. In the

case of multi-character affordances, the character may have to reserve and then wait

until the rest of the team completes its decision cycle, so the reservation system is

important to prevent multiple characters from using the same affordance at the same

time.

Five types of affordances are defined. Basic affordances are the simplest variety,
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and just specify that an action can be taken involving a given object. Contextual

affordances report a set of appropriate actions given the context; each action or set

of actions in a contextual affordance is paired with a set of triggering conditional

functions to decide whether they should be reported. Multi-character affordances

provide multiple affordance slots which may be reserved by different characters on

the same team to enable multi-agent coordination.

Outcome affordances are like simple affordances, but they also provide informa-

tion about the expected result of the action. Probabilistic affordances are outcome

affordances that store a character’s interaction history and provide an estimate of

the likelihood of a given outcome. If a probabilistic affordance is linked to a single

object, the outcome is uncertain, and the simulator must choose one of the possible

results. If the affordance is linked to other affordances and objects, then it is used to

represent a lack of character knowledge.

4.2.3 Splat Agents

Splat implements multiple types of agent controllers. The simplest Splat agents

are pure random; these agents randomly choose affordances that are present in the

world and attempt to execute them. Hierarchical behavior-based subsumption agents

are implemented with the dynamic priority and reactive teaming extensions. Finally,

behavior tree agents can also be built. Rather than using our own behavior tree

implementation, Splat uses the Owyl behavior tree implementation, which provides a

python API for creating and executing basic behavior trees (though certain features

such as impulses are not included) [21]. Agents are configured to use or ignore con-

text when accessing affordances. Contextual affordances check whether an agent is
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configured to use context when actions are returned.

Agents have a set of possible actions, initial states, and inventory slots. To execute

the agent decision process, doSomething() is called on the agent, which will then

perform the necessary operations to choose an appropriate action. The action is then

executed through the World object. Actions available to the agents include open,

close, break, exit, bonk, pick-up, search, hide, push, and lift.

For subsumption and behavior tree-based agents, contextual affordance condition-

als can be reused to filter perceptual information. These are augmented by a library

of deciders that contain simple behavior logic for executing actions. Both types of

agents use the same conditionals and deciders, though they are composed into differ-

ent structures to build decision logic. Conditionals and Deciders can operate using

either standard affordances or outcome-based affordances and agents may use a com-

bination of different affordance types for making decisions. Behavior-based characters

are expected to use standard (including contextual and multi-character) affordances,

while goal-based characters use outcome-based affordances.

4.2.4 Auction-based Multi-Agent Coordination

Reactive teaming is implemented for use by subsumption agents, and multi-character

affordances are available to all agents. A third teaming mechanism is available in

Splat: auctions. The Auctioneer object manages auctions by offering team tasks to

all characters. Each character is allowed to bid once on each task. The Auctioneer

then scores each character’s ability to perform the task, and allocates the tasks in a

manner that maximizes the number of team tasks that are filled.

Subsumption and behavior tree characters can be mixed on a single team. For
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subsumption characters, task assignments are used with dynamic priorities to adjust

the priority of a layer designed for the given task. For behavior tree characters, since

impulses are not available, task priorities are set by their location in the tree structure

and the presence of the task is used as a test to activate the branch for each task.



CHAPTER 5: EXPERIMENTS

Evaluating artificial intelligence methods for games is difficult, and there is no easily

agreed-upon metric for game AI even for particular genres of game. We discussed the

problem of evaluation with industry game AI experts, and there was no consensus on

generalized evaluations. Game AI, as implemented and designed in industry, focuses

on tailoring methods to very specific games. The measure of success is based on the

success of entire games, and proving a technique is useful in multiple genres or types

of game may require several big hits.

Creating several games and testing them on the market is infeasible for academic

research, so we chose to compare our methods to techniques that we already know

are successful from industry. In particular, for our extensions to subsumption, we

compare against the industry standard of behavior trees. If our methods can generate

equivalent or similar behavior, we can expect them to perform favorably in many

different game environments, as behavior trees do. For environmental intelligence,

we look at reasonableness of behavior. The goal is to take simple controllers which

may not perform reasonably—they generate behavior that does not make sense in

context—and modify the environment so they actually do perform reasonably. We

can measure this by considering the success rate on tasks that are representative of

common game genres.
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Finally, for all methods, we look at the complexity of applying our new techniques.

The techniques should simplify game AI in two key ways: first, the computational

complexity should be low, reducing the resource cost of generating characters behav-

ior at run time. Second, the characters themselves should be simpler, reducing the

amount of effort it takes to build new characters and debug them.

5.1 Environmental Intelligence

5.1.1 Influence Points

To evaluate influence points, we compare the number of calculations and memory

required for equivalently sized regions of influence using both influence points and

influence maps. We evaluated both methods with real maps, placing a series of

random influences into the world. Figure 5.1 shows the four different maps and their

decompositions.

5.1.1.1 Maps and Region Decompositions

We used four different test maps. For the influence maps, the worlds were 500x500

occupancy grids. The influence points used a world decomposition, with an average

of 39 regions per map, calculated on a 5000x5000 resolution map of the environment

(see Table 5.1 for the number of regions per map). Influence strength fall-off was

si − (Di ∗ 5), where si is the strength of influence source i and Di is the distance

from the source. The strength of the influence was 254, a value found to produce

reasonably-sized areas of influence in the map (see Figure 5.2 for an example of

the influence area this generated). Influence was spread using a grassfire distance

transform, which is O(n) in the size of the grid [9]. Grassfire (or prairie fire) is a

simple two pass algorithm which is commonly used for calculating Voronoi diagrams
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Figure 5.1: The four test maps for influence points. Obstacles are gray. The top
image in each pair shows the map without decomposition, while the bottom image
shows the navigation mesh decomposition (using Adaptive Space Filling Volumes).
From the left, the maps are Docks, Precinct, Rommel, and Twin Lakes. These maps
are from the Urban Terror Quake 3 total conversion mod.

or performing erosions and dilations on images.

For influence points, shortest distances between regions were pre-calculated for use

during the insert operation; the initial strength and fall-off were corrected for the

different world size.

Table 5.1: Number of regions in each decomposition. Based on a 5000x5000 cell map.

Map Number Regions
Docks 31

Precinct 34
Rommel 55

Twin Lakes 36

5.1.1.2 Computational Costs

Lookups for influence points are more costly than those on an influence map, but

the greatly reduced cost of the lazy update means that the overall computational cost
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Figure 5.2: Example influence map in the Docks world. The shaded area is the
area covered by the influence. Though not shown here, the strength of the influence
decreases away from the center of the area

of maintaining and using the influence points is far less. Since the cost of an update

and an insert are the same for influence maps, we will just look at the number of cells

or regions which must be touched in an insert

As can be seen in Table 5.2, the number of grid cells touched during an insert in

a moderately sized world is very large; even if the resolution of the grid is reduced

greatly relative to the resolution of the map world, this number will still be much

Table 5.2: Number of updates per influence, average over ten random points. For
influence map, this is the number of grid cells touched in an update or insertion.
For influence points, this is the number of navigation mesh regions touched in an
insertion.

Map Map Cells Mesh Regions
Docks 5206 1.1

Precinct 4690 1.1
Rommel 3945 1.2

Twin Lakes 6840 1.6
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higher for influence maps than for navigation-mesh based influence points. The num-

ber of regions touched during influence point insertions, is actually very low: influence

is mostly contained within a single region. If the influence drop-off is decreased, or

strength of the influence greatly increased, the number of regions which must be up-

dated is still quite small. A poor decomposition will increase the number of updates,

but even a poor decomposition will generally be better than a purely grid based

representation.

It is important to note that the actual cost of an insertion depends primarily on

the quality of the decomposition (equilateral regions will decrease the cost compared

to non-equilateral regions of equivalent area), the fall-off function, and the strength

of the influence.

5.1.1.3 Memory Costs

Memory cost savings are even more dramatic than the reduction in computational

costs, because full map grids must be stored for each influence type. In the worst case

for influence points, each region must store a child or prime of every influence point,

but because there are far fewer regions than there would be map cells, this is still a

great reduction. The 500x500 cell maps use in our evaluation have an average of only

39 regions, compared to 250,000 map cells. Even reducing the resolution of the map

to 50x50 results in almost an order of magnitude more map cells than regions, while

providing a very coarse approximation of the data provided by influence points.

Storing the pre-calculated distances between every region costs O(n2) floating point

values, where n is the number of regions. Given the number of regions in our decom-

positions, this comes out to approximately 1400 values. This is still far better than
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the 250,000 values stored in each influence map for a 500x500 map (and these distance

values only need to be stored once).

5.1.2 Contextual Affordances

We created an evaluation scenario using a small world where individual or small

teams of characters compete. In this scenario, the characters have two goals: find

the treasure and knock out its opponents. The world has five areas, as seen in the

overhead view in Figure 5.3: Outside the walls, the guard post, the courtyard, the

treasure room, and the sanctuary. There is a window from outside the walls to the

guard post that can be broken, a window from the sanctuary to the courtyard that

can be opened from inside the sanctuary (or broken from the courtyard), a door from

the guard post to the courtyard, a door from the courtyard to the treasure room, and

a door from the treasure room to the sanctuary. Doors and windows can be opened

and closed if unlocked. The sanctuary is treated as a special room where characters

are not allowed to attack one another.

There are six types of objects available in the world, each with one to three available

actions (seen in Table 5.3). Doors and windows account for two types. There are

also balls, tables, treasure chests, and treasure. There is a ball in the guard post

and another in the sanctuary. The treasure room has a table and a treasure chest.

Balls can be picked up and used to break windows or bonk other characters. When

the ball is used, it is removed from the character’s inventory. Tables can be pushed

over and lifted back up; characters can hide behind a table that is pushed over. The

treasure chest can be opened and searched. When the treasure chest is searched, the

treasure is revealed. The treasure can be picked up once it has been revealed through
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Figure 5.3: Overhead view of the scenario world

searching.

Each of the object actions is restricted by contextual affordances. The break action,

for example, is only allowed if a window is closed and locked. Other restrictions are

related to characters and their states. The table will only report push as a possibility

if the character has recently been bonked with a ball, and the treasure chest will not

provide open as an affordance if there are unfriendly characters in the room. Level

design affects the bonk affordance on the balls, as it will not be available when the

character is in the sanctuary.

During each turn, every character may perform one of the actions in Table 5.4.

Character perception is limited to the current room. Once a character has been
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Table 5.3: Object Affordances

Object Action Type Action Slot

Ball
bonk object
break object

pick-up object

Chest
open target

search target

Door
exit object
open target

Table
hide object
lift target

push target
Treasure pick-up target

Window
break target
exit object
open target

bonked three times with a ball, it is knocked out. Knocked-out characters drop their

inventory, so if a character carrying the treasure is knocked out, the treasure can be

retrieved by its opponent.

We created four characters. Each character made its action decisions differently,

though actions that would undo the last action taken were prevented unless the

character had no other options (e.g., walking from the guard post to the courtyard

and then back to the guard post, or pushing the table and then lifting it). The

simplest character was a pure random character that was aware of basic affordances,

meaning that when it queried an object, it received the full, unrestricted action space

of the object. To choose an action, it built a list of the available affordances from the

objects in the room without taking context into account. This included actions that

were not possible or unproductive. An action was chosen randomly from this list, and

the character attempted to execute it. The second character was a contextual random
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Table 5.4: Character Action Space

Action Description
bonk Throws the ball at another character.

