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ABSTRACT 
 
 

HAITAO BIAN. Advanced considerations in LiDAR technology: application 
enhancement, inspection workflow implementation and data collection quality 

management. (Under the direction of DR. SHEN-EN CHEN) 
 
 

Bridge inspection is a critical topic in infrastructure management and is facing 

unprecedented challenges as the public is concerned more about bridge safety after a 

series of bridge failures. LiDAR based remote sensing is recommended as a way in 

supplementing the prevailing visual inspection to quantify critical bridge information. In 

this research, focus will be placed on the advanced considerations of LiDAR technology 

in bridge inspection, including the application evaluation, inspection workflow 

implementation, and data collection quality management. Particularly, efforts on 

improving the computational performance of the original damage detection algorithm 

have been carried out and the use of reflectivity data is introduced as a new feature to 

enhance the algorithm’s capability in defect recognition. The specific applications that 

using LiDAR technology to evaluate bridge deck joint and monitoring simulated slope 

erosion have been studied. This research further studied the inspection workflow 

implementation and the sources of errors in the LiDAR bridge inspection. Quality 

management has also been considered to improve the bridge inspection data quality 

besides the development of advanced inspection technology. In the end, comparative cost 

analysis is conducted to determine the savings for implementing LiDAR technology into 

bridge inspection workflow.  
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CHAPTER 1: INTRODUCTION 
 
 
1.1 Bridge Failures and Maintenance 

Since the 1960s, bridge safety has been recognized as a national interest after a 

series of bridge failures in the United States. The collapse of the Silver Bridge at Point 

Pleasant, West Virginia, in 1967 resulted in 46 deaths and the establishment of the 

national bridge inspection program (Brinckerhoff, 1993). The I35 bridge collapse at 

Minneapolis, Minnesota, in 2007 further challenged current bridge safety monitoring 

program (Subramanian, 2008). There is an alarming increase in bridge failures in the 

USA (Imhof, 2005 and McLinn, 2009). Figure 1.1 shows the U.S. bridge failure data 

since the middle of 19th century to current.  

  
Figure 1.1 U.S. bridge collapse data (Compiled after Imhof 2005)
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Bridges age with time and need to be repaired, rehabilitated, or replaced when 

they are not qualified for service in the public transportation system. To assist bridge 

managers to better manage their bridges, the state governments, the Federal Highway 

Administration (FHWA) of the U.S. Department of Transportation (USDOT), and the 

American Association of State Highway and Transportation Officials (AASHTO) 

developed the federal and state bridge maintenance and management program (Hearn et 

al., 2002). 

However, despite their efforts, there are realistic constraints and challenges that 

face bridge maintenance and management program, including increased traffic flow and 

insufficient funding to sustain an effective bridge management program. According to the 

reports from state highway agencies, in 2012 the traffic volume per vehicle miles is 

reaching 2,946 billion miles on all roads and streets, which is equivalent to a 56.2% 

increase when compared to the traffic volume in 1987 (FHWA, 2012). The increased 

traffic has caused great pressure to the public transportation system. Consequently, 

increased transportation uses accelerate the aging of bridges, frequent inspections and 

maintenance works are required to ensure the safety of the bridges. The limited bridge 

funding is an issue that constrains the effectiveness of existing bridge maintenance 

program. The ASCE 2009 report card pointed out that almost 40% less funding are 

available every year for bridge repair when compared to the actual bridge rehabilitation 

needs (ASCE, 2009).  

This dissertation addresses yet another constraint: the lack of cost-effective and 

qualitative inspection technologies for highway bridges has also become an apparent 

limiting factor for achieving a highly effective nationwide bridge management system 
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(Orcesi & Frangopol, 2010). An effective bridge management system requires precise 

and accurate bridge condition data and can help minimize unnecessary expenditures, 

result in cost saving to the DOTs. Therefore, research that result in quality bridge data 

can enhance bridge management. 

  
Figure 1.2 Constraints of building an effective bridge maintenance system 

Figure 1.2 summarizes the discussed constraints to an effective bridge 

maintenance program. Current research specifically addresses the inspection technology 

issue by suggesting the use of remote sensing technologies for bridge inspection. The 

bridge inspection regulation has been addressed in the “Federal Highway Act of 1968” as 

a national standard for bridge administration. Current National Bridge Inspection 

Standards (NBIS) mandates that all public highway bridges in the U.S. are required to be 

inspected at least once every two years. There have been several recent studies discussed 

about whether this interval is sufficient (AASHTO, 2009). However, a more critical issue 

regarding bridge inspection may not be related to how frequent the inspection is 

conducted, rather be about the quality of bridge data that is being collected.  
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1.2 Classifications of Bridge Inspection 

The techniques used to inspect bridge conditions can be generalized into two 

categories: global and local inspection techniques. Global inspection (Chang et al., 2003) 

studies the overall characteristics of a bridge structure, while local inspection (Karp et al., 

2008) focuses on the problems of specific bridge components. Current visual inspection 

technique, for example, is a component-based method that divides the bridge into 

components and substructures (FHWA, 2004). 

Vibration testing or dynamic characterization and static load tests are techniques 

that can be employed for global bridge inspection. Vibration testing combines knowledge 

in system identification, vibration theory, vibration testing, as well as data acquisition and 

analysis has been widely applied to bridge inspection to evaluate the health state of a 

bridge structure (Wang et al., 1997). For example, experimental modal analysis (EMA) 

has been suggested for global structure inspection (Ren et al., 2004). 

Localized inspection (Ko & Ni, 2005) can help bridge inspectors to pin-point 

small-scale damages in a bridge structure, it provides better understanding of the bridge 

mechanical characteristics, and it can be used to predict potential problems. The most 

common local techniques used in bridge inspection include but not limited to ultrasonic, 

dye penetrant, magnetic particle, acoustic emission and infrared imaging detection, etc. 

1.3 Visual Bridge Inspection 

Visual inspection is currently the primary method performed for highway bridge 

inspection. During visual inspection, the inspection team needs to walk to the site and 

observe the bridge conditions to find out bridge defects following the federal or state 
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bridge inspection procedures, and input the inspection data into the bridge management 

software (BMS). 

The DOT bridge inspection workflow is as follows: initial inspection scheduling, 

agency selection and contracting, field bridge inspection, data processing, and reporting 

(Mills & Wakefield, 2004). Visual inspection is performed in this workflow during the 

field inspection stage. NBIS visual inspection categories detailed the list of bridge 

components for surveying when processing bridge inspection data.  

Table 1.1 NBIS inspection components 
Types of Inspection Inspection Points 
Approach Vertical alignment and slope 
Deck Wearing surface 
Superstructure Beam, surface and plate 
Sub Structure Cap, column, undermining and slope 
Signage Required sign, posting 
Channel Debris, flooding, change in the channel 

 

1.4 Proposed Solution: LiDAR for Bridge Inspection 

LiDAR (laser scanning) technology has been proposed for bridge inspection (Liu 

et al., 2009). The objective of current study is to address several advanced topics 

including: technology evaluation, bridge inspection workflow implementation, and data 

collection quality management. These topics are deemed critical to guarantee quality data 

for implementing LiDAR in actual inspection process.  

The study of LiDAR scanning principle is important to determine whether it is 

capable of measuring problems associated with the bridge inspection elements. Laser 

ranging can be an ideal method for bridge survey, because it can conduct precise range 

measurement regardless of the changes in weather or light conditions. In this study, 

experiments have been conducted in the field as well as in the laboratory. Those 
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experiments will provide persuasive data regarding the performance of the technology for 

bridge inspection. It is believed that bridge service life can be extended once LiDAR 

technology is used to provide quantifiable inspection data to bridge managers. For 

technology implementation, capital investment is required to purchase laser equipment, 

train inspector, and develop software. Thus, the comparative cost analysis is performed to 

determine the potential of LiDAR technology implementation. 

Introducing LiDAR technology to bridge inspection will have direct impact on 

current inspection procedures. Before the LiDAR use, the inspection teams have to go to 

the site and check the bridge condition visually. Once the LiDAR is used during 

inspection, they can operate the scanner and reduce the inspection time on site. The 

superior features of the new technology allows the team to complete a simple scan in 5 

minutes, which means a significant change in the time  allocated for field-testing and post 

scan data processing. Current inspection reporting system deals mainly with documents, 

literal reports, as well as small format pictures, but the use of LiDAR will add large 

number of data into the system. The reporting system is recommended to make changes 

to accept point cloud data (about 100 MB for 1/4 resolution scan) in the transmission, 

which indicates that the network and database need to be improved accordingly. 

The reliability of bridge inspection data is important in bridge management, 

because the low quality inspection data will mislead the managers. In order to ensure the 

data quality in bridge inspection, FHWA (2005) has established an inspection framework 

to provide a systematic quality management solution for visual bridge inspection. One of 

the typical quality issues of visual inspection is the inspection team sometimes need to 

disturb the inspection priority of different bridge components and damages, thus they do 
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not have sufficient field time to examine the important parts. Another issue is that 

subjective judgments could lead different views of the same bridge issue from different 

inspectors. 

1.5 Scope of Work 

During the course of this study, over 100 bridge scans have been performed. 

Selected data are then used for this study. The first step in this study is to revise the 

computation algorithm and determine approaches to improve the accuracy and 

proficiency of the previous damage detection algorithm. Potential error sources in LiDAR 

bridge damage quantification are studied, specifically, the scanning angle influence is 

addressed. Next is to apply the reflectivity data to improve the damage detection ability. 

Case studies using LiDAR bridge inspection to study the bridge joints condition and 

simulated embankment deformation by environmental changes is presented as an 

extension to the bridge inspection applications. The following research objectives have 

been established to complete this research: 

• Develop and verify the improved damage quantification algorithm. 

• Study the scanning angle effects on LiDAR damage quantification. 

• Study the inclusion of reflectivity data into damage detection to enhance the 

defect identification. 

• Investigate bridge joint evaluation using LiDAR inspection technology. 

• Study the performance of LiDAR inspection in monitoring simulated slope 

stability. 

• Quantify LiDAR technology implementation potentials. 
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1.6 Organization of Dissertation 

The dissertation is organized in the following order: The second chapter reviews 

literatures on point cloud processing, Delaunay’s triangulation, and edge detection in 

image process. The third chapter is about how to improve the defect quantification 

algorithm. Automatic reference plane generation (using minimum mean square error) and 

Delaunay’s triangulation for defect quantification will be presented in this study to 

enhance the technology’s performance in bridge local damage detection. The algorithm 

will be tested and evaluated using selected sample data from actual bridges. Scanning 

angle effect will be studied to determine as a possible critical error source when 

conducting a scan test, in order to find out how scanning angles influence the inspection 

results, an experiment will be designed to validate the scanning angle effect. The fourth 

chapter: the reflectance value will be included into the damage identification algorithm to 

enhance the capability in the recognition of certain types of defects. It is desired to 

resolve problems in recognizing damages in curved surfaces and defects or crack returns 

with insufficient scan points. The fifth chapter: besides developing specific inspection 

algorithms, the practical approach in using LiDAR inspection to evaluate the bridge deck 

joint conditions will be conducted. Considering LiDAR has already been used for 

geological survey, the possibility of using this technology to monitor the bridge 

embankment will also be studied. An experiment will be designed to simulate the rainfall 

erosion effects on slope stability using fly ash, and the loss will be measured using 

LiDAR inspection algorithms. The sixth chapter is a detailed discussion about quality 

issues in LiDAR bridge inspection, the error sources of this technology will be analyzed 

and the potential of using quality management in enhancing the inspection data quality is 
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also studied. The seventh chapter: conduct comparative cost analysis on the 

implementation of LiDAR bridge inspection for Mecklenburg County, North Carolina. 

1.7 Anticipated Outcomes 

The proposed study is anticipated to achieve the following outcomes: 

An enhanced LiDAR damage detection algorithm, which using the spatial 

information from the scan data also with automatic reference plan generation then an 

improved quantification algorithm will be presented. 

Reflectivity from the LiDAR scan will be included to the damage detection 

program to identify defect parts in curved and other complex bridge surfaces. 

Edge detection can assist bridge deck joint evaluation by using LiDAR 

technology. It will be established as an important extension for bridge inspection. 

Besides, the attempt of monitoring the bridge embankment deformation by using LiDAR 

will also be made. 

The issues of LiDAR bridge inspection implementation are also studied in order 

to provide suggestions to introduce this technology to the DOT bridge maintenance 

divisions. 



CHAPTER 2: LITERATURE REVIEW 
 
 
2.1 Quality Issues in Visual Bridge Inspection 

Current study is based on the fact that visual inspection alone is not sufficient for 

obtaining precise bridge data for effective management of bridges. This fact recognizes 

that potential errors can impact visual inspection results. Systematic error means the 

misinterpretation between physical phenomena and visual inspection results. Moreover, 

variance from inspector’s personal perspectives (subjective judgment), and errors in data 

collection and processing all having impacts on the inspection results (Dietrich et al., 

2005 and Moore, et al., 2001) 

It is important to improve bridge inspection data quality, because it is the 

foundation of effective bridge management operation. Bridge inspection data is essential 

in determining how to perform bridge maintenance, repairs, rehabilitations and 

replacement of a bridge. Effective bridge management necessarily means optimal 

allocation of limited maintenance resources. 

FHWA (2005) has adopted systematic quality management framework to ensure 

visual bridge inspection data quality to minimize errors during data generation. The 

framework recommends documenting the entire QC/QA program, and then developing 

the recommended bridge inspection manual accordingly. The specific directions for 

QC/QA operations of bridge inspection are designed to guarantee data quality by the



11 
  

framework. Figure 2.1 shows the recommendations for data quality management within 

the FHWA framework. 

  
Figure 2.1 Data quality management in bridge inspection (Dietrich et al., 2005) 

Regarding the improvement of current bridge inspection data quality, the 

researchers put forward two suggestions: optimize current bridge inspection quality 

management framework, or develop advanced inspection technologies to supplement 

visual inspection.  

2.2 Sensing Implementation 

Farrar et al. (2001) introduced an integrated structural health monitoring system, 

which was developed for monitoring weld connections in steel moment-resisting frame 

structures. The system consists of data acquisition equipment and software analysis. 
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Wireless sensor network was developed to solve maintenance problems associated with 

the wiring of sensors to wire-based data acquisition system.  

Strain sensors have been used for long term inspection and monitoring of the 

structural degradation in public civil infrastructures. Strain sensors are sensitive to the 

change of the intensity of forces caused by structure deformation, cracking, and other 

related damages. Strain gauges are widely used for its convenient, low cost, firm and 

impervious joint.  

