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ABSTRACT

XIONGWEI XIE. Security improvement in cloud computing environment through
memory analysis. (Under the direction of DR. WEICHAO WANG)

Cloud computing has attracted a lot of research efforts in recent years. More

and more companies start to move their data and operations to cloud computing

environment. However, the security issues in cloud computing environment have not

been studied to a sufficient depth. For cloud computing end users, they do not have

enough technology or methods to verify security Service Level Agreement violation.

Furthermore, there are weaknesses while malware detection mechanism and malware

are running in the same virtual machine. For cloud providers, if they improve the

security of virtual machines at the hypervisor level, they could provide more secure

cloud computing environment for the end users.

In this dissertation, we present a new understanding of security improvement in

cloud computing environment. On both hypervisor and guest virtual machines, we

propose mechanisms to detect malware or Service Level Agreement (SLA) violation

in order to improve security in cloud computing environment. The key idea is to

detect abnormal behaviors through memory analysis. We use techniques such as

accumulated memory access latency, non-intrusive introspection of virtual machines,

memory reconstruction, and cross-verification, to achieve this security improvement

in cloud computing environment. In guest virtual machines, our mechanisms could

detect unauthorized access to memory pages, violation of the memory deduplication

policies, and under-allocation of memory to virtual machines. In hypervisor, we
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can detect malware through cross-verification among different components of the

reconstructed execution states of the virtual machine, and the operation system of

a virtual machine could be Linux or Windows. We implement our approaches on

Xen and VMware, and experiment results show that our detection mechanisms can

effectively detect these abnormal behaviors with small increases in overhead.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Cloud computing is widely used by companies in today’s world. It means that

both applications delivered as services over the Internet and the hardware and system

software in the servers which provide these services[8] are very popular. The trend is

also to describe cloud computing as ”Everything as a Service”.

More and more companies start to move their data and operations to public or

private clouds. For example, out of 572 business and technology executives that

were surveyed in [15], 57% believed that cloud capability could improve business

competitive and cost advantages, and 51% relied on cloud computing for business

model innovation.

Due to these high demands, it is really important to develop mechanisms secu-

rity of cloud computing. Although most companies use some security technology

to hold sensitive information, security is one of the most often-cited objections to

cloud computing[8]. Researchers have already proposed many methods to improve

the security of cloud computing, which ranges from very theoretical efforts such as

homomorphic encryption to very engineering mechanisms such as side channel attacks

through memory and cache sharing.

In cloud computing, customers usually need to outsource their data processing
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or storage to service providers. In order to guarantee the system performance and

data safety, many customers rely on service level agreement (SLA) with providers

to enforce these properties. Compared to the research in SLA enforcement for QoS

parameters, research in security SLA validation falls behind in many aspects. End

users of cloud computing environment may have some agreement with cloud providers

on the usage of the memory of their virtual machines. They may ask the hypervisor

to disable memory deduplication for their virtual machines, because this kind of page

level memory sharing could create a side channel for information leakage[82, 100, 113].

However, end users have no solution to verify the execution of this agreement other

than trusting the words of the cloud providers. As we know, cloud providers have the

privilege to access the memory pages of the virtual machines through reconstructing

memory [49, 65]. In order to protect their own sensitive data, end users could sign an

agreement with providers that providers could not access their memory without their

permission. However, if end users do not have the technology to detect such violation,

it cannot be enforced. For cloud providers, they will use memory overcommitment

technique in hypervisors to use memory resource efficiently [11, 33]. For end users, the

performance could be severely impacted, if providers apply memory overcommitment

technique [41]. There is also no mechanisms for end users to detect such violation,

even if they have agreement on minimum physical memory with providers.

Malware, which gains access to private computer, gathers sensitive information, or

displays unwanted advertising, is high spread through Internet, and infect unnum-

bered computer systems. In Symantec’s internet security threat report [103], the

number of new malware variants detected by them is 431 million in 2015, which is
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a 36% increase from 2014. Furthermore, over half a billion personal records were

stolen in 2015 [103]. Some malware are difficult to be detected since they could try

to hide its existence from anti-malware programs, and some of them can detect and

remove anti-malware programs in the victim machine [129]. The emergence of cloud

computing opens a new horizon for solving this problem. In cloud computing envi-

ronment, through memory reconstruction, and non-intrusive introspection of virtual

machines, we could have a semantic view of virtual machines at the hypervisor level.

The hypervisor can monitor the behaviors of virtual machines. It is really difficult for

malware running in the virtual machine to hide malicious behaviors from the hypervi-

sor. Existing hypervisor-based malware detection mechanisms use information from

different modules of a virtual machine as individual components to conduct malware

detection [49].

1.2 Contribution

This dissertation explores several approaches for improving security in cloud com-

puting environment through memory analysis. The main contributions of this dis-

sertation are the following. At guest virtual machine level, we propose mechanisms

to enforce security service level agreement (SLA). We also implement the approaches

to detect memory management SLA violation in virtual machine, so that customers

can verify memory overcommitment policy, memory deduplication policy, and unau-

thorized memory access policy. At hypervisor level, we first use the reconstructed

information from different modules of the virtual machine as an integrated, cohesive

system for rootkit detection, which is based on cross-verification. Secondly, we pro-
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pose a malware detection mechanism through lightweight examination of Dynamic

Link Library (DLL) environments in virtual machines. Thirdly, we also present a

system call examination approach at hypervisor level to continuously monitor the

sequence of the system call in guest virtual machines to detect malware. They incur

very limited overhead in the virtual machines, because these detection mechanisms

use no-intrusive introspection of virtual machines. They are running in hypervisor so

that malware running in a virtual machine could not easily escape our detection.

1.3 Outline

The remainder of this dissertation begins with Chapter 2, which introduces our de-

tection mechanism of service level agreement (SLA) violation in guest virtual machine.

Cloud computing users could use this detection mechanism to verify SLA violations

to memory management in the virtual machine. Chapter 3 presents a rootkit detec-

tion on guest virtual machine through deep information extraction at the hypervisor

level, while guest virtual machine’s Operation System is Linux. Chapter 4 presents

a lightweight examination of Dynamic Link Library (DLL) environments in virtual

machines to detect malware. Chapter 5 presents a system call examination approach

at hypervisor level to continuously monitor the sequence of the system call in guest

virtual machines to detect malware. Since we use non-intrusive introspection of vir-

tual machines, it is very difficult for malware running in a virtual machine to detect,

remove, or avoid our detection. Chapter 6 concludes this dissertation.



CHAPTER 2: DETECTION OF SERVICE LEVEL AGREEMENT VIOLATION
IN GUEST VIRTUAL MACHINE

2.1 Introduction

In the past few years, cloud computing has attracted a lot of research efforts. At the

same time, more and more companies start to move their data and operations to pub-

lic or private clouds. For example, out of 572 business and technology executives that

were surveyed in [15], 57% believed that cloud capability could improve business com-

petitive and cost advantages, and 51% relied on cloud computing for business model

innovation. These demands also become a driving force for the development of cloud

security, which ranges from very theoretical efforts such as homomorphic encryption

to very engineering mechanisms such as side channel attacks through memory and

cache sharing.

In parallel to the active research in cloud security, enforcement of service level

agreement (SLA) also becomes a very hot topic. In cloud computing, customers

usually need to outsource their data processing or storage to service providers. To

guarantee the system performance and data safety, many customers rely on service

level agreement (SLA) with the providers to enforce such properties. The resources

that are monitored under SLA include CPU time [19, 29, 46], network downtime [28],

and bandwidth [19]. Several multi-layer monitoring structures [28, 23, 30, 39] have

been proposed to link low-level resources with high-level SLA requirements.



6

Compared to the research in SLA enforcement for QoS parameters, investigation in

security SLA validation falls behind in many aspects. For example, in [38] the authors

define the concept of an accountable cloud and propose an approach to differentiate

the responsibility of a user from that of the service provider when some security breach

happens. An infrastructure to enforce security SLA is described in [16]. However, the

high-level discussion often lacks implementation details. It is very hard to generate

concrete defense mechanisms for security SLA violations based on these descriptions.

To bridge this gap, in this chapter, we study mechanisms to detect violations of

security SLA for memory management in virtual machines. Under many conditions,

end users of a cloud environment may sign some agreement with the cloud provider

on the usage and monitoring of the memory of their virtual machines. For example,

many prominent virtual machine hypervisors such as VMware ESX and ESXi [106],

Extended Xen [37], and KSM (Kernel Samepage Merging) [7] of the Linux kernel use

the technique of memory deduplication to reduce memory footprint size of virtual

machines. Since previous research has shown that page level memory sharing could

create a side channel for information leakage [82, 100, 113, 101], many end users ask

the hypervisor to disable memory deduplication for their virtual machines. However,

there exists no solution for end users to verify the execution of this agreement other

than trusting the words of the cloud provider.

As another example, cloud providers usually have the privilege to take a sneak peek

at the memory pages of the virtual machines under their management and reconstruct

their internal views [49, 65]. To protect their own privacy, end users could sign an

SLA with the provider that prevents it from peeking at the memory pages without
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their permission. However, if no technical mechanism can detect violations of such

an SLA, it cannot be enforced.

Last but not least, because of the sharing property of cloud computing, memory

overcommitment is a widely used technique by hypervisors [11, 33, 36, 2]. During the

initiation of a virtual machine, a user can request the size of RAM and also identify

the minimum physical memory that the hypervisor needs to guarantee. However, if

no violation detection mechanism is implemented, a greedy hypervisor may cut the

allocated memory of the virtual machine and allocate it to another virtual machine.

Previous research [41] has shown that when a virtual machine gets too little physical

memory, its performance can be severely impacted since the CPU will either be busy

handling page swapping or use most of the time waiting for data to be loaded into

the system.

To detect such violations, we propose to design mechanisms based on memory

access latency. When we revisit the three types of violations described above, we find

out that all attacks would lead to changes in access orders to the memory pages. For

the attack on memory deduplication, although the other virtual machine is accessing

only its own pages, the victim virtual machine is impacted because of the shared

memory. For the attack of unauthorized peek, the attacker violates the security

SLA and reads the memory of the victim virtual machine. For the memory under-

allocation violations, the reduced physical memory resources to a virtual machine will

lead to extra swapping. Under all cases, the order of accesses to the virtual machine’s

memory pages changes. Our detection mechanisms will try to capture such changes.

According to the documents released by major hypervisor companies such as VMware
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and research results of other investigators [63, 107], Least Recently Used (LRU) mem-

ory pages are still the top choices during memory reclaiming. Therefore, unauthorized

accesses to the memory pages of the victim virtual machine will lower their priority

of being swapped out. We propose to introduce a group of reference pages into the

virtual machine memory and access them with different time intervals. In this way,

we can set up a series of reference points in time for memory swapping operations.

Through comparing the access latency to these reference pages with that to the pages

we try to monitor, we can determine which pages are still in the memory and which

pages have been swapped out. Since the reference pages are hidden within the real

data and program pages, it is very hard for the attacker to identify them and treat

them differently. We have implemented the approaches in virtual machines under

VMware and tested them. Our experiment results show that the approaches can ef-

fectively detect the violations to SLAs in memory management with small increases

in overhead.

The contributions of the chapter are as follows. First, existing SLA enforcement

mechanisms usually focus on hardware resources such as CPU cycles and network

bandwidth. Our approaches study this problem from a different aspect and try to

enforce security SLAs. Second, in this research, we choose SLA violations to memory

management in virtual machines as an example. We design mechanisms to detect such

attacks based on changes in memory access latency. Last but not least, we implement

the approaches and evaluate them in real systems. The experiment results show the

effectiveness of the approaches.

The remainder of the chapter is organized as follows. In Section 2.2 we introduce
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the related work. Specifically, we focus on the enforcement of SLAs and information

leakage through changes in memory and cache access latency. In Section 2.3 we

present the details of our approaches. In Section 2.4 we present the experimental

results in real systems. In Section 2.5 we discuss the safety and efficiency of the

approaches. Finally, Section 2.6 concludes the chapter.

2.2 Related Works

2.2.1 Information Leakage among Virtual Machines

With the proliferation of cloud computing, more and more companies start to use it.

One big security concern in the cloud is the co-residence of multiple virtual machines

belonging to different owners in the same physical box. Existing investigation on this

problem can be classified into two groups. In the first group, side channel attacks

through shared cache have been carefully studied. The shared cache enables timing

based attacks [88, 35, 67, 105] to steal information about key stroke or Internet surfing

histories. Research in [119] shows that in a practical environment such as Amazon

EC2, a cache-based covert channel can reach the effective bandwidth of tens of bits

per second. Some implementations of the key extraction attack were presented in

[128, 45]. More recently, researchers have shown that even when multiple virtual

machines are put on different cores of a CPU, cache level information stealing is still

a viable attack [47]. The delay caused by separation of deduplicated memory pages in

virtual machines has been used to identify guest OS types [82] or derive out memory

page contents [81].

In the second group, researchers have designed security mechanisms to prevent
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information leakage among the virtual machines. In hardware-based approaches,

special components have been embedded into the architecture to manage information

flow. For example, in [50] the processor is responsible for updating the memory page

mapping and the page table. Szefer et al. [104] proposed to use memory level isolation

or encryption to protect guest virtual machines from a compromised hypervisor. The

software-based approaches adopt more diverse mechanisms. For example, in [98] the

cache that is used by security related processes is labeled with different colors to

prevent side channel attacks. In both [64] and [75], the hypervisor monitors the

memory access procedures to prevent cross-VM information flow. In [86], researchers

tried to establish a very small compartment to allow virtual machines to run in an

isolated state. Using lightweight run-time introspection, Baig et al. identify side

channels which could potentially be used to violate a security policy, and reactively

migrate virtual machines to eliminate node-level side-channels [10].

2.2.2 Service Level Agreement Enforcement

In cloud computing environments, service level agreements are often described at

the business level. Their enforcement, however, is often at the technical level. Such

discrepancy creates a challenge for researchers. Two groups of approaches have been

designed to solve this problem. In group one, a middleware layer is implemented to

bridge the high-level service requirements with low-level hardware resources [19, 29,

28]. Group two push the approaches one step further through formalization of both

service capabilities and business process requirements [23]. In this way, a language

can be used for direct communication between the two layers. Dastjerdi et al. [24]
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designed an ontology-based approach that can capture not only changes in individual

resources but also their dependency.

Compared to research in SLA enforcement for QoS parameters, investigation in

security SLA validation deserves more efforts. As a pioneer, Henning [40] raised the

question of whether or not security can be adequately expressed in an SLA. Casola

et al. [20] proposed a methodology to evaluate and compare security SLAs in web

services. Chaves et al. [25] explored security management through SLAs in cloud

computing. An infrastructure to enforce security SLA in cloud services is described

in [16]. Haeberlen [38] proposed an approach to differentiate the responsibility of a

user from that of the service provider when some security breach happens. Efforts

have also been made to quantify the security properties in cloud computing environ-

ments so that automated and continuous certification of security properties could be

implemented [53, 85].

2.3 The Proposed Approach

In this section, we will present the details of the proposed approaches. We first

introduce the techniques of memory overcommitment and deduplication and how

they impact memory access in virtualization environments. We will then discuss the

assumptions of the environments to which our approaches can be applied. Finally,

the details of the approaches and mechanisms to turn the idea into practical solutions

are presented.
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2.3.1 Memory Overcommitment in Virtualization Environments

Virtualization enables service providers to consolidate virtual hardware on less

physical resources. The consolidation ratio is an important measure of the virtualiza-

tion efficiency. To boost up system performance, overcommitment has been adopted

to enable the allocation of more virtual resources than available physical resources.

For example, two virtual machines with 4GB RAM each could be powered on in a

VMware ESXi server with only 4GB physical memory. To support smooth opera-

tions of the two virtual machines, various techniques such as page sharing, memory

ballooning, data compression, and hot swapping have been designed [11]. Almost

all prominent hypervisors use some type of memory overcommitment [73]. For ex-

ample, both DiffEngine [37] and Singleton [97] have tried to use page deduplica-

tion to reduce the memory footprint of virtual machines. Ginkgo [42] implements

a hypervisor-independent overcommitment framework to adjust CPU and memory

resource allocations in virtual machines jointly.