Characters are knocked out after three bonks.
break Throws the ball at a window, breaking it.
exit Moves to another room.
hide Hides behind an object.
lift Lifts up a pushed over object, revealing

any hidden characters.
open Opens an unlocked object.

pick-up Picks up an object.
push Pushes an object over so it can be used

for cover.
search Searches an open treasure chest.

character. This character was identical to the purely random character except that it

would retrieve the list of contextual affordances. The contextual affordances on each

object used up to three condition tests combined as conjunctions or disjunctions.

The third character was a hand-crafted behavior-based subsumption character with

nine layers. Behavior-based subsumption is a form of reactive control that uses pri-

oritized layers of behaviors activated by triggering conditions [48]. The controller

structure is seen in Table 5(a). Higher valued layers were considered more important,

so if the character was near an opponent, had a ball, and cover was available, it

would prefer to bonk the opponent than take cover behind the table. This character

would perform all actions except for lifting the table. The conditions used for build-

ing this character were a superset of the conditions used for creating the contextual

affordances for the second character.

The fourth character was a hand-crafted subsumption-based character that used

context, as seen in Table 5(b). For this controller, we only needed to specify affor-
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Figure 5.4: Characters facing off in the game. Bob takes cover behind the overturned
table while Alice approaches the treasure room.

dances to look for and the priority of these affordances. The layers triggered based

on affordances, and in all cases the paired behavior did nothing more than pass the

affordances through to the action model. The hand-crafted character without context

had to trigger based on seen objects, then apply behavioral logic to execute the action

specified by the behavior. With context, this was simplified as separate behaviors did

not need to be created for this character. This also reduced the difficulty of testing.

Only the contextual affordances needed to be tested, and then the behavior of the

character checked to make sure the affordance prioritization was effective.

We chose not to compare these characters with more deliberative planning systems

due to the nature of the scenario. Since the environment is unknown and dynamic,

plans generated by a deliberative controller would be invalidated after almost every

move. In addition, this would require adding substantially more meta-data to objects
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Table 5.5: The hand-crafted and contextual crafted controllers differ in that the
contextual crafted controller effectively only provides a prioritization for affordances,
and so does not require detailed trigger/behavior pairs. This makes the controller
substantially simpler.

(a) No context

Priority Action
8 Bonk opponent
7 Take cover if threatened
6 Push over table
5 Search treasure chest
4 Pick up ball or treasure
3 Open treasure chest
2 Open door
1 Break window
0 Move if possible

(b) Using context

Priority Action
7 Bonk
6 Hide
5 Push
4 Search
3 Pick up
2 Open
1 Break
0 Move

and actions. Short-horizon planning, such as that used in F.E.A.R, would accommo-

date the dynamic nature of the environment, but at the cost of additional complexity

in building the necessary meta-data [61].

Characters were evaluated by pitting each type of character against each other

type in the game world, seen in Figure 5.4. This included trials between characters

of the same type. We ran 100 trials of 1,000 games each, where each game ran for

a limited number of turns (allowing for stalemates). Two possible start positions

were used; each character started in each position for an equal number of trials. We

recorded how many times each character achieved a complete win (by both knocking

out its opponent and finding the treasure) as well as the number of times only partial

wins were achieved. Other information recorded included how many turns it took to

achieve a complete win and the number of times each character failed to perform an

action correctly.
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5.1.2.1 Comparative Character Performance

One important measure for our technique is the win rate of the characters. Contex-

tual affordances should provide better performance than purely random characters

using only basic affordances. We measured the complete win rate and partial win

rates of each type of character, as seen in Table 5.6 and Figure 5.5. Results shown

are the average number of times a character would win over 1,000 games, averaged

over all 100 trials.

Table 5.6: Character Performance (Complete Wins), per 1,000 games. Higher values
are better. * indicates that performance of crafted and crafted + contextual characters
was statistically different with p < 0.05.

Character
vs. Random vs. Contextual vs. Crafted vs. Crafted+Con
Mean SD Mean SD Mean SD Mean SD

Random 496.5 15.7 139.5 11.0 111.0 10.1 33.7 5.7
Contextual 847.0 11.8 484.1 15.5 94.4 9.5 41.4 6.1

Crafted 885.1* 10.2 855.9* 10.1 500.0 0.0 500 0.0
Crafted+Con 965.0* 5.8 955.6* 6.3 500.0 0.0 500 0.2

Table 5.7: Character Performance (Partial Wins)

vs. Contextual vs. Crafted
Character Treasure KO Treasure KO
Contextual 17.0 17.7 1.23 48.5

Crafted 48.5 1.2 0.0 0.0

The contextual affordance-based character greatly outperformed the random char-

acter, as did the hand-crafted character. The hand-crafted subsumption character

won against the contextual characters almost as often as it beat the random character,

but the contextual character performed slightly worse against the crafted character.

The hand-crafted characters were an even match against one another, but the hand-

crafted character with contextual affordances performed slightly (but significantly)
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Figure 5.5: Graphical comparison of average win rate for random, contextual random,
and hand-crafted characters. Higher values are better.

better against the random and contextual random characters. This is likely due to

minor errors in the behavioral logic of the hand-crafted character without context.

Looking at the complete win rate hides one interesting aspect of competition be-

tween the contextual and crafted characters. Characters could get locked into a

stalemate, where only one win condition could be achieved before the time limit was

reached. This could happen when one character never encountered the other to knock

it out, or one character never managed to retrieve the treasure. Partial wins were

rare with both random characters and contextual crafted characters, but occurred

frequently with the contextual characters. Contextual characters tended to knock

out the crafted characters, but had a harder time finding the treasure, as seen in

Table 5.7. Crafted characters could find the treasure, but had difficulty knocking out
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contextual characters.

Table 5.8: Average number of turns to win (lower is better)

Character
vs. Random vs. Contextual vs. Crafted vs. Crafted+Con
Mean SD Mean SD Mean SD Mean SD

Random 125.3 3.3 112.6 7.6 130.6 8.2 128.8 13.5
Contextual 33.9 0.6 31.4 0.6 32.1 1.6 33.4 2.3

Crafted 16.3 0.2 14.3 0.1 12.9 0.1 12.9 0.1
Crafted+Con 16.5 0.2 15.4 0.2 14.4 0.2 14.4 0.2

The length of time it took characters to win varied greatly depending on the char-

acter type, as seen in Table 5.8 and Figure 5.6. Since the random character used very

little information to limit its choices, it took the longest to achieve its goals. The

contextual character was able to complete the tasks in a much shorter period of time,

but still much worse than the hand crafted character.

The character performance comparison shows that while the contextual charac-

ter did not outperform the random character in complete wins against the crafted

character, it did manage more partial wins, and completed the task in less time.

The contextual character also outperformed the random character in direct matches.

These results suggest that while contextual characters are not a replacement for care-

fully crafted characters, they are potentially useful for minor characters. Contextual

characters always perform actions that are appropriate and can succeed in the game

world, but have a far lower authorial burden. Combining hand-crafted subsump-

tion with contextual affordances creates the best characters while still reducing the

authorial burden.
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Figure 5.6: Comparison of average game length for random, contextual random, and
hand-crafted characters.
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5.1.2.2 Complexity and Reuse

Another important metric for consideration of contextual affordances is the com-

plexity of building the hand-crafted character next to the complexity of building

objects with contextual affordances.

The hand-crafted character is composed of nine behavior layers. The behavior lay-

ers have an average of 3.1 conditional tests per layer, and the most complex layers

have 5 tests. The objects required a total of 15 condition/action pairs to be created,

with an average of 1.5 conditional tests per affordance. While more condition/action

pairs must be created, the complexity of the triggering conditions is substantially sim-

pler. In addition, character controllers can be difficult to reuse in new environments,

as behaviors are frequently tightly coupled. Objects with contextual affordances can

be easily reused.

This complexity translates to real effort on the part of the AI programmer. Con-

textual affordances can potentially save a great deal of effort in development and

debugging for the programmer. As seen in Figure 5.7 and Table 5.9, even using

contextual affordances with hand-crafted agents reduces the number of lines of code

required to implement characters, as it greatly reduces the number of behaviors that

need to be built per-game. In addition, a small savings in single use character code

can be achieved by using contextual affordances with crafted characters.

This saving is also important in terms of debug time, as seen in Figure 5.8 and

Table 5.10. Using contextual affordances reduces the behavior combinations that

need to be tested, enabling faster debugging of individual characters. In addition,
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Figure 5.7: Number lines of code needed for each of the four agent types, divided
by one-time (framework) code, per-game code, and per-character code. Generic code
is reusable many times for different games, game code can be reused multiple times
within a game, and single use code is specific to the character.

Table 5.9: Number lines of code needed for each of the four agent types, divided by
one-time (framework) code, per-game code, and per-character code.

Type Framework Game Character
Random 284 177 0

Contextual Random 310 431 0
Hand-Crafted 422 600 48

Hand-Crafted with Context 441 471 43
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Figure 5.8: Approximate debugging time required for building characters, based on
implementation within Splat.

the contextual smart objects created in the process can be used many times in a

single game, providing a further gain. Especially important is the reduced need for

behaviors, as the most time consuming element of AI debugging is frequently testing

and tweaking character behaviors.

Another important advantage to using contextual affordances is the additional con-

trol they may offer to level designers. When building games, levels must be carefully

designed to provide correct pacing and an immersive experience. Contextual affor-

dances allow not only improved reusability, but enable designers to more closely tailor
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Table 5.10: Approximate debugging time required for building characters, based on
implementation within Splat.

Type Framework Game Character
Random 0.5 2 0

Contextual Random 1.0 4 0
Hand-Crafted 2.0 8 1.0

Hand-Crafted with Context 2.5 4 0.5

the experience by changing the actions available for specific situations.

5.1.3 Multi-Character Affordances

Multi-character affordances are best used in puzzle environments with multiple

characters on a team. To test the efficacy of multi-character affordances as a method

for enabling multi-agent coordination, we built an environment with a puzzle that

required multiple characters. This type of puzzle is used in many games, such as the

Ratchet & Clank platformer series, where the player is required to use allies to move

through the environment [33]. One of the most common forms is a doorway that

requires multiple characters to hold down a switch to open a door. As soon as any

character steps off one of the linked switches, the door closes again. The player must

maneuver other characters to step on the switches, then move through the door to

find another mechanism that will open the way to let allies through.

The puzzle we created in Splat is shown in Figure 5.9. In this world, there are two

different doors which can only be opened through one of the described mechanisms.

In the figure, the first door is marked with a double green line in the second room.

In the room next door, there are two mechanisms, marked as green squares. Each

mechanism must be active before the door opens. Once a character has moved through

the door, there is an empty room, then a room with a lever. Once activated, this lever
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Figure 5.9: Characters start in the room marked S, and must get to the room marked
G. Locked doors are marked with heavy lines. The green double line is a door which
can only be opened with the green mechanisms in the room next door. The dark blue
door can only be opened with the blue lever (triangle) on the other side of the door.
The orange dashed door must first be opened with the orange mechanisms, and then
the orange triangle to let the last character through.
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allows the allies through. Also in this room is another dual mechanism; once this is

activated, two characters are able to move through to the next, activate a second

lever, and then all characters are able to reach the exit.

Different failures can occur in this type of scenario. Characters may activate only

one or the other mechanism at a time, the third character may not make it through

the door, or fail to activate the lever to let its allies through. We applied multi-

character affordances to the puzzle. Each mechanism has an affordance that is linked

to the affordance of its mate. The levers have affordances that open the doors and

deactivate the corresponding mechanisms.

