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ABSTRACT

SEYEDMAHDI MOGHADASI. Dynamic convex optimal power �ow approaches for
modern power grid. (Under the direction of DR. SUKUMAR KAMALASADAN)

Non-convexity of Optimal Power Flow (OPF) problem in power systems poses dif-

�culties in reaching optimal solutions which can adversely a�ect the overall solution

e�ciency, convergence and appropriate scheduling of generators. Dynamic convex

OPF approaches aims to provide optimal generation scheduling and determine ap-

propriate control action across operational time frames for di�erent components of

active power systems. In this work, an approach based on convex Optimal Power

Flow (OPF) formulation integrated within Receding Horizon Control (RHC) method

using second order conic programming (SOCP) suitable for active power distribution

system is proposed. The main advantages of the RHC-Convex OPF approach are

that, it can; a) integrate dynamic models and uncertain energy resources and, b)

reach global optimal scheduling with faster computation time. An architecture for

real-time implementation is also presented.

Also, a new voltage stability constrained convex optimal power �ow (VSC-OPF) ap-

proach is proposed using semi-de�nite programming (SDP). Methods within this ap-

proach provides optimal dispatch solution considering a) maximum stability margin,

b) minimum operating cost constrained by stability margin and c) an intermediate

function that can de�ne a trade-o� between cost and enhancing stability. Further,

these methodologies are extended for optimal scheduling of integrated AC-DC sys-

tem. The proposed methods address some limitations of AC-DC OPF methods due

to non-convexity, separate scheduling of AC and DC networks or using equivalent of

DC network. The advantages of the proposed approach are that it can; a) �nd the

optimal operating point, b) �nd the maximum loadablility point and c) assess voltage

security cost.
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CHAPTER 1: INTRODUCTION

Dynamic optimal power �ow (OPF) aims to provide generation schedule and deter-

mine control action across operational time frames for di�erent components of active

power systems. Receding horizon control (RHC) is an e�ective dynamic optimization

approach over a de�ned horizon, taking into account parameter uncertainties through

re-estimating future values based on real-time data [1]. Non-convexity of OPF prob-

lem, however, creates major di�culties to reach the optimal solution and the e�ciency

of solution algorithm deteriorates signi�cantly. In this chapter, we discuss the chal-

lenges associated with conventional OPF models and summarize the recent advances

in convex relaxation of OPF problem classi�ed into second order conic programming

(SOCP), semi de�nite programming (SDP) and chordal relaxation. Also, RHC and its

capability in dynamic optimization and handling uncertainties is discussed. Further,

the outline of the dissertation and the framework of the problems in each chapter are

explained.

1.1 Optimal Scheduling of Power Grid: Conventional OPF Methods and The

Need for Convex OPF

Fast optimal scheduling of power grid is now a major obstacle for economically op-

erating electric grid with increasingly incorporating inherent stochastic generations

such as renewable sources, plug-in electric vehicles (PEV), price responding demands,

and electricity markets [2]. Optimal power �ow (OPF), evolved in 1962 [3], formu-

lated the basic problem of �nding a local optimum operating point for a power system

given that both the demand and supply are deterministic. During the past decades,
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considerable e�ort has been devoted to developing the OPF formulation and propos-

ing solution algorithms in three major and apparently independent directions: a)

addressing the OPF di�culties in scalability and e�ciency, b) handling uncertainty

in input variables and parameters, and c) �nding the global optimum solution instead

of a local optimum.

In this section, a literature review on conventional OPF and the challenges with op-

timality and dynamic solution while integrating resource uncertainties are explained.

1.1.1 introduces the evolution of optimal power �ow (OPF) problem and a survey of

reported works on OPF and Economic Dispatch. 1.1.2 discusses conventional OPF

methods including heuristic based approaches. Section 1.1.3 summarizes recent ad-

vances in convex relaxation of OPF problem classi�ed based on bus injection and

branch �ow models.

1.1.1 Economic Dispatch and Optimal Power Flow

Economic dispatch (ED) problem is usually referred to as a special case of OPF

problem whereby the transmission's active and reactive power �ow equations are

relaxed. ED problem is �rst formulated in 1920's [4,5] much earlier than introducing

OPF problem.

The goal of ED is economical allocation of the speci�c load to available generation

units. First the idea of incremental method was developed for ED problem in early

1930 [6]. Kron's work on loss treatment [7] then provided a reference for two decades.

Classic coordination equations known as B matrix was formulated by Kirchmayer

and Stagg [8]. This e�orts in this direction were continued by evolving the correct

transmission loss penalty factor reported in [9]. During these years a lot of parallel

studies also investigated the ED problem on the multi-area power systems, which was

also started by Kron studies [10, 11]. The following set of equations (1.1) captures
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the main progress in the ED problem demonstrated in this era.

PL =

ng∑
i=1

ng∑
j=1

PiBijPj +

ng∑
i=1

B0iPi +B00 (1.1)(
1

1− ∂PL

∂Pi

)
∂Ci
∂Pi

= λ

Where Pi, Bij and λ are injected power, loss coe�cient and Lagrange multiplier

respectively. A signi�cant turning point happened in early 1960's whereby the �rst

OPF formulation was developed by Squires and Carpentier [3]. The most important

contribution was the mathematical formulation of including AC power �ow equations

inside the optimization problem. The solution of this OPF yields the optimum op-

eration point of the power system. Objective of OPF problem is to minimize power

system operation cost constrained by power �ow equations and other physical lim-

itations. During the past decades, large volume of published studies on OPF are

based on Carpentier formulation. In fact, this milestone provided a mathematical

foundation for implementation of various optimization techniques such as nonlinear

programming (NLP) to be examined on OPF problem. This progress continued and

opened windows to other innovative algorithms. The general NLP-OPF formulation

is shown in (1.2).

A signi�cant turning point happened in early 1960's whereby the �rst OPF formu-

lation was developed by Squires and Carpentier [3]. The most important contribution

was the mathematical formulation of including AC power �ow equations inside the

optimization problem. The solution of this OPF yields the optimum operation point

of the power system. The objective of OPF problem is to minimize power system

operation cost constrained by power �ow equations and other physical limitations.

During the past decades, large volume of published studies on OPF are based on Car-

pentier formulation. In fact, this milestone provided a mathematical foundation for

implementation of various optimization techniques such as nonlinear programming
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(NLP) to be examined on OPF problem. This progress continued and opened win-

dows to other innovative algorithms. The general NLP-OPF formulation is shown in

(1.2).

Min
∑
i∈NG

ci (Pi, vi) (1.2)

s.t.


g (Pi, vi) ≤ bi

h(Pi, vi) = di

where Pi and vi are injected power and voltage respectively. OPF problem contains

three types of variables/parameters;

• control variables → ex. voltage and power at PV buses

• state variables → ex. transmission's �ow

• parameters → ex. coe�cient of cost functions

A large body of researches have investigated the solution to OPF problem. These

e�orts are captured and summarized by surveys on this problem [12�18]. In 1977, �rst

comprehensive survey on ED and OPF was presented by Happ [12]. In 1999, Momoh

presented a review on OPF methods classi�ed into six categories. The most recent

survey on OPF published in 2008 whereby Pandya [17] reviewed OPF techniques

presented after 1993. Several survey+ on speci�c applications of OPF were also

presented during recent years. Qiu [19] presented a survey on application of OPF

in electricity markets. OPF is a nonconvex optimization problem and classi�ed as

an NP-hard problem. Beside non-linearity, large scale of variables and uncertainty in

control variable/parameters makes OPF a challenging problem to be solved in shorter

time steps.



5

Random Search 
Methods

OPF 
Techniques

Gradient and Non‐Random 
Search Methods

Particle 
Swarm 

Optimization 
(PSO)

Genetic 
Algorithm 

(GA)

Evolutionary 
Programming

(EP) Quadratic 
Programming 

(QP)

Linear 
Programming 

(LP)

Mixed Integer 
Programming (MIP)

Simulated 
Annealing (SA)

Gradient 
Method 

Newton 
Method

Quasi‐
Newton 
Method

Convex Relaxation Boundary

Nonlinear 
Programming 

(NLP)

Figure 1.1: OPF Techniques and Methods

1.1.2 Conventional OPF Methods

The conventional optimization techniques contributed to OPF problem can be clas-

si�ed to following methods.

1.1.2.1 Linear Programming

Linear programming (LP) is one of the most applied methods. The method consists

of a linear objective function and constraints and also involves non-negative variables.

The objective and constraint functions of OPF problem are, therefore, linearized to

be solved by LP methods. To minimize line losses and �nd the optimal capacitor

placement, [20] deployed a recursive LP method and approximated the OPF problem

during each iteration. Ref. [21] proposes methods relied on DC OPF in lower level and
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used LP for solution. The most common algorithms to solve LP-OPF are the revised

simplex and interior point methods originally developed by Dantzig and Karmarkar.

LP method has the advantages of handling large number of variables in a time e�cient

manner and yet yielding optimal solution. However, the signi�cant drawback of using

LP is its over simpli�cation of OPF problem in modeling stage. The error generated

in sequential approximation, therefore, casts doubt on LP solution optimality.

1.1.2.2 Quadratic Programming

Quadratic programming OPF (QP-OPF) is a speci�c optimization which di�ers

from LP-OPF in objective function. Quadratic programming is a useful technique

to model loss and conservative voltage regulation (CVR) in OPF problems. This

technique is widely used in various optimization problems of power grid. Ref. [22]

introduced a QP based programming method for phasor measurement units (PMUs)

placement to provide a complete grid observability. Although there are e�cient al-

gorithms to solve this problem, QP-OPF carries the disadvantage of approximation

of OPF problem. Modi�ed simplex method is an e�cient algorithm to solve the

resulting QP problem.

1.1.2.3 Mixed Integer Programming

Integer variables impose immerse di�culties to OPF problem, and converts a LP-

OPF problem to a non-convex OPF problem. Mixed integer linear programming

(MILP) was developed to solve speci�c type of LP-OPF problems which contain

integer variables such as position of tap-changer and switched reactive compensator.

"Branch and Bound" algorithm is an e�ective tool dealing with discrete feasible areas.

Ref. [23] suggested an iterative mixed integer linear programming for short term

scheduling of active distribution systems. The computational burden is the major

drawback of MILP and its non-linear variance mixed integer nonlinear programming

(MINLP) methods.
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1.1.2.4 Nonlinear programming

The constraints of OPF shown in (1.2) include power �ow equations. In the case

of using AC power �ow equations, the problem turns into the type of nonlinear

programming. This optimization problem will be a non-convex NP-hard problem,

and thus the methods of LP, QP and MILP are no longer applicable to such problems.

Sequential unconstrained minimization technique (SUMT) is a technique for solving

nonconvex NLP-OPF problems through barrier functions. The Karush-Kuhn Tucker

(KKT) conditions provides the necessary condition for the optimal solution of NLP

[24]. The KKT conditions also provide a �ltering stage for the possible optimal

candidates. Other NLP techniques include gradient, Newton, and Quasi-Newton.

These methods are explained in the following parts.

1.1.2.5 Gradient Search Method

The gradient search (GS) method uses gradient function information to �nd the

optimal solution. The method suggests moving in opposite direction of gradient func-

tion which is the path of the steepest descent direction. Gradient is re-evaluated at

each step until reaching the local optimum solution. To �nd the step size, a one-

variable optimization problem is required to be solved at each iteration. Ref. [25]

proposed a hybrid model consisting of two stage optimization to clear the optimal

multi-lateral transaction and determine the associated load curtailment. GS methods

have the disadvantage of slow convergence where the size of problem is increased.

Di�erentiated objective function and constraints are also the necessary conditions of

using GS. These methods may results in a local optimum point, and can not di�er-

entiate a local solution from global optima. The trap of local optimum is, therefore,

another challenge for GS method. Convexity is the su�cient condition for a local

solution to be considered as the optima.
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1.1.2.6 Newton Method

The Newton's optimization technique stems from Newton's method for nonlinear

equations. This method is based on quadratic approximation obtained from Taylor

expansion. The second derivative of Lagrangian function called Hessian matrix is

included to provide a more precise move from previous point and choose a better

candidate for the next iteration. The method has the advantages of fast conver-

gence. Nevertheless, formation and inversion of Hessian matrix are challenging and

imposes heavy computational burden. The method also cannot provide information

about global optima. In [26], a new model for incorporating voltage source converter

(VSC) based HVDC systems in OPF based on Newton's method are developed, and

multiplier method is used to deal with the constraints.

1.1.2.7 Quasi-Newton Method

Similar to Newton method, Quasi-Newton relies on the local 2nd order approxi-

mation of objective function. However, Hessian matrix is not explicitly computed at

each iteration. Instead of direct computation, Hessian is updated based on the gradi-

ent vectors successively. Several algorithms were developed based on Quasi-Newton

such as variable metric method. Ref. [27] proposed a hybrid OPF which involves

the sequential quadratic programming (SQP) and di�erential evolution (DE) meth-

ods. This method has the advantages of lower computational burden and can handle

ill-conditioned matrix.

1.1.2.8 Heuristic and Evolutionary Methods

Evolutionary algorithms are not the focus of this chapter; however, they have some

advantages in comparison with conventional methods of OPF problem. Evolutionary

methods encompasses a wide variety of random search approaches such as genetic

algorithms (GA), Particle Swarm Optimization (PSO), and Evolutionary Program-

ming (EP). These methods �nd the optimal solution based on a initial population
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and yield multiple solution in one single simulation. Unlike direct methods and other

conventional OPF, these methods are simple and are not dependent to the function's

gradient or continuity [28]. The methods, are very sensitive to initial feasible value

and parameter tuning. Fig. 1.1 depicts the classi�cation of OPF techniques based

on the search methods. Other random search methods are simulated annealing, tabu

search and ant colony. These methods are also failed to provide information about

global optima.

1.1.3 Convex OPF: Optimal Solution

A large body of researchers have investigated the solution to OPF problem [12�18]

as discussed in section 1.1.2, and numerous studies have proposed optimization algo-

rithms to solve OPF problem including linear programming, nonlinear programming,

and evolutionary programming. The main disadvantage of these methods is vari-

ous well known limitations referred to as the non-exact relaxation of nonlinear OPF,

heavy computational burden and locally optimum solution. These limitations are

mainly resulting from non-convexity of OPF equations [29].

Power �ow equations placed as constraints in OPF problems are nonlinear quadratic

functions. Given a quadratic cost function, OPF problem is de�ned as quadratically

constrained quadratic programming (QCQP) problem [30]. This problem is a non-

convex NP-hard optimization problem. In recent years, considerable contributions

are being reported in convexi�cation and relaxation of OPF. DC optimal power �ow

is considered the simplest relaxation to OPF problem [31, 32]. However, there are

certain drawbacks associated to the use of DC OPF. Unlike convex relaxation meth-

ods, DC OPF may results in infeasible solution, and casts doubt on its optimality.

DC modeling has certain de�ciency in modeling speci�c OPF problems because of

dropping some power �ow variables such as reactive powers.

Based on power �ow models, convex relaxation of OPF is generally classi�ed into

two types: Relaxation of bus injection model (BIM) OPF, and Relaxation of branch



10

�ow model (BFM) OPF. These models use di�erent equations and set of variables,

but they are mathematically equivalent [33]. The proposed relaxations based on these

models are discussed in the following sections.

1.1.4 Relaxation of BIM-OPF

Three major relaxation methods are proposed for BIM-OPF. Semide�nite pro-

gramming (SDP) relaxation, chordal relaxation and second order conic programming

(SOCP) relaxation. BIM are developed based on net complex power injection and

voltages at buses (1.3). The relaxation is derived by imposing convex supersets over

the non-convex feasible set of OPF problem and minimizing cost function over these

sets.

Min C (.) (1.3)

s.t.

{
sj =

∑
k:j∼k y

H
jkVj (Vj − Vk)H

The �rst SDP relaxation was proposed in 2008 by [34]. An equivalent rank-1 matrix

is introduced to transform the constraints into linear space. SDP relaxation of BIM-

OPF is then obtained by dropping the rank-1 constraint. This yields a quadratic

convex optimization problem. Ref. [35] developed practical conditions using angle

di�erence and showed unchanged pareto-optimal points by taking the convex hull.

The analysis on SDP relaxation is presented in [29] where SDP relaxation as the dual

of OPF problem is proposed and necessary and su�cient condition for zero duality

gap are derived.

Chordal relaxation is �rst proposed in [36] and [37]. In this relaxation, a chordal

extension to the graph matrix is introduced, and OPF problem is solved over new

chordal space. Like SDP, chordal relaxation eliminates the rank-1 condition over the

feasible area.
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Table 1.1: Notations

i, j, h system buses

V bus voltage

yjk line admittance between j and k

sj net power injection at bus j

T (N,E) radial network

k, T time step and horizon time

Sij, Pij, Qij power from bus i to j

Rij, Xij line resistance and reactance

Bi, Gi shunt admittance

Iij current from bus i to j

λij relaxed current from bus i to j

vij voltage from bus i to j

ωij relaxed voltage from bus i to j

B⊥ reduced incidence matrix

β⊥ phase angle di�erence over edges

θ∗ voltage recovered angle

First SOCP relaxation of BIM-OPF problem is presented in [38]; This method

formulates BIM-OPF by introducing new set of real variables. These real variables

bring the problem from a complex domain to a real space. Transforming quadratic

equality constraint into inequality then yields the SOCP relaxation of BIM-OPF.

Optimal solution to the original OPF can be recovered from the solution of relaxed

problems. The necessary condition of exact relaxation are based on cycle condition

which imposes zero sum of the angle di�erence over cycles. Fig. 1.2 illustrates the

relaxation stages and solution recovery of BIM-OPF problem. Ref. [33] demonstrated

that the feasible region of original OPF is an e�ective subset of these relaxations which

guaranties optimal solution. It is also identi�ed that similarity between feasible sets

is where the power system holds the radial structure.
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Figure 1.2: Relaxation Methods of BIM-OPF

SOCP provides tight and simple relaxation to BIM-OPF. This relaxation trans-

forms the feasible area to a tighter space compared with SDP and chordal relaxations.

In radial system, SOCP therefore, is an e�ective solution for convexi�cation. In mesh

networks, however, cycle condition causes di�culties for SOCP method. SDP and

chordal are the replacing candidate for mesh networks whereby chordal provides the

advantage of tight boundaries while the computation burden is a major drawback

in SDP. Fast computation especially in large sparse network is the superiority of

chordal method [36] despite the fact that its feasible area is an e�ective subset of

SDP relaxation.

1.1.5 Relaxation of BFM-OPF

The relaxation of BFM-OPF problem can be classi�ed into two successive stages

of a) angle relaxation and b) conic relaxations. This results into SOCP relaxation.

The branch �ow OPF [39]- [40] �rst introduced by Baran-Wu for optimal capacitor

placement in distribution systems, exploited the voltage and current angle relaxation;

however, this model was non-convex as a result of quadratic equality constraints.

