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ABSTRACT 
 
 

KRISTIN NICOLE WALKER.  Fourier-based image sharpness sensor for adaptive 
optics correction. (Under the direction of DR. ROBERT K. TYSON) 

 
 

Adaptive optics reduces undesirable turbulence effects present during propagation 

and imaging through the atmosphere or another random medium.  Within an adaptive optics 

system, wavefront sensing determines the incoming wavefront errors.  Image sharpening is 

one method of wavefront sensing where the sharpness value is measured from the image 

intensity based on a given sharpness metric.  The wavefront correction device is then 

perturbed until the sharpness value is maximized.  The key to image sharpening is defining 

sharpness with a sharpness metric that reaches a maximum when wavefront error is zero. 

Present image sharpness metrics often use the image intensity.  In contrast, this 

dissertation introduces four novel sharpness metrics based on the Fourier transform of the 

image.  Since high spatial frequencies carry information about the image’s edges and fine 

details, taking the Fourier transform and maximizing the high spatial frequencies sharpens 

the image.  Coherence of the illumination source and the sharpness metric choice determine 

which of the presented optical system configurations to use.   

Performances of the Fourier-based sharpness metrics are observed and compared by 

measuring the sharpness value while adding defocus to the system.  If the sharpness value 

reaches a maximum with zero wavefront error then the sharpness metric is successful.  This 

investigation continues by adding astigmatism, coma, and spherical aberration and measuring 

the sharpness value to see the affect of these higher order aberrations.  The sharpness metrics 

are then implemented into a simple manual closed-loop correction system.  This dissertation 

presents successful performance results of these novel Fourier-based sharpness metrics 

showing great promise for use in adaptive optics correction. 
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CHAPTER 1:  INTRODUCTION 
 
 
1.1 Motivation 

Image sharpening is one method of wavefront sensing within adaptive optics where 

the sharpness value is measured from the image intensity based on a given sharpness metric.  

The wavefront correction device, such as a deformable mirror, is then perturbed until 

sharpness is maximized.  Image sharpening is advantageous in fields where optical 

components need to be minimized for space and cost constraints.  Since no additional 

wavefront sensing equipment is needed, sharpness measurements can be made using the 

camera already present to capture images.  In image sharpening, one key factor is 

selecting a sharpness metric, or sharpness definition, that reaches an absolute maximum 

with zero wavefront error.   

Image sharpening has been successfully used in adaptive optics correction.  

Present image sharpness metrics often use the image intensity to calculate the sharpness 

value.  The motivation of this research is to create and develop sharpness metrics based 

on the Fourier spectrum of the image and to implement in a closed-loop adaptive optics 

system.  The Fourier transform of the image can be generated digitally from the captured 

image or optically, and essentially instantaneously, by using the Fourier transforming 

property of a single lens. This dissertation introduces four novel sharpness metrics based 

on the Fourier transform of the image. 



 

 

2

1.2 Objectives 

The main objectives of this dissertation project are to develop Fourier-based 

sharpness metrics, investigate the performance of these metrics with added aberrations, 

and to demonstrate their feasibility in a closed-loop adaptive optics system.  This 

dissertation investigates both incoherent and coherent imaging system configurations.   

Chapters 2 through 5 present the background and theory information related to the 

Fourier-based sharpness metrics.  This leads up to chapter 6 introducing the Fourier-

based image sharpness sensor and all the components required, including the sharpness 

metrics.  Results and discussion for the sharpness metric performance investigations are 

presented in two chapters based on if the imaging system is incoherent (chapter 7) or 

coherent (chapter 8).  Calculations of the sharpness value for a given sharpness metric as 

aberrations are added to the system determines the performance of the metric, first with 

defocus and later with the addition of higher order aberrations.  For a given imaging 

configuration, object type, and aberration, the sharpness value is calculated and plotted 

versus aberration strength to determine if the sharpness value is maximum when 

wavefront error is zero.  Performance and sensitivity of each metric are determined from 

these plots and then compared to the other sharpness metrics.  Feasibility of the sharpness 

metrics in a closed-loop adaptive optics system is found by implementing the metrics in a 

preliminary, simple, and manual closed-loop system.  

 



CHAPTER 2:  INTRODUCTION TO ADAPTIVE OPTICS 
 
 
2.1 Introduction 

Atmospheric temperature fluctuations and wind velocities cause variations in the 

refractive index which alters the optical beam path of light propagating through the 

atmosphere.  Astronomical seeing and atmospheric propagation are limited by turbulence 

effects including scintillation, beam wander, and beam broadening.  Adaptive optics 

counters these effects through a closed-loop optical system correcting in real-time the 

distortions caused by propagating light through a turbulent medium such as the 

atmosphere.  Post-processing techniques to restore and enhance degraded images by 

methods including deconvolution1 are not considered adaptive optics because they do not 

correct in real-time.  Adaptive optics is not equivalent to, but a subset of active optics.  

Active optics consists of any method of controlling the beam or path of light over time 

such as correcting for telescope aberrations and misalignments caused by mechanical 

stresses and temperature fluctuations throughout a night of observing.  While active 

optics generally corrects for quasi-static errors in the optical system itself, adaptive optics 

corrects dynamic errors introduced by the atmosphere or other random media using a 

closed-loop real-time system.  Generally, adaptive optics systems perform at much higher 

frequencies than active optics systems.  Adaptive optics is not only used when 

propagating light through the atmosphere, but it is used to correct for distortions created 

when propagating light through any turbulent medium.     
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2.1 Adaptive Optics System Components 

Adaptive optics systems consist of three key components: a device to measure the 

incoming wavefront, a wavefront correcting element, and a control computer to interface 

the wavefront measurements and needed corrections.  A typical adaptive optics schematic 

can be seen in figure 2.1.  A portion of the incoming aberrated wavefront is directed to 

the wavefront sensor where the wavefront errors are measured.  Once the wavefront 

errors are known the control computer drives the correction device (i.e. the deformable 

mirror) to correct for the aberrations of the incoming wavefront.  These components will 

be further discussed in chapter 3 or for further details refer to one of the available 

textbooks2,3,4,5,6  These components must work together at a correction frequency greater 

than the frequency at which the turbulence changes the wavefront based on the 

application.  In astronomical applications the Greenwood frequency7,8,9 measures the 

temporal rate at which the atmosphere turbulence changes and is in the range of tens to 

hundreds of hertz.  As a general rule of thumb for light propagating through the 

atmosphere, the closed-loop system bandwidth should be ten times the Greenwood 

frequency ranging from hundreds to thousands of hertz.10 In other applications, such as 

vision science, the needed system bandwidth is much less.   
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FIGURE 2.1:  Adaptive Optics System 

 
 
 
2.3 Brief History of Adaptive Optics 

The real-time closed-loop adaptive optics system known today was first 

introduced by Babcock11 in 1953.  Babcock used a rotating knife edge at the focus to 

measure the deviation rays across the wavefront.  An Eidophor, consisting of a mirror 

covered with a thin oil layer with electric charge deposited on the surface to 

electrostatically deviate the oil surface, was used as the wavefront correcting device.  

Two limitations mentioned by Babcock, that still plague adaptive optics systems today, 

are the small angular field of compensation and the need for a control star of a large 

enough magnitude. 

Though initially proposed in 1953, adaptive optics systems did not produce 

experimental results until the 1970s.  Some of the first systems used Coherent Optical 

Adaptive Techniques (COAT) to maximize the outgoing laser energy on a target in real-

time.  By measuring the glint of the target the COAT systems primarily used a 
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multidither12,13,14 or phase conjugation15 algorithm to maximize the intensity of the target 

glint.  Systems were being developed not only to maximize laser beam energy but to also 

improve the resolution when imaging through the atmosphere.  The real-time atmospheric 

compensation (RTAC) system by Hardy et. al. at Itek was first developed in 1973 and 

produced initial experimental results in 197716.  Another image compensation adaptive 

optics system was image sharpening described by Muller and Buffington17 in 1974.  First 

observatory results of image correction with the image-sharpening telescope were 

reported by Buffington et. al18 in 1977. 

During the 1980s several adaptive optics image and laser compensation systems 

were being developed and tested19.  In 1982 the Compensated Imaging System was 

installed on the AMOS telescope in Maui, Hawaii.  This system was the first image 

compensation system using adaptive optics to be implemented on a telescope. This 

adaptive optics system consisted of a shearing interferometer as the wavefront sensor and 

a monolithic piezoelectric mirror for wavefront correction19.  Due to the continuing 

problem of too few photons available from natural stars to overcome wavefront sensor 

noise, investigations of using synthetic beacons began. 

In 1991 the Department of Defense declassified information on laser guide star 

systems and experiments that began in the mid 1980s.20,21  This led to an explosion of 

adaptive optics related research focusing more on the applications and implementations 

of adaptive optics systems and less of the development of individual adaptive optics 

components.  To this day, an increasing number of applications for adaptive optics are 

being discovered and implemented.  To see the progression of adaptive optics refer to one 

of the many adaptive optics review papers.19,22,23,24,25,26,27,28 
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2.4 Applications 

Adaptive optics was first proposed11 for astronomical imaging through the 

turbulent atmosphere.  During its developmental stage adaptive optics was used for two 

primary applications: imaging and laser beam propagation through atmospheric 

turbulence.  Defense applications such as satellite imaging, maximizing laser beam power 

density and laser communications were and continue to be a driving force behind 

adaptive optics development.  When propagating high power laser beams through the 

atmosphere the goal is to maximize the beam intensity by correcting for effects such as 

scintillation, thermal blooming, and beam wander.29  In free-space laser communication, 

adaptive optics corrects the distortions that stretch pulses, distort pulse shape, and corrupt 

the modulation.  Low order adaptive optics compensation have been applied30,31 and have 

shown significant improvement by reducing the bit-error rate.32  Astronomical seeing is 

perhaps the most well known application of adaptive optics as it has played a large role in 

improving the spatial resolution of ground-based telescopes.   

Over the last fifteen years adaptive optics has appeared in applications where light 

is no longer propagated through the turbulent atmosphere but through other random 

media such as eye fluid and biological samples.  Use of adaptive optics in vision science 

began in 1994 when Liang et. al.33 used the Shack-Hartmann wavefront sensor to 

measure the aberrations of the eye.  This led to the imaging of the retina through the eye 

fluid using a closed-loop adaptive optics system.34,35  The ability to measure the 

aberrations of the eye and to image the retina have many implementations in the field of 

vision science such as custom eye correction devices and imaging of intraretinal layers. 

Adaptive optics aids laser eye surgery procedures through laser beam shaping and 



 

 

8

measuring aberrations of the eye before and after surgery.  High-resolution in vivo retinal 

imaging provides earlier detection and improved diagnosis of retinal diseases.  Adaptive 

optics is also being used in current ophthalmic imaging devices such as the scanning laser 

ophthalmoscope36 (SLO) and optical coherence tomography37 (OCT) to improve the 

lateral and axial resolutions38 of both devices.  Further details on principles of adaptive 

optics in vision science can found in the available textbook.39 

Adaptive optics is also being applied to the field of microscopy.40  The nature and 

origin of aberrations in microscopy differ from telescope aberrations requiring a different 

approach to adaptive optics especially in wavefront sensing.  Aberrations in microscopy 

are created both by the optical system and the specimen.  Use of a high numerical 

aperture objective lens to focus laser pulses into the specimen and the index mismatch of 

the specimen, immersion fluid, and cover slip introduce spherical aberration.  Scanning 

of the specimen also introduces off-axis aberrations.  These static off-axis aberrations 

have been corrected with a deformable mirror and a genetic algorithm41 so that for every 

position of the scanning objective there is an optimal correction shape to put on the 

deformable mirror.  Dynamic specimen-induced aberration corrections with a closed-loop 

real-time adaptive optics system have been implemented in two-photon,42,43,44,45 

confocal,46,47 and optical48 microscopy.  Because it is difficult to directly measure the 

wavefront at the focus of a high numerical aperture objective, indirect wavefront sensing 

methods are often used.  Indirect wavefront sensing methods used in microscopy are 

modal wavefront sensing,49,50 genetic algorithm,4143 hill-climbing algorithm,44 and 

coherence-gated wavefront sensing.51,45   
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Other fields including 3D optical memory devices,52,53 optical tweezers,54,55 and 

coupling light into optical fibers56 are using adaptive optics systems to correct for 

aberrations caused by focusing light deep into optical data storage media or refractive 

index mismatch in microscopy. 

 

 



CHAPTER 3:  ADAPTIVE OPTICS PRINCIPLES 
 
 
3.1 Aberration Representation with Zernike Polynomials 

Aberrations can be represented with Zernike polynomials.  Zernike created an 

orthogonal set of polynomials defined on a unit circle57 so that, unlike with the power 

series, the phase can be represented by a unique set of coefficients.  The even and odd 

Zernike polynomials in polar coordinates on a unit circle are defined as: 
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Any wavefront phase can be represented as a summation of the present Zernike 

polynomials with their corresponding strengths.  The first 21 Zernike polynomials with 

their corresponding aberration names are shown in table 3.1.  Rigorous aberration theory 

can be found in Born and Wolf58.  
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Mode n – radial 
order 

m – azimuthal 
order 

m
nZ  Polynomial Aberration 

0 0 0 0
0Z  1 Piston 

1 1 1 1
1Z  ρ cos θ Tip 

2 1 1 1
1
−Z  ρ sin θ Tilt 

3 2 0 0
2Z  2ρ2 - 1 Defocus 

4 2 2 2
2
−Z  ρ2 sin 2θ Astigmatism 

(45o) 

5 2 2 2
2Z  ρ2 cos 2θ Astigmatism 

(0o and 90o) 
6 3 1 1

3
−Z  (3ρ3 – 2ρ) sin θ Coma 

7 3 1 1
3Z  (3ρ3 – 2ρ) cos θ Coma 

8 3 3 3
3
−Z  ρ3 sin 3θ Trefoil 

9 3 3 3
3Z  ρ3 cos 3θ Trefoil 

10 4 4 4
4
−Z  ρ4 sin 4θ Spherical 

aberration 

11 4 4 4
4Z  ρ4 cos 4θ Spherical 

aberration 
12 4 2 2

4Z  (4ρ4 – 3ρ2) sin 2θ  

13 4 2 2
4Z  (4ρ4 – 3ρ2) cos 2θ  

14 4 0 0
4Z  6ρ4 – 6ρ2 +1  

15 5 1 1
5
−Z  (10ρ5 -12ρ3 + 3ρ) sin θ  

16 5 1 1
5Z  (10ρ5 -12ρ3 + 3ρ) cos θ  

17 5 3 3
5
−Z  (5ρ5 - 4ρ3) sin 3θ  

18 5 3 3
5Z  (5ρ5 - 4ρ3) cos 3θ  

19 5 5 5
5
−Z  ρ5 sin 5θ  

20 5 5 5
5Z  ρ5 cos 5θ  

TABLE 3.1:  Zernike Polynomials 
 
 
 
3.2 Wavefront Sensors 

One key component of an adaptive optics system is the wavefront sensor.59  As its 

name suggests, the wavefront sensor measures the shape of the incoming wavefront to 

determine what wavefront errors are present.  Wavefront sensing methods can be divided 

into one of two categories, direct (pupil-plane) and indirect (image-plane) wavefront 
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sensing.  Direct wavefront sensors, such as the Shack-Hartmann sensor, curvature 

sensor60, or pyramid sensor61, directly measure the localized slope and curvature of the 

incoming wavefront across the exit pupil.  From these measurements the control 

computer reconstructs the wavefront and forms the conjugate shape on the deformable 

mirror.  Indirect wavefront sensors, such as phase diversity62 and image sharpening17, do 

not calculate the wavefront directly.  Instead measurements are taken from the image 

plane that are related the wavefront error and the deformable mirror alters the wavefront 

phase until the error is reduced.  Whether the wavefront is measured directly or 

indirectly, the wavefront sensor provides information about the corrections needed and 

when correction is complete. 
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FIGURE 3.1:  Adaptive Optics System with Direct and Indirect Wavefront Sensing.   

a) Direct wavefront sensing with a Shack Hartmann   
b) Indirect wavefront sensing with image sharpening 
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3.3 Wavefront Correction 

The first wavefront correction device introduced by Babcock11 was an Eidophor.  