Recently, the researchers also attempt to find alternative sensors and materials 

that can substitute strain gauges (Chan et al., 2006). Similar to strain gauges, optic fiber 

Bragg-grating (FBG) strain sensors were embedded into reinforced concrete, or weld to 

steel structures to monitor the variation of the strain. A fiber-reinforced polymer (FRP) 

composite is used to protect the optical fiber when breakage occurs. One of the problems 

with this technology is that it is often applied to new structures, because these sensors 

have to be embedded into the structure before the construction is completed. Therefore, it 

is a not practical method for monitoring existing structures, because installation is costly 

and challenging. 

Yan et al. (2010) developed a highly accurate corrosion sensor: the signal energy 

of sensors shifts from low frequency to high frequency during a corrosion process, and 

this feature is used to monitor the corrosion. This technology could be used along with 

environmental sensing methods such as temperature, humidity and acid level, to evaluate 

the corrosion status of structures.  

All the above mentioned bridge monitoring technologies have some common 

limitations when applied for bridge management: they are costly considering the limited 
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bridge findings and current low cost manual inspections. Moreover, an extensive 

technical knowledge is required, and it is challenging to collect and analyze the field 

inspection data when using those localized inspection technologies.  

2.3 Remote Sensing for Bridge Inspection 

Commercial remote sensing (CRS) and Spatial Information (SI) have been 

introduced to bridge inspection and management (Liu et al., 2009). Bridge information 

acquired from commercial remote sensors can be used for both global and local 

inspections (Ribarsky et al., 2009). Remote sensing technologies are a convenient way to 

bridge health monitoring by gathering high-resolution images and wide-bandwidth 

spectral information for bridge condition evaluation (Chaudhuri & Samal, 2008). For 

example, high-resolution image can be used for global inspection bridges, and the 

imaging can be performed from distance away. Moreover, with the improvement of the 

optical resolution of the remote sensing technology, the imagery could be used to identify 

small defects. 

Remote sensing technologies are able to cover a wide range of area, gather large 

amount of information and provide repeatable data. More importantly, it provides reliable 

documentation of a bridge for inspectors to review and evaluate for maintenance 

planning. However, there exist several issues for remote sensing technologies 

implementation including: the lack of formal guidelines in regulating the use of remote 

sensors for bridge management; bridge managers are usually unfamiliar with the 

technology and the inspection platforms, and the processing of image data can be a 

challenge when applying remote sensing in bridge inspection (Chen, 2010).  
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Light detection and ranging (LiDAR) is a precision measurement tool, which uses 

laser light to measure distance (Boehler & Marbs, 2002). It emits laser beams of certain 

wavelength and detects the time to return of the laser beam. The distance is then 

calculated through multiplying the speed of laser light with the travelling time. 

Laser scanner creates a 3D coordinate system with its own position as point (0, 0, 

0) and record the relative position of the surrounding targets. It also records the 

reflectance value of each returned scan point along with the coordinates. The reflectance 

value is the direct measurement of the intensity of the returned laser energy, and the 

coordinates give the spatial information of each scanned points. Laser ranging could be 

conducted by three different measurement principles: time-of-flight, phase-shift, and 

triangulation. They vary in precision, measuring range, and recording format. The 

triangulation scanner is mainly used for precise distance measurement within 2 meters 

range, so it is not often used in civil work projects. The time-of-flight and phase-shift 

principles can be used in geological survey and architecture archive, because of their 

capability in long distance measurement capacity. 

For time-of-flight measurements, a pulse of laser light is emitted towards the 

target and recorded at that same instant. The laser pulse lasts only a few nanoseconds and 

usually distributed in a Gaussian manner (Wagner et al., 2006). After traveling through 

the atmosphere, the laser beams reach the target, and then part of them will reflect back to 

the scanner. The built-in pulse receiver will detect the returned signal and the time of 

arrival is also recorded. Figure 2.2 shows the principle of time-of-flight laser ranging 

systems (Wagner et al., 2006 and Duong et al., 2006). 
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Figure 2.2 Time of flight laser ranging principle 

Therefore, time 𝑡 from the pulse emission till back to the scanner can be obtained, 

and the range 𝑅 between the scanner and the object can be calculated as: 

𝑅 = 𝑐∗𝑡
2

      (2-1) 

where 𝑐 is the speed of light. 

The performance of time-of-flight system is mostly dependent on how accurate 

the round trip time is measured. In other words, the pulse receiver has to be sensitive 

enough to capture the returned signal. In theory, the scanner is able to acquire centimeter 

level precision in typical measurements, but this precision is difficult to be achieved in 

survey projects. One effective way to maintain a high accuracy when conducting long 

distance measurement is to increase the emitted laser power. However, the systematic 

errors are still persistent, and will prevent the scanner from achieving a high precision 

level even with increasing its laser power (Pfeifer & Briese, 2007). 

Phase shift laser scanner also sends out laser beams towards the target and 

determines the distance by using the reflected signals. The phase shift scanner is different 

from the time of flight scanners, because it will modulate the emitted laser energy into 
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sinusoidal signals, and then compare the phase differences between the emitted and 

returned signals to compute the round trip time. Therefore, the range can be calculated 

using equation (2-2): 

𝑅 = 1
2
∗ 𝑐∗Δλ
2π∗f

      (2-2) 

where Δλ is the change in wavelength of the laser beam. 
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Figure 2.3 Phase shift laser ranging principle (Faro, 2007) 

Phase shift measurement is more precise than time-of-flight, because the round 

trip time determined by phase shift comparison is more accurate than the time-of-flight 

method. However, there are two problems exist when using phase shift measurement: one 

is the measurement range is limited to half of the modulated signal wavelength (λ/2), and 

any distance farther than λ/2 will still get the same result in [0, λ/2]; the other problem is 

the measurement at unique points (n * λ/2) will return 0, because there is no phase 

difference between emitted and returned signals. 

In order to solve this problem and make the phase shift principle applicable for 

engineering projects, the scanner must first modulate the laser lights into several different 
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wavelength signals, and then compare the phase differences of those individuals emitted 

and returned signals, respectively. In the end, the largest wavelength signal is used to 

determine the distance, while the smallest one is used to determine the accuracy. For 

instance, the laser signal is modulated into three different wavelengths (1.2m, 9.6m, and 

76m) for Faro LS880 scanner. 

Both of these different laser-ranging principles are applicable for most civil 

engineering survey projects. Time-of-flight laser scanner can cover a wide area due to its 

long measuring capability, while the phase shift scanner can conduct the measurements 

more precisely. Alonso et al. (2011) made a comparison of the performance of time-of-

flight and phase-shift 3D laser scanners in heritage recording for the archive of the 

Pantheon of Kings in San Isidoro (León, Spain). 

2.4 Previous Research in LiDAR Bridge Inspection  

The bridge inspection of this study is mainly focused on local damage 

identification, which means the measurement precision is the most important factor in 

considering the instrument. The phase shift scanner can provide approximately 3 mm 

precision (at 25m) and the high dense point cloud data collection is able to assist the post 

scan data processing. Besides, the phase shift scanner is able to cover the highway 

bridges with the 76m measurement range. 

Liu (2010) discussed possible advantages of light detection and ranging (LiDAR) 

technology for bridge inspection and suggested LiDAR scan supplementing current 

visual inspection. The preliminary computer algorithms using LiDAR data in bridge 

damage detection and clearance measurement have been developed. The concurrent 

experiments also show the possible benefits of this technology. It is believed that LiDAR 
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is an effective instrument in providing bridge engineers with sufficient data for 

quantitative inspection purposes. 

In addition, Liu also presented a terrestrial LiDAR bridge evaluation system, 

which is capable for bridge surface defect detection and quantification, clearance 

measurement, and displacement measurement. After taking a series verification tests in 

Mecklenburg County, North Carolina and other areas, along with a cost-benefit analysis, 

From technology prospective, LiDAR scanner is able to acquire full 3D surface 

information of the target bridge, and generate dense point cloud as well. The applications 

of terrestrial LiDAR for bridge health monitoring can be developed with the collected 3D 

spatial and reflectivity data. 

The vertical clearance measurement of highway bridges was usually conducted 

manually with surveying equipment and measuring rods. The disadvantage of this 

method is that it is time consuming and the result is subject to human errors. The 

Connecticut DOT developed a multi-laser device with three sensors and mounted on a 

vehicle to determine the bridge vertical clearance (Lauzon, 2000). Their report indicated 

this multi-point moving measurement is capable for the vertical clearance measurement 

from the result of 17 tested bridges. The most remarkable feature of LiDAR clearance 

measurement is that it can access the entire bridge deck and road surface to determine the 

vertical clearance and the result is accurate without subjective factors from bridge 

inspectors (Liu, 2010). Figure 2.4 is the result of LiDAR bridge clearance measurement 

under a highway bridge in Iowa, and the red line is the lowest vertical clearance of this 

bridge. 
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Figure 2.4 Application of LiDAR based bridge clearance measurement 

Bridge damage quantification is more complicated than clearance measurement, 

for the damage type varies from one bridge to another. Visual inspection is capable for 

the detection of most bridge surface damages such as section loss or cracking, but again it 

is time consuming and inaccurate for the visual inspection to quantify these damages. The 

visual method is not able to inspect inner damages of bridge components, while some 

non-destructive testing technique can assess the interior of a structure. Figure 2.5 shows 

the bridge surface damage detection using LiDAR technology for a highway bridge in 

Florida. 

 
Figure 2.5 Application of LiDAR based damage detection 
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2.5 Data Processing for Bridge Inspection Techniques 

The reason for reviewing data processing techniques for bridge inspections is that 

all these methods tend to employ advanced detection technologies to collect bridge 

inspection data on-site and then analyze the data after the inspection.  

Most of the previous works aimed at establishing automated damage detection 

instead of relying on human observations during bridge inspection are based on 

photography imaging technique. For example, image processing and pattern recognition 

techniques are considered to be the most promising solutions to surface crack 

identification and defect detection. Numerous efforts have been devoted to design 

computer algorithms in automatic bridge surface damage identification from images. 

Oliveira and Correia (2012) introduced an integrated line-scan, high-speed camera and a 

laser system for automatic crack detection and classification using survey images 

acquired in a high speed vehicle. Besides, they used the damage extraction approached in 

the automated system which is essentially relying on camera shots. To automate the 

determination of deterioration level during bridge inspection, Abdel-Qader et al. (2003) 

compared four kinds of edge detection techniques for crack identification and recognized 

that fast Haar transform (FHT) is more reliable for edge detection for bridge surface 

cracks than the other three techniques: Sobel, Canny, and fast Fourier transform.  

For bridge inspection and condition evaluation that reply on image processing, 

image quality is an issue when trying to get accurate result from those blurry pictures. 

Lertrattanapanich and Bose (2002) suggested that forming high-resolution image from 

low-resolution images usign Delaunay triangulation to interpolation can get high-

resolution images.  
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Li et al. (2011) raised a creative idea that use Delaunay triangulation to express 

the density features of the singularity points of sub sections in pavement crack pattern 

recognition. These are the only few cases that Delaunay triangulation has been used in 

constructing the patterns for automatic image identification purposes.  

For point cloud data processing, the most common technique is to perform change 

detection through comparing the cloud data to a reference plane, which could either be 

the original documented scan or later virtually constructed virtual model (Girardeau-

Montauta et al., 2005). In structural health monitoring, the 3D format documentation of 

LiDAR can be used to determine its deterioration or deformation.  

The limitation of these point cloud data processing technologies are that they only 

deal with coordinates information. For many of applications, this coordinates-based data 

processing approach along is able to provide useful solutions, which include Liu and 

colleagues’ contribution in the initial state of LiDAR bridge inspection. But the point 

cloud is actually numerous sets of data that contains no object information (Ackermann, 

1996). 

Axelsson (1999) indicated that additional sources of information outside of the 

point cloud data can be used to improve the processing of laser scanner data. Their 

research is to detect buildings from airborne laser ranging data, so they suggested adding 

reflectance data or multiple echoes from LRF, images, existing 2D GIS database, and 

land-use maps to assist the classification.  

Airborne LiDAR has been used for both bridge damage detection and 

quantification with reconstructed topography, which comes from the XYZ coordinates 

for numerous returns. Haugerud and Harding (2001) conducted the analysis of error 
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sources for topographic construction in airborne LiDAR applications, where the 

measurement, classification, and interpolation errors are the most important factors.



CHAPTER 3:  LIDAR BRIDGE INSPECTION PROCESS ANALYSIS 
 
 
3.1 Introduction 

Terrestrial LiDAR scanning data point contains fundamental information about 

the scanned target including: row and column number, position data, Cartesian 

coordinates, and reflectance value. Figure 3.1 assuming a scanned data set has n points, 

the set can be described as: 

𝑃 = �

𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
⋮ ⋮ ⋮
𝑥𝑛 𝑦𝑛 𝑧𝑛

 �, 𝑅 = �

𝑟1
𝑟2
⋮
𝑟𝑛

�    (3-1) 

where P is the Cartesian coordinates of the scan points, which measures the relative 

position of the scanned points to the scanner. R is the reflectivity value where darker scan 

points are usually associated with small reflectivity values, while brighter scan points are 

associated with higher values. The integration of all these scan points generates the 3D 

image of the recorded bridge structure. The evaluation of these fundamental data forms 

the basis for bridge inspection technique using LiDAR technology (Liu, 2010). 

 Current study extents Liu’s work (2010) and addresses methods to improve the 

quality of LiDAR scan bridge evaluation. Specific issues addressed are: 1) scanning 

angle effect and 2) damage detection algorithm.  
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Figure 3.1 The structure of data in a LiDAR scan point 

3.2 LiDAR Bridge Inspection Process 

Both visual inspection and LiDAR bridge inspection belong to the ‘field bridge 

inspection’ and the ‘data processing’ processes, as defined in the DOT’s bridge 

inspection workflow. Visual inspection emphasized onsite survey and measurements, 

where most data processing are performed off sites. Likewise LiDAR reforms onsite data 

recording and data processing incurs offsite. Therefore, data quality control should be 

addressed both in the field and offsite.  

3.2.1 Field Bridge Data Collection 

We envision that the inspection team will travel to the site with the laser scanner, 

and follow the recommended visual inspection procedures to evaluate the bridge 

conditions. After inspecting the bridge visually, the team will determine the necessary 

scan parts and determine the appropriate positions for performing the scan. 

The benefit of using a laser scan is documentation of the damage, which can be 

quantified using the laser data. Figure 3.2 is the digital 3D reconstruction of a highway 

bridge in Iowa. For clearance measurement, it is suggested to place the LiDAR scanner 

between the bridge deck and road surface as shown in this figure. However, for damage 
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detection, it is better to place the LiDAR scanner close to the damage spot for higher 

spatial resolution scans. 

  
Figure 3.2 3D reconstruction of LiDAR scanning data of a highway bridge 

3.2.2 Scanning Angle Effect Study  

Since site deployment of laser scanner may involve limited access points, the 

scanning angular, range, edge effects, and surface reflectivity issues may affect the scan 

quality. Scanning angle effect can be significantly influencing to the outcomes of damage 

quantification. Therefore, the following experiment is established to study the scanning 

angle effect in LiDAR damage detection. 

