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ABSTRACT

ARITRA DASGUPTA. The visual uncertainty paradigm for controlling screen-space
information in visualization. (Under the direction of DR. ROBERT KOSARA)

The information visualization pipeline serves as a lossy communication channel for pre-

sentation of data on a screen-space of limited resolution. The lossy communication is not

just a machine-only phenomenon due to information loss caused by translation of data,

but also a reflection of the degree to which the human user can comprehend visual infor-

mation. The common entity in both aspects is the uncertainty associated with the visual

representation. However, in the current linear model of the visualization pipeline, visual

representation is mostly considered as the ends rather than the means for facilitating the

analysis process. While the perceptual side of visualization is also being studied, little at-

tention is paid to the way the visualization appears on the display. Thus, we believe there is

a need to study the appearance of the visualization on a limited-resolution screen in order

to understand its own properties and how they influence the way they represent the data.

I argue that the visual uncertainty paradigm for controlling screen-space information will

enable us in achieving user-centric optimization of a visualization in different application

scenarios. Conceptualization of visual uncertainty enables us to integrate the encoding and

decoding aspects of visual representation into a holistic framework facilitating the defini-

tion of metrics that serve as a bridge between the last stages of the visualization pipeline and

the user’s perceptual system. The goal of this dissertation is three-fold: i) conceptualize a

visual uncertainty taxonomy in the context of pixel-based, multi-dimensional visualization

techniques that helps systematic definition of screen-space metrics, ii) apply the taxon-
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omy for identifying sources of useful visual uncertainty that helps in protecting privacy of

sensitive data and also for identifying the types of uncertainty that can be reduced through

interaction techniques, and iii) application of the metrics for designing information-assisted

models that help in visualization of high-dimensional, temporal data.
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CHAPTER 1: INTRODUCTION

Information visualization is that sub field of exploratory data analysis that communicates

the hidden patterns in the data in a visually perceptible way. Often analysis questions are

not known by the analysts apriori, but evolve in the course of their interactions with the

data through its visual representation. As Donald Rumsfeld famously said:

“There are known knowns; there are things we know that we know. There are

known unknowns; that is to say there are things that we now know we don’t

know. But there are also unknown unknowns there are things we do not know,

we don’t know.”

Known unknowns and unknown unknowns also exist in information visualization and visual

analytics. In fact, the visual analytics mantra of detecting the expected, discovering the un-

expected [108] stems from the philosophy of there being both known and unknown factors

that analysts encounter during their exploratory data analysis process. While the manifes-

tation of unknowns is a direct corollary of the subjective nature of exploratory analysis, the

visualization process itself accentuates the number of unknowns. This is primarily caused

by two characteristics of the visualization process. Firstly, despite the increase in qual-

ity and resolution of computer displays, visualization still works in a space with a limited

number of discrete pixels. Secondly, our lack of understanding of how the our perceptual

system works, constrains us from designing effective ways of overcoming the limitations
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of human perception in recognizing visual structures on a limited resolution screen space.

As a result, as the data gets progressively transformed, through the visual mapping on to

the screen and through visual communication in the human mind, the number of unknowns

increase. Examples of such unknowns in the screen-space include overlapping data points,

hidden patterns due to choice of scale, complexity owing to loss of fidelity caused by lower

dimensional projections of high-dimensional data, etc.

This necessitates the study of the appearance of a visualization on a limited resolution

screen. Most of the current visualization models, however, treat visual representation as the

end product in the visualization pipeline, even though it is clearly a central part of the analy-

sis process, being the interface between the data and the human perceptual system [53]. To

integrate the machine-side and human side of the visualization process, my collaborators

and I (henceforth referred to as we) focus on the path of the data transformation, that is the

visualization pipeline, for better understanding how we tackle the various unknowns [40].

The over-arching goal of my thesis is to develop a conceptual framework for studying the

causes and effects of information loss that influence both the visual representation on screen

and the visual communication process within the human mind. In the ensuing discussion, I

have outlined the key elements of this framework and their functions.

1.1 Visualization Pipeline as a Communication Channel

Shannon had defined information as a measure of the decrease of uncertainty for the

receiver of a message [100]. If visualization is viewed as a communication channel from

the data space to the perceptual and cognitive mental space of the user [94], it is important

to trace the uncertainty along different stages of the pipeline, so that the information com-
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Figure 1: The conventional visualization pipeline augmented with a feedback loop from the
human-side to the machine-side for making visual representations better informed about
perceptual and cognitive implications and reduce the number of unknown unknowns from
a visualization designer’s point-of-view.

municated to the user can be optimized. Like a communication channel, visualization is

also associated with the encoding and decoding of information. In Figure 1 we have aug-

mented the conventional visualization pipeline [29] with two additional entities: the stages

of perception and cognition to reflect the decoding steps and the feedback loop which is

required to inform visual representations about the perceptual and cognitive implications.

The feedback loop is informed about visual uncertainty [34] and can be used to measure

visual representations according to he different levels of uncertainty in the screen-space.

Visual uncertainty takes into account the known and unknown unknowns that stem from

the visualization process itself, rather than being present in the data. Conceptualization

of the pipeline in terms of uncertainty analysis helps us in devising methods and metrics

for achieving controlled information loss. Visualization of large, high-dimensional data

almost certainty involves information loss due to the disparity between number of dimen-

sions and data points and the limited number of screen pixels. In most applications, this

loss is unintended [130], as there is degradation of data fidelity and visual quality. In some

applications, however, where sensitive data is involved, some loss can be useful to hide
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certain attributes or values of the data. In both cases, designing effective visual representa-

tions, that capture the salient properties of the data and satisfy perceptual design principles

at the same time, remains a significant challenge.

Measures about visual uncertainty can be used to optimize the visual representation.

The data is followed through the pipeline, the different characteristics of end product is

measured and fed back for modifying the earlier stages. This is similar to most engineering

systems where the feedback is used to adjust the output. Our augmented visualization

pipeline is similar in principle, to the one proposed by Van Wijk [115]. The important

distinction is the characteristic of the feedback loop. In our case the feedback loop is

used by the visualization designer to build better visual representations through controlled

rendering and informed interaction design. In Van Wijk’s model, the feedback loop is used

by the analyst, based on his perception of the data, to build different representations of the

data. Although both are manipulating visual representations, our model uses quantifiable

means based on causes and effects of visual uncertainty, and therefore can be modelled and

generalized as the basic principles of uncertainty are not affected by the subjectiveness of

human judgement.

1.2 The Visual Uncertainty Paradigm

Visualization researchers have so far focussed on modelling uncertainty present within

the data, while the same that stems visualization process itself, has not received much atten-

tion. We define visual uncertainty as the uncertainty that is associated with a visualization

during encoding (in the screen-space) and decoding of information (in the mental space

of the user). The concept of visual uncertainty thus subsumes known and unknown un-
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Figure 2: The visual uncertainty paradigm for devising screen-space metrics that help
control the visual representation, or the screen-space information. Potential applications
include scenarios that involve intended information loss like in privacy-preserving data
analysis and also unintended information loss like in high-dimensional, time-varying data
analysis.

knowns and helps in addressing the information loss concerns associated with both the rep-

resentation and communication of the data. We adopt the visual uncertainty paradigm for

conceptualizing and quantifying the interplay between the different data-space and screen-

space parameters in a visualization. This is done by systematically defining screen-space

metrics (Figure 2) that quantify the different causes and of uncertainty at the different

stages. The augmented pipeline illustrates that analysis of uncertainty in conjunction with

the screen-space metric provide us with a closed loop. This in turn, allows us to control

complex visual representations in cases where there is inherent information loss, like in

high-dimensional data visualization and privacy-preserving data visualization.

My first contribution is a taxonomy of visual uncertainty for multidimensional visual-

ization techniques. Uncertainty in the data space has been a widely researched area, but
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the uncertainty that is a product of the visualization process itself, has not been studied in

detail so far. To fill this gap, we have categorized the sources, causes, and effects of encod-

ing and decoding uncertainty, that are introduced at the different stages of the visualization

pipeline, in the form of a taxonomy. We first propose a taxonomy of visual uncertainty for

parallel coordinates (Chapter 3), which is an effective and widely used multidimensional

visualization technique (Figure 3). The taxonomy is generalizable for those multidimen-

sional representations that use position as one of the main visual variables [11] for encoding

purposes.

By applying the taxonomy we systematically identify, analyze, and quantify those visual

structures that reflect statistical properties of the data, and also those which inhibit the user

perception like over-plotting, clutter, etc., with the help of screen-space metrics.

1.3 Controlling Screen-Space Information

Deconstructing a visualization in terms of its smallest indivisible components, that is the

visual structures, enables us to control the screen-space information and aid the complex

visual search process [27] by reducing the number of unknowns. As part of my thesis,

I focus on two important use cases of this approach facilitated by the visual uncertainty

paradigm, modelling intended and unintended information loss:

Unintended Information Loss: Unintended information loss is a common phenomenon in

visualization. Especially for data involving the temporal dimension in addition to the large

number of data dimensions, there are multiple challenges involved: selection and ordering

of variables, quantifying and conveying the salient features features among different com-

binations of variables, and keeping track of changes over time. The second contribution
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Figure 3: Multi-dimensional representation of the Cars dataset [52] using parallel coordi-
nates, where each vertical line represents a data dimension and the poly-lines connecting
them represent the records.

of my thesis is to devise screen-space metrics (Chapter 4) for quantifying various types

of visual uncertainty, that can be subsequently used for designing an information-assisted

model for visualizing high-dimensional, temporal data (Chapter 6). We argue that percep-

tually motivated quantitative metrics that define visual patterns and can be used as part of

the feedback loop as shown in Figure 1 to optimize a visual representation and design di-

rect manipulation based interaction techniques. Through our information-assisted model,

we look at quantifying the important features in the data by using the metrics and commu-

nicating the trends through an interactive visualization system. I present a discussion of the

applications of the system through a case study using simulation data from bioremediation

experiments for carbon sequestration in soil sub-surfaces.

Intended Information Loss: Information loss is not always unwanted in a visualization.

My third contribution is to demonstrate that controlled information loss helps in visual-

ization of sensitive data. By exploiting the inherent information loss in visualizations we

building models and techniques for privacy-preserving visualization (Chapter 5). Visual-
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ization techniques currently have an underlying assumption that there is unrestricted access

to data. In reality, access to data in many cases is restricted to protect sensitive informa-

tion from being leaked. Researchers in the field of data mining have proposed different

techniques over the years for privacy-preserving data publishing and subsequent mining

techniques on such sanitized data. A well-known drawback in these methods is that for

even a small guarantee of privacy, the utility of the datasets is greatly reduced.

To fill this gap, we propose privacy-preserving visualization; instead of publishing the

data or just the analysis results, a privacy-preserving visualization tool provides an interac-

tive interface to both the data owner and outside users. The data owner can customize the

tool to choose different reordered configurations of the data he wants to show to analysts

without sacrificing privacy. Outside users cannot directly access the data, but only visualize

the patterns in the data through the tool. Different constraints are imposed by the technique

to prevent them from breaching privacy through interaction. The data is sanitized on the fly,

based on the user’s screen resolution and other viewing parameters. We propose a privacy-

preserving visualization model and technique by adapting metrics for privacy-preserving

data mining [3] and analyzing probable attack scenarios.

In this case, we intentionally hide some information and our knowledge about visual

uncertainty helps in balancing ‘how much to hide’ and ‘how much to show’ to the user, so

that the utility of the visualization is preserved as much as possible, while at the same time

sensitive information is not leaked. In the process we also devise metrics for measuring

privacy and utility (section 5.6 of the privacy-preserving parallel coordinates and scatter

plots, by applying the visual uncertainty taxonomy. A visual approach to preserving privacy

is a novel approach as also the conceptualization of a framework for privacy-preserving
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visualization.



CHAPTER 2: RELATED WORK

This thesis introduces two core concepts, visual uncertainty and privacy-preserving visu-

alization, and establishes the relationship between the two. While data uncertainty has been

widely researched in the field of visualization and outside, visual uncertainty is a novel idea

to the best of my knowledge. The same applies for the concept of privacy-preserving visu-

alization: a visual approach to privacy-preservation is introduced by this thesis and enables

visualizations to be aware of sensitive data, a a hitherto unexplored area of visualization

research. Moreover, the screen-space metrics that are the vehicles of this framework, are

also a relatively new way to deal with important use-cases like high-dimensional and time-

varying data visualization, as compared to data-space metrics. In this section I discuss the

related work in each of these areas and set up the discussion of my research in the context

of existing work.

2.1 Uncertainty in Visualization

Most existing work in visualization relates to data-space uncertainty (e.g., [91, 104])

and uncertainty involving geometrical primitives, like isosurface rendering. Our conceptu-

alization of visual uncertainty applies in case of abstract data where a spatial context is not

given [110].

There exists a plethora of discussions in the literature on classifying and categorizing un-

certainty, for instance, in statistical forecasting, risk analysis, philosophy and psychology.



11

For a high-level classification of uncertainty in parallel coordinates, we take into account

the different perspectives provided on uncertainty by Milliken [86], Norvig [98]; and Klir

and Wierman [72]. We also refer to the typology proposed by Thomson et al. [109] for

relating to data-space uncertainty.

Two existing schemes of uncertainty are most relevant for deciding our top-level classi-

fication. One such categorization is to consider uncertainty in physical systems (physical

uncertainty) and that in the human mind (perceptual uncertainty) separately. For example,

in behavioral sciences and neuroscience, there is an assumption that the nervous system

performs its own probabilistic estimation about events in an environment, resulting in per-

ceived certainty or uncertainty. Such results usually differ from those obtained from mea-

surement of the events in the environment. This is partially true in case of mixed-initiative

visualization systems as the data is first processed in physical systems, on the machine

side, after which the human side takes over. On the human side, we have to take percep-

tion into account as well; uncertainty due to perception has been discussed by Russell and

Norvig [98]. Holzhüter et al. [61] describe uncertainty in visualization and differentiate

between input and output uncertainty. Relating the information visualization pipeline to

the communication channel as discussed previously, we choose encoding and decoding un-

certainty to be the topmost classifying schemes, which are further elucidated in Section 3.

2.2 The Case for Metrics

Several authors have argued for the need for metrics in information visualization. Tufte [111]

was among the first to propose visual quality metrics for static two-dimensional charts.

Taking a cue from Tufte’s work, Brath [21] proposed a set of metrics to assess the efficacy
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of static 3-D presentations, based on data density, dimensionality and occlusion. Miller et

al. [85] have argued for the important role of metrics in predicting the success of visualiza-

tion tools and their validation. A more concrete work and similar to the approach we follow

is seen in Bertini et al.’s work on scatter plots [14], which employs a non uniform sampling

technique to reduce clutter in 2D scatter plots. They further argue for the need of met-

rics [15] where they define different visual quality metrics and provide a research direction

for each. The definition of the metrics is applicable to our work, and we conceive screen-

space metrics as a diagnostic model for quantifying visual quality and feature-preserving

visual structures.

2.2.1 Information-theoretic Measures in Visualization

In recent times, the use of information-theoretic measures to quantify the information-

content of a visualization have been proposed by several researchers. Purchase et al. ar-

gue about conceptualizing the visualization pipeline as a lossy information channel and

mentions that information-theoretic measures can be used to measure the loss [94]. Run-

densteiner et al. propose some measures of data quality and abstraction quality to make

the connection between data and the screen spaces [97]. Yang-Peláez and Flowers have

demonstrated how information content in visualization can be quantified without taking

semantics into account [125]. More recently, Chen and Jänicke have shown how different

information-theoretic concepts like entropy and mutual information can be used at different

stages of the visualization pipeline [28]. We adapt and apply some of these metrics for a

user-centric optimization of the display in cases of privacy-preserving visualization [35]

and high-dimensional, time-varying data visualization.
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2.2.2 Screen-Space Metrics for High-Dimensional Data Visualization

A key aspect of the metrics we propose is that they form the building blocks of an

information-assisted visualization model [27, 36], but based on screen-space metrics rather

than information abstracted from data. Our goal is to convey the different visual structures

that encode information to the user. One of the early instances of such work is Scagnostics

(Scatterplot Diagnostics), proposed by Tukey et al. [112]. This work was extended by

Wilkinson et al. with more detailed graph-theoretic measures [120] for detecting a variety

of structural anomalies in a geometric graph representation of the scatter plot data. The

resulting rating can be used to pick views that show particular structures that are of interest

to the user.

Similarly, in Pixnostics [99] the authors use image- and data-analysis techniques in con-

junction to rank the different lower-dimensional views of the dataset and present only the

best to the user. The method creates lower-dimensional projections that provide maximum

insight into the data and optimizes the parameter space for pixel-oriented visualizations.

In Pargnostics, we focus on parallel coordinates and, similar to Scagnostics and Pixnos-

tics, aim to reduce the analyst’s burden of searching for the optimum views of the data. The

over-arching goal of Pargnostics is to play the role of a multi-dimensional detective [64],

where we diagnose structures of interest on behalf of the user. In addition, the user is

aided with an interactive interface to enhance the effect of helpful structures (e.g., conver-

gence/divergence, parallelism) and reduce the same for structures that hinder his analysis

process (e.g., large number of crossings, over-plotting).

There are some instances of image-space based metrics in the context of parallel co-
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ordinates [66, 65]. Tatu et al. propose similarity-based functions based on Hough Space

transforms to find clusters [107]. They propose dimension reordering based on analysis

functions on the resulting image of parallel coordinates. Johansson et al. [67] propose a

screen-space metric based on distance transforms to estimate the visual quality of the ab-

stracted dataset. Our approach is different in the sense that we attach semantics to the

structures that can be seen on the screen and not only define the metrics qualitatively but

also quantitatively.

Optimal order of dimensions is another challenge in parallel coordinates and this has

been addressed in earlier work: Ankerst et al. [9] compute the degree of similarity among

dimensions based on data-space metrics and cluster similar dimensions together. A some-

what similar idea is pursued by Yang et al. [123]: similar dimensions are clustered and used

to create a lower-dimensional projection of the data. In Pargnostics we focus on dimension

reordering as a tool for optimization based on a new set of screen-space metrics Section 6.3.

We also employ optimization where the users can select views that suit their analysis by

browsing through a rank-ordered view by features.

2.3 Privacy-Preserving Visualization

While the issue of privacy has not been studied in detail in visualization, many tech-

niques for publication and analysis of de-identified sensitive data have been developed in

the field of privacy-preserving data mining (PPDM) [3].

2.3.1 Model and Metrics

We adapt the well-known k-anonymity model with the help of screen-space metrics.

The k-anonymity model [106, 114] focuses on making k records indistinguishable with
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respect to quasi-identifiers so that identification through linking is prevented. k-anonymity

problem has been shown to be NP-hard [84] and therefore many approximation algorithms

have been proposed [24, 1]. We use the k-member clustering algorithm proposed by Byun

et al.[24]. While we adopt the overall algorithm proposed by Byun et al., we use a different

criterion for seeding and a different cost function. We also adapt the algorithm to work

individually for each axis pair, rather than across all dimensions at once.

k-anonymity does not guard against homogenity attack due to the lack of diversity in

sensitive attributes: even if records are indistinguishable with respect to quasi-identifiers,

the malicious user can use his background knowledge and breach privacy. To address this,

Machanavajjhala et al. proposed l-diversity [82] which ensures each group has at least l

different values for the sensitive attribute. For example, in a disease dataset if a particular

quasi-identifier group for people belonging to age above 50 only has the value cancer,

then a user who knows the age of a person can correctly guess the value. We use this l-

diversity property as a basis for constraining user interaction and showing at least l different

values for the sensitive attribute. I discuss the visual model of privacy and applicability

of the metrics in Section 5.2 and the technique [39, 38] in Section 5.3. To the best of

my knowledge, no previous work exists that proposes a privacy-preserving visualization

technique and the only instance we are aware of uses graph-based abstraction of web data

for privacy-preserving manifold visualization [127].

2.3.2 Privacy Vs Utility

While the trade-off between privacy and utility is very much an open research area in

PPDM, several metrics have been proposed to quantify privacy and utility individually. A
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comprehensive survey have been done by Bertino et al. [18] where the different metrics

have been categorized and described. Entropy as a privacy metric was first proposed by

Aggrawal et al. [2] and was developed further by others [17, 19]. Utility has been measured

in terms of data quality and clustering quality and also with respect to preservation of

patterns with respect to specific data mining techniques. We use the visual uncertainty

taxonomy for systematically defining metrics [35] for measuring various aspects of privacy

and utility Section 5.6.

2.4 Multivariate, temporal data visualization

We discuss the related work in the context of analytical abstractions for multivariate

temporal data analysis and the different variants of parallel coordinates for this purpose.

2.4.1 Analytical Abstraction for Multivariate Temporal Data Visualization

Large multivariate temporal datasets require effective analytical abstractions that can

capture the dynamic relationship among multiple variables. Integrating computational

and visual aspects [59] by using clustering based visualization techniques for modelling

similarity-based temporal behavior have been proposed, where parallel coordinates have

been applied for visualizing the results of clustering. Pre-processing of data for extract-

ing trend sequences and subsequent visualization of those temporal trends through parallel

coordinates have also been used [74]. Functional temporal plots for visualizing changes

in correlation in a matrix layout have been used in the context of gene-sequence mod-

elling [83]. These analytical abstraction methods focus on extracting information from

the data and then using visualization tools for communicating that information to the user.

While the basic goal of our approach is the same, the philosophy behind our approach is
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different. In our approach, rather than considering parallel coordinates as an end-product

for visualizing data-driven metrics, it itself is used to drive the analysis process.

Our focus is reducing the visual uncertainty by using metrics that describe the salient

visual structures, so that there is a direct correspondence between the behavior of the met-

rics and structural change on screen. The system presented by Glatter et al. [56] follows

a similar principle. In that case, a domain scientist specifies uncertain temporal patterns

using a description language, and temporal evolutions and multivariate connections can be

formulated as queries using this language. Extracting importance based relationship using

information theoretic metrics to describe the visual structures [116] is another example of

such an approach.

2.4.2 Temporal Parallel Coordinates

Several parallel coordinates variants have been proposed for scientific data applications.

One of the examples is the application for hurricane data analysis [105] where statistical

properties are mapped on to the parallel coordinates axes. In the interface proposed by

Akiba and Ma[4], multivariate connections can be brushed using a parallel coordinates in-

terface, which in turn is linked to time histograms and a direct volume rendering of selected

attributes. But as observed in the case of tiled parallel coordinated display and min-max

plots [25] applied to time-varying EEG data, the overall temporal distribution is not con-

veyed in this approach.

Johannson et al. use depth cues and variation of opacity to show temporal properties in

parallel coordinates [68]. This approach suffers from clutter in case of large number of time

steps and data-points. Our approach, is to look at the different recognizable visual features
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Figure 4: Parallel coordinates representation of the Abalone dataset [52] where a high-
degree of over plotting and line crossings leading to clutter make it impossible to find
useful patterns.

and use appropriate metrics to convey them. Blaas et al. [20] use data quantization and

compression to handle large number of data points in the context of parallel coordinates.

While this works well at the overview level, detailed exploration of features is difficult

using this approach. Frequency-based representations like use of angular histograms [55]

is similar to our approach.

In our work [41], we apply some of the visualization design principles for simulation

data as outlined by Doleisch et al. [43], with focus on the exploration and analysis as-

pects. We have also incorporated some of the visualization strategies for dealing with

time-series data [87], where we address the key issues of finding the temporal patterns and

understanding the change in behavior over time through linking of different views of the

data (Section 6.4).



CHAPTER 3: VISUAL UNCERTAINTY

Uncertainty is a twofold problem in visualization. On one hand, it is important for

visualization to convey uncertainty in the data to the users, giving rise to the quest for

effective means to measure and visually depict uncertainty [69]. On the other hand, the

visualization process itself will introduce uncertainty. The former is primarily concerned

with uncertainty in the data space, while the latter has to address sources of uncertainty

in visual mapping, rendering, displaying, viewing, perception, understanding, and reason-

ing. While much of the existing work in the visualization literature focuses on data uncer-

tainty [122, 91], discussions on uncertainty stemming from the visualization process itself

are still limited. In scientific visualization, there is not always a clear boundary between

data uncertainty and visual uncertainty, since the visualization process often involves the

manipulation of geometric primitives (e.g., errors in isosurface extraction [95, 78] or in

particle tracing [80]). Even when such geometric abstraction is considered as part of visual

uncertainty, it represents only one specific type of uncertainty caused by the visualization

itself. The aim of this work is to highlight the fact that there are many other types of

uncertainty sources in the visualization process.

3.1 Taxonomy of Visual Uncertainty for Parallel Coordinates

We adopt a case-based research methodology by focusing on a specific class of non-

spatial data visualization, namely parallel coordinates visualization, which is a powerful
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Figure 5: The proposed taxonomy of visual uncertainty in parallel coordinates. The shaded
area indicates the level at which it maps to the stages in typical visualization pipelines.

tool for visualizing and analyzing multi-dimensional data. Almost everyone who has used

parallel coordinates has seen the dreaded black screen which is composed of over-plotted

lines and conveys a high level of uncertainty but a very limited amount of useful informa-

tion (Figure 4). In practice, many visualizations contain more subtle forms of uncertainty.

For example, axes with few values create focal points where many lines meet, but it is

uncertain how lines continue to the next axis; over-plotting of lines that are very close to-

gether makes it impossible to tell exactly how many points are in a particular location; the

inherent resolution of the pixel grid limits the perceivable resolution of the data; etc. By

focusing on a specific class of visualization, we are able to conduct a detailed analysis of a

manageable set of sources and effects of uncertainty and their relationships. We believe that

this methodology and the major findings of this work can also be applied to other classes

of visual representations.

Our taxonomy (Figure 5) separates the causes of uncertainty into two main groups: en-

coding (Section 3.2) and decoding (Section 3.3). The typical way of looking at uncertainty

is from a decoding perspective, which includes our perceptual and cognitive processes
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when working with a visualization. Uncertainty is also introduced on the encoding side,

however, through transformations of the data, mapping to the pixel grid, or selections of

data and axes.

Uncertainty is usually the result of a number of causes, but we have attempted to narrow

down the main reasons for uncertainty in specific cases. Most real-world scenarios will

consist of combinations of these cases, and even within the taxonomy there is some overlap

between some of the higher levels and the specific examples. As a working definition, we

adopt the definition of Douglas Hubbard [63], which describes uncertainty as the lack of

certainty, a state of having limited knowledge where it is impossible to exactly describe

existing state or future outcome, more than one possible outcome.

