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ABSTRACT

MICHAEL ALLEN TEDESCHI. Development, verification, and validation of a
hybrid testing framework for latticed structures with nonlinear geometric effects.

(Under the direction of DR. MATTHEW J. WHELAN)

Hybrid simulation is an increasingly popular experimental method for structural

dynamics research, as it offers the realism and exploratory power of full-scale testing

at a fraction of the cost and size by resolving a structural system into complementary

experimental and analytical substructures to be analyzed simultaneously as part of a

single simulation. In order to promote the expansion of hybrid simulation into new

areas of applied structural dynamics research within the energy industry, a pseudo-

dynamic hybrid simulation software framework was developed, numerically verified,

and experimentally validated. This framework employs a combination of an iterative

implicit integration scheme and an α-operator splitting scheme to perform dynamic

analysis of highly nonlinear latticed structures. Historically, iterative methods have

been avoided in hybrid simulation, since physical iterations may produce unintended

and irrecoverable plastic deformation of the test specimen within the iteration, thereby

corrupting the fidelity of the hybrid simulation. The software framework implemented

in this thesis enforces iterative displacements numerically rather than physically, thus

avoiding experimental errors associated with the path dependency of the experimental

substructure. In this work, the framework was numerically verified using a model of a

simple planar truss subjected to harmonic loading and a model of a large space truss

subjected to base excitation from an earthquake accelerogram. Analyses accounting

for geometric and material nonlinearities both separately and in combination with



iv

one another were verified by comparison of predicted displacement time histories to

results generated through an application programming interface with a commercial

finite element software. Considerations involved in effective verification of the soft-

ware, including the effect of the time step size on the accuracy of the framework,

are discussed. Following verification, the hybrid testing software framework was

experimentally validated through simulations of a power transmission tower loaded

dynamically by theoretical galloping of an ice-covered conductor and a ground wire. A

hybrid simulation was first performed within the linear elastic range of the specimen

material. Excitation amplitudes were then increased into a range producing nonlinear

plastic behavior of the experimental substructure. The observed displacement time

histories and response hysteresis exhibited strong correlation with results from numer-

ical simulations, ultimately validating the implementation of the framework. Lastly,

recommendations are made for future developments and expansions of the software.
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CHAPTER 1: INTRODUCTION

Over the past thirty years, engineers in the fields of structural design and analy-

sis have increasingly relied on the power of computers and finite element methods

to predict both linear and nonlinear responses of structures subjected to dynamic

loads. Concurrently, the efficiency and capabilities of computers and computational

methods have grown exponentially. Despite this rapid development of technology,

the phenomenological understanding of the behavior of complex structural systems

and materials through their limit states remains a fundamental area of both basic

research and applied testing; such research and testing are essential to facilitating

further improvements in computational methods and verifying and validating new

numerical models. One of the foremost aims of experimental structural dynamics is to

develop a greater level of understanding of these phenomena through applied research

and experimental observation. As the engineering community expands the knowledge

base of structural dynamics through experimental testing, it becomes better-equipped

to use the powerful analytical tools at its disposal to address pressing needs of society,

with more accurate predictions of complex structural responses to dynamic loads.

Numerous societal challenges lie in the field of structural dynamics, including

improving the resiliency of structures subject to earthquake and wind loads, mitigating

man-made hazards due to blast and progressive collapse, and ensuring the resiliency
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of the power grid, such as by reducing the effects of galloping ice-covered conductors

on power transmission structures. One of the fundamental challenges associated

with applied research and experimental observation of these large civil and energy

infrastructure systems is the often prohibitive expense and logistics necessary to

construct, instrument, and test through failure such large structures. Hybrid testing

provides an innovative solution to this problem through the concept of substructuring:

large-scale structures can be tested as a combination of numerical and physical

“substructures,” allowing researchers to physically model a portion of a structure and

experimentally observe its behavior in the context of a larger system without having

to physically model the entire structure. The result is a family of testing methods that

are simultaneously efficient, cost-effective, realistic, and more easily implemented than

full-scale testing of large structures. Although hybrid simulation presents a new set of

challenges for experimental research, the continued development and advancement of

this promising and increasingly popular technique is a significant step in the direction

of progress in the field of experimental structural dynamics.

1.1 Anticipated Contributions of Research Efforts

The development, verification, and validation of a software framework for hybrid

simulation of space trusses with distributed geometric nonlinearities is the focus

of this thesis. The research presented here is intended to inform future efforts to

expand the developed hybrid simulation software framework, as well as to increase the

accessibility of this important experimental technique of hybrid simulation for more

widespread implementation. In particular, the current work suggests the extension of
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hybrid simulation to the study of critical energy infrastructure such as latticed power

transmission towers. In the experimental demonstration of the developed framework,

a general transmission tower model is adopted as the representative application space

for the framework. Hybrid testing methodology is used to perform a simulation of the

dynamic response of the tower to galloping conductor loads. The work presented in

this thesis is anticipated to serve as a case study for development, verification, and

validation of hybrid simulation methods across a wide range of applications.

1.2 Organization of Thesis

This thesis is outlined as follows:

• Chapter 2 provides an overview of pseudodynamic hybrid simulation and other

emerging forms of hybrid simulation, as well as the prominent experimental

simulation methods from which hybrid simulations have evolved. Additionally,

a review of various applications where hybrid simulation has been employed is

presented.

• Chapter 3 explains the theoretical background for nonlinear geometric analysis

of truss systems and presents two numerical integration schemes implemented

in the development of the hybrid simulation software framework, including a

predictor-corrector method and an iterative implicit integration scheme.

• Chapter 4 describes the developed software framework and provides detailed

explanation of the mechanics of the software routine. Considerations involved

in various aspects of the implementation of the numerical integration scheme,
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including the usage of numerical equilibrium iterations on the experimental

substructure, are detailed.

• Chapter 5 presents numerical verification of the implementation of the developed

software routine by comparison with an accepted commercial finite element

analysis software package. Explanation of the methods used to perform effec-

tive verification of the developed software with an automated framework are

presented.

• Chapter 6 demonstrates successful implementation of the hybrid simulation

software framework in actual experiments involving both linear elastic and

nonlinear material behavior. The results of the experiments are validated

through comparison with nonlinear direct time-history integration finite element

analyses.

• Chapter 7 provides conclusion and a review of the work presented in this thesis

and recommendations for future work, suggested improvements to the software

framework, and important considerations for implementing extended versions of

the framework.



CHAPTER 2: LITERATURE REVIEW

In recent decades, the field of experimental structural dynamics has experienced

significant evolution in physical simulation methods and grown in its areas of study

and application. Physical testing methods have grown substantially in complexity,

propelled by the power of advanced instrumentation and controls systems as well

as computational methods. This chapter presents a review of the most prominent

methods of experimental simulation, a detailed summary of hybrid simulation, and an

overview of the common areas of application for hybrid simulation.

2.1 Experimental Simulation Methods

Research on structures subjected to seismic loading is commonly conducted using

experimental techniques, as earthquakes involve dynamic and often nonlinear analyses

that are challenging to faithfully predict numerically. To date, most of the work in

this area is centered around quasi-static testing (QST), shake table testing (STT),

effective force testing (EFT), or pseudodynamic testing (PSD) of complete structural

systems using models of various scales [Shao and Enyart, 2014]. Each of these testing

methods is suitable only for complete structural systems and is based on the governing

principle that external forces, fext, and internal forces, fint, are always in equilibrium

at each time step. However, each of these methods differ in the computation of

applied external forces and handling of inertial and damping forces. Ultimately, the
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methods are all rooted in the same fundamental concept but take varying approaches

to simulating the discrete-time dynamic equation of motion

Mẍn + Cẋn + Kxn = fext (2.1)

under different practical testing idealizations and assumptions.

Of the four testing methods mentioned above, QST is the most basic. In a QST,

hydraulic actuators are typically used to quasi-statically apply a predefined cyclic

displacement or force history [Shao and Enyart, 2014], as shown in Figure 2.1. Since

the rate of load application is slow, QST does not account for inertial or damping

forces in the structural system. Although not well-suited for simulating structural

responses to earthquakes, QST is excellent for determining the hysteretic response

of a member or structure. For this reason, QST results are often used to provide realistic

Figure 2.1: Quasi-static testing methodology
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hysteresis models to enable more accurate analytical simulations of structural responses

to seismic loading [Shao and Griffith, 2013].

For decades, STT has been widely used for simulation of seismic loading applied to

scale-models of structures, as well as for qualification testing of structural components

(Figure 2.2). STT is performed in real-time, so inertial and damping forces in the

structure are naturally simulated [Shao and Enyart, 2014]. This is one of the greatest

advantages of STT. However, due to the physical limitations of shake table hardware,

scaling of full-scale structures is often unavoidable, since specimen size is limited by

the payload and footprint of the available shake table. Unfortunately, scaling of the

structure can present complications, as similitude is difficult to achieve without altering

Figure 2.2: Shake table testing methodology
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the dynamic properties of the structure [Mahin and Shing, 1985, Harris and Sabnis,

2010]. The available degrees of freedom for prescribed excitation may also be limited

by the capabilities of the shake table.

EFT most closely parallels STT [Dimig et al., 1999], but it simulates ground motion

indirectly through application of effective earthquake forces at discrete degrees of

freedom of the structure rather than through direct base excitation (Figure 2.3). EFT

is a force-control method in which the ground motion accelerations that would be

applied by a shake table are converted into a set of effective forces using the same

principles used for computational analysis of relative motion due to base excitation.

Prior to the test, the effective forces are computed as the product of the ground

accelerations and the masses lumped at the degrees of freedom and are applied in

the direction opposite the ground motion. Throughout the test, those predetermined

Figure 2.3: Effective force testing methodology
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forces are applied to the structure at free degrees of freedom using hydraulic actuators,

while the boundaries of the structure are restrained by a strong wall or strong

floor, depending on the application. EFT is performed in real-time, so the inertial

and damping forces developed in the structure are naturally accounted for, as in

a STT. The advantage of EFT over STT is that the structure often need not be

downscaled. Originally, the most notable obstacle to EFT was control-structure

interaction, particularly natural velocity feedback of the actuator, but this issue has

been largely resolved [Dyke et al., 1995, Dimig et al., 1999]. One other drawback is

that the prescribed effective forces are based on a lumped-mass model assumption–an

idealization not necessary for STT.

PSD, illustrated in Figure 2.4, is a displacement-control approach that combines the

simplicity of QST with the utility of EFT using computational corrections for unbal-

anced forces. Its setup is very similar to that of QST, but the loading is determined

Figure 2.4: Slow pseudodynamic testing methodology
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in a similar manner to that of EFT. In both EFT and PSD, the externally-applied

loads are predetermined, but they are not imposed on the structure explicitly in PSD.

Instead, the predetermined externally-applied loads are substituted into the equation

of motion, and displacements predicted by time-stepping with a numerical integration

scheme are applied to the structure [Mahin and Shing, 1985]. The true corresponding

externally-applied forces for the prescribed displacements are then measured by load

cells at the actuators. This method has been extended to hybrid testing approaches,

including the hybrid simulation framework (HSF) presented in this thesis.

PSD can be performed either at a slow rate (as in QST) or in real-time (as in

EFT), depending on the hardware and control capabilities of the test site. In the

traditional slow PSD approach, inertial and damping forces within the structure

are accounted for analytically through the equation of motion with assumed mass

and damping matrices. Only the stiffness effects are evaluated experimentally. This

is indicated by the separation of the internal force vector into experimental and

analytical contributions, as denoted by the E and A superscripts in Figure 2.4. The

main advantage of real-time over slow PSD is the ability to account for the dynamic

effects of mass and damping directly. This advantage is particularly relevant when

there is significant velocity-dependent behavior [Shao et al., 2010]. In cases where

behavior of the structure is primarily independent of velocity, slow PSD is adequate,

as real-time tests can be fairly complicated, require special compensation of actuator

dynamics, and generally demand extensive validation, calibration, and laboratory

resources [Shao and Griffith, 2013].
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2.2 Overview of Hybrid Simulation

Simulations of structural responses to dynamic excitation have historically fallen

into two categories: numerical or analytical simulations based on the finite element

method and experimental testing. In the past few decades, researchers have been

developing methods of simulation capable of merging the convenience and cost-efficiency

of analytical simulation with the exploratory power and fidelity of experimental

testing. Such mixed analytical/experimental strategies are known as hybrid simulations.

Hybrid simulation involves both analytical and experimental simulation running

in tandem to account for the response of complementary portions of a structure.

Analytical simulation is performed on the portion of the structure where the behavior

is fairly well-characterized and predictable under the applied loading, since analytical

simulation on that substructure would be sufficient for the purposes of the investigation.

Experimental testing is limited to only a substructure whose behavior cannot be reliably

predicted with analytical methods, for one reason or another. Experimental testing

may be preferred for a variety of situations, including:

• Complex material properties, as in the case of composite materials [Udagawa

and Mimura, 1991, Gencturk and Elnashai, 2014]

• A critical substructure, such as a fuse element or other member expected to

have high demand under specified loading and exhibit fracture, instability, or

other failure mechanisms that may be challenging to faithfully model analytically

[Shoraka et al., 2008]
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• Complex geometries or interconnections between structural components that

may be difficult to model analytically [Yang et al., 2006]

• Nonlinear behavior for which the existing mathematical model is incomplete

[Mahmoud et al., 2013]

Development of hybrid simulation concepts originated in the mid-1970s. In its earli-

est form, hybrid testing was simply the basic PSD proposed by Takanashi [Takanashi

et al., 1975] and refined by Shing, Mahin, and others throughout the 1980s [Mahin

and Shing, 1985, Mahin et al., 1989]. Basic PSD is intrinsically a hybrid simulation

method, since it involves numerical consideration of inertial and damping forces but

experimental evaluation of structural stiffness. Even so, due to the fact that basic

PSD requires a full structural model, it does not fully leverage the benefits of modern

hybrid testing methodology that enable dynamically-consistent testing of individual

structural components or substructures. Over the past few decades, principles of

analytical dynamic substructuring have been applied to the original PSD formulation

and its variations, resulting in the current family of hybrid simulation forms.

Most hybrid simulations to date have been based on extension of one of the following

experimental simulation methods: slow or real-time PSD, real-time STT, real-time

EFT, or combined real-time STT and EFT. For the HSF presented in this paper,

slow pseudodynamic hybrid simulation (PSDHS) will be used. The general framework

for this approach is illustrated in Figure 2.5, where the components in gray signify

the analytical portion of the structural model. In PSDHS, the discrete-time dynamic

equation of motion (Equation 2.1) is used to determine displacements to be applied
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Figure 2.5: Slow pseudodynamic hybrid simulation methodology

to the structure at the next time step. In Equation 2.1, the Kx term may be taken as

the restoring force vector r, composed of experimental and analytical parts, denoted

by E and A superscripts. This formulation is expressed in Equation 2.2.

Mẍn + Cẋn + rEn + KAxn = fext (2.2)

For the experimental substructure, the restoring force due to the applied displacement

is measured directly. For the analytical substructure, the restoring force is computed

based on the stiffness of the analytical substructure and motion of the unrestrained

degrees of freedom. If substitution of rE into Equation 2.2 results in an imbalance

between the left- and right-hand sides of the equation, the imbalance may be corrected

using either a corrector step or an iterative method not involving physical application
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of displacement corrections, since imposing physical displacement corrections may

result in unintended permanent deformation of the specimen. In Figure 2.5, the

interface forces are those that result in dynamic equilibrium for each substructure.

The imbalance between the left- and right-hand sides of Equation 2.2 may be considered

as the difference between the interface forces shown in Figure 2.5.

While real-time tests are preferred where practical, they are highly complex and

often expensive to implement. In tests involving inelastic structural response, accurate

application of a desired load or force on the structure is crucial, since the structural

response is path-dependent. Accurate application of a hydraulic actuator load or

displacement is much simpler in a slow test, where the load or displacement can

be applied gradually, ramping up or down to the target value, thereby minimizing

overshoot. In any type of real-time testing, ramping is difficult due to time constraints.

Ramping to the target is especially inconvenient in the case of real-time PSD, which

requires time for the computation of target displacements at each time step, in

addition to the time required to actually apply the displacements experimentally. The

complexity increases yet again with real-time PSDHS, since an analytical substructure

must also be analyzed separately within each time step. For configurations with

multiple degrees of freedom in the experimental substructure, multiple actuators may

be required to work in unison, further adding to the complexity. While a number of

laboratories have developed real-time capabilities with some success, slow PSDHS with

one experimental degree of freedom will be the starting point for the HSF presented

here. Slow PSDHS has the added benefit of allowing for an iterative integration scheme

without the concern for the time-delay issues on the experimental side. This will be
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important when considering geometric nonlinearity in the analytical substructure.

In the future, improvements and upgrades may be made to the HSF as laboratory

hardware resources become more capable.

Although hybrid simulation at this time is still predominantly of the slow PSD

variety, two of the most versatile systems recently under development are real-time

dynamic hybrid simulation (RTDHS) and real-time hybrid simulation (RTHS) [Shao

et al., 2010]. RTDHS utilizes both shake tables and actuators. One or more shake

tables apply ground motion, while actuators apply interface forces at the boundaries

between the analytical substructure and the experimental substructure. RTHS is

similar, but it “[allows] a redistribution of dynamic load between shake tables and

dynamic actuators to adapt to the available laboratory equipment” [Shao et al., 2010].

2.3 Applications of Hybrid Simulation in Structural Testing

Hybrid simulation has been applied to a variety of structures for analysis of different

applied loads. Test structures have included many steel frames, both braced and

moment-resisting, as well as reinforced-concrete, masonry, and wood structures [Shao

and Griffith, 2013]. Multi-span bridges have also been studied in several hybrid

simulation projects [Frankie et al., 2013], with loads including both ground motion

and vehicular traffic [Terzic and Stojadinovic, 2013]. In addition to ground motion and

vehicular excitation, some researchers have performed hybrid simulation of gravity load

collapses of reinforced-concrete frames [Shoraka et al., 2008]. Many of the applications

of hybrid simulation have involved structures such as shear buildings that can be

modeled using a few lateral degrees of freedom at horizontal diaphragms. Others have
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considered multiple degrees of freedom on a single experimental substructure, such as

the bracing in a steel zipper frame [Shing et al., 2006]. One of the most intriguing uses

of hybrid testing is geographically-distributed simulation, where multiple substructures

from the same structural model are evaluated in a single simulation utilizing a network

of several test sites, such as the Network for Earthquake Engineering [Shao and Griffith,

2013]. Hybrid testing has also been used to test and validate nondestructive evaluation

techniques and sensor technologies for structural health monitoring applications

[Mercado and Zhang, 2012].

Despite the increased popularity of hybrid testing, the overwhelming majority of

studies have been related to earthquake engineering research. For all the research

that has been done, there is a surprising lack of studies applying hybrid simulation to

lattice or truss structures, such as power transmission towers and telecommunications

towers. As mentioned in the previous chapter, the focus application area of the HSF

developed, verified, and validated in this thesis will be these systems.

Over the years, failures of power transmission towers have caused large, costly

power outages and required expensive repairs [Klinger et al., 2011]. Most catastrophic

transmission tower failures have occurred in extreme weather conditions, such as ice

storms and wind storms. Ice storms with strong winds generate dynamic loading

scenarios involving galloping of conductor wires [Baenziger et al., 1994], but literature

review suggests that very few dynamic or pseudodynamic experiments have been

performed on transmission towers to examine structural responses under these loads.

Failure analysis over the past few decades has often employed full-scale testing [Alber-

mani et al., 2009, Rao et al., 2010, Rao et al., 2012, Fan et al., 2009, Landers, 1982],
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but due to the prohibitive costs of full-scale testing of these towers, researchers have

developed nonlinear finite element analysis procedures to predict failure of many tower

designs under static loads comparable to those applied in full-scale tests [Eltaly et al.,

2014]. Dynamic analysis by the finite element method is a powerful tool [Shen et al.,

2010], but experimental methods provide the only means to validate the reliability

of computational dynamic analysis. Critical components of power transmission sys-

tems are challenging to analyze, particularly in regard to failure analysis considering

material and geometric nonlinear behavior of the structural members. As pointed

out by Fan in a paper for the 2009 ASCE Electrical Transmission and Substation

Structures Conference, “Full scale tower tests provide an indispensable tool to validate

the adequacy of the structures designed” [Fan et al., 2009].

Admittedly, construction and dynamic loading of entire full-scale towers, not to

mention a multi-span system, is often impractical. Hybrid testing could serve as an

effective alternative by executing pseudodynamic simulations of full-scale components

of a system or tower while accurately accounting for the interaction with the rest

of the structural system. Such testing has the potential to provide a compromise

between the reliability of full-scale testing and the convenience and cost advantages of

computer simulation, perhaps in a way that is similar to scale modeling as presented

by Richardson [Richardson, 1987], but serving to answer questions of detail rather than

overall structural behavior. If so, hybrid simulation could play a role in improving the

quality of the design of new towers as well as identifying and correcting weaknesses

of specific existing tower designs that have failed in the field. Additionally, a recent

state-of-the-art review [Chen et al., 2014] has identified several needs for greater



18

understanding of transmission tower-line system response to various dynamic loadings

that are not well-modeled analytically at the present time. Hybrid testing could make

research in those areas more economically feasible and expedient.



