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ABSTRACT

MAYURI DESHPANDE. Object Tracking using Convolutional and Recurrent
Neural Network. (Under the direction of DR. HAMED TABKHI)

In this master thesis, recurrent neural network based method for visual track-

ing in videos is introduced that learns to predict the bounding box locations of a

target object at every frame. Region information and distinctive visual features

are obtained from applying Convolutional Neural Network on each of the frames

in the video. Our Recurrent Neural Network (LSTM) exploits these history of lo-

cations along with the high level visual features learned by the deep neural net-

works. In order to increase the tracking accuracy and reduce the computation cost, a

novel approach is proposed to construct a larger LSTM Network which we call it as

Sparsely stacked LSTM (S2LSTM).The promise of S2LSTM is to o�er a systematic

solution to scale LSTM networks capture longer and more complex sequences, com-

pared to mainstream LSTM design. S2LSTM is scalable and contains discrete non-

overlapping training stacks, o�ering a modular design for building complex LSTM net-

works.S2LSTM o�ers a discrete training mechanism which signi�cantly helps to grow

the complexity without retaining the next network.The key signi�cance of S2LSTM

is adding a time pooling module across stacked LSTM layers.It reduces the number

of time steps propagating from �rst LSTM to the second LSTM by �ltering out the

"Intermediate Outputs" across the stacked layers. In S2LSTM, the output of each

stack LSTM is compared with respective ground truth and are trained as separate

paradigms. At the same time, it is less computationally Intensive compared to regular

stacked LSTM. Our experiment on video data demonstrates that S2LSTM increases

the tracking overlap accuracy by 15% compared to baseline ROLO implementation.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Object tracking is an important task within the �eld of computer vision. With the

emergence of GPUs with tremendous computing, the availability of high quality and

inexpensive video cameras, and the increasing need for automated video analysis has

generated an enormous interest in object tracking algorithms. Hence, It has become

an essential component in modern applications such as robotics, video surveillance,

self driving cars, human-computer interaction, etc. There are three key steps in video

analysis: detection of moving objects, tracking of such objects from frame to frame,

and analysis of object tracks to recognize their behavior. There is a lot of research

going on in Object Detection and tracking problems with the help of computer vision

and machine learning approaches. The main challenge in Object detection occurs

due to variety of reasons such as target deformations, illumination variations, scale

changes, fast and abrupt motion, occlusions, motion blur and background clutters.

With booming deep learning, these challenges can be overcome. Convolutional Neural

Networks (CNNs)[1] have demonstrated near-human or beyond-human object detec-

tion/classi�cation accuracy. However they don't o�er a scalable solution for tracking

of objects over large videos. LSTM's have proven to be formidable for Object De-

tection problem[2] and many advancements[3] are being made to e�ectively utilize

LSTM con�gurations to increase tracking accuracy[4]. However a lot of questions like

"Do these state-of-the-art methods work well?","What is the performance of these

state-of-the-art methods","Is it computationally burdening","What is the best ap-

proach for tracking objects?", "Are Deep Learning algorithms the correct way to

approach this problem?", "What are the potential problems that are likely to arise?"
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which do not have a concrete answer yet. This thesis aims to �nd some answers

by exploring two speci�c Deep Learning approaches Convolutional Neural Networks

(CNNs or ConvNets) and Recurrent Neural Networks (RNNs), how they perform on

this particular task of object detection and tracking and what are the potential areas

of improvement.

1.2 Problem Statement

There has been a reasonable amount of research done in Object Tracking using

CNNs and RNNs[1, 2]. However there has not been much of research to increase the

performance of tracking while keeping the application computationally inexpensive.

In order to improve performance of LSTMs and in turn the tracker, number of hid-

den layers are increased or LSTM's are stacked. But stacking LSTM[5] in case of

Object Detection is computational and logically complex and is infeasible to both

train and inference. Another challenge faced while object tracking is the tracking

environment conditions such as illumination and scale variation, Occlusion, Deforma-

tion, motion blur, fast motion, In-plane rotation, out-of plane rotation, out-of view,

background clutters and low resolution. Designing a generic tracking algorithm for

above conditions has been a subject for research.

1.3 Contributions

1.3.1 Sparsely Stacked LSTM (S2LSTM)

One of the primary goals of the thesis is to present a computationally inexpensive

and High performance tracking algorithm where the LSTMs are sparsely stacked.

This con�guration is feasible to both train and inference compared to a fully stacked

LSTM[6] con�guration with an improved tracking performance and a reasonable com-

putation complexity. This approach is called as Sparsely Stacked LSTM (S2LSTM).

This con�guration is an extension of Stacked LSTM con�guration [7] which has a time

pooling concept. In this time pooling concept, the most signi�cant output predictions



3

from the �rst layer of LSTM is fed to the next layer of LSTM. Each of the LSTM

predictions are individually compared to the ground-truth and back-propogation for

error reduction is done.

1.3.2 Data Classi�cation based on Relative Motion between Camera and Object

This research is done on raw video frames from a standard dataset of Object Track-

ing Benchmark(OTB)[8] and VOT2017 [9] which is a very famous computer vision

challenge. The OTB benchmark contains 100 sequences with 11 attributes, which

represents the challenging aspects in visual tracking such as illumination and scale

variation, Occlusion, Deformation, motion blur, fast motion, In-plane rotation, out-

of plane rotation, out-of view, background clutters and low resolution. A systematic

analysis of each category of the video is carried out and a comparison study is pre-

sented based on how LSTM hyper-parameters like number of time step is related to

the object and camera motion and how it a�ects the performance of the tracker.



