
INTEGRATION OF THE SIMULATION
ENVIRONMENT FOR AUTONOMOUS ROBOTS

WITH ROBOTICS MIDDLEWARE

by

Adam Carlton Harris

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Electrical Engineering

Charlotte

2014

Approved by:

Dr. James M. Conrad

 Dr. Thomas P. Weldon

Dr. Bharat Joshi

 Dr. Stephen J. Kuyath

Dr. Peter Tkacik

ii

© 2014
Adam Carlton Harris

ALL RIGHTS RESERVED

iii

ABSTRACT

ADAM CARLTON HARRIS. Integration of the simulation environment for autonomous
robots with robotics middleware. (Under the direction of DR. JAMES M. CONRAD)

Robotic simulators have long been used to test code and designs before any actual

hardware is tested to ensure safety and efficiency. Many current robotics simulators are

either closed source (calling into question the fidelity of their simulations) or are very

complicated to install and use. There is a need for software that provides good quality

simulation as well as being easy to use. Another issue arises when moving code from the

simulator to actual hardware. In many cases, the code must be changed drastically to

accommodate the final hardware on the robot, which can possibly invalidate aspects of

the simulation. This defense describes methods and techniques for developing high

fidelity graphical and physical simulation of autonomous robotic vehicles that is simple

to use as well as having minimal distinction between simulated hardware, and actual

hardware. These techniques and methods were proven by the development of the

Simulation Environment for Autonomous Robots (SEAR) described here.

SEAR is a 3-dimensional open source robotics simulator written by Adam Harris

in Java that provides high fidelity graphical and physical simulations of user-designed

vehicles running user-defined code in user-designed virtual terrain. Multiple simulated

sensors are available and include a GPS, triple axis accelerometer, triple axis gyroscope, a

compass with declination calculation, LIDAR, and a class of distance sensors that

includes RADAR, SONAR, Ultrasonic and infrared. Several of these sensors have been

validated against real-world sensors and other simulation software.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. James M. Conrad for his help and guidance

throughout this research and my college career as well as Dr. Tom Weldon, Dr. Bharat

Joshi, Dr. Steve Kuyath, and Dr. Peter Tkacik for serving on my committee. I would also

like to thank Greg Perry for his software (MyRobotLab), his help and his patience and

Arthur Carroll for the original inspiration for this work.

Foremost, I would like to thank my wife and family whose support and

encouragement has allowed me to come as far as I have and that has helped me surmount

any obstacles that may lie in my way.

v

TABLE OF CONTENTS

LIST OF FIGURES ix

LIST OF TABLES xi

LIST OF ABBREVIATIONS xii

CODE LISTINGS xv

 CHAPTER 1: INTRODUCTION 1

 1.1 Motivation 1

 1.2 Objective of This Work 3

 1.3 Contribution 4

 1.4 Organization 4

 CHAPTER 2: REVIEW OF SIMILAR WORK 6

 2.1 Open Source Robotics Simulation Tools 8

 2.1.1 Player Project Simulators 8

 2.1.2 USARSim 9

 2.1.3 SARGE 11

 2.1.4 UberSim 13

 2.1.5 EyeSim 13

 2.1.6 SubSim 14

 2.1.7 CoopDynSim 14

 2.1.8 OpenRAVE 14

 2.1.9 lpzrobots 15

 2.1.10 SimRobot 15

 2.1.11 Moby 17

vi

 2.1.12 Comparison of Open Source Simulation Tools 17

 2.2 Commercial Simulators 19

 2.2.1 Microsoft Robotics Developer Studio 19

 2.2.2 Marilou 20

 2.2.3 Webots 22

 2.2.4 robotSim Pro/robotBuilder 23

 2.2.5 Comparison of Commercial Simulators 25

 2.3 Middleware 25

 2.3.1 Player Project Middleware 26

 2.3.2 ROS (Robot Operating System) 27

 2.3.3 MRL (MyRobotLab) 29

 2.3.4 RT Middleware 31

 2.3.5 Comparison of Middleware 31

 2.4 Conclusion 32

 CHAPTER 3: HISTORY OF SEAR 34

 3.1 Overview of SEAR Concept 34

 3.2 Initial Design 34

 3.3 Intermediate Designs (Graduate Work) 36

 3.3.1 Early ROS Middleware Integration 36

 3.3.2 Early MRL Integration 38

 3.4 Conclusion 39

 CHAPTER 4: SUPPORTING DESIGN TOOLS 40

 4.1 Language Selection 40

vii

 4.2 Game Engine Concepts 41

 4.3 JmonkeyEngine Game Engine 42

 CHAPTER 5: ARCHITECTURE AND METHODS OF IMPLEMENTATION 44
 UTILIZED TO CREATE SEAR

 5.2 Custom MRL Services 46

 5.2.1 MRL'S LIDAR Service 47

 5.2.2 MRL's GPS Service 48

 5.3 MRL'S SEAR Service 48

 5.4 SEAR's Object Grammar 48

 5.4.1 Environment Objects 50

 5.4.2 Terrain 51

 5.4.3 Obstacles 51

 5.4.4 Virtual Robotic Vehicles 52

 5.5 Manual Control 53

 5.6 Sesnor Simulation in SEAR 54

 5.6.1 Position-Related Sensor Simulation(“Physical” Sensors) 54

 5.6.1.1 GPS 55

 5.6.1.2 Compass 57

 5.6.1.3 Three-Axis Accelerometer 58

 5.6.1.4 Three-Axis Gyroscope 60

 5.6.1.5 Odometer 62

 5.6.2 Reflective Beam Simulation (“Visual” Sensors) 63

 5.6.2.1 Ultrasonic, Infrared, RADAR and SONAR Distance Sensors 63

 5.6.2.2 LIDAR Sensors 70

viii

 5.7 Serial Communication Between MRL and SEAR 75

 CHAPTER 6: CONCLUSIONS AND FURTHER WORK 78

 6.1 Virtual Serial Ports and ROS Integration 80

 6.2 Further Work 81

APPENDIX A: SEAR USER INTERACTIONS 92

 A.1 Creation of Environments and Objects 92

 A.2 Creation of a Virtual Robot in SEAR 93

 A.3 Controlling a Virtual Robot in SEAR 94

 A.4 Creating and Communicating with a Virtual LIDAR in SEAR 94

 A.5 Creating and Communicating with a Virtual GPS in SEAR 98

 A.6 Simple Sensors 99

 A.7 Custom Controller for Simple Sensors 100

ix

LIST OF FIGURES

FIGURE 2.1.3: SARGE screenshot 12

FIGURE 2.1.10: SimRobot screenshot 16

FIGURE 2.2.1: Microsoft Robotics Developer Studio screenshot 20

FIGURE 2.2.2: anykode Marilou screenshot 21

FIGURE 2.2.3: Webots screenshot 22

FIGURE 2.2.4: robotSim Pro screenshot 24

FIGURE 2.3.2: Simplified ROS application 28

FIGURE 2.3.3.1: A screenshot of the main MRL window 30

FIGURE 2.3.3.2: A typical project in MRL using an actual Roomba vehicle. 31

FIGURE 3.2: The main SEAR Simulator window showing gyroscope, 35
accelerometer, GPS and Compass values as well as the robot vehicle
model, and a tree obstacle. The terrain is from Google Earth of the
track at the University of North Carolina at Charlotte.

FIGURE 4.3: Data for each sensor simulator is shared between graphics and 43
physics threads in SEAR

FIGURE 5.0: (a) A typical project using MRL to control a physical robot. 45
(b) The same project interfacing instead with SEAR. The blue arrows
are MRLsystem messages, the Red arrows are serial or virtual serial ports
and the orange arrow is a direct JAVA method call from MRL to SEAR.
The items with an asterisk (*) denote modules written by the author of this
dissertation.

FIGURE 5.1: Folder tree showing the layout of a SEARproject 46

FIGURE 5.2.1: The LIDAR service GUI panel showing the output of an actual 47
SICK LMS-200 scan

FIGURE 5.2.2: The GPS panel of MRL’s GPS service GUI showing values from a 48
simulated GPS device

x

FIGURE 5.6.2.1.1: The distance sensor beam pattern is adjustable in SEAR. 65
(a) Shows the beam pattern of a PING))) brand sensor which was
experimentally acquired. (b) Shows an example of an infrared sensor
beam. (c) Shows an example of the side lobes of the beam pattern being
simulated

FIGURE 5.6.2.1.2: The distance sensor resolution is adjustable in SEAR. 66
(a) shows a sensor with only eight lines used to simulation the nested
cones. (b) shows a sensor that uses 36 lines to simulate each nested cone

FIGURE 5.6.2.1.3: (a) The actual Roomba robot with ultrasonic sensor payload 67
on top. (b) The resulting graph of the odometer reading versus the Ultrasonic
reading as the robot drove through the test environment

FIGURE 5.6.2.1.4: (a) The ROSStage simulation showing the ultrasonic sensor 68
beam pattern used. (b) The resulting graph of the odometer reading versus
the Ultrasonic reading as the robot drove through the test environment

FIGURE 5.6.2.1.5: (a) The SEAR Roomba simulation showing the ultrasonic 69
sensor beam pattern used. (b) The resulting graph of the odometer reading
versus the Ultrasonic reading as the robot drove through the test environment

FIGURE 5.6.2.1.6: Two ultrasonic sensors attached to a Roomba base in an indoor 70
environment.

FIGURE 5.6.2.2.1: A single scan from the LIDAR simulator on a test environment. 71
The red lines show where the rays are cast and the yellow spheres shows
where the rays collide with the box objects. The results of this simulation
can be seen in Figure 5.6.2.2.2b

FIGURE 5.6.2.2.2: (a)The readings from an actual SICK LMS200 (b) the readings 73
from the SEAR simulated LIDAR in a similar environment

FIGURE 5.6.2.2.2: The LIDAR sensor is highly configurable. (a) shows a narrow 75
spread and long range LIDAR, where (b) shows a wide spread LIDAR with a
short range. The blue spheres show the locations of any collisions of the lines

FIGURE 5.7: The data flow diagram of serial messages between userCode in 77
MRL's Python service and SEAR simulated sensors.

xi

LIST OF TABLES

TABLE 2.1.13: Comparison of open source simulators 17

TABLE 2.2.5: Comparison of commercial robotics simulators 25

TABLE 2.3.5: Comparison of open source middleware 32

TABLE 5.4.1: Physical objects in the SEAR POJOs library 49

TABLE 5.4.2: Sensor objects in the SEAR simulator POJOs library 50

TABLE 5.5: Keyboard controls of the Simulator Window 54

TABLE A.7: Comparison of communications between userCode and physical 101
 hardware versus userCode and SEAR virtual hardware

xii

LIST OF ABBREVIATIONS

3D Three-dimensional

API Application programming interface

AUV Autonomous underwater vehicles

BSD Berkeley software distribution

CAD Computer-aided design

COLLADA Collaborative design activity

FLTK Fast light toolkit

GPL General public license

GPS Global positioning system

GUI Graphical user interface

HRI Human-robot interaction

IDE Integrated development environment

IMU Inertial measurement unit

IPC Inter-process communication

IR Infrared

jFrame Java frame

jME jMonkeyEngine

jME3 jMonkeyEngine3

LabVIEW Laboratory virtual instrument engineering workbench

LGPL Lesser general public license

LIDAR Light detection and ranging

Mac Macintosh-based computer

xiii

MATLAB Matrix laboratory

MEMS Microelectromechanical systems

MRDS Microsoft Robotics Developer Studio

MRL MyRobotLab

MRPT Mobile robot programming toolkit

NGA National Geospatial-Intelligence Agency

NIST National Institute of Standards and Technology

NOAA National Oceanic and Atmospheric Administration

ODE Open dynamics engine

OpenCV Open source computer vision

OpenGL Open graphics library

OpenRAVE Open robotics automation virtual environment

Orcos Open robot control software

OSG OpenScreenGraph

PAL Physics abstraction layer

POJO Plain old java object

POSIX Portable operating system interface for Unix

PR2 Personal robot 2

RADAR Radio detection and ranging

RF Modem Radio frequency modem

RoBIOS Robot BIOS

ROS Robot operating system

SARGE Search and rescue game engine

xiv

SEAR Simulation Environment for Autonomous Robots

SLAM Simultaneous localization and mapping

SONAR Sound navigation and ranging

TCP Transmission control protocol

UDP User datagram protocol

UNIX Uniplexed information and computing system

URBI Universal robot body interface

USARSim Unified system for automation and robotics simulation

UserCode Code written by a user of SEAR

UT2004 Unreal Tournament 2004

VPL Visual programming language

WiFi Wireless fidelity

WMM World magnetic model

XML Extensible markup language

YARP Yet another robot platform

xv

CODE LISTINGS

CODE LISTING 1: Python script that can create the XML files for a simulation 92
 environment.

CODE LSITING 2: The creation of a simple Roomba-like robot 93

CODE LISTING 3: Example userCode that drives a robot in SEAR. 94

CODE LISTING 4: The creation of a virtual LIDAR sensor 95

CODE LISTING 5: Starting a LIDAR MRL service 95

CODE LISTING 6: Example code for accessing the raw LIDAR data 96

CODE LISTING 7: Creation of a GPS sensor XML file for SEAR. This snippet 98
 should be added to Code Listing 2

CODE LISTING 8: Example code to access raw GPS data. 98

CODE LISTING 9: Example controller code named userCode.py 104

CODE LISTING 10: Example controller code named controller.py 108

 CHAPTER 1: INTRODUCTION

The best way to determine whether or not a physical robotics project is feasible is

to have a quick and easy way to simulate both the hardware and software that is planned

to be implemented. Robotics simulators have been available for almost as long as robots.

Until fairly recently, however, they have been either too complicated to be easily used or

designed for a specific robot or line of robots. In the past two decades, more generalized

simulators for robotic systems have been developed. Most of these simulators still

pertain to specialized hardware or software and some have low quality graphical

representations of the robots, their sensors, and the terrain in which they move. Overall,

many of the simulations look simplistic and there are limitations with real-world maps

and terrain simulations.

 1.1 Motivation

Robotic simulators should help determine whether or not a particular physical

robot design will be able to handle certain conditions. Currently, many of the available

simulators and middleware have several limitations. Some, like Eyesim, are limited on

the hardware available for simulation [1]. Others often supply and specify several

particular (and generally expensive) robotics platforms with no easy method of adding

other platforms such as Player. To add a new robotics platform (a particular set of

hardware including a diving base and sensors, be they virtual or physical) to these, a large

amount of effort is needed to import vehicle models and in some cases, custom code must

2

be added to the simulator itself. New device drivers must be written to add new sensors,

even ones that are similar to supported versions. Several simulators are also limited with

respect to terrain. Real-world terrain and elevation maps cannot easily be integrated into

some of these systems such as Eyesim, CoopDynSim[2], [3]. While technically possible

for some other tools such as Gazebo and USARsim, it is a complicated and convoluted

process [4], [5]. Gazebo, USARsim, Eyesim, CoopDynSim and others all use a text-

based method for creating environments and robots as opposed to a more natural solution

like robotBuilder which is a graphical application [6].

Some of the current systems also do not effectively simulate simple sensors and

interfaces. For example, you cannot easily interface a Sharp IR sensor directly with

Player middleware. Many tools like Player, SimRobot, USARsim, and SARGE choose a

communication protocol (most commonly Transmission Control Protocol or “TCP”) for

all the sensors to run on [7]–[10]. This requires more expensive hardware and leaves

fewer options for easy integration of sensors. Other tools require that a specific hardware

driver or “node” be written for a particular sensor (eg. ROS)[11]. A simple robot

consisting of two distance sensors, two motor drivers, and a small 8-bit embedded system

cannot easily be simulated in many of the current systems. However, a robot using a

computer board running Linux that requires each distance sensor and motor driver to

have its own 8-bit controller board running a TCP stack is easily simulated in the current

systems. This shows a trade-off of hardware complexity and programming abstraction.

The best general simulators today such as Webots or Microsoft Robotics Developer

Studio seem to be both closed source and proprietary, which inhibits community

participation in its development and their possible applications [12]–[14]. Some of these

3

systems are detailed in Chapter 2.

 1.2 Objective of This Work

The objectives of this work are to develop the methods and architecture for a

modern robotics simulator. A better, simpler simulator than those previously described

would be one that can simulate nearly any possible vehicle, using nearly any type and

placement of sensors. The entire system would be customizable, from the design of a

particular vehicle chassis to the filtering of sensor data. This system would also allow a

user to simulate any terrain, with an emphasis on real-world elevation map data. All of

the options available to the user must be easy to use and the interface must be intuitive.

The simulator should be cross-platform, meaning that it will run on Windows,

Linux/Unix, and Mac systems and integrate easily with all these systems. It should also

be open source to allow community involvement and future development and the

simulator should be free to anyone who wishes to use it.

An implementation of a simulator meeting the criteria above is described in this

dissertation. A simulator system (SEAR or Simulation Environment for Autonomous

Robots) has been developed to test the methods and architecture described here with the

ability to load custom models of vehicles and terrain, provide basic simulations for

certain types of sensors; three-axis accelerometer, three-axis gyroscope, odometer, GPS,

magnetic compass with declination calculation based on the robot's current GPS reading,

LIDAR unit, and a class of reflective-beam sensors to simulate ultrasonic, RADAR and

infrared sensors. The simulator allows users to write and simulate custom code (referred

to as “userCode”) and simulate robot motion and sensing using a realistic physics engine.

Tools have also been developed to allow the user to create or import vehicle models.

4

Additionally, three custom “services” (or interfaces) were developed for the MyRobotLab

middleware. These are: services for light detection and ranging (known as LIDAR),

global positioning system (known as GPS) as well as a service for the simulator itself .

 1.3 Contribution

The main contribution of this research is the creation of methods and techniques

used to implement a new cross-platform robotics simulator that has high graphical and

physical fidelity and can easily be used by users of any skill set. SEAR is this proposed

simulator, created to validate these new processes and designs. SEAR targets a very

broad user base. It is simple enough that beginners can use the tool to learn the basics of

programming and accurate enough that it can be used for robotics research at the graduate

level. It is cross-platform, meaning that it runs on a variety of common computer

operating systems. It has the ability to interface with middleware, allowing users to

utilize the same code for simulations as they will on actual hardware, without having to

change the language or functions. It also provides the user the ability to create or import

any environment they choose and allow for robotic vehicles to be built and imported in a

simple way. A simulator of autonomous robots of this type does not currently exist.

 1.4 Organization

This dissertation is divided into six chapters. Chapter 2 gives general descriptions

of several currently available robot simulation software tools. Chapter 3 describes the

concept of the software put forth in this thesis and the history of this research project.

Chapter 4 introduces the software tools used for the creation of the simulator. Chapter 5

discusses the architecture of SEAR and its methods of communications with middleware

as well as methods by which the different sensors are simulated. Chapter 6 summarizes

5

the work done in this dissertation and plans a course for future innovation and

development. While most of this dissertation deals with a developer's level of

abstraction, Appendix A is a comprehensive user guide for SEAR. This guide provides

sample code that shows how a user would interact with the simulator including examples

of how to create environments and robots from scratch and how to interface with them

utilizing custom user-written code to control the robot within the simulator. It is

recommended that this section be read either along side Chapter 5 or after Chapter 6.

 CHAPTER 2: REVIEW OF SIMILAR WORK

Use of robotics simulators has grown with the field of robotics. Since the

beginning of the robotics revolution, engineers and scientists have known that a high

quality simulations can save time and money [13]. Simulations are conducted in many

cases to test safety protocols, to determine calibration techniques, and to test new sensors

or equipment. In the past robotics simulators have been generally written specifically for

a company's own line of robots or for a specific purpose. In recent years, however, the

improvements of physics engines and video game engines (as well as computer

processing speed) have helped spur a new breed of simulators that combine physics

calculations and accurate graphical representations of a robot in a simulation [15]. These

simulators have the potential flexibility to simulate any type of robot. As the simulation

algorithms and graphical capabilities of game engines become better and more efficient,

simulations step out of the computer and become more realistic. Such engines can be

applied to the creation of a simulator, and in the words of Craighead et al. “...it is no

longer necessary to build a robotic simulator from the ground up” [15].

Robotics simulators are no longer in a software class of their own. To ensure code

portability from the simulator to physical robotic platforms (as is generally the ultimate

goal) specific middleware is often run on the platforms. Middleware allows for an

abstraction of user-written code from physical or virtual hardware it is intended to

control. The performance, function and internals of this middleware must be taken into

7

account when comparing the simulators. All of these factors (and many more) affect the

fidelity of the simulation. A second generation of robotics simulators based on game

engines has emerged which utilize the frameworks and simulators of previous projects as

their base [16], [17] Additionally, many established simulators are adding the capability

to interface with different middleware and frameworks as they become available and

prove useful [18], [19].