Among different techniques for memory overcommitment, memory ballooning is an

active method for reclaiming idle memory from virtual machines. If a virtual machine

has consumed some memory pages but is not subsequently using them in an active

manner, VMware ESXi attempts to reclaim them from the virtual machine using

ballooning. Here an OS-specific balloon driver inside the virtual machine will first

request memory from the OS kernel. Once granted, it will transfer the control of the

memory to ESXi, which is then free to re-allocate it to another virtual machine. The

whole procedure includes both inflation (getting idle memory from the first virtual
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machine) and deflation (giving memory to the second virtual machine) of the balloon.

The balloon driver is among the utilities installed in the guest operating system with

VMware Tools. It effectively utilizes the memory management policy of the guest OS

to reclaim idle memory pages. An example is shown in Figure 1.

Figure 1: One technique of overcommitment: memory ballooning.

Although memory overcommitment can improve the consolidation ratio in virtual-

ization, it also has the potential to severely impact system performance. For example,

the set of memory pages that are being actively accessed by a virtual machine is called

the working set. Previous research [11] shows that when the total working set of vir-

tual machines remains within the physical memory limit, the virtual machines will

not experience significant performance loss. On the contrary, when the overcommit-

ment factor becomes larger than 2, the Operations per Minute (OPM) of a virtual

machine can reduce 17% to 200%, depending on the properties of the applications.

Because of the potential impacts, many end users choose to identify the minimum

size of physical memory that a cloud provider needs to guarantee when they initiate

their virtual machines. In this chapter, we will discuss mechanisms to verify the

allocated memory resources.

2.3.2 Memory Deduplication in VM Hypervisors

The memory de-duplication technique takes advantage of the similarity among

memory pages so that only a single copy and multiple handles need to be preserved
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in the physical memory, as shown in Figure 2. Here each of the two virtual machines

VM1 and VM2 needs to use three memory pages. Under the normal condition, six

physical pages will be occupied by the virtual machines. If memory de-duplication is

enabled, we need to store only one copy of multiple identical pages. Therefore, the

two virtual machines can be fit into four physical pages (note that we illustrate both

inter- and intra-VM memory de-duplication in the figure). This technique can reduce

the memory footprint size of virtual machines and the performance penalty caused

by memory access miss.

Figure 2: Memory de-duplication reduces the memory footprint size.

Although the implementation of memory deduplication in different hypervisors may

be different, the basic idea is similar. To avoid unnecessary delay during page loading,

whenever a new memory page is read from the hard disk, the hypervisor will allocate

a new physical page for it. Later, the hypervisor will use idle CPU cycles to locate the

identical memory pages in physical RAM, and remove duplicates by leaving pointers

for each virtual machine to access the same memory block. Hash results of the

memory page contents are used as index values to locate identical pages. To avoid
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false de-duplication caused by hash collisions, a byte-by-byte comparison between

the pages will be conducted. While the reading operations to the de-duplicated pages

will access the same copy, copy-on-write is used to prevent one virtual machine from

changing another virtual machine’s memory pages. Specifically, on writing operations

a new page will first be allocated and copied. This procedure will incur extra overhead

compared to writing to not-shared pages, which will lead to a measurable delay when

a large number of shared pages are allocated and copied. This delay will allow us to

detect violations of security SLAs on memory management.

Newer operating systems include a technique known as Address Space Layout Ran-

domization (ASLR). In this technique, operating systems try to prevent code injec-

tions from being successful by changing the memory locations of executables. For

example, in Windows Vista, the memory is randomized in the whole blocks of 64 KB

or 256 KB [102]. Since the memory pages have the size of 4KB, this technique will

not impact the results of memory deduplication.

2.3.3 System Assumptions

In the investigated scenarios, we assume that the security SLA signed between

the cloud provider and customers includes the following three requirements: (1) the

provider cannot apply memory deduplication technique to the memory pages of the

guest virtual machines; (2) without a customer’s permission, the provider cannot peek

at the memory pages of her virtual machine, and (3) the provider needs to guarantee

the minimum size of allocated physical memory to the virtual machine. We assume

that a customer has total control over the memory usage of her virtual machine. For
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example, she can initiate application programs and load data files into the memory

of the virtual machine. She can also measure time durations accurately so that they

can be used for attack detection (more discussion in subsequent sections). We do

not assume the customer can decide how much physical RAM her virtual machine

can consume. Without losing generality, we assume that virtual machines use 4KB

memory pages.

We assume that the cloud service provider is not malicious but very curious. At

the same time, it wants to squeeze as many virtual machines as possible into a single

physical box to maximize its profits. From this point of view, it has the motivation to

enable memory deduplication or allocate less memory for virtual machines. The cloud

service provider may not be the developer of the hypervisor software. For example, a

private cloud provider runs VMware software to manage the cloud. It does not have

the capability to alter the source code of the hypervisor. However, it may configure

the software to enable memory deduplication. It may also read the memory page

contents of other virtual machines through the virtual machine manager. All such

operations can be conducted without the permission of end users.

2.3.4 Basic Ideas of the Proposed Approaches

In this part, we will first introduce the basic ideas of the approaches. The difficulties

to turn these ideas into practical mechanisms and our solutions to these problems will

then be discussed.

The basic idea of the proposed detection mechanisms is to map violations of security

SLAs on memory management to changes in memory access latency. If a memory
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page is located in physical memory, its access delay is at the level of several to

tens of micro-seconds. On the contrary, if a memory page has been swapped out,

its access delay is partially determined by the hard disc performance. The waiting

time is usually at the level of milliseconds. From this point of view, we can easily

differentiate a page in physical memory from that on a hard disk.

Now let us reexamine the three violations of interest. When the hypervisor or an

attacker takes a sneak peek at memory pages of a guest virtual machine, it will change

the sequence of access operations, thus impacting the priority of page swapping. We

can choose a group of memory pages to serve as references and keep records of access

operations to them. If we detect that the order of memory swapping is different from

that of the memory access commands initiated by the guest virtual machine, we can

confirm that some unauthorized access has happened.

A similar technique can be applied to detect the violation of memory deduplication

policies. A user can load two files (we call them F1 and F2) with the same contents

into her virtual machine memory. If the hypervisor does not enable memory dedu-

plication, the files will occupy different chunks of memory. Otherwise, their memory

pages will be merged. To differentiate between these two cases, we need to conduct

the following operations. We will access the pages of F1 and F2 regularly to keep

them in the main memory. We can estimate the progress of deduplication based on

our previous research [82]. When this procedure is finished, we can initiate “writing”

operations to the pages. If the memory pages of the two files are not merged, the

writing delay will be relatively short. On the contrary, if their pages are deduplicated,

“copy-on-write” must be conducted for every page. A measurable increase in delay
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can be detected. Based on the measurement results, we can figure out whether or not

the SLA for memory deduplication has been violated.

Determination of the allocated physical memory for a virtual machine deserves

more discussion. Here we consider two scenarios. In the first scenario, the working

set of a virtual machine is larger than the allocated physical memory. Under this

condition, the virtual machine performance will deteriorate because of the increases in

page misses. Previous research [42] has shown that through a continuous sampling of

application metrics under a variety of memory configurations and loads, we can derive

out a performance-to-memory correlation model. In this way, a virtual machine can

use the size of its active working set and measured system performance to estimate

the allocated physical memory. It can then compare the estimation result to the

promised memory by the SLA to detect possible violations.

In the second scenario, the size of the working set is smaller than the allocated

physical memory. Under this condition, the virtual machine’s performance is not

restricted by the physical memory size. If the virtual machine determines that its

working set is already larger than the physical memory size promised by the SLA, no

further detection needs to be conducted. On the contrary, if the working set is smaller

than the promised memory size, we can request new memory allocation to boost the

usage to the promised value. We can then locate the pages from the working set that

have the least recent access records and read them. If the hypervisor has allocated

less than SLA promised memory to this virtual machine, these pages would have been

swapped out. Therefore, through measuring access latency to these memory pages,

we can derive out whether or not there exists a violation in memory allocation for
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the virtual machine.

2.3.5 Details of Implementation

Although the basic ideas of the detection mechanisms are straightforward, we face

several difficulties in implementation. For example, we need to carefully select the

memory pages that we access to reduce false alarm rates. We also need to consider

the time measurement accuracy and the order of memory page accesses. Below we

discuss our solutions to these problems.

2.3.5.1 Choice of Memory Pages

The first problem that we need to solve is to choose the memory pages that will

be used for the detection of SLA violations. There are several criteria that we need

to follow when we choose these pages. First, the selected pages must incur a very

small performance penalty on the system. If the proposed approaches impact the

system efficiency to a large extent, it will become extremely hard to promote their

wide adoption. Second, these pages should not be easily identified by the hypervisor

or attackers. Otherwise, they may handle these pages differently to avoid detection.

We design different methods to choose memory pages for the detection of the inves-

tigated violations. The selection of memory pages for the detection of unauthorized

access is very tricky. Theoretically, attackers or the hypervisor could choose any mem-

ory pages of the guest virtual machine to read. It is impossible for the guest virtual

machine to know beforehand which pages to examine. In the real world, however, the

selection range is much smaller. An end user usually cares most about the data files

that she/he is processing with sensitive information. Therefore, we propose to insert
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guardian pages into these sensitive data files. Since these pages are integrated into the

real data files, the hypervisor or attackers will not be able to identify them. There-

fore, when they conduct unauthorized memory access to the guest virtual machine,

these pages have a high probability to be touched.

To detect whether or not the cloud provider secretly enables memory deduplication

without notifying end users, we need to make sure that the following two requirements

are satisfied: (1) there exist memory pages that can be merged; and (2) more im-

portantly, the guest virtual machine can read from/write to these pages to measure

the access delay. We propose to construct data files and actively load them into our

virtual machine’s memory. Since deduplication is conducted at the page level, the

offsets of the pages in data files will not impact the final result. Therefore, we can

construct different data files through reorganizing the order of the pages. This scheme

will also introduce randomness into the data files so that it is difficult for the cloud

provider to discover the detection activities. After constructing these files, we can

initiate different application software to load them into memory. Since memory dedu-

plication can happen in both intra-VM and inter-VM modes, we can read different

files in different virtual machines. Under this case, we can use methods in [88] to

make sure that these virtual machines are located in the same physical box so that

deduplication can be conducted.

To detect under-allocation of physical memory to a virtual machine, we need to

identify the pages with the least recent access records. Here a malicious hypervisor

also knows these pages. However, there is very little that it can do to hide the fact

that there is not enough memory allocation for the virtual machine. For example, the
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SLA may have promised that at least 1GB physical memory will be guaranteed for

the victim virtual machine while in real life only 800MB is provided. Under this case,

when our detection mechanism boosts the memory usage to 1GB and the hypervisor

refuses to provide new memory, at least 200MB data needs to be swapped out. Since

the victim virtual machine can choose any memory pages in the working set as the

detection sensors and measure access delay to them, it is very hard for the hypervisor

to hide the increased loading latency when we consider the time difference between

reading from memory and reading from hard disk.

2.3.5.2 Measurement of Access Time

To successfully detect the SLA violations, we must accurately measure the data

access time. Traditionally a computer provides three schemes to measure the length

of a time duration: time of the day, CPU cycle counter, and tickless timekeeping. The

first method provides the measurement granularity of seconds which is too coarse for

our application. The second method will be a good candidate for time measurement

if the operating system completely owns the hardware platform. In a VM-based

system, however, it cannot accurately measure the time duration. For example, if

a page fault happens during our reading operation, the hypervisor may pause the

CPU cycle counter while it fetches the memory page. Therefore, the delay caused

by hard disk reading will not be measured. Based on the analysis in [108], tickless

timekeeping can keep time at a finer granularity. Therefore, we choose the Windows

API QueryPerformanceCounter to measure the duration. Previous research [59] has

also shown that the time measurement accuracy may be impacted by the workload on
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the physical box. We can use the lightweight toolset TiMeAcE.KOM [59] to assess

and fix the measurement results.

2.3.5.3 Verification of Memory Access Order

As explained in Section 2.3.D, the detection of SLA violations in memory man-

agement depends on the verification of some facts: some memory pages that should

have been swapped out are still in memory, while some other pages that should have

stayed in memory are swapped out. The reason that these discrepancies happen is

because some access operations change the order of swapping. To verify this fact,

we need to set up a group of memory pages to serve as references in time. Through

controlling access to these reference pages, we can derive out whether or not the

data pages should have been swapped out. While the basic idea is straightforward,

we need to consider several issues when we choose these reference pages. First, the

reference pages should not belong to frequently used OS or application software. In

this way, they will not be merged by the deduplication algorithm. Second, we want

these reference pages to be randomly distributed in the memory. In this way, if the

cloud provider or attackers access the guest virtual machine memory stealthily, they

have a very low probability to read many reference pages.

To satisfy these requirements, we propose to use the memory pages that are unique

in the Windows 95 system as the reference pages. Our previous research [82] has

successfully identified these pages. Since almost no users are still using Windows 95,

these pages will not be deduplicated. We will allocate space for each individual page

and chain them together with pointers to form a linked list. Since we do not allocate
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a big chunk of continuous memory for these pages, they may distribute all over the

memory. Therefore, it is very hard for the attacker to touch many reference pages if

he randomly selects guest virtual machine pages to read. In this way, the reference

pages can effectively serve their purposes.

2.3.6 Detection Procedures of the SLA Violations

With all the building blocks we need to construct the detection algorithms, below

we describe the details of the detection procedures. We introduce the algorithms

respectively for the three SLA violations.

Figure 3.a illustrates the detection of unauthorized memory accesses. The guest

virtual machine will load both the reference pages and guardian pages into its mem-

ory. Since the swapping operations heavily depend on the memory usage, we propose

to divide the reference pages into multiple groups and access them at different inter-

vals. As illustrated in Figure 4, we will first read all the guardian pages before the

reference pages. In this way, the guardian pages would have been swapped out before

the reference pages if no one else touches them afterward. These pages will then be

left idle. We will access the reference pages with different intervals. For example,

the intervals shown in Figure 4 for different groups of reference pages increase expo-

nentially. Assuming that at time 7t the virtual machine is under pressure for more

memory and has to swap many pages out. Since the guardian pages are accessed

before the 4th group of reference pages, they will be swapped out first. Then the 4th

group of reference pages are also swapped out. At time 8t when the predetermined

interval for group 4 expires, we will read this group of reference pages. Since they
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Figure 3: Detection procedures of the SLA violations.

have been swapped out, the reading delay will be long. As soon as we detect the long

reading delay, we can derive out that these pages are no longer in memory. We will

then immediately conduct reading operations on the guardian pages. If the reading

delay is short, we can derive out that these pages are still in memory. Therefore,

some unauthorized access to these pages must have happened after our first reading.

Figure 3.b illustrates detection of the violations of deduplication policies. Here two

applications in the guest virtual machine will read the files F1 and F2 into its memory,
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respectively. The two files contain identical memory pages. Should deduplication is

enabled in the guest virtual machine, the pages of the two files will be merged. We

will read F1 and F2 regularly so that their pages will not be swapped out. Using

our previous research in [82], we will estimate the time that is needed to accomplish

memory deduplication. When the time expires, we will conduct a group of writing

operations to these pages. If the pages of F1 and F2 have very short writing delay,

they have their own copies. On the contrary, if they are merged, the “copy-on-write”

operations will introduce a measurable delay. We can use the results to determine

whether or not the SLA has been violated.

Figure 4: Using reference pages to detect memory swap operations.

Figure 3.c illustrates the detection of memory under-allocation violations. Here

the virtual machine will first estimate the size of its active working set. It will then

monitor the system performance and use the results in [42] to estimate the physical

memory that is allocated to the virtual machine. If the working set is larger than the

allocated memory, we can compare the estimation result to the minimum memory

size promised by the SLA and detect any violations. On the contrary, the monitoring
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results may show that the allocated physical memory is larger than the working set.

