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ABSTRACT 
 
 

SEYED EHSAN SEYEDI TABARI. Understanding of genome-wide gene regulation in 
prokaryotes using omics data. (Under the direction of DR. ZHENGCHANG SU) 

 
 

Gene annotation is a critical step for understanding functions of genomes and host 

organisms. However, accurately annotating thousands of sequenced genomes can be a 

challenging task. Further, although gene transcriptional regulation is crucial for many 

important biological functions of cells, our understanding of the complexity of this 

process in even prokaryotes is still limited. This dissertation addressed both of these 

problems. First, we developed a fast and scalable tool, PorthoMCL for annotating gene 

functions through identifying orthologous genes in a large number of prokaryotic 

genomes. Using this tool, we have predicted orthologous genes in the thousands of 

sequenced prokaryotic genomes for public use. Second, we systematically investigated 

the complexity of transcriptomes in E. coli K12 in response to a variety of environmental 

changes. By adopting a model for alternate splicing isoforms in eukaryotes, we revealed 

that ~22% of operons exhibited different forms of transcriptional units. i.e., alternative 

operon utilizations, and ~36% operons displayed varying transcriptional levels of their 

genes, i.e., dynamic operon utilizations, at different growth phases and culture conditions.  

Moreover, by simultaneously profiling directional transcriptomes and proteomes of E. 

coli K12 cells, we found that a varying portion of genes had antisense RNA (asRNAs) 

transcription in a growth phase- and culture condition-dependent manner. The detected 

asRNAs were generally short and overlapped the previously identified asRNAs. 

Intriguingly, the correlation between genes’ protein levels and mRNA levels was 
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disrupted by increased relative expression levels of asRNA to mRNA, suggesting that 

asRNA may play an important role in gene expressional regulation.    
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INTRODUCTION 
 
 

A well-stablished approach for gene annotation is through comparative genomics 

studies where functional similarity is established by finding orthologous genes of a gene 

in other species (Alexeyenko et al. 2006). Orthologs are genes in different species 

derived from the last common ancestor through speciation events and generally share the 

same biological functions in their host genomes. On the other hand, paralogs are genes 

that are resulted from gene duplication within a species, while their sequences can be 

highly conserved, paralogs may have different biological functions. Depending on 

whether duplication occurred before or after speciation, they are called outparalogs or 

inparalogs, respectively (Sonnhammer and Koonin 2002). Most existing orthology 

analysis tools, such as COG (Tatusov et al. 2003), InParanoid (Remm, Storm, and 

Sonnhammer 2001), OrthoMCL (Li, Stoeckert, and Roos 2003), and orthAgogue 

(Ekseth, Kuiper, and Mironov 2014)  rely on sequence similarity whereas some tools use 

additional information such as synteny and other patterns of concomitant evolution. 

While multiple tools and databases have been developed for predicting orthologs 

(Alexeyenko et al. 2006), applying them to an ah-hoc set of genomes is not a straight 

forward task. Moreover, these tools are computationally expensive, in particular, with the 

exponential increase in the number of sequenced bacterial genomes as the cost of 

sequencing is decreasing.  

On the other hand, prokaryotic genomes in comparison to the ones in eukaryotes 

are relatively small and less complex and they lay a perfect platform to study biological 

functions and their mechanisms. A prokaryotic genome usually consists of a circular 

chromosome of varying sizes encoding about a few thousand genes whose transcription 
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and resulting RNA and proteins determine the physiology of the organism. Therefore, a 

good understanding of their gene structures and transcriptional regulation is of upmost 

importance. In contrast to eukaryotes in which a gene consisting of multiple exons and 

introns is transcribed into a transcript that is subsequently spliced into one of more 

isofoms, in prokaryotes multiple genes arranged in tandem in the same strand of DNA are 

often transcribed into a single transcript by sharing the same promoter and terminator 

(Jacob et al. 1960). Such a string of co transcribed genes is called an operon, and in most 

cases, genes in an operon are involved in the same biological functions (Chuang et al. 

2012). Hence, elucidation of operon structures in a genome can facilitate functional 

annotation of the genes.  

Furthermore, the rapid advancement in sequencing technology has produced 

massive amount of RNA-Seq data that has sparked rethinking of prokaryotic operon 

structures. In recent years, it has been revealed that the structure of the operon is not as 

static as once thought and an operon can be transcribed into various transcription units 

(TUs) under different conditions (Cho et al. 2009). Moreover, extensive study of TU 

structures under multiple conditions has revealed that activation or repression of operon 

genes do not happen only at the beginning or the end of the operon, but also in the 

internal genes of the operons (Güell et al. 2009). These massive quantities of genomic 

and transcriptomic data available today generates an urgent need for new functional 

annotation tools that could take advantage of that and broaden our knowledge. 

Moreover, until very recently bacterial transcriptomes have been considered to 

consist of mRNAs, rRNAs, tRNAs and some small RNAs. However, the advancements 

in high throughput sequencing technologies in the past few years is also challenging this 
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notion, since numerous studies revealed pervasive transcription from the reverse strands 

of protein coding genes, resulting in cis-antisense RNAs (asRNAs). But unfortunately, 

the lack of standard protocols and methods to find and categorize asRNAs has produced 

conflicting reports on the number of the genes in various prokaryotes that have antisense 

RNA (asRNA) transcription. Such highly varying reports even exist in the well-studied 

organisms such as E. coli K12 strain and casts doubts on the authenticity of most of the 

asRNAs in the bacterium  (Slonczewski 2010). Futher, low asRNA conservation between 

E. coli K 12 and a closely related species S. enterica serovar Typhimurium raises more 

doubts that the majority of prokaryotic asRNA may have any biological functions 

(Raghavan, Sloan, and Ochman 2012). 

In this dissertation, we address the complexities in functional annotation and 

transcriptomes in bacteria. First, we introduce PorthoMCL, a fast and scalable tool, to 

predict gene orthology among a large number of genomes. PorthoMCL can be run on a 

single machine or in parallel on HPC computer clusters and can facilitate comparative 

genomics analysis through exploiting the exponentially increasing number of sequenced 

genomes. Second, we analyzed alternative and dynamic operon utilizations in E. coli K12 

at multiple time-points in three different stress conditions. Finally, we took a systems 

approach by simultaneously determining the transcriptomes and proteomes in E. coli K12 

at different growth phases/time points under five culture conditions using a highly 

specific directional RNA-seq technique and a quantitative mass spectrometric technique, 

coupled with western blot validation of select genes. Our results suggest that asRNAs 

may directly or indirectly regulate translation and may play an important role in the 
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bacterium’s responses to environmental changes during growth and adaption to different 

environments. 
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CHAPTER 1: PORTHOMCL: PARALLEL ORTHOLOGY PREDICTION USING 
MCL FOR THE REALM OF MASSIVE GENOME AVAILABILITY 

 
 

1.1 Background 

Orthologs are genes in different species derived from the last common ancestor 

through speciation events. Orthologous genes generally share the same biological 

functions in their host genomes. Therefore, identification of orthologous genes among a 

group of genomes is crucial to almost any comparative genomic analysis (Alexeyenko et 

al. 2006). In contrast, paralogs, which are genes that are resulted from gene duplication 

within a species, may have different functions, though their sequences can be highly 

conserved. Depending on whether duplication occurred before or after speciation, they 

are called outparalogs or inparalogs, respectively (Sonnhammer and Koonin 2002). Thus, 

a major challenge in predicting orthologs of a gene is differentiating its orthologs from 

the orthologs of its paralogs.  

Furthermore, due to the rapid advancement in sequencing technologies, 

sequencing a prokaryotic genome now occurs at an unprecedentedly fast speed and low 

cost. As a result, tens of thousands of prokaryotic genomes have been fully sequenced, 

and this number will soon reach hundreds of thousands. The availability of a large 

number of completed genomes makes comparative genomics an increasingly powerful 

approach for genome annotations, thereby addressing many important theoretical and 

application-based problems. However, the rate at which genomes are sequenced outpaces 
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that at which CPU speed increases. This poses a great challenge in comparative genomics 

that requires faster algorithms or adaptation of existing tools in parallel environments. 

OrthoMCL (Li et al. 2003) is one of the most widely used algorithms for 

predicting orthologous genes across multiple genomes. Similar to many other orthology 

prediction algorithms (Gabaldón and Koonin 2013; Kuzniar et al. 2008), OrthoMCL is 

based on reciprocal best hits in all-against-all BLAST searches (ALTSCHUL et al. 1990) 

of complete proteomes of the genomes followed by applying the Markov Clustering 

algorithm (MCL) (Enright, Dongen, and Ouzounis 2002) to a weighted graph constructed 

based on these best hits (Dongen 2000; Enright et al. 2002). Specifically, OrthoMCL 

represents genes as nodes in the graph, and connects two nodes/genes by an edge if there 

are a pair of reciprocal best hits with a similarity greater than a cutoff. The weight of the 

edges is a normalized score (𝑤𝑤) based on the E-values of the reciprocal hits. This score 

for genes 𝑥𝑥� and 𝑦𝑦� in genomes 𝐴𝐴 and 𝐵𝐵, respectively, is calculated using the following 

formulas:  

𝑤𝑤 𝑥𝑥�, 𝑦𝑦� = −
log�� 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝑥𝑥� → 𝑦𝑦� + log�� 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐮𝐮𝐞𝐞 𝑦𝑦� → 𝑥𝑥�

2 1.1  

𝑤𝑤 𝑥𝑥�, 𝑦𝑦� =
𝑤𝑤 𝑥𝑥�, 𝑦𝑦�

average
∀�,�

𝑤𝑤 𝛼𝛼�, 𝛽𝛽�
1.2  

Similarly, within-genome reciprocal hits that have a better normalized score than 

between-genomes hits are identified as paralogs (Li et al. 2003). Ortholog and paralog 

groups are then identified by finding the heavily connected subgraphs using the MCL 

(Enright et al. 2002). However, OrthoMCL relies on a relational database system to store 

the BLAST results and issues SQL commands to find reciprocal best hits, making it 

computationally inefficient when the number of genomes becomes large.  
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To overcome this problem and to speed up the method further, we developed 

PorthoMCL, a parallel orthology prediction tool using MCL. In addition to the 

parallelization, our sparse file structure that is more efficient makes PorthoMCL ultrafast 

and highly scalable. Furthermore, PorthoMCL is platform independent, thus can be run 

on a wide range of high performance computing clusters and cloud computing platforms. 

1.2 Implementation 

1.2.1 Workflow 

The workflow of PorthoMCL is similar to that of OrthoMCL (Figure 1.1). 

However, instead of depending on an external database server, PorthoMCL uses a sparse 

file structure for more efficient data storage and retrieval. In addition, we parallelized all 

the computationally intensive steps of OrthoMCL. First, PorthoMCL conducts all-

against-all BLAST searches in parallel by performing individual-against-all BLAST 

searches for every genome 

independently. Second, it identifies the 

best between-genomes BLAST hits for 

each two genomes A and B in parallel 

by scanning the individual-against-all 

BLAST results. The BLAST hit for 

the gene 𝑥𝑥� in genome B (𝑥𝑥� → 𝑦𝑦�) is 

considered to be the best hit if the E-

value for 𝑥𝑥� to gene 𝑦𝑦�is the best E-

value for all the searches of 𝑥𝑥� for 

genes in genome 𝐵𝐵 with E-

Figure 1.1: Flowchart of PorthoMCL. 
Original OrthoMCL steps are shown in 
white, and PorthoMCL steps are in grey 
shades. Black boxes are the external 
applications that PorthoMCL requires. 
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value/match-percentage better than the threshold. This step results in a single best hit file 

for each genome, and a self-hit file for paralogy-finding. Third, the algorithm finds 

reciprocal best hits between every two genomes and calculates the normalized score in 

parallel using Formula 1.2. This is the most computationally intensive step in the 

algorithm, so we used a sparse file for storage in addition to parallel processing, similar 

to the strategy used in orthAgogue (Ekseth et al. 2014). Specifically, for each parallel 

process, PorthoMCL loads at most two best-hit files at the same time to reduce the 

memory footprint, and every best-hit file is only loaded once to lower the I/O costs. 

Finally, PorthoMCL finds within-genomes reciprocal best hits and normalizes the score 

with the average score of all the paralog pairs that have an orthologs in other genomes.  

These step are embarrassingly parallel computing problems and do not require 

shared memory, process coordination or data exchange platform (Graham, Woodall, and 

Squyres 2005) as used in orthAgogue. Hence, these steps are readily designed to be 

executed in parallel on a variety of high performance computing (HPC) environments. 

However, these steps are not totally independent as each step needs the output of the 

preceding step. The output of these steps are eventually collated to construct a sequence 

similarity graph that is then cut by the MCL program to predict orthologous and 

paralogous gene groups.  

1.2.2 High Performance Computing Support 

PorthoMCL is designed to predict orthologs in a very large number of sequenced 

genomes in a HPC environments, such as computing clusters or cloud computing 

platforms without the need of a database server or Message Passing Interface, which is an 

advantage over OrthoMCL and orthAgogue. We have included a TORQUE script in the 
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repository to facilitate its use in such environments. However, PorthoMCL also runs on a 

desktop or a server with minimal requirement using the provided wrapper script. 

1.3 Results 

To compare the computational efficiency of PorthoMCL and OrthoMCL, we 

applied the two programs to 10, 50, 100 and 500 randomly selected bacterial genomes. 

As OrthoMCL was not implemented for parallel computing, we ran both programs on a 

single computing node with four cores and 32GB of RAM to make the comparison fair. 

As shown in Table 1.1, PorthoMCL outperformed OrthoMCL in all sizes of datasets in 

runtime, and it is noteworthy noting that OrthoMCL failed to handle the data size of 500 

genomes due to a memory error. 

To illustrate the power of PorthoMCL, we applied it to 2,758 sequenced bacterial 

genomes obtained from GenBank using their annotated protein sequences. These 

genomes contain a total of 8,661,583 protein sequences with a median length of 270 

amino acids. These sequences serve as both the query and the database for all-against-all 

BLAST searches. For this application, PorthoMCL split the query sequences into smaller 

files each containing about 10,000 sequences, and ran in the parallel mode on a cluster 

with 60 computing nodes (each node has 12 cores and 36GBs of RAM). PorthoMCL 

finished the job in 18 days, of which it spent 11 and 7 days on BLAST searches and the 

remaining steps that would have taken 549 and 1,634 days, respectively, if run on a single 

node. In contrast, OrthoMCL could not finish the job after 35 days running on a database 

server with 40 cores and 1TBs of RAM.  