The ultimate goal of this chapter is to compare some of the most popular

simulators and middleware currently available (both open source and commercial) in an

attempt to find one that can easily be used to simulate low-level, simple custom robotic

hardware with high graphical and physical accuracy. There is a lot of previous work in

this field. This chapter adds to the work of Craighead, Murphy, Burke, and Goldiez [15],

Elkady and Sobh [20], Castillo-Pizarro, Arredondo, and Torres-Torriti [21], Madden [22]

as well as a previous publication of my own [23]. Of all the simulators available to users,

the particular robotics simulators described and compared in this chapter are just a few

that were chosen based on their wide use and specific feature sets. Each simulator being

compared has one or more of the following qualities:

 Variety of hardware that can be simulated (both sensors and robots)

 Graphical accuracy capabilities including realistic terrains, obstacles, and robotics
vehicles

 Physical simulation accuracy including capabilities to simulate gravity, collisions,
inertia,

 Cross-platform capabilities: The ability to run on all common operating systems
Windows, Mac, and Linux

 Openness of source code of the simulator, libraries, or middleware for future
development and addition of new or custom simulations by the user)

8

 2.1 Open Source Robotics Simulation Tools

There are many open source robotics simulators available currently on the

internet. The specific simulators covered in this section are the most popular and are

widely used, or they contain a feature that is of interest to the simulation methods or

architecture of SEAR.

 2.1.1 Player Project Simulators

Started in 1999 at the University of Southern California, the Player Project [24] is

an open source (GPL or General Public License) three-component system involving a

hardware network server (Player); a two-dimensional simulator of multiple robots,

sensors or objects in a bit-mapped environment (Stage); and multi-robot simulator for

simple 3D outdoor environments (Gazebo) [25]. Player is middleware that controls the

simulators or physical hardware and is discussed in detail in Section 2.3.1.

Stage is a 2-dimensional robot simulator mainly designed for interior spaces. It

can be used as a standalone application, as a C++ library, or as a plug-in for Player. The

strength of Stage is that it focuses on being “efficient and configurable rather than highly

accurate.” [7]. Stage was designed for simulating large groups or swarms of robots. As

with other simulators that are designed to simulate swarm or multi-agent robotics systems

like Roborobo [26], Stage is limited in graphical and physics simulation accuracy [7].

Sensors in Stage communicate exactly the same as real hardware (over a TCP network),

allowing the exact same code to be used for simulation as the actual hardware [27]. This

is no guarantee, however that the simulations have high physical simulation fidelity [7].

Gazebo is a 3D robotics simulator designed for smaller populations of robots (less

than ten) and simulates with higher graphical and physical accuracy than Stage [28].

9

Gazebo was designed to model 3D outdoor as well as indoor environments [27]. The use

of plug-ins expands the capabilities of Gazebo to include abilities such as dynamic

loading of custom models and the use of stereo camera sensors [29]. The original

implementation of Gazebo uses the Open Dynamics Engine (ODE) which provides high-

fidelity physics simulation [8]. It also has the ability to use the Bullet Physics engine

[30]. Gazebo has been utilized as the basis of other robotics simulators. These forks

generally specialize in one type of simulation (as is the case with the quadrotor simulator

in [17] and Kelpie, the water surface and aerial vehicle simulator [16]).

 2.1.2 USARSim

Originally developed in 2002 at Carnegie Mellon University, USARSim (Unified

System for Automation and Robotics Simulation) [31] is a free simulator based on the

cross platform Unreal Engine 2.0. It was handed over to the National Institute of

Standards and Technology (NIST) in 2005 and was released under the GPL license [32].

USARSim is actually a set of add-ons to the Unreal Engine, so users must own a copy of

this software to be able to use the simulator [8]. A license for the Unreal game engine

usually costs around $40 US [33]. Physics are simulated using the Karma physics engine

which is built into the Unreal engine [34]. This provides basic physics simulations [15].

One strength of using the Unreal engine is the built-in networking capability. Because of

this, virtual robots can be controlled by any language supporting TCP sockets [35].

While USARSim is based on a cross-platform engine, the user manual only fully

explains how to install it on a Windows or Linux machine. A Mac OS installation

procedure is not described. The installation requires Unreal Tournament 2004 (UT2004)

as well as a patch. After this base is installed, USARSim components can be installed.

10

On both Windows and Linux platforms, the installation is rather complicated and requires

many files and directories to be moved or deleted by hand. The USARSim wiki has

installation instructions [36]. Linux instructions were found on the USARSim forum at

sourceforge.net [37]. Since it is an add-on to the Unreal tournament package, the overall

size of the installation is several gigabytes.

USARSim comes with several detailed models of robots available for use in

simulations [38], however it is possible to create custom robot components in external 3D

modeling software and specify physical attributes of the components once they are loaded

into the simulator [39]. An incomplete tutorial on how to create and import a model from

3D Studio Max is included in the source download. Once virtual robots are created and

loaded, they can be programmed using TCP sockets [40]. Several simulation

environments are also available. Environments can be created or modified by using tools

that are part of the Unreal Engine [39].

There have been a multitude of studies designing methods for validating the

physics and sensor simulations of USARSim. Pepper et al. [41] identified methods that

would help bring the physics simulations closer to real-world robotic platforms by

creating multiple test environments in the simulator as well as in the lab and testing real

robotic platforms against the simulations. The physics of the simulations were then

modified and tested repeatedly until more accurate simulations resulted. Balaguer and

Carpin built on the previous work of validating simulated components by testing virtual

sensors against real-world sensors. A method for creating and testing a virtual Global

Positioning System (GPS) sensor that much more closely simulates a real GPS sensor

was created [42]. Wireless inter-robot communication and vision systems have been

11

designed and validated as well [38]. USARSim has even been validated to simulate

aspects of other worlds. Birk et al. used USARSim with algorithms already shown to

work in the real world as well as real-world data from Mars exploration missions to

validate a robot simulation of another planet [43].

 2.1.3 SARGE

SARGE (Search and Rescue Game Engine) [44], shown in Figure 2.1.3, is a

simulator designed to train law enforcement in using robotics in search and rescue

operations [45]. It is released under the Apache License V2.0. The developers of

SARGE provide evidence that a valid robotics simulator could be written entirely in a

game engine [15]. Unity was chosen as the game engine because it was more reliable

than the Unreal engine and it provided a better option for physics simulations, PhysX.

PhysX provides a higher level of fidelity in physics simulation of collisions and gravity

[8]. SARGE currently only supports Windows and Mac platforms, although it is still

under active development. Currently, a web player version of the simulator is available

on the website http://www.sargegames.com.

12

Figure 2.1.3 SARGE screenshot

It is possible for SARGE users to create their own robots and terrains with the use

of external 3D modeling software. Sensors are limited to LIDAR (Light Detection and

Ranging), 3D camera, compass, GPS, odometer, inertial measuring unit (IMU), and a

standard camera [45]. Only the GPS, LIDAR, compass and IMU are discussed in the user

manual [46]. The GPS system requires an initial offset of the simulated terrain provided

by Google Earth. The terrains can be generated independently in the Unity development

environment by manually placing 3D models of buildings and other structures on images

of real terrain from Google Earth [45]. Once a point in the virtual terrain is referenced to

a GPS coordinate from Google Earth, the GPS sensor can be used [8]. This shows that

while terrains and robots can be created in SARGE itself, external programs may be

needed to set up a full simulation.

13

 2.1.4 UberSim

UberSim [47] is an open source (under GPL license) simulator based on the ODE

physics engine and uses OpenGL for screen graphics [48]. It was created in 2000 at

Carnegie Mellon University specifically with a focus on small robots in a robot soccer

simulation. The early focus of the simulator was the CMDragons RoboCup teams;

however the ultimate goal was to develop a simulator for many types and sizes of

robotics platforms [49]. Since 2007, it no longer seems to be under active development.

 2.1.5 EyeSim

EyeSim began as a two-dimensional simulator for the EyeBot robotics platform in

2000 [1]. The EyeBot platform uses RoBIOS (Robot BIOS) library of functions. These

functions are simulated in the EyeSim simulator. Test environments could be created

easily by loading text files with one of two formats, either Wall format or Maze format.

Wall format simply uses four values to represent the starting and stopping point of a wall

in X,Y coordinates (i.e. x1 y1 x2 y2). Maze format is a format in which a maze is

literally drawn in a text file by using the pipe and underscore (i.e. | and _) as well as

other characters [50].

In 2002, the EyeSim simulator had graduated to a 3D simulator that uses OpenGL

for rendering and loads OpenInventor files for robot models. The GUI (Graphical User

Interface) was written using FLTK [2]. Test environments were still described by a set of

two dimensional points as they have no width and have equal heights [50].

Simulating the EyeBot robot is the extent of EyeSim. While different 3D models

of robots can be imported, and different drive-types (such as omni-directional wheels and

Ackermann steering) can be selected, the controller will always be based on the EyeBot

14

controller and use RoBIOS libraries [2]. This means simulated robots will always be

coded in C code. The dynamics simulation is very simple and does not use a physics

engine. Only basic rigid body calculations are used [50].

 2.1.6 SubSim

SubSim [51] is a simulator for Autonomous Underwater Vehicles (AUVs)

developed using the EyeBot controller. It was developed in 2004 for the University of

Western Australia in Perth [52]. SubSim uses the Newton Dynamics physics engine as

well as Physics Abstraction Layer (PAL) to calculate the physics of being underwater

[15].

Models of different robotic vehicles are can be imported from Milkshape3D files

[52]. Programming of the robot is done by using either C or C++ for lower-level

programming, or a language plug-in. Currently the only language plug-in is the EyeBot

plug-in. More plug-ins are planned but have yet to materialize [52].

 2.1.7 CoopDynSim

CoopDynSim [3] is a multi-robot simulator built on the Newton Game Dynamics

physics engine and OpenGL. It has the ability to playback simulations and even change

the rate of time for a simulation. It uses YARP middleware which uses a socket-enabled

interface. A benefit of this simulator is that each robot spawns its own thread.

CoopDynSim was designed specifically for the hardware available in the author's lab at

the Department of Industrial Electronics at the University of Minoh in Portugal.

 2.1.8 OpenRAVE

OpenRAVE [53] (Open Robotics and Animation Virtual Environment) is an open

source (LGPL) software architecture developed at Carnegie Mellon University [54]. It is

15

mainly used for planning and simulations of grasping and grasper manipulations as well

as humanoid robots. It is used to provide planning and simulation capabilities to other

robotics frameworks such as Player and ROS. Support for OpenRAVE was an early

objective for the ROS team due to its planning capabilities and openness of code [55].

One advantage to using OpenRAVE is its plug-in system. Everything connects to

OpenRAVE by plug-ins, whether it is a controller, a planner, external simulation engines

and even actual robotic hardware. The plug-ins are loaded dynamically. Several

scripting languages are supported such as Python and MATLAB/Octave [53].

 2.1.9 lpzrobots

lpzrobots [60] is a GPL licensed package of robotics simulation tools available for

Linux and Mac OS. The main simulator of this project that corresponds with others in

this survey is ode_robots which is a 3D simulator that used the ODE and OSG

(OpenScreenGraph) engines.

 2.1.10 SimRobot

Figure 2.1.10 shows a screen shot of SimRobot [61] is a free, open source

completely cross-platform robotics simulator started in 1994. It uses the ODE for physics

simulations and OpenGL for graphics [62]. It is mainly used for RoboCup simulations,

but it is not limited to this purpose.

16

Figure 2.1.10 SimRobot screenshot

A simple and intuitive drag and drop interface allows custom items to be added to

scenes. Custom robots can be created and added as well [10]. Unlike many of the other

robotics simulators, SimRobot is not designed around client/server interaction. This

allows simulations to be paused or stepped through which is a great help when debugging

[10].

SimRobot does not simulate specific sensors as many of the other simulators do;

rather it only provides generic sensors that users can customize. These include a camera,

distance senor (not specific on a type), a “bumper” for simulating a touch sensor, and

“actuator state” which returns angles of joints and velocities of motors [10].

Laue and Rofer admit that there is a “reality gap” in which simulations differ from

17

real-world situations [62]. They note that code developed in the simulator may not

translate to real robots due to distortion and noise in the real-world sensors. They also

note, however, that code that works in the real world may completely fail when entered

into the simulation because it may rely on that distortion and noise. This was specifically

noted with the camera sensor and they suggested several methods to compensate for this

difference [62].

 2.1.11 Moby

Moby [63] is an open source (GPL 2.0 license) rigid body simulation library written in

C++. It supports Linux and Mac OS X only. There is little documentation for this

simulation library.

 2.1.12 Comparison of Open Source Simulation Tools

Table 2.1.13 shows the relative advantages and disadvantages of the simulators

covered in this section [64].

Table 2.1.13. Comparison of open source simulators
Simulator Advantages Disadvantages

Stage/Gazebo

• Open Source (GPL)
• Cross Platform
• Active Community of Users

and Developers
• Uses ODE Physics Engine for

High Fidelity Simulations
• Uses TCP Sockets
• Can be Programmed in Many

Different Language

USARSim

• Open Source (GPL)
• Supports both Windows and

Linux
• Users Have Ability to Make

Custom Robots and Terrain
with Moderate Ease

• Uses TCP Sockets
• Can be Programmed in Many

Different Language

• Hard to Install
• Must have Unreal

Engine to use
(Costs about $40)

• Uses Karma
Physics Engine

18

Table 2.1.13 Continued
Simulator Advantages Disadvantages

SARGE

• Open Source (Apache License
V2.0)

• Uses PhysX Physics Engine for
High Fidelity Simulations

• Supports both Windows and
Mac

• Users Have Ability to Make
Custom Robots and Terrain
with Moderate Ease

• Uses TCP Sockets
• Can be Programmed in Many

Different Languages

• Designed for
Training, not Full
Robot Simulations

UberSim
• Open Source (GPL)
• Uses ODE Physics Engine for

High Fidelity Simulations

• No Longer
Developed

EyeSim • Can Import Different Vehicles
• Only Supports

EyeBot Controller

SubSim

• Can Import Different Vehicles
• Can be programmed in C or

C++ as well as using plug-ins
for other languages

CoopDynSim • Multi-Robot system
• Multithreaded
• Uses YARP to interface via

TCP sockets
OpenRAVE • Open Source (Lesser GPL)

• Everything Connects using
plug-Ins

• Can be used with Other
Systems (like ROS and Player)

• Can be Programmed in Several
Scripting Languages

lpzrobots • Open Source (GPL)
• Uses ODE Physics Engine for

High Fidelity Simulations

• Linux and Mac
only

SimRobot • Open Source
• Users Have Ability to Make

Custom Robots and Terrain
Moby

• Open Source (GPL 32.0)
• Written in C++

• Supports Linux
and Mac only

• Very little
documentation

19

 2.2 Commercial Simulators

There are many commercial robotics simulators available. The commercial

simulators described and compared in this paper will be focused on research and

education.

As with any commercial application, one downfall of all of these applications is

that they typically are not open source. Commercial programs that do not release source

code can tie the hands of the researcher, forcing them in some cases to choose the less

than optimal answer to various research questions. When problems occur with

proprietary software, there is no way for the researcher to fix it. This problem alone was

actually the impetus for the Player Project [65].

 2.2.1 Microsoft Robotics Developer Studio

Microsoft Robotics Developer Studio (MRDS) [14] uses Phys X physics engine

which is one of the highest fidelity physics engines available [15]. A screen shot can be

seen in Figure 2.2.1. MRDS robots can be programmed in .NET languages as well as

others. The majority of tutorials available online mention the use of C# as well as a

Visual Programming Language (VPL) Microsoft developed. Programs written in VPL

can be converted into C# [66]. The graphics are high fidelity. There is a good variety of

robotics platforms as well as sensors to choose from.

20

Figure 2.2.1 Microsoft Robotics Developer Studio screenshot

Only computers running Windows 7 are supported in the latest release of MRDS,

however, it can be used to program robotic platforms which may run other operating

systems by the use of serial or wireless communication (Bluetooth, WiFi, or RF Modem)

with the robot [67].

 2.2.2 Marilou

Figure 2.2.2 shows a screen shot of Marilou by anyKode [68]. Marilou is a full

robotics simulation suite. It includes a built in modeler program so users can build their

own robots using basic shapes. The modeler has an intuitive CAD-like interface. The

physics engine simulates rigid bodies, joints, and terrains. It includes several types of

available geometries [69]. Sensors used on robots are customizable, allowing for specific

21

aspects of a particular physical sensor to be modeled and simulated. Devices can be

modified using a simple wizard interface.

Figure 2.2.2 anykode Marilou screenshot

Robots can be programmed in many languages from Windows and Linux

machines, but the editor and simulator are Windows only. Marilou offers programming

wizards that help set up projects settings and source code for based on which language

and compiler is selected by the user [70].

Marilou is not open source or free. While there is a free home version, it is meant

for hobbyists with no intention of commercialization. The results and other associated

information are not compatible with the professional or educational versions. Prices for

these versions range from $360 to $2,663 [71].

22

 2.2.3 Webots

The Cyberbotics simulator Webots [72] (shown in Figure 2.2.3) is a true

multiplatform 3D robotics simulator that is one of the most developed of all the

simulators surveyed [13]. Webots was originally developed as an open source project

called Khepera Simulator as it initially only simulated the Khepera robot platform. The

name of the project changed to Webots in 1998 [73]. Its capabilities have since expanded

to include more than 15 different robotics platforms [12].

Figure 2.2.3 Webots screenshot

Webots uses the Open Dynamics Engine (ODE) physics engine and, contrary to

the criticisms of Zaratti, Fratarcangeli, and Iocchi [40], Webots has realistic rendering of

both robots and environments. It also allows multiple robots to run at once. Webots can

23

execute controls written in C/C++, Java, URBI, Python, ROS, and MATLAB languages

[74]. This simulator also allows the creation of custom robotics platforms; allowing the

user to completely design a new vehicle, choose sensors, place sensors where they wish,

and simulate code on the vehicle.

Webots has a demonstration example showing many of the different robotics

systems it can simulate, including an amphibious multi-jointed robot, the Mars Sojourner

rover, robotic soccer teams, humanoids, multiple robotic arms on an assembly line, a

robotic blimp, and several others. The physics and graphics are very impressive and the

software is easy to use.

Webots has a free demonstration version available (with the ability to save world

files crippled) for all platforms, and even has a free 30 day trial of the professional

version. The price for a full version ranges from $320 to $4312 [75].

 2.2.4 robotSim Pro/robotBuilder

robotBuilder [72] is a software package from Cogmation Robotics that allows

users to configure robots models and sensors. Users import the models of the robots,

import and position available sensors onto the robots, and link these sensors to the robot's

controller. Users can create and build new robot models piece by piece or robotBuilder

can import robot models created in other 3D CAD (Computer-Aided Design) programs

such as the free version of Google Sketchup. The process involves exporting the

Sketchup file as a COLLADA or 3DS file, then importing this into robotBuilder [73].

24

Figure 2.2.4 robotSim Pro screenshot

robotSim Pro (seen in Figure 2.2.4) is an advanced 3D robotics simulator that uses

a physics engine to simulate forces and collisions [76]. Since this software is commercial

and closed source, the actual physics engine used could not be determined. robotSim

allows multiple robots to simulate at one time. Of all of the simulators in this survey,

robotSim has some of the most realistic graphics. The physics of all objects within a

simulation environment can be modified to make them simulate more realistically [76].

Test environments can be easily created in robotSim by simply choosing objects to be

placed in the simulation world, and manipulating their positions with the computer

mouse. Robot models created in the robotBuilder program can be loaded into the test

environments. Virtual robots can be controlled by one of three methods; the Cogmation

25

C++ API, LabVIEW, or any socket-enabled programming language [77].

robotSim is available for $499 or as a bundle with robotBuilder for $750.

Cogmation offers a 90-day free trial as well as a discounted academic license.

 2.2.5 Comparison of Commercial Simulators

Table 2.2.5 is a comparison of the relative advantages and disadvantages of the

specific commercial simulators mentioned in this survey.