CHAPTER 3: THEORETICAL FOUNDATION

In order to achieve a macroscopic understanding of the HSF that has been developed,

the underlying theory must first be introduced. Geometric nonlinear analysis concepts

discussed by McGuire et al. [McGuire et al., 2000] are implemented within the HSF,

with particular treatment of geometric nonlinearity of structures comprised of axial

elements. The direct time integration procedure used in the HSF is based primarily

on the α-operator splitting integration scheme presented by Combescure and Pegon

[Combescure and Pegon, 1997] and the iterative method devised by Mosqueda and

Ahmadizadeh for dealing with logistical challenges associated with nonlinear iterations

on the experimental substructure [Mosqueda and Ahmadizadeh, 2011]. Each of these

topics is addressed in this chapter.

3.1 Nonlinear Geometric Effects

As a structure undergoes displacements due to applied loads, changes in geometry

affect the load path. In many structural analysis applications, displacements are

small enough to allow the analyst to neglect the change in geometry of a system

without introducing significant error into the analysis. In applications with larger

displacements, the geometry of the displaced configuration must be taken into account

in the formation of the stiffness matrix for the system. Such analysis is classified as

second-order (or large displacement) analysis, and structural response determined by
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second-order analysis is nonlinear, even with purely linear-elastic material behavior.

For axial elements, the incorporation of these geometric nonlinear effects within the

stiffness matrix is a fairly simple task, but the solution of the equilibrium equations

requires an iterative method. For a single axial element with nonlinear geometric

effects, linear elastic material properties, and degrees of freedom as indicated in Figure

3.1, the elastic, geometric, and tangent stiffness matrices in local coordinates are

ke =
EA

L



1 0 0 −1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−1 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0



u1

v1

w1

u2

v2

w2

kg =
fx
L



1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

−1 0 0 1 0 0

0 −1 0 0 1 0

0 0 −1 0 0 1



u1

v1

w1

u2

v2

w2

k = ke + kg (3.1)

where L and fx are member length in the reference configuration and internal member

force, respectively.

Figure 3.1: Local degrees of freedom for elements in example model
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In Equation 3.1, E and A are Young’s modulus and the cross-sectional area of the

member, respectively. Throughout this thesis, A for a given member is assumed to be

constant (i.e. Poisson’s effect is neglected). The global tangent stiffness matrix K is

formed by computing the local tangent stiffness matrix k for each element, transforming

each local stiffness matrix to global coordinates, and summing the contributions of all

the individual element stiffnesses by the direct stiffness method. For an increment of

relative displacement applied to an axial element (neglecting rigid body motion), the

force in the element at the end of the increment can be simply determined using the

stiffness coefficient of the element at the beginning of the increment as

fx,n =
EA+ fx,n−1

Ln−1

(Ln − Ln−1) + fx,n−1 (3.2)

This equation can be rearranged to

fx,n − fx,n−1

Ln − Ln−1

=
EA+ fx,n−1

Ln−1

(3.3)

which, assuming the material properties are constant within the increment, indicates

that the change in member force with respect to change in member length for an

axial element is equal to its stiffness coefficient in the reference configuration. This

means that in the absence of material nonlinearity, the local axial stiffness remains

linear. The nonlinearity introduced into such a truss system is primarily due to global

geometric changes, which can largely be accounted for by continuous updating of

member transformation matrices.

To demonstrate the concept of nonlinear geometry in a truss, consider the two-

element truss shown in Figure 3.2, which is based on Example 9.1 of Matrix Structural
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Figure 3.2: Two-degree-of-freedom truss model used for geometrically nonlinear
analysis

Analysis [McGuire et al., 2000]. Following Equation 3.1, for the initial increment of

a geometrically nonlinear analysis, the stiffness matrices of the two elements (with

entries associated with the out-of-plane direction partitioned and removed) are

k1 =
(2× 1011)(8× 10−5)

4



1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0


+
f

(1)
x

4



1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1


[N/m]
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k2 =
(2× 1011)(9× 10−3)

4



1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0


+
f

(2)
x

4



1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1


[N/m]

Using transformation matrices, each of the n local element stiffness matrices is

transformed from local to global coordinates. The contribution of each element to the

global stiffness matrix can be formulated from the element local stiffness matrix and

corresponding transformation matrix as

Kn = TT
nknTn (3.4)

For any axial element, the transformation matrix, T, is given by Equation 3.5:

T =



l m n 0 0 0

−m
D

l
D

0 0 0 0

− ln
D
−mn

D
D 0 0 0

0 0 0 l m n

0 0 0 −m
D

l
D

0

0 0 0 − ln
D
−mn

D
D



(3.5)

where

l =
x2 − x1

L
m =

y2 − y1

L
n =

z2 − z1

L
D =

√
l2 +m2

The above formulation for the transformation matrix follows Section 5.5 of Logan’s

finite element text [Logan, 2011]. Since this example is planar in the x-y plane, the
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third and sixth columns and rows of T can be omitted. Thus, for the configuration

corresponding to the initial increment, the transformation matrices for the two elements

in the example structure are constructed as

T1 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


T2 =



0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


After assembling the global stiffness matrix by the direct stiffness method and parti-

tioning and removing all entries associated with restrained degrees of freedom, the

global stiffness matrix K for the initial increment is

K = 1× 106

 4 0

0 450

+ f (1)
x

 1
4

0

0 1
4

+ f (2)
x

 1
4

0

0 1
4

 [N/m]

Figure 3.3 shows the result of the nonlinear static analysis for this example, solving

iteratively for P in du = 1 mm increments of horizontal displacement of Node 2

from u = 0 m to u = 3 m. The dashed curve shows the results that are obtained

by first-order linear analysis. The solid curve shows nonlinear geometric analysis

results, where the stiffnesses and transformation matrices have been updated at each

displacement increment to account for the geometric nonlinearity present in the system.

Again, it should be noted that changes in the cross-sectional areas of the elements

due to Poisson’s effect are neglected here; only axial strain is considered.

For small displacements, the initial stiffness is approximately equal to the updated

tangent stiffness. In the example above, “small displacement” might be defined as
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Figure 3.3: Load-displacement curves for static analysis of structure in Figure 3.2

u ≤ 50 mm. For larger displacements, such an approximation is clearly inaccurate, and

geometric nonlinearity becomes significant. Figure 3.4 shows the dramatic difference

between the original and limit-point configurations. It is apparent that the original

transformation matrices are significantly inaccurate at this stage of nonlinearity. In

many approaches to nonlinear geometric analysis, the reference configuration for

each increment remains constant as the member forces are updated. In the HSF

presented in this thesis, the reference configuration is updated at each iteration, since

the displacements for the entire structure are projected at each iteration.

For elements subject to bending stresses, geometric nonlinearity becomes nontrivial
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on the local level as well and must be appropriately considered. End rotations may

generate significant geometric effects in a moment-resisting member, even with rela-

tively small translational displacements of the ends of the member. Further discussion

of the topic of geometric nonlinearity in flexural members is beyond the scope of this

thesis. The reader is referred to Chapter 9 of Matrix Stuctural Analysis by McGuire

et al. for additional discussion of geometric nonlinear analysis, including derivation of

the geometric stiffness matrix for an axial element. Appendix B of the same text also

provides insight into nuanced consideration of the effects of rigid body motion and nat-

ural deformation in large-displacement problems, as well as derivation of Equation 3.2.

Figure 3.4: Limit-point deformed geometry for nonlinear static analysis
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3.2 α-Operator Splitting Integration Scheme

The α-operator splitting (α-OS) method of time integration as explained by Combes-

cure and Pegon [Combescure and Pegon, 1997] is the basis for the integration scheme

presented in this thesis. Since the procedure outlined by Combescure and Pegon

was tailored to PSD, analytical and experimental substructuring is not addressed

in this section. Furthermore, the determination of restoring forces described here is

only applicable to the experimental substructure of a hybrid simulation and must be

complemented by a comparable method of computing restoring forces for the analytical

substructure in order to be implemented satisfactorily in hybrid applications.

3.2.1 Discrete-Time Equation of Motion

The α-OS method is a modification of the Hilber-Hughes-Taylor (HHT) method

widely used in most commercial finite element analysis packages for direct time

integration [Hilber et al., 1977]. The HHT method is a special one-parameter (α)

method that is a subclass of the three-parameter (α, β, γ) family of extended Newmark

integration methods. In the HHT method, β and γ are expressed as functions of α:

β =
(1− α)2

4
(3.6)

γ =
1− 2α

2
(3.7)

where α ∈ [−1
3
, 0]. In discrete-time integration, these three parameters are used to

compute the displacement and velocity vectors at the next time step in terms of

the acceleration vector of the next time step and the displacement, velocity, and
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acceleration vectors of the current time step:

dn = dn−1 + ∆tvn−1 +
∆t2

2
(1− 2β)an−1 + ∆t2βan (3.8)

vn = vn−1 + ∆t(1− γ)an−1 + ∆tγan (3.9)

where an is unknown. By substitution into the discrete-time equation of motion

(Equation 2.1), the state vectors at the next time step are related through the

following equation:

Man + (1 + α)Cvn − αCvn−1 + (1 + α)rn − αrn−1 = (1 + α)fn − αfn−1 (3.10)

where r and f are the vectors of restoring force and external applied force, respectively.

3.2.2 Solution of the Equation of Motion by a Predictor-Corrector Method

As pointed out by Combescure and Pegon [1997], the relationship expressed by

Equation 3.10 is implicit, since the unknown an is used to produce vn and dn.

The restoring force vector, rn, is also dependent on an, albeit indirectly, since the

experimentally-measured rn is a function of predicted displacement and the stiffness of

the experimental substructure. To solve Equation 3.10 for an, the α-OS method uses

a predictor step to explicitly predict an in Equation 3.10 by temporarily neglecting

the an terms of Equations 3.8 and 3.9. Using this assumption of an, a prediction of dn

is determined from Equation 3.8 and used to find an initial estimate of the restoring

force vector as described in Section 3.2.3. The predictor displacement is denoted by d̃,

and the associated restoring force vector is denoted by r̃. An initial prediction of the

velocity vector, ṽ, is computed as well, using Equation 3.9. At this point, predicted
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values for all quantities in Equation 3.10 are known, and Equation 3.10 may be solved

for an. To solve for an, the pseudo-force vector, f̂n, for the time step and pseudo-mass

matrix, M̂, are computed as follows:

f̂n = fn + α∆f −Cṽn − r̃n − α
[
C∆v + ∆r−

(
C∆tγ + K∆t2β

)
an−1

]
(3.11)

and

M̂ = M + C∆tγ + K∆t2β + α
[
C∆tγ + K∆t2β

]
(3.12)

where K is the tangent stiffness matrix. The acceleration vector for the time step is

computed as the solution of a system of linear equations:

M̂an = f̂n (3.13)

Following solution of Equation 3.10 for an, the displacement and velocity vectors

for the next time step are corrected by reintroducing the terms associated with an

that were initially neglected. This step of the procedure is commonly known as the

corrector step. As an alternative to completely neglecting an terms in the predictor

step as described by Combescure and Pegon, Ahmadizadeh [2007] suggests that the

β and γ values for Equations 3.8 and 3.9 be temporarily set to zero to compute

the predictor displacement and velocity. In that case, the corresponding corrected

displacement and velocity are determined by reintroducing the terms involving β and

γ following solution of Equation 3.10. This approach is adopted in the HSF presented

in this thesis and described in Section 3.3.
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3.2.3 Computation of the Restoring Force Vector

The restoring force vector in the equation of motion is determined through a

three-step process. First, the measured restoring force, r̃m, is determined by direct

measurement of the restoring force resulting from application of the desired displace-

ment. Second, r̃m is numerically adjusted to compensate for experimental errors. In

order to compensate for experimental error associated with the discrepancy between

the predictor displacement, d̃, and the displacement actually applied, d̃m, the restoring

force vector associated with d̃ may be approximated as

r̃ = r̃m + K
(
d̃− d̃m

)
(3.14)

where K is the tangent stiffness of the experimental substructure. This correction

assumes that the errors in measurement are small in comparison to the error in

command displacement. Usage of Equation 3.14 requires an analytical estimate of

the stiffness matrix of the experimental substructure [Combescure and Pegon, 1997].

Following solution of the predictor step for an and computation of the corresponding

dn, the corrected restoring force vector is determined by Equation 3.15:

r = r̃ + K
(
d− d̃

)
(3.15)

where K is again the analytically-constructed tangent stiffness, which is assumed to

be same for the predicted displacement and the corrected displacement.
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3.3 Iterative Solution of the Equation of Motion in Hybrid Testing

For structures subject to nonlinearities, the tangent stiffness matrix K and the damp-

ing matrix C may vary with displacement and velocity. Where practical, incremental-

iterative solution methods can be used to achieve more accurate solutions to these

problems than simple predictor-corrector steps [Mosqueda and Ahmadizadeh, 2011].

As mentioned in Section 2.2, structural response is path-dependent in many cases.

This principle is the reason overshoot of target displacements in PSD is so greatly

discouraged. For the same reason, physical methods of iterating on the experimen-

tal substructure are generally thought to be unsatisfactory, as they may produce

unintended irreversible effects (namely plastic deformations) in the specimen and

compromise the fidelity of the simulation. The method proposed by Mosqueda and

Ahmadizadeh provides an innovative way to iterate on a system with experimental

substructures without imposing physical iterative displacements. The technique ap-

proximates the local force-displacement relationship for the experimental substructure

through second-order polynomials fitted to the most recent data points of force-time

and displacement-time plots for the physical measurements taken in the first iteration

of each time step. For non-initial iterations in each time step, the physical imposition

of iterative displacement on the experimental substructure is replaced with numerical

iterations, using the approximation of the measured force-displacement relationship.

This technique is adapted for the hybrid simulation framework presented in this thesis

and will be discussed in detail in Section 4.3.

In a sense, the predictor-corrector method described in Section 3.2 can be categorized
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as a special type of iterative method, where the number of iterations is fixed at 1. The

iterative method used here, then, is simply an extension of that, where the maximum

number of iterations per increment or time step is greater than 1. The inaccuracy

of the α-OS method arises from the fact that the stiffness and damping matrices

obtained in the predictor step are only as accurate as the predicted state vectors upon

which they are based. If the prediction is modified iteratively until the correction

of the state vectors for the increment becomes negligible, the stiffness and damping

matrices in hand at the end of the time step are much more accurate. The predictor-

corrector method studied by Combescure and Pegon (see Section 3.2) is based on

an initial assumption of zero acceleration for the time step, whereas the modified

predictor-corrector proposed by Ahmadizadeh is based on an initial assumption of

zero change in acceleration for the time step [Ahmadizadeh, 2007]. For nonlinear

problems, Equations 3.8, 3.9, and 3.10 may be rearranged and solved iteratively with

relative ease after initially assuming ∆a = {0}:

dn = dn−1 + ∆tvn−1 +
∆t2

2
an−1 + ∆t2β∆a (3.16)

vn = vn−1 + ∆tan−1 + ∆tγ∆a (3.17)

Man + Cvn + rn + α [C∆v + ∆r] = fn + α∆f (3.18)

where rn is computed as the sum of experimental and analytical parts as shown in

Equation 2.2 and ∆r is computed as the change between rn−1 and rn.

Since the actual incremental acceleration, ∆a, is unknown and subject to iteration,

the left-hand side of Equation 3.18 may not be balanced with the right-hand side. To
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determine the amount by which to adjust ∆a, the unbalanced force, f̂ , is computed as

f̂ = fn + α∆f −Man −Cvn − rn − α [C∆v + ∆r] (3.19)

and pre-multiplied by the inverse of M̂, which is the sum of the matrices multiplied

with ∆an in each term of Equation 3.18:

M̂ = M + C∆tγ + K∆t2β + α
[
C∆tγ + K∆t2β

]
(3.20)

Note that the mass matrix is included in Equation 3.20, since it is multiplied by an

in Equation 3.18, where an = an−1 + ∆a. The rationale for including the damping

and stiffness terms in Equation 3.20 can be traced back through Equation 3.18 and

Equations 3.16 and 3.17, keeping in mind that the incremental restoring force vector

∆r is computed by a secant stiffness for the increment multiplied by the incremental

displacement.

Finally, the incremental acceleration is adjusted using

∆aj+1
n = ∆ajn + M̂−1f̂ (3.21)

where n and j indicate the time step number and the iteration number, respectively.

The process is repeated as needed in order to satisfy the equation of motion (Equation

3.18) within some desired convergence tolerance. The stiffness and damping matrices

are updated at the start of each iteration based on the state vectors produced by the

previous iteration. The stiffness is first recalculated according to the method described

in Section 3.1. Then, the damping matrix is updated using the new stiffness matrix,

the original mass matrix, and the assigned proportional damping coefficients. For this
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thesis, stiffness and damping (since damping is dependent on stiffness) are treated as

only displacement-dependent, so only dn is needed to adjust K and C. Additional

aspects of the hybrid simulation technique and specifics on the implementation of

the general iterative integration scheme are presented in detail within the following

chapter, which focuses on the development of the HSF.



CHAPTER 4: DEVELOPMENT OF A HYBRID TESTING FRAMEWORK FOR
LATTICED STRUCTURES WITH NONLINEAR GEOMETRIC EFFECTS

In developing the HSF, a library of MATLAB functions was created to perform the

dynamic analysis and interface with the experimental hardware. Some functions serve

multiple purposes and are called from several levels of the main routine, while others are

used to modularize certain subroutines of the HSF software, so that similar functions

may be readily interchanged in future upgrades to the HSF. In this chapter, the main

HSF software routine is presented along with discussion of its constituent functions.

The HSF software routine can be described as a three-tier process consisting of (1)

the user interface and definition of problem-specific inputs, (2) the HSF integration

scheme with nonlinear equilibrium iterations, and (3) the experimental substructure

operations performed within the integration scheme to incorporate the physical test

specimen into the dynamic analysis. These three tiers are presented in algorithm form

in this chapter. Source codes for technical aspects of the HSF are included in the

appendices.

4.1 User Interface

The first tier of the HSF software routine is comprised primarily of user interface

functions and a series of interactive, guided steps for defining problem-specific inputs.

In this section, the function that provides the primary user interface for the HSF

software is outlined, along with some of the responsibilities of the user for generating



36

meaningful results. The function HybridSimulation.m (Appendix A) is designed

to guide the user through this setup process by providing analysis of fundamental

dynamic properties of the model, the results of which inform the decisions of the

user in establishing parameters for the direct-time integration scheme. The process

encompassed by this high-level user interface routine is presented in Algorithm 1 and

described in the following subsection.

HybridSimulation.m contains graphical user interface prompts for most of the

necessary inputs from a user. The remaining required inputs are provided as arguments

to the function. Upon executing the main routine, dialog boxes prompt the user to

select an input file for the truss setup (geometry, material properties, restraints, etc.).

If the truss input file is a text file, the formatting is required to be exactly as shown

in Appendix B, with tab delimiters between entries in each row of the file, though the

ordering of the sections of the file is unimportant. Alternatively, a spreadsheet may

be used. Truss input files should be in consistent units internally. The truss input file

Algorithm 1 User Interface Procedure

Inputs: samping rate (Fs), maximum number of iterations (jlimit), relative conver-
gence tolerance (tol), numerical damping parameter (α)

Outputs (to results folder): figures, results, status of each time step
1: Get input file for truss setup
2: Read input file and set associated units
3: Load excitation files and set associated units and scale factors
4: Build M and K for the initial linear elastic model
5: Perform modal analysis for natural frequencies, {ω}, and vibration modes, [Φ]
6: Check that ω1 coincides with a significant excitation content in the frequency

spectrum
7: Specify proportional damping constants directly or by damping ratio-frequency

pairs
8: do IntegScheme.m (Algorithm 2)
9: Plot and save results
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is read and used to create a set of eight global variables: UndeformedNodes, nnodes,

Elements, nelements, E, A, Rho, and FreeDOFs. The first four store the geometry

and connectivity of the structure, while the latter four store the material and section

properties, as well as information needed for matrix partitioning of the restrained

degrees of freedom in the structure.

Following the loading of the truss input files, the user is prompted to specify the

member of the structure that is to be represented with the physical test specimen and

nodes desired for displacement outputs. Note that the results are saved in a text file

for all nodes, but only the displacements of the selected nodes are plotted. Specimen

and node selections are made in the functions SpecimenSelect.m and NodeSelect.m,

which develop a plot of the model geometry and prompt the user to select by clicking

the desired items. Selected items are highlighted in green for easy identification. Items

may be deselected by a second click. For three-dimensional structures, the user may

wish to rotate about the plot of the truss for a better view and access to members on

the far side of the truss.

After the truss and experimental substructure (specimen member) are defined, dialog

boxes prompt the user to select excitation time history and/or ground acceleration

time history files to be loaded. These input files are required to be in the same

format as shown in Appendix C, with a column for time and columns for x, y, and

z directions. Following the selection of each excitation file, the excitation is read,

re-sampled, and scaled in magnitude according to the selections of the user. The

restructured excitation is stored within the structure Excitations, which contains

information regarding each excitation applied. The variable Fexcite contains the
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effective force vectors for the total effect of all the excitations specified for each time

step of the simulation.