PorthoMCL identified 763,506,331 ortholog gene pairs and identified 230,815 

ortholog groups in these genomes. The orthologous pairs (file size: 6.2GB) and  
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Table 1.1: Comparison of runtimes of OrthoMCL and PorthoMCL for different number 
orthologous groups (file size: 50MB) as well as paralogous pairs are available for of 
genomes. 

Genomes Proteins BLAST 
Hits   OrthoMCL PorthoMCL Speedup 

10 

 19,240   298,647   0:00:18 0:00:11 164% 
 29,912   637,091   0:01:07 0:00:21 319% 
 30,111   656,689   0:01:16 0:00:23 330% 
 32,962   721,997   0:01:12 0:00:24 300% 

50 

 126,020   5,771,483   0:15:55 0:05:55 269% 
 127,724   6,363,917   0:27:53 0:06:08 455% 
 133,974   6,418,035   0:08:29 0:06:15 136% 
 138,258   7,008,798   0:24:06 0:06:18 383% 

100  252,109   18,326,608   1:02:58 0:31:49 198% 

500  1,327,716   283,850,847    - 17:38:55 ∞ 
 

orthologous groups (file size: 50MB) as well as paralogous pairs are available for 

download at http://ehsun.me/go/porthomcl. We will periodically update our predictions 

when more genomes are available in the future. The options and arguments needed at 

each step are discussed in detail in the documentation of the PorthoMCL package that can 

be freely accessed from http://github.com/etabari/PorthoMCL. 

1.4 Conclusion 

PorthoMCL is fast tool with minimal requirements for identifying orthologs and 

paralogs in any number of genomes. While PorthoMCL uses the same mathematical basis 

as OrthoMCL to investigate orthology among genomes, it is much faster and a more 

scalable tool when handling a very large number of genomes than existing tools. 

PorthoMCL can facilitate comparative genomics analysis through exploiting the 

exponentially increasing number of sequenced genomes. 



 

 
 
 
 
 

CHAPTER 2: ALTERNATIVE AND DYNAMIC OPERON UTILIZATIONS IN E. 
COLI IN RESPONSE TO ENVIRONMENTAL CHANGES  

 
 

2.1 Background 

Prokaryotic genomes typically consist of a circular chromosome of a few million 

base pairs encoding a few thousand genes. Multiple genes arranged in tandem with the 

same orientation are often transcribed into a single polycistronic transcript by sharing the 

same promoter and terminator (Jacob et al. 1960). Such co-transcribed genes are called 

an operon. In most cases these genes have similar or coordinated biological functions, 

and are involved in related biological pathways (Chuang et al. 2012; Overbeek et al. 

1999; Salgado et al. 2000; Siefert et al. 1997; Wolf 2001). Understanding the architecture 

of operons in a prokaryotic genome is important to understand many aspects of the 

biology of the organism, and can help to predict functions of novel genes (Wang, 

MacKenzie, and White 2015). 

However, recent applications of tiling arrays and new sequencing technologies in 

combination with mRNA enrichment techniques have revealed that the structures of 

operons are not as static as previously assumed, instead, an operon can be transcribed in 

various forms under different conditions, a phenomenon called alternative operon 

transcription or utilizations (Cho et al. 2009; Güell et al. 2009; Mao et al. 2014; Salgado 

et al. 2013; Sorek and Cossart 2010). Furthermore, genes in an operon can have varying-

levels of transcriptions in a staircase-like manner, a phenomenon known as dynamic 

operon transcription or utilizations (Güell et al. 2009). The extent of such alternative and 



 8 

dynamic operon utilizations can be comparable to alternative splicing in eukaryotes in 

which different mRNA isoforms with varying levels of expression can be produced from 

a pre-RNA molecule through alternative splicing (Güell et al. 2009). With this regard, the 

term operon might be more appropriately reserved for the longest set of adjacent genes 

from which some or all of the genes can transcribed as a transcriptional unit (TU) under 

certain conditions as previously suggested (Okuda et al. 2007). In other words, an operon 

can have different TUs, each results in a distinct transcript containing one or more genes. 

Numerous studies have attempted to redefine operon or TU maps using RNA-seq 

techniques of eubacterial and archaeal species such as L. innocua (Toledo-Arana et al. 

2009), E. coli (Cho et al. 2009; Conway et al. 2014), B. anthracis (Passalacqua et al. 

2009), L. monocytogenes (Oliver et al. 2009), S. enterica serovar Typhi (Perkins et al. 

2009; Wang et al. 2015), B. cenocepacia (Yoder-Himes et al. 2009), S. solfataricus P2 

(Wurtzel et al. 2010), Helicobacter pylori (Sharma et al. 2010), C. trachomatis (Albrecht 

et al. 2010),  M. hyopneumoniae (Güell et al. 2009; Siqueira, Schrank, and Schrank 

2011), S. elongatus PCC 7942 (Vijayan, Jain, and O’Shea 2011), M. gallisepticum 

(Mazin et al. 2014), C. thermocellum (Chou et al. 2015). However, majority of these 

studies have only investigated changes in operon or TU structures under a single culture 

conditions, thus only a small portion of alternative operons have been revealed in these 

species, and dynamic transcription of operons has been largely ignored in most of these 

studies. Consequently, the patterns of changes and functional implications of alternative 

and dynamic operons utilizations in response to environmental changes remain largely 

unknown. 
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On the other hand, a challenge in studying alternative and dynamic operon 

utilizations using RNA-seq is to accurately assemble TUs and detect varying 

transcriptional levels of  genes in operons due to the highly uneven coverage of short 

reads along the gene body (Dillies et al. 2012) and lack of sufficient training datasets 

(Chou et al. 2015). A few methods have been developed to predict TUs based on RNA-

seq data. One of these methods is TruHMM (Li, Dong, and Su 2013) that uses a two-state 

hidden Markov model to model expressed and non-expressed part of a genomic 

sequence. The other methods attempt to predict whether or not a pair of consecutive 

genes on the same strand belong to a single TU based on the mapping of RNA-seq reads 

and other genomic features using machine learning algorithms. For instance, Rockhopper 

(McClure et al. 2013) assembles operon structures based on intergenic distance and 

correlation of expression levels of adjacent genes using a naïve Bayes classifier. SeqTU 

(Chou et al. 2015) detects the boundaries between adjacent TUs with the same orientation 

based on similar features using a support vector machine, and Fortino et al. (Fortino et al. 

2014) combines well-studied genomic features (Brouwer, Kuipers, and van Hijum 2008) 

and transcriptomics data using multiple machine learning methods to investigate 

condition dependent TUs. Among these methods, RockHopper has been successfully 

applied in other studies (Chetal and Janga 2015; Fitzgerald, Bonocora, and Wade 2014; 

Pflaum et al. 2015; Saadeh et al. 2015; Wang et al. 2015), while others are compromised 

by their insufficient usability.  

To address these questions, we analyzed alternative operon utilizations in E. coli 

K12 at multiple time-points in three different stress conditions, including heat shock 

(HS), phosphorous starvation (M-P) and carbon starvation (M-C) based on TUs 



 10 

assembled using RockHopper. In addition, we analyzed dynamic transcription of TUs in 

the samples by adopting a model that has been successfully used in modeling varying 

transcriptional levels of alternate splicing isoforms in eukaryotes. We found that this 

model can accurately reflect the extent of dynamic operon transcription. Our results show 

that about 22% of operons have alternative TU transcription, and up to 36% of TUs 

display dynamic transcription in response to environmental changes for better adaptation.  

2.2 Results 

2.2.1 Defining the Structures of TUs in E. Coli K12 at Different Growth Phases 
and Culture Conditions. 

We first identified expressed multi-gene TUs in samples collected at each time 

point under each culture condition (TPC) using Rockhopper (McClure et al. 2013). As 

shown in Table 1, we identified a similar number (812~835, average 826) of multi-gene 

TUs in each TPC, 78~80% of which are at least a subset of the 851 multi-gene operons 

documented in RegulonDB 9.0 (Gama-Castro et al. 2015), indicating that our TU  

 

Table 2.1: The number of TUs detected at each TPC 

Sample   No. TUs RegulonDB 
Subunit (%) 

LB 1.0  812  653 (80%) 
M-P0h  834  661 (79%) 
M-P2h  831  652 (78%) 
M-P4h  834  658 (79%) 
HS15min  835  658 (79%) 
HS30min  828  659 (80%) 
HS1h  816  651 (80%) 
M-C1h  825  643 (78%) 
M-C2h  821  641 (78%) 

Total Distinct TUs 1,172  853 (73%) 

Shared TUs 550 494 (90%) 
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 assembling was quite accurate.  

In total, we identified 1,172 multi-

gene TUs in all the nine TPCs, 

each containing 2~15 genes with 

an average of three genes 

(Figure 2.1). Of these 1172 multi-

gene TUs, 853 (73%) are at least a 

subset of multi-gene operons 

documented in RegulonDB, the 

other 319 might be novel operons. Furthermore, 550 (46.9%) of the predicted 1,172 

multi-gene operons were observed in all of the TPCs, and 494 of which (90%) are at least 

a subset of multi-gene operons documented in RegulonDB. Their ubiquitous expression 

in all the time points and culture conditions we examined indicate that these TUs might 

be involved in house-keeping functions (see below). On the other hand, the remaining 

622 (53.1%) were only observed in a limited number (1~8) of TPCs (Figure 2.2A), 

indicating that they were expressed in a more or less TPC-dependent manner. In this 

regard, 99 of them (8%) were observed in only one TPC (Figure 2.2A).  Interestingly, as 

shown in Figure 2.2B, TPCs sampled at adjacent time points and under the same culture 

condition were unambiguously clustered into a group based on the distances among the 

TU structures of the TPCs (see Methods), i.e., TPCs of LB, HS, M-C, and M-P were 

clustered in four distinct groups, far away from each other. These results further suggest 

that these 622 TUs were utilized in the bacterium in a growth phase- and condition-

dependent manner. 

Figure 2.1: TUs detected by Rockhopper 
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2.2.2 A Considerable Portion of Operons Is Alternatively Utilized in a Growth 
Phase-  and Culture-Dependent Manner. 

We next examine the patterns of alternative operon utilizations in different growth 

phases and culture conditions. We found that 676 (57.7%) of the 1,172 TUs assembled in 

the TPCs were only transcribed in a single TU form in all the TPCs in which they 

presented, and thus consider them as single-TU operons. In contrast, the other 496 

(42.3%) TUs contained at least a shared gene with another TU, suggesting that the TUs 

that shared genes were alternatively transcribed in different TPCs from a larger operon. 

To identify these larger operons, we stitched all TUs from all the TPCs that shared at 

least a gene to form an operon. In doing so, we combined the 496 TUs into 186 larger 

operons. As shown in Figure 2.3A, most (84.4%) of these stitched operons were 

transcribed in two or three different TU forms, although a few in more than four forms. 

Therefore, a considerable portion (22.0%) of the 862 identified operons (186 stitched 

A. B. 

Figure 2.2: CTPs and TUs 
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operons plus 676 single-TU operons) were utilized in different forms in different growth 

phases and culture conditions. Figure 2.3B shows an example of such operons, ybeZYX-

lnt, which is under control of the heat shock sigma factor d32 (Nonaka et al. 2006). It has 

been shown that three different TUs can be transcribed from this operon, ybeZYX-lnt, 

ybeZY and ybeX-lnt  (Salgado et al. 2013) that were all detected in our TPCs. 

Interestingly, while the full operon is known to be transcribed under heat shock, our 

results showed that it is was also transcribed in the later stages of phosphorous starvation. 

Furthermore, the above-mentioned 550 TUs observed in all the TPCs were only 

transcribed in a single TU form in all the TPCs, thus are a subset of the 676 single-TU 

operons. Therefore, all these ubiquitously used operons were not alternatively utilized. 

Functional enrichment analysis confirms our earlier conjecture that these ubiquitously 

transcribed single-TU operons are involved in house-keeping related biological functions, 

such as anaerobic/cellular respiration and cell mobility/localization (dataset DS2 in 

Appendix B). 

A. B. 

Figure 2.3: Constructed operons and their TUs. 
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2.2.3 TU Are Dynamically 
Transcribed in a Growth Phase- 
and Culture-Dependent 
Manner. 

Finally, we investigated 

dynamic expression patterns of 

TUs in different growth phase 

and culture conditions. As there 

is no available tools for such 

analysis, we adapted the 

DEXSeq algorithm that was 

originally developed to model 

varying transcriptional levels of 

alternative splicing isoforms in 

eukaryotes (Anders, Reyes, and 

Huber 2012) to this purpose 

(see Methods) by taking the 

advantage of the similarity 

between alternative splicing in 

eukaryotes and dynamic 

transcription in prokaryotes 

(Güell et al. 2009). As 

summarized in Figure 2.4A, we 

found that most (718, 83%) of 

the predicted multi-gene TUs 

A. 

B. 

Figure 2.4: Dynamic Transcription of operons. 
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showed clear patterns of dynamic transcription. Dynamic transcription occurred in both 

single-TU operons and multi-TU operons, although operons with multi-TUs have a 

higher frequency of dynamic transcription than single-TU operons (Figure 2.4A). 