CHAPTER 2: RELATED WORK

As object tracking is excessively dependent on object motion as well as the camera

motion and in turn viewpoint change, pose and scale variations, motion blur and so

on, traditional tracking methods with �xed models of a target prior to the start of

tracking task normally fail because of the inevitable appearance changes.Therefore,

to handle these variations e�ectively, adaptive methods have been proposed to update

the representation of a target incrementally over time. That is to say, new models

are learned online. Most trackers can be divided into two sub-models. The state-

of-the-art single-target visual tracking methods with online updating schemes can

be classi�ed into generative and discriminative online learning methods. Traditional

generative online learning methods are adopted to track an object by searching for

regions most similar to the target model. The online learning strategy is embedded

in the tracking framework to update the appearance model of the target adaptively

in response to appearance variations.Discriminative online learning methods, treat

object tracking as a classi�cation problem and utilize information of the target and

background simultaneously. A binary classi�er is trained to distinguish the target

from the background and is updated online to handle appearance and environmental

changes[10]. The modern approach of deep learning for Object Tracking make use of

Convolutional Neural Network to classify and detect the location of the object frame

by frame, and Recurrent Neural Network to track and predict the object location

in future frame[11, 12, 13]. This problem to predict the location at next time step

which is dependent on the previous locations is a sequential problem and LSTMs have

proven to be suitable and e�ective since ROLO[12]. Still highest accuracy achieved

until now is XX and there is clearly room for improvement. Apart from LSTMs, in
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TUBE-CNN[14], CNN[1] is used for tracking by feeding continuous frames as a single

input. It feeds all the sequential frames object coordinates combined as a single input

to CNN model and predicts the coordinates. The papers which were read during

literature survey use deep learning approach and have been summarized below.

2.0.1 Spatially Supervised Recurrent Convolutional Neural Networks for Visual

Object Tracking

This method [12] ROLO(recurrent YOLO) uses YOLO[15] on the frames of videos

to collect rich and robust visual features as well as preliminary location inferences; and

Then LSTM network is used in the next stage as it is spatially deep and appropriate

for sequence processing. ROLO proposes to study the regression capability of a single

layered LSTM and concatenates the high level visual features which are in the form

of 4096 sized feature maps along with 4 location coordinates and 2 class probabilities

obtained from the convolutional layers and are fed to LSTM as input at each time

step and get the next time step prediction. There are three phases for the end-to-end

training of the ROLO model. The structure of the tracking procedures is illustrated

in Figure 1.1. The pre-training phase of convolutional layers for feature learning,

the traditional YOLO training phase for object proposal, and the LSTM training

phase for object tracking. In ROLO[12] LSTM network uses raw video frames from

a standard dataset such as Object Tracking Benchmark(OTB)[8] which is a very

famous computer vision challenge. This challenge conveniently provide researchers

with valuable datasets as well as annotated ground truth, and detailed evaluation

methods, which makes the methods comparable with each other.

2.0.2 Re3: Real-Time Recurrent Regression Networks for Visual Tracking of

Generic Objects

In this method,[4] Image crop pairs are fed in at each timestep. Both crops are

centered around the object's location in the previous frame, and padded to two times
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Figure 2.1: Structure of ROLO. (From Guanghan Ning, Zhi Zhang, Chen Huang,
Zhihai He, 2016)

the width and height of the object. Before every pooling stage, a skip layer is added

to preserve high-resolution spatial information. The weights from the two image

streams are shared. The output from the convolutional layers feeds into a single

fully connected layer and the LSTM network. The network predicts the top left and

bottom right corners of the new bounding box. Ca�eNet convolutional pipeline is used

to initialize with the Ca�eNet pretrained weights for the convolutional layers. The

embedding fully-connected layer has 2048 units, and the LSTM network is a 2 stacked

LSTM network which has 1024 units each. The structure of the model is illustrated

in �g. 1.2. The training begins with few unrolls of time, and slowly increases the time

horizon that the network sees to teach it longer-term relationships. All new layers

are initialized with the MSRA initialization method. ADAM gradient optimizer is

used with the default momentum and weight decay and an initial learning rate of

10−5, which is decrease to 10−6 after 10,000 iterations and continue for approximately

200,000 iterations. The tracker model is trained on on two large object tracking

datasets: the training set from the ILSVRC 2016 Object Detection from Video dataset

(Imagenet Video) which has 3862 training videos with 1,122,397 images, 1,731,913
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object bounding boxes, and 7911 unique object tracks and the Amsterdam Library

of Ordinary Videos 300++ (ALOV) which consists of 314 videos. The testing of the

videos is done on 7 videos that also occur in VOT 2014. The training time for this

model is approximately a week.

Figure 2.2: Structure of Re3 Networks. (From Daniel Gordon, Ali Farhadi, and Dieter
Fox,2017)



CHAPTER 3: BACKGROUND

3.1 Convolutional Neural Network

Convolutional Neural Networks (ConvNets or CNNs) are a category of Neural Net-

works that have proven very e�ective in areas such as image recognition and classi�-

cation. ConvNets have been successful in identifying faces, objects and tra�c signs

apart from powering vision in robots and self driving cars.

3.1.1 The LeNet Architecture (1990s)

LeNet was one of the very �rst convolutional neural networks which helped propel

the �eld of Deep Learning. This pioneering work by Yann LeCun was named LeNet5

after many previous successful iterations since the year 1988(Ref).At that time the

LeNet architecture was used mainly for character recognition tasks such as reading

zip codes, digits, etc.

Figure 3.1: LeNet neural network structure. (From LeCun, Yann and Bottou 1998)

CNN has four main steps: convolution, subsampling, activation and fully connect-

edness. The most popular and �rst implementation of the CNN is the LeNet, which

was introduced by Yann LeCun in 1998 [33]. Figure 2.1 illustrates the LeNet struc-

ture. First step in CNN is convolution. The main idea of using convolution in �rst

layers is extracting features from the input image. There are some �lters that act
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as feature detectors from the original input image. In other words, convolution is a

process where input signal is labeled by the network based on what it has learned in

the past. If the network decided that the input signal looks like previous cat images

that it has learned previously, the "cat" reference signal will be convolved with the

input signal. The resulting output signal is then passed on to the next layer. In

the second step, subsampling, for reducing the sensitivity of the �lters to noise and

variations, the inputs from the convolution layer are smoothed. Subsampling also

reduces the dimensionality of each feature map but save the most important infor-

mation. This smoothing process is named subsampling or downsampling or pooling.