Three teams of characters were created for this scenario. The first team was a

pure random team. This provides a baseline to see how well characters acting with

no direction will perform in the environment. The second team had characters that

made random decisions, but used context to choose appropriate affordances. The

third team was composed of very simple five layer subsumption characters, seen in

Figure 5.10. The subsumption characters would pull a lever if a lever pulling affor-

dance was available, activate a mechanism if a mechanism activation affordance was

available, and assist another character if an assist affordance was available. The two

remaining layers enabled the characters to deal with closed (and unlocked) doors and

move through the world. When moving through the world, characters preferred not

to backtrack, but otherwise chose destinations randomly, with no knowledge of the

goal location.

We ran 100 trials of 1,000 games per trial for each team, and tracked how often

characters successfully escaped, as well as how many time steps it took. Trials were
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Figure 5.10: The subsumption controller for the multi-character affordance-based
agent is five layers, and uses some triggers that activate based on affordances.

ended after 500 time steps. As seen in Table 5.11, even pure random characters

occasionally succeeded in the task, though it took an extremely large number of time

steps to do so. Characters using context performed significantly better, escaping over

80% of the time, and with a much shorter average escape time. This performance is

possible without any prioritization for behaviors on the contextual random characters,

and no knowledge of teammates. Simply providing a prioritization for the affordances

was sufficient to achieve a 100% escape rate in an average of just 39.5 time steps.

Table 5.11: Multi-character Dungeon Performance

Character
Escapes Avg. Time

Mean SD Mean SD
Random 31.4 5.4 373.1 16.4

Contextual 871.2 10.4 96.5 1.9
Crafted 1000 0.0 39.5 0.4
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(a) (b)

Figure 5.11: Comparative Performance of random, contextual random, and multi-
character affordance enabled hand-crafted characters

Table 5.12: Number lines of code needed for each of the three agent types, divided into
one-time (framework) code, per-game code, and per-character code. Hand-crafted
auction agent estimate, based on the Splat auction implementation, included as ref-
erence.

Type Framework Game Character
Random 284 214 0

Multi-Character Random 396 468 0
Crafted + Multi-Character 508 637 34

Crafted + Auctions 646 637 34

As with contextual affordances, multi-character affordances potentially save the

developer a substantial amount of effort in building characters and debugging them.

As seen in Figure 5.12 and Table 5.12, multi-character affordances require fewer lines

of code to implement. In addition, there are major savings in debugging time per-

character, as seen in Figure 5.13 and Table 5.13. The reduction in per-team debugging

time is especially important, as the developer may have to develop multiple teams for

each level in a game.
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Figure 5.12: Number lines of code needed for each of the three agent types, divided
by one-time (framework) code, per-game code, and per-character code. Generic code
is reusable many times for different games, game code can be reused multiple times
within a game, and single use code is specific to the character. Hand-crafted auction
agent estimate, based on the Splat auction implementation, included as reference.

Table 5.13: Approximate debugging time required for building characters, based on
implementation within Splat. Auction numbers are estimates based on experiences
with implementing auctions in Splat.

Type Framework Game Character
Random 0.5 2 0

Multi-Character Random 1.5 5 0
Crafted + Multi-Character 2.5 9 1.0

Crafted + Auctions 4.0 11 2.0
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Figure 5.13: Approximate debugging time required for building characters, based on
implementation within Splat. Auction numbers are estimates based on experiences
with implementing auctions in Splat.
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5.1.4 Probabilistic Affordances

To evaluate probabilistic affordances, we used single characters in a puzzle dungeon.

For this scenario, we used an RPG-style scenario, shown in Figure 5.14. The player

starts at the room marked S, and the exit from the dungeon is in the room marked

G. The character must escape from the dungeon, but doors leading to the exit are

blocked, trapping it in a set of 9 squares until it finds the key. In one accessible room

there is a set of mechanisms. One of these mechanisms gives access to the key to get

through the other doors, one opens a safe containing a bonus treasure, and the other

two are traps. One trap results in instant death, one releases a monster (the badger).

Players working through a puzzle like this one may make some false starts such as

choosing the wrong lever to activate. This knowledge is then carried forward after the

player restarts (or respawns) at the start of the level after their character has been

killed. Probabilistic affordances are useful here, because they give AI characters the

same ability as the human player to carry knowledge forward, but without the need

for storing memory or having to reason over the likelihood of a given lever having a

negative outcome.

In this case, the four levers have probabilistic affordances. Each lever has one

affordance with one outcome, and the four affordances are linked. Characters which

can make use of the probabilistic information will find the possible outcomes (and the

probabilities) adjusted after each interaction with a new lever. When characters are

knocked out, they respawn at the starting position, and any items they were carrying

are dropped where they were knocked out. Each character also has a sword that can
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Figure 5.14: Locked doors are marked with dark lines. Characters start in the room
marked S, and must make their way to the room marked G. The key to unlock all
doors is in the room labeled K. In this room are four levers; one opens the safe holding
the key, one opens the safe holding the treasure, one triggers a trap, and one awakens
a monster.
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Figure 5.15: The subsumption controller for the dungeon crawling agent is seven
layers, and uses some triggers that activate based on probabilistic affordances.

be used for fighting off the badger. This sword is not dropped when the character

respawns.

We once again created three characters. The first character is a pure random

character, to provide a baseline for random performance in the scenario. The second

character is a contextual random character that uses contextual affordances to choose

randomly from a list of appropriate actions. The third character is a subsumption-

based character, seen in Figure 5.15. This controller has seven layers. The bottom

layers enable the character to move around the world by opening doors and randomly
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choosing the next room to move to. The character has no knowledge of the goal, or

correct direction to move towards the exit, though it does have a preference to avoid

back-tracking. The search layer triggers on contextual affordances that indicate an

object (in this case, the key safe or the treasure safe) that can be searched. The

unlock door layer triggers when the a contextual affordance reports that a door can be

unlocked, which requires that the character has the key for the door in its possession.

The get object layer will activate if a pick-up affordance is available. The top two

layers are more interesting, as these are the layers that use probabilistic affordances.

The lower-priority pull lever layer looks for an opportunity to find treasure. It

will activate if the character does not have treasure, and it perceives an affordance

with a better than 75% chance of opening the safe that has treasure. Specifying 75%

prevents the character from doing anything too risky– if it finds the key on the first

try, it will not try to find the treasure, because it has a 66% chance of picking a lever

with a negative outcome. If it does not find the key until the third attempt, it will

know that the treasure is the only remaining possibility, so it is safe to pull the lever.

The top layer will activate if the character has a chance to find the key. The “likely”

portion of this trigger means that if the chance of getting the key by pulling this lever

is at least as likely as any other outcome, the character will take the risk of pulling

the lever. Note that this controller has no knowledge of traps or monsters, and, unlike

the random characters, this character will not defend itself if attacked by the badger.

We ran 100 trials of 1,000 games per trial for each character in the dungeon scenario

and tracked the number of times the character escaped, the number of times it got the

treasure, how many times it got the treasure, and the average length of a successful
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(a) Probabilistic affordance performance (b) Probabilistic affordance treasure retrieval rate

Figure 5.16: Escape rate and treasure retrieval rate for characters using probabilistic
affordances vs. random and contextual affordance-only characters. Higher is better.

(a) Average game length (b) Number of bonks per 1,000 games

Figure 5.17: Average length of successful game and average number of bonks per
1,000 games. Lower is better.
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Table 5.14: Success Rate in Probabilistic Dungeon

Character Escapes Treasures KOs Avg. Time
Random 0.4 0.1 1281.3 408.5

Contextual 491.5 125.8 10894.4 342.5
Crafted 1000 582.2 749.5 135.0

Table 5.15: Number lines of code needed for each of the three agent types, divided into
one-time (framework) code, per-game code, and per-character code. Hand-crafted
with memory model and probabilistic reasoning, based on the BEHAVEngine memory
model implementation, included as reference.

Type Framework Game Character
Random 284 207 0

Contextual Random 310 461 0
Crafted + Probabilistic 550 630 48

Crafted + Memory + Reasoning 498 730 43

run. After 500 time steps, the simulation would end if the character had not escaped.

As seen in Table 5.14 (and Figures 5.16 and 5.17), acting randomly is a poor approach

to this world. The pure random character almost never escapes, and never gets the

treasure. The random character suffers far fewer KOs than the crafted character, but

only because it rarely makes it to the key room. The contextual random character

does better, escaping almost 50% of the time, but still rarely getting the treasure.

The contextual random is frequently knocked out by traps or the badger, even though

it can defend itself. Finally, the seven-layer crafted agent escapes every time and also

retrieves the treasure 58% of the time. This crafted agent also escapes far more

quickly than the other agents.

Implementing probabilistic reasoning using a memory model can be a complex

task, especially at the level of building behaviors. Figure 5.18 and Table 5.15 show

a comparison of the number of lines of code required to implement these charac-

ters, along with an estimate of the code required to implement a full memory model
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Figure 5.18: Number lines of code needed for each of the three agent types, divided
by one-time (framework) code, per-game code, and per-character code. Generic code
is reusable many times for different games, game code can be reused multiple times
within a game, and single use code is specific to the character. Hand-crafted with
memory model and probabilistic reasoning, based on the BEHAVEngine memory
model implementation, included as reference.

Table 5.16: Approximate debugging time required for building characters, based on
implementation within Splat. Crafted + Memory Model + Probabilistic Reasoning
estimate based on experience with BEHAVEngine and Splat.

Type Framework Game Character
Random 0.5 2 0

Contextual Random 1.0 4 0
Crafted + Probabilistic 2.0 10 1.5

Crafted + Memory + Reasoning 4.0 9 3.0
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Figure 5.19: Approximate debugging time required for building characters, based on
implementation within Splat. Crafted + Memory Model + Probabilistic Reasoning
estimate based on experience with BEHAVEngine and Splat.
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and behaviors with probabilistic reasoning. This estimate, along with the debugging

time estimate in Figure 5.19 and Table 5.16, are based on the implementation of

the memory model in BEHAVEngine. It is also important to note that while the

per-game debugging time for probabilistic affordances is greater than the per-game

debugging time for a full memory model and probabilistic reasoning system, the de-

bugging process can be divided more easily for probabilistic affordances. When using

probabilistic affordances, more control is given to the level designers, and more of

the agent debugging process can be wholly claimed by designers. This process is also

more integrated with the level design process than it is when developing a memory

model and behaviors that use probabilistic reasoning. This can be a very important

factor in the game development process, and may provide greater savings than those

shown here.

5.1.5 Extended Affordances in Game Design

Extended affordances reduce the complexity and development time of character

controllers. This reduced complexity can be conveyed through to the character de-

sign. Character design frequently uses graphical user interfaces, and the responsibility

for building characters may be shared with designers and others who are not AI pro-

grammers. Simplifying the character design can help make the process of training

non-experts faster and less error-prone.

Extended affordances can have an even greater effect on the game development

process when removed from the AI development process altogether. Rather than

having the AI programmer build smart objects and contextual affordances, these

tasks can be assigned to the level designer. Placing control of AI behavior into the
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hands of the level designer allows much more creative control when building the game

world. Instead of a process in which the AI programmer creates a behavior, the game

designer requests modifications, and the AI programmer tweaks the behavior, the

game designer can now control behavior directly. Controlling this behavior allows

more creative design work to go into the game experience.