To simulate the damaged bridge surface, a flat panel embedded with 6 cylindrical 

indentations is used in the experiment. Each of the cylindrical is manufactured with 

different material to simulate various surface types. The flat panel has been scanned at 

five different positions using LiDAR scanner, and the experiment setup is shown in 

Figure 3.3. 
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Figure 3.3 Experiment setup of the scanning angle effect study 

In this experiment, the LiDAR data is analyzed using Liu’s (2010) quantification 

algorithm. Table 3.1 and 3.2 is the quantification result of the area and volume cylindrical 

samples scanned from the 5 different positions.  

Table 3.1 LiDAR ‘defective’ area quantification in the model (Unit: 𝑚2) 
Area C1 C2 C3 C4 C5 C6 

Design 8.11E-03 1.03E-02 8.11E-03 1.03E-02 1.03E-02 1.03E-02 
1. Left 5.47E-03 4.20E-03 3.74E-03 8.39E-03 6.36E-03 3.42E-03 
2. Right 4.41E-03 7.28E-03 8.23E-03 7.18E-03 6.40E-03 7.77E-03 
3. Top 9.18E-03 9.38E-03 8.97E-03 1.69E-02 9.31E-03 9.50E-03 
4. Center 9.57E-03 9.63E-03 9.09E-03 1.01E-02 1.00E-02 9.35E-03 
5. Lower 9.98E-03 9.41E-03 9.67E-03 9.92E-03 9.72E-03 1.08E-02 

 

 

 

Table 3.2 LiDAR ‘defective’ volume quantification in the model (Unit: 𝑚3) 
Volume C1 C2 C3 C4 C5 C6 
Design 2.43E-04 2.11E-04 2.19E-04 2.43E-04 2.11E-04 2.19E-04 

1. Left 1.52E-04 9.27E-05 6.73E-05 2.25E-04 1.73E-04 7.73E-05 
2. Right 1.09E-04 1.67E-04 2.05E-04 2.02E-04 1.74E-04 2.39E-04 
3. Top 2.70E-04 2.18E-04 2.24E-04 3.92E-04 2.51E-04 2.77E-04 
4. Center 2.92E-04 2.29E-04 2.40E-04 3.00E-04 2.85E-04 2.70E-04 
5. Lower 2.96E-04 2.17E-04 2.34E-04 2.77E-04 2.59E-04 2.89E-04 
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The quantification result of this experiment is first related to point cloud data 

collection process, which determines whether the technology would record the right and 

sufficient information. Meanwhile, the result is also related to the computer aided data 

analysis process, which determines whether the defective areas would be well recognized 

and calculated. Table 3.3 and 3.4 demonstrate the quantification errors due to scanning 

angle effect. 

Table 3.3 The area quantification error due to scanning angle effect 
Area C1 C2 C3 C4 C5 C6 Average Std. 

1. Left -32.59% -56.04% -53.92% -18.23% -38.06% -66.62% 44.75% 0.18 
2. Right -45.58% -20.58% 1.49% -29.99% -37.64% -24.28% 28.01% 0.15 
3. Top 13.21% 3.55% 10.64% 64.37% -9.26% -7.41% 18.91% 0.22 
4. Center 18.01% 8.77% 12.07% -1.94% -2.37% -8.84% 8.22% 0.06 
5. Lower 23.14% 2.75% 19.33% -3.35% -5.30% 5.03% 10.74% 0.08 

 

Table 3.4 The volume quantification error due to scanning angle effect 
Volume C1 C2 C3 C4 C5 C6 Average Std. 
1. Left -37.62% -56.04% -69.23% -7.67% -17.93% -64.66% 42.19% 0.25 
2. Right -55.18% -20.58% -6.52% -17.14% -17.55% 9.04% 21.00% 0.18 
3. Top 11.20% 3.55% 2.31% 61.02% 19.17% 26.73% 20.66% 0.22 
4. Center 20.15% 8.77% 9.69% 23.28% 35.06% 23.53% 20.08% 0.10 
5. Lower 21.70% 2.75% 7.09% 14.04% 22.83% 32.06% 16.74% 0.11 

 

Liu (2010) has made a brief analysis of the reason that scanning angle influence 

happens. The primary factor is that the scans cannot be conducted exactly facing the 

‘damage’, as a result, it is difficult to get a clear edge recording. This is because most 

laser lights touch the damage edge from that direction would scatter rather than return 

back to the scanner. Therefore, the recorded data will not get sufficient scan points for the 

edge area. The secondary factor is the laser light from side scans could be blocked by the 
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damage edge and cannot reach the entire defective surface, thus the oblique scan cannot 

capture the entire volume of the damage. 

Figure 3.4 demonstrate the 3D reconstruction of the quantification results for 

position 5 (the ‘lower’ scan). From the experiment, we can see that the scanning angle 

effect could bring a considerable error to the quantification results. Meanwhile, the 

quantification algorithms could also lead to error in the analysis. 

C1 C2 C3

C4 C5 C6

 
Figure 3.4 3D reconstruction of analysis result for the lower center scanning 

Therefore, in order to mitigate the scanning angle effect, the LiDAR scanner has 

to be placed right opposite to the damage. The other possible way is to increase the 

outgoing laser energy from the scanner to increase the emitted laser power, and then the 

scanner could get enough returned points from the defective edge. But the systematic 

errors will still persist and would prevent the scanner to achieve an ideal precision 

(Pfeifer & Briese, 2007). In addition, the over emitted power could cause health issues to 

the operator. 
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3.2.3 Post Scan Data Analysis (Damage Detection) 

In the post scan data analysis, the bridge condition evaluation team will use 

computer programs to detect and quantity defective areas, measure bridge clearance and 

structure deformation, which is completed through determining the changes on the 3D 

point cloud data of the bridge.  

 The most common method used to perform change detection of point cloud data 

is to compare it to a reference model, which could either be the original achieved or 

virtually constructed 3D CAD data.  In bridge damage detection, the original scan is 

obviously the most reliable reference, and the point cloud data of defective areas can be 

compared to this original data. However, since most of bridges do not original laser scan 

data, the virtual 3D bridge model reconstruction seems to be the only approach to 

perform change detection. 

(1) 3D Shape Reconstruction for Defective Zone  

The reconstruction of the 3D shape for the defective areas in highway bridges is a 

challenging problem. The most essential part of the automatic shape reconstruction is to 

define a reference plane for the selected point cloud, which is used to determine whether 

there are defective areas in the point cloud. 

Liu (2010) introduced a way to reconstruct the shape of the defective zone by 

generating a flat plane according to the boundary information of selected study area, 

which is an estimation of the original bridge shape. Three points from the surface of the 

undamaged areas are selected to determine this reference plane for the later damage 

quantification. In order to avoid introducing noise data the noise point when selecting 
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those determinate points, it is necessary to compare their coordinate values with the 

neighbouring points. 

  
Figure 3.5 Reference plane generations in Liu’s algorithm 

Liu’s algorithm is simple and effective, especially when the defective bridge 

component was laying on a flat surface. But when the damage is located on a curved 

surface, Liu’s method is unable to reshape the point cloud data and make it close to the 

original condition. This algorithm is also semi-automatic and requires human interactions 

to select the study areas. 

In order to make laser inspection automatic and more adaptive, the mean-square-

error (MSE) is used to determine the reference plane. In three dimensional space, it is 

supposed that only one plane exists with the minimum MSE for the given point cloud. 

The improved algorithm requires the selection of as much undamaged area as possible to 

make the reference plane as close to the original surface. The MSE of the point cloud is 

defined as following: 

𝑀𝑆𝐸 = ∑ (𝑑𝑖)2𝑛
𝑖=1
𝑛

, 𝑖 = 1,⋯ , 𝑛    (3-2) 
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where 𝑛 is the number of the selected cloud points, 𝑑𝑖 is the distance of point 𝑖 to the 

reference plane. In order to calculate the reference plane with minimum MSE, a 

regression model has been defined: 

𝑧𝑖 = 𝑏0 + 𝑏1𝑥𝑖 + 𝑏2𝑦𝑖 + 𝜀𝑖 , 𝑖 = 1,⋯ ,𝑛    (3-3) 

where [𝑥𝑖  𝑦𝑖 𝑧𝑖] is the coordinate of point 𝑖 , 𝜀𝑖  is the signed distance to the reference 

plane, 𝑧𝑖 is the dependent variable, and 𝑥𝑖 and 𝑦𝑖 are the independent variables. Here 𝜀𝑖 

has the following relationship with 𝑑𝑖: 

𝑑𝑖 = |𝜀𝑖|      (3-4) 

The vector 𝑏 = [𝑏0 𝑏1 𝑏2]′ in equation (3.3) can be calculated from regression of 

the two independent variables, thus the reference plane is defined as:  

𝑏1𝑋 + 𝑏2𝑌 + 𝑍 + 𝑏0 = 0     (3-5) 

Figure 3.4 is the result of revised reference plane generation for the study of a 

sample point cloud data. 

  
Figure 3.6 Revised reference plane generation through Min-MSE regression 
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In order to simplify the future calculation for damage quantification, the selected 

point cloud data will be mapped to a newly constructed coordinate system, where in the 

reference plane is parallel to 𝑋–𝑌 plane. In order to make this coordinate transformation, 

the following steps are suggested: 

• Normalize the vector of the reference plane calculated from the regression model: 

�

𝑚
𝑛
𝑘
𝑗
� =

⎣
⎢
⎢
⎢
⎢
⎡𝑏1/‖[𝑏1 𝑏2 1]′‖

1
2

𝑏2/‖[𝑏1 𝑏2 1]′‖
1
2

1/‖[𝑏1 𝑏2 1]′‖
1
2

𝑏0/‖[𝑏1 𝑏2 1]′‖
1
2⎦
⎥
⎥
⎥
⎥
⎤

     (3-6) 

where [𝑚 𝑛 𝑘]′ is the normalized norm vector, 𝑗 is the minimum distance from (0, 0, 0) 

to the reference plane.  

• Use matrix T to perform the transformations: 

𝑇 = 𝑇1𝑇2𝑇3      (3-7) 
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where 𝑇1 transforms the reference plane to (0, 0, 0) point, 𝑇2 is the rotation matrix, and 𝑇3 

is the scaling matrix. 
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• Expand the coordinate of point 𝑖  from [𝑥𝑖 𝑦𝑖  𝑧𝑖]  to [𝑥𝑖  𝑦𝑖 𝑧𝑖 1] , and get the 

transformed coordinate value [𝑥𝑡𝑖  𝑦𝑡𝑖 𝑧𝑡𝑖  1]  of point 𝑖  using the following 

transformation: 

[𝑥𝑡𝑖  𝑦𝑡𝑖 𝑧𝑡𝑖  1] = [𝑥𝑖  𝑦𝑖   𝑧𝑖 1]𝑇    (3-8) 

Now, the cloud point data is represented as [𝑥𝑡𝑖  𝑦𝑡𝑖 𝑧𝑡𝑖] in the new coordinate system.  

(2) Identification of Defective Zone 

The scan points of the defective zones usually have obvious irregular coordinate 

comparing with the undamaged surfaces. The two search criteria: the coordinate value 

difference between the selected scan points and the reference plane, as well as the 

variation of gradient value of the scan points will be used to determine if the scan points 

belong to the defective zones. 

Since the selected study area has been rotated parallel to the 𝑋–𝑌  plane, the 

distance between the scan points to the reference plane can be easily obtained as: 

𝐷 = �𝑍𝑝 − 𝑍𝑟𝑒𝑓�      (3-9) 

where 𝑍𝑝 is the 𝑍 coordinate values of the selected scan point, 𝑍𝑟𝑒𝑓 is the 𝑍 coordinate 

value of the reference plane. 

The variation of the gradient between scan points is also a reliable criterion in 

determining the irregularity of the cloud points. The gradient of a certain irregular scan 

point, which has a column number C and row number R, is defined as: 
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𝐺 =

� 𝑍(𝐶+𝛥,𝑅)−𝑍(𝐶−𝛥,𝑅)
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�+
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�,       (3-10) 

where 𝑋(𝐶,𝑅), 𝑌(𝐶,𝑅), and 𝑍(𝐶,𝑅) are the X, Y, Z coordinate values of selected point 

with column number C and row number R, Δ is the number of points in each pre-

determined interval (Liu, 2010). This interval value can be manually adjusted to reduce 

the potential deviation caused by noise data. Here both the D and G values of the studied 

cloud points were used to determine if they were irregular. Liu used a heuristic 

experience-based method to set the threshold coefficients for distance and gradient 

criteria, the coefficients falls within a range [0.3 0.8], and was multiple with 𝐷′ and 𝐺′ to 

get the threshold value for irregularity determination. 

Selected study surface will be divided into small grids before processing the 

irregularity check for each point. For each grid, there are two irregular rates, which are 

based on distance and gradient criteria respectively: 

𝜃𝐷 = 𝑛𝐷𝑖
𝑛𝑎𝑙𝑙

,𝜃𝐷 = 𝑛𝐺𝑖
𝑛𝑎𝑙𝑙

      (3-11) 

where 𝜃𝐷 is the irregular rate based on distance criterion,  𝜃𝐷 is the irregular rate based on 

gradient criterion. 𝑁𝐷𝑖, 𝑁𝐺𝑖 are numbers of the irregular points within the divided grid, 

and is the total number of the points within the grid. The grid will be considered as 

defective when both its distance and gradient irregular rates have exceeded the predefined 

threshold value, which is set as 0.5 for this algorithm.  

allN
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It is worthwhile to note that for complex damage detection in bridge inspection, 

more features are necessary to be included in the damage detection. If there were five 

features found to express the pattern of the damage, it would be difficult to set the 

threshold with heuristic method. The reason is that the features may not be of equal 

importance, and they have different weights in determining the attribute of the studied 

object. 

In damage quantification of flat bridge surfaces, the distance criterion is enough 

to identify the defective zones. Therefore, a pre-determined tolerance value is assigned in 

the improved algorithm before identify the defective areas. Each point 𝑖  with |𝑧𝑡𝑖| >

|𝑍𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒| is considered as the defect point. The approach that attempts to include multi-

features in bridge damage detection will be discussed in Chapter 4. 

(3) Quantification of Defective Zone 

Once a grid is determined as defective, its eight surrounding grids will be checked 

to see if they are defective. If one of the eight grids is regarded as defective, the same 

procedure will be applied to others until all of them have been confirmed. 

The defect area can be quantified after all grids were checked according to the 

defined defect identification criteria. The area and volume of the defective portion can be 

calculated by adding up the area and volume of each defect grid. 

