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ABSTRACT

ADAM CARLTON HARRIS.  Integration of the simulation environment for autonomous
robots with robotics middleware.  (Under the direction of DR. JAMES M. CONRAD) 

Robotic simulators have long been used to test code and designs before any actual

hardware is tested to ensure safety and efficiency. Many current robotics simulators are 

either closed source (calling into question the fidelity of their simulations) or are very 

complicated to install and use. There is a need for software that provides good quality 

simulation as well as being easy to use. Another issue arises when moving code from the 

simulator to actual hardware. In many cases, the code must be changed drastically to 

accommodate the final hardware on the robot, which can possibly invalidate aspects of 

the simulation. This defense describes methods and techniques for developing high 

fidelity graphical and physical simulation of autonomous robotic vehicles that is simple 

to use as well as having minimal distinction between simulated hardware, and actual 

hardware.  These techniques and methods were proven by the development of the 

Simulation Environment for Autonomous Robots (SEAR) described here.  

SEAR is a 3-dimensional open source robotics simulator written by Adam Harris 

in Java that provides high fidelity graphical and physical simulations of user-designed 

vehicles running user-defined code in user-designed virtual terrain.  Multiple simulated 

sensors are available and include a GPS, triple axis accelerometer, triple axis gyroscope, a

compass with declination calculation, LIDAR, and a class of distance sensors that 

includes RADAR, SONAR, Ultrasonic and infrared. Several of these sensors have been 

validated against real-world sensors and other simulation software.
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 CHAPTER 1:   INTRODUCTION

The best way to determine whether or not a physical robotics project is feasible is 

to have a quick and easy way to simulate both the hardware and software that is planned 

to be implemented.  Robotics simulators have been available for almost as long as robots.

Until fairly recently, however, they have been either too complicated to be easily used or 

designed for a specific robot or line of robots.  In the past two decades, more generalized 

simulators for robotic systems have been developed.  Most of these simulators still 

pertain to specialized hardware or software and some have low quality graphical 

representations of the robots, their sensors, and the terrain in which they move.  Overall, 

many of the simulations look simplistic and there are limitations with real-world maps 

and terrain simulations.

 1.1   Motivation

Robotic simulators should help determine whether or not a particular physical 

robot design will be able to handle certain conditions.  Currently, many of the available 

simulators and middleware have several limitations.  Some, like Eyesim, are limited on 

the hardware available for simulation [1].  Others often supply and specify several 

particular (and generally expensive) robotics platforms with no easy method of adding 

other platforms such as Player. To add a new robotics platform (a particular set of 

hardware including a diving base and sensors, be they virtual or physical) to these, a large

amount of effort is needed to import vehicle models and in some cases, custom code must
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be added to the simulator itself.  New device drivers must be written to add new sensors, 

even ones that are similar to supported versions. Several simulators are also limited with 

respect to terrain.  Real-world terrain and elevation maps cannot easily be integrated into 

some of these systems such as Eyesim, CoopDynSim[2], [3].   While technically possible

for some other tools such as Gazebo and USARsim, it is a complicated and convoluted 

process [4], [5].  Gazebo, USARsim, Eyesim, CoopDynSim and others all use a text-

based method for creating environments and robots as opposed to a more natural solution 

like robotBuilder which is a graphical application [6].

Some of the current systems also do not effectively simulate simple sensors and 

interfaces. For example, you cannot easily interface a Sharp IR sensor directly with 

Player middleware.  Many tools like Player, SimRobot, USARsim, and SARGE choose a 

communication protocol (most commonly Transmission Control Protocol or “TCP”) for 

all the sensors to run on [7]–[10].  This requires more expensive hardware and leaves 

fewer options for easy integration of sensors. Other tools require that a specific hardware 

driver or “node” be written for a particular sensor (eg. ROS)[11].   A simple robot 

consisting of two distance sensors, two motor drivers, and a small 8-bit embedded system

cannot easily be simulated in many of the current systems. However, a robot using a 

computer board running Linux that requires each distance sensor and motor driver to 

have its own 8-bit controller board running a TCP stack is easily simulated in the current 

systems.  This shows a trade-off of hardware complexity and programming abstraction. 

The best general simulators today such as Webots or Microsoft Robotics Developer 

Studio seem to be both closed source and proprietary, which inhibits community 

participation in its development and their possible applications [12]–[14]. Some of these 
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systems are detailed in Chapter 2. 

 1.2   Objective of This Work

The objectives of this work are to develop the methods and architecture for a 

modern robotics simulator.   A better, simpler simulator than those previously described 

would be one that can simulate nearly any possible vehicle, using nearly any type and 

placement of sensors.  The entire system would be customizable, from the design of a 

particular vehicle chassis to the filtering of sensor data.  This system would also allow a 

user to simulate any terrain, with an emphasis on real-world elevation map data.  All of 

the options available to the user must be easy to use and the interface must be intuitive.  

The simulator should be cross-platform, meaning that it will run on Windows, 

Linux/Unix, and Mac systems and integrate easily with all these systems.  It should also 

be open source to allow community involvement and future development and the 

simulator should be free to anyone who wishes to use it.  

An implementation of a simulator meeting the criteria above is described in this 

dissertation.  A simulator system (SEAR or Simulation Environment for Autonomous 

Robots) has been developed to test the methods and architecture described here with the 

ability to load custom models of vehicles and terrain, provide basic simulations for 

certain types of sensors; three-axis accelerometer, three-axis gyroscope, odometer, GPS, 

magnetic compass with declination calculation based on the robot's current GPS reading, 

LIDAR unit, and a class of reflective-beam sensors to simulate ultrasonic, RADAR and 

infrared sensors.  The simulator allows users to write and simulate custom code (referred 

to as “userCode”) and simulate robot motion and sensing using a realistic physics engine.

Tools have also been developed to allow the user to create or import vehicle models. 
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Additionally, three custom “services” (or interfaces) were developed for the MyRobotLab

middleware. These are: services for light detection and ranging (known as LIDAR), 

global positioning system (known as GPS) as well as a service for the simulator itself .

 1.3   Contribution

The main contribution of this research is the creation of methods and techniques 

used to implement a new cross-platform robotics simulator that has high graphical and 

physical fidelity and can easily be used by users of any skill set. SEAR is this proposed 

simulator, created to validate these new processes and designs. SEAR targets a very 

broad user base.  It is simple enough that beginners can use the tool to learn the basics of 

programming and accurate enough that it can be used for robotics research at the graduate

level.  It is cross-platform, meaning that it runs on a variety of common computer 

operating systems.  It has the ability to interface with middleware, allowing users to 

utilize the same code for simulations as they will on actual hardware, without having to 

change the language or functions.  It also provides the user the ability to create or import 

any environment they choose and allow for robotic vehicles to be built and imported in a 

simple way.  A simulator of autonomous robots of this type does not currently exist. 

 1.4   Organization

This dissertation is divided into six chapters. Chapter 2 gives general descriptions 

of several currently available robot simulation software tools. Chapter 3 describes the 

concept of the software put forth in this thesis and the history of this research project.  

Chapter 4 introduces the software tools used for the creation of the simulator.  Chapter 5 

discusses the architecture of SEAR and its methods of communications with middleware 

as well as methods by which the different sensors are simulated.  Chapter 6 summarizes 
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the work done in this dissertation and plans a course for future innovation and 

development.  While most of this dissertation deals with a developer's level of 

abstraction, Appendix A is a comprehensive user guide for SEAR.  This guide provides 

sample code that shows how a user would interact with the simulator including examples 

of how to create environments and robots from scratch and how to interface with them 

utilizing custom user-written code to control the robot within the simulator. It is 

recommended that this section be read either along side Chapter 5 or after Chapter 6.



