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ABSTRACT 

 

 

WENPENG FENG. Large-scale spatiotemporal modeling of urban growth with 

cyberinfrastructure: a surrogate-based approach. (Under the direction of Dr. Wenwu Tang) 

 

 

Spatiotemporal simulations can provide critical insights to understand the 

underlying mechanisms of complex geographic phenomena. Therefore, spatiotemporal 

simulations play a vitally important role in solving the global geographic problems such 

as habitats loss, climate change, and deforestation. Due to complex mechanisms and big 

spatial data, computational intensity greatly hinders the application of spatiotemporal 

simulations at large scale. Cyberinfrastructure has been recognized as a promising tool to 

tackle computational intensity in spatiotemporal simulations. However, a challenge lies in 

the accurate estimation of its computing performance, which may prevent an efficient 

utilization of cyberinfrastructure. This dissertation demonstrates a surrogate-based 

approach to appropriately estimate the computing performance of parallel spatiotemporal 

simulations within cyberinfrastructure environments. A generalized computational 

framework is developed to integrate surrogate-based models, spatiotemporal simulations, 

and cyberinfrastructure. I applied the computational framework to simulate urban growth 

in North Carolina as a case study. Results show that surrogate-based approaches 

accurately estimate the computing performance. Kriging has a better prediction 

performance than linear regression surrogate-based model in this study. With the support 
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of surrogate-based approaches, the computational framework substantially supports 

spatiotemporal simulations by efficiently handling computational intensity.  
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CHAPTER 1: INTRODUCTION 

 

 

1.1 Background  

Geographic information system (GIS) has been developed to acquire, manage, 

analyze, and visualize geographic data, exemplified by remote sensing and census data, 

to solve complex geographic problems such as deforestation and climate change 

(Goodchild, 1992; Clarke and Gaydos, 1998; Goodchild, 2001; Weber and Puissant, 2003; 

Goodchild, 2004). Taking advantage of GIS, more and more scholars in geographic 

information science (GIScience) have developed different types of spatiotemporal models, 

including statistics, optimization, and simulation to investigate complex geographic 

phenomena (Armstrong, 2000; Goodchild, 2003; Openshaw, 2004; Rindfuss et al., 2004; 

Turner et al., 2008). 

 Spatiotemporal simulation models have been developed to help researchers 

understand the underlying mechanisms of complex geographic phenomena such as urban 

growth, habitats loss, and sea-level rise (Gilbert and Troitzsch, 2005; Parker et al., 2008; 

O'Sullivan and Perry, 2013). Urban growth has received increasing attention from 

researchers in a series of scientific domains such as geography, public policy, urban 

planning, and ecology (Clarke and Gaydos, 1998; Waddell, 2002; Herold et al., 2003; 

Weber and Puissant, 2003; Pijanowski, 2014). Attributed to interactions among spatial 

and non-spatial factors and processes operating at different temporal and spatial scales, 

research on urban growth plays a critical role in solving global geographic problems such
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 as habitat loss, climate change, sea-level rise, and greenhouse gas emission (Foley et al., 

2005; Verburg et al., 2009). Recognized as a complex problem, urbanization substantially 

impacts social-ecological systems by decreasing and fragmentizing non-urban areas with 

a variety of land cover types (Batty, 1991; Batty and Xie, 1994; Batty et al., 1999).   

Spatiotemporal simulation models represent processes driving land use transitions 

(e.g., from open space to urban, or from agriculture to urban) of urban growth over time. 

Taking advantage of spatiotemporal simulation models, researchers can tap into spatial 

variables of interest and their interrelationships in their study regions. Furthermore, 

decision alternatives and their consequences can be represented, analyzed and visualized 

to support the decision making process of policy makers using what-if scenario analysis 

(O'Sullivan and Perry, 2013).   

 As a representative of spatiotemporal simulation models, agent-based modeling 

(ABM) has been increasingly recognized as an appropriate approach to simulate urban 

growth (Batty and Longley, 1994; Epstein and Axtell, 1996; Epstein, 1999; Batty et al., 

2012). Compared with other spatiotemporal simulation models, ABM is more suitable to 

investigate decision making processes at the individual level in a complex system. ABM 

allows to investigate impacts from individual behavior to the spatial patterns of land 

cover change at an aggregated level (Tang et al., 2011a; Tang et al., 2011b; Tang and 

Bennett, 2012; O'Sullivan, 2008). However, ABMs always require a large amount of data 

and computation, especially at a large spatial scale (e.g., state level urban growth 

simulations). This results in unaffordable computational costs (e.g. computer memory, 
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data storage, and computing speed) out of the reach of traditional desktop computers 

(Armstrong, 2000). 

In studies using spatiotemporal models to simulate urban growth at a large scale 

with fine resolution, the degree of complexity of such models can dramatically increase 

in multiple ways (Marurngsith, 2014). First, the number of individuals involved in urban 

growth (e.g. farmers and residents) can be very large. Second, spatial impacts from urban 

growth affect a large area. Third, underlying urban growth mechanisms and driving 

forces do not follow linear and constant trends; rather, they are dynamic and non-linear 

(Golledge and Stimson, 1997; Gahegan, 2003). Fourth, empirical data used to simulate 

urban growth are evolving to big data in terms of volume, variety, and velocity (Manyika 

et al., 2011; Zikopoulos and Eaton, 2011). For these reasons, tackling model complexity 

of urban growth simulations at large scale requires advanced computational capabilities. 

Consisting of high-performance and parallel computing, massive data handling, and 

virtual organization, cyberinfrastructure is a promising tool to address this bottleneck 

(NSF, 2007). Besides reduction in the computing time of large-scale urban growth 

simulations, cyberinfrastructure is capable of improving and validating the simulation 

results with computationally intensive methods (e.g. Monte Carlo tests). Also, better 

statistical analysis can be conducted based on handling large size or fine resolution 

empirical data. Furthermore, new theories and hypotheses related to urban growth can be 

discovered and tested, taking advantage of computational progress (Openshaw and 

Turton, 2005). 
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Despite these benefits, it is recognized that the expertise and steep learning curve 

associated with the use of high performance and parallel computing hinder its use and 

development for non-programmers (Parry and Bithell, 2012; Scheutz and Harris, 2012).  

Moreover, appropriate estimation of the computing performance of spatiotemporal 

simulations plays a critical role in the efficient utilization of cyberinfrastructure. However, 

it is extremely challenging to predict computing performance, since underlying 

mechanisms of spatiotemporal models are complex (Wang and Armstrong, 2009). 

Consequently, there exists a gap between computation methods and spatiotemporal 

simulations, which limits the use of cyberinfrastructure in studies of urban growth. The 

challenge thus lies in how to efficiently leverage the cyberinfrastructure to benefit the 

studies of urban growth.  

 A surrogate-based model is a black-box approach that simulates the relationship 

between model input and output in an approximate way (Forester et al., 2008). Surrogate-

based models have been widely applied in many scientific domains, such as engineering 

and computer science, to overcome computational challenge for high-fidelity simulations 

(Queipo et al., 2005; Forester et al., 2008; Kleijnen, 2009; Forrester and Keane, 2009). In 

order to fill the gap between computation methods and spatiotemporal simulations, I 

develop a surrogate-based computational framework to support the efficient utilization of 

cyberinfrastructure in spatiotemporal simulations.  

1.2 Research objectives  

The goal of this research is to investigate the (more) efficient utilization of 

cyberinfrastructure in a large-scale spatiotemporal simulation of urban growth using 
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surrogate-based approaches. I integrate surrogate-based modeling, spatiotemporal 

simulations, and cyberinfrastructure together to solve complex geographic problems. The 

surrogate-based modeling can help researchers without computing background to predict 

the computing performance. Given these estimated computing performance, researchers 

can better design their research and budget (time and funding) within cyberinfrastructure 

environments. In spatial analysis, arbitrary assumptions (such as homogeneous spatial 

characteristics) are usually used to reduce computational and data burden. With the 

support of cyberinfrastructure, these assumptions can be greatly removed by leveraging 

high performance computing and big data handling capabilities. Furthermore, novel 

insights related to urban growth can be discovered by comparing the results between 

simulations with fine spatiotemporal resolution and coarse-grained approaches in the 

context of urban growth.  

Based on the research goal, there are three specific objectives of this work: 

a) Develop a surrogate-based computational framework to identify and 

address key computational challenges to efficiently handle computational intensity in 

large-scale spatiotemporal simulations.  

b) Investigate how to realize the computational tractability, and make the 

computational framework as simple as possible for researchers without computing 

background in the context of urban growth.  

c) Apply the proposed computational framework to support a large-scale 

parallel urban growth simulation, and evaluate its computing performance. 
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In alignment with existing methodologies, this research provides an alternative to 

facilitate the spatiotemporal simulation of urban growth. With support of the proposed 

computational framework, scholars can further investigate how human decision making 

process at individual level can impact the urban growth at aggregate level. Computational 

issues due to increased complexity at large scale can be efficiently tackled with our 

computational framework by employing high performance and parallel computing 

methods. Furthermore, taking into account impacts from human decisions, our 

framework can provide solid support to explore massive parameter space based on 

alternative scenarios of future urban plans and policies within an affordable computing 

time. As a case study, I apply the proposed computational framework to simulate urban 

growth from 1992-2001 for North Carolina.  

1.3 Road map 

 The rest of my dissertation will be organized as follows: Chapter 2 provides a 

thorough literature review on four main parts: (1) the theory of coupled human and 

natural systems, (2) mainstream spatial simulation modeling in geography, (3) concept 

and application of cyberGIS, and (4) existing research on parallel spatial simulation 

modeling. Chapter 3 focuses on introducing surrogate-based models. It first reviews 

existing work related to the application of surrogate-based models in other scientist 

domains. Then, the main components and processes of building a surrogate-based model 

are presented. With respect to the previous literature review, a surrogated-based 

computational framework is proposed in Chapter 4 to support spatiotemporal simulations 

within cyberinfrastructure environments. Main framework and corresponding 
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methodologies for three specific research objectives are illustrated in this chapter. In 

Chapter 5, I introduce a case study of a spatiotemporal simulation of urban growth in 

North Carolina. In addition, a parallel method is designed for model calibration.  

Based on the research objective, Chapter 6 selects three hypotheses to examine 

the utility of surrogate-based approaches in the estimation of computing performance 

within parallel spatiotemporal simulations. Correspondingly, three experiments are 

designed to test three hypotheses: (1) Computing intensity will be correlated with spatial 

characteristics/content in spatiotemporal simulations. (2) Sample size and the type of 

surrogate-based approaches will impact the prediction ability for computing intensity of 

spatiotemporal simulations. (3) The application of surrogate-based approaches will 

improve the computing performance of parallel spatiotemporal simulations. The 

computing performance of our proposed surrogate-based computational framework is 

evaluated in experiments as well. Chapter 7 concludes this dissertation by emphasizing 

contributions and significances of my work, and presents the future research directions.
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CHAPTER 2: LITERATURE REVIEW 

 

 

 This chapter conducts the literature review of existing study in terms of 

spatiotemporal simulations and cyberinfrastructure. I first introduce the concept of 

coupled human and natural systems. Then, I demonstrate mainstream approaches to 

simulate urban growth. At last, development and application of high performance and 

parallel computing are discussed.  

2.1 Coupled human and natural systems 

Urban growth can be studied as a complex adaptive system in which agents 

interact with each other and adapt environment (Batty, 2007). A complex system has 

characteristics of self-organization, nonlinearity, emergency, path-dependence, and 

adaption (Manson, 2001; Lansing, 2003). Complexity theory is developed based on 

general systems theory which has been applied in scientific domains such as geography, 

physics, biology and social sciences (Bertalanffy, 1968; Warren et al., 1998; An et al., 

2005). The main objective of complexity theory is to understand the underlying 

mechanisms of complex adaptive systems (Holland, 1992, 1995, 2000). A set of 

heterogeneous subsystems or entities comprise a complex adaptive system by interacting 

with each other. These subsystems or entities can improve their situations within the 

complex adaptive system by leaning or adapting from interactions (Holland 2006). With 

respect to these characteristics, it is impossible to fully predict or control a complex 
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adaptive system, since the complexity could be introduced in many forms (Solé and 

Goodwin,  2008). However, complexity theory can help researchers better understand and 

improve the complex adaptive system by means of investigating the nonlinear 

relationship and interactions (for example feedback loops) among entities (or subsystems) 

in a complex adaptive system (Manson, 2001;Crawford et al., 2005). 

The traditional land cover modeling is based on determinist and aggregated top-

down approaches, for example Markov models (Drewett, 1969; Bourne, 1971; Bell, 1974; 

Bell and Hinojosa, 1977; Robinson, 1978; Jahan, 1986; Muller and Middleton, 1994) and 

the system dynamic models (Forrester, 1969; Randers, 1980; Richardson and Pugh, 1981; 

Han et al., 2009; Liu et al., 2013). Undoubtedly, these modeling approaches can shed 

light on the relationships between urban development and other ecological systems, for 

example the forest system, in a holistic view. However, from the aspect of complexity 

theory, these traditional land cover modeling approaches have hindered the discovery of 

new complexity patterns and underlying mechanisms, as well as interactions among sub-

systems within a complex adaptive systems (An et al., 2005; Liu et al., 2007; An and Liu, 

2010). Based on these traditional methods, simulation usually concentrates on land use 

and land cover changes at an aggregated level, without explicitly considering the impacts 

from human decision making at an individual level. Thus, it is hard to gain important 

insights about the linkage between individual behaviors (for example the land 

development from real estate agents) at the micro-level and their consequences in the 

complex adaptive system. Moreover, the limitation of synthetic interdisciplinary analysis 

in traditional land cover change modeling approaches makes them weak to simulate and 
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understand the characteristics of complexity, such as the nonlinearity and thresholds, 

within urban growth process.     

CHANS (Coupled human and natural systems) is a modeling approach which 

integrates human decision making and natural systems together. It has been increasingly 

applied to examine the relationship between human society and ecological systems (An et 

al., 2005; Liu et al., 2007; An and Liu, 2010). In comparison with other traditional 

modeling approaches, the greatest advantage of CHANS is the synthetic analysis for both 

socioeconomic behaviors and ecological impacts, instead of excluding the human 

decision making processes or ecological services in the simulation process. Summarized 

by Liu et al., (2007), there are six characteristics in CHANS as follows: reciprocal effects 

and feedback loops, nonlinearity and thresholds, surprises, legacy effects and time lags, 

and heterogeneity. Based on these characteristics, both human social components and 

ecological components are taken into account, as well as the relationship between these 

two components within complex adaptive systems. In addition, these characteristics of 

CHANS can substantially facilitate the resolution of geographic problems incorporating 

the impacts from human decision making processes by means of mimicking individual 

behaviors at the micro-level (An et al., 2005; Liu et al., 2007; An and Liu, 2010).  

Due to advances in complexity theory and modeling techniques, a series of 

CHANS have been implemented to solve real-world problems based on empirical data. 

Two bottom-up modeling approaches, cellular automata and ABM (agent-based 

modeling), have been widely coupled within CHANS (Parker et al., 2003; An et al., 2005; 

Matthews et al., 2007; Liu et al., 2007; Verburg and Overmars, 2009; An and Liu, 2010). 
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Since the cellular automata models have strength on representing the spatial dimension 

and spatial interactions of a system, a lot of CHANS have been developed by integrating 

the cellular automata approach for landscape modeling. Recently, a myriad of scholars 

have devoted to use ABM to mimic the human decision making process in CHANS 

(Deadman and Gimblett, 1994; Epstein and Axtell, 1996; Railsback, 2001; Gimblett, 

2002; Parker et al., 2003; Bousquet and Le Page, 2004; Evans and Kelley, 2004; 

Deadman et al., 2004; An et al., 2005; Brown et al., 2005; Evans et al., 2006; Brown and 

Robinson, 2006; Manson, 2006; Bennett and Tang, 2006; Matthews et al., 2007; An, 

2012) .    

The underlying process can be better explored with ABM by comparing the 

simulation patterns with the observed patterns (Goodchild, 2004). Taking advantage of 

integration with ABM, CHANS is capable of simulating the decision making process for 

each individual agent or agent group in a complex adaptive system (Gimblett, 2002; An, 

2012). With support of ABM, complex spatial patterns and processes can be explored 

directly at an individual level instead of operating as a deterministic or stationary 

simulations at the aggregate level based on rigid assumptions, for example their linear 

relationship. Also, ABM enables CHANS the capability of investigating the relationships 

of agent-agent, agent-system, as well as system-system interactions. Furthermore, 

interactions among heterogeneous agents can be modeled at the micro-level to investigate 

the causes and consequences in complex adaptive systems, according to a set of decision 

rules of agents. In the work of Li et al. (2015), the authors developed an analytical 

framework to the complex human-nature interaction which drives the land use change 



12 

 

 

and urban growth in eastern China. The complex adaptive behaviors of individual agents 

are simulated in three stages: agent learning, agent decision making, and agent action.   

With respect to the hydrologic domain, Hu et al. (2015) have applied CHANS to 

simulate water conflict between the requirement of ecologic system and the demand of 

human irrigation within the Republican River basin (RRB) in the U.S. Midwest. The 

CHANS model consists of a multi-agent irrigation decision making system model and the 

Republican River Compact Administration groundwater model to investigate how the 

human decision making process can impact the water use in study area. The decision rule 

of agents is to maximize their individual utilities, which can be updated through the 

Bayesian learning process that incorporates the prior knowledge and observations using 

Bayesian statistics. A large number of interactions exist between agents and their 

environment, which give rise to significant computational intensity. In order to handle the 

computational intensity, Hu et al. (2015) have applied multithreaded programming to 

increase the computational efficiency, in which a single CPU (central processing unit) 

executes multiple computing threads/tasks at the same time. Moreover, a thread safe 

program has been designed to make sure the update of data in shared memory is correct. 

With the support of multithread programming, computation time was greatly decreased 

from one hour with sequential run to twelve minutes in parallel version running on eight 

CPU.  In addition, to facilitate the accessibility for public use, Hu et al. (2015) have 

coupled the model with the SOA (service-oriented architecture) architecture implemented 

with a Hadoop-based cloud computing environment. Load-balancing and task scheduling 

have been realized by taking advantage of MapReduce in Hadoop.   
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2.2 Spatial simulation models 

According to the inherent structure and mechanism, spatial simulation models 

could be implemented with support of two main approaches: top-down and bottom-up 

approaches. Markov and system dynamic models are representatives of top-down spatial 

simulation models, while bottom-up spatial simulation models primarily include cellular 

automata models and agent-based models. 

2.2.1 Markov models 

Geographers have extensively applied Markov models to study and analyze the 

dynamical land use and land cove change (Drewett, 1969; Bourne, 1971; Bell, 1974; Bell 

and Hinojosa, 1977; Robinson, 1978; Jahan, 1986; Muller and Middleton, 1994). The 

Markov model is a stochastic model which has the capability to mimic the land use and 

land cover change using discrete state spaces (all possible values that a Markov process 

can take) and fixed sojourn time (time spent during each step). In the Markov model, 

there are two important components: transition matrix and transition probability matrix. 

