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ABSTRACT 

 

 

XIAOXIA WU. Mechanical properties of one-dimensional nanostructures, experimental 

measurement and numerical simulation (Under the direction of DR. TERRY T. XU) 

 

One-Dimensional (1D) nanostructures are generally defined as having at least one 

dimension between 1 and 100 nm. Investigations of their mechanical properties are 

important from both fundamental study and application point of view. Different methods 

such as in-situ tensile test and Atomic Force Microscopy (AFM) bending test have been 

used to explore the mechanical properties of 1D nanostructures. However, searching for 

reliable measurement of 1D nanostructures is still under way. In this dissertation, two 

methods, Atomic Force Acoustic Microscopy (AFAM)-based method and 

nanoindentation, were explored to realize reliable study of mechanical properties of two 

kinds of energy conversion-related nanomaterials: single crystalline rutile TiO2 

nanoribbons and alkaline earth metal hexaboride MB6 (M=Ca, Sr, Ba) 1D nanostructures.  

The work principle of AFAM-based method is: while an AFM cantilever is in 

contact with a tested nanostructure, its contact resonance frequencies are different from 

its free resonance frequencies.  The cantilever resonant frequency shift is correlated to the 

Young’s modulus of the tested nanostructure based on Hertz contact mechanics.  The 

measured modulus of BaB6 nanostructures was 129 GPa, which is much lower than the 

value determined using the nanoindentation method.  Due to the small load (120 nN) 

applied on the nanostructure during the experiment, the AFAM-based method may 

actually measure the mechanical property of the outside oxidation layers of BaB6 

nanostructures.   
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Nanoindentation is capable of giving insights to both Young’s modulus and 

hardness of bulk elastic-plastic materials. The assumptions behind this method are that 

the material being tested is a homogeneous half-space. Cares must be taken to extract 

properties of tested materials when those assumptions are broken down. Nanoindentation 

on a 1D nanostructure is one of such cases that those assumptions are invalid.  However, 

this invalidity was not realized in most published work on nanoindentation of 1D 

nanostructures, resulting in unreliable data on mechanical properties of 1D nanostructures.   

In this work, factors which could affect measured nanostructure-on-substrate system 

modulus such as the selection of a substrate to support the nanostructure, the cross 

section of a nanostructure, the width-to-thickness ratio (or diameter) of a nanostructure, 

and the nanostructure-substrate contact mechanism were first subjected to a systematic 

experimental investigation.  A Finite Element Modeling (FEM)-based data inverse 

analysis process was then proposed to extract the intrinsic modulus of nanostructures 

from measured system modulus.  This data inverse process solved the intrinsic modulus 

of nanostructures by equalizing the simulated nanostructure-on-substrate modulus with 

the experimentally measured system modulus. In finite element simulation, another 

important aspect: the experimental indenter area function in addition to aforementioned 

other factors was carefully considered. Based on systematic experimental and numerical 

investigations, the Young’s modulus of rutile TiO2 nanoribbons, CaB6 nanostructures, 

SrB6 nanostructures and BaB6 nanostructures was determined to be 360, 175-365, 300-

425 and 270-475 GPa, respectively. These numbers are the first reported mechanical 

properties for these nanomaterials. Besides the finite element simulation, an ―analytical‖ 

solution to obtain a nanostructure-on-substrate system modulus is also presented.  
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Compared to the finite element simulation, the solution could significantly reduce 

processing time for the data inverse method.  It is applicable to a nanostructure with a 

width to thickness ratio larger than 4.  This part of dissertation work clearly demonstrates 

that both experimental and numerical investigations are needed for studying of 

mechanical properties of 1D nanostructures by nanoindentation. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation 

One-Dimensional (1D) nanostructures are generally defined as having at least one 

dimension in somewhere between 1 and 100 nm (Xia, et al., 2003).  Depending on their 

morphology, 1D nanostructures can be further divided into nanobelts (NB), nanotubes 

(NT), nanowires (NW), nanorods, nanosprings, and nanoribbons etc.  

From a theoretical point of view, nanostructures are different from their bulk 

counterparts in the following two ways: (i) the extremely small scale of nanostructures 

could result in a less-defect structure. The mechanical properties, such as Young’s 

modulus and yield strength, could reach the theoretical limit. For example, single wall 

carbon NTs have demonstrated exceptional mechanical properties: very high Young’s 

modulus of 1.25 TPa (Krishnan, et al., 1998) and tensile strength of 200 GPa (Zhao, et al., 

2002); fully reversible bending for high bending angles (Iijima, et al., 1996). (ii) large 

surface area to volume ratio, which might results in size effect of nanostructures. Surface 

atoms have different electron densities and fewer bonding neighbors than atoms inside a 

nanostructure. Molecular dynamic simulations have revealed that surface atoms could 

either increase or decrease the elastic stiffness (Miller and Shenoy, 2000, Park, et al., 

2009). With an electric-field-induced resonance method, Young’s modulus of ZnO NWs 

was found to increase dramatically as diameters decrease (Chen, et al., 2006). However, 

recent in-situ tensile tests of Si NW indicated that Young’s modulus decreased from their 

bulk Young’s modulus for NWs with diameters being less than 30 nm (Zhu, et al., 
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2009). Moreover, bending tests showed that Young’s modulus of gold NWs was 

essentially diameter independent (Wu, et al., 2005). In summary, nanostructures could 

show higher, lower or comparable modulus to their bulk counterparts. But the questions 

are: will all nanostructures have a mechanical property that’s upto their theoretical limit 

just like single wall carbon nanotubes? Or are the mechanical properties close to their 

bulk counterparts? Will mechanical properties of 1D nanostructures show size effect or 

not? To answer these questions, the mechanical property of a 1D nanostructure needs to 

be carefully studied from a theoretical and an experimental point of view. 

On the other hand, studying the mechanical property of the 1D nanostructures is 

important from an application point of view. If nanostructures are to play some roles in a 

building block for future nanotechnology, a thorough understanding of their mechanical 

behavior is essential. As we know, for bulk material applications in engineering, 

structural engineering design always requires a safety factor (SF), which is defined as 

SF=UTS/R, where R is the applied stress and UTS is the ultimate tensile strength. The 

same philosophy applies to possible design of a nanostructure device. The applied stress 

on a nanostructure needs to be carefully designed so that the nanostructure can be 

operated safely. To design the working stress, mechanical properties, such as Young’s 

modulus and yield strength need to be well understood. As a result, studying mechanical 

property of nanostructures is important from an application point of view. 

1.2 Some General Terms 

Before discussing the currently available techniques for mechanical tests of 1D 

nanostructures, it is beneficial to describe some general terms which will be used 

extensively throughout the dissertation.  
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1.2.1 EBID 

Electron Beam Induced Deposition (EBID) is a material deposition technique that 

has been around since 1934 when Steward found contamination growth in his electron 

optical system (van Dorp and Hagen, 2008). The basic principle of EBID is: Gas 

molecules - from either contamination or introduced precursor gas, liquid or solid 

material in a Scanning Electron Microscope (SEM) chamber - are dissociated into 

volatile and nonvolatile components under the influence of a SEM e-beam. Nonvolatile 

components adhere to the substrate, where deposition is supposed to occur, and form 

deposition (EBID). Alternatively, nonvolatile components react with substrate to form 

volatile components and leave a trench on the substrate.  

In mechanical testing of nanostructures, EBID is generally used to bond 

nanostructures onto a test apparatus. The general procedures are: (i) Attach the 

nanostructure onto the test apparatus and locate one end of the nanostructure under SEM; 

(ii) Zoom in to the end of the nanostructure with the image center being the location 

where deposition will occur. Choose a right accelerating voltage and spot size of SEM; 

(iii) contamination inside the SEM chamber will be dissociated, and carbon will deposit 

onto the nanostructure and affix the nanostructure onto the test apparatus.  

1.2.2 AFM 

Atomic Force Microscopy (AFM), invented by Binnig, Quate and Gerber in 1986 

(Binnig, et al., 1986), is one of several very high-resolution Scanning Probe Microscopes 

(SPM). It has resolution of a nanometer, which is more than 1000 times larger than the 

optical diffraction limit. As shown in Figure 1.1 (A), AFM consists of the following main 

parts: (1) a cantilever, the sensing part of the AFM. It is typically made of silicon or 
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silicon nitride with a sharp tip at its end. Figure 1.1 (B) shows a commercial AFM 

cantilever with a rectangular cross section. There are also triangular cantilevers, which 

typically have a smaller spring constant; (2) a PZT scanner to move the AFM tip related 

to the tested sample. Depending on the AFM mode, the scanner could be affixed to the 

sample stage and the cantilever will hold still during the scanning process, as shown in 

Figure 1.1 (A). The scanner could also be affixed to the cantilever holder while the 

sample is stationary; (3) laser and photodiode used to detect AFM cantilever deflection 

and (4) feedback electronics to control the scanner’s up and down movement so that the 

AFM cantilever deflection is kept constant. The trace of the scanner movement 

corresponds to the sample topography.  

 

Figure 1.1: (A) Schematic illustration of the main components of an AFM. (B) An AFM 

cantilever with a sharp tip on one end and attaches to a chip on the other end. (Image 

courtesy www.schaefer-tec.com) 

Depending on an application, AFM is working either in image mode or force 

mode. In image mode, the cantilever tip is brought into contact with the sample through 

extending the PZT scanner or the sample stage. Interaction forces between the AFM tip 
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and the sample, such as Van der Waals force, contact force or adhesion, are kept constant 

by holding the AFM cantilever deflection constant. While in force mode, the cantilever is 

continuously pushed against the tested sample. In other words, the load applied on the 

tested sample increases with time. With a well-calibrated cantilever spring constant kc, 

the force-scanner movement curve could be used to extract the mechanical property of a 

tested sample, as discussed in Section 1.3.3. 

Since the forces applied on a sample by an AFM cantilever are determined by 

cantilever spring constant and its defection, accurately calibrating cantilever spring 

constant is critical for AFM based mechanical measurement methods. There are many 

different ways to calibrate the cantilever spring constant kc, as reviewed by Butt et al. 

(Butt, et al., 2005), Pettersson et al. (Pettersson, et al., 2007) and Palacio and Bhushan 

(Palacio and Bhushan, 2010). Here we have briefly summarized their findings. For 

normal cantilever spring constant calibration, the AFM cantilever is pushed vertically 

against a tested structure. The calibration methods include, but are not limited to, the 

following: (1) Calculation from its geometry parameters. For a cantilever with a constant 

rectangular cross-section,    
    

   , where E is Young’s modulus of the material that the 

cantilever is made of, w, t, L are width, thickness and length of the cantilever, 

respectively. The calculated spring constant is typically different from the experimentally 

determined ones. This discrepancy is due to many reasons, such as a non-uniform 

cantilever thickness, and the oxidation layer on the top and bottom of the cantilever, 

among others. (2) Measurement using a thermal noise method (Hutter and Bechhoefer, 

1993). It is one of the widely used methods and implemented in many commercial AFMs. 

A cantilever is generally simplified as a spring-mass system. The effective spring 
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constant is related to its mean square deflection     
   under thermal fluctuation, that 

is,    
   

    
  

, where    is the Boltzmann constant and T is the absolute temperature of 

the calibration. (3) Measurement by adding a known mass. The spring constant is 

extracted from shift of the resonance frequencies before and after a known mass is added. 

Note that adding mass to a cantilever tip and sticking them together could be a nontrivial 

job. (4) Measurement using a reference cantilever 

(meetings.aps.org/meeting/MAR07/event/) or by directly applying a known force to the 

cantilever and measuring its deflection. The cantilever spring constant can be determined 

from the force-deflection curve. Nowadays, some AFM cantilever vendors calibrate their 

cantilevers individually using one of the aforementioned methods. In such case, no 

further cantilever spring constant is needed.  

For lateral cantilever spring constant calibration, currently available calibration 

methods include, but are not limited to the following: (1) Calculating from its geometry 

parameters. Similar to the normal spring constant calibration, this method could suffer 

from significant errors because of the uncertainty of the AFM cantilever dimension; (2) 

Scanning tip on an inclined surface with a known slope and obtaining the spring constant 

through force balance equations (Ogletree, et al., 1996). The method is very complicated 

and could wear the AFM tip; and (3) The resonant frequency method (Jeon, et al., 2004). 

By applying an electrical current to a triangular cantilever in a magnetic field, the 

cantilever is excited into torsion. The cantilever lateral spring constant can be calculated 

from the torsional resonant frequency. Unfortunately, this method could not be used for 

cantilevers with a rectangular cross section. Cantilever lateral spring constant is generally 

more difficult to calibrate than normal spring constant.  
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Cantilevers are typically mounted under a certain tilt angle with respect to 

sample’s surface. The tilt is necessary to ensure that the tip, rather than the chip onto 

which the cantilever is attached, touches the sample first (Heim, et al., 2004, Stiernstedt, 

et al., 2005). The tilt angle ranges from 7
o
 to 20

o
 in commercial AFMs. Due to the tilt, the 

effective spring constant of a rectangular cantilever should be obtained by dividing the 

calibrated spring constant by a factor
2cos (1 2 tan / )D L  , where   is the tilt angle, D 

is height of tip, and L is length of the cantilever. The effective spring constant is typically 

10 to 15% higher than the one calibrated using the aforementioned methods.  

1.3 Current Mechanical Property of 1D Nanostructures Testing Methods  

Due to their small dimensions, mechanical characterization of 1D nanostructures 

remains challenging. Several experimental techniques, as reviewed by Zhu et al. (Zhu, et 

al., 2007) and Agrawal et al.(Agrawal and Espinosa, 2009)., have been developed and 

used to measure the mechanical properties of 1D nanostructures. These techniques 

include, but are not limited to the following: (i) axial tensile tests, (ii) 

electrically/magnetically driven resonant method, (iii) AFM-based methods, including (a) 

lateral force approach, (b) normal force approach, (c) Atomic Force Acoustic Microscopy 

(AFAM) based method and (d) AFM nanoindentation and (iv) nanoindentation using 

commercial nanoindenters. The techniques, including sample manipulation, working 

principle, pros and cons, are reviewed in the following sections.  

1.3.1 Axial Tensile Test 

A tensile test is one of the most traditional methods to measure material 

mechanical properties of bulk material. It has fully standardized testing procedures to 

determine Young’s modulus, yield strength, which generally following the 0.2% offset 
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strain rule, tensile strength, and ultimate tensile strength of a substance. The failure 

pattern of tested material, ductile or brittle, can be observed during the experiment.  

A tensile test has also been used to measure mechanical properties of 1D 

nanostructures. A successful axial tensile test on 1D nanostructures includes four main 

steps: (i) pick up a single nanostructure and properly align and fix the nanostructure in 

such a way that the load direction is along the axial direction of the nanostructure; (ii) 

accurately measure the force applied on the nanostructure; (iii) make precise diameter 

measurement and obtain cross section area of the nanostructure. Whether the cross 

section is rectangular, circular, elliptical, solid or tube-like will affect the cross section 

area, from which stress applied on the nanostructure will be calculated; and (iv) 

accurately calculate deformation of the nanostructure, strain under tensile load.  

With a custom-made manipulator, Young’s modulus of single NTs was measured 

inside a SEM (Yu, et al., 1999, Yu, et al., 2000). The whole setup is shown in Figure 

1.2(A). The picking up and fixing NT to a test apparatus process were as follows: (1) 

Because of electrostatic attraction or Van der Waals forces between a NT and an AFM tip, 

one or several CNTs ―jump‖ to the AFM tip when they were brought close to each other,; 

(2) A strong bonding of about 100 nm
2
 in size was made using EBID to fix CNT on the 

tip of an AFM cantilever 1. The other end of the NT was attached to the tip of another 

AFM cantilever 2 using EBID. The cantilever 2 had a smaller spring constant compared 

to cantilever 1. The principle of applying force and measuring NT deformation, as 

illustrated in Figure 1.2 (B), is: as the top relative rigid cantilever 1 was driven up 

vertically, the deflection of bottom flexible cantilever 2 and length change of the NT 

were simultaneously captured by a series of SEM images. Given the deflection of the 
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AFM cantilever 2 and its calibrated spring constant, force applied on the NT was 

calculated. The strain of NT was determined from its length change from the recorded 

SEM images. The technique pioneered tensile tests for 1D nanostructures, however, a 

few aspects of the test can be improved: (1) it was difficult to align the NT with applied 

force to pure tensile stress with minimum bending stresses. (2) force and strain of the NT 

determination could suffer from image reading errors.  

 

Figure 1.2: (A) SEM image of a NT tensile test setup; (B) schematic drawing shows the 

principle of a tensile test. When the top rigid cantilever 1 was driven upward, the lower 

cantilever bent upward by a distance d, while the NT was stretched from its initial length 

of L to L+L because of force exerted by the AFM tips. Force was calculated as kd, 

where k was the spring constant of the lower cantilever 2, and the strain of NT was L/L 

(Yu, et al., 2000). 

To make the pick-up and alignment process of a nanostructure easier, a sharp 

tungsten tip with a high aspect ratio fixed on a nanomanipulator (Klocke Nanotechnik, 

Germany) was used to pick up Si NWs (Zhu, et al., 2009). The ultra sharp tungsten tip 

was better than an AFM tip in terms of pick-up of nanostructures, and was widely used in 

many kinds of nanomanipulators. One possible reason could be that charges accumulate 

on the sharp probe tip and make the electric field the stronger at the tip. As a result, the 
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force between a sharp tungsten tip and a nanostructure was larger than that between an 

AFM tip with a bigger aspect ratio and an nanostructure. The other end of the NW was 

fixed on the side of an AFM cantilever, which has a small spring constant of 0.70  0.05 

N/m. Fixing nanostructures on the side of an AFM cantilever was easier than putting 

them onto an AFM tip. However, this could introduce torsion of the cantilever, which the 

authors believed to have minor effect on the nanostructure’s mechanical properties 

measurement. Similar to Yu’s tensile test (Yu, et al., 2000), force applied on the NW was 

calculated from cantilever deflection. Both cantilever deflection and NW elongation were 

determined from SEM images taken during the tensile test, which could induce some 

measurement uncertainties.  

A tensile test of electrospun polyethylene oxide nanofibers with a diameter of 

around 700 nm was carried out (Tan, et al., 2005). The pick-up and alignment process of 

the nanofibers were as follows: (1) a wood frame with strings was placed between two 

electrodes of an electrospinning device. Aligned nanofibers were deposited between the 

two strings of the wood frame and were further fixed to the coverslip with a masking tape. 

Tensile force were applied on the nanofibers and was measured by a piezoresistive AFM 

cantilever with a typical spring constant of 8 N/m, as shown in Figure 1.3. The piezo-

resisitive cantilever had a resistive gauge integrated into its arm to sense its deflection. 

Force can be calculated from deflection of the cantilever and its spring constant. 

Nanofiber deformation and its diameter were measured by a CCD camera. The force 

resolution was ±0.2 N, and the displacement resolution was ±0.2 m. The set-up suffers 

from the complication of glass fiber and superglue used to attach the AFM cantilever to 

the nanofiber, lower displacement resolution and possible nanofiber dimension 
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measurement error under the CCD camera. Despite the shortcomings of the method, and 

the large diameter of the nanofiber here which is actually out of nano range, the setup 

was reviewed here to emphasize the importance of good sample alignment, and force 

measurement with a separate sensor, the piezo-resistive cantilever. However, different 

from the aforementioned tensile tests, the set-up uncoupled deformation of the cantilever 

and nanostructure, which could improve measurement accuracy.  

 

Figure 1.3: Set-up of a ensile test for nanofiber (Tan, et al., 2005) 

 A Microelectromechanical/nanoelectromechanical system (MEMs/NEMs) 

(Espinosa, et al., 2007, Zhang, et al., 2010, Zhu and Espinosa, 2005) was also used to 

measure the mechanical properties of 1D nanostructures inside a Transmission Electron 

Microscope (TEM). The MEMs system included of three parts: a load sensor, a specimen 

holder to hold 1D nanostructures, and a thermal actuator, as shown in Figure 1.4 (from 

left to right). Pd NWs were manipulated onto the specimen holder following steps: (1) 

disperse Pd NWs in solution and put a few drops of solution onto a TEM grid; (2) pick up 

a single NW from the TEM grid using a nanomanipulator, and fix the NW to the 

nanomanipulator using EBID; (3) Move the NW-nanomanipulator assembly to the edges 

of the specimen holder and fix the free end of the NW to the specimen holder; (4) cut the 
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NW off from the nanomanipulator using a focused iron beam and fix the end of NW onto 

the other half of the specimen holder. The load on the NW was applied by the thermal 

actuator but measured by the separate load sensor, which is essential for a successful 

tensile test. The tensile test also has good strain measurement strategy. The strain of the 

NW was measured through length change between two marks generated by EBID, 

similar to use an extensometer to measure strain on macro-scale specimens. However, 

shortcomings of the test include: (i) Complication in device manufacturing and sample 

manipulation; (ii) challenge of load measurement. The load was related to a capacitance 

change with sub-fermto-Farad resolution, which was very challenging to measure.  