This device consisted of a mirror covered with a thin oil layer on which a rastered electric 

charge was deposited allowing electrostatic charges to distort the oil film.  Over the years 

a variety of wavefront correcting devices have been developed.  Today in adaptive optics, 

the most common correction devices used are deformable mirrors and liquid-crystal 

spatial light modulators.63,64   

Deformable mirrors are the most widely used correction devices.  Two main 

advantages of membrane mirrors are their reflective nature, and thus little light loss, and 

their achromatic nature, as opposed to liquid-crystal spatial light modulators.  There are 

several types of deformable mirrors including segmented, membrane, bimorph, and 

micro-electromechanical (MEM) mirrors.  The focus of this section will be membrane 

deformable mirrors since they were used in this project.   

Membrane deformable mirrors were first introduced in the late 1970’s65,66.  The 

first micromachined electrostatic, actuated membrane mirror was fabricated in the early 

1990’s by NASA’s Jet Propulsion Laboratory67.  A membrane deformable mirror consists 

of a thin (.5-1 µm thick), silicon nitride micro-machined membrane with an aluminum 

reflective coating suspended over a hexagonal array of high-voltage electrodes.  When 

voltage is applied to the electrodes they act as actuators as the electrostatic forces deflect 

the thin membrane.  The membrane can only be pulled toward the electrodes so an initial 

bias voltage is applied to the actuators allowing the membrane to deform in both 

directions, toward and away from the electrodes.  This bias voltage introduces defocus 

that must be compensated for additional optics.  Unlike the bimorph mirror, this type of 
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mirror exhibits no hysteresis.  The mean deflection of the membrane68,69  follows 

Poisson’s equation 

TyxP
y

yxU
x

yxUyxUyxU /),(),(),(),(),( 2

2

2

2
2 −=

∂
∂

+
∂

∂
=∇=∆  (3.4) 

where U is the deflection, P is the load or pressure, and T is the tension.  For electrostatic 

actuation the load is  

2

2

),,(
)),((

),(
Pyxd
yxV

yxP oε
=       (3.5) 

where εο is the dielectric constant of air, V is the electric potential distribution across the 

electrodes, and d is the distance between the membrane and the electrodes.  As can be 

seen the mean deflection of the membrane is proportional to the applied voltage squared. 

3.4 Measurement of Optical Quality and Image Evaluation 

According to the Rayleigh limit no more than one-quarter wavelength of optical 

path difference (OPD) across the wavefront with respect to a reference sphere is 

acceptable70. Peak-to-valley (P-V) measures the maximum departure from a reference 

sphere.  Root-mean-square (RMS) squares the OPD measurements across the aperture 

and takes the square root of the average of these squares about the mean.  P-V works best 

for smooth wavefronts, while RMS is a better measurement when the wavefront is 

irregular.  The Strehl ratio is the ratio of the intensity at the center of the Airy disk 

between that of an aberrated wavefront and that of a perfect wavefront.  If the wavefront 

error variance is known the Strehl ratio is approximately, 

( ) ( )[ ]22
2

2exp2exp πωφ
λ
π

−≅
⎥
⎥
⎦

⎤

⎢
⎢
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⎡
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⎠
⎞

⎜
⎝
⎛−≅S     (3.6) 
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where 2)( φ∆ is the wavefront error variance in units of optical path difference and ω  is 

the RMS OPD in waves.  This calculation of Strehl ratio is convenient when aberrations 

are represented by wavefront or phase error variance.  The wavefront error variance in 

units of radians squared is, 

2
2

2 )(2 φ
λ
πσ ∆⎟

⎠
⎞

⎜
⎝
⎛= .       (3.7) 

An optical system is deemed acceptable if the Rayleigh limit is met such that P-V 

is less than one-quarter wave, RMS OPD is less than one-fourteenth to one-twentieth of a 

wave, or a Strehl ratio greater than 80 percent for spherical aberration.  For other primary 

aberrations a quarter-wave does not necessarily produce a Strehl ratio of 0.8071.     

 



CHAPTER 4:  IMAGE SHARPENING 
 
 
4.1 Introduction  

Image sharpening was first introduced by Muller and Buffington17 as a technique 

for atmospheric correction of telescope images. With image sharpening, as seen in figure 

4.1, a single sharpness value is measured from image plane information based on the 

sharpness metric, or sharpness definition.  Once the sharpness value is measured a 

correction device such as a deformable mirror alters the incoming wavefront until the 

sharpness is maximized.  This closed-loop system corrects the image in real-time as the 

wavefront changes.  The key to image sharpening is choosing a sharpness metric that 

reaches a maximum sharpness value when no wavefront error is present and is sensitive 

to the introduction of aberrations.  Several sharpness metrics have been successfully 

developed and implemented as will be discussed in this chapter.   
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FIGURE 4.1:  Image Sharpening Adaptive Optics System 

 
 
 
4.2 History of Image Sharpening 

Muller and Buffington presented several image plane sharpness metrics listed in 

table 4.1.  Several metrics were tested with computer simulations of a simple closed-loop 

feedback adaptive optics system with corrective elements to maximize the sharpness.  

These simulations used the Fresnel-Kirchhoff equation to calculate the image irradiance 

for monochromatic light.  Most of the metrics tested showed dramatic improvement in 

image quality after one or two iteration cycles.  Proofs that the sharpness function reaches 

a maximum for the restored image were presented for metrics Si, Siii, Siv, Sv, and Sviii.  

These proofs evaluated the image irradiance using the Fresnel-Kirchhoff integral for 

monochromatic light over the surface of the telescope objective.    Additional proofs of Si 

and Siv are presented by Hamaker et al.72 using Fourier optics. 

 
 
 
 



 

 

18

Definition Computer Simulation Comments 

∫∫= dxdyyxISi ),(2  Satisfactory Proved 

),( ooii yxIS =  Satisfactory Satisfactory only for 
bright objects 

∫∫= dxdyyxMyxISiii ),(),(  Satisfactory for 
M=round hole I=single 

or multiple stars 

Proved if M represents 
the undistorted image 

∫∫ ∂∂
∂

=
+

dxdy
yx

yxIS ml

ml

iv

2
),(  

Untried Proved  

∫∫= dxdyyxIS n
v ),(  

2≥n  

Satisfactory for n=2,3,4 Proved only for 
unresolved star 

∫∫−= dxdyryxISvi
2),(  
222 yxr +=  

Poor Moment of inertia 
function.  Proved 

∫∫−= dxdyyxIyxISvii )),(ln(),( Satisfactory Minimizes entropy of the 
image 

∫∫ −−= dxdyIIS oviii
2  Untried Defect function. Proved 

TABLE 4.1:  Image Sharpness Metric Definitions and Performances 
 
 
 

Image sharpening was first implemented on a telescope by Buffington et al.18 in 

1977.  A 30 x 5 cm aperture telescope was built with six movable mirrors as the 

correction device.  Laser and white-light objects were imaged horizontally through 250 m 

of turbulent atmosphere.  Sharpness metrics Si and Siii were used to obtain essentially 

diffraction-limited images as the computer simulations predicted.  The mask used for 

metric Siii was a slit with a width slightly less than the full-width half-maximum of the 

diffraction pattern at that location.  This image-sharpening telescope was then installed at 

both the Leushner and Lick Observatory to obtain the first observatory results.18  Image 

sharpening was successful in producing diffraction-limited images of a single star. 

Image compensation has not only been performed by adaptive optics alone but 

also by post-detection image processing and a hybrid approach combining adaptive optics 
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with image post-processing.  In the post-processing and hybrid approaches a large data 

set of short-exposure images are captured and processed to create a single image.  

Roggemann et al.73 used image sharpness metrics listed in table 4.1 to select the best 

image frames to include in the post-processing.  Using this method to select image frames 

resulted in greater signal-to-noise ratios (SNR) than processing the entire data set.  A new 

sharpness metric, ∫ ∫=
π ρ

θρθρ
2

0 0

2
1 ),(

o

ddIS FS , was presented where IF is the Fourier 

transform of the image intensity and 0ρ is the cutoff spatial frequency defined at 

f
D

o λ
ρ = .  This metric ignores spatial frequencies above the cutoff frequency that are 

caused by noise. 

Vorontosov et al.74 introduced a sharpness metric based on the Fourier spectrum 

of the image.  After an image was formed with a coherent or incoherent optical system 

the image was sent to a spatial light modulator (SLM).  The SLM is used with coherent 

illumination to optically generate the Fourier transform of the image.  Image quality is 

characterized by a wide spatial spectrum and thus a small speckle size.  The speckle field 

is produced by projecting the image spatial frequency spectral distribution onto a rotating 

frosted glass.  The speckle field was measured by a photo-receiver where the 

photocurrent was related to the speckle size.  Experimental results show improvement in 

imaging extended objects by minimizing the speckle size.  This study was performed 

with particular interest in imaging extended objects for ground-to-ground and ground-to-

air applications.  

Image sharpening has been applied to coherent imaging with synthetic-aperture 

radar (SAR).  Maximizing the sharpness using gradient search techniques has been used 
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to develop SAR autofocusing algorithms75.   Fienup and Miller76 explored the use of 

sharpness metrics in SAR applications and found the best metric depends on the 

characteristics of the scene being imaged.  When using the Sv power metric it was found 

that for scenes with bright and prominent points, large n powers worked better, where for 

scenes with dark regions and no prominent points, smaller n powers worked better.  It 

was also found that the behavior of a sharpness metric depends on the second derivative 

of its point nonlinearity as a function of the image intensity. 

4.3 Advantages of Image Sharpening 

Image sharpening is advantageous in fields where optical components need to be 

minimized for space and cost constraints since little to no additional wavefront sensing 

equipment is needed.  Often the sharpness value is calculated from the image plane 

intensity that is captured with the imaging camera already present.  Sensor speed is 

primarily dependant upon the control computer.  Speed will continue to increase as faster 

computers are more readily available. 

Another advantage is no point source is needed since this technique uses light 

from the object itself.  Image sharpening works for extended objects as long as the object 

lies within the isoplanatic patch.  Finally, the reconstruction stage of the wavefront, 

present with direct wavefront methods, is eliminated and thus reducing the computations 

necessary and increasing the speed.   

 



CHAPTER 5:  THEORY 
 
 

5.1 Introduction 

Before discussing the necessary theory some basic definitions and theorems are 

presented.  The Fourier transform of the function g(x,y) is defined as 

G(fx,fy) = F{g(x,y)} = ∫ ∫
∞

∞−

+− dxdyyfxfiyxg yx )](2exp[),( π   (5.1) 

and the inverse Fourier transform is 

g(x,y) = F -1{G(fx,fy)} = ∫ ∫
∞

∞−

+ yxyxyx dfdfyfxfiffG )](2exp[),( π . (5.2) 

The convolution between two functions, f(x) and h(x), can be found by 

f(x)∗ h(x) = g(X) = ∫
∞

∞−

− dxxXhxf )()( .    (5.3) 

The autocorrelation of a function is defined to be 

f(x) ◊ f(x) = f(x)∗ f*(-x) = ∫
∞

∞−

− dxXxfxf )()( * .   (5.4) 

For the shift theorem, if G(fx,fy) = F{g(x,y)}, then 

 F{g(x-a ,y-b)} = G(fx,fy)exp[-i2π(fxa + fyb)]    (5.5) 

where a translation in the space domain introduces a phase shift in the spatial frequency 

domain.  In the same sense a phase shift in the space domain introduces a translation in 

the spatial frequency domain. 
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Parseval’s theorem states if G(fx,fy) = F{g(x,y)}, then 

∫ ∫ ∫ ∫
∞

∞−

∞

∞−

= yxyx dfdfffGdxdyyxg
22 ),(),( .    (5.6) 

The convolution theorem is if G(fx,fy) = F{g(x,y)} and H(fx,fy) = F{h(x,y)}, then 

F{g(x,y)∗ h(x,y)}= F
⎭
⎬
⎫

⎩
⎨
⎧

−−∫ ∫
∞

∞−

dxdyyYxXhyxg ),(),( = G(fx,fy)H(fx,fy). 

          (5.7) 

Finally the autocorrelation theorem states if G(fx,fy) = F{g(x,y)}, then 

F
⎭
⎬
⎫

⎩
⎨
⎧

−−∫ ∫
∞

∞−

dxdyYyXxgyxg ),(*),( = |G(fx,fy)|2.   (5.8) 

5.2 Scalar Diffraction Theory 

Scalar diffraction theory58,77 considers the scalar amplitude of either the electric or 

magnetic field transverse component neglecting the coupled nature of electric and 

magnetic field vectors.  As long as the wavelength is much smaller than the diffracting 

aperture and diffracted fields are not observed too close to the aperture then the scalar 

theory produces accurate results.  The Huygens-Fresnel principle states the optical field 

amplitude at any point beyond an obstruction is the superposition of all secondary 

spherical wavelets created by every unobstructed point on the wavefront.  Kirchhoff later 

showed the Huygens-Fresnel principle is derivable from the scalar differential wave 

equation. 
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FIGURE 5.1:  Point-source Illumination of a Plane Screen 
 
 
 

Suppose a point-source is located at (x2,y2) in figure 5.1, illuminating the aperture, 

Σ , with a single spherical wave of amplitude A, then the  field amplitude at the aperture 

is  

U(x1,y1) = 
21

21 )exp(
r

ikrA .      (5.9) 

The field amplitude at the point of observation (x0,y0) can be found using the Fresnel-

Kirchhoff diffraction equation: 

U(x0,y0) = 
λi

A
2 ∫ ∫

Σ

)],cos(),[cos(
)](exp[

2101
0121

0121 rnrn
rr

rrik rrrr
−

+
ds.  (5.10) 

Though the Kirchhoff theory experimentally has been found to yield accurate 

results there are inconsistencies for certain boundary conditions.  These inconsistencies 

were removed by Sommerfield producing the Rayleigh-Sommerfield diffraction equation 

for point source illumination: 

U(x0,y0) = 
λi
A

∫ ∫
Σ

),cos(
)](exp[

01
0121

0121 rn
rr

rrik rr+
ds.      (5.11) 
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The diffraction equation can be written more generally as 

U(x0,y0) = 
λi
1

∫ ∫
Σ

 U(x1,y1) ),cos(
)](exp[

01
01

01 rn
r

rik rr ds     (5.12) 

where U(x1,y1) is the field amplitude at the aperture.  Using linear systems theory later 

discussed in section 5.4 the diffraction equation can also be written as a superposition 

integral, 

U(x0,y0) = ∫ ∫
Σ

h(x0,y0; x1,y1) U(x1,y1) dx1dy1      (5.13) 

where h is the weighting function defined as 

h(x0,y0; x1,y1) = ),cos(
)exp(1

01
01

01 rn
r
ikr

i
rr

λ
.       (5.14) 

5.2.1 Fresnel Diffraction 

Using the linear systems representation of scalar diffraction in equations 5.13 and 

5.14 some assumptions are made to derive Fresnel diffraction.  Assume U(x1,y1) is zero 

outside the aperture, therefore the limits are infinite.  Also assume the distance between 

the aperture and plane of observation is much larger than the size of the aperture.  

Therefore 1),cos( 01 ≅rn rr  and zr ≅01  in the denominator of equation 5.14.  The 

superposition integral is as it was before, 

U(x0,y0) = ∫ ∫
∞

∞−

h(x0,y0; x1,y1) U(x1,y1) dx1dy1      (5.15) 

where the new weighting function with these assumptions is 

h(x0,y0; x1,y1) = 
z
ikr

i
)exp(1 01

λ
.       (5.16) 
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FIGURE 5.2:  Diffraction Geometry for Fresnel Diffraction 
 
 
 

From the diffraction geometry seen in figure 5.2, the distance r01 can be found 

exactly as  

r01 = 
2

10
2

102
10

2
10

2 1)()( ⎟
⎠
⎞

⎜
⎝
⎛ −

+⎟
⎠
⎞

⎜
⎝
⎛ −

+=−+−+
z

yy
z

xx
zyyxxz . 

          (5.17) 

The binomial expansion of the square root is 

...
8
1

2
111 2 +−+=+ aaa   1<a .     (5.18) 

Using the binomial expansion in the Fresnel region the distance r01 can be adequately 

approximated by using only the first two terms of the expansion resulting in 

r01 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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⎜
⎝
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+≅
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2
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2
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11

z
yy

z
xx

z .    (5.19) 

From equation 5.16 the Fresnel diffraction weighting function can be written as 

h(x0,y0; x1,y1) = 
⎭
⎬
⎫

⎩
⎨
⎧ −+− ])()[(

2
exp)exp( 2

10
2

10 yyxx
z

ik
zi
ikz

λ
   (5.20) 

and the superposition integral and can be rewritten as 
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U(x0,y0) = ∫ ∫
∞

∞− ⎭
⎬
⎫

⎩
⎨
⎧ −+− ])()[(

2
exp)exp( 2

10
2

10 yyxx
z

ik
zi
ikz

λ
U(x1,y1) dx1dy1. 