 CHAPTER 2:   REVIEW OF SIMILAR WORK

Use of robotics simulators has grown with the field of robotics.  Since the 

beginning of the robotics revolution, engineers and scientists have known that a high 

quality simulations can save time and money [13]. Simulations are conducted in many 

cases to test safety protocols, to determine calibration techniques, and to test new sensors 

or equipment.  In the past robotics simulators have been generally written specifically for 

a company's own line of robots or for a specific purpose.  In recent years, however, the 

improvements of physics engines and video game engines (as well as computer 

processing speed) have helped spur a new breed of simulators that combine physics 

calculations and accurate graphical representations of a robot in a simulation [15].  These 

simulators have the potential flexibility to simulate any type of robot.  As the simulation 

algorithms and graphical capabilities of game engines become better and more efficient, 

simulations step out of the computer and become more realistic.  Such engines can be 

applied to the creation of a simulator, and in the words of Craighead et al. “...it is no 

longer necessary to build a robotic simulator from the ground up” [15]. 

Robotics simulators are no longer in a software class of their own.  To ensure code

portability from the simulator to physical robotic platforms (as is generally the ultimate 

goal) specific middleware is often run on the platforms.  Middleware allows for an 

abstraction of user-written code from physical or virtual hardware it is intended to 

control.   The performance, function and internals of this middleware must be taken into 
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account when comparing the simulators. All of these factors (and many more) affect the 

fidelity of the simulation.  A second generation of robotics simulators based on game 

engines has emerged which utilize the frameworks and simulators of previous projects as 

their base [16], [17]  Additionally, many established simulators are adding the capability 

to interface with different middleware and frameworks as they become available and 

prove useful [18], [19]. 

The ultimate goal of this chapter is to compare some of the most popular 

simulators and middleware currently available (both open source and commercial) in an 

attempt to find one that can easily be used to simulate low-level, simple custom robotic 

hardware with high graphical and physical accuracy.  There is a lot of previous work in 

this field.  This chapter adds to the work of Craighead, Murphy, Burke, and Goldiez [15], 

Elkady and Sobh [20], Castillo-Pizarro, Arredondo, and Torres-Torriti [21],  Madden [22]

as well as a previous publication of my own [23].  Of all the simulators available to users,

the particular robotics simulators described and compared in this chapter are just a few 

that were chosen based on their wide use and specific feature sets.  Each simulator being 

compared has one or more of the following qualities: 

 Variety of hardware that can be simulated (both sensors and robots) 

 Graphical accuracy capabilities including realistic terrains, obstacles, and robotics
vehicles

 Physical simulation accuracy including capabilities to simulate gravity, collisions,
inertia, 

 Cross-platform capabilities: The ability to run on all common operating systems 
Windows, Mac, and Linux

 Openness of source code of the simulator, libraries, or middleware for future 
development and addition of new or custom simulations by the user) 
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 2.1   Open Source Robotics Simulation Tools

There are many open source robotics simulators available currently on the 

internet.  The specific simulators covered in this section are the most popular and are 

widely used, or they contain a feature that is of interest to the simulation methods or 

architecture of SEAR.

 2.1.1   Player Project Simulators

Started in 1999 at the University of Southern California, the Player Project [24] is 

an open source (GPL or General Public License) three-component system involving a 

hardware network server (Player); a two-dimensional simulator of multiple robots, 

sensors or objects in a bit-mapped environment (Stage); and multi-robot simulator for 

simple 3D outdoor environments (Gazebo) [25].  Player is middleware that controls the 

simulators or physical hardware and is discussed in detail in Section 2.3.1.

Stage is a 2-dimensional robot simulator mainly designed for interior spaces.  It 

can be used as a standalone application, as a C++ library, or as a plug-in for Player.  The 

strength of Stage is that it focuses on being “efficient and configurable rather than highly 

accurate.” [7].  Stage was designed for simulating large groups or swarms of robots.  As 

with other simulators that are designed to simulate swarm or multi-agent robotics systems

like Roborobo [26], Stage is limited in graphical and physics simulation accuracy [7].  

Sensors in Stage communicate exactly the same as real hardware (over a TCP network), 

allowing the exact same code to be used for simulation as the actual hardware [27]. This 

is no guarantee, however that the simulations have high physical simulation fidelity [7].  

Gazebo is a 3D robotics simulator designed for smaller populations of robots (less

than ten) and simulates with higher graphical and physical accuracy than Stage [28]. 
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Gazebo was designed to model 3D outdoor as well as indoor environments [27]. The use 

of plug-ins expands the capabilities of Gazebo to include abilities such as dynamic 

loading of custom models and the use of stereo camera sensors [29]. The original 

implementation of Gazebo uses the Open Dynamics Engine (ODE) which provides high-

fidelity physics simulation [8].  It also has the ability to use the Bullet Physics engine 

[30]. Gazebo has been utilized as the basis of other robotics simulators. These forks 

generally specialize in one type of simulation (as is the case with the quadrotor simulator 

in [17] and Kelpie, the water surface and aerial vehicle simulator [16]).

 2.1.2   USARSim

Originally developed in 2002 at Carnegie Mellon University, USARSim (Unified 

System for Automation and Robotics Simulation) [31] is a free simulator based on the 

cross platform Unreal Engine 2.0.  It was handed over to the National Institute of 

Standards and Technology (NIST) in 2005 and was released under the GPL license [32].  

USARSim is actually a set of add-ons to the Unreal Engine, so users must own a copy of 

this software to be able to use the simulator [8].  A license for the Unreal game engine 

usually costs around $40 US [33].  Physics are simulated using the Karma physics engine

which is built into the Unreal engine [34]. This provides basic physics simulations [15]. 

One strength of using the Unreal engine is the built-in networking capability.  Because of 

this, virtual robots can be controlled by any language supporting TCP sockets [35].   

While USARSim is based on a cross-platform engine, the user manual only fully 

explains how to install it on a Windows or Linux machine.  A Mac OS installation 

procedure is not described.  The installation requires Unreal Tournament 2004 (UT2004) 

as well as a patch.  After this base is installed, USARSim components can be installed.  
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On both Windows and Linux platforms, the installation is rather complicated and requires

many files and directories to be moved or deleted by hand.  The USARSim wiki has 

installation instructions [36]. Linux instructions were found on the USARSim forum at 

sourceforge.net [37]. Since it is an add-on to the Unreal tournament package, the overall 

size of the installation is several gigabytes. 

USARSim comes with several detailed models of robots available for use in 

simulations [38], however it is possible to create custom robot components in external 3D

modeling software and specify physical attributes of the components once they are loaded

into the simulator [39]. An incomplete tutorial on how to create and import a model from 

3D Studio Max is included in the source download.  Once virtual robots are created and 

loaded, they can be programmed using TCP sockets [40].  Several simulation 

environments are also available.  Environments can be created or modified by using tools

that are part of the Unreal Engine [39]. 

There have been a multitude of studies designing methods for validating the 

physics and sensor simulations of USARSim.  Pepper et al. [41] identified methods that 

would help bring the physics simulations closer to real-world robotic platforms by 

creating multiple test environments in the simulator as well as in the lab and testing real 

robotic platforms against the simulations.  The physics of the simulations were then 

modified and tested repeatedly until more accurate simulations resulted.  Balaguer and 

Carpin built on the previous work of validating simulated components by testing virtual 

sensors against real-world sensors.  A method for creating and testing a virtual Global 

Positioning System (GPS) sensor that much more closely simulates a real GPS sensor 

was created [42]. Wireless inter-robot communication and vision systems have been 
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designed and validated as well [38]. USARSim has even been validated to simulate 

aspects of other worlds.  Birk et al. used USARSim with algorithms already shown to 

work in the real world as well as real-world data from Mars exploration missions to 

validate a robot simulation of another planet [43].

 2.1.3   SARGE

SARGE (Search and Rescue Game Engine) [44], shown in Figure 2.1.3, is a 

simulator designed to train law enforcement in using robotics in search and rescue 

operations [45].  It is released under the Apache License V2.0.  The developers of 

SARGE provide evidence that a valid robotics simulator could be written entirely in a 

game engine [15].  Unity was chosen as the game engine because it was more reliable 

than the Unreal engine and it provided a better option for physics simulations, PhysX.  