 

Figure 1.4: Setup of MEMs for 1D nanostructure tensile testing (Zhu and Espinosa, 2005) 

In conjunction with a quantitative nanoindenter, a micromechanical device was 

proposed to perform uni-axial tensile testing on 1D nanostructures (Lu, et al., 2010). The 

whole setup, shown in Figure 1.5, could be put inside a SEM or TEM. Force resolution of 

the nanoindenter is about a few tens of nN. Based on finite element simulations, Young’s 

modulus of the tested nanostructures was extracted from measured load vs. nanoindenter 

displacement curve.  
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Figure 1.5: Schematic illustration of the microelectronic device. The device was driven 

by an in-situ nanoindenter. 1D nanostructures sit on the sample state shuttle (Lu, et al., 

2010).  

 Besides using a complicated device to apply force on a nanostructure and measure 

its mechanical properties, an easy way to apply tensile force on NWs inside TEM was 

proposed (Han, et al., 2007). NWs were randomly distributed onto carbon supporting 

film on a TEM Cu grid. NWs found bridged on a broken part of the supporting film were 

identified for tensile testing. Irradiated by an electron beam, the supporting carbon thin 

film polymerized and shrunk 4 to 5%, stretched and applied load to the NW. Similar 

force using a force mediation polymer was used to selectively bend the NWs for strains 

up to 24% (Walavalkar, et al., 2010). This loading method allowed for conducting atomic 

level structural investigation under tension inside a TEM. However, it is not clear how to 

fix a NW onto the carbon thin film. Load that applied on NW is not calibrated, neither. 

Additionally, the observed plastic like deformation of NW could be because of the 

metastability of NWs (Burki, et al., 2005) under electron irradiation.  

 In summary, significant progress has been made in tensile tests of 1D 

nanostructures, from sample picking-up and aligning, to force applying and measuring, to 
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strain of a nanostructure measuring. Detailed lists of common procedures for different 

tensile tests are shown in Table 1.1. The highlighted methods are preferred when 

compared to other available methods. For sample picking-up and aligning, an ultra sharp 

probe is preferred to picking up nanostructures. Self-assembly is a better option for 

nanostructure alignment on a test apparatus. For force applying and measuring, a separate 

sensor measuring load applied on nanostructure has an advantage over cases where the 

cantilever serves as both sensor and actuator at same time, where displacement of a 

cantilever and a nanostructure are coupled with each other and special attention is needed 

for decoupling those two terms. Force measurement at micro and nano range remains 

challenging. Furthermore, the strain of a nanostructure is better calculated from a gauge 

length change, instead of a ―Cross-head‖ deformation which measures the average 

deformation along nanostructure length.  As to the tensile test used in reference (Han, et 

al., 2007), the amount of load applied on nanostructures needs further investigation. 

Whether electron irradiation will alter deformation pattern of nanostructures is still 

debatable.  
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Table 1.1: Lists of common procedures for different tensile tests 

References 
Sample picking-up; 

aligning and fixing 

Force applying and 

measuring 
Strain measuring 

(Zhu, et al., 

2009), (Yu, 

et al., 1999, 

Yu, et al., 

2000) 

AFM tip/ultra sharp 

tungsten probe to pick 

up sample and fix it 

using EBID. 

One AFM cantilever to 

apply force. Deformation 

of the other cantilever is 

correlated to force. 

SEM images, 

―cross-head‖ strain 

(Tan, et al., 

2005) 

Self-assembly 

nanostructure and fix it 

using a masking tape. 

A piezoresistive 

cantilever to apply and 

measure force. 

Optical images, 

―cross-head‖ strain 

(Espinosa, 

et al., 2007, 

Zhang, et 

al., 2010, 

Zhu and 

Espinosa, 

2005) 

Ultra sharp tungsten 

probe to pick up sample 

and fix it using EBID. 

A thermal actuator to 

apply force and a 

separate sensor to 

measure force. 

SEM images; gage 

strain, gages 

defined by two 

marks generaged by 

EBID.  

(Han, et al., 

2007) 

Randomly distributed on 

a supporting film. No 

alignment 

Irradiate electron beam 

on the supporting film to 

make it shrink and apply 

force 

TEM images, 

―cross-head‖ strain 

1.3.2 Electrically/Magnetically Driven Vibration  

According to continuum mechanics, resonant frequency of either a one-end 

clamped or a both-ends clamped (clamped-clamped) beam is proportional to   , where E 

is Young’s modulus of the beam. 1D nanostructure was generally simplified as a 

continuum beam. As a result, given resonant frequency of the 1D nanostructures, their 

Young’s modulus can be deduced. Young’s modulus measurement of a nanostructure 

consists of three main steps: (1) manipulating the nanostructure; (2) exciting the 

nanostructure into resonance; and (3) detecting the vibration and determining its resonant 

frequency.  
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Poncharal et al.(Poncharal, et al., 1999) electrically drove a NT/NW into 

vibration inside a TEM. The sample manipulation processes were as follows: (i) A fiber 

composed of carbon NTs was attached to a fine golden wire, which was mounted on a 

small electrically insulated support so that a potential could be applied; (ii) the assembly 

was inserted into a custom-built specimen holder, which was provided with a piezo-

driven translational and rotational stages to accurately position the NTs relative to a 

counter electrode, as shown in Figure 1.6(A). NTs became electrically charged and one of 

them was attracted to the counter electrode when a static potential sV  was applied, as 

shown in Figure 1.6(B). After an AC voltage applied, the NT vibrated due to alternating 

attractive and repulsive force. By sweeping frequency of the AC voltage, and monitoring 

the vibration amplitude of NT based on TEM images, the resonant frequency that gave 

the maximum NT vibration amplitude was determined. Depending on the relative 

orientation of the NW to the counter electrode, the NW can either be axially excited 

(parametric vibration) or vertically excited (Chen, et al., 2006). Failing to properly 

distinguish the two modes could lead to large deviation between a measured and the 

actual Young’s modulus.  

 

 

Figure 1.6: TEM image of an extruded NT. (A) an uncharged NT. (B) charged NT 

bending toward a counter electrode. The counter electrode at the bottom of the image was 

not shown (Poncharal, et al., 1999). 

u 
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Instead of using TEM/SEM images to determine whether 1D nanostructure was in 

resonance or not, Rao’s group (Ciocan, et al., 2005, Gaillard, et al., 2005) designed a 

built-in integrated circuit to measure the resonant frequency of a cantilever NT. Basically, 

an ac voltage, Vac, as well as a dc voltage, Vdc, induced charges on multiwall NT, and the 

electric force between charges residing on NT and counter electrode caused the NT to 

oscillate. The modulated charge on the NT was detected coherently using a lock-in 

amplifier set for the NT’s 2
nd

 resonant frequency detection. The 2
nd

 resonant frequency 

was used because of the relatively small error (3%) in frequency estimation compared to 

the first order one (18%). The calculated bending modulus of NTs from their 2
nd

 resonant 

frequency was in excellent agreement with those reported in literature, which indicated 

that resonant frequency could be accurately measured using the integrated circuit. 

In addition to excite NWs electrically, a magnetomotive technique (Tabib-Azar, et 

al., 2005) was also used to excite nanostructures into resonance. NWs were grown 

laterally across a trench. When an NW was placed in an uniform magnetic field B and 

passed through an alternative current ID(t) perpendicular to the magnetic field, Lorentz 

force was generated on the NW and caused it to move perpendicular to ID(t) and B 

direction. The movement of NW through a magnetic field generated an electromotive 

force/voltage across two ends of the NW, which was measured with a network analyzer. 

By sweeping the frequency of the alternative current ID(t), the electromotive voltage 

spectra was obtained and frequency corresponding to maximum electromotive voltage 

was considered as the resonant frequency of the NW. The technique acquired NW 

resonant frequency using a circuit rather than depending on an image. Therefore, it can be 

conducted under ambient conditions instead of inside a SEM or a TEM. However, it 
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suffers from drawbacks of the following aspects: (1) it requires an intense magnetic field 

(0.4 T-1.2 T); (2) the Q factor of electromotive voltage spectra was small, which caused 

uncertainty in determining the resonant frequency of NW and (3) it only works for 

conducting NWs.  

There are also other techniques to excite a NW into vibration and monitor its 

resonant frequency. A piezo-electric element was used to excite a Si NW directly grown 

across the trench of a Si die. Displacement of the nanostructure was detected using an 

interferometric method (Belov, et al., 2008). When driving frequency of the piezo-

electric element was the same as the resonant frequency of the Si NW, the motion of NW 

relative to bottom of the trench created a moving fringe pattern, from which NW resonant 

frequency could be determined. The technique does not require electrical contacts of NW 

to allow a current path through it, and it can detect vibration of multiple NWs 

simultaneously. However, the resolution of detecting displacement in 1D nanostructures 

using the interferometric method, is limited by diffraction of light as a general.  

The above mentioned magnetomotive technique and piezo-electric exciting/ 

interferometric detecting method were applied for Si NEMS resonators characterization. 

Theoretically, any combination of exciting/displacement detecting methods for NEMS 

resonators hold promise for measuring the resonant frequency of 1D nanostructures 

which can be correlated to their Young’s modulus. Most of the current available NEMS 

exciting and displacement detecting methods and their pros and cons are reviewed by 

Ekinci et al.(Ekinci and Roukes, 2005).  

In summary, Young’s modulus of nanostructures can be determined from their 

resonant frequency based on beam continuum mechanics. The main focus of these 
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techniques is determination resonant frequency of a nanostructure. Any technique which 

can detect resonant frequency of a nanostructure has the potential to obtain its modulus. 

Table 1.2 lists a few techniques, including their exciting and detecting methods, and pros 

and cons, used in measuring resonant frequency of a nanostructure.  

Table 1.2: Techniques of measuring resonant frequency of a nanostructure  

References Exciting Detecting Pros Cons 

(Poncharal

, et al., 

1999) 

Electric force 

between a NT 

and a counter 

electrode 

TEM images 
Pioneered the 

technique 

Obtain resonant 

frequency based on 

images 

(Ciocan, et 

al., 2005, 

Gaillard, et 

al., 2005) 

Same as above 

Modulated 

charges on a 

NT 

Overcomes cons 

of above 

Challenge in 

measuring charge 

(Tabib-

Azar, et 

al., 2005) 

Lorentz force 

Electromotive 

voltage across 

two ends of 

NW 

Can be done in 

ambient 

condition 

Intense magnet field; 

Small Q; NWs need 

be conduct 

(Belov, et 

al., 2008) 

Piezo-electric 

element drove a 

NW and the 

supporting die 

Light 

interferometry 

Easy to drive 

NW into 

resonance 

Detection limited by 

diffraction of light 

1.3.3 AFM Based Methods 

AFM has been widely used to study mechanical properties of 1D nanostructures 

(Li, et al., 2010). The general principle of using an AFM to measure mechanical 

properties of 1D nanostructure is as follows: when an AFM cantilever is pressed against a 

tested nanostructure, force acting on nanostructure is given by c N NF k S U  , where SN is 

the sensitivity of the AFM photodiode and UN is the photodiode voltage change before 

and after the cantilever is pressed against the nanostructure. The system displacement d, 
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from deformation of both the cantilever and the nanostructure, is AFM scanner (or 

sample stage) extension depending on model of the AFM. The system stiffness of the 

cantilever and the nanostructure can be obtained from F and d. Furthermore, the stiffness 

due to deformation of the nanostructure alone can be extracted from the system stiffness. 

The mechanical property of the nanostructure can be extracted from its stiffness based on 

(i) the continuum beam bending theory (for lateral and normal force approach), (ii) the 

static Hertz contact (for AFM nanoindentation) and (iii) the dynamic contact (Atomic 

Force Acoustic Microscopy). 

(i) Bending Tests 

AFM bending tests were based on the continuum beam bending theory. For a 

continuum cantilever beam under load F at distance x from the clamped end, deflection at 

the load point is 

      
   

   
 (1-1) 

And Young’s modulus of beam can be calculated by 

   
   

  
 (1-2) 

where d(x) is the beam deflection, I is its moment of inertia.          is its stiffness. 

Likewise, the deflection of a clamped-clamped beam is  

      
         

      (1-3) 

And its Young’s modulus is 

   
         

     (1-4) 

where L is length of the beam. For a simply-supported beam, 

      
         

    
  (1-5) 
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And its Young’s modulus is given by 

   
         

   
  (1-6) 

The cantilever deflection also can be obtained for other boundary conditions, such as a 

clamped-simply-supported boundary condition.  

 It is generally accepted that the continuum beam bending theory can be extended 

to study mechanical properties of 1D nanostructures with cross section dimensions being 

larger than a few tens of nanometers. In other words, nanostructure Young’s modulus can 

be calculated from the equation (1-2), (1-4) and (1-6) would a bending test F-d curve on 

nanostructure be available.  

 Depending on the direction of a force applied with respect to the axis of a 

nanostructure, bending tests can be further divided into two groups, as illustrated in 

Figure 1.7, (a) The lateral force approach, where force is perpendicular to the 

nanostructure and side of the AFM tip is in contact with the nanostructure; The AFM 

cantilever is under torsion and (b) The normal force approach, where the apex of the 

AFM tip is in contact with the nanostructure and the AFM cantilever is under bending.  

 

Figure 1.7: (a) Schematic illustration of a lateral bending (Wu, et al., 2005) and (b) a 

normal bending using AFM. 
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(a) Lateral Force Approach 

Wong et al. (Wong, et al., 1997) pioneered the technique using an AFM lateral 

force mode to bend multi-walled carbon NTs (MWNTs) and SiC nanorods. 1-D 

nanostructures were randomly dispersed onto a substrate and selectively clamped down 

to substrate by the islands, the yellow part shown in Figure 1.8, which was fabricated 

with a conventional lithography method. As the AFM tip is scanned perpendicularly to 

the nanostructure under a lateral force of F=7.7 nN, deflection of the nanostructure d(x) at 

a distance x from the clamped end was recorded by AFM images. According to the 

continuum beam model, Young’s modulus of nanostructure was calculated from Eq. (1-

2). This method could suffer from complications due to nanostructures-substrate friction. 

Furthermore, the effective bonding location of between the nanostructures and substrate 

could be uncertain due to possible leakage of the pinning materials in the shadow-mask 

process (Wu, et al., 2005). The uncertainty would affect the x determination and Young’s 

modulus of nanostructure as a result. On the other hand, d(x) actually includes deflection 

of both the cantilever and the nanostructure. Ignoring deflection of the cantilever could 

lead to underestimation of the Young’s modulus of a nanostructure.  

 

Figure 1.8: A schematic illustration of a one end clamped NT deflected by an AFM tip 

laterally (Wong, et al., 1997)  
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To overcome the above mentioned complications due to nanostructures-substrate 

friction, Song et al. (Song, et al., 2005) and Chueh et al. (Chueh, et al., 2007) directly 

bent vertically grown ZnO and RuO2 NWs by scanning across those nanostructures using 

an AFM tip with a 20 cone angle. Cantilevers had a normal spring constant of 4.5 N/m. 

As the tip scanned over the top of the NWs, force and deflection of NWs were 

determined from AFM images and modulus of the nanostructures was calculated similar 

to reference (Wong, et al., 1997). This technique allows mechanical properties 

measurement of individual NWs of different lengths in an aligned array without any 

sample manipulation. However, as the authors pointed out, a disadvantage of the 

technique is its inaccuracy in evaluating the size of individual NWs.  Another uncertainty 

for this technique is: the AFM tip could apply an eccentric force on the NWs and 

underestimate their Young’s modulus.  For a 45 nm ZnO NW, the measured elastic 

modulus was 298 GPa, which is far smaller than that of bulk ZnO.  

Clamped-clamped nanostructures-over-trench configuration has also been used to 

study Young’s modulus, yield strength and the strain hardening effect of Au (Wu, et al., 

2005), Ag (Wu, et al., 2006) and Ge (Ngo, et al., 2006) nanostructures under lateral 

bending approach. The experimental setup is shown in Figure 1.7 (a). The procedures of 

sample preparation were as follows: (1) the nanostructures were dispersed into solutions; 

(2) a few drops were put onto the substrate with trench and (3) A single nanostructure 

across the trench was located and the ends of the nanostructure were fixed to the edges of 

the trench using EBID. Rectangular cantilevers with average normal force constant of 20 

to 40 N/m and 1 to 3 N/m were used. A Dimension 3100 AFM from DI instruments, 

equipped with a Nanoman software package and x-y closed loop control, was used to 
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conduct the lateral bending test. The lateral force F vs. displacement at mid-point of NW 

d was analyzed to determine its Young’s modulus and yield strength. During data 

analysis, steps to obtain nanostructure modulus were: (i) calculate the spring constant of a 

combined nanostructure-AFM cantilever system obs

F
k

d
 . (ii) obtain spring constant of 

the nanostructure as obs c
w

c obs

k k
k

k k



, where ck was the lateral bending spring constant, 

calibrated by lateral bend cantilever over edge of the trench. (iii) Young’s modulus of 

NW was then calculated using Eq. 1.4 at x=L/2. Experimental results showed that yield 

strength of NWs was close to theoretical limit, whereas Young’s modulus was diameter 

independent and closed to their bulk counterpart. As the authors pointed out, errors of this 

method stem from estimation of the NW and cantilever physical dimensions, AFM 

photodetector sensitivity and uncertainty due to lack of z closed-loop control. Without a z 

closed-loop control, AFM tip-nanostructure contact location, as illustrated in the green 

circle of Figure 1.7 (a), is unknown, which will cause uncertainty of the force on 

nanostructure estimation and Young’s modulus measurement.  

(b) Normal Force Approach 

Normal force approach, as illustrated in Figure 1-7(b), applies a force on a 

nanostructure perpendicular to the surface supporting it. The dashed line red circle stands 

for AFM tip and AFM tip apex is in contact with the nanostructure. Depending on the 

operation mode of AFM, normal force approach is divided into two groups: (i) AFM 

cantilever scanned along the nanostructure at a constant load and (ii) AFM tip 

continuously pressed against the nanostructure at a fixed location x.  
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For the first group, orientation of the cantilever was perpendicular to the 

nanostructure and scan direction, as shown in Figure 1.7 (b). Two scans with a zero force 

and a constant force (F), respectively, along a nanostructure were conducted. Scanner 

extensions along the nanostructure at zero force (curve 1) and at the constant force (curve 

2) were recorded. Scanner extension due to applied force d(x) was obtained by 

subtracting curve 1 from curve 2. By doing this, the authors believed that possible initial 

slack of the nanostructure could be removed. Young’s modulus was calculated from Eq. 

(1-2) (San Paulo, et al., 2005, Silva, et al., 2006) for one end clamped nanostructures and 

Eq. (1-4) for clamped-clamped nanostructures(Chen, et al., 2006, Chen, et al., 2007, Mai 

and Wang, 2006, San Paulo, et al., 2005, Tabib-Azar, et al., 2005). 

The second group operated at the force mode of an AFM. Force applied on a 

nanostructure vs. extension of the scanner, a linear curve (curve i), was obtained at a 

distance x away from the fixed end. Force vs. extension of the scanner curve on an 

infinitely hard substrate (curve ii) was also acquired. Authors tried to eliminate deflection 

of the AFM cantilever and obtain the pure deformation of the nanostructure by 

subtracting curve i from curve ii. The force on nanostructure (F) vs. the nanostructure 

deflection curve was obtained. Young’s modulus of nanostructures was calculated from 

Eq. (1-2) for one end clamped nanostructure (San Paulo, et al., 2005, Xiong, et al., 2006). 

A similar approach was used to study the mechanical property of a vertically grown 

silicon NW (Gordon, et al., 2009). Note that force on the AFM tip and the nanostructure 

are same while their deflections are different during a measurement. Trying to eliminate 

deflection of the AFM cantilever by subtracting cantilever F vs. deflection curve from 

cantilever-on-nanostructure F vs. deflection curve is problematic. The method in 



26 

 

reference (Wu, et al., 2005) is better in terms of eliminating deflection of the AFM 

cantilever and obtaining nanostructure modulus accurately.  

For lateral or normal bending tests, knowing the correct boundary condition 

between a nanostructure and trench edge is critical in extracting the mechanical 

properties of 1D nanostructures from load vs. scanner extension curves (Chen, et al., 

2006, Chen, et al., 2007, Mai and Wang, 2006). Figure 1.9 shows a comparison of 

experimental vs. model predicted deflection of a nanostructure under different boundary 

conditions (clamped-clamped Eq. (1.3), simply–supported Eq. (1.5), and one simply 

supported end with one fixed end) for silver NWs. While Figure 1.9 (a) and (b) 

confirmed that a clamped-clamped boundary condition described the nanostructure and 

edge of trench well, Figure 1.9 (c-e) indicated that a simple support boundary condition 

was more appropriate for those particular cases. As a result, simply assuming a clamped-

clamped boundary condition for NW and edge of trench could underestimate Young’s 

modulus of the nanostructure. To eliminate measurement uncertainty associated with 

unsure of boundary condition, experimental data was compared with model results using 

different boundary conditions, and the boundary condition gave a maximum match 

between experiment and model results was used to extract Young’s modulus of the 

nanostructure.  
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Figure 1.9: Comparison of experimental and model predicted deflections for silver NWs 

of different diameters (Chen, et al., 2006) 

Another issue in bending testing is the ―swing effect‖/slippage (Chen, et al., 2006) 

of an AFM tip off the tested nanostructure, which typically happened in the normal force 

bending mode. If the AFM tip moves off axis of the nanostructures, it will apply an 

eccentric force on nanostructures and make them swing to the side. The slippage could 

introduce a substantial uncertainty of Young’s modulus. To mitigate slippage effect on 

mechanical property measurement, AFM tip scanned along NW many times and the load-

deflection profile gave the largest vertical component of the AFM cantilever deflection 
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was selected to extract Young’s modulus of the nanostructure. Another approach to 

minimize slippage effect is using a special AFM cantilever tip, which was modified by a 

FIB milling process to produce a ―tooth‖ shape groove with a dent width of 150 nm. The 

groove can secure the AFM tip on the nanostructure during the measurement process 

(Zhang, et al., 2008). 