The third level of the taxonomy coincides with the stages found in visualization pipeline

models like Chi’s [29]: data mapping and visual mapping. We add two stages on the human

side of the pipeline, perception and cognition; while they are not very clearly delineated,

we find them useful to structure the lowest level of the taxonomy.

3.2 Encoding Uncertainty

As data moves through the visualization pipeline, it gets transformed and mapped to vi-

sual coordinates and shapes. The encoding side of our taxonomy includes all the stages

from data access to rendering the visualization on screen. Data acquisition and any uncer-

tainty inherent in it is outside the scope of this work.

3.2.1 Data Mapping

In the first stage of the visualization pipeline, the user selects the data points and dimen-

sions that are to be mapped onto the screen. In addition to the selection of the dimensions,
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Figure 6: Completeness: Choosing not to include an entire axis (a) or single values (b)
prevents the user from seeing some of the data, causing uncertainty about it.

their ordering is also determined, which is important for the patterns that will be visible

once the visualization is drawn onto the screen. In contrast to data-space uncertainty, this

process is entirely driven by the user, who picks which elements to show (usually in re-

sponse to what is currently shown on the screen). This process seems benign and simple,

but there are many possible configurations, many of which hide potentially interesting parts

of the data.

Completeness: While parallel coordinates can show many dimensions at once, many high-

dimensional datasets are still impractical to show all at once, or the user may choose to

show a smaller number to gain more space per dimension. By leaving out dimensions,

potentially interesting structures are not shown on screen, causing uncertainty about the

complete set of patterns in the data (Figure 6a). It is also possible to filter the data on a

dimension that is not part of the visualization (Figure 6b). The most common case for doing

this is when there is a time dimension in the data, in which case the visualization shows

the data for only one particular time step. When not all records are shown, patterns can be

hidden that would be apparent if all the data was there, resulting in further uncertainty.
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Figure 7: Configuration: a) Patterns can be missed when not all possible pairs of axes are
represented; b) leaving out individual data values prevents the user from seeing parts of the
data;.

Configuration: Even if all the axes are shown, their order is crucial to see patterns: most

patterns are only visible between directly adjacent axes. Not only is it typically not feasible

to try out all possible axis orderings, it is also uncommon to show the same axes several

times in the same visualization [118]. The wrong choice of axis ordering can thus hide

important patterns without the user being able to find out what he or she is missing, leading

to uncertainty (Figure 7a). A common interaction in parallel coordinates is the exclusion

of outliers on an axis, typically to give the remaining data more space (Figure 7b). In

contrast to the completeness case above, the missing data is chosen by visual criteria, and

is typically still shown on the other dimensions (and as a line that is leaving the screen).

The exact values of those outliers are lost, however.

3.2.2 Visual Mapping

When the data is drawn onto the screen in the visual mapping and rendering stage (which

we treat as one step), its uncertainty increases due to the limited resolution of the pixel grid.

The application of information theoretic metrics in quantifying the screen-space artifacts
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has been discussed by Chen and Jänicke [28]. In parallel coordinates, a variety of artifacts

are produced both on the axes and between them. While these also cause issues on the

perception side of the taxonomy, there are really two separate phenomena at play here

that need to be distinguished. The visual mapping side is also easier to assess due to its

mechanical nature than the much more complex perception side.

Precision: The limited number of pixels on a display causes the locations of the data points

to be quantized into a relatively small number of distinct values. In most real datasets,

many data points end up getting mapped to the same pixel locations, and thus can no

longer be differentiated. The information lost at this stage leads to uncertainty about the

precise values of the data points (Figure 8a). When transparency is used, the colors of

lines also mix, making it difficult to tell how many and which values are present. This is

especially true when color is also used, such as for a gradient on one axis to more easily spot

correlations. Even given perfect color perception, it is impossible to decode the resulting

colors due to the limited resolution of the color values represented on the screen, and the

resulting quantization of the colors (Figure 8b).

Granularity: Clustering naturally introduces uncertainty into the data, by reducing the num-

ber of values and representing them only as cluster boundaries or centroids and sizes. We

are interested in the visual appearance of clusters between axes when they can be shown

as polygons [89, 38]. Just as in data space, the visual clusters hide the individual lines,

thus removing information about the distribution of lines within the cluster, and even the

number of lines in each cluster (Figure 9a). A similar issue occurs on the axes, where the

locations of the points are no longer known, even when the cluster boundaries are defined

by the maximum and minimum axial values of points in cluster (Figure 9b). In that case,
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Figure 8: Precision: a) Pixel binning leads to a loss in precision, which makes it impossible
to read values precisely; b) the colors of lines drawn over each other make it difficult to see
brushing and the precise number of lines (when transparency is used).

it is not known whether the corners defining the cluster belong to the same data point or

to different ones; several combinations are possible that are all equally likely (one line can

run along the boundary or the boundary can consist of two distinct data points, for both

boundaries independently).

3.3 Decoding Uncertainty

Once the information is encoded and the visualization rendered to the screen, the percep-

tual and cognitive processes of the user take over in interpreting that information. Decoding

uncertainty occurs in the perception and cognition stages of our pipeline. We consider a

source of uncertainty to be in the decoding branch only if the information concerned is

fully encoded in the visualization. Without the information having been encoded first, it

cannot be decoded, thus we give priority to the encoding stage. Analysis of decoding un-

certainty enables us to evaluate a visualization technique by asking questions such as: is

it perceptually confusing, does it incur a high level of cognitive load for reasoning, or is it

only suitable for expert users who know how to interpret the visual representation?
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Figure 9: Granularity: a) Clustering of values hides information about the internal structure
of the cluster and potentially the number of items in each cluster; b) the same is true for the
internal structure of the cluster and the actual locations of the original data points.

3.3.1 Perception

In this section, we consider visual uncertainty resulting from the limits of the human

vision system. Higher-level processes such as knowledge and the ability to perceive and

recognize patterns are discussed in Section 3.3.2 on cognition.

Spatial Accuracy: The lack of knowledge about the exact spatial location of terminators

(such as where records within a cluster are located or where the attributes are on an axis) or

other geometric features (such as where two lines cross each other) causes uncertainty about

the precise data represented. Perceptual accuracy concerns whether the user can differen-

tiate visual objects from available information such as locations and colors. Sometimes,

although the information is theoretically there on the screen, it can still be perceptually

very difficult to perceive such information due to either the discriminative limit of the hu-

man vision system or perceptual illusion. This issue is different from (though related to)

the missing information or lack of precision as discussed in Section 3.2.2. In the latter case
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Figure 10: Traceability: a) Single lines are easily hidden among others, leading to un-
certainty about the exact number of lines and fine details in the data; b) lines meeting in
single points, or in very small neighborhoods, on axes cause ambiguity about the multi-
dimensional nature of the data; c) clusters show similar issues and are difficult to trace
across multiple dimensions.

uncertainty was theoretically there at the end of visual encoding, while former was caused

by the human vision system.

Traceability: When there are many lines between adjacent axes, it becomes difficult to see

individual ones in the resulting clutter. This is particularly problematic when most of the

lines are almost parallel, but the ones that differ (which are often of particular interest) are

hidden among or behind them (Figure 10a). Even if lines differ in the pixels at their end

points, small angles between lines can cause confusion when looking at the space between

axes. When lines converge onto the same pixel (or pixels that are very close together),

it can become impossible to tell which line continues in which direction after that point

(Figure 10b). While this can be a precision issue when the values are actually different, it

becomes a pure traceability problem when the underlying data values are identical, and thus

would never be mapped onto different pixels, no matter the resolution of the display. This

is a common problem when categorical data is present in datasets visualized using parallel

coordinates. A similar issue exists also for clusters, whose structure can be confusing due
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to splits and overlaps on and near axes (Figure 10c).

The common solution to the problem is interaction, which allows the user to highlight a

particular record or cluster, but this is not always practical and certainly does not provide

as much information as directly showing it. Users are also not always aware of traceability

issues and simply fail to see subtle patterns or outliers.

Identity: Identity uncertainty is usually caused by many lines or clusters crossing, some-

times at low angles, making it difficult to uniquely identify a line or cluster [62]. A single

line can easily be hidden behind many other lines that form a solid, or almost solid, struc-

ture (Figure 11a). This case is distinct from the traceability case because it may not be

apparent on the axes that the line is even there; a line that is not known to be there cannot

be traced by the user. Only hints between the axes can show that this data value even exists.

Overlapping clusters create similar issues, with the additional problem that they can make

the user assume the existence of clusters that are not actually there. The lines created by

overlaps can be misinterpreted as distinct clusters, and even when not it is often impossible

to tell how many clusters there are (Figure 11b). A related issue making it difficult to tell

how many (and which) clusters exist is when colors of cluster mix. Does the mixed color

present a distinct cluster of that color or the overlap between two clusters of other colors

(Figure 11c)?

3.3.2 Cognition

Cognitive uncertainty is caused by difficulties in cognitive reasoning, such as confusion

and misinterpretation. Milliken [86] classifies cognitive uncertainty into state uncertainty,

effect uncertainty and response uncertainty. In data analysis, for example, state uncertainty
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Figure 11: Identity: a) Color mixing leading to confusion among identity of lines; b)
overlapping clusters leading to clutter; c) color mixing among clusters lead to confusion
among clusters

may describe the lack of certainty about the data and information given. In the visualization

context we term this category lack of knowledge. Effect uncertainty may describe the lack

of certainty about what the information implies; response uncertainty may describe the lack

of certainty about what action one should take (the latter two are outside the scope of this

taxonomy).

Lack of Knowledge: Parallel coordinates require knowledge and experience to use for

effective data analysis. Users who are unfamiliar with the way the technique depicts certain

patterns may be unable to tell which pattern they are actually looking at (Figure 12a). Even

when they are familiar with the technique, inconsistent axis scaling can mislead users.

Parallel coordinates often scale every axis independently to make the most use of space,

thus making direct comparison between them impossible, and shifting the locations of the

zero on each axis. Patterns can be misinterpreted because of this (Figure 12b).

Pattern Complexity: Highly complex patterns in the visualization can lead to misinter-

pretations, even when they are correctly represented and readable on the perceptual level.

While simple correlations, aggregation of values, etc., are easy to see, the superposition of



30

a) b)

case%2%case%1%

100#

200#

400#

600#

800#

1#

10#

100#

1000#

10000#

Figure 12: Lack of Knowledge: a) Not knowing how to read the sometimes complex
patterns in parallel coordinates leads to uncertainty about the represented pattern; b) incon-
sistent axis scaling, in particular because of the different locations of the zero, can lead to
issues in interpretation.

different patterns can lead the user to see one pattern but ignore the other (Figure 13).

3.4 Applying the Visual Uncertainty Taxonomy

In this section we analyze the existing research on parallel coordinates with respect to

the taxonomy. Work on parallel coordinates has focused on two categories: qualitative

tasks (clutter reduction, improving visual quality) and common analytical tasks and data

operations (clustering, finding correlations, detecting outliers, privacy preservation). These

tasks are based on the low-level analytical activities of a user [6] that are supported by

parallel coordinates [7]. For the different uncertainty sources we analyze how these un-

certainty sources reduce/enhance certain effects that are useful in some analysis scenarios.

The discussions relating analytical tasks to visual uncertainty are summarized in Table 1

and described in detail in the following section.
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Figure 13: Pattern Complexity: More complex patterns in the visualization lead to more
difficulty in reading and understanding the underlying data patterns.

3.4.1 Clutter

There are different definitions of clutter in the parallel coordinates literature. Peng et

al. [92] define clutter as the relative number of outliers to the total number of data points

and aim to have a configuration which optimized with respect to outliers. The authors use

reordering technique to achieve that configuration. This technique addresses the uncer-

tainty due to configuration of the visualization: while this type of uncertainty is reduced on

one hand due to preserving outliers, particular selection and ordering of axis increases the

same effect of uncertainty due to possible omission of salient patterns.

Identity: Some clutter reduction techniques aim to reduce the number of visual elements,

at the visual mapping stage. In parallel coordinates, that means reducing or manipulating

number of lines that connect the data points. Sampling Lens [48] is one such example

where the data to be mapped on to the screen is abstracted based on density of the data

points. Artero et al. [10] reduced non-important information in parallel coordinates based

on the computed frequency and density plots from the original datasets. The screen space
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quality method [67] reduces clutter, while preserves the significant features in the original

datasets at the same time, by filtering out data items based on distance transformation

for data abstraction. These methods while reducing identity uncertainty, lead to lack of

completeness in the visual representation.

Traceability: Another definition of clutter is according to Ellis and Dix [49], where clut-

ter is attributed to large number of crossings and lines crossing at low angles In line-based

parallel coordinates, clutter is caused by too many line crossings, several lines crossing at

low angles and lots of lines converging or diverging from a small region on the axis. This

relates to the uncertainty due to traceability between adjacent axes and across different axes,

and also identity uncertainty on the axis. While in Pargnostics [37] the authors aim to re-

tain data fidelity and reduce clutter through reordering-based optimization, in the previous

case the authors reduce the number of visual elements, thereby leading to a completeness

problem.

3.4.2 Clustering

Existing research on improving visual quality in parallel coordinates focuses on cluster-

ing [129, 54] in various forms.

Configuration: In both line-based and cluster-based parallel coordinates, binning helps

in having pre-defined seeds for clustering. Binning can be either data-based or pixel-based.

Pixel-based binning [89] helps in overcoming the problem due to high cardinality of a data-

space, but leads to over-plotting. Cui et al. [33] have proposed metrics that measure the data

quality. Pixel-binning therefore reduces configuration uncertainty. However, binning also

leads to loss of precision and granularity uncertainty as many lines can end up on a single
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Task Data Cardinality Data Dimensionality Source Intended Effect Unintended Effect Utility

Finding Correlations
Large Large crossings - Pattern Complexity + Identity Inverse correlation

Large Axis selection - Pattern Complexity + Configuration Correlation between dimensions
Detecting Outlier Large Axis scaling - Pattern Complexity + Loss of precision Spotting anomalies in trend

Clustering
Large Binning - Configuration +Precision Seeds for clustering
Small Low crossing angles - Pattern Complexity + Identity, Traceability Clustering due to proximity, similarity

Large Axis selection - Pattern Complexity + Configuration Subspace clusters

Privacy-preservation
Any Binning + Identity N/A Loss of precision and granularity

Overlaps on the axis + Identity +Pattern Complexity Uncertainty in identifying individual values
Cluster splits + Traceability +Pattern Complexity Uncertainty for traceability of sensitive clusters

Table 1: Connecting sources and effects of uncertainty to tasks and data properties (car-
dinality and dimensions). The positive sign indicates a particular effect of uncertainty is
enhanced and negative sign implies the same is reduced. Usually, the intended effect is the
reduction of a certain cause of uncertainty. In case of privacy, since increase of uncertainty
is intentional, we consider the effect as being useful.

bin.

Low crossing angles help in the perception of proximity and similarity by inducing a

Gestalt effect. For small number of data points, lines crossing at small angles generally

mean lines are more or less parallel to each other, which indicates implicit clusters. In case

of large number of data points, many lines crossing at low angles would tend to produce

clutter. Clustering techniques in parallel coordinates aim to reduce the uncertainty related

to data similarity and proximity and support analytical tasks of finding clusters within the

data [10, 8]. Information loss is intended in these cases. However uncertainty can be

introduced due to lack of granularity information. The techniques do not generally convey

the number of records within a cluster.

Identity and Traceability: Zhou et al. [129] proposed geometry-based visual cluster-

ing to implicitly enhance the clustering in parallel coordinates by bundling the edges, and

minimizing the edge curvatures and maximizing the parallelism of adjacent edges at the

same time. Other than reducing clutter, they also achieve reduction of uncertainty through

enhancing the perception of continuity by choosing curved edges instead of lines as the

basic visual elements. This reduces traceability uncertainty by violating the gestalt law

of continuity among visual structures. Further, clusters can be detected by superimposing
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semitransparent line segments on the screen to enhance important components [128] and

thereby reducing identity uncertainty.

Wegman and Luo [119] also use transparency to identify regions of high over-plotting

through their dense color. Holten et al. [60] have shown through user studies that improve-

ments in visual enhancements do not always work well in practice. They have further

argued for more formal evaluation measures for these techniques and we believe our defi-

nitions of visual uncertainty will help future approaches towards achieving a more quanti-

tative basis for comparison.

3.4.3 Finding Correlations and Detecting Outliers

As pointed out in Table 1, line crossings, although lead to clutter in most cases, can

be helpful in the case of a small number of data points, when large number of crossings

at high angles is a useful representation for inverse correlations [37]. This enables the

cognition of linear correlation, and thus reduces pattern complexity. For detecting outliers,

normalization of the axes using non-linear scaling can be applied [7]. While this helps in

reducing pattern complexity, there is significant loss in precision for the represented data.

3.4.4 Useful Uncertainty: Privacy

In case of privacy-preserving applications, contrary to the other categories mentioned

above, certain effects of uncertainty are intentionally increased. For ensuring privacy data

needs to be hidden, and in an interactive environment, there needs to be sufficient un-

certainty to confuse the user so that he is not able to breach the intended privacy of the

application. The uncertainty should, however be focused on the left part of the taxonomy

tree, i.e, encoding uncertainty as increasing decoding uncertainty would degrade utility of
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the visualization to a much larger extent.

Loss of precision and granularity or lack of completeness are all related to information

loss in visualization. While there has been sporadic mention of quantifying information

loss [94, 130], we still lack a framework for describing it. In privacy-preserving visual-

ization, a clustering technique based on screen-space metrics is used to set a lower bound

on the number of records per cluster. By using pixel-based binning as a staring point of

the clustering process, it exploits the inherent loss of precision to mask the real values of

the records. Uncertainty is also increased by the unknown location of the records within

the clusters,leading to granularity uncertainty, as we had shown earlier in Figure 9. Thus,

encoding uncertainty here is caused by both loss of precision and granularity.

We discuss how useful uncertainty can be imposed and utilized for privacy-preservation

purposes in Chapter 5. In the next chapter, we first discuss the metrics that can be used

to measure the different causes and effects of encoding and decoding uncertainty, that are

subsequently extended for privacy-preservation purposes and used for high-dimensional,

temporal data visualization (Chapter 6).



CHAPTER 4: SCREEN-SPACE METRICS

The choice of metrics is based on our visual uncertainty taxonomy that enables us to

define measures for both the encoding and decoding stages of the visualization pipeline.

Several purposes or tasks motivate the design of visual representations and interaction de-

signs. Our metrics are motivated by the tasks proposed by Amar and Stasko [6] and by

the requirement of the visual representation being perceptually beneficial. Based on the

taxonomy, we have translated the high-level goals of these tasks and requirements into

the low-level components of visual uncertainty. This has enabled us to systematically de-

fine metrics that quantify the causes and effects of uncertainty, occupying the leaf nodes

of the taxonomy tree. In this chapter, we take a bottom-up approach by describing the

quantification model, the visual features and metrics for measuring encoding and decoding

uncertainty; and then we discuss how they fit together within the taxonomy. Since privacy

is a relatively new concept in the realm of visualization, metrics that are typically appli-

cable for evaluation of privacy-preserving visualization, are discussed in Section 5.6 after

introducing the techniques. Unless otherwise stated the proposed metrics are applicable to

both parallel coordinates and scatter plot matrices.

4.1 Model

Pargnostics [37] are a set of screen-space metrics for parallel coordinates. As such, they

inherently depend on the size of the display, measured as the number of pixels. Although
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Figure 14: Scatter plot features mapped to parallel coordinates: The right axis of each axis-pair
corresponds to the X-axis of the scatter plot and is labelled accordingly.

there has been substantial improvement in display technologies and gigapixel displays are

not entirely unheard of now-a-days, the most common analytical tasks are done with vi-

sualizations on desktops, laptops and tablets, where the number of pixels is in the order

of hundreds or thousands. On the other hand, the cardinality of data produced from sci-

entific simulations or business transactions typically range from millions to billions. The

quantification model and the subsequent metrics based on that addresses this disparity be-

tween number of pixels and number of data points, that manifests mainly during the visual

mapping process.

The model is based on the common parallel coordinates layout, which draws vertical

axes and lays the axes out horizontally from left to right.

We consider a parallel coordinates display to consist of a series of axis pairs, similar

to scatter plots in a scatter plot matrix (Figure 14). The space between a pair of axes is

where interesting patterns such as parallel or crossing lines, aggregations of lines, etc., can

be observed. As pointed out by Li et al. [75] finding correlation in parallel coordinates
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Figure 15: Illustrating binning with equal-width histograms: On the left is the binned space
of the parallel coordinates and on the right is the degree of each bin in the 2D histogram.

ultimately boils down to finding those patterns between pairs of axes. This is also true for

all relevant structures that the user is looking for in the data. Neighboring axis pairs of

course depend on each other because the left or right axis has to correspond to the right or

left axis of the neighboring pair, respectively.

4.1.1 Pixel-Space Histograms

The basis for most metrics is pixel-based binning (Figure 15). With each axis being h

pixels high, we define three types of histograms: one-dimensional axis histograms, one-

dimensional distance histograms, and two-dimensional axis pair histograms.

All binning is done in screen space, after the values have been transformed into pixel

coordinates. The data values, vi, are projected onto screen pixel coordinates, li (for the

left axis in a pair) or ri (for the right axis), by a mapping function f : (li,ri) = f (vi). We

disregard any padding around the axes, so 0 ≤ li < h.

One-Dimensional Axis Histogram. The basic one-dimensional axis histogram has h bins,

and consists of bins bi that count the number of lines starting or ending in them. Metrics
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like axis entropy, density median and over plotting are based on this histogram. In the

following formula, i is in the range [0;h−1].

bi = |{k | blkc = i}|

One-Dimensional Distance Histogram The one-dimensional distance histogram records the

slope of the lines between the axes, measured as the vertical distance in pixels. This mea-

sure can be used to calculate the actual angle when the spacing between the axes is given.

The steepest line going up or down covers the entire height of the display, and can thus

have a vertical distance in the range (−h;h). This leads to a total of 2h− 1 bins, as the up

and down ranges overlap at the value 0. This histogram is used as a basis for the parallelism

metric.

di = |{k | brk − lkc = i}|

Two-Dimensional Axis Pair Histogram. Looking further at the space between the axes, we

define a histogram of all the lines, covering both axes. This is a two-dimensional histogram,

consisting of bins bi j, with both i and j in the range [0;h−1].

bi j = |{k | blkc = i∧brkc = j}|

This is the basis for the calculation of the number of line crossings, crossing angles,

convergence/divergence and mutual information.
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4.2 Measuring Encoding Uncertainty

On the encoding side, we propose metrics for quantifying information loss such as en-

tropy and over plotting and for quantifying relative information content of dimensions using

mutual information.

4.2.1 Axis Entropy

To quantify the characteristic of the data distribution, we have developed two metrics:

axis entropy and density median. Axis entropy signifies the variance in the distribution,

if there is a lot of uncertainty involved with the distribution or it is pretty even, leading

to high entropy. Entropy measures the uncertainty or disorder within the data values and

we use Shannon entropy [32] to capture this characteristic. We consider each axis in the

screen-space as a random variable. We use the probability of intersection of a data record

with a pixel-bin, computed from the frequency of each pixel-bin on an axis as the basis for

computing Shannon entropy. Entropy for an axis (A) in terms of its pixel bins (a1,a2, . . .ah)

is given by:

H(A) = −

h∑
k=1

p(ak)log(p(ak)) (1)

where p(ak) = 1
βk

. When the entropy (H(A)) is plotted over time, the trajectory of the time-

series indicates the overall stability or instability of the variable.

The density median quantifies if high or low concentrations of a variable are manifested

at a time step. Density median (D̃) is computed from the median of the frequencies of the

pixel-bins in a one-dimensional axis-histogram. The location, that is the pixel coordinate

of the median (β̃), is then plotted over time. A high value of the median at a particular
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time step means dominant values at that time step are the high ones and a low value means

dominant values are the low ones.

Both the density median and axis entropy metric are based on univariate properties,

meaning, they are independent of axis adjacency in parallel coordinates. The two compo-

nents of our data density metric are : the density median determining the locus of skewness,

and the nature of density in terms of data disorder or randomness.

4.2.2 Mutual Information

In exploratory data analysis, the information the user is looking for is subjective: task

oriented and difficult to model. Mutual information [32] provides a general measure of

dependency between variables; its value is zero when they are conditionally independent.

Pearson correlation coefficient is extensively used for this purpose, but a lack of such cor-

relation does not imply that two variables are independent. In Pargnostics, we treat the data

dimensions as random variables, and our computation is based on the binned space. The

probability that a dimension assumes a particular data value is therefore equivalent to the

binned value in the screen space.

Let X and and Y be random variables. Mutual information I(X;Y) is defined in terms of

probability distributions as:

I(X;Y) =

h∑
i=1

h∑
j=1

p(xi,y j) log
p(xi,y j)

p(xi)p(y j)

In this case pi=
bi
h , using the one-dimensional axis histogram, where p(xi,y j) denotes

the joint probability of random variables X and Y and in this case p(xi,y j)=
bi j
h using the

two-dimensional axis histogram (Section 4.1.1).
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Some of the dimensions which exhibit high mutual information (Figure 56) in the cars

data are MPG and weight, weight and acceleration, horsepower and weight, etc. This is

expected as we know lighter cars have good fuel economy and better acceleration. Thus

mutual information provides an indication to the user, which axis pairs are likely to con-

vey interesting information. We also use the mutual information metric for cluster based,

privacy-preserving visualizations, that are discussed in Section 5.6.

4.2.3 Over-plotting

Over-plotting is a measure of the quality of a visualization. This is especially relevant in

the case of parallel coordinates. Here, due to the large dataset sizes and a limited number

of screen pixels, several data points can be mapped to the same pixel value on two adjacent

dimensions. The degree of over-plotting helps to estimate the information density between

adjacent dimensions. High over-plotting leads to dense cloud of lines and the user might

often be interested in a view that minimizes it. Quantitatively, over-plotting is a side effect

of binning and is therefore an indication of the information loss that occurs during pro-

cessing. Having different bin size would directly affect over plotting and help us achieve

controlled information loss. This information loss can be intended or unintended based

on the context of application. For example, in a privacy-preserving application we inten-

tionally want to hide the precise values, and the over plotting metric helps us control the

information loss. This is also the basis for selecting seeds for privacy-preserving clustering

and that is described in Section 5.3.