PhysX provides a higher level of fidelity in physics simulation of collisions and gravity  

[8]. SARGE currently only supports Windows and Mac platforms, although it is still 

under active development.  Currently, a web player version of the simulator is available 

on the website http://www.sargegames.com.  
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Figure 2.1.3 SARGE screenshot

It is possible for SARGE users to create their own robots and terrains with the use

of external 3D modeling software.  Sensors are limited to LIDAR (Light Detection and 

Ranging), 3D camera, compass, GPS, odometer, inertial measuring unit (IMU), and a 

standard camera [45]. Only the GPS, LIDAR, compass and IMU are discussed in the user

manual [46].  The GPS system requires an initial offset of the simulated terrain provided 

by Google Earth.  The terrains can be generated independently in the Unity development 

environment by manually placing 3D models of buildings and other structures on images 

of real terrain from Google Earth [45].  Once a point in the virtual terrain is referenced to 

a GPS coordinate from Google Earth, the GPS sensor can be used [8].  This shows that 

while terrains and robots can be created in SARGE itself, external programs may be 

needed to set up a full simulation.
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 2.1.4   UberSim

UberSim [47] is an open source (under GPL license) simulator based on the ODE 

physics engine and uses OpenGL for screen graphics [48]. It was created in 2000 at 

Carnegie Mellon University specifically with a focus on small robots in a robot soccer 

simulation.  The early focus of the simulator was the CMDragons RoboCup teams; 

however the ultimate goal was to develop a simulator for many types and sizes of 

robotics platforms [49].  Since 2007, it no longer seems to be under active development.

 2.1.5   EyeSim

EyeSim began as a two-dimensional simulator for the EyeBot robotics platform in

2000 [1]. The EyeBot platform uses RoBIOS (Robot BIOS) library of functions.  These 

functions are simulated in the EyeSim simulator.  Test environments could be created 

easily by loading text files with one of two formats, either Wall format or Maze format.  

Wall format simply uses four values to represent the starting and stopping point of a wall 

in X,Y coordinates (i.e.   x1  y1  x2  y2).  Maze format is a format in which a maze is 

literally drawn in a text file by using the pipe and underscore (i.e.  | and _ ) as well as 

other characters [50].  

In 2002, the EyeSim simulator had graduated to a 3D simulator that uses OpenGL 

for rendering and loads OpenInventor files for robot models.  The GUI (Graphical User 

Interface) was written using FLTK [2].  Test environments were still described by a set of

two dimensional points as they have no width and have equal heights [50].  

Simulating the EyeBot robot is the extent of EyeSim.  While different 3D models 

of robots can be imported, and different drive-types (such as omni-directional wheels and 

Ackermann steering) can be selected, the controller will always be based on the EyeBot 
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controller and use RoBIOS libraries [2].  This means simulated robots will always be 

coded in C code.  The dynamics simulation is very simple and does not use a physics 

engine.  Only basic rigid body calculations are used [50].

 2.1.6   SubSim

SubSim [51] is a simulator for Autonomous Underwater Vehicles (AUVs) 

developed using the EyeBot controller.  It was developed in 2004 for the University of 

Western Australia in Perth [52]. SubSim uses the Newton Dynamics physics engine as 

well as Physics Abstraction Layer (PAL) to calculate the physics of being underwater 

[15]. 

Models of different robotic vehicles are can be imported from Milkshape3D files  

[52]. Programming of the robot is done by using either C or C++ for lower-level 

programming, or a language plug-in.  Currently the only language plug-in is the EyeBot 

plug-in.  More plug-ins are planned but have yet to materialize [52].

 2.1.7   CoopDynSim

CoopDynSim [3] is a multi-robot simulator built on the Newton Game Dynamics 

physics engine and OpenGL. It has the ability to playback simulations and even change 

the rate of time for a simulation. It uses YARP middleware which uses a socket-enabled 

interface. A benefit of this simulator is that each robot spawns its own thread. 

CoopDynSim was designed specifically for the hardware available in the author's lab at 

the Department of Industrial Electronics at the University of Minoh in Portugal.

 2.1.8   OpenRAVE

OpenRAVE [53] (Open Robotics and Animation Virtual Environment) is an open 

source (LGPL) software architecture developed at Carnegie Mellon University [54].  It is 
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mainly used for planning and simulations of grasping and grasper manipulations as well 

as humanoid robots.  It is used to provide planning and simulation capabilities to other 

robotics frameworks such as Player and ROS.  Support for OpenRAVE was an early 

objective for the ROS team due to its planning capabilities and openness of code [55]. 

One advantage to using OpenRAVE is its plug-in system.  Everything connects to 

OpenRAVE by plug-ins, whether it is a controller, a planner, external simulation engines 

and even actual robotic hardware.  The plug-ins are loaded dynamically.  Several 

scripting languages are supported such as Python and MATLAB/Octave [53].

 2.1.9   lpzrobots

lpzrobots [60] is a GPL licensed package of robotics simulation tools available for

Linux and Mac OS.  The main simulator of this project that corresponds with others in 

this survey is ode_robots which is a 3D simulator that used the ODE and OSG 

(OpenScreenGraph) engines.

 2.1.10   SimRobot

Figure 2.1.10 shows a screen shot of SimRobot [61] is a free, open source 

completely cross-platform robotics simulator started in 1994.  It uses the ODE for physics

simulations and OpenGL for graphics [62]. It is mainly used for RoboCup simulations, 

but it is not limited to this purpose.  
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Figure 2.1.10 SimRobot screenshot

A simple and intuitive drag and drop interface allows custom items to be added to 

scenes.  Custom robots can be created and added as well [10].  Unlike many of the other 

robotics simulators, SimRobot is not designed around client/server interaction.  This 

allows simulations to be paused or stepped through which is a great help when debugging

[10]. 

SimRobot does not simulate specific sensors as many of the other simulators do; 

rather it only provides generic sensors that users can customize.  These include a camera, 

distance senor (not specific on a type), a “bumper” for simulating a touch sensor, and 

“actuator state” which returns angles of joints and velocities of motors [10].  

Laue and Rofer admit that there is a “reality gap” in which simulations differ from
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real-world situations [62].  They note that code developed in the simulator may not 

translate to real robots due to distortion and noise in the real-world sensors.  They also 

note, however, that code that works in the real world may completely fail when entered 

into the simulation because it may rely on that distortion and noise.  This was specifically

noted with the camera sensor and they suggested several methods to compensate for this 

difference [62].

 2.1.11   Moby

Moby [63] is an open source (GPL 2.0 license) rigid body simulation library written in 

C++.  It supports Linux and Mac OS X only.  There is little documentation for this 

simulation library.  

 2.1.12   Comparison of Open Source Simulation Tools

Table 2.1.13 shows the relative advantages and disadvantages of the simulators 

covered in this section [64].

Table 2.1.13. Comparison of open source simulators
Simulator Advantages Disadvantages

Stage/Gazebo

• Open Source (GPL)
• Cross Platform
• Active Community of Users 

and Developers
• Uses ODE Physics Engine for 

High Fidelity Simulations
• Uses TCP Sockets
• Can be Programmed in Many 

Different Language

USARSim

• Open Source (GPL)
• Supports both Windows and 

Linux
• Users Have Ability to Make 

Custom Robots and Terrain 
with Moderate Ease

• Uses TCP Sockets
• Can be Programmed in Many 

Different Language

• Hard to Install
• Must have Unreal 

Engine to use 
(Costs about $40)

• Uses Karma 
Physics Engine
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Table 2.1.13 Continued
Simulator Advantages Disadvantages

SARGE

• Open Source (Apache License 
V2.0 )

• Uses PhysX Physics Engine for
High Fidelity Simulations

• Supports both Windows and 
Mac

• Users Have Ability to Make 
Custom Robots and Terrain 
with Moderate Ease

• Uses TCP Sockets
• Can be Programmed in Many 

Different Languages

• Designed for 
Training, not Full 
Robot Simulations

UberSim
• Open Source (GPL)
• Uses ODE Physics Engine for 

High Fidelity Simulations

• No Longer 
Developed

EyeSim • Can Import Different Vehicles
• Only Supports 

EyeBot Controller

SubSim

• Can Import Different Vehicles
• Can be programmed in C or 

C++ as well as using plug-ins 
for other languages

CoopDynSim • Multi-Robot system
• Multithreaded
• Uses YARP to interface via 

TCP sockets
OpenRAVE • Open Source (Lesser GPL)

• Everything Connects using 
plug-Ins

• Can be used with Other 
Systems (like ROS and Player)

• Can be Programmed in Several
Scripting Languages 

lpzrobots • Open Source (GPL)
• Uses ODE Physics Engine for 

High Fidelity Simulations

• Linux and Mac 
only

SimRobot • Open Source
• Users Have Ability to Make 

Custom Robots and Terrain 
Moby

• Open Source (GPL 32.0)
• Written in C++

• Supports Linux 
and Mac only

• Very little 
documentation
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 2.2   Commercial Simulators

There are many commercial robotics simulators available.  The commercial 

simulators described and compared in this paper will be focused on research and 

education.  