          (5.21) 

Expanding the quadratic term gives, 

U(x0,y0) = 
zi
ikz

λ
)exp(

⎥⎦
⎤

⎢⎣
⎡ + )(
2

exp 2
0

2
0 yx

z
ik

∫ ∫
∞

∞−

 U(x1,y1) 

⎥⎦
⎤

⎢⎣
⎡ +−⎥⎦

⎤
⎢⎣
⎡ + )(2exp)(
2

exp 1010
2
1

2
1 yyxx

z
iyx

z
ik

λ
π  dx1dy1     (5.22) 

This is the Fourier transform of U(x1,y1) ⎥⎦
⎤

⎢⎣
⎡ + )(
2

exp 2
1

2
1 yx

z
ik  such that 

z
x

f x λ
0=  

and
z

yf y λ
0= .   

From the superposition integral, equation 5.21, it can be seen that the field 

amplitude U(x0,y0) is the convolution of U(x1,y1) with h(x0,y0; x1,y1), 

U(x0,y0) = h(x0,y0; x1,y1) ∗  U(x1,y1).     (5.23) 

The Fresnel diffraction transfer function is the Fourier transform of the weighting 

function, equation 5.20, and is found to be 

H(fx,fy) = exp(ikz) exp(-iπλz(fx
2 + fy

2)) .    (5.24) 

Applying the convolution theorem gives 

F{U(x0,y0)}= H(fx,fy) F{U(x1,y1)}.     (5.25) 

5.2.2 Fraunhofer Diffraction 

The Fraunhofer approximation is also referred to as the far-field approximation 

because not only do the Fresnel approximations still hold true, but there is the additional 

assumption that,  
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2
)( max

2
1

2
1 yxkz +

>> .         (5.26) 

Using this approximation, the quadratic phase term in equation 5.22 goes to unity 

resulting in, 

U(x0,y0) = 
zi
ikz

λ
)exp(

⎥⎦
⎤

⎢⎣
⎡ + )(
2

exp 2
0

2
0 yx

z
ik

∫ ∫
∞

∞−

 U(x1,y1) 

⎥⎦
⎤

⎢⎣
⎡ +− )(2exp 1010 yyxx

z
i
λ

π  dx1dy1        (5.27) 

This is the Fourier transform of U(x1,y1).  Thus in the Fraunhofer diffraction 

region the field amplitude distribution is simply the Fourier transform of the aperture 

distribution.   

5.3 Fourier Transforming Property of a Single Lens 

As a wavefront passes through a lens the wavefront experiences a phase delay due 

to the thickness variation.  
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FIGURE 5.3:  Thickness Function of a Lens 
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Looking at figure 5.3 the phase delay by the lens can be written as 

)],([),(),( yxkyxknyx o ∆−∆+∆=φ      (5.28) 

where ∆o is the maximum thickness, n is the index of refraction, and k is the wave 

number.  The field just after the lens is found as 

Ul’(x,y) = tl(x,y)·Ul(x,y)      (5.29) 

where the transformation function of the lens is 

tl(x,y) = )],()1(exp[]exp[ yxnikik o ∆−∆ .    (5.30) 

The thickness function of the lens is derived77 to be 
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22 11
2

),(
RR

yxyx o     (5.31) 

where R is the radius of curvature for the front and back of the lens.  Rewriting the 

transfer function gives 

tl(x,y) = 
⎥
⎥
⎦

⎤
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From geometric optics knowing 
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      (5.33) 

and substituting into 5.31 gives 

tl(x,y) = ⎥
⎦

⎤
⎢
⎣

⎡
+−∆ )(

2
exp]exp[ 22 yx

f
ikikn o  .   (5.34) 

Consider a coherent imaging system.  A plane object with amplitude transmission 

to(x,y) is placed in the system at a distance so from the lens as seen in figure 5.4.  Since 
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the lens is finite the aperture size can be accounted for with the pupil function Pl(x,y) 

where Pl(x,y) =1 inside the lens aperture and Pl(x,y) = 0 otherwise. 

The object is illuminated by a monochromatic plane wave of amplitude A such 

that the object field amplitude is 

Uo(x,y) = A to(x,y).       (5.35) 
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FIGURE 5.4:  Configuration for the transforming property of a single lens. 

 
 
 

Let Fo(fx,fy) = F{ Uo(x,y) } and Fl(fx,fy) = F{ Ul(x,y) }.  Using the Fresnel transfer 

function, equation 5.25, propagation over distance so yields 

Fl(fx,fy) = Fo(fx,fy) exp(ikso) exp(-iπλso(fx
2 + fy

2)).   (5.36) 

Ignoring the constant phase factor exp(ikso). 

The field amplitude across the back focal plane, Uf, for an incoming field 

amplitude Ul is derived by Goodman77 (page 85) to be 

Uf(xf,yf) = 
fiλ

1
⎥
⎦

⎤
⎢
⎣
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ff yx
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          (5.37) 
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Using the Fourier transform definition this can be rewritten as 

Uf(xf,yf) = 
fiλ
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⎦
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Substituting in equation 5.36 yields 

Uf(xf,yf) = 
fiλ
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and can be rewritten as 
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and rearranged to give 
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Replacing Fo  and using equation 5.35 yields, 
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If so= f then the phase curvature disappears and there is an exact Fourier relation 

of the object amplitude transmittance function.  The intensity across the back focal plane,  
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is the power spectrum of the object. 
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5.4 Imaging using Linear Systems Theory 

For any linear system the output is found to be the convolution of the input and 

the weighting, or impulse response, function h.  This is known as the superposition 

integral.   

g2(x2,y2) = ∫ ∫
∞

∞−

−− ηξηξηξ ddyxhg ),(),( 221 .   (5.44) 

According to the convolution theorem if you take the Fourier transform of both sides the 

output spectra, G2 is found by 

G2(fx,fy) = H(fx,fy) G1(fx,fy)      (5.45) 

where H, known as the transfer function, is found by taking the Fourier transform of the 

impulse response function, 

H(fx,fy) = ∫ ∫
∞

∞−

+− dxdyyfxfiyxh yx )](2exp[),( π .   (5.46) 

An imaging system is a linear system and thus the definitions of linear systems 

can be applied to optics.  The image field amplitude can be found by the superposition 

integral 

Ui(xi,yi) = oooooooii dydxyxUyxyxh ),(),;,(∫ ∫
∞

∞−

.   (5.47) 

In optics the impulse response, h, is known as the point spread function where h is the 

image field amplitude in response to a point source object.  The point spread function is 

also found to be the Fraunhofer diffraction pattern of a point source which is proportional 

to the Fourier transform of the exit pupil. 
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5.4.1 Coherent Imaging System 

When the object is illuminated by a coherent source the impulse responses vary in 

unison and therefore there is a linear mapping of the complex field amplitudes from the 

object to the image.  The point spread function is found to be the Fourier transform of the 

exit pupil. 

h(xi,yi)= ∫ ∫
∞

∞−

+− dxdyyyxxidydxP ii )](2exp[),( πλλ    (5.48) 

The superposition integral with complex field amplitudes is written as 

Ui(xi,yi) = ooooooioi dydxyxUyyxxh ),(),(∫ ∫
∞

∞−

−−    (5.49) 

and the image intensity is written as. 

Ii(xi,yi) = | ooooooioi dydxyxUyyxxh ),(),(∫ ∫
∞

∞−

−− |2.   (5.50) 

Using the transfer function approach the coherent transfer function is 

H(fx,fy) = F { h(xi,yi)}=F{F{ ),( dydxP λλ = ),( dydxP λλ −− .  (5.51) 

Due to symmetry the coherent transfer function is equivalent to the exit pupil function.  

Using the convolution theorem the image frequency spectra is 

Gi(fx,fy)=H(fx,fy)Gg(fx,fy)      (5.52) 

where the frequency spectra are found to be 

Gi(fx,fy) = ∫ ∫
∞
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+− dxdyyfxfiyxU yxi )](2exp[),( π    (5.53) 

Go(fx,fy) = ∫ ∫
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+− dxdyyfxfiyxU yxo )](2exp[),( π .   (5.54) 
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5.4.2 Incoherent Imaging System 

When imaging with incoherent illumination the impulse responses vary 

independently and must be added, not by the complex amplitude, but by the intensity.  

Therefore, incoherent imaging systems are linear by intensity mapping so that the 

superposition integral is written as 

Ii(xi,yi) = ooooooioi dydxyxIyyxxh ),(|),(| 2∫ ∫
∞

∞−

−−κ   (5.55) 

where κ is a real constant and the incoherent point spread function is the intensity of the 

coherent point spread function.  

In incoherent imaging, the frequency spectra and transfer functions are 

normalized to the background dc component to better view the frequency contrast.  The 

normalized frequency spectra are defined as 
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And the normalized transfer function, also know as the optical transfer function is 

H(fx,fy) = ∫ ∫
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which can also be written as  
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Using the autocorrelation theorem, equation 5.8, and equation 5.48 the optical 

transfer function is found to be the autocorrelation of the exit pupil (area of overlap) 

divided by the total area 
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          (5.60) 

According to the convolution theorem  

Gi(fx,fy) =H(fx,fy) Go(fx,fy).      (5.61) 

5.5 Spatial Filtering 

The Fourier transforming property of a single convex lens is one of the most 

widely used since Abbe’s microscopy application in the nineteenth century78.  The ability 

to perform Fourier transforms simply with a single lens leads to the analysis of the 

frequency domain of an optical imaging system and how it relates to the image spatial 

domain.  Abbe78 and Porter79 reported the first results showing how altering the 

frequency domain by placing filters in the Fourier plane affect the image spectrum and 

therefore the image itself.  By filtering out spatial frequencies in the Fourier domain the 

frequency components of the object distribution are removed from the image plane.  If a 

low-pass filter is placed in the Fourier plane the high frequencies, carrying the object 

detail and edges, are removed resulting in a smoother image of the object.  If instead a 

high-pass filter were placed in the Fourier domain only the high frequencies would pass 
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enhancing the object edges and details in the image plane.  A common way to perform 

spatial filtering is by the use of a 4-F system illustrated in figure 5.5.   An object 

transparency or spatial light modulator is placed in the object plane and illuminated with 

a coherent monochromatic plane wave.  The Fourier transform of the object is located at 

the back focal plane where the filter is placed to filter out the desired spatial frequencies 

and the resulting image is formed at the image plane.   

 
 

 

f

Object ImageFourier 
Plane

f ff
 

FIGURE 5.5:  4-F system; light incident on the object is a plane wave of coherent and 
monochromatic light 

 
 
 

Figure 5.6 shows the results of spatial filtering with a 4-F system like that in 

figure 5.5 using two f = 150 mm plano-convex lenses.  The low-pass image, figure 5.6c, 

was obtained by placing an iris diaphragm in the Fourier plane allowing only the low 

spatial frequencies to pass to the image plane.  It can be seen from the low-pass image 

that low frequencies contain information about the basic size and gross shape of the 

object.  To obtain the high-pass image a small circular obstruction was centered in the 
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Fourier plane allowing the high spatial frequencies to pass resulting in figure 5.5d.  High 

spatial frequencies carry information about the edges and fine detail of the object.    

 
 

  
(a)     (b) 

    
(c)     (d) 

FIGURE 5.6:  Spatial filtering using a 4-f system.  (a) image plane, (b) Fourier plane, (c) 
image plane with a low-pass filter at the Fourier plane, and (d) image plane with a high-

pass filter at the Fourier plane 
 
 



CHAPTER 6:  FOURIER-BASED IMAGE SHARPNESS SENSOR  
 
 
6.1 Introduction 

 Image sharpening is an indirect, image plane method for wavefront correction.  

The sharpness value is measured using the definition given by the sharpness metric. A 

Fourier-based image sharpness sensor uses a sharpness metric based on the Fourier 

transform of the image.  In this chapter the components of such a sensor will be 

discussed, mainly the Fourier-based sharpness metric as it is the primary focus of this 

dissertation.   

 
 

Control 
System
Control 
System

Deformable 
Mirror

Imaging Camera 
located at Image 
or Fourier Plane

Aberrated
Wavefront

Planar 
Wavefront

Measure Sharpness Value  
FIGURE 6.1:  Image Sharpness Sensor Configuration. 
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6.2 Image Sharpness Sensor Configuration 

The basic image sharpness sensor configuration is seen in figure 6.1.  Location of 

the imaging camera is either at the image or Fourier plane depending on the sharpness 

metric used.  After the image is captured the control system, consisting of the computer 

with calculating software and the hardware interfacing, calculates the sharpness value 

using a given sharpness metric.  After the first sharpness calculation, the algorithm begins 

the process of maximizing the sharpness value by driving the deformable mirror (DM).  

One cycle consists of adjusting the DM actuator values, capturing a new image, and 

calculating the new sharpness value.  If the sharpness value increases the mirror 

continues to move in that direction; if the sharpness value decreases the direction of 

motion for that DM actuator is reversed.  This cycle continues until the sharpness value 

reaches a maximum.  There are three main units of the image sharpness sensor: the 

sharpness metric, optical components (i.e. imaging camera and deformable mirror), and 

the search algorithm.  Each of the units are discussed in the following sections. 

6.3 Sharpness Metrics 

The sharpness metric is the definition by which the sharpness values is calculated.  

Five sharpness metrics were used in this dissertation, four of which are new Fourier-

based sharpness metrics.  The five sharpness metrics are: 
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This first metric, Si2, is the intensity squared sharpness metric that is most 

common in image sharpening.  This metric was first introduced and proved by Muller 

and Buffington and has been implemented in a closed-loop adaptive optics 

system.17,18,,80,81 as discussed in chapter 4.  By squaring the intensity at each pixel the 

difference in intensity values from pixel to pixel increases and thus the contrast is 

enhanced.  When aberrations are added the image contrast decreases, and therefore so 

does the defined sharpness value.  To account for overall changes in the image intensity, 

the metric is normalized by dividing by the square of the total intensity, or the total power 

squared.  The units of this metric are 1/m2.  Consider a point source object, increasing the 

aberrations causes the spatial spot size (measured in meters) to increase and the 1/m2 to 

decrease and thus the sharpness value also decreases.  In the similar sense, when imaging 

a bar chart test pattern, adding aberrations causes the distance between bars to increase 

which is an increase in spatial size (m) and a decrease in the spatial frequency (1/m).  

Using Parseval’s theorem 
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where Ii is the image plane intensity, it can be seen that this metric can also be found 

from the Fourier domain.  Though this is an interesting observation, the original 

sharpness metric is faster because often the image plane intensity is measured so there is 

no need to add extra calculations to find the Fourier transform.  For the experiments in 

chapters 7 and 8 the Si2 sharpness metric will be used for comparison. 

 As mentioned before when imaging a bar chart target, adding aberrations causes 

the spacing between bars to increase and the spatial frequency to decrease.  For an 

incoherent imaging system the image spatial frequency spectra is found to be 

 Gi(fx,fy) =H(fx,fy) Go(fx,fy).      (6.7) 

where H(fx,fy) is the optical transfer function found to be the autocorrelation of the exit 

pupil, equation 5.60.  The optical transfer function (OTF) shows how a system transfers 

the spatial frequencies of the object spectra to the image spectra.  Aberrations of the 

system affect the OTF, not the object or image spectra.  To see the affects of aberrations 

on different spatial frequencies, aberrations of various strengths and types were applied to 

the phase of the pupil function that was autocorrelated to find the OTF.  Figure 6.2 shows 

the cross-sectional plots of the OTF modulus, the modulus transfer function (MTF), 

versus spatial frequency with zero spatial frequency in the center.  Each subfigure 

contains plots of different aberration types with varying strengths.  It can bee seen for all 

aberration types, as the aberration strength increases the high spatial frequencies and the 

sum of all spatial frequencies decreases.   
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(c)                (d) 
FIGURE 6.2:  MTF cross-section plots with varying aberration strengths of (a) defocus, 

(b) astigmatism, (c) coma, and (d) spherical aberration. 
 
