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ABSTRACT

NIHAR DEODHAR. Experimentally Infused Active System Optimization - Theoretical
Framework and Airborne Wind Energy Case Study. (Under the direction of DR.

CHRISTOPHER VERMILLION)

This research pioneers formal combined plant and controller optimization (termed “co-

design”) schemes for complex systems where accurate but expensive experiments are fused

with cheap but less accurate numerical simulations. This fusion of experiments with nu-

merical modeling tools, referred to as experimentally infused optimization, addresses sev-

eral challenges faced in co-design research. These challenges include strong coupling be-

tween the controller and plant, significant modeling uncertainties (which require the use

of experiments), and high experimental costs. This research presents two unique iterative

experimentally infused optimization approaches: One approach uses small “batches” of

experiments at each iteration to identify the gradient of a performance index, whereas the

other approach leverages tools from optimal design of experiments and hypothesis testing

to efficiently explore and reduce the design space at each iteration. Both approaches in-

corporate a model correction term that improves the numerical model prediction after each

set of experiments. For the latter approach, an original theoretical convergence bound on

the numerical model improvement in the presence of noise-influenced experiments is pre-

sented and derived in this dissertation. Furthermore, both approaches have been validated

for performance-critical parameters on a lab-scale airborne wind energy (AWE) system

test platform at UNC Charlotte. Dimensional analysis has been used to show that this

unique lab-scale platform produces results that replicate the full-scale flight behavior un-

der uniformly-scaled system time constants. Overall, the quality of flight for the AWE
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system is greatly improved using experimental infusion as compared to a pure numerical

optimization approach.
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CHAPTER 1: INTRODUCTION

A growing number of engineered systems rely both on robust physical designs and effi-

cient control schemes. To optimize these “smart” systems, several researchers have devel-

oped combined plant and controller design techniques. This process is commonly known

as co-design. In performing co-design on highly complex systems, heavy reliance on nu-

merical simulations often results in sub-optimal solutions since numerical models of these

complex systems are often inaccurate. On the other hand, heavy reliance on experimental

characterization imposes time and cost challenges. Therefore, it is desirable to use a com-

bination of accurate experiments and cheap numerical modeling techniques to efficiently

optimize the plant and controller for complex systems. This research develops and validate

formal techniques for fusing experiments with numerical modeling tools in the co-design

process.

1.1 Background - Combined plant and controller optimization

A plant is defined as the set of physical components and processes in an active system

that must carry out a prescribed task. A controller can be defined as the component that

actively makes decisions and manipulates variables in real-time to achieve that task. Sev-

eral strategies have been proposed in the literature to optimize the plant parameters (pp)

and controller parameters (pc). The most popular types of co-design techniques include

iterative, sequential, nested and simultaneous approaches (see Figure 1, [1]). The iterative
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strategy optimizes the plant and controller alternately until a convergence criterion is satis-

fied. The sequential approach is a specific case of iterative optimization with one iteration

of the plant followed by one iteration of the controller. The nested strategy deploys an inner

loop/outer loop type of framework in which the controller is optimized in its entirety (in

the inner loop) after every iteration of the plant optimization (in the outer loop). Lastly,

the simultaneous optimization strategy considers all the parameters during every iteration

without distinguishing between the plant and controller parameters. The performance of

the iterative and sequential strategies is heavily influenced by the level of coupling between

the plant and controller parameters. Such coupling arises when the optimal control de-

sign depends on the plant and vice versa. Co-design in the presence of coupling has been

highlighted through a diverse range of applications in the literature. For instance, a struc-

tural system is studied in [2], micro-electrical mechanical systems are examined in [3],

two-link robotic manipulators are studied in [4] and [5], and [6] and [7] apply co-design

to an automotive suspension system. A similar plant-controller coupling is highlighted in

[1] using an electric motor application. The iterative and sequential approaches may fail

in the presence of a coupling between the plant and controller parameters, as shown by

[8] and [9]. To address the challenges arising due to coupled dynamics, [10] and [11] use

a decomposition-based method to solve the co-design problem, whereas [12] incorporates

the process of sequential optimization using direct transcription for an active suspension

system. A different approach for combined plant and controller parameters, leveraging a

control proxy function, is detailed in the work of [13], [14], and [15]. There, the plant ob-

jective function is independent of control parameters, and the controller objective depends

only on the optimal plant. The control proxy function modeled as a function of plant pa-
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rameters is used, along with the original objective function, for optimization. This approach

mitigates the shortcomings in a typical iterative optimization but only considers unidirec-

tional coupling, thereby leaving the controller constraints dependent on plant parameters.

Under a variety of conditions, the simultaneous approach guarantees convergence under

coupled plant and controller dynamics (see [8] and [9]). However, simultaneous optimiza-

tion is computationally burdensome. A nested strategy, on the other hand, has proven to be

more efficient than simultaneous strategies, and has been adopted in several applications.

For instance, [16] and [17] use a nested loop approach to optimize the suspension system

for a quarter car model. [18] applies the nested approach to the optimization of an elevator

system.

While the aforementioned numerical techniques have made great strides in terms of com-

putational efficiency and convergence guarantees, their efficacy primarily depends on an

accurate plant model. When the plant model ceases to be accurate, even the best numerical

optimization can yield plant and control parameters that are far from the true optimum.

In an attempt to address the limitations of purely numerical optimization, the authors of

[19] carried out initial studies wherein experimental data was used to guide the plant and

controller toward their true optima. The plant was physically modified at each iteration,

and controller gains were adjusted based on an experimentally-identified Jacobian matrix.

Similarly, [20] emphasizes the need for experimental co-design but ends up using simula-

tions instead. [21], on the other hand, uses experimental optimization for a similar robot

manipulator as in [19]. However, both [19] and [21] rely on pure experimental results to

carry out the optimization. Relying solely on experiments to optimize a system design can

be problematic, however, when these experiments are costly in terms of time and money.
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Figure 1: Different approaches used in combined plant and controller optimization. pp and
pc denote plant and controller parameters respectively. pp

0 and pc
0 represent the initial

conditions for optimization [1].

Thus, for systems where an imperfect numerical model exists, a better approach is to fuse

small numbers of accurate but expensive experiments with larger numbers of less accu-

rate but cheap numerical simulations. This fusion of experiments with numerical modeling

tools is precisely the focus of this research.

1.2 Airborne wind energy (AWE) systems - case study application

AWE systems replace traditional tower-mounted wind turbines with flexible tethers and

a lifting body. This design enables the AWE systems to harness strong, consistent winds at

high altitudes (up to 600 m), as described in [22]. Altaeros Energies [23], Ampyx Power



5

[24], Google-owned (X) Makani Power [25], Enerkite [26], Kitegen [27], and Windlift [28]

are some of the active companies in the field of AWE. Ampyx, Windlift, and Makani use a

rigid wing design with control surfaces. Enerkite and Kitegen incorporate the use of kite-

like lifting bodies to fly crosswind patterns. Altaeros Energies, on the other hand, uses a

lighter-than-air-system in the form of an annular aerostat (Figure 2) that houses the turbine.

Figure 2: The prototypes used by a few active airborne wind energy system manufacturers.
Sources: [23], [24], [25] and [26].

AWE systems fall under the category of systems with complex dynamics and imperfect

numerical models. Moreover, the plant and controller dynamics are coupled in the case of

AWE systems. One instance where this can be seen involves the center of mass location

(plant parameter) and the pitch angle set point (controller parameter). The optimal center
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of mass location depends on the pitch angle set point, and vice versa. In such instances

of plant and controller coupling, it is desired to use appropriate co-design techniques to

optimize the AWE system parameters.

Although several numerical optimization techniques have been explored for different

types of AWE systems, the majority of them do not address coupling issues. Moreover,

all of the aforementioned references have placed great emphasis on the use of simulations.

For instance, [29] characterizes crosswind flight for kite systems while relying on imperfect

numerical models. More recently, co-design techniques were applied in the field of AWE

systems, specifically in [30] and [31], where a numerical optimization was carried out for

crosswind flight using the nested approach. Similarly, the work by the authors of [32] also

exploits a local, simulation-based approach for co-design of an AWE system.

AWE systems, however, demonstrate several complex phenomena such as unsteady flow

effects due to vortex shedding, added mass effects, complex catenary tether shapes, and so

on. These phenomena present significant challenges to the development of accurate mod-

els. As a result, existing numerical models and the optimizations based on those numerical

models are far from perfect. [33] and [34] are some of the few contributors in the field

of full-scale testing of AWE systems. In particular, the flight characterization of a lighter-

than-air type of AWE systems was achieved in [33] and [34]. While these experiments

provide a much better understanding of the system than numerical simulations, they are

not cost-effective. Due to the aforementioned full-scale testing costs, it is highly beneficial

to devise a lab-scale test environment wherein it is possible to iterate quickly and inexpen-

sively between multiple lifting body and controller designs. In order to study the open-loop

characteristics of such systems economically, the authors of [35] developed a small-scale
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test setup. A similar experimental framework has been used in [36] and [37] to characterize

AWE systems under closed-loop control.