The degree of over-plotting O is computed from the count of each bin of a two-dimensional

histogram. Each count in a bin greater than 1 contributes to over-plotting.
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Figure 16: Density median computes if the high values (as in the left image) or low val-
ues (as in the right image) are dominant.

O =

h∑
i=1

h∑
j=1


bi j if bi j > 1

0 otherwise

The total degree is then normalized by the number of data points n to give the normalized

degree of over-plotting:

Onorm =
2O

n(n−1)

4.3 Measuring Decoding Uncertainty

On the decoding side, we propose metrics for measuring visual quality and salient visual

patterns. Visual quality is measured in terms of human ability to discriminate among a

number of crowded or collocated data points. The visual patterns that we quantify are

those for correlations and clustering.
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Figure 17: Axis Entropy determines disorder or randomness within the data. Low entropy
generally signifies visually detectable patterns as in the right image.

Figure 18: Distance histograms (left half of each cell below the parallel coordinates) and angles
of crossings (right half) histograms for different dimensions of the cars data.
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Figure 19: Using the interval classification, we can simplify the structure by using Rit’s sets
of possible occurrences [96]. The different lines in parallel coordinates are shown in the scatter
plot/SOPO diagram on the right. The thick reference line a is used as the reference on the right. All
intervals that fall into the shaded areas represent lines that cross the reference line, those lines are
drawn as solid lines; dotted lines do not cross the reference line.

4.3.1 Number of Line Crossings

A prominent feature of parallel coordinates are crossing lines between pairs of axes.

Many crossing lines typically mean some kind of inverse relationship, especially if the

crossings occur mostly around the center. Line crossings also contribute to clutter and can

make it difficult to identify which lines are going where. The importance of line properties

in implying correlations have been studied [77, 118]; Ellis and Dix [49] also dealt with line

intersections as a cause for display clutter. Also, user studies [75] show that judging corre-

lations can be a complicated task because of several artifacts in parallel coordinates. Since

line crossings directly affect correlations, especially inverse correlations, it is important the

user is able to maximize or minimize it for optimization.

To efficiently calculate the number of crossings, we interpret each line between a pair of

axes as a directed interval. Allen’s interval algebra for temporal reasoning [5] enumerates

all possible relationships between pairs of time intervals: A before B, A meets B, A over-
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Table 2: Conditions for intersection based on interval relation and direction, grouped and ignoring
symmetrical cases (see Figures 20 and 19).

Relation Direction Intersection

same no
before/after

opposite no

same no
meets

opposite no

same no
overlaps

opposite yes

same yes
during

opposite yes

same no
starts/finishes

opposite yes

same no
equals

opposite yes
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laps B, A starts B, A finishes B, and A equals B. All relationships except equals can also

be applied as B R A, leading to a total of 13 different ones.

For the purpose of determining line crossings, we add the direction of the line or interval

as a second attribute (Figure 20). We are not interested in the absolute direction, but only

whether the two lines are pointing in the same or opposite directions. Disregarding the

before/after and meets relations, which trivially cannot lead to intersections, we can classify

which relationships and directions lead to intersecting lines and which do not (Table 2).

This classification can be simplified by making use of work by Rit, who devised a way to

graphically propagate temporal constraints [96]. Similar to the point-line duality between

scatter plots and parallel coordinates, sets of possible occurrences (SOPOs) depict intervals

as points on a two-dimensional diagram with two time axes: one for the start and one for the

end of the interval. Combining all the areas that correspond to the line crossing conditions,

we find a simple rule for determining whether two lines cross (Figure 19).

Given the two-dimensional histogram, we can calculate the number of line crossings, L:

L =

h−1∑
i=0

h−1∑
j=0

h−1∑
k=i+1

h−1∑
l= j+1

bi jbkl

This leads to a complexity of O(h4), though in practice it is much lower: if bi j is zero,

the program does not need to enter the two innermost loops. In real-world data sets, the

histogram is very sparse, so this condition has a large effect on algorithm runtime.

4.3.2 Parallelism

In addition to line crossings, there are also structures where lines are parallel or close

to parallel to each other. Such lines can mean correlations between two dimensions [7].
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Li et al. described the difficulties user have judging correlations in a parallel coordinates

environment [75]. Parallelism can also imply closely aggregated lines or clusters within

a subset of the data. When given the choice between line crossings and parallel lines,

the latter are often preferable to crossings because they lead to less clutter. This is of

importance for the display optimization described below.

To describe parallelism, we compute a vertical distance histogram between any two con-

necting points on adjacent axes (Figure 18). Positive values in this histogram mean lines

going up, negative values indicate lines pointing down. Axis pairs with a high degree of

parallelism tend to have narrow distributions of directions, while ones with no or very lit-

tle apparent parallelism cover the entire distance spectrum with no apparent clustering of

values.

Parallelism is defined both in terms of direction and extent. The median distance value

indicates the direction and the extent of parallelism is given by the interquartile range: a

narrow interquartile range implies high parallelism. We normalize the distances between 0

and 1, by dividing by the highest possible distance. We then compute parallelism Pnorm as

follows based on the interquartile range between the 25% and the 75% quartiles, q25 and

q75 .

Pnorm = 1− |q75−q25|

The subtraction is done to get a higher parallelism value for a higher degree of paral-

lelism (and thus a smaller interquartile range). The direction is given by the median MP,

which is not normalized (the direction only makes sense in pixel coordinates):
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Overlaps
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Starts
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Same direction Opposite direction

Figure 20: The possible configurations of two lines in parallel coordinates, classified using Allen’s
interval algebra. Before/after and meets relations are not shown, because they trivially mean no
intersection. See Table 2 for a classifications of crossings using these criteria.

MP = q50

4.3.3 Angles of Crossing

While the number of line crossings can be an issue, an equally important one involves

the angles at which lines cross. Lines crossing at flat angles are harder to follow than ones

crossing at close to right angles [62, 117]. Lines that are part of clusters also tend to cross

at low angles [118].

We calculate the crossing angles between pairs of lines. Except for parallel lines, any

two lines will have two crossing angles that add up to 180◦. Since we care about how close

to a right angle the lines cross, we choose the smaller one of the two. The angle calculation
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is only performed for lines that are known to cross based on the crossing lines conditions

above. They are then rounded and binned into whole degree bins, and we calculate the

median crossing angle. The resulting histogram (Figure 18) is used for display purposes,

while the median is used as the criterion for optimization.

The calculation is based on the two-dimensional axis histogram. For each pair of bins

that are found to contain crossing lines, we calculate the crossing angle. This means that

for multiple lines crossing at the same point, we only have to perform the calculation once,

and can add bi jbkl to the histogram (similar to the way it is done for the number of crossings

above).

4.3.4 Convergence, Divergence

A common pattern in parallel coordinates is comprised of few values on one axis that

branch out to many values on the other. Similar to clumpiness in Scagnostics there can

be many lines converging to a point or diverging from a point between adjacent axes.

They represent sine functions with multiple periods [51]. These structures are a useful

characterization of the data points as they reveal associative relationships: many-to-one or

one-to-many relationships between points on adjacent axes.

Convergence. Convergent structures between a pair of axes comprise of those lines on

the left axis which converge to a single bin on the right axis. Mathematically, the total

convergence C between two axes can be calculated as:

C =

h∑
i=1

h∑
j=1


1 if b ji > 0

0 otherwise

Divergence is the mirror image of convergence and is given by



51

Clumped subspace No clumping

Figure 21: Illustrating clumping metric in for measuring subspace densities in parallel
coordinates.

D =

h∑
i=1

h∑
j=1


1 if bi j > 0

0 otherwise

The ratios Cavg = C
n and Davg = D

n where n is the total number of lines between two

axes, indicate the average degree of convergence or divergence between each axis. To

give an overview of the degree of convergence/divergence present between each pair of

dimensions, we show histogram of convergence or divergence, whichever is greater. The

values are normalized as follows:

Cnorm =
C

max(bi j)

Dnorm =
D

max(bi j)

Converging/diverging lines have an implicit aggregation among them. And they are

more prominent between adjacent categorical dimensions. Thus convergence/divergence,

like over plotting, is used for seed selection in privacy-preserving clustering in the screen-

space.
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4.3.5 Subspace Clumping

Earlier we showed that converging and diverging structures are interesting structures in

parallel coordinates. However, in case of large datasets, lines do not converge to or diverge

from precisely a pixel, but from a local neighborhood of pixels (Figure 21). Highlighting

these neighborhoods is a way of implicit clustering and also an indicator of multiple modes

in the data. Computation of clumped subspaces requires two parameters: the number of

contiguous neighbors and strength of a neighborhood that is considered as clumpiness. Our

algorithm has two subroutines: first, the average sparseness in an axis pair is computed and

second, the sparseness value is used to decide when to cut off a clumping cluster. The

average strength of the clumped clusters gives us the clumping factor (C f ).

For determining the number of contiguous neighbors, we first compute sparse regions

based on the strength of the pixel bins. For this we use the two-dimensional histogram

defined based on all the lines, covering the adjacent axes. This histogram, consists of bins

βk,l, with both k and l in the range [0;h− 1]. A clumping cluster is cut off once a sparse

region is found. Let us denote a sparse bin by be indicated by ¯βk,l.

The convergence-divergence metric is used as a selection criteria by the algorithm. The

axis with higher average convergence/divergence is selected and iterations through the

pixel-bins on that axis are performed, following the two subroutines that are described

as follows:

Subroutine for computing sparse regions:

1. Set threshold for clumpiness to the average frequency of a bin, i.e., the number of

records divided by number of bins, i.e. t =
nr
h .
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2. If the bin frequency is less than the quartile of the threshold, i.e., ¯βk,l < 0.25t, consider

the bin as a sparse bin.

3. Compute the number of contiguous sparse bins (η) for each sparse region found. Let

a sparse region be denoted by e.

4. Compute average sparseness as the number of contiguous sparse bins divided by the

number of sparse regions. So we get

avg(η) =
1
e

e∑
c=1

ηc

Subroutine for computing clumping factor:

1. If a bin contains lines greater than t, add it to the cluster.

2. Continue adding bins until a sparse bin ( ¯βk,l) is found.

3. If the number of contiguous sparse bins is less than avg(η), add those bins to the

cluster, else break the cluster.

4. Repeat steps 1 to 3 for all the remaining bins.

5. Add the number of bins in each clumped cluster. Let the number of contiguous

clumped bins in each cluster be denoted by ζ. Divide by the number of such clus-

ters (v). That is the clumping factor (C f ).

C f =
1
v

v∑
c=1

ζc
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Source of Uncertainty Cause/Effect Metric Visualization Technique Application

Encoding:Data Mapping Configuration, Pattern Complexity
Axis Entropy PC, SP HDDV
Mutual Information PC,SP HDDV, PPDV

Encoding:Visual Mapping
Precision

Cluster Summary Error Clustered PC, Clustered SP PPDV
Over-plotting PC,SP HDDV

Granularity Cluster Range Clustered PC,Clustered SP PPDV
Granularity, Spatial Accuracy Cluster Configuration Clustered PC,Clustered SP PPDV

Decoding:Perception
Traceability,Identity, Pattern Complexity

Line Crossings PC HDDV
Crossing Angles PC HDDV
Overlap Entropy Clustered PC,Clustered SP PPDV, HDDV
Overlap Clutter Clustered PC,Clustered SP PPDV,HDDV

Decoding:Cognition
Pattern Complexity

Parallelism PC, Clustered PC HDDV
Convergence/Divergence PC, SP HDDV
Clumping Factor PC, SP HDDV

Lack of Knowledge Disclosure Risk Clustered PC, SP PPDV

Table 3: Screen-space metrics that have been systematically defined based on the
sources, causes and effects of visual uncertainty they help quantifying in parallel coor-
dinates (PC) and scatter plots (SP) for high-dimensional data visualization (HDDV) and
privacy-preserving data visualization (PPDV). A single metric can measure multiple un-
certainty causes and a single uncertainty cause can be measured by multiple metrics based
on our conceptualization.

4.4 Discussion

In Table 3 we classify the different metrics according to the different causes and effects of

uncertainty for the purposes of high-dimensional data visualization and privacy-preserving

data visualization.

4.4.1 Encoding Uncertainty Metrics

An instance of analytical task to visual uncertainty mapping is the reduction of configura-

tion uncertainty through information-theoretic metrics like entropy and mutual information

that guide the adjacency of dimensions in parallel coordinates and scatter plot matrices.

Since these metrics essentially quantify the information content on screen, on the decoding

side they measure pattern complexity. Information loss due to loss of precision is measured

by over plotting and axis entropy. In case of privacy-preserving clustering, loss of granu-

larity is measured by cluster range (Section 5). For privacy, the location and orientation of

records is also important in separating susceptible clusters from the secure ones. Cluster
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configurations help measure that.

4.4.2 Decoding Uncertainty Metrics

An example of the task to visual uncertainty mapping in case of high dimensional anal-

ysis is finding correlations through reduction of pattern complexity, which is quantified by

parallelism. Line crossings and angles of crossings in parallel coordinates help quantify

discriminability in terms of identity and traceability uncertainties, both within axis pairs

and across adjacent axes. Line crossings also quantify pattern complexity as crossings in

the middle denote inverse correlations. The same applies for angles of crossing, as low

crossing angles denote aggregation properties. Convergence/divergence and clumping fac-

tor denote clustering properties and thus quantify pattern complexity. These metrics are

mainly applicable for high-dimensional data visualization. For privacy-preserving visual-

ization, the derivatives of axis entropy and line crossings, which are overlap entropy and

overlap clutter (Section 5) respectively help control visual quality, while at the same time,

address privacy concerns. Moreover, the degree of user knowledge about the data directly

affects the disclosure risk at different levels of granularity, that is discussed in Section 5.



CHAPTER 5: PRIVACY IN VISUALIZATION

The increase in size and complexity of real-world data demands more effective informa-

tion visualization and visual analytic techniques. But accessibility is a key issue to much

of this data due to privacy concerns. Medical records, financial information, sensitive cor-

porate data, etc. can only be shared with outside users for analysis purposes after explicit

identifiers have been removed (i.e., the data has been sanitized). There are also regulations

that make such disclosures punishable by law, like the Health Insurance Portability and

Accountability Act (HIPAA) in the United States. Even after removal of explicit identi-

fiers, data from public databases might still make it possible to identify individuals in such

sanitized data.

Privacy-preserving data mining (PPDM) distinguishes between quasi-identifiers and sen-

sitive attributes. Sensitive attributes are those whose exact values need to be protected, so

that they cannot be linked to an individual. Examples include disease names in medical

databases and company-specific information in corporate databases. Quasi-identifiers are

those attributes that, taken together, can identify an individual even if that person’s name

or complete address is not included. This is possible because the same information can be

found in public databases, and enough quasi-identifiers can narrow the choices down to a

single person (e.g, given a date of birth, gender, and zip code, it is often possible to pinpoint

a single person).
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The problem with PPDM techniques is that even for a minimum privacy guarantee, there

is a significant loss of utility [22]. Moreover, the published output might be susceptible

to mining by malicious users, who might use the analysis results to breach the privacy

safeguards. The preservation of the privacy of published results has been termed output

privacy [23]. While a lot of work has been done on protecting the privacy of the input

data to the mining algorithm, not much work has focused on output privacy protection.

Our approach includes a consideration of output privacy, but is situated between input and

output privacy.

In our work,we treat the problem of information privacy from a visualization perspective.

Instead of publishing the data or just the analysis results, a privacy-preserving information

visualization tool provides an interactive interface to both the data owner and outside users.

The data owner can customize the tool to choose different views of the data he wants to

show to analysts without sacrificing privacy. The outside user cannot directly access the

data, but only visualize the patterns in the data through the tool. Different constraints that

are imposed within the model to prevent him from breaching privacy through interaction.

The data is sanitized on the fly, based on the user’s screen resolution and other viewing

parameters.

Similar to PPDM, we assume that the data holder is aware of the the sensitivity of the data

attributes and in what context the privacy can be breached. The main concern with sensitive

data is their misuse [31, 18]. Privacy can be personal (e.g., medical records) or corporate

(e.g., company records) [31]. In both cases the goal of a privacy-preserving technique is to

minimize disclosure of sensitive information even after data analysis techniques have been

used. At the same time, the access of non-sensitive information and their fidelity should
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(a) Visualizing data that was sanitized using approaches from privacy-
preserving data mining results in poor utility.

(b) Clustering by axis pair and using a different metric in the clustering,
more of the visual structure can be retained.

Figure 22: Comparing data clustering to our visual clustering approach. Both algorithms
make it impossible to tell fewer than three records apart, but our approach provides higher
utility.
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Figure 23: Possible approaches to privacy-preservation in information visualization (Sec-
tion 5.1): binning and blurring, data clustering, and visual clustering. Only the bottom two
approaches guarantee a given level of privacy, in the case of data clustering, it comes at the
price of considerable utility loss.

not be affected by the sanitization process.

In this chapter, we first discuss the motivation of using screen-space metrics for pre-

serving privacy and the basic elements of a privacy-preserving visualization model (Sec-

tions 5.1 and 5.2). Next we demonstrate the applicability of the model by describing the

technique and its various features. We apply clustering in parallel coordinates based on

the well-established k -anonymity and l-diversity metrics. We discuss those in details in

Section 5.3.

5.1 Potential Approaches

Why develop a new approach to hiding information in visualization? There are more

obvious approaches, like blurring the image or simply visualizing the output of a PPDM

sanitization technique. This section discusses the shortcomings of these naı̈ve approaches

(see also Figure 23).

Binning and Blurring: When a dataset is visualized, there is a natural loss of precision due

to the limited resolution of the screen. To add to the information loss, the image could be

blurred to hide individual records. The drawback of this approach, however, is the limited
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control over information loss, in particular when it comes to privacy. Single data points

might exist far enough away from others so as not to be blurred together with them. There

is no guarantee that each visible point contains at least a given minimum number of records.

Data-Space Sanitization: Another approach is applying the sanitization algorithms pro-

posed in the data-mining literature and then visualizing the resulting data. While that guar-

antees a level of privacy, it also comes at the price of greatly reduced utility, a problem

that is know well in PPDM [22]. The resulting visualization is very close to being useless

(Figure 22(a)), as the clusters cover much more of the axes than using our approach.

Screen-Space Sanitization: Effective visual representation is one of the key factors that lead

to high utility in visualization [81]. This requires modeling the appearance of a visualiza-

tion on screen, and controlling the attributes of the visualization to control the amount of

information that is shown to the user. Using visual metrics for the sanitization process, it

is possible develop a clustering that is much better suited for the purposes of visualization.

This is the approach we describe in this work.

5.2 Basic Elements of a Privacy-preserving Visualization Model

In visualization the limited number of screen pixels is a key constraint that needs to be

taken into account while mapping values from data to the screen. This results in infor-

mation loss and we generally strive to minimize it. Ensuring information privacy in the

screen space means the information loss entailed is both necessary and sufficient to protect

the sensitivity of the represented data. In this section we discuss the different sanitization

approaches from the perspective of information loss and demonstrate how we can achieve

privacy-preservation in visualization in general.
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Figure 24: Concept of k-anonymity applied in parallel coordinates. Individual lines are
clustered in the form of trapezoids, after binning. In this case, k = 3.

5.2.1 Modelling Information Loss

There are two types of information loss during the visual mapping process: intended and

unintended [130]. Binning, described earlier in Section 4.1 is an example of intentionally

losing information to fit the data on screen. Over-ploting, clutter are examples of unin-

tended information loss and are a function of the different artifacts produced on screen.

For achieving privacy we want to have a controlled information loss by manipulating both

these types of losses. We distinguish between two types of information loss in the context

of privacy, both of which result in data hiding: a) loss of precision and b) loss of granularity.

5.2.1.1 Loss of Precision

Loss of precision occurs due to the quantization that results as a mapping from data

space to screen space. A common example of data abstraction to fit the data on screen is

binning. This is an example of surjective mapping where more than one data elements are

represented by a pixel. Loss of precision might appear to be a good enough condition to

protect the sensitivity of private data. We will show here that this not sufficient, though. The

precision loss incurred is equal to ∆b which represents the bin size. Information content of

the binned data space can be represented by Is where Is = log2
rangebin

∆b [125]. If ∆b > 1 we



62

indeed lose some information.

However, this is not sufficient because it does not constrain the number of records in a

bin; a bin might only contain one record, making it possible to drill down to the individual

value. Since we require the fine-grained details to be hidden from a malicious user, this is

therefore not a sufficient condition for achieving privacy.

5.2.1.2 Loss of Granularity

The desirable condition for privacy-preservation is loss of granularity, i.e, the user sees

just aggregated data and is unable to breach the privacy by accessing the fine-grained details

of the records. Loss of granularity subsumes loss of precision. To achieve this, we apply

some constraints on the visibility of the data by not showing individual records, but clusters

of records. This can be achieved in two ways: Data-space sanitization and Screen-space

sanitization.

In the context of parallel coordinates we hide fine-grained information by showing clus-

ters instead of lines. Privacy protection is done at two levels: record-level and cluster-level.

In record-level privacy we ensure that each record belongs to a cluster of membership k

such that it is indistinguishable from those k− 1 other records (k-anonymity [106, 114]).

An adversary can then link a sensitive attribute to at least k records with a probability Pk

= 1
k . In cluster-level privacy the goal is that there is certain amount of diversity in clusters

such thateach cluster belonging to a quasi-attribute can be linked l different clusters be-

longing to the sensitive attribute [82], therefore leading to diversity in the possible values.

Therefore probability of linking is reduced as Pl = 1
k l
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Figure 25: Client-server architecture for handling privacy in visualization.

5.2.2 Remote Visualization

Our technique is based on a client-server architecture (Figure 25), where the data resides

on the server and the client only fetches the clustered data and displays it on screen. This

model is similar to the idea of interactive privacy described by Dwork [46], where an inter-

face is provided by data owners to interactively filter responses to user queries and add noise

where needed to preserve privacy. Similarly, in our system, the user cannot access the raw

data, but can only set the interaction parameters necessary (in this case order of dimensions

and number of pixels) for the server to apply the privacy-preservation algorithm (in this

case, clustering) and return the sanitized clusters. Axis order is important: the server has

knowledge of which dimensions are sensitive and which ones are quasi-identifiers so the

output is tailored towards that configuration. The screen-space metrics, used as a starting
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point for clustering in our technique, are dependent on pixel-based binning. The number of

pixels thus determines the appearance of the clusters.

5.3 Implementation of k-anonymity

The primary goal of privacy-preserving visualization is that the user should not be able

to access the quasi-identifiers and/or the sensitive attributes in the raw data. Therefore, we

intentionally hide information from the user by imposing de-identification constraints in

the screen-space. To achieve this, we exploit two types of information loss: the inherent

information loss in parallel coordinates for ensuring loss of precision and additional loss

from grouping together records as a necessary step for sufficient loss of granularity to

achieve a desired level of privacy.

In the privacy-preserving variant of parallel coordinates, based on the idea of k-anonymity,

our program combines k records into one cluster, and displays it as a trapezoid instead of

as individual lines (Figure 24). We have adapted an existing clustering mechanism in order

to maximize the utility of the resulting clusters for visualization [24]. We use pixel space

coordinates for our model. That means that all coordinates are first transformed into screen

space and then rounded to integers. This places them in pixel-sized bins, which reflect the

lower boundary of precision of the display. The clustering is done after transforming the

records to their respective pixel-coordinates and is based on the properties of the pairs of

adjacent axes and the steps are as follows:

5.3.1 Seeding

The quality of the clusters depend strongly on the initial seeds we choose. Axis-pairwise

clustering enables us to look at the type of information loss between adjacent dimensions
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and based on that select our seeds at different stages of the iteration. We have initially

used the degree of over-plotting as the seeding criteria. However, there are other properties

of the bins convergence-divergence [37] that needs to be taken into account: Categorical

dimensions or numerical dimensions with very few distinct values are likely to have more

converging/diverging structures. Numerical dimensions with a more even distribution are

likely to have more over-plotting. The seeding algorithm we use here, takes into account

these properties of the axis-pairs and also chooses the seeding dimension and seeding bin,

i.e, the bin from which a seed record is chosen, accordingly. The steps are as follows:

1. Determine if axes are numerical or categorical.

2. In case of both categorical axes use over-plotting degree as the criterion, for a nu-

merical and categorical adjacency use the degree of convergence/divergence as the

criterion.

3. Compute degree of convergence and divergence for both axes.

4. Convergence and divergence are mirrors of each other. If convergence is greater than

divergence, use convergence as the basis for selecting seed, else use divergence. In

case of the former, the right dimension is the seeding dimension and in case of the

latter, the left dimension is the seed dimension.

5. If both are numerical dimensions check which one of convergence/divergence and

over-plotting is greater. Choose that metric to pick the highest frequency bin from

which the record is chosen.

6. When the values of either over-plotting degree or degree of convergence/divergence
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(a) Clustered view first two pairs being alternate numerical and
categorical adjacent and the last one both are categorical

(b) Cluster ranges for seeding with k = 3

(c) Cluster ranges for seeding with k = 6

Figure 26: Different seed-selection criteria like over-plotting (blue bars) and conver-
gence/divergence (red bars) have a significant effect on the cluster ranges. Lower cluster
ranges obscure less of the data and thus help perceive the different trends and patterns that
exist between axes.
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is equal to 1 for all the bins, we build a histogram hierarchically by combining bins

that are in the nearest neighborhood: if b adjacent bins have a value of 1, then we

put b values in a bin. We select a record from the highest frequency bin in the new

histogram. Following this method, we get a coarser histogram and this enables us to

avoid selecting a record from a bin which has a sparse neighborhood.

5.3.2 Clustering

After choosing the initial seed, the clustering algorithm searches for the best record and

adds it to the current cluster until the threshold value k is reached. Our method departs from

the original algorithm in two ways: a) choice of a distance metric and b) locality-preserving

clustering.

Choice of a distance metric: The original algorithm uses an information loss metric based

on generalization hierarchy of the attributes as the distance function [24]. Earlier we have

argued that a purely data-based clustering approach like this does not work well for visu-

alization (Figure 22). Instead we use the Manhattan distance as the cost function as the

goal here is to find visually similar records. The Manhattan distance metric allows us to

minimize the vertical distance between the lines on the axes. Manhattan distance translates

directly to what we observe as cluster size on the axes.