This is a more appropriate distribution of work between the AI programmer and

the designer, as it is the designer who manages the entire game experience. In addi-

tion, particular parts of a game may be designed to evoke specific responses from the

player, and there is a risk of these responses getting lost in the translation process

from designer to AI programmer. Finally, it is worth noting that much of the infor-

mation used for probabilistic and multi-character affordances must already be built

into the game environment. Extended affordances can be implemented to use this

level information directly, rather than needing to create additional data structures to

convey the relationships between game objects.

5.2 Evaluation of Subsumption Architecture Extensions

We evaluated the subsumption architecture extensions using both DASSIEs (FI3RST

with BEHAVEngine) and Splat. Initial evaluation with FI3RST and BEHAVEngine

provided testing in a high-resolution 3D environment, and proved the usefulness of the

extensions in a resource-constrained application. Further evaluation was performed

with SPLAT, focusing on teams of characters working together in a scenario.

5.2.1 Reactive Teaming Examples

Reactive teaming has been evaluated with simple scenarios as case studies. Our

first scenario included four generic agents and a fully specified agent with behaviors
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describing a number of patrol routes in the game environment. The generic agents

started up, requested behaviors from different agents until the fully specified patrol

agent transferred patrol routes. Communication was treated as independent of dis-

tance, so the agents were able to immediately receive behaviors without finding the

fully specified agent initially.

Figure 5.20: Patrol agents in the FI3RST environment. In this scenario, a single agent
with knowledge of a large (12 point) patrol route is placed in the world. Generic agents
are added, and the patrol behavior is divided into segments.

An additional test scenario created a single garbage-cleaning robot which was to

wander through the world and pick up objects. Twelve generic agents were added

that wandered the world, and in this case, would request behavior transfers only

when within range of one another. Once a generic agent received the garbage-cleaning
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behavior, it would continue to wander, and transfer this behavior to other agents if

requested. This scenario was extended to place two types of garbage-cleaning bots

to pick up different types of objects. Two types of objects were added at different

times. As the first type of object was cleared, failure and inactivity transfers occurred,

adapting the team to gather the second type of object.

More advanced coordination was tested with the scenario shown in Figure 5.20.

In this case, a patrol agent with a large patrol route was placed in the world, and

varying number of generic agents were added to the world. The patrol behavior used

behavior division to split the patrol route into segments, halving it each time it was

transferred until each agent was walking a two-location segment of the route. The AI

engine was able to run over 100 agents at 10hz with a low CPU load on an Intel Core

2 6400 system running at 2.13ghz. Larger numbers of agents were not tested as the

graphics pipeline became overloaded at this point.

5.2.2 Reactive Teaming Behavior Distribution

The effectiveness of reactive teaming with failure detection can be demonstrated

with a case study in our simulation environment, seen in Figure 5.21. In our scenario,

the first agent, Alice, searched the environment for cans. The second agent, Bob,

searched the environment for boxes. The goal of the agents is to pick up all of the

objects scattered throughout the environment. The environment is initially loaded

with many cans placed in the world. After a period, a large number of boxes are

added to the environment. With static controllers, each agent will perform only the

task initially designed. This means that while Alice is well-occupied for the first part

of the scenario, Bob is performing very little work. Two different variations of the
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scenario were run, one using reactive teaming, and one with static characters.

Figure 5.21: Failure detection enables subsumption-based characters to coordinate in
teams.

In the static scenario, Alice was replicated to create 11 characters that searched the

environment for cans. Bob was replicated to create 11 characters that searched for

boxes. Eleven agents were guaranteed to be idle for the first half of the scenario, when

no boxes were in the environment, while in the second half, 11 characters were mostly

idle as very few cans were present. The overall team was very inefficient because at

any given time, up to half of the characters could not perform a useful task.

The reactive teaming scenario allowed better team utilization. Instead of 11 char-

acters in each role, we used Alice, Bob, and 20 generic agents. Generic agents have a

base layer, but instead of being designed to perform a task, they are designed to have

activation failures. These activation failures lead the agents to use reactive teaming

to request behaviors from other characters. Figure 5.22 shows the number of charac-

ters with each behavior vs. time, averaged over 10 trials of 120 seconds each. As the



142

scenario started, each of the 20 agents randomly received either the behavior to pick

up cans or the behavior to pick up boxes based on whether they meet Alice or Bob

first. Since boxes were nonexistent for the first part of the scenario, the can-gathering

agents were quite productive, but the box-gathering agents continued to generate ac-

tivation failures. The box-gathering agents requested new behaviors, resulting in a

surge of can-gathering agents.

Figure 5.22: Reactive teams adapt to environmental changes. Initially, neither behav-
ior is relevant and they spread at the same rate. As Behavior A becomes relevant in
the environment, it peaks, and the number of characters with Behavior B decreases.
Once Behavior A is no longer relevant, Behavior B takes over.

As the scenario continued, the boxes were added to the world. With most of the

cans gone, the can-gathering agents generated activation failures, causing them to



143

request new behaviors. The number of box-gathering agents then surged, as the

majority of agents received the appropriate behavior. Once all but a few objects have

been gathered, the distribution of behaviors changed again, as all of the behaviors

had become idle.

Failure detection and behavior stack modification enables the reactive teaming

technique. As shown in the scenario, flexible teams that react to changing conditions

can be created with this technique. The scenario provides an example of how using

the dynamic reactive teaming approach results in better team utilization than the

static approach.

5.2.3 Comparison of Team Approaches

Using Splat, we compared different approaches to building teams of characters. In

addition to reactive teaming with subsumption-based characters, we implemented a

centralized auction to distribute team tasks. We tested the auction-based method

with both subsumption and with behavior trees in a fast-paced tactical environment.

Auction-based subsumption used dynamic layers to achieve task distribution. Ev-

ery five turns in the game world characters would bid on the set of team tasks. Two

team tasks were used: one team task was to attack hostile characters, and the other

was to search for treasure. The bid scoring for the auction used whether the agent

was capable of executing the behavior for the given task, the distance of the charac-

ter to the given task (if it had a specific location), and was weighted by whether the

character was already executing the task. The priority function for task behaviors

in subsumption assigned the behaviors a priority of -1 (which prevented them from

executing) if the task was not assigned, or an appropriate priority if it was assigned.
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For behavior trees, we made task assignment one of the preconditions for the task

behaviors. If the task was not assigned, this prevented the characters from executing

the task. Otherwise, the character would execute the task at the appropriate point

in the tree.

Each team in the scenario had two members. We compared seven teams: two

teams with generalized characters that had both team behaviors (one using behavior

trees, one using subsumption), two teams with specialized characters that had only

one task or the other specified (one using behavior trees, one using subsumption), one

auction-based subsumption team, one auction-based behavior team, and one reactive

subsumption team. Each team used the same set of behaviors, though specialized

characters and reactive teaming characters had behaviors ommitted. Auction-based

teams had the opportunity to reassign roles every five turns.

We expected that teams with fully specified characters capable of performing each

task would perform better than other teams, but that dynamic characters on auction-

based or reactive teams would adapt better than specialized characters. We used the

same Splat world as in Section 5.1.2, though it was modified to be a high-resolution

environment, with each room varying in size from 9 square meters (the guard post) to

25 square meters (the courtyard). Actions each had a distance requirement applied,

so that characters had to move within each room. Characters could move 1 meter in

a turn or take an action. The goal was still two parts: knock out the opposing team

and get the treasure. Once knocked out, characters would not respawn.

Each team combination competed for 1,000 trials in alternating starting points.

Results are shown in Table 5.17 and Figure 5.24, with each row showing the percentage
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Figure 5.23: This chart shows the performance of the different methods visually. For
each group, the vertical label shows the architecture being tested, and the bars show
the percentage of trials that a team using this architecture won the scenario.

win rate against the technique listed in the column. As expected, fully specified

agents outperformed all teams in this task, with auction-based teams doing better

than specialized agents. Reactive teams, surprisingly, performed very poorly. Note

that some trials resulted in stalemates (this is why some pairings do not add up to

100%). This is an important result, as it highlights the circumstances under which

reactive teaming does not perform well. In comparison to the object gathering task,

which is a long term scenario in which errors are not fatal, the Splat treasure hunt

is much shorter, with very limited goals that can be accomplished once. Errors in

the treasure hunt are fatal, and agents cannot recover from being knocked out. This
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means that behaviors will typically only activate a small number of times during the

scenario, with one of the team behaviors only executing a single time.

Tactical environments like this one do have a variety of well-defined team roles, and

in games similar to the treasure hunt (such as the common capture-the-flag game),

teams may break into groups with some players providing protection for others that

are performing important tasks (such as finding and capturing the treasure or flag).

Based on these results, reactive teaming is not well-suited for this type of team task.

Subsumption with dynamic priorities assigned through an auction are better suited

for these types of scenarios. Auctions score agents based on suitability given the

location of the goal or ability of the character to fight, and will react more quickly

than subsumption, which will not change roles until a sufficient volume of errors

indicate that the current behavior set is not performing well.

Reactive teaming can still be used in these situations, however the command strat-

egy should be used for coordinating. To test this, we ran an additional team test. We

used the same scenario as for the first test, but tested just three teams. Each team

also had three agents instead of two. We used the subsumption architecture for each

team, as the previous results showed that subsumption and behavior trees performed

similarly on these tasks.

The first team was composed of specialized subsumption characters. One char-

acter was specialized to attack other characters, one to search for treasure, and the

third was limited to gathering treasure. For the second team, we used auction-based

subsumption coordination. When bidding occurred, two of the three characters were

allowed to bid, and the third was excluded. Finally, the third team used two limited
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subsumption characters that did not know how to attack or search, but were com-

manded by a third character. This commander had a special command behavior that

would decide the best tasks to give to its teammates and send them orders. The two

teammates would then request a behavior from the commander, and the commander

would pass on the chosen task.

As shown in Table 5.18, the reactive teaming characters performed much better

than in the first test. Once again, some games resulted in stalemates. The number

of stalemates is relatively higher because of the third character that could not per-

form either team task. This comparison shows that reactive teaming can be used

in some types of games where it would otherwise be weak if the command strategy

is used. This is expected, as the command strategy can effectively implement many

different multi-agent coordination techniques. It does create a level of centralization

on teams, and this may be desirable in games– when the commander of a hostile

force is eliminated, the ability of the force to adapt to the situation may be adversely

affected.
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Figure 5.24: This chart shows the performance of the different methods visually. For
each group, the vertical label shows the architecture being tested, and the bars show
the percentage of trials that a team using this architecture won the scenario.
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Figure 5.25: This chart shows the performance of the different hierarchical teams.
For each group, the vertical label shows the architecture being tested, and the bars
show the average number of trials, out of 1,000, that this team won.

Table 5.18: Performance of Command-based Reactive Teams. Values are average
number of wins over 1,000 games (based on 100 trials of 1,000 games).

Team
vs. SA Spec vs. SA Auc vs. React Com
Mean SD Mean SD Mean SD

SA Specialized - - 97.7 84.4 273.2 13.6
SA Auctions 546.2 13.4 - - 395.9 14.8

Reactive Command 667.4 15.1 275.3 12.6 - -



CHAPTER 6: CONCLUSIONS

Artificial intelligence in games serves a different purpose from artificial intelligence

in most other applications. Game AI must support and enhance the experience of the

player to make a game more interesting, more engaging, and more challenging. This

dissertation focuses on new approaches to creating intelligence in games, looking

at not just the game characters, but also the game environment. We look at how

intelligence can be embedded in the game world itself, building upon the particular

advantage that games have: the environment is completely flexible, and creating

the best experience requires integrating the environment at every step. In addition,

we examined ways in which inexpensive AI techniques can be extended to build

intelligence that is faster, cheaper, and easier to design.