Table 2.2.5. Comparison of commercial robotics simulators
Simulator Advantages Disadvantages

Microsoft Robotics
Developer Studio

• Visual Programming Language
• Uses PhysX Physics Engine for

High Fidelity Simulations
• Free

• Installs on
Windows
Machines only

• Not Open Source
Marilou • Users Have Ability to Make

Custom Robots and Terrain
Using Built-in Modeler

• Provides Programming
Wizards

• Robots Can be Programmed in
Windows or Linux

• Free Home Version Available

• Installs on
Windows
Machines only

• Not Open Source
• License Costs

Range between
$260 and $2663

Webots • Uses ODE Physics Engine for
High Fidelity Simulations

• Can be Programmed in Many
Different Languages

• Free Demonstration Version
Available

• Not Open Source
• License Costs

Between $320 and
$4312

robotSim /robotBuilder • Users Have Ability to Make
Custom Robots and Terrain
Using Built-in Modeler

• Uses TCP Sockets
• Can be Programmed in Many

Different Languages
• 90-day Free Trial and

Discounted Academic License
Available

• Not Open Source
• License Costs

Between $499 and
$750

 2.3 Middleware

Middleware is software that sits between the user-written control code and the

target hardware such as a robot (whether it be simulated or real hardware). The reason

26

middleware exists is to allow for highly abstracted interactions between multiple types of

hardware and software. For instance, in many cases the user doesn't have to change their

code if they move from a simulator to a real robot, or even between different types of

robotic vehicles. Middleware also allows for access to third-party software libraries for

advanced features such as path planning, localization, mapping, computer vision, etc. It

can act as a kind of “switch-board” to direct messages to and from different libraries and

hardware. Several types of middleware were considered during this survey.

 2.3.1 Player Project Middleware

Player is a TCP socket enabled middleware that is installed on the robotic

platform [20]. This middleware creates an abstraction layer on top of the hardware of the

platform, allowing portability of code [65]. Being socketed allows the use of many

programming languages [27]. While this may ease programming portability between

platforms it adds several layers of complexity to any robot hardware design.

To support the socketed protocol, drivers and interfaces must be written to interact

with each piece of hardware or algorithm. Each type of sensor has a specific protocol

called an interface which defines how it must communicate to the driver [78]. A driver

must be written for Player to be able to connect to the sensor using file abstraction

methods similar to POSIX systems. The robotic platform itself must be capable of

running a small POSIX operating system to support the hardware server application [25].

This is overkill for many introductory robotics projects, and its focus is more on higher

level aspects of robotic control and users with a larger budgets. The creators of Player

admit that it is not fitting for all robot designs [27].

Player currently supports more than 10 robots as well as 25 different hardware

27

sensors. Custom drivers and interfaces can be developed for new sensors and hardware.

The current array of robots and sensor hardware available for Player can be seen on the

Player project’ s supported hardware web page [24].

 2.3.2 ROS (Robot Operating System)

ROS [79] is currently one of the most popular robotics middleware systems. Only

UNIX-based platforms are officially supported (including Mac OS X) but the company

Robotics Equipment Corporation has ported it to Windows [80]. ROS is fully open source

and uses the BSD license [11]. This allows users to take part in the development of the

system, which is why it has gained wide use. In its meteoric rise in popularity, over the

last three years it has added over 1643 packages and 52 code repositories since it was

released [81].

One of the strengths of ROS is that it interfaces with other robotics simulators and

middleware. It has been successfully used with Player, YARP, Orcos, URBI,

OpenRAVE, and IPC [82]. Another strength of ROS is that it can incorporate many

commonly used libraries for specific tasks instead of having to have its own custom

libraries [11]. For instance, the ability to easily incorporate OpenCV has helped make

ROS a better option than some other tools. Many libraries from the Player project are

also being used in certain aspects of ROS [65]. An additional example of ROS working

well with other frameworks is the use of the Gazebo simulator.

ROS is designed to be a partially real-time system. This is due to the fact that the

robotics platforms it is designed to be used, like the PR2, will be in situations involving

more human-computer interaction in real time than many current commercial research

robotics platforms. One of the main platforms used for the development of ROS is the

28

PR2 robot from Willow Garage. The aim of using ROS’s real-time framework with this

robot is to help guide safe Human-Robot Interaction (HRI). Previous frameworks such as

Player were rarely designed with this aspect in mind.

ROS is made up of many separate parts, namely the ROScore and ROSnodes. The

ROScore is like a switchboard. It routes messages between other ROSnodes. “ROSnode”

is a term used to describe other applications that either send or receive ROS messages.

Figure 2.3.2 shows an example ROS project.

Figure 2.3.2 Simplified ROS application

In the example shown in Figure 2.3.2, all of the bubbles attached to the ROScore

directly are ROSnodes. The code that the user writes must implement a ROSnode to be

able to send messages to the ROScore. The Roomba and arduino nodes can be thought of

as device drivers and have two interfaces. One side interfaces with ROScore and sends

and receives ROS-standard message types. The other side connects via serial ports to

either physical hardware, or a simulator depending on how the user has configured the

project. The Roomba node converts ROS-standard “drive” message-types (a “twist”

29

message) into Roomba protocol commands and sends them to a physical Roomba robot.

The arduino node converts ultrasonic sensor values into the ROS-standard “range”

message-type when gets forwarded to the user's code. The user's code can be written in

one of several different ROS-supported languages. It receives sensor information from

the Roomba and arduino nodes via the ROScore (shown in Figure 2.3.2 by the red and

blue arrows). The code then processes the sensor data to derive an appropriate drive

command. This drive command is a standard ROS message-type called a “twist” (the

black arrow in Figure 2.3.2). It is then sent to the ROScore and routed to the

RoombaNode. The Roomba node converts the twist message into the standard Roomba

protocol command and sends it to the actual Roomba hardware via serial connection. The

hardware abstraction layer in Figure 2.3.2 can be replaced by a simulator, and the rest of

the software would not “know” the difference.

 2.3.3 MRL (MyRobotLab)

MRL (seen in Figure 2.3.3.1) is a Java middleware that includes many third-party

libraries and hardware interfaces [83]. It is written as a service-based architecture that

includes both graphical and textual control of the services and their interconnections. A

python interpreter gives the user complete access to all public classes in all the services

of MRL. This allows for users to design complex systems in a single python script file.

Recently, a Java service has been implemented in MRL which will also become useful for

users once it is more mature. MRL is actively developed, and the developer is generally

available for consultation through the MRL website.

30

Figure 2.3.3.1 A screenshot of the main MRL window displaying several important
services that are available to the user.

Figure 2.3.3.2 shows a typical project in MRL using an actual Roomba vehicle.

The user's code is written in MRL's python interpreter. MRL uses the open source

RoombaComm Java library to communicate to Roomba hardware. The user can initiate a

RoombaComm service either manually using the MRL GUI or in the python interpreting

service. This service then connects to an actual Roomba using a serial port. Sensor and

drive messages are defined in the Roomba's native protocol (as defined in [84]).

31

Figure 2.3.3.2 A typical project in MRL using an actual Roomba vehicle.

 2.3.4 RT Middleware

RT Middleware [85] is set of standards used to describe a robotics framework.

The implementation of these standards is OpenRTM-aist, which is similar to ROS. This

is released under the Eclipse Public License (EPL) [86]. Currently it is available for

Linux and Windows machines and can be programmed using C++, Python and Java [85].

The first version of OpenRTM-aist (version 0.2) was released in 2005 and since then its

popularity has grown. Version 1.0 of the framework was released in 2010.

OpenRTM-aist is popular in Japan, where a lot of research related to robotics

takes place. While it does not provide a simulator of its own, work has been done to

allow compatibility with parts of the Player project [87].

 2.3.5 Comparison of Middleware

Table 2.3.5 compares the relative advantages and disadvantages of the open

source middleware discussed in this survey.

32

Table 2.3.5. Comparison of open source middleware
Simulator Advantages Disadvantages

Player

• Open Source (GPL)
• Cross Platform
• Active Community of Users

and Developers
• Uses TCP Sockets
• Can be Programmed in Many

Different Language

• Every physical
hardware device
must use TCP
protocol

ROS

• Open Source (BSD License)
• Supports Linux, Mac, and

Windows*
• Very Active Community of

Users and Developers
• Works with Other Simulators

and Middleware

• Very complicated
to learn and to use

MRL (MyRobotLab)

• Open source
• Completely Java based,

making it able to run on Linux,
Windows, Mac, Android and
even in web browsers

• Very easy to learn and use
• Active community of

developers
• Interfaces with a multitude of

common third-party libraries,
software, and hardware

• Very easy to customize
RT-Middlware • Open Source (EPL)

• Based on a Set of Standards
that are Unlikely to Change
Dramatically

• Works with Player Project
• Can be Programmed in Several

Different Languages

 2.4 Conclusion

While this is certainly not an exhaustive list of robotics simulators and tools, this

is a simple comparison of several of the leading simulator packages available today.

Most of the simulators in this survey are designed for specific robotics platforms

and sensors which are quite expensive and not very useful for simpler, cheaper systems.

The costs and complexities of these systems often prevent them from being an option for

33

projects with smaller budgets. The code developed in many of these simulators requires

expensive hardware when porting to real robotics systems. The middleware that is

required to run on actual hardware is often too taxing for smaller, cheaper systems. There

simply isn't a very good 3D robotics simulator for custom robotic systems designed on a

tight budget. Many times a user only needs to simulate simple sensor interactions, such

as simple analog sensors, with high fidelity. In these cases, there is no need for such

processor intensive, high abstraction simulators.

 CHAPTER 3: HISTORY OF SEAR

 3.1 Overview of SEAR Concept

The concept of SEAR was conceived as a free (completely open source), cross

platform, and 3D graphically and physically accurate robotics simulator. The proposed

simulator is able to import 3D, user-created vehicle models and real-world terrain data.

The SEAR simulator is easy to setup and use on any system. The source code is freely

available which entices collaboration from the open source community. The simulator is

flexible for the user and is intuitive to use for both the novice and the expert.

SEAR began as a thesis project which laid the groundwork for a tool that matched

the concept requirements [64]. Since its inception, SEAR has gone through multiple

iterations as features were either added or removed and as sensors were validated.

 3.2 Initial Design

In the initial design of SEAR, the models of robotic vehicles were imported into

the simulator in Ogre mesh format. These models were created using one of the many 3D

modeling CAD software programs. Terrain models could be created either externally in

CAD and imported into the simulator, or coded directly in jME. One method for creating

real-world terrains is by importing from Google Earth. This model can then be used as

the basis for a fully simulated terrain as can be seen in Figure 3.2.

35

Figure 3.2 The main SEAR Simulator window showing gyroscope, accelerometer, GPS
and compass values as well as the robot vehicle model and a tree obstacle.
The terrain is from Google Earth of the varsity sports track at the University of
North Carolina at Charlotte.

Settings for the overall SEAR project were entered in a Project Settings Window.

This recorded which models would be used for terrain, robot body and robot wheels. The

robot vehicle dynamics were also set in this window to allow user-described values to be

used in the physics simulations. User code files were selected in this window as well.

The user had the option of selecting a custom userCode file, creating a new userCode file

template or creating a new Java file template in their chosen working directory. All of the

project settings were saved to a file.

The user was able to use a template for a “User Code File” which helped simplify

the coding process of coding by allowing only three methods to be used; a method in

36

which users can declare variables, an initialization method and a main loop method. This

was designed to reduce confusion for novice users and makes prototyping a quick and

easy process. Additionally, the user could choose to code from a direct Java template of

the simulator itself. This would be a preferred method for more advanced simulations.

Upon starting a simulation, the values recoded in the project settings file (.prj)

created in the Project Settings Window and the userCode file (.ucf) were used to create

the simulator Java file by copying and pasting the user code to the appropriate sections of

the simulator Java template. This file was then compiled and the resulting application was

run to perform the simulation. Every time the simulator ran, it had to be completely

recompiled. Though this was hidden from the user, it proved to be a complicated and

messy implementation. There was no error console, so if the user code caused an error,

there was no feedback from the compiler to explain why the compilation failed.

 3.3 Intermediate Designs (Graduate Work)

SEAR has gone through many intermediate designs, including interfacing with

multiple middleware suites as well as testing multiple communication protocols to

validate which would be best to utilize. Concurrently, previously created sensors were

improved, new classes of sensors were added and validated against actual hardware.

 3.3.1 Early ROS Middleware Integration

A new class of sensors, “visual sensors,” was added which included ultrasonic

sensors. The creation and validation of the technique used for simulating this new class

of sensors meant that SEAR would have to change drastically. The new sensors were

validated (proven to act similarly to physical sensors in a similar physical environment)

against both real world sensors and another simulator (Stage). In order to keep as many

37

variables in the testing of the SEAR sensor as consistent as possible with the physical

experiment as well as in the Stage simulation experiment a middleware, ROS, was

selected to interface with each system. This allowed the same robot control code to be

used on all three platforms: SEAR, real-world hardware, and Stage. Additionally, the

Roomba robot was chosen as the vehicle because the iRobot Roomba is nearly

universally supported by many robotics simulators and middleware. Only indoor

environments were used for testing to reduce the number of variables introduced. The

odometer sensor was created to allow for a second measure in the validation of the visual

sensor class.

Since the focus of SEAR changed to the validation of sensors, many of the

previous features had to be removed. The model-loading for terrain was no longer

needed as it was simpler to build the environments within jME3 by hand. Similarly, the

ability to load custom robotic vehicles was removed. Hard-coded environments and

vehicles reduced the time between simulations and reduced the number of files associated

with a given project. The removed features were later added back into SEAR.

User-code integration was completely removed and in its place, a separate ROS

communications thread was used. This allowed SEAR to send and receive standard ROS

message-types. Because of this simplification, there was no need to dynamically create

and compile the SEAR simulation each time it ran.

Simulation no longer required the project settings GUI since all the settings were

hard-coded. The sensor wizard XML files were also no longer required. The distance

sensor class was validated in SEAR utilizing only the main simulation class, the sensor

simulator classes, and the ROS communications thread.

38

 3.3.2 Early MRL Integration

After the sensors were validated, the focus was moved toward integration with a

simpler middleware called MyRobotLab (MRL). The main reason for this change is the

immaturity of the Java-based implementation of ROS. ROSJava, as it was called,

changed so rapidly that the code used in the validation was completely deprecated by the

time the validation was finished. Instead of starting from scratch on ROS integration, the

change to MRL allowed for a more stable development platform over time.

The first integration with MRL used a client library called the MRLClient. It

began as a UDP messaging service that communicated with a running instance of MRL.

Shortly after implementation, the protocol was changed to TCP to reduce the amount of

packet loss between the two programs. This was still not an ideal solution as it was slow

and often times had errors. Eventually, SEAR was incorporated directly with MRL with

the creation of a SEAR service inside MRL. This allowed for communication between

MRL services to be very easy.

During the same time as the MRL integration, the LIDAR simulator was

implemented and then verified against actual hardware. Once all of the sensors were

finished, they were combined into a single Java package that could interact together in

the same simulation. The simulators were moved to execute in the physics thread of jME

rather than the simpleUpdate() method. This increased the speed of simulations.

The creation of environments (models of terrain and obstacles) inside SEAR was

added to the MRL SEAR service. This involved the creation of many new classes of

environment object-types such as Box, Cylinder and Cone objects. These objects can be

created in python code inside MRL and are stored in the main SEAR project folder as

39

XML files. This development meant that environments were no longer hard-coded into

SEAR; they could be changed easily.

SEAR currently supports “robot objects” which communicate using the iRobot

Roomba Create Open protocol [84]. This protocol was chosen because the Roomba

protocol is widely used and very simple to implement on practically any hardware. In

fact, the drive commands from the iRobot protocol use a common interface that Eyesim

authors refer to as “omega-v” which specifies both the linear and angular velocity the

robot should obtain [1], [2]. Custom protocols could also be used with SEAR, however

the user would have to write a “customController” SEAR object script to handle

communications and drive the virtual robot.

 3.4 Conclusion

As shown in this section, the growth of SEAR allowed for experimentation of

each important aspect previously defined for a good modern simulator. Middleware

integration was explored by interfacing with ROS and later with MRL. Different

methods of communication were explored as well. Simulations of sensors were

improved and validated against physical hardware to prove the simulated outputs closely

matched the results of the actual sensors they were modeled on. The final iteration of

SEAR is described in detail in the following chapters.

 CHAPTER 4: SUPPORTING DESIGN TOOLS

This research relied on several software tools for development. The required

software ranged from integrated development environments (IDEs) to 3D modeling CAD

software. Netbeans 6.9 was used for coding Java for the project. The game engine used

was jMonkeyEngine3 (jME3). A survey of different modeling software was performed to

show the variety available to the user [64].

 4.1 Language Selection

Using previous surveys of current robotics simulators [15], [21], [23] it was

shown that several of the current systems claim to be cross platform. While this may

technically be true, it is often so complicated to implement these systems on different

platforms that most people would rather switch platforms than spend the time and effort

trying to setup the simulators on their native systems. Most of the currently available

open source simulator projects are based on C and C++. While many of these are

considered also cross-platform, getting them running correctly requires so many work-

arounds and special configurations that it is often more efficient to change the

development hardware to match the recommended hardware of the simulators.

To make a simulator easy to use as well as to simplify further development, Java

was selected as the language to code the simulator. Java runs in a virtual machine on a

computer. This abstraction prevents the Java code from having to directly interface with

any hardware, allowing the Java code to be unchanged regardless of what hardware it is

41

run on. The development platform used was NetBeans 6.9.

 4.2 Game Engine Concepts

The jME3 game engine consists of two major parts, each with their own “spaces”

that must be considered for any simulation. The first is a “graphics world space” (called

the “scene graph”) which is controlled by the rendering engine and displays all of the

screen graphics. The scene graph is created by jMonkeyEngine in this project.

The second space, the “physics world space,” is controlled by the physics engine

which can simulate rigid body dynamics, fluid dynamics, or other dynamic systems.

Currently in SEAR, only rigid body dynamics are being used. The physics engine

calculates interactions between objects in the “physics space” such as collisions, as well

as variations in mass and gravity.

A developer must think about both the graphics and physics spaces concurrently

as each runs in its own thread. It is possible for objects to exist in only one of these

spaces which can lead to simulation errors. Once an object is made in the graphics space,

it must be attached to a model in the physics space in order to react with the other objects

in the physics space. For instance, an obstacle created in only the graphics space will

show up on the screen during a simulation, however, the robot can drive directly through

the obstacle without being affected by it. Conversely, the obstacle can exist only in the

physics space. A robot in this instance would bounce off of an invisible object in a

simulation. Another issue would be to have an obstacle created in both spaces, but not in

the same place. This would lead to problems such as the robot driving though the visible

obstacle, and running into its invisible physics model a few meters behind the obstacle.

Attention must be paid to attach both the graphics objects and physics objects correctly.

42

The game engine creates a 3D space or “world.” In each direction (X, Y and Z)

the units are marked as “world units.” The Bullet physics engine (the one implemented

in jME3) treats one world unit as one meter [88]. Certain model exporters will have a

scale factor; however that can be used to change the units of the model upon export.

Additionally, any object can also be scaled inside the game engine.

 4.3 JmonkeyEngine Game Engine

The game engine selected for this project was jMonkeyEngine3 (jME3) since it is

a high performance, truly cross platform Java game engine. The basic template for a

simple game in jME3 is shown in the code snippet below:

public class BasicGame extends SimpleApplication {

 public static void main(String[] args){
 //create an instance of this class
 BasicGame app = new BasicGame();
 app.start();//Start the game
 }

 @Override
 public void simpleInitApp() {
 //Initialization of all objects required for the game.
 //This generally loads models and sets up floors.
 }

 @Override
 public void simpleUpdate(float tpf) {
 //Main Event Loop
 } //end of Class

The superclass SimpleApplication handles all of the graphics and physics

involved. Because this class is extended, local overrides must be included. The

simpleInitApp method is used to initialize the world and the objects within it.

The simpleInitApp method calls methods for loading models of the robotic

vehicle, loading the terrain models, setting up groups of collision objects, and any other

tasks that must be performed before the main event loop begins. simpleInitApp then sets

up all the internal state variables of the game and loads the scene graph [89]. The

43

simpleUpdate method is the main event loop. This method is an infinite loop and is

executed as quickly as possible. This is where important functions of the simulator

reside. Additionally, other methods from the simpleBulletApplication may be overridden

such as onPreUpdate and onPostUpdate, though these were not used specifically in this

project.

jME3 uses the JBullet physics engine for physics calculations. JBullet is a one-

hundred percent Java port of the Bullet Physics Library which was originally written in

C++. There is a method in SimpleApplication specifically for handling the physics called

“physicsTick()”. This is the method in which the sensors of SEAR are simulated. jME3

allows the physics to be handled in a separate thread from the graphics.

Objects in jME3 must be represented both graphically as well as physically to

work in a simulation. Simulating sensors in SEAR also requires utilizing both the

graphics and physics threads almost simultaneously. Data must be passed between the

threads to calculate graphical representations of sensor components as well as the virtual

robot's position within the virtual environment. This is similar to the CoopDynSim

simulator [3]. Figure 4.3 is a representation of roughly how the threads communicate.