Locality-preserving clustering: Instead of multi-dimensional clustering, we employ axis-

pairwise clustering that takes just local properties into account. This helps to retain the

local features between adjacent axes leading to smaller and more discernible clusters and

thus less occlusion. In the initial iteration of the clustering, records are grouped into bnk c

clusters based on the seeds we chose earlier. After that, there are still n mod k records left.
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(a) Rendering without gradient (b) Rendering with gradient

Figure 27: Rendering without gradient(top) tends to produce more clutter than rendering
with gradient(bottom)

Those are added to existing clusters following the same initial steps, this time minimizing

the cost function for a particular cluster and adding it to the cluster which incurs minimum

cost. The process is repeated for each axis pair.

5.3.3 How Seeding Criteria Affect Clustering

We choose cluster range as a measure for visual quality of the clusters. Cluster range is

measured as the sum of the number of pixels spanned by the records in a cluster on each

axis. Figure 26 shows a clustered parallel coordinates configuration with three categori-

cal axes and one numerical axis. The bar graphs show that, in case of both categorical

dimensions, cluster ranges for seeding with over-plotting degree are lower than that with

degree of convergence/divergence. In case of a numerical-categorical adjacency, the degree

of convergence/divergence gives lower cluster ranges. We have observed that the choice

of axis is critical in producing smaller clusters, and a wrong choice leads to larger cluster
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ranges and therefore more occlusion.

5.3.4 Rendering

An issue arising in the rendering of the clusters is that they create a large number of visual

artifacts. In addition to the sheer clutter from many overlapping clusters, it is difficult to

tell exactly how many clusters are overlapping at each point. Sharp edges of the clusters

create a large amount of visual noise that also makes the display harder to read.

We originally used a depth-from-color effect [93], where we ordered the clusters by size

and drew the largest ones first. That helps somewhat, and especially makes smaller clusters

stand out (which are more relevant, because they provide more specific information). But

the clutter and noise issues remain.

Based on previous ideas of how to draw clusters in parallel coordinates, in particular

Fua et al.’s hierarchical parallel coordinates approach [54], we developed a different way

of rendering the clusters that does not use sharp edges (Figure 27). Unlike Fua et al., we

do not indicate the cluster centroid with a line. Rather, the color’s alpha channel varies per-

pendicular to the cluster’s main direction (the direction of the centroid), creating a fuzzy

boundary. Scaling the same range of alpha values over larger clusters produces more fuzzi-

ness, while smaller clusters appear sharper. The overall effect of many overlapping clusters

is similar to splatting [128].

5.3.5 Cluster Diversity

k-anonymity ensures record-level privacy which is a necessary but not sufficient con-

dition for privacy protection. The k-anonymity method is susceptible to the homogeneity

problem, where a cluster based on quasi-identifiers can have the same values for the sen-
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(a) Showing splits due to independent clustering on the left and additional
split by exploiting cluster overlap to have cluster-level diversity on the right.

(b) Cluster splits for different configurations of data. On the left: Splits at the
edge compromising privacy with k = 2: In the circled area, we know there
is a distinct value at that point leading to attribute disclosure. With k > 2 it
gets difficult to guess the value because that data point can belong to multiple
clusters which overlap at that point.

Figure 28: Demonstrating cluster splits and overlap.
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sitive attribute and thus the value of the sensitive attributes can be guessed. Therefore,

we apply the concept of l-diversity [82] as a constraint for filtering the clusters that are

highlighted on interaction. A privacy-preserving visualization technique differs from its

data-mining counterpart because of the added challenge of efficiently handling different

interaction conditions. We address this in parallel coordinates by adapting the l-diversity

condition to the dynamic user interaction.

5.3.5.1 Cluster Splits

An artifact of independent clustering between adjacent axes is that clusters are discon-

tinuous and they appear to get split when highlighted as shown in Figure 28(a). On the left

we see that the records r1 and r2 in cluster c are contained in cluster c1 on the adjacent axis

while the record r3 is contained in the cluster c2. When c is selected by the user, both c1

and c2 get highlighted. These splits add to the uncertainty in guessing the exact value of a

record.

5.3.5.2 Added Perturbation

A cluster can also be continuous as shown on the right in Figure 28(a), where all r1,

r2 and r3 are contained in the same cluster c1. In that case, there is no split. But to

apply the l-diversity constraint between a quasi-identifier and sensitive dimension, we need

a cluster to split into at least l different clusters on the sensitive dimension. For this we

use the overlapped pixels on a particular axes (Figure 28(a)) by clusters from adjacent

dimension and highlight l different clusters. In this case, l = 2, and the cluster c2, that

is also highlighted on selection of c, is actually a continuity of cluster d. If there are no

overlaps, we do not show the clusters on the sensitive dimension. Effectively, we add some
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random noise to the clusters and alter the actual data values that are perceived. Although

this perturbation lowers utility, this is a necessary step to protect the sensitivity of the data

values.

5.3.5.3 Adaptive l-diversity

A dimension, on the whole, might not be sensitive, but some of the values can be. In the

German Credit dataset [52], we have four different values for the sensitive dimension, of

which only the value 4 (bad credit) is deemed sensitive by the data owner. The l-diversity

constraint is only applied in case of a cluster that has a record with that data value (Fig-

ure 49). Another example of this scenario would be disease datasets, where cold and flu

might not be considered sensitive by a data owner or an individual, but diseases like cancer

are sensitive and need privacy-preservation.

A couple of special cases arise when i) a sensitive dimension has only two values, for

example a class variable with a binary yes or no; so in that case a cluster can only be 2-

diverse and ii) there are n different values on the sensitive dimension and a cluster has to be

n−diverse. In these cases we do not show any of the highlighted clusters between the quasi-

identifier and sensitive dimension. This reduces the utility of the resulting visualization, but

imposing that restriction is critical from a privacy-preserving perspective.

5.4 Measuring Privacy and Utility Based on Visual Uncertainty

In this section we conceptualize the relationship between privacy and visual uncertainty

in the context of position-based representations like scatter plots, parallel coordinates, etc.

We refer to malicious users with intention of privacy breach as attackers, and outline our

assumptions regarding their background knowledge about the data in course of our descrip-
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tion of the metrics.

5.4.1 Applying the Visual Uncertainty Taxonomy

Visual uncertainty can be decomposed into a set of encoding and decoding uncertainties,

according to the visual uncertainty taxonomy [34]. This taxonomic approach offers an

opportunity to identify the causes, effects and sources of uncertainty that can be related to

privacy and utility of a visualization. In Table 1 we tie these different elements together.

In course of our ensuing discussion we refer to the various levels of the taxonomy tree

proposed in that work.

Binning and clustering are the basic elements of our privacy model. For encoding un-

certainty, one option can be hiding sensitive data values which would lead to completeness

uncertainty at the data mapping stage. However, since the goal is to minimize informa-

tion loss, we do not consider that option. Instead, we focus on quantifying uncertainty

introduced at the visual mapping stage, since privacy-preservation is based on screen-space

properties. Encoding uncertainty in the form of precision and granularity are introduced

due to binning and clustering. These are causes of intended uncertainty, affect the static

visual representation of the clusters and are not influenced by interaction.

The components of decoding uncertainty affect how an attacker is able to gain informa-

tion by using interaction. Cluster overlaps cause identity uncertainty and and splits cause

traceability uncertainty (in parallel coordinates). These are related to both privacy and

utility. For example, if an attacker knows the existence of a data value on one of the di-

mensions, and tries to guess the values for the other dimensions, then cluster overlaps help

in creating identity uncertainty and making privacy breach difficult by hiding the cluster
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membership. However, too many overlaps create clutter and therefore make effective per-

ception of patterns more difficult. Thus decoding uncertainty includes both intended and

unintended forms of uncertainty. Metric-based analysis of visual uncertainty helps quan-

tify these different forms and design a privacy-preserving visualization that balances these

trade-offs.

5.4.2 Disclosure Risks and Attack Scenarios

Two types of re-identification types have been identified in the literature [45, 73]: a)

identity disclosure: this occurs if the intruder is able to assign a particular identity to any

record in the data and b) attribute disclosure: this occurs when an intruder learns some-

thing new about the sensitive attribute values that can be linked to an individual, without

knowing which specific record belongs to that individual. For example, if all 30-year-old

male patients in the disclosed database who live in a particular area had a prescription for

diabetes, then if the intruder knows that John is 30 years old and lives in that particular area,

he or she will learn that John is a diabetic, even if the particular record belonging to John

is unknown. Identity disclosure typically needs external information like quasi-identifiers,

so medical databases try to guard against this type of disclosure. Attribute disclosures are

likely to occur in corporate data, which are not generally associated with external informa-

tion.

Two ways to break the privacy of a sanitized dataset suggested in the literature [70] also

apply in case of visualization. The first one is called prosecutor re-identification scenario,

where an intruder (e.g., a prosecutor) knows that a particular individual (e.g., a defendant)

exists in an anonymized database and wishes to find out which record belongs to that in-
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Type of Visual Uncertainty Disclosure Risk Visual Artifacts

Granularity
Number of records per cluster Cluster range
Connections among data points within the cluster Cluster configurations (Section 5.7.2)

Spatial Accuracy Exact coordinates of data points Cluster range (Section 1)

Identity
Confirmed existence of a data-point

Cluster overlaps (Section 5.6.3)
Cluster membership of a record

Traceability Trace records within clusters across multiple axes. Cluster splits (Section 5.7.1)

Table 4: Connecting causes and effects of uncertainty to disclosure risks and visual arti-
facts.

dividual. In the second one, known as the journalist re-identification scenario, an attacker

tries to re-identify an arbitrary individual. The intruder does not care which individual

is being re-identified, but is only interested in being able to claim that privacy breach is

possible.

5.5 Mapping Disclosure Risks to Visual Uncertainty

Design and analysis of visualization techniques have commonly been studied based on

two factors: analytical tasks that a user performs [102] and visual quality that needs to

enhanced to convey information effectively [16]. In addition to these factors, another focal

point of a privacy-preserving visualization is preventing disclosure of sensitive informa-

tion through the visual structures. In this section we argue how disclosure risks related to

privacy can be mapped to the causes and sources of visual uncertainty in the screen-space.

In visualization, at least some information about the data is typically available, like labels

and value range on axes, and the minimum and maximum boundaries of each cluster. The

notion of totally ‘blind’ attack, without any knowledge about the data, may not be applica-

ble to privacy-preserving visualization. Furthermore, an attack usually consists of a series

of progressive actions, building on incrementally acquired knowledge. An attacker may

start with little knowledge, and by making observations from the information conveyed in
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visualization, the attacker may identify a possible end point of an arbitrary line in a clus-

ter. From that, the attacker gradually identifies more information about the line by moving

from one axis to another, or works out information about other lines in the same cluster.

Regardless of how complex an attack is, it can be decomposed into a set of basic attacking

actions, such as: determining the number of data points in a cluster, finding connections

among them, determining if a specific record is in a particular cluster, finding coordinates

of a two-dimensional record, and so on. It is not difficult to combine such basic attacking

actions with acquired knowledge to enable complex attack actions, for instance, given a

disclosed value of a record (i.e., an end point on an axis), find all other values of this record

(i.e., all end points of this line; or given a disclosed line in a cluster, find all other lines in

the cluster. We assume that an attacker is knowledgeable about parallel coordinates and

scatter plots, and may have some interactive analytical and visualization tools to aid his/her

activities.

5.5.1 Visual Uncertainty in the Context of Privacy-Preserving Visualization

Privacy-preserving clustering exhibits inherent visual uncertainty that can be utilized

for defending against potential attack scenarios. In Table 4 we summarize the causes of

visual uncertainty that correspond to the privacy issues and connect them to the visual arti-

facts that are the sources of uncertainty and act as an additional layer of protection besides

privacy-preserving clustering against possibilities of disclosure. Granularity uncertainty is

related to number of elements per cluster and the connections among them. We assume that

an attacker has knowledge of k, that is the number of data points per cluster. The sources

of granularity uncertainty are i) cluster ranges on an axis-pair that hide the precise location
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of the data points and ii) cluster configuration that hides the connection among the points.

Because of the different possibilities of cluster configurations depending on different val-

ues of k, an attacker has to overcome this form of uncertainty to gain knowledge about the

data. In many cases, using interaction an attacker can know about a cluster configuration

(Section 5.7.2). Knowing a cluster configuration in many cases would not reveal the precise

location of the end points. Accurately guessing the non-edge coordinates of records inside

the cluster would mean that the attacker has to work out a number of combinatorial cases to

overcome the lack of spatial accuracy due to the pixel resolution of the cluster range (Sec-

tion 1). Even if cluster edges comprise of real data points, many clusters overlapping at the

same point can cause identity uncertainty. Moreover, even if the attacker knows that a cer-

tain data point or a record exists in the database, overlaps can make it difficult for him/her

to identify which cluster that entity belongs to and also trace the path of the record across

different axis-pairs in parallel coordinates (Section 5.6.3).

5.5.2 Connecting Privacy, Utility, and Visual Uncertainty

Informations is a measure of the decrease of uncertainty for the receiver of a mes-

sage [100]. If visualization is viewed as a communication channel from the data space

to the perceptual and cognitive mental space of the user [94], it is important to trace the

uncertainty along different stages of the pipeline, so that the information communicated

to the user can be optimized. In case of privacy-preserving visualizations, some forms of

uncertainty would be intended, to prevent disclosure of sensitive information. In general,

increasing the amount of visual uncertainty in a visualization will increase privacy of the

visualization while decreasing its utility. In other words, privacy and utility are functions
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of visual uncertainty.

Let u1,u2, . . . ,up ∈ [0,1] be the quantities corresponding to a set of measurable uncertain-

ties in a visualization, with 0 being most certain and 1 being most uncertain. Let us define

two approximated measurements for privacy (mp) and utility (mt) of the visualization as:

mp =

p∑
1

ui, mt =

p∑
1

(1−ui) (2)

In general, mp and ui are positively correlated, while mt and ui are negatively correlated. In

this work we propose different measures related to ui that address the different causes and

effects of uncertainty as categorized by the taxonomy. Here we use the term “measure” in a

broad sense, including both computational measurement and human-centered quantitative

evaluation. In practice, privacy and utility may also be affected by factors other than visual

uncertainty, such as the environment where the visualization is used. The above measure-

ment, mp and mt should be used only for comparing visualization with different forms of

anonymization while those other factors remain unchanged.

5.5.3 Role of Metrics

For some forms of visual uncertainty, like that due to pattern complexity, screen-space

metrics already exist, like Scagnostics for scatter plots [120], Pargnostics for parallel coor-

dinates [37], etc. However, metrics for other types of uncertainty are missing in the current

literature. Some of the metrics that we propose [35] are applicable beyond the context of

privacy, where the issue of disparity between the large number of data points and limited

number of pixels arise.

Encoding uncertainty serves as the initial defensive mechanism against attackers with no
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background knowledge about the data. Loss of precision due to binning and high-level of

granularity due to clustering make it difficult for an attacker to guess the exact value and

number of data points within a cluster. To quantify these, we have developed the cluster

range metric and the cluster summary error metric. The cluster range metric also captures

the decoding uncertainty involving spatial accuracy for guessing the location of the data

points within a cluster. Encoding uncertainty cannot be reduced by using interaction.

When an attacker has some background knowledge about the data, the different com-

ponents of decoding uncertainty help in confusing the attacker. When an attacker knows

about the existence about a particular data-point in the database, the process of privacy

breach starts by associating a data point with a cluster. Identity uncertainty due to cluster

overlaps make that association difficult. Overlaps also lead to clutter, where identifying

paths of clusters itself is difficult. We quantify the privacy aspect of identity uncertainty

through the overlap entropy metric and the utility aspect dealing with clutter, through the

overlap clutter metric. For line-based parallel coordinates, traceability of lines across mul-

tiple dimensions is an advantage over scatter plots. However, in privacy-preserving parallel

coordinates, due to axis pair-wise clustering, clusters appear to split across axis. This leads

to uncertainty due to lack of traceability, that we capture through our average split count

metric. For controlling the uncertainty due to pattern complexity we use the Pargnostics

metrics and also compute the mutual information between adjacent dimensions. These are

essential for choosing the best adjacency configurations for parallel coordinates and also

point out the pairs of axes with high utility in scatter plots.
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Figure 29: Pixel-based binning and clustering in parallel coordinates and scatter plots.
Illustrating different ways for 2-anonymizing the four data points in a pixel grid. For a
much larger number of points, estimation of privacy requires metrics.

5.6 Metrics for Uncertainty Measurement

In the following section we introduce the metrics for measuring the different types of

uncertainty. We describe the type of uncertainty measured by each metric and quantitatively

describe each with illustrations and examples from the Diabetes dataset that are described

in detail in Section 6.8.

5.6.1 Cluster Summary Error

The further an actual record is perceived to be located from its actual position, the more

difficult it would be to precisely guess the value of a record. In case of pixel-based repre-

sentation, binning already introduces loss in precision due to quantization error. A cluster-

based representation accentuates the error: the further away a record is from the cluster

centroid, the more difficult it will be for knowing the exact value. We measure the sum-

mary error for privacy-preserving clustering as the Manhattan distance between the its ac-

tual pixel coordinate and the pixel coordinate of the cluster centroid. This is similar to the
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Figure 30: Average cluster summary error for all dimensions of the Diabetes dataset that
are shown to increase monotonically with increasing k.

class consistency measure [103] for selecting optimal views of the data using scatter plots.

Although in case of cluster-based representation this is not directly reflected in what the

user sees on screen, the metric gives a quantitative measure of precision uncertainty.

Consider a cluster Ct consists of nl records. It intersects with an axis, spanning over

several pixel bins, at,at + 1, . . . ,bt − 1,bt where 0 ≤ at ≤ bt ≤ h− 1, where h is the total

number of pixels of this axis. The centroid of the intersected section is thus:

ηt =
at + bt

2

The error of this intersection εt can be defined as follows:

εt =
1

nlh

nl∑
i=1

|si−ηt| (3)

The average error over all clusters if given by:

ε =
1
nc

nc∑
i=1

εt (4)

where si is the actual mapped pixel coordinate of record Ri on that axis.
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We compare the cases in Figure 29 for the cluster summary error metric. For x-axis, we

have: εA1 = 0.056, εB1 = 0.056; εA2 = 0.222, εB2 = 0.222; and εA3 = 0.111, εB3 = 0.333.

For y-axis, we have: εA1 = 0.056, εB1 = 0.056; εA2 = 0.278, εB2 = 0.222; and εA3 = 0.167,

εB3 = 0.333.

Therefore configuration 1 is less private than configurations 2 and 3 on both axes.

As shown in Figure 30 the average cluster summary error is much higher in case of

data-based clustering. This coincides with higher cluster ranges which leads to clutter and

reduces the visual quality. Information loss in terms of precision of data values is also

much higher in this case.

5.6.2 Cluster Range

Cluster ranges on the axes mask the precise location of the data points. A cluster in the

data-space is perceived in terms of the number of record it contains. In the screen space, it

is perceived in terms of the number of pixel bins covered by the cluster on the axes, which

we define as cluster range. When the analysts has no background knowledge about the data

and tries to randomly guess if data points exist or not, cluster ranges lead to granularity

uncertainty and that due to spatial accuracy. Larger a range is, the less accurately one can

estimate the value of any record within this range, and at the same time, more likely it

will cause overlapping among clusters. Though a cluster range can be perceived as both a

privacy and utility metric, since its primary role is masking data values and the uncertainty

is intended, we consider cluster range as a privacy metric. Unlike cluster summary error,

cluster range is independent of the number of records in the cluster or their individual

values.
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Figure 31: Illustrating difference in effects of cluster overlaps for scatter plots and parallel
coordinates. The red cluster is represented by A and the blue cluster by B.
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YA > YB YA < YB
YAmYB YAsYB YA f YB YA = YB

YAoYB YAdYB
YBmYA YBsYA YB f YA YBoYA YBdYA

XA > XB N B E OB OB OB OB OB
XA < XB B N E OB OB OB OB OB
XA = XB OB OB OB OB OB OB OB OB
XAmXB E EB EB OB OB OB OB OB
XBmXA
XAsXB OB OB OB OB OB OB OB OB
XBsXA
XA f XB/

OB OB OB OB OB OB OB OB
XB f XA
XAoXB OB OB OB OB OB OB OB OB
XBoXA
XAdXB OB OB OB OB OB OB OB OB
XBdXA

Table 5: Cluster overlaps depending on the relationship of the clusters (A and B) on the
axes (X and Y)in parallel coordinates. N: No overlap either on the axes or between the axes;
B: Overlap only between axes; OB: Overlap between as well as on the axes; E: Meeting at
the edge,EB: Meeting on the axes and overlap between axes.

Consider a cluster Ct. Its intersection with the axis spans between pixel coordinates at

and bt, where The normalized range of this cluster is thus (bt − at)/(h− 1). We can define

an axis-based metric as the average range of all clusters intersecting with the axis as:

γ =
1

nc(h−1)

nc∑
t=1

(bt −at) (5)

where nc is the total number of clusters.

We compare the cases in Figure 29 for the cluster range metric. For x-axis, we have:

γA1 = 0.125, γB1 = 0.125; γA2 = 0.5, γB2 = 0.5; and γA3 = 0.25, γB3 = 0.75. For y-axis, we

have: γA1 = 0.125, γB1 = 0.125; γA2 = 0.625, γB2 = 0.500; and γA3 = 0.375, γB3 = 0.750.

Configurations 2 and 3 are therefore more private than 1.
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YA > YB YA < YB
YAmYB YAsYB YA f YB YA = YB

YAoYB YAdYB
YBmYA YBsYA YB f YA YBoYA YBdYA

XA > XB N N N N N N N N
XA < XB N N N N N N N N
XA = XB N N O O O O O O
XAmXB N N E O O O O O
XBmXA
XAsXB N N O O O O O O
XBsXA
XA f XB N N O O O O O O
XB f XA
XAoXB N N O O O O O O
XBoXA
XAdXB N N O O O O O O
XBdXA

Table 6: Cluster overlaps depending on the relationship of the clusters (A and B) on the
axes (X and Y)in scatter plots. The notations are the same as in parallel coordinates except
for the case B as there is no distinction between overlap between and on the axes in scatter
plots.

5.6.3 Overlap Clutter

Cluster overlaps lead to identity and traceability uncertainty in perceiving the path of the

clusters, therefore leading to clutter. In line-based parallel coordinates, the vertical distance

between the start and end points of a line on adjacent axes can be treated as intervals [5] to

determine when lines cross [37]. In the case of cluster-based parallel coordinates and scatter

plots, we treat the cluster ranges on each axis as intervals for detecting cluster overlaps.

Allen’s interval algebra defines 13 possible cases between two intervals, X and Y: X before

Y , X starts Y , X ends Y , X meets Y , X during Y , X overlaps Y , and X equals Y . All but the

last condition also have a symmetrical case. Given the 13 cases between the two clusters

on each axis, we have to investigate 13×13 = 169 possible cases.

For parallel coordinates there are four possible pairwise relationship between cluster

ranges: no overlap (N), meeting at the edges (E); overlap on and between axes (OB) and
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meeting at the edges and overlap between axes (EB). In fact, all cases where overlap

happens on the axes also means that there is overlap between the axes. For scatter plots

on the other hand, there is no distinction between an overlap on the axis and that between

the axes, because the coordinate positions can be anywhere between the axes. The possible

relationships between cluster ranges in scatter plots, are therefore, N, E, and O. A simple

enumeration of the 13∗13 conditions enables us to draw a distinction among these overlap

cases. The different possibilities for parallel coordinates are shown in Table 5 and those for

scatter plots are shown in Table 6. The symmetrical conditions are shown together except

for the greater than (>) and less than (<) condition as there is a distinction between parallel

coordinates and scatter plots in this case.

Based on these conditions we can derive three cases that are relevant for clutter: A) over-

lap conditions that do not lead to clutter in either parallel coordinates or scatter plots (Fig-

ure 31(a)), B) overlap conditions that lead to clutter in both parallel coordinates or scatter

plots (Figure 31(b)), and C) overlap conditions that lead to clutter in parallel coordinates

but not in scatter plots (Figure 31(c)). For A, the conditions are either ’before/after’ or

’meets’ on both axes. For B, the conditions are ’overlaps’, ’starts/finishes’ and ’during on

both axes.

One distinction between parallel coordinates and scatter plots is when there is a ’be-

fore/after’ condition on one axis and a different condition on the other. This is reflected

in a much higher number of N in Table 6 for scatter plots than parallel coordinates. In

these cases clusters overlap between axes in parallel coordinates but there is no perceptual

overlap in scatter plots. These conditions are the basis for our overlap clutter metric.

For the clusters, the upper bound for the number of overlaps is nc(nc−1)
2 . Therefore we
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Figure 32: Clutter in privacy-preserving scatter plots is lower than parallel coordinates due
to the lesser number of overlaps.

compute clutter in parallel coordinates (CP) as:

CP =
2no

nc(nc−1)
(6)

where no is the total number of overlaps in parallel coordinates or scatter plots. For scatter

plots we denote clutter by CS . The difference between CP and CS for different cluster sizes,

i.e. k is shown in Figure 32. Evidently, CP > CS , i.e., identity and traceability uncertainty

are lower in scatter plots than parallel coordinates because of the lesser number of overlaps

for different values of k.

5.6.4 Overlap Entropy

The previous metrics do not take any possible background knowledge of an attacker into

account. If an attacker knows which cluster a data point belongs to, then the privacy breach

becomes easier, than the case when there is identity uncertainty regarding associating a

data point with a cluster.

Overlapping cluster ranges on the axes lead to uncertainty because of difficulty in know-
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X Y X

Y

(a) When values on one axis are known to the attacker, then over-
laps on the axis create identity uncertainty about cluster member-
ship of those values.

(b) When values on both axes are known to the attacker, then
overlap on both axes create identity uncertainty. Large number of
such overlaps also reduces the mutual information between adja-
cent axes.

Figure 33: Illustrating how overlaps on one axis and that on both axes lead to uncertainty.
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ing which cluster a pixel bin belongs to and consequently, tracking the clusters across

different axis-pairs. When certain data values are known to attackers, overlaps help in cre-

ating uncertainty about cluster membership of a data point as illustrated in Figure 33(a).

We use an information theoretic measure in the form of Shannon’s entropy to quantify the

uncertainty in tracking precise membership of a bin in cluster. This is similar to the privacy

metric based on entropy suggested by Agrawal et al. [2] and Bertino et al. [18].

Consider nc clusters on an axis in a privacy preserving parallel coordinates visualization.

The axis has h pixel bins. Each bin may intersect with zero, one or several clusters, while

each cluster may span over one or more bins. As identifying an empty bin is trivial, the

uncertainty is thus associated with those bins that intersect with one or more clusters.