The central hypothesis of this work is that behavior-based characters in games

can exhibit effective strategy and coordinate in teams through the use of knowledge

embedded in the world and a new dynamic approach to behavior-based control that

enables characters to transfer behavioral knowledge. We have presented several tech-

niques that test this idea, and evaluated their effectiveness in comparison to existing

industry-standard techniques. We have shown that the use of navigation meshes can

greatly improve the efficiency of existing methods for annotating the environment,

making the environmental annotations of influence points usable for more resource-



152

constrained systems. We have demonstrated that embedding knowledge into the envi-

ronment through the use of advanced affordance techniques can reduce the complexity

of character controllers, and enable strategic behavior with probabilistic reasoning.

This complexity reduction is accompanied by a simplification of the agent develop-

ment process by increasing the reusability of individual components and decreasing

the development time for intelligent characters. Finally, we have shown that dy-

namic extensions to behavior-based subsumption architecture can enable inexpensive

team coordination methods, making it possible to build very large adaptive teams of

intelligent characters.

Together, these new methods reduce the computational and development costs for

intelligent game characters. They demonstrate that inexpensive behavior-based and

reactive control methods can be used to produce rich behavior, while simultaneously

shifting more control to level designers. The centrality of AI to modern games makes

this an important change. The shift improves the ability of designers to craft the

full game experience more successfully and directly, with fewer opportunities for mis-

translation between designer and programmer.

6.1 Environmental Intelligence

A major advantage of virtual environments is that they are, by definition, virtual

and not limited by physical constraints. This allows the world itself to be used as

a mechanism for sharing information as it is with influence points. The physical

constraints of the real world do have some advantages, though—when looking at an

object in the real world, we can pick it up, turn it around, hold it, throw it, or poke

at it to discover how it can be used—all actions which are less meaningful in game
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environments. These actions convey information and knowledge, and represent a sort

of embedded intelligence in the world itself, described in psychology as affordances.

The key is to create this information in virtual environments. Once information

about using objects and how they interact is embedded into the environment, it is

natural to then move even more information into the environment. Contextual af-

fordances allow the designer to inform game characters how actions change under

different conditions, reducing the burden of designing intelligence which has to rea-

son about special cases throughout a game world. Multi-character affordances give us

information about how characters should work together to change the environment,

without the need to design AI that explicitly communicates between characters. Fi-

nally, adding a small amount of information to these affordances can even provide a

simple way to enable characters to reason about uncertainty without having to store

any additional knowledge.

There are two major advantages in using environmental intelligence: first, it simpli-

fies characters. The characters with which we evaluated our extended affordances had

no memory model, only extremely simple navigation, and minimal behavioral reason-

ing. This is an advantage because debugging AI is an extremely challenging problem.

Intelligent characters must be tested against each situation that will arise, and there

are few shortcuts that can be taken in that process– in the end, they must be placed

into environments and situations that are very similar to the final game world. En-

vironments, on the other hand, can be tested much more easily. Affordances can be

easily tested using a human player doing a walkthrough in an environment before the

AI characters are even complete. Objects with affordances attached, even complex
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affordances, can be potentially reused many times throughout different environments

within a single simulation. When building environment-specific affordances, such as

multi-character affordances, all of the information necessary to create the affordances

is already created in the process of building the level. Outcome-oriented affordances,

such as probabilistic affordances, likewise use information which is already present in

the level (what the action causes to happen in the world). Adding similar levels of

intelligence to the characters themselves requires reasoning about team actions and

uncertainty.

Environmental intelligence integrates smoothly into the game development process.

Contextual, probabilistic, and multi-character affordances are tools that may be dur-

ing the level design process. This puts more control directly into the hands of the

game designers.

6.2 Dynamic Subsumption Architecture

Reactive intelligence in general and subsumption architecture in particular are de-

signed as static techniques. Using reactive control techniques as dynamic techniques

provides substantially more power. Our major extensions for subsumption include

a decoupled architecture that separates low-level perception and action processing

from the main decision process, failure detection, dynamic priorities, and behavior

transfers. Decoupling the architecture allows the creation of more generalized behav-

ior controllers, so that the same controller could be applied to a variety of characters

with different perception and action capabilities. Failure detection can be used in a

variety of ways, but the two most important uses are for debugging character AI and

to enable run-time reorganization of the controller. Dynamic priorities potentially
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simplify characters with redundant behavior layers while also allowing the simple

application of auction-based team coordination. Reactive teaming can be used to

build adaptive teams in scenarios with large-scale or long-term tasks performed by

moderate to large sized teams.

Our evaluation suggests that the best scenarios for reactive teaming are scenar-

ios with relatively long-term goals, and recoverable failures that inform behavioral

performance directly. Tactical 3PS and FPS games tend to have short term goals—

capture the flag, destroy the opposing team—with fatal failures that do not provide

direct feedback about the behaviors the character is performing. Respawning in these

games gives the characters opportunities to recover from even these failures, but when

respawns occur, the character capabilities change again, so these failures do not in-

form the behavior transfer process very effectively. With long-term goals, such as

gathering resources in an RTS game, characters experience failures (the gold mine

being exhausted) that are more lasting and can actually inform behavior transfers

(when the mine is exhausted, the gatherers will propagate a behavior to obtain a

different resource).

Between reactive teaming and dynamic priorities, our extensions for behavior-based

subsumption allow multi-agent coordination to be applied to teams of computation-

ally inexpensive characters. Reactive teaming can handle large teams that need to

be adaptable to long-term environmental changes or smaller teams of directly com-

manded characters in a hierarchy. Dynamic priorities also allow standard methods

for teaming such as auctions to be applied to the subsumption architecture. This is

an important achievement as subsumption is an architecture that, as our studies with
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BehaviorShop show, is extremely accessible to non-AI experts.

6.3 Team Protocols and Virtual Environments

While we address the use of our team coordination approaches in tactical and

strategic games, they are applicable beyond these areas. When using these methods

for other types of applications, there are a few factors that should be considered.

The type of team coordination used depends on the types of team interactions that

are required. Broadly, characters can have loosely specified team roles or tightly

specified team roles. For loosely defined teams, multi-character affordances are most

appropriate. For tightly defined teams, reactive teaming should be used.

In loosely specified teams, characters will perform actions opportunistically. Char-

acters on these teams should perform tasks as they become available, and may not

be specialized for one task over another. In our evaluation, we used a scenario where

characters had to work together to open doors and traverse a dungeon. The task of

activating mechanisms and pulling levers could be performed by any character, and

specializing characters for one or another would provide no benefit. There may be

some environmental adaptation, but this adaptation focuses on discrete, short-term

task availability. Transferring behaviors would delay task execution and generally

degrade performance.

For tightly specified teams, characters take responsibility for a specific set of tasks.

Reactive teams are more appropriate to use in these situations, either as adaptive

teams (using non-command policies for coordination) or as hierarchical teams (using

the command policy for coordination). On these teams, characters will not perform

actions opportunistically, but instead focus only on their assigned tasks. This ap-
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proach is more appropriate when characters require specialized resources to execute

particular behaviors, or in highly tactical environments (such as sports games) which

require characters to coordinate through behavior rather than the environment.

In addition, the purpose of the simulation should be considered. When evaluating

users in a training simulation, multi-character affordances can provide some simple

evaluation measures. For example, firefighters have particular protocols for handling

fire hoses [34]. Depending on the number of firefighters available for handling the

hose, they should take different positions and perform slightly different tasks. For

two firefighters, one firefighter anchors the hose to stabilize it while the other operates

the nozzle. For three, one firefighter operates the nozzle, at least one firefighter will

anchor the hose, and the third will either anchor or help support the hose. Other

methods can be used depending on how mobile the team needs to be.

One way that trainees could be tested in a simulation is to use a scenario with one

or more AI characters filling roles as firefighters. The protocol can be adapted for

multi-character affordances by providing a number of affordance slots at the different

operational positions along the hose. The trainee should observe the number of AI

characters present, as well as the locations they take. Then they must choose the

correct position and action to execute to handle the hose. The system can easily

give automated feedback based on the affordance chosen by the trainee. Generating

new scenarios to test with in this simulation can then be automated. Multi-character

affordances can be created which use context to provide the appropriate actions to

the AI; the context tests can then also be used to evaluate the appropriateness of

the trainee’s choice. In general, multi-character or even single-character contextual
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affordances can assist in training simulations to automatically evaluate the trainee’s

performance on protocols with minimal additional testing logic beyond the contextual

tests for the affordances.

For simulations where the overall system behavior over time is the focus, reactive

teaming may be more effective. This may be important in agent-based modeling or

other systems using populations of agents to simulate a large-scale system. Reactive

teaming can be used, allowing agents to propagate behaviors through the system,

and evaluation of the system state can consider the behavior distribution and rate of

propagation.

6.4 Future Work

One unexpected result of the evaluation of extended affordance methods is the

power of randomness to generate reasonable behavior. One current research topic

in game AI is that of alibi generation, which focuses on making the random crowds

of characters in an open world seem more purposeful and less random. In small

environments, contextual affordances can provide a high level of apparent purpose to

characters making purely random decisions; this naturally leads to a question about

larger environments. The application of contextual, multi-character, and probabilistic

affordances to large open-environment games is a natural extension to this work.

We know from the BehaviorShop studies that non-programmers and AI novices

can use subsumption to build intelligent characters that act alone. BehaviorShop

used an early version of our BEHAVEngine architecture. The early version was a

decoupled architecture with some failure detection capabilities, but did not make use

of dynamic priorities or teaming techniques. An important question to answer with
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these extensions is whether they can be integrated effectively with BehaviorShop.

Dynamic priorities add an additional level of complexity to building behaviors which

may not be as accessible to novice users, and understanding how to apply reactive

teaming effectively to a problem may prove non-intuitive. Integration of affordances

with BehaviorShop would also be an interesting direction to explore, but would not

require significant modification to BehaviorShop.
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APPENDIX A: BEHAVIORSHOP

Behavior Editors

Behavior authoring tools have been developed both in academic research and in

industry, and have been recognized as an important step towards improving artificial

intelligence in video games during sessions at the 2008 Game Developers Conference,

the 2009 Artificial Intelligence for Interactive Digital Entertainment Conference, and

other events. A variety of tools exist from robotics, artificial intelligence, and the

game industry. The RobotFlow interface from the University of Sherbrooke works

with their MARIE framework to build complete robot software systems, but is more

low-level than desired for game tools [15].

Artifical Technology, Xaitment, Havok, Presagis, and SimBionic have all produced

commercial tools that allow the graphical creation of game agents [2, 86, 28, 72].

These tools are targeted at professional AI and character developers in industry, and

are not generally appropriate for novice users. The commercial tools are included with

full AI middleware and runtime systems, and are not intended to work with other AI

middleware. Crytek includes the Sandbox editors with copies of games using their

engine [16].While Sandbox is available to end-users, it has a difficult learning curve.