The normal force bending test was also used to study the mechanical properties of 

graphene, a one-atom-thick carbon, as reviewed by Zhu et al. (Zhu, et al., 2010). 

Graphene were suspended over a photolithographically defined circular holes etched with 

buffered hydrofluoric acid (Lee, et al., 2008, Poot and van der Zant, 2008) or a trench of 

width between 0.5 m and 5 m (Frank, et al., 2007, Gomez-Navarro, et al., 2008). 

Suspended graphene were obtained by mechanically exfoliating kish graphite across 

trenches (Bunch, et al., 2007). As the AFM tip being pushed against a suspended 

graphene sheet, force vs. extension of AFM scanner curve was obtained. The curve could 

give effective spring constant of the suspended graphene. Assuming graphene was 

clamped to the edge of circular hole or trench, Young’s modulus of the graphene was 

extracted based on theory of a macroscopic plate (Poot and van der Zant, 2008) or a beam 

(Frank, et al., 2007) bending under tension. A series of load and unloading curves on 

graphene matched each other well, which indicated that clamped boundary condition 

between graphene and the edge of trench was a valid assumption (Lee, et al., 2008). 

Membrane theory was recently proved to be best in describing graphene’s mechanical 

behavior. Young’s modulus and fracture strength of graphene was measured to be 1.0 

TPa and 130 GPa. For this kind of setup to measure mechanical property of graphene, 

Frank et al. emphasized that the spring constant of AFM cantilever should be comparable 
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to that of graphene sheets. Either too stiff or too flex cantilever could lead to inaccurate 

determination of graphene’s mechanical properties.  

(ii) AFM Nanoindentation 

AFM nanoindentation test has been used to study mechanical property of polymer 

(Cappella and Silbernagl, 2008, Jee and Lee, 2010, Kovalev, et al., 2004). The test is also 

used to measure mechanical properties of a nanostructure (Sohn, et al., 2010) and its 

plastic deformation (Lucas, et al., 2008, Lucas, et al., 2007). The extraction of 

mechanical properties in a nanoindentation test was based on the Hertz contact theory, in 

contrast to the beam bending theory in bending tests. Sample preparation for 

nanoindentation test is simple compared to AFM bending tests, where only samples 

across trench are good for further testing. The sample preparation procedures for 

nanoindentation tests were as follows: (1) nanostructures were scraped from the substrate 

where they grew and dispersed into solutions through ultrasoincation; (2) a few drops of 

solution were placed onto a clean substrate and (3) an individual nanostructure was 

located through an AFM scanning for further testing. 2-spring-in series model (one for 

AFM cantilever and the other for contact interaction between the AFM tip and the 

nanostructure) was typically used to extract modulus of a nanostructure from F-d curve. 

Like a thin film material, a nanostructure needs to be supported by a substrate. 

The substrate, used to support a nanostructure, will affect the F-d curve and the Young’s 

modulus measurement. Recently, substrate effect on the Young’s modulus measurement 

of a NB with AFM nanoindentation method was theoretically modeled (Zhang, 2010). In 

their model, a 3-spring-in-series model was used to model the indentation process. The 

model was based on the 2-spring-in-series model discussed above but with an extra 
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spring. The extra spring accounted for the nanostructure and substrate receding contact 

stiffness. In summary, due to the small dimension of nanostructures, the substrate effect, 

the extra spring, needs to be considered. Otherwise, extracted nanostructure modulus is 

error prone.  

AFM nanoindentation test was not extensively adopted to study the mechanical 

property of 1D nanostructures. Reasons could be as follows: (1) the complicated 

theoretical model makes extracting nanostructures mechanical property non-trivial. (2) 

the parasitic lateral motion of the AFM tip during indentation (Huang, et al., 2007) makes 

mechanical property measurement even harder. An AFM indentation test may result in 

unwanted lateral motion. The lateral motion makes indentation test on nanostructures 

with a circular cross section, such as NWs and NTs, almost impossible.  

(iii) Atomic Force Acoustic Microscopy (AFAM) Based Method 

AFAM based method is another technique to evaluate the near-surface 

mechanical property (Rabe, et al., 2000, Rabe, et al., 1996). This method has been used 

to study the mechanical property of ZnO NWs (Stan, et al., 2007), Te NWs and faceted 

aluminum nitride NTs (Stan, et al., 2009), SiO2 NWs with a Si core (Stan, et al., 2010). 

The method correlates the mechanical property of nanostructures to resonant frequency 

of the AFM cantilever while being pressed against a tested sample under a certain load. 

Sample preparation procedures for AFAM tests are similar to AFM nanoindentation: (1) 

disperse as-grown nanostructure into a solution; (2) put a few drops of solution onto a 

substrate; (3) locate an individual nanostructure and land the AFM tip onto it and (4) 

sweep driving frequency of the AFM cantilever and obtain its contact resonant frequency. 

A schematic illustration of AFAM setup to measure the cantilever resonant frequency is 
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shown in Figure 1.10. The detailed procedures to correlate the contact resonance 

frequencies with mechanical properties of the tested materials will be discussed in 

Chapter 2.    

 

Figure 1.10: The schematic illustration of the experimental apparatus for AFAM based 

mechanical property testing method. (Hurley, et al., 2007) 

When conducting mechanical property tests on 1D nanostructures with AFAM, 

certain restrictions/requirements apply, which are listed as follows: (1) a closed-loop 

AFM scanner. Otherwise, indenting right on top of the nanostructures is challenging.  A 

successful mechanical property test on a nanostructure with AFAM consists of two steps, 

i.e. (i) locating the nanostructure through AFM tapping mode scanning and (ii) 

withdrawing cantilever from the surface of nanostructure and re-engaging the cantilever 

under contact mode with a scan area of zero on top of the nanostructure. Most of AFM 

scanners now available on the market are made of PZT, which shows creep and 

hysteresis behavior. Without a proper feed-back (closed-loop) control to compensate the 

creep and hysteresis behavior, landing exactly on top of a nanostructure is ambitious. (2) 

the engagement of an AFM cantilever on the surface of a nanostructure must be gentle or 
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tip of the cantilever will be blunted because of the impact force during engaging. (3) this 

AFAM based method is improper for the nanostructures with high Young’s modulus, 

since most of AFM tip on nanostructure system deformation will comes from the AFM 

tip. The technique is inapplicable for measuring materials with very low modulus, like 

biomaterials, neither. The contact stiffness between the AFM tip and a material of low 

modulus is so small that the contact resonant frequency of the AFM cantilever will be 

close to its free resonant frequency, no matter the cantilever is in contact with a soft 

material A or a soft material B. Therefore, materials A and B are indistinguishable.  

(iv) Summary of AFM Related Measurement Techniques 

AFM based techniques use the AFM cantilever as a force sensor to measure the 

load applied on nanostructures. The cantilever itself deflects while indenting or bending 

nanostructures. As a result, cantilever-on-nanostructure generally needs to be modeled 

with 2-spring-in-series system, i.e. a spring for cantilever itself (spring 1) and a spring for 

nanostructure bending/AFM tip indenting on nanostructure (spring 2). A properly chosen 

cantilever with suitable spring stiffness is important for all the AFM based techniques. 

Two extreme cases should generally be avoided: (1) spring stiffness of spring 1 is much 

lower than that of spring 2. System deformation for this case will be mainly from spring 1 

so that the nanostructure would be like rigid comparing to cantilever. It is impossible for 

cantilever to distinguish one tested material from another; (2) spring stiffness of spring 1 

is much larger than spring 2. The force resolution is low due to the small displacement of 

spring 1.  An ideal case would be spring 1 and 2 having similar stiffness. 

Among three AFM based techniques, bending test was most often used due to its 

simplicity in extracting nanostructure mechanical properties based on the beam bending 
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theory. Each technique has its advantages and limitations as shown in Table 1.3. 

Researchers should choose a proper technique to measure mechanical property of 

nanostructures, based on their AFM hardware capability and willingness to analyze 

complex interaction models between cantilever and nanostructure or not.  

Table 1.3: Comparison of different AFM modes for 1D nanostructure mechanical test 

Operation Mode Pros Cons 

Bending 

Lateral 

force mode 

Extracting mechanical 

property is based on 

simple beam bending 

theory.  

Difficult to calibrate the cantilever 

lateral spring constant; Depending on 

AFM hardware: The distance between 

cantilever tip apex and contact point 

between cantilever and nanostructure, 

which will affect applied torsion on 

nanostructure, is uncertain without a 

Z-closed loop control of AFM scanner.  

Normal 

force mode 

Extracting mechanical 

property is based on 

simple beam bending 

theory. 

Eccentric force could be applied on 

nanostructure and ―swing 

effect‖/slippage, making it hard to 

scan exactly on top of a nanostructure.  

Nanoindentation 

Straightforward for 

wide nanostructures, 

such as a NB.  

Complicated in extracting mechanical 

property from contact model; 

Substrate effect, unwanted AFM tip 

lateral motion are hard to deal with. 

AFAM 

Contact resonant 

frequency of AFM 

cantilever can be 

accurately measured.  

Depending on accurate AFM 

cantilever dynamic analysis, tip-

sample contact modeling and AFM 

hardware. 

1.3.4 Nanoindentation 

Nanoindentation is another method to study mechanical properties of 1D 

nanostructures. Different from AFM based nanoindentation, where force sensor—AFM 

cantilever deflects itself during measurements, nanoindenter has a separate force and 

displacement sensor. It is widely used for material mechanical property characterization, 
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especially for bulk materials. Among many techniques used to characterize mechanical 

properties of nanostructures discussed so far, nanoindentation is attractive because (i) it is 

a relatively easy and quick testing technique; (ii) it can achieve excellent force resolution 

and control (better than 1.0 N), and fine displacement resolution (better than 0.1 nm) 

(Oliver and Pharr, 1992); and (iii) it can provide a wealth of information regarding 

mechanical properties of a material. Both hardness and Young’s modulus of the tested 

sample can be obtained from one single nanoindentation test.  

The Hertz contact problem—an elastic half space indented by a rigid, 

axisymmetric indenter is the foundation of nanoindentation(Oliver and Pharr, 1992). 

Solutions for the elastic contact problem indicated that  

       (1-7) 

Where P is the load applied on indenter and h is the indenter displacement into surface.  

is a constant. m = 1.0 for flat-punch indenter; m = 1.5 for a spherical indenter and m = 2.0 

for a conical indenter.  

Berkovich, or cube corner indenter, is typically used for small scale 

nanoindentation tests. Because of sharpness of the indenter, plasticity is generally 

induced beneath the indenter, which makes analysis of load-displacement curve much 

more complicated. Analysis of nanoindentation load-displacement curves to obtain 

mechanical properties of a tested material is generally divided into two types: (1) forward 

analysis, where mechanical properties are fitted from the loading part of a load-

displacement curve (Hainsworth, et al., 1996, Jha, et al., 2010); (2) backward analysis, 

where mechanical properties are extracted from unloading part of the load-displacement 

curve.  
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Forward analysis is initially studied for materials with considerable elastic 

recovery during unloading, such as very hard material and heterogeneous systems like 

hard coating on substrate system. The procedure to obtain the mechanical property of test 

material is: (1) Assume an indenter shape (equivalent conical indenter is assumed to 

approximate Berkovich indenter) and constitutive equation of the tested materials; (2) Fit 

load-displacement curve to the equation (Hainsworth, et al., 1996) 

        
 

 
    

 

 
      (1-8) 

Where    and    are indenter constants. (3) Given one of E and H, the other can be 

fitted from equation (1-8). Based on the procedures of obtaining mechanical properties, 

we see that disadvantages of the method are: (i) it is based on the assumption of an ideal 

indenter shape, such as a conical indenter which has a very sharp tip. However, the 

indenters used in most experiments are typically blunted especially after being used for a 

long time. The tip radius is around tens or even hundreds of nanometers. The minimum 

load for the assumption to be true is 1 mN, and (ii) the constitutive equation of materials 

could be very complicated. For example, fitting of equation (1-8) for a material showing 

strain hardening could be problematic.  

Backward analysis, on the other hand, is a general practice of most 

nanoindentation data analysis and is adapted by commercial nanoindenters. Unloading 

part of the load-displacement curve, shown in Figure 1.11, is elastic, and the stiffness of 

the initial unloading part is given by (Oliver and Pharr, 1992): 

   
  

  
 

 

  
     (1-9) 

   
 

 
 (1-10) 
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where Er is the reduced modulus. A is the projected area of the elastic contact between the 

nanoindenter and the tested material. H is the hardness of the tested material.  

 

Figure 1.11: A typical load-displacement curve of nanoindentation result(Oliver and 

Pharr, 1992) 

 The equation (1-9) is based on solid theoretical modeling and extensive finite 

element simulations. The advantages of the backward analysis are: (1) It holds for any 

indenter geometry, such as spherical, conical and flat punch indenter. King confirmed 

that flat ended punches with square and triangular cross sections only deviate from the 

equation (1-9) by 1.2% and 3.4% respectively (King, 1987). (2) Given experimentally 

measured stiffness S and contact area A, Er can be easily obtained. Furthermore, S and A 

can be accurately determined based on the methods outlined in the reference (Oliver and 

Pharr, 1992). The unloading part of load-displacement is typically fitted with a power law 

equation, and S can be obtained as derivative of the power law equation at the unloading 
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point. A is calibrated with a standard reference sample such as silica. The area function, 

which gives a correct modulus of a standard reference sample, is considered area function 

of the indenter.  

 One obvious disadvantage of back analysis is: it uses a standard reference sample 

to calibrate indenter area function A. Depending on the tested material yielding property, 

―pile-up‖ could happen for materials like aluminum and ―sink-in‖ could happen for stiff 

materials. To correct the pile-up/sink-in caused uncertainty of contact area, Joslin and 

Oliver eliminated contact area from the equation (1-9) and (1-10) for elastic 

homogeneous system (Joslin and Oliver, 1990). They obtained the following 

 
 

  
  

 

 

 

   (1-11) 

P/S
2
 is often plotted to check whether 

 

  
  are constant. If either H or Er

2
 is known, the 

other can be determined from the above equation.  

Even though nanoindentation was designed for studying the mechanical property 

of homogeneous bulk material, it has been extended to study Trabecular bone with 

porous structure (Gan, et al., 2010) and mechanical properties of nanostructures, such as 

ZnO and SnO2
 
semiconducting nanobelts (Mao, et al., 2003), ZnS (Li, et al., 2005, Yang, 

et al., 2005), Al4B2O9 and Al18B4O33 NWs (Tao, et al., 2007) and GaN and ZnO NWs 

(Feng, et al., 2006), vanadium doped ZnO nanofibers (Chen, et al., 2010), and Indium 

nano/microwires (Kumar and Kiran, 2010). It is worth pointing out that a few steps need 

to be carefully followed while indenting nanostructures: (1) Different from AFM based 

nanoindentation or AFAM method, the indenter used in nanoindentation is made of 

diamond, which is rigid compared to most tested materials. The indenter shape is 

persevered and thereby contact area is well determined throughout the indentation 
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process. The diamond indenter, however, could damage a nanostructure surface while 

scanning and locating a single nanostructure to perform an indentation test. It is critical to 

choose a proper scanning load to minimize damage to the nanostructure. (2) Similar to 

most of the AFM based methods, nanoindentation also depends on the hardware 

resolution while positioning the indenter on top of the tested nanostructures. The sample 

stage is mostly controlled by PZT materials, which show hysteresis effect. The effect 

could cause the target scanning area to be a little bit off the actual one. To make the target 

and actual areas overlap and indent exactly on top of a nanostructure, the offset should be 

manually compensated while choosing the scan area. (3) The tested nanostructures are 

expected to be reasonably smooth. Otherwise, there will be large uncertainty associated 

with the contact area between the nanostructure and the nanoindenter and thereby cause 

inaccurate measurement of nanostructures’ mechanical property. (4) Due to the large 

force applied on the sample during indentation, the underline substrate effect could come 

into play, similar to a thin film on a substrate system. What the nanoindenter measured is 

actually an effective modulus of the nanostructure-on-substrate system. As a result, 

extracting the mechanical property of a tested material from the effective system modulus 

is critical for a nanoindentation test (Feng, et al., 2006, Shu, et al., 2009). 

1.3.5 Other Techniques 

The flow induced by a single laser-induced cavitation bubble was used to 

manipulate and measure Young’s modulus of a single Co NW with a diameter of about 

40 nm (Huang, et al., 2010). The as-grown NWs were dispersed into ink and the solution 

was filled into a gap formed by two glass slides. A laser beam created cavitation bubbles 

inside the gap. During the bubble expansion and further collapse process, some of the 
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NWs near the bubble were bent by the force generated due to different velocity across 

their length. The dynamics of the NW was recorded with a high speed camera at a 

framing rate of up to 450,000 per second. By analyzing those images in conjunction with 

the hydrodynamic beam equation, Young’s modulus of the NW was obtained. The 

obtained Young’s modulus was only tenth of their bulk counterpart, which could possibly 

be due to low resolution of the high speed camera. Furthermore, improvement for both 

experiment and modeling is needed to make this method suitable for mechanical property 

measurement of a nanostructure.  

1.4 Methods Used in This Dissertation 

In reviewing the current available testing methods of 1D nanostructures’ 

mechanical property, we noticed that tensile tests require a manipulator, either home-

made or commercially available, to apply load and displacement to a nanostructure. 

Alignment of a nanostructure to make it under pure tension is challenging. Furthermore, 

obtaining the strain of a nanostructure from recorded SEM images could be problematic. 

On the other hand, the pros and cons of the techniques for obtaining Young’s modulus 

from their dynamic resonant frequency are listed in Table 1.2. Measuring the resonant 

frequency of a modulated charge could be challenging too. Additionally, for AFM based 

nanostructure bending methods, the normal bending mode could suffer from 

nanostructure slippage and eccentric loading. Without an AFM closed loop control in z-

direction, uncertainty of contact location between the side of an AFM tip and a 

nanostructure could lead to error in determining mechanical properties of nanostructures 

using the lateral bending mode.  
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With the pros and cons of each mechanical property testing methods and the 

hardware availability in mind, two methods are selected in current study: (1) AFAM 

based mechanical property measurement of nanostructures; (2) nanoindentation. Sample 

preparation processes for both methods are relatively easy: dispersing the as-grown 

nanostructures in a solution and dropping the solution onto a bare substrate. The 

individual nanostructures will then be located and chosen for further testing. For the 

AFAM based method, an AFM is used to conduct the test. After a single nanostructure is 

located, the AFM cantilever is pressed against the nanostructure and the cantilever 

contact resonant frequency is obtained. Nanostructure modulus is the extracted from the 

cantilever contact resonant frequency. For the nanoindentation method, a commercial 

nanoindenter is used to press against the nanostructure-on-substrate system. The 

nanostructure modulus is extracted from the load reacting on indenter vs. indenter 

displacement into the system curve  

1.5 Dissertation Outline 

This study of mechanical properties of 1D nanostructures consists of 6 chapters. 

This chapter covers motivations of the study and literature review of currently available 

testing methods of 1D nanostructures’ mechanical property. The pros and cons of each 

method are reviewed. Two methods have been chosen for further study in this 

dissertation work considering hardware availability and ease of sample preparation. 

Chapter 2 presents a nanostructure mechanical property measurement using an atomic 

force acoustic microscopy. It covers the working principle of the methods, experiment 

setup, results/data analysis and discussion, whereas Chapters 3 through 5 focus on the 

mechanical property of a nanostructure measurement using a commercial nanoindenter. 
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Chapter 3 studies the mechanical property of TiO2 nanoribbons, which have width-to-

thickness ratios about 5. The nanoribbon has been laid on three different substrates. Our 

results indicated that sapphire is the best substrate for the nanoindentation test of these 

particular nanoribbons. A substrate selection rule for general nanostructure mechanical 

property test is presented for the first time. Chapter 4 studies the mechanical properties of 

divalent alkaline earth metal hexboride MB6 nanostructures, which have a width-to-

thickness ratios falling between 1 and 2. Chapter 5 provides a semi-analytical solution for 

the nanoindentation on a nanoribbon-on-substrate system. Chapter 6 summarizes studies 

in the present dissertation and postulates possible future works.  



 

 

CHAPTER 2: MEASUREMENT OF MECHANICAL PROPERTY USING AN 

ATOMIC FORCE ACOUSTIC MICROSCOPY (AFAM) 

2.1 Introduction 

Atomic force microscopy has been widely used to measure the mechanical 

property of 1D nanostructures, as reviewed in Chapter 1. This chapter discusses one of 

those AFM based methods. The method is called the AFAM based method. It is used to 

study the Young’s modulus of a BaB6 nanostructure due to (1) its high force and 

displacement resolution, and (2) relative easiness in sample manipulation. While an AFM 

cantilever is in contact with a tested nanostructure, its contact resonance frequencies are 

different from its free resonance frequencies. The shift of the resonant frequency is 

correlated to the Young’s modulus of the nanostructure. An add-in transducer to an AFM 

makes the cantilever resonant frequency measurement possible.  