Assume that the attacker has no a priori knowledge about any cluster, so the probability

of making a correct guess of the association between a bin and a cluster is independent and

identically-distributed.

Let αi be the number of clusters intersect with bin βi, where 0 ≤ i ≤ h−1.

Given a cluster, Ct, the probability mass function for identifying this cluster at bin βi is

thus

P(t@i) =


0 if Ct does not intersect with βi

1/αi if Ct intersects with βi

The entropy in relation to cluster Ct is thus the following sum computed over all non-zero

Pt@i.

Ht = −

h−1∑
i=0

P(t@i) ln P(t@i)

We can compute an information-theoretic measure of uncertainty of the axis as
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Φ =

∑nc
t=1 Ht

ncHmax
(7)

Hmax is the maximum entropy value for Ht, which is associated with a situation where ev-

ery cluster spans over every pixel bin, that is, P(t@i) = 1/nc for every cluster and every

bin. The lower Ht is, the lower information it contains about Ct, and thus higher privacy.

From empirical results, we have observed that the absolute value of entropy increases with

increasing k. Since with increasing k there are more overlaps, we have more uncertainty in

the screen-space. When we compare with data-based clustering, the entropy value is lower

as compared to visual clustering, because of less number of overlaps among clusters (Fig-

ure 35b).

5.6.5 Mutual Information

When an attacker knows both coordinates of a two-dimensional data point, then uncer-

tainty due to overlaps is only caused when overlaps are on both axes. As shown in Fig-

ure 33(b), these types of overlaps reduce the mutual information between the two adjacent

axes. We consider the mutual information as an utility metric and this metric is important

for handling interaction scenarios like reordering axes. The mutual information, a measure

of the reduction in uncertainty of one variable due to the knowledge of the other, needs to

be maximized for utility purposes.

The general formula for the mutual information between two random variables X and Y

is

I(X;Y) =
∑
x∈X

∑
y∈Y

P(x,y) ln
P(x,y)

P(x)P(y)
(8)

Where P(x,y) is the joint probability of x and y, and P(x) and P(y) are the marginal prob-
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B CA A B C

Figure 34: In case of multi-dimensional clustering,on the left, there is no traceability
uncertainty on brushing, as clusters are continuous. In case of axis pairwise clustering, on
the right, traceability uncertainty of an axis pair depends on the average number of split
cluster on the adjacent axis.

abilities. For a record with values xi, j and xi, j+1 on adjacent axes on a parallel coordinates

plot, the joint probability is equal to the uncertainty of that record’s exact location, which

is determined by the number of clusters that contain it. Consider two axes, x and y. Given

a specific cluster Ct, we can compute the probability mass functions P(t@xi) and P(t@y j)

as in the previous section. The joint probability mass function can be defined as:

P(t@xi, t@y j) =


0 if condition (i)

1
αx,iαy, j

if condition (ii)

where condition (i) is when Ct does not intersect with the ith bin on x-axis or the jth bin

on y-axis; and condition (ii) is when Ct intersects with both the ith bin on x-axis and the

jth bin on y-axis. We can thus compute the mutual information for cluster Ct between the

two axes using I(X;Y) . The maximum mutual information is when all clusters intersect

with the two axes at the exactly same bins. As expected, mutual information decreases for

increasing k, but not monotonically for every k, as shown in Figure 35a).
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5.6.6 Average Split Count

The average number of split cluster per axis pair is an indication of the traceability

uncertainty. When an attacker selects a cluster of interest, the larger the number of cluster

splits on the adjacent axes, the more difficult will it be to trace the cluster that contains

the same record as the selected cluster. This form of uncertainty helps in meeting the l-

diversity criteria [82], which ensures sufficient diversity between a quasi-identifier axis and

a sensitive attribute axis, so that a cluster cannot be associated with exactly one sensitive

value.

For computing the average split count, we have to consider two axis pairs together as

shown in Figure 34. For each cluster, we compute the number of splits on adjacent axes.

The average number of spits per cluster in axis pair, indicates the level of traceability un-

certainty where T is given by the following equation:

T =
1
nc

nc∑
i=1

1
S plit(Ci)

(9)

where S plit(Ci) counts the number of split clusters for the ith cluster on adjacent axis. The

lowest traceability uncertainty is when T = 1, that is, there is a one-one association between

clusters on adjacent axes. In case of multidimensional clustering T is always equal to 1. We

consider T as a utility metric and 1−T as a privacy metric. In this respect multidimensional

clustering has higher utility than visual clustering. However, the privacy is lower because

each cluster can be associated with exactly one cluster on the adjacent axis. In case of

l-diversity this becomes a problem and can lead to disclosure of sensitive attributes.
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a)

b)

c)

d)

Figure 35: Comparison of privacy and utility metrics for four different axis pairs in case
of data clustering and visual clustering.
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5.6.7 Measures based on Pargnostics

Visual structures in a visualization represent semantic patterns within the data. Trans-

formation of the representation distorts those structures as in privacy-preserving cluster-

ing. The different visual artifacts, like parallel lines, converging/diverging lines and line-

crossings between adjacent axes; represent the trends and relationship between adjacent

data dimensions. In case of cluster-based visualization, it is useful to see how the struc-

tures get preserved or distorted with comparison to line-based parallel coordinates.

Since most cluster boundaries represent connection between actual data points, we treat

the cluster boundaries as lines and apply the Pargnostics metrics on this lines. Even in some

cases where the cluster boundaries do not represent actual data points, their orientation

between an axis-pair leads to the overall perception of the dominant visual structure there.

Cluster Parallelism. To describe parallelism, we compute a vertical distance histogram

between any two cluster boundaries on adjacent axes. Then we look at the distribution of

the distance values and estimate the interquartile range. Narrower range implies higher par-

allelism. We normalize the distances between 0 and 1, by dividing by the highest possible

distance. With large cluster ranges Parcluster gets distorted.

Cluster Convergence/Divergence. In the original parallel coordinates, lines converging

to or diverging from a few points on the adjacent axis form a frequently occurring pat-

tern. We exploit these properties for seeding our clusters. The points with most conver-

gence/divergence (which of them is the dominant structure) are our starting points for clus-

tering. Similar to Pargnostics, we use the two-dimensional axis histogram to calculate the

amount of convergence/divergence between adjacent axes and normalize the values with
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the maximum value of convergence/divergence. If V is the average pattern preservation for

an axis pair, then we have:

V =
1
2

(
Parcluster

Parlines
+

CDcluster

CDlines

)
(10)

5.6.8 Additivity of Uncertainty Metrics

The metrics proposed in the previous discussion are added based on whether a metric

relates to privacy or utility. While some of the privacy metrics can also be applied for

measuring utility or vice versa, we categorize the metrics based on their primary character-

istic (either privacy or utility).

The metrics for encoding uncertainty, like cluster summary error and cluster range given

by Equations 4, 5, and those for decoding uncertainty given by overlap entropy and average

split count given by Equations 7, 9 give us a measure of privacy.

The metrics for decoding uncertainty, like overlap clutter, mutual information, Pargnos-

tics metrics and average split count, given by Equations 6, 8, 9, 10 give us a measure of

utility. We normalize the measures by giving equal weights to all the different uncertainty

measures. Depending on the data owner or the visualization designer, these weights can be

made non-uniform. Referring back to Equation 2, these different metrics represent the dif-

ferent amounts of uncertainty (ui) in the visualization. The measures for utility have been

computed as (1− ui) so that lower uncertainty corresponds to higher utility. We calculate

privacy (mp) and utility(mt) as described below. The graphs for mp and mt are shown in

Figures 35c and 35d.



96

? ? 

B A A B C 

A 

B 

C 

A 

B 

? 
? 

? 

(a) Cluster overlaps between axes (left) and
across adjacent axis pairs (right) create un-
certainty in guessing the cluster member-
ship of known data points.
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(b) Different cluster configurations (left)
and cluster ranges (right) create uncertainty
in knowing the coordinates and orientation
of individual records inside a cluster.

Figure 36: Illustrating how visual uncertainty helps in preserving privacy for different
re-identification scenarios. Inter-cluster uncertainty helps in privacy-preservation when an
attacker attempts to determine the cluster membership of a known data point in case of the
prosecutor re-identification scenario. Intra-cluster uncertainty helps in privacy-preservation
when an attacker attempts to gain knowledge about the data at a lower level of granularity
than what is shown, in case of journalist re-identification scenario.

mp =
η+γ+Φ+ (1−T )

4
(11)

mt =
V + I + T +C

4
(12)

5.7 Handling Attack Scenarios Through Metrics

Privacy-preserving clustering exhibits inherent visual uncertainty that can be utilized for

defending against potential attack scenarios. In Table 4 we summarize the causes of visual

uncertainty that correspond to the privacy issues and connect them to the visual artifacts that

are the sources of uncertainty and act as an additional layer of protection besides privacy-

preserving clustering against possibilities of disclosure.
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Figure 37: Summarizing the connection among the different attack scenarios, inter and
intra-cluster uncertainty and privacy risks. Red arrows and boxes represent either use of
prior knowledge or gaining knowledge about sensitive data from the visualization. −U
indicates reduction of uncertainty through interaction and use of combinatorics.

Inter-Cluster Uncertainty: Even if cluster edges comprise of real data points, many clus-

ters overlapping at the same point can cause identity uncertainty. Moreover, even if the

attacker knows that a certain data point or a record exists in the database, overlaps can

make it difficult for him/her to identify which cluster that entity belongs to and also trace

the path of the record across different axis-pairs in parallel coordinates (Section 5.6.3).

Examples of inter-cluster uncertainty are shown in Figure 36(a).

Intra-Cluster Uncertainty: Granularity uncertainty is related to number of elements per

cluster and the connections among them. We assume that an attacker has knowledge of

k, that is the number of data points per cluster. The sources of granularity uncertainty are

i) cluster ranges on an axis-pair that hide the precise location of the data points and ii)

cluster configuration that hides the connection among the points. Because of the different
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possibilities of cluster configurations depending on different values of k, an attacker has to

overcome this form of uncertainty to gain knowledge about the data. In many cases, using

interaction an attacker can know about a cluster configuration (Section 5.7.2). Knowing a

cluster configuration in many cases would not reveal the precise location of the end points.

Accurately guessing the non-edge coordinates of records inside the cluster would mean

that the attacker has to work out a number of combinatorial cases to overcome the lack of

spatial accuracy due to the pixel resolution of the cluster range (Section 1). Examples of

inter-cluster uncertainty are shown in Figure 36.

Uncertainty Reduction and Attack Scenarios: In Figure 37, the flowchart describes the

different levels of knowledge that an attacker can have and how the different sources and

types of uncertainty need to be overcome for possible privacy-breach scenarios. In the

flowchart, we can observe that without any background knowledge, an attacker has to first

overcome inter-cluster uncertainty and only then can narrow down to a single or candidate

clusters for analyzing their internal structures. As we will discuss in the following sections,

-U denotes the cases where reduction of one form of uncertainty leads to the reduction of

the other.

5.7.1 Inter-Cluster Uncertainty: Overlaps Among Clusters Across Adjacent Axis Pairs

Overlaps among clusters across adjacent axis pairs is only applicable to parallel coordi-

nates. In the screen-space, clustering is done independently for each axis pair. Therefore

the clusters across axes appear to be discontinuous at the connecting points. When the

records in a particular cluster continue on to two different clusters, then there appears to

be a split (Figure 38(a)). While the cluster splits generally are helpful for preserving pri-
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vacy as they hide the precise path a poly-line traverses across the different axes, leading

to traceability uncertainty, some of these splits can divulge information about the cluster

configurations. Similar to the derivation of the overlapping conditions in the preceding dis-

cussion, the split conditions can be derived from the overlap conditions between clusters

on adjacent axes from Allen’s interval algebra.

Relation between adjacent clusters: Overlap relationship between split clusters on adjacent

axis-pairs, that can be derived from Allen’s interval algebra, can reveal the location of the

free points on the originating cluster. Refer to Figure 38(a), left image. Here since C : A = E

and C : B = E, we immediately know that there are no free points. In Figure 38(a), right

image, C : Cs = O, but since the condition is during, there is no knowledge of split and hence

the number of free points is not known. In Figure 38(b), for the left image, A : B = N. In

that case not only the free points are revealed, but we also know area on the cluster which

do not contain data points. In case of the right image, where A : B = O, we can know the

free points if there is enough transparency. In that case, however we are not able to to know

the area that does not contain any data points.

Number of Splits: The number of splits is upper bound by the number of records in each

cluster, i.e., if a cluster contains k records, then there can be a maximum of k splits. If

there are less than k splits, then there is a higher probability of uncertainty in tracing which

records belong to which split clusters. On the other hand, if there are exactly k split clusters,

then each split cluster contains a record each from the originating cluster and there is no

uncertainty in guessing the distribution of records.
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Knowledge about configuration: With brushing, clusters that contain the same record for all

axes are visible and therefore the split configurations on both sides of a two-dimensional

cluster can be known. Two such configurations are shown in Figure 38(c), left and Fig-

ure 38(c), right. For the left image, free points on both side are known. Since the number

of free points on both side is one, it follows from our discussion in Section 5.7.2, that the

cluster cannot have a pivot edge configuration and thus, has at least one real edge line.

In the second case, any free points that might exist are not revealed due to the during re-

lationship. So, the configuration of a cluster is not known exactly and one has to work

out the combinatorial cases mentioned in Section 1 for guessing the exact location of the

end-points of the records.

5.7.1.1 Uncertainty Due to Overlaps

In this section, we formally model the uncertainty caused by overlaps based on two

types of uncertainty: identity uncertainty and traceability uncertainty; and also discuss any

uncertainty reduced due to the overlaps.

Identity Uncertainty:Between adjacent axes, cluster overlaps can lead to identity uncer-

tainty about the existence of a data point or about the cluster membership of a data point,

based on the attacker’s background knowledge. The probability computations in Section 1

would be affected if multiple clusters overlap or meet at the point under consideration. In

that case, if we assume an attacker knows the existence of a record, the probability of infer-

ence would be reduced, proportional to the number of overlapped clusters. If the attacker

does not know if the data point exists or not, the uncertainty would further depend on the

overlap type. If the point under consideration lies at the meeting point of lines, then the
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Cluster Split No Cluster Split
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(a) A cluster may or may not split, depending on the
interval relationship between clusters across adjacent
axes.

A

B

A
B

A:B = N A:B = O

C C

(b) Relationship between split cluster determines if we
know the free points.

All free points known Some free points known

(c) a) Free points known and not a pivot configuration,
b) Free points not known and might be an edge or a
pivot configuration.

Figure 38: Illustrating how the different types of splits reveal information about the origi-
nating cluster.
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probability is not affected as the precise location is revealed. However, if the point lies

in an overlapped region, then the probability of inference is further reduced, proportional

to the area of overlap. We would that the number of edge-meeting conditions for clusters

to decrease with increasing k. This is because with increasing k there is a greater loss in

precision of the values on the axis as the cluster ranges get higher [38]. This is beneficial

from a privacy point-of-view because for smaller k, cluster boundaries meeting precisely

on a pixel can potentially cause disclosure of the the data-points.

Traceability: In this section we address the traceability uncertainty, that is, knowing the

configurations within a cluster, how does one know the distribution of the records in the

split/continuing clusters? This depends on the number of splits. If the number of splits is

equal to the number of records within the cluster, then the split clusters share one record

each with the originating cluster. This is a less uncertain case than when the number of

splits is less than the number of records in each cluster. Then the distribution of records in

the continuing clusters is not immediately known.

Let t be the number of splits where t < k. The number of records in each split cluster

can range from 1 to k− t +1. The problem of finding the number of possible distribution of

records in the split clusters then reduces to finding the number of t-subsets of k elements.

Let us assume the worst-case scenario of the attacker knowing the records within a clus-

ter and then trying to find out their distribution in the split clusters. This is analogous to

the problem of distributing k distinguishable objects (the records) in t non-empty indistin-

guishable boxes. This is given by Stirling number of the second kind [101], S (k, t) which

is given by the following standard formula:
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S (k, t) =
1
t!

t∑
i=1

−1iC(t, i)(t− i)k (13)

C(t, i) denotes the combination of t things, taken i at a time. A two-dimensional table

of values for the above formula relating k to t is readily available in the discrete mathe-

matics literature [79]. The number of possibilities when the number of splits approaches k

increases drastically and thus, if the attacker does not have any further background knowl-

edge about the data, it would be very difficult to know the distribution of records in the split

clusters.

5.7.1.2 Uncertainty Reduction

Uncertainty about a configuration can be reduced by knowing the free points as we had

discussed in Section 5.7.2.5. In case of an overlap (O) between the originating cluster and

split cluster, free points are revealed, while in case of an edge-meeting (E), they are not. Let

f j denote the number of free points on the jth axis. The ability of an attacker to know the

exact number of free points depends on the overlap relation between the originating cluster

and the split clusters. If t j is the number of split clusters on the jth, C j is the originating

cluster, and Ci
j is a corresponding split cluster, then the number of free points known is

given by:

f j =

t∑
i=1


1 if C j : Ci

j = O

0 if C j : Ci
j = E

For a given dimension, we calculate the net risk of known free points on the jth axis by

the following formula, where f i
j denotes the number of split clusters on the jth axis for the
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K=2 K=3 K>=4 

Figure 39: From left to right, a cluster can be defined by: all edge elements, a combination
of edge and pivot elements, and also no edge element when k >= 4. Edge elements are
shown in blue, pivot elements in red, and free elements in green.

ith originating clusters, n being the number of originating clusters:

R( f j) =
1
n

n∑
i=1

f i
j

tij
0 < R( f j) < 1 (14)

In case of all free points known for every cluster, R( f j) = 1. The lesser the value of R( f j),

the lower is the risk for the jth dimension.

5.7.2 Intra-Cluster Uncertainty: Cluster Configurations

A two-dimensional cluster configuration in scatter plots and parallel coordinates is de-

fined by the pixel coordinates of the data points within the cluster. A pixel coordinate in

scatter plots is represented by a point, while in parallel coordinates, it is a line, by the point-

line duality principle [65]. For the sake of clarity, we refer to the points/lines as elements

within the cluster. The shape of a cluster in parallel coordinates can be a quadrilateral or

a triangle and the same in scatter plots is either a rectangle or a line. In case of triangular
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clusters, the uncertainty is very low, since coordinates of the two borders or end-points

is always known. Thus k = 2 has no anonymization effect in case of triangular clusters.

In case of numerical dimensions, the probability of occurrence of quadrilateral clusters is

much higher than triangular or linear ones. In this section, we study the orientation of

the elements within clusters for different values of k, how they cause different types of

uncertainty and their relation to privacy for different values of k.

5.7.2.1 Different elements in a cluster

Location of the elements within the cluster determine the uncertainty associated with

them. Since cluster borders are formed by data-points, elements located at the edge or

corner of a cluster have high vulnerability. On the other hand, the cluster coordinates that

are not on the corner have a higher level of privacy. We term these as free points. We define

the different elements within the cluster as follows:

Corner elements: In parallel coordinates these are the lines connecting two pairs of corner

points: they can be either the borders or the diagonals. In scatter plots these are the corner

points. These are marked in blue in Figure 39. These are most vulnerable to disclosure as

one of the coordinates of the corner points is always known to the attacker.

Pivot elements: In parallel coordinates these are the lines that connect corner points to free

points. In scatter plots these are free points located on the edges. These are marked in red in

Figure 39. These are less vulnerable than the edge elements, as one only of the coordinates

is revealed by the visualization.

Free elements: In parallel coordinates, these are the lines that connect a a pair of free

points. In scatter plots, these are the non-corner coordinates. These are marked in green in
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Figure 40: Base configurations in a) parallel coordinates and b) scatter plots on which the
configurations for higher k are based upon. The arrowheads denote edge-only configura-
tions and the others are mixed edge configurations.

Figure 39. These have the highest degree of privacy as they can be located anywhere within

the cluster and both coordinates are difficult to guess. In triangular or linear clusters, free

elements can be located only on one of the axes, therefore the uncertainty is much lower as

one of the coordinates is always known.

Depending on the value of k, a configuration can be defined by only edge elements, a

combination of edge and pivot elements, or only pivot elements. These are also shown in

Figure 39. In the following sections we define and quantify how different configurations

can be formed by the cluster elements.

5.7.2.2 Base Configurations

To define a cluster configuration minimally, the edges or the corners have to be defined

first. We term those cluster configurations as base configurations, which are concerned

with the orientation of edge elements, and from which others can be derived. Base config-
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Figure 41: Illustrating how free points define false edges. The dotted lines represent false
edges. For each pair of free points, pq or rs, there are two options: either they cross or do
not cross. There are thus two ways for each free point to be associated with a corner point:
top or bottom. This denotes an ordered selection of points for defining a false edge.

urations (nbk) for k = 2, k = 3 and k = 4 are shown in Figure 40. When the number of edge

elements is equal to k, we call the configuration a edge-only configuration. Otherwise, it is

either a mixed edge configuration, made of edge elements and pivot elements or for k >= 4

there can be pivot edge configurations made of edge and pivot elements. For triangular

clusters, there can be only one edge-only configuration. The following analysis therefore,

applies to quadrilateral clusters.

Edge-only configuration: Configurations that are formed by only edge elements. Let the

number of possible edge-only configurations for a certain k be nelk . For k = 2, nelk = 2. For

k = 3, there can be four additional configurations as shown in Figure 40 and For k = 4 there

is one added configuration as all the edge elements can form edges. For k > 4, there cannot

be any new edge added, so nelk = 7.

Mixed edge configuration: In a mixed edge configuration, two pivot elements can define

an edge/corner while the other edge/corner consists of an edge element. Since a minimum

of three elements are needed, for k = 2 there is no mixed edge configuration. For k = 3,

there can be four different possibilities for a one-edge configuration and four more, for a

two-edge configuration, giving a total of 8 mixed-edge configurations (nemk). These are

shown in Figure 40.
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Pivot edge configurations: Those configurations where no edge/corner is formed by an edge

element but only by the pivot elements are referred to as pivot configurations (nepk). These

configurations have a higher level of privacy as in absence of real edges, there can be many

different possibilities for connection among corner and free points. Pivot configurations are

only possible for k >= 4 and their structure depend on the number and distribution of free

points.

Let the number of free points be f . Number of data points within a cluster = k. Number

of corner points on each side= 2. Therefore, maximum number of free points possible for

any k is given by fmax = 2(k− 2) = 2k− 4. Figure 41 illustrates how pivot configurations

are built from free points in parallel coordinates. Let p and q be the the free points. If they

have to define the corner points, then they can connect with either the top corner point or

the bottom one on the other axis: lines from p and q either intersect or do not. The same

argument applies to r and s and this is how the false edges denoted by the dotted lines are

formed. This denotes an ordered selection of free points on each axis, the order (pq in the

left image and qp in the right image) being the direction. A minimum of 4 free points are

needed to define a pivot configuration and from the formula of fmax, we can deduce that

pivot configurations are not possible for k < 4. The number of possible pivot configurations

when k = 4 is thus given by the number of possible selection of two points for each axis, that

is 2!∗2! = 4. For higher k, this is similar to a combinatorial problem when we have to select

n different things, taken r at a time and the order matters. Here n refers to the free points,

that is f and r refers to the available locations, i,e., 2. To define a pivot configuration, the

minimum number of free points on one axis is 2 and so the maximum number of free points

on the other axis is fmax−2. The total number of pivot configurations is therefore given by:
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Edge only 
configuration

Derived 
configuration

Figure 42: Illustrating derived configurations based on edge-only configurations for k = 2.
The dotted red lines represent the possible pivot edges that can be added and the dotted
green line denotes a free edge that can be added, giving a total of five degrees of freedom
for a derived configuration.

nepk =

fmax−2∑
i=2

P(i,2)∗P( fmax−2− i,2) k > 4 (15)

The total number of base configurations is therefore given by the sum of the edge-only,

mixed and pivot edge configurations.

nbk = nelk + nemk + nepk

5.7.2.3 Derived Configurations

Derived configurations are those that can be constructed from the base configurations

for k = 2,3,4 as the added elements become pivot elements or free elements. The pivot

elements have four degrees of freedom: they are attached to any one of the four corners.

For the free element there is an added degree of freedom, giving a total of five degrees of

freedom for a derived configuration. For example, if k = 5, a configuration can be built with

an edge-only configuration with two edge elements (these are the two possible edge-only
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configurations for k = 2). Each of the additional three elements have 5 degrees of freedom

each, and therefore total number of possible configurations with two edge elements is 2 ∗

3 ∗ 5 = 30. The formation of a derived configuration from a edge-only configuration for

k = 2 is shown in Figure 42.

Now let us generalize the formula for any k. If the number of edge elements is i, the

number of non-edge elements is k− i. From the discussion above, the number of derived

configurations (ndk) is given by:

ndk =

kmax∑
i=2

nbi ∗ (k− i)∗5 nbi = neli + nemi + nepi (16)

where kmax = k if k < 4 and kmax = 4 if k => 4. The factor of (k− i)∗5) is a multiplicative

factor that gives the configurations for added pivot elements and free elements, without

adding edge-elements.

The total number of possible cluster configurations is given by:

nck = nbk + ndk

5.7.2.4 Uncertainty due to Cluster Configuration

In this section we quantify granularity uncertainty caused by cluster configurations and

also look at the potential reduction in uncertainty about a configuration from visual arti-

facts.

Granularity Uncertainty

The most fundamental metric for analyzing the disclosure risk within a cluster is the

number of data entities in the cluster. k > 1. One could assume that all records have equal
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k Edge-only (nelk) Mixed edge (nemk) Pivot edge (nepk)
2 2 0 0
3 4 18 0
4 7 61 4
5 7 115 21
6 7 170 126
7 7 225 462
8 7 280 1287

Table 7: Number of possibilities for the base configurations for different values of k.

probability to be identified, the risk for a specific record Li to be identified is thus:

P(Li) =
1
k
, i = 1,2, . . . ,k

In practice, this almost equates to a scenario where k records are put into bag, and an at-

tacker can pick one record out of the bag randomly. This may be an over-simplification

in analyzing the risks of cluster-based parallel coordinates and scatter plots, because, to

know the connection among the elements within a cluster, or in other words, all the two-

dimensional coordinates, an attacker has to guess the correct configuration, i.e., the orien-

tation of the records within the cluster. The probability of a correct guess is given by the

following equation:

P(ck) =
1

nck

(17)

5.7.2.5 Uncertainty Reduction

Uncertainty about a cluster configuration can be reduced from the knowledge of free

points. If the attacker knows that the number of free points on one of the axes (the jth

axis in the following equation) is zero, then there has to be real edge elements that define
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the edges of the cluster. This would imply that the configuration is edge-only as no pivot

configurations or mixed edge configuration possible. If c j
k is a cluster on the jth axis, then

it follows:

P(c j
k| f

j = 0) =
1

nelk
since nepk , nemk = 0 (18)

This implies that the attacker has to make only a limited number of guesses to know the

connections among the coordinates as shown in Table 7. We can see that for increasing k,

the possible number of edge-only configurations remain constant at seven and thus poses a

higher risk than the other two types of configuration.