Figure 4.3 Data for each sensor simulator is shared between
graphics and physics threads in SEAR

 CHAPTER 5: ARCHITECTURE AND METHODS OF IMPLEMENTATION
UTILIZED TO CREATE SEAR

This section describes the implementation of the virtual sensors within SEAR, the

architecture of SEAR, communication between SEAR and middleware (MRL), and the

organization of a end-user's files related to a single simulation project from the

perspective of a developer of SEAR. Typical end-user interactions can be found in

Appendix A which has example code listings for how to create and use every

environment object (terrain and obstacles) as well as robot components (boxes, cylinders,

wheels, robot dynamics settings, and sensors).

For perspective, it is useful to understand where each of the components of SEAR

fit in an example of a typical user project. In this example, the user will utilize MRL's

python service to control a virtual robot and communicate with sensors. One of each

sensor will be used. As a comparison the same project is shown twice; one implemented

with physical hardware (shown in Figure 5a), and then again using the SEAR simulator

(shown in Figure 5b). The portions that were created by the author of this dissertation for

the SEAR simulator are shown by the text being preceded by an asterisk (*).

45

Figure 5.0 (a) A typical project using MRL to control a physical robot. (b) The same
project interfacing instead with SEAR. The blue arrows are MRL system
messages, the Red arrows are serial or virtual serial ports and the orange
arrow is a direct JAVA method call from MRL to SEAR. The items with an
asterisk (*) denote modules written by the author of this dissertation.

 5.1 The SEARproject

The concept of a “SEARproject” was devised to allow users to contain all the files

of a single project together. It is similar in structure to how word processor documents

save text, formatting and associated files to a computer hard drive. This structure will

allow users to share aspects of their projects, be it code, entire environments, or entire

robot models (complete with sensor specifics).

The SEARproject is created when the user creates objects using a custom library.

This creates a folder within MRL’’s operating environment called “SEARproject.”

46

Environment objects are stored in a subfolder named “environment,” robot components

are stored in a subfolder named “robot,” and all the files associated with user-created

CAD files of objects or any images the user selects to wrap around SEAR-native objects

are located in a folder named “assets.” Users' Python or Java code can be stored in the

SEARproject folder.

When the user is ready to save the SEARproject, this folder is compressed in ZIP

format, and renamed with the file extension “.sear” to designate it as a sear project. This

can then be opened at a later time from the MRL SEAR service GUI window, or shared

with other users. Figure 5.1 illustrates the file structure inside a .sear file.

Figure 5.1 Folder tree showing the layout of a SEARproject

MRL's SEAR service has options to save and open .sear files. Projects are stored

in MRL's working directory in a folder named “SEARproject” until they are saved.

When the user saves a file, the SEAR service zips SEARproject folder and saves it as a

.sear file at the given path and file name the user enters.

 5.2 Custom MRL Services

Several MRL services were created to allow SEAR and its virtual robots and

sensor objects to communicate with MRL. Additionally, MRL did not support several

standard sensor types for physical sensors. Custom services were written to add LIDAR

and GPS sensors to MRL, as well as a service used to interface MRL with the SEAR

simulator. These services can interface with actual hardware or simulated hardware [90].

47

 5.2.1 MRL'S LIDAR Service

Figure 5.2.1 The LIDAR service GUI panel showing the output of

an actual SICK LMS-200 scan

MRL did not have a service for interfacing with LIDAR devices at the time of this

research, so one was created. The service currently handles SICK LMS-200 devices and

can be used to set up and receive scan data [91]. Once a scan is performed, the resulting

values are parsed and displayed on the LIDAR service GUI panel in MRL in polar form

(with the senor location being at the center of the bottom of the display). Figure 5.2.1

shows a resulting LIDAR scan. This service was first tested with an actual SICK LMS-

200 LIDAR unit to verify functionality. LIDAR messages are called “telegrams” in the

SICK documentation [91]. Many telegrams are currently supported with the exception of

the “streaming” scan mode. Users can get similar functionality by putting the single scan

function call within a loop to perform multiple scans. The user has the ability to change

the resolution of the scans and the speed of the serial communications using standard

48

LMS-200 telegrams [92]. All functions are currently only available to the user if they use

the Python or Java MRL services.

 5.2.2 MRL's GPS Service

MRL did not have a GPS service at the time of this research, so one was created.

The service utilized other portions of MRL’s serial service to parse values from a GPS

NMEA string. Currently, only GPGGA strings in the format used by the San Jose FV-M8

are supported as they are the most useful for the SEAR simulator at this time and the only

physical hardware available to test [93]. The MRL GPS service parses the GPGGA string

and displays the values in the GPS service GUI panel, and allows the user to access this

data directly from the GPS service via Python or Java code. Figure 5.2.2 shows the GPS

GUI.

Figure 5.2.2 The GPS panel of MRL’s GPS service GUI showing
values from a simulated GPS device

 5.3 MRL'S SEAR Service

The SEAR service has a GUI portion that allows users to open or save SEAR

project files, and start a SEAR simulation. Most of its functionality is not available on

the GUI window. The SEAR service orchestrates all the serial communications between

the software serial ports (virtualSerialPort services within MRL).

 5.4 SEAR's Object Grammar

A custom grammar was created to allow users to design environments, obstacles

and robot components using SEAR-native objects. This is accomplished by the

49

SEAR.POJO library that was added to MRL. The user must import the “SEAR.POJOs”

library within MRL's Python or Java service in order to create these objects. A POJO is a

“Plain Old Java Object” which is a Java object that is devoid of methods and simply

holds information. It can be thought of as similar to a “structure” in C language. By

default, when the user creates these POJO objects, they are immediately serialized as

XML files.

SEAR objects include graphical and physical representations of boxes, cylinders,

and cones as well as components specific to a robot such as dynamics, sensors and

wheels. Sensor objects are used to set up the specific settings of a particular sensor type

such as communication settings, resolution, and type. Tables 5.4.1 and 5.4.2 list the

different types of objects supported by the POJO library.

Table 5.4.1. Physical objects in the SEAR POJOs library
Objects Description

Box
Cone A cone shape with a default image of a traffic cone

Floor

Cylinder A cylinder with a default image of a recycling bin

Model

Wheel

A rectangular prism with a default image of a cardboard
box

A rectangular prism that can be ignored by distance and
LIDAR sensors

A 3d model the user created outside of MRL and
SEAR usually in OGRE mesh format. This can include
custom images and textures. Additionally, Blender
.blend files can be used.
A special cylinder object that is specifically used as a
robot component. The user can select whether this
wheel is connected to the motor or if it is an idler.

50

Table 5.4.2. Sensor objects in the SEAR simulator POJOs library
Objects Description

SEARrobot

3-axis Accelerometer

Compass Sensor

Distance

Robot Dynamics

GPS

3-axis Gyroscope
LIDAR Simulates Laser ranging devices, named the SICK LMS200

Odometer

This is an object that represents a “robot” entity. Other
physical and sensor objects are added to this entity to create
the physical representation as well as the sensor payload of the
robot.
Measures acceleration in 3 dimensions relative to the robot's
body
Measures angle to “north” which defaults to 1000km in the X
axis unless magnetic declination is selected (automatically
calculated based on the robot's GPS coordinates)
This sensor is highly configurable and can simulate SONAR,
RADAR, Infrared, simple laser reflectors and ultrasonic
sensors with a multitude of resolutions
This allows the user to make a serial connection to the
microprocessor on-board the robot. It uses roomba command
protocol. The user also sets up physical aspects of the robot
here such as suspension characteristics.
Simulates a rough GPS coordinate system in the simulated
environment
Measures angular velocity in 3 dimensions relative to the
robot's body

Measures distance traveled Default is to simulate a roomba's
odometer which resets after every 32,767 millimeters or
-32,768mm

 5.4.1 Environment Objects

SEAR's object grammar is utilized from within MRL’s Python or Java services

allowing users to instantiate and manipulate objects in a simulation. The SEAR-native

environment objects are Box, Cone, Cylinder, and Model. The user can create these

objects very easily, then scale them, translate their locations, or rotate them in the

environment as they wish. Users can even select custom images to be wrapped around

the objects so a Box object can be made to look like a cardboard box, a metal shipping

container, or even a brick wall. All of these items are native to SEAR except the “model”

object. The user can create models in external CAD software such as Blender and export

51

the model's files into the “assets” folder of a SEARproject and create a model object

POJO object. The POJO will be automatically serialized to an XML file stored in the

“environment” folder of the SEARproject when the python is executed.

 5.4.2 Terrain

Users can create and modify a simulation's terrain in one of two ways. They can

create a “floor object” XML file using the SEAR POJO library, which gives the option to

make the floor invisible to the sensors. This can be useful for interior environments. The

second method for setting up terrain in SEAR is to load a OGRE mesh or Blender model.

Again, users can select to have the terrain invisible to the sensors if needed. This can

help reduce spurious sensor signals, especially on uneven terrains. When a terrain is

loaded, the center of the terrain becomes the origin in the 3-dimensional world within the

SEAR simulator. This is important as some terrains can be loaded from Google Maps,

and have an associated GPS coordinate that is also referenced as the center of the terrain

model. In the SEAR simulator, the GPS sensor relies on this “world center” value to

calculate the GPS coordinates of the robotic vehicle.

 5.4.3 Obstacles

Obstacles are added to the environment either by hand (manually creating and

saving the appropriately formatted XML files in the “environments” folder) or by using

the SEAR.POJO library in MRL's Python service. The user can create a variety of

“SEAR-native” objects which include boxes, cylinders, and cones. Each obstacle has its

own overloaded methods in the POJOs library which can require as little or as much

specific information as the user desires. For instance, to create a box the user can specify

as few as five options; the object name, the length, width, height, and mass of the box.

52

Additionally, the objects can be translated and rotated in each axis giving the user

complete control when designing a custom environment. If the mass value is set to 0, the

object ignores the influence of gravity in the simulator and does not fall to the ground but

rather it stays in the exact translation and rotation the user specifies, completely ignoring

gravity in the simulator. This can be useful when simulating walls or other large

immovable structures. It can even be used to design environments with objects that hang

down from the ceiling. User-created CAD models can also exist as objects within the

simulation environment. Once the simulator begins, it will load the model's XML file,

and then search for the associated files in the “assets” folder.

When entering values for an objects location and rotation, it is important to note

that translation values represent meters and are referenced from the center (0,0,0) of the

jME3 world. Similarly, the rotation refers to the roll, pith and yaw of the object within the

jME3 world and is measured in degrees.

 5.4.4 Virtual Robotic Vehicles

Virtual robots can be created several ways in SEAR. The simplest method is to

build a robot from SEAR-native components. Objects will be created the same way as for

obstacles, however, a special “robot” object must be created. The “robot” object has no

visual or physical representation of its own. Parts must be added to the robot object as

components. For example, the body of a virtual robot could be a cylinder. The user

would first create a SEAR-native cylinder, create a new robot object, then add this

cylinder to the robot object. SEAR will automatically move the cylinder's XML file to

the “robot” folder within the SEARproject. Similarly, if a model is utilized as a

component of the robot, the XML file for the model will be moved to the robots folder of

53

the SEARproject, though the actual model meshes and images will remain in the “assets”

folder.

Objects that are added as components to a robot object change their translation

and rotation reference from the jME3 world frame to the robot body frame. This means

that an object with a translation of (1,0,0) would be located 1 meter along the X-axis of

the robot body. Similarly, an object with a rotation of (0,45,0) will point 45 degrees

counterclockwise of the front of the robot.

 5.5 Manual Control

There is still the need for manual control of the simulation in some cases. This

can be useful for debugging. The camera angles can be manually controlled. By default,

the flycam in SEAR is disabled. This means the default action of the camera is to follow

the robot automatically. By pressing the space bar on the keyboard during a simulation,

the flycam can be toggled on or off. This will then allow the user to control the camera

angle using the Q, W, A, S, D, and Z keys on the keyboard. Additionally for current

debugging purposes, the H,K,U,J, and ; (colon) keys will allow the user to manually drive

the robot when there is no user code being used. The Enter button will reset the robot to

the beginning location and rotation, and reset the odometer; therefore, effectively starting

the simulation over again. Table 5.5 shows the binding of each key.

54

Table 5.5 Keyboard controls of the Simulator Window

Key Action

H Spin Vehicle Left

K Spin Vehicle Right

U Accelerate Vehicle

J Reverse Vehicle

; (colon) Stop Vehicle

Enter Reset Robot Position

Space Bar Toggle Flycam

Q Pan Camera Up (requires Flycam)

W Pan Camera Forward (requires Flycam)

A Pan Camera Left (requires Flycam)

S Pan Camera Backward (requires Flycam)

D Pan Camera Right (requires Flycam)

Z Pan Camera Down (requires Flycam)

 5.6 Sesnor Simulation in SEAR

Moving into the developer-level abstraction layer (as opposed to the user-level

abstraction layer), sensors in the SEAR simulator consist of two separate types which are

referred to as “physical” and “visual.” Simulators that rely directly on values from the

physics engine in jME3 such as positional sensors (GPS, compass, etc) are referred to as

“physical” sensors. These sensors don't require any visual representation to work. They

assume a position of the 0,0,0 point in the vehicle (robot's) body reference frame.

 5.6.1 Position-Related Sensor Simulation(“Physical” Sensors)

Autonomous robotic vehicles rely very heavily on knowledge of their locations in

3D space. Without this information, autonomous control of the vehicle is impossible.

For this reason, the class of positional sensor simulators was created.

55

 5.6.1.1 GPS

GPS simulation is not a new concept as shown by Balaguer and Carpin [42].

Though Balaguer and Carpin, as well as Durst and Goodin [94] describe and test

advanced GPS simulation algorithms, it is sufficient to simulate GPS with only basic

functionality. To simplify GPS simulations, satellite tracking is not simulated in SEAR

and as such, no atmospheric anomalies are simulated either. Basic functionality of GPS

is simulated to provide only the latitude, longitude and altitude measurements of the

vehicle's current position. To further simplify the simulation, GPS is simulated as a

roughly flat projection of the terrain. This is similar to the simple version of the

GarminGPS sensor in early Gazebo simulations [95]. Developments will improve or

replace this implementation, but it is important to have a simple and basic version of this

sensor for initial tests of the simulator.

There are several important settings that the user must enter before using the GPS

sensor in a simulation. The first set of values represents the latitude, longitude and

altitude values of the center point of the terrain map being used. These values are then

converted from a string to complete decimal format and will be used as an offset which

helps calculate the updated latitude, longitude and altitude of the robotic vehicle during

simulated movement.

Since the Earth is not a perfect sphere, the length of a longitude degree varies

from 111,320 meters per degree at 0 degrees latitude (the equator) to 0 meters per degree

at 90 degrees latitude (the poles) [96]. Calculating this value on a constant basis can

prove rather costly on computing resources. To simplify the changes in longitudinal

distances, a look up table based on the Zerr's table is used to simulate distance per degree

56

latitude [96]. The value entered by the user of the starting position of the robot vehicle

will be used in this look up table to find the closest matching latitude.

Since it is impractical that a simulation will require a vehicle to travel more than

five latitudinal degrees, the value of the length of a degree is never recalculated during

the simulation.

To find the distance per degree longitude in this simulator, a simple distance

formula (shown in 5.6.1.1.1) is used [97].

Length of a degree of Longitude
= Radius of Earth at the Equator×cos (Latitude)

 (5.6.1.1.1)

Distance of a degree of longitude at the equator = 111320.3411 meters as shown

by Zerr. The final formula is shown in Formula (5.6.1.1.2).

Length of one degree of Longitude
=111320. 3411 meters×cos (Latitude)

 (5.6.1.1.2)

Since this formula is a fast calculation, it can be calculated each time the GPS

simulator is polled (about 60 times a second) without a large determent to the speed of

the overall simulation.

When the GPS simulator is polled, it finds the distance in three dimensions of the

vehicle from the center of the world space from the current position of the vehicle. These

values are returned in world units and are treated as meters (in this simulator, one world

unit equals one meter). Knowing the offset in three dimensions (in meters) from the

center point of the map as well as the values of the center of the map, the latitude,

longitude, and altitude of the vehicle can be calculated. The current vehicle position on

the X-axis in meters of the vehicle is converted to latitude using the values from Zerr's

table [96]. The latitude of the vehicle is then known and can be used in Formula 5.6.1.1.2

57

to find the length per degree longitude. The current vehicle position in the Z-axis (in

meters) is then divided by this value to find the current longitude of the vehicle. The

current vehicle offset in the Y-axis is added to the value of the altitude of the center of the

terrain map. This gives the actual vehicle altitude in relation to the original center value.

The GPS simulator is accessible through a virtual serial port within MRL. It streams

GPGGA NMEA strings formatted to match the San Jose MTK-3301 GPS receiver series

(specifically the FV-M8) [93].

 5.6.1.2 Compass

The compass simulator is single-axis and simple. A Vector3f object is used to

store the position of North. For example, the default location of North is located at x, y, z

ordinates (100000, 0, 0). Since one world unit equals one meter in this simulator, this

means the North Pole is located at 100km on the X-axis of any simulation. Of course, this

value can be changed by the user to a more accurate estimation of actual pole distance

when the latitude and longitude of the terrain are considered. For an accurate calculation,

users can select to enable a magnetic declination calculation. This will use the current

GPS location of the robot to calculate the location of magnetic North relative to the robot.

This calculation uses the NOAA (National Oceanic and Atmospheric Administration)

National Geospatial-Intelligence Agency (NGA) World Magnetic Model (WMM) for the

years of 2010-2015 [98]. The declination is calculated using "GeomagneticField.Java”

from the Android Project [99], [100]. These values are stored in a table and can be

updated by the developer as newer models are released.

The simulator calculates the angle of the robot to north by getting the values of

the forward direction of the robotic vehicle using the getForwardVector() method. The

58

values of this vector of the X and the Z directions represent the forward facing direction

in the X-Z plane. These values are compared to the X and Z values of “North.” The

angle between these two values is the angle between the forward-facing direction of the

robotic vehicle and North. This angle is represented in +/-180 degrees (or +/- PI radians).

When importing terrains from Google Maps, it is important to note that the

location of North in the Google Maps terrain corresponds to the X direction when the

terrain is exported correctly (with North facing upward). This automatically sets North in

the terrain model to the X direction in the simulator when models are loaded from Google

Maps into Sketchup.

The user's code must poll the compass to obtain a current value using code such as

int currentHeading = sear.getCompassResult("comp1") where “comp1” is the compass's

name given by the user. This will return a float value between +/- 180 degrees. The user

can scale and format this data any way they might need to simulate actual hardware. This

sensor doesn't have its own serial port (in many cases in actual hardware as well) so for a

user to communicate with the simulated sensor in the same way as they would with actual

hardware, the user can write a custom controller script which will accept serial

commands, poll the simulator for sensor values, format and scale the data, and return the

data over the virtual serial port.

 5.6.1.3 Three-Axis Accelerometer

The use of MEMS (Microelectromechanical Systems) accelerometers is becoming

very common in robotics. Accelerations can be used in dead-reckoning systems as well

as force calculations.

Simulations of accelerations are made simpler because of several methods built

59

into jME3. jME3 provides a getLinearVelocity() method which will return the current

linear velocity of a VehicleControl object in all three dimensions. To get accelerations

from this method, a simple integration of these values over time is taken. To get an

accurate time, the timer class was used. The timer class provides two important methods

used in this integration, getResolution() and getTime(). getResolution() returns the

number of “ticks” per second and getTime() returns the time in “ticks.” These two values

together are used to find time in seconds.

The accelerometer method is called from the physicsTick loop in the simulator

code. This allows it to function continuously during the simulation. The accelerometer

simulator must not take too much time to execute; otherwise it will slow down the entire

simulation. To make sure the main event loop executes quickly, the accelerometer method

does not stall for the given time between measurements, rather it stores a starting time

and calculates the time that has passed every time the main event executes. The elapsed

time is compared to the number of ticks between readings calculated from the bandwidth.

On the first run of a single reading, the first linear velocity is returned from the

getLinearVelocity() method and saved, then the getTime() method saves the current time

(in “ticks”) and a flag is set to prevent this from happening again until the next reading.

Every time the physicsTick() loop runs, it calls the accelerometer method which now

compares the elapsed time from the first reading with the number of ticks between

readings calculated from the bandwidth. When this time has finally elapsed the second

linear velocity is taken and immediately an ending time is saved. The total number of

seconds passed between readings is found by subtracting the number of ticks that have

elapsed during the measurement, and dividing this difference by the resolution of the

60

timer from the getResoultion() method. The acceleration is equal to the second velocity

minus the first velocity divided by the elapsed time in seconds as shown in Formula

5.6.1.3. Once a single reading is finished, the flag for reading the first velocity and

starting time is reset.