The transition matrix and transition probability matrix are yield based on empirical data 

in the study area, which can capture the historical trend of land use and land cover change. 

The transition matrix and transition probability matrix are used to simulate and predict 

the future land use and land cover change (Baker, 1989). In most of the applications of 

Markov model, the state of land cover and land use in next time step only depended on 

the current state instead of historical steps. 

Based on the empirical land cover and land change data, a transition matrix can be 

built by summarizing the number of converted cells from each land use category to all 
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other categories in study area between two observed time points. With the same order of 

the transition matrix, the transition probability matrix indicts the percentage of land use 

change in multiple directions among all the land use categories which are mutually 

exclusive (Burnham, 1973; Bell, 1974; Turner, 1987; Muller and Middleton, 1994). The 

transition probability of land use category i to shift to category j is calculated based on 

the following equation: 

    
   

  
                                                                                 

where Pij implies the percentage of land cells shifting from land use category i to 

category j during the observed time period. The term Nij is the number of cells changed, 

while Ni is total number of cells of land use category j at the beginning of the time period 

under consideration. 

The Markov model has been widely applied in land use and land cover change as 

a simulation and prediction tool. In the work of Burnham (1973), the author presented a 

Markov land use simulation model to evaluate the alternative land use scenarios and 

policies based on historical observation data. The study area was located in the Southern 

Mississippi Alluvial Valley with total land acreage of 24,079,000. The transition matrix 

was developed based on the converted area of each land use group to all other groups 

from 1950 to 1969, including six groups: cropland, grassland, transition, forest, urban and 

other. According to the empirical transition matrix, the transition probabilities were 

represented with the ratio of transition area from one group shifting to all other groups 

over the total area of this group at the beginning of the observation time period in the 



15 

 

 

transition probability matrix. Then the transition probability matrix was applied to project 

the land use change in study area for two time periods: 1969 to 1988 and 1988 to 2007, 

with the same amount of years with the observation time period. The impacts of four 

alternative land use scenarios were estimated by means of adjusting the responding 

probabilities in the transition probability matrix. 

Compared with the constant transition probability matrix of Burnham (1973), 

Turner (1987) developed a spatial simulation model with a dynamic transition probability 

matrix to investigate land use pattern change in Oglethorpe County, Georgia, including 

five land use categories. The net land use transition rate was obtained from historical 

aerial photography. The spatial resolution was 1 ha, and the simulation was conducted for 

two time periods: 1942 to 1955 and 1955 to 1980. The impacts of spatial influences from 

alternative spatial simulations, including random simulation, von Neumann  

neighborhood (four adjacent cells) and Moore neighborhood (eight adjacent and diagonal 

surrounding cells), were modeled and evaluated using landscape metrics at the patch 

level (mean number and size, fractal dimension and amount of edges).  

With the advances of remote sensing technology and GIS, the Markov model has 

been increasingly used into large scale land use land change modeling (Muller and 

Middleton, 1994; Brown et al., 2000; Weng, 2002). Instead of using the actual transition 

area, data sampling strategies were employed to develop the transition function used to 

predict the land use change. In the work of Muller and Middleton (1994), sample points 

were classified into three land use categories (urban, agricultural and natural uses) to 

extract the transition information for each category based on aerial photography from 
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1935 to 1981. Brown et al. (2000) selected 136 simple sites following stratified sampling 

scheme and principal-components analysis. Parcel maps and aerial photography were 

used to develop an approach in which the relationship between land cover change and 

land use change was investigated in the Upper Midwest, USA. Aiming at improving the 

analysis by reducing data uncertainty, Weng (2002) integrated satellite remote sensing, 

GIS and a Markov model together to simulate and monitor the urbanization in Zhujiang 

Delta, China, with a total area of 15,112 square kilometers. With the satellite remote 

sensing and GIS, land use and land cover change were detected and summarized taking 

advantage of Landsat TM data for the study area. Then, the Markov model was built to 

simulate and project the land cover change based on the historical trend.     

However, there exist native challenges and limitations in the land use and land 

cover change simulation with a Markov model, due to assumptions applied in the Markov 

model (Burnham, 1973; Bell, 1974; Turner, 1987). First, according to the assumption of 

stationary, the transition probability is constant along both temporal and spatial scales. 

Because the land use and land cover change is closely related to human and natural 

driving factors (for example, the urban sprawl), it is implausible to use a constant 

changing rate in a long simulation time period or large study area. Second, the Markov 

land change models always ignore spatial autocorrelation. In other word, it assumes that 

the land use change of each cell is only affected by the current land use state of this cell, 

independent with other cells. However, the land use change of each cell is likely 

influenced by its neighborhood cells. For example, the cell surrounded by an urban area 

is more likely to be developed to an urban area because of the higher development 
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pressure from neighboring regions. Third, different equations are applied in Markov land 

use and land cover modeling to simulate the land use categories converted from one 

category to another one. As we all know, the phenomenon of landscape change is caused 

by the interaction of a variety of exogenous or endogenous factors, especially human 

activities. With a simple difference equation, it is hard to capture or simulate the 

contributions of these driving factors in this complex process. 

2.2.2 System models 

The system dynamic model was first introduced as a modeling methodology in 

the work of Forrester (1970). Arising from system thinking, approaches to building 

system dynamic models are well described and discussed in the work of Randers (1980), 

as well as Richardson and Pugh (1981). As a classic representative of a top-down 

simulation method, the system dynamic model is well tailored to simulate the process of 

complex systems over time with macro-level spatial (for example topography) or non-

spatial (such as population) variables which are the driving forces of the occurrence of 

spatial patterns or phenomena. Components and interrelationships within a complex 

social economic system are mimicked and analyzed in the system dynamic models. By 

means of representing feedback loops with mathematical equations, system dynamic 

models are capable of predicting the output of complex and large scale systems under 

different what-if scenarios with various changes in macro-level social economic driving 

variables (Liu et al., 2013; Han et al., 2009). 

Generally speaking, a complex system simulated in system dynamics is treated as 

a group of sub-systems. Within the fixed boundary of a complex system, these sub-



18 

 

 

systems interconnect and interact with each other. Through describing the interactions 

and interconnections among these sub-systems, system dynamics models can reveal how 

the variables of interest change through time. Therefore, researchers can achieve 

solutions to better improve the status of social economic and ecological systems taking 

advantage of what-if scenario analysis with a system dynamic model (Vlachos et al., 

2007).      

A system dynamics model consists of three components: variables, flows and 

feedback loops. A variety of variables are connected by two types of flows: physical flow 

and information flow. Through these two flows, variables can interact with each other to 

construct a stock-flow diagram of the system dynamics model. The feedback loops 

represent the cause-effect relationship in the stock-flow diagram. Positive and negative 

feedbacks can operate at the same time to describe the dynamic change of variables of 

interest. Moreover, the strength of feedbacks can be varied at different time steps (Chang 

et al., 2008). 

System dynamics models have been widely used to study complex systems, and 

solve the recourse planning and management problems caused by the social economic 

driving forces in geography, including human social systems (Qu and Barney, 1998; 

Sterman, 2000), environmental resource management and planning (Mashayekhi, 1990; 

Vizayakumar and Mohapatra, 1992a; Vizayakumar and Mohapatra, 1992b; Vezjak et al., 

1998; Ford, 1996;  Ford, 2000; Wood and Shelley, 1999; Abbott and Stanley, 1999; Guo 

et al., 2001; Dyson and Chang, 2005), decision and policy making support (Nail et al., 

1992; Saysel et al., 2002), ecological modeling (Wu et al., 1993; Grant et al., 1997), as 
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well as urban planning and land cover change simulation (Wolstenholme, 1983; 

Mohapatra et al., 1994; Guo et al., 2001; Liu et al., 2007; Shen et al., 2007; Chang et al., 

2008; Han et al., 2009; Liu et al., 2013).  

Wood and Shelley (1999) built a system dynamics model to represent the major 

influences of pore water metal activity in a constructed wetland. Specially, model testing 

and validation processes were discussed with several approaches. Saysel et al. (2002) 

developed a system dynamics model to analyze and estimate policies to support policy 

making process, which was calibrated with empirical data. Dyson and Chang (2005) 

applied Stella (software offering visualization tools) to develop a system dynamics model, 

in order to predict the solid waste generation according to limited empirical data samples 

in the city of San Antonio, Texas (USA). 

Since land cover and land change is usually driven by a set of interactions among 

components in a complex system, a system dynamics model is well tailored to resolve 

problems related to land use change and urban development. Several researchers have 

implemented system dynamic methods to simulate land cover and land use changes at 

different scales (Wolstenholme, 1983; Mohapatra et al., 1994; Guo et al., 2001; Liu et al., 

2007; Shen et al., 2009; Chang et al., 2008; Han et al., 2009; Liu et al., 2013). Guo et al. 

(2001) proposed a system dynamics model with a name of ErhaiSD to simulate a large 

scale environmental system. In this model, interactions among four subsystems, including 

population, industry, pollution control, and water quality subsystem, were investigated 

taking into account dynamic information feedback among these subsystems. The 

ErhaiSD was operated with empirical data to support decision-making related to the 
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water-quality deterioration in the Lake Erhai Basin, China. To estimate impacts on the 

water-quality from various policies, the ErhaiSD ran with four different decision 

alternatives within a time range of 15 years, starting from 1996. The base run predicted 

the future of the environmental system under the current environmental and social-

economic policy, while other three alternatives were designed with different focuses 

based on previous planning studies, for example emphasizing economic development.  

In the work of Chang et al. (2008), a system dynamics based decision support 

system (DSS) was proposed to support the environmental planning and management for 

the Coral reef ecosystem in Kenting, Taiwan. Blending with the integrated coastal zone 

management (ICZM) concept, the system dynamics based DSS substantially facilitated 

the resolution of environmental problems by means of conducting scenario analysis. Shen 

et al. (2009) applied a system dynamics method to study the sustainability of land use and 

urban growth in Hong Kong, including five subsystems: population, economy, housing, 

transport and urban/developed land. 

Despite the advantages, a system dynamics has its own drawbacks: (1) it does not 

easily capture the trend of spatial pattern of change; (2) because of the fixed boundary in 

the system dynamics model, it excludes the external driving factors, which also makes 

important contributions to changes in a complex system. To overcome the disadvantage 

of ignoring the spatial pattern, a system dynamic can be integrated with a cellular 

automata (CA) model (introduced in section 2.2.3). Shen et al. (2007) combined the 

system dynamic model (Forrester’s urban dynamics) with a CA model to explore the 

urban growth in Beijing, China. In this study, the system dynamics model was applied to 
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simulate the dynamic change in population and economic growth. The CA model focused 

on the analysis of spatial interaction and structure in the study area. Han et al. (2009) 

integrated system dynamic and CA models together to assess the urban growth in 

Shanghai, China. With the system dynamics model developed in the paper of Han et al. 

(2009), urban land increase was forecasted based on the feedback loops among three 

components: residential, public and commercial land.   

The system dynamics model also can be combined with a spatial optimization 

models to solve the problems related to land use allocation. In the paper of Liu et al. 

(2013), the authors developed a System Dynamic and Hybrid Particle Swarm 

Optimization Land use Allocation Model (SDHPSO-LA) to optimize the land use pattern 

for a large study area: Panyu, Guangdong, China, with a total area of 786 km
2
. The 

system dynamics model in this paper focused on the prediction of urban demand based on 

the analysis of cause effects with feedback loops. The impacts from macro level social 

economic driving factors, for example population and economic growth, were 

incorporated and analyzed in the optimization of land use allocation. 

2.2.3 Cellular automata models 

The phenomena of land use and urban growth are usually modeled in a top-down 

and deterministic manner based on driving forces in macro scales, for example the system 

dynamics model. According to complex system theory, however, global spatial patterns 

and forms can rise from local actions among components composing the complex system, 

which might be ignored and missed in traditional top-down approaches. Models in land 

use and urban growth appeal to bottom up approaches in which local actions following 
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simple transition rules lead to the emergency of global patterns (see Batty, 1995). Instead 

of macro-level driving forces, the bottom-up approaches focus on the changes of spatial 

and temporal dimensions. The cellular automata model is one of the classical 

representatives of bottom-up approaches to simulate discrete dynamic systems.  

Generally speaking, the cellular automata model consists of three main 

components: transition rule, state and neighborhood (Toffoli and Margolus, 1987; Batty, 

1995; Itami, 1994; Wolfram, 1984). With respect to the principle of self-organization, a 

set of transition rules are designed and incorporated into the cellular automata model to 

guide land conversion occurring in each cell from one specific land use type to others in 

study region. The future state of each cell is determined by the current state value of itself, 

as well as the current state values of its proximate neighborhoods. Simple self-

organization interactions among local neighborhoods can lead to a fractal pattern (the 

repeating pattern observed at different scales) which reflects the geometric characteristics 

of urban forms (Batty, 1991; Batty and Longley, 1994; White and Engelen, 1993; White 

and Engelen, 1997). 

The neighborhood in cellular automata can be classified into two types: the first 

type is the exact immediate neighborhood, for example first-order neighborhood; and the 

second one is the neighborhood cells which influence the current cell based on 

information or material flow within a certain distance (distance based neighborhoods). 

States of different cells are updated simultaneously in the study region. By this way, the 

future patterns are predicted, taking into account the influences from both the interactions 
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among local neighborhoods and the past trend of urban growth. The general cellular 

automata model can be described by the following equation: 

                                                                             

where the global state of complex system is represented by S(global), which is a function 

of the transition rule T according to the neighborhood N and the states of neighborhood S 

at each time step. 

The cellular automata model, as a bottom-up model, imitates a complex system 

within a lattice of discrete cells over discrete time steps, which has been widely used in 

spatial diffusion modeling such as the urbanization process (Wolfram, 1984; Li et al., 

2010). The first cellular automata model was originally developed with two dimensions 

by mathematician John von Neumann in the late 1940s (Itami, 1994; Santé et al., 2010). 

Based on the work of Tobler (1979), this bottom-up modelling approach was introduced 

into the geography domain. Then, Wolfram (1984) defined the characteristics of cellular 

automata with the following characteristics (Itami, 1994):  

(1) The cellular automata model consists of a grid of cells with a finite set of 

 states;  

(2) In discrete time steps, cells can change their states with the constant and 

 deterministic transition rules; 

(3) The neighborhood is composed of the proximity cells.     

 There are two stages in the development of cellular automata model in geography: 

the theoretical application and the real-world application stages. In the late 1980s and 

1990s, following the work of Tobler (1979), a large number of geographers employed the 
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abstract cellular automata simulation to investigate the theoretical geography phenomena 

with respect to urban structure, complexity and sprawl (Couclelis, 1985, 1989; Phipps, 

1992; Batty and Xie, 1994a; Itami, 1988; Wu, 1998; Portugali and Benenson, 1995; 

Cecchini, 1996).These early theoretical applications of the cellular automata model paved 

the way for applying cellular automata in real-world urban simulation by allowing for the 

exploration for the theories and hypotheses related to urban growth (Batty, 2007). 

Specially, in the work of Couclelis (1985), the author discussed the limitations of abstract 

cellular automata models. To overcome these inherent limitations, the author proposed to 

relax the traditional definitions in terms of the spatial space, neighborhood and transition 

functions.  

In the 1990s, with the emergence of GIS in spatial simulation and modeling, 

researchers have explored the integration of GIS and CA to better investigate complex 

systems (Itami, 1994; Batty and Xie, 1994b; Couclelis, 1997; White and Engelen, 1997; 

Takeyama and Couclelis, 1997). Due to the inherent grid based structure, CA can be 

easily incorporated with GIS, and the states and transition rules are greatly improved by 

the spatial and temporal information provided by GIS.  

With the support of GIS, the limitation of uniform space can be relaxed taking 

advantage of the data processing functions, which makes the cellular automata model 

much closer to the real-world situation (Batty and Xie, 1994b). A variety of GIS data 

sources can be used as inputs in cellular automata models such like historical records and 

maps (Batty and Xie, 1994a; White and Engelen, 1993; Clarke et al., 1997; Clarke and 

Gaydos, 1998) and remote sensing datasets (Li and Yeh, 2000; Wu and Webster, 1998).  
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Takeyama and Couclelis (1997) presented the language of geo-algebra, an 

extension of map algebra, to express the proximal space in cellular automate model. The 

geo-algebra enabled the capability of manipulating GIS data with three classes of 

operands: maps, relational maps and metarelational maps (Couclelis, 1997). In the work 

of Wu (1998), the author combined cellular automata, GIS and multicriteria evaluation 

(MCE) in a tight coupling way to simulate land conversion between urban and rural. The 

multicticriteria evaluation implemented with the approach of analytical hierarchy process 

(AHP) was used to determine the transition rules in the cellular automata model. Land 

suitability was estimated to determine the transition probability. The model was applied 

to simulate the urban growth in Guangzhou, China, covering a total area of 225 km
2
. 

Empirical land use data was used based on Landsat Tm-5 digital images. However, Wu 

(1998) did not take account the impact from human decision making to urban growth. 

After the exploration of theoretical cellular automata models and their integration 

with GIS, cellular automata models have increasingly been used to mimic land use 

change and urban growth in real-world situations. In comparison with early theoretical 

models, these models are more sophisticated, because they relax the limitations of the 

standard cellular automata model (homogeneous space, exactly immediate neighborhoods, 

and constant transition rules). Instead of being deterministic, probabilistic transition rules 

are widely spread, taking into account development probability (Batty and Xie, 1994; 

Batty, 1997) or land use suitability (White and Engelen, 1997; Wu, 1998; Wu, 2002; Wu 

and Webster, 1998; Wu and Martin, 2002).  
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White et al. (1997) built a cellular automata model to simulate land use change in 

Cincinnati, Ohio. A regular grid consisted of 80*80 cells with two different states 

representing three types of land use: commerce, industry and housing. A suitability value 

for each land use was calculated and used to determine the transition probability. The 

effect of distance decay in neighborhoods was considered in transition rules. Empirical 

land use data of year 1960 was applied to calibrate the model with a trial and error 

approach. Sensitivity analysis was conducted to test the reliability of the prediction with 

respect to the stochasticity of the model.  

Developed by Clarke et al. (1997), the SLEUTH (Slope, Land cover, Excluded 

area, Urban, Transportation, Hillshade) model has been applied by a number of 

researchers to conduct land use and urban simulation in different regions of the world, 

reported by Clarke et al. (1996), Clarke et al. (1997), Silva and Clarke (2002), Yang and 

Lo (2003), Herold et al. (2003) and Mahiny and Gholamalifard (2007). The name of the 

model indicates the six required input data layers: slope, land cover, excluded, urban, 

transportation and hill shade. Based on these layers, four transition rules were defined to 

guide the urban growth in study area, including spontaneous growth, new spreading 

centers, edge growth and road influence growth. Traditionally, the calibration of the 

SLEUTH model is in a brute force way, according to five parameters: Diffusion, Breed, 

Spread, Slope, and Road Gravity. Spontaneous growth rule is controlled by diffusion 

factor. Breed factor is in charge of new spreading centers rule. Spread and slope factors 

work together to control edge growth rule. Road influence rule takes account all factors 

except spread.  Each parameter ranges from 0 to 100. Monte Carlo simulations are 



27 

 

 

applied based on all combinations of five parameters. According to the evaluation metrics, 

the optimal combination of parameter sets can be found and used in the prediction of 

future land use and urban change in the study area.  