𝑉 = ∑ (𝐴𝑖𝑛
𝑖=1 ∙ 𝐷𝚤� ∙ 𝜃𝑖), 𝑖 = 1,⋯ ,𝑛.    (3-12) 

where 𝐴𝑖 is the defect area of the grid 𝑖, 𝐷𝚤�  is the average distance of the 𝑖 points in the 

grid to reference plane, and 𝜃𝑖 is the irregularity rate of grid 𝑖. 
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Figure 3.7 Defect identification in previous quantification algorithm 

The defective mess points have no area or volume attributes, thus the formation of 

regular geometry using those points is necessary if quantification of the defective area 

has to be done. The Delaunay triangulation (Delaunay, 1930) has a clear definition 

according to (Shewchuk, 1999): 

“Let 𝑇  be the triangulation of a set 𝑉  of vertices. 𝑇  is called the Delaunay 

triangulation if and only if all triangles in 𝑇 are Delaunay.” 

The Delaunay triangulation is used to link the scattered scan points. The 

following content explains the procedures for the formation of spatial surface using 

Delaunay triangulation. 

• Project each cloud point [𝑥𝑡𝑖 ,𝑦𝑡𝑖 , 𝑧𝑡𝑖] from the selected area onto 𝑋–𝑌 plane.  

• Use Delaunay’s triangulation algorithm to aggregate the projected points into 

non-overlapping triangles on 𝑋–𝑌 plane.  

• Assign 𝑧𝑡𝑖  back to the projected point set, which forms a 3D surface with the 

triangles created in the last procedure.  
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The triangulation of the cloud points and the formation of surfaces in three-

dimensional spaces are animated in Figure 3.8. 

1 2 3

Obtaining a polyhedral shape 
from the points

Delaunay’s TriangulationProject 3D points to 2D 
flat plane

 
 Figure 3.8 Defect quantification using Delaunay’s triangulation 

The area of defective zone is calculated by summing up that of projected triangles 

on the 𝑋–𝑌 plane, and the defective volume is then calculated by adding up the volume 

of those isolated triangle-prisms. The triangulation of the spatial vertices that assists the 

quantification of the defective zones, for the reshape of the defective portion is more 

close to reality if link those cloud points into triangles. It is also important to know that 

the interpolation algorithm used in Lertrattanapanich’s research will help us for process 

the point cloud data where insufficient scan points returns occur. 

3.3 Case Study and Recommendations 

The LiDAR bridge inspection technology presented is an automatic and reliable 

inspection solution for surface damage quantification. It is believed as an effective tool to 

supplement the time-consuming visual inspection.  

Bridge 590147 has been selected to evaluate the effectiveness of this inspection 

technology. The substructure of the bridge is showing distress in the pile caps in three 

areas under bridge girder. The LiDAR scan was conducted underneath the bridge, the 

complex damage incurred in both the bridge deck and the substructure. (See Figure 3.9). 
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Figure 3.9 LiDAR scan for damage detection in bridge 590147 (Charlotte, NC) 

In this case study, only the defect lays on substructure will be investigated to test 

the revised quantification algorithm. The damage detection and quantification algorithms 

can outline the defective points in the spatial domain. Table 3.2 shows the result of the 

damage quantification using both Liu’s and Delaunay Triangulation based algorithms. 

The percentage difference is calculated between the two different algorithms. The 

defective areas are shown in Figure 3.10, which are laid over the original scan and 

marked with different colours. 

Table 3.5 The result of damage detection for bridge 590147 

Area NO. Liu’s algorithm results / Delaunay based algorithm results 
Area (m2) Difference Volume (m3) Difference 

1 1.38E-01/1.44E-01 4.3% 1.62E-02/1.73E-02 7.5% 
2 1.77E-01/1.78E-01 0.6% 1.26E-02/0.62E-02 50.8% 
3 1.34E-01/1.38E-01 3.0% 1.24E-02/0.33E-02 73.4% 

 

The case study indicated that the two algorithms are very close in the quantitative 

results for area in bridge surface damage detection, which are highly relying on the 

selection of reference plane as well as the damage criteria. The obvious variances of the 

results in volume quantification are believed to come from the difference of reference 
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plane generation and the change of volume quantification algorithm (Delaunay’s 

Triangulation).  

A
rea 1

(a). Analysis with Liu’s Algorithm (b). Delaunay’s Triangulation based Analysis

A
rea 2

A
rea 3

  
Figure 3.10 3D reconstruction of damage detection result in bridge 590147 
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3.4 Conclusion 

In this chapter, the analysis of terrestrial LiDAR bridge inspection process has 

been presented. The purpose of the analysis is to study the issues that might affect bridge 

inspection data quality in both field bridge inspection and computer assisted data 

processing (automation) for LiDAR bridge inspection. With the case study presented, 

LiDAR technology is validated as an effective solution to visual inspection. The two 

issues scanning angle effect and damage evaluation algorithm are addressed and 

suggestions to mitigate the scanning angle effect and the improvement of the algorithms 

are made as well.  

 



CHAPTER 4:  REFLECTIVITY IN LIDAR DAMAGE DETECTION 
 
 

Previous attempts in LiDAR damage detection essentially use the point cloud 

geometric (spatial) information to evaluate defects, which works with simple geometric 

surfaces such as flat planes or intersections of multiple-planes (Liu, 2010). To automate 

the damage detection procedure, additional algorithms are needed to search the defective 

areas. Since typical LiDAR data contains the physical geometric and the laser beam 

reflectivity information, this study explores the possibility of using LiDAR reflectivity to 

find damage areas and enhance damage detection automation.  

4.1 LiDAR Reflectivity Study 

According to the Phong reflection model (He et al., 1991), the surface reflects 

light as a combination of ambient, diffuse, and specular reflections. The light intensity 

actually equals to the total intensity of all three types of reflection. In a typical LiDAR 

scan, the ambient reflection is usually assumed to be outside of the range for 

consideration, thus the reflection model can be represented as: 

𝐼𝑟 = 𝐼𝑑 + 𝐼𝑠      (4-1) 

where 𝐼𝑟 is the observed reflection intensity, 𝐼𝑑 is the diffuse reflection intensity, and 𝐼𝑠 is 

the specular reflection intensity. 

The reflectance value of a laser beam is essentially the light intensity recording of 

the returning laser energy and is a function of the target surface quality, the reference 

beam modulation technique and the electronic phase delay. Since different surfaces may
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generate different reflectivity data, the reflectivity values may help accentuate damage 

location. 

LiDAR reflectivity has been used for post-earthquake building damage 

assessment (Li et al., 2009). Mass and Vosselman (1999) presented the algorithm that use 

sequential Hough transforms to detect building in point clouds. Similar applications that 

use LiDAR data, especially the reflectance value, in the research of land use or vegetarian 

classification can be found in several literatures. It is worthwhile to notice that, the 

classification algorithms in these studies are strictly limited by the instrument’s 

resolution, and they are mostly applied to large-scale object classification. For instance, 

in Maas’s bridge detection project, the point density of the city is 0.67 points per square 

meter (point spacing: 1.0-1.5m), which is a high-resolution application case as compared 

to the tens of meter resolution in land use classification studies. 

To ensure surface damage detection can achieve a centimeter resolution, the 

instrument should reach a higher resolution level. The LiDAR scan has a 3mm resolution, 

hence, satisfies this requirement. According to Pfeifer and Briese’s (2007) study in laser 

scanning principles, the reflectance value is related to laser spreading loss, object surface 

roughness and reflectivity, as well as atmospheric attenuation. The spreading loss is 

critical to the reflectivity value only when the laser scanning is performed from a long 

distance, such as airborne laser system (Baltsavias, 1999). For terrestrial laser scanner, 

the spreading loss and atmospheric attenuation can be ignored in the short distance 

transmission (Soudarissanane et al., 2007). Therefore, the surface roughness and object 

reflectivity are the determinants that have major impact on the reflectance values of 
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returned scanning points, that’s the theoretical foundation of using LiDAR reflectance in 

detection of bridge surface damages. 

The processing of LiDAR reflectance value is similar to photographic image 

processing, and the statistic characteristics of reflectance data acquired from the inspected 

bridge surface will be used to assist the bridge condition evaluation. If the reflectance 

values of each scan point are sorted in to a matrix 𝑅, which is actually a two-dimensional 

array of laser pixel intensities. The intensity value is between [0, 2047] as indicated in the 

manual of the laser scanner. The bridge deck showed in Figure 4.1 is selected to explain 

the different patterns of reflectance data distribution of different bridge surface 

components. In this figure, the bridge deck pavement includes normal asphalt road 

surface (1), roadway painting (2), and a defective area with crack distress (3&4).  

In the reflectivity value histogram analysis of those three different surface types, 

it is clear that the reflectance values returned from normal asphalt road surface almost 

distributed in normal pattern, and the values are centralized to the middle of the 

histogram. The reflectance values returned from asphalt surface with painting nearly 

distributed in two isolated zones, and the values inclined to the right side of the histogram 

is from painting, while that near the left side is from asphalt. The reflectance values 

returned from asphalt with cracks have a broader distribution on the right side (high 

spectral), but the distribution on the left side remains the same as the normal asphalt 

pavement. The values are generally described as more scattered than centralized to the 

middle of the histogram. This example indicates that cracking and other damages 

destroyed the bridge surface will cause dispersion of intensity values of the returned laser 

lights. 
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Figure 4.1 Histograms of returned laser intensity from the bridge pavement 

Two-dimensional FFT is the series expansion of an image function in terms of 

‘cosine’ image basis functions. 2D FFT is regarded as the most effective techniques in 

studying the frequency domain characteristics of an image, and it can filter high or low 

frequency spatial components from the image data for different purposes. For an image 

composed of M multiple N pixels, the FFT is given as: 

𝐹[𝑢, 𝑣] = 1
𝑀𝑁

∑ ∑ 𝐼[𝑚,𝑛]𝑁−1
𝑛=0 ∙ 𝑒−𝑖2𝜋(𝑢𝑚𝑀 +𝑣𝑛𝑁 )𝑀−1

𝑚=0    (4-2) 

where u, v is the coordinates in the frequency domain and (M, N) means the 

number of horizontal and vertical pixels of original image. Figure 4.2 demonstrates the 

Fourier Transform of an image. I[m, n] is the intensity of the point in column ‘m’ and 

row ‘n’. The center of the frequency domain is the origin of the frequency coordinate 

system, and represents lowest frequency. The u-axis runs left to right through the center 

and represents the horizontal frequency, and the v-axis runs bottom to up through the 

center to represent the vertical frequency. The edge represents highest frequency.  
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Figure 4.2 2D FFT of an image data with M*N pixels 

The frequency domain characteristics of the reflectance value returned from the 

same bridge as studied in the histogram comparisons are investigated, which is shown in 

Figure 4.3: 

(1) The FFT of normal asphalt indicates a neutral distribution of low and high 

frequency components, which means there is no sudden change of the reflectance value 

in the original 2D spatial domain.  

(2) The FFT of asphalt with painting have more high frequency components, that 

came from the suddenly change around the edge of asphalt and painting.  

(3) The FFT of asphalt with cracking contains even more frequency components, 

for the dispersion of intensity values contribute to various disorders and suddenly 

changes in the spatial domain.  

(4) Hence, the amount of high frequency components in the FFT of the 2D spatial 

laser intensity would be a potential feature in the recognition of bridge surfaces.   
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Figure 4.3 2D FFT of the returned laser intensity from the bridge pavement 

4.2 Defect Detection Using LiDAR Reflectivity 

The above study in histogram and FFT magnitude image patterns of the returned 

reflectance value from bridge surface with cracking indicates that the defective zones in 

the bridge surface can be detected using these two features.  

The standard deviation 𝐶𝑠𝑡𝑑 of the intensity values in sub matrix 𝑅𝑖 (divided from 

𝑅) is used as the expression to represent the distribution of these values. If the intensity 

matrix is returned from a bridge surface without defect, 𝐶𝑠𝑡𝑑 will be relatively small than 

that of defective areas. Notice that 𝐶𝑠𝑡𝑑  is relatively greater if the intensity matrix is 

return from surface with painting for signs as indicated in the above study. 

𝐶𝑠𝑡𝑑 = �𝐸��𝑟𝑖 − 𝐸(𝑟𝑖)��
2
     (4-3) 

In frequency domain, the intensity image returned from normal bridge surfaces 

and that with defect differs in the amount of high frequency components. The mean value 

𝐶𝑓𝑓𝑡  of the edge area (the high frequency components) in the FFT magnitude image 
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matrix 𝑀𝑖  (transformed from matrix 𝑅𝑖) is used as the expression of its pattern. If the 

signal with a frequency greater than 𝑓𝑚𝑎𝑥
2

, it is considered as ‘high frequency component’. 

In the magnitude image matrix 𝑀𝑖, the ‘high frequency components’’ are located in the 

areas excluding the circle (0,0, 𝑁
4

) as shown in Figure 4.4.  

4
Nr =

(-N/2,0)

(0, N/2)

(0, -N/2)

(N/2,0)

i

j

  
Figure 4.4 Characteristic values of the 2D FFT magnitude image matrix 

The FFT magnitude image feature of the sub intensity matrix is expressed using 

the following equation: 

𝐶𝑓𝑓𝑡����� = 1
𝑘

{∑ 𝐼𝑖𝑗 − 𝑆𝑖(0,0, 𝑁
4

)
𝑖=𝑁2 ,𝑗=−𝑁2
𝑖=−𝑁2 ,𝑗=𝑁2

     (4-4) 

If 𝐶𝑠𝑡𝑑  and 𝐶𝑓𝑓𝑡����� of the intensity image are used as criteria to perform damage 

detection in the ‘bridge surface with cracking’ case and set a threshold value using the 

experienced based method, the defective regions 3 and 4 in Figure 4.3 can be easily 

recognized. But when use this method for damage detection purpose in the following 

beam case, the result will be difficult because the intersections (1, 2, 3 in Figure 4.5) that 
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contains both ground surface and the beam are going to be recognized as defective during 

automated detection.  

Figure 4.5 shows a damaged concrete placed on concrete floor As a result the two 

surfaces have almost identical reflection to the laser. The expression of pattern of the 

intersections (1, 2, and 3) is very similar to that of damage areas when using 𝐶𝑠𝑡𝑑 and 

𝐶𝑓𝑓𝑡�����, because both of them have two different major components and with significant 

variation of the intensity values within these sub matrixes.  
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Figure 4.5 Issues when only apply reflectivity in LiDAR damage detection 

Notice that in most of the studies using image-processing techniques in bridge 

inspection, including those listed in the literature review, they usually select bridges 

surface pavement to be flat and homogeneous surface to apply their various algorithms. 
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For damage detection in complex bridge structures, image-processing alone is not going 

to be helpful. 