All of the aforementioned work on AWE systems is either purely numerical or purely

experimental. The numerical techniques fail to converge upon a true optimum in the pres-

ence of modeling uncertainties, whereas purely experimental optimization is extremely

time-consuming and does not leverage existing numerical models, imperfect as they may

be. For these reasons, AWE represents an ideal application for studying the experimentally

infused optimization tools described in this research.

1.3 Problem statement and research contributions

Due to the aforementioned co-design challenges (in particular, the coupled dynamics and

unmodeled effects) faced in a wide array of complex systems, including AWE systems, it is

extremely desirable to develop a framework that fuses the cost-effective numerical models

with accurate and optimally designed experiments. In considering suitable iterative design

optimization frameworks that fuse experiments with numerical simulations, the following

three questions can be posed:

• Question 1: How should experimental and simulation points be determined at each

iteration to maximize the information learned?

• Question 2: How can the numerical model be improved at every iteration, based on

experimental results, in order to globally converge to the optimal design parameters?

• Question 3: How many iterations are needed to converge to the optimal design in the

case of disturbances and experimental noise?
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This research examines two frameworks for formally addressing the challenge of op-

timally fusing experiments with numerical models. The first framework, illustrated con-

ceptually in Figure 3 and detailed in Chapter 3, involves several steps that are carried out

iteratively:

• Generate experiments within the local parameter space surrounding the estimated

optimal design based on the numerical system model.

• Run those experiments.

• Compute a correction to the numerical model based on the experiments.

• Run a full numerical optimization with the corrected model, then repeat the process.

Figure 3: General steps involved in experimentally infused plant and controller optimiza-
tion with small “batches” of local experiments at each iteration (see Chapter 3 for details).
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This process addresses numerical modeling inaccuracies but may not lead to a global opti-

mum due to a locally-gridded experimental design space.

A second global framework is described conceptually in Figure 4 and then detailed in

Chapter 5:

• Perform an optimal design of experiments (DoE) and numerical simulations that

spans a prescribed design space.

• Run the experiments and simulations.

• Fit a response surface to the data obtained from simulations and experiments.

• Improve the numerical model at each iteration based on the results of all previous

experiments.

• Reduce the feasible design space for subsequent iterations.

The aforementioned framework addresses the first two questions posed earlier. A solu-

tion to the third question is presented in Chapter 6. In summary, the contributions of this

research are as follows:

• Designing an iterative co-design framework to fuse experiments with numerical sim-

ulations using gradient-based DoE;

• Globalizing the iterative framework using optimal DoE, response characterization,

and statistical hypothesis testing tools;

• Deriving a bound on the convergence of the improved numerical model to the true

system;
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Figure 4: Flowchart summarizing the necessary steps for a successfully fused numeri-
cal/experimental optimization with global optimal DoE techniques used at each iteration
(see Chapter 5).

• Establishment of dynamic equivalence between the full-scale and lab-scale test frame-

work for a lighter-than-air AWE system;

• Experimentally validating the gradient-based DoE for two AWE design parameters,

using the lab-scale setup;

• Experimentally validating the optimal DoE framework for two and four AWE design

parameters, using the lab-scale setup.



CHAPTER 2: AWE SYSTEM - DYNAMIC MODEL AND LAB-SCALE
EXPERIMENTAL SETUP

This work uses the Altaeros Buoyant Air Turbine (BAT) as a case study. The Altaeros

BAT is a lighter-than-air AWE system with a horizontal-axis turbine suspended within an

annular shell. The system shown in Figure 5 is the full-scale prototype flown by Altaeros in

2012. The BAT consists of four main components, namely an annular shroud, a horizontal

Figure 5: Full-scale prototype of Buoyant Airborne Turbine (BAT) during 2012 flight test-
ing at Loring Air Force Base. (altaerosenergies.com)

axis turbine, three tethers, and a ground station.

• Annular shroud: The annular shroud geometry originates from NACA airfoil cross
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sections, which are cambered upward on the lower and upper surfaces of the BAT

to provide lift. The shroud is symmetric about the vertical plane; however, the side-

walls themselves are designed with asymmetric airfoil cross sections. A ballonet is

included to maintain desired pressure inside the shroud by regulating the supply of

helium.

• Turbine: The 2012 Altaeros prototype was equipped with commercially-available

Skystream 3.7 Turbine, with a rated power of 2.4 kW at a rated wind speed of 10

m
s . This turbine was used purely for demonstration purposes. The target output of

a production system is approximately 100 kW. This can be achieved with a bigger

shroud and a greater rated wind speed.

• Tethers: The most recent Altaeros BAT geometry features three tethers, two of which

are made of high-performance Dyneema fiber, one of which is a structurally rein-

forced conductive cable. Each of the tethers has a 3
8 inch (0.01 meter) diameter.

• Ground station: A rotating platform carrying the winches along with main flight

controller and other drives forms the ground station. This mobile station is deployed

at the desired location using a tow truck.

2.1 Dynamic model of the BAT

Key parameters used in deriving dynamic equations for the BAT are shown in Figure 6.

A simplified dynamic model of the BAT is introduced in [33] and [35]. However, the

BAT exhibits several complex non-linear phenomena that are not sufficiently described

using numerical models. These include added mass effects, unsteady flow effects, stall,
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and complex tether dynamics.

Figure 6: Illustration of the generalized coordinates (Φ, Θ, and Ψ) and key physical aspects
which form the basis for the dynamic model.

In order to represent the multi-tether system dynamics through ordinary differential

equations and model the tethers as simple kinematic links, the three tether configuration

is approximated as a single main tether of length Lt with a controlled spherical bridle joint

at the top. Ultimately, this results in a configuration where the position of the center of

mass of the aerostat can be described based on Φ (zenith angle), Θ (azimuth angle), and

Lt (average tether length), whereas the aerostat’s orientation requires the generalized coor-

dinates associated with the spherical bridle joint, namely Ψ, an uncontrolled twist angle,

θ
′
, a controlled “induced-pitch” angle (induced through asymmetric length adjustment of

the forward and aft tethers), and φ
′
, a controlled “induced-roll” angle (induced through

the asymmetric length adjustment of the port and starboard tethers). The aforementioned
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induced angles, φ
′
and θ ′ are related to the tether lengths by:

φ
′ = tan−1(

l3− l2
llat
sep

) (1)

θ
′ = tan−1(

l1−0.5(l2 + l3)

llong
sep

) (2)

where llong
sep and llat

sep are longitudinal and lateral tether attachment separation distances, re-

spectively. The control inputs are the tether release speeds, ūi, which are given by:

ūi =
d
dt

li (3)

Here, φ ′ and θ ′ are introduced in order to model the three tethered system as a single

kinematic link of length Lt , plus two rotational degrees of freedom (φ ′ and θ ′) that charac-

terize the differences in tether lengths. Modeling the multi-tether system in this way results

in a set of ordinary differential equations (ODEs), rather than the set of differential alge-

braic equations (DAEs) that would result from modeling each tether as its own kinematic

constraint. The system dynamics, as derived using an Euler-Lagrange approach, are given

by:

D(Q)Q̈+C(Q, Q̇)Q̇+g(Q) = τ(Q, Q̇,Vwind,ψwind) (4)

X = f (Q, Q̇) (5)

Ω = g(Q, Q̇) (6)

where:

Q = [Φ Θ Ψ Lt θ
′

φ
′] (7)

X = [x y z u v w] (8)
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Ω = [φ θ ψ p q r] (9)

Here, V is the flow speed, and ψ f low and τ represent the flow direction and vector of

generalized forces and moments. The generalized forces and moments are functions of α

(angle of attack) and β (side slip angle), which describe the orientation of the apparent

wind velocity vector with respect to body-fixed coordinates. The variables in equations

(8) and (9) are functions of the generalized coordinates in equation (7) and represent the

translational and rotational dynamics, respectively.

2.2 Water channel setup at UNC Charlotte

Initial work by one of the authors in [34] and [35] provides a description of a lab-scale

testing framework that uses a water channel and 3D printed models to characterize the pas-

sive flight dynamics of a 1/100th-scale aerostat for a lighter-than-air wind energy system.

The use of a lab-scale water channel setup significantly reduces cost and testing time when

compared to the full-scale system. In order to conduct cost-effective experiments, this re-

search utilizes the water channel test setup at UNC Charlotte, which is shown in Figure 7.

The UNC Charlotte water channel is the 5th largest in the U.S., with a 1 meter × 1 meter

cross section and flow speeds up to 1 m/s. This platform enables rapid and inexpensive it-

eration through new plant and control system designs. This setup consists of the following

major components:

• Three DC motors mounted on a frame located at the top of the channel in Fig. 7. The

motors are attached to individual tethers, thereby controlling individual tether release

rates.

• Three high-speed cameras for image acquisition, each capable of a frame rate of
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340 frames/sec. Two cameras are positioned on the side of the water channel (one

directly perpendicular and the other downstream, at an angle of 45 degrees), and

one is positioned at the bottom of the channel (looking upward, perpendicular to the

channel).