Subsampling can be achieved by di�erent methods of max, average, sum etc. Third

step is activation. The activation layer controls how the signal �ows from one layer

to the next layer. In di�erent structures of CNNs, a wide variety of complex activa-

tion functions could be chosen to model signal propagation. One of the most famous

function is (ReLU), which is known for its faster training speed. The ReLu has the

mathematical form of:

f(x) = max(0, x) (3.1)

The forth step is fully connected. The last layers in the most Convolutional network

are fully connected. It means that neurons of previous layers are connected to every

neuron in next layers. The output from the convolutional and pooling layers contain

high-level features of the input image. Features of fully connected layers are used

by softmax layer and the input image is classi�ed into di�erent classes based on the

training data. Also fully-connected layers help to learn non-linear combinations of

mentioned features. Combinations of those features might be better for classi�cation

or other application of CNN.
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3.2 Recurrent Neural Network

Recurrent Neural Networks (RNNs) are popular models that have shown great

promise in many works which need the information of history such as language pro-

cessing or video processing. The main idea behind RNNs is to use sequential informa-

tion. In other neural networks, all inputs and outputs are independent of each other.

But for many tasks it does not work well. For example, If you want to predict the

next word in a sentence, it is better to know which words came before it. RNNs are

called recurrent because they perform the same task for every element of a sequence,

and the output depends on the previous computations. Also we can say that RNNs

have a "`memory"' which captures information about what has been calculated so

far. In theory RNNs can make use of information in arbitrarily long sequences, but

in practice they are limited to looking back only a few steps . Here is what a typical

RNN looks like: Figure 2.2 shows a RNN is unrolled or unfolded into a full network.

Figure 3.2: recurrent neural network and the unfolding in time of the computation
involved in its forward computation

With unrolling we simply mean that we write out the network for the full sequence.

For example, if we want to use 5 sequences of a video, the network would be unrolled

into a 5-layer neural network, one layer for each sequence. More details about the

parameters in �gure and the formulas of RNN are as follows: xt is the input at time

step t. For example, x1 could be a vector corresponding to the second sequence of a

video. st is the hidden state at time step t. It's the "`memory"' of the network. st is
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calculated based on the previous hidden state and the input at the current step:

st = f(Uxt +Wst−1) (3.2)

The function f usually is a nonlinearity such as tanh or ReLU. s−1, which is required

to calculate the �rst hidden state, is usually initialized to zero. ot is the output at

step t. For example, if we wanted to predict the the position of human in the next

time stamp in a video it would be a vector of probabilities.

ot = softmax(Vst) (3.3)

Training a RNN is similar to training other neural network. Backpropagation algo-

rithm is used here, but with a little change. As the parameters are shared by all

time steps in the network, the gradient at each output is calculated not only based

on the calculations of thecurrent time step, but also on the previous time steps. For

example, in order to calculate the gradient at t=6 we would need to backpropagate

5 steps and sum up the gradients. This method in named Backpropagation Through

Time (BPTT). RNNs have shown great success in many tasks. But the most com-

monly used type of RNNs are LSTMs, which are much better at capturing long-term

dependencies than vanilla RNNs are. LSTM network will be explained in the next

section.

3.2.1 Long Short Term Memory Units(LSTMs)

LSTM is a special kind of recurrent neural network which works for many tasks,

much better than the traditional version [34]. One of the appeals of RNNs is the idea

that they might be able to connect previous information to the present task, such as

using previous video frames might inform the understanding of the present frame or

predict future frame. But RNN does not have long memory for doing a perfect predic-
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tion. Sometimes, we only need to look at recent information to perform the present

task, but some times we need to have long term memory for our prediction. Long

Short Term Memory networks (LSTMs) are a special kind of RNN, capable of learn-

ing long term dependencies. They were introduced by Hochreiter and Schmidhuber

(1997) [35]. In a standard recurrent neural network, in the gradient back-propagation

phase, the gradient signal is multiplied by the weight matrix of recurrent hidden layer,

a large number of times (related to the number of timesteps). This is the reason of

importance of magnitude of weights in the transition matrix. If the weights in this

matrix are small (smaller than 1.0), it causes vanishing gradients because the gradi-

ents become so small and learning becomes very slow or stops working. So the task

of learning long-term dependencies in the data would be impossible. The vanishing

gradient problem is illustrated in Figure 2.3. On the other hand, if the weights in this

matrix are large (larger than 1.0), it could cause exploding gradients, it means that

the gradients become so large that it can cause learning to diverge. These problems of

Figure 3.3: The vanishing gradient problem for RNN. The shading of the nodes in
the unfolded network shows their sensitivity to the inputs at time one (the darker
the shade, the greater the sensitivity). The sensitivity decrease over time as new
inputs overwrite the activations of the hidden layer, and the network 'forgets' the
�rst inputs. (From Alex Graves, 2012)[36]

RNN are the main motivation for designing the LSTM model which have a memory

cell which is shown in Figure 2.4. A memory cell has four main elements: an input
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gate, a neuron with a self-recurrent connection (a connection to itself), a forget gate

and an output gate. The weight of the self-recurrent connection is 1.0 and ensures

that the state of a memory cell can remain without change in di�erent timestep. The

input gate can let incoming signal change the state of the memory cell or block it.

Also, the output gate can let the state of the memory cell change other neurons or

prevent it. The forget gate can let the cell to remember or forget its previous state,

as needed. In the following paragraphs, these elements will be discussed further.

Gradient information is preserved by LSTM. Figure 2.5 illustrates preservation of

Figure 3.4: LSTM memory cell, (From Kyunghyun Cho Pierre Luc Carrier, 2017)

gradient information by LSTM. As it was showed in Figure 2.3 the shading of the

nodes shows their sensitivity to the inputs at time one; in the LSTM, the black nodes

are maximally sensitive and the white nodes are completely insensitive. The input,

forget, and output gates are illustrated below, to the left and above the hidden layer

respectively. All gates are either entirely open ("`O"') or closed ("`-"'). The memory

cell "`remembers"' the �rst input until the forget gate is open and the input gate is

closed. The sensitivity of the output layer can be switched on and o� by the output

gate without a�ecting the cell [36]. All recurrent neural networks have the form of

a chain of repeating modules of neural network. In traditional RNNs, this repeating

module will have a very simple structure, such as a single tanh layer. LSTMs also

have similar chain structure, but the repeating module is a bit di�erent. Instead of
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Figure 3.5: Preservation of gradient information by LSTM.(From Alex Graves, 2012)

Figure 3.6: The repeating module in a standard RNN contains a single layer (From
Christopher Olah, 2015)

having a single neural network layer, there are four, interacting in a very special way.