BFM includes line current as OPF variable alongside the magnitude of bus voltage

(1.4).
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Min C (.) (1.4)

s.t.



Sij = ViI
∗
ij

Vi − Vj = zijIij

sj =
∑

h Sjh −
∑

i

(
Sij − zij |Iij|2

)
+ y∗j |Vj|

2

∀ {i, j, h, (i, j) , (j, h)} ∈ T (N,E)

In 2006, [38] proposed the convexi�cation of branch �ow OPF for radial system us-

ing second order conic programming (SOCP) relaxation. Several continuous convex

relaxation of this model were then propounded by using second order cone approxi-

mation [41]- [42]. In important studies, [43]- [45] observed and proved the exactness

of angle and conic relaxation, providing an exact optimal solution for OPF problem

in radial networks. Notations are given in Table 2.1.

The relaxation method consisting of two consecutive stages transform OPF problem

to a convex optimization problem. The angle relaxation step consists of eliminating

angle of all bus voltages and line currents yielding the angle relaxed OPF. In the

second step referred as the conic relaxation, the conic equality constraints are relaxed

to conic inequality constraints. These relaxations yield SOCP-OPF problem, which

is a convex optimization problem. These relaxations are exact; which means the

solution to SOCP-OPF provides the optimal solution to the BFM-OPF problem.

OPF convexi�cation �owchart are shown in Fig. 1.3. The angle recovery algorithm

is used to recover voltages and currents of the BIM-OPF. The reduced incidence

matrix B and the phase angle di�erence over transmission lines βij are calculated;

The necessary condition of angle recovery (1.5) always holds for radial networks [45];

the voltage angle are then recovered through (1.6).
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Figure 1.3: SOCP Relaxation of BFM-OPF: Two Step Relaxation

B⊥B
−1
T β⊥ − β⊥ = 0 (1.5)

θ∗ = Res.
(
B−1T βT

)
∈ (−π, π) (1.6)

The other variables such as current phase are then recovered using Ohm's law and

power injection equation. SOCP relaxation to BFM-OPF have several advantages.

First it facilitates the placement of lower and upper bound constraints on voltage and

line �ows. Second it can simplify computing procedure through recursive structure.

The exactness of proposed BIM and BFM relaxations are classi�ed based on the re-

quired conditions. Ref. [46,47] proved the polynomial time performance for quadrat-

ically constrained OPF over radial power systems. Su�cient conditions of exact

relaxation are derived in [48] for acyclic systems with no upper limit on voltage mag-

nitudes.

These su�cient conditions can be applied for special cases of mesh networks, but

they are not applicable to general mesh networks. Signi�cant amount of relaxations

tend to be exact in mesh networks using SDP and chordal relaxation [30]. Several
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global optimization methods are also introduced in recent years and can be used

where the relaxation conditions fail. Branch and bound method [49] and moment-sos

are important global optimization methods extended to OPF problem.

1.2 Receding horizon control (RHC): Dynamic Solution

Distribution systems gradually transform from a passive network to an active sys-

tem [2] as a result of evolving rapid distributed energy resources (DER), storage facil-

ities alongside with renewable supplies and electricity markets [50�53]. This increases

the degree of freedom on OPF problem and necessitates dealing with uncertainties

through a dynamic optimization [54]. Receding horizon control (RHC) is a promising

method to schedule the control variables over a time horizon divided by small time

steps [1]. RHC output is a set of consecutive control actions, created by minimizing

the objective function over a horizon window. The process has the capability of deal-

ing with the constrained dynamic optimization problems which includes consideration

of uncertain inputs or parameters. In dynamic systems, state update is captured by

(1.7) whereby the dynamic matrix Â(k|t) and input matrix B̂(k|t) are determined based

on the input updates available at the current step. The control actions û(k|t) are the

solution of the optimization problem (1.8).

Â(k+1|t) = Â(k|t)x̂(k|t) + B̂(k|t)û(k|t) (1.7)

Min
t+T∑
k=t

Ĵ(k|t)
(
x̂(k|t), û(k|t)

)
(1.8)

Sub. Â(k+1|t) = Â(k|t)x̂(k|t) + B̂(k|t)û(k|t)(
x̂(k|t), û(k|t)

)
∈ Ĉ(k|t) k = t, ..., T

The RHC consists of the following steps:

1. The objective function Ĵ(k|t) is de�ned over the time horizon [t : t + T − 1]. In
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OPF problem , this objective represents the operational cost. The system pa-

rameters and constraints Ĉ(k|t) are included based on the data update available

until time step t.

2. The optimization problem (1.8) is solved, and the system control variables are

determined over the horizon window [t : t + T − 1]. The �rst control actions,

x̂(k|t) and û(k|t), are sent to the system.

3. Feedback of system variables and external signals are sent back to the optimiza-

tion routine to update the system states and re-forecast these inputs over the

next horizon window [t+ 1 : t+ T ].

4. The system moves into the next time step t+ 1, and [t+ 1 : t+ T ] becomes the

new horizon window. The preceding steps are repeated over the new window.

The RHC method continues until the time step reach to the horizon T . Handling the

time horizon is a signi�cant feature which brings in the ability to include uncertain

parameters and system feedback. This method also creates a platform to handle

dynamic components within the optimization problem.

1.3 Dynamic Convex OPF

The convex OPF methods are e�cient techniques to obtain the optimal solution

for OPF problem. However, the new challenges in modern power system which are

explained through introduction and are summarized below, necessitate the extension

of convex OPF approaches, SOCP-OPF for radial distribution system and SDP-OPF

for transmission systems, to formulate the incorporation of the new players and DC

network in convex OPF problems.

As a result of integrating distributed energy resources (DER), storage facilities

alongside renewable supplies and electricity markets, distribution systems are grad-

ually being transformed into an active system. These changes increase the degree
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of freedom on OPF problem and require dealing with uncertainties through fast op-

timization techniques such as convex conic programming. Receding horizon control

(RHC) is a promising method to schedule the control variables over a time horizon

divided by small time steps. However, The studies presented so far focus on either

the OPF convexi�cation or RHC method independently.

In transmission system, incorporating voltage stability limits inside optimal power

�ow (OPF) is becoming an essential part for economic power dispatch in new energy

management systems. Intensi�ed congestion on power transmission system besides

demand growth and rise of stochastic players push the system closer to its stability

limits. Voltage source converter (VSC) based DC transmission systems can alleviate

this burden by providing DC corridors for active power and managing reactive power

at converter terminals. The new method incorporating voltage stability margin into

convex OPF is required to model this margin either in the objective or constraints of

OPF problem, which forms convex voltage stability constrained OPF (Convex VSC-

OPF). In AC-DC system, the convex OPF is required to reach the minimum cost or

maximum stability margin of both systems together, which is also suitable for meshed

DC networks.

1.4 Dissertation Framework

This dissertation focuses on the dynamic convex optimal power �ow approaches

in modern power grid, which mitigate some limitations of existing methods in radial

and mesh networks. The dissertation framework consists of following sections:

-In chapter 2, a dynamic optimal scheduling of active power distribution systems is

proposed using receding horizon convex OPF. The main advantages of the proposed

method are a) optimum scheduling b) including the dynamic of storage c) integration

of uncertain resources. The e�ectiveness of this method is evaluated on active distri-

bution systems connected to upstream network and neighboring distribution system.

The proposed method includes physical constraints, market price variation, energy
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storage dynamics and source uncertainties.

-An architecture for the real-time implementation of dynamic convex OPF is pro-

posed in chapter 3, and the scalability of proposed method is examined on a larger

system. This real-time framework is useful especially for implementation on the grids

with small scheduling time steps.

- In chapter 4, a new convex VSC-OPF architecture taking into account di�erent

types of VSC-OPF methods including maximum stability margin, minimum margin

constrained, and multi-objective VSC-OPF is proposed. This method is also imple-

mented to derive system PV curve and the results are compared with CPF.

In chapter 5, convex VSC-OPF and OPF formulations are presented to �nd maxi-

mum loading point margin and minimum operating cost of integrated AC-DC system,

which is suitable for active DC meshed networks. The proposed methods address some

limitations of AC-DC OPF methods due to non-convexity, separate scheduling of AC

and DC networks or using equivalent of DC network.

The conclusion and future work are explained in 6.



CHAPTER 2: DYNAMIC OPTIMAL SCHEDULING OF POWER

DISTRIBUTION SYSTEMS USING RECEDING HORIZON CONVEX OPF

2.1 Introduction

Distribution systems are gradually being transformed from a passive network into

an active system [2] as a result of integrating distributed energy resources (DER),

storage facilities alongside renewable supplies demand response and electricity mar-

kets. These changes increase the degree of freedom on OPF problem and necessitate

dealing with uncertainties through fast optimization techniques [55, 56]. Receding

horizon control (RHC) [1] is a promising method to schedule the control variables

over a time horizon divided by small time steps. In our earlier work, we proposed and

examined the framework of an online ACOPF integrated in RHC [57] to re-forecast

the future market price. Ref. [58] proposed the iterative method of prox-average mes-

sage passing to decentralize the optimization over devices. It also suggests RHC as

an extension to that approach. Recently [59] examined RHC-ACOPF to �nd better

DG set-points. A parallel multi-stage dispatch using RHC propounded by [60] eval-

uated the control feasibility of network layers in bulk power system. Other studies

have investigated the RHC in scheduling of deferrable electric loads without power

constraints [61], and for scenario-based optimal power dispatch [62]. There are two

potential drawbacks of using RHC with nonlinear ACOPF: a) computational burden

at each time step and b) issues related to local optimum solution.

The studies presented so far focus on either the OPF convexi�cation or RHC

method independently [57]. In this chapter, a dynamic convex OPF is proposed

by incorporating a convex conic OPF within the RHC (RHC-SOCP-OPF) [63, 64].

This method results in �nding the optimal schedule, and at the same time brings
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saving in computation time due to e�cient convex optimization algorithms compared

with a non-convex optimization in ACOPF. The proposed method could also include

dynamic device models in the minimization problem such as energy storage and at the

same time allows for including measurements and other stochastic variables. To the

best of our knowledge, it is the �rst time that a method introduces the convex OPF

integrated in RHC. The proposed method is tested on IEEE distribution systems,

equipped with various constraints and components associated with a micro grid.

Rest of the chapter is organized in the following order. 2.2.1 presents the RHC

formulation dealing with OPF problem, and 2.2.2 discusses the convexi�cation of

OPF problem using SOCP. Section 2.3 formulate the dynamic convex OPF. Imple-

mentation of the developed method on the 32-bus and the study results are presented

in section 2.4. The case study contains market interactions including neighboring

distribution companies (DISCOs) and upstream network, uncertain wind generation,

storage, distributed energy resources, and contracted loads. Study results evaluate

the e�ectiveness of convex RHC-SOCP-OPF compared with RHC-ACOPF. Finally,

conclusion is presented in section 2.5.

2.2 System Architecture and Modeling

The proposed dynamic convex OPF architecture consists of two major sections: a)

RHC based dynamic modeling and wind forecast and b) convex conic OPF formula-

tion within RHC.

2.2.1 RHC For Dynamic Device Modeling and Forecasting

RHC output is a set of consecutive control actions, created by minimizing the

objective function over a horizon window. The process has the capability of dealing

with the constrained dynamic optimization problems which includes consideration of

uncertain inputs or parameters.
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2.2.1.1 RHC: Dynamic Device Modeling

The RHC equation which models the dynamic behavior of components are pre-

sented in (2.1).

Â(k+1|t) = Â(k|t)x̂(k|t) + B̂(k|t)û(k|t) (2.1)

The state of the charge (SOC) of storage is then obtained and presented in (2.2).

Notations are shown in Table 2.1.

Ek+1
s,i = Ek

s,i + P k
ch,iηch,i − P k

disch,i/ηdich,i (2.2)

k ∈ [t : t+ T − 1]

The RHC method continues until the time step reach the horizon T . Handling the

time horizon is a signi�cant feature in the proposed approach which brings in the abil-

ity to include uncertain parameters and data-update through system feedback. Thus

this method creates the platform to handle the optimization incorporating dynamic

components such as storage in power distribution system.

2.2.1.2 RHC: Forecasting Wind Generation

Uncertainty is generally modeled using stochastic models based on random vari-

ables. To this end, a multi-variable normal distribution f(z1, z2, · · · , zT ) is assigned

to model over horizon steps; The density function is shown in (2.3). This function is

parametrized with T × T covariance matrix, Σ, and 1× T mean vector µ.

Fig. 2.1 depicts the forecasting section inside the RHC structure dealing with

SOCP-OPF problem. We developed (2.3)-(2.5) to forecast the random variable ẑ

over the horizon window [k : k + T − 1] using online data zt, zt−1, · · · , zt−N+1 with

the conditional expectation expression. The model works as follows: First the linear
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regression method is deployed to generate the forecast values. i.e. the conditional

expectation of random variable at time step k
(
ẑk|t
)
is estimated as linear function

of the last N actual feedback values, Z = [zt, zt−1, · · · , zt−N+1], density function

expectation E {z} and variance E {zt − E {zt}}2. This recursive formulation deals

with random variables in which the variables have a normal joint distribution.

f(z1, z2, · · · , zT ) = (2.3)

1√
(2π)T |Σ|

(
−1

2
(z− µ)ᵀ Σ−1 (z− µ)

)

ẑ(k|t) = E (zk|zt, zt−1, · · · , zt−N+1) = α + βTZ

α=E {zk}-βT



E {zt}

E {zt−1}

E {zt−2}
...

E {zt−N+1}


(2.4)

β =



E{(zt−E{zt})(zk−E{zk})}
E{zt−E{zt}}2

E{(zt−1−E{zt−1})(zk−E{zk})}
E{zt−1−E{zt−1}}2

E{(zt−2−E{zt−2})(zk−E{zk})}
E{zt−2−E{zt−2}}2

...

E{(zt−N+1−E{zt−N+1})(zk−E{zk})}
E{zt−N+1−E{zt−N+1}}2



(2.5)

The forecasted values ẑ(k|t) resulting from (2.3)-(2.5) is then used in RHC optimiza-

tion (2.2) to obtain the optimal control variables x̂(k|t), û(k|t), k ∈ [t, t+ T − 1] which

minimizes the cost function over the next time horizon T . The process is repeated at
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Figure 2.1: RHC Dealing With OPF in Modern Power Grid

the next time step.

RHC scheduling di�ers from day-ahead scheduling in terms of consecutive control

actions and moving horizon. If horizon window is 24-hours, and time step is 1-

hour, day-ahead scheduling determines the control variables over the next 24-hours

[k, k + 1, · · · , k + 24]. In day-ahead scheduling, unlike RHC, the optimization is not

repeated until the end of current horizon (k+24). The next optimization is, therefore,

carried out for the day after current horizon, which is [k + 25, k + 26, · · · , k + 48]. In

RHC, the cost function is minimized at each time step over the moving horizon. It

means the optimization is repeated at the beginning of next time step (k + 1) over

receding horizon of [k+ 1, k+ 2, · · · , k+ 25] using updated forecast and input. Then

the control actions are derived and utilized as the new system schedule. These steps

are repeated for all following time steps (k + 2), (k + 3), · · · , (k + 24).
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2.2.2 Convex Conic OPF

The convex OPF is a requirement to reach an optimal solution with less compu-

tation time. The proposed SOCP-OPF is formulated based on branch �ow model

(BFM). The branch �ow model is the method of modeling power �ow problem using

branch variables such as line current and line power unlike the nodal variables in the

bus injection method (BIM). The branch �ow model is described based on a directed

tree graph denoted as T (N,E). The directed tree graph starts with node 0 which

is connected to the upstream network; the tree covers all network nodes. The direc-

tion of edges is chosen arbitrarily. BFM equations are demonstrated in (2.6)-(2.8).

Notations are given in the Table 2.1.

Sij = ViI
∗
ij (2.6)

Vi − Vj = ZijIij (2.7)

Sj =
∑
h

Sjh −
∑
i

(
Sij − Zij |Iij|2

)
+ y∗j |Vj|

2 (2.8)

∀ {i, j, h, (i, j) , (j, h)} ∈ T (N,E)

The OPF model based on BFM, is a non-convex optimization problem due to

nonlinear equality constraints. The relaxation method to bring the optimization as

a convex function consist of two consecutive stages [45], [30]. The idea is to derive

the convex OPF by imposing convex supersets and minimizing the same cost function

over these supersets. The �rst step, angle relaxation, consists of eliminating the angles

of bus voltage and line current from (2.6)-(2.8). This procedure can be explained as

follows.

A1 : Substitute Zij = Rij + jXij, yj = Gj + jBj, Sij = Pij + jQij, and Sj = Pj + jQj

into (2.8), yielding in (2.9) and (2.10) by equating real and imaginary parts.
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Table 2.1: Notations

i, j, h nodes of radial system

T (N,E) radial network

k, T time step and horizon time

Sij, Pij, Qij Power from bus i to j

Rij, Xij line resistance and reactance

Bi, Gi shunt admittance

Iij current from bus i to j

λij relaxed current from bus i to j

vij voltage from bus i to j

ωij relaxed voltage from bus i to j

B⊥ reduced incidence matrix

β⊥ phase angle di�erence over edges

θ∗ voltage recovered angle

P k
wg,i, P

k
dg,i wind and DG generation

P k
cl,i contacted load curtailment

P k
m,i, P

k
nd,i wholesale and neighboring power exchange

ckWG,i, c
k
DG,i wind and DG operation cost

ckCL,i contacted load cost

ckM,i, c
k
ND,i wholesale and neighboring price

Ek
s,i energy storage at time step k

P k
ch,i, P

k
dich,i storage charging and discharging rate

ηch,i, ηdich,i storage charging and discharging e�ciency

ACOPF Non-convex OPF

SOCP-OPF Convex Conic OPF

RHC-ACOPF ACOPF integrated in RHC

RHC-SOCP-OPF Convex conic OPF integrated in RHC

A2 : Substitute Iij from (2.7) into (2.6) giving Vj = Vi−ZijS∗ij/V ∗i . Take the magni-

tude squared of both sides resulting in |Vj|2 = |Vi|2+|Zij|2 |Iij|2−ZijS∗ij−Z∗ijSij.

A3 : Take magnitude squared of (2.6) yielding |Iij|2 = S2
ij/ |Vi|

2.

A4 : Substitute Zij = Rij + jXij and Sij = Pij + jQij into A2 and A3 yielding (2.11)

and (2.12) respectively.

These substitutions result in obtaining the set of equations which contains the angle
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relaxed variables |Vj|2 and |Iij|2 instead of complex variables of Vj and Iij as it can

be seen in (2.9)-(2.12).