(Velocity2−Velocity1)
(Elapsed Time in Seconds)

 (5.6.1.3)

These readings are for all three axes. Additional error could be simulated by

manipulating these data before it is sent to the user, however, the decision was made not

to handicap the user by forcing them to use a particular error calculation [94]. The user is

free to model high-quality or low-quality accelerometer hardware. The resulting raw

values from all three axes are returned every time the accelerometer is simulated to

simplify coding. If a user is only interested in one axis, the others can be ignored. The

user must poll the accelerometer from their userCode. They first need to start a SEAR

MRL service, then access the simulator from within that service by making a function

call directly to SEAR such as accelerations = sear.getAccelResult("accel") where “accel”

is the name of the sensor given by the user. This sensor does not have its own serial port.

To access the virtual accelerometers in the same way as an actual hardware distance

sensor, a user can write a “custom controller” script which accepts serial messages, polls

the simulator for sensor values, formats and scales the data, then returns the data over the

virtual serial port.

 5.6.1.4 Three-Axis Gyroscope

Gyroscopes often accompany accelerometers in the design of inertial measuring

systems. They can be used to help correct offsets and errors given by real-world

accelerometers. There is no error in the simulated accelerometers in this simulator, but

61

the results are often “jittery” due to the way the physics engine simulates both

accelerating and braking of the vehicle. Users may still want to use the gyroscope in the

standard way to improve their filtering algorithms. Real-world MEMS gyroscopes often

have a large output drift. This drift isn't currently simulated.

jME3 has a method to return angular velocity, however, it does not return values

in radians per second. In fact, it could not be determined exactly what units it returned

even with the help of the developer's forum. A custom method for finding actual angular

velocity was created that is very similar to the accelerometer simulator.

Again, jME's timer class was used to find timer resolution (in “ticks” per second)

and elapsed time, in ticks. To find the angle traveled over an elapsed time, the

getForwardVector() method was used. This method returns the 3D normal vector of the

forward direction of the VehicleControl object. For the first run of a sensor reading, the

first forward direction vector and start time are recorded then a flag is set to prevent this

from happening again until the next reading. The current time is compared with the

expected elapsed time until it is reached. At this point the second forward direction

vector is recorded as well as the stop time. Since the Vector3f class has no methods for

comparing the angle between the components, both of the forward vectors are projected

on each of the three original planes; XY, YZ and XZ. Each of these values are stored in a

Vector2f. Using the angleBetween() method in the Vector2f class, the angle between

each projected portion of the forward directions are calculated. For example, XY1 are

the X and Y components of the first forward vector and XY2 are the X and Y components

of the second forward vector. XY1.angleBetween(XY2) returns the angle between these

components. This would describe a rotation about the Z-axis (yaw). Once the angle

62

traveled in each axis is found the elapsed time is used to find the angular velocity. The

angular velocity is then returned to the user. As with the accelerometer, all three axes are

always simulated regardless of how many axes the user is measuring and the resulting

values are without error. The user can choose to model error for any particular gyroscope

they plan to use. A very good scheme for modeling error for a MEMS gyroscope can be

found in [94].

To access the gyroscope readings, a user must follow the same method as with the

accelerometer. (I.e. start a SEAR service within MRL, then poll the simulator for the gyro

values). The function call would be GyroReadings = sear.getGyroResult("gyroscope")

where “gyroscope” is the name of the sensor given by the user. This sensor does not have

its own serial port. To access the virtual distance sensor in the same fashion as an actual

hardware gyroscope sensor, a user can write a “custom controller” script which accepts

serial messages, polls the simulator for sensor values, formats and scales the data, then

returns the data over the virtual serial port.

 5.6.1.5 Odometer

Odometry is a very useful metric used in positioning calculations for vehicles.

The odometer sensor tracks the distance the robot has moved in both the forward and

reverse directions. As with the other “physical” sensors, the odometer assumes it is

located at the center of the robot's body. There is a minimum threshold that must be met

in any linear direction before distances will be logged. This is due to the way jBullet

simulates vehicle objects. When the robot (a type of vehicle object) is stopped, the brakes

are constantly “fighting” with the acceleration setting, causing the vehicle to shake ever

so slightly. Without the threshold value mentioned above, these vibrations would accrue

63

to a very large error in odometer readings over time.

The way users can access this sensor is different from any of the others because

the odometer sensor is a component of a “robot” object by default in SEAR. This means

that a user can measure this sensor by sending a message to the robot object's virtual

serial port in Roomba protocol format. SEAR will return the data on the virtual serial

port in the same format as an actual Roomba would. Like an actual Roomba, SEAR

stores the value of the distance as a 16-bit signed value (between -32,768 and +32,767)

and sends the data as high-byte then low-byte when it is requested. Once the value has

been requested by the user it is reset to 0, again, the same as with an actual Roomba [84].

 5.6.2 Reflective Beam Simulation (“Visual” Sensors)

Beam reflection sensors are arguably the most common sensors used in robotics.

This sensor class includes sensors such as Infrared (IR), RADAR, SONAR, LIDAR, and

Ultrasonic sensors. Though the technologies behind these types of sensor differ, they

operate on the same principles. In the real world, this type of sensor works by sending a

signal out into the environment and measuring the time it takes for that signal to reflect

back to the sensor. SEAR uses ray casting to simulate this class of sensors. The reason

these sensors are referred to as “visual” sensors in this dissertation is that the rays are cast

along graphical lines drawn in the environment. These lines help users determine exactly

what objects are being detected by the simulated sensors. Many simulators use ray

casting as a method for finding intersections with triangle meshes of objects in a virtual

environment [101].

 5.6.2.1 Ultrasonic, Infrared, RADAR and SONAR Distance Sensors

The distance sensor class is used to simulate reflective sensors such as ultrasonic,

64

infrared, RADAR and SONAR. The concept of these sensors is simple, though their

implementation is quite complicated. To match specific sensors, actual hardware was

designed and tested at specific distances and spread angles. Currently a “PING)))”

ultrasonic sensor is the only one that has been validated against actual hardware

measurements in this way. Distance sensors are implemented by having nested cone-

shaped arrays of graphical lines. This group of lines may be attached at any given point

on the robot, and rotated to point in any direction [64], [102], [103].

Each nested cone of lines has a slightly different angle from the X-axis of the ray's

reference frame. Each nested cone also has a different length and color. The angles and

length correspond better to the actual lobes of the ultrasonic sensor. The number of lines

in each particular cone and the total number of cones define the sensor's resolution.

During simulation, a list of “distance sensor” objects is used to iteratively cast rays along

each line of each sensor. For a given sensor, only the closest collision distance and

collision point can be returned. The collision point is used to display a red sphere at the

actual point of impact on whatever object the sensor happens to detect. This helps the

user debug their robotics projects by visually representing the point that is being detected

by the sensor. If no objects are detected within range of the sensor, then the maximum

sensing distance is returned by the sensor.

65

 (a) (b) (c)
Figure 5.6.2.1.1 The distance sensor beam pattern is adjustable in SEAR. (a) Shows the

beam pattern of a PING))) brand sensor which was experimentally
acquired. (b) Shows an example of an infrared sensor beam. (c) Shows
an example of the side lobes of the beam pattern being simulated

The angles, ranges, and resolution of the sensors are adjustable by end users (as

well as developers) of SEAR as shown in Figure 5.6.2.1.1 and 5.6.2.1.2. This allows for a

wide range of sensors and sensor types to be simulated by this particular simulator. IR

and Ultrasonic beams can have a variety of different shapes depending on the

applications they are used for. Sensors in the Sharp family of IR sensors generally have

an ovate or “football” shape. They have much more narrow beams and are less prone to

errors due to collision with angled objects while the MaxBotix EZ series ultrasonic

sensors have more of a teardrop beam pattern [104]–[106]. All of this can be simulated

as long as the developer knows the particular beam pattern of the sensor to be simulated.

It is recommended to measure these values experimentally since datasheets often use

different methods for determining values listed in the given charts and graphs which may

not be useful for the particular environment in which the sensor will be used. The nested

66

cone implementation also allows for side lobe as well as main lobe beam patterns, which

are best mapped experimentally.

 (a) (b)
Figure 5.6.2.1.2 The distance sensor resolution is adjustable in SEAR. (a) shows a sensor

with only eight lines used to simulation the nested cones. (b) shows a
sensor that uses 36 lines to simulate each nested cone.

For Maxbotics sensors, a one inch diameter pipe was moved in front of the beam

and the resulting measurements were used to give a rough estimate of the beam pattern of

the sensor for the datasheets [106]. The method used to validate SEAR's PING))) sensor

relied on a similar method, except the diameter of the sensor was 0.457 meters. It has

been shown that this particular method for simulating ultrasonic sensor results in higher

fidelity simulations than some standard robotics simulators [102].

The resolution of the reflective beam sensors can be modified by the developer by

increasing the number of lines that are used to define each of the nested cones of a given

sensor. The higher the number of lines used to define a particular cone, the smaller the

angle created between each line. This decreases the chances of an object being missed by

the sensor if it is within range.

For validation of the PING))) sensor, an actual Roomba robot was used as a

mobile platform carrying a PING))) brand sensor. It was placed in a specific environment

that contained several obstacles. ROS was used to interpret userCode which only drove

67

the Roomba forward at a specified speed and recorded values from the Roomba's

odometer and the PING))) to a file. The test robot and its validation test results can be

seen in Figure 5.6.2.1.3.

 (a) (b)
Figure 5.6.2.1.3 (a) The actual Roomba robot with ultrasonic sensor payload on top. (b)

The resulting graph of the odometer reading versus the Ultrasonic
reading as the robot drove through the test environment.

The same environment was designed for the ROSStage simulator. A similar robot

was designed for the simulator and the exact same code was tested. The resulting

odometer and ultrasonic sensor values were saved to a file. It should be noted that Stage

does not simulate the correct beam-pattern of the sensor, rather it only simulates a section

of a circle. The Stage simulation and its test results can be seen in Figure 5.6.2.1.4.

68

 (a) (b)
Figure 5.6.2.1.4 (a) The ROSStage simulation showing the ultrasonic sensor beam

pattern used. (b) The resulting graph of the odometer reading versus the
Ultrasonic reading as the robot drove through the test environment.

Again, the same environment was designed inside SEAR. A similar robot was

also designed. The same userCode was again tested, this time on the SEAR simulator's

robot. The odometer and ultrasonic sensor values were recorded to a file. The SEAR

simulation and its results can be seen in Figure 5.6.2.1.5. It is clearly shown that the

SEAR implementation of a PING))) sensor is very close to the readings from the physical

PING))) sensor, thereby validating the method used in SEAR.

69

 (a) (b)
Figure 5.6.2.1.5 (a) The SEAR Roomba simulation showing the ultrasonic sensor beam

pattern used. (b) The resulting graph of the odometer reading versus the
Ultrasonic reading as the robot drove through the test environment.

The user can attach multiple distance sensors to their robot any at attachment

point they choose and orient the sensors in any way they choose (Figure 5.6.2.1.6 shows

an example of this). Each sensor must have a custom name so SEAR will know from

which one to acquire data. To interface with these sensors in SEAR, the user must first

start an instance of a SEARservice, then make a function call to the simulator from the

SEARservice. The user must pass to the function the name of the sensor they wish to

poll such as distance = sear.getDistanceResult("Ping1") where Ping1 is the name the user

gave the sensor when creating the robot. The resulting value is returned in meters. The

user can scale and format this as needed. This sensor does not have its own serial port. To

access the virtual distance sensor in the same way as an actual hardware distance sensor,

a user can write a “custom controller” script which accepts serial messages, polls the

simulator for sensor values, formats and scales the data, then returns the data over the

virtual serial port.

70

Figure 5.6.2.1.6 Two ultrasonic sensors attached to a Roomba in an indoor environment.

 5.6.2.2 LIDAR Sensors

LIDAR (or Light Detection And Ranging) is a method of sensing in which a laser

on the sensor directs a beam at an object and uses the time it takes the reflection of the

laser to return to the sensor to calculate the distance to that object [92]. LIDAR units can

scan the laser 90, 180, 300 and even 360 degrees [91], [107]. This scan results in the

distances of all objects the laser encounters in a plane. Figure 5.6.2.2.1 shows a robot

scanning the virtual environment with a virtual LIDAR.

LIDAR was simulated in this project using a simplified version of the distance

sensor class, that is by ray casting. This is a typical method used for simulating LIDAR

sensors [101]. Instead of multiple nested cones of lines and rays as in the distance

71

sensors, a single flat plane of graphical lines are drawn on the screen originating from the

location of the sensor (as given by the user). The lines have a length equal to the

maximum range of the LIDAR sensor. The length of the visual line determines the

maximum range of the ray cast along that line. This value is given in the LIDAR's

datasheet and can be set by the user.

Figure 5.6.2.2.1 A single scan from the LIDAR simulator on a test environment.
The red lines show where the rays are cast and the yellow spheres

shows where the rays collide with the box objects. The
results of this simulation can be seen in Figure 5.6.2.2.2b

Inside the SEAR simulator itself, the SICK LMS200 LIDAR was modeled and

simulated. The sensor interfaces through a virtualSearialPort object within MRL and is

accessible from userCode in the same way as actual hardware. This requires the user to

start a LIDAR service within MRL, and passing it the path of the virtualSerialPort object

72

as the port for the service to connect. Figure 5.6.2.2.2 shows a comparison of an actual

SICK LMS200 scan of the lab environment versus a scan of the equivalent environment

in the simulator (the environment shown in Figure 5.6.2.2.1). The major differences that

can be seen between the two scans are mainly due to the fact that the simulated LIDAR

does not calculate the scattering or absorption of the laser beam once it hits an object.

Otherwise it is very easy to identify the edges and sides of the boxes that were scanned.

73

Figure 5.6.2.2.2 (a) The readings from an actual SICK LMS200 (b) the readings from

the SEAR simulated LIDAR in a similar environment. These readings
provide a top-down view of an environment in which there are two
larger boxes at the left and right extremes and two smaller boxes in
the front center of a wall in front of the LIDAR sensor.

74

The algorithm for simulating the scan involves finding the current 3D translation

and rotation of the LIDAR sensor. The sensor is placed on the robot's body by the user

when designing the robot. As the robot moves within the world, the position of the

LIDAR sensor updates. The graphical lines of the LIDAR are updated automatically

(since they are part of the robot's Node object). During the physicTick() loop, in which all

of the physics are calculated in jME, rays are cast along each graphical line. The resulting

collision points with any other object in the physics space are returned. If no collision is

detected within the distance of the maximum range, then the value of the maximum range

is returned. The simulation results are a set of distances. Each distance corresponds to a

particular line.

An example scan with a maximum degree spread equal to 180 degrees and an

angle step of 0.5 degrees per step would include 361 readings; one each at the following

angles:

0º, 0.5º, 1º, 1.5º, 2º ... 178º, 178.5º, 179º, 179.5º, 180º

The result of the measurements is an array of floating point decimal numbers

representing distances to collisions in world-units. Just as with actual LIDAR systems,

this information is packaged with a header and checksum value. Figure 5.6.2.2.2 shows

two examples of LIDAR sensors with different properties.

75

 (a) (b)
Figure 5.6.2.2.2 The LIDAR sensor is highly configurable. (a) shows a narrow spread and

long range LIDAR, where (b) shows a wide spread LIDAR with a short
range. The blue spheres show the locations of any collisions of the lines.

 5.7 Serial Communication Between MRL and SEAR

At the developer level, serial communications between MRL and SEAR's simulated

sensors works in a non-intuitive way. First, when an instance of the SEAR simulator

runs, it creates a HashMap containing the information about all the sensors related to that

SEARproject and passes it to the SEARservice within MRL. This SEAR-service then

registers callback methods with each serial port using Java reflection. Meanwhile, within

the SEAR simulator, each sensor creates two “virtualSerialPort” objects using an MRL

library. These objects look and act like hardware serial ports, but they do not exist

anywhere but inside MRL's service structure. Each sensor's XML file contains the

UARTport and userPort addresses associated with a given sensor. These two ports are

nulled together such that data coming from one is sent out the other. Also, a “Serial”

object is created and set to the “UARTport” address. Data generated by the sensor can be

sent out via this SerialPort object back to MRL.

Sending commands or data to a particular simulated sensor is more complicated

because the actual SEAR simulator is not registered as a part of MRL, it instead

76

communicates to MRL via the SEARservice. When data is sent from userCode to a

particular SEAR virtual sensor, it cannot travel directly on the sensor's serial port service

like data coming the other direction. Instead, it triggers a set of events within the MRL

SEARservice. First, the type of sensor is acquired by looking at the message being sent.

Then everything except the sensor's name is stripped from the message. For instance:

"myLidar_LIDARsimulator_Serial_Service" becomes "myLidar". Once the sensor's type

and name are known, the SEARservice can then send the userData to that instance of the

sensor. Figure 5.7 shows a graphical representation of the dataflow when userCode sends

a message to a LIDAR to acquire data, and how that sensor sends data back to the

userCode. The steps described in the figure are:

1. User code running within a python service sends a message to the LIDAR serial
service requesting a scan (this is the same as with actual hardware).

2. The LIDAR service sends the serial data to the LIDAR simulator's serial port, but
the message is processed by the SEARservice.

3. The SEARservice invokes the particular LIDAR simulator instance within the
SEAR simulator.

4. The SEAR simulator makes a method call to the particular LIDAR simulator
instance.

5. The LIDAR scans the simulated environment, formats the data and sends it to its
Serial service.

6. The LIDAR's serial service sends the data back to the LIDAR service.

7. The LIDAR service sends the data to the userCode running within the Python
service.

77

Figure 5.7 The data flow diagram of serial messages between userCode in MRL's Python
service and SEAR simulated sensors.

All of this action occurs to abstract the userCode so users will interface with the

simulated LIDAR the same way they would as with an actual LIDAR, by a method call

in the LIDARservice. To the user, all of these other communications are hidden. The

only difference the user will notice is the serial port name of the simulated LIDAR

doesn't appear anywhere outside of MRL. If they check the device manger in windows or

run a directory listing in /dev/ on UNIX or LINUX-based machines, the serial port will

not be listed.

 CHAPTER 6: CONCLUSIONS AND FURTHER WORK

This research developed the methods and techniques for the design of a tool that

can be used for a variety of academic uses, from teaching introductory programming

concepts to performing accurate graduate-level robotics research. This design was

demonstrated by the development of the Simulation Environment for Autonomous

Robots. Most of the accomplishments planned for this research have been met. These

include the following:

 Identification of features and a working architecture for a modern robotics

simulator:

 As defined in this work, a modern robotics simulator, SEAR, is available

to users on any major platform (Windows, Mac and Linux). It also is open source

meaning the source code is freely distributed, allowing a community of

developers can improve it over time. One of the most important aspects of a

successful modern robotics simulator is the ability to interface with at least one of

the many middleware applications that are currently available. This greatly

increases the usability of the simulator and extends the capability of the user by

allowing them to use third-party libraries and software easily.

 The creation of methods for simulating different types of sensors in a virtual 3D

environment:

 Common sensors (a 3D accelerometer, a 3D gyroscope, a magnetic

compass, an odometer, a GPS, a LIDAR, and a class of reflective distance sensors

79

including ultrasonic and infrared) used in autonomous robotics projects have been

developed and several have been validated against actual hardware. The method

of simulation of some of these sensors is novel. For example, the distance sensors

are simulated in such a way that beam patterns of these sensors can be adjusted by

the user.

 The addition of new sensor types to SEAR and improvement of current sensors:

The odometer sensor was added to keep track of the overall distance the

robotic vehicle traverses. Also, the new class of “visual” sensors which includes

Ultrasonic, SONAR, RADAR and infrared sensors as well as a user-definable

LIDAR sensor were added.

Users can define custom beam shapes for the distance sensor class such

that they can include all makes and models of sensors of this class. The compass

sensor class was made more efficient by the addition of a new declination

calculation method.

 Implementation of an interface with common robotics middleware:

The same user-defined code can be used on actual hardware or the SEAR

simulator with little to no modification.

 The implementation of a method for users to import or create models:

Custom terrains can now be designed by the user using SEAR's POJO

library. Models of terrains can also be imported from external CAD software. The

resulting terrains and obstacles are saved as XML files that are dynamically

injected into SEAR at start up. These files can be created and manipulated by

hand if needed and transferred from one user to another easily.

80

Robots can be built component by component using the SEAR POJO

library. Components of robots can be imported from external CAD software. The

suspension characteristics of the robot are completely accessible to the user

including mass, damping, compression, wheel rest length, stiffness and maximum

suspension force.

 The implementation of a simple file extension for SEAR projects:

Settings of entire SEARprojects are stored as a single zip file which

contains all the user's code, models, and files for robots and terrains.