 
 
 From equation 6.6 it can be seen that squaring the magnitude of the spatial 

frequency at each pixel and taking the sum will produce as sharpness value that reaches a 

maximum when the wavefront error is zero.  If the magnitudes of the spatial frequencies 

are summed without squaring each value then this is a new sharpness metric.  For 

normalization, the sum is divided by the total power instead of power squared since there 

is no squaring in the numerator.  This produces the sharpness the metric S1 =  
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coherent imaging system where the image intensity is captured with the image plane 

camera and the Fourier transform is found digitally.   

 From figure 6.2 it can be seen that as aberrations are added the higher spatial 

frequencies decrease.  High spatial frequencies carry information about the edges and 

details of the image as seen in figure 5.6.  Knowing this, if the low spatial frequencies are 

masked out and the remaining high spatial frequencies are summed and divided by the 

total unmasked spatial frequencies then this ratio is maximized when the wavefront error 

is zero.  This is represented as the sharpness metric S2 = 
yxunmaskedi

yxmaskedi

dfdfyxI

dfdfyxI

∫∫
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)},({

)},({

F

F
 

where the Fourier transforming and masking are performed digitally on the image 

intensity captured with the image plane camera.  This can be used in both incoherent and 

coherent imaging. 

 In a coherent imaging system a single lens produces the Fourier transform 

distribution of the object at the Fourier plane located before the image plane.  If a camera 

is placed at the Fourier plane it captures 2)},({ yxUiF .  Again the sharpness value can 

be found by masking out the low spatial frequencies and dividing the sum of the 

remaining high spatial frequencies by the sum of the total unmasked spatial frequencies 

to give the sharpness metric S3 = 
yxunmaskedi

yxmaskedi

dfdfyxU

dfdfyxU
2

2

)},({

)},({

∫∫
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F

F
.  The captured image of 

the Fourier transform distribution is masked digitally and this works for coherent imaging 

only. 
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 Finally the concept of spatially filtering discussed in section 5.5 can be applied to 

create sharpness metric S4 = 
∫∫

∫∫
dxdyyxI

dxdyyxI ilteredspatiallyf

),(

),(
.  This sharpness metric requires 

that the optical path be divided into two paths with a camera at each image plane.  In one 

path a physical, opaque, high-pass filter is placed at the Fourier plane and the camera is 

placed at the image plane.  The spatially filtered image intensity will be greatest when 

aberrations are the smallest because there are more high spatial frequencies that pass by 

the mask.  For normalization, the total power measured from the spatially filtered image 

plane camera is divided by the total power of the unfiltered image plane camera to give 

the sharpness value.   

 In this section, four novel Fourier-based sharpness metrics have been introduced.  

The performance of these metrics will be investigated in chapters 7 and 8 and compared 

to the Si2 metric. 

6.4 Optical Components 

Two main optical components used in the Fourier-based image sharpness sensor, 

are the imaging camera and the deformable mirror.  The imaging camera is a charged 

couple device (CCD) camera.  Specifications of the CCD camera are listed in table 6.1.   

 
 

Model Pulnix TM-7CN 
Imager/Pick-up Element ½” = 12.7 mm 

No. of Pixels 768 x 494 
Cell Size 8.4 µm x 9.8 µm 

Effective Area 4.8 mm x 6.5 mm 
TV Resolution 570 x 350 

TABLE 6.1:  CCD Camera Specifications 
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 Two deformable mirrors were used and are referred to as the AgilOptics and the 

OKO deformable mirrors.  Both deformable mirrors are micromachined membrane 

deformable mirrors with 37 electrostatic actuators.  The profile of the AgilOptics 

deformable mirror is seen in figure 6.3 and the actuator array pattern of the AgilOptics 

mirror is seen in figure 6.4.   

 
 
 

Mounting Substrate

Electrostatic Actuator 
Pads 

Mirror surface with 
reflective coating 

Silicon wafer 
(0.5 mm thick) Silicon 

Nitride 
Membrane      
(1 µm thick) 

Mirror Spacer 
(40 µm thick) 

 
FIGURE 6.3:  AgilOptics Deformable Mirror Profile 
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FIGURE 6.4:  AgilOptics Actuator Array 
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Table 6.2 lists the specifications of the deformable mirrors.  The active portion of 

each mirror is roughly 60% of the membrane diameter82.   

 
 

Model AgilOptics DM 16-37 OKO MMDM 15-37 
Membrane Mirror Diameter 25 mm 15 mm 

Useable Mirror Diameter ~15 mm ~9 mm 
Number of Actuators 37 37 

Maximum Drive Voltage 150 V 237 V 
Maximum Deflection at 

Mirror Center 
7 µm 9 µm 

TABLE 6.2:  Deformable Mirror Specifications 
 
 

 
6.5 Search Algorithm 

The accuracy and speed at which the maximum sharpness value is obtained 

depends highly on the search algorithm used.  Due to the large number of degrees of 

freedom, a non-systematic algorithm is best to use.  Unlike systematic algorithms that 

traverse the whole search space, a non-systematic algorithm creates a random guess and 

uses the information obtained to create the next guess and disregards the rest of the 

search space.  Non-systematic search algorithms such as Simplex, simulated annealing, 

and stochastic gradient descent algorithms, have been studied in-depth in the dissertations 

of Doble80 and Murray81.  Further investigation of these search algorithms are not 

covered in this dissertation.  Choice of the search algorithm depends on the application  

and must consider the factors of speed and how easily the algorithm finds an absolute 

maximum without stopping on a local maximum.   

 
 



CHAPTER 7:  PERFORMANCE OF THE FOURIER-BASED IMAGE SHARPNESS 
SENSOR IN INCOHERENT IMAGING 

 
 
7.1 Introduction 

In this chapter the performance of the Fourier-based sharpness metrics used in an 

incoherent imaging system will be investigated.  To investigate the capabilities of these 

sharpness metrics the sharpness values are calculated as aberrations are added.  The 

sharpness metrics and system configurations for incoherent imaging will be discussed in 

sections 7.2 and 7.3.  For simplicity defocus was the first aberration used to compare the 

three sharpness metrics.  The sharpness versus defocus plots are present in section 7.4 to 

compare performance of the sharpness metrics for various objects.  Higher order 

aberrations are later added in section 7.5 to see how the sharpness metric behaves as the 

aberration strength increases.  Finally, in section 7.6 the sharpness metrics are 

implemented in a simple and manual closed-loop system. 

7.2 Sharpness Metrics 

Three sharpness metrics will be used throughout this chapter.  The first is the 

intensity squared metric 
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where the camera is located at the image plane to capture the image intensity.  For Si2 

each pixel value is squared and these squared values are summed up and divided by the
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 square of the summed pixel values.   

The second sharpness metric is the first of the two Fourier-based metrics 

analyzed, 

S1 = 
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Again the camera is located at the image plane and the Fourier transform of the image 

intensity distribution is found digitally using the Fast Fourier Transform (FFT) algorithm.  

After the FFT has been performed, the S1 sharpness value is found to be the sum of the 

modulus of the Fourier transformed value at each pixel divided by the sum of the 

intensity pixel values.   

The second Fourier-based sharpness metric is  

S2 = 
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  (7.3) 

where the image intensity is captured by the image plane camera and the Fourier 

transform of the image intensity and the masking of the Fourier distribution are both 

found digitally.  To calculate S2 the center pixels of the Fourier transform within a circle 

of a mask size radius are set to zero to mask out the low spatial frequencies.  The absolute 

values of the remaining spatial frequency values are summed and divided by the sum of 

the absolute value of the original, unmasked, Fourier transform to give the S2 sharpness 

value.   

7.3 System Configuration 

For incoherent imaging information used for all sharpness value calculations is 

obtained from image plane camera.  The Fourier transforming property of a single lens 
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can only be used with coherent light therefore for incoherent imaging the Fourier 

transform must be performed digitally.  In the same sense any masking must be done 

digitally because there is no Fourier plane to physically mask.   

Two incoherent imaging systems were used.  First an imaging system was built on 

the optics table with the object illuminated by an incoherent Light Emitting Diode (LED) 

source.  The second system was an 11 inch telescope with a camera mounted on it to 

capture several types of incoherent scenes of objects ranging in distance up to 5 km.   

The optics table incoherent imaging system setup can be seen in figures 7.1 and 

7.2.  The object is illuminated by a StockerYale LED.  Two deformable mirrors are 

placed in the system to both create and correct aberrations in the system.  At the image 

plane a Pulnix CCD camera is placed to capture the image intensity distribution.  Once 

the image is captured it is imported into MatLab and converted to a 640x640 array of 

intensity values for each pixel from which the sharpness value can be calculated using the 

metrics and methods described in section 7.2.   
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FIGURE 7.1:  Experimental schematic with an incoherent source and the camera at the 

image plane.  All numbers are in units of millimeters. 
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FIGURE 7.2:  Optics table experimental setup.  Incoherent LED source with the camera 

at the image plane. 
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The telescope system setup can be seen in figure 7.3.  The telescope used was a 

Celestron NexStar telescope with an 11 inch aperture, a 70x magnification (with the 

standard 40mm eyepiece), and a resolution of 0.50 arc seconds based on the Rayleigh 

limit.  Various daytime and nighttime objects where imaged by directing the telescope 

out of the laboratory window overlooking the UNC Charlotte campus as seen in figure 

7.3.  Defocus was added by turning to focus knob.  The Pulnix CCD camera was 

mounted on the telescope at the image plane to capture the image intensity distribution.  

Again the captured image was imported into MatLab where sharpness values were 

calculated using the same methods as the optics table configuration.   

 
 

Camera

 
FIGURE 7.3:  Telescope experimental setup with a Celestron NexStar 11 inch telescope 

and a CCD camera mounted at the image plane. 
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7.4 Sharpness versus Defocus Experimental Results 

In these experiments the sharpness value was measured using one of the three 

sharpness metrics and plotted versus aberration strength to see if the sharpness value does 

in fact reach a maximum when aberrations are reduced.  For simplicity defocus was the 

first and only aberration implemented during the experiments in this section. Higher-

order aberrations are applied and studied in section 7.5.   

For a given object and object distance, the image plane camera was adjusted to 

display the image at focus.  Initially all the actuators of the AgilOptics deformable mirror 

(DM) were set to a bias voltage of 50 V and all the OKO DM actuators values were set to 

zero.  Once the system was aligned and at focus, all the actuators of the OKO DM were 

then set to -1 to create defocus and the image plane camera captured and saved the image.  

All the OKO DM actuators were then set to -0.95 and again the image was captured and 

saved.  This process continued as all the OKO DM actuators were ranged from -1 to 1 in 

increments of 0.05 and the image was captured at each setting.  Once this series of 41 

images were saved, the sharpness value of each image was calculated in MatLab.  Each 

image (in the form of .bmp, .tiff, or .jpg) was imported into MatLab and converted to a 

640x640 array where each element represented the pixel intensity scaled to values 

between 0 and 255.  The sharpness value for a single image was calculated based on the 

sharpness metric used and placed in a vector of sharpness values.  The next image was 

then imported and again the sharpness value was calculated and placed in the sharpness 

vector.  This continued until all the images were processed resulting in a 41 element 

vector of sharpness values. 
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This sharpness vector contains the sharpness values as the OKO DM cycled from 

out of focus (value of -1), through focus (value of 0), and continued to move out of focus 

(value of 1).  The defocus Zernike coefficient, measured in waves, for each of the OKO 

DM actuator values was measured using a Shack Hartmann wavefront sensor (WFS).  

Figure 7.4 shows the addition of the WFS and the relay lenses to adjust the beam size.  

Once the defocus Zernike coefficients were measured they were placed in a 41 element 

vector.  The sharpness vector versus the defocus vector was plotted to show how the 

sharpness value changes as the OKO DM went from defocus, through focus, and back to 

defocus.  These sharpness versus defocus plots will be used to analyze the three 

sharpness metrics used in this chapter and the sharpness metrics used for coherent 

imaging in chapter 8. 
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FIGURE 7.4:  Experimental schematic with the added Shack Hartmann wavefront sensor. 
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TABLE 7.1:  Image plane intensity distributions and digital Fourier transforms on linear 
and logarithmic scales for an incoherent source and optics table setup. 
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7.4.1 Optics Table Experimental Results 

For all optics table configurations in this chapter and in chapter 8, six different 

objects were used.  The images of these six objects can be seen in table 7.1 along with the 

title with which they will be referred to throughout this dissertation.  Also seen in table 

7.1 is the Fourier transform, performed digitally with MatLab, of each image on linear 

and logarithmic scales.  A National Bureau of Standards (NBS) 1963A resolution pattern 

was used to create the first three objects, referred to as “bar chart” objects.  The bar chart 

was positioned such that certain spatial frequencies were in the illumination beam.  High, 

medium, and low frequency titles refer to the relative spatial frequency number that was 

illuminated where the number identifies the lines per millimeter of the adjacent vertical 

and horizontal bars.  Though one object is referred to as low frequency it is only the 

spatial frequency of the bars that is lower than the other objects, this object does in fact 

have high spatial frequencies as there are sharp, high contrast, edges throughout the 

pattern.  The next two objects were created using an iris of two different sizes.  “Small 

circle object” refers to the smallest size of the iris with a diameter of 2 mm and “circle 

object” refers to an iris with a diameter of 12 mm.  Finally the “star pattern” refers to the 

portion of the star target pattern used that has wedge spacing and spatial frequencies 

ranging from 0.6 to 14 lines per millimeter.     

To measure and compare the sharpness metrics, a series of image plane images 

was captured and saved as the OKO DM was cycled through the defocus values.  Images 

were obtained for all six objects.  Before comparing all three sharpness metrics, the affect 

of mask size on the sensitivity of S2, equation 7.3, first needs to be investigated.  To do so 

the image sharpness values versus defocus were obtained  for all six objects using various 
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mask sizes and sharpness metric S2.  The mask size is the radius of the circle, measured 

in pixels, within which the central pixels of the image Fourier transform were set to zero.  

To compare the sharpness plots for each mask size and see the affect on the sensitivity, 

the plots were scaled and normalized to a sharpness range of 0 to 1.  Once the plots were 

scaled and normalized they were fitted to a Gaussian from which the standard deviation 

was calculated.  The sensitivity is determined from the standard deviation, σ, where the 

smaller value represents greater sensitivity.  Table 7.2 shows the sharpness versus 

defocus plots of the medium frequency bar chart object with varying mask sizes.  Also 

shown in table 7.2 are the image Fourier transforms at defocus and focus with the center 

masked out by the corresponding mask size.  These Fourier transform images have been 

zoomed in to better see the detail at the high spatial frequencies.  With the Fourier 

transform images it should be noted that MatLab automatically normalizes the pixel 

values to a range of 0 to 1 when performing a gray plot.  As the mask size increases, 

more high spatial frequency detail can be seen as the low spatial frequencies are masked  

Looking at the plots in table 7.2, in general as the mask size increases the standard 

deviation decreases and thus the sensitivity increases.  Also it can be seen, especially with 

larger mask sizes, that the Fourier transforms at focus contain more high spatial 

frequencies than at defocus and therefore there is a greater sensitivity with the larger 

mask sizes.  This mask size and sensitivity relationship was observed with all six objects 

and each object and mask size (up to 20) produced an absolute maximum at zero waves 

defocus.  When selecting a mask size, typically the larger size is better, but one must also 

consider the objects being imaged and the resolution of the optical system.  For the 

following sharpness metric comparisons the S2 metric uses a mask size of 20 pixels.   
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TABLE 7.2:  S2 mask sensitivity for the medium frequency bar chart object illuminated 
with an incoherent source and optics table setup. 

 
 
Using the same series of image plane captured images used to investigate the S2 mask 

size, the image sharpness values were calculated using the Si2, S1, and S2 (mask size of 20 

pixels) metrics and plotted versus defocus for all six objects and placed in table 7.3.  For 

comparison all the plots were again scaled and normalized from 0 to 1 and fitted with a 

Gaussian to find the standard deviation.   With the exception of the star pattern, it can be 

seen that the S2 metric is the most sensitive with the Si2 metric being the least sensitive.  

It can be noted for the circle object the Si2 failed to produce a maximum at focus where 

both the S1 and S2 metrics were successful. 
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TABLE 7.3:  Sharpness vs. defocus plots for an incoherent source and optics table setup.  
Comparison of the three image plane sharpness metrics.  S2  uses a mask size of 20 pixels.  
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7.4.2 Telescope Experimental Results 

 With the telescope experiments the objects are no longer test patterns and circle 

on the optics table, but extended object scenes as viewed from the laboratory window.  