Pj =
∑
h

Pjh −
∑
i

(
Pij −Rij |Iij|2

)
+Gj |Vj|2 (2.9)

Qj =
∑
h

Qjh −
∑
i

(
Qij −Xij |Iij|2

)
+Bj |Vj|2 (2.10)

|Vj|2 = |Vi|2 − 2 (RijPij +XijQij) +
(
R2
ij +X2

ij

)
|Iij|2 (2.11)

|Iij|2 =
P 2
ij +Q2

ij

|Vi|2
(2.12)

The |Vj|2 and |Iij|2 are then respectively replaced with new variables ωj and λij,

as shown in (2.14)-(2.17). In the second step, referred as the conic relaxation, the

conic equality constraints are relaxed to conic inequality constraints
(
λij ≤

P 2
ij+Q

2
ij

ωi

)
.

These relaxations convert the ACOPF problem to the convex SOCP-OPF problem

(see (2.14)-(2.17)). The objective function (2.13) is the generation cost, and it is the

same for both ACOPF and SOCP-OPF.

Min
∑
i∈NG

ci
(
P i
g

)
(2.13)

Pj =
∑
h

Pjh −
∑
i

(Pij −Rijλij) +Gjωj (2.14)

Qj =
∑
h

Qjh −
∑
i

(Qij −Xijλij) +Bjωj (2.15)

ωj = ωi − 2 (RijPij +XijQij) +
(
R2
ij +X2

ij

)
λij (2.16)

λij ≤
P 2
ij +Q2

ij

ωi
(2.17)

These relaxations are exact; i.e. SOCP-OPF in (2.13)-(2.17) gives the optimal so-

lution to the ACOPF problem. Then a �centralized angle recovery� algorithm based

on (2.18), (2.19) recovers the voltage and current angles. This step includes calcu-

lating the reduced incidence matrix B and the phase angle di�erence βij . The other
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Figure 2.2: OPF Convexi�cation: Two Step Relaxation

variables can then be recovered using Ohm's law and power injection equations.

B⊥B
−1
T β⊥ − β⊥ = 0 (2.18)

θ∗ = Res.
(
B−1T βT

)
∈ (−π, π) (2.19)

There are two main methods for voltage angle recovery a) �centralized angle recov-

ery� and b) �distributed angle recovery�. In the centralized angle recovery all the

angles are computed in one step as opposed to distributed angle recovery where the

angles are computed in each step. It has been proven that the necessary condition of

angle recovery (2.18) always holds for radial networks [45]. The overall algorithmic

�owchart for OPF convexi�cation is shown in Fig. 2.2.

2.3 Proposed Integrated RHC-SOCP-OPF Formulation

The overall structure of proposed method is depicted in Fig. 2.3. In order to

implement an RHC optimization structure, the �rst step is to formulate the RHC-

ACOPF problem for the system including the storage, wholesale market, neighboring

DISCO, and wind generation. It is worth noting that any stochastic generation

models can be included in the proposed formulation. For OPF algorithm, previously

discussed BF model formulated over a time horizon is derived.

In order to reach optimal solution two relaxation steps are implemented: angle
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Figure 2.3: Optimal Scheduling using Convex RHC

relaxation and conic relaxation. A rotated quadratic cone technique with �change of

variable concept� is used to obtain the SOCP form of the formulation (2.20) as,

2xixj ≥
n∑
k=3

y2k k ∈ [Rnt

] (2.20)

xi = I2, xj = V 2, yk = P 2 +Q2

where Rnt
de�nes the space for the decision variables.

As the result, the quadratic equality constraints are converted to conic constraints

inside the convex OPF formulation.
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2.3.1 Objective Function

The proposed objective function takes into account the generation cost, contracted

load cost and the cost for energy exchanged with upstream network and neighboring

DISCO. The cost function at the time step t is represented in (2.21).

t+T−1∑
k=t

∑
i∈N

(
ckWG,i

(
P k
wg,i

)
+ ckDG,i

(
P k
dg,i

)
+ ckCL,i

(
P k
cl,i

)
+ckM,i

(
P k
m,i

)
+ ckND,i

(
P k
nd,i

))
k ∈ [t : t+ T − 1] (2.21)

The distribution system here is considered to have the capability for exchanging

power with the rest of grid, and the objective function is the total operation cost of

the system.

The generation cost is considered as linear function of generated power. However,

the quadratic objective functions can also be included inside the SOCP problem by

using the �change of variable concept�as discussed earlier. The cost function may

also include other objectives, such as conservation voltage reduction (CVR) and line

losses.

2.3.2 Constraints

The RHC structure creates the capability to update the constraints (as shown

in (2.22) at time step k). These time steps are associated with distribution lines,

generation, expected wind generation, spot market price, demand and storage at

each time step over the next horizon window as depicted in Fig. 2.3. Despite the

conventional day-ahead scheduling which provides a constant limit for these values

at each time step, the constraints are updated at each time step over the horizon.
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P k
wg.min,i ≤ P k

wg,i ≤ P k
wg.max,i

P k
dg.min,i ≤ P k

dg,i ≤ P k
dg.max,i

Qk
dg.min,i ≤ Qk

dg,i ≤ Qk
dg.max,i

P k
nd.min,i ≤ P k

nd,i ≤ P k
nd.max,i

Qk
nd.min,i ≤ Qk

nd,i ≤ Qk
nd.max,i

P k
m.min,i ≤ P k

m,i ≤ P k
m.max,i

Qk
m.min,i ≤ Qk

m,i ≤ Qk
m.max,i

P k
cl.min,i ≤ P k

cl,i ≤ P k
cl.max,i

Qk
cl.min,i ≤ Qk

cl,i ≤ Qk
cl.max,i

P k
ch.min,i ≤ P k

ch,i ≤ P k
ch.max,i

P k
disch.min,i ≤ P k

disch,i ≤ P k
disch.max,i

Ek
s,min,i ≤ Ek

s,i ≤ Ek
s.max,i

λkij ≤ λkij.max

ωki.min ≤ ωki ≤ ωki.max

Skij ≤ Skij.max (2.22)

Corresponding power �ow equations represented in (2.23) are the relaxed power

balance constraints over the horizon window.

P k
wg,i + P k

dg,i + P k
cl,i + P k

ch,i − P k
disch,i − P k

d,i

=
∑
h

P k
ih −

∑
j

(
P k
ji −Rk

jiλ
k
ji

)
+Gk

i ω
k
i

Qk
wg,i +Qk

dg,i +Qk
cl,i −Qk

d,i

=
∑
h

Qk
ih −

∑
j

(
Qk
ji −Xk

jiλ
k
ji

)
+Bk

i ω
k
i

k ∈ [t : t+ T − 1] (2.23)
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The voltage drop constraint is shown in (2.24).

ωki = ωkj − 2
(
Rk
jiP

k
ji +Xk

jiQ
k
ji

)
+
(
Rk
ji

2
+Xk

ji

2
)
λkji (2.24)

The relaxed line current �ow constraint is (2.25).

λkij ≤
P k2

ij +Qk2

ij

ωki
k ∈ [t : t+ T − 1] (2.25)

The state of energy stored in the storage at each time step is dictated by the preceding

energy, charging, and discharging rate. The coe�cients representing the charging and

discharging e�ciency can be represented as in (2.26).

Ek+1
s,i = Ek

s,i + P k
ch,iηch,i − P k

disch,i/ηdisch,i (2.26)

2.4 Case Studies and Simulation Results

The �rst case study is conducted on the 32-bus distribution system to examine

the proposed architecture of integrated RHC and convex optimization examined the

8-bus test system. In these studies, the wind generation is considered as a stochastic

variable; i.e. the expectation of wind generation at time step k of horizon window

[t, . . . , k, . . . , t+ T − 1] is forecasted by moving one step forward, t to t+1. The actual

and forecasted wind data from the electric reliability council of Texas (ERCOT) is

used for the real-time wind estimation at each time step.

The time horizon T is considered 24h, and each time step is considered 1h. However,

if the optimization problem is solved in the order of seconds or minutes depending

on the system size, it is feasible to reduce the time step to less than few minutes.

Four methods are compared to test the e�ectiveness of developed RHC-SOCP-OPF

method.
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Method A: Day-ahead scheduling using ACOPF.

This method uses day-ahead scheduling using the non-convex OPF (ACOPF)

equations, in which the objective function is minimized (one-time) over the

horizon window and the system schedule is determined for each time step [1 : 24]

as explained in 2.2.1.

Method B: Day-ahead scheduling using SOCP-OPF.

This method, like method A, is a day-ahead scheduling but, it incorporates

convexi�ed power �ow formulation (SOCP-OPF) as shown in (2.13)-(2.17).

Method C: Online scheduling using RHC-ACOPF.

This method incorporates RHC (explained in III-A) inside the non-convex OPF

equations (ACOPF) in which the cost function is consecutively minimized at

each time step over the moving horizon using updated forecast and input.

Method D: Online scheduling using RHC-SOCP-OPF.

The proposed method consists of integrated RHC with convexifed OPF equa-

tions (SOCP-OPF), viz., RHC-SOCP-OPF as discussed in 2.3.

Note: The system physical constraints (2.22), and storage dynamic constraint

(2.26) are included in all four methods.

The simulation results are reported based on Intel 2.4 GHz Core i5 CPU. The

optimization package GAMS with MOSEK solver, is used to implement the SOCP-

OPF. For non-convex OPF, NLP CONOPT solver is used to examine the ACOPF

formulation.
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Figure 2.4: Modi�ed 32-bus Distribution Test System

Case I: 32-bus Test System

The 32-bus radial distribution system [65] is considered to examine the convex

RHC method. The system is 12.66 kV and contains 33 buses (bus 0 is the contact

point to upstream network) and 32 lines. Test system is modi�ed to incorporate the

market transaction, wind generation, and storage (see Fig. A.1). This radial network

is connected to the upstream network and neighboring DISCO through tie lines from

bus 0 and bus 30 respectively. Two wind farms are located at bus 13 and 16. One

storage station is connected to bus 20. Contracted loads are considered at bus 7, 13,

24, and 31.

The market price at each time step is the multiplication of market price variation

coe�cient and the base price. The load demand variation at di�erent nodes are

calculated with the same procedure. DISCO optimize its operation schedule based

on the energy market price in upstream, neighboring DISCO, wind variation, etc.

Neighboring DISCO and upstream networks are capable to exchange power with the

test system based on the hourly energy price. The base market price, and neighboring

price are considered $0.09/kWh and $0.0825/kWh respectively. The cost of contracted
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loads is $0.1/kWh. The least operational cost is associated with wind generators

$0.05/kWh. The variation coe�cient of energy price with respect to base price are

presented in Table A.1. The detailed data of DGs and storage capacity for modi�ed

32-bus test system are given in Appendix (See Table A.2 and A.3). Power base for

two systems is 100 kW. The DG's generation cost for the test systems are shown in

Table A.4 and A.5.

Table 2.2: Price Variation Coe�cient At Di�erent Time Steps

Step (k) Price Coe. Load Step (k) Price Coe. Load

1 0.7 0.88 13 1.31 1.38
2 0.64 0.83 14 1.46 1.41
3 0.62 0.80 15 1.66 1.44
4 0.59 0.78 16 1.43 1.45
5 0.62 0.80 17 1.80 1.43
6 0.63 0.85 18 1.43 1.39
7 0.65 0.92 19 1.18 1.39
8 0.65 1.02 20 1.14 1.34
9 0.77 1.11 21 1.07 1.28
10 0.84 1.20 22 0.92 1.15
11 0.95 1.28 23 0.85 1.02
12 1.09 1.34 24 0.80 0.94

Other system data are given in [65]- [66]. Fig. 2.5 depicts the active power gener-

ation at bus 16 using convex methods A to D. It can be noti�ed that the day-ahead

scheduling (method A and B) over estimated and under estimated wind generation

up to 1 p.u. compared with RHC methods (method C and D). It is noticeable that

the both method C and D presented same optimal scheduling at bus 16. The reason

is the low wind price which dictates higher priority to dispatch the wind generators.

This also allows the wind to operate at its maximum. The disadvantage of day-ahead

scheduling is shown in Fig. 2.6, in which optimization methods A and B under esti-

mated the power exchange with upstream network during hours 13 to 19. According

to real-time data, wind availability is less during these hours. This reduction causes

the increase in power exchange with upstream network represented in RHC methods
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C and D.

Fig. 2.7 explains the charging and discharging schedules of storage S1 at bus 20

with market price variation. The Es shows the amount of energy stored in storage S1.

These optimized values are obtained by using RHC convex OPF (method D). The

charging and discharging pattern are explained with the price of upstream market.

During the hours 1 to 9 the price at the upstream network are low. The storage is,

therefore, scheduled to be charged. It stores the energy during this period for lesser

price. As the price during hours 13 to 21 increases, it is more economical to use the

storage as the energy source rather than buying energy from other sources. The
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performance of convex method D is compared with non-convex OPF (method C) in

Fig. 2.8. The proposed convex method D results in reduction of the cost function at

all steps of RHC implementation. This improvement is the result of convex nature

of proposed method D, which guarantees the global optimum solution. Table 2.3

provides the total cost at time steps 1,8,16,24. It can be seen that method D yields to

1% reduction in cost by �nding the optimal schedule of the active distribution system.

Table 2.4 illustrates the performance of RHC methods C and D. The proposed method

D shows the reduction in simulation time, and at the same time ensure convergence

to the optimal solution in comparison with non-convex method C which yields a local

optimum with a simulation time around twice that of method D.
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Table 2.3: Total Cost Function [$] At Di�erent Time Step

Step (k) 1 8 16 24

RHC-SOCP 8160 8264 8423 8472

RHC-ACOPF 8244 8347 8507 8556

Table 2.4: simulation time comparison

RHC-SOCP Average Simulation Time (Sec) 6.8333

RHC-ACOPF Average Simulation Time (Sec) 14.2751

2.5 Conclusion

A dynamic optimal power scheduling method for radial distribution system is pro-

posed including dynamic components, market transactions, contracted loads and re-

newable generation. The convex OPF is formulated within the RHC using two step

relaxation in second order conic programming (SOCP). This convex RHC method

takes into account the input uncertainties such as wind through re-estimating the

future inputs based on the online input data, which is repeated at each time step over

the horizon window. The proposed method addresses the possible disadvantages of

dynamic methods based on non-convex ACOPF, referred as the local optimum so-

lution and time ine�ciency. The method e�ectiveness examined on the 32-bus; The

results shows the improvements in comparison with non-convex ACOPF method.



CHAPTER 3: SCALABILITY AND REAL-TIME IMPLEMENTATION OF

RECEDING HORIZON CONVEX OPF

3.1 Scalability of Receding Horizon Convex OPF

The scalability of the proposed receding horizon convex OPF is examined in this

chapter. In chapter 2, the convex RHC OPF formulation is developed to �nd the

optimal schedule of active radial systems. The test system for RHC-ACOPF problem

includes the storage, wholesale market, neighboring DISCO, wind generations, DER,

and contracted loads. On the other hand, the horizon window for each step of op-

timization is 24 hours. All these variables increase the size of optimization problem

rapidly as the size of test system increases. To test the e�ectiveness of RHC convex

OPF on larger active distribution systems, three case studies are considered. The

Case I is the modi�ed 32 bus test system. Case Studies II and III are implemented on

modi�ed 119-bus radial system. Four methods are compared to test the e�ectiveness

of developed RHC-SOCP-OPF method.

Method A: Day-ahead scheduling using ACOPF.

This method uses day-ahead scheduling using the non-convex OPF (ACOPF)

equations, in which the objective function is minimized (one-time) over the

horizon window and the system schedule is determined for each time step [1 : 24]

as explained in 2.2.1.

Method B: Day-ahead scheduling using SOCP-OPF.

This method, like method A, is a day-ahead scheduling but, it incorporates

convexi�ed power �ow formulation (SOCP-OPF) as shown in (2.13)-(2.17).

Method C: Online scheduling using RHC-ACOPF.
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This method incorporates RHC (explained in III-A) inside the non-convex OPF

equations (ACOPF) in which the cost function is consecutively minimized at

each time step over the moving horizon using updated forecast and input.

Method D: Online scheduling using RHC-SOCP-OPF.

The proposed method consists of integrated RHC with convexifed OPF equa-

tions (SOCP-OPF), viz., RHC-SOCP-OPF as discussed in 2.3.

The system physical constraints (2.22), and storage dynamic constraint (2.26) are

included in all four methods.

3.1.1 Case Study 119-bus Test System

A modi�ed 119-bus distribution system is examined to test the e�ectiveness of pro-

posed method as shown in Fig. A.2 . The system operates at 11 kV and contains

22709.7kW and 17041.1 kVar of demand. The system is modi�ed to incorporate the

market and neighboring DISCOs transaction, wind generation, contracted loads and

storage. This radial network is connected to the upstream network from bus 1 and

exchanges power with neighboring DISCOs through tie lines from the buses 48 and

80. The DGs are connected to the feeders at the buses 35, 44, 52, 56, 60, 64, 69, 84, 85

, 89, 96, 109, 116, 121. Seven wind generators are integrated to the system through

buses 14, 20, 50, 74, 76, 101, 113. The contracted loads are connected to buses 24, 25, 42

, 43, 55, 59, 79, 82, 97, 112, 117 and up to 20% of these loads are contracted to be cur-

tailed. We report the simulation time based on Intel 2.4 GHz Core i5 CPU. The

optimization package GAMS along with SOCP solver is used to implement the for-

mulation. Two test cases are studied.

• Case II: Modi�ed 119-bus with one storage at bus 21.

• Case III: Modi�ed 119-bus with four storages at buses 21,36,51,75.
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The base Market price, neighboring price and the variation coe�cient of energy price

with respect to base price are considered same as the 32-bus test system and presented

in Table A.1. The detailed data for DGs and storage sizes associated with modi�ed

119 bus test system are given in Table A.3. Other system data such as demand

Table 3.1: DG, Wind and Energy Storage Capacities

pgmax smax pgmax smax

[p.u.] [p.u.] [p.u.] [p.u.]

bus14 2 - bus74 10 -

bus20 7 - bus75 0 6

bus21 0 8 bus76 10 -

bus35 5 - bus80 10 -

bus36 0 8 bus84 3 -

bus44 7 - bus85 3 -

bus48 10 - bus89 2 -

bus50 10 - bus96 2 -

bus51 0 6 bus101 7 -

bus52 10 - bus109 7 -

bus56 5 - bus113 10 -

bus60 2 - bus116 10 -

bus64 2 - bus121 3 -

bus69 5 - - - -

level and line impedance are considered same 119-bus and provided in [67]. Fig.

3.2 demonstrates the power received from upstream network using methods A to D.