As with any commercial application, one downfall of all of these applications is 

that they typically are not open source.  Commercial programs that do not release source 

code can tie the hands of the researcher, forcing them in some cases to choose the less 

than optimal answer to various research questions.  When problems occur with 

proprietary software, there is no way for the researcher to fix it.  This problem alone was 

actually the impetus for the Player Project [65].

 2.2.1   Microsoft Robotics Developer Studio

Microsoft Robotics Developer Studio (MRDS) [14] uses Phys X physics engine 

which is one of the highest fidelity physics engines available [15].  A screen shot can be 

seen in Figure 2.2.1.  MRDS robots can be programmed in .NET languages as well as 

others.  The majority of tutorials available online mention the use of C# as well as a 

Visual Programming Language (VPL) Microsoft developed.  Programs written in VPL 

can be converted into C#  [66].  The graphics are high fidelity.  There is a good variety of 

robotics platforms as well as sensors to choose from.  
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Figure 2.2.1 Microsoft Robotics Developer Studio screenshot

Only computers running Windows 7 are supported in the latest release of MRDS, 

however, it can be used to program robotic platforms which may run other operating 

systems by the use of serial or wireless communication (Bluetooth, WiFi, or RF Modem) 

with the robot [67].

 2.2.2   Marilou

Figure 2.2.2 shows a screen shot of Marilou by anyKode [68]. Marilou is a full 

robotics simulation suite.  It includes a built in modeler program so users can build their 

own robots using basic shapes.  The modeler has an intuitive CAD-like interface.  The 

physics engine simulates rigid bodies, joints, and terrains.  It includes several types of 

available geometries [69]. Sensors used on robots are customizable, allowing for specific 
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aspects of a particular physical sensor to be modeled and simulated.  Devices can be 

modified using a simple wizard interface.  

Figure 2.2.2 anykode Marilou screenshot

Robots can be programmed in many languages from Windows and Linux 

machines, but the editor and simulator are Windows only.  Marilou offers programming 

wizards that help set up projects settings and source code for based on which language 

and compiler is selected by the user [70].  

Marilou is not open source or free.  While there is a free home version, it is meant 

for hobbyists with no intention of commercialization.  The results and other associated 

information are not compatible with the professional or educational versions.  Prices for 

these versions range from $360 to $2,663 [71]. 
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 2.2.3   Webots

The Cyberbotics simulator Webots [72] (shown in Figure 2.2.3) is a true 

multiplatform 3D robotics simulator that is one of the most developed of all the 

simulators surveyed [13]. Webots was originally developed as an open source project 

called Khepera Simulator as it initially only simulated the Khepera robot platform.  The 

name of the project changed to Webots in 1998 [73].  Its capabilities have since expanded

to include more than 15 different robotics platforms [12].  

Figure 2.2.3 Webots screenshot

Webots uses the Open Dynamics Engine (ODE) physics engine and, contrary to 

the criticisms of Zaratti, Fratarcangeli, and Iocchi [40], Webots has realistic rendering of 

both robots and environments.  It also allows multiple robots to run at once.  Webots can 
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execute controls written in C/C++, Java, URBI, Python, ROS, and MATLAB languages 

[74]. This simulator also allows the creation of custom robotics platforms; allowing the 

user to completely design a new vehicle, choose sensors, place sensors where they wish, 

and simulate code on the vehicle.  

Webots has a demonstration example showing many of the different robotics 

systems it can simulate, including an amphibious multi-jointed robot, the Mars Sojourner 

rover, robotic soccer teams, humanoids, multiple robotic arms on an assembly line, a 

robotic blimp, and several others.  The physics and graphics are very impressive and the 

software is easy to use.  

Webots has a free demonstration version available (with the ability to save world 

files crippled) for all platforms, and even has a free 30 day trial of the professional 

version.  The price for a full version ranges from $320 to $4312 [75]. 

 2.2.4    robotSim Pro/robotBuilder

robotBuilder [72] is a software package from Cogmation Robotics that allows 

users to configure robots models and sensors.  Users import the models of the robots, 

import and position available sensors onto the robots, and link these sensors to the robot's

controller.  Users can create and build new robot models piece by piece or robotBuilder 

can import robot models created in other 3D CAD (Computer-Aided Design) programs 

such as the free version of Google Sketchup.  The process involves exporting the 

Sketchup file as a COLLADA or 3DS file, then importing this into robotBuilder [73].  
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Figure 2.2.4 robotSim Pro screenshot

robotSim Pro (seen in Figure 2.2.4) is an advanced 3D robotics simulator that uses

a physics engine to simulate forces and collisions [76].  Since this software is commercial

and closed source, the actual physics engine used could not be determined.  robotSim 

allows multiple robots to simulate at one time.  Of all of the simulators in this survey, 

robotSim has some of the most realistic graphics.  The physics of all objects within a 

simulation environment can be modified to make them simulate more realistically [76].  

Test environments can be easily created in robotSim by simply choosing objects to be 

placed in the simulation world, and manipulating their positions with the computer 

mouse.  Robot models created in the robotBuilder program can be loaded into the test 

environments.  Virtual robots can be controlled by one of three methods; the Cogmation 
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C++ API, LabVIEW, or any socket-enabled programming language [77].   

robotSim is available for $499 or as a bundle with robotBuilder for $750.  

Cogmation offers a 90-day free trial as well as a discounted academic license. 

 2.2.5   Comparison of Commercial Simulators

Table 2.2.5 is a comparison of the relative advantages and disadvantages of the 

specific commercial simulators mentioned in this survey.

Table 2.2.5. Comparison of commercial robotics simulators
Simulator Advantages Disadvantages

Microsoft Robotics 
Developer Studio

• Visual Programming Language
• Uses PhysX Physics Engine for

High Fidelity Simulations
• Free

• Installs on 
Windows 
Machines only

• Not Open Source
Marilou • Users Have Ability to Make 

Custom Robots and Terrain 
Using Built-in Modeler

• Provides Programming 
Wizards

• Robots Can be Programmed in 
Windows or Linux

• Free Home Version Available

• Installs on 
Windows 
Machines only

• Not Open Source
• License Costs 

Range between 
$260 and $2663

Webots • Uses ODE Physics Engine for 
High Fidelity Simulations

• Can be Programmed in Many 
Different Languages

• Free Demonstration Version 
Available

• Not Open Source
• License Costs 

Between $320 and
$4312

robotSim /robotBuilder • Users Have Ability to Make 
Custom Robots and Terrain 
Using Built-in Modeler

• Uses TCP Sockets
• Can be Programmed in Many 

Different Languages
• 90-day Free Trial and 

Discounted Academic License 
Available

• Not Open Source
• License Costs 

Between $499 and
$750

 

 2.3   Middleware

Middleware is software that sits between the user-written control code and the 

target hardware such as a robot (whether it be simulated or real hardware). The reason 
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middleware exists is to allow for highly abstracted interactions between multiple types of 

hardware and software. For instance, in many cases the user doesn't have to change their 

code if they move from a simulator to a real robot, or even between different types of 

robotic vehicles. Middleware also allows for access to third-party software libraries for 

advanced features such as path planning, localization, mapping, computer vision, etc. It 

can act as a kind of “switch-board” to direct messages to and from different libraries and 

hardware. Several types of middleware were considered during this survey.