Besides the SLEUTH model, the constrained cellular model has been developed 

by Li and Yeh (2000) and White et al.(1997). In the constrained cellular automata model, 

urban growth and land conversion are regulated by constrained space. For example, cells 

in a river cannot be transferred into urban space. In the work of Li and Yeh (2000, 2002), 

an urban cellular automata model was presented to simulate the alternative scenarios of 

sustainable development. Specially, grey cell was designed to represent the land 

development percentage. Three levels of constraints (local, regional and global) were 

defined to ensure sustainable urban development. Among these constraints, land 

suitability represented by accessibility was considered, as well as environmental factors. 

2.2.4 Agent-based models 

Usually, agent-based models consist of a set of decision makers, i.e., agents, and 

the environment where they fit in. Agents are described and defined with a set of 

attributes and behaviors representing different preferences and uniqueness in agent-based 

models. Guided by their decision rules, heterogeneous agents interact with each other and 

environment. With the objective to achieve better situation in the complex system, agents 

are capable of learning from each other and modifying their own decision rules to adapt 

to environment in a more appropriate way (Grimm, 1999; Bousquet and Le Page, 2004; 

Farmer and Foley, 2009). Agent-based models allow us to tap into the impact from 

individual dynamics on the global pattern. Furthermore, the heterogeneity of spatial 
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pattern can be displayed and captured in the spatial simulation process using a bottom-up 

way (O'Sullivan, 2008; Tang et al, 2011a; Tang et al., 2011b; Tang and Bennett, 2012; 

Goodchild, 2004).   

In alignment with the development of complexity theory, many modeling 

advancements have been made to support the study of complex adaptive systems. Agent-

based modeling (ABM) is a major one of these advancements to test complexity theory 

and simulate the complex adaptive system. There were two major development tracks in 

social science and ecology pushing the advancement of ABM respectively. Within 

ecology, researchers have developed individual-based modeling (IBM) which focuses on 

the heterogeneity among individual agents in terms of their attributes and behaviors.  On 

the other hand, ABM, in social science, concentrates on the decision making process of 

individual agents (Bousquet and Le Page, 2004).  

A myriad of agent-based models have been applied in theoretical and empirical 

spatial simulations, such as land use and land cover change (Axelrod et al., 2000). Similar 

to Cellular Automata models, agent-based models are computerized simulation 

approaches in a bottom-up way (Batty and Longley, 1994; Epstein and Axtell, 1996; 

Batty et al., 2012). Agent-based models are better suited for simulating the individual 

behaviors and human decision making process, while the Cellular Automata model 

focuses on spatial interactions in a complex system. In agent-based modeling, individual 

agents can move in spatial and temporal dimensions. ABM is capable of predicting the 

output of complexity systems based on assumptions derived from real world phenomena. 

Thus, what-if questions can be answered in scenario analysis with ABM. 
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In agent-based models, decision rules always play a critical role in modeling the 

human decision making process and subsequent actions. Usually, the decision rule is 

composed of two parts, “if” and “then” parts. Once the predefined conditions (the “if” 

part) are triggered, agents will act accordingly (the “then” part). Through interacting with 

and learning from each other, agents are able to improve their decision rules to achieve 

better situations in the complexity system. In terms of the underlying mechanism, 

decision rules of agent-based models are mainly derived from the following approaches: 

utility function, spatial suitability, empirical data and survey, and machine learning 

algorithms. 

With the utility function, the benefit or profit of an agent can be measured and 

quantified based on a certain combination of non-spatial economic and social factors.  

                                                                                    

where utilityi represents the value of utility in location i for an agent. Ei, Si, Ni are the 

environmental, social, and neighborhood factors in location i, respectively. Each factor 

has an associated weight indicating the contribution of this factor to the utility value. The 

objective of agents is to maximize their utility values, that is, the benefits they can 

achieve in the real world (Brown et al., 2004; Bennett and Tang, 2006; Parker and 

Meretsky, 2004; Brown and Robinson, 2006; Li and Liu, 2008; Reeves and Zellner, 

2010).  

In the work of Parker and Meretsky (2004), an agent-based model was designed 

to investigate how edge-effect externalities can impact the land use pattern. The model 

simulates the decision making process of individual parcel managers in terms of the 
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conflicts between two possible land use types: urban and agricultural. Individual parcel 

managers were intended to maximize their profits based on their knowledge. Economic 

factors, such like the transportation cost, are taken into account in the decision rules of 

individual parcel managers. Brown and Robinson (2006) presented an agent-based model 

of residential location to simulate the process of residential development within 

southeastern Michigan. The heterogeneity in the characteristics and behaviors of actors is 

represented with the different preferences of the selection of residential location. The 

utility value of a location was determined by a set of social economic factors, including 

jobs, aesthetic quality, and the similarity of neighborhood, and the corresponding 

preference weights. 

Instead of economic and social factors, the spatial characteristics of locations are 

considered by means of calculating the potential suitability for land use transition. With 

respect to this approach, each agent generates a suitability map for candidate locations 

based on their own preference. The suitability is related to the accessibility (represented 

by Euclidian distance or travel time) to social facilities and the main transportation 

network, for example school, hospital and highway, from the candidate locations, as well 

as preference weights. According to the suitability value, the conversion probability of 

each candidate location can be derived with probability function. Thus, agents can select 

the candidate locations with higher probability to convert (Loibl and Toetzer, 2003; 

Manson, 2006; Yin and Muller, 2007). In Loibl and Toetzer (2003), a multi agent 

simulation was designed to investigate urban sprawl driven by population migration and 

commercial startups in the suburban Vienna Region, Austria. Land use change was 
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impacted by the migration and allocation decision making of a spatial agent model based 

on the attractiveness and constraints at different scales, which fully considered 

accessibility including traveling time to the core city and access to motorways. Similarly, 

Manson (2006) designed a scenario-based model to project the land use and land cover 

change with different assumptions in Mexico. The spatially explicit model integrates the 

agent-based model with a Cellular Automata model and GIS to study the underlying 

driving factors of land use change. Specially, within the ABM component of this 

integrated model, the suitability values of each cell of the Cellular Automata model are 

estimated according to the preference weights of the corresponding agent. 

Decision rules also can be yield from empirical data and survey, which follows an 

induction scientific research method. With this approach, researchers have to collect large 

amounts of empirical data first. Then, data mining and statistical analysis can be used to 

classify agents into groups and derive decision rules. Specially, neural networks, 

statistical regression and decision trees are commonly used data analysis methods for the 

generation of decision rules (Evans et al., 2006; Acosta-Michlik and Espaldon, 2008; 

Millington et al., 2008; Valbuena et al., 2010). In Millington et al. (2008), the authors 

applied an agent-based model to simulate agricultural land use decision making and 

investigate the impact of land tenure and land use on the landscape change in the future in 

Mediterranean agriculture landscape. Based on empirical data, the authors classified all 

individuals into two groups with different actions: commercial agents and traditional 

farmers. While the commercial agents try to achieve profits by means of acting 

economically rational, traditional farmers conserve their land from a cultural aspect. 
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The last approach of deriving decision rules is based on the application of 

machine learning algorithms. In this domain, genetic algorithms and evolutionary 

programming have been extensively applied to yield decision rules of agents (Manson, 

2005; Manson and Evans, 2007). In evolutionary algorithms, a mass of individuals 

compose a population, where each individual is encoded with a solution of the problem. 

With respect to varied approaches, the strategies of encoding are different. In genetic 

algorithms, an individual is encoded with the binary string (zero or one) to represent a 

specific solution. However, in evolution programming, integer numbers or real numbers 

are applied in the encoding process. For example, real numbers could be an index of 

potential facility site.  

Generally speaking, at the beginning of an evolutionary algorithm, a population of 

solutions including a set of individual land use plans is randomly generated. According to 

the objective of land use change process, a fitness function is used to evaluate each 

individual. Individuals with high fitness values have a high possibility to be selected to 

create the population of next generation. In this way, the fitness is preserved for next 

generation. There are two operators involved in the process of creating the next 

generation: recombination and mutation. In the process of recombination, selected 

individuals exchange their components with intention of increasing the fitness. To avoid 

the local maximum or minimum, mutation operations randomly alter part of the current 

population to generate the next generation. The new generation repeats the same process 

of selection, recombination and mutation until the qualified solution is achieved (Xiao et 

al., 2007). In the work of Manson (2005), the authors developed a land change model 
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taking advantage of the combination of genetic programming, Cellular Automata 

modeling and agent-based modeling to simulate the land cover change in the Southern 

Yucatan Peninsula Region of Mexico. Specially, genetic programming is applied to 

model the human decision making process by serving as symbolic regression solutions, 

according to the multi criteria evaluation. A set of parent land use plans and strategies 

compete with each other and evolve to better offspring strategies with higher fitness 

value, through the genetic programming.    

In the book chapter of Parry and Bithell (2012), the authors conducted a review of 

main stream approaches of building large scale agent based models. As discussed in the 

article, challenges of large scale ABM can be attributed to massive number of agents, as 

well as managing complexity of the simulation. In this work, three widely used 

approaches have been compared and examined: super-individuals, agent-parallel and 

environment parallel.  The first one is an aggregation approach in which individual 

objects are grouped into a super-agent. With less modification of the model formulation, 

substantial improvement in terms of computing performance can be achieved with the 

super-individual approach. However, this aggregation can result in a significant challenge 

about how to spatial temporally link super-individuals to individuals in an appropriate 

way. The last two approaches are both based on high performance and parallel computing.  

The authors summarized the following challenges in parallel ABM simulation: “load 

balancing among computing processors, synchronizing events to ensure causality 

monitoring of the distributed simulation state, managing communication between modes 

and dynamic resource allocation” (Parry and Bithell, 2012, p278). Agent-parallel 
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approach aims to distribute individuals among available computing processors, which is 

similar to functional decomposition. With this approach, each computing core has to be 

updated with the information of the complete environment and neighborhood agents. The 

load balancing of this approach is straightforward, measured by the number of agents. 

Instead of agents, the environment-parallel approach divides the entire environment into a 

set of sub domains and allocates them into computing processors, which is similar to 

domain decomposition. However, when agents have high mobility and the density of 

agents is spatially heterogeneous, load balancing will be very challenging. 

2.3 CyberGIS 

With the extreme increase in the complexity and size of data, the computational 

capability and capacity becomes a bottleneck of spatiotemporal simulations. Regarding 

this computational issue, researchers have devoted their efforts to synthesize spatial 

thinking and computational thinking by means of CyberGIS. CyberGIS, empowered by 

state-of-the-art advances in computer science, consists of three main components: GIS, 

cyberinfrastructure and spatial analysis in a loosely coupled approach (Wang, 2010). 

With regard to the tremendous computation power, cyberinfrastructure paves the way for 

applying CyberGIS to tackle computational issues in spatial analysis and modeling at 

large spatial and temporal scales.  

Exemplified by XSEDE (Extreme Science and Engineering Discovery 

Environment; http://www.xsede.org) and NSF TeraGrid (http://www.teragrid.org/), 

cyberinfrastructure substantially facilitates and supports the process of knowledge 

discovery in a wide array of scientific domains. Cyberinfrastructure consists of high-
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performance and parallel computing, massive data handling and virtual organization, 

which bridges the advanced technologies in computer science and solutions of domain 

specific problems that are infeasible with traditional desktop computing platforms (NSF, 

2007).  

As the main computing power of cyberinfrastructure, high-performance and 

parallel computing has been increasingly applied to cope with domain specific problems 

in terms of computational intensity. To fully harness distributed computing resources, 

high-performance and parallel computing is always organized as three forms: cluster 

computing, grid computing and cloud computing (Armbrust et al., 2010). The general 

idea of high-performance and parallel computing is so called divide-and-conquer, which 

divides a large scale problem that is computationally intensive into sub-problems that can 

be simultaneously handled in multiple computing nodes. The decomposition of a problem 

can be based on the data or functions, guided by domain decomposition and function 

decomposition respectively. Moreover, sub-problems, which are individual computing 

tasks, are mapped to each available computing node taking advantage of task scheduling.  

Tang et al. 2011b aimed to build a service-oriented ABM simulation framework 

by means of integrating service-oriented computing (SOC) architecture, ABM (GAIA: 

geographically aware intelligent agents) and GIS. With support of this framework, 

computation and data intensity in ABM simulations can be overcomed by leveraging the 

high performance computing power of cyberinfrastructure (CI) enabled computing 

resource. The framework encapsulates functionalities into services and is capable of 

assembling and integrating domain specific functionalities for ABM. In the case study, an 
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elk migration ABM has been implemented with the proposed framework based on 

supercomputing computing resource on the TeraGrid. 

2.4 Parallel spatial simulation model  

With the rapid advances of computer science and GIS, the application of high-

performance and parallel computing in spatial simulating modeling becomes a crucial 

research thread in geography. A large number of geographers are dedicated to the 

exploitation of the parallelism in large scale geographical spatial analysis which was not 

infeasible for traditional sequential simulation models. In this section, I am going to 

review efforts invested in this research direction, focusing on three aspects: evaluation of 

computing performance, parallel computing architectures, and parallel strategies.  

2.4.1 Evaluation of parallel computing performance 

With regard to evaluating parallel computing performance, there exist in general 

two common used quantitative methods: speedup factor and efficiency (Wilkinson and 

Allen, 2004). These two methods are both based on the execution time of best sequential 

algorithm executed on the single-processor system and the execution time of parallel 

algorithm with multi-processor system. The speedup factor can tell us how fast the 

parallel algorithm is, compared with the sequential algorithm, with the following 

mathematic equation (see Ding and Densham, 1996; Abbott et al., 1997; Hazen and Berry, 

1997; Nagel and Rickert, 2001; Owczarz and Zlatev, 2002; Wang et al., 2006; Nichols et 

al., 2008; Parry and Evans, 2008; Tang and Bennett, 2009; Tang et al., 2011a; Gong et al., 

2012): 
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where sf is the speedup factor. Tsequential and Tparallel are execution time of sequential and 

parallel algorithms, respectively. Based on Amdahl’s law, the maximum speedup cannot 

beyond 1/f, where f is the percentage of computation which has to be executed in 

sequential computing. 

Efficiency can indicate the percentage of time in which processors execute a 

parallel algorithm, which always is calculated as following (see Ding and Densham, 1996; 

Nagel and Rickert, 2001; Tang and Bennett, 2009; Tang et al., 2011a): 

           
           

            
                                                                

where NP is the number of processors which are used in computation. 

Besides the two approaches discussed above, the computation /communication 

ratio can be used to evaluate the computing performance in message-passing computing 

(Wilkinson and Allen, 2004). When we parallelize a spatial simulation model with 

message-passing approach, the execution time actually consists of two parts: the 

computation part and the communication part which is spent on the inter-processors 

communication. To achieve better performance on computation, we have to reduce the 

communication overhead among processors. The computation/communication ratio is 

defined as following: 
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where Tcomputation represents the time of computation and Tcommunication indicates the 

time of communication among processors. 

2.4.2 Parallel computing architectures and methods 

We can divide parallel computing architectures into two categories: SIMD (Single 

Instruction stream, Multiple Data stream) and MIMD (Multiple Instruction stream, 

Multiple Data stream) (Ding and Densham, 1996). SIMD is well tailored to the data 

parallel in which multiple processors executed the same sequential operation on different 

datasets at the same time. Instead of the same operation, with respect to MIMD, multiple 

processors concurrently conduct multiple operations with different datasets.   

Based on parallel computing architectures, there are two common used paradigms 

for high-performance and parallel computing: multi-core and many-core computing. 

Multi-core computing is the natural paradigm to extend single core computing. Moreover, 

multiple memory modules are connected to each other and can be accessed by multiple 

processors with support of share memory approach, exemplified by quad processor 

shared memory multiprocessors (Wilkinson and Allen, 2004). Furthermore, a large 

amount of computer clusters have been built based on the multi-core machines. 

In terms of many-core computing, the computing power of graphics processing 

units (GPUs), which usually are attached to CPU, has been extensively exploited by 

researchers in many scientific domains such like geography, biology and physics. GPUs 

are originally developed with intent to support the display of graphics. Around the middle 

of 2000s, the general-purpose computing on graphics processing units (GPGPU) was 

implemented to accelerate scientific computations. GPUs are well tailed to data-parallel 
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paradigm, in which a computationally intensive problem can be divided and executed in a 

mass of streaming processors (SPs) (Tang and Bennett, 2012). Compute unified device 

architecture (CUDA) is the programming model and platform which was developed by 

NVIDIA Corporation in 2007. Taking advantage of CUDA, we can trigger the kennel 

function, which are conducted on GPUs. Computation results are gathered and copied 

back to CPU in the host machine (Tang and Bennett, 2009). 

To fully harness these two computing paradigms, there are three kinds of parallel 

approaches: embarrassingly parallel, shared memory, and message passing (Wilkinson 

and Allen, 2004). Three parallel approaches should be applied in different parallel 

simulations in terms of a communication mechanism among processors. Embarrassingly 

parallel suits the so-called complete decomposition, in which there is no communication 

among multiple processors. On the other hand, if processors need to exchange data with 

each other, shared memory and message passing approaches should be taken into account 

in parallel simulation. In terms of shared memory, each memory module can be accessed 

by multiple processors. In this way, the exchange of data is addressed by common 

memory space. The message-passing computing has been extensively employed in 

distributed-memory systems. The data among processors is exchanged in a form of 

message sending or receiving. When a processor requires data in other processor, 

required data has to be encoded into a message and sent from one processor to another 

processor. In summary, both for message-passing and shared memory approaches, the 

communication among multiple processors lower the computing performance by bringing 

in communication overhead. 
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During the end of 1980s and 1990s, a host of researchers exploited the application 

of parallel spatial simulation modeling in terms of parallel computing architectures and 

methods. With respect to the application of SIMD, Franklin et al., (1989) presented a 

parallel algorithm to detect line intersection. The algorithm was well implemented on a 

Sequent Balance 21000 computer including 16 processors. Bestul (1989) generally 

discussed the methodology to develop SIMD algorithms according to pointer-based 

quadtrees structures, in which one processor was assigned to each quadtree node. Li 

(1992) detailed the application of SIMD computing architecture in the spatial data 

analysis. On the other hand, parallel strategies, represented by domain decomposition, 

implemented on MIMD computing architectures were generally discussed by the work of 

Armstrong and Densham (1992) and Ding and Densham (1996). Hopkins et al. (1992) 

investigated the scalability of GIS algorithm related to parallel polygon overlay, which 

was conducted on a MIMD system. Uziel and Berry (1995) parallelized an individual-

based model to simulate animal migrations in Northern Yellowstone national park. In this 

work, the authors employed a 32-processor Thinking Machines CM-5, in which different 

programs were executed on each processing node with various data.  