Under this condition, if the working set is already larger than the promised minimum

memory size, the hypervisor is keeping the SLA. If the working set is smaller than

the promised value, we will request extra memory from the hypervisor and boost the

usage to the SLA amount. We will then measure the access delay to the least recently

accessed pages to detect any violations.

2.4 Implementation and Experimental Results

2.4.1 Experiment Environment Setup

The experiment environment setup is as follows. The physical machine has a dual

core 2.4GHz Intel CPU, 2GB RAM, and SATA hard drives. We choose a machine with

relatively small memory size so that it is easy for applications to exhaust the memory

and trigger swapping. The hypervisor that we use is VMware Workstation 6.0.5. We

choose this version since it provides explicit interfaces for memory sharing and access

between virtual machines. All user virtual machines are using Windows XP SP3 as

the operating system. Each virtual machine will occupy one CPU core and 8GB hard

disk. The amount of virtual memory that we allocate for each virtual machine will

be determined by the experiment. Our experiments show that when there are more

than twenty (20) pages that need to be read from the hard disk or separated from

the merged memory, the accumulated delay can be accurately detected. Therefore,

in our experiments we choose the size of each group of reference pages and guardian

pages to be 20.
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2.4.2 Experiments and Results

We conduct three groups of experiments to evaluate the detection of unauthorized

memory access, violation of deduplication policies, and memory under-allocation vi-

olations, respectively. Below we will present the results of the baseline experiments

and the detection capabilities and overhead in more complicated scenarios.

Figure 5: SLA violations detection capabilities of the approaches in baseline scenarios.

The first group of experiments try to evaluate the mechanism for detecting unau-

thorized memory access. To simplify the experiment setup and examine the practi-

cability of our approach, we initiate only two virtual machines in the physical box:

the guest virtual machine that runs our detection algorithms, and an attacker’s vir-

tual machine that stealthily accesses the memory of the victim. Instead of locating

some malware to penetrate VMware and get access to the guest virtual machine’s

memory, we propose to use the Virtual Machine Communication Interface (VMCI)

[109] to simulate such an attack. Specifically, in the guest virtual machine, we cre-

ate a block of shared memory so that the attacker’s virtual machine can access the

guardian pages remotely. The guest virtual machine will load both reference pages
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and guardian pages into its memory, as described in Section 2.3.F. After initial access

to these memory pages, we would launch some applications to consume all of the

memory. In this way, the system will choose memory pages to swap out. Since the

attacker’s virtual machine remotely accesses the guardian pages, they will be kept in

the memory. On the contrary, the reference pages will be swapped out first. When

the guest virtual machine measures the access delay to the guardian pages, it will

figure out that they are still in the memory and detect the unauthorized access.

Figure 5.a illustrates the detection results. We conduct five reading operations to

the memory pages. On the Y-axis we show the average access latency to every page.

Since the delays span across multiple degrees of magnitude, we use log-scale Y-axis.

Reading Operation 1 has a long delay for both groups of pages since they are loaded

from hard disk. Reading Operation 2 is conducted immediately after Operation 1

to verify the contents. The interval between Reading Operations 2 and 3 represents

the idle time. We can see that the access latency to reference pages at Reading

Operation 3 is much longer than that to the guardian pages since they have been

swapped out. After that, we conduct another two rounds of reading operations to

measure the delay. From this figure, we could infer that the guardian pages must

have been touched by someone after the initial access. Since the access command is

not issued by our virtual machine, it is unauthorized access.

The second group of experiments assess the detection of the violations to dedu-

plication policies. We configure the corresponding parameters in VMware so that

the page sharing process will scan the memory and merge the pages with identical

contents. As illustrated in Figure 3.b, the constructed files F1 and F2 contain many
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such pages. We will access the two files regularly so that they will not be swapped

out from the memory. These reading operations will not impact the deduplication

procedures. Using the experiment results in [82, 81, 100], we can estimate the time

that the algorithm needs to merge the pages. When the estimated delay expires, we

will issue a “write” command to the pages of F2. If the pages have been merged,

the “copy-on-write” operations will introduce a measurable increase in delay. On the

contrary, if each page has its own memory, the write delay will be much shorter.

Figure 6: SLA violations detection capabilities of the approaches under intense CPU de-
mand.

Figure 5.b illustrates the detection results. Reading Operation 1 has a long delay

for both files since they are loaded from hard disk. The interval between Operations

2 and 3 represents the deduplication procedure. At the Writing Operation 3, we first

write to pages of F2. We can see that the delay is very long because of the separation

of the pages. After that, we write to the pages of F1. Since the merged pages have

been separated, the writing delay is short. Using this result, we can figure out that

the deduplication function is enabled.

We conduct another group of experiments to evaluate the detection capabilities of
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the proposed approaches in more complicated scenarios. In this experiment, the guest

virtual machine is running the software package Prime to generate prime numbers.

This application demands a lot of CPU resources. We run the detection algorithms

for the two violations. The results are shown in Figure 6.

From the Figure 6, we can see that the proposed mechanisms can still effectively

detect the violations. Since our approaches will read from/write to memory pages at

a sparse interval, they do not incur heavy CPU overhead. Therefore, the execution

of CPU-intensive applications does not impact our approaches to a large extent.

In the third group of experiments, we assess the detection of the memory under-

allocation violations. Two experiments with different memory demands are con-

ducted. In experiment one, we initiate one virtual machine (Windows XP SP3) and

assume that the hypervisor promises to allocate at least 4GB RAM to the virtual ma-

chine. However, the total physical memory in the machine is only 2GB. More memory

resources are promised than available memory. We have three applications running

in the guest virtual machine. Application 1 reads file F1 periodically so that it will

be kept in memory. Application 2 reads file F2 only once so that its memory pages

become the least recently accessed ones. Finally, application 3 consumes more than

2GB but less than 3.5GB memory. From the guest virtual machine’s point of view, if

it actually has 4GB RAM, the file F2 would have stayed in memory. However, Fig-

ure 7.a shows that the memory access latency to F2 is much longer than that to F1.

This indicates that the actual RAM is less than 4GB. The memory under-allocation

violation is detected.

In experiment two, we have two virtual machines (both Windows XP SP3) and the
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Figure 7: Detection of the memory under-allocation violations.

total physical memory in the machine is still only 2GB. The hypervisor promises 3GB

physical memory to each of the virtual machines. Here VM2 is running a memory

intensive application that demands about 2GB memory. VM1 needs about 1GB

memory to read the files F1 and F2 as in experiment 1. The monitoring operations

in VM1 find out that the active working set is way lower than 3GB. Therefore, extra

memory is demanded from the hypervisor to reach the promised amount. After that,

reading operations to F1 and F2 are conducted. Since we read F1 periodically,

only the pages of F2 are swapped out, as shown in Figure 7.b. Again the memory

under-allocation violation is detected.

2.4.3 Impacts on System Performance

The proposed violation detection mechanisms demand resources such as memory

and CPU time during their execution. Therefore, they may impact the overall system

performance. In the following group of experiments, we try to assess such impacts.

Since the detection algorithm for unauthorized memory access demands more CPU

and memory resources than the mechanisms for the other two types of violations, we
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choose it as the object of evaluation. During our experiments, we want to test an

extreme scenario. When the detection algorithm is launched, it will allocate many

groups of reference pages and try to exhaust the main memory of the guest virtual

machine as soon as possible in order to force swapping operations. Other application

software will have to compete with our detection algorithm for resources for their

execution.

Figure 8: Impacts on system performance during SLA violations detection.

We are especially interested in the impacts on two groups of applications. The

first group are the CPU intensive applications. We choose three examples: (1) the

Fibonacci benchmark that computes the Fibonacci sequence; (2) the Prime bench-

mark that generates prime numbers; and (3) the Narcissistic benchmark that gen-

erates the narcissistic numbers. Each of these software packages is running in parallel

with the detection algorithm for unauthorized memory access. The measured CPU

usage is very close to 100%. We measure the execution time of the software since

this is the most intuitive parameter that end users adopt to evaluate the system
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performance.

The second group include those CPU and memory intensive applications. We also

choose three examples: (1) the N−Queens benchmark that computes solutions to the

N-Queens problem in chess and stores the results in memory; (2) the Combination

benchmark that computes all possible combinations of the input numbers; and (3)

the Permutation benchmark that computes all possible permutations of the input

numbers. We measure their execution time when each of them is running in parallel

with the proposed mechanism.

From Figure 8, we can see that for CPU intensive applications, the increase in

execution time is less than 6%. The increase in execution time for CPU/Memory

intensive applications is smaller than 15%. Please note that this is an extreme case

since the detection algorithm runs continuously and tries to force memory swapping

by grabbing as much RAM as possible. In real world, end users can reduce the

detection frequency (e.g. once every 5 minutes). Under that condition, the increased

execution time is smaller than 1% on average for both groups of applications.

2.5 Discussion

2.5.1 Reducing False Alarms

The proposed approaches use memory access latency in guest virtual machines to

detect violations of SLA on memory management. Different from many interactive

security mechanisms that involve third parties, our approaches do not need collabo-

rations from other virtual machines. In this way, it reduces the attack surfaces of the

approaches. Below we discuss the schemes that attackers can adopt to avoid detec-
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tion and our mitigation mechanisms. We will also discuss the schemes to reduce false

alarms.

Since the access latency to a single memory page is too short to be accurately

measured, the detection of the three types of SLA violations depends on the accu-

mulated delay. Therefore, the hypervisor or attackers can reduce the memory access

frequency and volume to the guest virtual machine to reduce the chance of detection.

For example, the hypervisor can randomly select memory pages of the guest virtual

machine to read. In this way, when our detection algorithm measures the access

delay, only a small percentage of the guardian pages would still be in memory. At-

tackers can hide the short delay of these pages within other swapping operations. This

scheme, however, will also impede the information stealing procedures. For example,

our experiments show that if there are more than twenty pages under monitoring

are impacted by an attack, the accumulated change in access time can be detected.

This will restrict the speed at which an attacker reads the victim virtual machine’

memory. For a 1MB data file, if the end user conducts a round of detection every

15 minutes and in every round, the attacker can read only twenty pages to avoid

detection, it may take the attacker three hours to read all pages of the file. Many

data files, however, may not stay in memory for that long. As another example, the

hypervisor may adjust the memory deduplication parameters to reduce the merging

speed. Under this condition, the virtual machines will keep a relatively large memory

footprint size, which will diminish the purpose of deduplication.

One factor that may impact the detection accuracy of the proposed approaches

is the prefetching technique. Prefetching tries to predict the information that the
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OS will need in the near future and loads the data in before the actual instructions

are issued. This technique may introduce false positive alarms into our system since

some guardian pages may be read into memory even though no unauthorized access

has been conducted. To mitigate such problems, we can adopt two schemes. First,

prefetching uses the property of locality and is usually applied to the subsequent pages

of current contents. If we know the number of pages that a prefetching operation will

load, we can use the guardian pages beyond the prefetching range to detect violations.

Another scheme that we can use is to chain the guardian pages together to form a

linked list. This technique can also diminish the impacts of prefetching.

2.5.2 Impacts of Extra Memory Demand

Some users may worry that the extra memory demand for the detection of under-

allocation violations will impact the system performance. We will justify the approach

from the following aspects. First and most importantly, the extra memory demand

will happen only when the active working set is smaller than the minimum memory

amount promised by the SLA. At the same time, if the hypervisor is keeping its SLA,

this memory would have belonged to the virtual machine any way. Under this case,

the demand will not impact the system performance. Second, the memory demand is

incurred only during the detection procedures, which would happen infrequently. Last

but not least, our experiment results in Section 2.4.C have shown that the detection

algorithms will cause very small impacts on the system performance.
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2.5.3 Building A Unified Detection Algorithm

For the clarity of the chapter, we have presented the detection algorithms for the

three types of violations separately. In real life, we can build a unified detection

algorithm. As shown in Figure 9, the unified detection mechanism will consist of

five components. The memory management component will communicate with the

virtual machine to request and return memory pages. A timer will issue commands to

the memory reading/writing component based on pre-determined clock intervals so

that certain pages will be kept in memory. The reading/writing component will also

work with the time measurement component to get the accurate access latency. The

measurement results of these operations will be provided to the detection component.

Based upon different target violations, the algorithm will return detection results to

the end user.

Figure 9: Architecture of a unified SLA violations detection algorithm.

2.6 Conclusion

In this chapter, we propose mechanisms to detect violations of the SLA on mem-

ory management in virtual machines. Instead of proposing a generic security SLA
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enforcement architecture, we design mechanisms to detect three types of memory

management violations in guest virtual machines. We have implemented the detec-

tion approaches under VMware and tested them. The results show that they can

effectively detect the violations with a small increase in overhead. We also discuss

the techniques to improve our approaches.

Immediate extensions to our approaches consist of the following aspects. First,

we plan to explore other types of security SLA violations in memory management

and design a generic approach for their detection. We will also experiment with other

hypervisors such as extended Xen and Linux KSM to generalize the mechanisms. Sec-

ond, we want to study the relationship between our approaches and existing security

SLA enforcement architectures. If we can integrate them into the existing architec-

ture, we will have a solid platform for future extension. The research will provide new

information for strengthening protection to virtual machines and end users of cloud

computing.



CHAPTER 3: ROOTKIT DETECTION ON GUEST VIRTUAL MACHINES
THROUGH CROSS-VERIFIED EXTRACTION INFORMATION AT

HYPERVISOR-LEVEL

3.1 Introduction

Computer systems face the threats from many kinds of stealth attacks such as

rootkits [48, 17]. A rootkit is a stealthy type of software, often malicious, designed to

hide the existence of certain processes or programs from normal methods of detection

and enable continued privileged access to a computer [71]. Once attackers have ob-

tained root or administrator access to a system, they will install rootkits to hide the

evidence so that system administrators cannot detect them. In addition to stealing

sensitive information, attackers also use rootkits to create backdoors for subsequent

attacks.

Rootkits are difficult to detect since a rootkit tries to hide its existence from anti-

malware programs. Existing approaches to rootkit detection can be classified into

three groups. In the first group, researchers analyze and characterize rootkit behaviors

[122, 60, 123, 87, 83, 54]. HookFinder [122] provides valuable insights and details

about the underlying hooking mechanisms used by attackers. K-Tracer [60] and

Panorama [123] are automatic tools that can efficiently analyze the data access and

manipulation behaviors of rootkits. In the second group, researchers try to detect

the rootkits through certain symptoms exhibited by the intrusion [61, 62, 9, 90]. For
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example, SBCFI (state-based control-flow integrity) [77] monitors kernel integrity of

the OS to detect malicious changes. Copilot [76] implements a similar approach in

coprocessor platforms. In the third group, approaches are designed to prevent rootkits

from changing the OS kernel[43, 117, 94]. In [58], the authors present a technique

that uses static analysis to identify instruction sequences of malicious activities.

The host-based rootkit detection mechanisms have their limitations. For example,

some rootkits such as Agobot variant [129] can detect and remove more than 105 types

of anti-malware programs in the victim machine. The emergence of cloud computing

opens a new horizon for solving this problem. In a virtualized environment, the

hypervisor can monitor the behaviors of the virtual machines. While a rootkit may

be able to fool the guest OS, it will be very difficult to hide the malicious process from

the hypervisor. Several security systems have been developed for rootkit detection in

virtual machines [93, 44, 120, 5, 126]. For example, VMwatcher [49] uses the general

virtual machine introspection (VMI) [32] methodology in a non-intrusive manner to

inspect the low-level virtual machine states. UCON (usage control model) [118] is

an event-based logic model. It maintains the lowest level accesses to the system and

ensures that such accesses cannot be compromised by internal processes of a virtual

machine.