• A high speed (6 core, 64 GB) target computer that carries out real-time image pro-

cessing and feedback control at a sample time of 0.025 s. The target application

performs image processing, geometric transformations to resolve the position and

orientation of the BAT and executes the control algorithm.

• A host computer that acts as a link between the target PC and the operator. The

host computer operates a graphic user interface (GUI) to command rapid controller

changes onto the target PC and renders the real-time plots.

• A 1/100th-scale, 3D printed model of the tethered lifting body that is flown in the test

section of the water channel. Rapid reconfigurability of the model is made possible

through several design features that are illustrated in Figure 8. These include ballast

holes for varying the center of mass and moments of inertia, variable tether attach-

ment points, and a drag screen slit that accommodates a mesh screen that replicates

the drag associated with a spinning rotor.

2.3 Real-time control and controller structure

The controller is designed to track three different set points, namely altitude (zsp), pitch

(θsp) and roll (φsp). Tracking is achieved by using tether release speeds as the control in-

puts to three independent motors for the port, the starboard, and the central tether. Figure
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Figure 7: Water channel test framework at UNC-Charlotte.

9 shows a block diagram of the controller. The average tether release speed (v̄z), differ-

ence between central/peripheral tether release speeds (v̄θ ), and port/starboard tether release

speeds (v̄φ ) are related to the tracking errors in altitude (ze), pitch (θe) and roll (φe) by the

transfer functions Gz(s), Gθ (s) and Gφ (s) respectively. These transfer functions, which

reflect filtered PD controllers, are given by the following expressions:

Gz(s) =
kz

ds+ kz
p

τzs+1
, (10)

Gθ (s) =
kθ

d s+ kθ
p

τθ s+1
, (11)

Gφ (s) =
kφ

d s+ kφ
p

τφ s+1
. (12)
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Figure 8: Isometric view and bottom view of a 1/100-scale BAT model, illustrating the
ability for rapid reconfiguration between test runs.

Integral control is not necessary for steady-state tracking in this application, due to pure

integrators in the plant dynamics. Since the goal is to attain a stable configuration, φsp is

always desired to be zero. The tether release speeds, ūcenter, ūstbd and ūport , serve as control

inputs to three motors and are related to v̄z, v̄θ and v̄φ as follows:

u = Av (13)

A =


1 −1 0

1 1 1

1 1 −1


(14)

where the nth column of A relates v to the individual motor commands, u, where v =

[v̄z v̄θ v̄φ ]
T and u = [ūcenter ūstbd ūport ]

T .
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Figure 9: Block diagram of the controller to track altitude and attitude set-points during
flight [37]. Altitude set point was chosen within practical constraints.

2.4 Dynamic equivalence analysis between the full-scale and lab-scale system

In order to fully replicate the behavior of the full-scale system using a lab-scale setup,

the plant, controller and the operating parameters should be scaled precisely. In order

to determine the required scaling, formal dimensional analysis tools were utilized in this

research.

In fact, a few studies have already applied dimensional analysis to small-scale testing of

tethered systems. Specifically, the authors of [38] and [39] establish the dynamic equiva-

lence of a multi-tethered aerostat for a radio telescope at 1/3rd scale. Although the authors

sacrifice precise accuracy of Reynolds number matching in this case, the Reynolds num-

bers for that application are large enough that aerodynamic coefficients are insensitive to



20

Reynolds number. A dimensional analysis for single-tethered systems is presented in [40]

and [41]. However, this dimensional analysis does not consider density and buoyancy prop-

erties that are equally important to lighter-than-air systems such as the Altaeros BAT. The

dynamic equivalence tools developed in this research focus on the Altaeros BAT as a case

study. However, the lab-scale platform is more generally applicable to a wide range of

tethered systems with rigid lifting bodies.

The goal is to derive a set of dimensionless variables that provide specific guidance as

to how the model and experimental parameters need to be chosen in the lab-scale, water

channel environment in order to produce dynamically-equivalent behavior to the full-scale

system. To do this, a Buckingham Pi-based dimensional analysis is used for the dynamic

model and the controller. The first step in Buckingham Pi-based dimensional analysis

is to derive a set of variables (and corresponding dimensions) that are sufficient to fully

characterize the dynamics. From this set of variables and dimensions, it is possible to

derive a set of dimensionless variables that should be matched at both scales.

2.4.1 Dimensional analysis for plant parameters

Because the variables in equations (8) and (9) are directly dependent on the variables

in equation (7), only the variables in equation (7) need to be considered in the subsequent

dimensional analysis. In order to arrive at a minimal set of variables, the following assump-

tions are made:

• Mass distribution is identical at lab-scale and full-scale, which renders the moments

of inertia static functions of the mass and geometric properties. This assumption is

satisfied through design and proper ballasting of 3D printed models.
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• Aerodynamic coefficients are independent of the Reynolds number within the Reynolds

number ranges seen in the water channel (75,000 at a 1 m
s flow speed, using chord

length as the reference length) and full-scale system (5,000,000 at a 10 m
s wind

speed). Hence, the viscosity of the medium is neglected as a physical dependency.

The validity of this assumption is further assessed through force and moment char-

acterization in [42]. Table 1 lists the remaining relevant variables and corresponding

units.

Table 1: Physical dependencies used to describe the characteristics of the lifting body.

No. Parameters Units
1 Lt m
2 Lc m
3 dt m
4 Ma kg
5 ρ kg ·m−3

6 V m · s−1

7 g m · s−2

8 Θ̇ s−1

9 Θ̈ s−2

10 Φ̇ s−1

11 Φ̈ s−2

12 Ψ̇ s−1

13 Ψ̈ s−2

14 λ kg ·m−1

Buckingham Pi-based dimensional analysis results in the following dimensionless groups:

Πplant =

Lc

Lt
,
Lt

dt
,
L3

t ρ

Ma
,
λLt

Ma
,
gLt

V 2 ,
LtΘ̇

V
,
L2

t Θ̈

V 2 ,
LtΦ̇

V
,
L2

t Φ̈

V 2 ,
LtΨ̇

V
,
L2

t Ψ̈

V 2

 (15)
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Interpretation of dimensional analysis results

The first two terms in (15) demonstrate that geometric similarity must be preserved be-

tween the lab-scale and full-scale models in order to achieve equivalent dynamic perfor-

mance; thus, all linear dimensions (including the length, width, and height of the aerostat,

as well as the tether length) must scale by the same amount. This overall scale factor, Xs is

given by:

Xs =
Llabscale

c

L f ullscale
c

. (16)

The third and the fourth dimensionless terms reflect the need to preserve net buoyancy

between scales. The fifth term is equivalent to the Richardson number or (1/Froude number2).

It requires the velocity to be scaled proportionally to the square root of length. Based on

the first through fifth dimensionless terms, the following guidelines for achieving dynamic

equivalence may be discerned:

• Scale Lt , Lc, and dt to maintain geometric similarity.

• Scale Ma to maintain net buoyancy.

• Scale λ to preserve the ratio of tether mass to lifting body mass.

• Scale V such that V ∝
√

Xs.

Physically, the aforementioned scaling guidelines are satisfied in the following ways:

• The models are flown close to the maximum possible altitude attainable in the water

channel in order to emulate high-altitude flight. For a 1/100-scale model, a flight

altitude of 80cm emulates full-scale flight at 80m.
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• The models are 3D printed out of low-density ABS plastic, which results in a specific

gravity of approximately 0.5. Lead wires are used to increase the density of the

models to maintain net buoyancy, while also moving the center of mass to the desired

location.

• The tethers are ballasted with an appropriate number of sinkers to preserve the ratio

of tether mass to lifting body mass. Because dynamic performance has not always

been found to be sensitive to λ , the tethers are not ballasted in every test instance.

• The UNC-Charlotte water channel provides flow speeds up to 1 m
s , thereby emulating

wind speeds up to 10 m
s on the full-scale system.

The aforementioned scaling guidelines are based on the first five dimensionless variables

of equation (15). However, in the succeeding dimensionless parameters, there is a direct

variation of the velocity and length scales, thus rendering it impossible to follow the afore-

mentioned scaling laws and achieve dynamic equivalence according to the sixth through

eleventh dimensionless variables in equation (15). This contradiction can be resolved by

introducing a normalized time, t̄ = at, which is reflective of uniformly scaled time constants

(altered through the “stretching” factor, a) at small-scale versus full-scale.

A new set of dimensionless groups can be derived in scaled time as follows:

Πplant =

Lc

Lt
,
Lt

dt
,
L3

t ρ

Ma
,
λLt

Ma
,
ḡLt

V̄ 2 ,
Lt

dΘ

dt̄
V̄

,
L2

t
d2Θ

dt̄2

V̄ 2 ,
Lt

dΦ

dt̄
V̄

,
L2

t
d2Φ

dt̄2

V̄ 2 ,
Lt

dΨ

dt̄
V̄

,
L2

t
d2Ψ

dt̄2

V̄ 2 ,a

 (17)

where V̄ and ḡ represent flow speed and gravitational acceleration in scaled time. Exami-

nation of the dimensionless groups in (17) reveals that dynamic similarity can be obtained
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by scaling time as a function of the square root of the length scale, i.e.,

a =
t̄
t

∝
1√
Xs

. (18)

It follows that V̄ ∝ Lt and ḡ ∝ Lt , from which we can see that all of the dimensionless

parameters of (17) are matched at lab- and full-scale, with the exception of a, the time scale.