The Sandbox AI editor is FSM-based, but the terminology used in creating individual

states is nonintuitive. All of these editors focus on providing authoring environments

for finite state machine controlled and scripted agents. Various game studios have

developed their own editors for internal use, such as Sony’s Situation editor, developed

by Brian Schwab for us in sports games [69]. A behavior tree editor has been developed
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for an upcoming release of the Visual3D Game Engine [64]. Additional behavior tree

editors have been developed by the community [12].

Evaluation of usability for behavior editors is treated as a low priority by the

middleware companies, and to our knowledge, the only published user evaluation of

a graphical AI editor has been performed with UNC Charlotte’s BehaviorShop, as

seen in [29]. BehaviorShop is a subsumption architecture-based editor targeted at a

non-expert user base.

The Herbal IDE is another type of agent editor. It focuses on producing agents

in the Herbal high level language that are then compiled into cognitive models [13].

The current version of Herbal is an IDE built on top of the Eclipse environment, and

provides functionality to assist with the creation of models. It does not currently have

a graphical component. Herbal itself does not provide an architecture for executing

agents, but instead provides compilers for translating the Herbal agents into Soar,

Jess, and ACT-R. Evaluation of the IDE showed that the use of Herbal increased the

speed at which users could create cognitive models [54]. The Visual Soar environment

also provides an IDE interface for building cognitive models, but is specific to the Soar

cognitive model [82].

DASSIEs

The DASSIEs (Dynamic Adaptable Super-Scalable Intelligent Entities) Project ad-

dresses the problem of building an intuitive user interface for interactive character

design (see Figure A.1). DASSIEs is composed of three major parts: CGUL (Com-

mon Games Understanding and Learning Toolkit), BEHAVE (Behavior Emulating

Hierarchically-based Agent Vending Engine), and BehaviorShop [31]. Our game en-
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vironment is FI3RST (FIrst and 3rd-person Realtime Simulation Testbed).

Figure A.1: The DASSIEs system: Information flow is labeled with the large arrows
showing a) the flow of the environment information into CGUL for processing into
knowledge, b) the flow of processed information and created knowledge for incorpo-
ration into the behavior construction task, c) the flow of processed information and
created knowledge to BEHAVEngine for use in reasoning and agent interaction, d) the
flow of agent action information to BehaviorShop for incorporation into the behavior
construction task, e) the flow of the behavioral model to BEHAVEngine for creation
of the simulation agent(s), and f) the control and perception information interchange
between the BEHAVEngine and the Simulation Environment.

CGUL provides information services to BehaviorShop and BEHAVE, such as navi-

gation services (world geometry and planning) and information tagging through influ-

ence points [30]. Game events flow to CGUL, which updates its services, and passes

processed information on to BEHAVE and BehaviorShop. BEHAVE uses CGUL

during runtime, while BehaviorShop polls CGUL during agent creation to provide
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accurate information about the simulation environment to the user. BehaviorShop

also queries BEHAVE for information about available pre-built character behaviors.

BehaviorShop and BEHAVE are based on the subsumption architecture, as we have

found that AI-naive users find the layered architecture more intuitive than FSMs when

creating agents.

BehaviorShop

BehaviorShop is a subsumption-based interactive character builder designed to be

utilized by users with little to no AI experience. It is capable of querying game services

and the underlying AI engine to receive information appropriate to the given scenario.

This helps the user ground the character being created in the game environment for

a given scenario.

Figure A.2: The main subsumption view in BehaviorShop.

When a user initially starts BehaviorShop, they are taken to the screen shown in
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Figure A.3: Details of main view: a) The character role selector, b) Help activation
button, c) Save buttons, d) Layer creation controls.

Figure A.2 and detailed in Figure A.3. The left pane provides an area where the user

can view the currently open characters. The user first selects the role of the agent to

be created(5a). The roles provide predefined information for the agent, such as the

model to be used, starting location, and default parameter settings. The help button

(5b) provides a tool tip-like facility for obtaining information about each area of the

builder, and at the bottom of the pane the first layer is available. When the user

clicks on this layer, he is taken to the behavior screen. The + and – buttons (5d)

allow the user to add or remove layers from the subsumption. Finally, the user can

save the current agent to a file, or save it and view a preview of the agent’s behavior

in the game engine (5c).

The first layer of the behavior is preset to use an “Always” trigger—this is the

base layer behavior, and one must always be present. Figure A.4 shows the behavior

screen for this layer, and demonstrates the flow of information from the information

services into BehaviorShop. For the behavior “Go To Point”, BehaviorShop provides

a map of the game environment so that the user can select the target location in the
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Figure A.4: The BehaviorShop specific behavior builder screen. This screen allows
the user to define a specific layer in the subsumption agent. Note the map of the
environment which is received from CGUL, and the menus which are propagated by
querying BEHAVEngine.

world.

Figure A.5: behavior layers are specified as English language sentences

Note that, as seen in Figure A.5, behaviors are created as simple sentences: if the

[role] [triggering condition], then the [role] will [behavior response]. We have found

that providing this style of interface makes the interface far more intuitive than simple

lists of trigger and behavior names.

In addition to basic if/then sentences, trigger conditions can be modified through

negation as well as combined as conjunctions or disjunctions. Figure A.6 shows the
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Figure A.6: Triggers can be negated using the “not” dropdown and combined with
the “and” (conjunction/disjunction) dropdown. Behaviors available to the user are
displayed using a drop down list.

trigger options as well as the list of behaviors. These behaviors are obtained by

querying the BEHAVEngine. This allows BehaviorShop to provide access only to the

behaviors available to the user in the particular scenario.

After creating several subsumption layers for a character, such as that seen in

Figure A.7, the user can test the character using the Save and Test button (which can

be used at any time during creation), or if satisfied, can save the complete character

with the Save button to finish the task.

The specified subsumption is translated to a simple behavior description language

which is understood by BEHAVE. This language lists all of the behaviors for the

character, coupled with one or more triggers per behavior.

Evaluation

During the initial development of BehaviorShop, we created several different ver-

sions to explore different types of agent architectures. The initial interface was a

FSM builder, but most users had difficulty with this due to the complexity of the

transitions. A HFSM version also proved unintuitive, and so FSM-based approaches
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Figure A.7: The BehaviorShop subsumption screen. This shows the full layered
behaviors for a guard character.

were quickly abandoned. Surprisingly, the layered builder was immediately found

more intuitive, and most users were able to use it more easily.

During a pilot study at a public library, an earlier subsumption based version of

BehaviorShop proved successful. Fifteen subjects participated in this pilot. Each

subject was given the task of creating a game character for one of five possible de-

scribed roles, which involved some complex behaviors (e.g., security for a location,

gathering information from other characters, and other military-type scenarios). A

single subject quit in frustration, citing basic unfamiliarity with computers. Eleven

subjects created characters that behaved correctly and accomplished all key behaviors

for the assigned role (as compared with characters created by experts from our lab),

and three others created partially correct characters. The pool of subjects was 53%
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female and covered an age range from just over 18 to mid-50s.

Online Study

Before running full user studies with BehaviorShop, we first created an online study.

In the online study, subjects were asked to write instructions for a person filling a

specific role in a scenario. One of thirteen possible roles in five different scenarios

was chosen, and a high-level description of the role was given. The subject was

then asked to write a more precise description of the tasks for a person executing

that role. After completing this portion, the subject was shown a video of actors

demonstrating another scenario. Following the video, the subject was asked to write

a precise description of how one of the actors performed their role.

Descriptions from this study were analyzed for word frequency to find the most

common language used to describe behaviors for each role. The results of frequency

analysis based on 147 people are being used to adjust the presentation of behav-

iors and triggers for the interface, but the current results are preliminary. Once we

have completed the analysis, it will be used to develop a more complete vocabulary

of behaviors and language specific to user profiles for use with BehaviorShop and

BEHAVEngine.

User Study

Our first full user study with the complete system (BehaviorShop, BEHAVEngine,

and FI3RST) included fourteen subjects, but data from four subjects was unusable.

Each subject was asked to build a character filling a guard role. Users were given the

following description of the scenario and guard role:
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This is a normal day outside a secure office building. A security guard

(Role 1) armed with a gun and a communication radio to the main guard

dispatch office stands guard at the entrance to the facility. Authorized

personnel must show their badges to the guard to gain entry. An au-

thorized person (Role 2) will enter the building through the doors after

showing their badge to the security guard. An unauthorized person (Role

3) is trying to make several attempts to enter the building. They try

to run past the guard, trail an authorized person, and other such activ-

ity. The unauthorized person does carry a knife. The security guard is

authorized to use deadly force if threatened with any type of lethal force.

After being given the description and a 1-minute tool and subsumption technique

tutorial, the user was asked to create the guard agent in BehaviorShop.

Before the study, subjects were given a demographic survey. The majority of

subjects had substantial experience playing video games, and 7 were male. All of

the subjects were in the 18-24 age range. Of the subjects, 6 had no AI experience,

while 3 more described themselves as having had a low level of experience; 6 of 10

subjects had either a bachelor’s degree or were currently in a bachelor’s program, 3

had advanced degrees, and 1 high school education.

Results

Of the 10 users with valid data, 8 successfully created agents that filled the guard

role. To determine success, the characters generated by the users were compared with

a set of reference agents created by members of the research team. 3 users created
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agents which exactly matched one of the reference agents, while 5 more created agents

which were acceptable—they did not match exactly, but used all of the critical be-

haviors as defined by the AI experts. These measures were also verified by calculating

a graph edit distance between the reference agents and created agents. Subsumption

controllers were transformed into a graph where each layer of the subsumption (both

trigger and behavior together) was treated as a vertex in the graph, and an edge

was created between adjacent layers (ie, the third layer had edges to the second and

fourth layers). If the behavior and trigger of a layer matched the reference character,

no change was made (distance of zero). If only one of the behavior or trigger was

correct, it was considered a distance of 1. If the entire vertex had to be removed

and replaced, that counted as a distance of 2. The average graph edit distance for

successful agents was 1.25, while the average distance for unsuccessful agents was

7.25. The difference between the two groups was found to be statistically significant

at p < .05.

We learned several important lessons from this user study. First, contrary to our

expectations, the most confusing aspect of the user interface was the negation modifier

for the trigger conditions, rather than the conjunction/disjunction feature. No users

used the help button, suggesting that a new paradigm for providing support informa-

tion is needed; this is especially important given that users were sometimes confused

by what different triggers and behaviors actually do. Four users attempted to click

and drag layers of the subsumption around to rearrange their priorities. Two users

actually requested the ability to make more complex behaviors, by linking multiple

behaviors to a single trigger, either in series or parallel.
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One of the most important discoveries based on user feedback was that no users

had difficulty with the basic subsumption concept of triggers and actions. Only brief

instruction was given about the subsumption architecture itself, yet it was still a very

intuitive paradigm. The Save and Test button was extremely important, as users

would frequently test out behaviors to see what they would do. This reinforces the

notion that some mechanism for providing immediate feedback is needed.

Certain triggers and behaviors were confusing to users. BEHAVE includes a simple

mental state model for characters, allowing them to be scared, alert, or nervous. These

were chosen for specific scenarios, but, unsurprisingly, they caused confusion, as it is

difficult to precisely define what these moods mean. Users had different expectations

than the developers about what events would trigger a change in these states. For

our guard scenario, initially the character authorization required two steps: request

authorization and confirm authorization. Consolidating these two behaviors into a

single more complex behavior greatly reduced the problem.