In the Figure 2.7, each line includes an entire vector, from the output of one node to

the inputs of others. The pink circles represent operations, such as vector addition,

and the yellow boxes are learned neural network layers. Lines merging shows con-

catenation, and a line forking address its content being copied and the copies going

to di�erent locations. This information is showed in the following �gure. The one

important factor in LSTMs is the cell state, the horizontal line running through the

top of the diagram shows cell state. The cell state is similar to conveyor belt. It

connects the entire chain, with a linear interactions and information �ow along it

without change.

It is possible to add or remove information to the cell state by gates. Gates are



15

Figure 3.7: The repeating module in an LSTM contains four interacting layers (From
Christopher Olah, 2015)

Figure 3.8: : Information about di�erent parts of LSTM diagram (From Christopher
Olah, 2015)

combination of a sigmoid neural net layer and a multiplication operation.

An LSTM has three of these gates, to protect and control the cell state. As a

new input comes and input gate it is activated, new information will be accumulated

to the cell. Also, if the forget gate ft was on, the past cell status ct−1 could be

"`forgotten"'. The output gate ot controls whether the latest cell output ct propagated

to the �nal state ht or not. The LSTM architecture uses memory cells to store and

use information of the history, to discover long-range temporal relations. Nonlinear

sigmoid σ = (1+e−x)−1, outputs numbers between zero and one. Value of zero means

"`let nothing through,"' while a value of one means "`let everything through!"'[34].

The formula of input gate it, forget gate ft, output gate ot and �nal state ht is de�ne
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Figure 3.9: cell state in the LSTM,(From Christopher Olah, 2015)

Figure 3.10: Gate in the LSTM, (From Christopher Olah, 2015)

as following:

it = σ(Wxi
xt +Whi

ht−1 + bi) (3.4)

ft = σ(Wxf
xt +Whf

ht−1 + bf ) (3.5)

ot = σ(Wxoxt +Whoht−1 + bo) (3.6)

gt = σ(Wxcxt +Whcht−1 + bc) (3.7)

ht = ot ∗ tanh(ct) (3.8)

ct = ft ∗ ct−1 + it ∗ gt (3.9)

The main di�erence of LSTM with classical RNNs is the use of the these gating

functions it, ft, ot, which explained previously, and indicate the input, forget, and

output gate at time t respectively. Weight parameters Wxi
, Whi

, Whf
, Who ,Wxf

,

Whc , Wxo and Wxc , connect the di�erent inputs and gates with the memory cells and

outputs and biases bi, bf , bc and bo. The cell state ct is updated with a fraction of
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the previous cell state ct−1 that is controlled by ft[37].

3.2.2 Stacked LSTM

A su�ciently large single hidden layer Multilayer Perceptron can be used to ap-

proximate most functions. Increasing the depth of the network provides an alternate

solution that requires fewer neurons and trains faster. Ultimately, adding depth is

a type of representational optimization. Neural Networks[1] are known as function

approximation, They try correlate inputs with outputs through weighted sums and

activations.Hence Depth or complexity of Networks directly e�ect input, output cor-

relation. Network Complexity increases as input output relation needed to established

get complex[16]. Hence to increase accuracy or to make the network to approximate

the input and output relation with high accuracy, complexity is needed in the net-

work.In case of CNN's[16] number of layers are increased to increase accuracy, In case

of LSTM's[17] increase in number of hidden units make the network wider capturing

more feature maps, but doesn't increase complexity. Hence to increase depth and

increase complexity LSTM's are stacked[5]. As shown in �g 1.3, a stacked LSTM

architecture can be de�ned as LSTM model comprised of multiple LSTMs. First

LSTM provides a sequence of output rather than a single value output to second

LSTM. Speci�cally, one output per input time step, rather than one output time step

for all input time steps. The second LSTM produces a single output for the given

input time steps and error for backpropagation is computed on this prediction based

on ground truth. Stacking LSTM[3, 5] makes the inputs to be processed through

multiple gates of multiple LSTM's interacting and e�ecting cell state and memory

states of multiple LSTM's thus creating a complex network and providing high level

of abstraction aiming to improve the accuracy. But in case of large input sizes, with

more stacked layers the complexity over-complicate the network making the network

to converge very slow. Thus stacked LSTMs can su�er with the below problems.

First, deployment of a stacked LSTM model consumes substantial storage, memory
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bandwidth, and computational resources. Such demands may be too excessive for mo-

bile phones and embedded devices. Second, stacked LSTMs are prone to over�tting

but hard to regularize. Employing standard regularization methods that are used for

feed-forward neural networks (NNs), such as dropout, in an LSTM cell is challenging.

Third, the increasingly stringent run-time latency constraints in real-time applica-

tions make stacked LSTMs, which incur high latency, inapplicable in these scenarios.

All these problems pose a signi�cant design challenge in obtaining compact, fast, and

accurate LSTMs.
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Figure 3.11: LSTM Stacking



CHAPTER 4: PROPOSED APPROACH

4.1 Sparsely Stacked LSTMs

4.1.1 Baseline Implementation of ROLO(YOLO+LSTM)

Tracker Module: Compared to other region proposal classi�cation networks such

as fast RCNN [18] which perform detection on various region proposals and thus

end up performing prediction multiple times for various regions in an image, YOLO

architecture is more like FCNN (fully convolutional neural network) [19] It trains on

full images and directly optimizes detection performance. It divides the input image

into an S X S grid. If the center of an object falls into a grid cell, that grid cell is

responsible for detecting that object. Each grid cell predicts B bounding boxes and

con�dence scores for those boxes. These con�dence scores re�ect how con�dent the

model is that the box contains an object and also how accurate it thinks the box is

that it predicts. Formally con�dence is de�ned as Pr(Object) ∗ IOU . If no object

exists in that cell, the con�dence scores should be zero. Otherwise the con�dence

score is equal to the intersection over union (IOU) between the predicted box and the

ground truth. Each bounding box consists of 5 predictions: x, y, w, h, and con�dence.