Existing hypervisor-based rootkit detection mechanisms use information from dif-

ferent modules of a virtual machine as individual components to conduct malware

detection. Since the data is not cross-verified among different modules, some malware

could have escaped detection. For example, VMwatcher [49] compares the process

names at the virtual machine level and hypervisor level to identify any hidden pro-
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grams. An attacker can change the process’ name to a frequently-used text editor to

avoid detection. However, when we cross-examine the process table with opened files,

we may detect that the text editor has opened a TCP connection and turned on the

microphone. The mismatch of information among different modules will allow us to

detect the rootkit that hides deeper in the system.

In this chapter, we propose a rootkit detection mechanism based on deep infor-

mation extraction and cross-verification at the hypervisor level. Since the hypervisor

sees only the raw memory pages of a virtual machine, we need to first reconstruct the

semantic view of a virtual machine’s memory in order to recover its execution states.

The recovered information includes processes, network connections, kernel-level mod-

ules, and opened files. After reconstructing the semantic view of a virtual machine’s

memory, we examine the execution states that are directly obtained from the vir-

tual machine and those reconstructed by the hypervisor. Through cross-verification

among different modules of the two views, we can find the discrepancy between them

and identify the hidden malware in the guest OS.

While the basic idea is straightforward, we must overcome two challenges to turn it

into a practical approach. First, there is a “semantic gap” [21] between the memory

viewed by the virtual machine and that by the hypervisor. In hypervisor, we see

only the raw memory pages, registers, and disk blocks. Therefore, we must establish

a native view of the virtual machine’s memory just like we are in the virtual ma-

chine. The second challenge that we face is to cross-verify different modules of the

reconstructed memory view and identify any mismatch in the information. In this

preliminary version of research, we define a static table that links frequently used
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applications to the file types and network connections that they can operate on. A

more intelligent approach will be designed in future work.

Compared to existing rootkit detection mechanisms in virtualization environments,

the proposed approach has the following advantages. First and most importantly, we

use the reconstructed information from different modules of the virtual machine as

an integrated, cohesive system for rootkit detection. This provides us a stronger

detection capability than existing approaches. Second, our rootkit detection mecha-

nism uses non-intrusive introspection of virtual machines. Therefore, it incurs very

limited overhead in the virtual machines. Last but not least, we implement the pro-

posed approach in XEN and show that it has very small performance impacts on the

virtualization environment.

The remainder of this chapter is organized as follows. In Section 3.2 we describe

the details of the proposed approach. We discuss the reconstruction of the semantic

view of a virtual machine’s memory. In Section 3.3 we present the implementation

of the rootkit detection mechanism and assess the performance impacts when XEN

Hypervisor is used. Section 3.4 discusses several issues in the detection procedure.

Finally, Section 3.5 concludes the chapter.

3.2 The Proposed Approach

In this section, we will present the details of the proposed approaches. We first

discuss the assumptions of the environments to which our approaches can be applied.

We also introduce the technique of memory reconstruction which we use to extract

high-level execution states of the virtual machine. Finally, we present the details of
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the approaches and mechanisms to detect rootkits.

3.2.1 System Assumptions

In the investigated scenario, we assume that an attacker has acquired the admin-

istrator privilege in the target virtual machine and she/he can install malware in the

system. The rootkit embedded by the attacker can modify the returned results to the

auditing programs on the virtual machine (e.g., ps, netstat or lsof on the guest OS)

to hide the intrusion. The attacker can leave a backdoor in the system for subsequent

attacks. However, similar to the approaches in [125], we assume that the attacker

cannot compromise the hypervisor.

Our investigation has the following design goals. First, the proposed approach

should be transparent to end users. It can accurately extract and recover the virtual

machine’s execution states without any help from the virtual machine. Second, we

need to minimize the performance impacts of the proposed approach on the target

virtual machine. This requirement will help us avoid difficulty in future adoption.

Third, the proposed approach must be hypervisor independent. The design should

support VMM in both full virtualization (e.g. KVM [56] and VMware [110]) and

paravirtualization (e.g., XEN [12]). This property will allow more users to benefit

from the approach.

3.2.2 Memory Reconstruction

The first step of the proposed approach is memory reconstruction of the virtual

machines at the hypervisor level. Through memory reconstruction, we can extract the

high-level semantic information of the virtual machine. To accomplish this procedure,
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we need to locate the static data entries that are essential for the kernel and the boot-

up procedures. Since many of these entries are accessed frequently, their addresses

are determined at the compilation time and can be found from the kernel symbol

table (i.e., System.map in Linux), which can be viewed as a look-up table between

symbol names and their addresses in memory.

Figure 10: Semantic view of a virtual machine’s memory through memory reconstruc-
tion.

In our approach, we first reconstruct the disk image of the virtual machine on the

hard drive in order to get access to the kernel symbol table (i.e., /boot/System.map−

$(uname− r) in Linux). Once we know what the file system is and how the files and

directories are organized in the virtual disk, we can reconstruct the semantic view

of the virtual disk from the raw virtual disk. For example, it is easy to reconstruct

the raw virtual disk of a Linux virtual machine because of its open-source kernel

structure. The reconstruction results will then allow us to determine the memory

addresses of the static variables in the kernel symbol table.

To reconstruct the semantic view of a virtual machine’s memory, we need to trans-

late the memory address in a virtual machine to the physical address in the host
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machine. Through the reconstruction of the virtual disk, we already know the ad-

dresses of many static variables. For example, init task is a statically declared task

that is at the head of the process list in Linux. Starting from this position, we can go

through the complete process list and get the information of all processes using the

offsets of the entries such as PID, process name, and the pointer to the next process.

To better explain the memory reconstruction procedure, below we use an exam-

ple of a 32-bit Linux guest OS to illustrate the information extraction operations.

The procedure is shown in Figure 10. In this example, the user space occupies the

bottom 3GB memory while the kernel occupies the top 1GB. From the kernel sym-

bol table, we know that the address of init task is 0x81c0d020. The offset of tasks

(struct list head) is 0x240. Therefore, the starting address of the first process is

*(init task+offset tasks) - offset tasks. Using the similar technique, we can re-

construct a number of other important data structures such as files and sockets. We

have used several functions such as vmi read addr va and vmi read 32 va to trans-

late the virtual addresses to corresponding physical addresses.

3.2.3 Rootkits Detection Based On Cross-Verification

As described in Section 3.1, it is not sufficient to only examine whether or not

the execution states at the virtual machine level and the hypervisor level match with

each other. In this part, we design a rootkit detection mechanism that explores deep

information about the virtual machine, especially the relationships among the running

processes, active network connections, and opened files to detect the anomalies caused

by malware. The procedure is illustrated in Figure 11.
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When both the virtual machine and the hypervisor have finished extracting the

execution states of the virtual machine, they can compare the results. If any discrep-

ancy is detected, the hypervisor can raise an alarm of the hidden information. If the

two views are identical, the hypervisor will then cross-examine different components

of the extracted information. In our preliminary implementation, we study the re-

lationships among the processes, network connections, and opened files. Using the

guest OS Ubuntu (64bit) with 3.5.0-23-generic kernel, we have generated a table for

the processes of frequently used applications. In this table, we have defined the file

types that this process can open, whether or not this process can be associated with

network connections, and any special properties of the connections (such as the num-

ber of concurrent connections, the protocols, and the port numbers). The hypervisor

will cross-examine different components of the extracted execution states against this

table. If any violation is detected, an alarm will be sent to the end user. In the next

section, we will present a concrete example to show the effectiveness of the proposed

approach.

Figure 11: Rootkit detection procedure through cross-verification.
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3.3 Implementation and Experimental Results

3.3.1 Experiment Environment Setup

To evaluate the detection capabilities of the proposed approach and assess its im-

pacts on the system performance, we conduct two groups of experiments on the

hypervisor Xen version 4.1 with the library libvir 0.9.8. In the first group, we test

our approach on Paravirtualization (PV) over Xen. The host OS is Ubuntu Desktop

12.04 LTS (64bit). The PV guest OS is Ubuntu (Precise 64bit) with 3.5.0-23-generic

kernel. In the second group, we test our proposed approach on Hardware Virtual

Machine (HVM) guest. The host OS is Ubuntu Server 12.04 LTS (64bit). The HVM

guest OS is Ubuntu Desktop 10.04 LTS (32bit) with 2.6.32-24-generic kernel.

Figure 12: The detection of KBeast in Xen through cross-verification.

While the virtual machines can use different types of guest OS, below we use Linux

as an example to show the information extraction procedure. As shown in Figure 10,

in Linux for any opened file or socket we can access the data structure file to get
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its information. Through comparing the field f ops to the value of socket file ops

in the Kernel Symbol Table, we can determine whether the handle points to a file

or a socket connection. If the handle actually points to a file, we can use the field

d name in the structure dentry to get the file’s name. Otherwise, we can use the

socket structure to get the information about the network connection.

3.3.2 Experiments and Results

View comparison-based rootkit detection discovers malware through finding infor-

mation mismatch between the hypervisor and the virtual machine. The discrepancy

could be caused by either information hidden by the malware, or the anomaly links

among the processes, files, or network connections. Below we use a concrete ex-

ample to illustrate the detection capability of the proposed approach. Here we use

an advanced Linux kernel rootkit KBeast as the investigation target. KBeast can

hide loadable kernel modules, processes (ps, top, lsof, pstree), socket and connections

(netstat, lsof), and anti-kill processes from the infected OS. Furthermore, it leaves a

hidden backdoor open for subsequent attacks. KBeast also allows the attackers to

change its process name so that it looks like a benign application. It is so stealthy

and elusive that many anti-malware packages such as chkrootkit and rkhunter cannot

detect it. Figure 12 shows the screenshot of an infected virtual machine in which

the KBeast runs and hides a process with the PID 1788. In Figure 12, the back-

ground GUI screen on the right side shows the inside view of the virtual machine

while the foreground screen on the left side shows the reconstructed semantic view of

the memory of the same virtual machine.
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In the Figure 12, we can observe that the rootkit KBeast is built completely and it

is running with PID = 1788, which is hidden from the virtual machine. The attacker

has also changed the process’ name to ‘pdf-reader’ so that looking at only the process

table is not sufficient for its detection. The malware opens a backdoor for remote

access through telnet. In the virtual machine, we cannot detect any anomaly through

ps or netstat. The reconstructed view of the virtual machine at the hypervisor level

is shown on the left side of the Figure 12. In the left bottom of the Figure 12, we can

see that the proposed approach reveals a running process with PID=1788 called pdf-

reader. If we look at only this information, we may assume that the virtual machine

has the application such as Acroreader running. However, when we link the processes

to opened files, we find that this process has opened four files/connections. The first

TCP connection is the telnet backdoor and its state is CLOSE WAIT. The state of

the second TCP connection is LISTEN. It is the backdoor that KBeast opens. This is

a very suspicious activity when the PDF reader holds an open connection and waits

for external requests. The proposed approach detects this anomaly and reports it to

the virtual machine.

In addition to the experiments described above, we have conducted another group

of experiments to test the proposed approach upon a PV virtual machine. Here the

rootkit replaces the system auditing programs (including lsof and netstat) with some

malicious interfaces so that it can control the returned contents. Our experiments

show that the proposed approach can also reveal the hidden information through

memory reconstruction, including the opened files, Socket connections, and the IP

addresses of the communication parties. The experiments show that our approach is
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not restricted by the type of virtualization.

3.3.3 Overhead and Performance Analysis

To protect a virtual machine from rootkit infection, we need to execute the proposed

approach at the hypervisor level periodically. Since we need to freeze the virtual

machine during memory reconstruction, we must study the relationship between the

detection frequency and its impacts on the system performance. We conduct two sets

of experiments to assess the impacts.

The first experiment tries to measure the memory reconstruction time at the hyper-

visor level. Since each memory reconstruction consumes a very short period of time,

we measure the accumulative delay of 5000 reconstructions. In order to simulate the

real working environment, after each memory reconstruction the host OS will sleep

for one second so that the virtual machine will get the CPU back. Our measurement

shows that the average execution time of memory reconstruction is about 20ms re-

gardless of the size of the allocated memory of the virtual machine since we access

only its high level data structures.

In the second group of experiments, we try to evaluate the impacts of the proposed

rootkit detection mechanism on the performance of the guest virtual machine. We

choose three applications in the guest virtual machine as benchmarks and measure

their execution time when the rootkit detection frequency is changed. As shown in

Figure 13, the make benchmark compiles the kernel of Linux version 3.10 and incurs

intensive CPU and I/O workload. The gzip benchmark compresses a large file and

demands more resources from the CPU. Lastly, the find benchmark tries to locate a
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specific file on the hard-drive and incurs intensive disk and file system accesses.

Figure 13: Impacts of rootkit detection frequency on system performance through
cross-verification.

From the Figure 13 we find that when we increase the interval between the rootkit

detection, its impacts on the virtual machine performance are decreasing. When the

interval is equal to 125 seconds, the applications are almost not affected at all. Even

when we execute the proposed approach every second, the increase in application

execution time is less than 2.5%. Based on the results, we conclude that our proposed

approach introduces very low overhead.

3.4 Discussion

While there are many different ways for hypervisors to communicate with hosted

virtual machines, in our implementation we use sockets to allow the two parties to

exchange information. We establish a socket in the hypervisor that listens to the

rootkit detection requests from virtual machines. When a request is received, the

hypervisor will temporarily freeze the virtual machine and access its memory. The
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memory reconstruction and malware detection results will then be sent back to the

virtual machine. To protect authenticity and integrity of the data, the hypervisor can

digitally sign the hash result of the exchanged information. The two parties do not

need accurate synchronization to look at the same snapshot of the memory since the

hypervisor can identify any suspicious information in the reconstructed view.

Our proposed approach extracts the execution states of a virtual machine through

reconstructing the semantic view of its memory. If an attacker has compromised the

virtual machine, she/he can intentionally modify the significant values of the system in

the Kernel Symbol Table. Under this condition, we cannot reconstruct a true semantic

view of the virtual machine’s memory. Similarly, the attacker can also alternate other

components of the kernel to fabricate a false view that the information from the virtual

machine and that from the hypervisor match to each other. Fortunately, changes to

OS kernels can be detected through attestation of the integrity of the images [72].

3.5 Conclusion

In this chapter, we propose a new rootkit detection mechanism for virtual ma-

chines through deep information extraction and reconstruction at the hypervisor level.

The hypervisor will first rebuild the semantic view of the virtual machine’s memory.

Through cross-verification among different components of the reconstructed view, the

hypervisor can detect hidden information and mismatch among different active mod-

ules in the virtual machine. Our experiment results show that the proposed approach

is practical and effective in rootkit detection. Furthermore, the performance overhead

is very low since we access only the high-level data structures of the virtual machine.
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Immediate extensions to our approach consist of the following aspects. First, we

plan to experiment our approach with Windows virtual machines so that we can eval-

uate its practicability in other environments. Second, we will introduce intelligence

into the construction of and anomaly detection in the linkage table among different

modules of the virtual machine. Finally, we plan to extend our approach to other

hypervisors so that more end users can benefit from our research.



CHAPTER 4: LIGHTWEIGHT EXAMINATION OF DLL ENVIRONMENTS IN
VIRTUAL MACHINES TO DETECT MALWARE

4.1 Introduction

Computer systems face the threats from a high spreading rate of computer malware

(worms, Trojan horses, rootkits, botnets, etc.). Malware intrudes into computer

systems and causes millions of dollars in damage. Host-based malware detection

mechanisms have their limitations. On one side, since the anti-malware systems are

installed and executed inside the hosts that they are monitoring, they can collect rich

information from the local host. On the other side, since they are visible and tangible

to advanced malware running in the system, effective attacks towards them become

feasible. For example, some malware such as Agobot variant [129] can detect and

remove more than 105 types of anti-malware programs in the victim machine.

Since it becomes increasingly difficult to trick end users to download and run ex-

ecutable files from unknown sources, attackers refer to more stealthy ways to avoid

detection. Based on a report released by Kaspersky [78], about 60% of malware col-

lected at KingSoft anti-malware lab are DLL files. From this point of view, protecting

the authenticity and integrity of DLL files that are loaded into computer systems is

essential for the safety of end users.