In the post-survey, subjects were also asked to rate two statements on a 5 point

Likert scale: “Creating simulation characters is easy with the DASSIEs Creation

Tool” and “Making simulation characters is fun”. The average for ease of use was

3.38, with a standard deviation of 0.916, while fun was rated higher—average of

4.5, with a standard deviation of 0.756. While users found creating the characters

moderately difficult, no user rated fun lower than a neutral “neither” value, with

most users rating fun as “agree” or “strongly agree”.
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APPENDIX B: BEHAVENGINE

BEHAVEngine (Behavior Emulating Hierarchical Agent Vending Engine) is a full

C++-based AI engine for hierarchical subsumption architecture with reactive team-

ing. This appendix provides an overview of the individual components of BEHAVEngine

and basic usage information.

BEHAVEngine Usage

BEHAVEngine requires FI3RST to run. For information on running FI3RST, see

the FI3RSTManual, distributed along with FI3RST. Once FI3RST and MemStore

are running, BEHAVEngine can be started from the command line by specifying an

agent configuration file. All of BEHAVEngine’s configuration files should be stored

under irrFI3RST/environments/<environment-name>/. Characters must be stored

in the characters directory under the given environment.

BEHAVEngine is started with the command:

>BEHAVEngine.exe -c <config>

Where < config > is the name of a configuration file stored under the environment

currently being run in FI3RST. Other command line options are also available:

BEHAVEngine version 1.5

Usage:

-h [ --help ] Display this help message

-c [ --config ] arg Set BEHAVE config file (from the directory
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containing the environment)

-q [ --query ] arg Run in query mode (dumps behavior and

trigger information to file)

-t [ --time ] arg Use time multiplier value to slow down or

speed up BEHAVE

-o [ --outputtree ] arg Dump the trigger output tree to a file.

-l [ --logtofile ] Send logs to file

-m [ --mute ] Mute stderr output

-x [ --logdata ] Enable data logging.

-v [ --verbose ] arg Set output level: debug, info, notice,

warning, error, fatal.

BEHAVEngine Structure

BEHAVEngine is divided into three major parts: BEHAVEngine, BEHAVECon-

trol, and SubsumptionBehaviorLibrary. BEHAVEngine is the base application run-

time. It handles loading agents, communicating with FI3RST, managing the thread

pool, and serves as a runtime container for all agents. Base classes for behaviors,

triggers, perceptual models, and action models are included in the main runtime.

BEHAVEControl is a command line utility for controlling BEHAVEngine. It can

send commands to check the status, pause, unpause, stop, or reset BEHAVEngine.

The SubsumptionBehaviorLibary contains the code necessary to run hiearchical

subsumption agents. This library defines 19 triggers and 31 behaviors, along with the

subsumption-specific action and perception models.
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Additional libraries can be added to BEHAVEngine to define additional triggers

and behaviors or entirely new architectures.

BEHAVEngine Configuration Files

BEHAVEngine uses multiple configuration files. It provides information about

agent capabilities to through the use of BehaviorInfo files and receives lists of agents

to instantiate from the BEHAVEngine configuration file. Agent specifications are read

from agent description files. When using FI3RST, information about the scenario is

received from the FI3RST scenario description file, which is largely transferred via

shared memory. Object and agent information is received from the FI3RST object

info and model info files. The FI3RST files are not described here, but the two

BEHAVEngine file types are described in the following sections.

BEHAVEngine Capabilities

Because components of BEHAVEngine can be exchanged to create different types

of controllers, and because it is designed to work with a variety of simulations, its

capabilities may be different depending on how it is configured. It is critical to

specify the behaviors and triggers available to BEHAVEngine, so this is done with

the BehaviorInfo query file. Each behavior and trigger must include a method that

provides information about its inputs and outputs.

Normally, the capability file should never be used directly. BehaviorShop provides

an additional utility, the LanguageBuilder, which consumes the capability file and

can be used to create a language file as input to BehaviorShop.

This information is produced according to a grammar:
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behavior name modality { visual | aural | self | historical | other | none }

option* option name of semantictype { agent | object | location | region

| distance | regiondistance | boolean | relation | state | user }

syntactictype { string | numeric | point | boolean }

multiplicity {nomin | min value } {nomax | max value }

with limits

rangemin? value

rangemax? value

source? { any | trigger | auto | description }

inventory? {true | false }

integer?

relation* { hostile | neutral | friendly }

action* value slot { object | tool | target }

enum* value

conflict*

option name

option name

produces* action actiontype

requires* option name value value
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Keywords are in bold, and user-specified values are in italics. The * symbol indi-

cates that zero or more instances of this option may be present, a ? symbol indicates

that zero or one instances of the option may be present.

• modality gives a hint as to the type of behavior. This is useful for categorizing

behaviors in an interface as well as creating natural language sentence repre-

sentations of the behavior.

• Multiple options may be present for a behavior.

• semantictype describes the content of this option. If the option may be re-

ceived via a trigger, this specifies the percept type. Note that the boolean,

distance, and user types do not unambiguously describe a percept type. Also,

a location value may be extracted from any location-dependent percept (so

this could be a location, agent, or object percept if received from a trigger).

region values can be numeric (particular region) or a string (symbolic region

name).

• syntatictype describes how the option will be written in a description file.

• multiplicity describes how many instances of the option may be present.

• limits provides range and attribute limits for the option.

• rangemin allows a minimum value for numeric option types (such as distance).

• rangemax allows a maximum value for numeric option types
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• source restricts how option values can be received by the behavior. The default

is any. trigger means that the option must be received as a percept from the

trigger which activates the behavior. auto means that the behavior may receive

it as a percept from the trigger, or search the percept stream for an appopriate

value. description means that this option can only be specified in the agent

description file.

• inventory is useful if the option is an object semantic type, by declaring that

the object must or must not be in the inventory.

• integer forces a numeric option to be an integer value

• relation specifies the relationship between this agent and an agent semantic

type option.

• action specifies that an object semantic type option must be filled by an ob-

ject which can be acted upon with the given action, as either the target of the

action, an object involved in the action, or a tool to execute the action. This

must match with the object description from FI3RST.

• enum is used with user/string types to provide a list of possible options

• conflict clauses specify that two options conflict with one another

• produces clauses specify the action produced by a behavior
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• action gives the name of the action produced, which must match an action from

FI3RST (for the agent to instantiate correctly, this action must be available in

its action model)

• requires specifies an option which must be present for this action to be pro-

duced. The optional value gives a required value for the option.

Note that unless specifically marked as a conflict, any combination of options is

allowable. Note also that produces clauses specify only the minimum option require-

ments for a particular action (or with triggers, perception) to be produced– other

options may be present, so long as they do not conflict with the required options.

Trigger specification is very similar:

trigger name modality {visual | aural | self | historical | other }

option* option name of semantictype { agent | object | location | region

| distance | regiondistance | boolean | relation | state | user

| action }

syntactictype { string | numeric | point | boolean }

multiplicity {nomin | min value } {nomax | max value }

with limits

rangemin? value

rangemax? value

source? { any | trigger | auto | description }

inventory? {true | false }

relation* { hostile | neutral | friendly }

action* value slot { object | tool | target }
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conflict*

option name

option name

produces* percept { agent | object | distance | boolean | relation | null }

requires* option name value value

The key difference between the trigger and behavior specifications is the produces

clause. Instead of producing an action, triggers produce percepts. The produces

clause for a trigger specifies the percept type, and also has requires clauses which

describe which options must be present for the percept to be produced. null percept

types are used to specify that a valid trigger will not produce percepts. BehaviorInfo

files are produced as XML versions of this specification. See the BehaviorInfo.xsd

schema file for the exact format.

Agent Description File

Agent descriptions are passed into BEHAVEngine as XML files with the following

abstract grammar:

Agent

model model name

agentname agent name

team team name

scenario? scenario number
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role?role number

startlocation {x,y,z}

startorientation? yaw value

allowtransfers? {true | false }

xferRequestStrategy? value

xferTransmitStrategy? value

agentoption* name value { point {x,y,z} | value }

inventory?

item* type value slot value

spatial

behavior+ id unique id number

priority priority value

type behavior type

subtype? subtype number

transferrable? { true | false }

allowChildTransfers? { true | false }

maxTransfers? transfer limit

displayInfo value show { true | false }

trigger type trigger type

subtype subtype id number

displayInfo value show { true | false }

option* name value { point {x,y,z} | value }

subtrigger

[ uses same trigger structure as above ]
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option* name value { point {x,y,z} | value }

subsume

layer id number status { true | false }

Keywords are in bold, and user-specified values are in italics. The * symbol indi-

cates that zero or more instances of this element may be present, a ? symbol indicates

that zero or one instances of the element may be present. The + symbol indicates that

at least one of the entity must be present, but more are allowed. See the Agent.xsd

schema for exact format.

• model gives the name of the character model to use for this agent.

• agentname gives a string name for this agent.

• team gives a numeric team id for this agent.

• scenario specifies the scenario number for this agent, and is primarily useful

when testing with the DARPA scenarios for BehaviorShop.

• role specifies the role number for this agent, and is primarily useful when testing

with the DARPA scenarios for BehaviorShop.

• startlocation specifies a start location in the environment for this agent. This

may be overridden by the BEHAVEngine configuration file.

• startorientation specifies a starting yaw/heading for the agent.
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• allowTransfers specifies whether or not this agent is allowed to receive trans-

ferred layers from other agents (reactive teaming).

• xferRequestStrategy specifies the strategy used by an agent in a reactive

team to decide when it should request a new layer. Default is to request a new

layer when agent has only one layer or an existing layer is failing.

• xferTransferStrategy specifies the strategy used by an agent in a reactive

team to decide which layer to transmit when a layer is requested by another

agent.

• agentoption allows arbitrary options to be specified for an agent.

• inventory provides a list of items of a given type that should be preloaded in

the agent’s inventory. slot is currently not used, but is meant to specify that

an object should be held or worn by an agent.

• spatial gives a list of behaviors to be instantiated by this agent

• behavior specifies a single behavior with a given unique id value

• priority specifies the priority of this agent; higher priority behaviors are exe-

cuted with preference

• type gives the name of the behavior type to be instantiated

• subtype is the numeric subtype of the behavior if behavior trees are being used

• transferrable specifies whether this behavior may be transferred to other

agents in a reactive team.
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• allowChildTransfers specifies whether this layer can be transferred by agents

which are not the source agent in a reactive team.

• maxTransfers specifies how many agents may have this behavior at one time

• displayInfo specifies a display string for this behavior in debugging interfaces

or BehaviorShop, and whether the behavior should be shown.

• trigger specifies the trigger to be used with this behavior. Trigger elements

are similar to behavior elements, and the individual options will not described

separately.

• option specifies options for the trigger, and have the same form as agentop-

tions.

• subsume elements provide a list of behaviors that are subsumed or not sub-

sumed by this layer. If the layer should be deactivated by this layer, status

should be false. Note that behaviors may only subsume behaviors of lower pri-

ority, and for behaviors that have child behaviors, only the parent should be

specified. Parent subsumption policies automatically apply to any children, as

well.

BEHAVEngine Configuration File

The BEHAVEngine configuration file gives a list of agents to be instantiated in the

scenario.

agentcore-config
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agent-file+ agent description file

number? number of agents

red? agent color red channel

green? agent color green channel

blue? agent color blue channel

See the agentcore-schema.xsd for the exact XML format of this file.

• agent-file is the name of an agent description file that should be used. This

file should be under the path environmentname/characters

• number is how many of these agents should be instantiated; if more than

one, colors will be chosen randomly, and the name of the agent will be auto-

generated.