The (x, y) coordinates represent the center of the box relative to the bounds of the

grid cell. The width and height are predicted relative to the whole image. Each

grid cell also predicts C conditional class probabilities, Pr(Classi |Object). These

probabilities are conditioned on the grid cell containing an object. Only one set of

class probabilities per grid cell is predicted, regardless of the number of boxes B.

At test time we multiply the conditional class probabilities and the individual box
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con�dence predictions,

Pr(Classi|Object) ∗ Pr(Object) ∗ IOU = Pr(Classi) ∗ IOU (4.1)

which gives class-speci�c con�dence scores for each box. These scores encode both

the probability of that class appearing in the box and how well the predicted box �ts

the object. Finally these predictions are encoded as an SXSX(BX5 + C) tensor.

Figure 4.1: YOLO Model

Network Architecture: YOLO has 24 convolutional layers followed by 2 fully con-

nected layers. Instead of the inception modules used by GoogLeNet, YOLO simply

uses 1 X 1 reduction layers followed by 3 X 3 convolutional layers.

Why did we choose YOLO:

1. YOLO is extremely fast. YOLO runs at 45 frames per second with no batch

processing on a Titan X GPU and a fast version runs at more than 150 fps.

This means YOLO can process streaming video in real-time with less than 25

milliseconds of latency.

2. YOLO reasons globally about the image when making predictions. Unlike slid-
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Figure 4.2: YOLO Architecture. (From Joseph Redmon, Santosh Divvala, Ross
Girshick, and Ali Farhad, 2015)

ing window and region proposal-based techniques, YOLO sees the entire image

during training and test time so it implicitly encodes contextual information

about classes as well as their appearance. Fast R-CNN, a top detection method,

mistakes background patches in an image for objects because it can't see the

larger context. YOLO makes less than half the number of background errors

compared to Fast R-CNN.

3. YOLO learns generalizable representations of objects. When trained on natural

images and tested on artwork, YOLO outperforms top detection methods like

DPM and R-CNN by a wide margin. Since YOLO is highly generalizable it is

less likely to break down when applied to new domains or unexpected inputs.

Tracker Module: We follow the ROLO approach for our baseline implementation[12].

We use the YOLO architecture and set S=7, B=2 and C=20. Thus at the output

layer of YOLO we get predictions in the form of 7 X 7 X 30 tensor. We extract the

feature vectors of size 4096 from the output of fully-connected layer and concatenate

them with the bounding box which consist of 5 predictions x, y, h, w , con�dence

and class probability. We usually take con�dence and class probability to be 0 while

feeding the entire vector of 4101 size into the LSTM Network. We design our tracker
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module using LSTM network. LSTMs are spatially deep as it is capable of interpret-

ing the visual features and detecting objects on its own, which are spatially supervised

by concatenating locations to the visual features. They are also temporally deep as

they explore the temporal features as well as their possible locations. We design our

LSTM network �rst using a single layer and then by stacking two LSTMs in order

to improve the performance. The complete model of Detector and Tracker module is

illustrated in the �gure 3.4.

We design our LSTM network containing a single layer of LSTM and hidden units to

network.png

Figure 4.3: Proposed Network

be equal to the input size i.e. 4101 so that the complexity of the model is maintained

in order to learn the input features by the model. Step size denotes the number of pre-

vious frames considered each time for a prediction by LSTM. ROLO [12] experimented

with the step size and varied it from 1 to 9 in order to understand how sequence step

of LSTM a�ects the overall performance and running time of the model. The results

are illustrated in �gure 3.5. As the step size of 6 for 1 layer LSTM was proved to be

optimum in terms of performance and running time, we ran our experiments keeping

step size number as 6. We evaluate the performance of the model using Mean square

error while training and Average IOU score while inference.
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(a) A sub�gure
(b) fps of tracking module over number of

steps

Figure 4.4: Average IOU scores and fps over various number of steps(From Guanghan
Ning, Zhi Zhang, Chen Huang, Zhihai He, 2016)

We performed 2 experiments with LSTM algorithm and studied its behavior on

our dataset. The experiment setup and experiments are explained below.

4.1.2 Stacked LSTM Implementation (YOLO+Stacked LSTM)

In our �rst experiment with the LSTM network we build a 2 layered stacked LSTM

network to improve the performance of the tracker. We implement a 2 layered stacked

LSTM with input number of hidden units in both the LSTMs, time step of size 6 and

learning rate of 0.0001. We use Adam Optimizer for back propogation in Tensor�ow.

However, in �rst 10 epochs of training, the backpropogation tensor goes up to size

of [8202, 32808] which forces even a server class GPU to go Out Of Memory while

allocating the resources in tensor�ow. Even when reducing the number of hidden

units in each layer, the complexity of the network eventually increases and causes the

GPU to go Out of Memory. We performed the training by using multiple multiple

server class GPU's, however, the network did not converge due to over complexity of

Network.



24

4.1.3 Sparsely Stacked LSTM Implementation (YOLO+S2LSTM)

As mentioned in Stacked LSTM section, traditional stacking causes over complex-

ity and creates a slow convergent network. One way to reduce the network complexity

is by reducing the number of units in LSTM layer which in turn reduces the feature

maps to train on and thus creates a converging network as done in [4], but due to

reducing the number of units, under-�tting of the training data may occur. Deploy-

ment of stacked LSTM model consumes substantial storage, memory bandwidth, and

computational resources. Stacked LSTM models become over complex with large

input data, resulting into slow convergence during training. Stacked LSTMs incur

high latency during inference, proving to be a limitation in real-time applications.