Terrestrial objects imaged were at various distances ranging from 80 m up to 5 km.  The 

moon was also imaged at near full phase.  Similar to the optics table experiments several 

images were captured as the system went from defocus, through focus and continued to 

defocus again.  For these experiments the defocus was added by turning the focus knob 

on the telescope.  First the object of interest was brought into focus and then the knob 

was turned counter clockwise until the image was out of focus.  The image was captured 

and saved before the focus knob was turned slightly in the clockwise direction where this 

next image was captured and saved.  This continued as the focus knob turned through 

focus and continued on until the image was again out of focus.   

The captured images were imported into MatLab where the sharpness value 

vector was calculated using one of the three sharpness metrics.  When plotting the 

sharpness versus defocus it is difficult to quantize the defocus value since there is no 

measured scale on the focus knob and no capabilities with the current system to measure 

defocus using the Shack Hartmann WFS on the telescope.  Defocus and focus images 

were labeled based on visual inspection, not wavefront measurement.  An example of this 

terminology can be seen in figure 7.5 where the images of the UNC Charlotte logo at 

defocus and focus are shown.  For all sharpness versus defocus plots with the telescope 

setup, the x-axis identifies the image number and has no significant physical meaning. 
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(a)      (b) 

FIGURE 7.5:  Telescope images of the UNC Charlotte logo with the telescope at (a) 
defocus and (b) focus 

 
 
 

 Before comparing the three sharpness metrics first the affect of the mask size in 

metric S2 must be investigated.  Using the UNCC logo, seen in figure 7.5b, the S2 

sharpness values were calculated with digital mask sizes of 1, 2, 3, 4, 5, and 10 pixels.  

For comparison the sharpness versus defocus plots were scaled, normalized, and fit to a 

Gaussian where the standard deviation was calculated.   
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TABLE 7.4:  S2 sharpness vs. defocus plots with various mask sizes for the UNC 
Charlotte logo object with the telescope setup. 
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 Table 7.4 shows the sharpness versus defocus plots with varying mask size.  As 

the mask size increases the standard deviation decreases and thus the sensitivity increases 

up until the mask size of 10 pixels where there is no longer an absolute maximum.  

Unlike the optics table images, the telescope images are limited by the telescope 

resolution and object contrast causing the edges to be less defined and therefore showing 

fewer high spatial frequencies.  When selecting the mask size, the larger mask size is 

better within the limitations introduced by the system resolution and object features.  A 

mask size of 5 pixels is used for all the following S2 sharpness calculations. 

 The sharpness versus defocus plots using the three sharpness metrics were 

obtained for several extended objects and placed in table 7.5 for comparison. 
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TABLE 7.5.:  Sharpness vs. defocus plots for 22 extended objects.  Comparison of the 

three sharpness metrics.  S2  uses a mask size of 5 pixels. 
 
 

Sh
ar

pn
es

s 

Sh
ar

pn
es

s 

Sh
ar

pn
es

s 

Sh
ar

pn
es

s 

Sh
ar

pn
es

s 

Sh
ar

pn
es

s 

Sh
ar

pn
es

s 

Sh
ar

pn
es

s 

Sh
ar

pn
es

s 

Sh
ar

pn
es

s 

Sh
ar

pn
es

s 

Sh
ar

pn
es

s 

Sh
ar

pn
es

s 

Sh
ar

pn
es

s 

Sh
ar

pn
es

s 



 

 

66

 Before comparing and discussing the sharpness versus defocus plots in table 7.5 it 

should be noted that these plots are not normalized like previous optics table plots and the 

x-axis has no physical meaning but rather lists the image number.  It can be seen for 

several objects (i.e. lock, trees & pole, dome, belk tower, and smokestack) that the Si2 

sharpness metric failed either by having no maximum at focus or only a local maximum.  

For all objects the S1 and S2 Fourier-based metrics successfully produced an absolute 

maximum at focus.  There were some low contrast objects (i.e. column, sign lettering, 

and track lights) where the Si2 maximum was at different image than the S1 and S2 

metrics.  After visual inspection of the images at the two maximum values, the images at 

the S1 and S2 metric maxima are sharper than the Si2 maximum images.  For the trees and 

pole object there are two local maxima because there are two objects at different object 

distances within the field of view, the trees and the pole, causing two different “in-focus” 

positions depending on the object in focus.  Each of the two local maxima corresponds to 

the focus positions of the trees and the pole respectively.  In general the Fourier-based 

sharpness metrics were more robust than the Si2 sharpness metric. 

 When imaging with the telescope extended objects and scenes were plenty but it 

was more difficult to locate incoherent point sources.  Due to campus light pollution and 

the limited field of view from the laboratory window it was difficult to image the few 

visible stars, therefore alternative point sources were needed.  The first point source was 

created by placing a fiber optics white light source in the window of an adjacent building 

and directing it toward the laboratory window.  The second point source was a lamp 

located on a parking deck that was distant enough that the light structure could not be 

resolved and thus worked as a point source.  Finally the two lights on a distant cell phone 
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tower worked well for the third point source object.  Images of these point source objects 

at focus can be seen in table 7.6 with their corresponding distances. 

 
 

Fiber Optics Lamp 
Point Source  

Distance = 90 m 

Parking Deck Light 
Distance = 570 m 

Cell Tower Dual Lights 
Distance = 5.0 km 

   
TABLE 7.6:  Telescope images of the incoherent point sources at focus.   

 
 
 

 Sharpness versus defocus plots for the three point sources and the three sharpness 

metrics (mask size of 5 pixels used for S2) are presented in table 7.7.  These plots have 

been normalized and fitted with a Gaussian to compare the sensitivities of the metrics.  

Again the Fourier-based sharpness metrics performed better than the Si2 metric.  

Comparison between the S1 and S2 metrics show S2 has a smaller standard deviation and 

greater sensitivity than the S1 metric. 
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TABLE 7.7:  Sharpness vs. defocus plots for the incoherent point source with the 
telescope setup.  Comparison of the three image plane sharpness metrics.  S2  uses a mask 

size of 5 pixels.  
 
 
 
7.4.3 Summary 

 In this section the sharpness versus defocus plots were created for the optics table 

and telescope configurations for various incoherently illuminated objects and scenes.  In 

several cases where the Si2 failed to produce an absolute maximum at focus the Fourier-

based sharpness metrics were successful.  For many objects where all three metrics were 

successful, the comparison of standard deviations of the Gaussian-fitted plots found S2 to 

be the most sensitive whereas Si2 was the least sensitive.  To further compare the three 
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measured and listed in table 7.8.  Though the S2 metric is the most sensitive it requires 

the longest computing time because of the Fourier transforming and digital masking.  

When selecting a metric there is a trade off between sensitivity and computing time.   
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4.04 s 

 
4.40 s 

 
4.56 s 

TABLE 7.8:  Computing times of the three image plane sharpness metrics. 
 
 
 
 Another factor to consider is the mask size used for the S2 metric.  In general, the 

sensitivity increases as the mask size increases up to the limit created by the system 

resolution and object contrast.  A mask size of 20 pixels was used for the optics table 

where a mask size of only 5 pixels was used for the telescope experiments.  This 

difference in mask size is attributed to the fact that the optics table objects had higher 

contrast and thus more high spatial frequencies and a larger mask size limit than the 

telescope system that was limited by the telescope resolution and scene contrast.   

7.5 Sharpness versus higher order aberrations 

 In this section the sharpness values were calculated as higher order aberrations of 

increasing strength were added. Only the optics table configuration was used since higher 

order aberrations can not be applied to the telescope in a controlled manner.  Higher order 

aberrations consisted of astigmatism, coma, and spherical aberration and were created 

with the OKO DM.  Using the Shack-Hartmann WFS in the setup in figure 7.4 the mirror 

was driven to produce the target wavefront of an aberration with a set strength compared 

to a reference wavefront that included the aberrations of the optical system.  For each 
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aberration the strength ranged from 0 to 2.01 waves with increments of 0.16 waves.  This 

aberration strength range is seen on the x-axis of the following sharpness verse aberration 

plots.  It should be noted that none of the sharpness plots in this section are normalized 

because there was not a Gaussian shape to fit to.  Unlike with defocus where the 

maximum in toward the center at zero waves defocus, with these plots the maximum 

should be located at the left side of the plot as the aberration strength ranges from 0 to 

2.01 waves. 

 Sharpness versus aberration strength plots for all three sharpness metrics and all 

objects can be seen in table 7.9, 7.10, and 7.11 for astigmatism, coma, and spherical 

aberration respectively.  A mask size of 20 pixels was used for sharpness metric S2. 

Looking at the astigmatism plots for the small circle object, the S2 metric 

produced an absolute maximum at 0 waves of astigmatism where both Si2 and S1 failed. 

The intensity squared metric, Si2, failed with the high frequency bar chart and circle 

object where both the Fourier-based metrics were sucessful.  For coma again the S2 

metric was successful for all objects where Si2 and S1 both failed to produce and absolute 

maximum at zero waves of coma for the low frequency bar chart object and the two circle 

objects.  Looking at the plots in table 7.11 with spherical aberration, none of the metrics 

worked for the small circle object.  As with the other aberrations the S2 metric performs 

the best at producing an absolute maximum at zero waves of aberration.  It can be seen 

that these metrics were successful with higher order aberrations though they do not work 

as well as they did with defocus because local maxima were more frequent.  Sharpness 

measurements with higher aberrations are limited by the capability of the deformable 
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mirror to apply the desired aberration on the wavefront where defocus is easier to create 

by setting all actuator voltages to the same value.   
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TABLE 7.9:  Sharpness vs. astigmatism plots for an incoherent source and optics table 

setup.  Comparison of the three image plane sharpness metrics.  S2  uses a mask size of 20 
pixels.  
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TABLE 7.10:  Sharpness vs. coma plots for an incoherent source and optics table setup.  

Comparison of the three image plane sharpness metrics.  S2  uses a mask size of 20 pixels. 
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TABLE 7.11:  Sharpness vs. spherical aberration plots for an incoherent source and 
optics table setup.  Comparison of the three image plane sharpness metrics.  S2  uses a 

mask size of 20 pixels. 
 
 
 
7.6 Performance in a closed-loop system 

To see the potential of these three image sharpness metrics in a closed-loop 

system, they were used in a manual closed-loop system.  With the optics table setup the 

image plane camera was moved to an arbitrary location out of focus but close enough to 

focus to allow correction with the OKO deformable mirror (DM).  Initially all the OKO 

DM actuator values were set to zero and the sharpness value was calculated from the 

captured image using all three metrics and noted.  All the OKO DM actuator values were 

decreased by an increment of 0.05 and the image was recorded and sharpness values were 

calculated.  If the sharpness value increased then the OKO DM actuator values continued 

to decrease by an increment of 0.05; if the sharpness value decreased then the actuator 

values were increased.  This continued until there the sharpness value reached a 

maximum.   

The first closed-loop experiment used the high frequency bar chart object with the 

optics table setup.  In table 7.12 each captured image is listed with its corresponding 

sharpness values and OKO DM actuator setting.  Local maxima of the sharpness values 

are indicated with italics and absolute maxima are indicated with bold text.  For this run 

the actuator increments were initially 0.05.  Once a maximum was passed, the increments 
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were shortened to 0.01 to find a more accurate actuator setting.  Visibly it is difficult to 

see much change in images within an actuator value of 0.1 of the maximum.  It should be 

noted that both S1 and S2 are in agreement of the absolute value of 0.41 where Si2 found 

and absolute value of 0.38. 

 
 

 
Si2 = 5.282 x 10-6 

S1 = 63.05 
S2 = 0.661 

OKO Actuator = 0 

 
Si2 = 5.22 x 10-6 

S1 = 59.44 
S2 = 0.646 

OKO Actuator = -.05 

 
Si2 = 5.352 x 10-6 

S1 = 66.83 
S2 = 0.676 

OKO Actuator = .05 

 
Si2 = 5.421 x 10-6 

S1 = 74.22 
S2 = 0.707 

OKO Actuator =.1 

 
Si2 = 5.473 x 10-6 

S1 = 79.55 
S2 = 0.726 

OKO Actuator = .15 

 
Si2 = 5.527 x 10-6 

S1 = 87.38 
S2 = 0.751 

OKO Actuator = .2 

 
Si2 = 5.586 x 10-6 

S1 = 95.72 
S2 = 0.772 

OKO Actuator = .25 

 
Si2 = 5.636 x 10-6 

S1 = 103.55 
S2 = 0.789 

OKO Actuator = .3 

 
Si2 = 5.658 x 10-6 

S1 = 109.08 
S2 = 0.801 

OKO Actuator = .35 

 
Si2 = 5.637 x 10-6 

S1 = 111.89 
S2 = 0.807 

OKO Actuator = .4 

 
Si2 = 5.612 x 10-6 

S1 = 107.01 
S2 = 0.798 

OKO Actuator = .45 

 
Si2 = 5.623 x 10-6 

S1 = 108.72 
S2 = 0.801 

OKO Actuator = .44 

 
Si2 = 5.631 x 10-6 

S1 = 108.73 
S2 = 0.801 

OKO Actuator = .43 

 
Si2 = 5.617 x 10-6 

S1 = 110.08 
S2 = 0.804 

OKO Actuator = .42 

 
Si2 = 5.635 x 10-6 

S1 = 112.18 
S2 = 0.807 

OKO Actuator = .41 

 
Si2 = 5.655 x 10-6 

S1 = 110.40 
S2 = 0.804 

OKO Actuator = .40 
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Si2 = 5.662 x 10-6 

S1 = 110.78 
S2 = 0.804 

OKO Actuator = .39 

 
Si2 = 5.672 x 10-6 

S1 = 111.31 
S2 = 0.805 

OKO Actuator = .38 

 
Si2 = 5.671 x 10-6 

S1 = 111.12 
S2 = 0.802 

OKO Actuator = .37 

 
Si2 = 5.666 
S1 = 109.99 
S2 = 0.802 

OKO Actuator = .36 
TABLE 7.12:  Closed-loop images for the high frequency bar chart object on the optics 

table with an incoherent source.  Mask size of 20 pixels used for S2. 
 
 

 For the telescope setup the telescope was directed at an unknown object out of 

focus.  Similar to the previous closed-loop, the sharpness value was calculated and 

recorded.  Then the focus knob was turned slightly one direction and a new image was 

captured and the sharpness value was measured.  If the sharpness increased the knob 

continued to turn in that direction, otherwise the direction was reversed.  Since there is no 

scale on the focus knob there is no quantized defocus value.  The closed-loop on the 

telescope was performed on three objects and can be seen in tables 7.13, 7.14, and 7.15.  

The direction listed was the direction the focus knob was turned after the sharpness 

values were calculated for the corresponding image.  Local maxima are identified with 

italics and absolute maximum with bold.  There was agreement between the Fourier-

based sharpness metrics, S1 and S2, and the maximum sharpness but some disagreement 

with the Si2 maximum sharpness value.  It should be noted that the tree images are 

different due to the motion of the trees yet the sharpness metrics were still successful.  

According to the shift theorem, equation 5.5, a translation in the image spatial plane 

causes as phase shift in the image Fourier plane.  The phase shift information is lost when 
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the modulus is taken to calculate the sharpness value.  Therefore image motion has no 

impact on the sharpness values as long as the object stays in the field of view. 