Section 2.2 presents the AFM cantilever dynamics and the working principle of 

using AFAM based method for mechanical property measurement of nanostructures. 

Section 2.3 includes the experimental setup of the AFAM based method and the detailed 

procedures to measure AFM cantilever contact resonant frequency. Section 2.4 focuses 

on results and data analysis and Section 2.5 discusses the method.  

2.2 AFAM Based Method to Measure Mechanical Property 

AFAM based method measures mechanical property of 1D nanostructures by 

indirectly measuring the AFM cantilever resonant frequency while it is pressed again a 
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tested 1D nanostructures. Cantilever dynamics and the formula for its contact resonant 

frequency are reviewed in this section.  

2.2.1 Cantilever Dynamics 

The AFM cantilever dynamics are highly nonlinear and remain challenging, as 

reviewed in by Raman et al. (Raman, et al., 2008). Understanding the cantilever 

dynamics is important to make a full and good use of an AFM. Raman et al. pointed out 

that ―…understanding these phenomena can offer deep insight into the physics of 

dynamic atomic force microscopy and provide exciting possibilities for achieving 

improved material contrast with gentle imaging force in the next generation of 

instruments…‖ (Raman, et al., 2008). Here we review the AFM cantilever dynamics.  

(a) Continuous Model of the Cantilever 

AFM cantilever is generally described as a rectangular and homogeneous Euler 

beam. Its dynamics is captured by the Euler-Bernoulli equation. The equation for a beam 

with external forces applied at its free end is given by (Lozano and Garcia, 2009, Turner, 

et al., 1997): 

   
        

      
       

  
    

        

                            (2-1) 

E and  are Young’s modulus and mass density of the cantilever material. a ,b and L are 

width, thickness and length of the cantilever, respectively. I is its moment of inertia; 

w(x,t) is the time-dependent vertical displacement of the beam at a distance x away from 

the end that is fixed to the cantilever holder using a spring leaf. a0 is the hydrodynamic 

damping coefficient. The generalized function      is infinity when x is zero and is 

zero otherwise.        accounts for the concentrated load applied at x = L.         is 
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the excitation force applied to the cantilever and         is the AFM tip and tested 

sample interaction force. d is instantaneous tip apex-tested sample surface separation 

             (2-2) 

   is the initial tip apex-tested sample distance. The boundary conditions of the AFM 

cantilever are: one end of cantilever is fixed with zero displacement and rotation; the 

other end is momentum and shear stress free, i.e.  

              ,  
       

  
 
   

  ,  
        

    
   

  ,  
        

    
   

   (2-3) 

Substituting the ansatz                 into governing equation (2-1) and 

boundary conditions (2-3), cantilever displacement is expressed in terms of a series of 

eigenmodes 

                    
    (2-4) 

Each mode is describes by (Rabe, et al., 1996): 

                      
              

              
                 (2-5) 

where     satisfies the equation                  . The deflection modes Xn are 

orthogonal. Based on dispersion relation              , Cantilever resonant 

frequency corresponding to    is given by: 

    
      

  
  (2-6) 

with      
   

  

 
. Substituting x = L into equation (2-5),                   satisfy the 

following differential equation (Lozano and Garcia, 2008) 

        
  

  
         

       
               

 
, n=1,2,… (2-7) 

With  
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 (2-8) 

          (2-9) 

in which,    is the mass of the cantilever. The actual tip motion is given by  

             

 

   

 

For different deflection modes, the effective mass m = 0.25 mc is same. Whereas resonant 

frequency    is different, which indicates that the effective AFM cantilever spring 

constant of high-order deflection mode is higher than that of the first-order deflection kc, 

where kc is either calculated from cantilever dimensions or calibrated using methods 

summarized in Section 1.3.3. The aforementioned fact, different deflection mode having 

different spring constant, has implications on AFAM based mechanical property 

measurement. Force applied on a sample is large when the cantilever is under high-order 

resonance mode even though the average deflection is same as that of the first-order 

resonance mode.  

(b) Q Factor of an AFM Cantilever Vibration 

In a forced vibration, Q factor is a measurement of resonance sharpness. The Q 

factor is defined as  

  
  

     
 

  

     
 

where    is the resonant frequency of a vibration. The two frequencies       are on 

either side of the resonant peak and correspond to a vibration amplitude of 0.707B, as 

shown in Figure 2.1. B is the maximum vibration amplitude when resonance occurs. Q 

factor, as defined above, represents damping of a vibration system. When an AFM 
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cantilever is in contact with a tested sample, the Q factor can be used to characterize the 

internal friction and plasticity onset of the tested sample (Caron and Arnold, 2009).  

 

Figure 2.1: Schematic resonant spectrum of a forced vibration 

2.2.2 Working Principle of AFAM Based Method  

The AFAM based method for mechanical property measurement was pioneered 

by Rabe et al. (Rabe, et al., 1996). Figure 2.2 illustrate the working principle of the 

method.  The contact stiffness between the AFM tip and the tested sample modifies the 

dynamic of the cantilever.  The contact resonance frequency falls between first and 

second resonant frequency of the cantilever.  For an AFM tip with a hemispherical tip 

radius R is pushed against a tested bulk sample, based on Hertz contact mechanics, the 

contact stiffness between the AFM tip and the tested sample    is given by 

            

 

 (2-10) 
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where    is the reduced elastic modulus of the AFM tip-on-tested sample system, and is 

defined as 

 

  
 

     
  

  
 

     
  

  
 

Es, ET, s, T are Young’s modulus and Poisson’s ratio of the tested sample and the 

material of the AFM tip, respectively. Fc is the load applied on the tested sample by the 

AFM cantilever.  

 

Figure 2.2: (A) A beam dynamics model for AFAM based method. A one-end clamped 

rectangular cantilever beam with a stiffness kc was coupled to tested sample through a 

spring of stiffness k* based on contact mechanic model. (B) Resonant spectra of an AFM 

cantilever. The first contact resonance calculated from the beam dynamic model shown in 

(A) was higher than first free resonance of the AFM cantilever but lower than its second 

free resonance (Hurley, et al., 2007). 

The contact stiffness between an AFM tip and a tested sample k* generates a force 

between them and modifies the fourth boundary condition of the AFM cantilever, listed 

in (2-3), to 

   
       

    
    

            (2-11) 
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for a cantilever with a total length of L. L1 is the tip location.    is the distance between 

AFM tip and cantilever free end. Based on the method discussed in Section 2.2.1,   , 

wave number of the n
th

 AFM cantilever contact resonance, satisfies the following 

characteristic equation (Rabe, et al., 1996):  

                                                        

                                                        (2-12) 

     
   

  
                              

   
              

   
                              

As discussed in Chapter 1, to make sure the AFM tip touches the tested sample 

surface first, AFM cantilever is usually tilted with respect to the tested sample at an angle 

α. A tangential spring constant κ between the AFM tip and the tested sample, in addition 

to the contact stiffness   , needs to be considered in the dynamic cantilever modeling. 

Assume that the AFM tip height is h, and the cantilever spring constant is kc, the 

characteristic equation for the tilted cantilever in contact with the tested sample system is 

summarized as following (Hurley and Turner, 2007):  

 
  

  
 

          

  
 (2-13) 

where  
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In summary,    can be solved from either characteristic equation (2-12) or (2-13). 

Equation (2-13) is for a tilted cantilever. Furthermore, the contact resonance frequencies 

of a cantilever are obtained from the following dispersion relation (Rabe, et al., 1996): 

    
  

      

  

 
 

  

 
 (2-14) 

Whereas the free resonance frequencies of a cantilever   
 
 are given by: 

   
  

  

   
    

  

 
 

  

 
 (2-15) 

where   
   are the solutions of        

        
    . Combing equation (2-14) 

and (2-15), the AFM cantilever contact resonant frequencies are given by 

     
  

  
  

   
 
 (2-16) 

The above equation circumvents the necessity to know density and Young’s modulus of 

the cantilever.  
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For cantilevers with a tip being located at end of the AFM cantilever, i.e.   =0, 

knL was solved from equation (2-12) for different k*/kc, which were listed in Table 2.1. 

Substituting knL values in Table 2.1 into equation (2-16), AFM cantilever contact 

resonant frequency and its free resonant frequency ratios were obtained, as listed in Table 

2.2. From the Table, several important conclusions can be drawn: (1) For the first-order 

cantilever deflection mode, contact resonance is insensitive to k* when k*/kc<1 or 

k*/kc>100. In other words, changing of k* in those two zones does not significantly alters 

the cantilever contact resonant frequency. As a result, AFAM based method in ineffective 

to mechanical properties of a tested material in the two zones. (2) For higher-order 

deflection modes, such as n=4, contact resonant frequency is sensitive to k* only when 

k*/kc>100, which indicates that high deflection mode should be used for materials with 

high modulus. However, it is worth pointing out that the effective high-order spring 

constant knc is higher than kc, as discussed in Section 2.2.1. Contact load Fc on tested 

material and k* as a result will be larger for high-order resonance of the cantilever. 

Table 2.1: Solutions of knL from equation (2-12) (Rabe, et al., 1996). Some spaces are 

left empty because the difference between contact and free end case is less than 0.001. 

n 
Free end 

k*=0 
k*/kc=0.1 k*/kc=1 k*/kc=10 k*/kc=100 

Pinned end 

k*= 

1 1.8751 1.91891 2.2135 3.16765 3.82981 3.9266 

2 4.69409 4.69699 4.7234 5.00112 6.40415 7.06858 

3 7.85476 7.85538 7.86097 7.91896 8.58742 10.2102 

4 10.9955 10.9958 10.9978 11.0185 11.2559 13.3518 

5 14.1372 14.1373 14.1382 14.1479 14.2523 16.4934 

6 17.2788   17.2793 17.2846 17.3396 19.635 

7 20.4205     20.4239 20.4567 22.7765 
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Table 2.2: Frequency ratio fn/fn
0
 for different deflection modes of a cantilever 

n 

fn/fn
0
 

k*/kc=0.1 k*/kc=1 k*/kc=10 k*/kc=100 
Pinned end 

k*=  

1 1.047274 1.39351 2.853813 4.1716282 4.385150033 

2 1.001236 1.012527 1.135094 1.8613162 2.267574325 

3 1.000158 1.001582 1.016414 1.1952522 1.689672978 

4 1.000055 1.000418 1.004188 1.0479257 1.474516616 

With a known contact stiffness between an AFM tip and a tested material, AFM 

cantilever contact resonant frequency will be determined. Vice versa, given the contact 

resonant frequency of an AFM cantilever, the contact stiffness between the AFM tip and 

a tested material can be determined. So is Young’s modulus of tested material. The 

general procedures to extract mechanical property from contact resonant frequency are as 

follows: (1) Experimentally measure contact resonant frequency   , n = 1 case is often 

used; (2) Obtain    from equation (2-16); (3) Calculate     from equation (2-12) or (2-13) 

when AFM cantilever tilting is considered; and (4) Substitute    into equation (2-10) and 

obtain tested material Young’s modulus assuming Poisson’s ratio is close to bulk material 

value considering that variation of Poisson’s ratio has minor effect on simulated load vs. 

displacement curve (Chen and Vlassak, 2001). Due to the difficulty of directly measuring 

the tip radius, a reference sample is generally used to circumvent the necessity of 

measuring AFM tip radius R, which will be discussed in a later section.  

2.3 Experimental Setup 

To measure mechanical property of 1D nanostructures, the nanostructures was 

deposited on a substrate. The AFAM based method is for a single nanostructure, instead 

of bundled nanostructures. The sample preparation procedure was as follows: (i) the as-
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grown nanostructures were scraped from the substrate where they were grown, and 

dispersed into a solution through ultrasonication. (ii) A few drops of solution were 

dropped onto a clean substrate. After the solution was evaporated, some isolated 

nanostructures were left on the substrate. (iii) A individual nanostructure was then 

located and further tested.  

Two types of methods were tried to excite an AFM cantilever into resonance: (1) 

directly excite the PZT inside the AFM cantilever holder. The external PZT driving 

signal was connected to the AFM Signal Access Module (SAM). (2) put tested 

nanostructure-on-substrate system onto a piezoelectric transducer at ultrasonic 

frequencies (V106-RM, 2.25 MHz, 0.50’ element diameter, Panametrics). SWC (shear 

wave couplant, Olympus Inspection and Measurement System) was used to transmit an 

acoustic wave from the transducer surface to the substrate, and then the nanostructure, 

and AFM cantilever. The nanostructure-on-substrate on transducer system preparing 

processes were as follows: (i) clean the piezoelectric transducer surface with alcohol 

using a cotton swab; (ii) scrape a bit of TWC couplant, put it onto the transducer surface, 

and the bit was flatten with a sharp knife edge to form a thin layer of couplant on the 

transducer surface; (iii) lay the substrate, with nanostructure deposited on its top surface, 

onto the thin layer of couplant and press the substrate at its corners against the transducer 

surface with tweezers. By carefully following these steps, the acoustic wave can be 

effectively transmitted to the nanostructure, and then AFM cantilever. Glycerin was also 

tried as a couplant. However, it quickly spread onto the top surface of substrate where the 

nanostructures were deposited. To eliminate the possible adverse effect on mechanical 

property measurement of a nanostructure, glycerin was abandoned for further usage.  
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Comparing the two aforementioned cantilever excitation methods, the first one 

directly excites the PZT inside cantilever holder. No extra component is required. 

However, the obtained contact frequency spectrum was quite noisy. Many resonant peaks, 

beside the cantilever contact resonance peak, were found in the spectrum. Factors, such 

as resonant frequency of the part where cantilever was connected, cantilever itself and 

insecure bond between PZT and other adjacent components, could be the reasons for 

those extra peaks. Properly picking the right cantilever contact resonant frequency from 

the noisy spectrum was challenging. As a result, the second type of excitation method 

was used throughout the experiment. A clean cantilever frequency spectrum could be 

easily obtained.  

Different cantilevers with a variety of free resonant frequencies (from 100 KHz to 

400 KHz), and wide spring constant range (between a few to 40 N/m) were tried. A sharp 

and distinctive resonant frequency spectrum could be easily obtained using commercial 

silicon cantilevers (PPP-SEIH, Nanosensors). The cantilevers were chosen for further 

study as a result.  The nominal thickness, length and width of those cantilevers were 

5.01.0, 22510 and 338 m, respectively. The spring constant of each cantilever was 

individually calibrated by the manufacturer. They were between 8 and 12 N/m. The free 

resonant frequency of a cantilever was about 130 KHz. The cantilever contact resonant 

frequency was about 4 times of its free resonant frequency.  

A schematic diagram of the experimental setup of AFAM is shown in Figure 2.3. 

A function generator drives the piezoelectric transducer, which stays on the AFM sample 

stage, with a sinusoidal sine wave (sint). The wave is subsequently transmitted to the 

substrate supporting 1D nanostructures, the nanostructure, and the AFM cantilever 
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pressed against the nanostructure. The same sinusoidal sine wave is also served as a 

reference signal to a lock-in amplifier (SR844 RF, Stanford Research Systems). The 

AFM cantilever deflection signal, accessed through the AFM Signal Access Module 

(SAM), is input into the lock-in amplifier, as illustrated in Figure 2.4. The sint 

component of the cantilever deflection is measured by the lock-in amplifier using a 

LabVIEW (National Instruments) program, as shown in Figure 2.5. By sweeping the 

driving frequency  to the function generator, the cantilever spectrum while in contacting 

with the tested nanostructure, amplitude vs. driving frequency, is obtained. The frequency 

gives the maximum vibration amplitude is the contact resonant frequency of the 

cantilever at the load   .  

An AFM (Dimension 3100, Veeco Instruments Inc.) in Optical Center of UNC 

Charlotte was used to conduct AFAM based nanostructure mechanical property 

measurement. The X-Y scanner scan range (90 m) is much larger than a multimode 

SPM, which has been generally used in an AFAM based method to measure material 

properties of those small-scale structures (Stan, et al., 2007). The larger scan range 

requires extra noise dampening precautions at small-scale scans. This could be the reason 

for less accurate in software controlling. The larger scanner could also cause issues while 

landing an AFM tip right on top of a nanostructure. Equipped with a Signal Access 

Module (SAM), the AFM can take external driving signals to control the PZT insider the 

cantilever holder.  The signal then excites the AFM cantilever, whose deflection signal 

can also be accessed through the SAM, an essential component for any AFAM based 

testing. The AFM also has NANOMAN software installed. The software enables user to 

switch between a tapping mode (for surface scanning to locate an interesting area) and a 
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contact mode (for local oxidation) while the AFM tip is engaged on a surface. This 

capacity makes the AFAM based measurement method feasible for nanostructure 

mechanical property measurement even with the large scanning range scanner. The 

general procedures to measure the contact resonant frequency of an AFM cantilever are 

as follows:  

(1) Entering NANOMAN workspace;  

(2) Setting the tapping mode scanning parameters, such as scan area, set point 

driving amplitude etc; Tuning the cantilever and recording its free resonant frequency; 

Setting the contact mode parameters, such as set point voltage, which determines applied 

load on a tested sample for the subsequent AFAM based mechanical property testing. The 

scan area for contact mode is set as zero. Correctly setting the contact mode parameters is 

extremely important. Wrong parameters could cause the AFM tip blunting during the 

cantilever engaging process. 

(3) Scanning and locating a single nanostructure under tapping mode. Zooming in 

and trying to capture an image with minimum size but still be able to capture cross-

sectional profile of the nanostructure. The center of AFM scanning is set as the target 

testing location. 

(4) Switching to contact mode of the AFM and the AFM tip will land on the 

center of scanned image/targeted testing location. 

(5) Sweeping driving frequency of the input signal to the transducer, and 

obtaining cantilever contact frequency spectrum. The cantilever contact resonant 

frequency is determined from the spectrum.  
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Figure 2.3: Schematic illustration of an AFAM setup for measuring AFM cantilever 

resonant frequency 

 

Figure 2.4: Signal in and out from a lock-in amplifier 

Transducer 



57 

 

 

 

Figure 2.5: Screen shot of the LabVIEW program, (a) Front panel and (b) block diagram, 

used to measure the AFM cantilever contact resonant frequency 

(a) 

(b) 
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2.4 Results and Discussion 

Using the procedures listed in Section 2.3, contact resonance frequencies of three 

cantilevers while contacting a single BaB6 nanostructure-on-substrate system, and a Si 

substrate with 1 m thick SiO2 layer on top(SiO2/Si) were measured. The frequencies on 

the system and SiO2 on Si are listed in Table 2.3.  

As discussed in Section 2.2, wave number    of an AFM cantilever, while 

contacting with a tested sample, is related to contact resonant frequency of the cantilever, 

see equation (2-14) or (2-16). The AFM tip–tested sample contact stiffness   can be 

calculated from    based on cantilever dynamics, see equation (2-12) or (2-13). Young’s 

modulus of the tested sample will be extracted from    based on equation (2-10). The 

AFM tip worn out makes tip radius determination tricky. To avoid measuring the AFM 

tip apex radius, cantilever contact resonant frequency was also measured on a reference 

material, SiO2/Si. Assume the AFM tip apex radius are same during the tests on the 

reference material and the system, and with a same applied load Fc, the ratio of equation 

(2-10) for the test system over that for reference material is 

   
    

  
  

 

  
   (2-17) 

where subscript S and R stands for the tested system and the reference material, 

respectively. Assume Young’s modulus and Poisson’s ratio of SiO2/Si is 70 GPa and 0.3, 

respectively, and Young’s modulus and Poisson’s ratio of AFM tip material are 150 GPa 

and 0.17. The extracted Young’s modulus of the tested BaB6 nanostructure was listed in 

the last column of Table 2.3.  The above procedure is a general practice in AFAM based 

mechanical property measurement, as adopted by some researchers (Stan, et al., 2009).  
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Table 2.3: AFM cantilever contact resonant frequency on SiO2/Si and nanostructures 

Cantilever 

Contact resonant 

frequency on SiO2/Si 

(KHz) 

Contact resonance 

frequency on 

NW(KHz) 

Calculated Young’s 

modulus of a BaB6 

nanostructure (GPa) 

1 474 497 131.68 

2 486 509 132.09 

3 470 489 121.96 

The obtained Young’s modulus of the BaB6 nanostructure is significantly lower 

than that of bulk BaB6 materials (Kosolapova, 1990) and that measured using 

nanoindentation (as listed in Chapter 4).  The discrepancy could be due to the following 

reasons: 

1. AFM tip shape uncertainty: with a non-wearable AFM tip, the Young’s 

modulus of tested material has a well defined relationship with AFM tip – 

tested material contact stiffness according to Equation (2-10).  However, we 

noticed that the AFM tip continuously worn throughout the experiment. The 

AFM tips were examined inside a SEM before and after each contact resonant 

frequency measurement. Figure 2.6 shows SEM images of a typical worn tip 

and a new AFM tip. The tip wearing can also be inferred by the contact 

resonant frequency shift on one material before and after an experiment on 

glass (Hurley and Turner, 2007). The evolving of silicon AFM tip geometry 

during experiment has been found by previous researchers. Kopycinska-

Muller, Geiss et al. (Kopycinska-Muller, et al., 2006) conducted contact 

resonance spectroscopy measurements using ten AFM cantilevers. They found 

that neither punch nor hemisphere shape could successfully represent the 

shape of those AFM tips. Instead, the measured contact resonance frequencies 
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were successfully correlated to mechanical properties assuming contact 

stiffness and applied load on a tested sample satisfied an equation n

cFk * , 

where   is a factor depending on tip geometry and elastic properties of the tip 

and tested sample. n varies from 0 for a flat punch to 1/3 for a spherical 

indenter. Continuing tip blunting during experiment caused tremendous 

uncertainty of the measurements. 