 2.3.1   Player Project Middleware

Player is a TCP socket enabled middleware that is installed on the robotic 

platform [20].  This middleware creates an abstraction layer on top of the hardware of the

platform, allowing portability of code [65]. Being socketed allows the use of many 

programming languages [27].  While this may ease programming portability between 

platforms it adds several layers of complexity to any robot hardware design.

To support the socketed protocol, drivers and interfaces must be written to interact

with each piece of hardware or algorithm.  Each type of sensor has a specific protocol 

called an interface which defines how it must communicate to the driver [78].  A driver 

must be written for Player to be able to connect to the sensor using file abstraction 

methods similar to POSIX systems.  The robotic platform itself must be capable of 

running a small POSIX operating system to support the hardware server application [25]. 

This is overkill for many introductory robotics projects, and its focus is more on higher 

level aspects of robotic control and users with a larger budgets.  The creators of Player 

admit that it is not fitting for all robot designs [27].

Player currently supports more than 10 robots as well as 25 different hardware 
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sensors.  Custom drivers and interfaces can be developed for new sensors and hardware.  

The current array of robots and sensor hardware available for Player can be seen on the 

Player project’ s supported hardware web page [24].

 2.3.2   ROS (Robot Operating System)

ROS [79] is currently one of the most popular robotics middleware systems.  Only

UNIX-based platforms are officially supported (including Mac OS X)  but the company 

Robotics Equipment Corporation has ported it to Windows [80]. ROS is fully open source

and uses the BSD license [11]. This allows users to take part in the development of the 

system, which is why it has gained wide use.  In its meteoric rise in popularity, over the 

last three years it has added over 1643 packages and 52 code repositories since it was 

released [81].  

One of the strengths of ROS is that it interfaces with other robotics simulators and

middleware.  It has been successfully used with Player, YARP, Orcos, URBI, 

OpenRAVE, and IPC [82].  Another strength of ROS is that it can incorporate many 

commonly used libraries for specific tasks instead of having to have its own custom 

libraries [11].  For instance, the ability to easily incorporate OpenCV has helped make 

ROS a better option than some other tools.  Many libraries from the Player project are 

also being used in certain aspects of ROS [65].  An additional example of ROS working 

well with other frameworks is the use of the Gazebo simulator.  

ROS is designed to be a partially real-time system.  This is due to the fact that the 

robotics platforms it is designed to be used, like the PR2, will be in situations involving 

more human-computer interaction in real time than many current commercial research 

robotics platforms.  One of the main platforms used for the development of ROS is the 
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PR2 robot from Willow Garage.  The aim of using ROS’s real-time framework with this 

robot is to help guide safe Human-Robot Interaction (HRI).  Previous frameworks such as

Player were rarely designed with this aspect in mind.

ROS is made up of many separate parts, namely the ROScore and ROSnodes. The

ROScore is like a switchboard. It routes messages between other ROSnodes. “ROSnode” 

is a term used to describe other applications that either send or receive ROS messages.  

Figure 2.3.2 shows an example ROS project.

Figure 2.3.2 Simplified ROS application

In the example shown in Figure 2.3.2, all of the bubbles attached to the ROScore 

directly are ROSnodes.  The code that the user writes must implement a ROSnode to be 

able to send messages to the ROScore.  The Roomba and arduino nodes can be thought of

as device drivers and have two interfaces. One side interfaces with ROScore and sends 

and receives ROS-standard message types.  The other side connects via serial ports to 

either physical hardware, or a simulator depending on how the user has configured the 

project. The Roomba node converts ROS-standard “drive” message-types (a “twist” 
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message) into Roomba protocol commands and sends them to a physical Roomba robot. 

The arduino node converts ultrasonic sensor values into the ROS-standard “range” 

message-type when gets forwarded to the user's code.  The user's code can be written in 

one of several different ROS-supported languages.  It receives sensor information from 

the Roomba and arduino nodes via the ROScore (shown in Figure 2.3.2 by the red and 

blue arrows).  The code then processes the sensor data to derive an appropriate drive 

command.  This drive command is a standard ROS message-type called a “twist” (the 

black arrow in Figure 2.3.2). It is then sent to the ROScore and routed to the 

RoombaNode.  The Roomba node converts the twist message into the standard Roomba 

protocol command and sends it to the actual Roomba hardware via serial connection. The

hardware abstraction layer in Figure 2.3.2 can be replaced by a simulator, and the rest of 

the software would not “know” the difference.  

 2.3.3   MRL (MyRobotLab)

MRL (seen in Figure 2.3.3.1) is a Java middleware that includes many third-party 

libraries and hardware interfaces [83]. It is written as a service-based architecture that 

includes both graphical and textual control of the services and their interconnections. A 

python interpreter gives the user complete access to all public classes in all the services 

of MRL.  This allows for users to design complex systems in a single python script file.  

Recently, a Java service has been implemented in MRL which will also become useful for

users once it is more mature. MRL is actively developed, and the developer is generally 

available for consultation through the MRL website. 
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Figure 2.3.3.1 A screenshot of the main MRL window displaying several important
services that are available to the user.

Figure 2.3.3.2 shows a typical project in MRL using an actual Roomba vehicle. 

The user's code is written in MRL's python interpreter.  MRL uses the open source 

RoombaComm Java library to communicate to Roomba hardware. The user can initiate a 

RoombaComm service either manually using the MRL GUI or in the python interpreting 

service.  This service then connects to an actual Roomba using a serial port. Sensor and 

drive messages are defined in the Roomba's native protocol (as defined in [84]). 
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Figure 2.3.3.2 A typical project in MRL using an actual Roomba vehicle.

 2.3.4   RT Middleware

RT Middleware [85] is set of standards used to describe a robotics framework.  

The implementation of these standards is OpenRTM-aist, which is similar to ROS.  This 

is released under the Eclipse Public License (EPL) [86].  Currently it is available for 

Linux and Windows machines and can be programmed using C++, Python and Java [85]. 

The first version of OpenRTM-aist (version 0.2) was released in 2005 and since then its 

popularity has grown.  Version 1.0 of the framework was released in 2010.  

OpenRTM-aist is popular in Japan, where a lot of research related to robotics 

takes place.  While it does not provide a simulator of its own, work has been done to 

allow compatibility with parts of the Player project [87].  

 2.3.5   Comparison of Middleware

Table 2.3.5 compares the relative advantages and disadvantages of the open 

source middleware discussed in this survey.
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Table 2.3.5. Comparison of open source middleware
Simulator Advantages Disadvantages

Player

• Open Source (GPL)
• Cross Platform
• Active Community of Users 

and Developers
• Uses TCP Sockets
• Can be Programmed in Many 

Different Language

• Every physical 
hardware device 
must use TCP 
protocol

ROS

• Open Source (BSD License) 
• Supports Linux, Mac, and 

Windows*
• Very Active Community  of 

Users and Developers  
• Works with Other Simulators 

and Middleware

• Very complicated 
to learn and to use

MRL (MyRobotLab)

• Open source
• Completely Java based, 

making it able to run on Linux,
Windows, Mac, Android and 
even in web browsers

• Very easy to learn and use
• Active community of 

developers
• Interfaces with a multitude of 

common third-party libraries, 
software, and hardware

• Very easy to customize
RT-Middlware • Open Source (EPL)

• Based on a Set of Standards 
that are Unlikely to Change 
Dramatically

• Works with Player Project
• Can be Programmed in Several

Different Languages

 2.4   Conclusion

While this is certainly not an exhaustive list of robotics simulators and tools, this 

is a simple comparison of several of the leading simulator packages available today.  

Most of the simulators in this survey are designed for specific robotics platforms 

and sensors which are quite expensive and not very useful for simpler, cheaper systems.  