Thus, by taking appropriate measures to match the first five dimensionless parameters at

both lab-scale and full-scale, the remaining six dimensionless parameters are automatically

matched. It therefore follows from this analysis that under appropriate scaling of design

parameters, as indicated above, the full-scale dynamic behavior can be replicated at lab-

scale with the only difference being uniformly scaled time constants.

2.4.2 Dimensional analysis for controller parameters

In order to correlate controller parameters in the water channel with full-scale flight con-

trol parameters, the dimensional analysis has been extended to include control parameters.

The additional parameters introduced through the flight controller include:

kz
p -= Proportional gain for altitude, m/s

m

kz
d = Derivative gain for altitude, m

m

kθ
p = Proportional gain for pitch angle, m/s

rad

kθ
d = Derivative gain for pitch angle, m

rad

kφ
p = Proportional gain for roll angle, m/s

rad

kφ

d = Derivative gain for pitch angle, m
rad

τz,θ ,φ = Filter time constant, s

Since kz
d is already dimensionless, it can be removed from the analysis, and the resulting
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analysis yields 8 dimensionless parameters:

Πcontroller =

 Lt

kθ
d
,

Lt

kφ

d

, t̄kz
p,

V
kθ

p
,

V

kφ
p
,

t̄
τz
,

t̄
τθ

,
t̄

τφ

 (19)

Combining this set of dimensionless parameters with the earlier observation that a ∝
√

Lt

yields the following set of control parameter scaling laws:

kθ
d , kφ

d ∝ Lt

kz
p ∝

1√
Lt

kθ
p , kφ

p ∝
√

Lt

τz,θ ,φ ∝
√

Lt

2.4.3 Lab-scale validation of scaling laws

To validate the dimensional analysis at lab-scale, three different scale models (as shown

in Figure 10) were tested in the water channel setup of Figure 7. Lc, Lt , Ma, and V were

adjusted for each of the scaled model tests to preserve the non-dimensional variables of

(17). Table 2 provides the exact values of these variables used in the validation tests. Each

test was run in an open-loop mode (with control inputs equal to zero) using the parameters

given by Table 2.

Table 2: Design and test parameters for the three models used in the scaling validation
tests.

Variable (units) Model 1 Model 2 Model 3
Scale factor Xs 0.0075 0.01 0.0125
Time scale a 11.54 10 8.94

Lc (cm) 5.625 7.5 9.375
Lt (cm) 45.7 61 76
Ma (g) 135 180 225

V (cm/s) 26 30 33.5
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Figure 10: 3D printed lab-scale models of the BAT that were used in establishing dynamic
similarity across different scales.

Figure 11 and Figure 12 show the resulting dynamic behavior in terms of dimensional

and non-dimensional ground-frame lateral position (y) and time (t), as well as already di-

mensionless heading angle (ψ). Examination of Figure 11 shows a significant difference in

heading oscillation frequency in dimensional time that is removed when heading is plotted

against non-dimensional time (t̄). Furthermore, examination of Figure 12 shows a signif-

icant difference in both amplitude and the frequency of oscillations in lateral position (y).

Both disparities are significantly reduced when the normalized position is plotted against

normalized time.
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Figure 11: Heading angle response for three different scale models versus normalized and
absolute time.

2.4.4 Summary of results

The aforementioned results describe and assess a lab-scale platform for the dynamic

characterization of lighter-than-air AWE systems, specifically the Altaeros BAT. A dynamic

model-based dimensional analysis suggested that properly-scaled testing parameters will

lead to dynamic equivalence across all the lab-scale models. Similar behavioral trends were

observed in a set of test results wherein the heading angle response and non-dimensional

lateral offset at different scales collapsed onto a single curve.
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Figure 12: Comparison plot of absolute and normalized lateral position versus normalized
and absolute time.



CHAPTER 3: EXPERIMENTALLY INFUSED OPTIMIZATION USING
GRADIENT-BASED DOE - MATHEMATICAL FORMULATION

The gradient-based DoE is an iterative optimization process that consists of the following

four steps:

• Generate experiments within the local parameter space surrounding the estimated

optimal design based on the numerical system model.

• Run those experiments.

• Compute a correction to the numerical model based on the experiments.

• Run a full numerical optimization with the corrected model, then repeat the process.

The basic framework in Figure 13 seeks to select optimal values for plant parameters, pp

and controller parameters, pc, according to an objective function, J(pp,pc), that accounts

for important performance attributes. The specific steps in this framework are as follows:

• A full nested numerical optimization is performed, wherein the controller is opti-

mized fully at every iteration of the plant.

• A local grid-based DoE is performed, in which several variants of the numerically-

optimized plant and controller are selected to be tested (in addition to the numerically-

optimized plant and controller).
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• Selected experiments are run, and the corresponding performance index is quantified

in the form of a cost function value.

• The cost function estimate is corrected, using experimental results from the recent

iteration.

The process of iterating between a set of experiments and a full numerical optimization is

repeated until a convergence criterion is reached.

Figure 13: Nested optimization strategy using experimental infusion and numerical model
correction.

Before choosing the plant and controller parameters for optimization, open-loop charac-

teristics of the system were studied. Different models with various configurations of the

BAT were tested to study the stability and performance characteristics in an open loop en-

vironment. Because [33], [34], [35] and all identify lateral flight dynamics as the primary

challenge to obtaining stable, well-damped flight characteristics, the analysis focused on
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the variation of the heading angle and lateral position. Each experiment was conducted

under a prescribed flow speed profile and included a controlled lateral perturbation at each

flow speed. More precisely, the controlled lateral perturbation consisted of reeling the three

tethers sequentially to induce lateral oscillations. Each experiment was characterized using

a cost function (J) that considered the lateral dynamics of the system, namely, the heading

angle and lateral offset from water channel centerline, as follows:

J =
∫ Tf

Ti

(K1ψ(t)2 +K2y(t)2)dt (20)

Here, K1 and K2 were chosen to be 0.2 and 0.0125, respectively (where ψ is measured in

rad and y is measured in m), and Ti, Tf denote the start and end time of the test (where

Tf −Ti is constant for all the experiments). The weights, K1 and K2, were chosen to take

under consideration the fact that ψ and y are measured in different physical units and are

restricted to different ranges, but are otherwise equally important.

The study presented here compares the impact of the center of mass location (% chord),

fin angle of incidence (degrees), and tether attachment configuration (1 forward, 2 aft and 2

forward, 1 aft) on the system performance, as quantified in equation (20). Figure 14 shows

the resulting cost function values for different variations in the center of mass location, fin

angle of incidence and tether attachment configurations.

For the case study presented in this chapter, the optimization is narrowed down to two

very important system parameters, namely the center of mass position, xcm and the trim

pitch angle, θsp, which are shown in Figure 14 to dramatically influence flight performance.

To preserve the dynamic equivalence at 1/100-scale, in a water channel environment, pp

was be taken as the chord-normalized center of mass location, relative to the center of buoy-



32

Figure 14: All figures show cost function value versus trim pitch angle and center of mass
location for different tether and fin angle configurations. The figure on the top left is for a
0-degree fin angle of incidence and one forward, two aft tether configuration. The figure
on the top right is for -5 degree fin angle of incidence. The bottom left figure shows data
for +5 degree fin angle of incidence and the last figure is for a 0-degree fin angle with a two
forward, one aft tether attachment configuration.

ancy (i.e., pp =
xcm−xcb

xchord
, where xcb is the center of buoyancy location and xchord is the chord

length), whereas pc is taken as the trim pitch angle, θsp, which is already dimensionless

(radians).

3.1 Performance index

The objective function for experimentally infused optimization was chosen to take under

consideration several system properties, including:

• Net energy production;

• Ground footprint, i.e., the horizontal projected area of land that the BAT covers when
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swept through its entire swinging circle, which determines land usage requirements

and spacing requirements for multiple systems;

• Quality of flight;

• Manufacturing, maintenance, and auxiliary control costs.

Mathematically, the cost function can be denoted by the integral sum of errors in the set

point values, control inputs and zenith angle as follows:

J =

[ Tf∫
Ti

(k1(ψ−ψ f low)
2 + k2θ

2
e + k3φ

2
e + k4z2

e

+k5(uT u)+ k6Φ)2 dt
]
+ k7(xcm− xcb)

2(Tf −Ti). (21)

Here, ψ −ψ f low denotes the difference between the yaw angle and the direction of water

and serves as a measure of both the pointing accuracy of the BAT and its quality of flight.