 

Figure 2.6: SEM images of (a) a typical worn tip, and (b) a new AFM tip 

2. While the silicon AFM tip is contacted with materials of high modulus, like 

TiO2 or MB6 nanostructures, most of the deformation of an AFM tip-on-

nanostructure system comes from the AFM tip. It could cause: (1) continuing 

blunting of the AFM tip; (2)the AFM cantilever contact resonant frequency 

actually being correlated to silicon modulus, while irrelevant to the properties 

of the tested materials, i.e. the AFAM based method can’t be used to measure 

(a) (b) 
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mechanical properties of materials with high modulus. A diamond indenter 

should be used to measure their mechanical properties.  

3. The tested BaB6 nanostructures typically have oxidation layers, which will be 

discussed in Chapter 4. Moreover, a gentle load, 120 nN, was applied on the 

nanostructure by the AFM cantilever. The load induced deformation of the 

nanostructure could be confined in the oxidation layer. The measured modulus 

listed in Table 2.3 is slightly bigger than the Young’s modulus of BaO 

calculated using first-principle (Ghebouli, et al.).  The calculated Young’s 

modulus at zero pressure is 104.51 GPa. In other words, the measured 

modulus could be modulus of the oxidation layer.  

4. AFAM based method depends on the AFM hardware capability. Even though 

the AFM used is equipped with Nanoman software, which enables the AFM 

to switch between tapping mode and contact mode while the cantilever is 

engaged on a tested sample. The scanner in our AFM system is designed for 

large area scanning, which makes landing exactly on top of a nanostructure 

challenging. The inability to land at the target area and stay there during the 

whole testing process makes the tested results error prone.  

5. In the aforementioned data analysis procedure, the AFM tip modulus was 

assumed to be same as their bulk counterparts. However, the two could be 

different due to the small radius of the AFM tip. Method using a second 

reference material to avoid the assumption has been introduced by Stan and 

Price (Stan and Price, 2006). The method improves the accuracy of the 

measured modulus of nanostructures.   
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2.5 Discussions 

Mechanical property measurement of a 1D nanostructure using an AFAM was 

reviewed. Three tests on a 1D BaB6 nanostructure were conducted and the nanostructure 

Young’s moduli were analyzed. The obtained Young’s modulus of the nanostructure is 

significantly lower than that measured by nanoindentation. Possible reasons to cause this 

discrepancy were discussed. As a conclusion, the AFAM based method is improper for 

measuring mechanical property of BaB6 nanostructures due to (1) significant AFM tip 

blunting during the measurement, (2) the measured property could be for the oxidation 

layer of the nanostructure, instead of nanostructure itself because of the relative small 

load applied on the nanostructure. Nanoindentation was then mainly adopted for 

mechanical property measurement of 1D nanostructures in this dissertation.   



 

 

CHAPTER 3: NANOINDENTATION ON TiO2 NANORIBBONS 

3.1 Introduction 

As discussed in Chapter 1 and 2, nanoindentation is mainly used to measure 

mechanical property of 1D nanostructures throughout this dissertation work. Though 

nanoindentation can be performed relatively easily, a variety of factors need to be 

carefully considered to assure the accuracy of test results. For example, when studying 

the mechanical properties of thin films using nanoindentation, the underlying substrate 

could affect the measurement results significantly. In order to avoid the substrate effect, 

Bückle’s rule (Bückle, 1973) is generally followed. The rule assumes that the substrate 

will not significantly affect the mechanical properties of a thin film if the indentation 

depth is less than 10% of the film thickness. However, it is often impractical to follow 

Bückle’s rule as the thickness of films continuously decreases in many applications. 

Moreover, for a hard material on compliant substrate system, Bückle’s rule is unrealistic 

due to the deformation of the substrate even under low load (Geng, et al., 2008). Recently, 

the substrate effect has been extensively studied both numerically and experimentally in 

elastically mismatched film-on-substrate systems (Chen and Vlassak, 2001, Clifford and 

Seah, 2009, Gao, et al., 2008, Han, et al., 2006). It has been shown that the substrate 

effects are significant: depending on the mismatch parameter between the elastic modulus 

of thin film and substrate, the effective modulus of the film-on-substrate system could be 

up to 10 times the modulus of the thin film itself (Gao, et al., 2008). On the other hand,
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to overcome many experimental issues associated with shallow indentation, such as 

indenter tip-film surface adhesion, specimen surface roughness, indenter tip bluntness 

and strain gradient effects, the substrate effect has been used to extrapolate the thin film 

elastic-plastic parameters from a moderate depth load-indenter displacement curve (Zhao, 

et al., 2008). There is no doubt that the substrate effect is a very important consideration 

when determining mechanical properties of thin films. 

In a similar manner, when performing the nanoindentation of a 1D nanostructure 

laid on a substrate, the substrate effect could also exist. To assure the testing accuracy, 

several questions need to be explicitly answered: How will the substrate affect the 

mechanical properties measurement of the 1D nanostructure? Will the substrate make the 

1D nanostructure look more compliant or stiff? Are data produced by the software 

associated with the nanoindenter, the modulus of a nanostructure-on-substrate system, 

close to the ―intrinsic‖ properties of the 1D nanostructure? An intrinsic property denotes 

the inherent property of the nanostructure, which is dependent mainly on the chemical 

composition or structure of the nanostructure.  It is independent of how the nanostructure 

is measured.  In the great majority of papers published on the nanoindentation of 1D 

nanostructures, the compliance induced by the contact between the nanostructure and the 

substrate was assumed to be negligible (Li, et al., 2005, Mao, et al., 2003).  In other 

words, the measured modulus of nanostructure-on-substrate system was assumed as the 

intrinsic modulus of the nanostructure.  Is this assumption reasonable? A double contact 

model for the nanoindentation of a nanowire on a flat substrate was proposed (Feng, et al., 

2006). The model considered two contacts in a series. One was the contact between the 

nanowire and the indenter (contact 1), modeled as an elliptical contact. The other was the 
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contact between the nanowire and the substrate (contact 2), modeled as a receding contact. 

Due to the difficulty to obtain the contact stiffness from the receding theory alone, the 

contact stiffness for contact 2 (S2) was calculated using the analytical solutions derived 

from the elliptical contact theory with contact dimensions obtained from the receding 

contact theory. The calculated contact stiffness S2 was much larger than the contact 

stiffness for contact 1 (S1). Thus, a conclusion that contact 2 (i.e., the substrate effect) 

could be ignored was drawn. However, an interesting question is raised: could the contact 

stiffness between the nanowire and the substrate be overestimated? Recently, Shu et al. 

numerically studied the nanoindentation of nanowires on elastic-plastic substrates and 

concluded that the measured hardness and Young’s modulus of nanowires could be 

significantly influenced by the mechanical properties of the substrates (Shu, et al., 2009). 

Is there any experimental evidence for this conclusion? 

The present work is motivated by above research efforts and for the better 

understanding of the mechanical property measurement of 1D nanostructures with 

nanoindentation. Our focus is to explore how the substrate could affect the measured 

Young’s modulus of 1D nanostructures. The work was done on titanium dioxide (TiO2) 

nanoribbons.  They are a class of nanomaterials with unique materials properties and 

promising applications in photo-catalysis, gas sensing, and photovoltaic devices (Chen 

and Mao, 2007). Both experimental work and numerical simulation were performed to 

study the Young’s modulus of TiO2 nanoribbons dispersed on three different substrates. 

Results showed that the properties of substrates significantly influenced the measured 

system modulus. To obtain reliable mechanical properties of a nanoribbon, suitable 

substrates need to be chosen. Otherwise, the Young’s modulus of the nanoribbon could 
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be either overestimated or underestimated. For the single crystalline rutile TiO2 

nanoribbons, the measured modulus was close to the intrinsic modulus when 

sapphire(0001) was used as the substrate. The Young’s modulus of TiO2 nanoribbons 

with an average thickness of 30 nm and a half-width of 80 nm was determined to be 

around 360 GPa. To the best of our knowledge, this is the first time the Young’s modulus 

of a rutile TiO2 nanoribbon has been reported.  

3.2 Experimental Details 

Using a similar methodology described in our previous publication (Amin, et al., 

2007), TiO2 1D nanostructures (Figure 3.1(a)) including both nanowires and nanoribbons 

were synthesized by annealing Ni-coated Ti powders. The 1D nanostructures were 

characterized to be single crystalline rutile with [110] as the preferred growth direction. 

The as-synthesized TiO2 nanostructures were scraped off from powders and dispersed 

uniformly into absolute alcohol by ultrasonication. A few drops of alcohol solution were 

then deposited onto a substrate (1 cm × 1 cm). To study the substrate effect on the 

measurement of mechanical properties of 1D nanostructures, three different substrate 

materials including silicon substrate with 1 m thick SiO2 layer on top (SiO2/Si), Si(100) 

and sapphire(0001) were used. Optical microscopy (Olympus BX51 research-level 

microscope; dark field) was employed to locate individual TiO2 nanostructures on the 

substrate and to differentiate their morphologies. Under the optical microscope, the 

nanowires and nanoribbons appeared to be black and white, respectively. Our previous 

experience demonstrated that sliding of the nanostructure could occur, especially during 

the nanoindentation of a nanowire with a circular cross-section. The sliding phenomenon 

was more obvious when the expected Young’s modulus of the nanowire was higher than 
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that of the substrate. Thus, to avoid the sliding problem during nanoindentation, only 

TiO2 nanoribbons with rectangular cross-sections were selected and studied in this work. 

The nanoribbons identified by optical microscopy were further examined by Atomic 

Force Microscopy (AFM; Dimension 3100, Veeco Instruments Inc.) to verify their 

geometry and obtain dimensional information. The nanoribbons had an average thickness 

of 30 nm and a width of 150 nm. Figure 3.1(b) shows a representative AFM image of a 

single TiO2 nanoribbon and the corresponding line profile. The selected nanoribbons 

were then subjected to nanoindentation without any further treatment. 

 

Figure 3.1: (a) the SEM image of as-synthesized TiO2 1D nanostructures on a Ti powder. 

(b) an AFM image of a single TiO2 nanoribbon. The inset is a cross-sectional profile of 

the nanoribbon, showing the nanoribbon is around 150 nm wide and 30 nm thick. 

Nanoindentation was performed on both substrates and TiO2 nanoribbons, using 

an Agilent Technology G200 nanoindenter equipped with the nanoVision Scanning Force 

Microscopy (SFM) option, the Continuous Stiffness Measurement (CSM) option and the 
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Dynamic Contact Module (DCM) option. The DCM head provides superior load 

resolution (1 nN) and displacement resolution (0.0002 nm) (MTS, 2007). A Berkovich 

indenter with a calibrated tip radius of ~ 80 nm was used. The tip radius was calibrated 

with a standard reference silica sample. The indentation processes were as follows: load 

to a set displacement with a constant strain rate of 0.05 s
-1

; unload with the same strain 

rate to 10% of the maximum load and hold for 50 s to correct thermal drift; then complete 

the unloading. During the entire loading process, a harmonic perturbation with a 1 nm 

sinusoidal displacement was superimposed to the quasi-static main loading process for all 

tests. The amplitude and phase of the indenter displacement were measured with a 

synchronous detector. The harmonic contact stiffness S was determined continuously as a 

function of depth. (i) Nanoindentation of substrates. The loading depth was set to 120 nm. 

For each substrate material, 72 indentations clustered into two 6  6 matrices were made. 

The indentation data was processed by the software associated with the nanoindenter, by 

which the Young’s modulus was calculated based on the standard Oliver-Pharr method 

(Oliver and Pharr, 1992). The obtained Young’s moduli were averaged and presented in 

later sections. (ii) Nanoindentation of nanoribbons. Using the nanoVision SFM option, 

the DCM head was able to image (scan time: 15 s, scan load applied: 0.001 times the load 

that must be applied to the tip to keep it on the surface when traveling on a 45 slope 

(MTS, 2007) and indent individual nanoribbons. For each nanoindentation test, a 

maximum depth of 15 nm was employed. To obtain reliable data, at least 10 nanoribbons 

on each substrate were tested. After indentation, the residual indentations were examined 

by both the nanoVision SFM and AFM. Only the data obtained from those nanoribbons 
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with well-centered residual indentations were accepted and processed by the software 

associated with the nanoindenter.  

3.3 Finite Element Modeling 

Three-dimensional (3D) finite element modeling (FEM) was carried out to 

simulate indenting the nanoribbon-on-substrate system using the commercial software 

ABAQUS. The Berkovich indenter was modeled as a rigid cone indenter with a half-

included angle of 70.3, and an apex radius of the indenter at 80 nm. Due to symmetry, 

only a quarter of the nanoribbon-on-substrate system was considered. The bottom of the 

substrate was constrained in the x-, y- and z-directions. Symmetry conditions were 

applied on all symmetry planes. The contact between the indenter and the nanoribbon 

was assumed to be frictionless, as was the interaction between the nanoribbon and the 

substrate. Bulk parts of the nanoribbon and the substrate were modeled with C3D20R 

brick elements. The remaining elements where contact may occur were C3D27R brick 

elements, the midface nodes were added on the contact slave surface. The meshes 

gradually coarsened with the increasing distance from the indentation center to optimize 

the computational cost and accuracy. The minimum element size was 2.53 nm. And the 

number of elements increased during indentation process. At maximum indentation depth, 

at least 10 elements were in contact. The load (P) – indenter displacement (h) curve was 

obtained by recording the reaction force acting on the indenter and the corresponding 

indenter displacement.  

The standard thickness and half-width of a nanoribbon was assumed to be 30 nm 

and 80 nm, respectively.  The Young’s modulus of the nanoribbon was assumed to be 

110 GPa, 200 GPa and 350 GPa, respectively. As discussed in Section 3.4, these values 
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were chosen because of their closeness to the experimentally measured values of three 

different nanoribbon-on-substrate systems. The thickness and half-width of substrates 

were chosen to be 200 nm and 80 nm, respectively. This selection was based on a few 

simulations to ensure that the effect of substrate boundary conditions on the simulated 

reaction force of an indentation test on a half-space was within ~ 4% of the analytical 

solution, as shown in Figure 3.2. To save computational time and cost, the so-called 

infinite element method which simulates an infinite domain through a proper mapping 

(Zienkiewicz, 1989) could be used to simulate the substrate in this work. However, it is 

believed the results produced by the current simulation and the infinite element method 

will be similar. The Young’s moduli of the substrates were assumed to be 90 GPa, 180 

GPa and 500 GPa, respectively. These values correspond to the experimental values of 

SiO2/Si, Si(100) and sapphire(0001), as discussed later in the text. The Poisson’s ratio 

was 0.3 for both the nanoribbon and the substrate. Since the unloading process is elastic 

during the nanoindentation even if the tested material has undergone significant plastic 

deformation on loading, both the nanoribbon and the substrate were assumed to be elastic, 

homogeneous and isotropic when investigating the substrate effect on the Young’s 

modulus of a nanoribbon.  The basis of the assumption that both the nanoribbon and the 

substrate could be elastic is a few FEM results (Chen and Vlassak, 2001), which 

confirmed that contact stiffness must be the same for both elastic and elastic-plastic 

materials, as long as the contact area between an indenter and the tested material is the 

same.  Note that for the elastic simulations, the loading and unloading curves are 

overlapped.  If the nanostructure is anisotropic, a correction factor to the isotropic model 

could be introduced to a good approximation (Vlassak and Nix, 1994).  That is, given 
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anisotropic factor a crystal, the indenation modulus on any surface can be easily obtained 

based on the isotropic model we studied here.  For an isotropic material, the only two 

impendent materials constant is Young’s modulus E and Possion’s ratio.    

 

Figure 3.2: Simulated maximum load applied on a bare substrate of different thickness at 

an indentation depth of 15 nm.  The Young’s modulus of the substrate was 300 GPa.  Tip 

radius of the spherical indenter in the simulation was 30 nm.  The dotted line represented 

the analytical solution of the maximum load based on Hertz contact mechanics.   

3.4 Results and Discussion 

3.4.1 Experimental Results 

3.4.1.1. Bare substrate characterization. The three substrates used in this study 

were subjected to nanoindentation as described in Section 3.2. The measured Young’s 

moduli were 85 ± 1 GPa for SiO2/Si, 185 ± 2 GPa for Si (100) and 503 ± 6 GPa for 
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sapphire (0001), respectively. These data provide references when performing the 

numerical simulation.  

3.4.1.2. Nanoribbon-on-substrate system characterization. Nanoindentation was 

performed on individual TiO2 nanoribbons dispersed on SiO2/Si, Si(100) and 

sapphire(0001), respectively. After indentation, AFM was used to examine the residue 

indentation on nanoribbons. For the indentation of nanoribbon-on-SiO2/Si, no residual 

indentation could be detected, indicating the yielding of SiO2/Si substrate. For 

nanoindentation of nanoribbon-on-Si and nanoribbon-on-sapphire, clear residual 

indentations can be identified, implying that the hardness of the nanoribbon is 

comparable to or less than Si and sapphire. Figure 3.2(a) is a representative AFM image 

of an indented TiO2 nanoribbon on a sapphire substrate. Several well-centered residual 

indentations can be observed. Additionally, indentation-induced fracture is seen at three 

indentation sites (indicated by the black arrows). It seems the crack initiated at the tips of 

indentation where stress concentration exists. These experimental observations not only 

qualitatively demonstrated that the substrate could affect the measurement results, but 

also provided fundamental information about the fracture behavior of TiO2 nanoribbons. 

Figure 3.2(b) shows the typical P-h curves for TiO2 nanoribbons on three different 

substrates. A pop-in phenomenon was observed in some test results, indicating the 

possible initiation and propagation of an indentation-induced crack (Yang, et al., 2005). 

Based on these P-h curves, the Young’s moduli calculated by the Oliver-Pharr method 

were around 110 GPa for a nanoribbon-on-SiO2/Si, 200 GPa for a nanoribbon-on-Si, and 

350 GPa for a nanoribbon-on-sapphire, respectively. There is no doubt that the substrate 

affects the accurate determination of the Young’s modulus of TiO2 nanoribbons. So 
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which experimental data is more reliable and close to the intrinsic modulus of TiO2 

nanoribbons?  

Figure 3.3: (a) AFM image of an indented nanoribbon on a sapphire(0001) substrate. Five 

well-centered residual indentations are shown. Sites where indentation-induced fracture 

occurred are indicated by black arrows. (b) Typical load-indenter displacement (P-h) 

curves for TiO2 nanoribbons on three different substrates. The circles correspond to the 

possible pop-in phenomena. 

3.4.2 Simulation Results 

3.4.2.1. The contact between the nanoribbon and the substrate 

Figure 3.3(a) is a typical simulated deformation pattern of a nanoribbon under 

indentation. The edges of the nanoribbon are lift-up, indicating the contact between the 

nanoribbon and the substrate is close to a receding contact (Keer, et al., 1972). Figure 

3.3(b) shows a typical AFM image of a TiO2 nanoribbon after indentation. The brighter 

part between the two residue indentations implies the adhesion between nanoribbon and 

the substrate was weak so that the nanoribbon was lifted up during the indenting process. 

From both the simulated deformation pattern and the experimental observation, we 
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believe that receding contact mechanics should be a good approximation for the contact 

between the TiO2 nanoribbon and the substrate.  

 

Figure 3.4: (a) Typical simulated deformation pattern of a nanoribbon-on-sapphire 

system under indentation. The edges of the nanoribbons are clearly lift-up. (b) Typical 

AFM image of a nanoribbon after nanoindentation. The brighter portion between the two 

residue indentations implies the nanoribbon was lifted up.   

To validate the reliability of the FEM model and further understand the contact 

mechanics between the nanoribbon and the substrate, the analysis of the contact radius 

and the Dundurs parameter was carried out. The contact area between the nanoribbon and 

the substrate is a circle with a radius of a2, and its value could be obtained from 

simulation. The Dundurs parameter α is given by 
  

      
 

  
      

 
 , where the reduced Young’s 

modulus    is defined as E/(1-ν
2
), and E and ν are the Young’s modulus and Poisson’s 

ratio. (Note: the subscripts ―sub‖ and ―n‖ denote substrate and nanoribbon, respectively.)  

The relation between the ratio a2/t (where t is the thickness of the nanoribbon and was 

assumed to be 30 nm in this work) and the Dundurs parameter α is plotted in Figure 3.4.  
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Figure 3.5: Plots of a2/t vs α obtained from the receding contact model (Keer, et al., 

1972), the plate-on-foundation model (Kauzlarich and Greenwood, 2001), and the current 

FEM results. This analysis validates the reliability of the FEM model.  