The costs and complexities of these systems often prevent them from being an option for 
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projects with smaller budgets.  The code developed in many of these simulators requires 

expensive hardware when porting to real robotics systems.  The middleware that is 

required to run on actual hardware is often too taxing for smaller, cheaper systems.  There

simply isn't a very good 3D robotics simulator for custom robotic systems designed on a 

tight budget.  Many times a user only needs to simulate simple sensor interactions, such 

as simple analog sensors, with high fidelity.  In these cases, there is no need for such 

processor intensive, high abstraction simulators.  



 CHAPTER 3:   HISTORY OF SEAR

 3.1   Overview of SEAR Concept

The concept of SEAR was conceived as a free (completely open source), cross 

platform, and 3D graphically and physically accurate robotics simulator.  The proposed 

simulator is able to import 3D, user-created vehicle models and real-world terrain data.  

The SEAR simulator is easy to setup and use on any system.  The source code is freely 

available which entices collaboration from the open source community.  The simulator is 

flexible for the user and is intuitive to use for both the novice and the expert. 

SEAR began as a thesis project which laid the groundwork for a tool that matched

the concept requirements [64]. Since its inception, SEAR has gone through multiple 

iterations as features were either added or removed and as sensors were validated. 

 3.2   Initial Design

In the initial design of SEAR, the models of robotic vehicles were imported into 

the simulator in Ogre mesh format. These models were created using one of the many 3D 

modeling CAD software programs. Terrain models could be created either externally in 

CAD and imported into the simulator, or coded directly in jME. One method for creating 

real-world terrains is by importing from Google Earth.  This model can then be used as 

the basis for a fully simulated terrain as can be seen in Figure 3.2. 
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Figure 3.2 The main SEAR Simulator window showing gyroscope, accelerometer, GPS 
and compass values as well as the robot vehicle model and a tree obstacle.  
The terrain is from Google Earth of the varsity sports track at the University of
North Carolina at Charlotte.

Settings for the overall SEAR project were entered in a Project Settings Window.  

This recorded which models would be used for terrain, robot body and robot wheels.  The

robot vehicle dynamics were also set in this window to allow user-described values to be 

used in the physics simulations.  User code files were selected in this window as well.  

The user had the option of selecting a custom userCode file, creating a new userCode file 

template or creating a new Java file template in their chosen working directory.  All of the

project settings were saved to a file. 

The user was able to use a template for a “User Code File” which helped simplify 

the coding process of coding by allowing only three methods to be used; a method in 
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which users can declare variables, an initialization method and a main loop method.  This

was designed to reduce confusion for novice users and makes prototyping a quick and 

easy process.  Additionally, the user could choose to code from a direct Java template of 

the simulator itself.  This would be a preferred method for more advanced simulations.  

Upon starting a simulation, the values recoded in the project settings file (.prj) 

created in the Project Settings Window and the userCode file (.ucf) were used to create 

the simulator Java file by copying and pasting the user code to the appropriate sections of

the simulator Java template. This file was then compiled and the resulting application was

run to perform the simulation. Every time the simulator ran, it had to be completely 

recompiled.  Though this was hidden from the user, it proved to be a complicated and 

messy implementation. There was no error console, so if the user code caused an error, 

there was no feedback from the compiler to explain why the compilation failed.

 3.3   Intermediate Designs (Graduate Work)

SEAR has gone through many intermediate designs, including interfacing with 

multiple middleware suites as well as testing multiple communication protocols to 

validate which would be best to utilize.  Concurrently, previously created sensors were 

improved, new classes of sensors were added and validated against actual hardware. 

 3.3.1   Early ROS Middleware Integration

A new class of sensors, “visual sensors,” was added which included ultrasonic 

sensors.  The creation and validation of the technique used for simulating this new class 

of sensors meant that SEAR would have to change drastically. The new sensors were 

validated (proven to act similarly to physical sensors in a similar physical environment) 

against both real world sensors and another simulator (Stage). In order to keep as many 
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variables in the testing of the SEAR sensor as consistent as possible with the physical 

experiment as well as in the Stage simulation experiment a middleware, ROS, was 

selected to interface with each system.  This allowed the same robot control code to be 

used on all three platforms: SEAR, real-world hardware, and Stage. Additionally, the 

Roomba robot was chosen as the vehicle because the iRobot Roomba is nearly 

universally supported by many robotics simulators and middleware. Only indoor 

environments were used for testing to reduce the number of variables introduced. The 

odometer sensor was created to allow for a second measure in the validation of the visual 

sensor class. 

Since the focus of SEAR changed to the validation of sensors, many of the 

previous features had to be removed.  The model-loading for terrain was no longer 

needed as it was simpler to build the environments within jME3 by hand.  Similarly, the 

ability to load custom robotic vehicles was removed. Hard-coded environments and 

vehicles reduced the time between simulations and reduced the number of files associated

with a given project. The removed features were later added back into SEAR. 

User-code integration was completely removed and in its place, a separate ROS 

communications thread was used. This allowed SEAR to send and receive standard ROS 

message-types. Because of this simplification, there was no need to dynamically create 

and compile the SEAR simulation each time it ran. 

Simulation no longer required the project settings GUI since all the settings were 

hard-coded.  The sensor wizard XML files were also no longer required. The distance 

sensor class was validated in SEAR utilizing only the main simulation class, the sensor 

simulator classes, and the ROS communications thread. 
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 3.3.2   Early MRL Integration 

After the sensors were validated, the focus was moved toward integration with a 

simpler middleware called MyRobotLab (MRL).  The main reason for this change is the 

immaturity of the Java-based implementation of ROS. ROSJava, as it was called, 

changed so rapidly that the code used in the validation was completely deprecated by the 

time the validation was finished. Instead of starting from scratch on ROS integration, the 

change to MRL allowed for a more stable development platform over time. 

The first integration with MRL used a client library called the MRLClient. It 

began as a UDP messaging service that communicated with a running instance of MRL. 

Shortly after implementation, the protocol was changed to TCP to reduce the amount of 

packet loss between the two programs.  This was still not an ideal solution as it was slow 

and often times had errors.  Eventually, SEAR was incorporated directly with MRL with 

the creation of a SEAR service inside MRL. This allowed for communication between 

MRL services to be very easy.  

During the same time as the MRL integration, the LIDAR simulator was 

implemented and then verified against actual hardware. Once all of the sensors were 

finished, they were combined into a single Java package that could interact together in 

the same simulation.  The simulators were moved to execute in the physics thread of jME

rather than the simpleUpdate() method. This increased the speed of simulations. 

The creation of environments (models of terrain and obstacles) inside SEAR was 

added to the MRL SEAR service. This involved the creation of many new classes of 

environment object-types such as Box, Cylinder and Cone objects.  These objects can be 

created in python code inside MRL and are stored in the main SEAR project folder as 
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XML files. This development meant that environments were no longer hard-coded into 

SEAR; they could be changed easily. 

SEAR currently supports “robot objects” which communicate using the iRobot 

Roomba Create Open protocol [84].  This protocol was chosen because the Roomba 

protocol is widely used and very simple to implement on practically any hardware. In 

fact, the drive commands from the iRobot protocol use a common interface that Eyesim 

authors refer to as “omega-v” which specifies both the linear and angular velocity the 

robot should obtain [1], [2].     Custom protocols could also be used with SEAR, however

the user would have to write a “customController” SEAR object script to handle 

communications and drive the virtual robot. 

 3.4   Conclusion

As shown in this section, the growth of SEAR allowed for experimentation of 

each important aspect previously defined for a good modern simulator.  Middleware 

integration was explored by interfacing with ROS and later with MRL.  Different 

methods of communication were explored as well.  Simulations of sensors were 

improved and validated against physical hardware to prove the simulated outputs closely 

matched the results of the actual sensors they were modeled on.  The final iteration of 

SEAR is described in detail in the following chapters.



 CHAPTER 4:   SUPPORTING DESIGN TOOLS

This research relied on several software tools for development.  The required 

software ranged from integrated development environments (IDEs) to 3D modeling CAD

software.  Netbeans 6.9 was used for coding Java for the project.  The game engine used 

was jMonkeyEngine3 (jME3).  A survey of different modeling software was performed to

show the variety available to the user [64].