Figure 2.4B shows an example of single-TU operons with dynamic transcription, in 

which the metNIQ operon encoding the DL-methionine uptake system (Gál et al. 2002; 

Merlin et al. 2002) displayed varying transcriptional levels under different culture 

conditions. Specifically, the metQ gene coding for an ATPase, was expressed under all 

conditions, but its expression levels were much higher than the two other genes of the TU 

under all the culture conditions (the average expression ration of metQ over the other two 

is: 2.71) except for HS in which all the three genes were expressed in similar levels (the 

average expression ration of metQ over the other two is: 1.24). The other 144 operons 

displayed no dynamic transcriptional patterns even though they might be transcribed into 

multiple TUs (Figure 2.4A).  To see how the dynamic transcription of operons vary in 

different TPCs, we clustered operons based on their expression profiles across all TPCs 

(see Methods). As shown in Figure 2.5A, the first 80 operons were single-TU operons 

were expressed in all the TPCs with no dynamic transcription. The next 64 operons (from 

81 to 144) did not show any dynamic transcription either, although some of them have 

alternative transcription or not expressed in some TPCs. These two groups make up the 

144 operons without dynamic operon transcription. The next 546 operons (from 145 to 

690) were transcribed in a single TU with dynamical transcription dependent on the 

TPCs. The last 172 (from 691 to 862) operons showed both alternative and dynamic 

changes in different TPCs. 
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We then investigated how alternative and dynamic transcription changed at 

different growth phases under different culture conditions. To this end, for each culture 

condition we compared both alternative and dynamic transcriptional patterns of operons 

A. B. 

C. 

D. 

No change 
Dynamic transcription Missing 

Alternative TU 

Figure 2.5: Changes in operon transcription at different time-points. 
(A) Each line represents an operon, and different color across the line marks a change in 
transcription of the operon, a TU variation or alternate transcription (white=not expressed).  
Rate of alternative transcription in heat shock (B), phosphorous starvation (C) and carbon 
starvation (D) conditions. Operon at each consecutive time-point after LB 1.0 are divided in 
four groups, operons that were transcribed with no change to the previous time-point (green), 
operons that are transcribed into the same TU but with an dynamic transcription to the 
previous time-point (blue), operons that are transcribed into a different TU from the previous 
time-point (red) and operons from the previous time-point that are missing (black).  
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at each time-point with its previous time-point starting from LB 1.0 from which the cells 

were exposed to different stress conditions. As shown in Figure 2.5B, ~80% of the 

operons at M-P0h are expressed in the same way as in LB 1.0, 4.9% were dynamically 

transcribed into the same TUs, and the rest were either alternatively transcribed into a 

different TU (12.5%) or not transcribed at all (3%). This is expected as the M-P0h 

samples were collected right after the cells were transferred to phosphorous starvation 

medium from LB 1.0. In contrast, only 49.8% and 52% of the operons were transcribed 

in the same way as in the previous time point for the M-P2h and M-P4h samples, 

respectively, while a larger portion of operons (~34% in M-P2h and ~37% in M-P4h) 

were dynamically transcribed from the previous time-points. Similarly, in other two 

stress conditions (Figure 2.5C and D), from 51.8% to 61% of the operons were 

transcribed in the same ways as in the previous time points, while from 21.4% to 35.8% 

of the operons were dynamically transcribed. Moreover, the proportion of the operons 

that were alternatively transcribed into different TUs compared to the previous time 

points was in the range of 6.8~12.5%, and generally decreased in all culture conditions 

with time. However, the proportion of operons that were not expressed compared to the 

previous time-points stayed relatively small and stable (2.5%~4.2%), regardless of the 

time-points and culture conditions. These results indicate that the bacterium can either 

alternatively transcribe operons into different TUs, or dynamically fine-tune the 

transcriptional levels of genes in the operons during the course of responses to 

environmental changes. 
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2.3 Discussion 

A complex landscape of alternative and dynamic operon utilizations has been 

reported as a response to environmental changes in a variety of prokaryotic organisms 

including Gram-positive bacterium M. pneumoniae (Güell et al. 2009) and B. Subtilis 

(Nicolas et al. 2012); yet, an extensive investigation of this phenomenon is still missing 

in model Gram-negative bacterium, E. coli. Further, the time course and patterns of 

alternative and dynamic operon utilizations in bacteria in response various environmental 

changes were not fully understood.  Moreover, although methods have been developed to 

analyze alternative operon utilizations, the highly non-uniform coverage of RNA-seq 

reads on transcribed regions (Dillies et al. 2012) render it a challenging task to accurately 

detect varying transcriptional levels of genes in a operon. To tackle these problems, we 

proposed to model dynamic operon transcription in the same way as modeling alternative 

splicing isoforms of genes in eukaryotes by treating genes in an operon as exons of a 

eukaryotic gene. In this study, we have successfully adapted the DEXSeq (Anders et al. 

2012) algorithm to this purpose and revealed similarly complex landscape of alternative 

and dynamic operon utilizations in E. coli K12 cells in response to environmental 

changes in the course of various stress culture conditions. Our results suggest that 

transcriptional changes in bacteria in response to environmental changes are achieved 

through both alternative transcriptions of operons, by which genes in an operon can be 

selectively transcribed or skipped, and dynamic transcription, by which transcriptional 

levels of each gene in an operon can be quantitatively fine-tuned.  
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2.4 Methods 

2.4.1 Datasets 

The E. coli K12 genome and annotation files (version NC_000913.2) were downloaded 

from Genbank. Experimentally verified operons were downloaded from RegulonDB 9.0 

(Gama-Castro et al. 2015). E. coli K12 cells were grown and treated as previously 

described (Li et al. 2013). Briefly, cells were first cultured in the rich medium Luria broth 

(LB) until a middle log phase (OD600=1.0) was reached. The cells were then transferred 

to MOPS solution for heat shock (HS, 48°C), or MOPS without glucose (M-C) for 

carbon starvation, or MOPS without phosphorus (M-P) for phosphorus starvation. Cell 

samples were taken at different time points of the cultural conditions (TPCs), including at 

OD600=1.0 growing LB (LB 1.0); right after transferring to the M-P medium (M-P0h), 

and two and four hours after the onset of phosphorous starvation (M-P2h and M-P4h, 

respectively); 15, 30 and 60 minutes of heat shock (HS15’, HS30’ and HS1h, 

respectively); one and two hours after transferring to the M-C medium (M-C1h and M-

C2h, respectively). Directional RNA-seq libraries from the samples were prepared and 

sequenced as previously described (Li et al. 2013) with at least two biological replicates. 

The datasets have been deposited in GEO with accession numbers GSE48151 and 

GSE64021.  

2.4.2 Predicting TUs and Reconstructing Operons 

We predict TUs in a TPCs by running RockHopper 2.03 with default parameters 

on RNA-seq reads from all replicates for the TPC, using the protein and RNA annotation 

files of the bacterium and the LB 1.0 libraries as the baseline. We define a distance 

between the TU structures 𝑇𝑇𝑇𝑇� and 𝑇𝑇𝑇𝑇� of a pair of TPCs 𝑖𝑖 and 𝑗𝑗, respectively, as 
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𝑑𝑑 𝑖𝑖, 𝑗𝑗 = |𝑇𝑇𝑇𝑇� ∪ 𝑇𝑇𝑇𝑇�|/|𝑇𝑇𝑇𝑇� ∩ 𝑇𝑇𝑇𝑇�|. To analyze and visualize relationships between 

operon structures in different TPCs, we performed a multidimensional scaling (Gower 

1966) using the distance matrix. We reconstructed an operon by collating all the TUs 

predicted in all the TPCs that share at least a gene.  

2.4.3  Modeling Dynamic Operon Transcription 

 We mapped the reads using bowtie 2.0 (Langmead and Salzberg 2012) with the 

option “--very-sensitive” and counted uniquely mapped reads to each gene using the 

GenomicAlignments package in Bioconductor (Lawrence et al. 2013). Then, we used 

DEXSeq (Anders et al. 2012) with following modifications to calculate the similarity of 

transcription profiles of a TU between two TPCs.  

We assume that the reads mapped to gene g in TU i in TPC t, 𝐾𝐾���, follow a 

negative binomial distributions (NB):  

𝐾𝐾���~𝑁𝑁𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑠𝑠�𝜇𝜇���, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝛼𝛼�� 																  

where 𝑠𝑠� is a scaling factor for TPC t that accounts for sequencing depth; 𝜇𝜇��� is the 

linear predictor, which is decomposed into factors that account for the baseline 

expression of TU i, the expression of gene g, and the effect of TPC t on the expression of 

TU i; and 𝛼𝛼�� is the dispersion parameter for gene g in TPC t, which is calculated using a 

Cox-Reid dispersion (Cox and Reid 1987) estimator (McCarthy, Chen, and Smyth 2012). 

The false discovery rate (FDR) for each gene in a TU was adjusted using the Benjamini-

Hochberg method.  

Assuming that there are 𝑇𝑇 different TUs transcribed from an operon o (𝑇𝑇𝑇𝑇�, 𝑖𝑖 =

1. . 𝑇𝑇), and 𝑇𝑇𝑇𝑇� is detected in 𝑛𝑛� TPCs (𝑇𝑇𝑇𝑇���..��
� ), for each 𝑇𝑇𝑇𝑇�, we compute similarity 

scores of  its transcription profiles  between each pair of the 𝑛𝑛� TPCs using DEXSeq.  
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Based on this similarity matrix, we identify TPC clusters in which 𝑇𝑇𝑇𝑇� is expressed 

similarly using Ward’s hierarchical agglomerative clustering method (Murtagh and 

Legendre 2014). We consider each resulting cluster as a dynamic transcriptional pattern 

of 𝑇𝑇𝑇𝑇�.  We define the dynamic transcriptional patterns (𝑃𝑃�) of an operon o is the union 

of the patterns of all its TUs.  We sort the patterns in Po by their sizes and label them by 

their ranks (1. . |𝑃𝑃�|). We represent operon o’s expression pattern in all the TPCs by a 

vector (𝐶𝐶� = [𝑐𝑐���.�� , 𝑐𝑐����
� , … , 𝑐𝑐����

� ]), where 𝑐𝑐�� is the label of the pattern observed in 

TPC t, or zero if any TU of the operon is not expressed in t. To find operons that have 

similar expression patterns shown in Figure 5A, we clustered operons based on their 

expression pattern vectors using the Euclidian distance and hierarchical clustering.    



 

 
 
 
 

CHAPTER 3: ANTISENSE TRANSCRIPTION AND ITS ROLES IN RESPONSE TO 
ENVIRONMENTAL CHANGES IN E. COLI K12 

 

3.1 Background 

Bacterial transcriptomes have long been considered to consist of mRNAs, rRNAs, 

tRNAs, and some small cis- and tran-acting RNAs. However, in the past few years, 

applications of high-density directional tiling array, and in particular directional RNA-seq 

techniques, have revealed pervasive transcription from the reverse strands of protein 

coding genes, resulting in cis-antisense RNAs (hereafter denoted asRNAs). The asRNA 

molecules overlap with the 5’-end, 3’-end, middle, or the entire gene/operon (Georg and 

Hess 2011); their lengths vary from tens to thousands of nucleotides (nt) (Lasa, Toledo-

Arana, and Gingeras 2012; Thomason and Storz 2010; Wade and Grainger 2014); and are 

reported in taxonomically distinct species, including: M. pneumonia (Güell et al. 2009), 

B. anthracis (Passalacqua et al. 2012), Synechocystis sp. PCC 6803 (Georg et al. 2009), 

L. monocytogenes (Toledo-Arana and Solano 2010; Wurtzel et al. 2012), B. subtilis 

(Nicolas et al. 2012; Rasmussen, Nielsen, and Jarmer 2009), H. pylori (Sharma et al. 

2010), P. syringae (Filiatrault et al. 2010), E. coli (Dornenburg et al. 2010; Lybecker et 

al. 2014; Raghavan et al. 2012; Selinger et al. 2000; Thomason et al. 2015), S. enterica 

(Kröger et al. 2012), and S. aureus (Lasa et al. 2011). The highly pervasive asRNA 

transcription reported in some species strongly suggests that they may play important 

roles in the physiology of prokaryotes as the synthesis of asRNA is costly (Georg and 

Hess 2011). More recently, it was found that in Gram positive bacteria such as S. aureus 
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(Lasa et al. 2011; Lioliou et al. 2010) and B. subtilis (Lasa et al. 2011) asRNA expression 

may provide a unique genome-wide post-transcriptional regulatory mechanism to adjust 

mRNA levels through invoking RNase III-mediated digestion of mRNA/asRNA 

duplexes, while a different mechanism may be responsible for the mRNA/asRNA 

digestion in Gram negative bacterial such as S. enteritidis (Lasa et al. 2011, 2012). 

Moreover, it has been shown that asRNA transcription displayed non-random patterns 

under different culture conditions in E. coli (Dühring et al. 2006; Kawano et al. 2005; 

Opdyke, Kang, and Storz 2004; Thomason et al. 2015) and B. anthracis (Passalacqua et 

al. 2012); thus, the resulting asRNAs may be involved in the adaptation of the bacteria to 

the environments. These accumulative lines of evidence strongly suggest that pervasive 

asRNA transcription may play important roles in bacterial physiology (Lasa et al. 2012; 

Thomason and Storz 2010; Wade and Grainger 2014).  

However, there are still many puzzles about asRNA transcription in prokaryotes. 

First, a highly varying proportion of open reading frames (ORFs) has been reported to 

have asRNA transcription in different species, ranging from 2.2% in G. sulfurreducens 

(Qiu et al. 2010) and 5.6% in Synechocystis sp. PCC 6803 (Georg et al. 2009), to 13% in 

B. subtilis (Nicolas et al. 2012) and 46% in H. pylori (Sharma et al. 2010), and 75% in S. 

aureus (Lasa et al. 2011) and 93% in E. coli (Selinger et al. 2000). This raises questions 

about the ubiquity of asRNA transcription pervasiveness in taxonomically distinct 

prokaryotes (Wade and Grainger 2014). Ironically, even inconsistent results have been 

reported in the most well studied E. coli K12 strain. For instance, up to 4,000 (~93%) 

genes in E. coli K12 were initially reported to have antisense transcription using a whole 

genome tiling array technique (Selinger et al. 2000), while two later studies only 
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identified 1,000 (Dornenburg et al. 2010) and 90 (Raghavan et al. 2012) asRNA species 

in the bacterium under similar growth conditions using RNA-seq techniques. To further 

confound the problem, a more recent study found a total of 316 asRNA species in RNase 

III mutant strains using a new technique that enriches double-stranded RNA using an 

antibody (Lybecker et al. 2014), whereas another study identified 5,495 asRNA species 

using a differential RNA-seq technique (Thomason et al. 2015). This inconsistency casts 

doubts on the authenticity of most of the asRNAs in the bacterium (Slonczewski 2010). 