Following this definition of the model, the lumped-mass matrix and the initial

linear elastic stiffness matrix are assembled. The function used to construct the initial

linear elastic stiffness matrix (KTotal.m, provided in Appendix D) is used throughout

the HSF software routine for construction of stiffness matrices. Using the mass and

stiffness matrices, the generalized eigenvalue problem is solved, yielding estimates of

the linear normal modes and corresponding natural frequencies of the initial model.

The user may then choose to see plots of the mode shapes, which are automatically

saved to the results folder for the user’s convenience.

Following the modal analysis, the user is presented with frequency spectra presenting

the amplitudes of the input excitations. The fundamental natural frequency is plotted

on the same axes. This plot of the Fast Fourier Transform (FFT) of the excitation is of

great significance and should be examined by the user. If the fundamental frequency

coincides with a strong frequency component of the excitation, as shown in Figure 4.1,

the structure will experience resonance, and the effects of the dynamic load will be

more severe. In some instances, when the natural frequencies are spaced away from the

peak excitation frequencies, the structure may exhibit milder response, and a hybrid

simulation may not be worthwhile. In that case, the user may wish to terminate the

analysis and adjust the input excitation waveforms or structural model to produce

conditions more favorable to a strong dynamic response before restarting the main

analysis routine.

The linear modal analysis results are also used to aid in establishing proportional
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Figure 4.1: Excitation frequency plot, with an overlay of the first natural frequency

damping for the model via the function DampingSetup.m. The user may either specify

the stiffness-proportional damping coefficient, αc, and mass-proportional damping

coefficient, βc, directly or request that the function calculate them using a pair of

frequencies and corresponding desired damping ratios. Note that the αc and βc used

here are distinct from and unrelated to the α and β appearing in the equations of

Chapter 3. The former are used for modal damping, whereas the latter are used as

parameters for the integration scheme. A generic figure is provided to the user to

aid in the wise selection of the modal damping parameters, as shown in Figure 4.2.

Following the selection of the damping parameters, another similar figure is generated
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Figure 4.2: Proportional damping and critical damping ratios as functions of
frequency, adapted from textbook [Cook, 1974]

to graphically represent the effect of the prescribed proportional damping over a

range of frequencies. If the user is displeased with the damping model, he or she may

respecify the coefficients immediately. Otherwise, the figure is saved in the results

folder.

Once all inputs have been provided by the user, the function IntegScheme.m is

called, and the simulation begins. Upon conclusion of the experiment, displacement

time history plots are generated and stored in the results folder, which also contains

the text file of nodal displacements, velocities, and accelerations recorded throughout

the simulation.
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4.2 Integration Scheme

The second and most fundamental tier of the HSF software is the integration scheme.

In this section, the integration scheme of the HSF software is presented in algorithm

form (Algorithm 2). The steps shown here closely follow the process encoded in

the MATLAB code provided in Appendix E. This section is intended to provide an

overview of the process, along with many of the equations used therein. In Section

4.3, the finer details and subtleties of the hybrid-specific portion of the process are

presented.

Algorithm 2 Integration Scheme

Inputs: stiffness-proportional damping (αc), mass-proportional damping (βc), numer-
ical damping parameter (α), time vector ({t}), excitation forces (Fexcite), jlimit,
tol, M, Specimen, Coordinates, {E}, {A}

Outputs: .txtfile, runinfo
1: nmax = length({t})− 1
2: β = (1− α)2/4
3: γ = (1− 2α)/2
4: ∆t = t1 − t0 (indirect result of Fs in Algorithm 1)
5: .txtfile ← t0, d0, v0, a0

6: for n = 1 to nmax do
7: ∆f ← Fexcite (external force increment determined from excitations)
8: ∆a = 0
9: δa = 0
10: do Iterations (Algorithm 3) to achieve equilibrium on nonlinear hybrid model
11: Retrieve contents of Result from Iterations (Algorithm 3)
12: an = an−1 + ∆a (acceleration vector)
13: vn = vn−1 + ∆v (velocity vector)
14: dn = dn−1 + ∆d (displacement vector)
15: rn = rn−1 + ∆r (restoring force vector)
16: fn = fn−1 + ∆f (external force vector)
17: {fx,n} = {fx,n−1}+ {∆fx} (array of member forces)
18: .txtfile ← tn, dn, vn, an
19: runinfon ← tn, n, j, fEx,n
20: end for
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Within the integration scheme, initial estimates for the state vectors a, v, and d are

made at the start of each time step. Using Algorithm 3, those estimates are refined

iteratively to satisfy the equation of motion to within the user-specified tolerance.

The resulting state vectors for the time step are then written to a text file, and the

process is repeated.

Each iteration (Algorithm 3) begins with an adjustment of the incremental accel-

eration vector, ∆a, by an amount δa, determined from the unbalanced force in the

previous iteration as described in Section 3.3 with Equations 3.19, 3.20, and 3.21.

For the first iteration, δa is taken as the zero vector. Following the adjustment of

∆a, the incremental displacement and velocity vectors are also adjusted. With the

new incremental displacement vector, the geometry of the structure must be updated,

along with all the variables that are affected by it, including member forces and the

stiffness matrix. Since the damping matrix is constructed from the stiffness and mass

matrices, the damping matrix is updated as well.

With the revised parameters, the incremental restoring force vector may be computed.

In small-displacement linear analysis, the restoring force vector would be computed as

the product of the stiffness matrix and the displacement vector. In the case of the HSF

software routine, the incremental restoring force vector is computed using the updated

member forces acting in the deformed configuration instead. In the NodalEquivalent

subfunction of IntegScheme.m, each internal axial member force is transformed from

local to global coordinates to generate an equivalent restoring force vector acting on

the global degrees of freedom. The sum of the contributions from each of the members

produces the equivalent restoring force. The incremental restoring force vector is then
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Algorithm 3 Iterations

Inputs: everything in Algorithm 2
Outputs: ∆a, ∆v, ∆d, ∆r, {∆fx}, kEn , {Ln}
1: for j = 1 to jlimit do
2: ∆a = ∆a + δa (Predictor acceleration, δa = {0} for j = 1)
3: ∆v = ∆tan−1 + γ∆t∆a (Predictor velocity)
4: ∆d = ∆tvn−1 + 1

2
∆t2an−1 + β∆t2∆a (Predictor displacement)

5: Coordinates = Coordinates+ dn−1 + ∆d (Update coordinates of nodes)
6: {Ln} , {Tn} ← Coordinates (Update lengths and transformation matrices)
7: for all members except Specimen do
8: fx,n = EA+fx,n−1

Ln−1
(Ln − Ln−1) + fx,n−1 (calculate internal member force)

9: end for
10: for Specimen do
11: fx,n, kEn ← ExpSub.m (Algorithm 4)
12: end for
13: {∆fx} = {∆fx,n} − {fx,n−1}
14: K← KTotal (Update K for geometric nonlinearities)
15: C = αcK + βcM (Update C for only geometric nonlinearities)
16: K← KTotal (Update K for all nonlinearities)
17: rn ← NodalEquivalent({fx,n},{Tn})
18: ∆r = rn − rn−1

19: if j = 2 then
20: Result← ∆a, ∆v, ∆d, ∆r, {∆fx}, kEn , {Ln}
21: end if
22: M̂ = M + (1 + α)(γ∆tC + β∆t2K)
23: f̂ = fn−1 −M(an−1 + ∆a)−Cvn−1 − rn−1 + (1 + α)(∆f −C∆v −∆r)
24: δa = M̂−1f̂
25: if j > 1 then

26: norm =

√
1

length(d)

∑(
β∆t2δa

max(‖∆d‖)

)2

27: if tol > norm then
28: Result← ∆a, ∆v, ∆d, ∆r, {∆fx}, kEn , {Ln}
29: go to 32
30: end if
31: end if
32: end for
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computed as the difference between the new restoring force and the restoring force

from the beginning of the time step.

Once the incremental restoring force vector has been computed, all the quantities

are available for determining the unbalanced force and necessary adjustment, δa, for

the incremental acceleration vector. The resulting vector is used to check convergence

criteria based on a modified Euclidean norm of displacements as expressed in Equation

12.23 of Matrix Structural Analysis [McGuire et al., 2000].

For cases where the user-specified iteration limit is reached and the convergence

criteria are still not satisfied, the α-OS predictor-corrector method is used. This task

requires no additional computation, since the first iteration of each time step is simply

a predictor-corrector step. The results from the second iteration of each time step are

temporarily held in memory as fields of the structure Result. If at any iteration the

convergence check is satisfied, Result is overwritten and the “for” loop exited.

4.3 Experimental Substructure

The third tier of the HSF is embedded within the iteration loop. As indicated in

Algorithm 3, the experimental restoring force and the analytical internal member

forces are obtained separately. The experimental restoring force is obtained from direct

measurement, while the member forces in the analytical substructure are produced

using Equation 3.2 in the iteration loop (Line 8 of Algorithm 3). For the experimental

substructure, the function ExpSub.m (Appendix F) is used to either produce a new

measurement or an estimate for an iteration via polynomials fitted to the most recent

data points. The operations of ExpSub.m (Algorithm 4) are the focus of this section.
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Algorithm 4 Experimental Substructure

Inputs: Ln − L0, ∆t, {t}, n, j, tol
Outputs: fEx,n, kEn
1: if j = 1 then
2: Impose ∆ddesired physically on experimental substructure
3: Get ∆dachieved and ∆fmeasured from direct measurement
4: if n = 1 then
5: Get linear fit coefficients for actuator d and f versus t
6: else
7: Get quadratic fit coefficients for actuator d and f versus t for latest points
8: end if
9: if ∆dachieved > threshold then
10: kEn = ∆fmeasured/∆dachieved (Update stiffness estimate)
11: else
12: kEn ← kEn−1 (Revert to trusted stiffness estimate)
13: end if
14: fx,n = fmeasured + kEn (∆ddesired −∆dachieved) (Update restoring force estimate)
15: else
16: if n > 1 and dfit(t) is approximately linear then
17: Neglect 2nd-order term in dfit
18: end if
19: Solve dfit(t) = ddesired for t, including complex solutions
20: Find the magnitude of the difference between tn and each tsol by
21: tdiff =

√
‖tsol,real − tn‖2 + ‖tsol,imagi‖2

22: Discard all tsol except the one with the smallest tdiff
23: if tdiff < 2∆t then
24: fx,n = ‖ffit(tsol)‖ × sign(Re (ffit(tsol)))
25: else
26: if n = 1 then
27: fx,n = kE0 ddesired
28: else
29: no solution
30: fx,n = fmeasured + kEn (∆ddesired −∆dachieved)
31: end if
32: end if
33: if ∆ddesired > threshold and solution was found then
34: kEn = ∆festimated/∆destimated (Update stiffness estimate)
35: else
36: kEn ← kEn−1 (Revert to trusted stiffness estimate)
37: end if
38: end if
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4.3.1 Description

ExpSub.m is used to determine the restoring force and equivalent stiffness of the

experimental substructure during the hybrid simulation. This function is called on

each iteration of each increment of a hybrid simulation. On the initial iteration of

an increment, the procedure is routed into either the Exp or ExpSim subfunction of

ExpSub.m, depending on whether a numerical verification or an actual experiment is

being performed. The corresponding subfunctions produce either actual or synthetic

measurement outputs that are stored in the global variables dhist and rhist in terms

of the base units of the particular simulation (N and m or lb and ft), with the axial

displacements scaled for the length of the entire experimental member if the physical

specimen is only a segment of the whole member. The first time these functions are

called in an experiment, they also record the initial readings for displacement and

restoring force of the experimental substructure. In the subfunction Exp of ExpSub.m,

the desired displacement is passed to the hardware, and experimental measurements

of restoring force are acquired by reading the signal from the load cell. This process

is demonstrated through experimental application in Chapter 6. In the subfunction

ExpSim of ExpSub.m, theoretical behavior of the experimental substructure is modeled

and used to produce synthetic restoring forces due to prescribed displacements. This

function could also be modified to simulate systematic or random error in measurement,

if desired.

In hybrid simulations with nonlinear behavior, the chronology of loading is impor-

tant to the accuracy of the experiment, since loading can produce irreversible damage
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in the specimen. Consequently, while iterations can be performed on the analytical

substructure without loss of accuracy, iterations on the experimental substructure are

not feasible. This challenge has been one of the major obstacles to implementing hybrid

simulation of highly nonlinear structures in recent years. Mosqueda and Ahmadizadeh

addressed this limitation by proposing a numerical technique for carrying out virtual

iterations on the experimental substructure [Mosqueda and Ahmadizadeh, 2011]. On

non-initial iterations of an increment, second-order polynomials (fitted to the latest

experimental data points) are used to interpolate or extrapolate the experimental

restoring force corresponding to the desired displacement of the experimental substruc-

ture. It is important to note that the forces and displacements are not directly related

to one another in this method. Instead, they are related to one another through their

relationships to time, as shown in Figure 4.3. One of the important advantages of this

Figure 4.3: Estimation procedure using fitted polynomials, adapted from Mosqueda
and Ahmadizadeh [Mosqueda and Ahmadizadeh, 2011]
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approach is that “the effects of specimen nonlinearities will be less pronounced on

time histories compared to force-displacement curves, providing better quality curve

fitting,” [Ahmadizadeh, 2007]. This approach also has several benefits in the context

of real-time simulation, but real-time simulation is beyond the scope of this thesis.

First, the polynomial fitted to the displacement-time data is used to estimate the

time at which the desired iterative displacement would theoretically be achieved in

the experimental substructure. Then, the polynomial fitted to the force-time data is

used to estimate the force corresponding to that time.

ExpSub.m is not only responsible for obtaining and iterating on the restoring force

from the experimental substructure, but also for updating the estimated stiffness

coefficient, kEn , for the experimental substructure. The stiffness for the experimental

substructure is approximated as the secant stiffness exhibited over the time step,

computed by the change in the restoring force divided by the change in length of

the member, since the experimental substructure for this application is a single axial

element. As pointed out by Ahmadizadeh, updating the stiffness in this way could be

inaccurate if the applied incremental displacement is too small, since measurement

noise would have a relatively large magnitude compared to the force and displacement

that are intended [Ahmadizadeh, 2007]. For this reason, a criterion is adopted that the

incremental displacement must be greater than a specified threshold in order for kEn to

be updated in any given iteration. If the threshold is not exceeded in an iteration, kEn

reverts to its value from the end of the previous time step kEn−1 until an iteration in

which the threshold is exceeded. Guidance on the recommended threshold is provided

by Ahmadizadeh [Ahmadizadeh, 2007]. This threshold is established in the first call
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of ExpSub.m, using the outputs of the subfunction hardwaresetup or hardwaresetupsim

of ExpSub.m, depending on whether a numerical verification or an actual physical

experiment is being performed.

4.3.2 Safeguards in Implementation of Estimations Using Polynomials

To estimate forces using fitted polynomials while limiting the opportunities for

erroneous estimates, several safeguards have been implemented, mostly following the

recommendations of the original proposers of this technique. These safeguards are

described in the following subsections, and their implementations can be identified in

the “if” statements of Algorithm 4.

4.3.2.1 Insufficient Data Points

At the start of an experiment, there will be too few data points to generate

quadratic fits of the force and displacement responses. In this case, linear fits are

used instead. Another obstacle that often arises towards the start of an experiment is

that the command displacement may not change for the first couple of steps, due to

the commonly-used initial conditions of zero acceleration and velocity. Under these

conditions, acceleration will become non-zero in the first time step, and velocity will

become non-zero in the second time step. In the third time step, displacement will

finally change. For cases such as these, iteration on the experimental displacement

cannot be achieved by fitting polynomials to the data, since the displacement-time data

exhibits a constant trend. Instead, the theoretical initial stiffness of the experimental

substructure is used to produce the restoring force in the member from an assumed

linear elastic behavior, which is valid since displacement should be small. Alternatively,
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the initial stiffness estimate could be improved based on a direct measurement of the

initial linear elastic stiffness of the experimental substructure prior to the experiment.

4.3.2.2 Linear Displacement-Time Trend

In some situations, recently commanded displacements may coincidentally (or

perhaps by design) exhibit a linear or nearly-linear trend. In this case, a second-order

polynomial will either be inaccurate or poorly scaled. For this reason, the polynomial

solution procedure needs to be able to default to solving a linear fit in situations where

a quadratic fit is less appropriate. To detect such situations, the first coefficient of the

quadratic fit is divided by the second coefficient. If this value is small, say less than

1
10000

, it can be safely assumed that a linear fit would be a more appropriate option.

At that point, the second and third coefficients of the quadratic polynomial can be

used as the first and second coefficients of a linear polynomial. This issue does not

affect the process of solving the force-time polynomial, since that polynomial is solved

only in the forward sense by substituting a given time value into the fitted quadratic

equation. For that use of the second-order polynomial model, scaling of coefficients

does not present computational challenges.

4.3.2.3 Excessive Extrapolation

As recommended by the original proposers of this method, the window of time for

acceptable solutions should be restricted to within two time steps of the time at the

end of the current time step in order to prevent excessive extrapolation of experimental

data [Mosqueda and Ahmadizadeh, 2011]. If no solution exists within the acceptable

time window, the most recent stiffness estimate, kEn , of the experimental substructure
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is used to make the adjustment from the measured restoring force (corresponding

to the applied displacement) to the estimated restoring force (corresponding to the

desired displacement) to achieve equilibrium during iterations. Implementation of this

safeguard can be found at the end of the function ExpSub.m presented in Appendix F.

4.3.2.4 Complex Solutions

The last complication that may arise in using quadratic fits to estimate displacements

and forces involves complex roots. In some cases, there may not be a real value of time

for the desired displacement on the fitted polynomial, namely at points of displacement

reversal [Ahmadizadeh, 2007]. This raises the question of what, if anything, to do

with complex solutions. Ahmadizadeh’s recommendation is to accept the complex

solution of the displacement polynomial, if the imaginary component is small, and to

compute the value of the force polynomial for that complex-valued time [Ahmadizadeh,

2007]. This is actually an extension of the restriction on the time window discussed

previously. In the case of complex roots, excessive extrapolation can be avoided by

limiting the accepted solution times, tsol, to those falling within a time “radius,” r, of

length 2∆t of the current time, tn, as shown in Equation 4.1. Decomposing tsol into

real and imaginary components (tn only has a real component), this radius can be

determined as

r =
√
‖tsol,real − tn‖2 + ‖tsol,imagi‖2 < 2∆t (4.1)

By limiting the magnitude of the difference between the current time and the solution

time, the spirit of the time window restriction is fulfilled in the context of complex

numbers in a non-arbitrary way. Once the force polynomial has been evaluated
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for the complex-valued time, the accepted force estimate is taken as the absolute

value of the complex-valued force, multiplied by the sign of the real component of

the complex-valued force. While real roots are preferable, this procedure allows the

integration scheme to proceed without the dissipation of energy associated with the

additional displacement.



CHAPTER 5: VERIFICATION OF FRAMEWORK

Prior to performing experimental validation, verification of the HSF was required

to ensure that the scheme was properly implemented and functioning as intended. For

this study, the verification of the HSF was performed by comparison with SAP2000

analysis over a series of both linear and nonlinear cases. First, the options within

the SAP2000 nonlinear direct time-history integration were set in such a way as to

carefully imitate the details of the integration scheme used in the HSF. After ensuring

this consistency, the basic integration scheme used in the HSF was verified against

the SAP2000 software results for an analysis of a simple two-element structure under

an applied dynamic load. Then, the routine for the HSF including experimental

substructuring was verified using the same structural model to ensure that the hybrid-

specific portion of the HSF performed appropriately as a substitute for the basic

procedures associated with the analytical substructure. Finally, verification of the

HSF software routine was performed on a large three-dimensional model subject to

base excitation to ensure accurate analysis after expansion of model complexity.

5.1 Verification by Comparison Against Commercial Software

In order to verify the proper performance of the MATLAB-based HSF, a reliable

baseline simulation from a trusted and verified code must be established for comparison.

Each aspect of the analysis procedure is considered, from material properties and
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geometry assignments to material nonlinearity models and aspects of the integration

scheme, iterations, and convergence criteria. Nearly every aspect of the analysis

performed in SAP2000 was mimicked using the MATLAB-based HSF, in accordance

with CSi Analysis Reference Manual [Computers and Structures, 2009]. Once the

results from the two analysis packages were in close agreement, it was concluded

that the HSF correctly accounts for the various linear and nonlinear aspects of the

structural analysis.

5.1.1 Usage of Application Programming Interface

The most reliable method of verification using SAP2000 is to operate SAP2000 via

the CSi Open Application Programming Interface (OAPI). The OAPI is an effective

tool to eliminate user error or forgetfulness, since a program may be written to carry

out all of the modeling and analysis tasks according to a few inputs rather than

having to manually set up the SAP2000 model and analysis through the graphical

user interface. Such a program was developed and used in all verifications for the HSF

presented in this thesis. The program is provided in Appendix G.