 4.1   Language Selection

Using previous surveys of current robotics simulators [15], [21], [23] it was 

shown that several of the current systems claim to be cross platform.  While this may 

technically be true, it is often so complicated to implement these systems on different 

platforms that most people would rather switch platforms than spend the time and effort 

trying to setup the simulators on their native systems.  Most of the currently available 

open source simulator projects are based on C and C++.  While many of these are 

considered also cross-platform, getting them running correctly requires so many work-

arounds and special configurations that it is often more efficient to change the 

development hardware to match the recommended hardware of the simulators. 

To make a simulator easy to use as well as to simplify further development, Java 

was selected as the language to code the simulator.  Java runs in a virtual machine on a 

computer.  This abstraction prevents the Java code from having to directly interface with 

any hardware, allowing the Java code to be unchanged regardless of what hardware it is 
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run on. The development platform used was NetBeans 6.9.  

 4.2   Game Engine Concepts

The jME3 game engine consists of two major parts, each with their own “spaces” 

that must be considered for any simulation.  The first is a “graphics world space” (called 

the “scene graph”) which is controlled by the rendering engine and displays all of the 

screen graphics. The scene graph is created by jMonkeyEngine in this project.  

The second space, the “physics world space,” is controlled by the physics engine 

which can simulate rigid body dynamics, fluid dynamics, or other dynamic systems. 

Currently in SEAR, only rigid body dynamics are being used. The physics engine 

calculates interactions between objects in the “physics space” such as collisions, as well 

as variations in mass and gravity.

A developer must think about both the graphics and physics spaces concurrently 

as each runs in its own thread.  It is possible for objects to exist in only one of these 

spaces which can lead to simulation errors.  Once an object is made in the graphics space,

it must be attached to a model in the physics space in order to react with the other objects 

in the physics space. For instance, an obstacle created in only the graphics space will 

show up on the screen during a simulation, however, the robot can drive directly through 

the obstacle without being affected by it.  Conversely, the obstacle can exist only in the 

physics space.  A robot in this instance would bounce off of an invisible object in a 

simulation.  Another issue would be to have an obstacle created in both spaces, but not in 

the same place.  This would lead to problems such as the robot driving though the visible 

obstacle, and running into its invisible physics model a few meters behind the obstacle.  

Attention must be paid to attach both the graphics objects and physics objects correctly.  
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The game engine creates a 3D space or “world.”  In each direction (X, Y and Z) 

the units are marked as “world units.”  The Bullet physics engine (the one implemented 

in jME3) treats one world unit as one meter [88].  Certain model exporters will have a 

scale factor; however that can be used to change the units of the model upon export.  

Additionally, any object can also be scaled inside the game engine.

 4.3   JmonkeyEngine Game Engine

The game engine selected for this project was jMonkeyEngine3 (jME3) since it is 

a high performance, truly cross platform Java game engine. The basic template for a 

simple game in jME3 is shown in the code snippet below:

public class BasicGame extends SimpleApplication { 
 
    public static void main(String[] args){ 
     //create an instance of this class      
        BasicGame app = new BasicGame(); 
        app.start();//Start the game 
    } 

    @Override 
    public void simpleInitApp() { 
    //Initialization of all objects required for the game.  
    //This generally loads models and sets up floors.  
    } 

    @Override 
    public void simpleUpdate(float tpf) {   
    //Main Event Loop 
    } //end of Class

The superclass SimpleApplication handles all of the graphics and physics 

involved.  Because this class is extended, local overrides must be included.  The 

simpleInitApp method is used to initialize the world and the objects within it.  

The simpleInitApp method calls methods for loading models of the robotic 

vehicle, loading the terrain models, setting up groups of collision objects, and any other 

tasks that must be performed before the main event loop begins.  simpleInitApp then sets 

up all the internal state variables of the game and loads the scene graph [89].  The 
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simpleUpdate method is the main event loop.  This method is an infinite loop and is 

executed as quickly as possible.  This is where important functions of the simulator 

reside. Additionally, other methods from the simpleBulletApplication may be overridden 

such as onPreUpdate and onPostUpdate, though these were not used specifically in this 

project.  

jME3 uses the JBullet physics engine for physics calculations.  JBullet is a one-

hundred percent Java port of the Bullet Physics Library which was originally written in   

C++.  There is a method in SimpleApplication specifically for handling the physics called

“physicsTick()”.  This is the method in which the sensors of SEAR are simulated. jME3 

allows the physics to be handled in a separate thread from the graphics. 

Objects in jME3 must be represented both graphically as well as physically to 

work in a simulation.  Simulating sensors in SEAR also requires utilizing both the 

graphics and physics threads almost simultaneously.  Data must be passed between the 

threads to calculate graphical representations of sensor components as well as the virtual 

robot's position within the virtual environment.  This is similar to the CoopDynSim 

simulator [3].  Figure 4.3 is a representation of roughly how the threads communicate.

Figure 4.3 Data for each sensor simulator is shared between 
graphics and physics threads in SEAR



 CHAPTER 5:   ARCHITECTURE AND METHODS OF IMPLEMENTATION
UTILIZED TO CREATE SEAR

This section describes the implementation of the virtual sensors within SEAR, the 

architecture of SEAR, communication between SEAR and middleware (MRL), and the 

organization of a end-user's files related to a single simulation project from the 

perspective of a developer of SEAR.  Typical end-user interactions can be found in 

Appendix A which has example code listings for how to create and use every 

environment object (terrain and obstacles) as well as robot components (boxes, cylinders,

wheels, robot dynamics settings, and sensors).

For perspective, it is useful to understand where each of the components of SEAR

fit in an example of a typical user project.  In this example, the user will utilize MRL's 

python service to control a virtual robot and communicate with sensors.  One of each 

sensor will be used.  As a comparison the same project is shown twice; one implemented 

with physical hardware (shown in Figure 5a), and then again using the SEAR simulator 

(shown in Figure 5b).  The portions that were created by the author of this dissertation for

the SEAR simulator are shown by the text being preceded by an asterisk (*).
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Figure 5.0  (a) A typical project using MRL to control a physical robot. (b) The same 
project interfacing instead with SEAR. The blue arrows are MRL system 
messages, the Red arrows are serial or virtual serial ports and the orange 
arrow is a direct JAVA method call from MRL to SEAR. The items with an 
asterisk (*) denote modules written by the author of this dissertation.

 5.1   The SEARproject

The concept of a “SEARproject” was devised to allow users to contain all the files

of a single project together.  It is similar in structure to how word processor documents 

save text, formatting and associated files to a computer hard drive.  This structure will 

allow users to share aspects of their projects, be it code, entire environments, or entire 

robot models (complete with sensor specifics).  

The SEARproject is created when the user creates objects using a custom library.  

This creates a folder within MRL’’s operating environment called “SEARproject.” 
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Environment objects are stored in a subfolder named “environment,” robot components 

are stored in a subfolder named “robot,” and all the files associated with user-created 

CAD files of objects or any images the user selects to wrap around SEAR-native objects 

are located in a folder named “assets.” Users' Python or Java code can be stored in the 

SEARproject folder.  

When the user is ready to save the SEARproject, this folder is compressed in ZIP 

format, and renamed with the file extension “.sear” to designate it as a sear project.  This 

can then be opened at a later time from the MRL SEAR service GUI window, or shared 

with other users. Figure 5.1 illustrates the file structure inside a .sear file. 

Figure 5.1 Folder tree showing the layout of a SEARproject 

MRL's SEAR service has options to save and open .sear files.  Projects are stored 

in MRL's working directory in a folder named “SEARproject” until they are saved.  

When the user saves a file, the SEAR service zips SEARproject folder and saves it as a 

.sear file at the given path and file name the user enters.