• red, green, and blue can be used to specify a color for the agent. These values

should be in the range 0-255.
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APPENDIX C: SPLAT

This appendix describes the basics of using Splat to create simple non-graphical

game simulations. The major components that may need to be modified to create a

new simulation in splat include the Simulator, Conditionals, Deciders, and Actions.

We describe each component here, referencing the basic Splat Python distribution.

To obtain a copy of Splat, visit http://frederickheckel.com/. This appendix only

provides basic information in setting up and running a Splat simulation. For more

detailed information, such as how to build new objects and behaviors, see the Splat

distribution.

Creating a Splat Simulation

To start creating a new Splat simulation, see ExampleSimulator.py. The first

method in the simulator is buildWorld. It takes in a world object, from the World

library. The world is constructed with successive calls to world.addRoom(), which

takes a Room object, also from the World library. A Room has three constructor ar-

guments: xsize,ysize,id. The first two arguments define the size of the room, and

the third argument gives the room a unique ID.

def buildWorld(world):

# room 1. entrance. exits to room 2

world.addRoom(Room(1,1,1))

world.addTwoObjects(Objects.makeLinkedDoors(’door’,1,2,

True ,False ,(0 ,0) ,(0,0)))

# room 2

world.addRoom(Room(1,1,2))

world.addTwoObjects(Objects.makeLinkedDoors(’door’,2,3,

True ,False ,(0 ,0) ,(0,0)))

The next line after the first addRoom creates a door between rooms 1 and 2. Note

http://frederickheckel.com/
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that a single door is represented as two linked objects: one of the linked doors exists in

the source room, and the other in the destination room. Because they are linked, all

actions on one object are performed on the second object, so they should be treated

as a single object when building the world. The makeLinkedDoors method from

the Objects library simplifies the process of creating doors between rooms. It takes

seven arguments: name, location, destination, closed, locked, subpos, subpos2.

name provides the base name for the door, and will be combined with the location

and destination to create the names for each of the two doors created. location

and destination give the two rooms that are being connected. A door into/from

a room can be created before that room is created. The arguments closed and

locked are boolean values, specifying whether the door is closed and locked. The

final two arguments specify the local coordinates for the door in each room. For 1x1

size rooms, this should always be (0,0). For larger rooms, the coordinates must be

inside the room.

More advanced rooms can be created, such as rooms 8, 9, and 12. When rooms 8

and 9 are created, the doors are saved in a list to be used later.

When room 12 is created, these doors are referenced for creating key objects. The

makeKey method from the Objects library takes four arguments: name, location,

doors, subpos. name provides a unique name for the key. The location argument

gives the room the key is located in, and doors is a Python list of doors (or boxes

or windows that the key will open. These must be references to the original objects,

and not just names. Finally, the subpos argument sets the position within the target

room for the key. Note that in this case, the key is not immediately added to the
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# room 8

world.addRoom(Room(1,1,8))

morelocked=Objects.makeLinkedDoors(’door’,8,9,True ,True

,(0,0) ,(0,0))

world.addTwoObjects(morelocked)

world.addTwoObjects(Objects.makeLinkedDoors(’door’ ,8,12,

True ,False ,(0 ,0) ,(0,0)))

# room 9

world.addRoom(Room(1,1,9))

world.addTwoObjects(Objects.makeLinkedDoors(’door’ ,9,10,

True ,False ,(0 ,0) ,(0,0)))

lockeddoor=Objects.makeLinkedDoors(’door’ ,9,13,True ,True

,(0,0) ,(0,0))

world.addTwoObjects(lockeddoor)

# room 12. key room

world.addRoom(Room (1,1,12))

doors =[]

for d in lockeddoor: doors.append(d)

for d in connectdoor: doors.append(d)

for d in morelocked: doors.append(d)

key1=Objects.makeKey(’skeletonkey ’,12,doors ,(0 ,0))

safe1=Objects.makeSafe(’keysafe ’ ,12,[key1],(0,0))

room. Instead, we make a safe object in which to store the key. The only argument

that is different for the safe is the third, which is the inventory argument. This takes

a list of references to objects that are to be stored in the safe. Safes are objects that

can store other objects, but start out locked and closed. They can only be opened

by using linked objects (for storage objects that can be opened normally (and even

broken), try a box object instead).

Now taht we have the key in a safe, we need some way to access the safe, and

maybe some traps to help protect it. We create a treasure, another safe to contain

the treasure, a trap, and a badger. The treasure and the trap each have just three

arguments, a name, a location, and a subpos. The trap is a type of object that,
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when activated, immediately bonks any characters standing in the room. Depending

on the simulation rules, the character may then respawn (ExampleSimulator allows

this).

The badger is a special type of character from the Agents library. So long as the

badger is calm, it will not attack other characters, and remains hidden in its layer.

If the badger is activated, it will attack other characters until it is bonked or no

characters remain. It will not leave the room it is in, and when bonked, returns to its

lair to recover. The third argument for the badger is a list of states. This list should

usually be ’hidden’ and ’calm’.

treasure=Objects.makeTreasure(’treasure ’ ,12,(0,0))

safe2=Objects.makeSafe(’treasuresafe ’ ,12,[ treasure ],(0,0))

trap1 = Objects.makeTrap(’trap1 ’ ,12,(0,0))

badger = DungeonAgents.makeBadger(’badger1 ’ ,12,[’hidden ’,’

calm’])

lever1 ,paff1 = Objects.makeLever(’lever1 ’,12,safe1 ,’open’

,(0,0),’world ’)

lever2 ,paff2 = Objects.makeLever(’lever2 ’,12,trap1 ,’death’

,(0,0),’user’)

lever3 ,paff3 = Objects.makeLever(’lever3 ’,12,badger ,’spawn

’ ,(0,0),’spawn’)

lever4 ,paff4 = Objects.makeLever(’lever4 ’,12,safe2 ,’open’

,(0,0),’world ’)

Affordances.linkAffordances ([paff1 ,paff2 ,paff3 ,paff4 ])

world.addObject(lever1)

world.addObject(lever2)

world.addObject(lever3)

world.addObject(lever4)

world.addObject(safe1)

world.addObject(safe2)

world.addAgent(badger)

The next four lines create levers and probabilistic affordances for the trap, the

badger, and the safes. makeLever takes six arguments: name,location, linkedobj,

operation, subpos, type. The linkedobj argument provides a reference to an object
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that should be triggered when the lever is pulled. operation signals what type of

action the lever triggers. Finally, type gives additional information about the action:

whether it is an action that affects an object in the world, an action that directly

affects the user, or an action that spawns a new character (such as the badger).

In this case, we create four linked levers, and the Affordances.linkAffordances

line takes care of linking the affordances together. Finally, we add all of the objects

to the world. Note that the treasure and the skeletonkey do not get added to the

world directly, as they are contained in the safes. The rest of the makeWorld method

is similar. Note that, because the treasure defines a win condition, it is returned by

the method.

Because Splat is used primarily for simulating large numbers of games, the next

important method is runExperiment. For single-agent games, this takes three argu-

ments: agent, results, silent. The single character to be simulated is passed in as

the first argument, followed by a results dictionary used for storing agent information.

The third argument will suppress simulation output if set to True.

def runExperiment(agent , results ,silent):

keyroom =12

goalroom =15

theworld = World ()

theworld.silent=silent

treasure = buildWorld(theworld)

redteam = Team(’red’,’default ’)

redstart =1

red.position=redstart

redteam.add(agent)

theworld.addAgent(agent)

failurethreshold =5
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The first two lines of runExperiment store the locations of the key room and the

goal room. The goal of our characters is to reach the goal, but they first must obtain

the key from the key room. The locations of these two rooms must be recorded to

monitor the progress of the characters and reset the traps in the key room. The next

three lines take care of building the World and set World to have noisy output or be

silent. All game actions are executed through the World, which maintains the rules

governing the actionspace and character movement. After setting up the world, the

character is prepared for the game by adding it to the default team. Characters must

be in a team, even if the simulation is only for a single character. The character

is then added to the world. The failurethreshold defines how many turns the

simulation will run if there is no agent activity.

The following section of runExperiment will not be covered here. For non-escape

simulations or team simulations, the main loop of this method must be modified to

change the rules. See the Splat distribution for other sample simulations. If possible,

avoid modifying runExperiment and the methods following it when creating new

simulations.

One more section of the Simulator should be modified to create new simulations.

At the bottom of the simulator file is the main run section of the script. The first

several lines of this script define the characters to be evaluated. First, a list of available

actions must be chosen for the simulation. This is the character action space, and any

actions not listed here will not be available. The second line gives a list of initial states

for the characters. The provided list, [′stand′,′ unhurt′,′ relaxed′,′ visible′], should

usually be correct. Next, the characters are created. The simplest character type is a



198

if __name__ == ’__main__ ’:

actions = [’open’,’close’,’break’,’exit’,’pick -up’,’search

’,’hide’,’push’,’lift’,’pull’,’unlock ’,’swipe’]

states = [’stand ’,’unhurt ’,’relaxed ’,’visible ’]

alice = Agent.Agent(’Alice ’,1,actions ,states ,False)

alice.addInventoryR(Objects.makeSword(’alicesword ’ ,1,(0,0)

))

bob = Agent.Agent(’Bob’,1,actions ,states ,False)

bob.addInventoryR(Objects.makeSword(’bobsword ’ ,1,(0,0)))

carl = Agent.Agent(’Carl’,1,actions ,states ,True)

carl.addInventoryR(Objects.makeSword(’carlsword ’ ,1,(0,0)))

dee = Agent.Agent(’Dee’,1,actions ,states ,True)

dee.addInventoryR(Objects.makeSword(’deesword ’ ,1,(0,0)))

quentin = DungeonAgents.buildHandCraftedAgent (1,’Quentin ’,

actions ,states)

DungeonAgents.populateAgentLayers(quentin)

quentin.addInventoryR(Objects.makeSword(’quentinsword ’

,1,(0,0)))

n = 1000

results = makeFullResultDict ([alice ,bob ,carl ,dee ,quentin ])

runNExperiments(alice ,n,results ,True)

runNExperiments(carl ,n,results ,True)

runNExperiments(quentin ,n,results ,True)

random agent. The base Agent is part of the Agent library, and takes five constructors:

name, position, actions, states, contextagent. The actions and states arrays

should be passed in here. These values can be different for each character if some

characters should have a restricted action space. The contextagent field, if set to

True, allows the character to make use of contextual affordances. If it is False, then

a purely random character will be generated.

When adding base inventory for character in the simulator, the addInventoryR

method should be used. This method ensures that the inventory is reset correctly
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after each game. If the addInventory method is used, the inventory will not be reset

correctly.

Note that fifth agent, Quentin, is built differently. The DungeonAgents library

includes several agent definitions. Quentin is created as a hand-crafted subsumption

agent, and populated with several behavior layers defined in DungeonAgents. See

the Splat distribution for more information on building and modifying subsumption

controllers for more information.

Finally, the last five lines run the simulation. The number of experiments to run

is set by n, and a result storage dictionary is created for the full set of charac-

ters. runNExperiments actually runs the experiments, and takes four arguments:

agent1,n,results, silent. agent1 is the character to be tested, n is the number

of games to run, and results is the result dictionary. The final parameter controls

whether the simulation should run with full output or in silent mode. In silent mode,

the simulator will output the agent results after the full set of n games have been run

for the character being tested, but all other messages will be suppressed.
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