All these problems pose a signi�cant design challenge in obtaining compact, fast, and

accurate LSTMs.[20] To avoid this we came up with idea of sparse stacking of LSTM

i.e. to create a modular coarse tracking taking only �nal predictions of �rst LSTM

at continuous time frames and feed them to second LSTM as time steps to predict

future step.

Figure 4.5: Stacked LSTMs Vs. Sparse Stacked LSTMs
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In sparse stacking approach as shown in �g 3.4 below, rather than feeding all the

intermediate time step outputs of �rst LSTM only last N th time step output for

LSTM[12] is fed to next LSTM and in similar way continuous N inputs from �rst

LSTM are passed to the second LSTM as Nth time steps. Thus, second LSTM tracks

or produces prediction for 'N +1th' time step while �rst LSTM [21] predicts 'N +1th'

step for an Input of time steps from 'N − Nt' to 'N ' as input for system where as

'Nt' represents the number of time steps. By using this approach second LSTM is

fed with �nal predictions which are more important than warming up predictions of

intermediate time steps and increases the accuracy of tracking and also training of

LSTMs being completely independent as they have di�erent ground truth enabled

the approach to be modular.The Sparse Stacked LSTM is a separate LSTM running

on ROLO predicting 'N+1' frame based on predictions of ROLO. Thus, it uses the

information from 'N' previous frames at a single time step to track the object with

more accuracy.

In sparse stacked LSTM con�guration, each LSTM training can be done together in

parallel or sequentially one after other training. Each Network weights are optimized

based back propagation with their own ground truths. In stacked LSTM's[22] output

of all the steps of �rst LSTM are passed as input to next LSTM as inputs for each

input time step. In Sparse Stacked LSTMs only the signi�cant time step output of

�rst LSTM is fed to second LSTM reducing the data input by 'n' times for second

LSTM for each time step. In sparse stacked LSTM second LSTM predicts 'N + 2th'

time step while �rst LSTM predicts 'n+1' time prediction. Our Network is trained

on 30 videos from OBT[8]. This con�guration being modular, each LSTM can be

trained separately with respective ground truth and each LSTM is optimized to re-

spective training steps allowing the network to be trainable with less computational

complexity.
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Figure 4.6: Sparse Stacking of LSTM's

Considering the case where Nt = 3 which means number of time steps are '3'.

With input frames starting from 'n' below table 4.1 represents the outputs of First

LSTM and output of Sparse Stacked Second LSTM for 't+1' and 't+2' frame. As

each training is modular training the network is �exible and doesn't require multiple

server class GPU's as required in case of Stacked LSTM [3, 5] and also training

weight tensors are not combined as in case of traditional stacking of LSTM's easing

up the training process and modularity.Sparse Stacking also saves time as retraining

of trained module can be avoided incase of any development.

Fig.4.7 shows the complete structure of system from Image input Sparse Stacked

LSTM output including intermediate stages.

4.2 Data Classi�cation based on Complexity of Scenarios in Dataset

In the above two approaches, we observed that the overall accuracy of S2LSTM

is improved compared to 1 layered LSTM. However, the overlap accuracy varied for

di�erent videos. Videos having shaky camera motion, fast camera and object motion,
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Table 4.1: Input and Output Time steps for LSTM1 and Sparse Stacked LSTM
Prediction

Input First LSTM

Output

Second LSTM

Input

Sparse Stacked

LSTM

predicting t+1

n - - -

n to n+1 - - -

n to n+2 n+3 n+3 -

n+1 to n+3 n+4 n+3 to n+4 -

n+2 to n+4 n+5 n+3 to n+5 n+6

n+3 to n+5 n+6 n+4 to n+6 n+7

n+4 to n+6 n+7 n+5 to n+7 n+8

n+5 to n+7 n+8 n+6 to n+8 n+9

out of plane object rotation, low brightness and low resolution had low performance

compared to the rest of the videos.

4.2.1 Dataset

In recent years, Di�erent benchmark datasets have been developed for various vision

problems. Some standard datasets such as Object Tracking Benchmark (OTB)[8] and

VOT2017 [9] are very famous for Tracking task. These two challenges conveniently

provide researchers with valuable dataset as well as annotated ground truth. The

dataset contains di�erent challenging visual situations which are classi�ed into 11

attributes. These attributes are explained in table 4.2 We use 30 videos from OBT

Table 4.2: Challenging aspects of Object Tracking in dataset

Attribute Description
Illumination Variation the illumination in the target region is signi�cantly changed.

Scale Variation the ratio of the bounding boxes of the �rst frame and the current frame is out of the range ts, ts > 1 (ts=2).
Occlusion the target is partially or fully occluded.

Deformation non-rigid object deformation.
Motion Blur the target region is blurred due to the motion of target or camera.
Fast Motion the motion of the ground truth is larger than tm pixels (tm=20).

In-Plane Rotation the target rotates in the image plane.
Out-of-Plane Rotation the target rotates out of the image plane.

Out-of-View some portion of the target leaves the view.
Background Clutters the background near the target has the similar color or texture as the target.

Low Resolution the number of pixels inside the ground-truth bounding box is less than tr (tr =400)
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Figure 4.7: Sparse Stacked LSTM on ROLO

which includes all 11 attributes stated above for training and testing the model. We

Figure 4.8: First frame of the target object for sequences that used in this project

classify the videos into various categories: Shaky, High, Medium and Low Camera

Motion, High, Medium and Low Object Motion. Based on the relative object and

camera motion observation in all the vidoes, we further classify videos into High,

Medium and Low Relative motion. Then we classify the videos based on resolution,

brightness and Object deformation. Accurate object detection in case of resolution,

brightness and object deformation can be achieved using better detection algorithms

like [23]. In order to increase accuracy of videos with shaky camera motion, fast

camera and object motion, out of plane object rotation, we experiment with the
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number of steps of LSTM layers. Since videos with high speed need more number of

historical frames to predict the location coordinates in future frame, we set the time

step size of the dataset based on di�erent complexity of videos. For high relative

motion, we set the time step number as 8, for medium relative motion, we set time

step number as 7 and for low relative motion, we set the time step number as 6.