Second, while some mammalian asRNAs (van Duin et al. 1989; Faghihi et al. 2010; Ling 

et al. 2013; Rossignol et al. 2004) and up to 86% of yeast asRNA (Goodman, 

Daugharthy, and Kim 2013; Swamy et al. 2014; Yassour et al. 2010) are evolutionarily 

conserved, only 14% of asRNAs are conserved between E. coli K 12 and a closely related 

species S. enterica serovar Typhimurium even though both displayed similarly extensive 

asRNA transcription (28% of ORFs), raising doubts that the majority of prokaryotic 

asRNA may have any biological functions (Raghavan et al. 2012).  

Functional characterization of asRNAs has been hampered by the lack of a 

technique that disrupts the transcription of an asRNA without affecting the sense 

transcription (Lasa et al. 2012). To overcome this technical difficulty, thereby 

characterizing authentic asRNAs as well as their transcriptional patterns, functions and 

underlying mechanisms, we have taken a systems approach by simultaneously 

determining the transcriptomes and proteomes in E. coli K12 at different growth 

phases/time points under five culture conditions using a highly specific directional RNA-

seq technique and a quantitative mass spectrometric technique, coupled with western blot 

validation of select genes. We found that asRNA transcription E. coli K12 is highly 
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pervasive, yet highly variable and dynamic, and that many genes change their relative 

asRNA levels to the mRNA levels at different growth phase/time points and under 

different culture conditions in well-defined manners. We show that such changes may 

have functional implications in the bacterium’s responses to environmental changes 

through affecting protein translation directly or indirectly. 

3.2 Results 

3.2.1 Determination of Time Series Transcriptomes and Proteomes in E. Coli K12 

Given the intrinsic difficulty of studying asRNAs using traditional genetic 

disruption methods (Lasa et al. 2012), we tested whether asRNAs could be more 

effectively studied by using a systems biology approach. To this end, we simultaneously 

profiled time series transcriptomes and proteomes of E. coli K12 using a highly strand-

specific RNA-seq method (Li et al. 2013) and a quantitative tandem mass spectrometry 

method (Lee et al. 2013), respectively, under a variety of culture conditions, including 

early (OD600=0.5) and middle (OD600=1.0) log phases and the stationary phase 

(OD600=3.0) growing in the rich medium Luria broth (LB), and at different time-points 

after transferring the cells growing in the LB (OD600=1.0) to one of four stress conditions: 

minimum medium MOPS (MOPS), heat shock (HS) in MOPS, carbon starvation (M-C) 

and phosphorus starvation (M-P). We named sampling time points by concatenating the 

growth condition and the time point/growth phase at which the cultures were sampled 

(i.e. HS15’ for the sampling time point at 15 minutes after the onset of heat shock, LB 0.5 

for the sampling time point when the cell growth reached an OD600=0.5 in LB, and M-

P6h for the sampling time point at 6 hours after the onset of phosphorus starvation).  

As shown in Figure A1A&B (in Appendix A), both the growth rate and protein 

levels of the cells in the four stress cultures had varying levels of reduction at all the time 
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points measured compared with those of the cells in LB, which is consistent with the 

current understanding of the severity of the stresses that each of these conditions would 

exert on the cells. Specifically, the cells in the minimum medium MOPS continued to 

grow with a moderately elevated protein production, while the cells in HS, M-C, and M-P 

largely stopped growing (Figure A1A), maintaining slightly decreased yet steady-state 

protein levels, with the exception of the cells in M-C, in which the protein levels initially 

increased slightly and then dropped markedly later. Interestingly, the differences in the 

protein levels normalized by the cell density (OD600 value) were less distinct among the 

five cultures, in particular for LB, MOPS, and M-C (Figure A1C), suggesting that the 

prolonged culture in LB slowed down and stresses (HS, M-C and M-P) almost 

completely suppressed cell proliferation; and the cells tended to maintain similar protein 

concentrations, presumably in order to adapt to the harsh environments though active 

synthesis of required proteins. 

The RNA-seq reads obtained from different sequencing platforms for the same 

sample or from different biological replicates were highly correlated (Figure A2), thus, 

we pooled the reads of libraries for cells collected at the same growth phase/time point 

and culture condition for further analyses, and refer the pooled reads as a sample for the 

sampling time point and culture condition. As summarized in Table A1, a total of 

1,085,996,619 reads were generated from the 20 samples, with an average of 21.8% of 

the reads uniquely mapped to the genome. From 2,941 (in M-C4) to 4,497 (in HS30min) 

of the 4,567 annotated ORFs were expressed in the samples (Table A2). On the other 

hand, the peptides detected for proteins of the technical replicates for the same samples 

(Figure A3A) and biological replicates for the same sampling time points (Figure A3B) 
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were highly repeatable, so we also pooled the results from the technical and biological 

replicates for further analysis. We detected from 1,270 (in M-C6h) to 1,951 (in LB1.0) 

proteins in each sample (Figure A3C). In total, we identified 2,436 proteins in the 20 

samples, each of which was present in 4.47±1.43 samples. Thus, the number of proteins 

detected is about half the number of mRNA detected, indicating that the RNA-seq 

method was more sensitive than the mass spectrometric method for detecting the 

respective type of molecules. 

3.2.2 Properties of asRNA 

As summarized in Table A3, depending on the sampling time points/growth phases and 

culture conditions, a varying small percentage (0.15%-2.01%) of nucleotides of the reads 

in the samples were uniquely mapped to the antisense strand of coding regions, yet the 

number of genes that had at least one mapped antisense read was relatively high and also 

highly varying, ranging from 804 (17.6%) to 4,270 (93.5%). In total, we assembled 6,613 

antisense transcripts that passed a minimum expression level. These results are consistent 

with the earlier findings (Selinger et al. 2000). However, as shown in Figure 3.1A, 4,984 

(75.4%) of the assembled antisense transcripts appeared in only one or two samples and 

were likely to be noise transcripts. To at least partially eliminate possible noise antisense 

transcripts, we consider the rest 1,629 of the assembled antisense transcripts that occurred 

in at least three samples as asRNAs (dataset DS3A in the Appendix B) (see Methods). 
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Although a few of these 1,629 predicted asRNAs were several thousand nucleotides long, 

vast majority (92%) of them were shorter than 1kb with a median length of 439nt 

(Figure 3.1B). Most (~70%) of the predicted asRNAs overlapped with a single gene, 

while a few overlapped with multiple genes (Figure 3.1C). As a result, the 1,629 

predicted asRNAs overlap with a total of 1,487 (32%) genes of E. coli K12. About 80% 

A. 

B. 

C. 

D. 

Figure 3.1: Properties of the predicted asRNAs. 
(A) Number of samples in which the same antisense TSS were observed. (B) The 
lengths of asRNAs and of the cognate genes are not correlated. 𝜌𝜌 is the Spearman 
correlation coefficient with a p-value of 0.001. The red line represents the identity line. 
Marginal distributions of the lengths of asRNAs and cognate genes are shown along the 
respective axes. The median lengths of asRNA and cognate genes are 438nt and 798nt, 
respectively and 64.9% of the genes in E. coli K12 are shorter than 1,000nt while more 
than 92% of the asRNAs are shorter than 1,000nt. (C) Number of asRNAs spanning 
different numbers of genes. (D) Relative length of asRNAs to the cognate genes. 
 



 29 

of the predicted asRNAs were shorter than the cognate genes (Figure 3.1D), and the 

lengths of asRNA were independent of the lengths of the cognate genes (Figure 3.1B). 

Moreover, while most (74%) of these genes had only one asRNA initiated in their bodies 

or upstream, we detected multiple asRNA transcription start sites (TSS) for some genes 

(Figure 3.2A). Most (83.5%) asRNA TSSs were located inside the gene body, and more 

preferentially at the two ends of the genes, although some asRNAs were initiated from 

the 3’ downstream regions of the genes (Figures 1.5B and 1.5C). Inherently, the 

proportion of the asRNAs that were initiated inside the gene body increased from 60% 

A. B. 

C. 

D. 

Figure 3.2: Properties of predicted asRNA TSSs. 
(A)	Number of genes having different numbers of associated asRNAs initiated in the 
coding or 3’-UTR region of the genes. (B) Distribution of asRNA TSS locations relative 
to the gene body. (C) Relative asRNA TSS locations to the gene body. Each < represents 
an antisense TSS. The relative length of an asRNA extends from the TSS to the diagonal 
line, and the red arrow shows an example of asRNA. In (B) and (C) the x-axis is the 
relative coordinates of nucleotides from the 5’-end to the 3’-end, and the blue arrows 
represent the coding region of the genes. (D) Number of the genes having antisense TSSs 
located in the inside or upstream of the genes with different lengths. 
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for genes shorter than 350bp to 94% for genes longer than 2kbp (Figure 3.2D), i.e., the 

longer the gene, the more likely its asRNA was initiated inside the gene body. 

3.2.3 Most asRNAs Are Expressed in a Culture Condition-Dependent Manner 

We next compared the asRNAs observed under different culture conditions. As 

shown in Figure 3.3A, although 202 (12%) of the predicted asRNA were transcribed 

under all the culture conditions, the majority of asRNAs were only seen in certain 

specific culture conditions, thus their expression was more or less culture condition-

dependent. Specifically, 204 (13%) of the asRNAs were only transcribed in one culture 

condition. Interestingly, most of these highly specifically expressed asRNAs were 

occurred in HS and M-P conditions (Figure 3.3B). The other 1,223 (85.8%) were utilized 

in varying combinations of culture conditions (Figure 3.3B). For example, the two 

predicted asRNAs for the mcrB gene were observed only in HS, while the predicted 

asRNA for symE, an SOS-induced gene, encoded in the opposite strand was seen in LB, 

MOPS and HS conditions but not in M-P and M-C (Figure A4). It has been shown that   

A. B. 

Figure 3.3: Condition dependency of antisense TSS. 
(A) Number of asRNAs observed in different number of culture conditions. (B) Sharing 
of antisense TSSs observed in the five culture conditions.  
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this asRNA was expressed under LB and MOPS growth conditions (Kawano et al. 2005), 

and that it repressed the transcription of symE (Kawano, Aravind, and Storz 2007). Some 

predicted asRNA TSSs are more active in certain conditions than in other conditions. For 

example, one asRNA (t2) for the sulA gene was more transcribed in HS than in other 

conditions, while the other asRNA (t1) for the gene was more active in the other 

conditions (Figure A5). Taken together, these results indicate that the expression of most 

asRNAs were highly condition dependent, thus they may play a role in the adaptation of 

the bacterium to the respective culture conditions.  

3.2.4 Our Predicted Antisense RNAs Largely Overlap with Those from Earlier 
Studies 

As we indicated earlier, highly varying numbers of asRNAs have been reported in 

E. coli K12 by different research groups, ranging from 90 to 5,495 (Dornenburg et al. 

2010; Lybecker et al. 2014; Raghavan et al. 2012; Salgado et al. 2013; Thomason et al. 

2015). Although there are still intense debates about the authenticity of these asRNAs 

(Georg and Hess 2011), true asRNAs are more likely to be detected by multiple research 

groups using similar or different methods and culture conditions. Thus, to further validate 

our predicted asRNAs, we compared them with those from these earlier studies using two  

 

Table 3.1: Comparison of our predicted asRNA with those reported in earlier studies. 

		 		 		 No.	of	
asRNA	 	 Matching	

TSS	 		 Genes	with	
asRNA	 		 Matching	

genes	
Thomason	 2015	 		 	5,495		 		 	709		 43%	 		 3,916	 		 1,357		 91%	
Lybecker		 2014	 		 	316		 		 	26		 8%	 		 261	 		 	110		 42%	
Salgado	(RegDB	
8.6)	 2014	 		 	121		 		 	17		 14%	 		 102	 		 	42		 41%	

Raghavan		 2012	 		 	90		 		 	45		 50%	 		 	86		 		 	61		 71%	
Dornenburg	 2010	 		 	1,005		 		 	118		 12%	 		 704	 		 	363		 52%	



 32 

metrics. First, we compared the TSSs of our predicted asRNAs with those of asRNAs 

reported earlier by different research groups. If the distance between our predicted 

antisense TSS and an earlier reported one is within a specific cutoff, we considered them 

to be the same TSS. Second, we compared the genes that we predicted to have asRNAs to 

those for which an earlier study also reports to have asRNAs. As shown in FigureA6, 

increasing the distance cutoff in the first metric had a minimal effect on the recovery rate 

when the cutoff was greater than 3nt, thus we chose 3nt as the cutoff for the validation. 

With this cutoff, our predicted asRNAs recovers 8%-50% of those reported by 

Dornenburg et al. (Dornenburg et al. 2010), Raghavan et al. (Raghavan et al. 2012), 

Salgado et al. (Salgado et al. 2013), and Lybecker et al. (Lybecker et al. 2014), who 

identified a smaller number of asRNAs than we did (Table 3.1). Furthermore, 43% of our 

predicted asRNAs match those reported by Thomason and colleagues (Thomason et al. 

2015), who identified far more asRNAs than we did (Table 3.1). By the second metric, 

41%, 42%, 52%, 71% and 91% of the genes that we predicted to have asRNAs also have 

asRNAs reported by Salgado et al. (Salgado et al. 2013), Lybecker et al. (Lybecker et al. 

2014), Dornenburg et al. (Dornenburg et al. 2010), Raghavan et al. (Raghavan et al. 

2012), and Thomason et al. (Thomason et al. 2015), respectively. Thus, although 

Thomason and colleagues have noted that there were very limited (4%-33%) overlaps 

between the previously reported asRNAs (Thomason et al. 2015), our predicted asRNAs 

had a rather high matching rate with these earlier reports. As an  example, Figure A7 

shows that our three predicted antisense TSSs for the intS and yfdGHI operons match 

with those reported by Thomason et al. (Thomason et al. 2015) and Salgado et al. (Gama-

Castro et al. 2011). However, note that Thomason et al. (Thomason et al. 2015) identified 
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a total of eight TSSs, and the other five were not seen in our samples or the other studies. 

On the other hand, as shown in Figure A7, although we predicted asRNAs for the sulA 

gene may overlay with those reported by Thomason et al. (Thomason et al. 2015) and 

Dornenburg et al. (Dornenburg et al. 2010), they had quite different TSSs. These results 

indicate that our predicted asRNAs are more likely to be genuine, and the number of 

these putative asRNAs could be a good estimate of asRNAs in the E. coli K12 genome.  