If an attacker knows that the number of free points is non-zero but less than two on

any axis, then it cannot be a pivot configuration, because a minimum of two free points is

needed to define both edges of a cluster, as discussed earlier. Thus the number of possible

configurations is given by the following equation:

P(c j
k| f

j < 2) =
1

nelk + nemk

since nepk = 0 (19)

As shown in Table 7, the increase in number of pivot configurations is much steeper

than that of mixed-edge configurations as k goes higher than 6. In case of pivot configu-

rations, although an attacker can tentatively guess a configuration from the distribution of

free points, the connections among those points and the precise location of those would

still be unknown in most cases. Even if the location of the free points are revealed by the

visualization itself (that we will study in Section 5.6.3), then the configurations do not re-

veal information about the connection among the free points. So, the uncertainty reduced
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Figure 43: Three basic scenarios about attacker’s knowledge about the end points of a line.
This relates to spatial accuracy in guessing the exact locations of the points on the axes.

due to analysis of cluster configurations, would be mostly restricted to knowledge about

the corner elements.

1 Intra-Cluster Uncertainty: Cluster Range

Cluster configurations are not affected by pixel resolution but for a detailed analysis

of the attack scenarios, we have to take the pixel range of clusters into account. When

an attacker has some background knowledge about some attribute values (end points in

parallel coordinates) and/or is more interested in discovering attribute values, the plan of

attack would be based on working through a number of combinatorial cases for overcoming

the uncertainty caused by lack of spatial accuracy owing to the pixel ranges of clusters.

In this section we study the disclosure risk attached with knowledge of end points. The

methods for determining the amount of uncertainty or vulnerability about end points can

also be extended to scatter plots, except that the notion of end points is transformed to

coordinates of sample points in a scatter plots. There are also four corner points in scatter

plots as illustrated in Section 5.7.2. Since for a triangular shaped cluster one end is always

known, we focus our analysis on two-dimensional quadrilateral-shaped clusters between

adjacent axes. Figure 43 shows three example scenarios where an attacker would try to
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breach privacy:

1. In relation to two attributes (a) and (b), the attacker may have the knowledge that a

specific line must be in the cluster, but not much more. Hence the attacker has to

make wild guesses about possible values on axes (a) and (b). These guesses translate

visually to the guesses of both green end points on the two axes.

2. The attacker may have already discovered attribute value on axis (a) about this target

line, and want to find out attribute value on axis (b). In other words, he needs to guess

where the green end point is.

3. The attacker may have already found out attribute values on both axes (a) and (b)

about this target line, and realize that there may be more than one line with these two

attributes. In other words, what is the certainty or uncertainty about the hypothesis

that this is the target line. Such a confirmation will be useful to the attacker when he

progressively moves onto the next pair of axes.

In the following subsections, we first examine scenario (b), and provide a method for

quantifying the uncertainty in relation to the number of lines in the cluster, k, and the

resolution of the visualization. Building on the analysis for (b), we examine scenarios (a)

and (c). We assume that the attacker has some kind of background knowledge using which

the existence of a line, given two correct attribute values (i.e., both end points) can be

confirmed.
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Figure 44: Quantifying risks based on uncertainty about end points. (a) Given the attacker
knows one end point of a line, the plot shows the certainty (or vulnerability) of the other
end-point as a function of k and nb where nb is the cluster range on axis b. Whether or not
the end-point is a corner point poses different risk factor. (b) Given the attacker only knows
the containment of a line in a cluster but not the end points, the plot shows the certainty (or
vulnerability) of both points with two different combinations of na and nb.

1.1 Uncertainty about One End-point of a Specific Line

Considering Figure 43(b), let k be the number of lines in this cluster. Without losing

generality, we assume that the attacker has discovered the value of attribute (a) associated

with a specific line Li. If the attacker does not gain any knowledge from the visualization

about the possible location of the other end of the cluster, then the probability of a correct

guess depends on a number of combinatorial cases. We can compute the number of valid

combinations of k lines that pass through some of the nb pixels, that is the cluster range on

axis (b) as:

G(k,nb) =


1 nb = 1

nk
b−2(nb−1)k + (nb−2)k nb > 1

(20)

where the first term in the case of nb > 1 is the number of all possible combinations, the

second term defines the number of invalid cases where no line passes through either of the

corner point, bmin and bmax, and the third term defines the number of cases where no line
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passes through either bmin nor bmax.

Consider two numbers that define the number of combinations of k lines with at least

one line passing bmin and bmax respectively. The two numbers can be defined by using the

same recurrence function:

B(0,nb) = 0

B(1,nb) = 1

B(2,nb) = 2nb−1 (21)

· · ·

B(k,nb) = nk−1
b + (nb−1)B(k−1,nb)

Therefore, for the target line Li to pass through either bmin or bmax, the number of com-

binations will be B(k−1,nb), since there must be at least one other line that passes through

the other corner point.

Meanwhile, for Li to pass through a free point, bmin < bx < bmax, the number of valid

combinations is simply G(k−1,nb).

Let Li( ρ denote that the line Li passes a point on axis (b), where ρ can be one of the

values, bmin,bmin + 1, . . . ,bmax − 1,bmax. The vulnerability or certainty of this specific line

that is to be guessed depends on its position on axis (b). For k > 1,nb > 2, we have:

P(Li( ρ) =


B(k−1,nb)

G(k,nb)
if ρ = bmin or ρ = bmax

G(k−1,nb)
G(k,nb)

if bmin < ρ < bmax

As shown in Figure 44(a), when k is relatively small, there is a significant difference
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between lines that pass through corner points (bmin or bmax, and lines that do not. Such

a gap closes when k increases (i.e., there are more lines) as there can be a large number

of pivot configurations that are possible due to the addition of pivot lines. In general, the

higher value nb is, the lower the certainty is, except that when k = 2, the resolution does not

affect the uncertainty.

1.2 Uncertainty about Both End-points of a Specific Line

Building the above analysis, we now consider scenario (a) in Figure 43(b). Assume that

the attacker knows the fact that a specific line is in a cluster, but do not know the value of

either attribute. As the probabilistic distributions on the two axes are independent, we can

derive the joint distribution from the distributions on individual axes.

Let Li� (ρa,ρb) denote the line Li passes two points on axes (a) and (b) respectively,

where ρa can be one of the integer values between amin and amax. For k > 1,na > 2,nb > 2,

the vulnerability or certainty of this specific line is to be guessed is:

P(Li� (ρa,ρb)) =



B(k−1,na)B(k−1,nb)
G(k,na)G(k,nb)

ρa and ρb are corners

B(k−1,na)G(k−1,nb)
G(k,na)G(k,nb)

only ρa is a corner

G(k−1,na)B(k−1,nb)
G(k,na)G(k,nb)

only ρb is a corner

G(k−1,na)G(k−1,nb)
G(k,na)G(k,nb)

neither is a corner

Figure 44(b) shows the vulnerability in the case of both end points are unknown. It shows

two situations when na = 9,nb = 3 and when na = nb = 6 respectively. It is useful to note that

the first situation is slightly more vulnerable than the second, though the sums of the pixel
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a) Variation of intra-cluster risk vs k b) Variation of inter-cluster risk vs k

Figure 45: Number of edge-only configurations decreases with increasing k, while the
disclosure risk for free points can increase with increasing k due to the uncertainty involving
cluster splits.

resolutions on both axes are the same. This indicates that the lower pixel resolution on the

right axis incurs more risks. When the sums of the pixel resolutions on the left and right

axes are the same, a cluster patch of a trapezoid shape is more risky than a parallelogram.

Nevertheless, in comparison with Fig. 44(a), the risk is noticeably lower.

1.3 Uncertainty about a Line with Disclosed End-points

After an attacker has discovered both end-points of a specific line, the next step will nat-

urally be moving to the next pair of axes to repeat the above actions. However, discovering

the two end points is not the same as an absolute certainty about the specific line. There

can be two or more lines that share the same pair of end points. Knowing the probability of

how many lines that may share the discovered end points would introduce uncertainty that

the attacker has to deal with in the next attacking step. In other words, when the privacy of

both end points on a pair of axes is breached, there may still be some uncertainty that can

be used as a defence.

Let us assume the attacker has discovered two end-points, ρa and ρb, of a target line Li.
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Suppose that among the k−1 lines, there is at least one line that shares the same end points

ρa and ρb.

Let us consider first a situation where both ρa and ρb are corner points, i.e., (ρa = amin∨

ρa = amax)∧ (ρb = bmin ∨ ρb = bmax) After excluding the 2 lines, there are k− 2 lines left.

The total number of valid cases is:

Vcc(k−1,na,nb) = B(k−2,na)B(k−2,nb),

where B() is the recurrence function defined in Eq. (21). The probability for having such a

line is:

Pcc(k−1) =
B(k−2,na)B(k−2,nb)
G(k−1,na)G(k−1,nb)

.

Among the remaining k− 2 lines, it is probable that there is another line sharing the same

end points ρa and ρb. The probability is

Pcc(k−2) =
B(k−3,na)B(k−3,nb)
G(k−2,na)G(k−2,nb)

.

We can obtain a series of probabilities, Pcc(k− 1),Pcc(k− 1), . . . ,Pcc(2), by continuing

this reasoning. We know Pcc(1) = 0, as long as na > 1 or nb > 1.

Consider a useful uncertainty that is the probability of cases where at there is at least

another line share the same end points with Li. The probability of these is:

1−
k−1∏
j=2

(
1−Pcc( j)

)
.

Similarly, we can derive the probabilities in the other three situations. We have Pcx for

the situation where ρa is a corner point, but ρb is not; Pxc for the situation where ρa is not

a corner point, but ρb is; and Pxx for the situation where neither ρa nor ρb is a corner point.
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Figure 46: After both end points of a line is disclosed, there is still some uncertainty about
whether or not there are other lines sharing the same end points. Such uncertainty grows
rather quickly in relation to increasing k.

They can be computed as:

Pcx(k) =
B(k−1,na)G(k−1,nb)

G(k,na)G(k,nb)

Pxc(k) =
G(k−1,na)B(k−1,nb)

G(k,na)G(k,nb)

Pxx(k) =
G(k−1,na)G(k−1,nb)

G(k,na)G(k,nb)

Hence, the uncertainty surrounding two discovered end-points in relation to a target line

is:

P(Li ; (ρa,ρb)) = 1−
k−1∏
j=2



(
1−Pcc( j)

)
if ρa and ρb are corners

(
1−Pcx( j)

)
if only ρa is a corner

(
1−Pxc( j)

)
if only ρb is a corner

(
1−Pxx( j)

)
if neither is a corner

Figure 46 shows such uncertainty associated with a situation when na = 9,nb = 3. One
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can notice a continuing increase of this useful uncertainty when k increases. Such uncer-

tainty is particular useful for slowing down the attacker’s reasoning when there are over-

lapping clusters at axes.

5.8 Case Studies

The German Credit dataset [52] has 1000 instances which classify bank account holders

into credit classes Good or Bad. Each data object is described by 20 attributes that include

13 categorical and 7 numerical attributes. In our experiments we consider the credithistory

as the sensitive attribute, however we assume that good credit history is not a sensitive

value, but bad credit is, so we want to protect the value 4 for credithistory. For the other

attributes we use a subset of the original attributes. We choose a mix of numerical and cat-

egorical attributes among the ones which show maximum information gain and are deemed

selectable [90]. Those are: existing checking account status, duration of loan, credithis-

tory, savings accounts status, credit amount, personal status (depends upon gender and

marital status).

We also use the Diabetes dataset [52] to illustrate the application of our metrics. This

dataset has 768 records and consists of 6 dimensions: number of times pregnant, blood

pressure, serum insulin level, body mass index (BMI), age, and the binary attribute class.

The sensitive dimension is the class attribute, all others are considered to make up the

quasi-identifier attribute.

5.8.1 k-anonymity

Figure 48(a) shows the default parallel coordinates layout for this dataset. And in Fig-

ure 48(b) and Figure 48(c) we see the k-anonymized version for k = 3 and k = 8. Although
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(a) Original parallel coordinates representation of the
selected quasi-identifiers and the sensitive attribute.

(b) Clustered representation and highlighted sensitive
clusters when k = 3.

(c) Clustered representation and highlighted sensitive
clusters when k = 7.

Figure 47: With higher k the number of cluster splits become higher, as also the number of
overlapping clusters on adjacent axis pairs. This can lead to disclosure of more free points
and also more no-record areas within the clusters.
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(a) Default parallel coordinates view of the Adult
dataset

(b) Reordered view with k =3.

(c) View with k = 8.

Figure 48: Illustrating k-anonymity after reordering the axes
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the individual values cannot be seen, the overall structure of the parallel coordinates is

largely retained. For lesser values of k, we get better discernability but lower privacy be-

cause the cluster ranges are small. For higher k, we get larger cluster ranges which make

loss of precision very high and therefore guarantees more privacy.

5.8.2 l-diversity

Cluster splits and overlaps are an artifact of axis-pairwise clustering. As mentioned

in Section 5.3.5, the splits lead to uncertainty. Splits are especially pronounced in the

case of numerical axes and higher values of k. Even if we know the exact values of the

quasi-identifiers, there are splits among the different axes which introduce uncertainty for

guessing the exact value for a particular record (Figure 49). For the adjacency condition of

a quasi-identifier and a sensitive attribute, we selectively enforce l-diversity. In Figure 49(a)

we retain the highlighting of clusters based on just k-anonymity because the data owner has

determined that only persons with a poor credit (in this case with a credithistory value of

4) should be protected. In Figure 49(b) we show that l-diversity is applied and we cannot

tell three different values of credithistory apart.

In case of reordering, if the sensitive dimension is not the last axis, then we have cluster

splits on both sides of that dimension. But this reduces the utility to a great extent because

we have the diversity on either side of the sensitive dimension leading to a lot of cluster

splits. This reduces the meaningfulness of such a view. In the German credit dataset there

is a single sensitive attribute, but our model can easily handle the case of multiple sensitive

attributes by ensuring sufficient diversity in the corresponding axis pairs.
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(a) l-diversity is not enforced because the credithistory value of 3 is not sensitive

(b) l-diversity is enforced because the credithistory value is 4 which is sensitive

Figure 49: l-diversity demonstrated in the rightmost axis pair. Top: l-diversity is not
applied between age and credithistory because the value 0 is not sensitive as determined by
the data owner. Bottom: l-diversity is applied because we want to protect clusters which
have records with a sensitive 4 value. In this case, l is set to be 3, so we cannot tell apart
among 3 different values of credithistory for the selected cluster.
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(a) Patterns of subset of values on duration, creditamount and age

(b) Patterns between credithistory, creditamount and personal

Figure 50: Illustrating utility of clustered view with respect to different reordering config-
urations of the raw data.
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1.4 Utility of Clustered View

Compared to the conventional data-based approach of multi-dimensional clustering, axis-

pairwise clustering produces much more discernible clusters as we had shown in Figure 22.

This fact is demonstrated by the graph in Figure 51 where cluster ranges are much smaller

in axis-pairwise clustering used in our technique than the multi-dimensional clustering,

thereby helping in clutter reduction.

By applying the k-members clustering algorithm, we protect the privacy of records, so

that the user can only visualize cluster-level information. We cannot show individual record

values in the form of lines, but the overall multivariate distribution among the different

dimensions can still be visualized. In Figure 48 we see that for different values of k most

relationships in the raw data are discernible in the clustered view.

We also demonstrate by showing different configurations of axis reordering that a user

can still see the different trends and patterns. Figure 50(a) and Figure 50(b) show two dif-

ferent configurations of raw data on the left and the corresponding clustered configurations

on the right. Patterns can also be seen between: a) duration, creditamount and age: low

duration values corresponding to low credit amount and higher values of age are visible

on mouse-over interaction in the clustered view; and b) credithistory, creditamount and

personal exhibit a band of clusters that are seen in both views.

1.5 Different Reordering Configurations

The common ways to interact with parallel coordinates are to: a) hover over different

lines to trace their path across the different dimensions, b) reorder the axes to see the pat-

terns for different configurations of adjacent axes, and c) brush over different records on
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Figure 51: Multi-dimensional clustering (red bars), as opposed to axis-pairwise clustering
(blue bars), leads to high cluster ranges that cause occlusion as shown in Figure 22.

Figure 52: A configuration like this is avoided because categorical dimensions tend to pro-
duce clusters with splits at the edges, which when placed adjacent to a sensitive dimension,
may lead to disclosure.
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one axis to see the patterns of the subset of the data on other axes. Since the clusters already

represent aggregated values, we ignore brushing for this paper and focus on the first two

aspects.

High mutual information between two data dimensions A and B imply that the uncer-

tainty about A is highly reduced in presence of B. We had shown earlier that mutual infor-

mation is an effective screen-space metric for parallel coordinates. In the privacy context,

we use lack of mutual information as a measure of high uncertainty [19]. If there is high

mutual information between two axes, there might be a skewed distribution which makes

it easier for an intruder to breach the privacy if he has some background knowledge about

the person. This relates to attribute disclosure and is susceptible to both attack scenarios.

When reordering the axes, we enforce the constraint that the quasi-identifier attribute with

the least mutual information should be adjacent to the sensitive attribute. This ensures that

even with interaction, the attacker cannot exploit the strong correlative effect between the

two dimensions.

In case of a mix of categorical and numerical attributes, our technique puts numerical

and categorical axes alternately, adjacent to each other. We avoid a configuration like the

one shown in Figure 52 for two reasons. Firstly, cluster ranges can be very high between

two categorical dimensions reducing the utility. Secondly, placing a categorical attribute

adjacent to a sensitive dimension can reduce the intended privacy because the cluster edges

represent actual data values and most values for a categorical cluster may lie on its edge

and give away information. This relates to the prosecutor identification scenario, where an

attacker knows an individual exists in the database and can select the appropriate cluster to

gain knowledge about the attributes that describe the individual.
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5.8.3 Measuring Privacy

Privacy is measured in terms of both encoding and decoding uncertainty as outlined in

Table 1. On the encoding side, cluster range (γ) and cluster summary error (η) are higher in

case of data-based clustering than visual clustering. This implies that precision and gran-

ularity uncertainty are higher in case of data-based clustering, signifying higher privacy.

However, as shown in Figure 35b, decoding uncertainty due to overlaps, as measured by

entropy, is much higher in case of visual clustering. Here, we observe that the uncertainty

measured in terms of the overlap entropy of the axes (computed based on equation 7),

increases for increasing k, which signifies higher uncertainty for guessing exactly which

cluster a record belongs to. This metric not only measures the entropy in the static image,

i.e, when highlighting/brushing is not available, but also covers cases where a user can

select certain clusters by interaction. In our technique, when several clusters overlap on a

pixel bin, we only highlight the smallest cluster. The attacker would thus not be certain

whether a record which he/she is trying to guess the value of, belongs to that particular

cluster.

In our experiments we have also found that the number of clusters, whose boundaries

exactly coincide (the ’meets’ condition in Allen’s interval algebra), also decreases with

increasing k, because with increasing k, there is a greater loss in precision of the values

on the axis. This is beneficial from a privacy point-of-view because for smaller k, cluster

boundaries meeting precisely on a pixel can potentially cause disclosure of the the data-

points on these boundaries [38].

Traceability uncertainty is also much higher in case of visual clustering due to the higher
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average split count than in case of data-based clustering, where there are no cluster splits

and the clusters have a one-to-one correspondence with continuing clusters on adjacent

axes. As we discuss in Section 5.7.1, this creates the lack of l-diversity problem.

The effect of higher cluster range and cluster summary error in case of data-based clus-

tering is offset by the higher overlap entropy and higher average split count in case of visual

clustering. This is reflected in the graphs for net privacy (mp) in Figure 35c, which shows

that privacy achieved in case of visual clustering is higher on average, than data-based

clustering.

5.8.4 Measuring Utility

Utility is expressed in terms of the different metrics for decoding uncertainty, mainly

clutter and pattern complexity. High mutual information between adjacent dimensions

maximizes utility. Figure 35a) shows the variation of mutual information for increasing

k for four different axis pairs of the Diabetes dataset. The difference of mutual informa-

tion between the two types of clustering is very pronounced due to the large cluster ranges

in case of data-based clustering, which ensures that a two-dimensional data point is over-

lapped by multiple clusters on both axes in most cases.

With increasing k, it is expected that patterns in the visualization will get distorted and

will be more difficult to discern. We are able to have better utility in terms of screen-space

clarity in case of visual clustering because of less pattern complexity. For increasing k

the effect of parallelism (computed based on our discussion in Section 5.6.7) gets reduced.

However, the decrease happens in quite small increments and therefore does not degrade

the visualization much. In our experiments we have observed that for converging-diverging
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structures, there is no significant variation with changing k. With very small k, like k = 2,

the patterns are almost same as in raw parallel coordinates. With increasing k, the number

of converging/diverging lines do not increase or decrease significantly. This is because we

use convergence-divergence as a criterion for seeding the clusters and there is not much

change in choice of seeds with changing k.

Due to higher traceability uncertainty in case of visual clustering, the utility is reduced.

However, the effect of the other uncertainty components is much more significant when mt

is computed. The comparison for net utility is shown in Figure 35d, where we can observe

that higher net utility in case of visual clustering than data-based clustering.

5.8.5 Devising an effective k

We have shown that all the various uncertainty measures do not increase or decrease

monotonically with k. Especially for overlap entropy and mutual information, there is a

high degree of variability across different k (Figures 35a and 35b). A similar pattern is

also reflected in the graphs for mp and mt in Figures 35c and 35d. This implies that higher

k does not necessarily signify higher privacy and/or lower utility in the screen-space. This

is an important difference from privacy preservation in the data space, where variation of

k is directly proportional to the privacy achieved or utility lost. Metric-based analysis of

visual uncertainty, therefore, will enable visualization designers to choose the effective k

based on the requirements for privacy and utility, that we discuss next.

1.6 Multi-criteria evaluation

The quantification of different types of visual uncertainty in the preceding sections serve

as a feedback loop by providing a set of rules for iterative refinement of the design of
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(a) Variation of disclosure risk of edge coordinates of the sensitive clusters,
when one of the coordinates of a record is known.

(b) Variation of disclosure risk of free coordinates of the sensitive clusters,
when one of the coordinates of a record is known.

Figure 53: By analyzing disclosure risks with respect to assumptions about the attacker’s
background knowledge, data owners can use thresholds for disclosure probability and
choose a k accordingly. In this case, a data owner sets the threshold for diclosure prob-
ability to be less than 0.3 and therefore the initial choice of k is 4.
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privacy-preserving parallel coordinates and scatter plots. We aim to perform a probabilistic

analysis of the disclosure risks when an attacker uses background knowledge and inter-

action for breaching privacy. Explicit modeling of background knowledge is beyond the

scope of this work, and we would like to point the readers to privacy literature in data

mining for further reference in this area.

In Figure 45a the number of edge only configurations, computed using Equation 4 is

plotted for increasing k. The decreasing number of edge-only configurations mean that the

probability of the number of pivot configurations get higher with increasing k. While this

direct correlation with k signifies more privacy, in Figure 45b we see that the probability of

knowing the location of free points, computed by Equation 2, can increase with increasing

k. While this can be counter-intuitive, given our model and metrics, it is not difficult to

reason about this. One reason for this is the increasing number of pivot configurations with

increasing k, and another factor is that the number of overlaps cases increase with greater

k. This two factors lead to a higher probability of free points being known with increasing

k. This necessitates additional measures, that would objectively compute the probability of

disclosure given such uncertain patterns with higher k-anonymity.

Assumption about background knowledge: In this dataset, we show the utility of the met-

rics by assuming some knowledge about the dataset from the relationships of the dimen-

sions. In many real world datasets, certain types of knowledge can be pre-conceived. For

example, in a disease dataset, with the sensitive value being breast cancer, the attacker al-

ready knows about the most probable gender of the patient, and can use that knowledge for

breaching privacy further. In this dataset, we make the assumption that the attacker knows,
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very young or very old people are more likely to have bad credit history. We examine some

of the clusters that belong to people of this age group and has the sensitive value. In Fig-

ure 47 we see the lines for the raw data, and the clusters with increasing k. We can observe

that with increasing k, the number of known locations of free points become higher, as

annotated in the figure.

Sensitive Clusters: We use some of the computations to examine the probability of vulner-

ability given such background knowledge. For this dataset we compute the interquartile

range of the cluster ranges on the axis for the sensitive clusters. Then based on equations

8,9 we perform a detailed analysis for deciding the k that can be used for an axis pair or for

the dataset. In this case the average interquartile range for the chosen set of dimensions is

5 to 22, with the median being 10. Since disclosure risk is a function of both k and cluster

range, we examine the nature of the functions for disclosure risk vs k, for the cluster range

values of Based on these graphs the data owner decided a k to be used.

It should be noted that by selecting a smaller subset of other probable sensitive clusters,

we are assuming that an attacker has been able to break through the inter-cluster uncer-

tainties and are faced with the challenge of negating intra-cluster uncertainty. As discussed

earlier, with reference to Figure 37, intra-cluster uncertainty can be reduced by knowing

adjacent clusters, that is, by reducing inter-cluster uncertainty, and vice versa.

Analysis of disclosure risks: In Figure 53(a), the disclosure risk of edge coordinates vs k,

when one of the coordinates is known by the attacker, is plotted. By looking at the graph,

the data owner or the visualization designer sets a thresold of probability= 0.3, and he

desires that the disclosure risk of edge points to be below this probability. It can be observed
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in the graph that k = 4 gives that desired probability for this dataset. In Figure 53(b), the

disclosure of non-edge or free coordinates is plotted for varying k. While the disclosure

risk for those points increase with increasing k, the disclosure probability is only 0.1 when

k = 4.