5.1.2 Units, Material Properties, and Geometry Assignments

As in any structural analysis software, values of inputs provided to SAP2000 must

reflect units consistent with those used by the HSF throughout the modeling and

analysis process. Material properties (Young’s modulus, E, and mass density, ρ) and

section properties (cross-sectional area, A) must be assigned for each element, as

well as the geometry of the global model, end releases of the elements, and restraint

assignments for boundary conditions of the model.
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5.1.3 Link Element for Specimen

A link element should be used in place of a frame element to represent the ex-

perimental member (or experimental substructure) during verification of cases with

nonlinear material models. To model a truss member with a link, only the axial degree

of freedom of the link should be activated, and none of the degrees of freedom of the

link element are fixed. Nonlinearity should be enabled for the axial degree of freedom,

and the effective stiffness for linear analyses should be set as EA/L to ensure accurate

modal analysis for initial model comparison. Likewise, link weight and mass should

be specified to ensure that the link element contributes properly to the mass matrix,

although the weight may be unused if self-weight is neglected in the analysis. In order

to establish the nonlinear material behavior of the experimental member, a multilinear

material model can be used to provide an idealized nonlinear elastic hysteresis model.

The simplest multilinear material model can be constructed as a bilinear material

model using five ordered pairs, as shown in Figure 5.1. The slope of the line connecting

Figure 5.1: Multilinear elastic material model assignment in SAP2000
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the third and fourth ordered pairs will reflect the initial stiffness of the experimental

member. The post-yield incremental stiffness will be defined by the slope of the line

connecting the fourth and fifth ordered pairs. The first and second ordered pairs are

normally assigned to be antisymmetric to the fourth and fifth ordered pairs. SAP2000

will not accept a zero-stiffness segment, so in cases where zero stiffness is specified,

0.01 percent of the initial stiffness should be used instead in both the MATLAB and

SAP2000 assignments to ensure model consistency.

5.1.4 Damping Matrix Updates

For a given time step, the stiffness matrix used in SAP2000 for nonlinear direct time

history load cases is constructed using the contributions from any linear or nonlinear

material model, as well as contributions from geometric nonlinearities for the time

step, if large-displacement analysis is enabled. The proportional damping matrix,

however, is computed on the basis of a stiffness matrix formed by the initial linear

elastic stiffnesses and updated geometries of the elements, neglecting the material

nonlinearity of the link element. This is documented in the CSi Analysis Reference

Manual [Computers and Structures, 2009]. Since only this approach is available in

SAP2000 for the construction of the damping matrix in nonlinear analysis, the same

approach is used in the integration scheme implemented in the HSF. As a result, the

integration scheme code contains a line for construction of the stiffness matrix with

only nonlinear geometric effects, followed immediately by a line for the computation

of the updated damping matrix. This stiffness matrix is used only for the formation of

the proportional damping matrix. Subsequently, the stiffness matrix is reconstructed
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with consideration of nonlinear material behavior in the experimental substructure, in

addition to the geometric nonlinearity in the system.

5.1.5 Load Case Definitions

To ensure that consistent excitation time histories will be used in both SAP2000

and the developed code, time history functions are defined from text files containing

joint forces or ground accelerations applied in each direction. Following the definition

of these excitation functions, load cases are defined in SAP2000. In order to effectively

mimic the procedure used in the HSF, SAP2000 load case definitions should include

exactly the same proportional damping constants αc and βc, computed as discussed in

Section 4.1, the same time step size ∆t, the correct number of output time steps, the

desired geometric nonlinearity setting (typically including large-displacement), the

loads from the aforementioned functions as accelerations or loads in each direction, a

consistent time integration method and accompanying integration scheme parameters

(HHT with α = 0 for this verification), and solution control parameters. The solution

control parameters should include maximum and minimum substep sizes equal to

the time step size (thereby disabling the default substepping feature in SAP2000),

maximum constant-stiffness iterations of zero, maximum Newton-Raphson iterations

equal to the iteration limit, relative iteration convergence tolerance equal to the desired

tolerance, no event-to-event stepping, and the maximum number of line searches set

to zero. This will produce an iteration procedure that matches that of the HSF nearly

exactly. Unfortunately, the convergence criterion used in SAP2000 is force-based,

whereas the criterion used in the HSF is displacement-based. However, this has not
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been observed to have a noticeable effect on the converged solution.

5.2 Verification Cases for Material and Geometric Nonlinearities

To be certain that nonlinear analysis capabilities of the HSF software are adequately

tested in the verification process, four cases of analysis of the same simple structure

subject to the same loading are compared using direct time-history analysis in SAP2000.

For simplicity of the results presented, the displacement response of a single joint

is considered. Since the HSF is based on an iterative method, the load case used

in SAP2000 must include iterations in order to be comparable. For this reason, all

SAP2000 direct time-history verification analyses are run as nonlinear analyses. Due

to the inability to toggle between linear and nonlinear material behavior within a

nonlinear direct time-history load case, a work around is required for cases where

the desired experimental member material behavior is linear elastic. To execute this

informal linear analysis in SAP2000 while still using the nonlinear direct time-history

load case, geometric nonlinearity is turned off, and the experimental member is modeled

for linear elastic material behavior using a frame element rather than a link element.

This analysis represents the linear elastic material, first-order (linear) geometric

analysis (LMLG) case. A similar process is used to perform the analysis for the case

in which linear elastic material behavior is considered with a second-order (nonlinear)

geometric analysis (LMNLG). The other two analysis cases included in this verification

are nonlinear material behavior with first-order geometric analysis (NLMLG) and

nonlinear material behavior with nonlinear geometric analysis (NLMNLG). To ensure

that nonlinear geometric effects and nonlinear material effects are significant for the
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structure under the prescribed loading, the SAP2000 NLMNLG results should be

confirmed to be distinct from the results of the other three cases. Additionally, the

results of at least one of the two partially-nonlinear cases (NLMLG and LMNLG)

should be distinct from the results of the purely-linear case (LMLG). For NLMLG and

NLMNLG cases, the force or strain in the experimental member during the course

of the analysis should also be confirmed to exceed the force or strain required to

yield the member, preferably on numerous occasions throughout the analysis and

by a significant margin. If these three requirements are not met, verification will be

inconclusive at best and misleading at worst.

5.3 Verification of the Software Routine on a Hybrid Structure

At the most fundamental level, the HSF software routine is a software routine for

numerical simulation, fitted with a special function to overwrite the analytical response

of a substructure with the experimentally-observed response of that substructure.

Thus, the majority of the HSF software routine can be verified by short-circuiting

the polynomial-based pseudo-iteration technique and directly iterating on a virtual

experimental substructure instead. An experiment simulator function is used within

the HSF code to calculate the exact response of a virtual experimental substructure

to prescribed displacements according to the nonlinear elastic material model. This

is achieved with a multilinear curve similar to the one defining the multilinear link

behavior in SAP2000 (see Figure 5.1). If any discrepancies exist between the results

generated by SAP2000 and the HSF, they are used at this stage for debugging the

integration scheme and supporting processes. This approach was instrumental for
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identifying important subtleties of SAP2000’s nonlinear direct time-history integration

methods (such as updating the damping matrix at each time step while neglecting

material nonlinearity in the damping matrix) without the added complications of

implementing the polynomial iteration scheme.

Following the direct iteration step of verification, the polynomial-based pseudo-

iteration technique was enabled for the verifications presented in the following subsec-

tions. Whereas the direct iteration procedure exactly produces the proper force for each

iterative displacement of the experimental substructure, the polynomial estimation

procedure is an approximation. Since SAP2000 performs iterations directly without

consideration of experimental versus analytical substructures, SAP2000 lacks a feature

analogous to the polynomial-based pseudo-iteration used in the HSF. Thus, exact

agreement between the HSF and SAP2000 should not be expected when the polynomial

estimations are used, but the results should still be close if the method is properly

implemented. Successful verification of the HSF software routine demonstrates an

acceptable level of accuracy and seamless execution of the estimation procedure.

5.3.1 Verification on a Simple Two-Dimensional Analytical Model

A useful consideration when selecting a structure for verification is the simplicity

of the structure. As previously stated, the structure shown in Figure 5.2 was used

for the verification of the HSF presented in this thesis. The horizontal member was

selected as the experimental member. This structure, based on the problem described

in Section 3.1, was selected primarily for its limited number of degrees of freedom

and the dramatic difference in the cross-sectional areas of its two members. Such uneven
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Figure 5.2: Simple two-dimensional truss model

distribution of stiffness lends itself to producing geometric and material nonlinearities

and a clear difference in displacement amplitude for the two degrees of freedom, which

can be informative in assessing the relative displacement error.

This structure has a fundamental natural frequency of 2.67 Hz, which occurs in

a mode of vibration of the structure in the horizontal direction. The second nat-

ural frequency is 28.27 Hz, corresponding to the vertical mode of vibration of the

structure. The structure was loaded with a windowed sinusoidal signal, P , applied in

both directions with a fixed proportionality scale as shown in Figure 5.2. Figure 5.3 is a
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Figure 5.3: Force-time plot for load P on two-element structure for verification

plot of P as a function of time for this dynamic load. The frequency of the sinusoid

was chosen to correspond to the fundamental natural frequency of the structure.

The stiffness-proportional and mass-proportional damping coefficients were set

at 0.06 and 0.1, respectively, resulting in relative damping factors of 0.099 for the

fundamental mode and 0.850 for the second mode. Relative displacement convergence

tolerance was set at 1× 10−6 with a maximum of fifty iterations per time step, and

the numerical dissipation parameter, α, was set to zero. The material model for the

experimental member was defined as bilinear with a yield stress of 2.25 GPa, an initial

modulus of elasticity of 200 GPa, and a post-yield incremental stiffness of zero. The

input file for this truss is provided in Appendix B.

After running analyses for LMLG, LMNLG, NLMLG, and NLMNLG cases, the

SAP2000 results for the various cases were compared against one another to confirm

that geometric and material nonlinearities are significant for the specified loading.

Figures confirming this are provided in Appendix H. The stress-strain curves for
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each of the four cases are provided in Appendix H as well, confirming that the

member does indeed yield under the given loading when material nonlinearity is

considered. The plots provided in Figures 5.4 and 5.5 show the agreement between the

displacement time histories generated using the HSF and those from corresponding

SAP2000 analyses. Although there is some discrepancy between the two software

programs for the cases with nonlinear material behavior, the source of the difference

seems to be the approximation of the stiffness in the HSF software routine for the

time steps in which the experimental member transitions between the yielded and the

linear elastic segments of the stress-strain curve, since SAP2000 need not make such

approximations. This topic is further discussed in Section 5.3.3.

In addition to confirming the accuracy of the results, the usage of iterations in the

analysis was checked. As indicated by Figure 5.6, which presents iteration counts

for the nonlinear material, nonlinear geometry case, the time steps typically did not

converge within the minimum two iterations except after the sinusoidal excitation

subsided. During the excitation, most time steps required four iterations to converge to

within the desired tolerance. This demonstrates both the need for and the effectiveness

of the iterative integration scheme. In linear analyses, iterations are unnecessary.

Regular convergence within two iterations (one as a predictor, one as a corrector)

would erroneously suggest that iterations are unnecessary for nonlinear analyses as

well. The fact that all time steps in this verification converged in fewer than the

maximum number of iterations indicates that the iterative method effectively fulfills

its purpose for this simple verification model.
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Figure 5.6: Iterations required for convergence throughout time history of NLMNLG
case

5.3.2 Verification on a Three-Dimensional Analytical Model with Ground Motion

Excitation

The verification presented in the previous subsection confirms that the integration

scheme performs accurately for a planar structure of limited degrees of freedom. Al-

though the American Society of Civil Engineers (ASCE) has stated that “transmission

structures need not be designed for ground induced vibrations caused by earthquake

motion,” [Wong and Miller, 2009, p. 69] seismic design and analysis are the most

common applications of hybrid simulation in contemporary research efforts. To ex-

plicitly demonstrate the applicability of the HSF to this important field of study and

provide a verification case on a space truss, the structure shown in Figure 5.7 was

subjected to ground accelerations from a segment of time history data for the 1994

Northridge earthquake [PEER, 2013] as an additional verification. The input file

for this three-dimensional tower is given in Appendix I. Plots of the applied ground

accelerations and the corresponding amplitude spectra for the x, y, and z directions

are presented in Figure 5.8. The magnitude of the excitation was scaled by 10 to
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Figure 5.7: Analytical model of three-dimensional tower

magnify the force in the experimental member; this scaling is reflected in the figure.

Strategic selection of a structural system and applied excitation is a key aspect of

effective assessment of the performance of the HSF. Large-displacement geometric

effects are of interest in applications of the HSF, so the combination of structural design

and excitation should be such that the resulting displacement response of a particular

joint is large. To this end, modal analysis of a candidate structure and Fourier

analysis of the accompanying candidate excitation were performed prior to verification,

resulting in the mode shapes, natural frequencies, and relative damping factors shown

in Figure 5.9. The fundamental frequency of the candidate structure preferably

should be concurrent with a dominant frequency component of the excitation. From
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Figure 5.8: Northridge ground accelerations and amplitude spectra, scaled by a
factor of 10
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Figure 5.9: Mode shape plots for each of the first ten natural frequencies of the
three-dimensional model

inspection of the amplitude spectra plots for the excitation, it was determined that

the fundamental natural frequency of 2.63 Hz corresponds to the frequency for one of

the two greatest amplitudes in the ground acceleration amplitude spectrum for the x

direction.

One of the diagonal braces at the lower level of the tower was used as the virtual

experimental member in this verification, since the base shear developed under the

ground motion should provide significant loading for that member. For the purpose

of this verification, only the NLMNLG results are shown. Figure 5.10 presents the
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SAP2000 and HSF results and residuals for the global x, y, and z directions. It

should be noted that the residuals appear to be largely due to a slight phase difference

between the SAP2000 and HSF analyses, since the timing of the maximum residual

amplitudes appears to coincide with the timing of the maximum displacement response

amplitudes, particularly for the x and z directions. The stress-strain curve for the

experimental member in the NLMNLG case is shown in Figure 5.11 and confirms that

the member did experience material nonlinearity over the course of the simulation.

Figure 5.11: Stress-strain plot for experimental member in three-dimensional model
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5.3.3 Discussion of Residuals and Source of Error in Cases with Material

Nonlinearity

The primary source of error in cases exhibiting material nonlinearity is thought to

be the slope discontinuity at the limit state transitions in the defined stress-strain

curve. Upon inspection of Figure 5.11, it is evident that the experimental member

frequently transitions rapidly between the yielded and the linear elastic segments of

the stress-strain curve. In the HSF, the stiffness in such time steps is computed based

on the incremental restoring force and the incremental displacement. In SAP2000, the

stiffness is given instead as a direct function of the position on the stress-strain curve

for the given time step. Consequently, the HSF at times computes an experimental

member stiffness that is not in agreement with the exact value used by SAP2000.

This is expected to be the source of the phase differences previously mentioned for

the simulation involving the three-dimensional model.

To mitigate these errors, the size of the time step may be decreased, which reduces

the size of the displacement increments and, thus, the likelihood that large jumps will

be made across the stress-strain discontinuity. This technique was studied through

the execution of multiple simulations of the verification presented in Section 5.3.1,

using a variety of sampling rates. Note that the sampling rate used in the verification

presented in Section 5.3.1 was originally 50 Hz, while the sampling rate used in the

verification presented in Section 5.3.2 was 100 Hz. Figure 5.12 shows a plot of the

maximum magnitude of the residuals for the x-direction displacement as sampling

rate is increased (time step size decreased) for the problem presented in Section 5.3.1.
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Figure 5.12: Maximum residual magnitude for x-direction displacement in the
planar structure verification, as time step size decreases

Occasionally, an increase in sampling rate may appear to exacerbate the problem,

since opposing phase-shift errors can sometimes offset one another. For example, at

100 Hz, the maximum residual is quite small compared to the 50 Hz case, but the

residual spikes again for 150 Hz. This happens for the higher frequencies as well.

Nonetheless, as sampling rate continues to increase, the maximum residuals follow

a decreasing trend. Comparing the discontinuities of the stress-strain curves for the

50 Hz simulation (which has the greatest residual) and the 250 Hz simulation (which

has the smallest residual) in Figure 5.13, it is evident that the 250 Hz simulation

involves significantly less smoothing of the discontinuity due to displacement “jumping,”
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demonstrating what is believed to be the primary reason for the different residual

magnitudes of the two simulations.

Figure 5.13: Stress-strain curves produced in the HSF for the 50 Hz and the 250
Hz sampling cases



CHAPTER 6: EXPERIMENTAL VALIDATION

In the two previous chapters, the HSF was described and verified to perform satis-

factorily against a benchmark commercial code across several numerical simulations.

In this chapter, the implementation of the HSF in a laboratory setting is demon-

strated to validate that the code is implementable, stable, and provides reasonable

results compared to analytical simulations. This chapter provides a description of the

hardware and interfaces used to perform the experimental validation, as well as the

process used to perform the validation, a description of the simulated problem, the

results of the simulation with comparison to analytical predictions, and concluding

remarks and observations regarding the experimental validation.

6.1 Implementation of the Hybrid Testing Framework

The validation of the HSF is performed using a uniaxial MTS servohydraulic load

frame with a 50-kip load cell. While the implementation is performed with this

load frame, the HSF is general enough to allow implementation on any number of

experimental setups with a few changes to the hardware-specific portions of the code.

A schematic of the hardware and interfaces established to conduct the hybrid testing

is presented in Figure 6.1 and will be discussed in this section of the thesis.

Two computers are used to interact with the MTS 793 Controller unit. The first,

labeled as “MTS Computer” in Figure 6.1, is used to set up operating parameters
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Figure 6.1: Schematic of hardware and interfaces used to establish the hybrid testing
experimental demonstration
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for the hardware used in the simulation. The second computer, labeled as “Hybrid

Computer” in Figure 6.1, is used to (1) execute the HSF software routine presented in

Chapter 4, (2) provide external displacement commands to the MTS 793 Controller

unit, and (3) acquire force and elongation measurements from the controller. The

prescribed displacement commands from the hybrid computer are provided indirectly

by generating a desired voltage using a Tektronix PWS4205 Programmable DC Power

Supply connected to a universal serial bus (USB) port on the hybrid computer.

The voltage at each time step is assigned to the power supply using application

programming interface (API) commands in the MATLAB code. The voltage from

the power supply is then accepted into the MTS 793 Controller as an analog input

and translated into a command displacement to be applied to the specimen by a

hydraulic actuator in the load frame. A basic PIDF feedback loop between the MTS

793 Controller and an external extensometer (Epsilon 3542-0200-020-ST, gage length

2.00 in.) provides closed-loop control between the actuator motion and command

displacement. Elongation of the specimen is monitored with the extensometer, while

the restoring force is measured using the 50-kip load cell in the MTS load frame.

It should be noted that the elongation measured by the extensometer is used in this

setup in lieu of displacements measured by the linear variable differential transformer

(LVDT) in the MTS load frame. This is due to the fact that the wedge grips used to

restrain the ends of the specimen were observed to perform unreliably, meaning that

the LVDT measurements correspond to the displacement of the actuator rather than

the specimen itself. As a result, LVDT measurements suggested a modulus of elasticity

that was significantly lower than expected, as well as apparent hysteresis during
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cycling of tensile stresses well-below the anticipated yield stress of the specimen. This

issue was remedied by using extensometer readings at the midspan of the specimen to

directly measure the strain. These measurements are scaled in order to project the

true displacement of the specimen.

As measurements are collected, the analog signals from the extensometer and the

load cell are directed into 493.25 digital universal conditioner (DUC) channels in

the MTS 793 Controller, where they are converted to digital form using calibration

factors prescribed in the MTS software. To efficiently pass these digital measurements

from the controller to the hybrid simulation computer, a connection is established

at the RS 485 interface that is commonly used to communicate between the MTS

793 Controller and the Remote Station Controller. The digital measurement signal is

converted in-line with a USB-COM485 interface module between the controller and

the USB port of the hybrid computer, where measurement data is read into the HSF.

The following is a general procedure for executing hybrid simulations with this

hardware setup:

1. Auto-tune the MTS software to prescribe optimal gain settings for the exten-

someter PIDF loop.

2. Define an External Command Procedure in MultiPurpose TestWare® (MPT)

to prepare the MTS system for hybrid computer control.

3. Establish limit detectors for force, displacement, elongation, and external com-

mand to prevent unwanted damage to the specimen or hardware.

4. Run the setup portion of the HSF on the hybrid computer until prompted to
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zero measurement signals.

5. Apply offset corrections to zero the force, displacement, elongation, and external

command measurements of the MTS system.

6. Run the MTS MPT program to set the control mode to external command.

7. Resume MATLAB, allowing it to drive the simulation through the closed-loop

communication interface until the completion of the simulation.

8. By stopping the MPT program, disconnect the controller from the external

command and return the actuator to displacement control.