Besides computing architecture, many scholars have shown increasing interests in 

various applications of parallel computing approaches. With respect to shared memory 

approach, Nugala et al. (1998) implemented a parallel individual-based model to simulate 

the movement of ants on a network of UNIX workstations. Owczarz and Zlatev (2002) 

presented a parallel spatial simulation related to air pollution with support of shared 

memory approach. Gong et al. (2012) have applied a hybrid parallelization approach to 
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deal with both computation and data intensity related to land cover and land change 

modeling. With the proposed parallelization approach, a commonly employed neural 

network model Fuzzy ARTMAP (Adaptive Resonance Theory MAP) has been modified 

into a parallel version, based on the sequential version. The results of experiments 

indicate that the larger the training dataset is, the better the computing performance is. 

In the work of Gong et al. (2013), the authors proposed a parallel agent based 

modeling framework to investigate individual-level spatial interaction. The proposed 

parallel ABM framework can simulate information change, spatial diffusion of opinion 

development, and opinion consensus processing. The authors focused on examining how 

the computing performance can be impacted by two key spatial properties of spatial 

interaction systems, including the extent and the range of spatial interactions. A parallel 

algorithm has been developed in this work based on multicore computing environment 

which is a coarse-grained shared-memory system. The parallel algorithm has been 

implemented with C++ and OpenMP with domain decomposition, inter-thread data 

access and synchronization strategies. An equal size decomposition strategy has been 

applied to reduce the interdependence among sub domains. Also, mutual exclusion 

algorithm is used to solve the race conditions occurring when multiple threads access and 

modify the same address in the shared memory space at the same time. Furthermore, the 

authors used a barrier method to implement the synchronization for iterations to make 

sure coherence and data integrity. 

 Besides CPU, shared memory approach has been extensively employed in the 

application of GPUs within spatial simulation. Richmond et al. (2009) detailed a parallel 
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agent-based model to simulate the movement of pedestrian taking advantage of GPUs. 

Erra et al. (2009) discussed the implementation of the application of GPUs in large scale 

individual-based simulation. Tang and Bennett (2009) presented a parallel land-use 

opinion model with support from GPUs. Spatial opinion exchange, representing the 

spatial diffusion related to human decision making process, was simulated with ABM in 

which the individual agents with heterogeneous preference can communicate with each 

other and improve their own opinions. To fully leverage the high performance computing 

power of GPU, domain decomposition (mapping agents to threads) and mutual exclusion 

(shared memory only can be modified by one thread at one time) have been taken into 

account in the key algorithm. 

With regard to message-passing approach, the work of Berry and Minser (1997) 

discussed the application of message-passing approach in land cover simulation taking 

advantage of PVM (Parallel Virtual Machine) and MPI (Message Passing Interface). To 

investigate how alternative land use management scenarios can affect the environmental 

services, Hazen and Berry (1997) presented a parallel version of Land-Use Change 

Analysis System (pLUCAS) based on PVM. The pLUCAS has been applied to two 

spatially distinct study areas: the Little Tennessee river basin (LTRB) in North Carolina 

and the Olympic Peninsula in Washington State. To tackle the large commuting time and 

demand at large scale, the authors have utilized the PVM consisting of a network of 

arbitrary workstations. An embarrassingly parallel computing approach has been 

implemented, in which different simulation scenarios can be allocated to available 

computing nodes. The authors discussed the computing issues related to management of 



43 

 

 

interprocessor communication and task scheduling. And to handle these issues, 

centralized task management was used. In the experiment section, parallel version 

achieved a peak speedup of 10.77 using 20 computing nodes, compared with a sequential 

version. 

In the work of Guan and Clarke (2010), the authors have developed a general 

purpose parallel raster processing programming library (pRPL) to parallelize raster 

processing algorithms. The pRPL has been implemented based on MPI and C++. In terms 

of parallel strategies, the pRPL can improve the computing performance of parallel 

cellular automata models by means of incorporating domain decomposition, load 

balancing and task scheduling. Besides of regular domain decomposition including row-

wise, column-wise and block-wise, a quad-tree decomposition has been implemented in 

pRPL. The quad-tree decomposition can divide workload more even when the study area 

is highly heterogeneous. However, because of native recursive mechanism, quad-tree 

decomposition could result in more computational overhead. Taking advantage of static 

and dynamic load balancing, data parallelism with computing nodes in same group and 

task parallelism among computing node groups have been provided by pRPL. In order to 

demonstrate how to utilize the pPRL, a classical CA land use and land change mode 

SLEUTH has been parallelized in the case study. 

And with the trend of applying agent-based model to simulate complex system, 

researchers have implemented parallel ABM within message-passing computing 

environment (Parry and Evans, 2008; Tang et al., 2011a). Abbott et al. (1997) conducted 

a study about white-tailed deer with a parallel individual-based model with support of 
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message-passing approach. Wang et al. (2006) paralleled an agent-based model related to 

fish population with respect to message-passing mechanism. In the work of Timm and 

Pawlaszczyk (2005), a conceptual parallel framework of multi-agent simulation has been 

presented to simulate large scale networks of autonomous decision-makers in logistic 

domain. To tackle challenges in the management of infrastructures, grid computing 

approaches have been applied to build a decentralized scalable architecture for grid-based 

multi-agent simulation, and peer-to-peer technology was used to support the direct 

communication among nodes within the network.  

Reported by Parry and Even (2008), the authors discussed how to utilize limited 

computing resource to simulate large complex spatial system in ecology with individual 

based model. Two common used approaches, parallel computing and “super-individuals” 

have been implemented and examined in Parry and Even (2008). The parallel computing 

approach can maintain the structure of original sequential model and generate 

comparable simulation result with support of parallel strategies including messaging 

passing, load balancing and synchronization. In the experiment part, significant 

improvement in terms of computing performance (speed up and memory availability) can 

be observed after five computing processors are used. Besides parallel computing, a 

super-individual can also be used to handle the challenge of large number of individuals. 

The basic idea of a super-individual is to reduce the number of individuals by aggregating 

individuals in a population into super-individuals. Compared to parallel computing, the 

super-individual approach can substantially improve the computing performance. 

However, since it greatly modified the model dynamic, the super-individual approach 
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could be inappropriately used in a density-dependent model without considering 

individual variability. Thus, the authors pointed out that parallel computing was a better 

choice to solve the computation issue caused by large number of individuals.  

Tang and Wang (2009) have developed a hierarchical parallel framework 

(HPABM) to handle the computational intensity in agent-based model for solving 

geospatial problems at large scale. With support of HPABM, domain decomposition is 

conducted to divide the whole big agent based model into sub models which can be 

grouped into super models. Taking advantage of super model and sub model design, 

HPABM can leverage the high performance computing power of cyber infrastructure by 

means of loosely integrating agent model with parallel computing architectures. In the 

experiment section, the influences of spatial granularity and scalability have been tested 

with a theoretical agent-based model (StupidModel) parallelized using HPABM 

framework.   

In Kim et al. (2015), the original Schelling model has been parallelized. In 

comparison with this work, existing parallel ABM work usually have three modeling 

limitations: 1. the communications and interactions among agents are limited within 

adjacent neighborhood; 2. Instead of a real world case, they all were tested with an 

artificial world 3. Most of them use study regions with regular geometric shape (Tang et 

al., 2011; Shook et al., 2013; Gong et al., 2013; Tang and Jia, 2014). Three domain 

decomposition strategies (equal area, unequal area, and irregular shape) have been 

applied and estimated in experiment based on the number of housing units. The unequal 

area decomposition yielded a better computation performance than equal area, due to the 
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unevenly distributed housing units. In terms of communication, two-stage all-to-all 

communication between subdomains, as well as exchange boundary information through 

ghost zone, have been implemented with MPI. Furthermore, the proposed parallel 

Schelling model was validated with the 2010 Decennial Census. 

2.4.3 Parallel strategies related to parallel spatial modeling 

A serial of parallel strategies, such as synchronization and decomposition, have 

been applied in parallel spatial simulation modeling to cope with challenges related to 

parallel spatial modeling. In this section, we will detail these parallel strategies. 

The objective of decomposition strategies is to divide the geographical problem 

into a myriad of sub-problems which can be simultaneously executed on multiple 

processors which are available. Generally speaking, decomposition strategies can be 

categorized into three approaches: complete decomposition, domain decomposition and 

control decomposition (Ding and Densham, 1996). Complete decomposition is often 

implemented with a master-slave computing pattern. In this pattern, a computing 

processor acts as master who distributes tasks and collects results. Other computing 

processors act as slave in which tasks are executed. Taking advantage of complete 

decomposition, a problem can be divided and distributed to a mass of processes which do 

not communicate with each other in terms of computation. Because there is no 

communication among processes, synchronization is not necessary with complete 

decomposition. Domain decomposition divides the total dataset into individual data 

elements based on the characteristics of spatial data. In contrast, control decomposition 

breaks the entire computational process into a mass of individual functions which are 
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allocated to multiple processors (Armstrong and Densham, 1992; Wang and Armstrong, 

2003; Wang and Armstrong, 2009).   

After partitioning a problem with decomposition strategy, a problem is divided 

into isolated subtasks. When we allocate numerous subtasks to available computer 

resources, load balancing has to be taken into account (Wilkinson and Allen, 2004). If 

some processors are allocated with much smaller amount of work, they will finish their 

work much earlier than others, and computer resource will be wasted. In order to improve 

computation performance by means of minimizing the execution time, we have to 

allocate workload to each available processor as even as possible.  

With an objective of mapping each subtask to available processors, task 

scheduling strategy provides static and dynamic approaches to balance the workload on 

each processor. Taking advantage of static task scheduling strategy, we can assign 

subtasks to available computer resource before execution on each processor. Static task 

scheduling strategy well suits homogeneous problem which can be partitioned into 

subtasks with equal workload. Instead of homogeneous problem, dynamic task 

scheduling strategy is well tailored to tackle inhomogeneous problem in which the 

workload of subtasks are various. Dynamic task scheduling strategy assigns subtasks to 

available processors during execution on multiple processors. Furthermore, according to 

hierarchy and structure among processors, there are two types of dynamic task scheduling: 

centralized and decentralized (Wilkinson and Allen, 2004).  

With regard to communication among multiple processors, we have to take into 

account synchronization in MIMD systems. According to communication mechanism in 



48 

 

 

shared memory, methods, exemplified by semaphore method, are implemented to 

coordinate the execution process on each processor. In contrast, based on controlling the 

message passing process among processors, synchronization is realized on distributed-

memory systems, such as the synchronous message passing method (Ding and Densham, 

1996).   

Geographers have tapped into parallel strategies which can be applied to solve 

computational challenges related to parallel spatial simulation (Ding and Densham, 1996; 

Armstrong, 1992; Wang and Armstrong, 2003; Wang and Armstrong, 2009; Nagel and 

Rickert, 2001). Taking a broad view, Ding and Densham (1996) summarized a set of 

parallel strategies such as decomposition, load balancing, synchronization and data 

dependencies. Furthermore, the authors classified the spatial modeling for parallelism and 

respectively discussed the parallel strategies according to varied spatial characteristics.  

Armstrong (1992) is a classical article focusing on discussing the domain 

decomposition in parallel spatial modeling and how to handle the massive computational 

requirements with parallel processing. The author introduced the geographical modeling 

with sequential architectures, vector pipeline architectures, as well as parallel processing 

architectures. There are two types of parallel computing architectures discussed in this 

article: SIMD (Single Instruction on Multiple Dataset) and MIMD (Multiple Instructions 

on Multiple Dataset). In comparison with SIMD, there is more overhead introduced by 

more communication and movement of instructions and data in MIMD, reducing the 

computing performance of parallel spatial modeling. Pointed out by the author, two 

objectives have to be achieved within domain decomposition process. The first objective 



49 

 

 

is to make the working load as even as possible among computing processors, while the 

second one is to minimize overhead in the task management, for example task scheduling. 

According to two characteristics of spatial domain, regularity and homogeneity, domain 

decomposition can be classified into four combinations. Furthermore, the author 

discussed three types of data dependencies and how to address them in domain 

decomposition. To better demonstrate the domain decomposition, a p-median location-

allocation model (selecting facility sites from candidates) has been parallelized in the 

case study of this article. 

To handle the computation intensity in spatial interpolation, Wang and Armstrong 

(2003) has developed a distributed spatial interpolation algorithm (inverse-distance-

weighted (IDW)) algorithm taking advantage of Globus Toolkit (GT) based on Grid 

computing technology. In this article, the authors have implemented a quad tree approach 

to conduct domain decomposition. In the work of Wang and Armstrong (2009), a 

theoretical approach has been presented to capture the computational intensity in 

geographical analyses. The authors have developed a generic means to formalize the 

computation intensity of geographical analyses with computational transformations, 

based on the spatial computational domain representation. The novelty of this paper is 

that the authors establish computational domains to support the parallel strategies such as 

domain decomposition, load balancing and task scheduling. In the methodology 

framework, region quadtrees and space filling curves have been applied to conduct 

domain decomposition based on the spatial computational domain. In the case study, two 

types of spatial algorithms, IDW and G* (d) spatial statistic (measuring spatial 
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association among observation points), have been used to illustrated the proposed 

theoretical approach and associated methodology framework. 

Nagel and Rickert (2001) discussed how to parallel the Transportation Analysis 

and SIMulation System (TRANSIMS). The TRANSIMS takes advantage of microscopic 

simulation of large transportation system to support the transportation planning, which 

uses individual objects to represent entities in transport system such as vehicles and 

travelers. In domain decomposition, the street network was divided into sub domains with 

similar size, and each sub domain was allocated to a single computing node. Two 

approaches can be applied in the graph partitioning to efficiently divide the whole 

transportation network graph: orthogonal recursive bisection and METIS (a graph 

partitioning library). Then, an adaptive load balancing strategy has been designed and 

implemented based on execution time of links and nodes. Furthermore, the authors 

discussed how to systematically predict the computing performance of parallel 

TRANSIMS model, which can guide the planning of computing budget. 

Besides general work mentioned above, parallel strategies has increasingly been 

applied by a host of scholars in parallel specific spatial simulation to tackle challenges 

with regard to communication and synchronization among processors, workload 

balancing, and memory management. In the work of  Uziel and Berry (1995), domain 

decomposition and task scheduling were implemented to cope with irregular shape of 

study area in parallel individual-based models. To investigate the impacts of alternative 

hydrologic planning scenarios on wildlife, in Abbot et al. (1997), the paper authors have 

parallelized an individual based model to simulate the population change of deer and 
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panthers in the Everglades region of south Florida. The authors have selected the simpdel 

model (spatially explicit individual-based simulation model of Florida panther and white-

tailed deer in the Everglades and Big Cypress landscape) as the individual model. A row-

wise block-striped partitioning domain decomposition has been applied to divide the 

landscape into a set of sub groups. When distributing the sub groups among available 

computing processors, instead of total number of rows, total number of cells on each 

processor is used to guide the load balancing with respect to the irregular shape of study 

area. The communication among computing processors in the deer mating process has 

been implemented by MPI. In the experiment part, the parallel simpdel model achieved a 

peak speedup of 27 with a population size of 2,000 using 32 computing processors. 

 Hazen and Berry (1997) designed a centralized task management to realize the 

inter-processor scheduling of tasks in a distributed computing environment. In Nugala et 

al. (1998)’s work, the authors evaluated and compared the computing performance of 

dynamic and static task scheduling with respect to the speedup and communication cost. 

Static and dynamic load balancing were extensively employed in the partitioning process 

of parallel spatial simulation models (Lan et al., 2002; Owczarz and Zlatev, 2002; Wang 

et al., 2006; Parry and Evans, 2008; Nichols et al., 2008).  

Nichols et al. 2008 have proposed a parallel ABM framework of nonlinear 

structured population model taking advantage of message-passing parallel approach. 

Nichols et al. (2008) discussed the significance and impact of load balancing for the 

structured population model. Thus, a load balancing algorithm has been designed and 

implemented to increase the scalability and reduce the computing time of structured 
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population model in this article. In this work, a predator-prey model was parallelized to 

examine the proposed parallel scheme. Two types of agents, daphnia and fish, have been 

connected with the feeding mechanism. And due to the large computational requirement, 

the authors focused on the lifecycle of daphnia. Two strategies local combining and 

global combining have been examined in terms of the computing performance. And the 

global combining has been proven to be a better solution than the local one because it can 

minimize the total workload among computer nodes. Furthermore, a rebalancing 

algorithm has been designed to balance the workload on each node after a fixed 

rebalancing period. A superliner speedup was observed in experiments when 2 and 4 

processors were used. The authors discussed this result and pointed out the reason was 

the fully utilization of cache memory on each computing node. 

Shook et al. (2013) identified the major computational bottleneck as inter-

processor communication in scaling parallel spatially explicitly agent-based models (SE-

ABM). In order to overcome this challenge, inter-processor communications have been 

classified into four categories in the conceptual design in this work, including entity 

interaction, entity transfer, simulation management, and model parallelization. The entity 

interaction mainly handles three types of interactions: agent-agent, agent-environment 

and environment-environment interactions. Entity transfer contains the movement of 

agents among multiple computing cores. Simulation information such as the status, 

statistics and I/O (Input/Output) can be retrieved in the simulation management. A set of 

parallel strategies including domain decomposition, load balancing and synchronization 

are encompassed in model parallelization. The proposed communication framework can 
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reduce the directly management of inter-processor communication in SE-ABM. There are 

four interrelated methods in this communication framework: group organization and 

operation, rectilinear domain decomposition (RDD), a load balancing strategy, and entity 

proxies. In this work, a distributed load balancing strategy is designed and implemented 

with three steps: preparation, partition calculation, and redistribution. The computation 

intensity is calculated by the number of agents time a weight factor, for example the 

estimated transfer time of one agent. A theoretical agent-based model (Sugarscape model) 

has been paralleled in the experiments to illustrate the proposed communication 

framework. 

With regard to communication and synchronization, ghost zones are widely used 

to exchange data and state information among multiple processors in message-passing 

approach (Wang et al., 2006; Li et al., 2010; Tang et al., 2011a). In order to efficiently 

simulate land use and land cover change, Li et al. (2010) have developed a cellular 

automata urban simulation with parallel computing techniques (MPI). To test the 

computing performance, the proposed framework has been applied to simulate the urban 

dynamics in the Pearl River Delta, a fast developing area in China. The authors have 

proposed a line-scanning method calculating the computing time of each sub domain, to 

conduct domain decomposition based on equal workloads instead of equal area. 

Furthermore, a ghost area has been designed in each sub domain to exchange necessary 

information among processors. 