However, when we assume that an attacker knows both the coordinates of a record, the

uncertainty is much lower as shown in Figure 54(a). Due to precision and granularity un-

certainty, there is still some uncertainty whether several records overlap on the identified

record. This condition leads to attribute disclosure, but the uncertainty has a bearing on

identity disclosure, as typically, knowledge about more than two quasi-identifiers are re-

quired to know the identity of an individual. As shown in Figure 54(a), the disclosure risk

increases only gradually for increasing k for the edge records. Since increasing k to a very

large value would degrade the utility, one would further inspect the vulnerability of the free

points when a record is known. As shown in Figure 54(b), such disclosure risk decreases

much faster with increasing k. After observing the graph, in this case a data owner decides

to set the disclosure probability threshold to 0.4, and therefore k is changed from 4 to 6.

The high probability of disclosure of edge records, although poses a risk, as shown earlier

in Figure 45a, the number of edge-only configurations decrease sharply with increasing k,

which balances out the risk factor to some extent. As observed in the figure, for k = 6, the

probability of the number of edge-only configurations is between 0.3 and 0.4. However,

as an additional defense mechanism, data owners or visualization designers can optimize

the layout with respect to adjacency of the dimensions, with respect to the output of the

metrics, as we discuss below.
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(a) Disclosure risk of edge records of the sensitive clusters, when both coor-
dinates of a record is known, is quite high.

(b) Disclosure risk of free records of the sensitive clusters, when both coor-
dinates of a record is known, is relatively lower and degrades much steeply
with higher k.

Figure 54: By analyzing disclosure risks by assuming that an attackers knows both coordi-
nates of a record, in this case a data owner changes his/her choice of k from 4 to 6, so that
the disclosure probability of free records are less than the desired level.
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1.7 Controlled Interaction

Adjacency of quasi-identifiers with sensitive attributes is critical from a privacy point-

of-view [38]. Cluster splits at the edges, triangular clusters and low cluster resolution can

all lead to disclosure of a sensitive value. A visualization designer needs to evaluate which

attributes can pose low risk, by using the risk quantifications, for example the one described

in Equation 14 and thereby restrict reordering in parallel coordinates or scatter plot matrix.

The cluster configurations should also be evaluated using the knowledge about free points

as given by Equations 18 and 19 and brushing can be restricted for clusters with edge-only

configuration.

In particular we evaluate which axis pair formed by a chosen dimension among the quasi-

identifiers have the fewest clusters with edge-only configurations and no-record areas. That

dimension is selected to be adjacent to the credithistory dimension. In this case the dimen-

sion is age. In particular, two categorical dimensions are not placed adjacent to each other,

as most of them have fewer values on the axis, leading to edge-only configurations and

no-record areas on the clusters.

1.8 Choice of visualization technique

Scatter plots and parallel coordinates are comparable in terms of the amount of privacy-

protection that can be achieved by clustering. One advantage of parallel coordinates is that

since there are the additional overlaps between axis, as discussed in Section 5.6.3, they can

create more uncertainty due to clutter than scatter plots. This implies visual quality of scat-

ter plots is higher than that of parallel coordinates. Parallel coordinates, on the other hand,

enables one to trace the path of the clusters across multiple dimensions. In case of large
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average number of splits per cluster, getting an idea of the multivariate distribution would

be difficult. Moreover in parallel coordinates one can know about the cluster configuration

from the overlaps across axis pairs, which is difficult in scatter plots. So a designer has to

carefully analyze the anatomy of splits before publishing the visualization.

Encoding uncertainty is identical in parallel coordinates and scatter plots as we get the

same values for the metrics. On the decoding side, however, clutter and traceability produce

different results. Although clutter is less in scatter plots than parallel coordinates, as was

demonstrated in Figure 32, it cannot be readily concluded that in terms of perception , the

former is better. This is because the degree of distortion of the visual structures is higher

in scatter plots than parallel coordinates. In scatter plots, points (zero-dimensional entities)

are transformed to rectangles (two-dimensional entities). In case of parallel coordinates,

lines (one-dimensional entities) are transformed into polygons (two-dimensional entities).

Therefore the structural properties are much less distorted.



CHAPTER 6: VISUALIZING HIGH-DIMENSIONAL, TIME-VARYING DATA

6.1 Problem Description

Visualization of time-varying, multivariate, large data is a complex problem because of

multiple challenges, like maintaining scalability and fidelity of the visual representation,

and communicating the temporal changes effectively through an interactive visual inter-

face. Scalability of the technique is essential for efficiently handling the large number of

data points. Fidelity is important for capturing the salient functional relationships among

multiple variables. Visual communication of the temporal trends through an interactive

interface in a perceptually beneficial manner is another significant challenge. Visual ap-

proaches that integrate the automated methods with user-driven analysis, in the context of

time-varying data, are still in their infancy. To fill this gap, we propose an integrated tem-

poral parallel coordinates-based framework that combines screen-space metrics for inves-

tigating multivariate temporal relationships and multiple coordinates views for facilitating

interactive user-driven analysis.

The use of screen-space metrics belongs to the explicit encoding category [57] of en-

abling visual comparisons across objects. Since the metrics are computed based on the

screen resolution and not on the cardinality of the data space, they are more scalable than

purely data-based statistical metrics. Data abstraction in the form of metrics results in loss

of data fidelity in exchange for more focused information. By picking metrics that are
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motivated by perceptually meaningful structures, we make it easier to relate them to the

information displayed on screen. Moreover, we facilitate contextualization of the metrics

by using coordinated multiple views, which supports the sense-making process on the an-

alyst’s part. The key analysis questions our system helps to address are summarized as

follows:

Q1, Section 6.5: Which variables show stable or unstable behavior over time?

Q2, Section 6.6: How does the univariate and bivariate distribution of a variable change

over time?

Q3, Section 6.6: What multivariate patterns are there and how do they change over time?

Q4, Section 6.7: Which subset of dimensions and data points exhibits the most interesting

patterns in which particular time steps?

Following Munzner’s nested model [88] for visualization design and validation, the char-

acterization of these domain-specific questions enables us to focus on the other three levels

proposed in the model, that are described as follows:

Abstraction design: we have extended previously proposed screen-space metrics to support

analytical abstraction for temporal data analysis and devising new ones for quantifying

properties and temporal trends.

Encoding design: while we use parallel coordinates as the main view, our system constructs

univariate, bivariate and multivariate views of the data to gain different perspectives on

temporal trends.

Interaction design: we enable analysts to build their own parallel coordinates configurations

from rank-ordered paired dimension sets and explore subspaces within the data with the

help of semantic brushing based on the metrics.
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Algorithm design: we have designed algorithms for the metrics, their visualizations and for

guiding the multi-way interactions among the views.

Multi-level validation: we illustrate our approach qualitatively, through several examples

using a bioremediation dataset and a detailed case study and discussion of performance at

the end.

6.2 Reducing Pattern Complexity Uncertainty Through Metrics

The choice of metrics is motivated by Amar and Stasko’s recommendation [6] of the

general analysis tasks that a user performs with a visualization. Among those, characteriz-

ing univariate distribution, finding bivariate relationships in terms of correlation, detecting

hidden clusters in subspaces and examining outliers are relevant to the work reported here.

For quantifying univariate distribution, our goal is to characterize the data density in

terms of the locus (where, on the axis, most data values are located) and randomness

(amount of disorder or uncertainty among the values). For this purpose we propose two

new metrics for characterizing the data distribution, the density median and axis entropy,

both of which are computed from the one-dimensional axis histogram. Density median is

indicative of the degree of skewness of an unimodal distribution. The median and entropy

metrics are not restricted in their application, to parallel coordinates only. They also apply

to point-based representations like scatter plots. In terms of dispersion or data disorder,

entropy and variance are popular statistical measures. While there is no direct correlation

between entropy and variance, it has been shown that entropy is more flexible in capturing

dispersion as its location is independent of the mean, unlike variance [47].

When there are multiple modes, median alone is not an accurate estimator of density. A
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multimodal distribution implies data has a higher likelihood of being clumped at subspaces.

To explore if there are hidden clusters in subspaces that are not distinguishable from the

overall patterns, we have developed a clumping metric, based on the two-dimensional dis-

tribution based on an axis pair. This is especially of relevance for temporal data, because at

many time steps, certain data-points tend to cluster/clump together in local neighborhoods.

Clumping metric captures this behavior.

For quantifying the change in relationship between adjacent dimensions, we quantify

the linear relationship and relative information content that are computed based on the

one-dimensional distance histogram and two-dimensional histogram respectively. For the

former, we adapt the parallelism metric and for the latter we use mutual information be-

tween dimensions. In addition, number and angle of line crossings are also used to find

inverse correlations and clusters respectively.

In the following sections, we first discuss general applications for high-dimensional data

in terms of dimension order optimization and then discuss our system for analyzing time-

varying, multivariate data.

6.3 Dimension Order Optimization

Using the above metrics, we are able to optimize the display for the analyst. In general,

finding an optimal ordering of axes for parallel coordinates is equivalent to the traveling

salesman problem, and thus NP-complete [71]. Using a branch-and-bound algorithm and

considering the special properties of parallel coordinates, we are able to find optimal so-

lutions in much less time in general. Our binned data model of parallel coordinates also

reduces many the computations (reducing the impact of the number of data items) and even
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Propagate 
Inversions

Figure 55: Axis inversions are handled locally during the optimization, and only considered per
axis pair. They are later propagated through all dimensions from left to right to determine which
axes end up being inverted.

handles axis inversions as local decisions, leading to a very efficient solution.

We use a branch-and-bound algorithm to find the optimal order of axes. We first build a

matrix of all axis pairs and the cost associated with them. The cost can be a combination

of several metrics, using weights selected by the user. This computation is only performed

once, and is the only step that depends on the number of records in the dataset. All subse-

quent steps are performed on the basis of this matrix and thus only depend on the number

of dimensions.

6.3.1 Axis Inversions

Axis inversions are handled per axis pair as part of building the cost matrix. For each

axis pair, the cost for both the inverted and the non-inverted situation are computed across

all the desired metrics. The lower value is used in the matrix, and the program records

which of the two values that was.

Axis inversions can be handled locally because we consider them only between the two

axes in each axis pair. Inverting one axis pair does not have an immediate effect on neigh-

boring axis pairs. Only once the optimal solution has been found, the inversions are prop-

agated across the axes from left to right (Figure 55). Since users more likely prefer axes
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Figure 56: Parallel coordinate views of the cars dataset, ranked by the ascening order of the
different metrics. In our implementation, the user is shown the names of the axis when mousing
over a plot, and the display also highlights all instances of the same plot the user is pointing at.

pointing up, the program also performs a global inversion that flips all axes if the majority

of them are pointing down after the propagation.

While axis inversions can dramatically reduce the number of crossings and increase

parallelism, they also make reading the visualization more difficult, because they require

the analyst to look up the axis orientations and remember which ones are inverted and

which are not. The optimization therefore provides the option not to use inversions in the

process.

6.3.2 Branch-and-Bound Optimization

We implemented the optimization as a branch-and-bound algorithm that uses a priority

queue and best-first search. A key issue in branch-and-bound implementations is how tight

the bounds can be estimated when the decision is made about whether to cull a sub-tree or
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Figure 57: Initial layout of the wine dataset.

not. In our case, these estimates are based on a full cost matrix, and are very precise.

Based on our case studies, we find that the best-first search very quickly finds the optimal

solution after only a few complete solutions (i.e., having walked through to a leaf of the

search tree). This is not surprising given the reduction of the metrics to axis pairs, rather

than looking at the entire visualization at once. In most cases, the optimization ends up

only picking the best next axis from the ones still available, rather than having to evaluate

a much larger number of permutations.

6.3.3 Performance

For practical use, metrics need to be calculated in reasonable time. The fact that all

Pargnostics metrics are based on histograms simplifies computation, and reduces the real-

world complexity by reusing intermediary results.

All histograms are created in one pass, with complexity of O(n) (n being the size of the

dataset). In our implementation, the one- and two-dimensional histograms are computed

at the same time, which further reduces overhead. The calculation of line crossings (and

crossings angles) is the most computationally expensive, with a complexity of O(h4) or

O(n2) (where h is the size of the display, see Section 4.1.1). All others are O(h2) or O(h),

with h << n (i.e., O(n) would in many cases be more expensive in real-world terms).
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The optimization requires the calculation of the relevant metrics (which the user picks)

for all axis pairs. They are used to build a cost matrix, which the branch-and-bound op-

timizer needs for building candidate solutions. Once the matrix is built, the optimization

is very efficient. For a dataset with 12 dimensions, it typically queues several ten thou-

sand partial solutions, but only evaluates a few (less than ten) complete ones. That means

that our culling criterion is very good, and that the best-first search has a high chance of

immediately finding the best overall solution.

Multiple metrics are handled in the matrix building stage, and have no direct bearing on

the performance of the optimization itself. Having to evaluate several metrics of course

slows down the matrix construction. Axis inversions similarly are handled at the first stage

and do not increase the complexity of the search space. Since our implementation effi-

ciently computes the inverted value together with the non-inverted value for most metrics,

the added cost for considering inversions is very low.

6.3.4 Examples from Datasets

We demonstrate the use of our metrics with two example datasets, one describing car

models and another one about wines.

6.3.5 Cars Dataset

The cars dataset [52] consists of 392 values and six attributes: MPG, horsepower, cylin-

ders, weight, acceleration, and year. Pargnostics metrics can be used for both user-centered

and automated optimization. Based on the common scatterplot matrix, we have developed

a parallel coordinates matrix view that shows all combinations of axes in the lower left half

of the matrix with both axes pointing in the same direction, and with inverted axes in the
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(a) View with maximized angles of cross-
ing, including axis inversions (last three
axes).

(b) Minimizing the number of crossings.

(c) Minimized angles of crossing and max-
imum parallelism.

(d) Maximized number of crossings and
minimized angles of crossing, and including
inversions.

Figure 58: Optimization for different sets of criteria using the wine dataset.
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upper right. A similar matrix view shows the distance and angle histograms for each axis

pair (Figure 59).

The small parallel coordinate plots show the overall structure of the axes pairs, while the

histograms give some insight into some of the metrics. In our prototype implementation,

the user can construct the parallel coordinates display by picking axis pairs from any of the

matrices. There is also a ranked view of parallel coordinate axis pairs (Figure 56), which

allows the user to directly find parts of the display that exhibit certain structures.

Selecting from any of those views is based on visual structure rather than particular

data dimensions, and thus frees the user from preconceived ideas about the data. Adding

dimensions is typically done by selecting them by name; in our model, the display can be

built directly from interesting visual structures. The resulting display makes maximum use

of the power of the visualization.

6.3.6 Wine Dataset

The wine quality dataset [52] consists of 4898 rows and 12 dimensions: fixed acidity,

volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur diox-

ide, density pH, sulphates, alcohol, and quality. Figure 57 shows the initial view of the

data set, with the dimensions in the order in which they appear in the data file.

Single-Metric Optimization

In Figure 58(a), parallel coordinates is optimized by high crossing angles, taking inver-

sions into account. As we can see, most of the lines between the axes tend to cross at close

to 90 degrees and this helps to reduce clutter. In Figure 58(b), parallel coordinates is op-

timized by minimum number of crossings. This tends to produce a less cluttered display,
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Figure 59: Histogram matrix for the cars dataset. The left histogram in each cell shows the
distance, the right one line crossing angles.
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but at the same time produces high parallelism as observed on density and all dimensions

to the right of it.

Multi-Metric Optimization

In Figure 58(c), parallel coordinates is optimized by low crossing angles and high par-

allelism. This configuration produces clusters on either side of the categorical quality vari-

able. Thus this configuration is not only useful to see the correlations and clusters, but also

enables one to see where the intense concentration of records, or the mode [118], occurs.

In Figure 58(d), parallel coordinates is optimized for high number of crossings and low

crossing angles, taking axis inversions into account. There are many inverse correlations

observed between most of the axes. A large number of crossings generally tends to produce

inverse correlated structures and with low angles, the clusters can be seen clearly.

6.4 System Design for Visualizing Temporal Data

Our system [41] is composed of three coordinated views that enable analysts to explore

temporal data from different perspectives. Metrics, abstracted in the form of time-series,

are displayed in those views. Interaction with these views enables analysts to seamlessly

navigate through interesting time steps and data dimensions. In this section we provide an

overview of the metrics and introduce the different views.

6.4.1 Multiple Views

We use the screen-space metrics as the basis for designing coordinated multiple views (Fig-

ure 60) that show different properties of the data. The views facilitate exploratory data anal-

ysis based on: a) getting an overview of the temporal trends that evolve over time and b)

interactively explore patterns at time steps of interest and drill down to details. Our design
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Figure 60: The different components of our parallel coordinates-based framework. The
three views of the data are: A) Main view, which is a time-varying view and re-orderable,
B) Density view, which shows univariate temporal distribution with the selected axis pair
being highlighted, and C) Matrix view, which shows the bivariate correlations as time-
series.

of the coordination among the views follow Schneiderman’s visual information seeking

mantra [102] by enabling the analysts to seamlessly switch between gaining overview and

exploring details.

For a time-varying dataset D with n records, d dimensions and t time steps, the cardi-

nality of the dataset is given by |D| = n ∗d ∗ t. In the context of the bioremediation dataset

that we use in this work, n = 96000, d = 10 and t = 120. So |D| = 115,200,000. For such

a high cardinality, a conventional parallel coordinates representation of data dimensions on

the vertical axes and the records as poly-lines is not a good fit due to clutter and scalability

issues. To overcome these problems, we use visual abstraction in the form of screen-space

metrics for creating an effective temporal summary that conveys the salient time-varying

behavior with respect to all the data dimensions. Using these metrics, we build a meta



153

Figure 61: Meta Parallel Coordinates show the dimension-level view: The vertical axes
represent the metrics while each polyline represent the value of the metrics for a given
data dimension at any given timestep. Users can filter by a single dimension or multiple
dimensions by making selections in the left panel. Specific time steps can also be selected
by brushing.
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parallel coordinates view (Figure 61) [42] in which the metrics are represented by the ver-

tical axes and each poly-line represents the values of those metrics for a color-coded data

dimension, for a particular time step. Thus this view serves as a meta view for the conven-

tional parallel coordinates display. We thus reduce the number of data points in the meta

view, to d ∗ t = 1200 data points and thus we alleviate the scalability problem. The MPC

is coordinated with the conventional parallel coordinates view (Figure 60A) that shows the

data plot for a particular time step. Interaction between the MPC and the conventional view

enables a user to explore the data at multiple levels of granularity by seamlessly switching

between exploring temporal changes at the dimension level, and then looking at the details,

at the record level. The density view (Figure 60B) and matrix view (Figure 60C) comprise

the data views that represent summarized representations of temporal behavior.

This approach of separating the dimension level view (meta parallel coordinates) and the

record level view (conventional parallel coordinates) is similar to that proposed by Turkay

et. al. [113] who suggested a dual analysis model involving the dimension space and item

space, by using standard statistical measures computed in the data space. In this work we

use screen-space metrics, as they are computationally more efficient than purely data-based

metrics. This is because after the initial data transformation the screen-space metrics are

affected by only pixel resolution and are independent of the data cardinality.

6.4.2 Interaction

Exploration of temporal changes is facilitated by multi-way interaction. Relating pat-

terns with the corresponding metrics is achieved by interaction starting in the main view,

while using metrics to drive the analysis process is achieved by interaction beginning in the
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density view and the matrix view. These are explained in detail as follows:

From Main View: Interaction originating in the main view is labelled as A in Figure 62.

The main view is used to explore the patterns in detail. When an analyst selects an axis

pair (b-d in the figure), the color gradient is applied and the axis pair is highlighted. Ad-

ditionally, the corresponding boxes b and d in the density view, are also highlighted. Note

that color of the highlighted boxes correspond to the color of the axes: we use red as the

color of the left axis and purple as that of the right. At the same time, the box b-d is high-

lighted in the matrix view and enlarged box is drawn, with the vertical line representing the

time step also being drawn. The time-slider always gets updated to the current time step.

From Matrix View: Interaction originating in the matrix view is labelled as B in Fig-

ure 62. Each box in matrix view can be selected and observed in details at the bottom

right. The enlarged box is interactive with the other two views. The configuration for the

corresponding time step is shown in the main view and axes get reordered according to

the adjacency of the values selected, with a grey highlighting for the corresponding axis

pair. Axis orientation of bottom to top translates to a left to right orientation in the main

view. The corresponding boxes are also highlighted in the density view and the vertical

line denoting the time step is shown.

From Density View: Interaction originating in the density view is labelled as C in Fig-

ure 62. When a box b is selected, in addition to that box, the one that is adjacent and to

the right of b, that is d, is highlighted too. We treat the selected axis as the left one in the

main view and color it as red. The corresponding axis pair in the main view is highlighted,

color gradient is applied and time-slider is advanced to the time step computed from user’s

mouse coordinates. The matrix view is similarly updated like in case of the interaction
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Figure 62: Coordination among the different data views. Arrows are differently colored according
the origin of interaction. Black: Interaction starts in main view, Blue: Interaction starts in matrix view
and Red: Interaction starts in density view.

from main view.

In the following sections we describe the metrics, views and the associated interactions

among them in detail, with respect to the questions (Q1, Q2, Q3, Q4) we set out to address

using our tool. We use simulation data from bioremediation experiments for illustrating

our approach and refer to some of the variables in course of describing our system. We

present the details about the dataset in Section 6.8.

6.5 Identifying Stable and Unstable Behavior (Q1)

Finding stable and unstable variables (Q1) gives the analysts an overview of the overall

temporal behavior. We define stability as the degree to which the data distribution remains
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unchanged over a period of time. This question is addressed by metrics for data density

and getting an overview from the density view and main view, that are discussed below.

6.5.1 Metrics for Data Density

Both the density median and axis entropy metric are based on univariate properties,

meaning, they are independent of axis adjacency in parallel coordinates. The two compo-

nents of our data density metric are : the density median determining the locus of skewness,

and the nature of density in terms of data disorder or randomness.

Computation: Density median (D̃) is computed from the median of the frequencies of the

pixel-bins in a one-dimensional axis-histogram. The location, that is the pixel coordinate

of the median (β̃), is then plotted over time. A high value of the median at a particular

time step means dominant values at that time step are the high ones and a low value means

dominant values are the low ones.

Entropy measures the uncertainty or disorder within the data values and we use Shannon

entropy [32] to capture this characteristic. We consider each axis in the screen-space as

a random variable. We use the probability of intersection of a data record with a pixel-

bin, computed from the frequency of each pixel-bin on an axis as the basis for computing

Shannon entropy. Entropy for an axis (A) in terms of its pixel bins (a1,a2, . . .ah) is given

by:

H(A) = −

h∑
k=1

p(ak)log(p(ak)) (22)

where p(ak) = 1
βk

. When the entropy (H(A)) is plotted over time, the trajectory of the time-

series indicates the overall stability or instability of the variable.
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Visualization: Figure 16 shows the main locus of data density which is implied by the

concentration of the lines. If the majority of the lines start/end towards the top of any

axis (in this case, the left axis in the left image), then data density is skewed towards

the higher values. Mostly uniform distribution of the lines, as shown in the left image

in Figure 17 do not convey any significant patterns within the data. This implies there is

more uncertainty in the data and therefore higher randomness. The right image shows a

trend associating high and low values on either axis. The increase and decrease in data

disorder/dispersion is captured by our axis entropy metric. Line graphs that are more or

less flat, like the ones in the top two boxes in Figure 60B indicate there is no significant

change of behavior for the variable, while a jagged graph indicates potentially interesting

behavior. Moreover, high entropy values indicate a uniform distribution and low entropy

indicates more skewness and also more recognizable patterns.

6.5.2 Density View

The density view is composed of sets of vertically stacked boxes (Figure 60B), where

each box corresponds to a dimension and contains a line-plot and an area-plot. The line

plot represents the axis-entropy and the area represents the density median, time-axis being

horizontal. The configuration of this view is invariant to the order of axes in the main view.

Different colors (red for left axis and purple for right axis) are used to represent the selected

axes. Even without interaction, the entropy and density median plots give an overview of

which variables are stable or unstable.

Figure 63 illustrates how the patterns are interpreted using the density view. Table 8 lists

the formulas and names of the chemical species that we use in our application. The back-
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Figure 63: Illustrating the data density metrics: Three different configurations of the axis
pair (kinetic iron and sorbed kinetic iron) on interaction with the density view. Each blue box repre-
sents the density median plot for kinetic iron and the red box represents the same for sorbed kinetic
iron. Low entropy clearly leads to more recognizable patterns.
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Chemical Formula Chemical Name
S o kinetic ca2uo2(co3)3 uranium carbonate complex
UO2(s) solid uraninite
kinetic S O4 kinetic sulfate
kinetic Fe ++ kinetic iron
S o kinetic Fe ++ Sorbed kinetic iron
kinetic S −− kinetic sulfide
tracer Br tracer bromide
Fe(iii) Is iron sillicate
FeOH(s) solid iron hydroxide
FeS (s) solid iron sulfide

Table 8: Chemical formula and name of the different variables, whose interactions are
studied through the bioremediation experiment.

ground about the generation of the data and the experiment are explained in Section 6.8.

The three boxes and their parallel coordinates representation are for three different time

steps for kinetic iron and sorbed kinetic iron. For the first case, kinetic iron (red box)

exhibits low density median and low entropy and same for sorbed kinetic iron (blue box).

This is represented by highly dominant and less dispersed blue lines (signifying dominance

of low data values). In the second case density median for left axis is higher and axis

entropy for right axis is higher. This is demonstrated by more orange lines, that signifies

higher concentration of kinetic iron being dominant. While high entropy on the right axis

leads to a high dispersion among the lines. Had the entropy been low, we would have seen

a cluster of lines going from top of the left axis to bottom of the right axis. In the last case,

low density median and low entropy is indicated by the dominant blue lines originating

from kinetic iron. The difference from the first case is the lines are highly dispersed, shown

by high entropy value for the right axis.
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6.5.3 Main View

The main view helps in addressing Q1 by enabling the analysts to explore the features

shown by the density view, that is, going from overview to the details. In this view we

show the default parallel coordinates layout for our dataset, as shown in Figure 60A. The

configuration is synchronized with the time-slider.

Global Scaling: We choose a global scaling for the variables, i.e., we compute the max-

ima and minima for the different dimensions over all the time steps and scale the data points

accordingly. This helps us in handling ranges that can vary a lot from an initial time step

to a later time step in a particular domain, which enables us to show how trends change

within a fixed data range.

Color Gradient: We use a continuous color gradient of blue to orange, to indicate the

transition from low to high values on the axis. The color gradient is applied to an axis

pair selected by a user, which is the pair with kinetic sulfide (kinetic S–) and tracer bro-

mide (tracer Br) in Figure 60A. The higher concentration of blue lines on most other axes

give an overview of difference in high and low concentrations of multiple variables even

without adjacency. This also helps in reducing clutter when there are a large number of line

crossings and makes the trends stand out.