As an attempt to solve this problem, the spatial curvature of the inspection area is 

introduced as a feature in bridge surface damage detection. It is also possible to use 

curvature to indicate if the studied surface contains defective areas. For each scan point, 

the curvature index is defined as 𝐶𝐶𝑢𝑟
𝑖𝑗  which compares the standard deviation of the 

distances from the points to its surroundings (Figure 4.6). The accumulative 𝐶𝑐𝑢𝑟 value of 

the points in defective zones is greater than that in the undamaged surfaces, and this 

could be used as one feature in the defective identification. 

𝐶𝐶𝑢𝑟
𝑖𝑗  = 𝐶1

𝑖𝑗 + 𝐶2
𝑖𝑗     (4-5) 

where I, j is the column and row number of the points, 𝐶1
𝑖𝑗 = 𝑆𝑡𝑑 (𝑑1,𝑑2,𝑑3, 𝑑4), and 

𝐶2
𝑖𝑗 = 1

√2
∙ 𝑆𝑡𝑑 (𝑑5,𝑑6, 𝑑7,𝑑8). 

 The curvature expression 𝐶𝑐𝑢𝑟𝑚𝑒𝑎𝑛 of each sub matrix is defined as the mean value 

of the individual 𝐶𝑐𝑢𝑟 as: 

𝐶𝐶𝑢𝑟𝑚𝑒𝑎𝑛 = 1
𝑚∗𝑛

∗ ∑ 𝐶𝐶𝑢𝑟
𝑖𝑗𝑖=𝑚,𝑗=𝑛

𝑖=0,𝑗=0     (4-6) 

where the divided sub matrix has 𝑚 columns and 𝑛 rows. 

1d

2d

3d

4d
5d

6d

7d8d

  
Figure 4.6 Expression of curvature feature of a single cloud point 
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The important thing about spatial curvature is the 𝐶𝑐𝑢𝑟 of the intersection where 

contains two different structure components will be extraordinary larger than that of 

normal surfaces and even that with defects. If the Curvature feature is used to recognize 

the intersections and filter them, then determine the defective areas in the rest of the sub 

regions, which is feasible to solve the intersection problem. 

With the above introduction, it is reasonable that the standard deviation of 

histogram, the high frequency component from 2D FFT, and the curvature in space 

domain are the three features that can be used for damages detection. 

4.3 Reflectivity Damage Detection Process  

LiDAR reflectivity defect detection can be divided into five correlative processes. 

Figure 4.7 demonstrates the pre-processing of the selected LiDAR data, filtration of noise 

within the data, division of image information into blocks for separate image processing, 

and the identification of the defective areas. 

  
Figure 4.7 Process of the damage detection algorithm using reflectivity 

4.4 Case Study 

To validate the effectiveness of the algorithm, the following experiment was 

carried out on the Tryon Steel Bridge in Charlotte uptown area, and the bridge has rebar 

exposure under the deck that is clearly shown in Figure 4.8. This is a typical damage in 
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the curved surfaces. The reflectivity damage detection algorithm, as described in previous 

section, will be used to recognize the defective areas. 

 

Figure 4.8 Tryon bridge with rebar exposure damage in the arc 

• Decomposition 

The algorithm will first import the cloud point data of the studied area and divide 

them into small grids (128*128) according to the column and row numbers, which is the 

index of the new data structure of intensity and coordinate values in the identification 

algorithm. 

• Spatial Curvature Index 

Calculate the curvature index 𝐶𝑐𝑢𝑟 of the divide girds. In Figure 4.9, it is clearly that 

the curvature indexes for sub grids from 58 to 66 are extremely high, and they are 

actually intersections between bridge structure and the background. These curvature 

indexes will not be included in the clustering algorithms. It is hardly to tell the variance 

of 𝐶𝑐𝑢𝑟 among other grids, because the intersection grids magnify the overall scale. 
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Figure 4.9 The curvature feature of the 70 divided grids 

• Calculate 𝐶𝑠𝑡𝑑.  

The histograms of the sub intensity matrixes are constructed in the Figure 4.10 and 

the standard deviation of values in the matrixes are also calculated to get the expression 

of the feature for intensity distribution (Figure 4.11). The distribution of the standard 

deviation values indicated that there are many grids that have dispersion of reflectance 

values. 

  
Figure 4.10 Histograms of the sub intensity matrixes 
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Figure 4.11 Standard deviation of raw reflectance values of observations 

• Calculate 𝐶𝑓𝑓𝑡�����.  

The 𝐶𝑓𝑓𝑡�����  values of the divided sub intensity matrixes are calculated to add the 

expression of high frequency components. A circle with the radius of 32 pixels is 

removed from the FFT magnitude image matrix when calculating the 𝐶𝑓𝑓𝑡 . The 

distribution of the 𝐶𝑓𝑓𝑡����� values also indicates that many divided grids have large amount 

of high frequency components. 
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Observations  
Figure 4.12 Characteristic values of the FFT magnitude image of observations 

• K-Means Clustering.  

In multivariate statistics, clustering is an effective method in grouping the data 

according to their attributes (Johnson & Wincher, 1998). The principle of clustering is 

individuals from the same class always are similar with each other, but individuals from 

different classes will show their difference.  

K-Means clustering grouping is done by minimizing the sum of squares of distances 

between data and the corresponding cluster Centroid. The K-means clustering process 

can partition n dimensional (attributes) population into k subsets. The previous part of 

this damage detection algorithm has already provided 70 sets of data, and each of them 

has three attribute values: 𝐶𝑠𝑡𝑑, 𝐶𝑓𝑓𝑡�����, and 𝐶𝑐𝑢𝑟. The K-means clustering algorithm is used 

to partition the 61 (excluding section 58 to 66) into 2 subsets, which is represented as: 



55 
  

𝑆 = {𝑆1,𝑆2}      (4-6) 

The defective areas have been clustered together into the group with the attribute 

value 2, and the normal partitions are clustered into the group with the attribute value as 

1. The group of data with the attribute value as zero stands for those intersection areas 

that have been filtered at the beginning of this damage detection algorithm. 
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Figure 4.13 Data clustering result using three features 

Figure 4.14 is the representation of the result using reflectivity algorithms in 

damage detection for the Tryon Steel Bridge. According to the clustering result in Figure 

4.13, the sub regions marked with red dots are the damage areas recognized correctly, 

those with white dots are the good areas that misrecognized as defective, and one with 

black dot is the unrecognized damage area.  
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Figure 4.14 Result of the analysis using reflectivity in damage detection 

 One of the two grids that have been misrecognized as defective area is located in 

the intersection. It survived in the curvature index filter process because there is only a 

little portion of background points contained in this grid, thus make its 𝐶𝑚𝑛 value not as 

large as those filtered in the first step. The patterns of the intensity value distribution and 

the FFT magnitude image are similar to that of normal surfaces.  
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4.5 Conclusion 

Restricted by the algorithm used to reconstruct 3D shape from the bridge surface 

damage scan data, the previous LiDAR damage detection algorithms is incapable of 

identifying damage in complex-shaped surfaces. In this study, an attempt is made to 

apply reflectance value of LiDAR data to develop enhanced automatic surface damage 

recognition algorithm for bridge inspection.  The experiment shows the selected features 

and their expression is effective in damage detection. The K-Means clustering is used to 

group the sub grids into different classes according to the minimum distance to the 

Centroids.  

 

 



CHAPTER 5: DECK JOINT EVALUATION AND SOIL SLOPE EVALUATION 
 
 
5.1 Bridge Deck Joint Evaluation 

Deck joint is an important component of highway bridges. Any cost-effective 

evaluation method that can help trace joint movements during frequent inspections will 

provide valuable data to bridge engineers. To ensure the application of remote sensing in 

highway bridge inspection, terrestrial LiDAR technology and aerial photography are 

being investigated as the proposed joint evaluation approaches. As mentioned in previous 

chapters, the laser scanner is able to record 3D coordination information of bridge surface 

points, and generate high density point cloud data for deck joints evaluation, while aerial 

imagery taken by commercial DSLR cameras in a small airplane flying at 1000 feet can 

get high resolution imagery for bridge surface components (Chen et al.,  2011).  

5.1.1 Bridge Deck Joint Maintenance 

Deck joint is critical to the overall performance of a bridge structure, and the deck 

joint failures can be result from factors such as the joint material aging, improper design 

and installation, insufficient maintenance, excessive usage and loadings.  According to 

the BJA (2003), the performance requirements of a joint can be classified into the 

following three categories: 

• Structural Stability.  

Bridge deck joint should be able to withstand the traffic load, and accommodate 

to the bridge movements arising from environmental impacts. Moreover, dynamic
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 loading from sudden stresses (nature disasters) also needs to be considered in the joint 

design and installation. 

• User Satisfactory.  

The joint should provide standard experience to the road users. It has to be 

comfortable such as maintaining a low-level noise and vibration when driving through. 

• Easy Maintenance:  

The joint should be easy for maintenance, it would be better if the service will not 

interrupt the traffic, and the wearing elements should be easily replaceable.  

The shape of the joint component and the common defects in bridge surface are 

important visual factors that can be used in the reorganization and identification of bridge 

deck joints evaluation. This study is mainly targeted at determining the sensing resolution 

and detection capability of the remote sensing technology, but not the severity of the 

joints. 

In current visual dominated bridge inspection, joint inspection often requires 

temporarily disable of ongoing traffic, which result in inconvenience and other losses. 

The Spatially-Integrated Small Format Aerial Photography (SI-SFAP) has been 

developed to provide higher resolution images than most commercial satellites and large 

or medium mapping grade aerial imaging in bridge inspection (Chen et al., 2011). The 

two dimensional imagery can provide bridge inspectors sufficient information for the 

evaluation of bridge decks and parapets. 

5.1.2 Bridge Deck Joint Evaluation Using LiDAR 

A LiDAR scan test was conducted on the surface of the Mallard Creek Bridge, 

Charlotte, North Carolina. The test focuses on the deterioration area located at one of the 
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expansion joints. The damage along the surface can be seen in Figure 5.1. The damage 

selected is a typical mass loss of material from bridge deck joint component.  In this 

particular case, the damage is seen to spread from the deck joint. The damage is 

quantified as 1.650-E01 𝑚2 for surface area and 1.583-E03 𝑚3 for volume. 

5

5

Damage

Hidden Defects

Misinterpretation

Undamaged

 
Figure 5.1 LiDAR bridge deck joint evaluation 

The purpose of edge detection in bridge deck joint evaluation is to significantly 

reduce the amount of data in the point cloud, which is the source for the construction of 

3D virtual model. John F. Canny (1967) presented a method to determine the edges in the 

image, which becomes the most popular one edge detection. The following is detailed 

procedures:  

• Noise Filtering.  

The image converted from LiDAR scanning data will contain noise, the Canny 

calculator suggests a Gaussian filter to remove noises prior the edge detection. 
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• Gradient Calculation.  

The gradients of the image are computed to measure its change of grayscale 

intensity, and gradients are determined by applying ‘Sobel-operator’. The magnitude of 

the gradient can be calculated as: 

𝐺 = �𝐺𝑥2(𝑥,𝑦) + 𝐺𝑦2(𝑥, 𝑦)     (5-1) 

and then direction of the edges is determined by using: 

𝜃 = arctan (𝐺𝑥(𝑥,𝑦)
𝐺𝑦(𝑥,𝑦))      (5-2) 

• Non-Maximum Suppression.  

The Canny algorithm basically finds edges where the gray scale intensity of the 

image that changes the most. This suppression keeps all local maxima in the gradient 

image and deletes the rest. 

• Hysteresis Thresholding.  

The thresholding is set to remove noises that recognized as edge in the last three 

steps, which is an arbitrary value requires human interaction. 

The bridge deck joint usually has a sharp edge in the inspection images. From the 

inspection image, human vision can easily tell where the deck joint is, and estimate its 

dimension as well. The image processing techniques using edge detector is also able to 

find the edges in a picture. The following experiment is designed to use Canny edge 

detector in the determining of bridge deck joint edge using LiDAR reflectance data. 
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Figure 5.2 Edge detection using Canny calculator 

It is clear from the above picture that the joint edge of the Mallard Creek Bridge 

can be well recognized using Canny algorithm for the bridge deck without damage. The 

result is not so good when using Canny calculator in determining the edge from the 

image contains large portion of defects, this is because the Canny edge detection 

determines the edge boundary through the magnitude, the pixel gradient, and most of the 

defective area images have scattering effect of the laser light, thus the gradients of those 

pixels are also greater than the smooth surfaces.  

The quantification of expansion joints is useful in the bridge inspection, especially 

when the bridge joint data could be record periodically using LiDAR scanner.  This will 

provide the bridge inspectors a convenient way to observe the joint movements. The joint 

dimension (width) measurements are performed for the Mallard Creek Bridge center 

joint. Multiple-time measurements were conducted in the test and the average value of 

these measurements is calculated for later comparison with the results from aerial image 

data.  A second bridge (Alabama) was also selected in quantifying deck joint dimension 



63 
  

using LiDAR scan data. The Alabama bridge is a 5 span concrete highway bridge, and 

has good deck joint condition.  

  
Figure 5.3 The 3D overview of Alabama bridge 10357 

In order to capture three deck joints, separate scans were performed on the bridge 

by setting the LiDAR on the road shoulders.  The first scan of the Alabama bridge was 

conducted near the center joint of the bridge from the shoulder, which present a good 

view of the interested expansion joint. The second LiDAR scan of the joint was 

conducted on the north part of the bridge. It is also a well captured LiDAR scan result. 

The third scan of the bridge was conducted in the southern part of the bridge. 

5.1.3 Bridge Deck Joint Evaluation Using Aerial Imagery 

The quantification capability of bridge deck joints and other kind of damage are 

mainly restricted by the resolution of the remote imaging technique.  For the aerial 

imaging, a DSLR camera is mounted beneath an airplane (Cessna C210L). The Cessna 

was set at the cruise power setting (approx. 160 mph at 17 gph). The resolution of the 

digital images is defined as the ratio of the actual physical dimension to the physical 

length of the object in photo.   
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All image processing is performed in ArcGIS including the measurement of the 

joint dimension. By matching these points on the aerial photo to the corresponding points 

on a base image, each point on that aerial photo was essentially assigned a geographic 

coordinate, which is called georeferencing. A shapefile will be created to extract the data 

for the measurement after the image is georeferenced.  The shapefile is also added to the 

viewing space in the ArcGIS software once it is generated. 

For joint width measurements, a measuring line could be drawn from one side of 

the joint to the other using the shapefile. Since the images that are drawing on have a 

synchronized geographic location, the line will have a beginning coordinate and an 

ending coordinate. As a result, the distance of the two points can be calculated using 

ArcGIS. The result is a measurement with a theoretical resolution of about 0.0125m (sub 

inch). 