When Esub is less than En ((i.e., α < 0), the ratio a2/t agrees well with that calculated from 

the plate bending theory (Kauzlarich and Greenwood, 2001), indicating that the 

indentation test on nanoribbon-on-substrate system is better described by the classical 

plate-on-foundation model. On the other hand, when Esub is larger than En (i.e., α >0), the 

ratio a2/t agrees well with that calculated by the axisymmetric receding contact theory 

(Keer, et al., 1972). This analysis demonstrates that the FEM model is reliable.  

3.4.2.2. Implication of the simulation results 

Using the above validated FEM model, simulation of nanoindentation on three 

nanoribbon-on-substrate systems was carried out. The simulation results help us to 

answer two questions: 

Question 1: As reported in Section 3.4.1.2, different values of Young’s modulus 

were obtained when individual nanoribbons were put on different substrates (e.g., 110 

GPa for a nanoribbon-on-SiO2/Si, 200 GPa for a nanoribbon-on-Si, and 350 GPa for a 

 
Current FEM 

Kauzlarich et al. 

Keer et al. 
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nanoribbon-on-sapphire). Are any of these measured values close to the intrinsic Young’s 

modulus of TiO2 nanoribbons? If yes, which one? In other words, to get a reliable 

Young’s modulus of an individual TiO2 nanoribbon, which substrate should be chosen 

for nanoindentation tests? To answer these questions, the P-h curves of several 

nanoribbon-on-substrate systems as well as ―half space‖ curves (i.e., the P-h curve of an 

indentation into a homogeneous half-space that is made from the same material as the 

nanoribbon) were simulated (Figure 3.5(a)). By comparing the P-h curve of a 

nanoribbon-on-substrate system with its corresponding ―half space‖ curve, whether the 

measured modulus is close to the intrinsic modulus can be identified.  

The measured modulus of a TiO2 nanoribbon was ~ 110 GPa when the 

nanoribbon was laid on a SiO2/Si substrate. Assuming this value represents the intrinsic 

modulus of the nanoribbon, two P-h curves were simulated using the aforementioned 

FEM model. The curve denoted as ―110 on SiO2/Si‖ represents the P-h curve of an 

indentation of a nanoribbon (assumed Young’s modulus: 110 GPa) on a SiO2/Si substrate 

(assumed Young’s modulus: 90 GPa) system. The assumed values correspond to the 

experimental values. The curve denoted as ―110 half space‖ is the P-h curve of an 

indentation into a homogeneous half-space that is made from the same material as the 

TiO2 nanoribbon whose Young’s modulus was assumed as 110 GPa. The two simulated 

curves do not overlap with each other, indicating the measured modulus of 110 GPa is 

not the intrinsic modulus of TiO2 nanoribbons. Similarly, by comparing the simulated 

curve of ―200 on Si‖ with that of ―200 half space‖, one can find out that the measured 

modulus of 200 GPa from a nanoribbon-on-Si system is not the intrinsic modulus of TiO2 

nanoribbons either. However, when sapphire was used as the substrate, the simulated P-h 
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curve of ―350 on sapphire‖ overlaps with that of ―350 half space‖, indicating that the 

measured modulus of 350 GPa is close to the intrinsic modulus of TiO2 nanoribbons.  In 

short, the simulation results demonstrate that the measured modulus is not close to the 

intrinsic modulus unless a suitable substrate is used. For a nanoribbon-on-substrate 

system, the modulus measured by the software associated with the nanoindenter is 

actually an effective system modulus because it combines the contribution from both the 

nanoribbon and the substrate. This effective system modulus could be close to the 

intrinsic modulus of the nanoribbon if an appropriate substrate is chosen. For this work, 

sapphire (0001) is the proper substrate for measurement of TiO2 nanoribbons. 

To further illustrate the substrate effect on measurement reliability, the P-h curves 

(Figure 3.5(b)) for nanonindentation of a nanoribbon (Eassumed = 350 GPa) on three 

substrates were simulated. The simulation results clearly showed the significance of 

substrate effect. When the nanoribbon is put on a substrate with a lower Young’s 

modulus (e.g., 90 GPa for SiO2/Si, or 180 GPa for Si), the simulated P-h curve is far from 

the ―half-space‖ curve, and the Young’s modulus of the nanoribbon could be 

significantly underestimated. When a substrate with a higher Young’s modulus is chosen 

(e.g., 500 GPa for sapphire), the simulated P-h curve closes to the ―half-space‖ curve, 

indicating that the corresponding substrate is proper to obtain reliable data for 

nanoindentation of a TiO2 nanoribbon.  

Question 2: When using sapphire as the substrate and an indenter with the tip 

radius of 80 nm, will the change of the width of the nanoribbon affect the measurement 

results? Figure 3.5(c) shows the simulated P-h curves for nanoribbons with half-width as 

40 nm, 60 nm, 80 nm and 100 nm, respectively. The narrower the nanoribbon, the farther 
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the P-h curve is away from the ―half-space‖ curve. In other words, the effective system 

modulus provided by the nanoindenter software is an underestimation of intrinsic 

modulus. When the half-width of the nanoribbon increases, the width effect diminishes 

and the effective modulus is close to the intrinsic Young’s modulus of the nanoribbon. 

Similar results were reported by Xu et al., stating that a significant sample size effect 

could occur when the sample size is comparable to the indenter size (Xu and Li, 2006).  

 

Figure 3.6: (a) Simulated P-h curves for nanoindentation of several nanoribbon-on-

substrate systems as well as ―half space‖ curves.  The simulated ―350 on sapphire‖ curve 

overlaps the ―350 half space‖ curve, indicating the measured modulus is close to the 

intrinsic modulus of TiO2 nanoribbons when sapphire (0001) is used as the substrate. (b) 

Simulated P-h curves for nanoindentation of a nanoribbon with assumed modulus as 350 

GPa on three substrates. This result further illustrates the substrate effect on measurement 

reliability. (c) Simulated P-h curves for nanoindentation of nanoribbons with different 

width on a sapphire substrate. The width effect is significant when the width of a 

nanoribbon is close to the indenter size.  

3.4.3 Data Analysis  

The above FEM results showed that sapphire is the suitable substrate for 

nanoindentation of TiO2 nanoribbons, and the corresponding measured modulus is close 

to the intrinsic modulus. The measured modulus was found between 300 GPa and 365 

GPa, with an average value of 342 GPa.  Though the measured data was close to the 

intrinsic modulus of TiO2 nanoribbons, an inverse data analysis process was carried out 
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to obtain more accurate intrinsic values. The inverse process, as shown in Figure 3.7, was 

as follows: (i) taking the measured modulus m0 as an initial guess of the intrinsic modulus 

of nanoribbons m1, simulated the modulus of ―m1 on Sapphire‖, m; (ii) compared m and 

m0, then increased or decreased the initial modulus value m1 to a value m so that the 

modulus of ―m on sapphire‖ equals to m0; (iii) m1 was the intrinsic modulus of the 

nanoribbon.  For the nanoribbons with system moduli of 342 GPa, the extracted the 

moduli of nanoribbons was 360 GPa.   

 

Figure 3.7: A general data inverse process of extracting the intrinsic modulus of a 

nanoribbon from the measured system modulus 

Since the exact crystallographic information relating to the indented surfaces is 

unknown, it is difficult to make an accurate comparison between our results and the 

available Young’s modulus data of bulk rutile TiO2. However, it seems that the obtained 

Young’s modulus of TiO2 nanoribbons (i.e., ~360 GPa) is comparable to that of bulk 

rutile TiO2 (e.g., E(110)=368.8 GPa, E(001)=385.8 GPa, E(111)=318.9 GPa) (Li and Bradt, 
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1993). The measured hardness is around 15 GPa, which is also comparable to the 

hardness of bulk rutile TiO2 (i.e.,13 GPa (Mayo, et al., 1990)).  

3.4.4 A General Rule for Studying Young’s Modulus of 1D Nanostructures by 

Nanoindentation 

The current work demonstrates that the selection of a proper substrate is one key 

factor to obtain reliable measurement results of Young’s modulus of 1D nanostructures 

by nanoindentation. The measurement from a single nanostructure-on-substrate system 

cannot produce reliable results. For example, if we only performed nanoindentation on 

TiO2 nanoribbons laid on Si substrates, the obtained modulus of 200 GPa would be a 

significant underestimation of intrinsic modulus of TiO2 nanoribbons.  

Thus, to study the Young’s modulus of 1D nanostructures by nanoindentation, 

experimental work need to be first performed on different nanostructure-on-substrate 

systems. For each nanostructure-on-substrate system, by comparing the measured 

modulus (En (measured)) with the Young’s modulus of the substrate (Esub), the substrate is 

identified as either proper or not. If En(measured) > Esub, the substrate is not proper and the 

measured value is an underestimation of intrinsic modulus of the nanostructure. If 

En(measured) < Esub, the substrate can be proper. However, the measured value might be 

overestimated. As a result, FEM work (such as the aforementioned inverse data analysis 

process) needs to be carried out to obtain a more reliable Young’s modulus.  

3.5 Conclusions  

In summary, both experimental and numerical studies were carried out to 

investigate the Young’s modulus of single crystalline rutile TiO2 nanoribbons under 

nanoindentation. Three different substrates, including SiO2/Si, Si(100) and 
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sapphire(0001), were used to support nanoribbons. Results show that the receding contact 

mechanics is a good approximation when describing the contact between the nanoribbon 

and the substrate. In addition, results demonstrate that a suitable substrate is one of the 

keys to obtain reliable measurement data of 1D nanostructures. The Young’s modulus of 

TiO2 nanoribbons was found to be around 360 GPa, comparable to that of bulk TiO2. The 

work done here is a good example, demonstrating that both experimental and numerical 

investigations are needed for studying the mechanical properties of 1D nanostructures by 

nanoindentation. Otherwise, the Young’s modulus of the nanoribbon could either be 

overestimated or underestimated.  

To further improve the accuracy of results, there are several issues that need 

future consideration. For example, (i) Information related to the indenter tip radius/shape 

and nanoribbon width is critical for a quantitative mechanical properties extraction. 

Given this information, the intrinsic mechanical properties of the nanoribbon can be 

deduced more accurately through the aforementioned inverse process. (ii) Although the 

Young’s modulus of the nanoribbon can be deduced from the elastic model of 

nanoribbon and substrate, the actual hardness of the nanoribbon should be studied based 

on a model including the plastic deformation.  



 

 

CHAPTER 4: MEASUREMENT OF MECHANICAL PROPERTIES OF ALKALINE 

EARTH METAL HEXABORIDE ONE-DIMENSIONAL NANOSTRUCTURES BY 

NANOINDENTATION 

4.1 Introduction 

In Chapter 3, nanoindentation test on TiO2 nanoribbons with width to thickness ratio 

about 5 was conducted. A general rule on selecting a proper substrate to support a 

nanostructure so that the measured nanostructure-on-substrate system modulus is closed to 

the nanostructure’s modulus itself was discussed. Will the rule works for MB6 nanostructures 

which have a width to thickness ratio about 1 to 2? This chapter tries to answer the question.  

The divalent alkaline earth metal hexaborides MB6 (M=Ca, Sr, Ba) crystallize in a 

CsCl-type structure with the cubic symmetry as Pm3m (Adams, 1964). The B6 boron 

octahedra are at eight corners of a cube, whereas the metal atom is at the cubic body center 

(Adams, 1964). The B6 boron octahedra link to each other by B-B bonds to form a rigid 

three-dimensional boron framework (Adams, 1964). As a result, MB6 materials have 

properties of low densities, low thermal expansion coefficients, high hardness, high melting 

points and good chemical stability (Adams, 1964). They are also promising n-type high 

temperature thermoelectric materials because of their rising Seebeck coefficients (absolute 

value) and electrical conductivities as temperature increases (Imai, et al., 2001, Takeda, et al., 

2006). Recent advances have shown that low-dimensional materials such as quantum dots, 

one-dimensional (1D) nanostructures and thin films provide new opportunities to achieve 

enhanced thermoelectric figure-of-merit (Dresselhaus, et al., 2007, Dresselhaus, et al., 1999). 
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Our latest synthesis of single crystalline MB6 1D nanostructures, nanowires, has made the 

exploration of their thermoelectric performance possible (Amin, et al., 2009, Xu, et al., 

2004). In addition to the study of thermoelectric properties, understanding the mechanical 

behavior of these MB6 1D nanostructure is essential before they can be integrated into 

new devices. However, there have been no reports on mechanical properties of MB6 1D 

nanostructures. Even for bulk MB6 materials, only scarce data can be found (Grechnev, et 

al., 2008, Kosolapova, 1990, Shang, et al., 2007(Wei, et al., 2011), Datta, 1975). 

The aim of this chapter is to measure the mechanical properties of 1D MB6 

nanostructures using nanoindentation. The measured moduli were quite scattering. Both 

experimental observation and numerical simulation demonstrate that the data scattering 

was due to several factors such as the width-to-thickness ratio of a nanostructure, the 

interaction between a nanostructure and a substrate, and the cross section of a 

nanostructure. A smaller nanostructure width-to-thickness ratio, a frictionless receding 

interaction and a circular cross section could all lead to a lower measured modulus. To 

find out the intrinsic Young’s modulus of a nanostructure, the data inverse process was 

used to correct the experimentally measured modulus. The extracted intrinsic modulus of 

SrB6, BaB6 and CaB6 1D nanostructures fell within ranges of 300-425, 270-475, and 175-

365 GPa, respectively. 

4.2 Experimental Details 

Using the methodology described in our previous reports (Amin, et al., 2009, Xu, 

et al., 2004), single crystalline MB6 1D nanostructures were synthesized by pyrolysis of 

diborane over nickel-coated alkaline earth metal oxide (MO) powders at elevated 

temperature and low pressure. The as-synthesized MB6 nanostructures grew on top of 
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MO powders, forming an urchin-like geometry (Amin, et al., 2009). The nanostructures 

were transferred to two different substrates: silicon(100) and sapphire(0001). The width 

and length of each substrate were about 0.5 cm and 1 cm, respectively. Two different 

methods were used for transferring nanostructures. (i) ―Wet transfer‖ method. The 

nanostructures were scraped off from powders and dispersed uniformly into absolute 

alcohol by ultrasonication. A few drops of alcohol solution were deposited onto 

substrates which were subsequently blow dried by compressed nitrogen. (ii) ―Dry transfer‖ 

method. Bare substrates were slid against powders for direct transferring of 

nanostructures. The substrates were then gently washed by stream alcohol and blow dried.  

Although it was confirmed later that the testing results were not affected by sample 

transfer methods, the ―dry‖ one is preferred because it can transfer more nanostructures to 

a substrate. Optical microscopy (Olympus BX51 research-level microscope; dark field) 

was used to locate individual MB6 nanostructures on substrates. The nanostructures were 

then studied by Atomic Force Microscopy (AFM; Dimension 3100, Veeco Instruments 

Inc.) to examine their geometry and obtain dimensional information. To avoid the sliding 

problem during nanoindentation, nanostructures with rectangular cross sections are 

preferred, as discussed in Chapter 3. Experimental results presented in Section 4.4.1 are 

all from nanostructures with well-defined rectangular cross sections. Both selected SrB6 

and BaB6 nanostructures had a width of ~ 100-200 nm. However, the average thickness 

of SrB6 nanostructures was ~ 100 nm and that of BaB6 nanostructures was ~ 160 nm. The 

CaB6 nanostructures were relatively small. Most of them had both thickness and width 

less than 100 nm. A few CaB6 nanostructures were found to have circular cross sections. 
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Sliding phenomenon was observed for these CaB6 nanostructures whose corresponding 

experimental results were discarded without further analysis. 

All nanoindentation tests were conducted in the continuous-stiffness-

measurement (CSM) mode of an Agilent Technology G200 nanoindenter, which is 

equipped with the nanoVision Scanning Force Microscopy (SFM) option and the 

Dynamic Contact Module (DCM) option. The indentation-loading scheme was similar to 

those described in Chapter 3. For general measurements of modulus and hardness, the 

maximum indenter displacement was set to 20 nm for SrB6 and BaB6 nanostructures, and 

15 nm for CaB6 nanostructures. For fracture behavior studies, the maximum indenter 

displacement was set to 30 nm for SrB6 and BaB6, and 20 nm for CaB6. For each material, 

at least ten nanostructures on sapphire substrates were tested. For each nanostructure, 

multiple indentation tests were performed along its preferred growth direction. The 

residual indentations (1-2 nm) were checked by the nanoVision SFM. Data analyses 

were only done on those nanostructures with well-centered residual indentations. 

4.3 Modeling of Nanoindentation Experiment 

4.3.1 A Better Way to Simulate Nanoindenter 

For depth-sensing nanoindentation, with the help of an experimentally obtained 

indentation load - displacement (P-h) curve, the reduced elastic modulus Er of a tested 

material can be determined based on the Sneddon theory (Oliver and Pharr, 1992) 

 
Adh

dp
Er

1

2


  (4-1) 

where P is the load applied on the indenter, h is the indenter displacement into the surface 

of a tested material, dP/dh is the slope of the P-h curve upon unloading and A is the 
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projected contact area between the indenter and the tested material. Given Er, Young’s 

modulus for the tested material (E) can be obtained from the following equation with 

minor algebraic manipulation 

  
E

v

E
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


  (4-2) 

where v is Poisson’s ratio of tested material, and Ei and vi are elastic properties of the 

indenter.   

By observing the above two equations, the projected contact area A is obviously 

one important parameter need to be carefully analyzed. For example, an underestimation 

of A could lead to an over-determination of E. Thus, when performing numerical 

simulation, the shape of an indenter needs to be properly modeled to assure that the 

simulated values of A is close to the experimental data. 

The solid line in Figure 4.1 is a plot of A vs. hc (contact depth) obtained from our 

tip geometry calibration experiment. The line can be mathematically represented by the 

following functional form 

 cc hhA 2
2

1    (4-3) 

where α1 = 24.427 and α2 = 500. In Chapter 3, a conical indenter with a tip apex of R = 

/2π were used to mimic the Berkovich indenter. The corresponding A-hc curve is 

calculated and presented as the dashed line in Figure 4.1. The curve is obviously not 

overlapped with the experimental A-hc curve, indicating the Berkovich indenter in our 

experiment should not be simply modeled as a conical one. Inspired by the work done by 

the Pharr’s group (Bei, et al., 2005), a rigid axially symmetric indenter of a revolution 

spline is used to simulate the Berkovich indenter. The inset in Figure 4.1 illustrates the 

2



87 

 

profile of the indenter, where r the contact radius is defined as /Ar   at any contact 

depth hc.  

 

Figure 4.1: Projected contact area A vs. contact depth hc curves. The solid line was 

obtained from a tip geometry calibration experiment of a Berkovich indenter. The dashed 

line was calculated assuming the intender is conical whose tip apex R is 80 nm. 

4.3.2 Finite Element Modeling 

Three-dimensional (3D) finite element modeling (FEM) was carried out to simulate 

indenting nanostructure-on-substrate systems using the commercial software ABAQUS. 

While the simulation parameters were similar to those used in Chapter 3, a couple of 

important modifications were employed in this chapter. (i) As discussed in Section 4.3.1, 

the Berkovich indenter was modeled as a rigid axially symmetric indenter of a revolution 

spline to ensure the accurate representation of A. (ii) The dimension parameters of 

nanostructures and sapphire substrates used to generate results in Section 4.4.2 are listed 

in Table 4.1. The thickness of a substrate was chosen to be at least 7 times of that (or 

diameter) of a nanostructure so that the substrate finite boundary condition effect can be 
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ignored. (iii) To compromise between the computational accuracy and cost, a coarse 

mesh with the minimum element size of 10 nm was chosen. This selection was based on 

a mesh sensitivity study. The maximum load applied on the indenter at the maximum 

indentation depth was compared between simulations using coarse (minimum element 

size: 10 nm) and fine meshes (minimum element size: 3.2 nm). The load difference was 

found to be 0.03%, indicating that the P-h curve is insensitivity to a mesh size. (iv)Two 

types of interactions between a nanostructure and a substrate were simulated. One was 

the frictionless receding contact. The other was a ―tie‖ constraint to simulate the perfect 

bond interaction. For a nanostructure with the rectangular cross section, all six degrees of 

freedom of the nanostructure bottom surface were constrained with those of the substrate 

top surface. For a circular nanowire, it initially contact with the substrate on one line. The 

degrees of freedoms of nodes on the contact line were constrained with each other. (v) 

The Young’s modulus of sapphire was set to be 500 GPa. The Poisson’s ratio was chosen 

to be 0.3 for both the nanostructure and the substrate. Varying Poisson’s ratios from 0.3 

to 0, the simulation result (i.e., the maximum load applied on the indenter at the 

maximum depth) was changed less than 5%, indicating the P-h curve is insensitivity to 

Poisson’s ratios.  

Table 4.1: Dimensions for nanostructures and sapphire substrate used in simulation. The 

units are nm. 