Day-ahead scheduling either overestimates or underestimates the amount of power

required to be imported from grid. The pattern of di�erence between method B and

D is close to the pattern of deviation between day-ahead forecast wind and RHC

forecast. The e�ect of proposed RHC method D on charging and discharging pattern

of storage (S3) in comparison to the day-ahead scheduling B is shown in Fig. 3.3. The

charging and discharging schedule shifts one step by using the RHC method, which



41

DGDG

DG

DG

DG

DG

DG WG WG

WG

DG

S

DG DG

DG DG

DG

WG

WG

WG

S

S S

DG

WG

Figure 3.1: Modi�ed 119-bus Distribution Test System

100

120

140

160

180

200

220

1 3 5 7 9 11 13 15 17 19 21 23

P
m

(p
u
)

Time Step (hr)

RHC SOCP

RHC ACOPF

SOCP

ACOPF

Figure 3.2: Power Exchange with Upstream Network; 119-bus Incorporating One
Storage (Case II)



42

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 3 5 7 9 11 13 15 17 19 21 23
P
(p
u
),
E
(p
u
)

Time Step (hr)

Pch (RHC) Pch

Pdisch Pdisch (RHC)

Figure 3.3: Optimal Pch and PDisch Schedule For Storage S3 Using Proposed Method
D Compared to Method B; Case III

Table 3.2: Simulation Time Comparison: Modi�ed 119-bus

RHC-SOCP Average Simulation Time (Sec) 151.8

RHC-ACOPF Average Simulation Time (Sec) 333.0

demonstrates the disadvantage of day-ahead scheduling dealing with uncertainty in

the system.

The charging and discharging schedule of storage S1 is shown in Fig. 3.4 using the

RHC convex OPF. The schedules are same for Cases II and III, and the location of

storage S1 at both systems are identical. However, additional storages are located at

other branches of the system in Case III. The pattern shows that as during hours 1 to

9 the price at the upstream network are low, the storage is, therefore, scheduled to be

charged. As the price during hours 13 to 21 increases, the storage is scheduled to be

discharged instead of buying energy from upstream or dispatching costly generators.

The comparison between Fig. 3.3 and 3.4 shows that the size and location of storage

can also a�ect the storage schedule in addition to the price variation.

Table 3.2 compares the computational time performance of proposed optimization

method RHC-SOCP with non-convex RHC-ACOPF at each time step. The con-

vex method D outperforms conventional method C and provides considerable time

reduction. In 32-bus system, the computation time ratio of convex RHC-SOCP to
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Table 3.3: Total Saving [$] Over The Horizon Window Comparing RHC-SOCP and
RHC- ACOPF ; modi�ed 119-bus Incorporating One Storage (Case II)

Step Case II Case III Step Case II Case III

1 101 101 16 113 111
8 106 105 24 114 111

non-convex RHC-ACOPF is 47% (6.83/14.27). In a larger system (119-bus), this

ratio is even better 45% (151.8/333). This shows that the comparative performance

of RHC-SOCP method is not declined when system size is increased. The other

important advantage is reaching the global optimal solution.

Table 3.3 provides the total savings in operational cost at di�erent time steps. The

proposed method D yields reduction in total cost by �nding the optimal schedule of

the active distribution system (see Fig. 3.5).

3.1.2 Case Study IV: Real-Time Implementation

The proposed architecture for real-time implementation of RHC convex OPF is

presented in Fig.3.6. The architecture contains three main sections: energy man-

agement system (EMS), control interface, real-time digital simulator (RTDS). The

�rst section (EMS) acts as the master control for the whole structure and integrates

RHC forecasting and dynamic optimization (SOCP-OPF) formulated in section 2.3.
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Master program receives the update for actual load, price, and wind. Based on the

new updates, it reforecasts the wind generation over the horizon window. These

informations alongside with price, load, and other system updates are sent to the op-

timization program. The optimization determines the control variables at each time

step over the horizon window [t : t + T − 1]. This control actions are sent to the

real-time simulator.

The second section provides the control interface for the exchange of the signals

between the EMS and real-time simulator. A TCP protocol is used to connect the

master (EMS) and real-time simulator. The third part is the model of the test system

in RSCAD implemented in RTDS real-time simulator [68]. The input control actions

provided by EMS is applied to the test system at the beginning of each time step.

The required feedback such as storage's energy is sent back to EMS through control

interface. This feedback as well as the other external signals serves as the updated

input for master program to re-forecast and re-optimize the control variables over the

next horizon window [t+ 1 : t+T ]. The 8-bus radial distribution system (Fig. 3.7) is

considered to examine the proposed real-time architecture for RHC convex OPF. The

system is operated at 15 kV, and contains 8 buses and 7 lines. Each load is 5+j2.5

p.u.. The line impedances are 0.05+j0.1 Ω, and power base is 1 MW. The variation
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Figure 3.6: Real-Time Implementation Architecture of proposed method

coe�cient of energy price with respect to base price are presented in Table A.1. This

distribution network is connected to the upstream from bus 0. One wind farm and a

storage station are located at bus 6 and bus 7 respectively.

For the real-time simulation, two subsystems for the �control� and �power distribu-

tion system� are modeled in RSCAD. The subsystem #1 manages the various control

signals which are either imported to or exported from the power system. It also

establishes the channel to the EMS through the interface card. The subsystem #2

contains the real-time model of power distribution system and exchanges the required
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signals with subsystem #1. The EMS receives the feedback from the real-time sim-

ulator. It performs the new forecast over the horizon using RHC, and sends this

data as well as the new price and load data to the optimization routine. It runs the

proposed SOCP-OPF method and obtains the optimal schedules for DG, storage and

contracted loads (if any) over the next horizon [t+ 1 : t+ T ]. This control signal will

be sent to the real-time simulator at the beginning of the each step.

Fig. 3.8 shows the SOC for the storage along with the charging and discharging

rates. The state of charge (SOC) is equivalent to the energy (E) stored inside the

storage. The storage initial charging is 50%. During the hours 2 to 6, the price at

the upstream network are low. The storage is, therefore, scheduled to be charged.

When the price during hours 13 to 18 increases, the storage is discharged to avoid

energy import from upstream. The real-time active power �ow on storage line Psl is

shown in Fig. 3.8. The small high frequency �uctuations are related to the converter

switching.

Fig. 3.9 depicts the comparison between real-time and scheduled values of power

imported from upstream (modeled as a power source) and the wind generation at

each time step. The amount of power imported from upstream at each time step and

over the horizon window is determined by the wholesale market price, load level, and

the amount of wind generation. For instance, it can be seen that the imported power

decreases by 0.96 p.u. at the beginning of time step 2. The reason is that the storage

starts to be charged at time step 2 with the rate of 1 p.u./hr. At the same time the

loading level decreases by factor of 0.05 (0.88-0.83) which is equal to 1.25 p.u.. On

the other hand, there is an increase in wind generation from step 1 to step 2 by 0.71

p.u.. The imported power, therefore, decreases by 0.96 p.u. (=1.25+0.71-1). The

small oscillations on the power variation are caused by rapid changes in the generator

settings.
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3.2 Conclusion

In this chapter, a dynamic convex optimal power �ow method for active distribution

systems, which includes dynamic components, market transactions, contracted loads

and renewable generation is proposed. The RHC convex OPF takes into account the

system uncertainties such as wind through re-estimating the future inputs based on

the online data over the horizon window. The proposed method also addresses some

disadvantages of ACOPF methods, referred as the local optimum solution and time

ine�ciency. The e�ectiveness of RHC convex OPF is examined on the modi�ed 32-
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bus test system. An architecture for real-time implementation of proposed method

is also presented. The scalability of proposed method is tested on modi�ed 119-bus

test system. The results show the improvements in operation cost and computational

time in comparison with the current methods.



CHAPTER 4: AN ARCHITECTURE FOR VOLTAGE STABILITY

CONSTRAINED CONVEX OPTIMAL POWER FLOW FOR TRANSMISSION

SYSTEM

Moving towards the competitive environment in power grid intensi�es congestion on

power transmission systems. This trend besides demand growth and rise of stochastic

players such as renewable sources push the system closer to its stability limits [2].

Such a stressed system challenges independent system operators (ISOs) for providing

fair access for market participants [69], [70] and ensuring a stable system. Recently

voltage instability scenarios have caused several blackouts. Incorporating voltage

stability limits inside optimal power �ow (OPF) is, therefore, becoming an essential

part for economic power dispatch in new energy management systems. In general,

the steady-state voltage stability limits are modeled as the margin that de�nes the

distance to maximum or critical loading points [71]. This margin can be included

either in the objective or constraints of OPF problem, which forms voltage stability

constrained OPF (VSC-OPF) [72].

Several studies have proposed optimization algorithms to solve OPF problems more

e�ciently. These algorithms generally have limitations referred to as providing non-

exact relaxation and locally optimum solutions [73]. These limitations are mainly

resulting from non-convexity of OPF equations [29]. Power �ow equations acting as

constraints in the OPF problem are nonlinear quadratic functions, and thus OPF

is a non-convex and NP-hard optimization problem. In recent years, contributions

are made to convexify OPF [30] to e�ciently solve the problem and �nd the optimal

solution. Convex relaxation of OPF is generally classi�ed into two types: Relaxation

of bus injection model (BIM) OPF, and branch �ow model (BFM) OPF. Power
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transmission systems are mostly modeled using BIM-OPF, and SDP relaxation is used

to convexify the optimization problem. The �rst semide�nite programming (SDP)

relaxation for meshed networks was proposed in 2008 [34]. The detailed analysis on

SDP relaxation is then presented in [29], and a su�cient condition for OPF problem

is derived.

Considerable number of studies have investigated the voltage stability constrained

OPF (VSC-OPF) using non-convex methods. Ref. [74] formulated the voltage sta-

bility margin as an optimization problem, and [75] examined the maximum load-

ability point. An OPF algorithm using evolutionary programming was illustrated

in [76] based on gradient information. Ref. [77] introduced a stability constrained

OPF method by converting the dynamic equations to their numerical equivalents.

Ref. [78] suggested an optimization technique to identify the voltage collapse point

based on saddle-point and limit-induced bifurcations. Ref. [79] presented a review on

OPF methods including voltage security constraints. New OPF techniques are then

proposed based on interior point methods [72] to evaluate voltage security cost.

Developing convex OPF with voltage stability constraints viz., VSC-OPF is an

open problem, with only few studies investigating the convex�cation of VSC-OPF.

Recently [80] presented a dispatch method for enhancing voltage stability by solving a

quasi-SDP OPF problem with a stability index. In this chapter, a convex relaxation

for voltage stability constrained OPF (VSC-OPF) using semide�nite programming

(SDP) is proposed [81], which formulates three types of convex VSC-OPF algorithms.

These methods �nd the optimum dispatch with the goals of a) maximum stability

margin, b) minimum operating cost constrained by a stability margin and c) an

intermediate multi-objective function that can de�ne a trade-o� between cost and

enhancing stability. The proposed convex method is also implemented to derive the

voltage versus power curve (PV curve) and are examined on IEEE 14-bus, 57-bus,

and 118-bus test systems.
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Rest of the chapter is organized as follows. Section 4.1 presents the formulation

dealing with steady state VSC-OPF. Section 4.2 proposes a general convex VSC-OPF

formulation and details the convexi�cation of VSC-OPF by de�ning the corresponding

substitute variables in convex space. Further convex formulations for three types

of convex VSC-OPF algorithms using SDP are derived. Implementation of these

methods on the IEEE test systems and result analysis are presented in section 4.5.1-

4.5.3, and section 4.6 summarizes the contribution.

4.1 Voltage Stability Constrained OPF

Stability constrained OPF problem aims to provide the optimal dispatch and at

the same time ensures that solution remains within the boundary of proper distance

to the maximum loading point. In this chapter, the de�nition of VSC-OPF is based

on steady state voltage stability model. A conventional VSC-OPF formulation based

on [79] is represented in (4.1).

Min
(Pi,Pm

i ,vi,vmi ,λ
m)

∑
i

ci (x, Pi, P
m
i , vi, v

m
i , λ, λ

m) (4.1)

s.t.



h(x, P i, vi, λ) = 0

h(xm, Pm
i , v

m
i , λ

m) = 0

bi ≤ g (x, P i, vi, λ) ≤ bi

bmi ≤ g (xm, Pm
i , v

m
i , λ

m) ≤ b
m

i

di ≤ f(λ, λm) ≤ di

In this formulation the loading factor λ determines the current loading level of power

grid, and the critical and maximum loading points are represented by λc and λm

respectively. The functions g(.) and h(.) de�ne the equality constraints and inequality

constraints associated with current and maximum loading points respectively. Also,

in the last constraint, f(.) provides the connection between λ and λm. The generators
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are assumed to have same terminal voltage at λ and λm. The optimization approaches

contributed to VSC-OPF problem can be classi�ed into three major categories [72].

4.1.0.1 Maximum Stability Margin

In this method the output is an operating point that creates the maximum distance

to the maximum loading point. Equation (4.2) shows the objective function while

the constraints remains the same as in (4.1).

Min − (λm − λ) (4.2)

4.1.0.2 Minimum Margin Constrained

In this method a minimum acceptable distance to the maximum loading point is

incorporated in the constraints, and the system operating cost is considered as the

objective function (4.3). The rest of constraints are the same as (4.1).

Min
∑
i∈NG

ci (Pi) (4.3)

s.t.

{
λm − λ ≥ 4λmin

4.1.0.3 Multi Objective

In this method, a linear combination of stability margin and operating cost is

considered as the objective function as shown in (4.4). The rest of constraints are the

same as (4.1).

Min ω1

∑
i∈NG

ci (Pi)− ω2 (λm − λ) (4.4)

It can be seen that these VSC-OPF methods are non-convex due to the nonlinear

equality and inequality constraints.
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Table 4.1: Indexes and Short Usages

i, j, k Bus indexes.

lm Line index from bus l to bus m.

N Set of buses.

NG Set of generation buses NG ⊆ N .

NL Set of line �ows NL ⊆ N ×N .

Sn n× n positive semide�nite (PSD) space.

Re{.}, Im{.} Real and imaginary part.

Tr{.}, rank{.} Trace and rank of given matrix.

SDP Semide�nite programming

VSC-OPF Voltage stability constrained OPF

4.2 Proposed Convex Voltage Stability Constrained OPF

The OPF problem in transmission systems is commonly formulated using bus in-

jection model (BIM) and aims to minimize the operation cost. In convex OPF, the

convex relaxation is derived by imposing convex supersets over the non-convex fea-

sible set of OPF problem and minimizing the cost function over these sets. The

non-convex and convex models use di�erent equations and set of variables [33]. Non-

convex OPF may results in a local solution while the convex OPF �nds the global

optimum solution, although there are cases in which the relaxation is not tight [82].

In convexi�cation process an equivalent rank-1 matrix is introduced to transform the

constraints to a linear space. SDP relaxation of BIM-OPF is then obtained by drop-

ping this rank-1 constraint which yields a quadratic convex optimization problem [29].

Notations are given in Table 4.1 and Table 4.2.
In this section, we design an SDP based convex stability constrained OPF. In VSC-

OPF two vector variables are required to model the operating and critical points

since the maximum loading point is also needed to be determined from the solu-

tion of VSC-OPF. Therefore, unlike the convex OPF, in convexi�cation of VSC-

OPF problem, two voltage vector variables are de�ned. The �rst one is associated

with the optimal operating point V =
[
Re{v}T Im{v}T

]
and the other one V m =
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Figure 4.1: PV curves associated with two operating points OP1 and OP2. The
points λm1 , λm2 and λc1, λ

c
2 represent infeasible boundary (Vmin) and voltage collapse

respectively.

[
Re{vm}T Im{vm}T

]
represents the maximum loading point, where v = {v1, v2, ..., vn}

and vm = {vm1 , vm2 , ..., vmn }. These voltages must satisfy all the constraints of the sys-

tem including the power �ow equations and equipment limits. Thus, the scalar λ and

the variable λm are incorporated inside the optimization formulation to represent the

current loading factor and maximum loading level, respectively. The system loading

is considered to increase at constant power factor for all load buses. The system

demand, therefore, can be written as

PDi
= λ.PDoi , QDi

= λ.QDoi (4.5)

Pm
Di

= λm.PDoi , Qm
Di

= λm.QDoi (4.6)

Where PDoi and QDoi are the system base active and reactive load at bus i.

The solution of VSC-OPF is to �nd the dispatch point that contains maximum

stability margin by creating maximum distance to maximum loading point. The

maximum loading is obtained by �nding the feasible boundary of operational con-

straints. The critical loading is given by the voltage collapse point.
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Table 4.2: Notations of Variables and Parameters

P,Q, S Active, Reactive and Apparent power.

vi Voltage of bus i.

|vi| Voltage magnitude of bus i.

δi Voltage angle of bus i.

λ Current loading factor.

λm Maximum loading factor.

λc Critical loading factor.
W ,Wm (2n× 2n) PSD matrix variables.

Wi,j (i,j) entry of matrix W

e1, e2, . . . , en Standard basis vectors of Rn

ci, Cik Cost function and cost coe�cient at bus i

PDi
,QDi

Active and reactive demand at bus i

Y Admittance matrix

ylm, ȳlm Line lm series and shunt admittance
h (.) , g (.) Equality & inequality functions of OPF

f (.) Function of λ,λm

H (.) , G (.) Convex OPF equality & inequality functions

F (.) Convex function of λ and λm

� Positive semide�nite

Xmin, Xmax Minimum and maximum of X

b, b Lower and upper bound of function b

Xm X value at loading level of λm

Fig 4.1 depicts the voltage versus power (PV) curve corresponding to two operating

points OP1 and OP2. The loading points λm1 and λm2 demonstrate the loading levels

at which minimum voltage requirement is violated. The violation is not necessarily

limited to voltage but can also include other constraints such as line �ow and genera-

tion capacity. The critical points λc1 and λ
c
2 represent the loading levels beyond which

demand increase will result in voltage collapse.

The �rst step in convexi�cation of VSC-OPF is to extend the objective function and

constraints as a linear function of a quadratic matrix V V T and V mV mT . The matrices

V V T and V mV mT are then replaced by matrices W and Wm respectively, yielding

a linear problem in S2n×2n. The relation between feasible boundary and variables
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Figure 4.2: Feasible space and variables associated with (a) VSC-OPF and (b) convex
VSC-OPF. (Pi, vi), (Pi, vi)

m and λm are variables in conventional VSC-OPF and PSD
matrices W , Wm and scalar λm are the corresponding ones in convex VSC-OPF.

of conventional and convex VSC-OPF is shown in Fig. 4.2; The red colored (Pi, vi),

(Pi, vi)
m, λm are variables in conventional VSC-OPF, and parameter λ de�nes the

current loading level; The positive semi-de�nite matrices W , Wm beside the variable

λm are corresponding variables of VSC-OPF in convex space.

In the next step de�ned as the rank relaxation, the rank-1 constraints for W and

Wm are eliminated from the constraints. These relaxations convert the nonlinear

VSC-OPF problem to a convex optimization problem.