6.2 Problem Description and Setup

The structural model used for the experimental validation represents a power trans-

mission tower subjected to a hypothetical dynamic load (specified as P ) of a single

galloping conductor wire on one arm of the tower and a galloping ground wire attached

at the top of the tower, as shown in Figure 6.2. The frequency of the excitation due

to galloping was chosen to correspond with the fundamental frequency of the tower

model. The structure was modeled using structural steel having a Young’s modulus of

29,000 ksi and unit weight 490 pcf. The tension element supporting the conductor at

the end of the cross arm was selected as the experimental member (or experimental

substructure) for this validation, as it is pre-tensioned under the static dead load of

the conductor wire. Due to experimental limitations and ease of implementation, the

tension element serving as the experimental member was physically modeled with a

1”×0.25” bar of aluminum flat stock.
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Figure 6.2: Transmission tower model subjected to hypothetical galloping conductor
and ground wire for experimental validation
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Prior to the experimental validation, a preliminary nonlinear direct time-history

analysis was performed to conservatively determine the maximum expected displace-

ment for the specimen during the experiment. In order to establish a conservative

estimate of the maximum displacement, the modulus of elasticity for aluminum was

intentionally selected to be a soft initial estimate (9,750 ksi) by comparison to the

commonly-observed 10,600 ksi. The maximum displacement estimate is important for

scaling the voltage signal used for prescribing the external command and for setting

limit detectors to power down the hardware under unsafe conditions. The stiffness of

the experimental member is updated during the simulation, so the assumed modulus

of elasticity of the experimental member is inconsequential in the actual experiment.

The experimental member was assigned a unit weight of 169 pcf in the model.

It is strongly emphasized that the tower model developed for the validation is not

meant to provide a realistic representation of an actual transmission tower design.

It is intended to serve as a tool for demonstrating the implementation of the HSF

in the context of a large-scale space truss in the targeted application area for the

HSF. In its current state, the HSF only supports analytical substructures with axial

elements assumed not to buckle under compression loads or yield under tension loads.

In other words, failures are considered only in the experimental substructure. Since

transmission towers have often been observed to fail below the waist due to global or

local buckling of bracing members [Albermani et al., 2009, Rao et al., 2010, Rao et al.,

2012], the selection of a member of the cross arm as the experimental member (and,

thus, the critical member) may not be realistic. This aspect of the development of the

tower model was neglected, since the full-scale compression failure of a long member
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of the tower is difficult to realistically simulate given the hardware selected for the

experimental validation of the HSF. Since the available span for the servohydraulic load

frame limited the length of the specimen, the specimen was scaled to approximately

forty percent of the total length of the experimental member of the model. Such scaling

was only permissible under the condition that the unbraced length of the experimental

member in the model was not a factor, so an experimental member was chosen that

would experience only tension. The specimen was installed in the load frame using

wedge grips at the ends, so the controlling failure mode for the specimen was assumed

to be gross section yielding. Additionally, the dynamic properties of the member were

accounted for numerically, since the simulation was performed pseudodynamically. As

a result, the physically-represented length of the specimen was not a factor in the

analysis itself.

Although the transmission tower model was not explicitly developed to provide

an accurate representation of actual transmission tower designs, it was configured

deliberately to have a realistic fundamental natural frequency, vibration modes, and

relative damping factors. According to Appendix F of the ASCE Guidelines for

Electrical Transmission Line Structural Loading, latticed towers commonly exhibit a

fundamental frequency of 2.0 to 4.0 Hz, with damping ratios of approximately 0.04

[Wong and Miller, 2009, p. 115]. Geometric and cross-sectional properties of the tower

design were adjusted to identify a representative dynamic model according to this

guidance. Several vibration modes of the tower are provided in Figure 6.3, along with

corresponding frequencies and damping ratios.
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Figure 6.3: First five vibration modes for transmission tower model

In addition to providing approximate fundamental frequencies and damping ratios

for common latticed towers, ASCE cites an Electric Power Research Institute (EPRI)

journal that reports common oscillation frequencies for conductor galloping ranging

between 0.08 and 3 Hz [Rawlins et al., 1979]. Since the fundamental frequency of

the tower model was computed as 2.1266 Hz, it was possible to select a coinciding

frequency within that range of conductor galloping frequencies for the excitation

signal. Although the frequency of oscillation is representative of common conductor

galloping loads, it should be noted that the magnitude of the excitation is not: the

load magnitudes have been selected for the sake of producing desired tensile stresses in

the experimental member as well as notable geometric effects for the arm of the tower

model. The magnitude of the load on the ground wire is selected to be approximately

one-sixth of the load on the conductor, for convenience of demonstration and loosely
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based on the approximate relative magnitudes of the conductor and ground wire static

dead loads used in a design example problem [Wong and Miller, 2009].

Two validations were performed. The first validation was performed using excita-

tions chosen to generate a broad range of axial stress magnitudes in the experimental

member without causing it to yield. The load P for the first validation is shown in

Figure 6.4. In this hybrid simulation, the static conductor dead load is taken as 0.9

kips, and the maximum magnitude of the load due to conductor galloping is taken as

0.63 kips. Thus, the load P is increased gradually from zero to 0.9 kips at the start of

the simulation, as shown in Figure 6.4. P is then held at 0.9 kips to allow an induced

dynamic excitation of the structure to subside. After this initial phase of loading,

the “galloping” initiates, as P oscillates at 2.1266 Hz with increasing amplitude until

the halfway point of the simulation. Beyond the halfway point of the simulation,

the oscillatory loading begins decreasing in amplitude. When the load oscillations

subside, the static dead load is held again. Finally, the structure is unloaded to allow

Figure 6.4: Load P applied to transmission tower model for linear elastic simulation
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for measurement of any residual strain in the specimen and to permit removal of the

specimen from the load frame.

The second validation was performed using excitations designed to produce signifi-

cant material nonlinearity in the specimen. The load P for the second validation is

shown as a function of simulation time in Figure 6.5. This load P is similar to that of

the first validation. Here, the static dead load of the conductor is taken as 1.955 kips,

and the maximum magnitude of the load due to conductor galloping is taken as 0.805

kips. The loading procedure is otherwise identical to that of the first validation.

Figure 6.5: Load P applied to transmission tower model for nonlinear simulation

6.3 Experimental Results and Observations

The initial hybrid simulation performed in the linear elastic range of the material

response produced results consistent with those from a SAP2000 nonlinear direct

time-history analysis of the full model with the experimentally-observed modulus

of elasticity assigned to the experimental member. The stress-strain curves from

the experiment and the subsequent SAP2000 analysis are shown in Figure 6.6. The
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Figure 6.6: Experimentally-observed stress-strain relationship and analytically-
simulated stress-strain relationship

stress-strain curve from the experiment indicates minor nonlinearity in the specimen,

which may account for some of the discrepancy between the experimental simulation

and the finite element analysis.

The displacement time histories of the node at the tip of the loaded arm are presented

for the x, y, and z directions in Figure 6.7. These plots include the experimental

results, SAP2000 analysis predictons, and the residuals between the results and the

predictions. As shown in the figure, the agreement is strong with residuals several

orders of magnitude less than the peak displacements.

For the nonlinear simulation, the specimen was initially yielded under the application

of the pre-tension applied as the static dead load. As a result, the oscillations produced

by the galloping of the conductor generated plastic deformation immediately. By the

conclusion of the simulation, the specimen experienced approximately 0.243 percent
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permanent set strain. This corresponds to approximately 0.157 inches of elongation

for the full-length experimental member. For the ex post facto SAP2000 nonlinear

direct time-history analysis performed for comparison against the experimental results,

a nonlinear material model was approximated using six points, as shown in Figure 6.8.

Figure 6.8: Force-displacement relationship definition used in SAP2000 to perform
ex post facto analysis for comparison to experimental nonlinear simulation

These points were determined based on the envelope of the stress-strain curve

generated from the experiment, with the exception of the point in the compression

region (assigned to satisfy the requirement of at least one positive and one negative

point in the material model definition for SAP2000). The SAP2000 analysis was

performed with a kinematic hysteresis model. The stress-strain curve generated during

the experiment is shown in Figure 6.9 alongside the stress-strain curve produced from

the subsequent SAP2000 analysis.
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Figure 6.9: Experimentally-observed hysteresis and analytically-simulated hysteresis

The hysteresis exhibited in the hybrid simulation and the nonlinear finite element

analysis correlate strongly. Additionally, the peak dynamic strain exhibited by the

experimental member and the permanent set strain are in strong agreement. The

strength of the correlation between the experimental hybrid simulation and the finite

element analysis serve to validate the HSF and hardware implementation presented in

this thesis.

The displacement time history of the node at the tip of the loaded arm is presented

for the x, y, and z directions in Figure 6.10. These plots include the experimental

results, SAP2000 analysis predictions, and the residuals between the results and the

predictions. The displacement of the node at the tip of the loaded arm for the nonlinear

simulation was in close agreement to the corresponding SAP2000 analysis, though

the magnitude of the residuals relative to the peak displacements were larger than

that of the initial validation performed in the linear elastic range of the material. For
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this second validation, residuals were generally less than 3 percent of the magnitude

of the peak displacements. These residuals are small enough to be explained by the

difference between the approximate material model defined for the SAP2000 analysis

and the realistic stress-strain envelope exhibited by the experimental member. It

should be noted that both simulations performed for validation took into consideration

the large-displacement geometric nonlinearities.
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CHAPTER 7: CONCLUSION

7.1 Summary

Hybrid simulation has become increasingly popular in recent years, due to its ability

to produce accurate experimental simulations without sacrificing economy or efficiency.

In order for the engineering community to benefit fully from the potential that hybrid

testing offers, hybrid simulation software frameworks must be implemented in a greater

number of laboratories. In this thesis, a software framework for hybrid testing of

geometrically nonlinear latticed structures was presented. This software framework

performs pseudodynamic hybrid simulation with any experimental substructure that

can be interfaced with the corresponding analytical substructure with a single degree

of freedom. An iterative method proposed by Ahmadizadeh [Ahmadizadeh, 2007] is

used to solve the discrete-time dynamic equation of motion by numerically iterating

on the entire structural system, using extrapolation of a polynomial-based force-

displacement relation for the restoring force provided by the experimental substructure

to overcome the challenge of avoiding iterative imposition of physical displacements

on the specimen.

The verification process presented in Chapter 5 detailed a method for reliably

assessing the proper development and numerical implementation of a hybrid simula-

tion software framework using comparative analysis to a commercial finite element
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package, such as SAP2000. The resulting verification indicated that the developed

software routine performs very accurately in comparison to nonlinear direct time-

history integration in the SAP2000 environment. Both planar and space trusses

with harmonic and ground acceleration excitations were analyzed for the verification,

which was confirmed to exhibit residuals several orders of magnitude smaller than

the displacements experienced by the models. Following verification of the numeri-

cal implementation, an experimental hybrid test was conducted to demonstrate the

physical application and validate the experimental implementation by comparison to

finite element analysis. One validation was conducted for linear elastic response of the

member, and a second extended the member response to nonlinear plastic behavior.

The validations, presented in Chapter 6, demonstrated successful implementation of

the hybrid simulation software in the context of a hypothetical power transmission

tower subjected to dynamic loading from a galloping conductor wire and a galloping

ground wire. The validation also further confirmed the accuracy of the software

routine, as an ex post facto SAP2000 analysis (with the material properties observed in

the hybrid simulation assigned to the model) produced results with strong agreement

to those of the experiment.

In its current form, the software framework presented in this thesis is capable of

facilitating hybrid pseudodynamic simulations of latticed structures subjected to base

excitation and time-varying nodal loads. Limited research has been done in the area of

hybrid simulation with power transmission structures or space trusses in general. The

software framework presented in this thesis may be a powerful tool to enable future

research in this area, including but not limited to the study of galloping conductors.
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7.2 Recommendations for Future Work

The software framework presented in this thesis is well-suited for slow pseudodynamic

hybrid simulation with trusses exhibiting significant geometric nonlinearity, as well

as material nonlinearity in the experimental substructure. In order to expand the

capabilities of this framework, future research efforts should be aimed toward the

implementation of several additional facets for improved operation and analysis

capabilities. These items are described in the following subsections.

7.2.1 Extension of the Analytical Solver to Include Frame Elements

In order to extend the software framework presented in this thesis into structures

with frame elements, the global stiffness and mass matrix assemblies must be expanded

to include rotational degrees of freedom. Additionally, member force computations

will no longer be limited to axial forces. It is recommended that the force recovery

formulation, presented in Appendix B of Matrix Structural Analysis [McGuire et al.,

2000], be used to account for natural deformations of the elements while excluding rigid

body movements of the elements in computing the member forces. Transformation

matrix formulation will also need to be expanded, as well as the model definition input

structure provided in input files.

7.2.2 Multiple-Degree-of-Freedom Interface Between Experimental and Analytical

Substructures

Currently, the developed software framework is limited to applications in which

the experimental substructure can be considered to interface with the analytical



95

substructure across a single degree of freedom, as the experimental substructure

stiffness is represented as a scalar computed as the quotient of the change in measured

restoring force and the change in measured displacement. Ahmadizadeh provides

insight into methods of generating updated tangent stiffness matrices for experimental

substructures that interface with the analytical substructure over multiple degrees of

freedom [Ahmadizadeh, 2007, pp. 196-206]. A related improvement to the experimental

substructure capabilities would be to include multiple experimental substructures.

This would be necessary to implement geographically-distributed hybrid simulation.

7.2.3 Numerical Damping

In the course of the verification process, slight discrepancies were observed between

results produced from the software framework and those from SAP2000 for cases

where the numerical damping parameter (α) of the numerical integration scheme was

assigned as nonzero. The results of SAP2000 did not reflect noticeable variation for

α ∈ [−1
3
, 0] within the case of base excitation of the three-dimensional tower, but

the results from the software framework did. This suggests a potential misuse of the

numerical damping parameter in the software framework. Combescure and Pegon

state that “if the loss of stiffness implies also a large shift in frequency of the high

frequency modes, the α-damping does not work any more and the I-modification tends

to aggravate the situation” [Combescure and Pegon, 1997]. It is recommended that

further research be conducted regarding the effects of non-zero α prior to utilizing the

software framework with such values for α.
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7.2.4 Geometric Stiffness Matrix

In the process of verifying the software framework presented in this thesis, it was

determined that the use of the element geometric stiffness matrices, as described in

Section 3.1, produced results from the software framework that were inconsistent with

those of SAP2000 analyses. Although the formulation presented in Section 3.1 is

trusted as a correct mathematical treatment of geometric nonlinearity, the software

framework currently operates on the basis of a stiffness matrix formed using

k =
EA+ fx

L



1 0 0 −1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−1 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0


rather than Equation 3.1 to determine the local stiffness matrix for each member. The

above k formulation has been observed to produce results that closely agree with those

produced by the SAP2000 nonlinear direct time-history analysis. While these results

are satisfactory, the source of the discrepancy in the originally-planned (Equation 3.1)

formulation should be identified and corrected in future research. This must occur

prior to the extension of the software framework to frame element applications and

before introduction of more complex geometric nonlinearities.
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7.2.5 User Interface

For the software framework presented in this thesis, the numerous dialog boxes used

for designating analysis options and user inputs can be improved upon to overcome

potential drawbacks inherent to the current user interface. First, the current interface

may result in a slightly disjointed or disorienting setup process, unless the user

has already developed a strong familiarity with the setup process, the principles of

structural dynamics, and hybrid testing as a whole. Secondly, with so many prompts

required to initiate the analysis, it can be easy to enter a wrong value or click the

wrong button, and mistakes can only be corrected by restarting the entire process.

Due to these two issues, it is recommended that a more intuitive user interface be

created using the Graphical User Interface Design Environment (GUIDE) in MATLAB

for future revisions of the software framework. This would be an effective way to

consolidate and organize the dialog box prompts into a user-friendly form.
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APPENDIX A: HYBRID SIMULATION FUNCTION

1 function HybridSimulation(Fs,jlimit,tol,alpha,varargin)
2 %HYBRIDSIMULATION Initializes a slow pseudodynamic hybrid simulation.
3 % HYBRIDSIMULATION(Fs,jlimit,tol,alpha) provides user interface
4 % for hybrid simulation with excitation sampling rate "Fs" (scalar>0)
5 % in Hz, maximum number of iterations "jlimit" (integer > 1) per time
6 % step, convergence tolerance "tol" (scalar > 0) for iterations, and
7 % numerical damping "alpha" (-1/3 <= scalar <= 0).
8 %
9 % Prompts for input files and various other options will be given.

10 %
11 % Results of the simulation, as well as accompanying plots, will be
12 % saved in the location given by the string in "folder," which
13 % will be near the location where HYBRIDSIMULATION is saved.
14 %
15 % HYBRIDSIMULATION(Fs,jlimit,tol,alpha,verification) activates
16 % the verification option. The first 4 input arguments are the same
17 % as previously described, and "verification" is 1. If that 5th input
18 % argument is given as 1, verification is performed instead of a real
19 % experiment.
20 %
21 % In order to disable nonlinear geometry, global variable NLG may be
22 % assigned as 0 prior to calling the function.
23

24 clear functions
25 clearvars -global -except NLG vu s1
26 clearvars -except Fs jlimit tol alpha varargin
27 global NLG NLM vu s1
28 pause on
29 %% CHECKS FOR VALID INPUTS
30 if length(varargin)==1
31 verification=cell2mat(varargin);
32 if not(verification==1)
33 error('Unexpected value for "verification" input argument.')
34 end
35 elseif or(or(length(varargin)>1,length(varargin)<0),...
36 or(or(~exist('Fs','var'),~exist('jlimit','var')),...
37 or(~exist('tol','var'),~exist('alpha','var'))))
38 error('Unexpected number of input arguments.')
39 else
40 verification=0;
41 end
42 if not(and(isscalar(Fs),Fs>0)); error('Invalid Fs.'); end
43 if not(and(mod(jlimit,1)==0,jlimit>1)); error('Invalid jlimit.'); end
44 if not(and(isscalar(tol),tol>0)); error('Invalid tol.'); end
45 if not(and(isscalar(alpha),and(alpha>=-1/3,alpha<=0)))
46 error('Invalid alpha.'); end
47 clearvars varargin
48

49 mfilename('fullpath');
50 [pathstring,~,~]=fileparts(mfilename('fullpath'));
51 addpath(genpath(pathstring))
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52

53 %% SETUP FUNCTIONS
54 %Structure
55 trussfile=uigetfile([pathstring,...
56 '\InputFiles\ProblemSetup\*.*'],'SPECIFY TRUSS INPUT FILE');
57 extind=strfind(trussfile,'.');
58 if strcmp(trussfile(extind:extind+3),'.txt')
59 TrussInputs(trussfile);
60 else
61 trussxlsreader(trussfile);
62 end
63

64 %Specimen and Outputs
65 global Specimen outputnode nnodes
66 if isempty(Specimen) ; SpecimenSelect; end
67 if isempty(outputnode)
68 outputnode=NodeSelect(nnodes,'nodes for output');
69 end
70

71 %Modal Analysis
72 folder=[pathstring,'\Results\',datestr(clock,30),'\'];
73 if ~isdir(folder); mkdir(folder); end
74 resultsfile=[folder,'TestResults.txt'];
75 global UndeformedNodes nelements E A
76 [L,T]=Bar3dTransformations(UndeformedNodes);
77 M=MTotal(L); %subfunction
78 K=KTotal(L,T,zeros(nelements,1),E(Specimen)*A(Specimen)/L(Specimen));
79 [ModeShapes,NaturalFrequencies,Periods]=ModalAnalysis(K,M);
80 msgtext=strcat('The fundamental period is#',num2str(Periods(1)),...
81 '#s. If you need to prepare excitation input files, go do',...
82 '#that now. Click the button when you are ready to continue.');
83 msgtext(strfind(msgtext,'#'))=' ';
84 periodmsg=helpdlg(msgtext,'');
85 uiwait(periodmsg)
86 ModeShapePlot(ModeShapes,NaturalFrequencies,folder,[],[])
87

88 %Excitation Import
89 [Fexcite,Excitations]=ExcitationDefs(M,Fs,pathstring);
90

91 %Frequency Analysis
92 [~,nloads]=size(Excitations);
93 for i=1:nloads
94 TXYZ=Excitations(i).TXYZ;
95 ExcitationFreqAnalysis(TXYZ,NaturalFrequencies(1))
96 saveas(gcf,[folder,'\ExcitationFreqAnalysis',num2str(i),'.fig'])
97 uiwait(gcf)
98 end
99

100 %Damping
101 ready=0;
102 while ready==0
103 [ALPHA,BETA]=DampingSetup;
104 goahead=questdlg('Proceed with this damping?','','Yes','Retry','Yes');
105 if strcmp(goahead,'Yes'); ready=1; end



104

106 end
107 saveas(gcf,[folder,'\Damping','.fig'])
108 close(gcf)
109

110 %Re-plot Modal Analysis and Frequency Analysis for Report Purposes
111 ModeShapePlot(ModeShapes,NaturalFrequencies,folder,ALPHA,BETA)
112 loadandexcitationfreq(Excitations,folder)
113