The emergence of cloud computing opens a new horizon for combating with the

trends in malicious attacks on DLL files. Some researchers [51, 57, 114] proposed
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to place the intrusion detection mechanisms outside of the virtual machine being

monitored. A well-implemented hypervisor will enforce strong isolation among vir-

tual machines and the programs running within them. Under this condition, even

if a virtual machine is compromised by malware, it is difficult for the attacker to

compromise the hypervisor. For example, VMwatcher [49] uses the general virtual

machine introspection (VMI) methodology in a non-intrusive manner to inspect the

low-level virtual machine states. UCON (usage control model) [118] is an event-based

logic model. It maintains the lowest level access to the system and ensures that such

access cannot be compromised by internal processes of a virtual machine.

Existing malware detection approaches often use information from DLL or other

executable files in the following way. They will collect a large number of PE or

DLL files and conduct static analysis of the API calling graphs in these applications

[14, 96]. The learned knowledge will then be used as features to detect malware. Ex-

ample solutions include [91, 95, 121]. These approaches are effective in the detection

of infected files when they are stored in hard-drive. However, if no continuous exami-

nation is conducted, they cannot capture infections to the DLL files that happen after

their initial screening. Another thread of research uses signatures of different pieces

of kernel code [68] or cross-compares code segments among multiple virtual machines

[3] for code integrity checking purposes. However, it quickly becomes cumbersome

and time-consuming to maintain a database of all legitimate signatures. For example,

ModChecker [3] will introduce a delay of 0.2 second when it tries to compare http.sys

on two mostly-idle virtual machines.

In this chapter, we propose a lightweight approach at the hypervisor level to con-
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tinuously monitor the status of loaded DLL files in guest virtual machines to detect

malware. Instead of using information that is extracted from different modules of a

virtual machine as individual components, our cross-verification schemes cover a wide

range of properties of the DLL files including their loading path, loading order, and

RVA (relative virtual address) of the functions. Our overall approach can be divided

into three steps: collection, analysis, and monitoring. Through memory reconstruc-

tion technology of the virtual machines, we record the execution states of different

applications in the virtual machines at the hypervisor level. Using freshly installed

virtual machines, our collection procedures will extract and record information of

DLL files in malware-free environments. After we collect enough information from

the training data, we will start the analysis procedures. We will explore the relation-

ship between the active processes and the loaded DLL files. We will also generate a

fingerprint of the loading order and RVAs of the DLL files. We will then continuously

monitor the DLL files running in the virtual machines and compare them to the ex-

tracted features. If attackers make any changes to the information under surveillance,

we can detect the infection in real time.

The contributions of our research can be summarized as follows. First, instead of

examining the DLL files for only once when they are loaded, our approach conducts

continuous monitoring on the files. In this way, infections to the libraries can be

detected on the fly. Second, our malware detection mechanism uses non-intrusive

introspection of virtual machines. Since the detection mechanism is running at the

hypervisor level, it is very difficult for malware running in a virtual machine to detect,

remove, or avoid our approach. Third, instead of examining the contents of the whole
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libraries, we focus on some high level yet essential information such as the RVA of

the functions. In this way, even when we examine the virtual machines’ memory at

a relatively high frequency, the impacts on their performance are still very low. Last

but not least, we conduct extensive experiments to evaluate the proposed approach.

We use more than 100 malware of different types (Trojans, stealth backdoors, adware,

and virus) to test our detection mechanism. Our solution detects almost all malware

samples with very low false negatives.

The remainder of this chapter is organized as follows. In Section 4.2, we discuss

the related work. In Section 4.3, we present the details of the proposed approach.

In Section 4.4, we describe the implementation of the malware detection mechanism

and experiment results. Section 4.5 discusses a few issues in the detection procedure.

Finally, Section 4.6 concludes the chapter.

4.2 Related Works

Existing approaches to manipulating DLL files in a computer system can be classi-

fied into two groups. In the first group, malware will try to load its own DLL files into

the system through DLL injection [4]. An attacker can achieve the goal through ei-

ther remote thread injection or registry DLL injection. For example, Conficker worm

injects undesirable DLLs into legitimate software [99]. Another way of manipulating

the DLL files is to change the files directly. For example, attackers can use API

hooking [122] to redirect a benign function call to malicious code segments. In-line

code overwriting can also be used to achieve the goal [112].

Our approach can effectively detect the attacks described above. During the col-
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lection phase, we have learned the relationship between the application software and

the DLL files loaded by it. Therefore, if attackers try to link their malicious DLL

with an application, we can detect the anomaly. Since our approach will examine the

RVA of the function calls, API hooking can be detected as well.

Researchers have experimented with malware detection through verifying the in-

tegrity of system files. For example, SBCFI (state-based control-flow integrity) [77]

monitors kernel integrity of the OS to detect malicious changes. Copilot [76] im-

plements a similar approach in coprocessor platforms. The disadvantage of these

approaches is their relatively heavy overhead on the system. In our approach, we

choose to examine only the high-level information instead of the complete file con-

tents to reduce impacts on the virtual machines. More discussion on this choice is

presented in Section 5.

4.3 The Proposed Approach

In this section, we will present the details of the proposed approaches. We first

discuss the assumptions of the environments to which our approaches can be applied.

We also introduce the technique of DLL information extraction which we use to

extract DLL information of virtual machine. Finally, we present the details of the

approaches and mechanisms to detect malware.

4.3.1 System Assumptions and Design Goals

In the investigated scenario, we assume that we can get access to malware-free

virtual machines during the collection and learning phases of the approach. This can

be achieved through using freshly installed systems. After the collection procedures,



58

we do not restrict user behaviors on the virtual machines. They may be tricked by

attackers and download or install some adware, virus, worm, or spyware into the

system. We also assume that an attacker can acquire the administrator privilege

of a compromised virtual machine after she/he intrudes into the system. Malware

installed by the attacker may modify return results to anti-virus programs that are

running in the local virtual machine to hide the malicious process. The malware may

also inject in some benign process, such as explorer.exe, and start several threads to

conduct malicious activities. However, similar to the approaches in [125], we assume

that the attacker cannot infect the hypervisor through the virtual machine.

Our investigation has the following design goals. First, the malware detection mech-

anism should be transparent to end users. Moreover, it can extract and recover the

virtual machine’s execution states accurately. This goal is realized through the non-

intrusive introspection technology. Since we examine the virtual machine execution

states from the hypervisor, it is very difficult for the malware to mislead the detection

procedure. Second, the approach should be independent of specific hypervisors. The

design should support VMM in both full virtualization mode (e.g., VMware[110] and

KVM [56]) and paravirtualization (e.g., XEN [12]) modes. This property allows more

users to benefit from the approach. The analysis in later parts will show that our

malware detection mechanism does not depend on any specific hypervisors. Third,

we also need to control the performance impacts of the proposed approach on vir-

tual machines. This requirement is essential for future deployment and adoption of

our malware detection mechanisms. Our experiments will show that examining only

the execution states in virtual machine memory, even periodically with a short time
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interval, will introduce a small increase in overhead.

4.3.2 DLL Information Extraction

Before we can collect and analyze information from guest virtual machines, we must

first reconstruct memory of the virtual machines at the hypervisor level. Since the

hypervisor sees only the raw memory pages of a virtual machine, we need to rebuild

its semantic view, so that we can extract high-level semantic information.

To better explain the memory reconstruction procedure, below we use an example

of a Windows guest OS to illustrate the information extraction operations. We can go

through the process list from PsActiveProcessHead (the head of the double linked

list). In Windows XP, each process has an EPROCESS object through which we

can traverse the whole list. Each EPROCESS object contains both Flink (forward

link) that points to the next EPROCESS structure and Blink (backward link)

that points to the previous EPROCESS structure. PsActiveProcessHead is a

member of the kernel debugger data block ( KDDEBUGGER DATA64), which

is used by the kernel debugger to find out the states of the operating system [66].

Furthermore, the Kernel Processor Control Region (KPCR) is a data structure used

by the Windows kernel to store information about each process. It is located at virtual

address 0xffdff000 in Windows XP. In KPCR, the data structure KdV ersionBlock

contains a linked list of KDDEBUGGER DATA64.

Through memory introspection technique, we can extract high-level execution states

of a virtual machine. The execution states that we can get include process list, net-

work connections, opened files, Dynamic-link library, and relative virtual address of
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functions in DLLs. In the process list, we could get the full path of the files in ex-

ecution. For each process, the order of the extracted DLL files is identical to the

order in which the process loads them into memory. Moreover, we can get the rela-

tive virtual address (RVA) of functions in different DLLs. Access to the information

provides a rich data set for us to conduct subsequent analysis and design of detection

mechanisms.

4.3.3 Design of the Malware Detection Mechanisms

At the high level, we propose a malware detection mechanism that runs in the

hypervisor to detect infected DLL files in guest virtual machines. This is accom-

plished in three steps (Figure14): (1) the collection phase, in which a process collects

information about different applications from malware-free virtual machines; (2) the

analysis phase, in which we analyze the execution states of each benign process, and

extract the characteristics of these benign applications; and (3) an on-line detection

phase, in which the detection program is used to detect infected DLLs in a guest

virtual machine through comparing their execution states to the learned information.

These three steps are described in more details below.
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Figure 14: DLL examination malware detection procedure.
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First, we use a running example to illustrate the information collection procedure.

In order to get a comprehensive view of the execution states and avoid impacts from a

specific running environment, our information collection program will run many times

in the hypervisor to extract behaviors of each process from different installations of

malware-free virtual machines. For example, in a PE file, the export structure is called

Image Export Directory with eleven (11) members in it. AddressOfFunctions is

the head of the array that keeps RVAs to all functions in the module. AddressOf

−Names is the head of another array that keeps the names of functions in the module.

Combining these two arrays, we can get export functions and RVAs in pairs.

Although the information that we gather through the collection phase contains a

lot of data that can be used to differentiate malware from benign applications, two

reasons lead us to apply some learning algorithms to filter out noises and generate

behavior patterns of benign processes. The first reason is that different versions of the

same software demonstrate different behaviors. We can use an example of the RVAs

of the same function to illustrate this. In ws2 32.dll with version 5.1.2600.5512,

the RVA of function socket is 0x00004211, while the RVA of the same function in

version 6.3.9600.17415 is 0x00003BD0. The second reason is that even when the same

application software with the same version number is installed, the virtual machines

may still demonstrate different behaviors in different environments. For example,

under most conditions, explorer.exe will not load avcuf32.dll into memory. However,

if we install Bitdefender in our virtual machine, which is an anti-virus application,

explorer .exe will load avcuf32.dll into memory after KERNEL32 .dll. Similarly,

explorer.exe will load 7-zip.dll into memory only if we install 7-zip. Because of the
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differences in behaviors, we need to experiment with the same application in different

running environments to learn their behaviors.

The knowledge that we learn from the malware-free virtual machines covers a wide

range of properties of the applications. For example, we will check the DLL names,

their full loading paths, and RVAs of functions in them. In this way, if an attacker

loads his own malicious DLLs into the system, we will be able to catch them. Some

malware may impersonate a popular process name, such as svchost.exe, to fool the

detection algorithm. The fake process, however, usually needs to load DLLs from a

folder that is different from that of the real application. Therefore, we can distinguish

between them based on these differences.

Another feature that we can use to detect malware is the relationship between the

functionality of an application and the DLLs it loads. DLL files usually serve specific

purposes. For example, ws2 32.dll, hnetcfg.dll, pstorec.dll, and crypt 32.dll are used

for networking, firewall maintenance, access to protected storage, and cryptography,

respectively. An application should load only the DLLs that it needs to use. Through

analyzing the functionality of different applications and the DLL files that they load,

we can expose their relationship. If DLL files that deviate from the functionality of

an application are loaded, we need to conduct further investigation. For example, if

a malicious application calls functions from all four DLLs we mention above, it can

read confidential information from the system, encrypt it with secret keys, and send it

out to the attacker. This type of anomaly can be detected through cross comparison

among the DLLs that are loaded by the applications with similar functionality.

We can also use dependency among DLL files to detect malware. Their dependency
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could impact the order in which they are loaded into the system. For example,

IEXPLORE .EXE is a frequent target of attackers. We analyze its behaviors and

find out that there are 16 groups of consecutive loading orders of DLL files. The length

of these consecutive segments ranges from 2 to 20. Some DLL injection attacks will

break these consecutive segments. Therefore, we can use this change to detect the

malware.

Last but not least, through checking the RVA addresses of the functions, our detec-

tion mechanism can catch several types of code injection and in-line code overwriting

attacks upon DLLs. In order to increase the efficiency of our detection mechanism,

we will examine the RVAs of the functions as one unit by calculating and checking

their hash result.

Extract Behaviors

Report alarm to 

end user

DLL name, full path

 Order of loaded DLL

Verify Section Table

Abnormal

Abnormal

Abnormal

Wait for next period

RVA and functions
Abnormal

Figure 15: Runtime detection procedure of DLL examination.



64

After analyzing the extracted information from malware-free virtual machines, we

will start an on-line monitoring and detection procedure in the hypervisor. The details

of the detection procedure are shown in Figure 15. At the beginning of each round

of detection, we need to take a snapshot of the memory pages of a virtual machine

that contain its execution states. This operation will take a very short period of

time and will not impact the user experiences with the guest virtual machine [57].

After the system data structures are reconstructed from the memory pages, we will

compare the information to the knowledge that we have learned through Step 2. If

any anomaly is detected, we will raise an alarm.

4.4 Implementation and Experimental Results

4.4.1 Experiment Environment Setup

To evaluate the detection capabilities of the proposed approach and assess its im-

pacts on the system performance, we implement the mechanisms in Xen and conduct

two groups of experiments. In the first group, we investigate the effectiveness of our

malware detection approach through a group of real-world malware. In the second

group, we evaluate the impacts of our detection mechanism on the guest system per-

formance. The experiment environment setup is as follows. The physical machine has

a four-core 3.30GHz Intel CPU, 10 GB RAM, and SATA hard drives. The hypervisor

that we use is Xen version 4.1.2 with the libvir 0.9.8. The host operating system is

Ubuntu Server 12.04 LTS (64bit). We test two virtual machines. One virtual machine

is using Windows XP SP3 (32bit) as the operating system. The other virtual ma-

chine is using Windows 7 Professional (32bit) as the operating system. Each virtual
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machine occupies one CPU core and 20GB hard disk. We vary the allocated memory

to virtual machines from 1GB to 3GB to evaluate the impacts of the memory size on

our proposed approach.

4.4.2 Detection Capability of the Proposed Approach

To collect behavior patterns of the benign systems and software, we install pop-

ular benign applications in the guest virtual machines. We download 100 benign

and freely available applications from a trustworthy and reputable website. These

benign applications cover freeware programs in a wide range of different domains

(such as system utilities, office applications, media players, instant messaging, and

browsers). We experiment with different combinations of the software in different

environments so that the analysis phase can extract their special properties. After

that, we download and install six groups of different malware to evaluate the detection

capabilities of our program. We conduct malware detection experiments on two types

of virtual machines. In the first group, the guest virtual machine runs Windows 7

Professional 32 bit. Our malware collection consist of 75 real-world malware samples,

including 10 stealth backdoors, 20 trojans, 15 adwares, 10 worms, 10 rootkits, and

10 virus. All of them are publicly available on the Internet (e.g., from websites such

as http://oc.gtisc.gatech.edu:8080/).