The quadratic objective function can also be replaced by equivalent linear matrix

inequality constraints. The general convex VSC-OPF thus obtained is shown in (4.7)-

(4.14). Notations are given in Tables 4.1 and 4.2. The function H(.) is the power �ow

equality constraint in convex space. The system operational constraints is demon-

strated by function G(.). The last constraint F (.) de�nes the relation between λ and

variable λm. Please note that i ∈ NG.
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Min
(W,Wm,λm)

∑
i

Ci (x,W,W
m, λ, λm) (4.7)

s.t. H(x,W, λ) = 0 (4.8)

H(xm,Wm, λm) = 0 (4.9)

G (x,W, λ) ≥ 0 (4.10)

G (xm,Wm, λm) ≥ 0 (4.11)

F (λ, λm) ≥ 0 (4.12)

Wi,i +W(i+n),(i+n) = Wm
i,i +Wm

(i+n),(i+n) (4.13)

W � 0,Wm � 0 (4.14)

Another assumption that maps control variables at current loading to maximum

loading is associated with generator terminal voltages. The generators are assumed

to have same terminal voltage as the loading level increases. This is represented in

(4.13) which enforces this constraint by equating the magnitude squared of terminal

voltages. The entry Wi,i and W(i+n),(i+n) of matrix W are equal to the magnitude

squared of voltage real part Re{vi}2 and imaginary part Im{vi}2 respectively. These

substitutions yield |vi|2 = Wi,i + W(i+n),(i+n); similar substitution in |vmi |2 results in

|vmi |2 = Wm
i,i +Wm

(i+n),(i+n).

The convexi�cation and solution recovery algorithm are summarized in Fig. 4.3.

Let W opt and Wmopt
denotes the solution of relaxed VSC-OPF. If these matrices are

rank-1, the solution to the VSC-OPF problem is constructed using W opt = V V T and

Wmopt
= V mV mT

. Whenever the solution matrices are rank-2, matrices (ρ1+ρ2)EE
T

and (ρm1 + ρm2 )EmEmT
are the rank-1 solutions to the VSC-OPF, and voltage vectors

can be constructed using these matrices. The scalars ρ1 and ρ2 are eigenvalues of

W opt, and vector E denotes unit eigenvector associated with ρ1. Correspondingly,
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VSC - OPF
(Maximum Stability 

Margin)

VSC - OPF
(Minimum Margin 

Constrained)

Eq:(4.15)-4.33),
(4.47)
Optimal Solution To 

Convex VSC-OPF

W=VVTRelaxation
1=WRank

Rank c 1=W W = V V
Tc c c

1,0 21   0,1 21   121 

VSC‐OPF 
(Multi‐objective)

Eq:(4.1)-(4.4)
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Figure 4.3: Convexi�cation of VSC-OPF and solution recovery. VSC-OPF categories
are: Maximum loading margin, Minimum margin constrained and Multi-objective
VSC-OPFs.

the scalars ρm1 , ρ
m
2 , and vector Em demonstrate eigenvalues and eigenvector associ-

ated with Wmopt
. The convex VSC-OPF formulation ((4.7)-(4.14)) is extended to

model three types of voltage stability constraint OPF illustrated in section 4.1. Ob-

jective function and constraints of convex VSC-OPF methods are detailed in following

subsections.

4.2.0.1 Objective Function

The proposed objective function (4.15) takes into account two terms. The �rst

term is weighted by scalar ω1; it represents the total generation cost. The second

term weighted by scalar ω2 models the voltage stability margin −(λm − λ).

This term demonstrates the distance to the maximum loading point, which is aimed

to be maximized. The weighting factors are determined depending on VSC-OPF

categories.
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Min
(W,Wm,λm)

ω1

∑
i∈NG

{Ci2 (Tr{YiW}+ λPDi
)2 (4.15)

+ Ci1 (Tr{YiW}+ λPDi
) + Ci0} − ω2 (λm − λ)

4.2.0.2 Constraints

The �rst part of constraints demonstrates the convex power �ow equations as shown

in (4.16)-(4.19). These equality constraints model the active and reactive power

generation at bus i associated with current loading point (Pi, Qi) and maximum

loading point (Pm
i , Q

m
i ) respectively. Derivation of Yi and Ȳi from admittance matrix

is presented in (4.34) where i ∈ N .

Pi = Tr{YiW}+ λPDi
(4.16)

Pm
i = Tr{YiWm}+ λmPDi

(4.17)

Qi = Tr{ȲiW}+ λQDi
(4.18)

Qm
i = Tr{ȲiWm}+ λmQDi

(4.19)

The next part denotes the inequality constraints imposing the maximum and min-

imum boundary of active power generation, reactive power generation, and bus volt-

ages ((4.20)-(4.25));

Pmin
i ≤ Pi ≤ Pmax

i (4.20)

Pmin
i ≤ Pm

i ≤ Pmax
i (4.21)

Qmin
i ≤ Qi ≤ Qmax

i (4.22)

Qmin
i ≤ Qm

i ≤ Qmax
i (4.23)(

V min
i

)2 ≤ Tr{MiW} ≤ (V max
i )2 (4.24)(

V min
i

)2 ≤ Tr{MiW
m} ≤ (V max

i )2 (4.25)

Where Tr{MiW} and Tr{MiW
m} are equal to the magnitude squared of bus
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voltages |Vi|2 and |V m
i |2 respectively; matrix Mi is de�ned in (4.36).The admittance

and coe�cient matrices are derived in section 4.3.

The transmission line constraints are formulated in (4.26)-(4.31) with Ylm and

Ȳlm as shown in (35) and lm ∈ NL. The constraints (4.26) and (4.27) enforce the

maximum power �ow corresponding to λ and λm. The voltage drop limitation on

transmission line ′lm′ is demonstrated in (4.28) and (4.29), and matrixMlm is de�ned

in (4.37).

The last constraint on transmission lines is the limitation of voltage angle drop

over the line ((4.30)-(4.31)). The derivation is detailed in Appendix 4.4 through

(4.38)-(4.43)). The coe�cient matrices Blm and Dlm are shown in (4.42)-(4.43).

Tr{YlmW} ≤ Pmax
lm (4.26)

Tr{YlmWm} ≤ Pmax
lm (4.27)

Tr{MlmW} ≤ 4 (Vlm)2 (4.28)

Tr{MlmW
m} ≤ 4 (Vlm)2 (4.29)

tan (δmax)× Tr{DlmW} − Tr{BlmW} ≥ 0 (4.30)

tan (δmax)× Tr{DlmW
m} − Tr{BlmW

m} ≥ 0 (4.31)

Equation (4.32) connects the weighting factors which determine the value priority

of the terms in the objective function (minimizing cost versus maximizing stability

margin). The minimum voltage stability margin which is required or acceptable by

system operator is imposed using (4.33).

ω1 + ω2 = 1 (4.32)

(λm − λ) ≥ 4λmin (4.33)
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4.3 Admittance and Coe�cient Matrices

Yi and Ȳi are admittance matrices associated with bus i, which are derived from

admittance matrix Y as shown in (4.34).

Yei = eie
T
i Y ; Y1i = Yei + Y T

ei
; Y2i = Yei − Y T

ei
(4.34)

Yi =
1

2

 Re (Y1i) −Im (Y2i)

−Im (Y2i) Re (Y1i)


Ȳi = −1

2

 Im (Y1i) Re (Y2i)

−Re (Y2i) Im (Y1i)


Ylm and Ȳlm, derived from admittance matrix (Y ) based on transmission line con-

nection, are admittance matrices corresponding to transmission line lm as shown in

(4.35).

Yelm = (ȳlm + ylm) ele
T
l − (ylm) ele

T
m (4.35)

Y1lm = Yelm + Y T
elm

; Y2lm = Yelm − Y T
elm

Ylm =
1

2

 Re (Y1lm) −Im (Y2lm)

−Im (Y2lm) Re (Y1lm)


Ȳlm = −1

2

 Im (Y1lm) Re (Y2lm)

−Re (Y2lm) Im (Y1lm)


Coe�cient matrices Mi and Mlm de�ned in (4.36)-(4.37) are associated with bus i

and transmission line lm respectively.

Mi =
1

2

eieTi 0

0 eie
T
i

 (4.36)
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Mlm =
1

2

(el − em) (el − em)T 0

0 (el − em) (el − em)T

 (4.37)

4.4 Angle drop equation

To impose limitation on voltage angle drop over transmission lines, a convex for-

mulation is developed using SDP relaxation. Considering (4.39) is same as (4.38), we

can derive the angles in terms of Vm and Vl.

δl − δm ≤ δmax ∀ (l,m) ∈ NL (4.38)

tan (δl − δm) ≤ tan (δmax) ∀ (l,m) ∈ NL (4.39)

tan (δl − δm) =
Re{Vm}Im{Vl} −Re{Vl}Im{Vm}
Re{Vl}Re{Vm}+ Im{Vl}Im{Vm}

(4.40)

Further, substituting Re{V } and Im{V } by entries of matrix W results in a linear

matrix inequality constraint (4.41) with Blm and Dlm as shown in (4.42)-(4.43).

tan (δmax)× Tr{DlmW} − Tr{BlmW} ≥ 0 (4.41)

Blm =
1

2

 0 ele
T
m − emeTl

ele
T
m − emeTl 0

 (4.42)

Dlm =
1

2

eleTm + eme
T
l 0

0 ele
T
m + eme

T
l

 (4.43)

Using 4.34-4.43 in 4.15-4.33, the convex OPF and all three VSC-OPF methods can

be constructed.
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4.4.1 Minimum Operating Cost Convex OPF

In this variation, the generation cost is considered as the objective function to be

minimized. The weighting factor ω1 in (15) is considered 1 to emphasize on cost mini-

mization, and ω2 = 0 to eliminate the stability margin from objective function. Also,

the constraint (4.33) modeling the margin requirement is removed. The objective

function and constraints are summarized in (4.44)-(4.45).

Min
(W )

∑
i∈NG

{Ci2 (Tr{YiW}+ λPDi
)2 (4.44)

+ Ci1 (Tr{YiW}+ λPDi
) + Ci0}



Pi = Tr{YiW}+ λPDi

Qi = Tr{ȲiW}+ λQDi

Pmin
i ≤ Pi ≤ Pmax

i

Qmin
i ≤ Qi ≤ Qmax

i

(V min
i )

2 ≤ Tr{MiW} ≤ (V max
i )2

Tr{YlmW} ≤ Pmax
lm

Tr{MlmW} ≤ 4 (Vlm)2

tan (δmax)× Tr{DlmW} − Tr{BlmW} ≥ 0

(4.45)

4.4.2 Maximum Stability Margin Convex VSC-OPF

In this variation, the objective function de�ned as negative of distance to maximum

loading point (−(λm−λ)) and is minimized. The equation (4.46) shows the objective

function. The set of equations modeling the convex "maximum stability margin VSC-

OPF" is obtained by having ω2 = 1 (ω1 = 0). These equations impose the power �ow
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and equipment constraints for the optimal and maximum loading points as shown in

(4.16)-(4.31).

Min
(W,Wm,λm)

− (λm − λ) (4.46)

In this problem, the control variables are λm and PSD matrices W and Wm. The

equation (4.47) enforces the equal terminal voltage at each generator as formulated

in section 4.2.

Wi,i +W(i+n),(i+n) = Wm
i,i +Wm

(i+n),(i+n) i ∈ NG (4.47)

4.4.3 Minimum Margin Constrained Convex VSC-OPF

In this variation, the goal is to minimize the operating cost as shown in (4.48);

however, a minimum stability margin is imposed as constraint which requires a min-

imum distance from the maximum loading point. This method is implemented by

keeping ω2 = 1 and enforcing the constraint (4.33), which results in the elimination

of stability margin from the objective function and activating a minimum stability

margin constraint as shown in (4.48)-(4.49).

Min
(W,W b,λb)

∑
i∈NG

{Ci2 (Tr{YiW}+ λPDi
)2 (4.48)

+ Ci1 (Tr{YiW}+ λPDi
) + Ci0}

(
λb − λ

)
≥ 4λmin (4.49)

In this VSC-OPF formulation, λb does not represent maximum loading point since

the objective function is to minimize the cost; however, it represents a loading level

(less or equal to maximum point) to which the system loading can be increased

without violating constraints. The control variables are λb and PSD matrices W and

W b. The rest of the constraints are similar to (4.16)-(4.31) and (4.47), in which the

control variables λm and Wm are replaced with λb and W b.
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4.4.4 Multi-Objective Convex VSC-OPF

This variation considers the trade-o� between minimizing operating cost and max-

imizing stability margin. Two weighting factors ω1 and ω2 balance the importance

of each goal in the objective function. The objective function is shown in equation

(4.50). As ω1 approaches to zero the optimization problem approaches to the max-

imum stability margin VSC-OPF. Multi-objective VSC-OPF tends to the minimum

operating cost as the weighting factor ω1 moves toward 1.

Min
(W,W b,λb)

ω1

∑
i∈NG

{Ci2 (Tr{YiW}+ λPDi
)2 (4.50)

+ Ci1 (Tr{YiW}+ λPDi
) + Ci0} − ω2

(
λb − λ

)
The ω1 and ω2 values can be set based on relative importance of voltage stability

and operation cost. The rest of the constraints are similar to (4.16)-(4.31) and (4.47),

in which the control variables λm and Wm are replaced with λb and W b. The control

variables are λb and PSD matrices W and W b. Here λb does not represent maximum

loading point since the objective function is linear combination of two terms; however,

it represents maximum loading point when the weighting factor ω2 is high enough to

make stability margin (λb − λ) as the dominant term in the objective function.

4.5 Case Studies and Simulation Results

4.5.1 Proof Of Concept

To examine the proposed VSC-OPF methods, a small test system ,IEEE 14-bus,

is considered. The 14-bus system consists of 5 generators, 17 lines and 11 loads; The

details of these systems are given in [83]. The optimization package GAMS with

MOSEK solver is used to implement the formulation. The results of proposed convex

methods are evaluated in following sections.

- Maximum Stability Margin VSC-OPF.

- Minimum Margin Constrained VSC-OPF.
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Figure 4.4: 14-bus test system (a) Maximum loading (λm) obtained from VSC-OPF
and OPF. (b) System operating cost from VSC-OPF and OPF.

- Multi-Objective VSC-OPF.

4.5.1.1 Maximum Stability Margin VSC-OPF

Fig. 4.4a demonstrates the maximum loading λm obtained from VSC-OPF. The

λm is equal to 1.952 as the system loading increases from 0.9 to 1.95. The maximum

loading associated with OPF method is also shown in Fig. 4.4a.

The voltage dispatch for of generation buses are presented in Table 4.3. These

voltages obtained from VSC-OPF are equal at di�erent loading factors and represent

a branch of feasible space which contains the operating point with the maximum

loading margin. However, voltage dispatch obtained from OPF varies at di�erent

loading factors. This voltage dispatch of generator buses is then deployed in (4.47)

to evaluate the corresponding λm at each loading level for OPF method. i.e. the

generator voltages obtained from OPF are used to enforce the equal generator ter-
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Table 4.3: Voltage of Generation Buses [p.u.] from OPF and VSC-
OPF; IEEE 14-bus

λ Method VG1 VG2 VG3 VG6 VG8

1.22 OPF 1.0600 1.0444 1.0045 1.0600 1.0600
1.22 VSC-OPF 1.0600 1.0484 1.0047 1.0332 1.0401
1.30 OPF 1.0600 1.0434 0.9958 1.0498 1.0600
1.30 VSC-OPF 1.0600 1.0484 1.0047 1.0332 1.0401
1.36 OPF 1.0600 1.0379 0.9847 1.0383 1.0600
1.36 VSC-OPF 1.0600 1.0484 1.0047 1.0332 1.0401
1.50 OPF 1.0600 1.0390 0.9886 1.0372 1.0600
1.50 VSC-OPF 1.0600 1.0484 1.0047 1.0332 1.0401

minal voltage at all loading factors. VSC-OPF converges to higher λm than OPF.

Fig. 4.4b demonstrates the operating cost variation as a function of loading factor.

It is noticeable that the operating cost associated with VSC-OPF is also higher than

OPF. This high cost is the result of dispatching costly generators by VSC-OPF as

shown in Table 4.4. Voltage dispatch and generation dispatch for four loading levels

λ = (1.22, 1.30, 1.36, 1.50) are presented in 4.3 and 4.4. The voltage dispatch for

generator buses are equal in VSC-OPF while OPF provides di�erent voltage dispatch

for generators at each loading level. The di�erence between the operating cost of

VSC-OPF and OPF is the result of dispatching costly generators as shown in Table

4.4. Cost of improving voltage security margin is de�ned as the di�erence between

these operating cost. In 14-bus test system, the voltage security cost is increasing as

the loading factor increases, and it declines as λ passes 1.36 p.u.. This reduction in

cost is due to the tight feasible region after 1.36 p.u., which limits the variation of

optimal dispatch point.

4.5.1.2 Minimum Margin Constrained VSC-OPF

Optimum operating point obtained from this method provides minimum generation

cost among feasible points which meet the stability margin requirement (λm − λ ≥

∆λmin). Fig. 4.5a demonstrates the generation cost of solution point for 14-bus
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Table 4.4: Generation Dispatch [p.u.] from OPF and VSC-OPF at
λ = 1.5; IEEE 14-bus

λ Method PG1 PG2 PG3 PG6 PG8

1.22 OPF 1.9168 1.4000 0.0000 0.0000 0.0000
1.22 VSC-OPF 0.8761 0.3911 0.8764 0.7740 0.2838
1.30 OPF 2.1516 1.4000 0.0000 0.0000 0.0000
1.30 VSC-OPF 0.8913 0.4020 0.9959 0.8089 0.3126
1.36 OPF 2.3309 1.4000 0.0000 0.0000 0.0000
1.36 VSC-OPF 0.9021 0.4800 0.9956 0.8608 0.3319
1.50 OPF 2.1933 1.4000 0.2664 0.2177 0.0000
1.50 VSC-OPF 0.9221 0.6499 0.9981 0.9885 0.3849

Table 4.5: Impact of ∆λmin on VSC-OPF solution (14-bus)

λ λb V SC −OPF [k$] OPF [k$]
(4λmin = 0.5)

1.00 1.5001 5371.50 5371.50
1.10 1.6001 5940.43 5940.42
1.20 1.7001 6517.30 6517.29
1.30 1.8000 7103.69 7103.22
1.40 1.9000 8212.11 7930.04
1.50 - - 9123.24

system, which includes di�erent ∆λmin values. For each ∆λmin, the operating cost

increases by loading factor (λ). It is noticeable that ∆λmin shows more impact on

optimum operating point at higher loading level λ; for instance, the di�erence between

operating cost obtained from ∆λmin = 0.1 and ∆λmin = 0.5 is negligible until λ =

1.30. This di�erence is increased faster at loading level beyond 1.35 p.u.. This gap is

explainable with the fact that the loading margin becomes a dominant constraint as λ

approaches the critical point. In Fig. 4.5b, two cross sections at λ = 1.4 and λ = 1.5

show the generation cost variation by ∆λmin augmentation. Table 4.5 provides the

generation cost associated with this method for ∆λmin = 0.5. Rightly, VSC-OPF

does not converge at 1.5 p.u. loading factor and the minimum margin 0.5 since the

maximum loading point is located at 1.952 p.u. which is less than 2 p.u. (=1.5+0.5).
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Figure 4.5: Operating cost versus λ using Minimum Margin Constrained VSC-OPF
for 14-bus system. (a) Impact of increasing ∆λmin on solution cost. (b) Two cross
sections of operating cost at λ = 1.4 and λ = 1.5.