 
 

 

 
Si2 =3.2659 x 10-6 

S1 = 12.11 
S2 = 0.7962 

Image Number 1 
Counterclockwise 

 

 
Si2 = 3.2653 x 10-6 

S1 = 11.69 
S2 = 0.7894 

Image Number 2 
Clockwise 

 

 
Si2 = 3.2660 x 10-6 

S1 = 11.84 
S2 = 0.7911 

Image Number 3 
Clockwise 

 

 
Si2 =3.2702 x 10-6 

S1 = 13.09 
S2 = 0.8097 

Image Number 4 
Clockwise 

 

 
Si2 = 3.2718 x 10-6 

S1 = 13.29 
S2 = 0.8120 

Image Number 5 
Clockwise 

 

 
Si2 = 3.2687 x 10-6 

S1 = 12.16 
S2 = 0.7945 

Image Number 6 
Counterclockwise 

 

 
Si2 = 3.2685 x 10-6 

S1 = 12.24 
S2 = 0.7964 

Image Number 7 
Counterclockwise 

 

 
Si2 = 3.2702 x 10-6 

S1 = 12.63 
S2 = 0.8030 

Image Number 8 
Counterclockwise 

 

 
Si2 = 3.2715 x 10-6 

S1 = 13.17 
S2 = 0.8113 

Image Number 9 
Counterclockwise 

 

 
Si2 = 3.2721 x 10-6 

S1 = 13.85 
S2 = 0.8208 

Image Number 10 
Counterclockwise 

 

 
Si2 = 3.2713 x 10-6 

S1 = 13.96 
S2 = 0.8224 

Image Number 11 
Counterclockwise 

 

 
Si2 = 3.2702 x 10-6 

S1 = 13.43 
S2 = 0.8154 

Image Number 12 
 

TABLE 7.13:  Closed-loop images of brick located at a distance of about 60 m taken with 
the telescope.  Image plane sharpness metrics used.  Mask size of 5 pixels used for S2. 
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Si2 = 3.2644 x 10-6 

S1 = 9.99 
S2 =0.7539 

Image Number 1 
Counterclockwise 

 

 
Si2 =3.2611 x 10-6 

S1 = 9.76 
S2 = 0.7537 

Image Number 2 
Clockwise 

 

 
Si2 = 3.2607 x 10-6 

S1 = 9.86 
S2 = 0.7562 

Image Number 3 
Clockwise 

 

 
Si2 = 3.2623 x 10-6 

S1 = 10.20 
S2 = 0.7585 

Image Number 4 
Clockwise 

 

Si2 = 3.2659 x 10-6 
S1 = 10.68 
S2 = 0.7629 

Image Number 5 
Clockwise 

 

Si2 = 3.2820 x 10-6 
S1 = 12.22 
S2 = 0.7876 

Image Number 6 
Clockwise 

 

Si2 = 3.2736 x 10-6 
S1 = 11.90 
S2 = 0.7807 

Image Number 7 
Counterclockwise 

 

Si2 = 3.2805 x 10-6 
S1 = 12.95 
S2 = 0.7917 

Image Number 8 
Counterclockwise 

 

Si2 = 3.2764 x 10-6 
S1 = 12.67 
S2 = 0.7915 

Image Number 9 
Counterclockwise 

 

Si2 = 3.2802 x 10-6 
S1 = 12.91 
S2 = 0.7974 

Image Number 10 
Clockwise 

 

Si2 = 3.2749 x 10-6 
S1 = 13.23 
S2 = 0.8033 

Image Number 11 
Clockwise 

 

Si2 = 3.2751 x 10-6 
S1 = 12.72 
S2 = 0.7967 

Image Number 12 

TABLE 7.14:  Closed-loop images of trees located at a distance of about 300 m taken 
with the telescope.  Image plane sharpness metrics used.  Mask size of 5 pixels used for 

S2.  
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Si2 = 3.2617 x 10-6 

S1 = 10.74 
S2 = 0.7750 

Image Number 1 
Counterclockwise 

 

 
Si2 = 3.2632 x 10-6 

S1 = 11.01 
S2 = 0.7776 

Image Number 2 
Counterclockwise 

 

 
Si2 = 3.2647 x 10-6 

S1 = 11.19 
S2 = 0.7778 

Image Number 3 
Counterclockwise 

 

 
Si2 = 3.2685 x 10-6 

S1 = 11.54 
S2 = 0.7807 

Image Number 4 
Counterclockwise 

 

 
Si2 = 3.2698 x 10-6 

S1 = 11.82 
S2 = 0.7854 

Image Number 5 
Counterclockwise 

 

 
Si2 = 3.2700 x 10-6 

S1 = 11.96 
S2 = 0.7879 

Image Number 6 
Counterclockwise 

 

 
Si2 = 3.2683 x 10-6 

S1 = 11.64 
S2 = 0.7827 

Image Number 7 
Clockwise 

 

 
Si2 = 3.2699 x 10-6 

S1 = 11.83 
S2 = 0.7865 

Image Number 8 
Clockwise 

 

 
Si2 = 3.2710 x 10-6 

S1 = 12.01 
S2 = 0.7900 

Image Number 9 
Clockwise 

 

 
Si2 = 3.2713 x 10-6 

S1 = 12.07 
S2 = 0.7912 

Image Number 10 
Clockwise 

 

 
Si2 = 3.2716 x 10-6 

S1 = 12.08 
S2 = 0.7917 

Image Number 11 
Clockwise 

 

 
Si2 = 3.2710 x 10-6 

S1 = 11.93 
S2 = 0.7891 

Image Number 12 

TABLE 7.15  Closed-loop images of a window located at a distance of about 1 km taken 
with the telescope.  Image plane sharpness metrics used.  Mask size of 5 pixels used for 

S2. 
 
 
 
These preliminary results in this slow and manual closed-loop system show promise for 

the sharpness metrics to perform successfully in a automatic, closed-loop adaptive optics 

system. 



 

 

81

7.7 Conclusions 

 In this chapter the performance of three sharpness metrics Si2, S1, and S2 in an 

incoherent imaging system were investigated and compared.  Two incoherent 

configurations were used, the optics table and telescope setups.  First, the three metrics 

were compared by only applying defocus to the system by using the OKO DM in the 

optical table setup and the defocus knob in the telescope setup.  As mask size used for S2 

increases so does the sensitivity of the metric up to an upper limit determined by the 

scene contrast and optical system resolution.  Comparison of the three metrics found the 

Fourier-based metrics S1 and S2 to perform with greater robustness and sensitivity than 

the intensity squared Si2 metric.  Between the two Fourier-based metrics the S2 metric 

often had greater sensitivity than S1. The drawback of the Fourier-based metrics is that 

the calculation time is longer because the Fourier transform is found digitally. 

 Higher order aberrations were then applied to compare the metric performances.  

It was found that though the sharpness metrics did not perform as well as with defocus 

only, the sharpness metrics often had a maximum sharpness value at zero waves of a 

given aberration.  

 Finally the metrics were implemented in a preliminary, manual, closed-loop 

system.  Though this system was manual, slow, and did not use a search algorithm, the 

preliminary results show promise of the sharpness metrics succeeding in a closed-loop 

adaptive optics system.   

 



CHAPTER 8:  PERFORMANCE OF THE FOURIER-BASED IMAGE SHARPNESS 
SENSOR IN COHERENT IMAGING 

 
 
8.1 Introduction 

 This chapter will investigate the performance of the Fourier-based sharpness 

metrics in a coherent imaging system.  Like in the previous chapter, the sharpness values 

will be measured as aberrations are added to the system based on the sharpness metrics 

being investigated.  All five sharpness metrics are used in coherent imaging and 

discussed in sections 8.2.  Section 8.3 describes the coherent optical configurations 

depending on the sharpness metric used.  To study the effect of adding aberration, 

defocus was first added and the sharpness value is measured versus defocus and 

presented in section 8.4 where the performance of all metrics are shown and compared.  

Higher order aberrations are later added in section 8.5 to see how the sharpness metric 

behaves as the aberration strength increases.  The sharpness metrics are then 

implemented in a simple and manual closed-loop system in section 8.6. 

8.2 Sharpness Metrics 

The first three sharpness metrics, 
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S2 = 
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are the same three used in the incoherent imaging system as discussed in section 7.2.  All 

three of these sharpness metrics use information obtained from the image captured by the 

image plane camera.  

 When imaging with a coherent system the Fourier transforming property of a 

single lens produces a Fourier plane located before the image plane.  The Fourier 

transform of the object field is performed optically and captured by a camera located at 

the Fourier plane.  From this captured image the sharpness value is calculated using. 

S3 = 
yxunmaskedi

yxmaskedi

dfdfyxU

dfdfyxU
2
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F
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unmaskedi

maskedi

yxU

yxU

F

F
 (8.4) 

where the power spectrum is masked digitally, summed, and divided by the sum of the 

unmasked power spectrum.  Since the Fourier transform has been performed optically 

there is no need to use the fast Fourier transform.  To mask the Fourier transform 

intensity array the center must be located based on the camera position.  Once the center 

pixel is found this location remains constant as long as the camera is stationary since 

translation of the object introduces a phase change at the Fourier plane, not a translation.  

This is a result of the shift theorem, equation 5.5.  The central pixels about the center 

within a circle of a radius equal to the mask size are set to zero and saved as a new array.  

To calculate the sharpness value using S3 the sum of the masked array is divided by the 

sum of the unmasked array. 

 The final sharpness metric also uses the Fourier transforming property of a single 

lens in a coherent imaging system.  The optical path is divided into two paths with a 
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camera located at each of the two image planes.  In one path a physical, opaque mask is 

centered in the Fourier plane to block out the low spatial frequencies and let the high 

spatial frequencies pass through to the image plane.  The image plane cameras capture 

both the spatially filtered image and unfiltered image intensity.  Then the captured image 

intensity is summed and the ratio of these two power values produces the sharpness value 

as represented by the sharpness metric 

S4 = 
∫∫

∫∫
dxdyyxI

dxdyyxI ilteredspatiallyf

),(

),(
  = 

∑
∑

),(
),(

yxI
yxI ilteredspatiallyf .  (8.5) 

Both the spatially filtered and unfiltered images are captured by the camera and 

imported into MatLab were they were converted into two arrays of pixel intensities.  The 

sharpness value using metric S4 is then found by summing the spatially filtered image 

intensity and dividing it by the sum of the unfiltered intensity.   

8.3 Optical System Configurations 

Since the sharpness metrics have different optical system requirements, the 

required system configurations will be discussed in this section.  Experimental results 

will be organized based on the optical configuration 

The first configuration is referred to as “camera at the image plane.”  There are 

two configurations, the optics table and telescope setup.  In the optics table setup the 

CCD camera is located at the image plane as seen in figures 8.1 and 8.2.  This system is 

similar to the incoherent imaging system, figure 7.1, with the exception that in this 

system the object is illuminated by a HeNe laser.   
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FIGURE 8.1:  Experimental schematic with a coherent source and the camera at the 

image plane.  All numbers are in units of millimeters. 
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FIGURE 8.2:  Optics table experimental setup.  Coherent HeNe laser source with the 

camera located at the image plane. 
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Like the incoherent system the Fourier transform is performed digitally using 

MatLab and masking for S2 is also done digitally by zeroing the central pixel values that 

fall within a circle with a radius equal to the mask size.  Sharpness values Si2, S1, and S2 

are calculated the same way as the incoherent system as described in section 7.2.    

The telescope setup seen in figure 7.3 is again used to image coherent point 

sources.  Images captured at the telescope image plane are used with the first three 

sharpness metrics to calculate the sharpness values using the same methodology as the 

optics table image plane configuration.   
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FIGURE 8.3:  Experimental schematic with a coherent source and the camera at the 
Fourier plane.  All numbers are in units of millimeters. 
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For the second configuration, referred to as “camera at the Fourier plane”, the 

camera is located at the Fourier plane as seen in figures 8.3 and 8.4.  The intensity at the 

Fourier plane is captured by the camera, saved, and imported into MatLab where it is 

converted to a 640x640 array of Fourier plane intensity values.  The sharpness value is 

then calculated as described in section 8.2.   
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FIGURE 8.4:  Optics table experimental setup.  Coherent HeNe laser source with the 

camera located at the Fourier plane. 
 
 
 

The third and final configuration called “physical mask at the Fourier plane” 

again uses the Fourier transforming property of a single lens to do perform spatial 

filtering.  Figure 8.5 shows the optical system requiring the beam to be divided with a 

beam splitter and a camera placed at each of the two image planes, also seen in figure 8.6.  

In one optical path a high-pass filter is placed and centered in the Fourier plane blocking 

the low spatial frequencies and allowing the high spatial frequencies to pass and form an 

image at the image plane.   
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FIGURE 8.5:  Experimental schematic with a coherent source and high-pass mask at the 

Fourier plane. Cameras are located at the image planes to capture the spatially filtered 
image and the normal image.  All numbers are in units of millimeters. 
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FIGURE 8.6:  Optics table setup of the spatially filtering configuration. 
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The mask consists of a simple overhead transparency with a circle printed on it.  

For the circle objects where the Fourier transform distribution is spatially smaller, a mask 

of size 0.13 mm was used and for extended objects with high spatial frequencies a mask 

of size 1.27 mm was used.  Due to the imperfections in the transparencies and the fact 

that the ink dot was not completely opaque, some low spatial frequencies passed through 

and some high spatial frequencies were lost   

8.4 Sharpness versus Defocus Experimental Results  

To investigate the performance of these sharpness metrics the sharpness values 

were calculated as defocus was added to the system.  When plotting the sharpness values 

as the systems cycles from defocus, through focus, and back out of focus there should be 

a steep absolute maximum at focus.  Sharpness versus defocus plots are obtained in the 

same way as described in section 7.4. In this section only defocus is considered and 

higher order aberrations are investigated in the section 8.5.  The sharpness versus defocus 

plots are arranged in subsections based on the optical system configuration used.   

8.4.1 Camera at the Image Plane 

Using the image plane configuration seen in figures 8.1 and 8.2, the sharpness 

metrics Si2, S1, and S2 where studied first using objects on the optics table illuminated 

with a HeNe laser.  The objects illuminated by the laser were there same objects 

described in section 7.4.1.  Before comparing the three sharpness metrics, the optimal 

mask size for the S2 metric needs to be found.  Sharpness versus defocus plots for the 

medium frequency bar chart object were found with varying mask sizes and listed in table 

8.1.  For these plots the sharpness values were normalized to a range of 0 to 1 and fit to a 

Gaussian curve to determine the sensitivity by calculating the standard deviation, σ, of 
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the fitted Gaussian.  The Fourier transform of the captured image was performed digitally 

using fast Fourier transform in MatLab and masked digitally.  Masked Fourier transforms 

at defocus and focus with various mask sizes can be seen in table 8.1 where the plots 

have been zoomed in to better see the details.  For the Fourier transform images it should 

also be noted that MatLab automatically scales the intensity values when performing a 

gray plot. 
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TABLE 8.1:  S2 mask sensitivity for the medium frequency bar chart object illuminated 
by a coherent source. 
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increases.  This breakdown in the trend can be attributed to greater noise caused by the 

speckle effect when using the coherent laser source.  Since there is no benefit of 

increased sensitivity for masks larger than 5 pixels a mask size of 5 pixels was used for 

all the following S2 sharpness calculations.   

The three sharpness metrics are then compared by finding the sharpness versus 

defocus plots for all six objects as seen in table 8.2.  For comparison the sharpness values 

have been normalized and fit with a Gaussian to determine the sensitivity.  It can be seen 

that the Fourier-based metrics performed better than Si2 by producing an absolute 

maximum for all objects where the Si2 failed with the low frequency bar chart and circle 

object.  In general the S2 metric performed with greater sensitivity than the S1 metric.  For 

the high frequency bar chart object there are several local maxima due to the increased 

noise caused by speckle.   
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TABLE 8.2:  Sharpness vs. defocus plots for a coherent source and optics table setup.  
Comparison of the three image plane sharpness metrics.  S2  uses a mask size of 5 pixels. 
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For the telescope setup coherent point sources were created by directing a laser 

out of the window of an adjacent building toward the laboratory window over a distance 

of 90 m.  Images of the coherent point sources captured by the telescope are seen in table 

8.3.  Sharpness versus defocus plots for the two point sources using all three metrics were 

found and placed in table 8.4.  Metric S2 produced an absolute maximum at focus for both 

point sources where metrics Si2 and S1 failed.   
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TABLE 8.3:  Images of the coherent point sources at a distance of 90 taken with the 

telescope.  
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TABLE 8.4:  Sharpness vs. defocus plots for coherent point sources with the telescope 
setup.  Comparison of the three image plane sharpness metrics.  S2  uses a mask size of 5 

pixels. 
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8.4.2 Camera at the Fourier Plane 

For coherent imaging systems the Fourier transform can be created optically using 

the transforming property of a single lens.  A camera is placed at the Fourier plane the 

captures 2)},({ yxU iF .  In this section the captured image refers to the Fourier plane 

intensity, not the image plane intensity.  Thus the sharpness metric, 

S3 = 
yxunmaskedi

yxmaskedi

dfdfyxU

dfdfyxU
2

2

)},({

)},({

∫∫
∫∫

F

F
 = 

∑
∑

2

2

)},({

)},({

unmaskedi

maskedi

yxU

yxU

F

F
  (8.6) 

is found by digitally masking the captured image, summing the remaining intensity, and 

dividing by the sum of the original, unmasked image as described in section 8.2  

 To find the appropriate digital mask size the sharpness versus defocus plots for 

the high frequency bar chart object with varying mask sizes were found and placed in 

table 8.5.  The plots were normalized and fitted with a Gaussian to compare sensitivity.  