114 %% SIMULATION AND RESULTS
115 global yieldload kpercent typunits FreeDOFs rhist dhist...
116 Elements prefunits Rho sscurve plasticlength Tult%#ok<*NUSED>
117 switch verification
118 case 0
119 %Normal operation
120 try
121 runinfo=IntegScheme(resultsfile,M,ALPHA,BETA,...
122 alpha,TXYZ(:,1),Fexcite,jlimit,tol,0);
123 saveas(sscurve,[folder,'\stressstrain.fig'])
124 close(sscurve)
125 AnalysisResults=importdata(resultsfile,'\t');
126 ResultsPlots(AnalysisResults,folder);
127 keep=questdlg('Save workspace?','','Yes','No','Yes');
128 if strcmp(keep,'Yes')
129 save([folder,'\Workspace.mat'])
130 else
131 save([folder,'\RunInfo.mat'],runinfo)
132 end
133 catch myb
134 save([folder,'\Workspace.mat'])
135 rethrow(myb)
136 end
137 case 1
138 %Verification
139 try
140 MATLAB=struct('LMLG',{},'NLMLG',{},'LMNLG',{},'NLMNLG',{});
141 RUNINFO=struct('LMLG',{},'NLMLG',{},'LMNLG',{},'NLMNLG',{});
142 for NLG=0:1
143 for NLM=0:1
144 runinfo=IntegScheme(resultsfile,M,ALPHA,BETA,...
145 alpha,TXYZ(:,1),Fexcite,jlimit,tol,1);
146 sscurvefile=strcat('\stressstrain',...
147 num2str(NLM),num2str(NLG),'.fig');
148 saveas(sscurve,[folder,sscurvefile])
149 close(sscurve)
150 TestResults.Analysis=importdata(resultsfile,'\t');
151 TestResults.RunInfo=runinfo;
152 [MATLAB,RUNINFO]=Sorter... %subfunction
153 (TestResults,NLG,NLM,MATLAB,RUNINFO);
154 end
155 end
156 try
157 [SAP,err]=SAP2000analysis(Excitations,ALPHA,BETA,alpha,jlimit,tol);
158 catch myb
159 warndlg('Error in a SAP2000 command. Plotting results anyway.')
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160 for k=1:length(outputnode)
161 SAP(k).LMLG=zeros(size(MATLAB.LMLG)); %#ok<AGROW>
162 SAP(k).NLMLG=SAP(k).LMLG; %#ok<AGROW>
163 SAP(k).LMNLG=SAP(k).LMLG; %#ok<AGROW>
164 SAP(k).NLMNLG=SAP(k).LMLG; %#ok<AGROW>
165 end
166 rethrow(myb)
167 end
168 if exist('err','var')
169 if err~=0
170 error('SAP2000 command(s) failed')
171 end
172 end
173 VerificationPlots(SAP,MATLAB,folder)
174 save([folder,'\VerificationWorkspace.mat'])
175 keep=questdlg('Keep results?','','Yes','No','Yes');
176 if strcmp(keep,'No')
177 rmdir(folder,'s')
178 end
179 catch myb
180 save([folder,'\VerificationWorkspace.mat'])
181 rethrow(myb)
182 end
183 end
184 pause off
185 end
186

187 %Subfunctions
188 function M=MTotal(L)
189 global A nnodes Elements Rho FreeDOFs
190 M=zeros(3*nnodes,3*nnodes);
191 for i=1:length(L)
192 m=A(i)*L(i)*Rho(i)/2; %half the mass of the element
193 m=m*eye(3,3);
194 dofN=(Elements(i,1)*3-2:Elements(i,1)*3);
195 dofF=(Elements(i,2)*3-2:Elements(i,2)*3);
196 M(dofN,dofN)=M(dofN,dofN)+m;
197 M(dofF,dofF)=M(dofF,dofF)+m;
198 end
199 M=M(FreeDOFs,FreeDOFs);
200 end
201

202 function [MATLAB,RUNINFO]=Sorter(TestResults,NLG,NLM,MATLAB,RUNINFO)
203 if and(NLG==0,NLM==0)
204 MATLAB(1).LMLG=TestResults.Analysis;
205 RUNINFO(1).LMLG=TestResults.RunInfo;
206 elseif and(NLG==0,NLM==1)
207 MATLAB(1).NLMLG=TestResults.Analysis;
208 RUNINFO(1).NLMLG=TestResults.RunInfo;
209 elseif and(NLG==1,NLM==0)
210 MATLAB(1).LMNLG=TestResults.Analysis;
211 RUNINFO(1).LMNLG=TestResults.RunInfo;
212 elseif and(NLG==1,NLM==1)
213 MATLAB(1).NLMNLG=TestResults.Analysis;
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214 RUNINFO(1).NLMNLG=TestResults.RunInfo;
215 end
216 end
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APPENDIX B: TWO-DIMENSIONAL VERIFICATION INPUT FILE

ELEMENTS

1 2

3 2

E

2.00E+11

2.00E+11

NODE BC UX UY UZ

1 0 0 0

2 1 0 1

3 0 0 0

NODES

1 -4 0 0

2 0 0 0

3 0 0 -4

MASS DENSITIES

7.85E+05

7.85E+05

A

8.00E-05

9.00E-03
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APPENDIX C: EXCITATION INPUT FILE EXAMPLE

s N N N

0.00 0.00E+00 0.00E+00 0.00E+00

0.01 2.36E-06 0.00E+00 -4.71E-05

0.02 1.86E-05 0.00E+00 -3.72E-04

0.03 6.12E-05 0.00E+00 -1.22E-03

0.04 1.40E-04 0.00E+00 -2.80E-03

0.05 2.62E-04 0.00E+00 -5.24E-03

0.06 4.28E-04 0.00E+00 -8.56E-03

0.07 6.35E-04 0.00E+00 -1.27E-02

0.08 8.74E-04 0.00E+00 -1.75E-02

0.09 1.13E-03 0.00E+00 -2.26E-02

0.10 1.39E-03 0.00E+00 -2.78E-02

0.11 1.63E-03 0.00E+00 -3.25E-02

0.12 1.81E-03 0.00E+00 -3.62E-02

0.13 1.92E-03 0.00E+00 -3.85E-02

0.14 1.93E-03 0.00E+00 -3.87E-02

0.15 1.82E-03 0.00E+00 -3.64E-02

0.16 1.56E-03 0.00E+00 -3.11E-02

0.17 1.13E-03 0.00E+00 -2.27E-02

0.18 5.39E-04 0.00E+00 -1.08E-02

0.19 -2.26E-04 0.00E+00 4.52E-03

0.20 -1.15E-03 0.00E+00 2.30E-02

(cont.)

2.48 0.00E+00 0.00E+00 0.00E+00

2.49 0.00E+00 0.00E+00 0.00E+00

2.50 0.00E+00 0.00E+00 0.00E+00
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APPENDIX D: STIFFNESS MATRIX CODE

1 function K = KTotal( L,Transformation,fx,kE )
2 %KTOTAL Constructs the elastic+geometric stiffness matrix.
3 % KTOTAL( L,Transformation,fx,kE) constructs the elastic+geometric
4 % stiffness matrix for a truss and removes the constrained degrees of
5 % freedom to obtain the stiffness matrix for free degrees of freedom.
6 % An experimental member stiffness is included via kE.
7 %
8 % L is a column vector containing each of the member lengths to be
9 % used for the matrix.

10 %
11 % Transformation is a three-dimensional array of dimensions (6,6,n).
12 % Layer "n" contains the transformation matrix T* (corresponding to
13 % the notation used in Logan's "Finite Element Method" text 5th ed.,
14 % Section 3.7) for the nth element.
15 %
16 % fx is a column vector containing the axial force in each member.
17 %
18 % kE is a scalar indicating the axial stiffness of the experimental
19 % member.
20

21 global nnodes Elements nelements E A FreeDOFs Specimen
22 K=zeros(3*nnodes);
23 dofN=zeros(1,3);
24 dofF=zeros(1,3);
25 for i=1:nelements
26 dofN(1:3)=(Elements(i,1)*3-2:Elements(i,1)*3);
27 dofF(1:3)=(Elements(i,2)*3-2:Elements(i,2)*3);
28 if isempty(Specimen)
29 ke=E(i)*A(i)/L(i);
30 kg=fx(i)/L(i);
31 elseif not(i==Specimen)
32 ke=E(i)*A(i)/L(i);
33 kg=fx(i)/L(i);
34 else
35 kg=fx(i)/L(i);
36 ke=kE-kg;
37 end
38 % k=ke*[ 1, 0, 0,-1, 0, 0; 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0;...
39 % -1, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0]...
40 % +kg*[ 1, 0, 0,-1, 0, 0; 0, 1, 0, 0,-1, 0; 0, 0, 1, 0, 0,-1;...
41 % -1, 0, 0, 1, 0, 0; 0,-1, 0, 0, 1, 0; 0, 0,-1, 0, 0, 1];
42 k=(ke+kg)*[ 1, 0, 0,-1, 0, 0; 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0;...
43 -1, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0];
44 kt=Transformation(:,:,i)'*k*Transformation(:,:,i);
45 K([dofN,dofF],[dofN,dofF])=K([dofN,dofF],[dofN,dofF])+kt;
46 end
47 K=K(FreeDOFs,FreeDOFs);
48 end
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APPENDIX E: INTEGRATION SCHEME CODE

1 function runinfo=IntegScheme...
2 (file,M,ALPHA,BETA,alpha,t,Fext,jlimit,tol,verf)
3 %INTEGSCHEME Performs the discrete-time numerical integration for a
4 %hybrid simulation.
5 % INTEGSCHEME(file,M,ALPHA,BETA,alpha,t,Fext,jlimit,tol,verf) performs
6 % the discrete-time numerical integration for a hybrid simulation. The
7 % integration scheme is iterative implicit, using numerical iterations
8 % on the experimental substructure for non-initial iterations and an
9 % alpha-Operator Splitting predictor-corrector step for time steps

10 % that fail to converge within the allotted number of iterations.
11 %
12 % Results for each time step are stored in the text file with name
13 % given by "file." The output "runinfo" contains four columns. Column
14 % 1 gives the simulation time corresponding to each time step. Column
15 % 2 gives the index n for each time step (First time step is 1, second
16 % is 2, etc.). Column 3 gives the number of iterations executed in
17 % each time step.Column 4 gives the final estimated axial force in the
18 % experimental member for each time step.
19

20 persistent wboption
21 global FreeDOFs Specimen UndeformedNodes E A kprevE L0 kE NLM k0E NLG
22

23 %% SETUP
24 %Establishing default options if not already set:
25 if isempty(NLG); NLG=1; end; if isempty(NLM); NLM=1; end
26 %Integration scheme settings:
27 beta=(1-alpha)ˆ2/4; gamma=(1-2*alpha)/2;
28 %Loading initial conditions:
29 [L0,T0]=Bar3dTransformations(UndeformedNodes); %geometry
30 k0E=E(Specimen)*A(Specimen)/L0(Specimen); %specimen stiffness
31 fx0=zeros(length(E),1); %member forces
32 %Pre-allocating space and setting initial conditions:
33 nmax=length(t)-1; Deltat=t(2)-t(1); runinfo=zeros(nmax,4);
34 d=zeros(length(FreeDOFs),1); v=zeros(length(FreeDOFs),1);
35 a=zeros(length(FreeDOFs),1); r=zeros(length(FreeDOFs),1);
36 Lprev=L0; fxprev=fx0; kprevE=k0E; f=Fext(:,1);
37 %Storing initial state vectors:
38 TNodalDVA=[t(1),d',v',a']; %state vectors prior to first time step
39 dlmwrite(file,TNodalDVA,'delimiter','\t','newline','pc');
40 %Waitbar option:
41 if isempty(wboption); wboption=questdlg(['Would you like a ',...
42 'progress bar?'],'','Yes please','No thanks','No thanks'); end
43 if strcmp(wboption,'Yes please'); wb=1; else wb=0; end
44 if wb==1
45 progress=waitbar(0,'Implicit Integration');
46 set(progress,'Units','pixels')
47 waitopos=get(progress,'OuterPosition');
48 waitpos=get(progress,'Position'); scrsz=get(0,'ScreenSize');
49 set(progress,'OuterPosition',...
50 [waitopos(1) scrsz(4)-waitopos(4)+...
51 (waitpos(2)-waitopos(2)) waitopos(3) waitopos(4)]);
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52 tic;
53 end
54

55 for n=1:nmax
56 %% BEGIN TIME STEP
57 %Determining incremental applied external force vector:
58 Deltaf=Fext(:,n+1)-f;
59 %Estimating incremental acceleration:
60 Deltaa=zeros(size(a)); %initially assume no incremental accel's
61 %Resetting incremental acceleration estimate error:
62 deltaa=zeros(size(a)); %assume the Deltaa estimate is good
63

64 for j=1:jlimit
65 %% BEGIN ITERATION
66 %Adjusting incremental acceleration estimate:
67 Deltaa=Deltaa+deltaa;
68 %Computing incremental velocity and displacement:
69 Deltav=Deltat*a+gamma*Deltat*Deltaa;
70 Deltad=Deltat*v+0.5*Deltatˆ2*a+beta*Deltatˆ2*Deltaa;
71 %Updating geometry:
72 Nodes=UpdateNodes(d+Deltad); %subfunction
73 [L,T]=Bar3dTransformations(Nodes);
74 %Updating member forces:
75 fx=NaturalAxial(fx0+NLG*(fxprev-fx0),... %subfunction
76 L0+NLG*(Lprev-L0),L);
77 fx(Specimen)=ExpSub(L(Specimen)-L0(Specimen),...
78 Deltat,t,n,j,verf);
79 Deltafx=fx-(fx0+NLG*(fxprev-fx0));
80 %Updating stiffness and damping matrices:
81 K=KTotal(L0+NLG*(L-L0),T0+NLG*(T-T0),NLG*fx,k0E); %for C
82 C=ALPHA*K+BETA*M;
83 K=KTotal(L0+NLG*(L-L0),T0+NLG*(T-T0),NLG*fx,kE);
84 %Updating restoring force vector:
85 requiv=NodalEquivalent(fx,T0+NLG*(T-T0)); %subfunction
86 if NLG==1; Deltar=requiv-r; else Deltar=K*Deltad; end
87 %Preserving P-C results in case of unconverged time step:
88 if j==2
89 Result=struct('Deltaa',{Deltaa},'Deltav',{Deltav},...
90 'Deltad',{Deltad},'Deltar',{Deltar},'Deltafx',...
91 {Deltafx},'kE',{kE},'L',{L});
92 end
93 %Computing incremental accel error from unbalanced forces:
94 Mhat=M+(1+alpha)... %pseudo-mass
95 *(gamma*Deltat*C+Deltatˆ2*beta*K);
96 Fhat=alpha*(Deltaf-C*Deltav-Deltar)+... %unbalanced force
97 (f+Deltaf)-M*(a+Deltaa)-C*(v+Deltav)-(r+Deltar);
98 deltaa=Mhat\Fhat; %error in Deltaa
99 %Checking for convergence once the initial P-C is done:

100 if j>1
101 norm=sqrt(sum((Deltatˆ2*... %modified Euclidean norm
102 beta*deltaa/max(abs(Deltad))).ˆ2)/length(d));
103 if norm<tol
104 %Replacing preserved results with the current ones:
105 Result=struct('Deltaa',{Deltaa},'Deltav',{Deltav},...
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106 'Deltad',{Deltad},'Deltar',{Deltar},'Deltafx',...
107 {Deltafx},'kE',{kE},'L',{L});
108 break
109 end
110 end
111 end
112 %% END ITERATION
113 %Add incremental items to corresponding totals from prior step:
114 a=a+Result.Deltaa; v=v+Result.Deltav; d=d+Result.Deltad;
115 r=r+Result.Deltar; f=f+Deltaf; fxprev=fxprev+Result.Deltafx;
116 %Replacing old lengths and specimen stiffness with new ones:
117 Lprev=Result.L; if or(NLM==1,NLG==1); kprevE=Result.kE; end
118 %Storing current state vectors:
119 TNodalDVA=[t(n+1),d',v',a']; %State vectors at end of nth time step
120 dlmwrite(file,TNodalDVA,'-append','delimiter','\t','newline','pc');
121 %Storing status for most recent iteration:
122 runinfo(n,:)=[t(n+1),n,j,fxprev(Specimen)];
123 %Updating waitbar:
124 if wb==1; waitbarupdate(n,nmax,progress,verf); end
125 end
126 %% END TIME STEP
127 %Deleting waitbar
128 if wb==1; delete(progress); pause(1); end
129 end
130

131 %Subfunctions
132 function Nodes=UpdateNodes(new d)
133 %UpdateNodes overwrites node coordinates.
134 global UndeformedNodes nnodes FreeDOFs
135 Nodes=UndeformedNodes.';
136 NodeNums=Nodes(1,:);
137 Nodes=reshape(Nodes(2:4,:),3*nnodes,1);
138 for i=1:length(FreeDOFs)
139 Nodes(FreeDOFs(i))=Nodes(FreeDOFs(i))+new d(i);
140 end
141 %Restore to previous formation
142 Nodes=reshape(Nodes,3,nnodes);
143 Nodes=[NodeNums;Nodes];
144 Nodes=Nodes.';
145 end
146

147 function fx=NaturalAxial(fxprev,Lprev,L)
148 %This subfunction is designed for axial-only elements.
149 %To modify this for members subject to shear and moment,
150 %refer to Appendix B of the McGuire textbook.
151 global E A
152 DeltaL=zeros(size(Lprev)); fx=zeros(size(fxprev));
153 for i=1:length(Lprev)
154 k=(E(i)*A(i)+fxprev(i))/Lprev(i);
155 DeltaL(i)=L(i)-Lprev(i);
156 fx(i)=fxprev(i)+k*DeltaL(i);
157 end
158 end
159
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160 function requiv=NodalEquivalent(fx,T)
161 global nnodes Elements FreeDOFs
162 dofN=zeros(1,3);
163 dofF=zeros(1,3);
164 requiv=zeros(3*nnodes,1);
165 for n=1:length(fx)
166 dofN(1:3)=(Elements(n,1)*3-2:Elements(n,1)*3);
167 dofF(1:3)=(Elements(n,2)*3-2:Elements(n,2)*3);
168 Fx=(fx(n)*[-1,1]*T([1,4],:,n))';
169 requiv([dofN,dofF])=requiv([dofN,dofF])+Fx;
170 end
171 requiv=requiv(FreeDOFs);
172 end
173

174 function waitbarupdate(n,nmax,progress,verf)
175 persistent incupdate
176 if isempty(incupdate)
177 if verf~=1
178 incupdate=1;
179 else
180 incupdate=50;
181 end
182 end
183 if mod(n,incupdate)==0
184 duration=toc;
185 timeremaining=0;
186 timeremaining(1)=(duration/n)*(nmax-n);
187 hourremaining=floor(timeremaining(1)/3600);
188 timeremaining(1)=timeremaining(1)-hourremaining*3600;
189 minsremaining=floor(timeremaining(1)/60);
190 secsremaining=max(ceil(timeremaining(1)-minsremaining*60-1),0);
191 hrsleft=num2str(hourremaining);
192 minleft=num2str(minsremaining);
193 secleft=num2str(secsremaining);
194 if hourremaining<10; hrs=['0',hrsleft]; else hrs=hrsleft; end
195 if minsremaining<10; mns=['0',minleft]; else mns=minleft; end
196 if secsremaining<10; scs=['0',secleft]; else scs=secleft; end
197 ETAtext=['Implicit Integration -- ',...
198 hrs,':',mns,':',scs,' remaining'];
199 waitbar(n/nmax,progress,ETAtext)
200 else
201 waitbar(n/nmax)
202 end
203 end
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APPENDIX F: EXPERIMENTAL SUBSTRUCTURE CODE

1 function fx=ExpSub(TotalDeltaL,deltat,t,n,j,verf)
2 %EXPSUB Determines the scalar restoring force of the experimental
3 %substructure.
4 % EXPSUB(TotalDeltaL,deltat,t,n,j,verf) determines the scalar
5 % restoring force (fx) of the experimental substructure for a
6 % corresponding displacement of TotalDeltaL. In the first iteration
7 % (j==1) of a time step (n), the restoring force is determined
8 % directly by experiment or by experiment simulation (bilinear or
9 % multilinear). In subsequent iterations (j>1), the restoring force is

10 % determined indirectly, using fitted polynomials as recommended by
11 % Ahmadizadeh (2007).
12

13 global dhist rhist k0E kprevE kE SSF LCF FCF prefunits
14 persistent dcoefs0 rcoefs dispthreshold degree method
15