4.5.1.3 Multi-Objective VSC-OPF

This method provides a trade-o� between minimizing cost and maximizing stability

margin. Fig. 4.6 demonstrates the variation of optimum operating point for 14-bus

test system; the loadability factor (λb) is presented as ω1 changes from 0 to 0.0001

and λ increases from 1 to 1.4. It can be seen when the weighting factor ω1 is low then

the objective function tends to maximize stability. The λb is, therefore, getting close

to maximum loading point. On the other hand, increasing the value of ω1 pushes the

objective function toward the minimum operating cost function. The value of λb is

then getting close to current loading point (λ). Fig. 4.6 de�nes three operating area

based on the ω1. The �rst one refers to low ω1; it is denoted as �maximum loading

margin� area. Second area is a trade-o� between stability and operating cost. Third

area refers to high ω1, and de�nes OPF, which provides minimum operation cost.
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Figure 4.6: Three operating area de�ned based on weighting factor w1: maximum
stability area, trade-o� area, minimum operating cost area; IEEE 14-bus.

4.5.2 Scalability

To examine the scalability of proposed methods, IEEE 57-bus and 118-bus test

systems are considered. IEEE 57-bus test system contains 7 generators, 65 lines and

42 load buses; IEEE 118-bus system contains 19 generators, 177 lines and 91 loads.

The details of these systems are given in [83].

Fig. 4.7 and Fig. 4.8 demonstrate the maximum loading λm obtained from VSC-

OPF for 57-bus and 118-bus test systems respectively. The maximum loading point

for 57-bus and 118-bus are equal to 1.08 and 2.036 respectively. Please note that λm

represents the loading level to which the system demands can be increased universally

by increasing power generation but keeping the voltage at PV buses constant. VSC-

OPF converges to the same λm as the system loading increases. At all loading factors,

VSC-OPF converges to higher λm than OPF. This stability margin brings higher

operating cost. For instance, in 57-bus test system (Fig. 4.7), the cost of maximizing

voltage security margin is equal to $4365 at λ = 1.03. For a larger system (118-bus)

as shown in Fig. 4.8, this security cost is equal to $14368 at λ = 1.50.
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Figure 4.7: Maximum loading (λm) obtained from VSC-OPF and OPF; IEEE 57-bus.
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Figure 4.8: Maximum loading (λm) obtained from VSC-OPF and OPF; IEEE 118-
bus.

Table 4.6 provides the generation cost associated with minimummargin constrained

VSC-OPF for ∆λmin = (0.3, 0.4, 0.5). This method does not converge beyond 1.54

p.u. ∆λmin = 0.5 since the maximum loading point is located at 2.036 p.u. which

is less than 2.04 p.u. (=1.54+0.5). The system cost is also increases when ∆λmin is

increased.

Fig. 4.9 demonstrates the variation of optimum operating point for 118-bus test

system using multi-objective VSC-OPF; (λm) is presented as ω1 changes and λ in-

creases from 1 to 1.5. The objective function tends to maximize stability when the
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Figure 4.9: Three operating area de�ned based on weighting factor w1: maximum
stability area, trade-o� area, minimum operating cost area; IEEE 118-bus.

Table 4.6: Impact of ∆λmin on VSC-OPF solution (118-bus)

λ V SC −OPF [k$] V SC −OPF [k$] V SC −OPF [k$]
(4λmin = 0.3) (4λmin = 0.4) (4λmin = 0.5)

1 86299 86299 86299
1.4 122328 122330 122335
1.42 124184 124188 124192
1.44 126053 126057 126062
1.46 127967 127972 127977
1.48 130359 130366 130375
1.5 133486 133494 133504
1.52 136686 136694 136710
1.54 139917 139929 -
1.56 143167 143180 -
1.58 146428 146443 -
1.6 149699 149715 -
1.62 152980 152996 -
1.64 156269 - -

weighting factor ω1 is low, and it moves toward the minimum operating cost function

as ω1 increases. Fig. 4.9 de�nes three operating area based on the ω1. The middle

area is a trade-o� between voltage stability and operating cost.
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4.5.3 PV Curve Generation

It is important to note that one can develop PV curve using VSC-OPF method

presented in 4.4.2. For analysis, here the voltage lower bound at load buses and the

maximum power at slack bus are relaxed to obtain the PV curve. The load increment

is kept uniform for all spot loads in the test system. Fig. 4.10 shows the PV curve

for bus 14 (in 14-bus test system) .

The PV curves obtained from the proposed methods are also compared with contin-

uation power �ow (CPF). Fig. 4.10 compares the PV curve from CPF (using PSAT)

with the curve from VSC-OPF for bus 14; the Qlim of generators are relaxed. In both

methods the voltage at PV buses are considered to be constant as system loading

increases. It is noticeable that CPF curve shows less load-ability for the system, and

loading level at which the voltage collapses is considerably lower than the collapse

point obtained from optimization (∆λ = 1.51). This is resulted from the fact that

CPF method does not have the mechanism to dispatch the generation over the whole

feasible area. Fig. 4.11 compares the PV curve obtained from CPF and optimization

by incorporating the Qlim of generators. CPF results shows less load-ability for the

system compared to convex VSC-OPF, and the di�erence between collapse points is

0.93 p.u. (∆λ = 0.93).

4.6 Conclusion

A new convex VSC-OPF architecture taking into account di�erent types of VSC-

OPF methods including maximum stability margin, minimum margin constrained,

and multi-objective VSC-OPF is proposed. The proposed methods address the ma-

jor issue of non-convex VSC-OPF, referred as the local optimum solution. The convex

VSC-OPF methods are examined using IEEE 14-bus, 57-bus and 118-bus test sys-

tems. Results show the e�ectiveness of proposed methods to �nd the maximum and

critical loading point and evaluate the voltage security cost. The proposed convex
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Figure 4.10: PV curve of bus 14 obtained from optimization (method B) compared
to PV curve from CPF.

Figure 4.11: PV curves of bus 14; comparison method B with CPF; Vlim and Qlim of
generators are enforced.

VSC-OPF is also implemented to derive system PV curve and the results are com-

pared with CPF. The comparison shows the superiority of VSC-OPF to dispatch the

generators e�ectively with larger stability margin.



CHAPTER 5: VOLTAGE STABILITY CONSTRAINED CONVEX OPTIMAL

POWER FLOW FOR INTEGRATED AC-DC SYSTEMS

5.1 Introduction

The congestion on power transmission systems is one of the main causes of volt-

age stability issues in power systems. This situation in turn challenges independent

system operators (ISOs) for providing fair access for market participants. Coupled

by demand growth, such conditions results in higher electricity price and pushes the

system closer to its stability limit [70]. Voltage source converter (VSC) based DC

transmission systems can alleviate this burden by providing DC corridors for active

power and managing reactive power at converter terminals. The DC network can

incorporate multi-terminal high voltage direct current (HVDC) systems with mesh

con�guration and form a robust AC-DC system [84].

Considerable research has been devoted to study the control and transient behav-

ior of the AC-DC networks [84�86]. However, there have been less studies conducted

investigating e�cient methods for comprehensive scheduling of AC-DC systems. Gen-

erally OPF objective focus on achieving a minimum cost operating point. However,

this is not the only objective in this OPF. The modern power grid utilities are also con-

cerned about the loading margin to alleviate voltage stability issues [87,88]. Recently

voltage instability scenarios has caused several blackouts. Incorporating voltage sta-

bility limits inside optimal power �ow (OPF) is, therefore, becoming an essential part

for new energy management systems. The voltage stability limits is modeled as the

margin that de�nes the distance to maximum loading points [71]. This margin can

be included either in the objective or in the constraints of OPF problem. This forms

voltage stability constrained OPF (VSC-OPF) [72]. The VSC-OPF aims to �nd the
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optimal scheduling of AC and DC grids together while considering this voltage lim-

its. Integration of HVDC to AC transmission system extends the degree of freedom

in OPF problem by including the converter set points at AC and DC sides [89]. If

one considers separate scheduling of AC and DC networks this leads to a local opti-

mum solution. The combined AC-DC solution is, therefore, needed to provide better

optimal schedule for all sources, loads and converters in both AC and DC networks.

Earlier researches have discussed OPF algorithms for AC-DC transmission systems

based on non-convex power �ow equations. Ref. [26] presents the OPF model of VSC-

based HVDC integrated in AC transmission system using Newton-Raphson (NR)

technique and solved using augmented Lagrange method. A security-constrained

unit commitment (SCUC) incorporating the DC grid has been presented in [90] using

NR and linearization technique. Ref. [89] presents an algorithm for combined AC-

DC OPF which is solved using interior point method. These algorithms contain the

limitations referred to as the non-exact relaxation and �nding only locally optimum

solution mainly resulting from non-convexity of OPF equations [29]. Power �ow equa-

tions placed in the constraints of OPF problems are nonlinear quadratic functions.

This problem is a non-convex and NP-hard optimization problem. In recent years,

considerable contributions are being reported for convexi�cation and relaxation of

OPF [30] to �nd the optimal solution. The �rst semide�nite programming (SDP)

relaxation for meshed networks was proposed in [34]. The detailed analysis on SDP

relaxation is then presented in [29] where the su�cient condition for zero duality gap

for OPF problem is derived.

Convex AC-DC formulation considers convexifying combined AC-DC OPF. Ref.

[91] formulates such AC-DC OPF in transmission network using second order conic

programming (SOCP). However, SOCP solutions cannot provide exact relaxation for

mesh networks and leads to a local or infeasible solution. Ref. [92] demonstrates a

convex formulation for AC-DC network with multi objective of converter loss and gen-
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eration cost. This chapter presents the formulation for voltage stability constrained

OPF using semide�nite programming, which includes both AC and DC side equations

together [93]. The proposed methods provide the solution for reaching the minimum

cost or maximum stability margin in an integrated AC-DC system using convex OPF

that is suitable for solving active mesh networks. It also investigates the impact of

separate scheduling and converter ratings on the optimal schedule of integrated AC-

DC system incorporating radial and meshed systems with DC resources. The voltage

stability assessment in this chapter is focused on steady-state conditions.

Rest of the chapter is organized in the following order. The OPF and VSC-OPF

formulations for AC-DC system are presented in Section 5.2. The equivalent converter

model for is derived in 5.3. Section 5.4 discusses the convexi�cation of AC-DC OPF.

This optimization provides the optimum operating point (minimum cost) for both

AC and DC system. Section 5.5 extends this formulation to convex VSC-OPF of

integrated AC-DC systems. Implementation results of these methods on the IEEE

14-bus, IEEE 57-bus, and 118-bus test systems incorporating radial and meshed DC

networks are presented in section 5.6. Finally, conclusions in 5.7 summarizes the main

results and contribution.

5.2 AC-DC VSC-OPF

Voltage stability constrained OPF problem aims to provide the optimal dispatch

which ensures that solution maintains the maximum distance to the maximum loading

point or remains within the boundary of proper distance as opposed to solving only for

the minimum cost as in the case of conventional AC-DC OPF problems. To solve these

problems, one approach is to schedule DC system and then deploy its set points in

scheduling of AC system. The separate scheduling, however, leads to a local solution.

The reason is that DC problem only contains the local variables of DC system, and it

lacks both the AC cost function and the AC constraints. Unlike separate scheduling of

AC and DC systems which leads to a local solution, integrated approach incorporates
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Table 5.1: Notations of Indexes and Short Usages

i, j, k Bus indexes

lm Line index from bus l to bus m

N Set of buses

NG Set of generation buses NG ⊆ N

NC Set of AC/DC converter buses NC ⊆ N

NL Set of lines NL ⊆ N ×N
Sn n× n positive semide�nite (PSD) space

Re{.}, Im{.} Real and imaginary part

Tr{.}, rank{.} Trace and rank of given matrix

SDP Semide�nite programming

VSC-OPF Voltage stability constrained OPF

AC-DC Integrated AC and DC systems

MTDC Multi-terminal DC

HVDC High voltage direct current

VSC-HVDC Voltage source converter based HVDC

power �ow and physical constraints of both sides in one optimization problem. The

other di�culty in this approach is de�ning of the objective when solving the OPF

problem over the DC space. In this section, �rst ,the non-convex AC-DC OPF is

discussed. Then the formulation of AC-DC VSC-OPF is presented.

5.2.0.1 AC-DC OPF

Minimum cost AC-DC OPF aims to provide an operating point which minimizes

the total operation cost of AC and DC system. Equation (5.1) demonstrates the

formulation for AC-DC OPF with the generation cost as the objective function. The

notations are given in Table 5.1 and Table 5.2.
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Min
(Pi,PDCi

,vi,vDCi
)

∑
i

ci (x, xDC , Pi, PDCi
, vi, vDCi

, Qconv) (5.1)

s.t.



h(x, P i, vi, λ) = 0

h(xDC , PDCi
, vDCi

, λ) = 0

bi ≤ g (x, P i, vi, λ) ≤ bi

bDCi
≤ g (xDC , PDCi

, vDCi
, λ) ≤ bDCi

di ≤ L(Pi, PDCi
, γc) ≤ di

The control variables are the power and voltage associated with AC and DC buses.

(Pi, vi) , (PDCi
, vDCi

) and Qconv are control variables. The objective function is total

operation cost of AC and DC system. The loading factor λ determines the current

loading level of power grid.

5.2.0.2 VSC-OPF (Maximum Stability Margin)

The optimization approaches contributed to VSC-OPF problem can be classi�ed

into three major categories [72]. In this chapter, the maximum stability margin

VSC-OPF for AC-DC systems is modeled and then convexi�ed using semide�nite

programming.

A VSC-OPF formulation for AC-DC systems is represented in (5.2). In this formu-

lation, the system loading point and the maximum loading point are represented by

λ and λm respectively. The functions g(.) and h(.) de�ne the equality constraints and

inequality constraints associated with current and maximum loading points respec-

tively. The function f(.) provides the connection between λ and λm. The equation

Vi = V m
i ensures the generator buses keep the same terminal voltage as the loading

increases from λ and λm.
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Min − (λm − λ) (5.2)

s.t.



h(x, P i, vi, λ) = 0

h(xDC , PDCi
, vDCi

, λ) = 0

h(xm, Pm
i , v

m
i , λ

m) = 0

h(xmDC , P
m
DCi

, vmDCi
, λm) = 0

bi ≤ g (x, P i, vi, λ) ≤ bi

bDCi
≤ g (xDC , PDCi

, vDCi
, λ) ≤ bDCi

bmi ≤ g (xm, Pm
i , v

m
i , λ

m) ≤ b
m

i

bmDCi
≤ g

(
xmDC , P

m
DCi

, vmDCi
, λm

)
≤ b

m

DCi

li ≤ f(λ, λm) ≤ li

Vi = V m
i (i ∈ NG)

di ≤ L(Pi, PDCi
, γc) ≤ di

dmi ≤ L(Pm
i , P

m
DCi

, λm, γc) ≤ d
m

i

The L(.) provides the links between AC system and DC sides of converter. This

constraint is enforced over the buses which contains AC/DC converters. In this

method the optimization output is an operating point that creates the maximum

distance to the maximum loading point.

5.3 Converter Model and DC Resources

In AC-DC system, the voltage source converter (VSC) is the point of connection

between AC and DC network. Fig. 5.1 shows a converter station which synthesizes the

voltage waveform on AC side using either the multilevel modular converter (MMC)

or pulse width modulation technique (PWM). The converter station contains series
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Table 5.2: Notations of Variables and Parameters

vi Voltage of bus i

|vi| Voltage magnitude of bus i

δi Voltage angle of bus i

λ Current loading factor

λm Maximum loading factor

λc Critical loading factor

W ,Wm (2n× 2n) PSD matrix variables

Wi,j (i,j) entry of matrix W

e1, e2, . . . , en Standard basis vectors of Rn

h (.) , g (.) Equality & inequality functions of OPF

f (.) Function of λ,λm

H (.) , G (.) Convex OPF equality & inequality functions

F (.) Convex function of λ and λm

� Positive semide�nite

Xmin, Xmax Minimum and maximum of X

b, b Lower and upper bound of function b

Xm X value at loading level of λm

P,Q, S Active, Reactive and Apparent power

PDi
,QDi

Active and reactive demand at bus i

Y Admittance matrix

ylm, ȳlm Line lm series and shunt admittance

Yi, Ylm Bus and line oriented admittance matrices

Mi Con�guration coe�cient matrix for bus i

Mlm Con�guration coe�cient matrix for line lm

WDC ,Wm
DC DC system (n× n) PSD matrix variables

PDCi
DC system active demand at bus i

YDCi
DC system bus oriented admittance matrix

YDClm
DC system line oriented admittance matrix

γc, Qcmax Converter loss and reactive capacity

transformer, phase �lter and reactor, VSC and DC capacitors. The station has the

capability to control the voltage at ac and dc terminals independently. Given the

voltage magnitude of one side, the modulation parameter m varies to set the other

side voltage with respect to their range as shown in (5.3).
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vi = m.vDCi
i ∈ NC (5.3)

For modeling purpose, the converter stations are replaced by two power sources

and two loads. This model is shown in Fig. 5.2. The ac side model contains a power

source (vi, pgi , qgi), a load (pli) and a series impedance zc. The dc side is represented

by a dc power source (vdci , pdcgi) and a dc load pdcli . The equivalent ac and dc loads

are considered to avoid the negative values of pgi and pdcgi . The power source located

in AC side is capable of supplying active and reactive power up to the converter rating

capacity (pcmax). The power source in DC side only provide the active power. The

equivalent generation and load value is determined by the amount of active power

absorbed/injected from/to the other side and the converter loss γc as shown in (5.4)-

(5.5) . The equations modeling the connection between AC and DC variables and the

converter loss are presented in (5.4)-(5.8).

pli = (1 + γc)pdcgi (5.4)

pdcli = (1 + γc)pgi (5.5)

pgi + pli ≤ pcmax (5.6)

pdcli + pdcgi ≤ pcmax (5.7)

(pli , pgi , pdcli , pdcgi) ≥ 0, i ∈ NC (5.8)

The sum of equivalent generation and load in each side is bounded by converter

capacity since only one of these variables takes the positive value and the other one

is equal to zero, which is determined in optimization as illustrated in (5.6)-(5.7).

The positive pgi , for instance, means the equivalent ac generator is producing active

power, and the power �ows from dc to ac system. This amount of active power plus

the converter loss is absorbed from dc system as shown in (5.5).