θe, φe, and ze represent pitch, roll, and altitude tracking errors, respectively. All of these

serve as indicators of flight quality. u is a vector of control inputs, which are linked to

energy consumption. Φ is the zenith angle, which is responsible for the ground footprint

(where the precise ground footprint is given by Apro jected = πL2
t sin2

Φ). The final cost

function term places a direct penalty on ballasting choices that place the center of mass

apart from the center of buoyancy. The weights k1 through k7 account for a mismatch in

the units and ranges for different terms in the objective function.
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3.2 Test profile for numerical simulations and experiments

Equally important to the cost function itself is the series of perturbations to the model

that occur between Ti and Tf . Each experiment conducted in this work consisted of three

different water speeds and three lateral perturbations at regular intervals. The perturbation

involves pulling in on the aft port tether for one second and holding it there for two seconds,

as shown in Figure 15. This sequence induces a roll and pitch up motion. It also lowers the

altitude and results in fluctuations in heading angle until the closed loop control brings the

BAT back to the set points. The perturbation profile is shown in Figure 15. For a test run

of 300 s, the first 100 s consisted of a relatively slow water speed of 0.205 m/s, followed

by 100 s at 0.245 m/s, and 100 s at 0.285 m/s. After every speed change, there is a settling

period of 20 s, followed by a controlled lateral perturbation.

Figure 15: The flow speeds (defining the flow profile) and control inputs (defining the
perturbation profile) over the course of one experiment/simulation.
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Mathematically, this perturbation is expressed as:

ūcenter =



0, if t ∈ T1

0, if t ∈ T2

v̄z− v̄θ , otherwise

(22)

ūport =



−umax, if t ∈ T1

0, if t ∈ T2

v̄z + v̄θ − v̄φ , otherwise

(23)

ūstbd =



0, if t ∈ T1

0, if t ∈ T2

v̄z + v̄θ + v̄φ , otherwise

(24)

where the time windows in seconds are given as:

T1 = [20 21]∪ [120 121]∪ [220 221] (25)

T2 = (21 23]∪ (121 123]∪ (221 223] (26)

3.3 Numerical optimization

First, a full numerical optimization is run, resulting in numerically-optimized plant and

controller parameters specified by p∗p and p∗c . The cost function used for the numerical

optimization, Jmod(pc, pp), comprises both the base cost function, J(pc, pp) and the cor-

rection term, Jcor(pc, pp), that was identified from the previous round of experiments, thus

yielding Jmod(pc, pp) = J(pc, pp)+ Jcor(pc, pp). This correction term, which is applied at
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the second and all of the subsequent iterations, guides the numerical optimization in a di-

rection that it otherwise would not be led. For the specific Altaeros BAT case study, the

numerical optimization used a nested approach, wherein a full controller optimization was

performed at each iteration of the plant optimization. However, the underlying structure of

the numerical optimization is not restrictive in the general case.

3.4 Gradient-based DoE

Following each numerical optimization, it is necessary to determine which experiments

to run. The optimal selection of experiments for information maximization is presented

in the next chapter. For this work, however, a simple grid-based DoE was chosen. This

included a total five test runs, which were sufficient to establish an experimental gradient

of the cost function with respect to pc and pp. Those test runs included the numerically-

optimized plant and controller parameters, p∗c , p∗p, plus the following set of experiments:

• pc = p∗c +δ pc, pp = p∗p;

• pc = p∗c−δ pc, pp = p∗p;

• pp = p∗p +δ pp, pc = p∗c ;

• pp = p∗p−δ pp, pc = p∗c .

where δ pc and δ pp are fixed-sized variations about the numerically-optimized plant and

controller. Because pp represented the chord-normalized center of mass location for our

case study, variations in pp were accomplished by moving ballast to different ballasting

holes in the model. Variations in pc, the trim pitch angle (θsp) were accomplished even

more easily, simply by entering a different trim value into the GUI on the host computer.
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3.5 Experimental correction

After each round of experiments, the experimental results must be digested in a way that

provides guidance for the subsequent numerical optimization. This can be done through

either of at least two mechanisms (or a combination thereof):

1. Direct parameter identification of a subset of system parameters;

2. Derivation of a cost function correction term, Jcor(pc, pp), based on experimental

results.

Since the uncertainties in this numerical model are the result of unmodeled dynamics, it is

not possible or even appropriate to apply correction terms to individual model parameters

between experiments. Instead, it is more appropriate to apply the correction directly to

the cost function. For the Altaeros BAT case study, that cost function correction term was

updated based on the experimentally-identified gradient of the cost as follows:

Jcor(pc, pp) = Jcor,prev(pc, pp)+Rp
∂J

∂ pp
(p∗p− pp)

+Rc
∂J
∂ pc

(p∗c− pc), (27)

where Jcor,prev(pc, pp) is the previous correction term, and Rp and Rc are scalar weight-

ing parameters between 0 and 1 that reflect the level of trust in the experimental gradient

calculation. For this case study, Rp = Rc = 0.1.



CHAPTER 4: GRADIENT-BASED EXPERIMENTALLY INFUSED DESIGN
OPTIMIZATION - EXPERIMENTAL RESULTS

The results of a two-parameter AWE case study are presented here, wherein a total of

three iterations of experimentally infused optimization were conducted, using the water

channel setup for experiments. The parameters considered in this case study were the

longitudinal center of mass location and the trim pitch angle. The objective function to be

minimized was given by equation (21).

4.1 Optimization results using two parameters

An initial iteration of numerical optimization resulted in pitch set point of 17.3 degrees

and center of mass location at 46.1 % of the total chord length, as measured from the

leading edge, with the center of buoyancy at 45.4 % chord. Three iterations of experimen-

tally infused optimization resulted in an optimum pitch set point of 19.4 degrees and the

optimum center of mass at 49.3 % of the chord length.

Table 3 shows the results of the optimization, demonstrating that the experimental infu-

sion is effective in driving the optimization toward an improved set of parameters. Figures

16 - 18 show the resulting experimental yaw, roll, and pitch error squared, respectively,

illustrating improved performance with the experimental infusion. This work served as an

initial step towards experimentally infused optimization and was published in [43].



39

Table 3: Parameters and cost function values at every iteration.

Iteration
Center of mass

location CMx ((%)
of chord)

Pitch set
point θ

(degrees)

Numerical
cost

(corrected)

Experimental
cost

1 46.1 17.3 4.35 6.85

2 50.1 18.9 4.20 6.12

3 49.3 19.4 4.01 5.81

Figure 16: Yaw error squared over the duration of an experiment.
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Figure 17: Roll error squared over the duration of an experiment.
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Figure 18: Pitch error squared, showing the pitch angle tracking quality before and after
experimentally infused optimization.



CHAPTER 5: OPTIMAL DOE-BASED EXPERIMENTALLY INFUSED DESIGN
OPTIMIZATION - MATHEMATICAL FORMULATION

Although the methodology described in the previous chapter yielded promising results,

the experiments at each iteration were designed only in the vicinity of the estimated op-

timal configuration. This local DoE can lead to a situation, particularly with a complex

system and many design parameters, where convergence to the globally optimal design is

not achieved.

Moreover, with the previous gradient-based DoE, the number of required experiments

increases significantly with increasing numbers of design parameters. To address these

limitations, a general framework consisting of the following major steps (that are also illus-

trated in Figure 4 and later clarified with specific details in Figure 19) has been developed:

• Perform an optimal design of experiments (DoE) and numerical simulations that

spans a prescribed design space.

• Run the experiments and simulations.

• Fit a response surface to the data obtained from simulations and experiments.

• Improve the numerical model at each iteration based on the results of all previous

experiments.

• Reduce the feasible design space for subsequent iterations.

Each of the processes described in Figure 19 is explained in detail as follows:
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Figure 19: Flowchart demonstrating the sequence of steps involved in the optimal DoE-
based optimization. These include: G-optimal DoE in a wide parameter space, followed by
experiments, simulations, response surface characterization, model correction, and shrink-
ing of the design space through hypothesis testing ([44] and [45]).

5.1 Optimal DoE

The overarching objective of optimal DoE is to choose experiments within a prescribed

design space that maximize information with as few experiments as possible. Such in-

formation maximization techniques are used throughout the DoE literature (see [46] and

[47]). Unlike the gradient-based experimental design technique used in Chapter 3, optimal

DoE techniques select experimental points that maximize properties of the information ma-

trix, detailed in [48] and [49]. Some of the widely used optimal DoE techniques include

A (average)-optimal, D (determinant)-optimal, G-optimal, E (eigenvalue)-optimal, and T

(trace)-optimal design. The D-optimal design is the most popular technique used in the lit-

erature. However, the optimality of a D-optimal design is predicated on the assumption that
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the exact structure of the model is known. Consequently, D-optimal design often results

in numerous repeated experiments, rather than extensive design space exploration. The

G-optimality criterion (or global criteria), on the other hand, has been shown to perform

well in producing a space-filling design that is significantly informative and does not repeat

design points (see [50]). For this case study, because the structure of the system model is

unknown and highly speculative, the G-optimality criterion is used in designing two sets of

points, namely the numerical simulations and experiments, where NS simulations and NE

experiments are chosen at each iteration.