The application of deck joint evaluation using aerial imagery and ArcGIS are also 

applied on the same bridges (Mallard Creek Bridge and Alabama Bridge). Figure 5.4 

shows the aerial image taken by commercial DSLR cameras in a small plane flying at 

1000 feet for the Mallard Creek Bridge deck surface.  The resolution of the photograph is 

highly dependent on the airplane operation condition, which is typically about 0.0125 m 

(half of an inch).   
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Figure 5.4 Mallard Creek bridge joint width quantification using aerial imagery 

The joint evaluation is also conducted for the second bridge located in Alabama. 

Figure 5.5 is the first aerial image for the center join of the bridge 10357. The pixel 

resolution is sub-inch and qualified for the deck joint width measurement according the 

bridge inspection manual. 

One of the difficulties in analyzing bridge surface conditions using aerial imaging 

is when encountering heavily shadowed situations as shown in Figure 5.6, where the 

object to be measured is covered by the shadow of vegetables.  In this case, it is hard to 

distinguish the boundaries of the joints or other surface issues.  Several filter algorithms 

are needed to preprocess the image to reduce the shadow effect. Other than the center and 

south joints, Figure 5.6 shows the north joint and Figure 5.7 shows the south joint, there 
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are only three sample data collected for the north joint. Table 5.1 summarized the width 

measured using LiDAR and aerial imagery. 

  
Figure 5.5 Bridge 10357 center joint width quantification using aerial imagery 

  
Figure 5.6 Bridge 10357 north joint width quantification using aerial imagery 
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Figure 5.7 Bridge 10357 south joint width quantification using aerial imagery 

Table 5.1 Width measurement of joints using LiDAR and aerial imagery 
Joint Width Mallard Creek 10357 Center 10357 North 10357 South 
LiDAR 0.270m 0.226m 0.138m 0.104m 
Aerial Imagery 0.354m 0.219m 0.076m 0.092m 
Deviation 31.1% 3.1% 45.1% 11.5% 

 

The results indicate that the two methods are very close in the quantitative values. 

Except for the north side joint of the second bridge, almost all of the joints studied using 

both techniques resulted in acceptable variation. As mentioned earlier, the heavy 

shadowing at the North Joint has resulted in less reliable data from the aerial images. 

Figure 5.8 summarized all the images analyzed for this study from both bridges. 
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Figure 5.8 Joint width quantification using LiDAR and aerial imagery 

5.2 Slope Stability Study 

Rain fall effects on soil erosion have been reported as early as 1895 by Wiesner. 

Ellison (1945) described erosion due to rainfall was carried out by three mechanisms: 1) 

loss of soil through surface runoffs; 2) loss of soil through raindrop splash; 3) erosional 

activities due to soil flow. Al-Durrah and Bradford (1982) concluded that rain drops do 

not compact soil by compression, but rather by breakdown of soil aggregates and packing 

of splashed soil. Soil erosion on unprotected bridge embankment can have devastating 

effects. This is especially true for mountain areas where landslides and slope failure can 

erode bridge foundation. 
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Figure 5.9 Rain erosion process on an soil slope 

Rain effects on soil surface can be summarized in two aspects: 1) detachability 

and 2) transportability: After initial impact, the water may form a surface water film, 

which is affected by the detachability and not transportability.  Hence, there are two 

possible mechanisms for reducing rain-induced erosion: 1) to form resistance against 

raindrop impact and 2) to form strong bonding to the ash to resist transport mechanisms.  

Figure 5.9 shows a graphic rendering of a rain erosion process on an soil slope, which 

typically involves three mechanisms: 1) raindrop erosion, 2) sheet erosion and 3) rill and 

gully erosion.   

In this study, the rainfall effects on earth slope with homogeneous fine grained 

materials (simulated using fine coal ash particles) are captured using a small-scale 

erosion test device.  Showed in Figure 5.10 is a schematic drawing of the erosion 

apparatus used in the small-scale erosion tests.  The device consists of a spigot head, 

tilting ash tray and a particle collection tray.  The spigot head is designed to allow 

dripping of water uniformly along a line.  The figure also shows the actual setup 
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assembly including three tests where the spigot head is actually a perforated pipe with 

water supplied from a clear water tank.  The elevated water tanks and the perforated pipe 

simulate rain drop process (33 cm above the ash tray base), which resembles a falling 

head conductivity test.  No measures of the actual water drop velocity and size have been 

made.  

  
Figure 5.10 Schematic drawing of small-scale erosion test apparatus 

  
Figure 5.11 Small-scale erosion test preparation 
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The coal ash is compacted into the tilt-able Plexiglas tray (30 cm length × 23.5 cm 

width × 4 cm depth).   Figure 5.11 shows the side view of the experimental setups.  The 

slope of the ash tray can be altered for different slope angles up to 30 degrees.  For this 

study, a 15 degree angle is maintained resulting in a 29 cm drop height for the rainfall 

simulator.  Figure 5.12 shows the compacted ash sample prior to the rain erosion test.  

The water reservoir is filled with 500ml water and is allowed to free-fall on the ash slope 

simulating rainfall impact. The laser is then set in front of the test setup and conducts a 

full scan. 

  
Figure 5.12 Ash sample prior to and after rain erosion test 

The use of 3D laser scanner allows the volumetric quantification of the eroded 

slope.  3D laser scanners have been used to quantify rock outcrops (Bellian et al., 2005) 

and rill erosion in mine spoils (Hancock et al., 2008)  Laser scan only performed on the 

post-rain test samples.  In this study a Faro laser scanner is used and the 3D point cloud is 

processed using the damage quantification algorithm to determine the total mass loss (Liu 

et al., 2011).  
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Figure 5.13 shows the LiDAR scan of the four rainfall tests.  The laser scanned 

images of the four tests performed where moderately disturbed surfaces are observed.  

Automated mass loss calculations are then performed on the four scans – an example 

calculated mass loss is shown in Figure 5.14. The right hand side image is the computed 

mass loss area and left hand side is the actual scan image. It is observed that the 

computed mass loss was divided into three large areas.  

  
Figure 5.13 Laser scanner settlement and scanned images 

The laser scanning technique has accurately quantified the mass loss due to rain 

erosion.  However, the point cloud data point density and the reflectivity of the grey 

surface effect on the returning laser energy need to be further investigated.  Nonetheless, 

this study shows great potential for the technique to be used for further quantification of 

mass loss on soil slopes. 
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Figure 5.14 Automatic mass loss calculation showing 3 separate areas 

The laboratory test setup provided a centimeter-range erosion simulation and has 

successfully captured the rain erosion process that would have caused mass loss during 

heavy rain and erode embankment slopes. 3D laser scanner was demonstrated to 

successfully quantify the mass loss of the rain-impact samples. 

Table 5.2 The quantification of simulated slope stability study 

Sample Impacted Surfaces 
(𝑚2) 

Depth Estimate 
(𝑚) 

Impacted Volume 
(𝑚3) 

1 0.16*0.24 (3.84E-02) 1.2E-02 1.748E-04 
 

5.3 Conclusion 

In this study, the possibility of applying LiDAR scanned point cloud data and 

aerial imagery in bridge deck joint evaluation and slope failure is demonstrated.  The 

Mallard Creek Bridge and the Alabama Bridge are selected and studied.  The joint 

dimension quantification and damage detection was conducted and the results show that 

the LiDAR scan could be helpful for quantifying the bridge joint movements. Laboratory 

demonstration of rainfall on soil slope shows that laser scanner can be used to quantify 

slope erosion on unprotected embankments.  

 



CHAPTER 6: QUALITY ISSUES IN LIDAR BRIDGE INSPECTION 
 
 

This chapter is devoted to the discussion of the measurement errors in LiDAR 

scans. There are certain factors that may prevent the LiDAR from getting precise field 

data during bridge inspection. Coşarcă et al. (2009) studied the error sources in the 

terrestrial laser scanning and classify them into four categories: instrumental, object-

related, environmental and methodological errors. The study indicated that ‘the scan 

procedures should be performed with an adequate scanner’, which means the best way to 

avoid most of the possible errors is to select an appropriate laser for the project. The 

following discussion about error sources in bridge inspection is strictly related to current 

research.  

6.1 Systematic Errors 

The systematic errors are from specific laser instrument will cause an unavoidable 

variance in distance measurements. However, due to the high resolution of most 

commercial LiDAR, system error is not significant for civil structure distance 

measurement applications. For instance, the FARO LS880 scanner only generates 3mm 

errors at a 25-meter distance, which is sufficiently accurate for most of the civil 

engineering survey projects. Spatial resolution is not easy to define, since it is a function 

of the mechanical moving speed and sampling rate. Hence, point cloud recording should 

consider error in spatial information collection. The errors for distance measurement can 
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be overlapped when the point cloud data is used for the generation of virtual models in 

spatial. 

The systematic errors also include data processing error. In the bridge inspection 

programs using LiDAR data, the results vary. The improvement of the LiBE damage 

quantification algorithm showed in Chapter 3 is one way to reduce the systematic errors 

in LiDAR bridge inspection. 

6.2 Errors in Inspection Procedure 

 Systematic errors are generated during the operation of the LiDAR bridge 

inspection. For damage detection, the scanning angle effect. Chapter 3 indicates that to 

mitigate scanning angle error requires the bridge inspectors to choose the appropriate 

positions to perform the test. Other approach to reduce error in inspection is to avoid 

scanning across heavy traffic. 

6.3 External Errors Sources 

The most common external errors sources are environmentally introduced. For 

example, the change of temperature, the dust in the atmosphere, and the lighting 

conditions are all factors that could result in errors of the measurement. 

Passing traffic effect is one of the most common issues when scanning a bridge 

under heavy traffic, and the vehicles allow scatters of lines in the scan, which creates 

trouble in the data analysis by distorting the scanned image or generate noise points in the 

scan data, and this issue could lead to unacceptable errors in both damage detection and 

clearance measurement. Figure 6.1 shows vertical lines within as scan resulted from 

heavy traffic crossings. 



76 
  

  
Figure 6.1 Passing traffic leaves noise in the LiDAR scan 

6.3 Quality Control in LiDAR Bridge Inspection Process 

Data quality control is critical and is associated with the inspection process. 

Quality management principles can be applied to evaluate the inspector performances, 

which is critical to the outcomes of inspection. 

An FHWA review of existing bridge inspector performance indicates that the 

subjectivity involved in visual bridge inspection can introduce significant variability 

(Moore et al., 2001). The implementation of LiDAR into the inspection process can 

enhance the quality of inspection through providing quantifiable measurements of 

damages and critical bridge parameters, such as bridge under clearances. The following 

discusses specifically the LiDAR implementation for damage detection. 

6.3.1 LiDAR Damage Quantification Application 

One of the most advanced features of LiDAR is to quantify damage in a bridge. 

The quantifiable damages including defective areas such as mass loss, pot holes, or even 
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small damages due to concrete pop-out from corroded rebar, can be easily measured by 

LiDAR.  

Figure 6.2 shows a large scale mass loss under a bridge girder (42300, IA). Due to 

the widespread damaged area, LiDAR can quantify the total damage area, which can be 

clearly visualized in the 3D reconstruction. The quantifiable damage can be documented 

and compared to future measurements. 

  
Figure 6.2 The large area bridge damage monitoring using LiDAR 

Figure 6.3 shows an example of rebar damage quantification on bridge 000941 in 

Alabama. From the manual measurements, the length of the joint damage is 0.073m. 

LiBE algorithm has identified this defect successfully, and has been marked in the 3D 

inspection result reconstruction.  
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Figure 6.3 Minor rebar exposure damage in the joint 

The limitation of using LiDAR for damage quantification is when the damages 

are too small or do not reflect enough laser points. In such cases, the inspection algorithm 

will not get any results. 

  
Figure 6.4 Resolution of LiDAR bridge inspection algorithms 

In Figure 6.4, the damage is caused due to concrete pop-out from corroded rebars 

and the defect portion can be recognized on the LiDAR scan visually. The change 

detection algorithm failed to identify this damage due to the low pixel resolution. 

However, general measurement of the damage size can be determined using LiDAR scan. 
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The length of the damage is shown to be 0.08m with a width of 0.047m. The width is 

probably overestimated due to inadequate resolution. 

 

 

 



CHAPTER 7:  COMPARATIVE COST ANALYSIS 
 
 
7.1 Cost Analysis 

The cost analysis for LiDAR implementation is conducted to support the bridge 

administrations in determining the implementation potential. The quantitative analysis of 

various implementation alternatives in bridge management could mitigate investment 

risks. This analysis provides the ‘big picture’ estimates of the cost of LiDAR 

implementation during bridge inspection process versus the cost of visual inspection. The 

analysis can only be used as a reference and not for actual computations. 

7.1.1 Problem Statement 

 Quality bridge condition data is critical to an effective bridge management 

program. The time consuming visual inspection is not able to accommodate the amount 

of information needed for accurate bridge condition quantification. LiDAR may be able 

to fill the data gap by providing critical damage quantification. Hence, the improvement 

of data quality from LiDAR inspection can help the allocation of limited bridge 

maintenance resources, which means repairing the bridge on demand.  

 In order to support the decision making of implementation of LiDAR bridge 

inspection, a comparative analysis of visual bridge inspection and LiDAR bridge 

inspection is conducted for Mecklenburg County, which has 368 bridges documented in 

the NC bridge database. The planning horizon is selected as 50 years based on the 

expected life span of a bridge for lifetime cost comparison. 
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7.2 Cost Drivers for Visual Inspection 

• Average Inspection Cost per Bridge in North Carolina 

The average inspection cost for each bridge is required for the calculation of the 

cost analysis model, however, this data set is not always accessible. The most feasible 

way to estimate this cost is to get the overall bridge inspection budget and the number of 

to be inspected bridge in this year, then the average inspection cost of a single bridge can 

be calculated as: 

𝐶 = 𝐴𝑛𝑛𝑢𝑎𝑙 𝐵𝑟𝑖𝑑𝑔𝑒 𝐵𝑢𝑑𝑔𝑒𝑡
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜 𝑏𝑒 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑 𝐵𝑟𝑖𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑦𝑒𝑎𝑟

    (7-1) 

According to the North Carolina State Department of Transportation’s most 

recently bridge management information, there are 12,712 bridges across the state, and 

$12 million budget allocated annually for their inspection (NCDOT, 2012). In addition, 

the states are required to periodically inventory, inspect and rate all bridges on the public 

roads every two years. Thus the average annual inspection cost per bridge can be 

obtained by using the $12 million budget divide half of the NC bridge numbers, and it is 

about $1,887.98. 

• The Contractor Cost 

The average per bridge inspection budget can be separated into two parts: in-

house review and contracting cost. The in-house review process mainly deals with the 

bridge inspection planning and documentation, while the contracting is the actual part of 

bridge inspection. Since the cost analysis is focusing on the inspection action side, the 

ratio of in-house vs. contracting (α) is required to calculate the actual incurred inspection 

cost in the site. According to Connecticut DOT (Lockhart, 2010), the state spent $50 

million on bridge inspection contractors, and another 24 million on in-house reviews 
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from 2007 through early 2010. The in-house vs. contracting ratio is close to 0.5. 