Axis Order: Appropriate axis-order is important for revealing interesting patterns in par-

allel coordinates. We use the mutual information metric which helps find non-linear corre-

lations [37], for guiding the adjacency of the axes. The grey horizontal bar below the main

view indicates the sum of the mutual information values of the individual axis pairs. If at

any time step, the net mutual information content of the default layout is very low, as indi-
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cated by the width of the bar, user can choose to optimize the configuration by maximizing

the metric. The underlying optimization algorithm is a branch-and-bound algorithm. This

way we choose a user-driven approach to optimize the layout.

6.6 Exploring Temporal Changes from Different Perspectives (Q2, Q3)

Temporal changes include change in univariate distribution and bivariate/multivariate

relationships. We illustrate how we address the problem of quantifying these changes and

relating those to the multivariate properties of the data at different time steps (Q2 and

Q3). These questions can be addressed using the metrics for correlation, data density,

and multi-way interaction among the views. Moreover, the ability to perform semantic

brushing on records by selecting the upper and lower ranges of the metrics, helps analysts

explore patterns within subset of data points. In this section, we first introduce metrics for

correlation and the matrix view and then describe the different interaction mechanisms.

6.6.1 Metrics for Correlation

We use the parallelism metric[37] to quantify the linear relationship between dimensions.

The parallelism metric is composed of two elements: the range depicting the degree of

correlation (if most lines conform to the trend or are loosely scattered) and the median or

principal direction from left to right between two axes indicating if parallel lines are going

up, down or staying horizontal.

Computation: To compute parallelism, a distance histogram is first constructed that records

the distribution of pairwise vertical distances between data points on adjacent axes. From

this histogram, the median distance value indicates the direction of parallelism, if lines are

staying horizontal or going upward or downward. The direction is given by the median
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Figure 64: a): Parallelism range indicates how strongly the lines are parallel. b): Principal
direction of parallel lines indicate association of high values (on the left axis) with low
values (on the right axis) and vice versa.

MP, which is not normalized (the direction only makes sense in pixel coordinates):

MP = q50 (23)

where q50 represents the 50% quartile of the distance distribution.

The extent of parallelism is given by the interquartile range: a narrow interquartile range

implies high parallelism. We normalize the distances between 0 and 1, by dividing by

the highest possible distance. We then compute parallelism Pnorm as follows based on the

interquartile range between the 25% and the 75% quartiles, q25 and q75 .

Pnorm = 1− |q75−q25| (24)

The subtraction is done to get a higher parallelism value for a higher degree of parallelism

(and thus a smaller interquartile range). MP and Pnorm are used to draw line-plots for the

median and range for all the time steps that models the temporal trends over time. These

are illustrated in Section 6.6.2
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Visualization: In Figure 64 we illustrate the parallelism metric with respect to the extent

of parallelism (Figure 64a) and its direction (Figure 64b). In Figure 64a, the left image

denotes a high value of Pnorm and the right image denotes lower value. In Figure 64b, the

first image denotes a negative value for MP because of dominance of lines going downward

while the second one denotes a positive value because of the dominance of lines going

upward. As shown in these figures, we can use the parallelism metric to explore the linear

relationship among a subset of values on adjacent dimensions by using semantic brushing.

6.6.2 Matrix View

A problem with parallel coordinates is that ordering of the variables has to be effective

enough to convey the different conceivable properties that exist. This becomes an even

bigger challenge for temporal data, because it is difficult to track the temporal pattern of all

combinations of variables with the default layout. To address this issue, we build matrix

layout (Figure 60C) similar to a scatterplot matrix, and show the parallelism range and

median plots in that view.

The upper part of the box (Figure 65), which is a filled area, shows spread of the parallel

lines denoted by Pnorm, defined in Section 6.6. Line plot in the bottom one depicts their di-

rection, denoted by MP. A large area under the curve corresponds to high parallelism (high

Pnorm) , i.e., less spread and smaller area means less parallelism (lower Pnorm), i.e. more

spread.

The lower part of the box shows the line plot for MP. An indicator horizontal line through

the middle of the lower part indicates an MP value of 0, i.e., lines remaining horizontally

parallel to each other between adjacent axes. The line plot going above the indicator line
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Figure 65: Illustration of the parallelism metric, for two different axis pairs, when the user
performs brushing by high parallelism.

denotes most lines in the parallel coordinates plot going upward (MP > 0) and when below

the indicator line, that denoted most lines going downward (MP < 0).

In Figure 65a, Pnorm is consistently high as shown by the unchanged, large area under the

curve. In the first selected time step indicated by the arrow-head, MP is less than zero. This

results in the brushed lines being strongly aggregated and going downward. In the second

selected time step, the plot for MP moves upward, over the indicator line. This results in

the brushed lines still strongly aggregated but going upward. In Figure 65b, Pnorm is high

initially and MP is less than zero. So we see strongly aggregated lines going downward.

Later on, Pnorm exhibits lower value but MP increases later on. Therefore we see lines

going in both directions and not as tightly aggregated.
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Figure 66: Different degrees of clumping exhibited between uranium carbonate and uraninite
at subsequent time steps. The clumping metric (C f ) returns a higher value when there are more
clumped regions as in the leftmost image.

6.7 Exploring Subspaces (Q4)

In this section we address subspace analysis (Q4) through rank-ordered views and the

clumping metric. Subspaces relate to a) subset of the different dimensions and b) subset of

the data-points, exploring both of which are of interest to the analysts. First, we describe

how we enable analysts to explore dimensions of interest at different time steps and then we

demonstrate our clumping metric. Note that analysts can explore features for subset of data

points also by brushing by the parallelism metrics as demonstrated earlier in Section 6.4.2.

6.7.1 Rank-Ordered Axis Pairs

The ranked view orders axis pairs according to ascending or descending values of the

metrics. For the sake of clarity on the screen, we restrict the number of axis pairs to be
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(a) Brushing by principal direction between kinectic
sulphate and sulphide

(b) Sulphate concentrations fall and sulphur concentra-
tions rise as the reaction approaches completion

Figure 67: Brushing by principal direction enables an analyst to observe the association
between low and high values of adjacent dimensions.
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shown, at a time, to five. The ranked view is also time-sensitive and different rankings are

produced at different time steps. This view enables an analyst, who might not be familiar

with the data in advance, to have a guidance for what the interesting patterns are at par-

ticular time steps as demonstrated in Section 6.8.2). Different axes can be selected and a

parallel coordinates configuration can be built from the ranked view.

The ability to select axes according to interesting patterns and exploring a subset of the

dimensions through the ranking system helps in overcoming scalability issues. In case of

datasets with dimensions of the order of hundreds, this method can be used effectively to

select a subset of the dimensions to build a parallel coordinates layout. The system also

has a capability of building a parallel coordinates visualization by selecting axis pairs in

the matrix view.

Visualization: Clumping factor for an axis pair at different time steps are shown in Fig-

ure 66. The greater the clumping value, the more is the number of regions with higher

number lines converging to or diverging from that region. Brushing by high clumping on

an axis pair enables an analyst to visualize the behavior of the clusters across multiple axes

and examine the temporal change of those neighborhoods.

6.8 Case Study

We applied our new integrated analysis methods to a bioremediation [50] dataset in or-

der to demonstrate the utility of our system. In performing this case study, we worked

closely with a team of subsurface scientists with expertise in subsurface geology, chem-

istry, and numerical modeling. The specific goals of our collaboration were to identify the

utility of our analysis methods to accomplish the following: Task A) identify stable and
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Figure 68: Clumping pattern among Iron sillicate, Iron hydroxide and Iron sulphide that
was an unexpected phenomena according to the scientists’ initial hypothesis.

unstable trends in variables in order to help verify certain aspects of the process models

used to generate the data (Q1); Task B) build visual evidence to help confirm certain hy-

potheses regarding the interactions between variables (specifically uraninite, sulfates and

sulfides chemical species) and discover the trends and anomalies, if any (Q2, Q3); and

Task C) identify banding or clumping patterns among the different variables, verify them

and observe how these patterns change over time (Q4).

6.8.1 Data Overview

This data originates from a numerical simulation that models a complex, bioremediation

field experiment event that occurred over a two-month interim. The data itself consists

of 10 different chemical components,i.e., variables (Table 8) that are simulated on a 3D

grid of size 56 X 40 X 43 (approximately 96000 records). With respect to the temporal

aspect of the data, there are approximately 120 time steps where the simulation outputs

data for the 10 variables. The complexity of the bioremediation process itself is significant.
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(a) Brushing by low parallelism, the lines that are out-
liers, between uraninite (UO2) and kinetic iron (Fe).
Indicated by green arrowhead: iron sillicate and iron
hydroxide are the stable variables. Indicated by red ar-
rows, kinetic sulfate and sulfide are the unstable vari-
ables.

(b) Outliers conforming to the trend between urani-
nite (UO2) and kinetic iron (Fe++) towards the end of
the simulation.

Figure 69: Gaining an overview from the bivariate view and the univariate view allows
an analyst to select outliers in the main view. Density view indicates stable and unstable
variables.
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a) b)

Figure 70: a) Ranked axis pairs according to descending order of clumping. Grey bars
indicate the degree of clumping. b) An analyst builds a parallel coordinates configura-
tion from the ranked view and explores the changing behavior of the clumped subspaces
between uraninite (UO2) and kinetic sulfate.
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The simulation begins with the injection of acetate into the subsurface. This injection

initially stimulates the growth of the bacteria Geobacteraceae, and this bacteria uses the

acetate substrate to reduce iron and aqueous uranium. The reduction of uranium produces

a solid called uraninite, so that the reduction process effectively removes uranium from the

groundwater. As this simulation is made up of over 29 unique reactions that are temporally

distinct, we limit our discussion to a few selected motivating examples.

6.8.2 Analysis

We begin analysis by using the density view to provide a high-level overview of univari-

ate data distribution for all variables. Addressing Task A (identifying stable and unstable

variables), the density view in Figure 69 shows certain chemical species, like iron silicate,

iron hydroxide, and iron sulphide maintain significant stability throughout the bioremedi-

ation process as indicated by their unchanged uniform distributions over time. In contrast,

other chemical species display significantly more instability, indicating these variables are

more involved in the remediation process (e.g., kinetic sulfate and kinetic sulfide).

Next, we inspect the bivariate distributions between iron sillicate and hydroxide (ma-

trix view in Figure 60C); In these distributions, note the strong parallelism between these

species that remains more or less unchanged over time. This stable trend in parallelism

indicates strong correlation throughout the simulation. This property was specifically of

interest to the scientists who further explored the subspace between iron sillicate and hy-

droxide by brushing according to clumping. As shown in Figure 68, this brushing indicates

strong clumping patterns between iron sillicate, hydroxide, and sulphide that remain largely

unchanged across the temporal axis. The scientists identified this trait as significant in that
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stable clumping (in this instance) implies a low level of reactivity between these variables

that is indicative of initialization errors in the simulation itself.

To address Task B (build and confirm hypotheses), we look at the density median plots (Fig-

ure 69) to get an overview of the interactions between sulfates and sulfides. In this figure,

the corresponding boxes show gradually rising median trends for iron sulfide (Fes) and

kinetic sulfide, while sulfate concentrations mostly remain high. From this visual infor-

mation, the scientists hypothesized that cells with initially low sulfur concentrations would

exhibit a rise in these concentrations, especially with respect to kinetic sulfate. This hy-

pothesis was confirmed by brushing by principal direction (Figure 67(a)) where a selection

of downward trend shows a strong cluster between high concentrations of kinetic sulfate,

kinetic sulfide, and iron sulfide. This trend slowly gives way to more random patterns and

the rising concentrations of sulfur are reflected with scattered brushed lines (Figure 67(b)).

Our collaborators therefore confirmed their hypothesis and also concluded that concentra-

tions of sulfate species become depleted in the middle of the reaction, and begin to rise

again towards the end of the reaction.

For examining anomalies, we select the axis pair involving uraninite and kinetic iron.

Both density view and parallelism views show strong initial downward parallelism from

uraninite to kinetic iron. We examine the behavior of outliers by brushing using low par-

allelism as the criteria which showed association between high values on both axes (Fig-

ure 69(a)). While this was flagged as a potential anomaly, the cells conformed to the ex-

pected trend of association between high values of uraninite and low values of iron, towards

the end of the simulation, leading the scientists re-affirm their reaction model.

The scientists were able to address Task C (identify banding pattern) through the rank-
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ordering feature of the application. Ranked configuration for clumping (based on a time

step in the middle of the simulation) is shown in Figure 70a. Note that the top parallel

coordinates configuration is built from this view. Since the scientists already knew the

axis configuration they wanted, optimization by mutual information was not used here. In

Figure 70, we can see that the configuration shows strong divergent clumping for uraninite,

while lines are spread on the kinetic sulfate axis. Towards the end of the reaction, higher

values of uraninite are associated with higher values of sulfate, and this was consistent with

the previous finding.

6.8.3 Performance and Scalability

The advantage of suing screen-space metrics is that, after the initial data transformation

involving pixel-based binning, the computation of the metrics is independent of the cardi-

nality of the data. For the axis entropy and density median the time complexity is O(h),

while for parallelism and clumping factor, the same is O(h2). Height of the display, that

is, h is most likely to be in the hundreds in most cases, while the number of data points

can be in the higher thousands or millions. This implies h << n, and that O(h2) will be

less than O(n) in most cases. Since data set sizes grow much faster than display sizes, this

relationship will only shift towards screen space being more efficient over time.

Our system is able to show the temporal patterns without any lag in real-time. For han-

dling larger number of dimensions, the rank-ordering and ability to build a configuration by

getting an overview, will be very useful. Currently our application is based on 10 dimen-

sions. When the number of dimensions is in the hundreds, the rank-ordering feature can be

used to reduce the number of dimensions to a manageable set for the parallel coordinates.



CHAPTER 7: DIRECTIONS FOR FUTURE RESEARCH

I have demonstrated in the preceding sections that the visual uncertainty framework not

only enables us in building a theoretical foundation for bridging the machine-side opera-

tions with human-side implications, but it also gives us practical solutions to omnipresent

research problems like high-dimensional data analysis and privacy-preserving data analy-

sis. Consequently, we can extend both the theoretical and practical directions of this work.

7.1 Effectiveness of Screen-Space Metrics

The definition and use of screen-space metrics in visualization is still in its infancy. Sev-

eral proposals exist like the one suggested by Bertini and Santucci [15] but a comprehensive

analysis of their advantages over data-based metrics is missing in the literature. We aim

to extend our work on Pargnostics by comparing with data-based metrics. As suggested

by Bertino and Santucci, feature preservation metrics are can provide a way for measur-

ing effectiveness of information visualization techniques. Li et. al. [75] provide a way

for measuring for comparing scatterplots and parallel coordinates with respect to the fea-

tures which are discernible in both the visualizations. Given their framework, we want

to measure how well a user performs certain tasks using our metrics and using raw data-

space metrics based on the recommended steps suggested by Bertini and Santucci. Our

hypothesis is that screen-space metrics relate more directly to what a user sees on screen,

than data-space metrics; thereby screen-space metrics are expected to be more helpful than
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data-space ones in identifying the features interactively. Specifically, based on the user

studies, we want to address the following areas:

• Compare pattern output from data-space metrics and screen-space metrics. For ex-

ample parallelism and pearson correlation coefficient are almost identical, through

our experiments.

• We want to look at combinations of criteria to see which of those reflect meaning-

ful information about the different trends and relations in the data; and if the users

are comfortable using the screen-space measures. The user will not have direct con-

trol over the metrics, but those will be automatically invoked based on the tasks he

performs.

• We want to confirm the effects of intended and unintended effects of information

loss measures described earlier in Chapter 3 on the users’ tasks. For example, a

high degree of entropy due to large number of crossings may theoretically produce

a high amount of information loss, but if the crossings are at the middle, a user will

perceive that as inverse correlations. We want to filter out false-positive(information

loss is low but user does not finds anything useful due to some other factors which

we might miss) and false-negative(information loss is high but user finds something

useful) cases like these based on the studies.

7.2 Guiding Design Choices

We demonstrated the utility of the visual uncertainty taxonomy from an analyst’s per-

spective, by illustrating how information content on the screen can be described, classified
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and quantified, to simplify the path from data to insight. An immediate implication of the

taxonomy from the visualization designer’s perspective is its potential role in systematiza-

tion of design choices, both in terms of choice of visual variables and that of interaction

mechanisms. The smallest indivisible unit of all visualizations are the visual variables.

While there has been some pioneering work involving the type and categorization of visual

variables and their design implications [11, 30, 26], we still lack a proper understanding of

the perceptual implications of the selection of visual variables for high-dimensional data

analysis. While design choices and their motivations exist sporadically in different research

papers, there is a dearth of a framework for their evaluation and comparison.

Generalization for different visual variables: Our taxonomy works for the position vari-

able, while some parts can be generalized for other variables. For example, configuration

applies all spatial variables like size, shape and orientation. Precision and granularity re-

flecting the resolution of the representation, can be applied for color. The fist step towards

filling this gap is extension of the taxonomy of visual uncertainty and generalizing it for

high-dimensional data, for all visual variables. Moreover, perception research [58] has

shown that visual variables are not processed independently, but in parallel. Since encod-

ing of high-dimensional data involves multiple visual variables, an interesting problem is

how to quantify the additive affect of the uncertainty effected by the different variables.

Along the lines of Table 1, the next step would be to study the trade-offs among intended

and unintended effects of these different uncertainty components in the context of different

tasks for high-dimensional data. These would serve as a feedback for not only the visual

mapping process, but also for influencing the choice of visual variables, that is external to

the pipeline.
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Interaction design: In interactive visualization, different user interaction mechanisms

help maximize data fidelity. For example, zooming helps in viewing the data at multiple

resolutions and dimension reordering (in case of parallel coordinates) helps in get differ-

ent perspectives on the multi-dimensional relationships. On the other hand, when there is

inherent loss in precision, or there is uncertainty due to traceability, when there are un-

known unknowns (the existence of hidden data points), it is difficult to devise interaction

techniques to recover such information. Study of interaction techniques and there effec-

tiveness in the realm of visualization has received much less attention. While there has

been recent efforts [126] to bridge the machine and human side of interaction, there is still

a lack of knowledge on how visual representations and interaction complement each other

for analytical tasks. One application of the generalized taxonomy is to study how inter-

action techniques can be better informed about the causes and effects of uncertainty that

can be reduced, thereby leading the development of an effective user-centric visualization

optimization model.

7.3 Verification and Validation

On the other hand, a direct corollary of influencing visualization design is the applica-

tion of the taxonomy for evaluating visualizations. The need for effective verification and

validation methods has been widely acknowledged and received a lot of attention in discus-

sion forums related to visualization. Controlled experiments and user studies, although are

common techniques for these purposes, there conclusions are often not generalizable and

difficult to model. Evaluation metrics beyond measures related to performance related met-

rics like those related to time and error [13] are needed to compare visual representations,
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which form the interface between the machine and the user [53]. Especially in applica-

tions where there is unavoidable information loss, whether intended or unintended, as in

case of privacy-preserving or high-dimensional visualizations respectively, addressing the

trade-off between data fidelity and perceptual effectiveness is crucial.

Perceptually beneficial designs do not always result in high data fidelity. Sometimes, cer-

tain design choices may motivated by perception, but the results can be counter-intuitive, as

shown by a recent study of cluster-based variants of parallel coordinates, which shows that

some of them perform worse than the ordinary line-based parallel coordinates [60]. This

is mainly due to the fact that the patterns get distorted due to the pre-processing steps and

therefore fidelity of the representation is affected. Translating this phenomenon in terms

of the taxonomy, although edge-bundling reduces identity and traceability uncertainty by

obeying Gestalt principles of proximity and continuity, it introduces pattern complexity,

which is the reason for the negative result in the study.

The fact that high data fidelity do not always benefit perception, is easily conceivable

in visualization. In case of large data points, we might achieve high data fidelity by map-

ping all data points on screen, but would be perceptually ineffective owing to clutter. In that

case, although encoding uncertainty is minimized, those due to decoding are not addressed.

We believe, using uncertainty metrics, these trade-offs can be quantified and the findings

will be complementary to user studies, which are generally expensive and time-consuming

to conduct. While our metrics are perceptually motivated, we have not yet taken the re-

verse step by conducting studies to verify that all of them reflect how the user perceives

information. Some of the metrics like parallelism, convergence-divergence, overlap clutter

etc., intuitively and directly reflect the visual structures. But some others like entropy and
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mutual information, being at a higher level of abstraction, can benefit from controlled user

studies for validation purposes.

7.4 Privacy-preserving Visualization in the Real World

While we have implemented the technique, the rest of the infrastructure is still a proof-

of-concept. If the data is present on the user’s machine, there are ways for the user to

bypass our program and access it. A full implementation of this idea therefore would

require a client-server model where the raw data resides on a server, and the visualization

client can make requests to display it. The server sanitizes the data before it is sent to the

visualization front-end. Since the server is told about the user’s display resolution, it can

create the appropriate clustering. Client-server configuration can pose an entire new set

of challenges, whereby the medium itself can be compromised and be under threat from

attackers. A practical implementation needs to take all these issues into consideration.

The focus of this thesis has been to build the privacy-preserving visualization model

ground-up: we have identified the different elements of the model using the uncertainty

classification and using screen-space metrics to validate privacy and utility. We would like

to utilize our metrics in conjunction with the client-server model in a real-world application

scenario to detect any unforeseen disclosure scenarios.

Although we have modelled some aspects of the background knowledge that an attacker

might possess, there are other aspects of it that can still be incorporated in the analysis,

like multi-dimensional background knowledge and other types of knowledge based on at-

tribute types. The fact that background knowledge is subjective and therefore hard to model

has been widely acknowledged in the PPDM literature [44]. There has been some recent
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work related to modeling of background knowledge in the context of PPDM [76] and we

would like to integrate our visualization model with the data-based model. We are looking

to extend out work by building a Bayesian network model that would depict the depen-

dencies among the different uncertainty-causing factors in the system, taking background

knowledge of the attacker into account. Besides privacy, utility of a privacy-preserving ap-

plication is another equally important factor that needs to be analyzed and quantified. As a

next step, we want to perform a detailed analysis of how the different causes and sources of

visual uncertainty affect the utility of different privacy-preserving visualization techniques.



CHAPTER 8: CONCLUSION

Quantifying the dynamic visual information content in interactive visualizations has

been a widely acknowledged research problem. Because of the subjective nature of the

exploratory analysis process, it is difficult to objectively define boundaries between noise

and information. To this effect, my thesis provides a novel perspective towards building

a framework for design and evaluation of visualization models and techniques, from the

point-of-views of both the visual designer and the analyst. We have conceptualized the

visualization pipeline as a communication channel for measuring the different characteris-

tics of information as it traverses the pipeline from the machine to the human mind. By

systematically defining screen-space metrics and using them as vehicles of this model, we

have demonstrated how the problems associated with information loss can be controlled

or overcome in complex analysis scenarios involving sensitive data or high-dimensional,

time-varying data.

Controlled experiments and user studies are needed to further explore the characteristics

of visual uncertainty in different application scenarios, with varying degrees of user exper-

tise. These will help in throwing light into how effects of uncertainty on the perception

and cognition side, like identity, traceability, pattern complexity, and lack of knowledge,

can be classified further into finer levels of detail. I believe, this research direction will

help furthering the seminal work on the structure of the information design space [26] by
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providing us with fresh insight into improving visual representations. The motivation for

this pursuit stems from the demonstrated effectiveness of the visual uncertainty paradigm

in building effective analytical abstractions and interaction mechanisms for the different

application scenarios previously described in this thesis.

At the core of the visual uncertainty philosophy is the disparity between available pix-

els and number of data points to be encoded. The rate of growth of data sizes over the

past few years has significantly outnumbered that of the growth in the number of available

screen pixels [124]. Moreover, experiments have shown that even the availability of gi-

gapixel displays do not guarantee statistically significant performance improvements over

standard limited resolution screen sizes. Another development in display technology in re-

cent times, has been the advent of high-resolution retina displays, starting with iPhone and

iPad. This trend is expected to continue with other devices as well [121]. But simultane-

ously, high cardinality and dimensionality of data resulting from simulation experiments,

business transactions, internet logs, etc. will continue to make the question of information

loss relevant in visualization. Thus, the applicability of the research direction presented in

my thesis will not be less, but only increase, in the coming years as data sizes continue to

grow at an unprecedented rate.

Optimization of visual representations and controlling different parameters based on

screen-space metrics ultimately leads us to the research question: how much automation

is necessary and sufficient for complementing exploratory analysis process of discovering

unknown unknowns within the data? While there has been some evidence of examining

the complementary role of automation and user exploration [12], there is a huge scope for

using evidences from future research based on my thesis to provide objective insight into
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striking a balance between automation and user-control in mixed-initiative visualization

systems.

Finally, a significant contribution of this thesis is the treatment of sensitive data in vi-

sualization, which has been surprisingly a hitherto uncharted territory in spite of the near

ubiquitous presence of privacy concerns in real world collaborative projects. As we move

more and more towards open data, some portions of sensitive data have to be protected

while they being still available for analysis. Effective access control to prevent unwanted

disclosure within organizations and outside will be an increasingly critical challenge. Vi-

sualization has a unique way of dealing with data, where summary representations ensure

information loss and facilitate effective analysis at the same time. Our conceptualization

of privacy-preserving visualization and future research based on it, will have a compelling

effect on effecting newer strategies for sharing of private data, whereby the privacy-aware

visualization or the analysis is shared, rather than the data. We believe this will reduce

the practical bottlenecks and break legality barriers in data sharing, as in this case the data

itself is inaccessible as it resides on the server. Moreover, by comparing with data-based

approach of privacy, we have demonstrated the effectiveness of the visual approach both

in terms of privacy and utility. While interaction with the data leads to potentially higher

utility, handling all interaction scenarios can be a privacy concern. The evaluation metrics

based on visual uncertainty leading to to optimized representations will help guarantee that

sensitive information is not leaked even with use of interaction and background knowl-

edge of the attacker. Therefore, for both the data owner and the data consumer/ analyst,

privacy-preserving visualization holds great promise.

In light of these arguments, my thesis not only contributes to the existing visualization
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literature by bringing a paradigm shift in understanding how visualizations work, but also

prepares the ground for tackling practical research problems that are relevant in the present

and the future, across various application domains.
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