16 OK=1;
17 if j==1
18 %% FIRST ITERATION
19 if n==1
20 dhist=zeros(length(t),1); %space for displacement history
21 rhist=zeros(length(t),1); %space for load history
22 if or(or(isempty(SSF),isempty(LCF)),isempty(FCF))
23 SSF=inputdlg(['What percentage of the total',...
24 ' member length is the specimen: ']);
25 SSF=str2double(SSF{1});
26 if strcmp(prefunits,'SI')
27 LCF=1/0.0254; %conversion for pref'd length to inches
28 FCF=1/4.4482216152605; %conv. for pref'd force to lbs
29 else
30 LCF=12; %conversion for pref'd length to inches
31 FCF=1; %conversion for pref'd force to lbs
32 end
33 psi=questdlg('Are hardware units lb and in?','','Yes',...
34 'No','Yes');
35 if strcmp(psi,'No')
36 LCFmod=inputdlg(['Enter conversion factor to get',...
37 ' from inches to hardware length units: ']);
38 LCFmod=str2double(LCFmod{1});
39 FCFmod=inputdlg(['Enter conversion factor to get',...
40 ' from pounds to hardware force units: ']);
41 FCFmod=str2double(FCFmod{1});
42 if or(isempty(FCFmod),isempty(LCFmod))
43 error('Units conversion unsuccessful.')
44 end
45 else
46 LCFmod=1;
47 FCFmod=1;
48 end
49 if or(isempty(FCFmod),isempty(LCFmod))
50 error('Units conversion unsuccessful.')
51 elseif or(isempty(SSF),or(SSF>100,SSF<=0))
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52 error('Specified strain scale factor invalid.')
53 end
54 LCF=LCF*LCFmod;
55 FCF=FCF*FCFmod;
56 SSF=SSF/100;
57 end
58 if verf==1
59 [dnoise,rnoise,method]=hardwaresetupsim; %subfunction
60 else
61 [dnoise,rnoise]=hardwaresetup; %subfunction
62 end
63 dnoise=dnoise/(LCF*SSF);
64 rnoise=rnoise/FCF;
65 dispthreshold=max(10*sqrt((dnoiseˆ2)/1),...
66 10*sqrt((rnoiseˆ2)/1)/k0E);
67 if strcmp(prefunits,'SI'); lunits=' m'; else lunits=' ft'; end
68 disp(['Displacement threshold: ',num2str(dispthreshold),lunits])
69 end
70 %Enforce TotalDeltaL physically.
71 if verf==1
72 ExpSim(TotalDeltaL,n,method); %subfunction
73 else
74 Exp(TotalDeltaL,n); %subfunction
75 end
76 %Fit polynomials appropriately.
77 fitstart=max(1,(n+1)-4); %The number of data points may be modified.
78 if n==1; degree=1; else degree=2; end
79 dcoefs0=polyfit(t(fitstart:n+1),dhist(fitstart:n+1,1),degree);
80 rcoefs=polyfit(t(fitstart:n+1),rhist(fitstart:n+1,1),degree);
81 %Get result.
82 if abs(dhist(n+1,1)-dhist(n,1))>dispthreshold
83 kE=(rhist(n+1,1)-rhist(n,1))/(dhist(n+1,1)-dhist(n,1));
84 else
85 kE=kprevE;
86 end
87 %Adjust for incorrect displacement.
88 fx=rhist(n+1,1)+kE*(TotalDeltaL-dhist(n+1,1));
89

90 else
91 %% OTHER ITERATIONS
92 %Virtually enforce TotalDeltaL and estimate restoring force.
93 %Preferences: (1)Closest root to current time is preferred.
94 % (2)Interpolation is better than extrapolation.
95 dcoefs=dcoefs0;
96 dcoefs(1,degree+1)=dcoefs(1,degree+1)-TotalDeltaL;
97 if degree==1
98 dfitroots=zeros(2,1);
99 dfitroots(1)=-dcoefs(2)/dcoefs(1);

100 dfitroots(2)=-dcoefs(2)/dcoefs(1);
101 elseif abs(dcoefs(1)/dcoefs(2))<0.0001 %(i.e. if a/b is approx. 0)
102 dfitroots=zeros(2,1);
103 dfitroots(1)=-dcoefs(3)/dcoefs(2);
104 dfitroots(2)=-dcoefs(3)/dcoefs(2);
105 else
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106 dfitroots=complex(zeros(2,1));
107 dfitroots(1)=(-dcoefs(2)-sqrt(complex(dcoefs(2)ˆ2-...
108 4*dcoefs(1)*dcoefs(3))))/(2*dcoefs(1));
109 dfitroots(2)=(-dcoefs(2)+sqrt(complex(dcoefs(2)ˆ2-...
110 4*dcoefs(1)*dcoefs(3))))/(2*dcoefs(1));
111 end
112 rootvar=sqrt(abs(real(dfitroots)-t(n+1)).ˆ2+...
113 abs(imag(dfitroots)).ˆ2);
114 rootvarmin=min(rootvar);
115 if rootvarmin<2*deltat
116 rootind=find(rootvar==rootvarmin); %ID which entry to use
117 roottime=min(dfitroots(rootind));%#ok<FNDSB> for repeated roots
118 if degree==1
119 rval=rcoefs(1)*(roottime)+rcoefs(2);
120 else
121 rval=rcoefs(1)*(roottimeˆ2)+rcoefs(2)*roottime+rcoefs(3);
122 end
123 fx=(real(rval)/abs(real(rval)))*abs(rval);
124 elseif n>1
125 OK=0; %no solution in the time window
126 else
127 fx=k0E*TotalDeltaL; %in case actuator hasn't moved
128 end
129 if and(abs(TotalDeltaL-dhist(n,1))>dispthreshold,OK==1)
130 kE=(fx-rhist(n,1))/(TotalDeltaL-dhist(n,1));
131 else
132 kE=kprevE;
133 end
134 %% BACKUP PLAN (if nothing else worked)
135 if ~exist('fx','var')
136 fx=rhist(n+1,1)+kE*(TotalDeltaL-dhist(n+1,1));
137 end
138 end
139 if strcmp(prefunits,'SI'); kunits=' N/m'; else kunits=' lb/ft'; end
140 if verf~=1
141 disp(['Current estimated specimen stiffness = ',...
142 num2str(kE),kunits]);
143 end
144 end
145

146 %Subfunctions
147 function [dnoise,rnoise,method]=hardwaresetupsim
148 persistent methodchosen
149 if isempty(methodchosen)
150 method=questdlg('Which simulation mode?','',...
151 'Bilinear','Multilinear','Bilinear');
152 methodchosen=method;
153 end
154 method=methodchosen;
155 if strcmp(method,'Bilinear')
156 [dnoise,rnoise]=bilinearsetup;
157 elseif strcmp(method,'Multilinear')
158 [dnoise,rnoise]=multilinearsetup;
159 end
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160 end
161

162 function [dnoise,rnoise]=bilinearsetup
163 global yieldload kpercent A Specimen prefunits Tult tensfail
164 if or(or(isempty(yieldload),isempty(kpercent)),...
165 or(isempty(Tult),isempty(tensfail)))
166 beep
167 if strcmp(prefunits,'SI'); stress='Pa'; else stress='psi'; end
168 yieldstress=str2double(char(inputdlg(['Input yield '...
169 ,'stress in ',stress,': '])));
170 if strcmp(prefunits,'SI')
171 yieldload=yieldstress*A(Specimen);
172 else
173 yieldload=144*yieldstress*A(Specimen);
174 end
175 kpercent=str2double(char(inputdlg...
176 ('Input percent of E for the yielded element: ')));
177 Tult=str2double(char(inputdlg(['Tensile ',...
178 'strength is how many times the yield stress?'])));
179 tensfail=questdlg(['Set tension limit at ulti',...
180 'mate strength?'],'','Yes','No','Yes');
181 if strcmp(tensfail,'Yes'); tensfail=1; else tensfail=0; end
182 if or(or(isempty(yieldload),isempty(kpercent)),...
183 or(isempty(Tult),isempty(tensfail)))
184 error('Material properties not defined!')
185 else
186 disp(['yield stress = ',num2str(yieldstress),' ',stress,''])
187 if kpercent==0; kpercent=0.01; end
188 disp(['Post-yield specimen stiffness is ',...
189 num2str(kpercent),'% of initial stiffness.'])
190 end
191 end
192 dnoise=0;
193 rnoise=0;
194 end
195

196 function [dnoise,rnoise]=multilinearsetup
197 global yieldload A Specimen prefunits plasticlength Tult
198 if or(or(isempty(yieldload),isempty(Tult)),isempty(plasticlength))
199 beep
200 if strcmp(prefunits,'SI'); stress='Pa'; else stress='psi'; end
201 yieldstress=str2double(char(inputdlg(['Input yield '...
202 ,'stress in ',stress,': '])));
203 if strcmp(prefunits,'SI')
204 yieldload=yieldstress*A(Specimen);
205 else
206 yieldload=144*yieldstress*A(Specimen);
207 end
208 plasticlength=str2double(char(inputdlg(['Plastic '...
209 ,'region length is how many times the yield strain?'])));
210 Tult=str2double(char(inputdlg(['Tensile ',...
211 'strength is how many times the yield stress?'])));
212 if or(or(isempty(yieldload),isempty(Tult)),isempty(plasticlength))
213 error('Material properties not defined!')
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214 end
215 end
216 dnoise=0;
217 rnoise=0;
218 end
219

220 function [dnoise,rnoise]=hardwaresetup
221 global vu s1
222 %Tektonic Control
223 if isempty(vu)
224 vu = visa('ni','USB0::0x0699::0x0390::C010393::INSTR');
225 end
226 %Initialize the serial port
227 if isempty(s1)
228 s1 = serial('COM4','BaudRate',38400,'DataBits',8,'StopBits',1);
229 end
230 [dnoise,rnoise]=HybridMTS(0,0);
231 end
232

233 function ExpSim(d,n,method)
234 persistent speclength
235 global dhist rhist prefunits A L0 Specimen sscurve SSF LCF FCF
236 if n==1
237 if isempty(speclength)
238 speclength=SSF*L0(Specimen);
239 end
240 %----------------------------------------------------------------
241 %For different hardware, interchange these functions:
242 if strcmp(method,'Bilinear')
243 [doutput,routput]=BilinearMTS(0,speclength);
244 elseif strcmp(method,'Multilinear')
245 [doutput,routput]=MultilinearMTS(0,speclength);
246 end
247 %----------------------------------------------------------------
248 dhist(1,1)=doutput/(LCF*SSF);
249 rhist(1,1)=routput/FCF;
250 end
251

252 %The displacement of the hardware relative to the initial position
253 %of the actuator shall be output by the function here, as well as
254 %the absolute force measured by the hardware shall be output by the
255 %function here. Inputs and outputs here are based on an assumed
256 %hardware sign convention of + tension and - compression.
257 %--------------------------------------------------------------------
258 %For different hardware, interchange these functions:
259 if strcmp(method,'Bilinear')
260 [doutput,routput]=BilinearMTS(LCF*SSF*d,speclength);
261 elseif strcmp(method,'Multilinear')
262 [doutput,routput]=MultilinearMTS(LCF*SSF*d,speclength);
263 end
264 %--------------------------------------------------------------------
265

266 %This is for units conversion back to the user-preferred units and
267 %for scaling the displacement as needed if only part of the



119

268 %experimental member is tested.
269 dhist(n+1,1)=doutput/(LCF*SSF);
270 rhist(n+1,1)=routput/FCF;
271

272 %Plotting stress-strain:
273 stress=rhist(n:n+1,1)/A(Specimen);
274 strain=dhist(n:n+1,1)/L0(Specimen);
275 if n==1
276 if strcmp(prefunits,'SI')
277 stressunits='Pa'; strainunits='m/m';
278 else
279 stressunits='psi'; strainunits='in/in';
280 end
281 sscurve=figure;
282 clf('reset')
283 hold on
284 title('Stress-Strain Curve')
285 xlabel(strcat('\epsilon (',strainunits,')'))
286 ylabel(strcat('\sigma (',stressunits,')'))
287 scrsz=get(0,'ScreenSize');
288 set(sscurve,'Units','pixels')
289 sspos=get(sscurve,'OuterPosition');
290 set(sscurve,'OuterPosition',...
291 [sspos(1) scrsz(4)-103-sspos(4) sspos(3) sspos(4)]);
292 else
293 if ~strcmp(prefunits,'SI')
294 stress=stress/144;
295 end
296 figure(sscurve)
297 hold on
298 end
299 plot(strain,stress,':xb')
300 end
301

302 function [D,L]=BilinearMTS(target,speclength)
303 global E A Specimen yieldload kpercent NLM prefunits Tult tensfail
304 persistent validFD
305 D=target;
306 yieldforce=yieldload;
307 yielddispl=(E(Specimen)*A(Specimen)/speclength)\yieldforce;
308 ultforce=yieldforce*Tult;
309 ultdispl=(kpercent*0.01*(yieldforce/yielddispl))\...
310 (ultforce-yieldforce)+yielddispl;
311

312 %Convert yieldforce, yielddispl, and maxforce to lbs and inches
313 if strcmp(prefunits,'SI')
314 yieldforce=yieldforce/4.4482216152605;
315 yielddispl=yielddispl/0.0254;
316 ultforce=ultforce/4.4482216152605;
317 ultdispl=ultdispl/0.0254;
318 else
319 yielddispl=yielddispl*12;
320 ultdispl=ultdispl*12;
321 end
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322 FDpoints=[-ultforce,-ultdispl;-yieldforce,-yielddispl;0,0;...
323 yieldforce,yielddispl;ultforce,ultdispl];
324 if isempty(validFD)
325 if or(length(unique(FDpoints(:,2)))~=length(FDpoints(:,2)),...
326 ~issorted(FDpoints(:,2)))
327 error(['Displacements on the force-displacement ',...
328 'curve must be monotonically increasing.'])
329 else
330 FDplot=figure;
331 plot(FDpoints(:,2),FDpoints(:,1))
332 uiwait(FDplot)
333 validFD=1;
334 end
335 end
336 if NLM==0
337 point2=find(FDpoints(:,1)==0);
338 else
339 for i=2:length(FDpoints)
340 if D<=FDpoints(i,2)
341 point2=i;
342 break
343 end
344 end
345 if ~exist('point2','var')
346 if tensfail==1
347 error('Specimen failed in tension')
348 else
349 point2=length(FDpoints(:,1));
350 end
351 end
352 end
353 kspec=(FDpoints(point2,1)-FDpoints(point2-1,1))/...
354 (FDpoints(point2,2)-FDpoints(point2-1,2));
355 L=FDpoints(point2,1)-kspec*(FDpoints(point2,2)-D);
356 end
357

358 function [D,L]=MultilinearMTS(target,speclength)
359 global E A Specimen yieldload NLM prefunits plasticlength Tult
360 persistent validFD
361 D=target;
362 yieldforce=yieldload;
363 yielddispl=(E(Specimen)*A(Specimen)/speclength)\yieldforce;
364 strharddispl=(plasticlength+1)*yielddispl;
365 strhardforce=yieldforce...
366 +0.0001*(yieldforce/yielddispl)*(strharddispl-yielddispl);
367 ultforce=yieldforce*Tult;
368 ultdispl=(ultforce-strhardforce+0.047*(yieldforce/yielddispl)...
369 *strharddispl)/(0.047*(yieldforce/yielddispl));
370

371 %Convert yieldforce, yielddispl, etc. to lbs and inches
372 if strcmp(prefunits,'SI')
373 yieldforce=yieldforce/4.4482216152605;
374 yielddispl=yielddispl/0.0254;
375 strhardforce=strhardforce/4.4482216152605;
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376 strharddispl=strharddispl/0.0254;
377 ultforce=ultforce/4.4482216152605;
378 ultdispl=ultdispl/0.0254;
379 else
380 yielddispl=yielddispl*12;
381 strharddispl=strharddispl*12;
382 ultdispl=ultdispl*12;
383 end
384 FDpoints=[-yieldforce,-yielddispl;0,0;yieldforce,yielddispl;...
385 strhardforce,strharddispl;ultforce,ultdispl];
386 if isempty(validFD)
387 if or(length(unique(FDpoints(:,2)))~=length(FDpoints(:,2)),...
388 ~issorted(FDpoints(:,2)))
389 error(['Displacements on the force-displacement ',...
390 'curve must be monotonically increasing.'])
391 else
392 FDplot=figure;
393 plot(FDpoints(:,2),FDpoints(:,1))
394 uiwait(FDplot)
395 validFD=1;
396 end
397 end
398 if NLM==0
399 point2=find(FDpoints(:,1)==0);
400 else
401 for i=2:length(FDpoints)
402 if D<=FDpoints(i,2)
403 point2=i;
404 break
405 end
406 end
407 if ~exist('point2','var')
408 error('Specimen failed in tension')
409 end
410 end
411 kspec=(FDpoints(point2,1)-FDpoints(point2-1,1))/...
412 (FDpoints(point2,2)-FDpoints(point2-1,2));
413 L=FDpoints(point2,1)-kspec*(FDpoints(point2,2)-D);
414 end
415

416 function Exp(d,n)
417 global dhist rhist prefunits A L0 Specimen sscurve SSF LCF FCF
418 if n==1
419 %----------------------------------------------------------------
420 %For different hardware, interchange this function:
421 [doutput,routput]=HybridMTS(0,2);
422 %----------------------------------------------------------------
423 dhist(1,1)=doutput/(LCF*SSF);
424 rhist(1,1)=routput/FCF;
425 end
426

427 %The displacement of the hardware relative to the initial position
428 %of the actuator shall be output by the function here, as well as the
429 %absolute force measured by the hardware shall be output by the
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430 %function here. Inputs and outputs here are based on an assumed
431 %hardware sign convention of + tension and - compression.
432 %--------------------------------------------------------------------
433 %For different hardware, interchange this function:
434 [doutput,routput]=HybridMTS(LCF*SSF*d,2);
435 %--------------------------------------------------------------------
436

437 %This is for units conversion back to the user-preferred units and
438 %for scaling the displacement as needed if only part of the
439 %experimental member is tested.
440 dhist(n+1,1)=doutput/(LCF*SSF);
441 rhist(n+1,1)=routput/FCF;
442

443 %Plotting stress-strain:
444 stress=rhist(n:n+1,1)/A(Specimen);
445 strain=dhist(n:n+1,1)/L0(Specimen);
446 if n==1
447 if strcmp(prefunits,'SI')
448 stressunits='Pa'; strainunits='m/m';
449 else
450 stressunits='psi'; strainunits='in/in';
451 end
452 sscurve=figure;
453 clf('reset')
454 hold on
455 title('Stress-Strain Curve')
456 xlabel(strcat('\epsilon (',strainunits,')'))
457 ylabel(strcat('\sigma (',stressunits,')'))
458 scrsz=get(0,'ScreenSize');
459 set(sscurve,'Units','pixels')
460 sspos=get(sscurve,'OuterPosition');
461 set(sscurve,'OuterPosition',...
462 [sspos(1) scrsz(4)-103-sspos(4) sspos(3) sspos(4)]);
463 else
464 if ~strcmp(prefunits,'SI')
465 stress=stress/144;
466 end
467 figure(sscurve)
468 hold on
469 end
470 plot(strain,stress,':xb')
471 end
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APPENDIX G: SAP2000 OAPI CODE

1 function [SAP,err]=...
2 SAP2000analysis(Excitations,ALPHA,BETA,alpha,jlimit,tol)
3 %SAP2000ANALYSIS Performs SAP2000 simulations via API for verification
4 %of the original hybrid simulation software framework.
5 % SAP2000analysis(Excitations,ALPHA,BETA,alpha,jlimit,tol) performs
6 % SAP2000 simulations via API for verification of the original hybrid
7 % simulation software framework with LMLG, LMNLG, NLMLG, and NLMNLG
8 % cases, comparable to those performed using the MATLAB functions
9 % HybridSimulation.m, IntegScheme.m, and ExpSub.m (April 2015). This

10 % has been verified to perform satisfactorily for space trusses and
11 % planar trusses with supports completely pinned and a single
12 % experimental member, but these capabilities can be expanded with
13 % minimal modification to this code.
14 %
15 % "SAP" is a structure containing the results for each of the four
16 % linear/nonlinear cases. "err" is a scalar to indicate whether any of
17 % the API commands were unsuccessful. "err" is zero if all commands
18 % were successful and nonzero if there were any failures.
19

20 global outputnode UndeformedNodes yieldload kpercent Specimen E A Rho...
21 nelements nnodes Elements FreeDOFs prefunits plasticlength Tult
22 [~,nloads]=size(Excitations);
23 Times=Excitations(1).TXYZ(:,1);
24 mfilename('fullpath');
25 [pathstring,~,~]=fileparts(mfilename('fullpath'));
26 for load=1:nloads
27 TXfilename(load)={strcat(pathstring,'\InputFiles\Excitation\TX',...
28 num2str(load),'.txt')};
29 TYfilename(load)={strcat(pathstring,'\InputFiles\Excitation\TY',...
30 num2str(load),'.txt')};
31 TZfilename(load)={strcat(pathstring,'\InputFiles\Excitation\TZ',...
32 num2str(load),'.txt')};
33 TXYZ=Excitations(load).TXYZ;
34 TXYZ(:,2:4)=Excitations(load).SF*TXYZ(:,2:4);
35 TX=TXYZ(:,[1,2]);
36 TY=TXYZ(:,[1,3]);
37 TZ=TXYZ(:,[1,4]);
38 warning('off','all')
39 delete(char(TXfilename(load)),...
40 char(TYfilename(load)),char(TZfilename(load)))
41 warning('on','all')
42 for i=1:length(Times)
43 if i==1
44 dlmwrite(char(TXfilename(load)),TX(i,:),...
45 'delimiter','\t','newline','pc');
46 dlmwrite(char(TYfilename(load)),TY(i,:),...
47 'delimiter','\t','newline','pc');
48 dlmwrite(char(TZfilename(load)),TZ(i,:),...
49 'delimiter','\t','newline','pc');
50 else
51 dlmwrite(char(TXfilename(load)),TX(i,:),...
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52 '-append','delimiter','\t','newline','pc');
53 dlmwrite(char(TYfilename(load)),TY(i,:),...
54 '-append','delimiter','\t','newline','pc');
55 dlmwrite(char(TZfilename(load)),TZ(i,:),...
56 '-append','delimiter','\t','newline','pc');
57 end
58 end
59 end
60 %Creating list of materials and their properties and the list of which
61 %material matches each element
62 nmaterials=1;
63 elmmats=zeros(size(E));
64 materials(nmaterials,:)=[E(1),Rho(1)];
65 for i=1:nelements
66 foundmatch=0;
67 for j=1:nmaterials
68 if and(E(i)==materials(j,1),Rho(i)==materials(j,2))
69 elmmats(i)=j;
70 foundmatch=1;
71 end
72 end
73 if foundmatch==0
74 nmaterials=nmaterials+1;
75 materials(nmaterials,:)=[E(i),Rho(i)];
76 elmmats(i)=nmaterials;
77 end
78 end
79