In the work of Tang et al. (2011a), the authors have designed and implemented a 

parallel agent-based model to examine how the opinion of individual agents (ranchers) 
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about the land use policy can achieve consensus through interactions with each other. The 

ABM of opinion formation is from a land use simulation which is developed to 

investigate the land use dynamic in southwest Montana. Within the agent-based model, 

individual agents can randomly select other agent to communicate with in a perceptual 

window defined by users. Moore neighborhood (eight adjacent and diagonal surrounding 

cells) has been applied in the process of neighborhood research. If the selected 

neighboring agent has a close opinion value, the current agent will update its own opinion 

according to the decision rule. To handle the computation intensity, MPI and C++ have 

been employed to parallelize this opinion agent based model for large scale study area. In 

this work, three parallel strategies have been used in the parallel model, including spatial 

domain decomposition, communication and synchronization among computing nodes. In 

terms of spatial domain decomposition, the entire landscape was divided with a row-wise 

regular strategy. Thus, the number of rows in each sub domain can be used to measure 

the workload on each computing node. Also, ghost zone strategy was used to facilitate 

the communication among computing nodes. Ghost zones are the overlapping parts 

among sub domains, through which the neighborhood information on neighboring 

computing nodes can be accessed and updated. The size of ghost zone was determined by 

the size of perceptual window. Furthermore, the authors implemented the synchronization 

at each iteration step with barrier approach.  

2.5 Summary 

 In this chapter, we conducted a thorough literature review to investigate the utility 

of spatiotemporal simulations and cyberinfrastructure in geographic problem solving. 
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Spatiotemporal simulations are able to assist urban planners by providing future scenarios 

analysis among alternative decisions. While simulating urban growth in spatial and 

temporal dimensions, traditional simulation approaches always ignore the impact from 

human decision making process. ABM is well tailored to explicitly represent the decision 

making process in urban growth. By integrating with other modeling approaches such as 

CA, ABM allows to investigate how agent behaviors at individual level can generate 

spatial land use patterns at aggregate level.  

 Cyberinfrastructure has been applied to provide support for solving computational 

intensity associated with ABM. With the support of high performance and parallel 

computing, we can substantially improve the modeling capability of ABM. Empirical 

data with large data size and fine spatial resolution can be used to derive decision rules 

and calibrate model parameters used in ABM. Furthermore, parallel strategies (such as 

decomposition, task scheduling, and communication) and evaluation metrics of 

computing performance have been developed based on the characteristics of 

spatiotemporal simulations.   

 Load balancing has been recognized as an important objective in the design of 

parallel strategies such as decomposition and task scheduling (Armstrong, 1992; Ding 

and Densham, 1996; Wilkinson and Allen, 2004; Timm and Pawlaszczyk, 2005).The 

application of load balancing can substantially improve the efficiency of parallel 

simulations. Load balancing requires the accurate estimation of computing intensity. 

However, existing work did not provide a method for the estimation of computing 

intensity. Most parallel simulations only roughly estimated computing intensity based on 
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their own simulation mechanisms (Abbot et al., 1997; Nagel and Rickert, 2001; Wang 

and Armstrong, 2003; Nichols et al., 2008; Guan and Clarke, 2010; Parry and Bithell, 

2012; Shook et al., 2013; Pijanowski, 2014).These previous work did not present an 

general approach to capture the relationship between spatial characteristics/content and 

computing intensity. Consequently, it is hard to apply these methods in spatial 

simulations with different mechanisms. Furthermore, they did not report a method which 

can validate their estimation of computing intensity.  

 In particular, Wang and Armstrong (2009) has developed a theoretical approach 

to assess computational intensity in geographical analysis. However, the limitation of this 

approach is that it requires sufficient and detailed knowledge about the underlying 

mechanisms which is hard to obtain due to the dynamic and complex characteristics of a 

spatiotemporal simulation. In conclusion, a major limitation of previous work is that there 

is no general approach to appropriately estimate the computing performance and validate 

the estimation. My dissertation will fill this gap by presenting an empirical approach to 

estimate the computing performance of spatiotemporal simulations. This approach 

ignores the underlying mechanisms, which can be generally applied in parallel 

simulations. The estimation accuracy of computing performance is also provided by this 

approach for validation purpose. 

 In Sum, applying cyberinfrastructure in solving computational challenges in 

spatiotemporal simulations has greatly improved our capability of modeling complex 

adaptive systems, which represents a research frontier in the study of complex adaptive 

systems. Although researchers have developed parallel frameworks to support 
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spatiotemporal simulations based on different computing architectures (such as SIMD 

and MIMD) and parallel strategies, it is still not clear how to appropriate estimate its 

computing intensity. Therefore, the efficient use of cyberinfrastructure in spatiotemporal 

simulations has not been adequately studied.
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CHAPTER 3: SURROGATE-BASED MODEL 

 

 

This chapter focuses on the exploration of the utility of surrogate-based models. 

First, I broadly illustrate the background of surrogate-based modeling in section 3.1. In 

section 3.2, I generally introduce components of surrogate-based modeling based on 

literature review. In section 3.3, I discuss the important role of surrogate-based models in 

supporting parallel spatiotemporal simulations. At last, a sequential procedure of the 

construction of surrogate-based models is presented to demonstrate how to build and 

apply a surrogate-based model in a spatiotemporal simulation. 

3.1 Background of surrogate-based models 

Surrogate-based models, also known as response surface models or metamodels, 

have been extensively employed to solve computational intensity for high-fidelity 

simulations in different domains, including mathematic, computer science, and 

engineering domains (Forester et al., 2008; Kleijnen, 2009). Since these high-fidelity 

simulations usually have multiple objectives which are mutually competing with each 

other, it might consume long computation time for specific combinations of parameters. 

Therefore, routine tasks in simulation such as sensitivity analysis and model optimization 

are impossible to complete within affordable computing time based on a large parameter 

space. 
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            Surrogate-based approaches can greatly alleviate this computing intensity using 

an approximation way. While spatiotemporal simulations capture the causal model of 

phenomena or systems, surrogate-based modeling focuses on the approximation of 

transformation from input to output, ignoring the exact processes within a system. 

Surrogated-based models are selected to fit I/O data generated in spatiotemporal 

simulation runs, and then provide fast predictions for simulation output (Queipo et al., 

2005; Forrester et al., 2008; Forrester and Keane, 2009). 

To investigate the development of surrogate-based models, I conduct citation and 

subject searching for research journals. The database used is Web of Science (ISI), in 

which 5,741 articles are found under the topic “surrogate model” or “response surface 

model” or “metamodel”. The research of the utility of surrogate-based models can be 

traced back to 1970’s. Harvey J. Greenberg published the very first article of surrogate 

model in the journal of Operations Research in 1973 with 21 citations. The author has 

developed a generalized surrogate model based on the monotonic-penalty-function 

(Greenberg, 1973).  

The work of Stockwell and Peterson (2002) has the highest citation number of 

482 in this domain. In their work, the authors have applied surrogate-based models to 

simulate ecological niches and predict geographic distributions. The occurrence data of 

bird species (around 300,000 records in total) was used in this study, which was extracted 

from the Atlas of the Distribution of Mexican Birds. Through re-sampling for the species 

data, the authors explored how the sample size can affect the accuracy crossing surrogate 

models.   
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Figure 2 shows the number of publication for each year from 1973 to 2017. We 

can see the exploration of surrogate-based model keeps increasing with the advances in 

computational power (Sacks et al., 1989). Figure 3 shows the top 10 research areas where 

these publications appear. Based on Figure 3, we can see the research of surrogate-based 

models is dominated by two research areas, engineering and computer science, with a 

percentage of 87%. Surrogate-based models have been most used in engineering with a 

percentage of 44%. Close to engineering, computer science has the second highest 

number of publications (43%) related to surrogate-based models. Following engineering 

and computer science, the number of publications of surrogate-based models only takes a 

percentage of 7.7% in mathematics. 

 

Figure 1. Number of surrogate-based modeling articles published by year 
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Figure 2. Research area of surrogate-based modeling 

Instead of using metamodel in an ad hoc way in previous studies, Kleijnen and 

Sargent (2000) firstly demonstrated a methodology for the development of metamodel. 

The methodology of Kleijnen and Sargent (2000) mainly focuses on distinguishing the 

construction and validation of a metamodel. By emphasizing the relationships among 

problem entity, simulation model, and metamodel, Kleijnen and Sargent (2000) 

summarized and discussed that there are four objectives in metamodeling: understanding, 

prediction, optimization, and verification and validation. In particularly, Kleijnen and 

Sargent (2000) explicitly illustrated the procedure of metamodeling for random 

simulation using linear-regression.    

Take a broad view, many researchers have dedicated to review the development 

of surrogate-based modeling with a varied of simulation goals (Queipo et al., 2005; 
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Forrester and Keane, 2009; Keleijnen, 2009). Generally speaking, a surrogate-based 

model is built through the following three steps: 1) design of sampling strategy; 2) 

construct the surrogate model; 3) validate the performance of surrogate model (Queipo et 

al., 2005; Forrester and Keane 2009). Queipo et al. (2005) identified the significance of 

SBAM (surrogate-based analysis and optimization) in handling computational challenges 

within the development of aerospace systems. In the work of Queipo et al. (2005), the 

authors discussed several fundamental issues in SBAM, including sampling strategy, the 

selection and validation of model, surrogate model construction, sensitivity analysis, and 

surrogate-based optimization.  

Following the work of Queipo et al. (2005), Forrester and Keane (2009) 

conducted a deeper review to illustrate the pros and cons of mainstream approaches in the 

construction of surrogate-based optimization such as polynomials, moving least-squares, 

radial basis functions, kriging, and support vector regression. Keleijnen (2009) focused 

on the review of using Kriging metamodeling in deterministic and random simulations. 

The work of Keleijnen (2009) demonstrated that how the bootstrapping method can be 

used in the estimation of the variance in Kriging metamodeling. Keleijnen (2009) also 

compared Kriging metamodeling to classic polynomial regression. Furthermore, this 

paper respectively presented the designs of Kriging metamodeling for two basic goals of 

simulation (sensitivity analysis and optimization). 

With respect to the application of surrogate-based modeling, Goel et al. (2007) 

proposed a response surface approximation approach for multi-objective optimization in 

rocket injector design. The authors of  Goel et al. (2007) applied a quintic polynomial to 
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approximate the Parceto optimal front (POF) which helps researchers choose compromise 

designs by representing trade-offs among multiple objectives. Gorrissen et al. (2010) 

demonstrated a software framework and developed a toolkit, Matlab SUrrogate 

MOdeling (SUMO), to construct surrogate models for computer simulations. In 

particularly, Gorrissen et al. (2010) implemented an active learning (or sequential design) 

process in the sampling process. 

3.2 Components of surrogate-based models 

 A surrogate-based modeling usually consists of three components: spatiotemporal 

simulation, design of experiments, and model selection (see Figure 1). In the component 

of spatiotemporal simulation, we should determine which simulation variables should be 

taken into account in surrogate-based modeling. Simulation variables can be selected 

based on their relative importance to the output of simulation. The value of selected 

variables will be varied in experiments of simulations. Based on the underlying 

mechanism of simulation, we can choose a subset of all variables as the initial sample 

design at first. According to simulation results and analysis of the initial sample design, 

we then can further add or remove variables to improve the initial sample design. 
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Figure 3. Components of surrogate-based modeling 

The second component is design of experiments, which is also known as sample 

selection, sampling plan, optimal experimental design or active learning in different 

scientific domains. In this component, we should select which sample designs we used to 

construct our surrogate-based models. The purpose of this component is to running a set 

of simulations according to a sampling strategy. The sampling strategy should disperse 

sampling points crossing the parameter space of selected simulation variables. The 

spreading pattern of sampling points in the parameter space should be uniform (Forrester 

and Keane, 2009).  
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Volumes of sampling techniques could be applied in order to construct surrogate-

based models. Latin hypercube sampling is a common used sampling strategy in 

surrogate-based modeling, which conducts stratified sampling of in parameter space 

based on a multidimensional distribution (McKay et al., 2000). Different sampling 

strategies have been developed by improving the optimization of a spreading measure in 

standard Latin hypercube sampling (Johnson and Moore, 1990; Tang, 1993; Owen, 1994; 

Palmer and Tsui, 2001; Queipo et al., 2005). For example, in the work of Tang (1993), 

the author developed an orthogonal array (OA) based Latin hypercube sampling and 

compared the performance to standard Latin hypercube sampling. Morris and Mitchell 

(1995) illustrated the space filling maximim Latin hypercube sampling techniques, and 

the Matlab implementation was presented in the book of Forester et al. (2008). In 

addition, Forrester and Keane (2009) discussed an adaptive sampling in which sampling 

strategy could be recursively improved with regards to the analysis of previous sampling 

results.    

The third component is model selection in which we select surrogate-based 

models to fit the sampling I/O data from experiments. Generally speaking, the surrogate-

based modeling can be classified to two categories: parametric and non-parametric. 

Parametric surrogate-based models focus on representing the relationship between 

simulation variables and corresponding simulation output, for example polynomial 

regression and Kriging. Compared to parametric approach, non-parametric surrogate-

based models do not have a fix number of parameters, such as radial basis functions. The 

number of parameters is determined based on the training data, not the spatiotemporal 
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simulations. According to my research objective, I concentrate on parametric surrogate-

based models in this dissertation. 

Polynomial regression is a relatively straight forward and computationally 

efficient method in surrogate-based modeling (Kleijnen and Sargent, 2000; Gano et al., 

2006; Draper and Smith, 2014). It is suitable for linear, multivariable relationship. On the 

other hand, Kriging is a statistically-based approach in spatial interpolation, original used 

in spatial statistics to predict spatial variables (Krige, 1951). The spatial interpolation is 

developed based on the first law of geography (Tobler, 1970, p236): “Everything is 

related to everything, but near things are more related than distant things.” According to 

values of spatial variable at sample points, Kriging can estimate values of spatial variable 

across the study area. 

Kriging approach consists of three main components: spatial trend, spatial 

autocorrelation, and random variation (Bolstad, 2005). The spatial trend indicates an 

increase/decrease of variable value along with directions. The spatial autocorrelation 

component represents the level of similarity of points near to each other. In particular, 

semiviarance is applied to measure the spatial autocorrelation at a given distance. 

Depending on the spatial autocorrelation, Kriging approach assigns an optimal set of 

weights for all selected driving variables in spatial interpolation (Cressie, 2015). Then, 

these weights can be applied in the following equation to estimate value of spatial 

variable at unknown location: 
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Where Vi is the estimated value of spatial variable at point i, Wn is the weight for each 

sample point n, and Vn is the value of spatial variable at sample points. Kriging surrogate-

based models are more suitable to simulate non-linear relationship between multiple 

simulation variables and output (Jones et al., 1998; Van Beers and Kleijnen, 2001; 

Simpson et al., 2001; Santner, 2013).  

The performance of surrogate-based models can be evaluated with alternative 

approaches in the component of model selection. Cross-validation and bootstrapping 

strategies are two common used approaches in different types of surrogate-based 

modeling (Queipo et al., 2005; Martin and Simpson, 2005; Forrester and Keane, 2009; 

Myers et al., 2016). (1) With k fold cross-validation strategy, we first divide the sampled 

I/O simulation data into k sub datasets. (2) Select one of the k sub datasets as validation 

dataset and other k-1 remaining datasets as training dataset. (3) We train our surrogate-

based model with training dataset and evaluate its prediction performance with validation 

dataset. (4) Keep repeating step 2 and 3 until each sub dataset is selected as validation 

dataset once (Golub et al., 1979; Efron, 1983).  

Compared to k fold cross-validation strategy, bootstrapping approach does not 

have to split the I/O data into sub datasets. It randomly selects subsamples in all sampling 

I/O simulation data as training data with replacement. And the rest of original sampled 

I/O simulation data are used as validation dataset (Hall, 1986; Efron, 1993). Based on the 

result of validation, we optimize the parameters used in surrogate-based models to 

minimize the prediction error represented by Root-Mean-Square error (RMSE). RMSE of 

each surrogate-based model is calculated with the following equation: 
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where y is the observed computing time of a computing job, while its predicted 

computing time is ypredicted. n is the total number of computing jobs. Represented by 

RMSE, it is easy for users to know how accurate the prediction result of computing 

performance and requirements of computing resources is for spatiotemporal simulations. 

3.3 Significance of surrogate-based models 

Geographers have developed spatiotemporal simulation models to better capture 

and understand underlying mechanisms of complex geographic phenomena. With rapid 

advances of computer science and data acquisition technology, complexity and data size 

in spatial analysis and modeling tend to exponentially increase, which result in expensive 

computational cost in the resolution of geographical spatial problems. Consequently, 

routing tasks in spatiotemporal simulations, for example model calibration, sensitive 

analysis, become impossible to complete due to incredibly computationally expensive 

processes with large amount of repetitive runs of model. Cyberinfrastructure is a 

promising way to provide high performance computing power, consisting of high-

performance and parallel computing, massive data handling, and virtual organization 

(NSF, 2007).  

In order to efficiently leverage the computing power of cyberinfrastructure, 

appropriately estimating the computing performance of spatiotemporal simulations is 

vitally important for guiding experiment designs. However, because of the complexity of 

spatiotemporal models, there is a huge challenge to estimate the computing performance 
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of a parallel spatiotemporal simulation within cyberinfrastructure environments. To 

efficiently overcome this challenge, I develop a surrogate-based approach to assess the 

computational performance of a parallel spatiotemporal simulation within 

cyberinfrastructure environments. In this work, I incorporate the surrogate-based 

modeling and cyberinfrastructure together to solve computationally intensive issue in a 

spatiotemporal simulation. 

Surrogate-based modeling approach has been quite widely studied and employed 

in different scientific domains, handling computational intensity design problems (Wang, 

and Shan, 2007).  However, this approach has been rarely introduced into geography 

domain to facilitate spatial analysis and modeling. To fill this gap, I propose a surrogate-

based methodology to tackle computational burdens in spatiotemporal simulations within 

cyberinfrastructure environments. Our methodology in this dissertation has the following 

novelties: first, I firstly highlight the important role of surrogate-based models in the 

study of complex geographic phenomena; second, the methodology illustrates how to fit 

and validate a surrogate-based model within a spatiotemporal simulation; third, I couple 

surrogate-based models with parallel computing to aid the efficiently utilization of 

cyberinfrastructure.  

3.4 Designs for spatiotemporal simulations 

 Alignment with other scientific domain such as engineering design, we conduct 

volumes of simulations to solve real world problems in geography (e.g. global climate 

change, food crisis, and deforestation). However, spatiotemporal simulations for those 

real world problems always bring us overwhelming computing challenges when we have 
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a very large study area. The objective of this work is to develop a generalized 

methodology to support parallel spatiotemporal simulations by blending surrogate-based 

modeling with cyberinfrastructure. Through the support of this methodology, computing 

performance of parallel spatiotemporal simulations within cyberinfrastructure 

environments can be appropriately predicted to guide the design of computationally 

intensive tasks such as model calibration, sensitive analysis, and model optimization.  