 6.1 Virtual Serial Ports and ROS Integration

All of the goals set for this research were met or exceeded with the exception of

interfacing with ROS middleware using virtual serial ports. Previous iterations of SEAR

had interfaced with ROS directly (as it now does with MRL). This proved hazardous for

development as the infrastructure of ROS changed multiple times, completely

invalidating the deprecated method used. The most effective way to interface with ROS

was determined to be at the highest abstraction level, away from the internal changes

within the ROS project. For SEAR, it was determined that only serial communication to

specific ROSnodes (such as the Brown University Roomba driver, or the Arduino serial

driver) would protect SEAR from the constant code revisions. The method for

connecting two serial was to use pseudoterminals as virtual serial ports. This method was

expected to provide a relatively clean connection between ROS and SEAR, while

keeping one of the main concepts of SEAR intact; interfacing with SEAR simulated

hardware should be the same as interfacing with actual hardware. The pseudoterminals

are configured in such a way to pass inputs from one pseudoterminal to the output of the

81

other and vice versa. If this method had worked, a single implementation of SEAR could

be used to communicate with both MRL and ROS.

Through many investigations, if was determined that the use of pseudoterminals

does not work for piping ROS data through to MRL and subsequently SEAR. By adding

a secondary hardware serial port in parallel with the an actual Roomba connected to

ROS, it was shown that ROS sends different commands to an actual Roomba than it

sends when connected to a pseudoterminal. This makes it impossible to implement a

serial interface with ROS using the ROS Roomba node via pseudoterminals.

There are two possible solutions to this, and neither of which were determined to

be suitable for the needs of most users. The first method requires nulling together two

actual serial ports on the host machine that ROS and SEAR are running on. This is a

physical implementation of how the pseudoterminals work.

The second way to allow ROS to communicate to MRL, and thereafter SEAR,

would be to use a package called ROSbridge that converts ROS commands to TCP

protocol. This would require MRL to implement a TCP protocol as well which does not

conform to the goals set out in this research; to interface with SEAR exactly the same

way as with actual hardware. As such, this method was not investigated any further.

 6.2 Further Work

There are many opportunities for improvement of the SEAR simulator. Additional

sensor types could extend the capability of SEAR. Some good candidates for new sensors

include visual cameras, infrared cameras, and 3D depth cameras (such as an XBOX

kinect). More models of the currently supported sensors could be added as well. For

instance the GPS and LIDAR simulators are each based on only one actual sensor brand

82

and model respectively. The addition of new beam shapes for the infrared is also

possible, though this ability is already available to the end user as they can use one of the

overloaded constructors in the POJOs library to define their own beam shapes. It would

be simple to add in different beam shapes based on names so that when a user names a

sensor “MaxBotics EZ1” SEAR will automatically use the beam pattern built in to

simulator that particular sensor.

Moving each sensor simulation into their own threads would also increase the

ability of SEAR by reducing lag time when large amounts of data are being collected.

Each sensor could be encapsulated in its own thread. This would also allow for an

expansion of SEAR from simulating a single robot, to the ability to simulate multiple

robots. Since there is a large amount of graduate-level research in these areas this ability

would increase the usage of SEAR.

83

REFERENCES

[1] T. Bräunl, “The Eyesim Mobile Robot Simulator,” 2000.

[2] T. Bräunl and A. Koestler, “Mobile Robot Simulation with Realistic Error Models,” in
International Conference on Autonomous Robots and Agents, 2004, vol. 51, no. 6,
pp. 46–51.

[3] T. Machado, M. Sousa, S. Monteiro, and E. Bicho, “CoopDynSim: a 3D robotics
simulator,” pp. 45–50, 2012.

[4] R. Pjesivac, “Gazebo Tutorial.”

[5] J. Craighead, J. Burke, and R. Murphy, “SARGE: A User-centric Robot Simulator and
Training Environment,” in International Conference on Human-Robot Interaction,
Amsterdam, 2008.

[6] “CogNation • View topic - Create model with Google Sketchup.” [Online]. Available:
http://cogmation.com/forum/viewtopic.php?f=9&t=6.

[7] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The Player / Stage Project : Tools for
Multi-Robot and Distributed Sensor Systems,” in The International Conference on
Advanced Robotics, 2003, no. Icar, pp. 317–323.

[8] J. Craighead, R. Gutierrez, J. Burke, and R. Murphy, “Validating the Search and
Rescue Game Environment as a robot simulator by performing a simulated
anomaly detection task,” in 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2008, pp. 2289–2295.

[9] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “Bridging the gap
between simulation and reality in urban search and rescue.”

[10] T. Laue, K. Spiess, T. Rofer, and T. R, “SimRobot – A General Physical Robot
Simulator and Its Application in RoboCup,” in RoboCup 2005: Robot Soccer
World Cup IX, Springer Berlin / Heidelberg, 2006, pp. 173–183.

[11] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler,
and A. Ng, “ROS : an Open-Source Robot Operating System,” in ICRA Workshop
on Open Source Software, 2009, no. Figure 1.

[12] Cyberbotics Ltd., “Webots User Guide release 6.3.3.” 2010.

[13] O. Michel, “Cyberbotics Ltd. Webots TM : Professional Mobile Robot Simulation,”
Int. J. Adv. Robot. Syst., vol. 1, no. 1, pp. 39–42, 2004.

84

[14] “Microsoft Robotics.” [Online]. Available: http://msdn.microsoft.com/en-
us/robotics.

[15] J. Craighead, R. Murphy, J. Burke, and B. Goldiez, “A Survey of Commercial &
Open Source Unmanned Vehicle Simulators,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation, 2007, no. April, pp. 852–
857.

[16] R. Mendonca, P. Santana, F. Marques, A. Lourenco, J. Silva, and J. Barata, “Kelpie:
A ROS-Based Multi-robot Simulator for Water Surface and Aerial Vehicles,” 2013
IEEE Int. Conf. Syst. Man, Cybern., pp. 3645–3650, Oct. 2013.

[17] A. Nagaty, S. Saeedi, C. Thibault, M. Seto, and H. Li, “Control and Navigation
Framework for Quadrotor Helicopters,” J. Intell. Robot. Syst., vol. 70, no. 1–4, pp.
1–12, Oct. 2012.

[18] Z. Kootbally, S. Balakirsky, and A. Visser, “Enabling codesharing in Rescue
Simulation with USARSim / ROS,” in Proceedings of the 17th RoboCup
Symposium, 2013.

[19] S. Balakirsky and Z. Kootbally, “USARSim/ROS: A Combined Framework for
Robotic Control and Simulation,” in ASME/ISCIE 2012 International Symposium
on Flexible Automation, 2012, p. 101.

[20] A. Elkady and T. Sobh, “Robotics Middleware: A Comprehensive Literature Survey
and Attribute-Based Bibliography,” J. Robot., vol. 2012, pp. 1–15, 2012.

[21] P. Castillo-Pizarro, T. V. Arredondo, and M. Torres-Torriti, “Introductory Survey to
Open-Source Mobile Robot Simulation Software,” 2010 Lat. Am. Robot. Symp.
Intell. Robot. Meet., pp. 150–155, Oct. 2010.

[22] C. Madden, “An Evaluation of Potential Operating Systems for Autonomous
Underwater Vehicles.” DSTO Defence Science and Technology Organisation,
2013.

[23] A. C. Harris and J. M. Conrad, “Survey of popular robotics simulators, frameworks,
and toolkits,” in Proceedings of IEEE SoutheastCon, 2011, pp. 243–249.

[24] “Player Project.” [Online]. Available: http://playerstage.sourceforge.net/.

[25] B. P. Gerkey, R. T. Vaughan, M. J. Matari, A. Howard, K. Stoy, G. S. Sukhatme, and
M. J. Mataric, “Most valuable player: a robot device server for distributed
control,” in Proceedings 2001 IEEE/RSJ International Conference on Intelligent
Robots and Systems. Expanding the Societal Role of Robotics in the Next
Millennium (Cat. No.01CH37180), 2001, no. Iros, pp. 1226–1231.

85

[26] N. Bredeche, J.-M. Montanier, B. Weel, and E. Haasdijk, “Roborobo ! a Fast Robot
Simulator for Swarm and Collective Robotics,” no. Ppsn, p. 2, Apr. 2013.

[27] R. T. Vaughan, A. Howard, and B. Gerkey, “On Device Abstractions for Portable,
Reusable Robot Code,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2003, no. October, pp. 2421–2427.

[28] “Basic FAQ - Playerstage.” [Online]. Available:
http://playerstage.sourceforge.net/wiki/Basic_FAQ

[29] “Player Project: Gazebo.” [Online]. Available:
http://playerstage.sourceforge.net/index.php?src=gazebo

[30] M. E. Dolha, “3D Simulation in ROS Outline (slides),” Simulation, Nov-2010.
[Online]. Available: http://www.ros.org/wiki/Events/CoTeSys-ROS-School?
action=AttachFile&do=get&target=3d_sim.pdf [Accessed: 01-Dec-2010].

[31] “Usarsim.” [Online]. Available:
http://usarsim.sourceforge.net/wiki/index.php/Main_Page [Accessed: 14-Nov-
2010].

[32] G. Roberts, S. Balakirsky, and S. Foufou, “3D Reconstruction of Rough Terrain for
USARSim using a Height-map Method,” Proc. 8th Work. Perform. Metrics Intell.
Syst. - Permis ’08, p. 259, 2008.

[33] B. Balaguer, S. Balakirsky, S. Carpin, M. Lewis, and C. Scrapper, “USARSim: A
Validated Simulator for Research in Robotics and Automation,” in Workshop on
“Robot Simulators: Available Software, Scientific Applications and Future
Trends”, at IEEE/RSJ IROS 2008.

[34] S. Okamoto, K. Kurose, S. Saga, K. Ohno, and S. Tadokoro, “Validation of
Simulated Robots with Realistically Modeled Dimensions and Mass in
USARSim,” in IEEE International Workshop on Safety, Security and Rescue
Robotics (SSRR), 2008, pp. 77–82.

[35] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “USARSim: A Robot
Simulator for Research and Education,” Proc. 2007 IEEE Int. Conf. Robot. Autom.,
pp. 1400–1405, Apr. 2007.

[36] “4. Installation - Usarsim.” [Online]. Available:
http://usarsim.sourceforge.net/wiki/index.php/4._Installation

[37] “SourceForge.net: Topic: Confused about installing USARSim on Linux.” [Online].
Available:
http://sourceforge.net/projects/usarsim/forums/forum/486389/topic/3873619

86

[38] S. Carpin, T. Stoyanov, Y. Nevatia, M. Lewis, and J. Wang, “Quantitative
Assessments of USARSim Accuracy,” Perform. Metrics Intell. Syst., 2006.

[39] S. Carpin, J. Wang, M. Lewis, A. Birk, and A. Jacoff, “High Fidelity Tools for
Rescue Robotics : Results and Perspectives,” in Robocup 2005: Robot Soccer
World Cup IX, Springer, 2006, pp. 301–311.

[40] M. Zaratti, M. Fratarcangeli, and L. Iocchi, “A 3D Simulator of Multiple Legged
Robots based on USARSim,” in Robocup 2006: Robot Soccer World Cup,
Springer, 2007, pp. 13–24.

[41] C. Pepper, S. Balakirsky, and C. Scrapper, “Robot simulation physics validation,” in
Proceedings of the 2007 Workshop on Performance Metrics for Intelligent Systems
- PerMIS ’07, 2007, pp. 97–104.

[42] B. Balaguer and S. Carpin, “Where Am I ? A Simulated GPS Sensor for Outdoor
Robotic Applications,” in Simulation, Modeling, and Programming for
Autonomous Robots, Springer Berlin / Heidelberg, 2008, pp. 222–233.

[43] A. Birk, J. Poppinga, T. Stoyanov, and Y. Nevatia, “Planetary Exploration in
USARsim : A Case Study including Real World Data from Mars,” in RoboCup
2008: Robot Soccer World Cup XII, no. figure 1, Springer Berlin / Heidelberg,
2009, pp. 463–472.

[44] “SARGE.” [Online]. Available: http://www.sargegames.com/page1/page1.html
[Accessed: 02-Nov-2010].

[45] J. Craighead, J. Burke, and R. Murphy, “Using the Unity Game Engine to Develop
SARGE : A Case Study,” in Simulation Workshop at the International Conference
on Intelligent Robots and Systems (IROS), 2008.

[46] I.T. Pier, “SARGE User Manual Search and Rescue Game Environment,” Compass,
2008.

[47] “Carnegie Mellon UberSim Project.” [Online]. Available:
http://www.cs.cmu.edu/~robosoccer/ubersim/

[48] “Downloads.” [Online]. Available: http://www.cs.cmu.edu/~coral/download/.
[Accessed: 14-Dec-2010].

[49] B. Browning and E. Tryzelaar, “ÜberSim ubersim : A Multi-Robot Simulator for
Robot Soccer (Long Version),” Manager, 2000.

[50] A. Waggershauser and A. G. . und Prozessrechentechnik, “Simulation of Small
Autonomous Mobile Robots,” University of Kaiserslautern, 2002.

87

[51] “SubSim.” [Online]. Available: http://robotics.ee.uwa.edu.au/auv/subsim.html
[Accessed: 05-Dec-2010].

[52] T. Bielohlawek, “SubSim - An Autonomous Underwater Vehicle Simulation
System,” 2006.

[53] “OpenRAVE.” [Online]. Available:
http://openrave.programmingvision.com/index.php/Main_Page [Accessed: 12-
Dec-2010].

[54] R. Diankov and J. Kuffner, “Openrave: A planning architecture for autonomous
robotics,” Robot. Institute, Pittsburgh, PA, Tech. Rep. C., no. July, 2008.

[55] “OpenRAVE and ROS | Willow Garage.” [Online]. Available:
http://www.willowgarage.com/blog/2009/01/21/openrave-and-ros

[56] “The Mobile Robot Programming Toolkit.” [Online]. Available:
http://www.mrpt.org/

[57] M. Perception, “MRPT Book -- Development of Scientific Applications with the
Mobile Robot Programming Toolkit,” October, 2010.

[58] J. L. . Claraco, “Development of Scientific Applications with the Mobile Robot
Programming Toolkit: The MRPT reference book,” Univ. Malaga, 2010.

[59] “About MRPT | The Mobile Robot Programming Toolkit.” [Online]. Available:
http://www.mrpt.org/About [Accessed: 20-Feb-2012].

[60] “Software.” [Online]. Available: http://robot.informatik.uni-leipzig.de/software/
[Accessed: 22-Nov-2010].

[61] “SimRobot - Robotics Simulator.” [Online]. Available: http://www.informatik.uni-
bremen.de/simrobot/index_e.htm

[62] T. Laue and T. R, “SimRobot – Development and Applications,” in International
Conference on Simulation, Modeling and Programming for Autonomous Robots
(SIMPAR), 2008, no. Spp 1125.

[63] “Moby Rigid Body Simulator.” [Online]. Available:
http://physsim.sourceforge.net/index.html

[64] A. C. Harris, “Design and Implementation Of an Autonomous Robotics Simulator,”
University of North Carolina at Charlotte, 2011.

88

[65] N. Kagek, “GetRobo Blog English: Interviewing Brian Gerkey at Willow Garage.”
[Online]. Available: http://getrobo.typepad.com/getrobo/2008/08/interviewing-
br.html [Accessed: 11-Feb-2011].

[66] J. Jackson, “Microsoft Robotics Studio: A Technical Introduction,” IEEE Robotics &
Automation Magazine, vol. 14, no. 4, pp. 82–87, 2007.

[67] “Overview.” [Online]. Available: http://msdn.microsoft.com/en-
us/library/bb483024.aspx [Accessed: 03-Dec-2010].

[68] “anyKode Marilou - Modeling and simulation environment for Robotics.” [Online].
Available: http://www.anykode.com/index.php

[69] “Physics models for simulated robots and environments.” [Online]. Available:
http://www.anykode.com/marilouphysics.php

[70] “Marilou - wizards.” [Online]. Available:
http://www.anykode.com/marilouwizard.php

[71] “anyKode - Marilou.” [Online]. Available:
http://www.anykode.com/licensemodel.php

[72] “Webots: mobile robot simulator - Webots - Overview.” [Online]. Available:
http://www.cyberbotics.com/overview.php

[73] “Khepera Simulator Homepage.” [Online]. Available:
http://diwww.epfl.ch/lami/team/michel/khep-sim/

[74] Cyberbotics Ltd., “Webots User Guide release 6.3.2,” 2010.

[75] “Webots: mobile robot simulator - Store.” [Online]. Available:
http://www.cyberbotics.com/store

[76] “robotsim documentation.” [Online]. Available:
http://cogmation.com/pdf/robotsim_doc.pdf

[77] “Cogmation Robotics - robotSim Pro.” [Online]. Available:
http://www.cogmation.com/robot_builder.html

[78] “Player Manual: The Player Robot Device Interface.” [Online]. Available:
http://playerstage.sourceforge.net/doc/Player-cvs/player/index.html

[79] “Documentation - ROS Wiki.” [Online]. Available: http://www.ros.org/wiki/

[80] “ROS für Windows.” [Online]. Available: http://www.servicerobotics.eu/index.php?
id=37 [Accessed: 11-Dec-2010].

89

[81] “Happy 3rd Anniversary, ROS! | Willow Garage.” [Online]. Available:
http://www.willowgarage.com/blog/2010/11/08/happy-3rd-anniversary-ros

[82] “FAQ - ROS Wiki.” [Online]. Available: http://www.ros.org/wiki/FAQ [Accessed:
11-Nov-2010].

[83] “http://myrobotlab.org,” 2013. [Online]. Available: http://myrobotlab.org/
[Accessed: 25-Apr-2013].

[84] iRobot, “iRobot Create Open Interface.” 2006.

[85] “OpenRTM-aist official website | OpenRTM-aist.” [Online]. Available:
http://www.openrtm.org/

[86] “RT-Middleware : OpenRTM-aist Version 1.0 has been Released.” [Online].
Available:
http://www.aist.go.jp/aist_e/latest_research/2010/20100210/20100210.html

[87] I. Chen, B. MacDonald, B. Wunsche, G. Biggs, and T. Kotoku, “A simulation
environment for OpenRTM-aist,” in IEEE International Symposium on System
Integration, 2009, pp. 113–117.

[88] “Scaling The World - Physics Simulation Wiki.” [Online]. Available:
http://bulletphysics.org/mediawiki-1.5.8/index.php/Scaling_The_World.
[Accessed: 25-Apr-2013].

[89] “jme3:intermediate:simpleapplication – jME Wiki.” [Online]. Available:
http://jmonkeyengine.org/wiki/doku.php/jme3:intermediate:simpleapplication
[Accessed: 20-Jan-2002].

[90] A. C. Harris and J. M. Conrad, “Utilizing Middleware to Interface with the
Simulation Environment for Autonomous Robots,” in Proceedings of IEEE
SoutheastCon, 2014.

[91] SICK AG, “Telegrams for Configuring and Operating the LMS2xx Laser
Measurement Systems, Firmware version V2.30/X1.27.” 2006.

[92] SICK AG., “Quick Manual for LMS communication setup,” Measurement, vol.
2002, no. March, pp. 1–18, 2002.

[93] SaNav Corporation, “MTK-3301 GPS Receiver Series.”

[94] P. J. Durst and C. Goodin, “High fidelity modelling and simulation of inertial sensors
commonly used by autonomous mobile robots,” World J. Model. Simul., vol. 8, no.
3, pp. 172–184, 2012.

90

[95] “Gazebo Gazebo: Gazebo.” [Online]. Available:
http://playerstage.sourceforge.net/doc/Gazebo-manual-0.8.0-pre1-html/.

[96] G. B. M. Zerr, “The Length of a Degree of Latitude and Longitude for any Place,”
Am. Math. Mon., vol. 8, no. 3, p. 60, Mar. 1901

[97] D. Mark and J. LaMarche, More iPhone 3 Development: Tackling iPhone SDK 3, 1st
ed. Apress, 2009, pp. 366–367

[98] “NOAA’s Geophysical Data Center - Geomagnetic Data.” [Online]. Available:
http://www.ngdc.noaa.gov/geomagmodels/Declination.jsp. [Accessed: 20-Jan-
2002]

[99] Android Project, “Geomagnetic Field.”

[100] “GeomagneticField @ developer.android.com.”

[101] P. J. Durst, C. Goodin, B. Q. Gates, C. L. Cummins, B. McKinley, J. D. Priddy, P.
Rander, and B. Browning, “The Need for High-Fidelity Robotics Sensor Models,”
J. Robot., vol. 2011, pp. 1–6, 2011.

[102] V. S. Gill, A. C. Harris, S. G. Swami, and J. M. Conrad, “Design , Development
and Validation of Sensors for a Simulation Environment for Autonomous Robots,”
in Proceedings of the IEEE SoutheastCon, 2012, pp. 1–6.

[103] A. C. Harris and J. M. Conrad, “Improving and Designing Sensors for the
Simulation Environment for Autonomous Robots (SEAR),” Proc. IEEE
SoutheastCon 2013, 2013.