Figure 16 summarizes the detection results. Here ‘False Negative’ represents the

number of malware that is missed by our detection mechanism. ‘DLL Path’ represents

the number of malware that is detected based on the anomaly in name/loading path

of the DLL files. ‘Loading Order’ represents the number of malware that is detected
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Category

Backdoor

Trojan

Adware

Worm

Rootkit

Total

10

DLL
Path

8

18

13

9

10

Loading
Order

6

17

13

10

10

RVA

8

18

13

10

10

Virus 10 8 10

Total

10

20

15

10

10

10

Total

1

False
Negative

0

1

2

0

0

0

Figure 16: Summary of DLL examination malware detection results on Windows 7
VM.

based on the order in which the DLL files are loaded. ‘RVA’ represents the number of

the anomaly in hash results of the relative virtual addresses. For example, 17 out of

20 Trojan attacks are detected by our approach since they change the order in which

DLL files are loaded into the system.

From Figure 16, we can see that our proposed mechanism is able to correctly iden-

tify most of the malware samples. There are three false negatives in our detection

results. One of them is a Trojan that attempts to redirect our browser to another

website. This Trojan is a JavaScript Trojan that does not have any DLL related be-

haviors. The other two are JavaScript adware. They attempt to display pop-up and

pop-under advertisements when we are visiting some website in a JavaScript-enabled

browser. The advertisements pop-up as separate windows to the active browser win-

dow so that they can bring additional profit to the designer. None of the missed

malware demonstrates abnormal behaviors of a process or tries to infect DLL files.

Therefore, they are not detected by our approach.

In the second group, the guest virtual machine runs Windows XP SP3 32 bit. From

Figure 17, we can see that our proposed mechanism is able to correctly identify most
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of the malware samples. There are two false negatives in the detection results. One

of them is a Trojan that changes a registry value. The computer is also showing an

advertisement in the Yahoo Messenger chat window. Hence, its behavior resembles

a benign application. If we click on that advertisement, it would download and

execute a setup file that will run at every system boot-up. Our malware detection

mechanism will catch it if this behavior shows up. The other false negative is an

adware, which is a download manager. Every time a user wants to download a file

from the internet, a window with the advertisement will appear. However, no user

data will be reused, stored, or shared. The reason that it is missed is because our

malware detection mechanism can identify only the abnormal behaviors of a process,

but not its intent or phishing. In real life, it is not difficult for a user to identify this

type of advertisement.

Category

Backdoor

Trojan

Adware

Worm

Rootkit

Total

10

DLL

Path

3

9

4

4

3

Loading

Order

3

8

4

5

3

RVA

3

9

4

5

3

Virus 4 3 4

Total

5

10

5

5

3

4

Total

1

False

Negative

0

1

1

0

0

0

Figure 17: Summary of DLL examination malware detection results on Windows XP
VM.

We have conducted a third group of experiments to assess the false positive mis-

takes of our approach. We download 100 benign and freely available applications

that are different from our training set. These applications cover a wide range of

different domains (such as browsers, audio players, video players, instant messaging,
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and security applications). From Figure 18, we can see that our malware detection

mechanism causes no false positive mistakes.

4.4.3 Overhead and Performance Analysis

To protect a virtual machine from malware infection, we need to run the proposed

approach at the hypervisor level periodically. Since our detection mechanism needs

to temporarily freeze a part of the memory in the virtual machine, it will impact the

operations of the guest virtual machine. Therefore, we must study the relationship

between the detection frequency and its impacts on the system performance. We

conduct two sets of experiments to assess the impacts.

In the first group of experiments, the guest virtual machine is running CPU inten-

sive applications. We choose two examples: (1) the Fibonacci benchmark that com-

putes the Fibonacci sequence; and (2) the Prime benchmark that generates prime

numbers. Each of the software is running in parallel with the malware detection

mechanism. When they are running in a virtual machine, the measured CPU usage

is very close to 100%. The malware detection algorithm is running in the hypervisor.

We measure changes in execution time of the software since this is the most intuitive

Windows 7

Windows XP

Total

10

Browser

10

10

Audio

10

10

Video

10

10

Total

50

50

Total

1

False 
Positive

0

0

Office

10

10

IM

10

10

Windows 7

Windows XP

Total

10

Utilities

10

10

Graphic

10

10

Education

10

10

Total

50

50

Total

1

False 
Positive

0

0

DVD/CD 
Tools

10

10

Security

10

10

Figure 18: Tests for false positive mistakes of malware detection through DLL exam-
ination.
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parameter that end users adopt to evaluate the system performance.

In the second group of experiments, the guest virtual machines are running CPU

and memory intensive applications. We also choose two examples: (1) the N -Queens

package that tries to generate all possible solutions to the N -Queen problem in chess;

and (2) the Combination benchmark that computes all possible combinations of the

input numbers and stores them in memory. We also measure their execution time

when each of them is running in parallel with the proposed detection mechanism.
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Figure 19: Relationship between DLL examination malware detection frequency and
its impacts on system performance.

From Figure 19, we find out that when we increase the interval between malware

detections, the impacts on virtual machine performance are decreasing. When the

interval is equal to 25 seconds, there are almost no measurable increases in execution

time at guest virtual machines. Even when we execute the proposed approach every

second, the increase in application execution time is less than 5%. At the same time,

since our approach does not need a lot of memory from the virtual machines, the
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difference between the two groups of experiments is not large. Based on the results,

we can see that our proposed approach has very low performance impacts on the

virtual machine.

We also study the relationship between the allocated memory to guest virtual ma-

chines and the impacts of our malware detection mechanism on system performance.

In this experiment, we use CPU and memory intensive applications to assess the

performance impacts. In each guest virtual machine with different memory alloca-

tion, we run the N -Queens package while we test the malware detection mechanism

with different execution intervals. Here we allocate 1GB, 2GB, and 3GB RAM to

the virtual machine. From Figure 20, we can see that the system performance stays

almost the same as long as the intervals between malware detections do not change.

In our malware detection mechanism, we extract only high-level semantic information

from the system data structures of the virtual machines. While malware detection

is running at the hypervisor level, the differences in memory allocation size to guest

virtual machines would not bring a huge difference to system performance since we

do not conduct “brute force” memory scanning.

To reduce performance impacts, in the proposed mechanism we examine only the

RVA of the DLL functions. A more comprehensive detection mechanism would exam-

ine the contents of all read-only sections of DLL files. To compare the two schemes,

we conduct a group of experiment and measure their execution time. The execution

time measures only the hashing and comparison delay but not the loading time of

the files. From Figure 21, we can see that the execution time of hashing all read-only

sections of DLL files is about 3 times longer than that of examining only RVAs. When
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Figure 20: Relationship between memory allocation size and the impacts of DLL
examination malware detection mechanism on VM performance.

the total size of DLL files is about 350MB, the execution time of RVA examination

is about 250ms, while it takes about 850ms to examine the whole read-only contents.

4.5 Discussion

In this section, we will discuss a few potential extensions to our approach. We

are especially interested in the tradeoff between detection capability and increases in

overhead.

4.5.1 RVA only vs Read-only Content Examination for DLLs

To reduce the overhead of the proposed approach, in this chapter we examine

only the virtual addresses of the functions in the DLLs. The assumption is that if

attackers inject malicious code segments into a DLL, the relative address will change.

This assumption may not hold under some cases. For example, an attacker may

apply compression algorithms to in-line overwriting contents so that the size of the
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Figure 21: Comparison of hashing all read-only sections of DLL files with examining
only RVAs.

malicious segments does not grow beyond the function boundaries [89].

To detect such attacks, we can use one of the following schemes. First, we could

generate the hash result of the read-only contents of DLL files during the learning

phase so that any small changes could be caught. Our experiment results in Figure

21 show that we will have to pay for the increases in computation and memory

access delay. Another mechanism is to scan the DLL files and try to locate the code

segment for decompression [111]. This method has the same memory access overhead

but avoids computation.

4.5.2 Diversity and Order of Loaded DLLs

Researchers have proposed several mechanisms to use function call graphs to detect

malware [55, 27]. In this chapter, we try to use information at a higher level of

abstraction with the DLL names and their loading orders. One difficulty that we



73

face is the diversity of the DLL functions. Very frequently the same operation can

be accomplished by functions from different DLL files. Another challenge that we

face is the usage of DLL files that are not directly related to the functionality of the

application software. For example, an increasing number of applications will collect

user information, encrypt it, and send it back to the company server so that user

profiling can be conducted. Such operations also increase the difficulty of malware

detection.

In this chapter, we investigate the order in which the DLL files are loaded into

the system and use it for malware detection. Here we do not differentiate tight

dependency from loose dependency (several DLLs may switch their order of loading

without impacting the software functionality). The lack of such knowledge may lead

to false positive alarms. In the next step, we plan to investigate this problem and

classify their dependency.

4.6 Conclusion

In this chapter, we propose a lightweight malware detection mechanism for virtual

machines. The hypervisor will collect, analyze, and monitor the execution states of

virtual machines and detect compromised DLL files. In the experiments, we have

evaluated more than 100 real-world malware samples. We use both Windows XP

and Windows 7 as test operation systems. Our experiment results show that the

proposed approach is practical and effective. Furthermore, we conduct several groups

of experiments to evaluate the increased overhead under different situations. The

increases in overhead at virtual machines are very low since we access only a small
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portion of their memory pages through high-level data structures.

Immediate extensions to our approach consist of the following aspects. First, we

plan to experiment our approach with Linux virtual machines so that we can eval-

uate its practicability in other environments. Second, we plan to design innovative

mechanisms to extract more high-level information from virtual machines. The rich

data set will allow us to better understand the difference between benign and mali-

cious software. Finally, we plan to extend our approach to other hypervisors (such as

KVM) so that more end users can benefit from our research.



CHAPTER 5: MALWARE DETECTION BASED ON EXAMINATION OF
SYSTEM CALL IN VIRTUAL MACHINES

5.1 Introduction

With the rapid development of cloud computing, enterprises transform themselves

to cloud in order to provide better services to customers, and private users move

their data to the cloud because cloud computing makes their life easier. According to

2016 review data from Synergy Research Group, cloud services revenues reached 148

billion dollars, and have grown by 25%[34]. While users move their service and data

to cloud, they have concerns about the location of their data, confidentiality, and

availability. Security is still the top concern, while they are using cloud computing

technology [70].

Malware, which gains access to private computer, gathers sensitive information, or

displays unwanted advertising, is widely spread through Internet, and infects unnum-

bered computer systems. Malware refers a variety of malicious programs (viruses,

worms, Trojan horses, rootkits, botnets, backdoors.). In Symantec’s Internet security

threat report [103], the number of new malware variants detected by it is 431 mil-

lion in 2015, which increased 36 percent from 2014. Furthermore, over half a billion

personal records were stolen in 2015 [103].

Malware detection has been studied for many years, and a lot of different detection

approaches have been proposed and implemented. Based on the differences in analysis



76

methods, existing approaches to malware detection can be classified into two groups.

The first group is using static analysis technology to analyze disassembled malware

binary files [31, 92, 52]. Applying static analysis technology to detect malware can

achieve high efficiency, but malware could thwart the detection easily through code

obfuscation techniques (packing, encryption, dummy function, etc.) [74, 124, 18, 80].

In the second group, dynamic analysis methods extract and analyze the behaviors

that malware performs when malware is activated. Compared with static analysis

detection methods, dynamic analysis detection could achieve more effective detec-

tion, because dynamic analysis could extract more features and behaviors than static

analysis.

In dynamic analysis malware detection, different researchers focus on different

features and behaviors, for examples, processes information, network information,

PE(Portable Executable) files, DLL(Dynamic Link Library), API(Application Pro-

gram Interface) call, function call, and system call [6, 84, 26]. In [114, 49], researchers

extract and analyze processes information, so that they will detect hidden malware

based on comparing processes information. In [13], researchers proposed a real-time

PE malware detection mechanism, based on the analysis results of the information

stored in PE file. In [79, 115], authors present effective and efficient heuristic tech-

niques to detect malware, using DLL dependency tree or DLL order. In [1, 127], they

use lightweight classification techniques to detect malware at API level.

Host-based malware detection mechanisms are very popular in dynamic analysis

malware detection. However, they have their limitations. On one side, since the anti-

malware systems are installed and executed inside the hosts that they are monitoring,
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they can collect rich information from the local host. On the other side, since they

are visible and tangible to advanced malware running in the host, effective attacks

towards them become feasible. For example, some malware such as Agobot variant

[129] can detect and remove more than 105 types of anti-malware programs in the

victim machine.

In a cloud computing environment, hypervisor-based malware detection mecha-

nisms provide a new method to detect malware, which could be stealthy and accurate

to detect malware running within virtual machines. Some researchers [57, 114, 32,

116, 51] proposed to place the intrusion detection mechanisms outside of the virtual

machine being monitored. Since well-implemented hypervisor will enforce strong iso-

lation between virtual machines and the programs running within a hypervisor, it

is difficult for an attacker to detect or remove anti-malware program running in a

hypervisor. For example, VMwatcher [49] uses the general virtual machine introspec-

tion (VMI) methodology in a non-intrusive manner to inspect the low-level virtual

machine states. UCON (usage control model) [118] is an event-based logic model. It

maintains the lowest level access to the system and ensures that such access cannot

be compromised by internal processes of a virtual machine.

Existing malware detection mechanisms that are running on hypervisor usually

work in the following procedure. The mechanisms will first extract execution infor-

mation of processes inside a virtual machine, and they will send the information to

the hypervisor. They will also extract the execution information of virtual machines

at the hypervisor. Through analyzing the information sent from virtual machine and

information extracted at hypervisor, anti-malware programs will find abnormal pro-
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cesses. Example solutions include [57, 114, 32, 51, 49]. These approaches are effective

in detection of infected files when malware has process level abnormal behaviors.

Furthermore, if malware with new behaviors or malware with normal process level

behaviors show up, they cannot capture this kind of malware.

In this chapter, we propose a system call examination approach at hypervisor level

to continuously monitor the sequence of the system call in guest virtual machines

to detect malware. Instead of using high-level information that is extracted from

virtual machines, we extract and monitor system call sequences at the hypervisor,

which present process’s behaviors clearly. Through analyzing extracted system call

sequences, we could figure out hardware-related behaviors, creating and execution of

new processes behaviors, network communication behaviors, and registry behaviors.

Overall, our approach can be divided into three procedures: system call behaviors

extraction procedure, system call sequences analysis procedure, and abnormal be-

haviors monitoring procedure. Through memory reconstruction technology of the

virtual machines, we extract the system calls of the virtual machine at the hypervisor

level. Using freshly installed virtual machines, our system call behaviors extraction

procedure will extract and record information of system call sequences in guest vir-

tual machines, while we are executing malware samples. After we record enough

system call sequences from the training malware dataset, we will start the analysis

component. We will compare the system call sequences among the training malware

dataset, and extract the pattern of system call sequences while they have similar

process behaviors. We will exclude the same patterns as benign processes to reduce

false positive rate. After analysis procedure, we will continuously monitor the system
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call sequences in the virtual machine, and compare them to our extracted features. If

malware is executed in the virtual machine by attacker or victim, we can detect this

intrusion in real time.

The contributions of our research can be summarized as follows. First, instead of

examining the high-level information of process in a virtual machine, our approach

conducts continuous monitoring at the system call level in a virtual machine. Through

this monitoring, infection to a virtual machine can be detected once it starts. Second,

we use non-intrusive introspection of virtual machines in our malware detection mech-

anism. Since the malware detection mechanism is running at the hypervisor level, it

is very difficult for malware running within a virtual machine to detect, remove, or

avoid our detection mechanism. Third, we conduct extensive experiments to evaluate

our malware detection mechanism. We use more than 300 malware of different types

(Trojans, stealth backdoors, and virus) to evaluate our proposed approach. Our mal-

ware detection mechanism detects almost all malware samples with very low false

negatives. Last but not least, although our malware detection environment is cur-

rently implemented on Windows and Xen, the key methods could also be applied to

other operation systems and hypervisors. Experiments results on real-world malware

show that our proposed malware detection mechanism could achieve high detection

rate at an acceptable performance overhead.

The remainder of this chapter is organized as follows. In Section 5.2 we present

the details of the proposed approach. In Section 5.3 we describe the implementation

of the malware detection mechanism and experiment results. Section 5.4 discusses a

few issues in the detection procedure. Finally, Section 5.5 concludes the chapter.
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5.2 The Proposed Approach

In this section, we will present the details of the proposed approaches. We first

discuss the assumptions of the environments to which our approaches can be applied.