DC Resources (DCRs) injecting active power into DC network. DCR includes the
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Figure 5.1: Converter Model in AC-DC OPF Formulation
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Figure 5.2: Converter Model in AC-DC OPF Formulation

recourses which produce DC voltage output and the AC generators, in which the

output is converted to DC before connecting to the network. The o�-shore wind

turbines are the example of latter DCRs. VSC converters are used to convert the

o�-shore generation to DC voltage, which is then transferred to the shore using the

HVDC lines.

5.4 AC-DC Convex OPF (Minimum Cost)

The minimum cost OPF is commonly formulated using bus injection model (BIM)

and aims to minimize the operating cost. The convex relaxation is derived by imposing

convex supersets over the non-convex feasible set of OPF problem and minimizing

cost function over these sets. An equivalent rank-1 matrix is introduced to transform

the constraints to linear space. SDP relaxation of OPF is then obtained by dropping
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the rank-1 constraint. This relaxation does not a�ect the optimal solution if the

solution matrix is either rank-1 or rank-2. This yields a quadratic convex optimization

problem.

In the next step de�ned as the rank relaxation, the rank-1 constraints for W and

Wm are eliminated from the constraints. These relaxations convert the nonlinear

AC-DC OPF problem to a convex optimization problem. The general convex AC-DC

OPF thus obtained is shown in (5.9)-(5.13).

Min
S+
AC−DC

∑
i

Ci (x,W, xDC ,WDC , λ) (5.9)

s.t. H(x,W, xDC ,WDC , λ) = 0 (5.10)

G (x,W, xDC ,WDC , λ) ≥ 0 (5.11)

L(W,WDC , γc) = 0 (5.12)

W � 0,WDC � 0 (5.13)

The voltages VAC referred as V =
[
Re{v}T Im{v}T

]
and VDC =

[
Re{vDC}T

]
con-

tains the bus voltage real and imaginary parts. The objective function and constraints

are extended as a linear function of two quadratic matrix V V T and VDCVDCT .

The matrices V V T and VDCVDC
T are replaced by matrix variables W and WDC

respectively, yielding a linear matrix inequality problem over the joint space, which

is S2n on AC system and Sm on DC side, in which m and n represent the number of

buses in AC and DC systems. The extended formulation for AC-DC OPF is shown

in (5.14)-(5.16) and (5.4)-(5.8) modeling the converter.
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Min
∑
i∈NG

{Ci2 (Tr{YiW}+ PDi
)2 (5.14)

+ Ci1 (Tr{YiW}+ PDi
) + Ci0}



Pi = Tr{YiW}+ PDi
, Qi = Tr{ȲiW}+QDi

Pmin
i ≤ Tr{YiW}+ PDi

≤ Pmax
i

Qmin
i ≤ Tr{ȲiW}+QDi

≤ Qmax
i

(V min
i )

2 ≤ Tr{MiW} ≤ (V max
i )2

Tr{YlmW} ≤ Pmax
lm

Tr{MlmW} ≤ (4Vlm)2

W = V V T

(5.15)



PDCi
= Tr{YDCi

WDC}+ PDCDi

Pmin
DCi
≤ Tr{YDCi

WDC}+ PDCDi
≤ Pmax

DCi(
V min
DCi

)2 ≤ Tr{MiWDC} ≤
(
V max
DCi

)2
Tr{YDClm

WDC} ≤ Pmax
DClm

WDC = VDCV
T
DC

(5.16)

The admittance and coe�cient matrices needs to be derived for a tractable solution.

These derivations are shown in Appendix A. The matrices YDCi
, YDClm

are derived

from the admittance matrix of the DC network. The formulas are similar to Yi, Ylm

derived from the admittance matrix of AC network. Due to the coe�cient matrix
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V
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Vmin

OP2
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λm1 λm2

λc1 λc2

Figure 5.3: PV curves associated with two operating points OP1 and OP2. The
points λm1 , λm2 and λc1, λ

c
2 represent infeasible boundary (Vmin) and voltage collapse

respectively.

in DC network has a size reduction since its variables only contain real parts. For

instance, the size of coe�cient matrix Mi is (2n × 2n), while MDCi
is a (m × m)

matrix, where n and m are the size of AC and DC systems respectively. The convex

AC-DC OPF formulations consists of four major sections. The �rst section (5.14)

de�nes the objective function which is the operating cost. The quadratic objective

function can also be replaced by equivalent linear matrix inequality constraints. The

second part (5.15) demonstrates the AC power �ow and physical constraints which

are convexi�ed using SDP. The next equation (5.16) models DC power �ow equations

and constraints using SDP variables to form a uni�ed SDP optimization problem.

The �nal part (5.4)-(5.8) models the connection between AC and DC sides and the

converter loss γc.

5.5 AC-DC Convex VSC-OPF (Maximum Stability Margin)

In this section, we extend the AC-DC convex OPF formulation from section 5.4 to

develop voltage stability constrained OPF (VSC-OPF). In this formulation, the max-

imum loading of a bus is obtained from violating the feasible boundary of operational

constraints and the critical loading is derived based on the voltage collapse point.

Fig 5.3 depicts the voltage versus power (PV) curve corresponding to two operating

points OP1 and OP2.

The critical points λc1 and λ
c
2 represent the maximum loading levels beyond which
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any increase in the demand will result in voltage collapse. The loading points λm1 and

λm2 demonstrate the loading levels at which minimum voltage requirement is violated.

It is worth noting that, the constraints are not just limited to voltage violations; it

also includes other constraints such as line �ow and generation capacity. The general

convex formulation for AC-DC VSC-OPF is demonstrated in (5.17)-(5.27), which are

detailed in this section.

Min
S+
AC−DC

− (λm − λ) (5.17)

s.t. H(x,W, xDC ,WDC , λ) = 0 (5.18)

H(xm,Wm, xmDC ,W
m
DC , λ

m) = 0 (5.19)

G (x,W, xDC ,WDC , λ) ≥ 0 (5.20)

G (xm,Wm, xmDC ,W
m
DC , λ

m) ≥ 0 (5.21)

F (λ, λm) ≥ 0 (5.22)

L(W,WDC , γc) = 0 (5.23)

Wi,i +W(i+n),(i+n) = Wm
i,i +Wm

(i+n),(i+n) (5.24)

WDCi,i
= WDCm

i,i
(5.25)

W � 0,Wm � 0 (5.26)

WDC � 0,Wm
DC � 0 (5.27)

In VSC-OPF four sets of vector variables are de�ned to model the optimal and

maximum points of AC and DC systems. Therefore, two more sets of variables

in addition to V =
[
Re{v}T Im{v}T

]
and VDC =

[
Re{vDC}T

]
are de�ned to model

maximum loading points. The variables V m =
[
Re{vm}T Im{vm}T

]
is associated with

the maximum loading point at the AC network and V m
DC =

[
Re{vmDC}T

]
represents

the corresponding maximum point in DC system. These voltages must satisfy all the
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Figure 5.4: Feasible space and variables associated with AC-DC VSC-OPF. (Pi, vi),
(Pi, vi)

m and λm are variables in conventional VSC-OPF and PSD matrices W , Wm

and λm are the corresponding variables in convex VSC-OPF.

constraints of the system including the power �ow equations and equipment limits.

The relation between variables in conventional and convex VSC-OPF is shown in

Fig. 5.4. The system demand equations including the corresponding loading factors

is shown in (5.28).

PD = λ.PDo , QD = λ.QDo (5.28)

Pm
D = λm.PDo, Qm

D = λm.QDo

The convexi�cation and solution recovery algorithm are summarized in Fig. 5.5.

Let W opt and Wmopt
denotes the solution of relaxed VSC-OPF. If these matrices are

rank-1, the solution to the VSC-OPF problem is constructed using W opt = V V T and

Wmopt
= V mV mT

. Whenever the solution matrices are rank-2, matrices (ρ1+ρ2)EE
T

and (ρm1 + ρm2 )EmEmT
are the rank-1 solutions to the VSC-OPF, and voltage vectors

can be constructed using these matrices. The scalars ρ1 and ρ2 are eigenvalues of

W opt, and vector E denotes unit eigenvector associated with ρ1. Correspondingly, the

scalars ρm1 , ρ
m
2 , and vector Em demonstrate eigenvalues and eigenvector associated

with Wmopt
. Similarly, the DC voltage are recovered through W opt

DC = VDCV
T
DC and
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Figure 5.5: Convexi�cation of VSC-OPF and Solution Recovery for AC-DC systems.

Wmopt

DC = V m
DCV

mT

DC .

The set of equations modeling the relaxation process of convex VSC-OPF for the

AC-DC system is shown in (5.29)-(5.33). First, the rank-1 constraints for W ,Wm,

WDC andWm
DC are eliminated from the constraints. This relaxation converts the non-

linear AC-DC VSC-OPF problem to a convex optimization problem without a�ecting

the optimal solution.

The objective function (5.29) is de�ned as the distance to the maximum loading

point which should be maximized while in (5.14) the goal is to �nd minimum cost

operating point. AC power �ow and constraints at optimal and maximum loading

points is demonstrated in (5.30), while (5.31) demonstrate similar constraints for

DC system. Another assumption that maps control variables at current loading to

maximum loading is associated with generator terminal voltages. The generators

are assumed to have same terminal voltage as the loading level increases. Equation

(5.33) enforces this constraint by equating the magnitude squares of the terminal

voltages. The entry Wi,i and W(i+n),(i+n) of matrix W are equal to the magnitude

squared of voltage real part Re{vi}2 and imaginary part Im{vi}2 respectively. These
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substitutions yield |vi|2 = Wi,i + W(i+n),(i+n); similar substitution in |vmi |2 results

in |vmi |2 = Wm
i,i + Wm

(i+n),(i+n). For the DC system, the voltages contain the real

component, and therefore, |vDCi
|2 = WDCi,i

and |vmDCi
|2 = Wm

DC(i,i)
.

The equations modeling the connection between AC and DC variables at current

loading level are same as (5.4)-(5.8). In addition, a new set of equations is added to

model the DC and AC connection at maximum loading points. This set of equations

is obtained by substituting (pli , pgi , pdcli , pdcgi) with (pmli , p
m
gi
, pmdcli , p

m
dcgi

) at (5.4)-(5.8).

Each equivalent generator and load is included in the equations as a actual generator

and load, and must satisfy the corresponding constraints.

Min − (λm − λ) (5.29)



Pi = Tr{YiW}+ λPDi
, Qi = Tr{ȲiW}+ λQDi

Pm
i = Tr{YiWm}+ λmPDi

, Qm
i = Tr{ȲiWm}+ λmQDi

Pmin
i ≤ Tr{YiW}+ λPDi

≤ Pmax
i ,

Pmin
i ≤ Tr{YiWm}+ λmPDi

≤ Pmax
i

Qmin
i ≤ Tr{ȲiW}+ λQDi

≤ Qmax
i

Qmin
i ≤ Tr{ȲiWm}+ λmQDi

≤ Qmax
i

(V min
i )

2 ≤ Tr{MiW} ≤ (V max
i )2

(V min
i )

2 ≤ Tr{MiW
m} ≤ (V max

i )2

Tr{YlmW} ≤ Pmax
lm , T r{YlmWm} ≤ Pmax

lm

Tr{MlmW} ≤ (4Vlm)2, T r{MlmW
m} ≤ (4Vlm)2

W = V V T , Wm = V mV mT

(5.30)
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

PDCi
= Tr{YDCi

WDC}+ λPDCDi

Pm
DCi

= Tr{YDCi
Wm
DC}+ λmPDCDi

Pmin
DCi
≤ Tr{YDCi

WDC}+ λPDCDi
≤ Pmax

DCi

Pmin
DCi
≤ Tr{YDCi

Wm
DC}+ λmPDCDi
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DC} ≤

(
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, T r{YDClm
Wm
DC} ≤ Pmax

DClm

WDC = VDCV
T
DC , W

m
DC = V m

DCV
m
DC

T

(5.31)

Wi,i +W(i+n),(i+n) = Wm
i,i +Wm

(i+n),(i+n)i ∈ NG (5.32)

WDCi,i
= Wm

DCi,i
(5.33)

5.6 Case Studies and Simulation Results

5.6.1 Proof Of Concept

To examine the proposed VSC-OPF methods, �rst IEEE 14 bus test system incor-

porating a DC line is examined (Fig. 5.6). The 14-bus system consists of 5 generators,

17 lines and 11 loads; An HVDC is considered between bus 5 and bus 14. This is

considered as a proof of concept system. The active and reactive power capacity

of converters are 1.0 p.u and 0.66 p.u. respectively unless speci�ed in case studies.

Other test system data and diagram are given in [83] and [94]. The optimization

package GAMS with MOSEK solver is used to implement the formulation.

The results for 14-bus test system are presented in Fig. 5.7a and Fig. 5.7b for

the loading factor increase from 0.9 to 2.7 p.u.. In both test cases (with and without

HVDC) the VSC-OPF method exhibits higher operating cost since its objective is to
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Figure 5.6: Modi�ed IEEE 14-bus test system incorporating HVDC transmission
system.

�nd the operating point which has longer distance to maximum loading point. The

cost of improving voltage security margin is de�ned as the di�erence of operating

cost associated with VSC-OPF and OPF. It can be seen from Fig. 5.7a that voltage

security cost increases by λ increase, and it then decreases when the loading factor

is beyond a) 1.35 p.u.(No HVDC) and b) 1.70 p.u. (with HVDC). Both methods

converge to the same operating cost at the end. This convergence is due to the fact

that OPF is approaching a smaller feasible solution area which limits the variation in

optimal point. Fig. 5.7b depicts the loading margin versus λ for the system with and

without HVDC. It is noticeable that DC link improve system loading margin, and

maximum loading is increased from 1.952 to 2.62; The system without HVDC has no

feasible solution for the loading factors beyond 1.952 p.u..

The impact of converter reactive power capacity Qcmax on the optimal operating

point of AC-DC system is also examined using AC-DC convex OPF (Method A).

Fig. 5.8a demonstrates operating cost at four level of Qcmax. It can be seen that

increment of reactive power capacity provides the system a larger feasible area so

that the OPF can converge at higher loading factors λ. The operating cost of optimal

point is reduced as the Qcmax is increased. Fig. 5.8b depicts four cross sections of



93

4.0

8.0

12.0

16.0

20.0

0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5
O
p
e
ra
ti
n
g 
C
o
st
  [
k$
] 

Loading factor λ
(a)

AC‐DC OPF

AC‐DC VSC‐OPF

OPF (No HVDC)

VSC‐OPF (No HVDC)

λc=1.95 p.u.
No HVDC

λc=2.62 p.u.
With HVDC

0

1

2

0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

Lo
ad

in
g 
M
ar
gi
n
 Δ
λ

Loading factor λ
(b) 

Δλ=λc‐λ (No HVDC)

Δλ=λc‐λ (With HVDC)

20.0

24.0

28.0

32.0

36.0

40.0

44.0

48.0

0.9 1 1.1 1.2 1.3 1.4 1.5

O
p
e
ra
ti
n
g 
C
o
st
  [
k$
] 

Loading factor λ
(a)

AC‐DC OPF

AC‐DC VSC‐OPF

λc=1.08 p.u.
No HVDC

λc=1.525 p.u.
With HVDC

0.8

n
 Δ
λ

Δλ=λc‐λ (No HVDC)

4.0

8.0

12.0

16.0

20.0

0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

O
p
e
ra
ti
n
g 
C
o
st
  [
k$
] 

Loading factor λ
(a)

AC‐DC OPF

AC‐DC VSC‐OPF

OPF (No HVDC)

VSC‐OPF (No HVDC)

λc=1.95 p.u.
No HVDC

λc=2.62 p.u.
With HVDC

0

1

2

0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

Lo
ad

in
g 
M
ar
gi
n
 Δ
λ

Loading factor λ
(b) 

20.0

24.0

28.0

32.0

36.0

40.0

44.0

48.0

0.9 1 1.1 1.2 1.3 1.4 1.5

O
p
e
ra
ti
n
g 
C
o
st
  [
k$
] 

Loading factor λ
(a)

AC‐DC OPF

AC‐DC VSC‐OPF

λc=1.08 p.u.
No HVDC

λc=1.525 p.u.
With HVDC

0.8

n
 Δ
λ

∆λ ൌ 	 λ௠ െ λ		ሺܰ݋	ܥܦܸܪሻ

∆λ ൌ 	 λ௠ െ λ		ሺ݄ݐ݅ݓ	ܥܦܸܪሻ

∆λ ൌ λ௠ െ λ ሺܰ݋ ሻܥܦܸܪ

Figure 5.7: 14-bus system with and without HVDC using VSC-OPF and OPF (a):
system operating cost V; (b): system loading margin

Fig. 5.8a at loading levels of λ = 1.4, 1.5, 1.6, 1.7 respectively. Although the increase

of Qcmax results in the reduction of optimal cost, this improvement will be saturated

beyond some points of Qcmax as identi�ed by vertical lines in Fig. 5.8b.

5.6.2 Scalability

The IEEE 57-bus (Fig. 5.9) incorporating HVDC line is considered to test the

e�ectiveness of proposed method on a larger system with a tight feasible space. IEEE

57-bus test system contains 7 generators, 65 lines and 42 load buses; The system

includes a HVDC line between bus 31 and 46.

The 57-bus test system has a very tight feasible area with λm = 1.08. The results

for IEEE 57-bus using AC-DC OPF and VSC-OPF are presented in Fig. 5.10a and

Fig. 5.10b. It can be seen that the maximum loading point is improved from 1.08

p.u. to 1.525 by incorporating HVDC system, and system loading margin is increased
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Figure 5.8: 14-bus test system; (a): The Impact of increasing Qcmax on
optimal operating cost; (b): Four cross Sections of Fig. 5.8a at λ =
1.4, 1.5, 1.6, 1.7 p.u.

at di�erent loading factors as shown in Fig. 5.10b.

The impact of converter reactive power capacity Qcmax on maximum loading point

λm is evaluated using proposed VSC-OPF. Table 5.3 presents the λm value as Qcmax

varies from 0.01 to 1.00 p.u. for 14-bus and 57-bus test systems.

In 14-bus system, the increment of Qcmax from 0.01 to 1 p.u. yields in the improve-

ment of maximum loading point, while in 57-bus test system, the increase of Qcmax

beyond 0.1 p.u. does not provide better loading margin as shown in Table 5.3.
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Figure 5.9: Modi�ed IEEE 57-bus test system incorporating HVDC transmission
system.

5.6.3 AC - Active Meshed DC Network

A larger test system with active meshed DC network, the modi�ed 118-bus (Fig.