CHAPTER 5: EXPERIMENTAL RESULTS

5.1 Target Dataset

Object Tracking Benchmark (OBT) and Visual Object Tracking 2017(VOT2017)challenge

dataset is used to train and test the models. Preprocessing of the data was required

to get OTB and VOT2017 groundtruths in the same format. OTB dataset has the

groundtruth coordinates in x,y,width and height format where x and y denotes the

bottom left corner coordinates, where as VOT dataset has the groundtruths in the

format of x1,y1, x2,y2,x3,y3 and x4,y4 i.e. they denote coordinates of all the 4 corners

of the rectangle. Thus a python program was written to convert coordinates of VOT

dataset in the format of OBT dataset. We use 20 videos from OBT dataset to train

the models; and 10 videos from OBT and 5 videos from VOT for testing on it.

5.2 Experimental Setup

5.2.1 Software Setup

We use Tensor�ow 1.8.0 and Python2.7 to train and test our network. We used pre-

trained weights of the YOLO detection model extracted into python from Darknet

which were trained using Darknet framework. Libraries used are Numpy and OpenCV

3.6.

5.2.2 Hardware Setup

Experiments are conducted on NVIDIA Tesla P100 GPU with 12GB RAM and

NVIDIA Quadro with 8GB RAM.
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5.3 Tracking Performance Evaluation

Performance of the trackers could be evaluated by several evaluation criteria. One

widely used evaluation metric for object tracking is the average center location error,

which calculates the average Euclidean distance between the center locations of the

tracked targets and the labeled ground-truth positions of all the frames. When a

tracking algorithm loses track of a target object, the output location can be random,

and thus, the average error value does not measure the tracking performance cor-

rectly [24]. If the estimated locations are within a given threshold distance of the

ground-truth would be evaluated, it would be more accurate evaluation[24] The raw

videos obtained from OBT and VOT 2017 dataset are passed through the pre-trained

YOLO model and visual features from convolutional layers and location information

is obtained for each frame of the videos. We refer to the visual feature vector as Xt

and the location bounding box vector as Bt. This stream of data is passed into the

LSTM network during training. In addition to Xt and Bt there is another input to

the LSTM which is the output of hidden state from the previous time state ht−1. In

out objective module we use Mean Squared Error(MSE) for training:

LMSE = 1/n
n∑

i=1

||Btarget −Bpred||2 = 1 (5.1)

Another commonly used evaluation metric is the overlap score[25]. The average over-

lap score (AOS) can be calculated using Intersection Over Union method which is

simply a ratio where numerator computes the area of overlap between the predicted

bounding box and the ground-truth bounding box and denominator is the area of

union, or more simply, the area encompassed by both the predicted bounding box

and the ground-truth bounding box. The method can be clearly explained in �g 5.1.

In addition, the overlap scores can be used for determining whether an algorithm
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successfully tracks a target object in one frame, by testing whether S is larger than

a certain threshold t0(for example, 0.5). Thus the predicted location coordinates

obtained at time step t from tracker module are compared with the ground-truth

coordinates of next time-step i.e. t+1 and Intersection Over Union is calculated for

each frame. Average IOU is the average of IOU for all the frames in each video.

Figure 5.1: Intersection over Union Equation

5.4 Experimental Result Analysis

It is di�cult to say that which of the qualitative or quantitative evaluation is

better for tracking problem. Also it is challenging task to measure the accuracy

of a tracking method with quantitative metrics. Many factors such as ground-truth

position accuracy, robustness, tracking speed, memory requirement can be considered.

Even in one frame with the tracking output and ground-truth object state, there can

be several metrics to measure accuracy. Some times tracking results show that tracker

does not loose the object but the size of the bounding box is smaller than ground
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truth. The tracker performance depends a lot on the detector performance. When

in a given frame if the object is partially occluded, the detector output in real time

is zero which is fed to the tracker. Even if the prediction for that frame is accurate,

the performance of the tracker in future frames is a�ected. In some cases, even if

the tracker loses the object in one frame and then tracks it successfully in the next

frames, the overall performance evaluated over all frames in sequence is a�ected.

5.4.1 Quantitative Results

Table 5.1: Summary of Average Overlap Scores (AOS) results for all 15 test videos

Relative Motion Sequence YOLO +

LSTM with

varied steps#

YOLO +

S2LSTM with

varied steps

YOLO +

LSTM with

�xed time step

= 6

YOLO +

S2LSTM with

�xed time step

= 6

Low
Human6 0.361 0.382 0.12 0.155

Car4 0.344 0.380 0.303 0.383

Skater2 0.521 0.588 0.318 0.371

Dancer2 0.553 0.558 0.417 0.434

Medium

Human2 0.279 0.321 0.0.529 0.601

SUV 0.447 0.502 0.187 0.278

Walking2 0.203 0.486 0.082 0.254

IceSkater1 0.203 0.234 0.124 0.125

Skating1 0.415 0.386 0.267 0.288

Dog 0.259 0.216 0.032 0.099

High

0.258 0.223 Human9 0.047 0.057

BlurBody 0.374 0.322 0.466 0.401

Ice Skater2 0.231 0.247 0.142 0.156

David3 0.173 0.113 0.052 0.104

Bird2 0.102 0.108 0.036 0.039

BlurCar3 0.372 0.375 0.197 0.215



34

Figure 5.2: Average IOU score for all videos and classi�ed videos based on Relative
Motion

Table 5.1 denotes the summary of overlap score for all the models on the videos

in OTB30 based on their object-camera relative motion. It is clear from the results

that the performance of sparse stacked LSTM is better by approximately 15 % than

the single layered LSTM. Also, the results from experiment 3 with tracker having

varied time step size are better than experiment 2 with tracker having �xed time

step size. This can be seen from �g 4.3 (a). In experiment 2, the overall overlap

score for some videos like BlurBody, BlurCar1, Singer2, Skating1 which lie in the

Medium and High Camera-Object Relative Motion category has low overlap accuracy.