Material 
 Nanostructure Sapphire substrate  

thickness (t) half-width (w) half-length thickness half-width half-length 

SrB6 100 50 or 100 300 700 300 300 

BaB6 160 50 or 100 300 1120 300 300 

CaB6 t = 2w = diameter (D) = 30, 60 or 80 300 560 300 300 
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4.4 Results and Discussion 

4.4.1 Experimental Results 

Preliminary tests were done on both nanostructure-on-silicon and nanostructure-on-

sapphire systems. Sliding phenomenon was observed when indenting individual 

nanostructures on silicon, producing unreliable testing results. Thus, sapphire was chosen 

as the proper substrate to support MB6 nanostructures for later nanoindentation tests.  

Since similar experimental phenomena were observed for nanoindenting of MB6 

nanostructure-on-sapphire systems, only results for SrB6 nanostructures are qualitatively 

described here. Figure 4.2(a) is a representative AFM image, showing a part of a SrB6 

nanostructure lying on sapphire. The inset presents the result of section analysis, 

revealing the nanostructure has a rectangular cross section and its thickness and width are 

~ 108 nm and 100 nm, respectively. Figure 4.2(b) shows a typical P-h curve of a 

deformation process of the SrB6 nanostructure-on-sapphire system. The elastic-like 

deformation behavior is observed. Figure 4.2(c) and (d) present the measured Young’s 

modulus and ―nanohardness‖, respectively. These data were automatically produced by 

the software associated with the nanoindenter, by which they were calculated based on 

the Oliver-Pharr method (Oliver and Pharr, 1992). The measured modulus seems to be 

constant when the indenter displacement is larger than 8 nm. The data variation at the 

initial stage could be due to the indenter tip rounding, surface roughness and machine 

resolution (Chen, et al., 2005). Generally, the ―nanohardness‖ (H) is defined as the peak 

load (Pmax) applied during a nanoindentation divided by the projected contact area (A) of 

the indentation (Oliver and Pharr, 1992). It can also be considered as mean contact 

pressure (Pm) for a material under an elastic deformation. Depending on the indenter tip 
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geometry, various expressions of ―nanohardness‖ with respect to the indenter 

displacement for elastic deformation was derived based on contact mechanics (Maugis, 

2000). For a spherical indenter, the ―nanohardness‖ is proportional to the square root of 

the indenter displacement (i.e., hH  ). For a conical indenter, the ―nanohardness‖ is 

independent of the indenter displacement. For a flat punch, the ―nanohardness‖ is directly 

proportional to the indenter displacement (i.e., hH  ). Carefully analyzing Figure 

4.2(d), one can find that the ―nanohardness‖ increases with the indenter displacement in 

an asymptotic manner (i.e., 
hH ~ , 0.5α1), which indicates that the geometry of the 

indenter tip in our experiments is neither spherical nor conical indenter nor flat punch. 

This observation is consistent with the result obtained by analyzing the projected contact 

area A, as discussed in Section 4.3.1. 
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Figure 4.2: (a) An AFM image of a part of a SrB6 nanowire on sapphire. The inset is the 

result of section analysis, revealing the nanostructure has a rectangular cross section. Its 

thickness and width is about 108 nm (vertical distance between two green arrows) and 

100 nm (horizontal distance between two red arrows), respectively.  (b) A typical load-

indenter displacement (P-h) curve of the SrB6 nanostructure-on-sapphire system. (c) 

Measured modulus and (d) ―nanohardness‖ given automatically by the software 

associated with the nanoindenter. The values were calculated using the Oliver-Pharr 

method. Note: the noisy data points within the initial contact range (i.e., between 0 and 4 

nm) were removed for clarity. 

Figure 4.3 shows a P-h curve of a SrB6 nanostructure fractured during an 

indentation process with the original maximum indenter displacement setting as 30 nm. 

When the indenter displacement reached 23 nm, the nanostructure suddenly fractured and 

the software lost control of the indenter until the indenter touched the sapphire substrate. 

Then the software ―realized‖ that the indenter displacement was larger than the target 
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displacement and started to unload. Cracks might initiate when the indenter displacement 

was close to 23 nm, follow by a quick propagation and catastrophic fracture of the 

nanostructure. For total nine MB6 nanostructures subjected to fracture behavior studies, 

similar P-h curves as shown in Figure 4.3 were observed. SrB6 and BaB6 nanostructures 

typically fractured when the indenter displacement was around 25 nm, whereas CaB6 

nanostructures failed when the indenter displacement was around 19 nm. The above 

indenter displacement at fracture is typically less than 30% of the thickness of a 

nanostructure. Each nanostructure broke into two parts, which was confirmed by the 

follow-up OM or AFM examination. This observed catastrophic fracture is different from 

other indentation-induced failure behavior reported for SnO2 nanobelts (Mao, et al., 2003) 

and ZnS nanobelts (Li, et al., 2005, Yang, et al., 2005) from which only crack initiation 

at the edges of the residual indentation or limited amount of crack propagation was found 

even the indentation displacement is about 40% of the thickness of the nanostructure. 

This study of fracture processes demonstrates the brittle nature of as-synthesized MB6 1D 

nanostructures. 

 
Figure 4.3: A P-h curve of a SrB6 nanostructure experiencing sudden fracture during an 

indentation process 



93 

 

As mentioned in Section 4.2, multiple indentation tests were performed along the 

preferred growth direction of each tested 1D nanostructure. Most of time, two to four 

tests would be found valid (i.e., a test produces a well-centered residual indentation), 

generating useful experimental data. As shown in Figure 4.4, for each tested 

nanostructure, the measured moduli are presented as a symbol against a vertical line. The 

symbol represents the mean value, whereas the ends of the vertical line (terminated by 

horizontal bars) indicate the minimum and maximum values.  Analyzing experimental 

results presented in Figure 4.4, three important issues can be identified. (i) The measured 

moduli for MB6 nanostructure-on-sapphire systems are scattering, and generally lower 

than the Young’s modulus of MB6 bulk materials (see dashed lines in Figure 4.4 and 

detailed data in Table 4.2). (ii) Special attention was paid to those data points (cf. SrB6 at 

103 and 117 nm thickness in Figure 4.4(b) and BaB6 at 127 and 137 nm thickness in 

Figure 4.4(c)) associated with longer vertical lines (i.e., have larger difference between 

the maximum and minimum values). It was found that these data were obtained from 

tapered nanostructures. Figure 4.5(a) is an AFM image of a typical tapered SrB6 

nanostructure. Two areas subjected to nanoindentation tests are outlined by white frames. 

The two areas are 2 m apart. They are further enlarged in Figure 4.5(b) and (c) which 

were images produced by nanoVision SFM. Each image represents a 0.4 m  0.4 m 

area, showing a part of the tested nanostructure. The black portion corresponds to the flat 

top of the nanostructure, from which the width of the nanowire can be determined. The 

width of the part of the nanostructure shown in Figure 4.5(b) is about 150 nm, while that 

in Figure 4.5(c) is about 200 nm. The corresponding measured modulus in these two 

areas is (b) 340 GPa and (c) 380 GPa, respectively. This result indicates that the 
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measured modulus is sensitive to the width of a nanostructure. (iii) Further examination 

of those data (−◊−) with lower measured modulus shown in Figure 4.4(b) and (c) 

revealed that the associated tested nanostructures were ~ 25-50% narrower than other 

tested nanostructures. For example, in Figure 4.4(b), the nanostructure of 108 nm in 

thickness was only 100 nm in width, and the nanostructure of 113 nm in thickness was 

about 150 nm in width. Other tested SrB6 nanostructures were about 200 nm in width.  

This result again demonstrated that the measured modulus of a nanostructure-on-substrate 

system is sensitive to the width of the nanostructure. The narrower the nanostructure is, 

the lower the measured modulus can be.  
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Figure 4.4: Measured moduli of (a) the CaB6 nanostructure-on-sapphire system, (b) the 

SrB6 nanostructure-on-sapphire system, and (c) the BaB6 nanostructure-on-sapphire 

system. 
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Table 4.2: Experimental and theoretical values of elastic constants of some hexaborides 

Materials 
C11 

(GPa) 

C44  

(GPa) 

C12  

(GPa) 

Bexp  

(GPa) 

Btheory  

(GPa) 

E  

(GPa) 

CaB6 423
a
 43

a
 5.6

a
 − 145

a
,159

b
,139

c
 423

a
,467

d
, 365-399

e
 

SrB6 − − − − 160
b
,141

c
 415

d
 

BaB6 − − − − 162
b
,139

c
 393

d 

LaB6 463
b
 89

b
 45

b
 184

b
 185

b
 488

d
,439

f
 

 

B=(C11+2C12)/3 is the bulk modulus.  
a
 Theoretical data at 0 K(Wei, et al., 2011) 

b
 Experimental and theoretical data at 78K (Grechnev, et al., 2008) 

c
 Theoretical data at 298K (Shang, et al., 2007) 

d
 Calculated or experimental (hot-pressed) data (Kosolapova, 1990) 

f
 Experimental (hot-pressed) data (Dutta, 1975) 

f
 Single crystal nanostructure (Zhang, et al., 2008) 

 

 
 

Figure 4.5: (a) AFM image of a tapered SrB6 nanostructure on sapphire. (b) Zoom-in 

SFM image of an indented section of the nanostructure. The white triangle frame outlines 

the residual indentation. (c) Zoom-in SFM image of a section before indentation. The 

width of the two sections is obviously different. 
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4.4.2 Numerical Simulation 

The aforementioned experimental results unambiguously demonstrate the 

scattering of measured moduli could be due to several factors such as the width-to-

thickness ratio of a nanostructure with a rectangular cross section. To further study the 

effects of these factors, FEM-based simulation of nanoindentation on nanostructure-on-

substrate systems were carried out. The dimensions listed in Table 4.1 were used for 

simulation. Due to the similarity of simulation results obtained from three MB6 

nanomaterials, data presented here is typically for SrB6 unless noted otherwise.  

Factor 1: the width of a nanostructure with a rectangular cross section. Figure 

4.6(a) shows the simulated P-h curves of nanostructures with different width. The legend 

―w=100 400 on 500 perfect bond‖ represents a nanostructure with a half-width w of 100 

nm and a Young’s modulus of 400 GPa is perfectly bonded to a sapphire substrate with a 

Young’s modulus of 500 GPa. ―400 half space‖ denotes a homogeneous half space with a 

modulus of 400 GPa. The P-h curve of ―w=100 400 on 500 perfect bond‖ is steeper than 

that of ―400 half space‖ (note: comparison was done on the slope dP/dh upon unloading 

of each curve), indicating that the measured modulus of this nanostructure-on-sapphire 

system would be higher than the intrinsic nanostructure modulus: 400 GPa. When the 

half-width of the nanostructure is reduced to 50 nm, the corresponding P-h curve of 

―w=50 400 on 500 perfect bond‖ is now less steep than that of ―400 half space‖, implying 

the measured modulus will be lower than 400 GPa.  These simulation results are 

consistent with aforementioned experimental findings. They clearly demonstrate that the 

measured modulus is not the intrinsic nanostructure modulus and can be affected by the 

width of a nanostructure. The measured modulus decreases as the width of a 
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nanostructure decreases. This conclusion is also valid when the interaction between a 

nanostructure and a substrate becomes frictionless receding contact.  

The width effect is qualitatively illustrated in the inset of Figure 4.6(a). 

Considering a nanostructure with an infinite width and finite thickness t laid on a 

substrate, the interaction radius between the nanostructure and the substrate is a2 during 

an indentation of a certain indentation depth-to-nanostructure thickness (h/t) ratio. When 

the width of the nanostructure becomes finite, two situations exist. (i) The half-width w of 

the nanostructure is larger than a2. Indentation on this type of nanostructures is same as 

indentation on infinite wide nanostructures. In other words, no width effect exists. (ii) 

The half-width of the nanostructure is smaller than a2. Indentation of these narrower 

nanostructures deviates from that of infinite wide nanostructures. The deviation increases 

as the half-width of the nanostructure decreases.  One implication is that the rule on 

selecting a proper substrate, proposed in Chapter 3, is invalid for a nanostructure with a 

half-width less than a2.  Detailed studies of the width effect have been carried out and the 

results will be discussed in Chapter 5.  It was found that analytical solution can be used to 

study nanoindenting of wider nanostructures whereas FEM-based modeling is needed for 

narrower nanostructures.   

Factor 2: the interaction between a nanostructure and a substrate. As shown in 

Figure 4.6(b), the P-h curve of ―w=100 400 on 500 perfect bond‖ is steeper than that of 

―w=100 400 on 500 receding‖. This result indicates a perfect bond interaction between a 

nanostructure and a substrate could lead to a higher measured modulus. Based on the 

inverse data analysis method introduced in Chapter 3, it can also be derived that a perfect 

bond interaction could lead to a corrected modulus at the lower bound. 
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Factor 3: the cross section of a nanostructure. As mentioned in Section 4.2, a few 

CaB6 nanostructures were found to have circular cross sections.  Although 

nanoindentation on these circular nanostructures not produces reliable testing results due 

to the sliding problem, it is natural to ask ourselves a question: ―Is there any effect of 

cross section on measured moduli if no sliding happens?‖  Simulations were done on 

nanostructures with two different cross sections: square and circular. The square has an 

edge length of 80 nm, whereas the circle has a diameter of 80 nm. Receding contact 

interaction was considered between the nanostructure (assumed modulus: 300 GPa) and 

the substrate (assumed modulus: 500 GPa). As shown in Figure 4.6(c), the simulated P-h 

curve for a nanostructure with a circular cross section is less steep than that with a square 

cross section, and also the ―300 half space‖ curve. In other words, a circular cross section 

could result in a lower measured system modulus.  This result is qualitatively consistent 

with the previous work (Shu et al., 2009), in which they concluded that for a 

nanostructure with a circular cross section, the measured moduli could be 50% lower than 

the intrinsic modulus of the nanostructure.  

Factor 4: the diameter of a nanostructure with a circular cross section. Most of 

the tested CaB6 nanostructures have circular cross sections. How does the diameter (D) of 

a nanostructure affect measured moduli? Our simulation results revealed that the 

diameter effect is tangled with the substrate effect. A smaller diameter indicates a smaller 

contact width (which is the short axis of the contact ellipse) between a nanostructure and 

a substrate, which shall result in a lower measured modulus. However, a smaller diameter 

also means that the nanostructure is shallow and the measured modulus is prone to be 

affected by the underlining substrate. Several P-h curves of nanoindenting nanostructures 
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of different diameters are shown in Figure 4.6(d).  The assumed modulus of the 

nanostructure is 400 GPa, whereas that of the substrate is 500 GPa.  The P-h curve of a 

nanostructure with a diameter of 60 nm is less steep than that of 80 nm, implying the 

measured modulus decreases as diameter decreases. However, when the diameter is 

further decreased to 30 nm, the corresponding P-h curve becomes steeper, indicating that 

a higher measured modulus would be obtained. The inset in Figure 4.6(d) shows the load 

at the maximum indentation depth: 15 nm for three different diameters, from which no 

linear relation between P and D can be found. These results demonstrate that the 

reduction of diameter does not always lead to a lower measured modulus. When the 

diameter is smaller than a certain value, substrate effect could show out, resulting in a 

higher measured modulus. 

Factor 5: the oxide layer surrounding a nanostructure. Each as-synthesized 

nanostructure has a core-sheath geometry (Amin, et al., 2009, Xu, et al., 2004). The core 

is crystalline MB6. The sheath is amorphous oxide whose thickness can be up to 4 nm. 

Will this oxide layer affect the P-h curve of a nanostructure-on-substrate system when the 

maximum indentation depth is 20 nm? To answer this question, simulation was 

conducted on a sandwich nanostructure combining of a thick core and two thin oxide 

surface layers. The thickness of the core and each oxide layer is 92 nm and 4 nm, 

respectively. Simulation was also done on a ―pure nanostructure‖ whose thickness is 100 

nm. The half-width of both nanostructures is 100 nm. The core and oxide layer modulus 

were assumed to be 400 and 150 GPa respectively. Both perfect bond and receding 

contact interaction were considered, and similar results were obtained.  As revealed in 

Figure 4.6(e), the difference between the slope dP/dh upon unloading for the simulated 
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P-h curves of a ―pure nanostructure‖ and a ―sandwich nanostructure‖ is less than 3%. In 

other words, the oxide layer has minor effects on nanoindentation tests. This is due to the 

factor that the effective flexural rigidity of the sandwich nanostructure is close to that of a 

pure material (Chen, et al., 2006).   

 

Figure 4.6: Simulated P-h curves for studying of various factors affecting measured 

moduli. These factors include (a) the width of a nanostructure with a rectangular cross 

section, (b) the interaction between a nanostructure and a substrate, (c) the cross section 

of a nanostructure, (d) the diameter of a nanostructure with a circular cross section and (e) 

the oxide layer on a nanostructure. 
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4.5 Data Analysis 

The aforementioned experimental results and numerical simulation have clearly 

revealed that the measured modulus generally cannot represent the intrinsic Young’s 

modulus of a nanostructure. In addition, the measured modulus can be easily affected by 

several factors. A narrower nanostructure, a frictionless receding contact and a circular 

cross section can all generally result in a lower measured modulus. To obtain a reliable 

value of Young’s modulus of a nanostructure, the data inverse method proposed in 

Chapter 3 is used to correct the measured modulus.  

As outlined in the introduction section, correction needs to be done for both the 

perfect bond and the frictionless receding interaction mechanisms. The perfect bond 

interaction leads to a corrected modulus at the lower bound, whereas the frictionless 

receding contact interaction yields a modulus at the upper bound. The intrinsic modulus 

shall fall between the two bounds. It is possible that the value is more towards to the 

lower bound since ultrasonication tests revealed relatively strong adhesion between the 

nanostructures and the substrate.  Table 4.3 shows the data analysis results for a couple of 

tested 1D nanostructures. For each material, data correction was done on two 

nanostructures.  The two nanostructures were chosen because their width-to-thickness 

ratio and measured modulus are the maximum and minimum among all tested 

nanostructure.  As shown in Table 4.3, it seems that the intrinsic modulus of MB6 

nanostructures is dependent on the width-to thickness ratio.  The larger the width-to-

thickness ratio is, the higher the intrinsic modulus can be.   
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Table 4.3: Measured nanostructure-on-substrate system moduli and corrected 

nanostructure moduli for two different nanostructure-substrate contact interactions. 

Material 

Thickness  

Width 

(nm  nm) 

Width-to-

thickness 

ratio 

Measured 

Modulus 

(GPa) 

Corrected Modulus (GPa) 

Receding Perfect Bond 

CaB6 
66  95 1.43 350 365 300 

78  84 1.08 205 210 175 

SrB6 
86  200 2.33 413 425 325 

108 100 0.93 260 370 300 

BaB6 
143  183 1.28 360 475 400 

129  129 1.00 273 330 270 

Mechanical properties of single crystals are commonly anisotropic. Therefore, it is 

important to correlate the measured properties with crystallographic information. The 

surfaces of as-synthesized MB6 1D nanostructures are (100) planes (Futamoto, et al., 

1979, Xin, et al., 2011, Zhang, et al., 2008). In other words, the nanoindentation loading 

direction is perpendicular to (100) planes. MB6 materials have a cubic symmetry, 

indicating only three elastic constants are needed to estimate the crystallographic 

direction-dependent Young’s moduli. Unfortunately, rare experimental and theoretical 

data about the elastic constants of MB6 can be found after extensive literature search 

(Table 4.2). The unavailability of reliable information on elastic constants prevented us to 

estimate effective modulus for indenting against MB6 nanostructures, study their 

anisotropic ratio, and make detailed comparison between experimental data and 

theoretical values.   

4.6 Conclusions  

In summary, Young’s moduli of alkaline-earth metal hexaboride 1D 

nanostructures were studied by nanoindentation. The experimentally measured moduli 

were scattering.  Systematic experimental investigation and numerical simulation 



104 

 

revealed that the data scattering can be caused by several factors such as the width of a 

nanostructure with a rectangular cross section and the interaction between a nanostructure 

and a substrate. A narrower nanostructure, a frictionless receding interaction, a circular 

cross section can all lead to a lower measured modulus. To obtain a reliable intrinsic 

modulus of a nanostructure, a FEM-based inverse data processing method was used. The 

modulus extracted based on the receding contact and the perfect bond interaction gives 

upper and lower bound values of the intrinsic modulus of the nanostructure, respectively. 

The intrinsic modulus of MB6 nanostructures is dependent on the width-to thickness ratio.  

The larger the width-to-thickness ratio is, the higher the intrinsic modulus can be. 



 

 

CHAPTER 5: NANOINDENTATION-THEORETICAL MODELING 

5.1 Introduction 

In Chapter 3 and 4, nanoindentation was conducted on TiO2 nanoribbons and 

MB6 nanostructures. The measured nanostructure-on-substrate system modulus could be 

significantly different from modulus of the nanostructure itself.  This chapter revisited the 

semi-analytical solution of nanoindentation on a nanostructure-on-substrate system.  A 

Mathematica program was developed to calculate system modulus under nanoindentation 

using a conical, spherical indenter or a general indenter with a given area function.  Two 

different interactions between a nanostructure and a substrate, i.e. perfect bond and 

frictionless contact, were considered in the semi-analytical solution.   

5.2 Chebyshev Polynomial 

Chebyshev polynomials have been used to solve integral equations.  They will be 

used to solve the Fredholm equation in Section 5.4.  The properties of the polynomials, 

expression a function with the polynomials, derivative and integral of the function are 

reviewed in this section.  