G-optimal design relies on the speculation of a m element column vector known as the

regressor vector, r(pp,pc), which encodes the anticipated structural dependency of the sys-

tem output (performance index value in this case) on system parameters. The matrix of n

such regressor vectors can be expressed as:

R = [r1 r2 . . rn]
T (28)

Here, n corresponds to the number of design points (either numerical simulations or exper-

iments). The G-optimality criterion minimizes the maximum prediction variance over the

design space, where the optimum design points are given by:

[pp,pc] = arg min
(pp,pc)∈M

rT
i (R

T R)−1ri (29)

Here, ri denotes the regressor vector corresponding to the ith design point. In the AWE

application, the chosen regressor vector is quadratic in the plant (pp) and controller (pc)

parameters. M represents the design space at a given iteration, defined in Figure 19.



45

At every iteration, the NE experimental design points are split into an equal number of

training and validation points. The experimental points are sorted based on their distance

from each other, and alternate points are considered as training and validation points to

obtain better coverage of the design space. The training, validation and simulation config-

urations are denoted by ptrain, pval and psim, respectively.

5.2 Numerical simulations and experiments

Experiments and numerical simulations are conducted for every ptrain, pval and psim,

using identical operating conditions. A performance index denoted by J(ptrain), J(pval)

and J(psim) is computed for training experiments, validation experiments and simulations,

respectively.

5.3 Response surface characterization and numerical model correction

Three different response surfaces are characterized at every iteration of the optimization

process:

1. A pure experimental response using both training and validation experiments, Ĵexp;

2. Pure simulation-based response, Ĵsim;

3. A combined experimental training and simulation-based response, Ĵ;

The G-optimal design points, ptrain, pval and psim, only comprise a discrete set of points

in the feasible design space. To compute the optimal design, it is necessary to character-

ize/estimate the performance index over the entire continuous design space. In order to do

this, multiple techniques can be used. Over the course of this research, three techniques

have been used and are described as follows:
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5.3.1 Regression-based response surface approximation

The combined response surface is estimated using the expression:

Ĵ(p) = r(p)T b (30)

Here, Ĵ(p) is the estimated cost at any point p, and b is the vector of regression coefficients

obtained by minimizing the weighted sum of squared errors given by:

b = arg min
b∈IRn

n

∑
i=1

w(pi)(J(pi)− rT
i b)2 (31)

Here, w(pi) is the weight on ith point, which allows for the weighing of training experiments

and simulations differently. The idea behind using different weights on experiments versus

simulations is to account for different levels of confidence in experiments and simulations.

5.3.2 Distance-weighted response characterization

When the true nature of the response surface cannot easily be described through a sim-

ple regressor vector or is unknown entirely, a polynomial approximation may result in

poor characterization of the response surface. A distance-weighted approximation, on the

other hand, generates more realistic nature of the response surface. In this formulation, the

performance associated with any point p is approximated as the weighted summation of

performance indices at all measured points pi, placing more weight on points that are close

to p. The estimated performance under this distance-weighted approximation is given by:

Ĵ(p) =
∑

n
i=1 wiJ(pi)

∑
n
i=1 wi

, (32)

wi =
1

d(p,pi)2 (33)
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where d(p,pi) is the Euclidean distance between p and pi.

5.3.3 Squared-exponential response characterization

The third candidate choice for response characterization is a squared exponential fit,

which approximates the cost function value at a candidate design point (Ĵ(p)) as a weighted

average of measured costs, where the weights are scaled based on normalized distance. The

estimated cost function value at a candidate design point p is given as:

Ĵ(p) =
∑
i

J(pi)e(−c(||p−pi||))2

∑
i

e(−c(||p−pi||))2 (34)

where c is a user-defined tuning parameter.

5.4 Numerical model improvement

The experimental results at a given iteration can (and should) be used to improve the

numerical model for the next iteration. This is done through a numerical model correction

term, Ĵcor(p). Once the experimental cost (Ĵexp) and numerical cost (Ĵsim) is obtained, the

correction term (Ĵcor) is applied to numerical simulations as follows:

Ĵnum,i(p) = Ĵsim,i(p)+ Ĵcor,i(p) (35)

Ĵcor,i(p) = k(Ĵexp,i(p)− Ĵsim,i(p))+
i−1

∑
j=1

Ĵcor, j(p) (36)

Here, Ĵnum(p) represents the corrected simulation cost by considering a cumulative cor-

rection term Ĵcor(p) that consists of a combination of a correction at the current iteration

(i) and the cumulative correction over all previous iterations. k is a weight that limits the

correction to a certain percentage of the difference between the experimentally-derived and

numerical response surface, at every iteration. Hence, as the iterations progress, the nu-
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merical cost approaches the experimental cost. The corrected numerical model is used to

fit a combined response surface, along with the training experimental data. The estimated

optimum parameter combination, p̂∗, is obtained from this combined response, and the

corresponding estimated optimal cost is denoted by Ĵ(p∗). pi corresponds to the batch of

design points for the ith iteration, which must be contained within the design space for the

ith iteration.

5.5 Feasible design space reduction

The next step in the iterative framework is to shrink the design space by rejecting all

candidate configurations that are sufficiently worse than the estimated optimum. This es-

timated optimum configuration, p̂∗, is the configuration that minimizes the combined re-

sponse Ĵ. A candidate configuration in the gridded design space is then retained (or re-

jected) based on the level of confidence that the candidate design is worse than p̂∗. This

goal is achieved using hypothesis testing and z-test (see [51]). The null hypothesis (H0)

and alternate (H1) hypothesis are defined as,

H0 : J(p) = Ĵ(p̂∗) (37)

H1 : J(p)> Ĵ(p̂∗) (38)

The z test is used to reject a candidate configuration by comparing the corresponding z-

score to a threshold z0 for the desired confidence interval.
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z(p) =
Ĵ(p)− Ĵ(p̂∗)

S
√

2
(39)

S =

√√√√∑

NE
2

i=1(Ĵ(pval)− J(pval))2

NE
2 −1

(40)

The term S is referred to as the quality of fit between the combined response at validation

points and the true experimental response at validation points. A candidate configuration

is retained only if the z-score for that configuration is less than the z0 based on a prescribed

confidence interval, taken as 90% for this work.



CHAPTER 6: CONVERGENCE ANALYSIS FOR THE OPTIMIZATION
FRAMEWORK

Chapter 4 showed that the framework for experimental infusion with iterative, gradient-

based DoE resulted in a system response that was significantly better than the numerically

optimized response for the AWE application. Specifically, numerical model improvement

allowed for a better estimate of the optimum parameters. The framework was later en-

hanced in Chapter 5 through the consideration of the global design space at every iteration,

along with a cumulative model correction. Therefore, an interesting set of questions one

could ask is:

• Under what conditions can one conclude that the corrected numerical model (Ĵnum)

will converge to the true system model (Jtrue)?

• If precise convergence cannot be guaranteed, can one derive a bound on the closeness

with which the model will ultimately converge to the true system response?

• Can such a convergence bound be derived in the presence of some bounded experi-

mental noise?

6.1 Convergence analysis for the numerical model correction

The main focus of convergence analysis is to determine the closeness of corrected nu-

merical model response to the true system response in presence of noise and structural

uncertainties in the response surface. This is achieved by using a recursive sequence for
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the cost function correction, as shown in equation (35). Let Jsim be the actual simulation

response, and let Jtrue denote the true system response. Let e1 be the error between actual

and estimated response from simulations. Let e2 be the error between true system and esti-

mated response from experiments. The estimation errors at the nth iteration are expressed

as:

e1,n = Ĵsim,n− Jsim

e2,n = Ĵexp,n− Jtrue (41)

Assumptions: At every iteration, the estimation errors are assumed to be bounded by a

theoretical upper limit, En. Hence, the following assumptions are made:

1. ||e1,i|| ≤ E1,i for i = 1,2,3, ....,n, and

2. ||e2,i|| ≤ E2,i for i = 1,2,3, ....,n

where the function norm, ||.||, is defined as:

||J(p)||,

(∫
M
|J(p)|pdp

) 1
p

(42)

Here, the values of E1,i and E2,i depend on (i) the level of noise present in experiments

(in the case of E2,i) and (ii) the quality of fit for the response surface. Per (42), the norms

of the functions e1,i and e2,i are defined based on the concept of an Lp signal norm, but

are computed over a multi-dimensional finite design space. The analysis that follows will

hold for any finite (positive) integer value of p. Because the size of the design space (M)

becomes smaller at each iteration, E1,i and E2,i are monotonically decreasing functions of
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the iteration number, and we may define their limits as:

E1,∞ = lim
i→∞

E1,i, (43)

E2,∞ = lim
i→∞

E2,i. (44)

Let Ĵnum,n be the corrected numerical model at the nth iteration. The following propo-

sition demonstrates that the numerical response surface converges closely to the true re-

sponse in the limit, as iterations go to infinity. Furthermore, the asymptotic “closeness” of

the corrected numerical model to the true response is dictated by the maximum discrepancy

between the response surfaces and the corresponding data used to generate those response

surfaces.

Proposition: Under the cumulative correction law of equation (35), limn→∞ ||Ĵnum,n−

Jtrue|| ≤ 2E1,∞ +E2,∞.