80 %Creating a list of sections and their properties and the list of
81 %which section matches each element
82 nsections=1;
83 elmsects=zeros(size(A));
84 sections(nsections,:)=[elmmats(1),A(1)];
85 for i=1:nelements
86 foundmatch=0;
87 for j=1:nsections
88 if and(elmmats(i)==sections(j,1),A(i)==sections(j,2))
89 elmsects(i)=j;
90 foundmatch=1;
91 end
92 end
93 if foundmatch==0
94 nsections=nsections+1;
95 sections(nsections,:)=[elmmats(i),A(i)];
96 elmsects(i)=nsections;
97 end
98 end
99

100 %Generating the properties to be assigned to the link element in SAP2000
101 [L,~]=Bar3dTransformations(UndeformedNodes);
102 linkmass=A(Specimen)*L(Specimen)*Rho(Specimen);
103 if strcmp(prefunits,'SI')
104 linkweight=9.81*linkmass;
105 else
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106 linkweight=linkmass;
107 end
108 yieldforce=yieldload;
109 yielddispl=(E(Specimen)*A(Specimen)/L(Specimen))\yieldforce;
110 if isempty(plasticlength) %Bilinear elastic material model
111 ultforce=yieldforce*Tult;
112 ultdispl=(kpercent*0.01*(yieldforce/yielddispl))\...
113 (ultforce-yieldforce)+yielddispl;
114 FDpoints=[-ultforce,-ultdispl;-yieldforce,-yielddispl;0,0;...
115 yieldforce,yielddispl;ultforce,ultdispl];
116 else %Multilinear elastic material model
117 strharddispl=(plasticlength+1)*yielddispl;
118 strhardforce=yieldforce...
119 +0.0001*(yieldforce/yielddispl)*(strharddispl-yielddispl);
120 ultforce=yieldforce*Tult;
121 ultdispl=(ultforce-strhardforce+0.047*(yieldforce/yielddispl)...
122 *strharddispl)/(0.047*(yieldforce/yielddispl));
123 FDpoints=[-yieldforce,-yielddispl;0,0;yieldforce,yielddispl;...
124 strhardforce,strharddispl;ultforce,ultdispl];
125 end
126

127 beep
128 hysteresis=questdlg('Which hysteresis model?',...
129 '','None','Kinematic','None');
130 hysteresistype=0;
131 err=0;
132 %Start SAP2000 stuff:
133 for MaterialCase=0:1
134 feature('COM SafeArraySingleDim', 1);
135 feature('COM PassSafeArrayByRef', 1);
136 SapObject=actxserver('Sap2000v15.SapObject');
137 err=abs(SapObject.ApplicationStart)+err;
138 if err~=0; error('SAP2000 command failed'); end
139 SapModel=SapObject.SapModel;
140 err=abs(SapModel.InitializeNewModel)+err;
141 if err~=0; error('SAP2000 command failed'); end
142

143 if MaterialCase==0
144 sapfile=[pathstring,'\Results\SapFileLM'];
145 else
146 sapfile=[pathstring,'\Results\SapFileNLM'];
147 end
148 sapfilename=[sapfile,'.sdb'];
149 err=abs(SapModel.File.NewBlank)+err;
150 if err~=0; error('SAP2000 command failed'); end
151 if strcmp(prefunits,'SI')
152 err=abs(SapModel.SetPresentUnits(10))+err; %For N m C
153 if err~=0; error('SAP2000 command failed'); end
154 else
155 err=abs(SapModel.SetPresentUnits(2))+err; %For lb ft F
156 if err~=0; error('SAP2000 command failed'); end
157 end
158

159 %Definitions for the model:



126

160 %Materials:
161 PropMaterial=SapModel.PropMaterial;
162 for i=1:nmaterials
163 matname=['mat',num2str(i)];
164 err=abs(PropMaterial.AddQuick('Name',1,7,1,1,1,1,1,matname))+err;
165 if err~=0; error('SAP2000 command failed'); end
166 err=abs(PropMaterial.SetMPIsotropic...
167 (matname,materials(i,1),0,1.170E-5))+err;
168 if err~=0; error('SAP2000 command failed'); end
169 err=abs(PropMaterial.SetWeightAndMass...
170 (matname,2,materials(i,2)))+err;
171 if err~=0; error('SAP2000 command failed'); end
172 end
173 %Frame Sections:
174 PropFrame=SapModel.PropFrame;
175 for i=1:nsections
176 sectname=['sect',num2str(i)];
177 matname=['mat',num2str(sections(i,1))];
178 err=abs(PropFrame.SetGeneral(sectname,matname,1,1,sections(i,2),...
179 1,1,1,1,1,1,1,1,1,1,1,-1,'',''))+err;
180 if err~=0; error('SAP2000 command failed'); end
181 end
182 %Links/Supports:
183 PropLink=SapModel.PropLink;
184 DOF=false(6,1);
185 Fixed=false(6,1);
186 NonLinear=false(6,1);
187 DOF(1,1)=true();
188 NonLinear(1,1)=true();
189 Stiffness=zeros(6,1);
190 Stiffness(1,1)=E(Specimen)*A(Specimen)/L(Specimen);
191 Damping=zeros(6,1);
192 if strcmp(hysteresis,'None')
193 err=abs(PropLink.SetMultiLinearElastic...
194 ('link1',DOF,Fixed,NonLinear,Stiffness,Damping,0,0,'',''))+err;
195 if err~=0; error('SAP2000 command failed'); end
196 else
197 err=abs(PropLink.SetMultiLinearPlastic...
198 ('link1',DOF,Fixed,NonLinear,Stiffness,Damping,0,0,'',''))+err;
199 if err~=0; error('SAP2000 command failed'); end
200 if strcmp(hysteresis,'Kinematic')
201 hysteresistype=1;
202 end
203 end
204 err=abs(PropLink.SetWeightAndMass...
205 ('link1',linkweight,linkmass,0,0,0))+err;
206 if err~=0; error('SAP2000 command failed'); end
207 err=abs(PropLink.SetMultiLinearPoints('link1',1,length(...
208 FDpoints(:,1)),FDpoints(:,1),FDpoints(:,2),hysteresistype))+err;
209 if err~=0; error('SAP2000 command failed'); end
210 err=abs(PropLink.SetSpringData('link1',1,1))+err;
211 if err~=0; error('SAP2000 command failed'); end
212

213 %Setting up each of the excitations:
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214 FuncTH=SapModel.Func.FuncTH;
215 LoadType=cell(3*nloads,1);
216 LoadName=cell(3*nloads,1);
217 PattName=cell(3*nloads,1);
218 Fun=cell(3*nloads,1);
219 SF=zeros(3*nloads,1);
220 TF=zeros(3*nloads,1);
221 AT=zeros(3*nloads,1);
222 CSys=cell(3*nloads,1);
223 Ang=zeros(3*nloads,1);
224 for load=1:nloads
225 %Functions:
226 err=abs(FuncTH.SetFromFile 1(strcat('Excitation',num2str(load),'X'),...
227 char(TXfilename(load)),0,0,1,2,true()))+err;
228 if err~=0; error('SAP2000 command failed'); end
229 err=abs(FuncTH.SetFromFile 1(strcat('Excitation',num2str(load),'Y'),...
230 char(TYfilename(load)),0,0,1,2,true()))+err;
231 if err~=0; error('SAP2000 command failed'); end
232 err=abs(FuncTH.SetFromFile 1(strcat('Excitation',num2str(load),'Z'),...
233 char(TZfilename(load)),0,0,1,2,true()))+err;
234 if err~=0; error('SAP2000 command failed'); end
235 %LoadPatterns:
236 name=char(Excitations(load).name);
237 name=name(1:strfind(name,'.')-1);
238 err=abs(SapModel.LoadPatterns.Add...
239 (strcat('Load',num2str(load),name,'X'),8,0))+err;
240 if err~=0; error('SAP2000 command failed'); end
241 err=abs(SapModel.LoadPatterns.Add...
242 (strcat('Load',num2str(load),name,'Y'),8,0))+err;
243 if err~=0; error('SAP2000 command failed'); end
244 err=abs(SapModel.LoadPatterns.Add...
245 (strcat('Load',num2str(load),name,'Z'),8,0))+err;
246 if err~=0; error('SAP2000 command failed'); end
247 PattName(3*load-2:3*load,1)={strcat('Load',num2str(load),name,'X');
248 strcat('Load',num2str(load),name,'Y');
249 strcat('Load',num2str(load),name,'Z')};
250 %LoadCases:
251 type=Excitations(load).type;
252 LoadType(3*load-2:3*load,1)={type;type;type};
253 if strcmp(type,'Accel')
254 LoadName(3*load-2:3*load,1)={'U1';'U2';'U3'};
255 elseif strcmp(type,'Load')
256 LoadName(3*load-2:3*load,1)=PattName(3*load-2:3*load,1);
257 end
258 Fun(3*load-2:3*load,1)={strcat('Excitation',num2str(load),'X');...
259 strcat('Excitation',num2str(load),'Y');...
260 strcat('Excitation',num2str(load),'Z')};
261 SF(3*load-2:3*load,1)=ones(3,1);
262 TF(3*load-2:3*load,1)=ones(3,1);
263 AT(3*load-2:3*load,1)=zeros(3,1);
264 CSys(3*load-2:3*load,1)={'';'';''};
265 Ang(3*load-2:3*load,1)=zeros(3,1);
266 end
267 deltat=Times(2)-Times(1);
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268 DirHistNonlinear=SapModel.LoadCases.DirHistNonlinear;
269 %linear geometry case
270 err=abs(DirHistNonlinear.SetCase('LG'))+err;
271 if err~=0; error('SAP2000 command failed'); end
272 err=abs(DirHistNonlinear.SetDampProportional...
273 ('LG',1,BETA,ALPHA,0,0,0,0))+err;
274 if err~=0; error('SAP2000 command failed'); end
275 err=abs(DirHistNonlinear.SetGeometricNonlinearity('LG',0))+err;
276 if err~=0; error('SAP2000 command failed'); end
277 err=abs(DirHistNonlinear.SetLoads...
278 ('LG',3*nloads,LoadType,LoadName,Fun,SF,TF,AT,CSys,Ang))+err;
279 if err~=0; error('SAP2000 command failed'); end
280 err=abs(DirHistNonlinear.SetTimeStep('LG',length(Times)-1,deltat))+err;
281 if err~=0; error('SAP2000 command failed'); end
282 err=abs(DirHistNonlinear.SetTimeIntegration('LG',4,alpha,0,0,1))+err;
283 if err~=0; error('SAP2000 command failed'); end
284 err=abs(DirHistNonlinear.SetSolControlParameters...
285 ('LG',deltat,deltat,0,jlimit,tol,false(),1,0,1,1))+err;
286 if err~=0; error('SAP2000 command failed'); end
287 %nonlinear geometry case
288 err=abs(DirHistNonlinear.SetCase('NLG'))+err;
289 if err~=0; error('SAP2000 command failed'); end
290 err=abs(DirHistNonlinear.SetDampProportional...
291 ('NLG',1,BETA,ALPHA,0,0,0,0))+err;
292 if err~=0; error('SAP2000 command failed'); end
293 err=abs(DirHistNonlinear.SetGeometricNonlinearity('NLG',2))+err;
294 if err~=0; error('SAP2000 command failed'); end
295 err=abs(DirHistNonlinear.SetLoads...
296 ('NLG',3*nloads,LoadType,LoadName,Fun,SF,TF,AT,CSys,Ang))+err;
297 if err~=0; error('SAP2000 command failed'); end
298 err=abs(DirHistNonlinear.SetTimeStep('NLG',length(Times)-1,deltat))+err;
299 if err~=0; error('SAP2000 command failed'); end
300 err=abs(DirHistNonlinear.SetTimeIntegration('NLG',4,alpha,0,0,1))+err;
301 if err~=0; error('SAP2000 command failed'); end
302 err=abs(DirHistNonlinear.SetSolControlParameters...
303 ('NLG',deltat,deltat,0,jlimit,tol,false(),1,0,1,1))+err;
304 if err~=0; error('SAP2000 command failed'); end
305

306 %Creating objects and making assignments:
307 %Nodes:
308 for i=1:nnodes
309 coords=UndeformedNodes(i,2:4);
310 nodename=['node',num2str(i)];
311 err=abs(SapModel.PointObj.AddCartesian...
312 (coords(1),coords(2),coords(3),'Name',nodename,'Global'))+err;
313 if err~=0; error('SAP2000 command failed'); end
314 end
315 %Frames and Links:
316 for i=1:nelements
317 membername=['element',num2str(i)];
318 propname=['sect',num2str(elmsects(i))];
319 Point1=['node',num2str(Elements(i,1))];
320 Point2=['node',num2str(Elements(i,2))];
321 if and(MaterialCase==1,i==Specimen)
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322 err=abs(SapModel.LinkObj.AddByPoint(Point1,Point2,'Name',...
323 false(),'link1',membername))+err;
324 if err~=0; error('SAP2000 command failed'); end
325 else
326 err=abs(SapModel.FrameObj.AddByPoint(Point1,Point2,'Name',...
327 propname,membername))+err;
328 if err~=0; error('SAP2000 command failed'); end
329 end
330 end
331 %End Releases:
332 ii=false(6,1);
333 jj=false(6,1);
334 ii(4)=true();
335 for i=5:6
336 ii(i)=true();
337 jj(i)=true();
338 end
339 startval=zeros(6,1);
340 endval=zeros(6,1);
341 err=abs(SapModel.FrameObj.SetReleases...
342 ('ALL',ii,jj,startval,endval,1))+err;
343 if err~=0; error('SAP2000 command failed'); end
344 %Restraint:
345 BCU=ones(3,nnodes);
346 for i=1:length(FreeDOFs)
347 DOF=FreeDOFs(i);
348 BCU(DOF)=0;
349 end
350 BCR=zeros(3,nnodes);
351 BC=[BCU;BCR];
352 for i=1:nnodes
353 restraints=BC(:,i);
354 val=true(6,1);
355 for j=1:6
356 if restraints(j)==0
357 val(j)=false();
358 end
359 end
360 nodename=['node',num2str(i)];
361 err=abs(SapModel.PointObj.SetRestraint(nodename,val,0))+err;
362 if err~=0; error('SAP2000 command failed'); end
363 end
364

365 %Assign Loads:
366 for load=1:nloads
367 nodenum=Excitations(load).loadnode;
368 if nodenum>0
369 err=abs(SapModel.PointObj.SetLoadForce(['node',num2str(nodenum)],...
370 char(PattName(3*load-2)),[1;0;0;0;0;0],false(),'GLOBAL',0))+err;
371 if err~=0; error('SAP2000 command failed'); end
372 err=abs(SapModel.PointObj.SetLoadForce(['node',num2str(nodenum)],...
373 char(PattName(3*load-1)),[0;1;0;0;0;0],false(),'GLOBAL',0))+err;
374 if err~=0; error('SAP2000 command failed'); end
375 err=abs(SapModel.PointObj.SetLoadForce(['node',num2str(nodenum)],...
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376 char(PattName(3*load)),[0;0;1;0;0;0],false(),'GLOBAL',0))+err;
377 if err~=0; error('SAP2000 command failed'); end
378 end
379 end
380

381 %Save:
382 err=abs(SapModel.File.Save(sapfilename))+err;
383 if err~=0; error('SAP2000 command failed'); end
384

385 %Analysis:
386 Analyze=SapModel.Analyze;
387 err=abs(Analyze.SetRunCaseFlag('Name',true(),true()))+err;
388 if err~=0; error('SAP2000 command failed'); end
389 err=abs(Analyze.RunAnalysis())+err;
390 if err~=0; error('SAP2000 command failed'); end
391

392 for k=1:length(outputnode)
393 outputjoint=['node',num2str(outputnode(k))];
394 %Results:
395 Results=SapModel.Results;
396 %linear geometry
397 err=abs(Results.Setup.DeselectAllCasesAndCombosForOutput())+err;
398 if err~=0; error('SAP2000 command failed'); end
399 err=abs(Results.Setup.SetCaseSelectedForOutput('LG',true()))+err;
400 if err~=0; error('SAP2000 command failed'); end
401 err=abs(Results.Setup.SetOptionDirectHist(2))+err;
402 if err~=0; error('SAP2000 command failed'); end
403 [~,~,~,~,~,~,StepNum,U1,U2,U3,~,~,~]=...
404 Results.JointDispl(outputjoint,0,0,{''},{''},...
405 {''},{''},0,0,0,0,0,0,0);
406 StepNum=StepNum';
407 U1=U1';
408 U2=U2';
409 U3=U3';
410 if max(abs(U2))==0
411 LGresults=[StepNum,U1,U3];
412 else
413 LGresults=[StepNum,U1,U2,U3];
414 end
415 clearvars StepNum U1 U2 U3
416 %nonlinear geometry
417 err=abs(Results.Setup.DeselectAllCasesAndCombosForOutput())+err;
418 if err~=0; error('SAP2000 command failed'); end
419 err=abs(Results.Setup.SetCaseSelectedForOutput('NLG',true()))+err;
420 if err~=0; error('SAP2000 command failed'); end
421 err=abs(Results.Setup.SetOptionDirectHist(2))+err;
422 if err~=0; error('SAP2000 command failed'); end
423 [~,~,~,~,~,~,StepNum,U1,U2,U3,~,~,~]=...
424 Results.JointDispl(outputjoint,0,0,{''},{''},...
425 {''},{''},0,0,0,0,0,0,0);
426 StepNum=StepNum';
427 U1=U1';
428 U2=U2';
429 U3=U3';
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430 if max(abs(U2))==0
431 NLGresults=[StepNum,U1,U3];
432 else
433 NLGresults=[StepNum,U1,U2,U3];
434 end
435 clearvars StepNum U1 U2 U3
436 if MaterialCase==0
437 SAP(k).LMLG=LGresults; %#ok<*AGROW>
438 SAP(k).LMNLG=NLGresults;
439 else
440 SAP(k).NLMLG=LGresults;
441 SAP(k).NLMNLG=NLGresults;
442 end
443 end
444

445 %Delete Results:
446 err=abs(SapModel.Analyze.DeleteResults('Name',true()))+err;
447 if err~=0; error('SAP2000 command failed'); end
448

449 %Close SAP2000:
450 err=abs(SapObject.ApplicationExit(false()))+err;
451 if err~=0; error('SAP2000 command failed'); end
452 delete([sapfile,'.*'])
453 end
454 for load=1:nloads
455 delete(char(TXfilename(load)),...
456 char(TYfilename(load)),char(TZfilename(load)))
457 end
458 end
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APPENDIX H: ADDITIONAL PLOTS SUPPORTING TWO-DIMENSIONAL
VERIFICATION
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APPENDIX I: THREE-DIMENSIONAL VERIFICATION INPUT FILE

ELEMENTS

1 5

2 6

3 7

4 8

5 9

6 10

7 11

8 12

9 13

10 14

11 15

12 16

13 17

14 18

15 19

16 20

17 21

18 22

19 23

20 24

1 6

2 7

3 8

4 5

5 10

6 11

7 12

8 9

9 14

10 15

11 16

12 13

13 18

14 19

15 20

16 17

17 22

18 23

19 24

20 21

5 6

6 7
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7 8

8 5

9 10

10 11

11 12

12 9

13 14

14 15

15 16

16 13

17 18

18 19

19 20

20 17

21 22

22 23

23 24

24 21

5 7

9 11

13 15

17 19

21 23

E

2.00E+11

(repeated 64 times)

NODE BC UX UY UZ

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 1 1 1

6 1 1 1

7 1 1 1

8 1 1 1

9 1 1 1

10 1 1 1

11 1 1 1

12 1 1 1

13 1 1 1

14 1 1 1

15 1 1 1

16 1 1 1

17 1 1 1

18 1 1 1
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19 1 1 1

20 1 1 1

21 1 1 1

22 1 1 1

23 1 1 1

24 1 1 1

NODES

1 0 0 0

2 4 0 0

3 4 4 0

4 0 4 0

5 0 0 3

6 4 0 3

7 4 4 3

8 0 4 3

9 0 0 6

10 4 0 6

11 4 4 6

12 0 4 6

13 0 0 9

14 4 0 9

15 4 4 9

16 0 4 9

17 0 0 12

18 4 0 12

19 4 4 12

20 0 4 12

21 0 0 15

22 4 0 15

23 4 4 15

24 0 4 15

MASS DENSITIES

42500

(repeated 64 times)

A

9.00E-04

(repeated 19 times)

1.00E-04

(repeated 19 times)

9.00E-04

(repeated 19 times)

4.00E-04

(repeated 4 times)
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