3.2.5 Transcriptional Modes Defined by Relative Levels of Antisense and Sense 
Transcription Are Dependent on Culture Conditions 

To investigate the possible effect of an asRNA on the expression of its cognate gene, we 

analyzed the relationship between mRNA and asRNA levels for genes. To avoid the effects 

of possible overlapping transcription between divergent or convergent genes on measuring 

antisense transcription levels, we only considered for this analysis the subset of adjacent 

genes with the same orientation (2,330 genes) in the E. coli K12 genome (dataset DS3B in 

Appendix B). We found that sense and antisense transcription levels were independent in 

all the samples  

Antisense 
Dominant 

Sense 
Dominant 

A. B. 

Figure 3.4: Transcriptional modes of genes. 
(A) Distribution of log odds ratio of antisense and sense transcription levels (𝛾𝛾) in the 
samples. (B) Percentage of the genes in each transcriptional mode in the samples; the 
medians are shown along the x axis.  
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Table 3.2: Summary of the transcriptional modes of genes in the 20 samples. 
Sample	 		 Sense	

Dominant	
		 Antisense	

Dominant	
		 Silent	 		 Gene	with	

asRNA	
LB	0.5	 	 1876	 80.5%	 	 	41		 1.8%	 	 	413		 17.7%	 	 	157		 6.7%	
LB	1.0	 	 1980	 85.0%	 	 	92		 3.9%	 	 	258		 11.1%	 	 	326		 14.0%	
LB	3.0	 	 1870	 80.3%	 	 	47		 2.0%	 	 	413		 17.7%	 	 	118		 5.1%	
MOPS1h	 		 1867	 80.1%	 		 	59		 2.5%	 		 	404		 17.3%	 		 	180		 7.7%	
MOPS2h	 	 1936	 83.1%	 	 	75		 3.2%	 	 	319		 13.7%	 	 	216		 9.3%	
MOPS4h	 	 1978	 84.9%	 	 	111		 4.8%	 	 	241		 10.3%	 	 	330		 14.2%	
MOPS6h	 		 1670	 71.7%	 		 	54		 2.3%	 		 	606		 26.0%	 		 	117		 5.0%	
HS15min	 	 1959	 84.1%	 	 	193		 8.3%	 	 	178		 7.6%	 	 	568		 24.4%	
HS30min	 	 1820	 78.1%	 	 	240		 10.3%	 	 	270		 11.6%	 	 	506		 21.7%	
HS1h	 	 1899	 81.5%	 	 	317		 13.6%	 	 	114		 4.9%	 	 	805		 34.5%	
HS2h	 	 1927	 82.7%	 	 	274		 11.8%	 	 	129		 5.5%	 	 	698		 30.0%	
HS4h	 	 1963	 84.2%	 	 	238		 10.2%	 	 	129		 5.5%	 	 	667		 28.6%	
M-C1h	 		 1665	 71.5%	 		 	65		 2.8%	 		 	600		 25.8%	 		 	114		 4.9%	
M-C2h	 	 1586	 68.1%	 	 	116		 5.0%	 	 	628		 27.0%	 	 	179		 7.7%	
M-C4h	 	 714	 30.6%	 	 	21		 0.9%	 	 	1,595		 68.5%	 	 	27		 1.2%	
M-C6h	 		 752	 32.3%	 		 	16		 0.7%	 		 	1,562		 67.0%	 		 	19		 0.8%	
M-P1h	 	 2034	 87.3%	 	 	181		 7.8%	 	 	115		 4.9%	 	 	711		 30.5%	
M-P2h	 	 2035	 87.3%	 	 	141		 6.1%	 	 	154		 6.6%	 	 	524		 22.5%	
M-P4h	 	 1947	 83.6%	 	 	252		 10.8%	 	 	131		 5.6%	 	 	712		 30.6%	
M-P6h	 		 1997	 85.7%	 		 	88		 3.8%	 		 	245		 10.5%	 		 	309		 13.3%	

 

(Figure A8). Since an asRNA is likely to execute its functions by forming complementary 

duplexes with its sense transcript (Brantl 2007; Georg and Hess 2011; Lasa et al. 2012; 

Thomason and Storz 2010; Wade and Grainger 2014), we computed the logarithmic ratio 

of asRNA and mRNA levels for each gene in the subset, 𝛾𝛾, which measures the relative 

levels of antisense and sense transcription of the gene. Interestingly, as shown in 

Figure 3.4A, 𝛾𝛾 had a left-skewed and bell-shaped distribution in all the samples. This 

prompted us to divide the transcriptional activities of a gene into three possible distinct 

transcriptional modes according to the extent to which the mRNA and asRNA levels differ: 

sense-dominant mode (𝛾𝛾£0	 or	 asRNA=0),	 in	 which	 the	 gene	 has	 higher sense 
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transcription than antisense transcription; antisense-dominant mode (𝛾𝛾>0	or	mRNA=0), 

in which the gene has higher antisense transcription than sense transcription (Figure 3.4A); 

and silent, if the gene has neither the sense nor antisense transcription. As shown in 

Figure 3.4B and Table 3.2, there were more genes in the sense-dominant mode than in the 

antisense-dominant or silent modes in the samples with except for the samples taken at the 

prolonged carbon starvation phases (M-C4h and M-C6h, in which there were more genes 

in the silent mode. However, the proportions of genes in these modes changed dramatically 

at different growth phases/time points and culture conditions (Table 3.2). Interestingly, the 

number of genes in the antisense-dominant mode generally increased after the onsets of all 

the cultures, and then decreased at the end of the cultures after peaking at the second or the 

third sampling time-points (Table 3.2). These consistent patterns of dynamic antisense 

transcription activities suggest again that the resulting asRNAs may play a role in the 

bacterium’s adaptation of to environmental changes. 

(4.4%) 

(14%) 

(28%) 
(11%) 

(3%) 

(1%) 

(63%) 

(2.5%) 

(1.1%) 

(0.7%) 

(0.7%) (0.7%) 

(11%) 

(3.7%) 

A. B. 

Figure 3.5: Number and percentage of genes in different transcriptional modes. 
(A) Sense dominant mode and (B) antisense dominant mode shared by the second time-
point of the five culture conditions. 
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In order to understand the effects of culture conditions on the transcriptional 

modes that genes adopted, we compared genes’ transcriptional modes at the second time-

point of the five culture conditions (i.e. LB 1.0, HS30’, MOPS2h, M-C2h and M-P2h) 

when the cells were presumably in the steady states. As shown in Figure 3.5, 63% of 

genes in sense-dominant mode were shared by all the five samples, while only 4.4% of 

genes in the antisense-dominant mode were shared, indicating that genes in this mode 

were more likely to be dependent to culture conditions than those in the sense-dominant 

mode for adapting the respective transcriptional modes. GO term analyses on the shared 

and unique sense-dominant and antisense-dominant genes in these conditions (dataset 

DS3C in Appendix B) showed that housekeeping GO terms such as cell membrane, 

transport, ribosomal terms were enriched in the sense-dominant genes shared among the 

five culture conditions, whereas specific functional GO terms were enriched for genes 

that were uniquely in antisense-dominant or sense-dominant modes in specific 

conditions. For instance, sugar transport (GO:0051119, GO:0008643) and ATP binding 

(GO:0005524) were enriched in unique antisense-dominant genes in carbon starvation 

(M-C2h); metal binding (GO:0051536, GO:0051539, GO:0005506) and oxidoreductase 

(GO:0016491) were enriched in unique antisense-dominant genes in heat shock treatment  

 (HS30’); phosphorous metabolic process (GO:0006793), ion transport (GO:0006811, 

GO:0006820, GO:0015711) and organic phosphonate transport (GO:0015716) were 

enriched in unique sense-dominant genes in phosphorous starvation (M-P2h). These 

results again strongly suggest that asRNA may play an important role in the bacterium’s 

adaptation to different environments.  
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3.2.6 Genes Change Their Transcriptional Modes at Different Growth 
Phases/Time Points in a Culture Condition 

To determine whether and how a gene changed its transcriptional mode at 

different growth phases/time points in a culture condition, we counted the number of 

times that genes change their transcriptional modes between two adjacent sampling times 

in the five culture conditions (Figure A9). As shown in 3.6A, most genes (73%-81%) 

stayed in the same transcriptional mode at the sampling time points in all the cultures 

except M-C, especially those in the sense-dominant mode. However, many genes 

A. 

B. 

Figure 3.6: Transcriptional mode change abundance. A. Number and 
percentage of genes undergoing different numbers of transcriptional 
modes in each growth condition. B. Number of genes undergoing the 
single indicated transcriptional mode transitions in each culture 
condition. The value on each bar represents the percentage of genes 
with the transition under each condition. SD and AD stand for sense-
dominant and antisense-dominant, respectively. 
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Figure 3.7: Examples of transcriptional mode changes under heat shock stress. 
(A) The sulA gene changed from the antisense-dominant mode to the sense-dominant 
mode when the cells were transferred from LB to heat shock, and then from the sense-
dominant to the antisense-dominant mode during heat shock. Two asRNAs were 
identified and the dashed vertical lines, marked t1 and t2, indicate their predicted TSS. 
The activity of the t2 TSS increased in the later stages of heat shock compared with that 
of t1. (B) The gene uspF going from sense-dominant to antisense-dominant mode. Two 
identified asRNA TSSs are marked t3 and t4. In (A) and (B), the sense and antisense read 
coverages are colored in green and purple, respectively. (C) Western blot verification of 
the expression of the SulA protein under heat shock stress condition. (D) Western blot 
verification of the expression of the UspF protein under heat shock stress condition. In 
(C) and (D) GAPDH served as the standard control. 
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changed their transcriptional modes at different stages of the cultures, and some even 

changed their transcriptional modes multiple times during the sampling process (Table 

A4). Intriguingly, as summarized in Figure 3.6B, genes showed distinct patterns of 

transcriptional mode changes under different culture conditions. Specifically, the 

transition from the sense-dominant mode to the silent mode was most predominant under 

the carbon starvation and MOPS culture conditions, while the transition from the sense-

dominant mode to the antisense-dominant mode was most predominant under heat shock, 

and the transition from the silent mode to the sense-dominant mode was most 

predominant under the LB culture. To investigate the functional implication for such 

transcriptional mode transitions, we performed GO term enrichment analysis on genes 

that changed their transcriptional modes once under heat shock and phosphorous 

transport (GO:0006865) terms were enriched for the genes that transition from the 

antisense-dominant mode to the sense-dominant mode; and under phosphorous 

starvation, phosphate-binding loop (p-loop) motif containing genes were enriched for the 

genes with the same form of transitions. As an example, Figure 3.7 show how the sulA 

gene encoding the cell division inhibitor (George, Castellazzi, and Buttin 1975; Al 

Mamun et al. 2012) and the uspF gene encoding the universal stress response protein, 

changed their transcriptional modes at different stages of the heat shock culture. These 

results suggest that changes in the transcriptional modes  

of genes may play a role during the growth and adaptation of the bacterium under 

these culture conditions.  
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3.2.7 Protein Levels of Genes Are Stoichiometrically Affected by the Associated 
asRNAs 

To see the possible effects of asRNA transcription on the protein expression of 

the associated genes, we quantified the levels of detected proteins in terms of the number 

of peptides per hundred amino acids (NPPH). As shown in Figure A10A&B, genes 

generally had similar distribution of protein levels in all the 20 samples, nonetheless, 

genes in different transcriptional modes had quite different protein levels. Specifically, 

although protein levels of genes in the silent and antisense-dominant modes had 

similar distributions (adjusted p-value of 0.46), they were significantly differently 

different from that of the protein levels of genes in the sense-dominant mode (Figure 

A10C&D). We analyzed the relationship between protein levels and mRNA levels as 

well as asRNA levels of the genes in each sample. As shown in Table A5,the protein and 

mRNA levels in all the samples were strongly correlated with a spearman correlation 

coefficient (r) ranging from r=0.23 in M-C6h to r=0.63 in LB 0.5; and r=0.43	when 

the data were pooled from all the samples (Figure 3.8A). In contrast, the protein levels 

and asRNA levels were not correlated (r=0.033, Figure A11), suggesting that the effects 

of an asRNA on the expression of its cognate gene if any, are irrelevant to the absolute 

level of the asRNA in the cells. We next examined the relationships between protein 

levels and mRNA levels of genes in the sense-dominant and antisense-dominant 

transcriptional modes. Since some samples do not have enough data points for a reliable 

analysis (Table A6), we pooled the data from all the samples for this analysis. As 

expected, the protein levels and mRNA levels for sense-dominant genes were highly 

correlated (r=0.424,	p-value=2.2e-16), but this was not the case for antisense-dominant 

genes (r=0.086,	p-value=0.16) (Figure 3.8B). Since genes in the antisense-dominant 
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mode tended to have lower mRNA levels than did those in the sense-dominant mode, to 

eliminate possible effects of mRNA levels on the correlation between protein levels and 

mRNA levels for sense-dominant genes, we reexamined the relationship between protein 

levels and mRNA levels for the subset of sense-dominant genes whose mRNA levels 

were in the same range as those of antisense-dominant genes. As shown in Figure 3.8B, 

the correlation between the proteins levels and mRNA levels for this subset of sense-

dominant genes was 0.182 with a p-value of 2.2e-16, which was significantly higher 

than that for antisense-dominant genes. These results indicate that a higher asRNA level 

relative to the cognate mRNA level somehow disrupted the positive correlation between 

the protein levels and mRNA levels of genes.  

To further verify this conclusion, we monitored the protein expression levels of 

two select genes sulA and uspF in the samples using Western blots. As shown in 

Figure 3.7C, the SulA protein, a cell division inhibitor that plays a role in SOS responses 

(George et al. 1975; Al Mamun et al. 2012), showed a decrease in the expression in the 

two later time points under heat shock. While this phenomenon has been noted earlier 

(Vasil’eva and Makhova 2003), little is known about the mechanism of the expression 

reduction. As shown in Figure 3.7A, there were minimal changes in the mRNA levels of 

sulA (23.6±8.8TPM) at multiple time-points under heat shock, however, its antisense 

expression levels dramatically increased 4 hours after the onset of heat shock (from 
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11.5RPK to 333.7RPK), resulting a transition from the sense-dominant mode at the first two 

time-points to the antisense-dominant mode at the later time-points. Hence the antisense 

transcription may play an inhibitory role in the expression of the protein. Furthermore, it 

has been demonstrated that UspF, a universal stress response protein that promotes 

adhesion of cells at the expense of motility (Nachin, Nannmark, and Nyström 2005; 

Saveanu et al. 2002), is upregulated under a glucose limited condition (Raman et al. 