Proof: Based on the cumulative correction law of equation (35):

Ĵnum,1 = Ĵsim,1 + k(Ĵexp,1− Ĵnum,0) (45)

= Ĵsim,1 + k(Ĵexp,1− Ĵsim,1)

Ĵnum,2 = Ĵsim,2 + k(Ĵexp,1− Ĵsim,1) (46)

+ k(Ĵexp,2− Ĵnum,1)

= Ĵsim,2 + k(Ĵexp,1− Ĵsim,1)

+ k(Ĵexp,2− Ĵsim,1− k(Ĵexp,1− Ĵsim,1))

= Ĵsim,2 + k(1− k)(Ĵexp,1− Ĵsim,1)

+ k(Ĵexp,2− Ĵsim,1)
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The nth term can be written as follows:

Ĵnum,n = Ĵsim,n

+ k(
n−2

∑
r=0

(1− k)r(Ĵexp,n−r− Ĵsim,n−r−1)

+ (1− k)n−1(Ĵexp,1− Ĵsim,1)) (47)

Therefore, based on the estimation error:

Ĵnum,n = Ĵsim,n

+ k(
n−2

∑
r=0

(1− k)r(Jtrue− Jsim

+ e2,n−r−1− e1,n−r−1)

+ (1− k)n−1(Jtrue− Jsim + e2,1− e1,1)) (48)

Using equation (41), (48) can be modified as follows:

Ĵnum,n = Jsim + e1,n

+ k
n−1

∑
r=0

(1− k)r(Jtrue− Jsim)

+ k(
n−2

∑
r=0

(1− k)r(e2,n−r−1− e1,n−r−1)

+ (1− k)n−1(e2,1− e1,1)) (49)

However, the third term to the right hand side of equation (49) reduces to (1−(1−k)n)(Jtrue−

Jsim). Since k< 1, limn→∞(1−(1−k)n)= 1. Let Rn = k(∑n−2
r=0(1−k)r(e2,n−r−1−e1,n−r−1)+

(1− k)n−1(e2,1− e1,1)). Therefore:

lim
n→∞

(Ĵnum,n− Jtrue) = e1,n +Rn (50)
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Define an intermediate iteration M̄ ∆
= n− N̄, where N̄ is fixed. It follows that:

Rn = k(
M̄−1

∑
r=0

(1− k)r(e2,n−r−1− e1,n−r−1)

+
n−2

∑
r=M̄

(1− k)r(e2,n−r−1− e1,n−r−1)

+ (1− k)n−1(e2,1− e1,1)) (51)

As n becomes large, M̄ increases as well. Consequently, last two terms in the aforemen-

tioned equation vanish as n→ ∞. From this observation and the fact that E1,n and E2,n

decrease monotonically with respect to i (due to the monotonic decrease in the size of the

design space), it follows that:

||Rn|| ≤ k(E1,n−M̄ +E2,n−M̄)
M̄−1

∑
r=0

(1− k)r (52)

= (E1,n−M̄ +E2,n−M̄)(1− (1− k)M̄) (53)

which implies that:

lim
n→∞
||Rn|| ≤ E1,∞ +E2,∞ (54)

Therefore, from equations (50) and (54):

lim
n→∞
||Ĵnum,n− Jtrue|| ≤ 2E1,∞ +E2,∞. (55)

Equation (55) gives a theoretical upper bound on the difference between the corrected

numerical model and true response after a large number of iterations. It can be inferred

that a good quality of fit and low noise threshold will lead to convergence of the corrected

numerical model to the true system behavior.
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Table 4: Table showing parameters and their range for optimization. A negative sign on
CMx

CB indicates that the center of mass lies behind the center of buoyancy.

Parameter Unit Minimum Maximum

CMx
CB % of chord -0.25 -5.85

θdes degrees 0 15

AH scale factor 0.8 1.4

AV scale factor 0.85 1.85

6.2 Visualization of the convergence result using the AWE case study

A total of four optimization parameters are chosen for the purposes of assessing conver-

gence on the AWE system:

1. longitudinal center of mass location relative to the center of buoyancy (CMx
CB),

2. pitch angle set point (θdes),

3. horizontal stabilizer surface area (AH), and

4. vertical stabilizer surface area (AV ).

The parameter bounds for the optimization problem are given in Table 4.

The case study results are presented in two parts:

1. 2-parameter optimization to visualize the actual estimated responses;

2. 4-parameter optimization to see the convergence of numerical model to the true re-

sponse, within guaranteed bounds based on given limits for experimental noise and
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structural uncertainty in the response surface models.

To account for the new design parameters (AH and AV ) explicitly in the system model, the

aerodynamic force and moment coefficients have been partitioned between the shroud/fuselage

(denoted by F), the horizontal stabilizer(denoted by H), and vertical stabilizer (denoted by

V ). The reference areas for the shroud and stabilizers are taken to be the respective surface

areas. The coefficients in the modified numerical model are given by:

CD,L,S(α,β ) = CF
D,L,S(α,β )+CH

D,L,S(α,β )
AH

Are f
+CV

D,L,S(α,β )
AV

Are f
(56)

CMx,My,Mz(α,β ) = CF
Mx,My,Mz

(α,β )+CH
Mx,My,Mz

(α,β )
AH lH

Are f lre f

+CV
Mx,My,Mz

(α,β )
AV lV

Are f lre f
(57)

Here, CD, CL, and CS are the drag, lift and side force coefficients, whereas CMx , CMy and

CMz are the roll, pitch and yaw moment coefficients. α and β represent the angle of at-

tack and side slip angle, respectively, whereas Are f and lre f are the reference areas and

reference lengths, respectively. The superscripts F , H, and V refer to the main body (fuse-

lage/shroud), horizontal stabilizer, and vertical stabilizer, respectively. The values of lH

and lV were adjusted such that a constant aspect ratio was maintained for any combination

of stabilizer surface areas AH and AV , respectively.

6.2.1 Numerical alternative to experiments

Prior to moving directly to the presentation of experimental results, we will first visu-

alize the convergence process in the case where experiments are replaced with a higher-

fidelity numerical model, termed a surrogate experimental model, whose results are noise
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corrupted. This is done for two reasons:

1. Replacement of the experiments with numerical simulations allows us to run many

(30 plus) iterations. This large number of iterations could not economically be run

with our current experimental setup.

2. By specifying precise bounds on noise and calculating a precise bound on struc-

tural response surface uncertainty, we can confirm that the bounds from the previous

proposition indeed hold.

The surrogate experimental model incorporated stall effects for the fuselage and the hori-

zontal stabilizer that were omitted from the numerical model. To model these stall effects,

the lift coefficients on body and stabilizer were modeled as follows:

CF
L =


CF

L0
+CF

Lα
αF , if |αF | ≤ αF

stall

CF
L0
+2CF

Lα
αF

stall−CF
Lα

αF , otherwise

(58)

CH
L =


CH

L0
+CH

Lα
αH , if |αH | ≤ αH

stall

CH
L0
+2CH

Lα
αH

stall−CH
Lα

αH , otherwise

(59)

Here, CF
L (α

F) and CH
L (αH) denote the lift coefficients for shroud and the horizontal sta-

bilizer, respectively, CF
L0

and CH
L0

are the shroud and horizontal stabilizer lift coefficients

at zero angles of attack, CF
Lα

and CH
Lα

represent the linear lift coefficients, αF and αH are

the angles of attack, and αF
stall and αH

stall are the angles of attack at which the shroud and

horizontal stabilizers stall.
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6.2.2 Case study results using surrogate model

A total of 33 iterations were performed for every noise threshold selected. In the case of

2-parameter optimization, the parameters considered were CMx
CB and θsp. G-optimal simu-

lations and experiments are shown in Fig. 20. It is evident that the feasible design space is

significantly reduced over iterations. A combined numerical/experimental response surface

is shown in the right half of Fig. 20. Fig. 21 compares the convergence bound derived in

equation (55) for 2 and 4-parameter optimizations using different noise thresholds. The

figure also shows that the size of the design space reduces monotonically. Fig. 22 clearly

shows an overall improvement in the quality of flight at the final iteration, particularly in

terms of the heading angle response. The ground foot-print is slightly reduced as a result

of experimental infusion and numerical model correction.
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Figure 20: The top row shows design points and combined numerical/experimental re-
sponse for the very first iteration. The middle row shows the same plots within the reduced
design space at an intermediate iteration. The bottom row shows the (dramatically reduced)
design space and corresponding response surface at the last iteration.
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Figure 21: Evolution of ||Ĵnum,n− Jtrue|| for 2-parameter (top left) and 4-parameter (top
right) optimization. The bottom left and right plots show the evolution of the design space
as a fraction of the original design space for 2 and 4-parameter optimization, respectively.

Figure 22: Heading angle comparison between the optimum design at the first and last
iterations, which shows significant improvement, whereas, zenith angle plots on right show
slight improvement.