Assuming North Carolina has the same distribution, the expense incurred on-site takes 

67% of the total bridge inspection budget, and that is $1,887.98*67% = $1,264.95. 

• Labor Cost for the Contractor 

 The $1,264.95 per bridge contractor cost consists of labor, material, management 

and contractor’s profit. From several contractors’ agreement for bridge inspection with 

New York DOT, they spend approximately 70% of their funds on the labor cost. 

Assuming North Carolina has the same distribution, the labor cost per bridge in 2012 is 

then $1,264.95*70% = $881.06. Furthermore, the bridge inspector is assumed to have a 

3% annual salary increase, which means the labor cost of bridge increases in the same 

rate. 

• The Fixed Inspection Cost  

 The fixed cost per bridge per inspection is the amount of money excluding the 

labor cost, which consists of in-house review cost, inspection material, contractor’s 

management cost and profit, and therefore it is $1,887.98 - $881.06 = $1,006.92. 

7.3 Cost Drivers for LiDAR Bridge Inspection 

• LiDAR Equipment Purchase 

A LiDAR scanner is required to implement the LiDAR technology into the DOT 

bridge inspection workflow. The current price of a qualified LiDAR scanner is 

approximately $60,000, and its expected life is five years, which indicates that it must be 

replaced with a new scanner every five years. It is assumed that purchasing one LiDAR 

would be adequate for the total number of bridges in Mecklenburg County. In that case, 
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the amount of investment to be made every five years per bridge is $60,000 ÷ 368 = 

$163.04. 

• LiDAR Inspection Labor Cost 

The cost savings from LiDAR inspection is based on its reduction of on-site 

inspection time compared to visual inspection. According to a study from center for 

automotive research of Michigan Tech (Hong et al., 2011), the DOT bridge inspection 

teams usually spend 4 to 6 hours for a single visual bridge inspection, which is expected 

to take about 30 minutes for preparation, one to five hours for inspection, and 30 minutes 

for data entry. Here is assumed that the average inspection time for visual bridge 

inspection is four hours. LiDAR bridge inspection will take 30 minutes for preparation, 

four different position scans (10 minutes each), off-site data analysis (25 minutes per 

scan), and automatic report generating (10 minutes), which brings it to a total of three 

hours for each bridge. Therefore, the reduced inspection time is 25%, and the labor cost 

for LiDAR inspection is $881.06 * 75% = $660.79. Again, it also assumed that the labor 

cost will increases 3% annually. 

• The Fixed Cost 

 The fixed cost is assumed to be same as in the visual inspection. 

• Software Maintenance 

The core of the LiDAR bridge inspection is the data processing software, which is 

estimated to be $60000 for the damage quantification and clearance algorithms 

development. The DOT spends approximately 21.7% of the total development cost for 

the maintenance and enhancement of the software in a ‘Somewhat more important’ level 

as indicated in Lientz’s (1978) study. This consequent maintenance cost is evenly divided 
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annually in the entire project term, the annual per bridge software maintenance cost is 

$60000*21.7% ÷ (368*50years) = $0.71. 

• Additional Training Cost 

In the Michigan Tech report, the author also pointed out that an equivalent of 10% 

labor cost were spent for inspector training and support purposes, and therefore, it is 

$881.06*10% = $88.11. This training cost is in the bridge inspector’s lenience and 

certification, and it is not included in the bridge inspection budget. The implementation 

of LiDAR inspection requires additional training for the bridge inspectors. In comparing 

with the ‘Safety Inspection of In-Service Bridges’ offered by the National Highway 

Institute (NHI, 2012), the extra training for LiDAR bridge inspection onsite operation and 

data processing is nearly half of the credit hours required by the visual inspection. This 

training cost is assumed to occur every five years, which is the same as the useful life of a 

LiDAR scanner. The amount of additional training per bridge is $88.11 * 50% = $44.05. 

7.4 Cost Calculation 

A comparison is made between implementing the LiDAR technology and keeping 

the current visual inspection, based on the cost drivers list above. To evaluate the 

feasibility of application, a cost comparison has been performed for a typical visual 

inspection of a bridge versus LiDAR implementation over the entire analysis period. The 

present value (PV) method has been used for this evaluation as follows: 

𝑃𝑉(𝑖,𝑁) = ∑ 𝐶𝑡
(1+𝑖)𝑡

𝑁
𝑡=1      (7-2) 

where N is the planning horizon (50 years), 𝐶𝑡 is the cost in year 𝑡, and 𝑖 is the annual 

discount rate (4%). The annual discount rate is assumed to be 4% since most of the NC 

DOT projects use this rate for financial analysis. Since budgets are determined annually, 
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the annual worth of both alternatives have also been computed to compare overall annual 

cost of each option. The annual worth (AW) of the project can be calculated using: 

𝐴𝑊 = 𝑃𝑉 � 𝑖(1+𝑖)
𝑁

(1+𝑖)𝑁−1
�      (7-3) 

where 𝑁 is the planning horizon (50 years), 𝑖 is the discount rate (4%). 

Appendix B includes a detailed explanation of the  annual cash flows of each alternative. 

Excel has been used for the computations. The table below shows the results of the 

comparative cost analysis 

Table 7.1 Cost analysis for visual and LiDAR inspection in 50 years 

Inspection Item 
50 year-total cost 
per bridge in  
Mecklenburg 

50 year-total cost for the 
entire number of bridges 
in Mecklenburg 

Visual 𝑃𝑉𝑣𝑖𝑠𝑢𝑎𝑙 $55,386.77 $10,191,165.04 
𝐴𝑊𝑣𝑖𝑠𝑢𝑎𝑙 $2,578.27 $474,400.78 

LiDAR 𝑃𝑉𝐿𝑖𝐷𝐴𝑅 $47,962.31 $8,825,064.86 
𝐴𝑊𝐿𝑖𝐷𝐴𝑅 $2,232.66 $410,808.54 

 

7.5 Conclusion 

This study includes a simple cost comparison of visual inspection and LiDAR 

inspection on the lifetime of a typical bridge. The result show that LiDAR 

implementation is expected to cost lower than visual inspection as LiDAR could save the 

county 𝑃𝑉𝑣𝑖𝑠𝑢𝑎𝑙 − 𝑃𝑉𝐿𝑖𝐷𝐴𝑅 = $7,424.41 per bridge over 50 years or 𝐴𝑊𝑣𝑖𝑠𝑢𝑎𝑙 − 𝐴𝑊𝐿𝑖𝐷𝐴𝑅 =

$345.61 per bridge annually. And, over the planning horizon, LiDAR could save the 

county 𝑃𝑉𝑣𝑖𝑠𝑢𝑎𝑙 − 𝑃𝑉𝐿𝑖𝐷𝐴𝑅 = $1,366,091  over 50 years for 368 bridges, or 𝐴𝑊𝑣𝑖𝑠𝑢𝑎𝑙 −

𝐴𝑊𝐿𝑖𝐷𝐴𝑅 = $63,592 annually for 368 bridges. 

More detailed financial analysis could include the quantification of benefits and a 

cost benefit analysis and payback period analysis of each option. 

 



CHAPTER 8: CONCLUSIONS 
 
 

Terrestrial LIDAR is proposed for bridge inspection in this dissertation. The 

previous inspection algorithms developed by Liu (2010) is based solely on the spatial 

information from the point cloud data. As a continuation of the previous study, project 

initiated in 2007, the objective of this research is to enhance the performance from 

previous development by investigating ways to improve LiDAR damage detection. 

The study conducted in this dissertation further verified the potential of applying 

LiDAR data in bridge damage inspection, and suggested several ways to improve the 

methodology: 

 (1) Revise the previous damage quantification algorithm using Delaunay 

Triangulation to link the scattered laser scan points in 3D space. The experiment and case 

study to quantify damages in real bridge both indicated improvement to the change 

evaluation results.  

(2) The new approach to identify damages on curved surfaces where previous 

algorithm is incapable for has been developed using the reflectivity attribute of the laser 

scan data. Three features from the laser scan data are used to determine whether the 

studied area is actually defective. 

(3) The developed inspection method has been used in new applications that 

should consider in bridge inspection: The bridge deck joint movement study indicated 

that LiDAR technology is able to determine bridge widths and can be used for temporal 
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study of deck joint movements. LiDAR ability to quantify slope erosion was 

demonstrated using laboratory rainfall method. 

 (4) The issues that affect inspection data quality in LiDAR bridge inspection are 

also studied. Data quality is so important because it made up the foundation for bridge 

maintenance planning. The error sources analysis from the survey technology to that in 

the inspection process is conducted to give out suggestions for maintaining a high quality 

inspection results. Detailed study on scanning angle has explicitly indicated the potential 

effects on quantifying area and volume of damage. 

(5) The comparative cost analysis is conduct as a support to the decision making 

for implementing LiDAR technology into the bridge inspection workflow. The initial 

investment of the technology development and validation is costly as most of the cases in 

developing new solutions to beat the bottleneck. Considering about the labor reduction 

and the improvement of data quality resulted from the LiDAR technology 

implementation, the cost savings can be achieved in near term. 



CHAPTER 9:  RECOMMENDATIONS FOR FUTURE STUDY 
 
 

The LiDAR bridge inspection technology discussed in this dissertation advanced 

previous efforts to quantify bridge surface damages with accurate and is able to detect the 

defective areas on curved surfaces. Several new studies can be performed benefit from 

the large number of bridge scans collected in this research. 

Of interest is when the laser scan returns insufficient scan points making current 

algorithms difficult to quantify damage. Appropriate interpolation algorithms could be 

helpful if the additional vectors are put into the scattered LiDAR scanning points and 

form continuous virtual surfaces for those objects.  

Pattern recognition can be integrated with the LiDAR bridge inspection to make 

bridge inspection more automatic and convenient. This is especially useful for 

differentiating damage types, and f the bridge components can be well recognized in the 

beginning of inspection, specific algorithms can be specified to conduct the inspection for 

different components. This will make the development of data processing software more 

focused, and can improve the inspection result at the same time. 
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APPENDIX A: LIDAR REFELCTIVITY DAMAGE DETECTION PROGRAM 
 
%% import data 
x = importdata('Point Cloud Data.txt'); 
y = [x(:,1)-min(x(:,1))+1,x(:,2)-
min(x(:,2))+1,x(:,3:end)]; 
R = mean(y(:,6))*ones(max(x(:,1))-
min(x(:,1))+1,max(x(:,2))-min(x(:,2))+1); 
sizer = size(R); 
 
for ii = 1:sizer(1) 
index = find(y(:,1) == ii); 
R(ii,y(index,2)) = y(index,6); 
end 
figure; 
imagesc(R);colormap(gray); 
 
%% Collect the curvature, i.e., the third feature 
cmean 
% clear all; 
% close all; 
% clc; 
 
% import data 
% x = importdata(Point Cloud Data.txt'); 
y = [x(:,1)-min(x(:,1))+1,x(:,2)-
min(x(:,2))+1,x(:,3:end)]; 
datax = mean(y(:,3))*ones(max(x(:,1))-
min(x(:,1))+1,max(x(:,2))-min(x(:,2))+1); 
datay = mean(y(:,4))*ones(max(x(:,1))-
min(x(:,1))+1,max(x(:,2))-min(x(:,2))+1); 
dataz = mean(y(:,5))*ones(max(x(:,1))-
min(x(:,1))+1,max(x(:,2))-min(x(:,2))+1); 
sizedatam = size(datax); 
 for ii = 1:sizedatam(1) 
index = find(y(:,1) == ii); 
data(ii,y(index,2)) = y(index,6); 
datax(ii,y(index,2)) = y(index,3); 
datay(ii,y(index,2)) = y(index,4); 
dataz(ii,y(index,2)) = y(index,5); 
 end 
 figure; 
 imagesc(data);colormap(gray); 
 
 %% devide matrix 
resolx = 128; resoly = 128; 
nrow = floor(sizedatam(1)/resolx); ncol = 
floor(sizedatam(2)/resoly); 
c = 1; 
for ir = 1:nrow 
 for ic = 1:ncol 
     subr{c} = data(((ir-
1)*resolx+1):ir*resolx,((ic-
1)*resoly+1):ic*resoly); 

     subrx{c} = datax(((ir-
1)*resolx+1):ir*resolx,((ic-
1)*resoly+1):ic*resoly); 
     subry{c} = datay(((ir-
1)*resolx+1):ir*resolx,((ic-
1)*resoly+1):ic*resoly); 
     subrz{c} = dataz(((ir-
1)*resolx+1):ir*resolx,((ic-
1)*resoly+1):ic*resoly); 
     c = c+1; 
 end 
end 
figure; 
c = c-1; 
for i1 = 1:c 
 subplot(5,14,i1) 
 imagesc(subr{i1});colormap(gray); 
 axis off; 
end 
 
for isubm = 1:70 
 Rx = subrx{isubm}; Ry = 
subry{isubm}; Rz = subrz{isubm}; 
s = size(Rx); 
D1 = sqrt((Rx(2:end-1,2:end-1)-Rx(1:end-
2,2:end-1)).^2 + (Ry(2:end-1,2:end-1)-Ry(1:end-
2,2:end-1)).^2+ (Rz(2:end-1,2:end-1)-Rz(1:end-
2,2:end-1)).^2); 
D2 = sqrt((Rx(2:end-1,2:end-1)-Rx(2:end-
1,3:end)).^2 + (Ry(2:end-1,2:end-1)-Ry(2:end-
1,3:end)).^2 + (Rz(2:end-1,2:end-1)-Rz(2:end-
1,3:end)).^2); 
D3 = sqrt((Rx(2:end-1,2:end-1)-Rx(3:end,2:end-
1)).^2 + (Ry(2:end-1,2:end-1)-Ry(3:end,2:end-
1)).^2 + (Rz(2:end-1,2:end-1)-Rz(3:end,2:end-
1)).^2); 
D4 = sqrt((Rx(2:end-1,2:end-1)-Rx(2:end-
1,1:end-2)).^2 + (Ry(2:end-1,2:end-1)-Ry(2:end-
1,1:end-2)).^2 + (Rz(2:end-1,2:end-1)-Rz(2:end-
1,1:end-2)).^2); 
 
D5 = sqrt((Rx(2:end-1,2:end-1)-Rx(1:end-
2,3:end)).^2 + (Ry(2:end-1,2:end-1)-Ry(1:end-
2,3:end)).^2 + (Rz(2:end-1,2:end-1)-Rz(1:end-
2,3:end)).^2); 
D6 = sqrt((Rx(2:end-1,2:end-1)-
Rx(3:end,3:end)).^2 + (Ry(2:end-1,2:end-1)-
Ry(3:end,3:end)).^2 + (Rz(2:end-1,2:end-1)-
Rz(3:end,3:end)).^2); 
D7 = sqrt((Rx(2:end-1,2:end-1)-Rx(3:end,1:end-
2)).^2 + (Ry(2:end-1,2:end-1)-Ry(3:end,1:end-
2)).^2 + (Rz(2:end-1,2:end-1)-Rz(3:end,1:end-
2)).^2); 