We also introduce the technique of system function call extraction which we use to

extract system function calls of the virtual machine. Finally, we present the details

of the approaches and mechanisms to detect malware.

5.2.1 System Assumptions

In the investigated scenario, we assume that we can get access to malware-free

virtual machines while we are collecting system call sequences of the benign pro-

gram. We also assume that we can get access to virtual machines which contain

only the malware with our permission, while we are collecting system call sequences

of malware. We can achieve this through using freshly installed systems. After the

collection procedure is finished, we do not require any restricted behaviors in the

virtual machines. Users may be tricked by attackers, and download or install some

worm, rootkit, virus, adware, or spyware into the system. We also assume that an

attacker has acquired the administrator privilege in the compromised virtual machine

after she/he intrudes into the system. Malware installed by the attacker may modify

return results to anti-virus programs in the virtual machine so that it could hide the

malicious process. The attacker may leave a backdoor in the system for subsequent

attacks. The malware may be injected in some benign process, such as explorer.exe,

and start several threads to conduct malicious activities. However, similar to the ap-

proaches in [125], we assume that the attacker cannot infect the hypervisor through
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the virtual machine because of the virtual machines isolation.

Our investigation has the following design goals. First, the malware detection

mechanism should be transparent to end users. Moreover, it can extract and recover

the virtual machine’s execution states accurately. This goal is realized through the

non-intrusive introspection technology. Since we examine the virtual machine exe-

cution states from the hypervisor, it is very difficult for the malware to mislead the

detection procedure. Second, the approach should be independent of specific hyper-

visors. The design should support Virtual Machine Manager (VMM) in both full

virtualization mode (e.g., VMware[110] and KVM [56]) and paravirtualization (e.g.,

XEN [12]) modes. This property allows more users to benefit from the approach.

The analysis presented in later parts will show that our malware detection mecha-

nism does not depend on any specific types of the hypervisor. Third, we also need to

control the performance impacts of the proposed approach on virtual machines un-

der monitoring. This requirement is essential for future deployment and adoption of

our malware detection mechanisms. Our experiments will show that examining only

the execution states in virtual machines memory, even periodically, will introduce an

acceptable increase in overhead.

5.2.2 System Function Call Extraction

In order to implement malware detection based on examination of system call in

virtual machines, we must first apply memory reconstruction technology to recon-

struct memory of virtual machines at the hypervisor level, because the hypervisor

only sees the raw memory pages of virtual machines without any semantic view. Af-
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ter we rebuild a semantic view of virtual machines at hypervisor level, we can extract

execution information of virtual machines.

To better explain the memory reconstruction procedure, we use an example of a

Windows guest OS to illustrate the execution information extraction operations. In

the beginning, we will use Rekall forensics tool[22] to extract the debug data provided

by Microsoft so that we could build a map of internal system call functions. We also

extract the kernel symbol table, which indicates symbol names and their addresses in

memory. We can go through the process list from PsActiveProcessHead (the head of

the double linked list). In Windows, each process has an EPROCESS object which

we can use to traverse the whole list. Each EPROCESS object contains both Flink

(forward link) that points to the next EPROCESS structure and Blink (backward

link) that points to the previous EPROCESS structure. PsActiveProcessHead is

a member of the kernel debugger data block ( KDDEBUGGER DATA64), which is

used by the kernel debugger to easily find out the states of the operating system [66].

Furthermore, the Kernel Processor Control Region (KPCR) is a data structure used

by the Windows kernel to store information about each process. It is located at virtual

address 0xffdff000 in Windows. In KPCR, the data structure KdV ersionBlock

contains a linked list of KDDEBUGGER DATA64. Since we have extracted the

Relative Virtual Address(RVA) of all kernel symbols, we could do the calculation to

calculate the kernel base address. Then, we will conduct a binary planning injection

so that we can directly trap internal system function call.

Through memory introspection technology, we can extract high-level execution

states of virtual machines. The execution states that we can get include process list,
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network connections, opened files, dynamic-link library, relative virtual address of

functions, and system function call. In our malware detection mechanism, we use

system function call as the execution information of virtual machines.

5.2.3 Design of the Malware Detection Mechanisms

At the high level, we propose a malware detection mechanism that runs in the

hypervisor to detect malware in guest virtual machines base on system call analysis.

This is accomplished in three phases (Fig.22): (1) the information collection phase,

in which a process collects information about different applications among virtual

machines with and without malware; (2) the offline analysis phase, in which we

analyze the system call sequences of each malware and benign process, and extract

the system call patterns of each malware and benign application; and (3) a runtime

detection phase, in which the detection program is used to detect malware in a guest

virtual machine through comparing its system call sequences to the learned system

call patterns. These three steps are described in more details below.

Offline Analysis

Information Collection

Secure VM VM with Malware

GetInformation GetInformation

Behavior LoggerBehavior Logger

Malware BehaviorsBenign Behaviors

Behavior Analyzer

Untrusted VM

Runtime Detection

Malware 
Behaviors
Pattern

Figure 22: Malware detection procedure through system call function examination.
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In order to get a comprehensive view of the execution states and avoid impacts from

a specific running environment, our information collection program will run many

times in the hypervisor to extract behaviors of each process from different installa-

tions of malware-free virtual machines. We collect system call sequences from two

different types processes: benign processes and malware. We will exclude the same

system call pattern of benign processes from malware’s system call pattern, so that

we will reduce the false positive rate. As we discussed in Section 5.2.2, we conduct a

binary planting injection to directly trap system function calls. Since there are more

than 11,000 different kinds of system calls in Windows, virtual machines will be really

slow if we plan to trap all of the system function calls. Even though we can detect

malware more accurately if we can extract more execution information of processes,

we should consider the performance of a virtual machine which is also important to a

customer. According to their different features, we classify all of the system calls into

different categories. Communication: Communication related system calls. It in-

cludes create, delete communication connection; send, receive messages; listened port

and any others. Registry Access: Registry related system calls. It includes create,

delete, query, write registry key, etc. Process Control: Process related system calls.

It includes create, terminate process; get, set process attributes; thread management;

etc. Memory management: Memory management related system calls. It includes

memory allocation and destroy, Device Management: Device related system calls.

It includes open, read, write, and load operations; get device attributes; etc. System

Information Management: System management system calls. It includes query,

set system information. We select system calls as trap targets which will change the
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execution states of virtual machines or will access significant system information. For

example, OpenProcess, OpenThread, LoadDriver, QuerySystemInformation, and

so on. After this selection, the trap targets set still contains a large group of system

calls. We will conduct a static analysis to select system calls according to their per-

formance impact. During the static analysis, we will exclude the system calls which

will be called frequently by every process so that we will achieve acceptable perfor-

mance overhead, for example, GetCurrentStackPointer. We use a running example

to illustrate the information collection procedure. For example, we have three sample

records:

Sequence1 = {Call1, Call2, Call3, Call4, Call1}

Sequence2 = {Call2, Call3, Call2, Call5, Call4}

Sequence3 = {Call3, Call2, Call6, Call1, Call7, Call3}

An array SClist stores system calls that all programs have called including maliciours

and benign programs.

SClist = {Call1, Call2, Call3, Call4, Call5, Call6, Call7}

We count the frequency of each system calls in each program.

Count1 = {Call1 : 2, Call2 : 1, Call3 : 1, Call4 : 1}

Count2 = {Call2 : 2, Call3 : 1, Call3 : 1, Call4 : 1, Call5 : 1}

Count3 = {Call1 : 1, Call2 : 1, Call3 : 2, Call6 : 1, Call7 : 1}

According to the percentage of each system calls in all program, we will exclude the
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system calls which are called frequently, because they have the significant impact on

performance.

In the offline analysis, we classify the system call sequences based on the training

dataset. In the same training data set, malware belong to the same malware family,

which have similar abnormal activities. For example, they use the same method to

conduct Dynamic Link Library Injection, or they apply the same technology to hide

their existence. We will extract the pattern of system call sequences which are in the

same group. According to combination theory, if we have a sequence with lengh = n,

there are
n∑

k=0

(
n

k

)
= 2n

different kinds of subsequences. In the same group, the total number of system call

sequences is m. No matter what optimized methods we will apply, time complexity or

space complexity would be exponential. We can imagine the size of time complexity

and the size of space complexity when n is greater than 103. Furthermore, the main

purpose of offline analysis is to extract the pattern of system call sequences, instead

of detecting malware accurately. Because of these reasons, we consider extracting the

common continuous system call sequences as the pattern of behaviors. Even though

some malware add some dummy system calls, it will not change the result, because

malware in the same group have similar behaviors. Through suffix arrays [69], we

could extract the common continuous system call sequences in linear time-complexity

O(n), where n is the length of sequences. We will exclude the same patterns of benign

programs from the patterns of malware, so that we will reduce false positive.
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Pseudo Code:
Initialize Extracted Patterns[N][L].
Initialized Length[N].
Initialize Matched[N] with 0 for each process.

Update(call, pid)
     get Matched[N] according pid
     for i from 0 to N
          if Patterns[i][Matched[i]] == call
               ++Matched[i]
          if Matched[i] == Length[i] 
               raise alarm: process pid has Pattern[i] behavior      

Runtime_Detect()
     for every system call, pid
          Update(call, pid)

Figure 23: Runtime detection pseudo code through system call function examination.

In the runtime detection procedure, we use a two-dimensional array to store ex-

tracted patterns of malware behaviors. N is the number of extracted patterns of

system call sequences, while we have an array to store its length of each sequence.

Length[i] is the length of Patterns[i]. For each process, we have a array Matched to

record the matched system call sequences. Matched[i] is the position of next expected

system call in Patterns[i], which means Patterns[i][Matched[i]] is the expected sys-

tem call. For a coming system call, we will get the Matched array based on its pid.

Then, we will update Matched based on the comparison between expected system call

(Patterns[i][Matched[i]]) and coming system call (call). Since the length of system

call sequence M is much larger than the number of extracted patterns N , M � N , we
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can consider the time complexity is O(MN)� O(M2). If we find the extracted sys-

tem call pattern is matched in the system call sequence of some processes, we will raise

an alarm that we detect some abnormal behaviors of these processes. For example, we

extract the pattern (OpenFile, CreateF ile, CreateHandle,DestroyHandle,DeleteF ile)

repeating multiple times from our learned system call sequences. Rootkit.Sirefef.Gen

will conduct DLL injection and has the same system call behaviors. In system call

sequences of benign program, it will have the following system call sequences to query

a registry and set it with a proper value (OpenKey,QueryV alueKey, SetV alueKey).

However, some malware will use the following system call sequences to open a registry,

retrieve data in the key, and alter it (OpenKey,EnumerateKey,OpenKey, SetV alueKey).

5.3 Implementation and Experimental Results

5.3.1 Experiment Environment Setup

To evaluate the detection capabilities of the proposed approach and assess its im-

pacts on the system performance, we implement the detection mechanisms in Xen

and conduct two groups of experiments. In the first group, we investigate the effec-

tiveness of our malware detection approach through a group of real-world malware.

In the second group, we evaluate the impacts of our detection mechanism on the

guest system performance. The experiment environment setup is as follows. The

physical machine has a four-core 3.30GHz Intel CPU, 10 GB RAM, and SATA hard

drives. The hypervisor that we use is Xen version 4.1.2 with the libvir 0.9.8. The

host operating system is Ubuntu Server 12.04 LTS (64bit). The virtual machine is

using Windows 7 Professional (32bit) as the operating system. Each virtual machine
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occupies one CPU core, 2GB RAM, and 20GB hard disk.

5.3.2 Detection Capability of the Proposed Approach

To collect system function call sequences patterns of benign systems and software,

we install popular benign applications in the guest virtual machines. We download

40 benign and freely available applications from a trustworthy and reputable website.

These benign applications are freeware programs in a wide range of different domains

(such as system utilities, office applications, media players, instant messaging, and

browsers). We experiment with different combinations of the software in different

environments so that the analysis phase can extract their special properties. After

that, we download and install six groups of different malware to evaluate the detec-

tion capabilities of our program. Our malware collection consist of 300 real-world

malware samples, including 80 stealth backdoors, 40 trojans, 40 adwares, 20 worms,

80 rootkits, and 40 virus. All of them are publicly available on the Internet (e.g.,

from websites such as https://virusshare.com/, and http://openmalware.org/). We

classified them into different groups according to their behaviors. For example, mal-

ware which hide their processes are in the same group, malware which have DLL

injection are in the same group. In offline analysis phase, we analyzed and extracted

the pattern of system function call sequences in the same group.

Fig.24 summarizes the detection results. Here ‘Total’ represents the number of

different malware samples. ‘Training Set’ represents the number of extracted system

function call sequences. We use 150 malware samples as training malware set in the

information collection phase. Every malware sample was activated for 5 times, so
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that we have total 750 different extracted system function call sequences. The reason

is that all of the extracted system call sequences are different, when we activate the

same malware for several times. In our malware detection mechanism, we mainly

focus on system function call sequences. ‘Validation Set’ represents the number of

malware that we used to verify our detection mechanisms. ‘False Negative’ represents

the number of malware that was missed by our detection mechanism, while ‘True

Positive’ represents the number of malware that we detected. The value represents

the number of malware that is detected since our on-line monitoring program detects

that the system function call sequences of the virtual machine are matched with the

knowledge that we learn from malware. For example, 39 out of 40 Rootkit attacks

are detected by our approach since they have the same system function call sequences

as hiding their existence.

From Figure 24, we can see that our proposed mechanism is able to correctly

identify most of the malware samples. There are three false negatives in our detection

results. One of them is a rootkit, which shows up as a global clock. The computer

is also showing an advertisement. Hence, its behavior resembles a benign application

Category

Backdoor

Trojan

Adware

Worm

Rootkit

Total

10

Validation 
Set

40

20

20

10

40

False
Negative

0

1

1

0

1

True 
Positive

40

19

19
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39

Virus 20 0 20
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80

40

40

20
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1

Sequence 
learned

200

100

100

50

200

100

Figure 24: Summary of detection results against malware through system call se-
quences examination.
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in our malware detection mechanism. If we click on that advertisement, it would

jump to some website. The second false negative is an adware, which is a download

manager. Every time a user wants to download a file from the Internet, a window

with advertisements will appear. The third one is a trojan. It cannot be executed

alone. However, no user data will be reused, stored, or shared. The reason that

they are missed is because our malware detection mechanism can identify only the

abnormal behaviors of a process, but not its intent or phishing. In real life, it is not

difficult for a user to identify this type of advertisement.

Windows 7

Total Browser

3

Audio

3

Video

3

Total

15

Total

False 
Positive

0

Office

3

IM

3

Windows 7

Total Utilities

3

Graphic

3

Education

3

Total

15

Total

False 
Positive

0

DVD/CD 
Tools

3

Security

3

Figure 25: Tests for false positive mistakes of malware detection through system call
sequences examination.

We have conducted a second group of experiments to assess the false positive mis-

takes of our approach. We download 30 benign and freely available applications that

are different from our training set. These applications cover a wide range of different

domains (such as browsers, audio players, video players, instant messaging, and secu-

rity applications). From Figure 25, we can see that our malware detection mechanism

causes no false positive mistakes.

In the third group, we conduct experiments to evaluate the relationship between

the number of different extracted system function calls and the detection capability.

We exclude the extracted system function calls randomly, and evaluate the detection
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capability. From Figure 26, we can see that the detection accuracy increases while the

number of different extracted system function call increases. When the total number

of different extracted system function call is 50, the detection accuracy is low, because

the patterns of system function call sequences are deeply impacted by it. When the

total number is 200, the detection accuracy is about 90%.
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Figure 26: Relationship between the number of different extracted system calls and
the detection capability.