[104] Sharp, “Sharp GP2D12/GP2D15 datasheet.” [Online]. Available:
www.acroname.com/robotics/parts/SharpGP2D12-15.pdf .

[105] “Sharp IR Rangers Information.” [Online]. Available:
http://www.acroname.com/robotics/info/articles/sharp/sharp.html.

[106] “MaxSonar-EZ1 FAQ-MaxBotix Inc., Reliable Ultrasonic Range Finders and
Sensors with Analog, Pulse Width (uses Time of Flight) and Serial Outputs.”
[Online]. Available: http://www.maxbotix.com/MaxSonar-EZ1__FAQ.html.

[107] SICK AG, “User Protocol Services for Operating/Configuring the LD– OEM/LD–
LRS.” 2006.

91

CONFERENCE PAPERS

[23] Adam C. Harris and J. M. Conrad, “Survey of Popular Robotics Simulators,
Frameworks, and Toolkits,” in Proceedings of IEEE SoutheastCon, 2011, pp. 243–249.

[64] Adam C. Harris, “Design and Implementation Of an Autonomous Robotics
Simulator,” University of North Carolina at Charlotte, 2011.

[90] Adam C. Harris and J. M. Conrad, “Utilizing Middleware to Interface with the
Simulation Environment for Autonomous Robots,” in Proceedings of IEEE
SoutheastCon, 2014.

[102] Adam C. Harris ; V. S. Gill, S. G. Swami, and J. M. Conrad, “Design ,
Development and Validation of Sensors for a Simulation Environment for Autonomous
Robots,” in Proceedings of the IEEE SoutheastCon, 2012, pp. 1–6.

[103] Adam C. Harris and J. M. Conrad, “Improving and Designing Sensors for the
Simulation Environment for Autonomous Robots (SEAR),” Proceedings of IEEE
SoutheastCon 2013.

92

APPENDIX A: SEAR USER INTERACTIONS

There is a need to describe a typical user interaction with SEAR and MRL using

the highest level of abstraction, the “User Space”. To this end, this user case can serve as

both a clear example of user interaction and as a guide for users of SEAR.

 A.1 Creation of Environments and Objects

In MRL, a python service must be started. In this example, the python service is

also named “python.” From this service, a user can import the SEAR.POJOs library and

create the environment using SEAR-native objects. These objects will be stored in a

folder titled “SEARproject” inside the main MRL working directory. Code Listing 1

shows the creation of an environment with an example of each SEAR-native element.

Code Listing 1: Python script that can create the XML files for a simulation environment.
1 from org.SEAR.POJOs import Cylinder
2 from org.SEAR.POJOs import Box
3 from org.SEAR.POJOs import Cone
4 from org.SEAR.POJOs import model
5
6 floor = Floor("floor", 50, 50) #create floor
7
8 #create some obstacles
9 box = Box("Box1_name", 0.25, 0.25, 0.25, 0)
10 box.move(-1.5, 1.25, 0)
11 box.rotate(45, 0, 0)
12
13 cyl = Cylinder("trash Can", 0.25, 0.75, 10)
14 cyl.move(-3, 0, -3.5)
15 cyl.rotate(0, 30, 30)
16
17 coneA = Cone("Traffic Cone", 0.25, 2, 10)
18 coneA.move(-2, 0, 0)
19 coneA.rotate(0, 0, 45)
20
21 tree = Model("Tree1_name","models/Tree/Tree.mesh.xml")
22 tree.move(0, 0, -3)
23
24 print "Done creating Environment"

93

 A.2 Creation of a Virtual Robot in SEAR

Virtual robotic vehicles are created in a similar fashion as environments. The

difference is that the objects are then added as components to a “robot” object. Code

Listing 2 shows example code for the creation of a robot with sensors.

Code Listing 2: The creation of a simple Roomba-like robot
1 from org.SEAR.POJOs import Cylinder
2 from org.SEAR.POJOs import Box
3 from org.SEAR.POJOs import Cone
4 from org.SEAR.POJOs import Wheel
5 from org.SEAR.POJOs import SEARrobot
6 from org.SEAR.POJOs import Gyroscope
7 from org.SEAR.POJOs import Accelerometer
8 from org.SEAR.POJOs import GPS
9 from org.SEAR.POJOs import Compass
10 from org.SEAR.POJOs import Odometer
11 from org.SEAR.POJOs import Distance
12 from org.SEAR.POJOs import LIDAR
13 from org.SEAR.POJOs import Dynamics
14
15 robot = SEARrobot("myRoomba");#create a “robotObject” entity
16
17 #setup suspension and communications ports
18 dyna = Dynamics("robotDynamics1", 400, 60, 0.3, 0.4, 10000, 0.1,

0, 0.1, 0, 0, 0, 180)
19 dyna.setPorts("/dev/my_Robot01", "/dev/SEAR_Robot_01")
20 robot.addComponent(dyna)
21
22 #create a cylinder for the body of the Roomba and apply a custom

image to it
23 body = Cylinder("Roomba Body", 0.1666875, 0.0762, 400,

"./textures/roomba.jpg")
24 robot.addComponent(body)
25
26 #create and add the wheels to the robot object
27 cyl1 = Wheel("frontWheel", 0.0381, 0.03, 0)
28 cyl1.move(0, 0, 0.16)
29 robot.addWheel(cyl1);
30
31 #adding wheels saves wheel specs in the robot XML
32 cyl2 = Wheel("rightWheel", 0.0381, 0.03, 1)
33 cyl2.move(-0.16, 0, 0)
34 robot.addWheel(cyl2)
35
36 cyl3 = Wheel("leftWheel", 0.0381, 0.03, 1)
37 cyl3.move(0.16, 0, 0)
38 robot.addWheel(cyl3)
39
40 cyl4 = Wheel("backWheel", 0.0381, 0.03, 0)
41 cyl4.move(0, 0, -0.16)
42 robot.addWheel(cyl4);

94

 A.3 Controlling a Virtual Robot in SEAR

Once both the environment and robot have been created, the user can write the

code to control the robot and read sensors. To drive the robot within SEAR, the user must

write code which starts a SEAR simulation which will load this robot from the XML

files, then connects to the robot's virtual serial port to communicate with the robot. An

example of this can be seen in Code Listing 3. Notice that first, a Roomba MRL service is

created. This is because the robot dynamics in SEAR expects to use the Roomba

protocol to receive drive commands, and to return sensor data. The Roomba protocol is

very simple to understand, easy to implement on other robotics platforms and almost

universally supported by many other software applications (including other robotics

middleware).

Code Listing 3: Example userCode that drives a robot in SEAR.
1 from time import sleep
2 from org.myrobotlab.service import Roomba
3
4 sear = Runtime.createAndStart("SEAR","SEAR")
5 sear.startSimulation(); #start SEAR simulation
6
7 roomba = Runtime.create("robot_Dynamics1","Roomba")
8 roomba.connect("/dev/SEAR_Robot_01")
9 roomba.startService()
10 roomba.startup()
11 roomba.control()
12 roomba.goForward()
13 roomba.sleep(1000)
14 roomba.goBackward()

 A.4 Creating and Communicating with a Virtual LIDAR in SEAR

The user must first create the XML file for a LIDAR sensor in the robots folder of

the SEARProject. This is done easily by using a python script or Java class written

within MRL. The creation of the XML file will be done automatically in Code Listing 4.

This snippet should be added to the script that creates the virtual robot (Code Listing 2).

95

Code Listing 4: The creation of a virtual LIDAR sensor
1 from org.SEAR.POJOs import LIDAR
2
3 lidar1 = LIDAR ("myLidar")#creates LIDAR object named "myLidar"
4 lidar1.setRange(8.191)
5 lidar1.setSpread(180)
6 lidar1.setResolution(1.0)
7
8 #sets UART port, then the port the user will communicate with
9 lidar1.setPorts("/dev/my_Lidar01", "/dev/SEAR_LIDAR_01")
10 lidar1.setBaud(9600)
11 lidar1.move(0,0.15,0.2) #move the physical location of this

sensor on the robot's body
12 lidar1.LMS(1)
13 robot.addComponent(lidar1) #add as a component of the robot

Access to this sensor during a simulation is simple. First, an instance of SEAR

must be created and started either by manually starting a SEAR service in MRL or

programmatically as shown in Code Listing 5, then a LIDAR service should be started in

MRL just as if an actual physical LIDAR device was being used. The communications

options (LIDAR name, UARTport, and userPort) should be the same as those set in the

XML description of the LIDAR sensor.

Code Listing 5: Starting a LIDAR MRL service
1 from time import sleep
2 sear = Runtime.createAndStart("SEAR","SEAR")
3 sear.startSimulation(); #start SEAR simulation
4 sleep (2); # Give some time for things to fall into their natural

place.
5
6 #These lines are initialization of the LIDAR
7 lidar = Runtime.createAndStart("myLidar", "LIDAR") # creates

LIDAR service named "myLidar"
8 lidar.startService()
9 print "connect LIDAR service to /dev/SEAR_LIDAR_01"
10 lidar.connect("/dev/SEAR_LIDAR_01")
11 #have python listening to lidar
12 print "adding the LIDAR service listener"
13 lidar.addListener("publishLidarData", python.name, "input")
14 # set scan mode for 100 degree spread with a reading every 1

degree
15 print "setting scan mode"
16 lidar.setScanMode(100, 1)
17
18 print "Ready to receive LIDAR data... "
19 while 1: # infinite loop
20 lidar.singleScan() #get a single scan
21 sleep(2) #wait two seconds and repeat

96

While the simulation is running, the LIDAR data can be viewed in the LIDAR

service tab named "myLidar" in MRL. This will update once each time the LIDAR

scans. To access the data of the LIDAR within the userCode script, a listener must be

added to the LIDAR service's publishLdarData method. This will call a userCode

method each time the LIDAR service receives a valid message. In Code Listing 6, the

listener calls the userCode method "input" each time the LIDAR service publishes data.

There are several examples (commented out) of how to use the raw LIDAR data. The

example that is not commented in this method will print the results out in the python

console window of MRL's python service as Cartesian coordinates of collisions using the

placement of the LIDAR in the simulated world as the reference (0,0).

Code Listing 6: Example code for accessing the raw LIDAR data
1 from time import sleep
2 import Java.lang.String
3 import math
4 # This script only uses the LIDAR sensor on the simulated robot,

the user is expected to drive the robot using the i,j,k,l,and ;
keys

5
6 def input():
7 startingAngle = 0
8 code = msg_myLidar_publishLidarData.data[0]
9 length = len(code)
10 print "received " + str(length) +"readings:"
11 if length==101 or length==201 or length==401:
12 startingAngle = 40
13 else:
14 startingAngle = 0
15
16 for i in range(0, length):
17 # print hex(code[i]) #print result in hexadecimal
18 # print (code[i]) #print results (without units)
19 # print (code[i]/float(100)) #Print results in

centimeters (if LIDAR was in CM mode)
20
21 # print ((code[i]/100)/2.54) #Print results in inches

(if LIDAR was in CM mode)
22
23 # print str(i)+"\t"+str((code[i])) #print polar Coordinates

(without units)
24 #convert polar to Cartesian
25 x = (code[i])*math.cos(((i*100/length)+startingAngle)*

(3.14159 / 180))

97

Code Listing 6 Continued:
26 y =(code[i])*math.sin(((i*100/length)+startingAngle)*

(3.14159 / 180))
27 print str(x) +"\t"+str(y)
28
29 # create and start the SEAR simulator instance
30 sear = Runtime.createAndStart("SEAR","SEAR")
31 sear.startSimulation(); #start SEAR simulation
32 sleep (2); # Give some time for things to fall into their natural

place.
33
34 print "Attempting to create the LIDAR service..."
35
36 #These lines are initialization of the LIDAR
37 lidar = Runtime.createAndStart("myLidar", "LIDAR")
38 lidar.startService()
39 print "connect LIDAR service to /dev/SEAR_LIDAR_01"
40 lidar.connect("/dev/SEAR_LIDAR_01")
41
42 #have python listening to lidar
43 print "adding the LIDAR service listener"
44 lidar.addListener("publishLidarData", python.name, "input")
45
46 # sets scan mode for 100 degree spread with a reading every 1

degree
47 print "setting scan mode"
48 lidar.setScanMode(100, 1)
49
50 print "Ready to receive LIDAR data... "
51 while 1: # infinite loop
52 lidar.singleScan() #get a single scan
53 sleep(2) #wait two seconds and repeat

Note that in Code Listing 6, line 6 is the function that the userCode uses to access

the raw LIDAR service data. This line has to be constructed carefully to ensure it will

acquire the correct data. In this line, the variable getting loaded is called “code”. The

raw LIDAR data is stored in a variable which follows the format msg_<LIDAR service

name>_pubishLidatData[0]. The “<LIDAR service Name>” should be replaced with the

name of the LIDAR service created in this code. This can be seen in line 8: code =

msg_myLidar_publishLidarData.data[0], where “myLidar” is the name given to the

LIDAR sensor in line 37: lidar = Runtime.createAndStart("myLidar", "LIDAR"). It is

important to note that this variable will return as an array. Each element of this array will

contain the result of a LIDAR reading. The length of the array is determined by the

98

settings of a particular LIDAR scan.

 A.5 Creating and Communicating with a Virtual GPS in SEAR

The user must first create the XML file for a GPS sensor in the robots folder of

the SEARProject. This is done easily by using a python script or Java class written

within MRL. The creation of the XML file will be done automatically in Code Listing 7.

Notice that the user must provide a starting GPS coordinate. This represents the starting

point of the robot and the center of the world.

Code Listing 7: Creation of a GPS sensor XML file for SEAR. This snippet should be
added to Code Listing 2.

1 from org.SEAR.POJOs import GPS
2 # create a new GPS object (myGPS) with the name “gpsUnit1”
3 myGPS = GPS("gpsUnit1", 33.61, 182.5, -80.865)
4 myGPS.setPorts("/dev/my_GPS_01","/dev/SEAR_GPS_01")
5 robot.addComponent(myGPS)

There are two methods for users to access this sensor during a simulation. Firstly,

the user can see the results from GPGGA NMEA strings by initializing a GPS service in

MRL. This can be performed either manually (using the MRL GUI) or programmatically

using MRL's python or Java service. Figure 5.1.2 shows a screenshot of the GPS service

GUI printing data. To access the GPS data inside the userCode, the user can start a GPS

service in python or Java, then add a listener to that service. Code Listing 8 shows an

example that simply prints the resulting GPS values to the terminal. Note that the name of

the GPS agrees with the XML file. This is especially important in the lines that get the

GPS data.

Code Listing 8: Example code to access raw GPS data.
1 from time import sleep
2
3 # This script only uses the GPS sensor on the simulated robot,

the user is expected to drive the robot using the i,j,k,l, and ;
keys

4
5 sear = Runtime.createAndStart("SEAR","SEAR")
6 sear.startSimulation(); #start SEAR simulation

99

Code Listing 8 continued
7 initialized = 0
8
9 gps1 = Runtime.createAndStart("gpsUnit1", "GPS")
10 gps1.startService()
11 gps1.connect("/dev/SEAR_GPS_01")
12 sleep(1)
13 def input():
14 startingAngle = 0
15 Latitude = msg_gpsUnit1_publishGGAData.data[0][2]
16 Longitude = msg_gpsUnit1_publishGGAData.data[0][4]
17 altitude = msg_gpsUnit1_publishGGAData.data[0][9]
18 print "Lat: " + Latitude
19 print "Long: " + Longitude
20 print "Alt: " + altitude + "\n"
21
22 #have python listening to GPS
23 gps1.addListener("publishGGAData", python.name, "input")
24
25 print "Ready to receive Data from GPS..."

 A.6 Simple Sensors

Simple sensors are those which do not contain their own serial connection which

users can communicate with. This includes accelerometers, gyroscopes, compass

sensors, and the distance sensors. These sensors can be accessed in two ways; a very

simple method call to directly the simulator, or a by simulating a custom microelectronic

that handles the sensors and serial communications. This section describes the former

case.

Simple sensors can be accessed directly from userCode using method calls to the

simulator within the SEARservice. This interface is straightforward and can easily be

understood by users with little skill or knowledge of programming. The concept with this

implementation was to make it easy for users with little skill to access the sensors. The

aspiration is that SEAR would be used to help teach programming concepts such as

conditionals and loops. By having a simple method for accessing sensor data, the focus

of lessons could be on the overall programming concept rather than the specifics of

SEAR or MRL.

100

 A.7 Custom Controller for Simple Sensors

For user who wish to more accurately emulate actual hardware, interfacing with

simple sensors (accelerometers, gyroscopes, compasses and distance sensors) happens by

proxy. In reality, the user would connect these sensors to a microcontroller which can

handle serial communications with userCode in MRL, and performs the actions required

to request and format data from these sensors. The processes of this microcontroller can

be simulated using a template python script provided with SEAR.

The communications protocol used by the template is based on the Roomba serial

protocol and is very simple to implement both in a simulation as well as with actual

hardware. The last “sensor command” in the Roomba protocol requests data from sensor

message number 42 [84]. SEAR’s custom controller accepts the same “sensor request

message” as the Roomba protocol, except it begins with number 43. Given that this is an

8-bit number, the user can add more than 200 additional commands.

The virtual controller handles the serial communications, parses the serial

commands, and selects the appropriate function to perform based on the command. Just

as would be required of actual hardware, functions must be supplied by the user. If the

command is received to “read the left ultrasonic sensor” then the user must insert code to

perform this action within the SEAR simulator. This simply consists of a call to SEAR's

ultrasonic sensor simulator class. Data is returned to this custom controller template

which then writes the data back on the serial port. When in use during a simulation,

abstraction allows this to be a black box to which a user issues commands and receives

data in return. This implementation is exactly the same as would be required to connect

to physical hardware. The pseudo-code in Table A.7 compares the code of a SEAR

101

virtual controller and a physical microcontroller.

Table A.7: Comparison of communications between userCode and physical hardware
versus userCode and SEAR virtual hardware

Physical Microcontroller SEAR's Virtual Controller

User sends command via serial connection
to the physical microcontroller to get a
reading from the compass module.
Usercode snippet:

1 Serial.writeByte(42) # send
sensor request

2 Serial.writeByte(30) #
sensor “address”

User sends command via serial connection
to the simulated controller object to get a
reading from the compass module.
Usercode snippet:

1 Serial.writeByte(42) # send

sensor request
2 Serial.writeByte(30) #

sensor “address”

Command is sent via serial connection to
the physical microcontroller

Command is sent via serial connection to
the virtual controller object.

Microcontroller on the robot parses the
command and calls the function to read the
compass module's current value:
(Microcontroller code snippet:)
1 int heading =

getCompassValue(); #Assuming
a function performs this for
the user.

Simulated controller object parses the
command and calls the function to read the
compass module's current value: (virtual
controller code snippet:)
1 int heading =

sear.getCompassResult("comp1")
#The name of this sensor on
the robot is in quotes to
identify it from other sonar
sensors that the robot might
have.

Microcontroller on the robot sends data
back to the user over the same serial port:
2 Serial.writeInteger(heading)

Custom controller sends data back to the
user over the same serial port:
 2 Serial.writeInteger(heading)

The suggested method of using the custom controller is to send a request to the

controller’s serial port from the user’s code. The user should know the size of the

message the controller will return (this will be known since the user would have written

that code as well). The custom controller receives the message, parses it, performs the

selected action (such as taking the reading from the front-left ultrasonic sensor) then

returning the resulting data to the user’s code over its serial connection.

The custom controller code uses code written in a Python or Java file by the user

102

previous to running the simulation. The controller code simply utilizes MRL’s

virtualSerialPort objects to communicate to the main userCode (controlling the overall

simulation). The messages from this serial connection get parsed and a set of if

statements help select which action to perform. The user can choose to write custom

code for each if statement based on the needs and design of the robot.

To access SEAR’s simulated sensors the user will use methods from the SEAR

service. For the ultrasonic example above, the user would use code like

sear.getDistanceResult("leftFrontPing") which will return the distance in centimeters to

the nearest object that is within the range of that specific sensor. The name of the sensor,

leftFrontPing must match the name of the sensor in its XML file within the

SEARproject/robot folder. Once this value is acquired, it is sent back over the virtual

serial port to the user’s overall simulation code.

To simplify the process of creating a custom controller in SEAR, a template is

provided that listens for serial events on the virtual ports. There is also a list of empty “if”

statements with commented examples for each type of sensor. This template also has a

function to send the acquired data back to the main simulator. The suggested method of

using the custom controller is to send a request to the controller’s serial port from the

user’s code. The user should know the size of the message the controller will return (this

will be known since the user would have written that code as well). The custom controller

receives the message, parses it, performs the selected action (such as taking the reading

from the front-left ultrasonic sensor) then returning the resulting data to the user’s code

over its serial connection.