CHAPTER 7: OPTIMAL DOE-BASED EXPERIMENTALLY INFUSED DESIGN
OPTIMIZATION - EXPERIMENTAL RESULTS

This chapter presents the results of optimal DoE-based experimentally infused design

optimization for both a two-and four-parameter case study, using the lab-scale water chan-

nel platform for experiments. The cost function was taken to be as follows:

J =

Tf∫
Ti

(k1(ψ−ψ f low)
2 + k2θ

2
e + k3φ

2
e + k4z2

e + k5(uT u)+ k6Φ)2 dt (60)

7.1 Case study results for 2-parameter optimization

In the case of the two-parameter optimization, the framework in Section 5 was used

to optimize the longitudinal center of mass location, xcm (that corresponds to the plant

parameter, pp), and trim pitch angle, θsp (which corresponds to the control parameter,

pc). The weights, w(p), given by Equation (31) were chosen as follows: training experi-

ments w(ptrain) had a weight of 80% as compared to only 20% for numerical simulations

w(psim) in the response surface characterization. The regressor vector used in this case was

quadratic in plant and controller parameters and is given as:

r = [1 p2
p pp p2

c pc]
T (61)

The first three iterations of the optimization process are summarized in Table 5, along with

the optimal configuration given by pure numerical simulations. Figure 23 shows the exper-

iments and numerical simulations generated at each iteration and the combined response
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Table 5: Estimated optimal parameters (values of p∗) at each iteration, with zeroth iteration
corresponding to pure numerical optimum.

Iteration
xcm (% of chord

length) θsp (degrees)
Area of feasible design

space (% of original
design space)

0 45.7 8.29 100

1 49.40 7.21 61.53

2 49.53 5.45 16.52

3 49.53 7.51 15.33

surface characterization. It is evident from the table as well as the figures that design space

is shrinking at every iteration, up to the third iteration. Thereafter, the variation in ex-

periments is dictated predominantly by the noise in the experimental data. Hence, further

reduction in the design space is limited. The shrinking at the very first iteration is not as

significant as that at the second iteration since the numerical model remains uncorrected

during the first iteration. At the onset of the second iteration, the numerical model is cor-

rected using experiments, which leads to a better quality of fit between combined numerical

plus training data and the validation data. Figure 24 shows that there is a significant im-

provement in the quality of flight governed by pitch angle tracking and the heading angle

throughout the experiment. These results were presented in [52].

7.2 Case study validation through 4-parameter optimization

In the case of the four-parameter optimization, the design parameters were longitudinal

center of mass location relative to the center of buoyancy (CMx
CB), trim pitch angle (θsp),

horizontal stabilizer area (AH), and vertical stabilizer area (AV ).
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7.2.1 Modified CAD models with removable fin geometry

Considering large numbers of design parameters requires large numbers of simulations

and experiments, demanding a large degree of reconfigurability in the 3D printed models.

This reconfigurability allows the experimental operator to rapidly switch between design

parameters. The previous 3D printed BAT models have ballast holes and multiple tether

attachment points for rapid re-reconfigurability. In addition to the tether attachment points

and center of mass locations, vertical and horizontal stabilizers also impact the flight per-

formance, as seen through experimental results in Figure 14 and simulations in Chapter 6.

However, with previous 3D printed models, altering either the angle of incidence, dihedral

angle or stabilizer areas required the 3D printing of a whole new model. However, 3D print-

ing a new model for every candidate stabilizer geometry is a costly and time-consuming

precess when the goal is to run several batches of experiments. To that extent, a new design

has been developed for rapid iteration between different sizes of horizontal and vertical

stabilizers.

7.2.2 Design characteristics

The new design separates horizontal and vertical stabilizers from the shroud. A set of

peripheral T-slots along the shroud are provided for the stabilizers to slide into and out of.

To allow smooth sliding of the stabilizers between the T-slots and to hold the stabilizers in

place, a clearance of 0.1 mm is provided. The design can achieve a suitable range of center

of mass locations while maintaining prescribed excess buoyancy. Moreover, the design is

water-tight to maintain known mass distribution and precise center of mass location. This

was achieved through an improved stereolithography apparatus (SLA) based 3D-printing
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process.

7.2.3 Water-proof 3D printed model with stereolithography apparatus (SLA)

Previous models used in generating the results of Chapter 4 were printed using Fused

Deposition Modeling (FDM). FDM slices the geometry to be printed into different layers.

The resin is melted and deposited layer by layer to generate the complete part. The FDM

process is unable to replicate intricacies in the model and results in a porous part. Unlike

FDM, SLA printing deploys photo-polymerization to stack 3D layers of the resin, thereby

resulting in a solid fill. Since an SLA printed part has stronger chemical bonding between

the layers while connecting the photopolymers, the SLA process is a better choice for this

application, which requires a highly consistent and water tight part. Specifically, the Form 2

by Formlabs ([53]) is used to print the part. The Form 2 is equipped with a resin tank at the

bottom. The stacked layers on top are separated from the resin tank using side peel process,

and a wiper is used to remove the debris, if any. The printer has reasonably fast cure times

and great precision. A layer thickness as low as 25 microns can be achieved using this SLA

printer. The rate at which this part can be printed on Form 2 using a standard resin is about

15 mm of height per hour. To drain all of the filling material trapped in the hollow cavity,

it is recommended to have three holes of 3.5 mm diameter at the bottom of each model.

These holes are later plugged to seal the model.

Although a solid fill guarantees water tightness, significant material is shelled out to

maintain the net buoyancy, hence resulting in an internal void. The fins. however, are solid

and maintain a constant aspect ratio across different surface area designs. For this case

study validation, the allowable range for horizontal and vertical fin areas was discretized
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Table 6: Table showing estimated optimal parameters (values of p∗) at each iteration. Iter-
ation zero indicates optimum parameters obtained from pure numerical simulations. Neg-
ative values for CMx

CB indicates that the center of mass must lie behind the center of buoy-
ancy.

Iteration
CMx

CB (%
of chord
length)

θsp
(degrees)

AH (scale
factor)

AV (scale
factor)

Hyper volume of
feasible design
space (% of
original design
space)

0 -1.16 6.14 0.8 1.77 100

1 -5.62 13.73 1.26 0.88 81.82

2 -5.24 9.76 0.81 1.63 59.87

3 -5.11 9.78 0.84 1.55 32.17

4 -5.09 10.57 0.84 1.44 24.03

5 -5.09 11.61 0.88 1.41 19.57

into 24 steps with equal increments.

7.2.4 Results using water channel experimental setup

The optimization framework of Section 5 has been applied to the lab-scale AWE setup

described in Section 2 to optimize four parameters. A total of 18 experiments and 36

simulations were chosen. For this case study, w(ptrain) and w(pnum) are chosen to be

0.7 and 0.3, respectively. Hypothesis testing is performed using a 90 percent confidence

interval.

Table 6 shows the optimum parameters and resulting cost for the first five iterations of

the experimentally infused optimization. Iteration zero denotes the optimum configuration

given by the numerical model. The design space is reduced significantly across these five

iterations, as seen from last column in Table 6. Fig. 26 and Fig. 27 show different system
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responses for both the numerical and the experimentally-infused optimum. Specifically, the

heading angle response is significantly improved through the experimental-infusion. For

the numerical optimum, the heading angle response shows spikes over the last 30 seconds.

These result from a pair of dots leaving the region of interest for the camera momentarily.

However, due to a dynamically updated image processing algorithm, precise tracking of

heading angle is regained as the dots re-enter this region of interest. The roll offset is

greatly reduced in the case of the experimentally infused optimum, as seen from Fig. 27.

This figure also shows that the experimentally infused optimum yields a slightly lower

zenith angle. Fig. 28 shows qualitative improvement in the altitude and pitch tracking.

Some of these results are documented in [52].

7.3 Conclusions and final remarks

A formal iterative method for combined plant and controller optimization, fusing both

simulations and experiments, was proposed in this research. The framework was validated

using an AWE application, initially using the center of mass location and pitch angle set-

point as optimization variables. A rigorous convergence analysis derived the theoretical

limit on numerical model improvement, which was visualized using a surrogate model in

place of experiments. Finally, the framework was applied to 4-parameter optimization.

Through experimentally infused optimization and a unique lab-scale setup for the experi-

ments themselves, we obtained much better system performance than with the numerical

model alone.
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Figure 23: The left half shows experiments and numerical simulations generated by G-
optimal design at every iteration in the shrunken design space. The right half shows plots
of combined numerical and experimental response surface (Ĵ) for every candidate point
(pp,pc) in the shrunken design space.
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Figure 24: The left and right halves of this figure show a comparison between the numeri-
cally optimal configuration and the experimentally infused optimum. The improvement in
pitch and heading squared error responses with experimental infusion is evident from the
plots.
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Figure 25: 3D printed representation of the BAT showing removable fin design, enabling
rapid reconfiguration of plant geometry.
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Figure 26: The top row shows a comparison between heading angle for the numerically op-
timal configuration and experimentally-infused optimum. The bottom row shows a similar
comparison between the squared heading angle.

Figure 27: This figure shows a comparison between roll and zenith angle responses for the
numerically-optimized design (left) versus the design resulting from the experimentally-
infused optimization approach (right).



71

Figure 28: A similar comparison in the altitude and pitch tracking errors implies improved
quality of flight through experimental infusion.
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