With varied time step tracker, the corresponding overlap accuracy increases by 15-

20% which can be seen in Table 5.1 and �g 5.2(b). Another point that should be

noted is that the performance of S2LSTM tracker with varied time steps though has

overall increased performance in comparison to the S2LSTM tracker with �xed step

size of 6, it slightly under-performs compared to single layered LSTM in the High

Relative Motion Category. This happens mostly because S2LSTM cannot learn the

high motion of the object and camera with the doubled time step number.

Table 5.2 shows the training and Inference time required for trackers in experiment

1,2 and 3. We trained S2LSTM tracker sequentially i.e. both the LSTM layers were

trained one after the other on NVIDIA Tesla P100.
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Table 5.2: Training and Inference time for the trackers

LSTM with

�xed time step

S2LSTM with

�xed time step

LSTM with

varied time

steps

S2LSTM with

varied time

steps

Training time 12.5 hours 33.5 hours 12.5 hours 33.5 hours

Inference time 20 fps 16 fps 20 fps 16 fps

5.4.2 Qualitative Results

Qualitative evaluation methods could be more comprehensible for human to see the

results in di�erent condition and judge about the performance of the tracking. We try

to show the qualitative results in di�erent challenging conditions such as occlusion,

motion blur, high, medium and low relative motion, illumination variation, wrong

detection information tracked by YOLO+S2LSTM with varied time step approach

and discuss about them.

Figures in �gure number 5.3 are show 6 images in sequence in video Skater2. This

video comes in the category of Scale variation, deformation, in-plane rotation and

out-of plane rotation. This video also has low relative motion between the camera

and object. Comparison between YOLO+LSTM and YOLO+S2LSTM approach has

been done in the images. YOLO+S2LSTM proves to work better on this category.

Green bounding box shows tracking results of YOLO+S2LSTM and blue bounding

boxes show tracking results of YOLO+LSTM. As you can see S2LSTM tracker tries

to cover the entire body while LSTM tracker covers only half of the body. Similar

case can be seen in case of Human2 images in �gure 5.4. When the target is turning,

both the trackers follow the human but only S2LSTM tracker is able to cover the

entire body.

Figures in �gure number 5.5 are show 6 images in sequence in video BlurCar3. This

video comes in the category of Motion Blur. This video also has high relative motion

between the camera and object. The Green bounding box shows tracking results of
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Figure 5.3: 6 continuous sequences in Skater2 Video

YOLO+S2LSTM and blue bounding boxes show tracking results of YOLO+LSTM.

YOLO + S2LSTM tracker can follow the car more e�ectively than YOLO + LSTM

tracker. Even though, at some frames YOLO + S2LSTM loses the target it gets back

to the target in the next frame. In this case the tracker follows the target in most of

the frames but the bounding box size is small compared to the ground truth bounding

box size hence the overlap calculated is low.

Figures in �g. 5.6 shows the case where the target person size is very small in the

frame and the background is dark. The target human is taking a 360 degrees turn.

The blue bounding boxes which shows the tracking results of YOLO + S2LSTM, could

follow the target perfectly while the green bounding box i.e. the YOLO + LSTM

tracker loses the target completely. It is because S2LSTM uses the information from

the N+N number of previous the frames where as LSTM uses only N number of

previous frames where N is the step size.

Figures in 5.7 shows the case where the target object which is a transformer does

not come in any of the training environments. Hence the tracking of the transformer

has low accuracy. Though the tracker is able to follow the transformer, it cannot fully
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Figure 5.4: 6 continuous sequences in Human2 Video

cover the body.
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Figure 5.5: 6 continuous sequences in Blur Car Video

Figure 5.6: 6 continuous sequences in Skating1 Video

Figure 5.7: 6 continuous sequences in Transformer Video



CHAPTER 6: CONCLUSIONS

This thesis has been proposed with the aim of developing a model for having robust

object tracking. We proposed various models to achieve better results. Di�erent

approaches have been tried for di�erent tasks during the development of the proposed

algorithms implementation which was discussed in the previous chapters.

6.1 Summary of Findings

We have developed a method of Sparsely Stacked LSTM for visual object tracking.

This method extends the multi layered stacking of LSTM. We change it in the way

of using only the signi�cant output from previous LSTM layer so as to reduce the

computation complexity and avoid slow convergence of model. The OBT30 dataset

was classi�ed into 3 main categories taking the camera and the object motion in

the video frames under consideration. With sparsely stacked LSTM being able to

learn more number of steps in one time frame, it was able to learn the data more

quickly. Using the information from 'N' previous frames at a single time step helps to

track object in the cases of motion blur, occlusion, change of illumination etc. Also,

the proposed method could track the human after disappearing for short time and

appearing again in the video. However, when the Relative Motion between Object

and Camera is too high, the history of N+N frames does not help S2LSTM algorithm

to track the objects e�ectively. Hence, in case of high Relative Motion Videos, the

S2LSTM performance is lower than 1 layered LSTM. With varying the time steps

for di�erent videos based on the relative motion, the LSTMs were able to track more

e�ectively compared to �xed time step LSTMs. This is because LSTMs are temporally

deep and by using temporal features set according to the relative speed of the object,
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it becomes easier for LSTMs to learn the environment.

6.2 Future Work

Although, the proposed approach of Sparsely Stacked LSTM was able to track

the object in many challenging conditions, its performance could be improved by by

doing some more changes in the proposed model. The limitations which reduce the ro-

bustness of the method and some suggestions for its improvement are explained below.

1. For improving the performance of S2LSTM approach in case of High Relative

Motion, we will build a complex Neural Network with object visual features

concatenated with location coordinates from 1 layered LSTM and S2LSTM as

input. The prediction obtained from the Neural Network will be compared to

the ground-truth. In this way, the Neural Network is trained to use the best of

the two predictions and produce the output.

2. We will study three layers of sparsely stacked LSTMs and its behavior on dif-

ferent challenging conditions stated above. With increase in layers of stacked

LSTMs, we can experiment with the number of time steps in order to learn the

locations of objects with varying speeds.

3. We will explore the detection and tracking for the purpose of multi-object track-

ing.
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