2005). As shown in  Figure 3.7D, UspF was also upregulated under heat shock. 

Interestingly, the mRNA level of uspF decreased from 23.9TPM in HS15’ to 11.60TPM in 

HS4h, while its antisense level increased from 83.9RPK to 290.1RPK, resulting in a 

transition from the sense-dominant mode in LB 1.0 and HS15’ to the antisense-dominant 

A. B. 

Figure 3.8: Relationship between the sense (mRNA) transcription levels and protein 
levels of genes. 
(A) Correlation for genes when all samples are pulled together. (B)  Correlation for 
genes in different transcriptional modes. Genes in the sense-dominant (SD) 
transcription modes are shown in blue, while genes in the antisense-dominant (AD) 
mode are shown in red. The 𝑆𝑆𝑆𝑆�  genes are a subset of sense-dominant genes whose 
mRNA levels were in the same range as those of antisense-dominant genes (vertical 
dotted borders). The Spearman correlation between the protein levels and mRNA 
levels for these three subsets of genes are shown in black (SD), blue (AD) and red 
(𝑆𝑆𝑆𝑆� ). The asymptotic t approximation p-values for these correlations are 2.2e-16, 
2.2e-16 and 0.1565 respectively. 
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mode in the later stages of heat shock (Figure 3.7B). Thus this antisense transcript 

appeared to enhance the protein expression. On the contrary, under the MOPS culture, 

both genes showed minimal changes in the mRNA and asRNA levels, and their protein 

levels did not change significantly (Figure A12). 

3.3 Discussions and Conclusions 

It has been reported that a highly varying portion (1%-93%) genes in various 

prokaryotes have antisense RNA (asRNA) transcription. It is not clear whether these 

differences are due to biological or technical variations or both. In this study, we 

analyzed the transcriptomes and proteomes in E. coli K12 at different growth phases/time 

points under five culture conditions using a strand-specific RNA-seq method and a 

quantitative mass spectrometry method. The resulting data allowed us to systematically 

analyze the pervasiveness and patterns of asRNA transcription during the course of cell 

growth and adaptation to different environments. In agreement with the early report 

(Selinger et al. 2000), we found that up to 93.5% of the annotated genes in the genome 

have reads mapped to their antisense strands (Table A3), however, some of them may be 

transcriptional noise. To identify authentic asRNAs, we invoked a rather rigorous 

criterion to call asRNAs in this study, and found that from 0.8% to 34.5% of the 

annotated genes had asRNA transcription depending on sampling time points and culture 

conditions (Table 3.2). We predicted a total of 1,629 asRNAs, which is more than the 

number of asRNAs reported by most earlier studies (Dornenburg et al. 2010; Gama-

Castro et al. 2011; Lybecker et al. 2014; Raghavan et al. 2012), but much smaller than the 

number reported by Thomason and colleagues (Thomason et al. 2015). Thus, some 

earlier reports may have overestimated the prevalence of antisense transcription in terms 
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of the number of genes having antisense transcription. Moreover, our results indicate that 

antisense transcription in E. coli K12 is highly variable and dynamic dependent on 

different time points of growth and adaptation and culture conditions. Thus, the earlier 

different reports regarding the pervasiveness of asRNA transcription may be due partially 

to identifying noise antisense transcripts as asRNAs and to different sampling time points 

and experimental conditions.  

Our predicted asRNAs were all repetitively seen in at least three samples, and 

majority of them were reutilized under different culture conditions, and hence are likely 

to be authentic asRNAs because it is highly unlikely that the same transcriptional noise 

can repeat itself exactly in many different conditions. Furthermore, the high overlap of 

our predicted asRNA with the earlier reported asRNAs further supports the authenticity 

of our predicted asRNAs. Our findings of the high dependency of the transcription of the 

predicted asRNAs on the environmental changes, strongly indicate that these asRNAs 

may have important biological functions.  

We classified the transcriptional events of a gene in three possible modes 

according to its relative asRNA level to the mRNA level. The proportions of genes in 

these modes were highly variable, depending on the growth phases/time points and 

culture conditions, and many genes changed their transcriptional modes at the different 

time-points under specific culture conditions. The transcriptional modes that a gene 

adopted at different time points and culture conditions can be well explained by the 

known functions of the gene. All these results suggest that asRNAs may play a crucial 

role during the bacterium’s growth and adaptation to environmental changes.  
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It has been shown that asRNAs can either down- or up-regulate the expression of 

the cognate genes (Georg and Hess 2011; Thomason and Storz 2010) that involved in 

important processes such as DNA replication, stress responses and iron transport (Brantl 

2007). Our results support these earlier observations as we found that for some genes 

such as sulA (Figure 3.7A), relatively elevated antisense transcription was accompanied 

with decreased expression of the protein, while for some other genes such as uspF, 

relatively elevated antisense transcription was concomitant with increased expression of 

the protein (Figure 3.7B). Moreover, our finding that the correlation between protein 

levels and mRNA levels for genes in the antisense-dominant mode disappeared suggests 

that asRNAs may participate in gene expressional regulation. Several mechanisms have 

been proposed to explain how asRNA can affect gene expression, including 

transcriptional interference, alteration of mRNA stability, and modulation of translation 

(Brantl 2007; Georg and Hess 2011; Lasa et al. 2012; Lavorgna et al. 2004; Thomason 

and Storz 2010). Although the detailed molecular mechanisms remain to be elucidated, 

our results are in excellent agreement with the threshold linear response model for the 

stoichiometric interaction between asRNAs and cognate mRNAs (Legewie et al. 2008; 

Levine et al. 2007). According to this model, the formation of a duplex between an 

mRNA and its cognate asRNA will either decrease or increase the transcription, 

translation or stability of the mRNA, therefore an increase in the relative level of an 

asRNA disrupts otherwise strong correlation between the protein and mRNA levels. This 

model also is consistent with our finding that the lengths of asRNAs are irrelevant to their 

functions, because only a short asRNA is need to exert its function regardless of the 

length of the gene. 



 46 

3.4 Methods 

3.4.1 Bacteria Culture and Sample Collections 

A frozen stock of Escherichia coli K12 strain MG1655 was thawed, inoculated in 

LB medium in a test tube by 1:100 dilution and cultured overnight at 37°C and 250 rpm. 

The cells were then transferred to fresh LB medium in a flask by 1:100 dilutions, and 

cultured at 37°C and 250 rpm. When the cells grew to an optical density at 600 nm 

(OD600) of 1.0, they were spun down at 3,200g for 25 min. For the minimal medium 

MOPS culture (MOPS), the cell pellets were resuspended in the same volume of MOPS 

medium (100ml of 10X MOPS mixture, 880ml of sterile H2O, 10ml (0.132M) KH2PO4 

and 10ml of 20% glucose, Teknova, Hollister, CA). For heat shock treatment (HS), the 

cell pellets were resuspended in the same volume of MOPS medium, and incubated at 

48°C and 250 rpm. For phosphorus-starvation treatment (M-P), the cell pellets were 

resuspended in the MOPS medium without KH2PO4. For carbon-starvation treatment (M-

C), the cell pellets were resuspended in the MOPS medium without glucose. Each culture 

was done in three replicates in parallel, and an equal volume of cells was collected from 

each replicate to minimize experimental variations during sampling. Three milliliters of 

such pooled cell suspension were collected in a test tube containing 1.5ml RNA Later 

(Invitrogen) immediately after the cell pellets were resuspended in the indicated medium 

(0 min) and at the indicated time points thereafter (HS: 15min, 30min, 1h, 2hrs and 4hrs; 

MOPS, M-C and M-P: 1hr, 2hrs, 4hrs, 6hrs; M-C: 1hr, 2hrs, 4hrs, 6hrs). For the LB 

culture, samples were collected when the cell suspension OD600 reached to 0.5, 1.0 and 3. 

Cells were spun down at 6,000g for 8 mins (-4°C), and the pellets were resuspended in 

1.5 ml of RNAlater. The samples were stored at -80°C until use.  
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For proteome and immunoblotting analysis, the collected cells were washed twice 

in the same volume of 0.9% NaCl by centrifugation at 6,000g for 8 min (-4°C), and the 

pellet was suspended in 1 ml of protein extraction buffer (100mM TrisCl, 500mM NaCl, 

1mM sodium EDTA, 2mM DTT and 0.1% TX 100, protease inhibitor cocktail (Roch, 1 

tablet in 50ml) PH 7.4). Cells were disrupted by sonication in an ice bath at 4% power, 

10% pulse for 10 min, followed by centrifugation at 12,000g for 30min. The supernatant 

was quantified for protein levels using the Bradford method and stored at -80°C until use. 

Most cultures were done at least twice (two biological replicates).  

3.4.2 Isolation and Enrichment of mRNA 

Total RNA was isolated from the cells using RiboPureTM -Bacteria Kit (Ambion) 

following the manufacturer’s instructions. Once isolated, ~10µg total RNA was treated 

with 8 units DNase (Invitrogen) twice to remove genomic DNA, and the complete 

removal of DNA was confirmed by 35 cycles PCR amplification of a 196 bp fragment of 

the crp gene (5’-primer:AGCATATTTCGGCAATCCAG; 3’-

primer:TACAGCGTTTCCGCTTTTTC). rRNAs were depleted from the total RNA 

using a MICROBExpress kit (Ambion) to enrich mRNAs. 

3.4.3 Construction of Directional RNA-seq Libraries 

In our earlier experiments, sequencing was done on an Illumina GAII platform at 

the sequencing core facility of the University of North Carolina at Chapel Hill, and the 

directional RNA-seq libraries were constructed using Illumina Small RNA Sample Prep 

Kit following the vendor’s instruction with some modifications. Briefly, after the purified 

mRNA was fragmented using a RNA fragmentation kit (Ambion), the fragmented RNA 

was treated with Antarctic phosphatase (NEB) to remove the 5’-tri-phosphate groups of 
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RNAs with an intact 5’-end. A mono-phosphate group was then added back to the 5’-end 

of RNAs by polynucleotide kinase (PNK, NEB) in the presence of 10mM ATP. The v1.5 

sRNA 3’ Adaptor (5'/5rApp/ ATCTCGTATGCCGTCTTCTGCTTG /3ddC/) was ligated 

to the 3’-end of fragmented RNAs using truncated T4 ligase 2 (NEB), and the SRA 5’ 

RNA adaptor (5'GUUCAGAGUUCUACAGUCCGACGAUC) was ligated to the 5’-end 

of fragmented RNAs using T4 ligase. To preserve short inserts from small RNAs we 

omitted the size selection step after PCR application of the inserted RNA fragments. For 

our later experiments, sequencing was done on an Illumina HiSeq 2000 platform at David 

H. Murdock Research Institute of the North Carolina Research Campus (Kannapolis, 

NC), and we constructed the directional RNA-seq libraries using Illumina’s TruSeq 

Small RNA Sample Prep Kit, so that multiplex sequencing can be achieved by using the 

barcoded PCR primers. Briefly, after similar treatments as described above, the 5’ 

Adapter (RA5: 5’ GUUCAGAGUUCUACAGUCCGACGAUC), and 3’ Adapter (RA3: 

5’ TGGAATTCTCGGGTGCCAAGG) were ligated to 5’- and 3’-end of fragmented 

RNAs, respectively. Reverse transcription-PCR (RT-PCR) was performed using 

SuperScript II Reverse Transcriptase Kit (Invitrogen) using the SRA RT primer, followed 

by 16 cycles of PCR amplification. Again, the size selection was omitted on PCR 

products to preserve short inserts from possible small RNAs. Single-end sequencing on 

the Illumina GA II platform was done with 76 cycles, while that on the HiSeq 2000 

platform was done with 100 cycles. Libraries for some samples (M-C1h and M-C2h) 

were prepared by the two methods and sequenced on the two different platforms.  
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3.4.4 Reads Preprocessing, Mapping and Transcript Assembling 

The genome sequence of E. coli K12 substr. MG1655 (NC_000913.2) was 

downloaded from NCBI. The gene annotation file and the experimentally verified 

operons in the bacterium were downloaded from RegulonDB (version 8.6) (Salgado et al. 

2013) (http://regulondb.ccg.unam.mx/). A total of 4,567 annotated genes (also including 

pseudo genes) are included in this analysis. As the RNA-seq reads were not size-selected 

during the library construction to capture short RNAs, we trimmed the 3’ adapters 

attached to some short insertions using Trimmomatic (Bolger, Lohse, and Usadel 2014) 

with standard parameters (LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 

MINLEN:35). The trimmed reads were mapped to the E. coli K12 genome using Bowtie 

2.0 (Langmead and Salzberg 2012) with --very-sensitive parameter. Only uniquely 

mapped reads were used for further analysis.  

We predicted full length asRNAs in two steps. First, for each sample we stitched 

overlapping antisense reads for a tandem string of ORFs to form the longest antisense 

transcripts in the sample. Second, if the stitched antisense transcripts from a minimum 

number (3) of samples have TSSs within a 10bp window and a minimum expression level 

threshold (5 raw read counts) in all the samples, we stitched all the overlapping antisense 

transcripts to from a predicted asRNA. Raw expression levels were calculated using the 

Bioconductor package (Lawrence et al. 2013) in R (R Core Team 2015). Number of reads 

mapped to the sense strand of a gene was normalized in TPM (total reads per million) (Li 

et al. 2010), and number of reads mapped to the antisense strand was normalized by the 

length of assembled antisense transcript. The ratio of antisense to sense for each gene, 𝛾𝛾, 

is calculated as the log2(normalized asRNA level/normalized mRNA level). In addition, 
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we used DAVID 6.7 (Huang, Sherman, and Lempicki 2009a, 2009b) to analyze 

functional enrichment for groups of genes. 