The custom controller code uses code written in a Python or Java file by the user

103

previous to running the simulation. The controller code simply utilizes MRL’s

virtualSerialPort objects to communicate to the main userCode (controlling the overall

simulation). The messages from this serial connection get parsed and a set of if

statements help select which action to perform. The user can choose to write custom

code for each if statement based on the needs and design of the robot.

The custom controller is implemented in a second python script (controller.py) in

addition to the user's code. Inside this script, there are functions for listening to a

specified virtual serial port, parsing the serial data, making the appropriate method calls

in SEAR simulator, and then a method for returning the data back over the virtual serial

port. The user must execute this file from a method call in the main userCode. Code

Listing 9 is an example for a custom controller that access multiple sensors. Users can

modify this template to match the specific sensor names used in their simulation and

desired sensor number (between 43 and 255, extended from the Roomba protocol sensor

data request commands).

This process becomes complicated when the controller attempts to send data back

to the userCode. The userCode must “listen” to its serial port “publishByte” command to

catch incoming messages from the controller. This “listener” method acts like an interrupt

that is triggered each time it receives a byte. The userCode must wait until all of the

bytes arrive before processing the data. A simple method for performing this action is

used in the pair of code listings for the simulated controller and userCode examples in

Code Listings 9 and 10 respectively. In this case, the user sets the expected size of the

message that will be returned, and clears the message buffers before sending the request

to the simulated controller. The userCode then runs a blocking method that compares the

104

current size of the received message with the expected size. When these values are equal,

the blocking method returns back to the main function. This is only one simple example

of how this may be accomplished. The userCode in listing 9 is only expecting data in big

endian two-byte format, though the user is free to change this to any format they wish.

Users are strongly encouraged to use the userCode and simulated controller code in

listings 9 and 10 respectively as templates for their custom implementations.

Debugging and testing of the simulated controller is simplest when the user

appends the current file name to the print statements used within the code, making it

easier to see which “thread” is printing at what time and in what order. Additionally, it

was found that for many data manipulation techniques used in this type of

implementation it was simpler to test the techniques in their own python scripts in MRL.

For example, for combining high byte and low byte of a two-byte array.

Code listings 9 and 10 contain the simulated virtual controller code and the

userCode that communicates with it respectively.

Code Listing 9: Example controller code named userCode.py
1 from time import sleep
2 import sys
3
4 print "\n \n executing serial send"
5 python.execFile("controllerTest.py") #execute the simulated

controller's code
6 sleep(2)
7
8 currentLength = 0
9 messageLength = 2
10 msgBuffer = list()
11 msgResults = list()
12
13
14 def sendControllerData(message):
15 #write a series of bytes to the serial port
16 serial.write(0x8E) #0x8E = 142 decimal which is the

"Sensor request" roomba opcode
17 serial.write(message)
18 from org.SEAR.POJOs import Cylinder
19 from org.SEAR.POJOs import Box

105

Code Listing 9 Continued:
20 from org.SEAR.POJOs import Cone
21 from org.SEAR.POJOs import model
22
23 floor = Floor("floor", 50, 50) #create floor
24
25 #create some obstacles
26 box = Box("Box1_name", 0.25, 0.25, 0.25, 0)
27 box.move(-1.5, 1.25, 0)
28 box.rotate(45, 0, 0)
29
30 cyl = Cylinder("trash Can", 0.25, 0.75, 10)
31 cyl.move(-3, 0, -3.5)
32 cyl.rotate(0, 30, 30)
33
34 coneA = Cone("Traffic Cone", 0.25, 2, 10)
35 coneA.move(-2, 0, 0)
36 coneA.rotate(0, 0, 45)
37
38 tree = Model("Tree1_name","models/Tree/Tree.mesh.xml")
39 tree.move(0, 0, -3)
40
41 print "Done creating Environment"
42
43 def receiveMessage():
44
45 global msgBuffer
46 global messageLeng--Add “Code Listing 1 Continued”

headings where required
47 global currentLength
48 global msgResults
49
50 data = msg_serial_publishByte.data[0] & 0xff
51 if (currentLength < messageLength): # if not the full

message, then store this in our buffer
52 msgBuffer.insert(currentLength, data) # fill the

message buffer full of bytes.
53 currentLength +=1 #increment index value
54
55 if (currentLength == messageLength): #otherwise, we are

at the last byte in the message, clear everything and parse into
short ints 10

56 for i in range (0, messageLength, 2): # for i in
range(start, finish, step)

57
58 if msgBuffer[i] >0 :
59 msgResults.insert(i/2, (msgBuffer

[i]<<8) + msgBuffer[i+1])
60 elif msgBuffer[i] <0 :
61 msgResults.insert(i/2, 256+

(msgBuffer [i]<<8) + msgBuffer[i+1])
62
63 else:
64 msgResults.insert(i/2, 0x00ff &

msgBuffer[i+1])
65

106

Code Listing 9 Continued:
66 messageLength = 0 # reset this value to 0 so the

user knows when to check msgResults for values
67 currentLength = 0
68
69
70 def waitForReply(): #this just constantly checks messageLength to

see if it is 0, indicating the data has been received completely.
71 global messageLength
72 while(messageLength != 0):
73 pass
74
75
76 def clear():
77 global currentLength
78 global msgBuffer
79 global msgResults
80 msgBuffer = [0,0,0,0,0,0,0]
81 msgResults = [0,0,0,0,0,0,0]
82 currentLength = 0
83
84
85 #The below is the main function and actually calls the functions

above:
86 sear = Runtime.createAndStart("SEAR","SEAR")
87
88 sear.startSimulation(); #start SEAR simulation
89 sleep(1)
90 roomba = Runtime.createAndStart("robot_Dynamics1","Roomba")
91 roomba.connect("/dev/SEAR_Robot_01")
92 roomba.startup()
93 roomba.control()
94 sleep(1)
95
96 #create a Serial service named serial
97 serial = Runtime.createAndStart("serial","Serial")
98 #connect to a serial port COM4 57600 bitrate 8 data bits 1 stop

bit 0 parity
99 serial.connect("/dev/user_CONTROLLER_01", 9600, 8, 1, 0)
100
101 serial.addListener("publishByte", python.name, "receiveMessage")
102 print "listening to: "+serial.name
103
104
105
106 sleep(1)
107 print "Main: Requesting Sonar 1"
108 messageLength = 2 # set the number of bytes I expect the

controller to return (1 16-bit U-ints)
109 sendControllerData(0x2B) # get SONAR 1 reading
110 waitForReply()
111 print "\nBack in Main, Sonar 1 value received = " +

str(msgResults[0])
112
113
114 print "Main: Requesting Sonar 2"

107

Code Listing 9 Continued:
115 clear()
116 messageLength = 2 # set the number of bytes I expect the

controller to return (1 16-bit U-ints)
117 sendControllerData(0x2C) # get SONAR 1 reading
118 waitForReply()
119 print "\nBack in Main, Sonar 2 value received = " +

str(msgResults[0])
120
121
122 print "Main Requesting Accel"
123 clear()
124 messageLength = 6 # set the number of bytes I expect the

controller to return (3 16-bit U-ints)
125 sendControllerData(0x2D) # get Accel readings (x, y, z)
126 waitForReply()
127 print "Back in Main, AccelX = " + str(msgResults[0]) +" AccelY = "

+ str(msgResults[1]) +" AccelZ = " + str(msgResults[2])
128
129
130 print "Main Requesting Gyro"
131 clear()
132 messageLength = 6 # set the number of bytes I expect the

controller to return (3 16-bit U-ints)
133 sendControllerData(0x2E) # get Accel readings (x, y, z)
134 waitForReply()
135 print "Back in Main, GyroX = " + str(msgResults[0]) +" GyroY = " +

str(msgResults[1]) +" GyroZ = " + str(msgResults[2])
136
137
138 print "Main Requesting Compass"
139 messageLength = 2 # set the number of bytes I expect the

controller to return (3 16-bit U-ints)
140 sendControllerData(0x2F) # get Compass reading
141 waitForReply()
142 # The compass sensor modeled here is the simple HMC6352 in

"heading" mode which will return a single value from 0-360.0
degrees in tenths of a degree (in steps of 0.5 degrees).

143 #Now we must divide by 10 because the HMC6352 outputs are from 0-
3599 [https://www.sparkfun.com/datasheets/Components/HMC6352.pdf]

144 print "Back in Main, Compass heading (out of 360 degrees) = " +
str(float(msgResults[0])/10)

108

Code Listing 10: Example controller code named controller.py
1 from org.myrobotlab.serial import SerialDeviceFactory;
2 from org.myrobotlab.serial import VirtualSerialPort;
3 from org.myrobotlab.service import Serial;
4 import Java.lang.String;
5 import struct
6 import math
7
8 previousCodeValue=0
9
10
11 # this function sends int data back to the userCode over the

serial connection.
12 def sendInt(message):
13 lowByte =(message & 0x0000ff)
14 highByte = ((message& 0x00ff00) >>8)
15 print "Sending HighByte:" + hex(highByte)#highByte,

highByte.encode('hex')
#http://stackoverflow.com/questions/12214801/python-print-a-
string-as-hex-bytes

16 SEAR_CONTROLLER_Serial.write(highByte)
17 print "Sending LowByte: " + hex(lowByte) #lowByte,

lowByte.encode('hex')
18 SEAR_CONTROLLER_Serial.write(lowByte)
19
20
21 def input():
22 global previousCodeValue
23 currentCodeValue = ord(struct.pack('B',

msg_serialController_publishByte.data[0])) #pack into an unsigned
byte

24 if currentCodeValue == 0x8E and previousCodeValue != 0x8E :
#142 in decimal is the Roomba opcode for "get sensor value"

25 #It should be followed by a single byte stating which sensor to
get the value of

26 #since Roomba reserves 0-42, our first sensor will start at 43
decimal and move up from there.

27 #this gives us a possibility of 255-42 = 213 possible different
commands (sensors)

28 #The user must know how many bytes to expect back (how big the
result of the sensor will be)

29 previousCodeValue = 0x8E
30
31 if currentCodeValue == 0x2B and previousCodeValue == 0x8E: #

0x2B = 43 decimal which is our first sensor number.
32 #In here, you could request any sensor data from the SEAR

simulator (specifically from
33 #sensors that don't have their own serial ports. For now let's try

to get the PING sensor value.
34 #The PING sensor will return a Java float
35 distance1 = sear.getDistanceResult("testPing1") #The name

of this sensor on the robot is in quotes to identify it from other
sonar sensors that the robot might have.

36 # convert the distance to cm and send as an int back over serial:
37 numCentimeters =int(distance1*100)

109

Code Listing 10 Continued:
38 sendInt(int(distance1*100))
39
40 if currentCodeValue == 0x2C and previousCodeValue == 0x8E:# 0x2C

= 44 decimal which is our second sensor number.
41 distance2 = sear.getDistanceResult("MyNewestSONAR") #The name of

this sensor on the robot is in quotes to identify it from other
sonar sensors that the robot might have.

42 # convert the distance to cm and send as an int back over serial.
43 numCentimeters =int(distance2*100)
44 sendInt(int(distance2*100))
45
46
47 if currentCodeValue == 0x2D and previousCodeValue == 0x8E: #

0x2D = 45 decimal which is our third sensor number.
48 accelerations = sear.getAccelResult("accel") #This results

in a comma separated String containing X, Y and z respectively.
We can simply parse the string to send the results.

49
50 # convert each accel axis reading to a single int and send over

serial.
51 # SEAR's accelerometers output floats in meters/second^2. In the

ADXL330 for instance, each axis responds based on a measurements
of "g-forces". We can assume that on the actual hardware, the
microcontroller would handle converting the analog input from the
accelerometers to meters/second^2 before it sends the values back
as 3 ints: x, y, then z.

52 #In the ADXL330 though, 0Gs is at the midpoint of the analog
output (if Vcc=3v, midpoint = 1.5volts) This will correspond to
10-bit resolution (in an Arduino for example) of about 512. So
when an axis = 0G, the numeric value expected should be in the
center of that range.

53 # the ADXL330 also has a 300mV/G resolution, so all of this
information should be taken into account when formatting the data

54 tokens = accelerations.split(',') # Split my CSV string
into individual number-strings

55 #from meters/sec^2 to #Gs
56 #number of Gs to mV/G, Make sure not to go higher than the range

of the ADXL330 +-3.6Gs
57 #from Gs to volts (range must be shifted so 1.5volts = 0Gs)
58 #from volts (what the ADXL330 outputs) to ADC steps
59 #(an arduino with 3.3v AREF using 10-bit ADC) = 310.30303 ADC

steps/volt
60 #send this ADC value back to MRL (userCode), so it can handle

converting it to useful values for a robot or filter it, etc.
61
62 integerAccelX = int((float(tokens[0]) /-9.8 * 0.3 + 1.5)*

310.30303)
63 if integerAccelX >1023:
64 integerAccelX = 1023
65 #integerAccelX = int(float(tokens[0]))
66
67 integerAccelY = int((float(tokens[1]) /-9.8 * 0.3 + 1.5)*

310.30303)
68
69

110

Code Listing 10 Continued:
70 if integerAccelY >1023:
71 integerAccelY= 1023
72 integerAccelZ = int((float(tokens[2]) /-9.8 * 0.3 + 1.5)*

310.30303)
73 if integerAccelZ >1023:
74 integerAccelZ = 1023
75 print "accel ints = "+ str(integerAccelX)+", "+

str(integerAccelY)+", "+ str(integerAccelZ)
76 print "hex accel ints = "+ hex(integerAccelX)+", "+

hex(integerAccelY)+", "+ hex(integerAccelZ)
77 sendInt(integerAccelX) # Sending X acceleration value
78 sendInt(integerAccelY) # Sending Y acceleration value
79 sendInt(integerAccelZ) # Sending Z acceleration value
80
81
82 if currentCodeValue == 0x2E and previousCodeValue == 0x8E: #

0x2E = 46 decimal which is our fourth sensor number.
83 gyroReadings = sear.getGyroResult("gyro1") #SEAR's Gyro

returns a CSV string of angular velocities (in radians) Let's
convert these into the nearest integer value of rad/sec

84 tokens = gyroReadings.split(',') # Split the CSV string
into individual number-strings

85
86
87 # SEAR's Gyroscope returns values in radians / second.
88 # In this example, we will mimic the IDG500 (which normally has 2

axis, but we will scale all 3 the same.
89 #the IDG500 returns values on an analog output. Its datasheet

values are for a VCC of 3.0 volts (not 3.3)
90 # The value is scaled 2mv / (degree/second) and the output at 0 =

1.35v. There are 57.2957795 degrees per radian
91 # If we are using an arduino with a AREF of 3.3v, that = 310.30303

ADC steps / volt
92
93 integerGyroX = int(((float(tokens[0])*57.2957795 * 0.002)+

1.35)*310.30303)
94 integerGyroY = int(((float(tokens[1])*57.2957795 * 0.002)+

1.35)*310.30303)
95 integerGyroZ = int(((float(tokens[2])*57.2957795 * 0.002)+

1.35)*310.30303)
96 sendInt(integerGyroX) # Sending X Gyro value
97 sendInt(integerGyroY) # Sending Y Gyro value
98 sendInt(integerGyroZ) # Sending Z Gyro value
99
100
101 if currentCodeValue == 0x2F and previousCodeValue == 0x8E: #

0x2F = 47 decimal which is our fifth sensor number.
102 rawHeading = sear.getCompassResult("comp1") #The name of

this sensor on the robot is in quotes to identify it from other
sonar sensors that the robot might have.

103 #Note that SEAR returns +-180 degrees, so we must make this 0-360:
104 if rawHeading < 0:
105 rawHeading = rawHeading + 360
106
107

111

Code Listing 10 Continued:
108 # The compass sensor modeled here is the simple HMC6352 in

"heading" mode which will return a single value from 0-360.0
degrees in tenths of a degree (in steps of 0.5 degrees). The
simulated SEARcompass returns a float from 0-360.

109 #We must convert the SERAcompass value to mimic the output
of the HMC6352. So we will first round to the nearest 0.5
degrees. :

110 heading = 0.5 * math.ceil(2.0 * rawHeading) #rounds to the
nearest 0.5 http://stackoverflow.com/questions/9758513/how-can-i-
round-up-numbers-to-the-next-half-integer

111 #Now we must multiply by 10 because the HMC6352 outputs
are from 0-3599
[https://www.sparkfun.com/datasheets/Components/HMC6352.pdf]

112 intHeading = int(heading*10) # convert this to an
integer after it is multiplied, giving us a range of 0-3599

113 sendInt(intHeading) # Now send it back to the userCode
on the virtual serial port

114
115
116 # main function code goes below here.
117 UARTport = "/dev/my_Controller01"
118 userPort = "/dev/user_CONTROLLER_01"
119
120
121 #Create two virtual ports for UART and user and null them

together:
122 # create 2 virtual ports
123 vp0 = VirtualSerialPort(UARTport);
124 vp1 = VirtualSerialPort(userPort);
125
126 # make null modem cable ;)
127 VirtualSerialPort.makeNullModem(vp0, vp1);
128
129 # add virtual ports to the serial device factory
130 SerialDeviceFactory.add(vp0);
131 SerialDeviceFactory.add(vp1);
132
133 # create the UART serial service
134 SEAR_CONTROLLER_Serial =

Runtime.createAndStart("serialController","Serial")
135 SEAR_CONTROLLER_Serial.connect(UARTport);
136
137 #have controller listening to userCode
138 SEAR_CONTROLLER_Serial.addListener("publishByte", python.name,

"input")
139 print "user should connect to port named: "+userPort

	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Motivation
	1.2 Objective of This Work
	1.3 Contribution
	1.4 Organization

	CHAPTER 2: REVIEW OF SIMILAR WORK
	2.1 Open Source Robotics Simulation Tools
	2.1.1 Player Project Simulators
	2.1.2 USARSim
	2.1.3 SARGE
	2.1.4 UberSim
	2.1.5 EyeSim
	2.1.6 SubSim
	2.1.7 CoopDynSim
	2.1.8 OpenRAVE
	2.1.9 lpzrobots
	2.1.10 SimRobot
	2.1.11 Moby
	2.1.12 Comparison of Open Source Simulation Tools

	2.2 Commercial Simulators
	2.2.1 Microsoft Robotics Developer Studio
	2.2.2 Marilou
	2.2.3 Webots
	2.2.4 robotSim Pro/robotBuilder
	2.2.5 Comparison of Commercial Simulators

	2.3 Middleware
	2.3.1 Player Project Middleware
	2.3.2 ROS (Robot Operating System)
	2.3.3 MRL (MyRobotLab)
	2.3.4 RT Middleware
	2.3.5 Comparison of Middleware

	2.4 Conclusion

	CHAPTER 3: HISTORY OF SEAR
	3.1 Overview of SEAR Concept
	3.2 Initial Design
	3.3 Intermediate Designs (Graduate Work)
	3.3.1 Early ROS Middleware Integration
	3.3.2 Early MRL Integration

	3.4 Conclusion

	CHAPTER 4: SUPPORTING DESIGN TOOLS
	4.1 Language Selection
	4.2 Game Engine Concepts
	4.3 JmonkeyEngine Game Engine

	CHAPTER 5: ARCHITECTURE AND METHODS OF IMPLEMENTATION UTILIZED TO CREATE SEAR
	5.2 Custom MRL Services
	5.2.1 MRL'S LIDAR Service
	5.2.2 MRL's GPS Service

	5.3 MRL'S SEAR Service
	5.4 SEAR's Object Grammar
	5.4.1 Environment Objects
	5.4.2 Terrain
	5.4.3 Obstacles
	5.4.4 Virtual Robotic Vehicles

	5.5 Manual Control
	5.6 Sesnor Simulation in SEAR
	5.6.1 Position-Related Sensor Simulation(“Physical” Sensors)
	5.6.1.1 GPS
	5.6.1.2 Compass
	5.6.1.3 Three-Axis Accelerometer
	5.6.1.4 Three-Axis Gyroscope
	5.6.1.5 Odometer

	5.6.2 Reflective Beam Simulation (“Visual” Sensors)
	5.6.2.1 Ultrasonic, Infrared, RADAR and SONAR Distance Sensors
	5.6.2.2 LIDAR Sensors

	5.7 Serial Communication Between MRL and SEAR

	CHAPTER 6: CONCLUSIONS AND FURTHER WORK
	6.1 Virtual Serial Ports and ROS Integration
	6.2 Further Work

	APPENDIX A: SEAR USER INTERACTIONS
	A.1 Creation of Environments and Objects
	A.2 Creation of a Virtual Robot in SEAR
	A.3 Controlling a Virtual Robot in SEAR
	A.4 Creating and Communicating with a Virtual LIDAR in SEAR
	A.5 Creating and Communicating with a Virtual GPS in SEAR
	A.6 Simple Sensors
	A.7 Custom Controller for Simple Sensors