Table 8.5 also shows the captured Fourier plane distributions at defocus and focus with 

the corresponding mask size. 
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TABLE 8:5:  S3 mask sensitivity for the medium frequency bar chart object illuminated 
by a coherent source. 

 
 
 

It can be seen that an absolute maximum does not appear until the mask size 

reaches 20 pixels because the central dc term needs to be masked out in order to see the 

relative increase of high spatial frequencies at focus.  Once the mask size is large enough 

to achieve an absolute maximum, as the mask size increases the standard deviation 

increases and the sensitivity decreases.   

To continue the study the affect of mask size on sensitivity, the sharpness versus 

defocus plots for all six objects on the optics table were found using mask sizes of 15 and 

20 pixels.  These plots are found in table 8.6 where the plots have been normalized and 

fitted with a Gaussian where there is an absolute maximum.   
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TABLE 8.6:  Sharpness vs. defocus plots for a coherent source and optics table setup.  
Use of the S3 sharpness metric with mask sizes of 15 and 20 pixels. 

 
  

The sharpness metric S3 performs well for the extended bar chart and star pattern 

objects but fails with the circle objects.  Even with smaller mask sizes no maximum was 

ever observed for the circle objects.  For the circle objects the Fourier transform plane 

distribution is an airy pattern with few high spatial frequencies.  At focus the Fourier 

transform distribution of the circle is the smallest spatially and therefore there is a 

minimum because more intensity is masked out for the smaller distribution.  For extended 

objects when the dc term is masked out, only the increase of the high spatial frequencies 

is observed causing a maximum at focus.   

 It should be noted that the focus location of these plots locates when the camera is 

at the true Fourier plane.  In order for this location to correspond to focus of the image 

plane camera the system must be calibrated such that the Fourier plane camera at its 

focus corresponds with the image plane camera at focus.  This calibration can be done by 

using one of the image plane metrics in section 8.4.1 to find the proper image plane 

camera location and then metric S3 can be used to find the true Fourier plane to place the 

Fourier plane camera.  Once this is calibrated then the sharpness measured at the Fourier 

plane with S3 will correspond to the sharpness value of the image plane.   
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8.4.3 Physical mask at the Fourier plane 

Digitally performing the Fourier transform and masking takes additional 

computing time.  To reduce the computation time the Fourier transform can be performed 

optically with a coherent imaging system and the masking can be done physically.  To 

perform spatial filtering a physical mask was placed at the Fourier plane of one of the 

optical paths with a camera capturing the spatially filtered image and another camera, 

located at the image plane of the other divided optical path, captured the unfiltered image.  

Taking the ratio of the spatially filtered image power to the unfiltered image power 

produces the sharpness value, S4.  An example of the spatially filtered images taken at 

focus and defocus can bee seen in figure 8.7. 

 
 

 
(a)       (b) 

FIGURE 8.7:  Image plane captured images of the spatially filtered high frequency bar 
chart object at (a) focus and (b) defocus. 

 
 
 
 The sharpness versus defocus plots were created for all six optics table objects 

and placed in table 8.7.  It can been seen that an absolute maximum was reached for the 

high frequency bar chart and the star pattern, a local maximum was achieved for the 

medium and low frequency bar charts, and no maximum for the circle objects.  For the 
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circle objects the Fourier plane distribution is an airy pattern with very little high spatial 

frequencies so when the DC term is masked out there is little intensity in the high spatial 

frequencies for comparison.  As the OKO DM mirror applies defocus curvature is applied 

to the wavefront causing the location of the Fourier plane to move.  As the Fourier 

transform location moves the distribution at the mask increased in spatial size causing the 

relative size of the mask to the Fourier plane decrease and the light passing by the mask 

for the circle objects to increase.  This is most noticeable in the linear behavior of the 

small circle object.  This method was successful for objects with high spatial frequencies 

where the DC term is masked and the remaining high spatial frequencies pass by the 

mask for comparison as defocus is added.   
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TABLE 8.7:  Sharpness vs. defocus plots for a coherent source and optics table setup 

using the S4 sharpness metric. 
 
 
8.4.4 Summary 

 The image plane sharpness metrics, Si2, S1, and S2, were successful for most 

objects.  In the case of the circle object, the Fourier-based metrics S1 and S2 produced a 
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local maximum at focus where the Si2 failed to produce a maximum.  Compared to the 

incoherent source, the sharpness versus defocus plots with the coherent source contained 

more noise due to the speckle effect of the laser.  As the mask size of S2 increased so did 

the sensitivity up to a point where this trend broke down.     

 The S3 metric with the camera at the Fourier plane was successful for the 

extended bar chart and star pattern objects but not for the circular objects.  Mask size for 

the S3 metric had to be large enough to mask out the DC term and beyond this the 

sensitivity decreased as the mask size increased.  Proper use of this metric requires 

calibration such that the camera at the true Fourier plane corresponds to the imaging 

camera at the true image plane. 

 The final metric, S4, involved spatial filtering by placing a physical mask at the 

Fourier plane of one of the divided optical paths.  This metric failed for the circular 

objects but was successful for extended objects working better for objects with higher 

spatial frequencies.  When defocus is added the Fourier plane location moves and thus 

the mask size relative to the Fourier transform changes causing the failure with circular 

objects. 

 Computing times varied with the sharpness depending on whether the Fourier 

transform was performed digitally or optically and if masking was done digitally or 

physically.  The computing times to calculate the sharpness of a single captured image 

for all sharpness metrics are listed in table 8.8.  S4 was the fastest since the Fourier 

transform was done optically and the masking done physically where S2 was the slowest 

as both were done digitally. 
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 Si2 S1 S2 S3 S4 
Computing 

Time 
4.04 s 4.40 s 4.56 s 4.12 s 1.0 s 

TABLE 8.8:  Computing time of the sharpness metrics. 
 
 
 
8.5 Sharpness versus higher order aberrations 

 After studying the performance of the sharpness metrics with defocus, higher 

order aberrations were applied and the sharpness values were measured.  Astigmatism, 

coma, and spherical aberrations were the higher aberrations applied with the OKO 

deformable mirror using the same method as for the incoherent imaging system described 

in section 7.5.  All five sharpness metrics were used to measure and plot the sharpness 

value versus aberration strength.  Defocus was applied over a range from negative to 

positive defocus causing the sharpness maximum to appear toward the center of the plot 

at zero waves of defocus.  For the higher order aberrations the aberration strength 

increased from zero, therefore the sharpness maximum should be located on the left side 

of the plot where the aberration strength is zero.  Results in this section are divided based 

on the optical system configuration used as in section 8.4.   

8.5.1 Camera at the Image Plane 

 The three image plane sharpness metrics, Si2, S1, and S2, were used to calculate 

the sharpness value versus aberration strength of astigmatism, coma, and spherical 

aberration.  For the S2 metric, a mask size of 20 pixels was used in the following plots.   

Sharpness versus aberration strength plots for astigmatism, coma, and spherical 

aberration can be seen in figures 8.9, 8.10, and 8.11 respectively.  For astigmatism the S2 

outperformed the other two metrics by producing an absolute maximum at zero waves for 

all objects where the other two metrics failed for most objects.  Again the S2 metric was 
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successful for all objects when coma was applied except for the low frequency bar chart 

object where there was a local maximum.  Finally for spherical aberration both Fourier-

based metrics, S1 and S2, failed for the medium and low frequency bar object but were 

more successful and sensitive than the Si2 metric for all other objects.  
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TABLE 8.9:  Sharpness vs. astigmatism plots for a coherent source and optics table 

setup.  Comparison of the three image plane sharpness metrics.  S2  uses a mask size of 20 
pixels. 
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TABLE 8.10:  Sharpness vs. coma plots for a coherent source and optics table setup.  

Comparison of the three image plane sharpness metrics.  S2  uses a mask size of 20 pixels. 
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TABLE 8.11:  Sharpness vs. spherical aberration plots for a coherent source and optics 
table setup.  Comparison of the three image plane sharpness metrics.  S2  uses a mask size 

of 20 pixels. 
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was used.  Sharpness versus aberration strength plots for astigmatism, coma, and 
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astigmatism and coma causes the optical axis to move throughout the optical system 

causing the Fourier plane distribution to translate relative to the stationary camera.  

Spherical aberration, like defocus, also causes the location of the Fourier plane to move 
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along the optical axis causing the distribution captured by the Fourier plane camera to 

change in size.  Since the mask is digital and fixed the portion of the Fourier distribution 

that is masked varies as these aberrations increase causing the distribution to translate and 

change size.  This is most noticeable with the circle where there is a minimum at zero 

waves of aberration because the mask is centered according to the distribution at zero 

wavefront error and as aberrations increase and the Fourier distribution translates, more 

intensity passes by the mask increasing the sharpness value.  For the extended objects if 

the mask is large enough to mask out the DC term then just the high spatial frequencies 

pass.  Since the most of the intensity is located in the DC term then the motion of the 

Fourier distribution is no longer a factor if the mask is large enough.  This can be seen in 

the results of the extended bar chart and start pattern objects where the sharpness metric 

S3 was successful in producing either a local or absolute maximum at zero waves of 

aberration.   
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TABLE 8.12:  Sharpness vs. aberration strength plots for a coherent source and optics 
table setup with all higher order aberrations.  Use of sharpness metric S2  with a mask size 

of 20 pixels (10 pixels for circle object). 
 
 
 
8.5.3 Physical mask at the Fourier plane 

 Finally, the higher-order aberrations were applied to the spatial filtering 

configuration to measure the sharpness using metric S4.  As with the S3 metric, the circle 

objects failed due to the motion of the optical axis as higher order aberrations were added 

causing the Fourier distribution to translate with respect to the stationary physical mask 

and different portions to be masked out.  Table 8.13 shows the sharpness versus 
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aberration strength plots for all objects and aberrations.  For the extended objects this 

sharpness metric performed very well since the DC term was masked out causing the 

decrease in high spatial frequencies to be seen as the aberration strength increased.   
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TABLE 8.13:  Sharpness vs. aberration strength plots for a coherent source and optics 
table setup with all higher order aberrations.  Sharpness metric S4 was used. 

 
 
 
 In summary, for the extended bar chart and star pattern objects, all the sharpness 

metrics were sucessful as higher order aberrations were added.  There were some 

exceptions with the Si2 and S1 metrics where there was a local maximum instead of an 

absolute maximum at zero waves of aberration.  For the circle objects the image plane 

sharpness metrics, Si2, S1, and S2 were sucessful but the S3 and S4 metrics failed due to 

the motion of the optical axis causing the Fourier transform distribution to translate as 

aberrations were added causing the masked portions to change and not give an accurate 

sharpness value.   

8.6 Performance in a closed-loop system 

The first three image plane metrics with the camera at the image plane were 

implemented in a preliminary, manual, closed-loop system using the same method 

described in section 7.6.  Using the high frequency bar chart object and the optics table 

setup the captured images and corresponding sharpness values can be see in table 8.14.  

Absolute maxima are indicated with bold text and local maxima are in italics.  There was 

slight disagreement in the OKO DM actuator values for the absolute maximum sharpness 

values for all three metrics.  It appears that S2 identifies the image that is most visibly in 

focus.   
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Si2 = 8.228 x 10-6 

S1 = 223.21 
S2 = 0.9712 

OKO Actuator = 0 

 
Si2 = 8.087 x 10-6 

S1 = 220.95 
S2 = 0.9718 

OKO Actuator = .05 

 
Si2 = 8.245 x 10-6 

S1 = 222.97 
S2 = 0.9719 

OKO Actuator = -.05 

 
Si2 = 8.349 x 10-6 

S1 = 226.13 
S2 = 0.9722 

OKO Actuator = -.1 

 
Si2 = 8.384 x 10-6 

S1 = 226.99 
S2 = 0.9724 

OKO Actuator = -.15 

 
Si2 = 8.342 x 10-6 

S1 = 236.68 
S2 = 0.9742 

OKO Actuator = -.2 

 
Si2 = 8.314 x 10-6 

S1 = 246.39 
S2 = 0.9755 

OKO Actuator = -.25 

 
Si2 = 8.185 x 10-6 

S1 = 254.76 
S2 = 0.9770 

OKO Actuator = -.3 

 
Si2 = 8.233 x 10-6 

S1 = 264.51 
S2 = 0.9783 

OKO Actuator = -.35 

 
Si2 = 8.278 x 10-6 

S1 = 272.03 
S2 = 0.9793 

OKO Actuator = -.4 

 
Si2 = 8.322 x 10-6 

S1 = 275.00 
S2 = 0.9797 

OKO Actuator = -.45 

 
Si2 = 8.354 x 10-6 

S1 = 279.95 
S2 = 0.9801 

OKO Actuator = -.5 

 
Si2 = 8.451 x 10-6 

S1 = 280.52 
S2 = 0.9797 

OKO Actuator = -.55 

 
Si2 = 8.644 x 10-6 

S1 = 275.15 
S2 = 0.9788 

OKO Actuator = -.6 

 
Si2 = 8.737 x 10-6 

S1 = 265.98 
S2 = 0.9775 

OKO Actuator = -.65 

 
Si2 = 8.691 x 10-6 

S1 = 256.59 
S2 = 0.9763 

OKO Actuator = -.7 
TABLE 8.14:  Closed-loop images of the high frequency object using the image plane 

sharpness metrics.  Mask size of 5 pixels used for S2. 
 
 
 
 The S3 metric was also implemented in a manual closed loop system where the 

camera was at the Fourier plane.  In table 8.15 the captured images can be seen along 

with the sharpness values with mask sizes of 15 and 20 pixels.  There is agreement in 
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both mask sizes as to which OKO actuator valued produced an absolute sharpness value 

and thus indicating when the camera is truly at the Fourier plane. 

 
 

 
S3 (15) = 0.9801 
S3 (20) = 0.9678 
OKO Actuator = 0 

 
S3 (15) = 0.9797 
S3 (20) = 0.9671 

OKO Actuator = .05 

 
S3 (15) = 0.9802 
S3 (20) = 0.9682 

OKO Actuator = -.05 

 
S3 (15) = 0.9800 
S3 (20) = 0.9685 

OKO Actuator = -.1 

 
S3 (15) = 0.9804 
S3 (20) = 0.9694 

OKO Actuator = -.15 

 
S3 (15) = 0.9806 
S3 (20) = 0.9697 

OKO Actuator = -.2 

 
S3 (15) = 0.9811 
S3 (20) = 0.9705 

OKO Actuator = -.25 

 
S3 (15) = 0.9812 
S3 (20) = 0.9710 

OKO Actuator = -.3 

 
S3 (15) = 0.9809 
S3 (20) = 0.9709 

OKO Actuator = -.35 

 
S3 (15) = 0.9806 
S3 (20) = 0.9711 

OKO Actuator = -.4 

 
S3 (15) = 0.9805 
S3 (20) = 0.9712 

OKO Actuator = -.45 

 
S3 (15) = 0.9803 
S3 (20) = 0.9711 

OKO Actuator = -.5 
TABLE 8.15:  Closed-loop images of the high frequency object using sharpness metric 

S3.  Mask sizes of 15 and 20 pixels were used. 
 
 
 
8.7 Conclusions 

In this chapter the performance of all five sharpness metrics in a coherent imaging 

system was investigated.  It was seen that the image plane metrics Si2, S1, and S2 were 

successful for all object types.  The Fourier-based metrics S1 and S2 were more robust 

and sensitive than the intensity squared metric Si2 with the S2 metric being the more 

sensitive of the two.  The Fourier transforming property of a single lens was used for the 
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sharpness metrics S3 and S4 where the Fourier transform was found optically and the 

Fourier plane was used to calculate the sharpness value.  These two metrics were 

successful with the extended bar chart and star pattern objects but failed with the circular 

objects.  The more detail and high spatial frequencies the object contained the more 

sensitive these two metrics were. 

After comparison with defocus, higher-order aberrations were added to see the 

affect on the sharpness metric performance.  For the image plane sharpness metrics the 

Fourier-based metrics S1 and S2 where successful where the intensity squared Si2 metric 

failed for several objects.  The S3 and S4 sharpness metrics were successful with extended 

objects but not with the circular objects due to the motion of the optical axis and high 

order aberrations were added. 