3.4.5 UPLC and Tandem Mass Spectrometry Analysis 

Fifty µg of total protein from each sample were separated on 10% Bis-Tris 

NuPAGE gels (Invitrogen, Carlsbad, CA, USA) with 6X sample buffer containing 

300mM Tris-HCl, 0.01% (w/v) bromophenol blue, 15% (v/v) glycerol, 6% (w/v) SDS 

and 1% (v/v) β-mercaptoethanol after denaturation at 95°C for 5 minutes. Gels were 

stained with the GelCode® Blue stain reagent (Thermo Scientific, Rockford, IL, USA) 

after fixation using 50% methanol (v/v) with 7% acetic acid (v/v) for 5 min. After 

destaining with water, each gel lane was excised into twenty slices which were put into 

in-gel tryptic digestion and peptide extraction according to the method reported 

previously (Lee et al. 2013). The dried residues were resuspended in 25µL of 10% ACN 

(v/v) with 3% formic acid (v/v) for LC-MS/MS analysis. 

The LC-MS/MS system used consisted of an LTQ/Orbitrap-XL mass 

spectrometer (Thermo Scientific, Rockford, IL, USA) equipped with Nanoacquity UPLC 

system (Waters, Milford, MA, USA). Peptides were separated on a reversed phase 

analytical column (Nanoacquity BEH C18, 1.7µm, 150mm, Waters, Milford, MA, USA) 

combined with trap column (Nanoacquity, Waters, Milford, MA, USA). Good 

chromatographic separation was observed with an 80 min linear gradient consisting of 

mobile phases solvent A (0.1% formic acid in water) and solvent B (0.1% formic acid in 

ACN) where the gradient was from 5% B at 0 min to 40% B at 65 min at 0.35µL/min of 

flow rate. MS spectra were acquired by data dependent scans consisting of MS/MS scans 
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of the eight most intense ions from the full MS scan with dynamic exclusion of 30 

seconds. 

3.4.6 Protein Database Search and Data Compiling 

The Escherichia coli str. K12 substr. MG1655 proteome file was downloaded 

from NCBI, and was used as the database to identify proteins using the SEQUEST 

algorithm (SRF v.5) in the Bioworks software v.3.3.1sp1. Search parameters were as 

follows: parent mass tolerance of 10 ppm, fragment mass tolerance of 0.5Da 

(monoisotopic), variable modification on methionine of 16 Da (oxidation) and maximum 

missed cleavage of two sites assuming the digestion enzyme trypsin. Search results were 

compiled using the Scaffold software (v3.6.3, Proteome Software, Portland, OR, USA) 

which provided spectral counts for data comparison under the following filter criteria: 

protein identifications were made at 95% peptide probability and 99% protein probability 

with at least two identified peptides. Shared and partial-tryptic peptides were excluded 

from spectral counts. Protein probability and redundancy were assigned by the Protein 

Prophet algorithm. Proteins that contained similar peptides, which could not be 

differentiated based on MS/MS spectra, were grouped into primarily assigned proteins. 

Spectral counts from duplicated analyses were compared using the Power Law Global 

Error Model (PLGEM) in order to identify the significance of the protein changes 

(Pavelka et al. 2004). Proteins are quantified by the number of peptides per hundred 

amino acids identified for the protein: NPPH=100n/L, where n is the number of identified 

peptides of the protein, and L the length of the protein. 
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3.4.7 Immunoblotting Analysis 

Twenty µg protein from each sample were separated by 8% sodium dodecyl sulfate 

(SDS)-polyacrylamide gel (SDS-PAGE) and transferred to nitrocellulose membranes. 

The membrane was blocked in 7% fat-free dry milk in TBS containing 0.2% Tween-20, 

and probed with antibodies against interest proteins. The antibodies used in this study 

included rabbit anti-Escherichia coli antibodies for UspF (Mybiosource, San Diego, CA, 

USA), SulA (Mybiosource, San Diego, CA, USA) and GAPDH (abcam, Cambridge, 

MA, USA). The GAPDH protein is known to be stably expressed under different 

conditions (Wu et al. 2012) and was used as the control for the western blot experiments. 

These primary antibodies were applied to the membranes in a dilution of 1:2000. 

Following extensively washing, the membranes were incubated with a HRP-labeled 

secondary antibody. The blots were then developed using the ECL western blotting 

substrate (Thermo scientific, Rockford, IL, USA). The levels of protein expression were 

semi-quantified by optical densitometry using Image J Software version 1.46. The ratio 

between the net intensity of each sample to that of the GAPDH internal control was 

calculated and served as an index of relative expression of an interest protein. 



 

 
 
 

CHAPTER 4: CONCLUSIONS 
 

In this dissertation, we aimed to use the genomics, transcriptomics and proteomics 

data to gain a better understanding of genome-wide gene regulation, transcription and 

annotation in prokaryotes and specifically in E. coli K12. Our results presented in Chapters 

1~3 indicate that we have largely achieved the goals.   

In chapter 1, we presented PorthoMCL, a fast tool for finding orthologous genes 

among a very large number of genomes. PorthoMCL can be run on a single machine or in 

parallel on computer clusters. We have demonstrated PorthoMCL’s capability not only by 

showing it’s faster than current orthology finding tools, but also by identifying orthologs 

in 2,758 prokaryotic genomes. PorthoMCL will facilitate comparative genomics analysis 

with increasing number of available genomes thanks to the rapidly evolving sequencing 

technologies. 

In Chapter 2, we analyzed alternative operon utilizations in E. coli K12 at multiple 

time-points in three different stress conditions based on TUs assembled using RockHopper. 

In addition, we analyzed dynamic transcription of TUs in the samples by adopting a model 

that has been successfully used in modeling the expression levels alternate splicing 

isoforms in eukaryotes. We found that this model can accurately reflect the extent of 

dynamic transcriptions. Our results show that 22% of operons have alternative TU 

transcriptions, and up to 36% of TUs display dynamic transcription in response to 

environmental changes for adaptation. 
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In Chapter 3, we determined the transcriptomes and proteomes of E. coli K12 at 

multiple time points in five culture conditions using strand-specific RNA-seq techniques 

and a quantitative mass spectrometry method and identified a total of 1,629 asRNAs, 

which were generally short, largely condition dependent, and overlapped with the 

previously published asRNAs. We found that the proportions of the genes which had 

asRNAs were highly variable (0.8%-34.6%) based on the time points and culture 

conditions. We classified the transcriptional activities of the genes in three distinct 

transcriptional modes according to their relative levels of asRNA to mRNA: sense-

dominant, antisense-dominant and silent modes. We found that many (19%-27%) of 

genes changed their transcriptional modes at different time points of the culture 

conditions, and that such transitions can be described in a well-defined manner. 

Intriguingly, the protein levels and mRNA levels of genes in the sense-dominant mode 

were strongly correlated, but the same was not true for genes the antisense-dominant 

mode. These observations were further validated by western blot analyses on candidate 

genes, where an increase in asRNA transcription diminished gene expression in one case 

and enhanced it in another. These results suggest that asRNAs may directly or indirectly 

regulate translation by forming duplexes with cognate mRNAs. Thus, asRNAs may play 

an important role in the bacterium’s responses to environmental changes during growth 

and adaption to different environments. 

To summarize, we developed a fast and scalable tool predicting orthologs in a 

large number of prokaryotic genomes. Additionally, we proposed to use a eukaryotic 

alternative splicing isoforms model to investigate alternative and dynamic operon 

transcription in E. Coli K12. This model yields a better understanding of the patterns of 
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transcriptional changes in bacteria in response to environmental changes. Furthermore, 

we elucidated yet another aspect of complex gene regulation in E. coli K12, antisense 

transcription, and explored the effects and roles of asRNAs in bacteria’s response to 

environmental changes.  
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APPENDIX A: SUPPLEMENTARY FIGURES AND TABLES FOR CHAPTER FOUR 
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Figure A1: Cell growth and protein concentration at the indicated time points under the 
five culture conditions. 
(A) Average optical density of the cells measured at 600nm. (B) Average protein 
concentration of the cells. (C) Average protein concentration normalized by the OD600 
values of the samples. 
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Figure A2: Correlation of mRNA levels of genes between any two replicates for the 
samples. 
Each dot represents a gene. The expression levels are in TPM values. The Pearson 
correlation (𝜌𝜌) of the expression levels is shown in each plot.  A. Correlation of 
expression levels for M-C1h between GAII reads and HiSeq reads. B. Correlation of 
expression levels for M-C2h between two technical replicates sequenced on HiSeq 2000 
platform, HiSeq reads and HiSeq* reads. C. Correlation of expression levels for M-C2h 
between two biological replicates sequenced on GAII reads and HiSeq reads.  D. 
Correlation of expression levels for M-C2h between GAII reads and HiSeq* reads. E. 
Correlation of expression levels for M-C2h between two biological replicates sequenced 
by paired-ends HiSeq and HiSeq. F. Correlation of expression levels for M-C2h between 
two biological replicates sequenced by paired-ends HiSeq reads and GAII reads. G. 
Correlation of expression levels for LB 1.0 between two biological replicates. H and I. 
Correlation of expression levels for HS 15’ between three biological replicates. J and K. 
Correlation of expression levels for HS1h between three biological replicates. L and M. 
Correlation of expression levels for M-P2h between three biological replicates. N, O and 
P. Correlation of expression levels for M-P4h between four biological replicates.  
 



 68 

A B 

C 

Figure A3: Preliminary proteomics analysis. 
(A) Correlation of the number of peptides detected for proteins between two technical 
replicates for HS1h, HS4h and LB1.0. (B) Correlation of the number of peptides detected 
for proteins by two biological replicates for LB1.0. Each dot in (A) and (B) represents a 
protein. (C) Number of proteins detected in each samples taken at the indicated time 
points under the five culture conditions. 
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Figure A4: An example of predicted antisense TSSs. 
The asRNAs initiating at t1 and t2 overlap with two genes, mcrB and symE, whereas the 
asRNA initiating at t3 (annotated as symR) only overlaps one gene.	t3 is observed in LB, 
MOPS and HS growth conditions, but t1 and t2 only occurs under heat shock growth 
condition.	Expression levels are shown in five growth condition. Mapped reads to the sense 
strand is shown in green, while reads mapped to antisense is shown in purple. Predicted 
antisense TSS are marked by vertical lines. Genes of the same color are in the same 
annotated operon.  
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Figure A5: Expression levels of the gene sulA in five growth condition. 
Mapped reads to the sense strand is shown in green, while reads mapped to antisense is 
shown in purple. Predicted antisense TSS are marked by vertical lines. Our predicted 
antisense TSSs are marked in red marked t1 and t2, blue arrows marked s1 and s2 were 
from Thomason and Storz 2014, and black arrows marked d1, d2 and d3 were from 
Dornenburg 2010. Both t1 and t2 were used under all the culture conditions, but t2 is more 
preferred under heat shock, while t1 is more preferred under the other conditions.  
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FigureA6: Recovery rate of antisense TSSs for each dataset by our 
predicted ones as a function of the cutoff of distance between the 
two TSSs.  
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Figure A7: Expression levels of region of genome with predicted asRNA in five growth 
condition. 
Mapped reads to the sense strand is shown in green, while reads mapped to antisense is shown in 
purple. Predicted antisense TSS are marked by vertical lines. Genes of the same color are in the 
same annotated operon. Our prediction (red: marked t1, t2 and t3) versus other studies; Thomason 
and Storz 2014 in blue (marked s1 through s9), and Salgado 2010 in black (marked r1); t1, s2 
mark the same TSS; t2, s3 and r1 mark the same TSSs; t3, s5 and s6 also mark the same antisense 
TSS. 
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Figure A8: Relationship between mRNA levels and asRNA levels. Spearman 
correlation coefficient (r) and the p-value is plotted on the graph. 
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Figure A9: The probability and number of genes that change their transcriptional 
modes between two adjacent sampling time points in each growth condition. 
In each heat map y-axis labels are the starting mode, and x-axis labels are the ending 
modes. SD, AD and SL stand for sense-dominant, antisense-dominant and silent 
transcriptional modes, respectively.  
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Figure A10: Protein level distributions 
(A)	Distribution of protein expression levels in NPPH (number of peptides per hundred 
amino acids) for each time point. (accepted ANOVA null hypothesis p-value=.029>0.01). 
(B) Tukey honest significant difference of pairwise comparisons shows that all samples 
are similarly distributed. (C) Distribution of protein expression levels (NPPH) for genes 
in different transcriptional modes. Data are pooled from all the samples. (rejected 
ANOVA null hypothesis p-value=2.2e-16<0.01), and (D) Tukey honest significant 
difference of pairwise comparisons shows that the distribution for antisense-dominant 
and silent transcriptional modes are similar, but they are differently from that for sense-
dominant mode.  
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Figure A11: Relationship between antisense (asRNA) transcription levels and 
protein levels. 
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Figure A12: Genes uspF and sulA under MOPS culture condition. 
The mRNA and asRNA stayed the same for sulA  (A) and uspF (B). (C) The protein level for 
both genes stayed the same in MOPS culture. 
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Table A1: Summary of mapping results of reads for each library and their replicates. 
Paired-end RNA-seq reads (HiSeq PE) are counted as two. The replicates of the same 
sampling time point are differentiated by *s. The samples marked with ª are published 
with GEO accession GSE48151, while others are published with GEO accession 
GSE64021.  