In this section, I will illustrate the design of a sequential procedure for the 

construction of a surrogate-based model to estimate the computing performance in 

spatiotemporal simulations. Generally speaking, I develop spatiotemporal simulations to 

help us understand the underlying mechanisms of complex geographic phenomena. 

Within spatiotemporal simulations, a set of model variables are designed to present 

heterogeneous spatiotemporal characteristics/content of units in study area, for example 

input data size, coverage, population, time range and so on. Some of these spatial 

characteristics/content variables can directly impact the computing intensity of the 

spatiotemporal simulation.  

We can conduct spatiotemporal simulations with sampled combination of 

variables values and generated the I/O (input/output) simulation data. While input is 

values of spatial characteristics/content variables, output is the associated computing 

performance (e.g. computing time). Based on values of spatial characteristics/content 

variables used in spatiotemporal simulations and their computing performance using 

cyberinfrastructure, a surrogate-based model can be built to represent the relationship 

between them. This surrogate-based model is able to help users manage computing 
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resources and computing cost (time and money) by constructing the response surface of 

computing performance for the whole parameter space of variables.  

I design a sequential procedure to build a surrogate-based model to capture the 

relationship between spatial characteristics/content variables and computing performance. 

The sequential procedure consists of five main parts to build a surrogate model (please 

see Figure 4):  sample selection, identification of driving variables, surrogate model 

construction, optimization, and response surface generation as follows:  

 

Figure 4. Sequential procedure of surrogate-based modeling 

(1) Start with sample selection to generate I/O simulation data. According to 

parameter space characteristics of spatial characteristics/content variables, we can select 

appropriate sampling strategy such like random sampling or systematic sampling. Based 

on the sampling strategy applied, we conduct the spatiotemporal simulation with sampled 

combinations of spatial characteristics/content variable values in parameter space. 

Corresponding computing performance for each combination of characteristics/content 

variable values is recorded as the sampling I/O simulation data based on the computing 



72 

 

 

resources employed. In order to obtain statistical robust sampling data, Monte Carlo 

approach can be applied to repeat spatiotemporal simulation run of each parameter 

combination for multiple times. Then the average computing performance can be 

calculated and used in I/O simulation data. In this way, we can greatly reduce the 

uncertainty in I/O simulation data due to computing resource hardware. 

(2) Conduct the identification of driving variables. The driving variables in 

surrogate-based modeling are spatial characteristics/content variables which have 

significant influence on the computing performance of spatiotemporal simulations (e.g. 

computing time). According to I/O simulation data, we can first explore the relationship 

between different spatial characteristic/content variables and computing performance by 

means of calculation of the correlation. Based on the correlation of spatial 

characteristic/content variables, select these variables that have high negative/positive 

correlation with computing performance as the driving variables. 

(3) Construct a surrogate-based model according to the I/O simulation data 

and driving variables identified. Choose a type of surrogate-based model and fit the 

surrogate-based model to the sampled I/O simulation data from the previous step. 

Surrogate-based modeling per se is a data driven, black-box, approaching approach. 

Therefore, with advances in data analysis and data mining technology, volumes of 

methods are well studied and compared for their applications in surrogate-based 

modeling, such as polynomial regression, radial basis functions, Kriging, and machine 

learning methods (Queipo et al., 2005; Forrester and Keane, 2009; Keleijnen, 2009). 

According to different mechanisms, each type of surrogate-based models presents its own 
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advantage and disadvantage in terms of their computational effectiveness and prediction 

performance. In this dissertation, I construct surrogate-based models to represent the 

relationship between spatial characteristic/content variables and computing performance 

with two common used approaches: polynomial regression and Kriging.  

(4) Validate and optimize the surrogate-based model. In this step, we evaluate 

the prediction performance of surrogate-based model constructed in previous step and 

optimize its parameters to minimize the error between real and estimated values of 

computing performance. Base on the sampled I/O simulation data, we can choose one of 

common used model validation strategies to assess the prediction performance of our 

surrogate-based model, such as k fold cross-validation or bootstrapping approaches.  

(5) Generate the response surface. At last, a response surface of computing 

performance is generated for the corresponding parameter space in spatiotemporal 

simulations.  

In order to improve the computational efficiency, this sequential procedure of the 

construction of surrogate-based models can be automated and wrapped into scientific 

workflow (discussed in detail in Chapter 4). With support of scientific workflow, this 

sequential procedure can be implemented crossing computing platforms (such as Window 

and Linux platforms) within cyberinfrastructure. And the modularity of this sequential 

procedure is substantially improved. Therefore, we are able to integrate this sequential 

procedure in our computational framework to estimate the computing performance of 

spatiotemporal simulations within cyberinfrastructure environments.
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CHAPTER 4: COMPUTATIONAL FRAMEWORK 

 

 

4.1 Research objective 1 methodology 

4.1.1 Computational framework of spatiotemporal simulation 

 For the efficient use of cyberinfrastructure, it is critically important to 

appropriately estimate the computing performance and computing resource requirements 

of parallel spatiotemporal simulation. However, the heterogeneity of computing recourses 

increases the complex of the estimation of computing performance (Wang and Armstrong, 

2008). With regard to the first research objective, I propose a computational framework 

to facilitate the application of cyberinfrastructure in spatiotemporal simulation. With 

support from this computational framework, the computation performance of routing 

tasks within spatiotemporal simulation (e.g., calibration, validation, and what-if scenario 

analysis) can be predicted based on computing resource employed.  

The computational framework of a spatiotemporal framework consists of three 

components: spatiotemporal simulation, cyberinfrastructure, and a surrogate model (see 

Figure 4). Instead of exact processes, a surrogate model is a data driven method which 

focuses on the relationship between input and output. For the real-world spatiotemporal 

simulation, it is impossible to go through all parameters to obtain the exact information of 

computing performance and requirements of computing recourses. Taking advantage of 
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the surrogate model, our computational framework can represent the computing 

performance, measured by computing performance metrics such as speedup and 

computing time, with a response surface. Instead of the whole parameter space, the 

construction of this response surface only requires a limited number of sample parameters 

and associated information of computing performance. The response surface represents 

the computing performance for the whole parameter space in spatiotemporal simulation 

with cyberinfrastructure. 

 

Figure 5. Surrogate-based computational framework of parallel spatiotemporal 

simulations 

The component of cyberinfrastructure is in charge of handling the computation 

intensity using parallel computing. Based on the concurrency of spatiotemporal 

simulation and the computing resource used, we can decompose the whole computation 

task into a set of small computing tasks. The number of tasks should be large enough to 

achieve speedup with support of massive computing processors. When mapping 
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computation tasks among computing processors, appropriate task scheduling mechanisms 

have to be designed to avoid extra communication in task management. Information 

update and synchronization have to be considered in the communication. Since 

communication in the simulation can introduce computation overhead, we should reduce 

communication among computation tasks as much as possible. At last, computing 

performance of the spatiotemporal simulation are estimated to provide the computing 

metrics for surrogate-based model, according to employed computing resources.   

4.2 Research objective 2 methodology 

In order to realize the computational tractability, I implement three main 

approaches in our computational framework: parallel computing, scientific workflow and 

automation. 

4.2.1 Parallel computing 

A set of parallel strategies have been applied to enable our computational 

framework the capability of big data handling and leveraging high performance 

computing in large-scale urban growth simulation. The parallel strategies have been 

implemented concentrating on three parts: decomposition, task management and 

communication.  

Once spatial datasets are deployed in the framework, based on the spatial and 

computational characteristics of these datasets for example the shape of study area, an 

appropriate decomposition strategy, e.g., domain decomposition, control decomposition, 

and hybrid decomposition, can be designed to divide the datasets into a set of tasks. In 

our computational framework, the computation intensity due to I/O process could be 
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substantially mitigated with control decomposition which divides various data input and 

output functions into a set of sub tasks running on different computing nodes. And the 

domain decomposition, for example column-wised decomposition, is employed in the 

urban growth simulation to decompose the whole study area into sub regions. 

After the decomposition, all tasks wrapped up in decomposition are aggregated 

based on their estimated computation intensity. Taking advantage of statistical manner, 

computation intensity could be evaluated based on the relationship between the size of 

data and the computing performance metrics such as computing time. Then all tasks are 

assigned to available computing nodes from the master node. In order to minimize the 

parallel computing time decided by the longest computing time among computing nodes, 

load balancing strategies are implemented to make the work load as even as possible, 

either in static or dynamic ways. 

With regard to heterogeneous computing architectures, there are two types of 

communication methods provided in our computational framework: message passing and 

shared memory. Within one computing node, multiple threads can communicate with 

each other by accessing the same memory to fetch information needed in urban growth 

simulation. In other hand, for communication among different computing nodes, message 

passing method is implemented with ghost zone strategy. Ghost zones on each computing 

node consist of cells not in current computing node but affecting the land cover transition 

of cells in current computing node. The status of the ghost zone cells are updated by 

corresponding computing nodes at the end of each time step. And the size of ghost zone 

depends on the land cover transition mechanism used in urban growth simulation. 
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4.2.2 Scientific workflow middleware  

The spatiotemporal simulation of urban growth is a very complex process 

involving heterogeneous data and multiple processes. It is a big challenge to efficiently 

manage, execute and share complex urban growth simulation. To overcome this 

challenge, it is imperative to design a middleware to glue functionalities and 

computational infrastructure together in urban growth simulations. Scientific processes 

and heterogeneous data can automatically be connected and executed within scientific 

workflow. In this way, the reusability of functionalities of the spatiotemporal simulation 

can be greatly improved (Medeiros et al., 2005; Ludäscher et al., 2006; Taylor et al., 

2014).   

A scientific workflow middleware is implemented to integrate all processes and 

data crossing a heterogeneous computing platform in the proposed computational 

framework. Besides integrating and organizing processes, the scientific workflow also 

can enable the computational framework the capability of provenance. Thus, the 

information of input data, parameters used, intermediate results, and simulation result can 

be collected and recorded for multiple uses in the future such as validation and 

reproducibility.  

To implement the scientific workflow, I apply scripting languages, including 

Windows batch scripting (https://en.wikibooks.org/wiki/Windows_Batch_Scripting), 

Linux shell scripting (http://www.freeos.com/guides/lsst/) and Python 

(https://www.python.org/). Taking advantage of scripting languages, we can organize 

data and execute processes in heterogeneous computing environments (e.g., network, 

https://en.wikibooks.org/wiki/Windows_Batch_Scripting
http://www.freeos.com/guides/lsst/
https://www.python.org/
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desktop computers, and grid). Moreover, python allows us to better leverage functionality 

presented in most GIS software such as ArcGIS.  

4.2.3 Automation 

To make the computational framework as simple as possible, I implement the 

automation for spatial sampling and cross validation processes. A Monte Carlo based 

spatial sampling approach is developed to support the statistical analysis in the 

computational framework. Due to the limitation of computation capability, sample sizes 

are relatively small in traditional spatial sampling methods, which cannot fully reflect the 

heterogeneous spatial characteristics of a large scale study area. The spatial 

characteristics can be better discovered by spatial sampling with a large sample size. 

With the capability of sampling a massive number of sample points at different region, 

the spatial sampling approach allows researchers to achieve more robust and realistic 

statistical results for the purpose of calibration and validation in urban growth simulation. 

All the processes in the spatial sampling are automated and connected with each other. 

Also, spatial sampling can be conducted according to the spatial (e.g., which county), 

temporal (e.g., which year) and attribute (e.g., which land use type) criteria, which 

incorporates Monte Carlo testing in the computational framework.  
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Figure 6. Workflow of spatial sampling and validation 

 

Our spatial sampling approach is composed of three components: spatial sampling 

and extraction, data decomposition, and regression (see Figure 5). In spatial sampling and 

extraction, a set of sample points are selected with user specified sample size and 

sampling strategy such as random sampling and systematic sampling. Also, based on 

different research objectives, sample size can be different with a specific ratio among sub 

regions or land cover types. After the generation of sampling points, associated spatial 

and economic attribute values are extracted from corresponding GIS data layers, and then 

organized into tables in a database according to the spatial index (see Figure 6). 

 

Figure 7. An example of sampling table 
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Then, in the data decomposition part, k fold cross-validation approach is applied 

to create training and validation datasets for the validation purpose with the following 

steps: 1) Shuffle all records in the sampling table; 2) Divide the sampling table into k sub 

files (k is specified by users); 3) Select a single file as validation data, and merge the 

remaining k-1 files as training data; 4) Repeat step 3 for k times to make sure each sub 

file is used exactly once as the validation data. 

Based on the training and validation dataset created in the second step, statistical 

approaches, for example logistic regression, can be applied to analyze the relationship 

between converted land cover cells and associated spatial and economic characteristics. 

Furthermore, significance testing can be employed to identify the significant driving 

factors of land cover change for each regional unit (for example county), and determine 

the contribution of each driving factor, representing with a weight matrix. The regression 

equation can be derived with statistics software such as R.     

4.3 Research objective 3 methodology 

4.3.1 ABM urban growth simulation  

To evaluate the proposed computational framework in this work, a large-scale 

ABM integrated model is developed to simulate the land use and land cover change in 

urban growth. The ABM integrated model simulates land cover transition mechanisms, 

and predicts spatial pattern and allocation of various land cover types in urban growth for 

the future. The ABM integrated model comprises of three interacting components: 

demand, CA (cellular automata) and ABM (agent-based modeling) components (see 

Figure 7). 
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Figure 8. Agent-based modeling integrated urban growth model 

 

In demand component, land demand (for example, number of cells) of different 

land cover types (urban, farmland and forest) for each region unit (e.g. county) are 

projected and allocated within each time step. Thus, though controlling land demand of 

land cover types, the ABM integrated model implements spatiotemporal constrains for 

different regions in a top-down manner. With respect to these constrains, ABM and CA 

are in charge of determining the conversion of individual land cover cell from one land 

cover type to others in a bottom-up way. Specially, there are feedback loops existing 

between ABM and CA. Based on the environment represented by CA, ABM simulates 

heterogeneous human decision making process and behaviors in the urban growth 

process. On the other hand, with respect to the impact of human decision making from 



83 

 

 

ABM, CA simulates land cover change based on the spatial interactions among land 

cover cells. 

For each region in the urban growth simulation, the model randomly selects a 

developer agent. The agent will have a suitability map of development based on its own 

decision rule derived from empirical data. Cells with high suitability values are more 

likely to be converted to urban area. Once one cell is converted, its neighborhood cells 

will be examined in a patch growth algorithm. The neighborhood cells will be converted 

to urban area if their suitability values are beyond a threshold value defined by users. The 

model will keep selecting new agents to develop urban area until the number of converted 

cells meets the demand. A model parameter development pressure is used to represent the 

urbanization level of each cell’s neighborhood. The development pressure parameter is 

dynamically updated at each time step. 

 Environment  

The environment of urban growth simulation is represented by a CA model which 

is guided by the principle of self-organization. The landscape of urban growth simulation 

consists of a grid of cells. Each cell has a set of states representing associated attributes, 

for example land cover types. The neighborhood of each cell is determined by the 

neighborhood pattern, which could be, either exactly immediate neighborhoods (first- or 

second-order neighborhoods) or distance based neighborhoods, designed according to 

various simulation purpose. Based on the transition rule f, states of each cell in next time 

step St is changed based on current state values of itself S and its proximity to 

neighborhoods Sn, as well as the human decision H (see equation 9) 
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 The newly converted cells can dynamically impact the future land cover change 

by providing positive feedbacks on their neighborhood. At the end of each time step, the 

ABM integrated model can estimate the influences of newly converted cells by updating 

the development pressure values of cells. The development pressure representing the 

degree of urbanization in a neighborhood area is a dynamic spatial variable of the human 

decision making process in ABM. The more land development occurs in surrounding 

cells, the bigger the development pressure is. In additional, I assume that the influences 

of newly developed cells to undeveloped cells follow a distance-decayed manner. 

Therefore, weight matrix approach can be designed and applied in the calculation of 

development pressure for different sub regions. The CA model converts cells from one 

specific land cover type to others in the study region by iterations. In this way, spatial 

interactions among land cover cells at the local scale can give birth to specific spatial 

patterns at a larger scale. 

 Agents 

With regard to different roles in the human society, there are various types of 

individuals with heterogeneous preferences and human behaviors affecting the process of 

land use and land cover change in urban growth. For example, at a high level, local 

government plans and regulates land use and land cover transition behaviors with zoning 

regulations. At low levels, people within conservation groups would like to protect 

specific habitats of animal far away from urban area, while real estate agents prefer to 
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make benefits by developing residential or commercial facilities where expand existing 

urban area.    

Within ABM of our integrated model, each group of agents is in charge of one 

single specific land cover transition (e.g., from forest land to residential area). Even 

within the same group, agents’ preferences could be very different, which represents the 

heterogeneity of agents in same agent group. For example, with the same purpose of 

converting forest to residential area, someone likes to live near downtown close to public 

facilities for example hospitals, while someone else prefers to build an individual house 

in a suburban area for more private space. Based on their own preferences and beliefs, 

agents convert a fixed amount of land cells to corresponding land cover type in each time 

step. Since the land use and land cover change simulation is conducted at the regional 

unit level (e.g., county) in the study area, the decision rules of different agent groups, 

representing their preferences and beliefs, are simulated with utility functions yielded 

from statistical approach, based on empirical data for each regional unit.  

In the process of land cover transition, agents determine where and when a 

transition occurs based on their utility functions, which are a multi-criteria evaluation 

problem formed as the following general equation: 

  
 
          

 

   

                                                              

where Si
j
 is the suitability value of cell i for agent j, determined by the production of a set 

of environmental and economic factors X = (X1, X2……, Xk) and their corresponding 
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weights W derived from statistical approaches, as well as a set of binary constraints Ci  

based on the zoning relations or land policies from local government. 

 The converting probability of each cell in study area is estimated based on 

current cell’s suitability determined by the agents’ utility function, which could be very 

different among agents. Instead of one single suitability map for the whole study area, an 

individual agent is only capable of estimating a limited number of cells by randomly 

adding a list of cells into their candidate pools, according to the decision-making theory 

of bounded rationality (Mason, 2005). With respect to the estimated suitability value, 

only cells whose values are over a threshold, customized for various development 

scenarios, can be kept and sorted in the candidate pool. Then, agents will stochastically 

pick cells based on their ranks in the pool. Therefore, the selected cell to be converted 

may not be the cell with the best suitability, but relatively good one within the candidate 

pool. After the selection, the selected cell is converted to the corresponding land cover 

type of agent.  
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CHAPTER 5: CASE STUDY 

 

 

 In this work, I apply our computational framework in a large-scale urban growth 

simulation to model urban growth in North Carolina from 1992 to 2001. The main target 

of this urban growth simulation focuses on the rural to urban transition of landscape 

taking advantage of a patch-growing algorithm. In the case study, I use our parallel 

approach of model calibration to automatically calibrate patch parameters. Based on the 

empirical data, I also build a surrogate-based model to estimate the computing 

performance according to the relationship between spatial characteristics/content and 

computing time in model calibration. Furthermore, the computing performance of our 

proposed framework is evaluated in this case study. 