Finally the sharpness metrics were implemented into a preliminary, manual, 

closed-loop system.  The system successfully arrived at the sharp image and shows 

promise for use in full higher frequency closed-loop systems run with search algorithm. 

 

 



CHAPTER 9:  CONCLUSIONS 
 
 

9.1 Discussion 

 Four novel Fourier-based sharpness metrics were introduced and investigated in 

this dissertation.  For the sharpness metrics, S1 and S2, the Fourier transform was 

performed digitally from the image plane image and therefore can be used in both 

incoherent and coherent imaging systems.  Metrics S3 and S4 can only be used in a 

coherent imaging system because the Fourier transform found optically using a single 

lens.  All metrics were compared to the intensity squared, Si2, metric that is most 

commonly used in image sharpening. 

Investigation of the performance of these metrics consisted of measuring and 

plotting the sharpness value versus changing aberration strength.  Defocus was first 

applied to the system and the metrics were compared before applying higher order 

aberrations including astigmatism, coma, and spherical aberrations.  It was found that all 

Fourier-based metrics showed very promising results, especially for extended objects.  

The Fourier-based metrics were successful to produce an absolute or local maximum 

when the wavefront error for all cases except using metrics S3 and S4 on circular objects.  

Metrics S3 and S4 failed for circular objects because adding aberrations caused the optical 

axis to shift and the Fourier plane location to move along the optical axis.  This motion of 

the Fourier distribution compared to a stationary mask caused the masked portion to 

change and produce inaccurate sharpness values.  For extended objects S3 and S4 were
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 successful because the DC term was masked out and the remaining high spatial 

frequencies were unaffected by the mask motion.  In many cases the Fourier-based 

metrics were successful where the intensity squared, Si2 metric failed.  A summary of all 

the metrics can be seen in table 9.1. 

When selecting a mask size for the S2, S3, and S4 metrics the key is to mask out 

the DC term so that it is more sensitive to the changes in high spatial frequencies.  Mask 

size selection is also limited by the object contrast and optical system resolution.  The 

sharpness metrics performed with success in a manual closed-loop correction system.  

These results show great promise for the use of the Fourier-based sharpness sensors in an 

adaptive optics system.   

9.2 Future Work 

The accuracy of the S3 metric can be increased by tracking the center of the 

Fourier distribution and causing the digital mask to move as the optical axis moves so 

that the mask is always located at the center of the Fourier distribution.  In the same sense 

the accuracy of the S4 metric can be improved by creating a mechanical system so that 

the physical mask moves as the optical axis moves so that the mask is always centered as 

aberrations change.  Improving the physical mask so that it is more opaque and defined 

will also improve the performance of the S4 metric.   

Future work entails the implementation of these sharpness metrics in an automatic 

closed-loop system. This requires interfacing the components with the computer and the 

development and application of a search algorithm. 

 



 

 

118



 

 

119

 
 

REFERENCES 
 
                                                 
1 B. L. McGlamery, “Restoration of turbulence-degraded images,” J. Opt. Soc. Am. 57, 
293-297 (1967). 
 
2 R. K. Tyson, Introduction to Adaptive Optics, SPIE Press, Bellingham, WA (2000). 
 
3 R. K. Tyson, Principles of Adaptive Optics, 2nd Edition, Academic, Boston (1998). 
 
4 J. H. Hardy, Adaptive Optics for Astronomical Telescopes, Oxford University Press, 
New York (1998). 
 
5 F. Roddier, Adaptive Optics in Astronomy, Cambridge University Press, (1999). 
 
6 E. Kibblewhie and W. Wild, Adaptive Optics, Wiley, New York (2007). 
 
7 D. P. Greenwood and D. L. Fried, “Power spectra requirements for wave-front 
compensative systems,” J. Opt. Soc. Am. 66, 193-206 (1976). 
 
8 D. P. Greenwood, “Bandwidth specification for adaptive optics systems,” J. Opt. Soc. 
Am. 67, 390-393 (1977). 
 
9 G. A. Tyler, “Bandwidth considerations for tracking through turbulence,” J. Opt. Soc. 
Am. A, 11, 358-367 (1994). 
 
10 R. K. Tyson and B. W. Frazier, Field Guide to Adaptive Optics, SPIE Press, 
Bellingham, WA (2004). 
 
11 H. W. Babcock, “The Possibility of Compensating Astronomical Seeing,” Publ. Astro. 
Soc. Pac. 65, 229-236 (1953). 
 
12 W. B. Bridges, P. T. Brunner, S. P. Lazzara, T. A. Nussmeier, T. R. O’Meara, J. A. 
Sanguinet, and W. P. Brown Jr., “Coherent Optical Adaptive Techniques,” App. Opt. 13, 
291-300 (1974). 
 
13 J. E. Pearson, W. B. Bridges, S. Hansen, T. A. Nussmeier, and M. E. Pedinoff, 
“Coherent optical adaptive techniques: design and performance of an 18-element visible 
multidither COAT system,” App. Opt. 15, 611-621 (1976). 
 
14 J. E. Pearson, “Atmospheric turbulence compensation using coherent optical adaptive 
techniques,” App. Opt. 15, 622-631 (1976). 
 
15 C. L. Hayes, R. A. Brandewie, W. C. Davis, and G. E. Mevers, “Experimental test of 
an infrared phase conjugation adaptive array,” J. Opt. Soc. Am. 67, 269-277 (1977). 
 



 

 

120

                                                                                                                                                 
 
16 J. W. Hardy, J. E. Lefebvre, and C. L. Koliopoulos, “Real-time atmospheric 
compensation,” J. Opt. Soc. Am. 67, 360-369 (1977). 
 
17 R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded  
telescope images through image sharpening,”  J. Opt. Soc. Am. 64, 1200-1210 (1974). 
 
18 A. Buffington, F. S. Crawford, R. A. Muller, A. J. Schwemin, and R. G. Smits, 
“Correction of atmospheric distortion with an image-sharpening telescope,” J. Opt. Soc. 
Am. 67, 298-303 (1977). 
 
19 J. W. Hardy, “Adaptive optics – a progress review,” Proc. SPIE 1542, 2-17 (1991). 
 
20 C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, and H. T. Barclay, 
“Compensation of atmospheric turbulence optical distortion using a synthetic beacon,” 
Nature (London), 353, 141-143 (1991).  
 
21 R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. 
E. Ruane, and L. M. Wopat, “Measurement of atmospheric wavefront distortion using 
scattered light from a laser guide star,” Nature (London), 353, 144-146 (1991). 
 
22 J. W. Hardy, “Active Optics: A new technology for the control of light,” Proc. IEEE, 
66, 651-697 (1978). 
 
23 H. W. Babcock, “Adaptive Optics Revisited,” Science, 249, 253-257 (1990). 
 
24 D. P. Greenwood and C. A. Primmerman, “The history of adaptive-optics development 
at the MIT Lincoln Laboratory,” Proc. SPIE, 1920, 220-234 (1993). 
 
25 R. K. Tyson, “Adaptive Optics compensation of atmospheric turbulence: the past, the 
present, and the promise,” Proc. SPIE, 2222, 404-412 (1994). 
 
26 R. Benedict, Jr., J. B. Breckinridge, and D. L. Fried, “Atmospheric-Compensation 
Technology: Introduction to the feature issue,” J. Opt. Soc. Am. A, 11, 257-260 (1994). 
 
27 J. A. Perreault and A. Wirth, “Survey of Adaptive Optic Techniques,” Proc. SPIE, 
5903, 55-62 (2005). 
 
28 A. Greenaway, “Adaptive Optics: Astronomy and Beyond,” Optics & Photonics News, 
17, 22-27 (2006). 
 
29 L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 
SPIE Press, Bellingham, WA (1998). 
 
30 R. K. Tyson, “Adaptive optics and ground-to-space laser communications,” App. Opt. 
35, 3640-3646 (1996). 
 



 

 

121

                                                                                                                                                 
31 B. M. Levine, E. A. Martinsen, A. Wirth, A. Jankevics, M. Toledo-Quinones, F. 
Landers, and T. L. Bruno, “Horizontal line-of-sight turbulence over near-ground paths 
and implications for adaptive optics correction in laser communications,” App. Opt. 37, 
4553-4560 (1998). 
 
32 R. K. Tyson, “Bit-error rate for free-space adaptive optics laser communications,” J. 
Opt. Soc. Am. A,19, 753-758 (2002). 
 
33 J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave 
aberrations of the human eye with use of a Hartmann-Shack wave-front sensor,” J. Opt. 
Soc. Am. A, 11, 1949-1957 (1994). 
 
34 J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal 
human eye,” J. Opt. Soc. Am. A, 14, 2873-2883 (1997). 
 
35 J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution 
retinal imaging through adaptive optics,” J. Opt. Soc. Am. A, 14, 2884-2892 (1997). 
 
36 A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C.W. 
Campbell, “Adaptive optics scanning laser opthalmoscopy,” Opt. Exp. 10, 405-412 
(2002). 
 
37 B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, 
P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence 
tomography,” Opt. Lett. 29, 2142-2144 (2004). 
 
38 J. Carroll, D. C. Gray, A. Roorda, and D. R. Williams, “Recent advances in retinal 
imaging with adaptive optics,” Optics & Photonics News 16, 36-42 (2005). 
 
39 J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for 
Vision Science: Principles, Practices, Design, and Applications, John Wiley & Sons, 
Hoboken, NJ (2006). 
 
40 M. J. Booth, “Adaptive optics in microscopy,” Phil. Trans. R. Soc. A, 365, 2829-2843 
(2007). 
 
41 O. Albert, L. Sherman, G. Mourou, and T. B. Norris, “Smart microscope: an adaptive 
optics learning system for aberration correction in multiphoton confocal microscopy,” 
Opt. Lett. 25, 52-54 (2000). 
 
42 M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, 
“Adaptive aberration correction in a two-photon microscope,” J. Microscopy, 200, 105-
108 (2000). 
 
43 L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-
induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J 
Microscopy, 206, 65-71 (2002). 
 



 

 

122

                                                                                                                                                 
44 P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics 
in multiphoton microscopy,” Opt. Exp. 11, 1123-1130 (2003). 
 
45 M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-
photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. 
103, 17137-17142 (2006). 
 
46 M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration 
correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99, 5788-5792 (2002). 
 
47 A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, 
“Exploration of the Optimisation Algorithms used in the Implementation of Adaptive 
Optics in Confocal and Multiphoton Microscopy,” Microsc. Res. and Tech. 67, 36-44 
(2005). 
 
48 B. Potsaid, Y. Bellouard, and J. T. Wen, “Adaptive Scanning Optical Microscope 
(ASOM): A multidisciplinary optical microscope design for large field of view and high 
resolution imaging,” Opt. Exp. 13, 6504-6518 (2005). 
 
49 M. A. A. Neil, M. J. Booth, and T. Wilson, “New modal wave-front sensor: a 
theoretical analysis,” J. Opt. Soc. Am. A, 17, 1098-1107 (2000).  
 
50 M. J. Booth, M. A. A. Neil, and T. Wilson, “New modal wave-front sensor: application 
to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence 
microscopy,” J. Opt. Soc. Am. A, 19, 2112-2120 (2002). 
 
51 M. Feierabend, M. Ruckel, and W. Denk, “Coherence-gated wave-front sensing in 
strongly scattering samples,” Opt. Lett. 29, 2255-2257 (2004). 
 
52 M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, "Active 
Aberration Correction for the Writing of Three-Dimensional Optical Memory Devices," 
App. Opt. 41, 1374-1379 (2002). 
 
53 M. Schwertner, M. J. Booth, and T. Wilson, “Adaptive optics for microscopy, optical 
data storage and micromachining,” Proc. SPIE, 6306, 63060A (2006). 
 
54 E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction 
for optical tweezers,” Opt. Comm. 236, 145-150 (2004). 
 
55 K. D.Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, 
and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Exp. 14, 
4169-4174 (2006). 
 
56 F. Gonte, A. Courteville, and R. Dandliker, “Optimization of single-mode fiber 
coupling efficiency with an adaptive membrane mirror,” Opt. Eng. 41, 1073-1076 (2002). 
 
57 R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 
207-211 (1976). 



 

 

123

                                                                                                                                                 
 
58 M. Born and E. Wolf, Principles of Optics, 7th Edition, Cambridge University Press, 
Cambridge (1999). 
 
59  J. M. Geary, Introduction to Wavefront Sensors, SPIE Press, Bellingham, WA (1995). 
 
60 F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” 
App. Opt. 27, 1223-1225 (1988). 
 
61 R. Ragazzoni, “Pupil plane wavefront sensing with an oscillating prism,” J. Modern 
Opt. 43, 289-293 (1996). 
 
62 R. A. Gonsalves, “Phase retrieval by differential intensity measurements,” J. Opt. Soc. 
Am. A, 4, 166-170 (1987). 
 
63 G. D. Love, “Wavefront correction and production of Zernike modes with a liquid 
crystal spatial light modulator,” App. Opt. 36, 1517-1524 (1997). 
 
64 J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, “A real-time 
closed-loop liquid crystal adaptive optics system: first results,” Opt. Comm. 137, 17-21 
(1997). 
 
65 M. Yellin, “Using membrane mirrors in adaptive optics,” Proc. SPIE, 75, 97 (1976). 
 
66 R. P. Grosso and M. Yellin, “The membrane mirror as an adaptive optical element,” J. 
Opt. Soc. Am. 67, 399-406 (1977). 
 
67 L. M. Miller, W. J. Kaiser, T. W. Kenny, M. L. Agronin, and R. L. Norton, 
“Fabrication and characterization of a micromachined deformable mirror for adaptive 
optics applications,” Proc. SPIE, 1954, 421-430 (1993). 
 
68 G. V. Vdovin and P. M. Sarro, “Flexible mirror micromachined in silicon”, App. Opt. 
34, 2968-2972 (1995). 
 
69 G. V. Vdovin, P. M. Sarro, and S. Middelhoek, “Technology and applications of 
micromachined adaptive mirrors,” J. Micromech. Microeng. 9, R8-R20 (1999). 
 
70 W. J. Smith, Modern Optical Engineering, 3rd Edition, McGraw-Hill, New York, 
(2000). 
 
71 V. N. Mahajan, “Strehl ratio for primary aberration: some analytical results for circular 
and annular pupils,” J. Opt. Soc. Am. 72, 1258-1266 (1982). 
 
72 J. P. Hamaker, J. D. O’Sullivan, and J. E. Noordam, “Image sharpness, Fourier optics, 
and redundant-spacing interferometry,” J. Opt. Soc. Am. 67, 1122-1123 (1977). 
 



 

 

124

                                                                                                                                                 
73 M. C. Roggemann, C. A. Stoudt, and B. M. Welsh, “Image-spectrum singnal-to-noise-
ratio improvements by statistical frame selection for adaptive-optics imaging through 
atmospheric turbulence,” Opt. Eng. 33, 3254-3264 (1994). 
 
74 M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J. C. Ricklin, and D. G. Voelz, “Image 
quality criteria for an adaptive imaging system based on statistical analysis of the speckle 
field,” J. Opt. Soc. Am. A, 13, 1456-1466 (1996). 
 
75 J. R. Fienup, “Synthetic-aperture radar autofocus by maximizing sharpness,” Opt. Let. 
25, 221-223 (2000). 
 
76 J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized 
sharpness metrics,” J. Opt. Soc. Am. A, 20, 609-620 (2003). 
 
77 J. W. Goodman, Introduction to Fourier Optics,  McGraw-Hill., New York, (1968). 
 
78 E. Abbe,, “Beiträge zur Theorie des Mikroskops und der mikroskopischen 
Wahrnehmung,” Archiv. Mikroskopische Anat., 9, 413-468 (1873). 
 
79 A. B. Porter, “On the Diffraction Theory of Microscope Vision,” Phil. Mag., 11(61), 
154-166 (1906). 
 
80 N. Doble, “Image Sharpening Metrics and Search Strategies for Indirect Adaptive 
Optics” Ph.D. Dissertation, University of Durham (2000). 
 
81 L. P. Murray, “Smart Optics: Wavefront sensor-less adaptive optics – Image correction 
through sharpness maximization,” PhD. Dissertation, NUI Galway (2007). 
 
82 K. Bush, A. Marrs, and M. Schoen, “Electrostatic Membrane Deformable Mirror 
Characterization and Applications,” Proc. SPIE, 5894, 124-138 (2005). 