5.11), is considered to examine the proposed AC-DC OPF method. In this test

system, a DC network composing of DC lines, converters and DC resources are con-

necting to AC transmission system through bus 9, bus 75 and bus 118. The DC

system also includes 9 buses and 4 DC resources (DCRs). The DCRs are at DC

buses 2, 3, 5, and 6. The active power capacity of DCRs at DC bus 1 and 6 is 1.5
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Figure 5.10: 57-bus system with and without HVDC using AC-DC VSC-OPF and
OPF (a): system operating cost V; (b): system loading margin

Table 5.3: Impact of Converter Reactive Capacity on
Maximum Loading Point λm for IEEE 14-bus and IEEE 57-bus

Using AC-DC VSC-OPF

Qcmax [p.u.] λm (14-Bus) λm (57-Bus)

(No HVDC) 1.952 1.080
0.00 (With HVDC) 1.988 1.146

0.01 2.002 1.449
0.05 2.057 1.507
0.10 2.122 1.525
0.33 2.380 1.525
0.66 2.617 1.525
1.00 2.767 1.525

p.u., and the size of DCRs at bus 3 and 5 is 1 p.u.. Converters are considered to have

the active power rating of 2 p.u. and reactive power capacity of 1.0 p.u.. The DCRs

generation cost is considered $1000/p.u.. This is considered as test Case I.

To examine the impact of proposed AC-DC OPF versus separate scheduling of AC
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Figure 5.11: Modi�ed IEEE 118-bus test system incorporating MTDC transmission
system.

and DC system, the results of proposed OPF is compared with the case in which some

converters are pre-scheduled. This situation happens when the system is operated

between di�erent entities, and it is not scheduled under one uni�ed OPF. In separate

scheduling, all converters are assumed to generated 0.5 p.u. reactive power injection,

and the converters at DC bus 1 and DC bus 8 are set to transfer 0.5 p.u. from AC

system to DC network. The test system is examined using AC-DC OPF and the

results are compared with the system without any pre-scheduling. Fig 5.12 presents

the di�erence of operating cost obtained from the separate scheduling and proposed

AC-DC OPF. The saving in operating cost varies from $4100 to $10500 per hour

as loading factor varies from 0.9 to 1.60 p.u.. These results show the loss due to

pre-scheduling which will lead to a non optimal solution.

The optimal schedule of converter reactive power compensation are illustrated in

Fig. 5.13. The converters connected to bus 9, bus 75, and bus 118. Results are shown
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Figure 5.13: Optimal schedule of converter reactive compensation (Qc) using AC-DC
OPF; 118-bus system.

for Case I, which all DCRs have equal generation cost. The converter optimal operat-

ing points varies at di�erent loading factors. It is notable that the converters switch

from reactive compensation to reactive generation as the loading factor changes.

The test case II includes DCRs with di�erent generation cost. In Case II, the DCRs

at buses 3 and 6 have the generation cost of $1900/p.u. and DCRs at buses 1 and 5

have the cost of $1000/p.u. while in Case I, the all DCRs have equal generation cost

of $1000/p.u.

To examine the impact of DC generation cost on the optimal solution of AC-DC

system, the AC-DC system with two set of DCR cost is evaluated using AC-DC OPF.
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Figure 5.14: Impact of DCRs generation cost on optimal schedule of DC resources;
(a): Case I (b): Case II; 118-bus test system.

The AC-DC OPF dispatches all resources including DCRs. . Fig. 5.14 depicts the

optimal operating point for all DCRs connected to DC network. In Case I, all DGs

are dispatched at their maximum capacity due to less production cost. In case II,

the higher price of DCR3 and DCR6 with respect to other DCRs, dictates the partial

dispatching of DCR6 and DCR3.

Fig. 5.15 compares the power �owing through DC lines comparing Case I and Case

II. It is noticeable that the �ow direction is reversed in DC line 2 from Case I to Case

II because of DCR generation cost. The voltage pro�le of DC bus 7 and DC bus 8

are depicted in Fig. 5.16. The OPF provides higher voltage at DC buses in Case I.

The higher DC generation at DCR3 and DCR6 improves the voltage at DC buses.

To evaluate the economic value of DC network, the optimal schedule of 118-bus

with and without DC is calculated. Fig 5.17 shows the saving in operating cost due

to DC network as the loading factor increases from 0.9 to 1.6 p.u.. It is noticeable

that DC network provides more value as the system loading factor increases.

The DC network can alleviate the active power congestion on AC transmission lines

by providing the DC corridors. DC resources can provide a cost e�ective generation

for AC-DC system, which changes the power �ow on AC lines. To evaluate the impact

of DC network on the line �ows, the active power �owing through each line (Plm) is
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Figure 5.15: Optimal schedule of DC lines comparing the system Case I and Case II
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Figure 5.16: Optimal DC bus voltage Case I versus Case II; (a): DC Bus 7; (b): DC
Bus 8; 118-bus test system.

calculated using AC-DC OPF. The changes in line �ow (∆Plm) is then obtained

by comparing (Plm) in 118-bus and Case II (118-bus incorporating DC network) at

λ = 1.5. Table 5.4 demonstrates the transmission lines with the highest relief in
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Figure 5.17: Saving in operating cost comparing the system with and without DC
system; 118-bus system.

Table 5.4: Impact of DC Network on Line Power Flow (∆Plm);
Lines with the Highest Relief in Active Power Flow(118-bus)

Line From Bus To Bus Plm[p.u.] PlmAC−DC
[p.u.] ∆Plm[p.u.]

9 9 10 -5.42935 -4.13886 -1.290486
107 68 69 -2.14299 -1.28282 -0.8601679
97 64 65 -2.14412 -1.32505 -0.8190709
116 69 75 1.74907 0.989053 -0.7600165
96 38 65 -2.39385 -1.65041 -0.7434492
98 49 66 -1.41604 -0.74325 -0.6727885
99 49 66 -1.41604 -0.74325 -0.6727885
141 89 92 2.290735 1.663369 -0.6273665
78 54 56 0.653814 0.036451 -0.6173629
94 63 64 -1.90127 -1.30573 -0.5955393

active power congestion. For example, the highest decline is related to line 9 between

bus 9 and 10. This congestion relief is due to the decrease in power generation on the

AC generator connected to bus 10.

Table 5.5 presents the transmission lines with the highest increase in active power

�ow. These increases are mostly related to dispatching the DC resources in DC net-

work. The extra power generated through DCRs are injected to AC system through
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Table 5.5: Impact of DC Network on Line Power Flow (∆Plm)
Lines with the Highest Increase in Active Power Flow(118-bus)

Line From Bus To Bus Plm[p.u.] PlmAC−DC
[p.u.] ∆Plm[p.u.]

104 65 68 0.568095 1.609647 1.041552
37 8 30 0.562046 1.273986 0.711941
7 8 9 -5.36524 -5.98036 0.615121
54 30 38 0.630136 1.212649 0.582513
102 65 66 -0.2614 0.292448 0.553852
128 77 82 -0.01822 0.343109 0.361331
155 94 100 -0.49044 -0.80092 0.310473
82 56 58 -0.01906 0.19081 0.20987
30 23 24 0.205045 0.411385 0.206339
160 100 101 0.010547 0.211486 0.200939

VSC converters. This injected power changes the power �ow pattern in AC side

and increase the power �owing through the lines around the VSC converters which

exchange the active power. For example, (Plm) increase in line 7 is directly caused

by injecting the active power from DC network to AC through bus 9. It should be

noticed that the objective in this optimization is the decrease of total operation cost.

5.7 Conclusion

The convex VSC-OPF and OPF formulations taking into account maximum sta-

bility margin and minimum operating cost objectives for optimal scheduling of inte-

grated AC-DC system are presented in this chapter. The proposed methods address

some limitations of AC-DC OPF methods due to non-convexity, separate scheduling

of AC and DC networks or using equivalent of DC network. Also, a new voltage sta-

bility constrained optimal power �ow (VSC-OPF) formulation for integrated AC-DC

transmission systems are developed. The e�ectiveness of the methods are examined

on the IEEE 14-bus, 57-bus, and 118-bus incorporating meshed DC network and DC

resources. The results demonstrate the capability of proposed convex methods to �nd

the optimal operating points and assess the voltage security cost for AC-DC systems.



CHAPTER 6: Conclusion and Future Work

Non-convexity of Optimal Power Flow (OPF) problem poses di�culties in reaching

optimal solutions which can adversely a�ect the overall solution e�ciency, convergence

and appropriate scheduling of generators. Power �ow equations placed as constraints

in OPF problems are nonlinear quadratic functions. Given a quadratic cost func-

tion, OPF problem is de�ned as quadratically constrained quadratic programming

(QCQP) problem. This problem is a nonconvex NP-hard optimization problem. Nu-

merous studies have investigated the solution to OPF problem and proposed the

optimization algorithms to solve OPF problem including linear programming, nonlin-

ear programming, and evolutionary programming. Despite the particular edge which

each method may hold for a speci�c optimization problem, the main disadvantages

of these methods are non-exact relaxation of nonlinear OPF, heavy computational

burden and locally optimum solution. These limitations are mainly resulting from

non-convexity of OPF equations. This dissertation focuses on the convex optimal

power �ow approaches in modern power grid, which mitigate some limitations of

existing methods in radial and mesh networks.

Chapter 1 of the dissertation discusses the challenges associated with conventional

OPF methods and summarizes the recent advances in convex relaxation of OPF prob-

lem classi�ed into second order conic programming (SOCP), semi de�nite program-

ming (SDP) and chordal relaxation based on power �ow models. Convex relaxation

of OPF is generally classi�ed into two types: Relaxation of bus injection model (BIM)

OPF, and Relaxation of branch �ow model (BFM) OPF. Despite using di�erent equa-

tions and set of variables, these models yields equivalent model of power system. Also

Receding Horizon Control (RHC) and its capability in dynamic optimization and han-
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dling uncertainties is discussed. RHC output is a set of consecutive control actions,

derived by minimizing the objective function over a horizon window. The process has

the capability of dealing with the constrained dynamic optimization problems, which

includes uncertain inputs or parameters.

Fast optimal scheduling of power grid is now an important requirement for economic

operation and integration of electric network with high degree of stochastic compo-

nents such as renewable sources, plug-in electric vehicles (PEVs), price responding

demands, and electricity markets. Distribution systems are gradually transforming

from passive networks to an active system. The studies presented so far focus on

separately considering OPF convexi�cation or RHC method integrated in conven-

tional OPF. To overcome these challenges, Chapter 2 of this dissertation proposes

a dynamic optimization framework by incorporating a convex conic OPF within the

RHC (RHC-SOCP-OPF) for radial networks. The main advantages of the proposed

method are a) optimum scheduling b) including the dynamic of storages c) integra-

tion of uncertain resources. Dynamic optimal power �ow (OPF) aims to provide

generation schedule and determine control action across operational time frames for

di�erent components of active distribution systems. The e�ectiveness of this method

is evaluated on an active distribution system connected to upstream network and

neighboring distribution system. The proposed method includes system constraints,

market price variation, energy storage dynamics and source uncertainties.

An architecture for the real-time implementation of dynamic convex OPF is pro-

posed in chapter 3, and the scalability of proposed method is examined on a larger

radial system. The real-time implementation consists of 1) energy management in-

corporating convex OPF; 2) control interface; and 3) real-time digital simulator. This

real-time framework is useful especially for implementation on the grids with small

scheduling time steps. The scalability of proposed method is also tested in this chap-

ter. The results show the improvements in operation cost and computational time in
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comparison with the current methods.

In transmission systems, incorporating voltage stability limits inside OPF problem

is becoming an essential part for economic power dispatch in new energy management

systems. Voltage instability scenarios have recently caused several blackouts. Moving

towards the competitive environment in power grid besides demand growth and rise

of stochastic players such as renewable sources push the system closer to its stability

limits. The voltage stability limits are modeled as the margin that de�nes the distance

to maximum or critical loading points. This margin can be included either in the ob-

jective or constraints of OPF problem, which forms voltage stability constrained OPF

(VSC-OPF). In Chapter 4, A new convex VSC-OPF architecture taking into account

di�erent types of VSC-OPF methods including maximum stability margin, minimum

margin constrained, and multi-objective VSC-OPF is proposed. This method is also

implemented to derive system PV curve, and the results are compared with CPF

method. The voltage stability assessment in these chapters is focused on steady-state

conditions.

In chapter 5, convex VSC-OPF and OPF formulations are presented to �nd maxi-

mum loading point margin and minimum operating cost of integrated AC-DC system.

Voltage source converter (VSC) based DC transmission systems can alleviate the con-

gestion by providing DC corridors for active power and managing reactive power at

converter terminals. The DC network can incorporate multi-terminal DC systems

with meshed con�guration and form a robust AC-DC system. The proposed meth-

ods include both AC and DC side equations together. It provides the solution for

reaching the minimum cost or maximum stability margin in AC-DC systems using

convex OPF, that is suitable for solving active mesh networks. It also investigates the

impact of separate scheduling and converter ratings on the optimal schedule of inte-

grated AC-DC system incorporating radial and meshed systems with DC resources.

The proposed methods address some limitations of AC-DC OPF methods due to
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non-convexity, separate scheduling of AC and DC networks or using equivalent of DC

network.

There are a number of di�erent ways that could help to extend the work in this

dissertation. The dynamic convex OPF presented in this dissertation has the capa-

bility to provide the optimal scheduling including the dynamics of energy storage and

uncertain resources with the advantage of computational e�ciency. This method is

implemented on the symmetrical radial network. Additional study may be conducted

to extended the method to 3-phase asymmetrical radial systems. As discussed ear-

lier there are global optimization methods which may be integrated within proposed

method and solve the problem in asymmetrical grid.

The convex VSC-OPF approaches, which are examined on IEEE test systems,

reaches to the rank-1 or rank-2 solution. The low rank solution are su�cient con-

ditions that guaranty the optimal schedule for the system. Some additional studies

may be required to provide and prove the necessary conditions for the optimality.

Finally, the proposed AC-DC OPF and VSC-OPF includes the equations on both

AC and DC side together. The voltage source converter model (VSC) based DC

system are usually deployed in di�erent modes which may impose some limitations

on operational constraints of the converter. These limitations enforce new constraints

on the converter model in OPF problem. Further works may be required to include

a detailed converter model and its operational modes.
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APPENDIX A: System Information

In Chapter 2, 32-bus radial distribution system is considered to examine the convex

RHC method. The system is 12.66 kV and contains 33 buses (bus 0 is the contact

point to upstream network) and 32 lines. The system is modi�ed to incorporate the

market transaction, wind generation, and storage (see Fig. A.1). This radial network

is connected to the upstream network and neighboring DISCO through tie lines from

bus 0 and bus 30 respectively. Two wind farms are located at bus 13 and 16. One

storage station is connected to bus 20. Contracted loads are considered at bus 7, 13,

24, and 31. The electrical parameters are given in [65].
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Figure A.1: Modi�ed 32-bus Distribution Test System

In Chapter3, a modi�ed 119-bus distribution system is examined to test the ef-

fectiveness of proposed method as shown in Fig. A.2. The system operates at 11

kV and contains 22709.7kW and 17041.1 kVar of demand. The system is modi�ed

to incorporate the market and neighboring DISCOs transaction, wind generation,

contracted loads and storage. This radial network is connected to the upstream net-

work from bus 1 and exchanges power with neighboring DISCOs through tie lines

from the buses 48 and 80. The DGs are connected to the feeders at the buses
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35, 44, 52, 56, 60, 64, 69, 84, 85 , 89, 96, 109, 116, 121. Seven wind generators are inte-

grated to the system through buses 14, 20, 50, 74, 76, 101, 113. The contracted loads

are connected to buses 24, 25, 42 , 43, 55, 59, 79, 82, 97, 112, 117 and up to 20% of these

loads are contracted to be curtailed.
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Figure A.2: Modi�ed 119-bus Distribution Test System

In chapters 2 and 3, the market price is equal to market price variation coe�cient

times the base price. Similar procedure goes with the load demand variation. Neigh-

boring DISCO and upstream networks exchange power based on the hourly energy

price. The base market price, and neighboring price are considered $0.09/kWh and

$0.0825/kWh respectively. The cost of contracted loads is $0.1/kWh. The least oper-

ational cost is associated with wind generators $0.05/kWh. The variation coe�cient
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Table A.1: Price Variation Coe�cient At Di�erent Time Steps For Upstream Network
and Neighboring DISCO

Step (k) Price Coe. Load Step (k) Price Coe. Load
1 0.7 0.88 13 1.31 1.38
2 0.64 0.83 14 1.46 1.41
3 0.62 0.80 15 1.66 1.44
4 0.59 0.78 16 1.43 1.45
5 0.62 0.80 17 1.80 1.43
6 0.63 0.85 18 1.43 1.39
7 0.65 0.92 19 1.18 1.39
8 0.65 1.02 20 1.14 1.34
9 0.77 1.11 21 1.07 1.28
10 0.84 1.20 22 0.92 1.15
11 0.95 1.28 23 0.85 1.02
12 1.09 1.34 24 0.80 0.94

Table A.2: DG, wind and energy storage capacity; 32-bus Test System

Pgmax [p.u.] Pgmax [p.u.]

bus7 3.5 bus16 3.0
bus12 3.0 bus24 4.1
bus13 3.2 bus20 4.0
bus15 3.0

of energy price at upstream and neighboring DISCO with respect to base price are

presented in Table A.1. The wind forecasts over the horizon window are obtained at

each time step from ERCOT wind forecast data [95]. The detailed data of DGs and

storage capacity for modi�ed 32-bus and 119-bus test systems are given in Table A.2

and A.3 respectively. Power base for two systems is 100 kW. The DG's generation

cost for the test systems are shown in Table A.4 and A.5.
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Table A.3: DG, wind and energy storage capacities; 119-bus Test System

Pgmax Smax Pgmax Smax
[p.u.] [p.u.] [p.u.] [p.u.]

bus14 2 - bus74 10 -
bus20 7 - bus75 0 6
bus21 0 8 bus76 10 -
bus35 5 - bus80 10 -
bus36 0 8 bus84 3 -
bus44 7 - bus85 3 -
bus48 10 - bus89 2 -
bus50 10 - bus96 2 -
bus51 0 6 bus101 7 -
bus52 10 - bus109 7 -
bus56 5 - bus113 10 -
bus60 2 - bus116 10 -
bus64 2 - bus121 3 -
bus69 5 - - - -

Table A.4: DG Generation Cost: 32-bus Test System

DG Cost Function [$/kW] DG Cost Function [$/kW]

bus7 0.079 bus15 0.092
bus12 0.087 bus24 0.081

Table A.5: DG Generation Cost: 119-bus Test System

Cost Cost Cost
DG Function DG Function DG Function

[$/kW] [$/kW] [$/kW]

bus35 0.085 bus64 0.092 bus96 0.092
bus44 0.082 bus69 0.085 bus109 0.082
bus52 0.08 bus84 0.088 bus116 0.08
bus56 0.085 bus85 0.088 bus121 0.088
bus60 0.092 bus89 0.092