5.3.3 Overhead and Performance Analysis

To protect a virtual machine from malware infection, we need to execute the binary

planting injection to trap internal system function calls at the hypervisor level. Since

every time the trapped system function calls is executed, it will impact the operations

of the guest virtual machine, we must study the relationship between the number of

the trapped system call and its impacts on the system performance. We conduct two
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sets of experiments to assess the impacts.

In the first group of experiments, the guest virtual machine is running CPU inten-

sive applications. We choose two examples: (1) the Fibonacci benchmark that com-

putes the Fibonacci sequence; and (2) the Prime benchmark that generates prime

numbers. Each of the software is running in parallel with the malware detection al-

gorithm. When they are running in a virtual machine, the measured CPU usage is

very close to 100%. The malware detection algorithm is running in the hypervisor.

We measure changes in execution time of the software since this is the most intuitive

parameter that end users adopt to evaluate the system performance.
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Figure 27: Relationship between the number of trapped system calls and its impacts
on system performance.

In the second group, the guest virtual machines are running CPU and memory

intensive applications. We also choose two examples: (1) the N − Queens package

that tries to generate all possible solutions to the N −Queen problem in chess; and

(2) the Combination benchmark that computes all possible combinations of the input
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numbers and stores them in memory. We also measure their execution time when

each of them is running in parallel with the proposed detection mechanism.

From Fig.27, we find that when we decrease the number of trapped system calls,

the impacts on virtual machines performance are decreasing. When the number of

trapped system calls is about 500, the performance impacts to the guest virtual

machine is huge. The execution times of applications with malware detection are

more than 20 times of the execution time of applications without malware detection.

However, when the number of trapped system calls is about 100, there are almost no

measurable increases in execution time at guest virtual machines. As we discussed in

Section 5.3.2, during our runtime detection phase, the number of trapped system calls

is about 200, when we conduct the experiments of detection capability. At the same

time, since our approach does not need a lot of memory from the virtual machine, the

difference between the two groups of experiments is not large. Based on the results,

we can see that our proposed approach introduces an acceptable performance impacts

to the guest virtual machine system.

5.4 Discussion

In this section, we will discuss a few potential extensions to our approach. We

are especially interested in the tradeoff between detection capability and increases

in overhead. To reduce the overhead of the proposed approach, in this paper we

examine only the selected system function calls. The assumption is that malware

will have similar behaviors within the same family or malware will use the same

technology to hack computers even though they are the new versions. If attackers
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improve their malware with the system function calls that are not in our selected data

set, malware will avoid our proposed malware detection. To detect such attacks, we

should increase our data set of selected system function calls, so that it will include

more system function calls that could be used by the attacker.

Furthermore, researchers have proposed several mechanisms to use function call

graphs to detect malware [55, 27]. In this chapter, we treat system function call in

sequences, not graphs. Graphs could indicate more execution information of pro-

cesses, and they may lead to improved detection accuracy. We would try to build

graphs of the system function calls of processes. One difficulty that we face is that

the information extraction technology at the hypervisor isn’t mature enough to ex-

tract the information which we need to build the system function call graph. In

the next step, we plan to investigate this problem and try to improve the extraction

technology.

5.5 Conclusion

In this chapter, we propose a malware detection mechanism based on examination

of system call sequence for virtual machines. The hypervisor will extract, analyze, and

monitor the system call sequences of virtual machines and detect running malware. In

the experiments, we have evaluated 300 real-world malware samples. Our experiment

results show that the proposed approach is practical and effective. Furthermore, we

conduct several experiments to evaluate the increased overhead based on different

situations. The increases in overhead at virtual machines are acceptable since we

only monitor selected system calls.
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Immediate extensions to our approach consist of the following aspects. First, we

plan to experiment our approach with Linux virtual machines so that we can evaluate

its practicability in other environments. Second, we plan to improve our system

function call extraction so that we could extract the information of virtual machines

with low-performance overhead. Finally, we plan to extend our approach to other

hypervisors (such as KVM) so that more end users can benefit from our research.



CHAPTER 6: CONCLUSION

In this dissertation, we proposed some security improvement mechanisms in cloud

computing environment. More specifically, through memory analysis, we not only

proposed some service level agreements violation detection mechanisms, which cus-

tomers could use to verify the execution of service level agreements other than trusting

the words of the cloud provider, but also proposed some malware detection mecha-

nisms at hypervisor, which could detect malware running within virtual machine, We

have focused on:

1. Detection of service level agreements violation in the guest virtual machine.

2. Rootkit detection on guest virtual machines through cross-verified extraction

information at hypervisor-level.

3. Lightweight examination of DLL environments in virtual machines to detect

malware.

4. Malware detection based on examination of the system call in virtual machines.

To detect service level agreements violation in the guest virtual machine, we pro-

posed violation detection mechanisms based on memory access latency. Instead of

proposing a generic security SLA enforcement architecture, we designed and imple-

mented the security SLA violation detection approaches under VMware and tested

them. In our mechanisms, we could detect 3 kinds of service level agreements vi-

olations, unauthorized memory accesses violation, deduplication policies violation,
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and memory under-allocation violations. We also analyzed the impacts on system

performance of our security SLA violation detection approach. We evaluated the per-

formance of guest virtual machines under the extreme case. The experiments’ result

showed that our detection algorithm would bring a small increase in overhead. Imme-

diate extensions to our approaches consist of the following aspects. More other types

of security SLA violations in memory management and a generic approach for their

detection will be designed. More other hypervisors, such as extended Xen and Linux

KSM, could be considered to be implemented with security SLA violation detection.

We have proposed a new rootkit detection mechanism for virtual machines through

cross-verified extraction information at hypervisor-level. Using memory reconstruc-

tion technology, we rebuild the semantic view of the virtual machine’s memory. Then,

through cross-verification different components of the reconstructed view, the hyper-

visor can detect hidden information and mismatch among different active modules

in the virtual machine. Since we build the semantic view of the memory, the perfor-

mance overhead is really small that customers using virtual machines could hardly

feel it. This defense could be further extended by introducing intelligence into the

construction and anomaly detection in the linkage table among different modules of

the virtual machines.

We have also proposed a lightweight malware detection mechanism for virtual ma-

chines. The hypervisor will collect, analyze, and monitor the execution states of

virtual machines and detect compromised DLL files. Instead of examining the DLL

files for only once when they are loaded, we conduct continuous monitoring of the

files, so that the infection to the DLL files can be detected on the fly. It is very
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difficult for malware running within a virtual machine to detect, remove, or avoid our

detection at hypervisor. This defense could be further extended through innovative

mechanisms to extract more information from virtual machines.

Finally, we used binary planning injection to trap internal system function calls.

Through analysis system call sequences of malware, we extract the pattern of system

call sequences while malware has abnormal behaviors. We have proposed an examina-

tion of system call sequences of virtual machines so that we could detect malware at

hypervisor. We also investigate the relationship between the number of system calls

that we extract and the performance overhead of virtual machines. This approach

could be improved through reducing the performance overhead of virtual machines.

Cloud computing security, is the most important topic that attracts more and more

researchers to this field, because of the rapid development of cloud computing. No

only enterprises transform themselves to cloud to provide better services, but also

private users move their data to the cloud because cloud computing makes their lives

easier. Every step of the development of cloud computing, new security problems

will arise which must be solved, Otherwise, they will involve fatal issues. After my

graduation, the research on how to better improve the security of cloud computing

environment which were addressed in this dissertation will continue. Both myself

and others at UNC Charlotte will continue to improving cloud computing security

environment, so that cloud computing providers and end customers can have a securer

cloud computing experience.
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[18] J.-M. Borello and L. Mé. Code obfuscation techniques for metamorphic viruses.
Journal in Computer Virology, 4(3):211–220, 2008.

[19] I. Brandic, V. C. Emeakaroha, M. Maurer, S. Dustdar, S. Acs, A. Kertesz, and
G. Kecskemeti. Laysi: A layered approach for sla-violation propagation in self-
manageable cloud infrastructures. In Proceedings of the IEEE Annual Computer
Software and Applications Conference Workshops, pages 365–370, 2010.

[20] V. Casola, A. Mazzeo, N. Mazzocca, and M. Rak. A sla evaluation methodology
in service oriented architectures. In D. Gollmann, F. Massacci, and A. Yaut-
siukhin, editors, Quality of Protection, volume 23 of Advances in Information
Security, pages 119–130. Springer US, 2006.

[21] P. M. Chen and B. D. Noble. When virtual is better than real. In Hot Topics
in Operating Systems VIII, 2001.

[22] M. Cohen. Rekall memory forensics framework. DFIR Prague, 2014.

[23] M. Comuzzi, C. Kotsokalis, G. Spanoudakis, and R. Yahyapour. Establishing
and monitoring slas in complex service based systems. In IEEE International
Conference on Web Services (ICWS), pages 783–790, 2009.

[24] A. V. Dastjerdi, S. G. H. Tabatabaei, and R. Buyya. A dependency-aware
ontology-based approach for deploying service level agreement monitoring ser-
vices in cloud. Softw. Pract. Exper., 42(4):501–518, Apr. 2012.

[25] S. de Chaves, C. Westphall, and F. Lamin. Sla perspective in security man-
agement for cloud computing. In International Conference on Networking and
Services (ICNS), pages 212–217, March 2010.



102

[26] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A survey on automated dynamic
malware-analysis techniques and tools. ACM Computing Surveys (CSUR),
44(2):6, 2012.

[27] A. A. E. Elhadi, M. A. Maarof, and A. H. Osman. Malware detection based on
hybrid signature behavior application programming interface call graph. Amer-
ican Journal of Applied Sciences, 9(3):283–288, 2012.

[28] V. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar. Low level metrics
to high level slas - lom2his framework: Bridging the gap between monitored
metrics and sla parameters in cloud environments. In International Conference
on High Performance Computing and Simulation (HPCS), pages 48–54, 2010.

[29] V. Emeakaroha, T. Ferreto, M. Netto, I. Brandic, and C. De Rose. Casvid:
Application level monitoring for sla violation detection in clouds. In IEEE
Annual Computer Software and Applications Conference (COMPSAC), pages
499–508, 2012.

[30] V. C. Emeakaroha, M. A. S. Netto, R. N. Calheiros, I. Brandic, R. Buyya,
and C. A. F. De Rose. Towards autonomic detection of sla violations in cloud
infrastructures. Future Gener. Comput. Syst., 28(7):1017–1029, July 2012.

[31] Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy: Semantics-based de-
tection of android malware through static analysis. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, pages 576–587. ACM, 2014.

[32] T. Garfinkel and M. Rosenblum. A virtual machine introspection based archi-
tecture for intrusion detection. In NDSS, 2003.

[33] A. Gordon, M. R. Hines, D. S. da, M. Ben-Yehuda, M. Silva, and G. Lizarraga.
Ginkgo: Automated, application-driven memory overcommitment for cloud
computing. In RESoLVE: Runtime Environments/Systems, Layering, and Vir-
tualized Environments Workshop (co-located with ASPLOS), 2011.

[34] S. R. Group. Cloud market growing at 25 percent annually in 2016, 2017.

[35] D. Gullasch, E. Bangerter, and S. Krenn. Cache games–bringing access-based
cache attacks on aes to practice. In Security and Privacy (SP), 2011 IEEE
Symposium on, pages 490–505. IEEE, 2011.

[36] F. Guo, S. Kim, Y. Baskakov, and I. Banerjee. Proactively breaking large
pages to improve memory overcommitment performance in vmware esxi. In
ACM SIGPLAN Notices, volume 50, pages 39–51. ACM, 2015.

[37] D. Gupta, S. Lee, M. Vrable, S. Savage, A. Snoeren, G. Varghese, G. Voelker,
and A. Vahdat. Difference engine: harnessing memory redundancy in virtual
machines. Commun. ACM, 53(10):85–93, 2010.



103

[38] A. Haeberlen. A case for the accountable cloud. SIGOPS Oper. Syst. Rev.,
44(2):52–57, April 2010.

[39] I. U. Haq, I. Brandic, and E. Schikuta. Sla validation in layered cloud infras-
tructures. In Proceedings of the 7th International Conference on Economics of
Grids, Clouds, Systems, and Services, pages 153–164, 2010.

[40] R. R. Henning. Security service level agreements: Quantifiable security for the
enterprise? In Proceedings of the Workshop on New Security Paradigms, pages
54–60, 1999.

[41] J. Heo, X. Zhu, P. Padala, and Z. Wang. Memory overbooking and dynamic
control of xen virtual machines in consolidated environments. In IFIP/IEEE
International Symposium on Integrated Network Management (IM), pages 630–
637, 2009.

[42] M. Hines, A. Gordon, M. Silva, D. D. Silva, K. D. Ryu, and M. Ben-Yehuda.
Applications know best: Performance-driven memory overcommit with ginkgo.
In IEEE International Conference on Cloud Computing Technology and Science
(CloudCom), pages 130–137, 2011.

[43] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel. Ensuring operating
system kernel integrity with osck. In ACM SIGARCH Computer Architecture
News, volume 39, pages 279–290. ACM, 2011.

[44] T. Hwang, Y. Shin, K. Son, and H. Park. Design of a hypervisor-based rootkit
detection method for virtualized systems in cloud computing environments.
In AASRI Winter International Conference on Engineering and Technology
(AASRI-WIET), pages 27–32. Citeseer, 2013.

[45] M. S. Inci, B. Gülmezoglu, G. I. Apecechea, T. Eisenbarth, and B. Sunar.
Seriously, get off my cloud! cross-vm rsa key recovery in a public cloud. IACR
Cryptology ePrint Archive, 2015:898, 2015.

[46] W. Iqbal, M. Dailey, and D. Carrera. Sla-driven adaptive resource management
for web applications on a heterogeneous compute cloud. In IEEE International
Conference on Cloud Computing, pages 243–253. Springer, 2009.

[47] G. Irazoqui, T. Eisenbarth, and B. Sunar. S$a: A shared cache attack that
works across cores and defies vm sandboxing – and its application to aes. In
IEEE Symposium on Security and Privacy (SP), pages 591–604, 2015.

[48] M. Jakobsson and Z. Ramzan. Evolution of rootkits. In Crimeware: Under-
standing New Attacks and Defenses. Addison-Wesley, 2008.

[49] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection through vmm-
based ‘out-of-the-box’ semantic view reconstruction. In Proceedings of the ACM
Conference on Computer and Communications Security, pages 128–138, 2007.



104

[50] S. Jin, J. Ahn, S. Cha, and J. Huh. Architectural support for secure vir-
tualization under a vulnerable hypervisor. In Proceedings of the IEEE/ACM
International Symposium on Microarchitecture, pages 272–283, 2011.

[51] A. Joshi, S. King, G. Dunplap, and P. Chen. Detecting past and present intru-
sions through vulnerability-specific predicates. In SOSP, 2005.

[52] H. Kang, J.-w. Jang, A. Mohaisen, and H. K. Kim. Detecting and classifying
android malware using static analysis along with creator information. Interna-
tional Journal of Distributed Sensor Networks, 2015.

[53] S. Katopodis and G. Spanoudakis. Towards hybrid cloud service certification
models. In IEEE International Conference on Services Computing, 2014.

[54] S. Khattak, N. R. Ramay, K. R. Khan, A. A. Syed, and S. A. Khayam. A
taxonomy of botnet behavior, detection, and defense. IEEE communications
surveys & tutorials, 16(2):898–924, 2014.

[55] J. Kinable and O. Kostakis. Malware classification based on call graph cluster-
ing. Journal in Computer Virology, 7(4):233–245, 2011.

[56] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM: the linux
virtual machine monitor. In Linux Symposium, pages 225–230, 2007.

[57] P. F. Klemperer. Efficient Hypervisor Based Malware Detection. PhD thesis,
CMU, May 2015.

[58] C. Kruegel, W. Robertson, and G. Vigna. Detecting kernel-level rootkits
through binary analysis. In Annual Computer Security Applications Confer-
ence, 2004.

[59] U. Lampe, M. Kieselmann, A. Miede, S. Zöller, and R. Steinmetz. A tale of
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