5.1 Study area and data  

In order to estimate the computing performance, I apply our surrogate-based 

computational framework to model the land use and land cover change in the whole state 

of North Carolina, USA. North Carolina is located in the southeast part of United States 

(see Figure 8). Consisting of 100 counties, North Carolina has a total area of 139,390 km
2
. 

Urban areas have rapidly grown in the past twenty years. According to the national land 

cover data from USGS, the percentage of urban area increased from 4.19 to 10.4 from 

1996 to 2011, while the percentage of forest decreased from 64.76 to 56.13. Raleigh and 

Charlotte are the two largest metropolitan areas. 
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Figure 9. Map of North Carolina 
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Based on requirements of the urban growth simulation, I have collected social 

economic and environmental data for North Carolina, organized in the following table 

(see Table1). The population and road network data are from TIGER (Topologically 

Integrated Geographic Encoding and Referencing) census data 

(https://www.census.gov/geo/maps-data/data/tiger-line.html). I have downloaded county 

boundary shapefile of North Carolina from NCDOT (North Carolina Department of 

Transportation) and shapefile of streams from NHD (National Hydrology Dataset; 

https://nhd.usgs.gov/). NLCD (National Land Cover Databased; https://www.mrlc.gov) 

data are used to analyze land cover change with a spatial resolution of 30 m by 30 m. The 

shapefile of cities are from ESRI GIS database. 

Table 1. Table of data used in this dissertation 

Data 
Spatial 

Resolution 
Temporal Resolution Source 

Population County 1992, 2006, 2011 Census 

Boundaries County Present NCDOT 

Land use 30 m × 30 m 1992, 2001, 2006, 2011 USGS 

Road Road 2013 Census 

Hydrography Stream 2015 NHD 

City City Present ESRI 

  

5.2 Parallel calibration of urban growth simulation 

 I designed a scientific workflow approach of spatiotemporal model calibration in 

our computational framework to leverage the computing power of cyberinfrastructure 

(see Figure 9). The approach can automatically generate and divide the combinations of 

model parameters into a set of subsets each computing on a single processor. The 

approach consists of six main steps for each subset of parameter combinations: parameter 
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adjust, simulation run, region extraction, pattern analysis, performance evaluation, and 

create parameter file. These six steps are executed in an iterative way. First, based on the 

order of parameter combinations, I choose a combination of parameters to configure the 

spatiotemporal model. Then, run the simulation with the selected parameter combination 

and extract simulated landscape for each analysis unit (defined by user, e.g., county) in 

pattern analysis.  

 

Figure 10. Workflow of urban growth model calibration 

 

 The following step is pattern analysis which conducts spatial analysis for the 

extracted simulated landscape pattern. The smallest component in our landscape pattern 

analysis is a patch consisting of contiguous pixels with the same land cover category in 

the simulated landscape. The spatial characteristics of the simulated landscape can be 

quantitatively represented by a set of landscape metrics based on the associated attributes  

of patches, such as size and shape (Turner et al. 2001). With respect to varied research 

questions, we can choose different landscape metrics (e.g., patch size, shape index, 

contrast) at three scales: patch, class, and landscape scales. Through these landscape 

metrics, we can quantitatively analyze the landscape patterns and structures (Kupfer 
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2012). After deriving the landscape metrics for simulated and observed data, we can 

evaluate the performance of the current parameter combination by estimating the 

difference between simulated and observe landscape patterns.  

To quantify the difference, we need to derive histograms of landscape metrics for 

each analysis unit. And the difference between simulated and observed landscape patterns 

can be indicated by the MSE (Mean Square Error) of two histograms. MSE is calculated 

with the following equation: 

                           
 

 

 

                                              

where ysimulated  is simulated value, while its observed value is yobserved. n is the total 

number of bins in the histogram. 

Smaller MSE indicates that the simulated landscape pattern is closer to the 

observed landscape pattern. In other words, the smaller the MSE is, the better the 

simulation performance of the parameter combination does. The approach will go 

through all the parameter combinations in the subset and store their MSEs. Once the 

approach completes the calculation for all subsets of parameter combinations, the MSEs 

of parameter combinations will be collected together and sorted. The best parameter 

combination with smallest MSE will be selected and recorded by the approach. The 

whole process is encapsulated into a scientific workflow which can automatically 

organize, manage, execute these steps, as well as recording the parameter, input and 

output for each step.  
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5.3 Implementation 

 I illustrate the implementation of our parallel framework of simulation calibration 

in this section. I use ESRI ArcGIS (version 10.4) to process the spatial dataset required 

by our framework, and visualize the result of simulation. To support spatial statistical 

analysis, I employ an open-source software package R (version 3.12). The latest version 

Fragstats (version 4.2) is the landscape metric program integrated into parallel framework 

of simulation calibration. I use Python language to organize and assemble GIS data and 

spatial operations together in scientific workflow. 

 In terms of high performance computing resource, I used one Linux computing 

cluster of Copperhead and one Windows computing cluster of Sapphire at University of 

North Carolina. The Linux has 59 computing nodes with 944 computing cores. The 

windows computing cluster composes of 20 computing nodes. Each computing node has 

two CPUs (Intel Core 2 Duo CPU with 3.00GHz of clock rate), associated with 4GB of 

memory. I installed Windows Server 2012 as the operating system on each node of the 

HPC cluster. For task scheduling purpose, HPC Pack 2012 Cluster Manager supports the 

management and allocation of tasks among window computing cluster.
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CHAPTER 6: EXPERIMENTS 

 

 

6.1. Hypotheses 

 In this work, I aim at investigating how to build surrogate-based approach to 

represent the relationship between spatial characteristics/content and computing intensity, 

which, in turn, can be applied in our computational framework to provide the estimation 

of computing performance of parallel spatiotemporal simulations. This estimation of 

computing performance can guide the design and implementation of parallel strategies of 

parallel spatiotemporal simulations to efficiently utilize the high performance computing 

power of cyberinfrastructure. Therefore, I probe the application of surrogate-based 

approach in overcoming computationally intensive challenge of spatiotemporal model 

calibration by means of appropriately predicting the computing performance within the 

context of urban growth in North Carolina.   

The relationship of spatial characteristics/content and computing intensity should 

be captured and simulated by surrogate-based approach in parallel spatiotemporal 

simulations. Regarding this, I identify three specific hypotheses to explore how proposed 

surrogate-based computational framework overcomes the computationally intensive 

challenge in parallel spatiotemporal simulations:     

Hypothesis 1: Computing intensity will be correlated with spatial characteristics/content 

in spatiotemporal simulations. We usually apply spatiotemporal simulations to mimic the
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 underlying mechanism of urban growth. In particular, various model variables in 

spatiotemporal simulations are designed to represent corresponding spatial 

characteristics/content (such as area of study region, land use configuration, amount of 

non-urban to urban conversion) of urban growth phenomenon. These spatial 

characteristics/content variables play an important role in affecting the computing 

intensity of parallel spatiotemporal simulations in a specific study region. As a result, 

there will be a significant relationship between computing intensity and model variables 

used in simulation runs. The utility of surrogate-based approach can capture this 

relationship between computing intensity and model variables. Through surrogate-based 

approaches, we can predict the computing performance based on model variables used in 

spatiotemporal simulations. 

Hypothesis 2: Sample size and the type of surrogate-based approaches will impact the 

prediction ability for computing intensity of spatiotemporal simulations. The prediction 

ability of surrogate-based approach can be reflected by the prediction accuracy that is 

measured by the difference between estimated and real computing performance in 

simulation runs. Depending on the relationship between computing intensity and spatial 

characteristics/content, various sample sizes and types of surrogate-based approaches will 

have different prediction ability in parallel spatiotemporal simulations. Consequently, the 

selection of sample size and the type of surrogate-based approaches will critically affect 

the prediction performance for computing intensity in proposed computational 

framework. 
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Hypothesis 3: The application of surrogate-based approaches will improve the 

computing performance of parallel spatiotemporal simulations. With support of 

appropriate surrogate-based approach, our computational framework can accurately 

predict the computing performance (e.g., speedup, efficiency, and scalability) of each 

computing task within a parallel spatiotemporal simulation. Thus, the information of 

computing performance can guide the design and implementation of parallel strategies, 

such as load balancing and task scheduling, to more efficiently leverage the high 

performance computing power of cyberinfrastructure in parallel spatiotemporal 

simulations. 

In sum, these three specific hypotheses are designed to help us examine 1) 

whether or not surrogate-based approaches can predict the computational performance of 

parallel spatiotemporal simulations; 2) how sample size and whether or not the type of 

surrogate-based approaches can affect the prediction accuracy of computing performance; 

3) how to efficiently utilize the cyberinfrastructure to facilitate parallel spatiotemporal 

simulations by incorporating the appropriate surrogate-based approach in our 

computational framework.  

6.2. Experiments  

 In this section, I designed three experiments to test three hypotheses in section 6.1 

respectively. I applied proposed computational framework to support the calibration of a 

large-scale spatiotemporal model which simulates the urban growth of North Carolina 

from 1992 to 2001. Empirical spatial datasets were employed in the model calibration. In 

terms of computing intensity, each analysis unit (a single county in our case) is 
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differentiated with others according to three variables of spatial characteristics/content in 

parallel model calibration: 1) the variable of number of cells indicates the area of current 

analysis unit; 2) the variable of urban percentage can reflect the configuration of land use 

pattern; 3) the variable of demand represents total amount of land conversion from non-

urban to urban land cover at each time step (one year in our case).  

 These three model variables can work together to impact the spatial 

characteristics in analysis unit. The spatial characteristics mainly focus on three parts: 

spatial dependency, stationarity, and isotropy. In terms of number of cells and demand, if 

the number of cells is very close to the demand, new development patches will be more 

close to each other. Because there is little open space area to be converted, new 

development patches will overlap with each other. Therefore, it will result in more spatial 

dependency in this analysis unit. Otherwise, there is less spatial dependency. Also, the 

larger the area of analysis unit is, the more spatial heterogeneity there exists. For the 

urban percentage variable, the existing urban area has spatial impact to its neighborhood, 

represented by development pressure in our urban growth simulation. Thus, cells close to 

existing urban area are more likely to be converted to new development patches, which 

also can change the spatial dependency in analysis unit.  

  According to my proposed surrogated-based approach, values of model variables 

used and associated computing intensity are recorded for in total 8,100 simulation runs of 

model calibration. These values of model variables and associated computing intensity 

are used to construct surrogate-based models and examine three hypotheses within three 

corresponding experiments. 
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6.2.1 Relationship between computing performance and spatial characteristics/content 

 A patch-based urban growth model (proposed in section 4.3.1) is implemented to 

simulate the urban growth in North Carolina in this case study. Before employing an 

urban growth model, we need to calibrate the model based on empirical land cover 

change data to make it as close as possible to the reality. In this urban growth model, 

patch parameters of the patch growth algorithm should be calibrated. Because 

combinations of these patch parameters control the size and shape of patches developed 

in urban growth simulations. I applied proposed parallel calibration approach (described 

in section 5.2) to calibrate these patch parameters based on the empirical data. Instead of 

a single global value at aggregated level, I calibrate these patch parameters at a very fine 

scale (county level). In other words, a county is the smallest analysis unit in landscape 

pattern analysis. Each county will have its own unique set of patch parameters in the 

patch-growing algorithm to represent the heterogeneity in large-scale urban growth.  

  Three patch parameters need to be calibrated for the urban growth simulation, 

including discount factor, patch mean, and patch range. The parameter of discount factor 

controls the size of new developed patches in the simulation, which has a range [0, 1] 

with an interval of 0.01. The larger the discount factor, the more land cells developed in a 

single patch. While the parameter of patch mean represents the shape of patch, patch 

range restricts the fluctuation range of the patch mean. Patch mean and patch range work 

together to determine the compactness of a new developed patch. Both patch mean and 

patch range are calibrated from 0 to 1 with an interval of 0.1. When patch mean 
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approaches to 1, the patch shape will be compact. Otherwise, the shape of patch tends to 

be a linear shape. 

I used 1996 and 2001 NLCD land cover data (downloaded from USGS: 

http://www.mrlc.gov/) as observed data. Based on the NLCD data, I generated the 

observed land cover metrics on patch level for each county. Since the discount factor is 

only related to the size of patch, I first calibrated the discount factor of each county with 

landscape metrics of patch size. Figure 11 shows the calibrated discount factor of each 

county. Patch mean and patch can affect each other in patch growth process. Therefore, 

we have to calibrate them together. For each combination of these two parameters, I run 

the urban growth simulation from 1996 to 2001, resulting in 8,100 simulation runs. Then, 

landscape pattern analysis is conducted by comparing new developed patches of 

simulated result with patches of observed data for the year of 2001, with respect to the 

landscape metrics of parameter-area ratio.  

The calibration results of patch mean and patch range are represented by Figure 

12 and 13. Figure 14 represents the simulation result of urban growth in the year 

2001.From these calibration results, we can see that the urban percentage of a county (see 

Figure 10) has a substantial impact on the calibration of patch growth parameters in this 

county. The correlation coefficient between discount factor and urban percentage for 100 

counties is -0.4. In other words, the larger the urban percentage is, the smaller the 

discount factor is, and the smaller size the new developed patch is. Also, we can observe 

that patch means of metropolitan area, such as Charlotte, Raleigh-Durham, Asheville, and 

Wilmington, tend to be relatively small. Compared to counties with low urban percentage, 
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counties with high urban percentage have relatively smaller open space but higher 

demand for the new urban patches. Consequently, it happens more in counties with high 

urban percentage that new developed patches overlap with each over, resulting in the 

smaller size and more compact shape observed in these counties. 

 

Figure 11. Urban percentage of NC for year 2001 

 

 

Figure 12. Calibrated discount factor of each county in NC 
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Figure 13. Calibrated patch mean of each county in NC 

 

 

Figure 14. Calibrated patch range of each county in NC 



101 

 

 

 

 

Figure 15. Simulated urban growth in NC for the year 2001  

 

In order to probe the relationship between computing intensity and spatial 

characteristics/content, I recorded values of three model variables used (number of cells, 

urban percentage, and demand) and associated computing time of 8,100 simulation runs. 

There are in total 100 counties in North Carolina. Each county has 81 (9 × 9) simulation 

runs for 81 combinations of patch mean and patch range. For each county, average 

computing time of 81 simulation runs is calculated to estimate the relationship between 

computing intensity and spatial characteristics/content. While Figure 15 is the scatter plot 

representing the relationship, Table 2 demonstrates correlation coefficients between 

corresponding spatial characteristics/content variables and computing time.  

Since the variable of number of cells directly determines the size of input data to 

be processed, it has the largest correlation value of 0.937 with average computing time. 

Following number of cells, the variable of demand also has a very strong correlation with 
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a value of 0.502. Compared with number of cells and demand, the variable of urban 

percentage has a relatively weaker correlation with average computing time (0.206). 

Reported by experiment result, all three model variables are positively correlated with 

average computing time. Therefore, the result of this experiment suggests that we can 

accept the hypothesis 1, that is, computing intensity will be correlated with spatial 

characteristics/content in spatiotemporal simulations.    

Table 2. Correlation of average computing time and model variables 

 Correlation 

Number of cells 0.937 

Urban percentage 0.206 

Demand 0.502 
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Figure 16. Scatter plot of computing time and model variables of urban growth (A: 

number of cells; B: urban percentage; C: demand) 
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6.2.2 Impacts of sample size and types of surrogate-based approach 

 Result of the previous experiment demonstrates that there is an existing 

correlation between computational intensity and spatial characteristics/content. Therefore, 

in this experiment, I investigate how sample size and type of surrogate-based approaches 

can affect the estimation of computing performance when we build surrogate-based 

models. I applied two common used types of surrogate-based models (polynomial 

regression and Kriging) to capture the relationship between computational intensity and 

spatial characteristics/content, and make comparison in terms of prediction ability for 

computing performance.  

The analysis unit of model calibration is a county in this experiment. In other 

words, with support of surrogate-based approaches, we can estimate the computing 

performance of a county based on the relationship between computing performance and 

spatial characteristics/content variables of this county. Similar to the previous experiment, 

the spatial characteristics/content variables of each county in the urban growth model 

include number of cells, urban percentage, and demand.  

In order to examine the impact of sample size and the type of surrogate models, I 

applied empirical approach to build regression and Kriging surrogate-based models with 

different sample size in two treatment groups. For each group, there are in total nine 

treatments set up by varying sample size from 10%- 90% of the total 8,100 simulation 

runs, increasing with an interval of 10%. For each treatment, I conducted 100 random 

sampling using bootstrapping strategies with same sample size. With the same sampling 

dataset, each sampling randomly selects samples from the total population as training 
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dataset to train the surrogate-based model. With respect to the accuracy of prediction, I 

applied each surrogate model to predict the computing time of all computing jobs. Based 

on the real computing time of all computing jobs, RMSE (root-mean-square error) of 

each surrogate-based model is calculated with the RMSE equation in Chapter 3. The 

average RMSE based on 100 sampling within each treatment was calculated and used as 

an indicator of the prediction ability of current sample size. Since RMSE indicates the 

difference between real and estimated computing time, thus, the smaller the RMSE is, the 

better the prediction performance is. 

Based on the average computing time obtained and associated values of spatial 

characteristics/content variables in sampling dataset, I constructed the linear regression 

surrogate-based model as follow: 

        

 

   

                                                                    

where Ti is the estimated computing time of computing job i. I is the intercept. k indicates 

the total number of spatial characteristics/content variables. x are spatial 

characteristics/content variables, while w are the associated weights of corresponding 

variables.  

Based on the relationship between sampled values of model variables and their 

computing time, Kriging can interpolate the computing time for all parameter space. 

Since I repeated the same spatiotemporal simulation for different variable combinations, I 

choose Ordinary Kriging approach which assumes the underlying mechanism is 
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stationary. The previous experiment result indicated that number of cells and demand can 

significantly affect the computing time in each county. Therefore, I used Ordinary 

Kriging approach to build a surrogate-based model of computing time based on variables 

of number of cells and demand.  

The Ordinary Kriging surrogate-based model generates a response surface to 

estimate the computing time for different combinations of number of cells and demand 

(see Figure 16). Compared to linear regression, the Ordinary Kriging surrogate-based 

model can better visualize the relationship between input and output with the response 

surface. Based on Figure 16, we can observe a clear increasing pattern of computing time 

with the increase of number of cells and demand.  