The m
th

 Chebyshev polynomial has m distinct roots on [-1,1], where the roots 

       
  are: 

         
       

  
  

The Chebyshev polynomials are discrete orthogonal.  In other words, for all      , the 

following relationship holds true (Chen, et al., 2005), 
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  (5-1) 

To approximate a function      defined on [-1,1] using the first m=n+1 Chebyshev 

polynomials, the j weights        
  needs to be given.  To solve the weights,  

           
                   (5-2) 

Multiply both sides by       , getting 

               

 

   

             

Sum across k=1,2,…, m, getting 

                

 

   

 

   

             

 

   

 

According to the discrete orthogonality property, the terms on the left side where     

are equal to zero. Thus 

               

 

   

             

 

   

 

Hence,  

   
 

 
      

 

   

 

   
 

 
            

 

   

          

A continuous and bounded variation function      can be approximated in the interval [-

1, 1] by the formula 
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The integral can be computed as 

       
 

  

 
 

 
      

 

   

 
 

 
             

 

   

        

    

 

   

 

5.3 Formulation of the Indentation on Nanostructures (2w/t)-on-Substrate System 

For a nanostructure with width to thickness ratio approaches infinite, the 

nanostructure-on-substrate system is similar to a thin film-on-substrate system, which 

was solved by Yu et al (Yu, et al., 1990). In their approach, two pairs of harmonic 

Papkovich-Neuber functions were used to formulate the thin film and the substrate 

respectively. Substituting the two functions into boundary conditions and continuity 

conditions between the nanostructure and the substrate, nanoindentation on 

nanostructure-on-substrate system was transformed into a Fredholm integral equation. 

The kernel of the Fredholm integral equation was complicated. In this Chapter, Airy’s 

stress function was used to formulate the thin film and the substrate respectively so that 

the kernel of the Fredholm integral equation was greatly simplified.  Equations to obtain 

P–h curves of nanoindentation on a nanostructure-on-substrate system and system 

modulus were presented.  Interface stress between the nanostructure and substrate was 

also included to justify the applicable range for 2w/t assumption. 

Here, three rigid axisymmetric indenters indenting on a nanostructure with elastic 

constant 
1 1,  -on-substrate with elastic constant 

2 2,  system were considered. The 

indenters were chosen because they could represent an actual indenter used in an 

experiment. A cylindrical coordinate system, as shown in Figure 5.1 was used, where z 
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axis is along nanostructure thickness direction and r axis perpendicular to z. The origin of 

the coordinates is located at the center of the top surface of the substrate.  

 

Figure 5.1: A composite system of an elastic nanostructure either perfect bond or 

frictionlessly overlaid on a half-space substrate indented by an indenter. 

Assume the zero-order Hankel transform of the Airy’s functions for a 

nanostructure and a substrate are   
                             and 

  
                   respectively, displacements and stresses of the nanostructure 

and substrate can be expressed as function of arbitrary constants A, B, C, D, E, F(Maugis, 

2000). For perfect bond condition between a nanostructure and a substrate, continuity of 

displacements and tractions are                                  , where 

    denotes jump across the nanostructure and substrate interface. And boundary 

conditions on the surface of the nanostructure are: 

             (5-3) 

                   (5-4) 

              (5-5) 

 

t 

Substrate 

r 

Nanostructure 

z 

1,1 

2,2 

o 



109 

 

where      is the profile of an indenter. cot)( rrf  , ))/1(1()( 2/122 RrRrf  and 

)2/()4()( 1
2

1
2
22  rrf  , ar 0  for a conical, a spherical indenter 

and an axial symmetry general indenter with an area function cc hhA 2

2

1    

respectively.  is the half-angle of a conical indenter and R is the radius of the spherical 

indenter. 1 and 2 are experimentally calibrated indenter parameter.  

A, B, C, D and E were solved in terms of F from the continuity condition and 

boundary condition (5-3). And displacement and stress boundary conditions (5-4) and (5-

5) were expressed as follows: 
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The above formulations used the generalized Dundurs parameters 
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a

x
  

the above two equations were solved if      satisfied the following Fredholm integral 

equation: 

      
 

 
                     

 

 
          (5-8) 
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        (5-9) 

The kernel of the integral equation is  dxgxG 
 0 )cos()()( . 

0 ( )F   depends on the 

shape of a indenter. 
0( ) 1F     for a conical indenter and 

2 2

0 ( ) 1F      for a spherical 

indenter while indentation depth is less than 0.2 t (Yu, et al., 1990). For the 

aforementioned general indenter, ds
sa

sa

h

a
F 


 2

0 222

1

2

2

0

)sin(4

sin2
1)(






 .  

Likewise, for indentation on a nanostructure frictionlessly in contact with a 

substrate, the nanoindentation problem satisfies the same Fredholm integral equation (5-8) 

and (5-9) except for a different kernel  

         
                                        

                                                    
           

 

 

 

The Fredholm integral equations ((5-8) and (5-9)) were solved numerically using 

the Elgendi’s method (El-gendi, 1969).  The detailed procedures were as follows: (i) 

Approximating ( )H  with first N+1 Chebyshev polynomial (N≥5), as discussed in 

Section 5.2, and substituting it into equations (5-8) and (5-9), N+2 linear algebraic 

equations with N+2 unknowns (in Table 5.1) were obtained at a given a/t. Instead of 

guessing a value for j (j = c, s) and solving )( iH   from equation (5-8) and iterating the 

procedure until equation (5-9) was satisfied, as suggested in reference (Yu, et al., 1990), 

all the unknowns were solved directly by solving (5-8) and (5-9) together by a direct 

matrix inversion. The computation time was greatly minimized by using the scheme 

compared to the iterative one.  For a conical and spherical indenter, j (j = c, s) was 

deliberately chosen as an unknown. Once the linear equations were solved for a a/t 

through the direct matrix inversion using MATHEMATICA 5.1, ah was calculated from 

aj and the corresponding h, t given in Table 5.1.  For a general indenter, ht /  was 
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chosen as an unknown and solved instead. (ii) P was expressed in terms of unknowns, as 

listed in Table 5.1. System modulus was defined as aSM syssys 2/ , whereas 

nanostructure modulus was defined as haSM 2/11  . )/(/ 11 SSMM jsyssys   was derived 

from the definition of the two modulus. where stiffness Sj (j = sys and 1) is the derivation 

of P with respect to h, which was numerically determined using a central difference 

scheme )21/()(
21

hhPP
hhhh




, in which 1h  and 2h  were small deviation 

from h.  For indentations with a conical or a spherical indenter, the numerically 

determined stiffness of indenting a half-space was carefully compared with the analytical 

solutions.  The closeness of the two values gives confidence of using the central 

difference scheme to determine stiffness.  

For a conical and a spherical indenter, all relevant information can be assembled 

in a spreadsheet (Han, et al., 2006) and 
1/ MM sys
 can be readily calculated at any h.  For 

the general indenter, the calculation was conducted in a different way and results were 

organized in a format shown in Table 5.2.  The first four columns are a/t, load P, h and 

stiffness of a nanostructure-on-substrate system.  The fifth column is a’h/t for a half-space 

made of the nanostructure, which is same as first column. The sixth and seventh columns 

are corresponding load and displacement into the nanostructure/system. Note that column 

six and seven corresponding to a different displacement into surface as listed in column 

three.  The eighth and ninth columns list the interpolated load and ah/t at a given 

indentation depth h so that 1/ MM sys  can be calculated at that depth.  Stiffness and 

1/ MM sys  were then calculated and listed in the following two columns.  
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Table 5.1: Unknowns and equations for the three indenters 

Indenter Unknowns h/t P 

Conical CiH  ),(  
t

a

C

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tan2
 



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0
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1 )(tan
)1(

8
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
dHhC  

Spherical 
2

),(
Si

H 
 2

2
)(

t

a

R

t

S
 




1

0

2/12/3

1

1 )(
1

4





dHRhS  

General  ),( iH  1/ 



1

0

1

1 )(
1

4





dHha  

Notes:  

1. i=1,…,N+1; 

2. ht /  

Table 5.2: Spreadsheet configuration of derived results from the Fredholm equation for 

the general indenter 

Nanostructure-on-substrate Half-space 

a/t P (N) h (m) Ssys (N/m) a’h/t P1’ (N) h’ (m) P1 (N) ah/t S1 (N/m) Msys/M1 

0.01 - - - 0.01 - - - - - - 

Given the solution of above unknowns, the indentation on a nanostructure-on-

substrate system problem is fully solved. Here, interface stress )0,(rz  between a 

nanostructure and a substrate was studied to justify the applicable range of the 

assumption 2w/t.  Substituting A1, B, C, D into               
    

      

   
    

    
    

      

  
, the interface stress was be expressed in terms of F or 
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For the perfect bond condition between a nanostructure and a substrate,  
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And for frictionless contact condition between a nanostructure and a substrate, 

1111

2

1
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5.4 Numerical Observations 

Assuming both nanostructure and substrate are elastic, 1/sysM M  vs. th /  for a 

perfect bond and a frictionless contact between a nanostructure and a substrate were 

calculated and shown in Figure 5.2(for a conical indenter) and Figure 5.3 (for a spherical 

indenter) respectively. The range of a/t studied here was from 0 to 1 with increments of 

0.01. The Modulus mismatch between a nanostructure and a substrate (1) was from -0.5 

to 0.5 with a step size of 0.1.  Assuming the nanostructure and substrate have same 

Poisson’s ratio 0.3, the relationship between the Dundurs is given by 2 = 1/3.5. Note 

that all calculations for a spherical indenter listed in Figure 5.3 were based on an 

assumption that the indentation depth was small, i.e. indentation depth is less than 0.2t. 

Some findings were listed as follows: 

1. Nanostructure and substrate contact effect. For both contact conditions 

between a nanostructure and a substrate, system modulus is different from nanostructure 

modulus (Msys/M1  1) for a large modulus mismatch between a nanostructure and a 

substrate 1 and a relative indentation depth larger than 0.1, 1.0/ th . The System 

elastic modulus further deviates from the modulus of a nanostructure as the indentation 

depth     increases. As th /  approaches zero, i.e., h approaches zero (a shallow 

indentation) or t increases to  (a very thick nanostructure), the system modulus 

approaches to that of a nanostructure. In Figure 5.2 (a) and (b), the dotted lines 

correspond to contour of constant contact area a/t = 1 and 0.5. Smaller 1 implies larger 
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h/t at same a/h, which indicates that the substrate with lower modulus can accommodate 

larger deformation and larger h/t, whereas substrate with higher modulus confines the 

deformation of the nanostructure with lower modulus and gives smaller h/t. Same 

conclusions hold true for a spherical and any other general indenter.  

On the other hand, different interaction conditions imply different system moduli 

while other variables such as th /  and 1 are same.  For perfect bond condition, the 

nanostructure-on-substrate system modulus is same as the modulus of the nanostructure, 

i.e. Msys/M1 = 1, when the nanostructure and the substrate are identical materials.  

Nonetheless, system modulus is less than the modulus of the nanostructure, Msys/M1 < 1, 

when the nanostructure and the substrate have same modulus and be frictionlessly 

contacted with each other.  Instead, Msys/M1 = 1 when the nanostructure is put on a 

substrate with higher modulus, which gives a Dundurs parameter 1 is about 0.2.  

Moreover, for a nanostructure with high modulus on a substrate with a low modulus, 

frictionless contact interaction condition shows larger mperc (percent difference between 

system modulus and nanostructure modulus) than its perfect bond counterpart.  

2. Indenter type effect. For a conical indenter, modulus of the system 

depends on half-angle of the indenter for both perfect bond and frictionless contact 

interactions, as shown in Figure 5.2(c), where and 1 = 0.3.  The larger the indenter 

half-angle, the further the deviation of system modulus from modulus of the 

nanostructure. As a result, a cube corner indenter with a smaller equivalent half-angle of 

42.3
o
 (Zhang, et al.) is more preferable to probe the mechanical properties of small-scale 

structures than a Berkovich indenter, which typically has an equivalent half-angle of 

70.3
o
.  For a spherical indenter, modulus of the system depends on radius R of the 

th /
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indenter. System modulus further deviates from the modulus of a nanostructure as the 

radius increases.   

For both conical and spherical indenters, the Fredholm integral equation is only a 

function of a/t, which is related to h/t.  1/sysM M is a function of h/t instead of h as a result, 

whereas the equation depends on both a/t and the thickness t of the nanostructure for a 

general indenter, which implies that 1/sysM M  is function of t as shown in Figure 5.4, 

where dash line shows 1/sysM M  for a conical indenter on a nanostructure perfectly 

bonded with a substrate system and 1 = 0.3.  The solid lines represent a general indenter 

with area function cc hhA 500427.24
2
  indenting on the same nanostructure-on-

substrate system but with different nanostructure thickness. Thinner nanostructure 

demonstrates that system modulus is more affected by underlying substrate.  
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Figure 5.2:         vs.     for different elastic mismatch with a conical indenter of 

half-angle α = 70.3

 for (a) perfect bond and (b) frictionless contact between a 

nanostructure and a substrate. And (c) its dependence on the half angle of a conical 

indenter for the perfect bond interaction while       () and for frictionless contact 

interaction while        (----).  



117 

 

 

Figure 5.3: 1/sysM M  vs.     for different elastic mismatch with a spherical indenter for (a) 

perfect bond and (b) frictionless contact between a nanostructure and a substrate when t/R 

= 1. And (c) its dependence on t/R for the perfect bond interaction while       () 

and for frictionless contact interaction while        (----).  
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Figure 5.4: Comparison of  vs.     between a conical indenter and a general 

indenter in a nanoindentation test. The modulus of a nanostructure-on-substrate system 

using a general indenter is function of t and h/t, where the modulus of the system using a 

conical indenter is only function of h/t.  

5.5 Applicable Range for 2w/t Assumption 

In Section 5.3, mathematical equations have been developed to evaluate system 

modulus of an infinite wide nanostructure-on-substrate system. However, what is the 

applicable range for infinite wide assumption? When can nanostructure be considered as 

infinite wide in reality? Using the equations derived in Section 5.3, normalized interface 

stress between a perfectly bonded nanostructure and substrate  along radius 

direction (r/t) when 1 = 0.3 and a/t = 0.1 is calculated and shown in Figure 5.5.  The 

interface stress quickly decays to zero as r/t approaches 2, which indicates that the 

infinite wide assumption for nanostructure is valid when half-width to thickness ratio, w/t, 

is larger than 2.  In other words, the solution derived in this chapter is inapplicable for 

nanostructures with a width to thickness ratio being less than 4, for example, the MB6 

nanostructures we studied in Chapter 4.  Finite element modeling, which was used in 

1/sysM M

)0,(r
z


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Chapter 3 and 4, should be used to study the nanostructure-on-substrate system. The 

conclusion we drew here holds true for any indenters and interaction conditions between 

a nanostructure and a substrate.  

 

Figure 5.5: Normalized interface stress between a nanostructure and a substrate, which 

are perfectly bonded, under indentation using a conical indenter.  1 = 0.3, a/t = 0.1.   

5.6 Conclusions 

In summary, the nanoindentation on a nanostructure-on-substrate system was 

revisited.  Using Airy’s functions, the kernel of the Fredholm integral equation was 

simplified.  Modulus of a nanostructure-on-substrate system under a conical, spherical 

and a general indenter with calibrated area function vs. contact indentation depth were 

calculated.  Compared to the finite element model presented in Chapter 3 and 4, the semi-

analytical solution could greatly reduce the time of extracting the modulus of a 

nanostructure from a measured modulus of a nanostructure-on-substrate system.  

Moreover, the applicable range for the solution was discussed.  The solution applies to a 

nanostructure with a width-to-thickness ratio larger than 4.  



 

 

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

AFAM based method was used to measure mechanical property of a BaB6 

nanostructure. During the experiment, an AFM tip could be easily blunted while it was in 

contact with a material having a Young’s modulus higher than the material of tip, Si.  

Moreover, the mechanical property of the surface layer of the nanostructure could be 

measured because of the small load applied in the experiment, as discussed in Chapter 2. 

As a result, nanoindentation was mainly used to study mechanical property of 

nanostructures throughout the dissertation. Both experimental and numerical studies were 

carried out to investigate Young’s modulus of nanostructures.  

In single crystalline rutile TiO2 nanoribbons under nanoindentation experiments, 

three different substrates, including SiO2/Si, Si(100) and sapphire(0001), were used to 

support nanoribbons. AFM images of the nanoribbons after nanoindentation tests showed 

that the receding contact mechanics described the contact between the TiO2 nanoribbons 

and a substrate well. In addition, finite element simulations demonstrated that sapphire 

was the best substrate to support TiO2 nanoribbons. The modulus of a nanoribbon-on-

sapphire system was close to the modulus of the nanoribbon itself, whereas the moduli of 

a nanoribbon-on-SiO2/Si or a nanoribbon-on-Si system were quite different from 

modulus of the nanoribbon.  The Young’s modulus of TiO2 nanoribbons was found to be 

around 360 GPa, which is comparable to that of bulk TiO2.  
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In alkaline-earth metal hexaboride 1D nanostructures nanoindentation 

experiments, experimentally measured nanostructure-on-system moduli were scattering. 

Systematic experimental and numerical investigation revealed possible reasons for the 

data scattering, for example, the width and cross section of a nanostructure, the interaction 

between a nanostructure and a substrate.  Using a rigid axi-symmetric indenter of a 

revolution spline, based on experimentally calibrated projected area of contact vs. hc 

curve, modulus of a nanostructure was extracted from the measured modulus of the 

nanostructure-on-substrate system. The modulus was determined to fall between two 

bounds set by the receding contact and the perfect bond contact mechanisms between a 

nanostructure and a substrate, respectively. The extracted modulus increases as the width-

to-thickness ratio of a nanostructure increases from one to two. 

The process of extracting the modulus of a nanostructure from the measured 

system modulus is an iterative process–iteratively finds such a modulus of a 

nanostructure that the simulated modulus of the nanostructure-on-substrate system equals 

to the measured system modulus. Each simulation of nanostructure-on-substrate system 

modulus using a finite element model is time consuming. To speed-up the process, 

nanoindentation on a nanostructure-on-substrate system was ―analytically‖ solved. The 

analytical solution applies to any nanostructures with a width to thickness ratio larger 

than 4.  

6.2 Future Work 

The dissertation mainly studied the mechanical properties of TiO2 nanoribbons 

and MB6 nanostructures using nanoindentation. An elastic finite element model and 

analytical solution were used in conjunction with experimental measurement to obtain 
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accurate intrinsic modulus of a nanostructure. There are a few areas could be improved 

along with the current research.   

(i) Although Young’s modulus of nanostructures can be deduced from the 

measured system modulus based on an elastic model of a nanostructure 

and a substrate, the hardness of the nanostructure should be extracted from 

measured system hardness based on a model including the plastic 

deformation for both the nanostructure and substrate. However, the 

elastic-plastic constitutive equations for the nanostructures studied here 

are lacking. Whether nanostructures are perfect-plastic or showing strain 

hardening are unclear at current stage.  Future work could include 

obtaining a full stress-strain curve by conventional tensile tests for the 

studied materials. 

(ii) Exploring of other mechanical property testing methods of nanostructures, 

such as a lateral three point bending test, and cross comparing the 

measured mechanical properties with current measured ones using 

nanoindentation. The lateral three point bending method is advantageous 

over a normal three point bending because it avoids contact of an AFM tip 

apex with nanostructures. The contact could be challenging when the tip 

size is comparable with dimension of a nanostructure so that sliding off 

could occur. The challenge does not exist for lateral three point bending, 

where side of a tip is in contact with the tested nanostructure.  However, 

the AFM used to conduct a lateral bending test should be equipped with a 

closed-loop control in z-direction. With the control, the distance between 



123 

 

the AFM tip apex and the contact point between the nanostructure and side 

of AFM tip can be known. Moreover, the lateral spring constant of the 

AFM cantilever should be well calibrated. The spring constant should be 

comparable to that of the nanostructure under three point bending, as 

defined in Section 1.3.3. An AFM cantilever with too high spring constant 

is insensitive to the deflection of a nanostructure. An easy analogy to this 

would be: a weight scale for adult may not accurately measure the weight 

of a new-born baby.  On the other hand, a cantilever with too small spring 

constant is insensitive to the deflection of the nanostructure neither since 

most deformation will come from the cantilever.  Moreover, the sensitivity 

of AFM photodiode needs to be well calibrated so that the load applied on 

a nanostructure can be accurately determined. 

(iii) Software development. Nanoindentation is mainly for mechanical property 

measurement of bulk materials. It gives a system modulus when a 

nanostructure or thin film-on-substrate system is tested.  Complementary 

software may directly correlate the measured system modulus with the 

intrinsic modulus of the nanostructure or thin film. For nanostructures 

with large width to thickness ratio, such as a TiO2 nanoribbon, the system 

modulus of a nanostructure-on-substrate system is discussed in Chapter 5. 

Given the system modulus Msys, substrate modus 
2 2,  , indenter 

displacement over thickness    , type of indenter (spherical, conical or a 

general indenter with calibrated area function vs. contact depth) and 

interaction boundary conditions between the nanostructure and the 
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substrate (frictionless contact or perfect bond) as inputs, the software 

should be able to extract modulus of the nanostructure directly using the 

data inverse process proposed in the Section 3.4.3.   
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