95 
  

D8 = sqrt((Rx(2:end-1,2:end-1)-Rx(1:end-
2,1:end-2)).^2 + (Ry(2:end-1,2:end-1)-Ry(1:end-
2,1:end-2)).^2 + (Rz(2:end-1,2:end-1)-Rz(1:end-
2,1:end-2)).^2); 
 
C1 = zeros(4,s(1)-2,s(2)-2); 
C1(1,:,:)  = D1; 
C1(2,:,:) = D2; 
C1(3,:,:)  = D3; 
C1(4,:,:) = D4; 
 
C2 = zeros(4,s(1)-2,s(2)-2); 
C2(1,:,:)  = D5;C2(2,:,:) = D6; C2(3,:,:)  = D7; 
C2(4,:,:) = D8; 
C = std(C1)+std(C2)./sqrt(2); 
cmean(isubm) = mean(mean(C)); 
end 
save cmean cmean; 
figure; plot(cmean,'o'); 
line([1,70],[mean(cmean),mean(cmean)]); 
 
% clear all; 
% close all; 
% clc; 
% 
%% import data 
x = importdata(Point Cloud Data.txt'); 
y = [x(:,1)-min(x(:,1))+1,x(:,2)-
min(x(:,2))+1,x(:,3:end)]; 
R = mean(y(:,6))*ones(max(x(:,1))-
min(x(:,1))+1,max(x(:,2))-min(x(:,2))+1); 
sizer = size(R); 
 
 for ii = 1:sizer(1) 
index = find(y(:,1) == ii); 
R(ii,y(index,2)) = y(index,6); 
 end 
 figure; 
 imagesc(R);colormap(gray); 
 
 %% devide matrix 
subr={}; 
nrow = 128; ncol = 128; 
resoly = 5; resolx = 14; 
c = 1; 
for ir = 1:floor(sizer(1)/nrow) 
 for ic = 1:floor(sizer(2)/ncol) 
     subr{c} = R(((ir-
1)*nrow+1):ir*nrow,((ic-1)*ncol+1):ic*ncol); 
     c = c+1; 
 end 
end 

%% image of submatrix 
c = c-1; 
figure; 
for i1 = 1:c 
 subplot(5,14,i1) 
 imagesc(subr{i1});colormap(gray); 
 axis off; 
end 
%% calculate std of submatrices, plot the results 
for i2 = 1:c 
   submatrixstd(i2,1) = std2(subr{i2}); 
end 
plot(submatrixstd,'o'); 
line([1,70],[mean(submatrixstd),mean(submatrix
std)]); 
%% histogram 
for i3 = 1:c 
subI{i3} = mat2gray(subr{i3},[0,2047]); 
end 
close all;figure('name','hist'); 
for i4 = 1:c 
 subplot(5,14,i4); 
 imhist(subI{i4}) ; 
end 
%% FFT 
for i5 = 1:c 
 fftImage = fftshift(fft2(subI{i5})); 
 ampImage{i5} = abs(fftImage); 
%  imshow(ampImage{i5}); 
end 
%% get rid of a circle region in the middle 
submatrix 
for i6 = 1:c 
 indrow = repmat([1:128]',1,128); 
 indcol = repmat([1:128],128,1); 
 dis = (indrow-64).^2 + (indcol - 64).^2; 
 ampImage{i6}(find(dis<32^2)) = 0; 
 cfftsum(i6,1) = 
sum(sum(ampImage{i6})); 
 cfftmean(i6,1) = 
mean(mean(ampImage{i6})); 
end 
figure;plot(cfftsum,'o'); 
line([0,70],[mean(cfftsum),mean(cfftsum)]); 
figure;plot(cfftmean,'o');line([0,70],[mean(cfftme
an),mean(cfftmean)]); 
%% classification 
load('cmean.mat'); 
X = [submatrixstd,cfftmean,cmean']; 
opts = statset('Display','final'); 
Y = kmeans(X,2,'Distance','sqEuclidean'); 
[idx,ctrs] = kmeans(X,2,'Distance','sqEuclidean'); 
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APPENDIX B: COMPARATIVE COST ANALYSIS 
 
 

Cost Analysis Parameters 
Factual  
Item Amount 
NC Annual Inspection $ 12,000,000.00 
Number of NC Bridges 12712 
Required Inspection Interval 2 Years 
The Contractor Cost in Budget 66.67% 
Labor Cost for the Contractor 70.00% 
Annual Labor Increase 3.00% 
Mecklenburg County Bridges 368 
Annual Discount Rate 4.00% 
Visual Inspection  
Item Amount 
Visual Inspection Per Bridge in 2012 $         1,887.98 
Labor Cost per Bridge in 2012 $           881.06 
Fixed Cost $         1,006.92 
Training Cost Per Bridge $             88.11 
LiDAR Inspection  
Item Amount 
Purchase for LiDAR $       60,000.00 
Initial Software Development $       60,000.00 
LiDAR Labor Cost in 2012 $           660.79 
Annual Software Update $               0.71 
Fixed Cost $         1,006.92 
Reduced Labor 25.00% 
Additional Training  (5 Years) $             44.05 
LiDAR Purchase $       60,000.00 
LiDAR Life Cycle 5 Years 
LiDAR Purchase Shared by All bridges $           163.04 
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Mecklenburg County Bridge Inspection Cost (Per Bridge Per Year) 
Visual Inspection 

Year Term Labor The Fixed Cost Sub Total 

 0 0 0 0 
2012 1 $   881.06 $ 1,006.92 $  1,887.98 
2013 2 $   907.49 $ 1,006.92 $  1,914.41 
2014 3 $   934.71 $ 1,006.92 $  1,941.64 
2015 4 $   962.76 $ 1,006.92 $  1,969.68 
2016 5 $   991.64 $ 1,006.92 $  1,998.56 
2017 6 $ 1,021.39 $ 1,006.92 $  2,028.31 
2018 7 $ 1,052.03 $ 1,006.92 $  2,058.95 
2019 8 $ 1,083.59 $ 1,006.92 $  2,090.51 
2020 9 $ 1,116.10 $ 1,006.92 $  2,123.02 
2021 10 $ 1,149.58 $ 1,006.92 $  2,156.50 
2022 11 $ 1,184.07 $ 1,006.92 $  2,190.99 
2023 12 $ 1,219.59 $ 1,006.92 $  2,226.51 
2024 13 $ 1,256.18 $ 1,006.92 $  2,263.10 
2025 14 $ 1,293.86 $ 1,006.92 $  2,300.78 
2026 15 $ 1,332.68 $ 1,006.92 $  2,339.60 
2027 16 $ 1,372.66 $ 1,006.92 $  2,379.58 
2028 17 $ 1,413.84 $ 1,006.92 $  2,420.76 
2029 18 $ 1,456.25 $ 1,006.92 $  2,463.18 
2030 19 $ 1,499.94 $ 1,006.92 $  2,506.86 
2031 20 $ 1,544.94 $ 1,006.92 $  2,551.86 
2032 21 $ 1,591.29 $ 1,006.92 $  2,598.21 
2033 22 $ 1,639.03 $ 1,006.92 $  2,645.95 
2034 23 $ 1,688.20 $ 1,006.92 $  2,695.12 
2035 24 $ 1,738.84 $ 1,006.92 $  2,745.77 
2036 25 $ 1,791.01 $ 1,006.92 $  2,797.93 
2037 26 $ 1,844.74 $ 1,006.92 $  2,851.66 
2038 27 $ 1,900.08 $ 1,006.92 $  2,907.00 
2039 28 $ 1,957.08 $ 1,006.92 $  2,964.01 
2040 29 $ 2,015.80 $ 1,006.92 $  3,022.72 
2041 30 $ 2,076.27 $ 1,006.92 $  3,083.19 
2042 31 $ 2,138.56 $ 1,006.92 $  3,145.48 
2043 32 $ 2,202.71 $ 1,006.92 $  3,209.64 
2044 33 $ 2,268.80 $ 1,006.92 $  3,275.72 
2045 34 $ 2,336.86 $ 1,006.92 $  3,343.78 
2046 35 $ 2,406.97 $ 1,006.92 $  3,413.89 
2047 36 $ 2,479.17 $ 1,006.92 $  3,486.10 
2048 37 $ 2,553.55 $ 1,006.92 $  3,560.47 
2049 38 $ 2,630.16 $ 1,006.92 $  3,637.08 
2050 39 $ 2,709.06 $ 1,006.92 $  3,715.98 
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2051 40 $ 2,790.33 $ 1,006.92 $  3,797.25 
2052 41 $ 2,874.04 $ 1,006.92 $  3,880.96 
2053 42 $ 2,960.26 $ 1,006.92 $  3,967.19 
2054 43 $ 3,049.07 $ 1,006.92 $  4,055.99 
2055 44 $ 3,140.54 $ 1,006.92 $  4,147.47 
2056 45 $ 3,234.76 $ 1,006.92 $  4,241.68 
2057 46 $ 3,331.80 $ 1,006.92 $  4,338.73 
2058 47 $ 3,431.76 $ 1,006.92 $  4,438.68 
2059 48 $ 3,534.71 $ 1,006.92 $  4,541.63 
2060 49 $ 3,640.75 $ 1,006.92 $  4,647.67 
2061 50 $ 3,749.97 $ 1,006.92 $  4,756.90 
PV $55,386.77 (S) $10,191,165.04 (T) 
AW $2,578.27 (S) $474,400.78 (T) 
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Mecklenburg County Bridge Inspection Cost (Per Bridge Per Year) 
LiDAR Inspection 

Year Term Purchase & Training Labor The Fixed Cost Software Update Sub Total 

 0 207.09 0 0 0 207.09 
2012 1  $   660.79 $ 1,006.92 $    0.71 $  1,668.42 
2013 2  $   680.62 $ 1,006.92 $    0.71 $  1,688.25 
2014 3  $   701.04 $ 1,006.92 $    0.71 $  1,708.67 
2015 4  $   722.07 $ 1,006.92 $    0.71 $  1,729.70 
2016 5 $ 207.09 $   743.73 $ 1,006.92 $    0.71 $  1,958.45 
2017 6  $   766.04 $ 1,006.92 $    0.71 $  1,773.67 
2018 7  $   789.02 $ 1,006.92 $    0.71 $  1,796.65 
2019 8  $   812.69 $ 1,006.92 $    0.71 $  1,820.32 
2020 9  $   837.07 $ 1,006.92 $    0.71 $  1,844.70 
2021 10 $ 207.09 $   862.18 $ 1,006.92 $    0.71 $  2,076.91 
2022 11  $   888.05 $ 1,006.92 $    0.71 $  1,895.68 
2023 12  $   914.69 $ 1,006.92 $    0.71 $  1,922.32 
2024 13  $   942.13 $ 1,006.92 $    0.71 $  1,949.76 
2025 14  $   970.40 $ 1,006.92 $    0.71 $  1,978.03 
2026 15 $ 207.09 $   999.51 $ 1,006.92 $    0.71 $  2,214.23 
2027 16  $ 1,029.49 $ 1,006.92 $    0.71 $  2,037.12 
2028 17  $ 1,060.38 $ 1,006.92 $    0.71 $  2,068.01 
2029 18  $ 1,092.19 $ 1,006.92 $    0.71 $  2,099.82 
2030 19  $ 1,124.96 $ 1,006.92 $    0.71 $  2,132.59 
2031 20 $ 207.09 $ 1,158.70 $ 1,006.92 $    0.71 $  2,373.42 
2032 21  $ 1,193.47 $ 1,006.92 $    0.71 $  2,201.10 
2033 22  $ 1,229.27 $ 1,006.92 $    0.71 $  2,236.90 
2034 23  $ 1,266.15 $ 1,006.92 $    0.71 $  2,273.78 
2035 24  $ 1,304.13 $ 1,006.92 $    0.71 $  2,311.76 
2036 25 $ 207.09 $ 1,343.26 $ 1,006.92 $    0.71 $  2,557.98 
2037 26  $ 1,383.55 $ 1,006.92 $    0.71 $  2,391.18 
2038 27  $ 1,425.06 $ 1,006.92 $    0.71 $  2,432.69 
2039 28  $ 1,467.81 $ 1,006.92 $    0.71 $  2,475.44 
2040 29  $ 1,511.85 $ 1,006.92 $    0.71 $  2,519.48 
2041 30 $ 207.09 $ 1,557.20 $ 1,006.92 $    0.71 $  2,771.92 
2042 31  $ 1,603.92 $ 1,006.92 $    0.71 $  2,611.55 
2043 32  $ 1,652.04 $ 1,006.92 $    0.71 $  2,659.67 
2044 33  $ 1,701.60 $ 1,006.92 $    0.71 $  2,709.23 
2045 34  $ 1,752.64 $ 1,006.92 $    0.71 $  2,760.27 
2046 35 $ 207.09 $ 1,805.22 $ 1,006.92 $    0.71 $  3,019.94 
2047 36  $ 1,859.38 $ 1,006.92 $    0.71 $  2,867.01 
2048 37  $ 1,915.16 $ 1,006.92 $    0.71 $  2,922.79 
2049 38  $ 1,972.62 $ 1,006.92 $    0.71 $  2,980.25 
2050 39  $ 2,031.80 $ 1,006.92 $    0.71 $  3,039.43 
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2051 40 $ 207.09 $ 2,092.75 $ 1,006.92 $    0.71 $  3,307.47 
2052 41  $ 2,155.53 $ 1,006.92 $    0.71 $  3,163.16 
2053 42  $ 2,220.20 $ 1,006.92 $    0.71 $  3,227.83 
2054 43  $ 2,286.80 $ 1,006.92 $    0.71 $  3,294.43 
2055 44  $ 2,355.41 $ 1,006.92 $    0.71 $  3,363.04 
2056 45 $ 207.09 $ 2,426.07 $ 1,006.92 $    0.71 $  3,640.79 
2057 46  $ 2,498.85 $ 1,006.92 $    0.71 $  3,506.48 
2058 47  $ 2,573.82 $ 1,006.92 $    0.71 $  3,581.45 
2059 48  $ 2,651.03 $ 1,006.92 $    0.71 $  3,658.66 
2060 49  $ 2,730.56 $ 1,006.92 $    0.71 $  3,738.19 
2061 50  $ 2,812.48 $ 1,006.92 $    0.71 $  3,820.11 
PV $47,962.31 (S) $8,825,064.86 (T) 
AW $2,232.66 (S) $410,808.54 (T) 
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