Sample Platform   Total Reads   Uniquely mapped reads   Multiple mapped reads   Reads failed to map 

LB 0.5 HiSeq   34,383,742    3,115,619  9.06%   21,868,656  63.60%   9,399,467  27.34% 

LB 1.0 HiSeq    43,445,694     4,687,978  10.79%    27,178,069  62.56%    11,579,647  26.65% 
HiSeq ª    30,342,253     12,957,049  42.70%    15,358,653  50.62%    2,026,551  6.68% 

LB 3.0 HiSeq    38,390,801     3,301,474  8.60%    32,783,268  85.39%    2,306,059  6.01% 
MOPS1h HiSeq    27,484,298     5,037,313  18.33%    21,470,283  78.12%    976,702  3.55% 
MOPS2h HiSeq   33,953,509    5,692,231  16.76%   26,916,847  79.28%   1,344,431  3.96% 
MOPS4h HiSeq   31,689,012    6,390,362  20.17%   24,089,233  76.02%   1,209,417  3.82% 
MOPS6h HiSeq    42,082,261     3,207,604  7.62%    36,862,412  87.60%    2,012,245  4.78% 

HS15min 
HiSeq    38,931,920     6,515,642  16.74%    30,683,557  78.81%    1,732,721  4.45% 
HiSeq ª   12,893,957    4,064,877  31.53%   7,772,036  60.28%   1,057,044  8.20% 
HiSeq* ª    13,519,002     4,244,490  31.40%    8,126,717  60.11%    1,147,795  8.49% 

HS30min 
HiSeq   33,843,406    5,191,738  15.34%   26,361,107  77.89%   2,290,561  6.77% 
HiSeq ª   12,259,543    4,764,392  38.86%   6,883,572  56.15%   611,579  4.99% 
HiSeq* ª   12,072,961    4,663,825  38.63%   6,750,012  55.91%   659,124  5.46% 

HS1h 
HiSeq    42,655,417     6,576,614  15.42%    34,329,913  80.48%    1,748,890  4.10% 
HiSeq ª   9,862,082    3,153,208  31.97%   6,161,768  62.48%   547,106  5.55% 
HiSeq* ª    9,900,249     2,837,305  28.66%    5,344,090  53.98%    1,718,854  17.36% 

HS2h HiSeq   38,110,690    4,930,994  12.94%   31,576,875  82.86%   1,602,821  4.21% 
HS4h HiSeq   42,283,291    3,882,423  9.18%   36,292,249  85.83%   2,108,619  4.99% 

M-C1h GAII    32,860,275     2,121,263  6.46%    28,431,917  86.52%    2,307,095  7.02% 
HiSeq PE    52,569,894     1,866,957  3.55%    23,453,919  44.61%    27,249,018  51.83% 

M-C2h 

GAII    34,227,127     2,911,138  8.51%    29,873,432  87.28%    1,442,557  4.21% 
HiSeq   20,626,282    2,565,836  12.44%   16,687,789  80.91%   1,372,657  6.65% 
HiSeq*   19,938,937    2,497,399  12.53%   16,199,627  81.25%   1,241,911  6.23% 
HiSeq PE    51,499,346     1,336,844  2.60%    23,517,300  45.67%    26,645,202  51.74% 

M-C4h HiSeq PE   48,347,366    1,336,794  2.76%   21,853,322  45.20%   25,157,250  52.03% 
M-C6h HiSeq PE    47,885,922     1,150,280  2.40%    22,027,709  46.00%    24,707,933  51.60% 
M-P1h HiSeq    25,761,215     9,573,378  37.16%    14,882,741  57.77%    1,305,096  5.07% 

M-P2h 
HiSeq    29,160,891     7,798,985  26.74%    20,118,173  68.99%    1,243,733  4.27% 
HiSeq ª   25,756,744    11,924,090  46.30%   12,810,332  49.74%   1,022,322  3.97% 
HiSeq* ª    30,991,286     14,243,021  45.96%    15,350,582  49.53%    1,397,683  4.51% 

M-P4h 

HiSeq    26,468,056     10,019,459  37.85%    14,854,915  56.12%    1,593,682  6.02% 
HiSeq ª   17,950,016    7,124,864  39.69%   9,692,405  54.00%   1,132,747  6.31% 
HiSeq* ª   19,726,630    7,771,208  39.39%   10,629,750  53.89%   1,325,672  6.72% 
HiSeq** ª    30,291,626     10,003,921  33.03%    18,734,784  61.85%    1,552,921  5.13% 

M-P6h HiSeq    23,830,918     4,725,480  19.83%    17,889,369  75.07%    1,216,069  5.10% 
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Table A2: Summary of expressed genes and genes with asRNA transcription in each 
sample. 
Sense coverage is the portion of the coding regions covered by reads. Sense depth is the 
average number of reads covering a nucleotide. Antisense coverage is the portion of the 
antisense strands of coding regions covered by reads. AS Depth indicates the average 
number of reads covering the transcribed regions. 

Sample   Expressed Genes   Sense 
Coverage   Sense 

Depth   Genes with reads 
mapped to AS strand   Antisense 

Coverage   AS 
Depth 

LB 0.5   4,289  93.91%  69.42%   49    3,036  66.48%  12.61%   3  

LB 1.0   4,379  95.88%  77.68%   91    3,448  75.50%  18.78%   4  

LB 3.0    4,280  93.72%   68.60%    66     2,800  61.31%   10.90%    3  

MOPS1h    4,317  94.53%   69.10%    78     3,127  68.47%   13.43%    3  

MOPS2h   4,368  95.64%  74.37%   100    3,334  73.00%  16.61%   3  

MOPS4h   4,418  96.74%  78.06%   110    3,570  78.17%  20.78%   3  

MOPS6h    4,149  90.85%   58.43%    79     2,543  55.68%   8.42%    2  

HS15min   4,432  97.04%  77.76%   119    3,791  83.01%  24.14%   4  

HS30min   4,497  98.47%  77.71%   87    4,080  89.34%  31.73%   2  

HS1h   4,487  98.25%  77.73%   100    4,003  87.65%  30.47%   4  

HS2h   4,426  96.91%  68.48%   96    3,715  81.34%  20.71%   5  

HS4h   4,497  98.47%  76.50%   58    3,945  86.38%  28.83%   4  
M-C1h    4,130  90.43%   59.93%    107     2,344  51.32%   7.67%    3  

M-C2h   4,130  90.43%  57.66%   189    2,500  54.74%  8.25%   4  

M-C4h   2,941  64.40%  20.43%   112    787  17.23%  1.44%   2  

M-C6h    2,953  64.66%   21.23%    92     797  17.45%   1.51%    2  

M-P1h    4,465  97.77%   85.56%    179     3,925  85.94%   33.72%    5  

M-P2h   4,419  96.76%  81.86%   151    3,752  82.15%  25.43%   5  

M-P4h   4,457  97.59%  81.10%   182    3,909  85.59%  29.70%   6  

M-P6h    4,374  95.77%   75.99%    102     3,440  75.32%   17.81%    4  
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Table A3: Distribution of the uniquely mapped nucleotides (nt) on the coding regions 
(sense and antisense) and intergenic regions. 

Sample   Total nt counts   Sense nt    Antisense nt   Intergenic nt 

LB 0.5   158,568,439    142,302,847  89.74%   1,408,627  0.89%   14,856,965  9.37% 

LB 1.0   333,543,506    293,455,221  87.98%   2,902,903  0.87%   37,185,382  11.15% 

LB 3.0    206,532,997     187,324,150  90.70%    1,243,750  0.60%    17,965,097  8.70% 

MOPS1h    249,619,397     225,407,534  90.30%    1,680,717  0.67%    22,531,146  9.03% 

MOPS2h   343,401,281    309,008,431  89.98%   2,005,533  0.58%   32,387,317  9.43% 

MOPS4h   398,865,535    358,481,753  89.88%   2,856,358  0.72%   37,527,424  9.41% 

MOPS6h    204,339,350     190,681,235  93.32%    872,050  0.43%    12,786,065  6.26% 

HS15min   436,263,306    385,908,445  88.46%   3,857,057  0.88%   46,497,804  10.66% 

HS30min   321,685,797    282,336,463  87.77%   3,139,685  0.98%   36,209,649  11.26% 

HS1h   374,378,661    324,391,262  86.65%   5,280,883  1.41%   44,706,516  11.94% 

HS2h   313,464,390    273,685,966  87.31%   4,615,799  1.47%   35,162,625  11.22% 

HS4h   217,783,942    182,981,872  84.02%   4,387,387  2.01%   30,414,683  13.97% 
M-C1h    300,393,399     265,757,262  88.47%    949,627  0.32%    33,686,510  11.21% 

M-C2h   503,350,565    452,392,612  89.88%   1,300,119  0.26%   49,657,834  9.87% 

M-C4h   98,718,814    94,853,901  96.08%   146,095  0.15%   3,718,818  3.77% 

M-C6h    84,333,157     81,451,011  96.58%    137,509  0.16%    2,744,637  3.25% 

M-P1h    710,099,396     635,528,110  89.50%    6,769,135  0.95%    67,802,151  9.55% 

M-P2h   563,571,190    514,083,619  91.22%   5,658,292  1.00%   43,829,279  7.78% 

M-P4h   663,534,418    614,435,857  92.60%   6,940,523  1.05%   42,158,038  6.35% 

M-P6h    349,998,125     323,200,256  92.34%    2,892,909  0.83%    23,904,960  6.83% 
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Table A4: Summary of changes of transcriptional mode of genes under each growth 
condition. 
Most two dominant transitions are shaded for each condition. HS and M-P show similar 
patterns. Also, M-C, MOPS show a similar pattern. 
Mode	Changes 	 LB 	 MOPS 	 HS 	 M-C 	 M-P 
Sense	Dominant	(SX)  	1,697	 72.83%  	1,538	 66.01%  	1,578	 67.73%  	586	 25.15%  	1,781	 76.44% 
Antisense	Dominant	(AX)  	16	 0.69%  	18	 0.77%  	75	 3.22%  	5	 0.21%  	52	 2.23% 
Silent	(NO)  	188	 8.07%  	164	 7.04%  	54	 2.32%  	477	 20.47%  	63	 2.70% 
No	mode	change 	 	1,901	 81.59% 	 	1,720	 73.82% 	 	1,707	 73.26% 	 	1,068	 45.84% 	 	1,896	 81.37% 
SD	⇒⇒	AD  	45	 1.93%  	37	 1.59%  	219	 9.40%  	8	 0.34%  	111	 4.76% 
SD	⇒⇒	SL  	128	 5.49%  	341	 14.64%  	125	 5.36%  	1,032	 44.29%  	120	 5.15% 
AD	⇒⇒	SD  	10	 0.43%  	14	 0.60%  	85	 3.65%  	5	 0.21%  	87	 3.73% 
AD	⇒⇒	SL  	11	 0.47%  	26	 1.12%  	15	 0.64%  	50	 2.15%  	24	 1.03% 
SL	⇒⇒	SD  	195	 8.37%  	126	 5.41%  	76	 3.26%  	99	 4.25%  	43	 1.85% 
SL	⇒⇒	AD  	20	 0.86%  	21	 0.90%  	17	 0.73%  	24	 1.03%  	9	 0.39% 
One	mode	change 	 	409	 17.55% 	 	565	 24.25% 	 	537	 23.05% 	 	1,218	 52.27% 	 	394	 16.91% 
Multiple	mode	changes 	 	20	 0.86% 	 	45	 1.93% 	 	86	 3.69% 	 	44	 1.89% 	 	40	 1.72% 
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Table A5: Spearman correlation coefficient between protein levels and mRNA levels for 
genes for each sample. 

Sample 

  

No. of Genes Spearman Coef 
Correlation P-Value 

LB 0.5   920  0.63 7.27E-103 

LB 1.0   1,019  0.60 2.53E-99 

LB 3.0   867  0.55 7.22E-71 

MOPS1h    985  0.58 9.20E-91 

MOPS2h   981  0.54 3.13E-74 

MOPS4h   971  0.61 1.92E-98 

MOPS6h    932  0.46 2.40E-49 

HS15'    802  0.52 6.63E-56 

HS30'   764  0.45 2.60E-39 

HS1h   764  0.43 5.42E-35 

HS2h   694  0.42 9.03E-32 

HS4h    683  0.47 6.93E-39 

M-C1h    755  0.47 5.74E-43 

M-C2h   746  0.41 9.68E-32 

M-C4h   404  0.31 1.09E-10 

M-C6h    421  0.23 1.40E-06 

M-P1h   773  0.56 5.83E-66 

M-P2h   782  0.59 3.74E-73 

M-P4h   772  0.62 1.20E-81 

M-P6h    748  0.62 1.26E-79 
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Table A6: Spearman correlation of sense transcription (mRNA) and protein levels in 
every sample in the sense-dominant and antisense dominant transcriptional modes. 
`No. of Genes` column list the number of genes in each sample/mode with both protein 
and mRNA values. Rows with less than 10 genes are excluded from correlation 
coefficient analysis. Only heat shock growth condition has enough data points for 
analysis at every time point. 

Sample 

  

Sense Dominant Genes 

  

Antiense Dominant Genes 

No. of Genes 
Spearman 

Coef 
Correlation 

P-Value No. of Genes 
Spearman 

Coef 
Correlation 

P-Value 

LB 0.5   920  0.630 7.27E-103  0 - - 
LB 1.0   1,017  0.595 2.57E-98  2 - - 

LB 3.0   863  0.552 6.17E-70  4 - - 

MOPS1h    982  0.581 1.32E-89   3 - - 

MOPS2h   975  0.538 3.29E-74  6 - - 

MOPS4h   960  0.607 1.55E-97  11 -0.506 1.13E-01 
MOPS6h    926  0.454 3.33E-48   6 - - 

HS15'   780  0.514 6.53E-54  22 -0.199 3.74E-01 

HS30'   727  0.438 2.39E-35  37 0.319 5.40E-02 

HS1h   715  0.417 1.72E-31  49 0.120 4.12E-01 

HS2h   664  0.415 4.69E-29  30 0.061 7.49E-01 
HS4h   650  0.456 9.80E-35  33 0.351 4.49E-02 

M-C1h    748  0.470 2.40E-42   7 - - 

M-C2h   728  0.408 1.28E-30  18 -0.354 1.50E-01 

M-C4h   403  0.315 9.36E-11  1 - - 

M-C6h    421  0.233 1.40E-06   0 - - 

M-P1h   764  0.566 4.82E-66  9 - - 
M-P2h   772  0.584 1.09E-71  10 - - 

M-P4h   751  0.621 2.05E-81  21 0.173 4.54E-01 

M-P6h    746  0.615 6.69E-79   2 - - 
 

  



 

APPENDIX B: SUPPLEMENTARY DATASETS 
 
 

Supplementary datasets for this dissertation are as follows  

DS2: functional enrichment analysis for the TUs expressed in all TPCs. 

DS3A: List of detected asRNAs. 

DS3B: List of the genes used for proteomics study. 

DS3C: functional enrichment analysis. 

 

These datasets are accessible in http://ehsun.me/go/phd.  