In terms of implementation, I use R software to conduct experiment for linear 

regression treatment group. For Kriging treatment group, I build a scientific workflow 

using Python to conduct sampling, construct Kriging models, predict computing 

performance, and calculate RMSEs. For each sampling, this workflow first randomly 

selects sample points from sample dataset. Through ArcPy package in python, a function 

of “KrigingModelOrdinary” of ArcGIS software is triggered to conduct spatial 

interpolation and predict the computing performance based on selected sample points. A 

spherical model is applied to calculate semivarigram in Kriging. Then, RMSE of this 

sampling is calculated based on observed and predicted computing performance.    
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Figure 17. An example of response surface of computing time in Kriging surrogate-based 

model 

 

Table 3 reports the average RMSE of surrogate-based models in two treatment 

groups with different sample size. In order to present the trend and make a comparison, I 

plotted average RMSEs for all nine treatments in Figure 17 and Figure 18. Based on 

Table 3 and Figure 17 and 18, we can see the average RMSE trends to be decreased for 

both linear regression and Kriging surrogate-based models, when increasing the sample 

size. In other words, the increase of the sample size leads the improvement of prediction 

performance of surrogate-based models. In terms of the trend, two types of surrogate-

based models present different patterns: the average RMSE of linear regression sharply 
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jumped from 0.39 to 0.31 when we increased sample size from 10% to 30%. Then the 

decrease trend of RMSE becomes relatively stable around 0.30. Compared to linear 

regression type, Kriging surrogate-based model has a better prediction performance in all 

treatments. And the slope of decrease trend turns to be larger when the sample size 

beyond 40%, which means the prediction performance of Kriging is more sensitive than 

linear regression in our case.   

In this experiment, we apply t-test to statistically test if two approaches are 

significantly different from each other. For each treatment, there are 100 values of 

RMSEs for each approach as the population of the t-test. The null hypothesis is that there 

is no difference in RMSE between two treatment groups. The significance level is 0.05. 

Table 4 reports p values of t-tests for two treatment groups with different sample size. 

Based on table 4, for treatment 1 and 2, the p values are bigger than the value of 

significance level. Therefore, we fail to reject the null hypothesis there is no difference 

between two treatment groups. Conversely, for other seven treatments, we observed that 

the p values are much smaller than the significance level. Therefore, we reject the null 

hypothesis there is no difference between two treatment groups. In other words, the 

differences between two treatment groups are significant in treatment 3-9 with p-values 

smaller than significance level. 

In summary, surrogate-based models with both linear regression and Ordinary 

Kriging can provide us very good estimation of computing performance in terms of 

RMSE. In comparison with linear regression, Kriging surrogate-based model can better 

predict the computing performance based on spatial characteristics/content variables. 
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With support of a response surface, Kriging surrogate-based model has an advantage in 

visualizing the relationship between model input and output. In addition, the larger the 

sample size is, the higher the prediction accuracy is, as a result, the more the cost is (since 

more simulation runs needed to obtain spatial characteristics/content variables and 

associated computing performance). Therefore, in order to determine the sample size, we 

should first explore how predict performance varies according to the change of sample 

size when building a surrogate-based model to predict the computing performance. Then 

we can determine the sample size based on the research objective and tradeoff between 

prediction accuracy and computing cost. We should choose the appropriate model type 

according to the sample size and their corresponding prediction performance. In this 

experiment, the comparison of different sample sizes and types of surrogate-based 

approaches suggests the acceptance of hypothesis 2, i.e., sample size and the type of 

surrogate-based approaches will impact the prediction ability for computing intensity of 

spatiotemporal simulations. 

Table 3. Average root-mean-square errors of surrogate-based models for different sample 

size 

Treatment Sample size  

(percent of population) 

RMSE  

(Linear regression) 

RMSE 

(Kriging) 

1 10 0.388 0.360  

2 20 0.340 0.334  

3 30 0.324 0.304  

4 40 0.310 0.294  

5 50 0.307 0.257  

6 60 0.303 0.235  

7 70 0.301 0.196  

8 80 0.300 0.158  

9 90 0.299 0.113  
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Figure 18. Average root-mean-square error of surrogate-based models using different 

sample size 

 

Table 4. P-value of t-test for different sample size 

Treatment Sample size  

(percent of population) 

P-value  

 

1 10 0.152185 

2 20 0.587881 

3 30 0.000268 

4 40 0.002291 

5 50 9.11E-15 

6 60 2.75E-19 

7 70 5.91E-31 

8 80 5.95E-38 

9 90 9.52E-53 
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Figure 19. Average root-mean-square errors for linear regression and Kriging surrogate-

based models 

 

6.2.3 Impact of surrogate-based approach on computing performance 

 In the third experiment, we construct a Kriging surrogate-based model to predict 

the computing performance based on input of spatiotemporal simulations. The Kriging 

model applies a spherical model to calculate semivarigram with a set of optimized 

parameters (Number of lags: 12; Lag size: 65,049.62; Nugget: 0; Range: 520,396.99; 

Anisotropy: NO; Partial sill: 3.51). The computing performance predicted is used to 

guide the design and implementation of parallel strategies in parallel urban growth 

simulation. The real computing performance (speed up and efficiency) of our 

computational framework can be evaluated with corresponding metrics. Based on the 

evaluation of computing performance, thus, we can examine hypothesis 3 (i.e., the 

application of surrogate-based approach will improve the computing performance of 

parallel spatiotemporal simulations). Since the analysis unit is a county, I applied a 

domain decomposition strategy to divide the whole computation of calibration into a set 



112 

 

 

of individual computing jobs based on county boundary. Consequently, I aggregated 

8,100 simulations into 100 individual computing jobs in total. Each computing job 

calibrates patch parameters for each county by comparing the difference between 

observed and simulated patches for all combinations of parameters (e.g., 81 combinations 

in total for patch shape calibration). One single CPU takes 42,049.94 seconds (around 

11.68 hours) to complete these 100 computing jobs. Our surrogate-based computational 

framework decreases the total computing time from 42,049.94 seconds to 2,719 seconds 

(about 45 minutes) with 18 CPUs (the upper limit of our windows cluster). We can see 

our parallel approach can provide a significant speedup of 15.517 with the efficiency of 

86.2%.  

In order to investigate the impact of surrogate-based approach on the load 

balancing of our parallel computational framework, I set up two treatment groups (with 

and without surrogate-based approach group) for the purpose of comparison. Both two 

treatment groups processed the same 100 individual computing jobs. The first group 

randomly allocated 100 computing jobs to CPUs to be used with even number of 

computing jobs. For the second treatment group, I applied the Kriging surrogate-based 

approach to estimate the computing time of each county based on values of spatial 

characteristics/content variables. According to the estimated computing time for each 

computing jobs, load balancing strategy was designed and implemented for the task 

scheduling process in group two to make the total estimated computing time more even 

among CPUs available. For each treatment group, I designed 9 treatments by varying the 
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number of CPUs to be used in each treatment from 2 to 18, with an interval of 2. Speedup 

and efficiency were calculated and reported for both treatment groups. 

I first compare the real and estimated computing performance in each treatment 

with load balancing (computing time, speedup, and efficiency; see Table 4). Figure 19 is 

the plot of real and estimated speedup from treatment 1 to 9. Indicated by Table 4 and 

Figure 19, we can see that the trend of real computing performance is well predicted and 

captured by our surrogate-based approach. Table 5 reports the results of computing time, 

speedup, and efficiency for the parallel calibration approach with and without surrogate-

based approach groups. Figure 20 and 21 illustrate the trend of speedup and efficiency for 

both treatment groups. From Table 5 and Figure 20 and 21, we can observe that the 

speedups are increased and the efficiencies are dropped for both groups when we increase 

the number of CPUs used. Compared to the group without surrogate-based approach, the 

group with surrogate-based approach has better speedups and efficiencies in all 9 

treatments. More important, the speedup of the group with surrogate-based approach is 

more close to the linear speedup (the theoretical upper limit of speedup; see Wilkinson 

and Allen, 2004). The range of efficiency of group without surrogate model is from 84.3% 

to 56.5%. The application of surrogate-based approach for load balancing improved the 

efficiency to the range of 99.2% to 81.7%. Since there is not any information of 

computing performance of each computing job, random allocation has a high possibility 

to put computing jobs with large computational intensity to the same CPU, which leads to 

the downgrade of computing performance of parallel spatiotemporal simulations. With 

the support of surrogate-based approach, our load balancing strategy can more evenly 
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allocate computing jobs based on estimated computing performance, resulting in very 

good efficiencies over 81% in all treatments. Therefore, the results in this experiment 

suggest that we can accept the hypothesis 3, that is, the application of surrogate-based 

approaches will improve the computing performance of parallel spatiotemporal 

simulation. 

Table 5. Estimated and real computing performance of parallel urban growth model 

calibration 

 

Treatment

s 

 

#CPU

s 

 

Time 

Estimate

d 

Speedup 

 

 

Efficienc

y 

 

 

Time 

Real  

Speedu

p 

 

 

Efficienc

y 

 

T1 

2 21,213 1.989 0.994 

21,27

4 1.983 0.992 

T2 

4 10,745 3.926 0.982 

10,84

6 3.890 0.972 

T3 6 7,336 5.751 0.959 7,292 5.786 0.964 

T4 8 5,627 7.499 0.937 5,829 7.238 0.905 

T5 10 4,453 9.475 0.948 4,628 9.117 0.912 

T6 12 3,969 10.631 0.886 3,937 10.717 0.893 

T7 14 3,525 11.971 0.855 3,521 11.984 0.856 

T8 16 3,103 13.598 0.850 3,227 13.076 0.817 

T9 18 2,732 15.446 0.858 2,719 15.517 0.862 

 

Table 6. Comparison of computing performance of two treatment groups (Group 1: 

without surrogate-based load balancing; Group 2: with surrogate-based load balancing) 

 

Treatments 

 

#CPUs 

 

Time 

Group 1 

Speedup 

 

 

Efficiency 

 

 

Time 

Group 2 

Speedup 

 

 

Efficiency 

 

T1 2 24,939 1.686 0.843 21,274 1.983 0.992 

T2 4 14,161 2.969 0.742 10,846 3.890 0.972 

T3 6 9,545 4.405 0.734 7,292 5.786 0.964 

T4 8 7,619 5.519 0.690 5,829 7.238 0.905 

T5 10 6,649 6.324 0.632 4,628 9.117 0.912 

T6 12 5,559 7.565 0.630 3,937 10.717 0.893 

T7 14 5,312 7.916 0.565 3,521 11.984 0.856 

T8 16 4,451 9.447 0.590 3,227 13.076 0.817 

T9 18 3,449 12.192 0.677 2,719 15.517 0.862 
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Figure 20. Plot of real and estimated speedup of parallel urban growth model calibration 

 

 

Figure 21. Plot of speedup of with surrogate-based model group (blue line) and without 

surrogate-based model group (red line) 
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Figure 22. Plot of efficiency of with surrogate model group (blue line) and without 

surrogate model group (red line) 

 

6.3 Concluding Discussion 

 In this study, the effect of surrogate-based approaches on more effective 

utilization of cyberinfrastructure is investigated by applying surrogate-based 

computational framework in the resolution of computationally intensive challenge in 

parallel spatiotemporal simulations, within the context of urban growth. According to 

experiment results, we can observe that the computing intensity of each analysis unit is 

highly correlated with its spatial characteristic/content variables used in spatiotemporal 

simulations, which is the foundation of surrogate-based approaches in this study. Without 

detailed knowledge of underlying mechanism and implementation of spatiotemporal 

simulations, surrogate-based approaches can apply empirical or heuristic methods to 

simulate this relationship between inputs (model variables) and output results (computing 

performance).  
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In particular, I focus on investigating that how to use empirical approach to 

capture the relationship, and then build surrogate-based models to predict the computing 

performance based on inputs of spatiotemporal simulations. Both sample size and the 

type of surrogate-based models can substantially affect the prediction ability for 

computing performance. Sample size should be determined with respect to the prediction 

accuracy required and the consideration of planned budget. On the other hand, different 

types of surrogate-based models have disadvantages and advantages according to a 

specific research objective based on their own mechanisms, which will result in 

significant differences in budget planning and implementation. Consequently, the 

selection of sample size and type of surrogate-based models, it turns out, plays an 

important role in the establishment of an appropriate surrogate-based approach to predict 

computing performance. Therefore, when dealing with large amount of spatiotemporal 

data or computationally intensive spatiotemporal simulations, we should choose the 

appropriate sample size and type of surrogate-based approach using model evaluation 

approaches, based on the characteristics of spatiotemporal data or the relationship of 

input and output within a spatiotemporal simulation. 

The measures of computing performance in experiments provide the quantitative 

evaluation of the impact of surrogate-based approaches on accelerating parallel 

spatiotemporal simulation. In particular, the comparison of computing performance with 

and without the support of surrogate-based approach proves that the application of 

surrogate-based approach can substantially improve the efficient utilization of 

cyberinfrastructure, reflected by the superior speedup, efficiency, and scalability. 
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Regarding this, it is necessary to design and implement our parallel strategies with 

support of surrogate-based approach in parallel spatiotemporal simulations.  

Generally speaking, results of experiments support hypotheses stated in this 

dissertation and suggest that our surrogate-based computational framework provides 

substantial support for accelerating spatiotemporal simulations by efficaciously 

leveraging state-of-the-art cyberinfrastructure. 
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CHAPTER 7: CONCLUSIONS  

  

 

The study of complex geographic phenomena has been significantly improved by 

applying cyberinfrastructure in spatiotemporal simulations (Armstrong, 2000; Wang, 

2010; Scheutz and Harris, 2012). The computing intensity of parallel simulations is hard 

to be estimated due to the complex simulation mechanisms. Therefore, it has been 

recognized that the efficient utilization of cyberinfrastructure is still challenging (Wang 

and Armstrong, 2009; Parry and Bithell, 2012; Shook et al, 2013). In this dissertation, I 

discuss the inadequacy of estimation and validation of computing intensity in existing 

work. Additionally, the existing methods cannot be generally applied in parallel 

simulations with different mechanisms. To overcome these limitations, I present a 

surrogate-based computational framework which integrates surrogate-based approaches, 

spatiotemporal simulations, and cyberinfrastructures. This general framework can 

facilitate the efficient utilization of cyberinfrastructure based on the accurate estimation 

of computing intensity, which makes substantial contribution on the application of 

cyberinfrastructure in solving complex geographic problems. 

 I concentrate on applying surrogate-based approach to capture and simulate the 

relationship between input spatial characteristics/content variables and output computing 

performance in a black-box and approaching way. Therefore, researchers, without 

background about high performance and parallel computing, are able to efficiently 

predict the computing performance of their spatiotemporal simulations. The estimated 

computing performance, in turn, can guide the parallelization of spatiotemporal 

simulations on cyberinfrastructure. Consequently, computationally intensive tasks such as 
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model calibration, sensitive analysis, and model optimization can be better designed and 

implemented with respect to the estimated computing performance. Furthermore, 

research budget (time and funding) can be well planned. 

  I start this dissertation with discussing the significance of spatiotemporal 

simulations in the investigation of global complex geographic phenomena. In order to 

solve these phenomena at large scale, we need to take advantage of GIS, spatiotemporal 

simulations, and cyberinfrastructure. In Chapter 2, I discuss the existing work and 

literatures related to coupled human and natural systems, main stream spatial simulation 

modeling approaches, and the application of high performance and parallel computing in 

spatial data analysis and spatial modeling. CyberGIS holds great promise to provide great 

support in overcoming computational challenges for spatiotemporal simulations. With 

computational support of cyberinfrastructure, spatiotemporal simulations can mimic the 

underlying mechanisms of these complex geographic phenomena at large scale. However, 

the study of the efficient utilization of cyberinfrastructure within spatiotemporal 

simulations is inadequate. A key computational challenge exists in the integration of GIS, 

spatiotemporal simulations, and cyberinfrastructure, which is the appropriate estimation 

of computing performance.  

 With regards to this key computational challenge, I introduce surrogate-based 

approaches in Chapter 3. Surrogate-based approaches, which can appropriate estimate the 

computing performance of spatiotemporal simulations within cyberinfrastructure, are 

built based on the relationship between spatial characteristics/content and computing 

performance. Although surrogate-based models have been extensively applied to tackle 
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computationally intensive issue in engineering design, they have been rarely used in 

spatial analysis and modeling domain. Through the literature review of surrogate-based 

models in other scientific domains, I explore how to apply surrogate-based models to 

support spatiotemporal simulations within cyberinfrastructure environments. I design a 

generalized sequential procedure which illustrates how to build and validate a surrogate-

based model within a spatiotemporal simulation. With support of this sequential 

procedure, we can construct a surrogate-based model to aid the efficiently utilization of 

cyberinfrastructure in the study of complex geographic phenomena.   

 Proposed in Chapter 4, a surrogate-based computational framework integrates 

spatiotemporal simulations, cyberinfrastructure, and surrogate-based models as three 

main components. Compared to past work, the main contribution of the proposed 

computational framework is that it highlights the important role of surrogate-based 

models in parallel spatiotemporal simulations. The application of surrogate-based models 

helps us gain significant insight into the estimation of computing performance within 

parallel spatiotemporal simulations, which is the key computational challenge to efficient 

utilization of cyberinfrastructure. Moreover, in order to effectively manage, execute, and 

share complex spatiotemporal simulations, a scientific workflow middleware is designed 

to glue functionalities and computational infrastructure within the surrogate-based 

computational framework. Scientific workflow can wrap up all main components, 

resulting in the automation of heterogeneous spatial data processing and execution of 

multiple processes in spatiotemporal simulations. Therefore, it is much easier for 
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researchers without computational background to apply the proposed computational 

framework in their own spatiotemporal simulations.  

 I use the spatiotemporal simulation of urban growth as our case study in Chapter 5. 

A parallel model calibration workflow is designed to tackle the most computationally 

intensive task in our simulation: model calibration. With support of the parallel approach 

of model calibration, we can greatly simplify the complex and computationally intensive 

calibration by assembling those tedious processes into workflow. The utility of our 

surrogate-based computational framework is examined in Chapter 6. We can observe that 

the spatial characteristics/content can significantly affect the computing intensity of 

spatiotemporal simulations. The experiment results indicate that surrogate-based 

approaches play a very important role in improving the computing performance of 

spatiotemporal simulations within cyberinfrastructure environments.  

In sum, surrogate-based models can appropriate predict the computing 

performance by means of capturing the relationship between spatial 

characteristics/content and computing intensity. Regarding this, the surrogate-based 

computational framework can efficiently leverage the high performance computing 

power of cyberinfrastructure in spatiotemporal simulations. This framework substantially 

facilitates the solution of complex geographic problems at large scale. 

Since very few existing work are related to the synthesis of surrogate-based 

approach and parallel spatiotemporal simulations, there are many aspects along this 

direction open for further study. Based on this work, we can concentrate further study on 

the following aspects: 1) development of various sampling strategies according to 



123 

 

 

different characteristics of big spatial data (e.g., size and heterogeneity) to construct 

surrogate-based models ; 2) comparison of alternative types of surrogate-based model in 

terms of their prediction ability and computational effectiveness; 3) investigation of 

heuristic approaches for the establishment of surrogate-based models; 4) improvement of 

the model evaluation approach of surrogate-based models; 5) exploration of the 

visualization of response surface of surrogate-based model, for example the utilization of 

self-organizing map; 6) integration of space-time GIS and urban growth study .  
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