 5.2   Custom MRL Services

Several MRL services were created to allow SEAR and its virtual robots and 

sensor objects to communicate with MRL.  Additionally, MRL did not support several 

standard sensor types for physical sensors.  Custom services were written to add LIDAR 

and GPS sensors to MRL, as well as a service used to interface MRL with the SEAR 

simulator. These services can interface with actual hardware or simulated hardware [90].
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 5.2.1   MRL'S LIDAR Service

 
Figure 5.2.1 The LIDAR service GUI panel showing the output of 

an actual SICK LMS-200 scan

MRL did not have a service for interfacing with LIDAR devices at the time of this

research, so one was created. The service currently handles SICK LMS-200 devices and 

can be used to set up and receive scan data [91].  Once a scan is performed, the resulting 

values are parsed and displayed on the LIDAR service GUI panel in MRL in polar form 

(with the senor location being at the center of the bottom of the display). Figure 5.2.1 

shows a resulting LIDAR scan.  This service was first tested with an actual SICK LMS-

200 LIDAR unit to verify functionality. LIDAR messages are called “telegrams” in the 

SICK documentation [91]. Many telegrams are currently supported with the exception of 

the “streaming” scan mode. Users can get similar functionality by putting the single scan 

function call within a loop to perform multiple scans. The user has the ability to change 

the resolution of the scans and the speed of the serial communications using standard 
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LMS-200 telegrams [92]. All functions are currently only available to the user if they use 

the Python or Java MRL services. 

 5.2.2   MRL's GPS Service

MRL did not have a GPS service at the time of this research, so one was created. 

The service utilized other portions of MRL’s serial service to parse values from a GPS 

NMEA string. Currently, only GPGGA strings in the format used by the San Jose FV-M8 

are supported as they are the most useful for the SEAR simulator at this time and the only

physical hardware available to test [93].  The MRL GPS service parses the GPGGA string

and displays the values in the GPS service GUI panel, and allows the user to access this 

data directly from the GPS service via Python or Java code. Figure 5.2.2 shows the GPS 

GUI.

Figure 5.2.2 The GPS panel of MRL’s GPS service GUI showing 
values from a simulated GPS device

 5.3   MRL'S SEAR Service

The SEAR service has a GUI portion that allows users to open or save SEAR 

project files, and start a SEAR simulation.  Most of its functionality is not available on 

the GUI window.  The SEAR service orchestrates all the serial communications between 

the software serial ports (virtualSerialPort services within MRL).

 5.4   SEAR's Object Grammar

A custom grammar was created to allow users to design environments, obstacles 

and robot components using SEAR-native objects.  This is accomplished by the 
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SEAR.POJO library that was added to MRL.  The user must import the “SEAR.POJOs” 

library within MRL's Python or Java service in order to create these objects. A POJO is a 

“Plain Old Java Object” which is a Java object that is devoid of methods and simply 

holds information.  It can be thought of as similar to a “structure” in C language.  By 

default, when the user creates these POJO objects, they are immediately serialized as 

XML files.  

SEAR objects include graphical and physical representations of boxes, cylinders, 

and cones as well as components specific to a robot such as dynamics, sensors and 

wheels. Sensor objects are used to set up the specific settings of a particular sensor type 

such as communication settings, resolution, and type. Tables 5.4.1 and 5.4.2 list the 

different types of objects supported by the POJO library.

Table 5.4.1.   Physical objects in the SEAR POJOs library
Objects Description

Box 
Cone A cone shape with a default image of a traffic cone

Floor

Cylinder A cylinder with a default image of a recycling bin

Model

Wheel

A rectangular prism with a default image of a cardboard 
box

A rectangular prism that can be ignored by distance and 
LIDAR sensors

A 3d model the user created outside of MRL and 
SEAR usually in OGRE mesh format. This can include 
custom images and textures.  Additionally, Blender 
.blend files can be used.
A special cylinder object that is specifically used as a 
robot component. The user can select whether this 
wheel is connected to the motor or if it is an idler.
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Table 5.4.2.   Sensor objects in the SEAR simulator POJOs library
Objects Description

SEARrobot

3-axis Accelerometer

Compass Sensor

Distance

Robot Dynamics

GPS

3-axis Gyroscope
LIDAR Simulates Laser ranging devices, named the SICK LMS200

Odometer

This is an object that represents a “robot” entity.  Other 
physical and sensor objects are added to this entity to create 
the physical representation as well as the sensor payload of the 
robot.
Measures acceleration in 3 dimensions relative to the robot's 
body
Measures angle to “north” which defaults to 1000km in the X 
axis unless magnetic declination is selected (automatically 
calculated based on the robot's GPS coordinates)
This sensor is highly configurable and can simulate SONAR, 
RADAR, Infrared, simple laser reflectors and ultrasonic 
sensors with a multitude of resolutions
This allows the user to make a serial connection to the 
microprocessor on-board the robot. It uses roomba command 
protocol.  The user also sets up physical aspects of the robot 
here such as suspension characteristics.
Simulates a rough GPS coordinate system in the simulated 
environment
Measures angular velocity in 3 dimensions relative to the 
robot's body

Measures distance traveled Default is to simulate a roomba's 
odometer which resets after every 32,767 millimeters or 
-32,768mm 

 5.4.1   Environment Objects

SEAR's object grammar is utilized from within MRL’s Python or Java services 

allowing users to instantiate and manipulate objects in a simulation. The SEAR-native 

environment objects are Box, Cone, Cylinder, and Model.  The user can create these 

objects very easily, then scale them, translate their locations, or rotate them in the 

environment as they wish.  Users can even select custom images to be wrapped around 

the objects so a Box object can be made to look like a cardboard box, a metal shipping 

container, or even a brick wall. All of these items are native to SEAR except the “model” 

object.  The user can create models in external CAD software such as Blender and export 
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the model's files into the “assets” folder of a SEARproject and create a model object 

POJO object.  The POJO will be automatically serialized to an XML file stored in the 

“environment” folder of the SEARproject when the python is executed.

 5.4.2   Terrain

Users can create and modify a simulation's terrain in one of two ways. They can 

create a “floor object” XML file using the SEAR POJO library, which gives the option to 

make the floor invisible to the sensors.  This can be useful for interior environments. The 

second method for setting up terrain in SEAR is to load a OGRE mesh or Blender model. 

Again, users can select to have the terrain invisible to the sensors if needed.  This can 

help reduce spurious sensor signals, especially on uneven terrains. When a terrain is 

loaded, the center of the terrain becomes the origin in the 3-dimensional world within the 

SEAR simulator.  This is important as some terrains can be loaded from Google Maps, 

and have an associated GPS coordinate that is also referenced as the center of the terrain 

model.  In the SEAR simulator, the GPS sensor relies on this “world center” value to 

calculate the GPS coordinates of the robotic vehicle. 

 5.4.3   Obstacles

Obstacles are added to the environment either by hand (manually creating and 

saving the appropriately formatted XML files in the “environments” folder) or by using 

the SEAR.POJO library in MRL's Python service. The user can create a variety of 

“SEAR-native” objects which include boxes, cylinders, and cones. Each obstacle has its 

own overloaded methods in the POJOs library which can require as little or as much 

specific information as the user desires. For instance, to create a box the user can specify 

as few as five options; the object name, the length, width, height, and mass of the box.  
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Additionally, the objects can be translated and rotated in each axis giving the user 

complete control when designing a custom environment. If the mass value is set to 0, the 

object ignores the influence of gravity in the simulator and does not fall to the ground but

rather it stays in the exact translation and rotation the user specifies, completely ignoring 

gravity in the simulator.  This can be useful when simulating walls or other large 

immovable structures. It can even be used to design environments with objects that hang 

down from the ceiling. User-created CAD models can also exist as objects within the 

simulation environment. Once the simulator begins, it will load the model's XML file, 

and then search for the associated files in the “assets” folder. 

When entering values for an objects location and rotation, it is important to note 

that translation values represent meters and are referenced from the center (0,0,0) of the 

jME3 world. Similarly, the rotation refers to the roll, pith and yaw of the object within the

jME3 world and is measured in degrees.

 5.4.4   Virtual Robotic Vehicles

Virtual robots can be created several ways in SEAR.  The simplest method is to 

build a robot from SEAR-native components. Objects will be created the same way as for

obstacles, however, a special “robot” object must be created.  The “robot” object has no 

visual or physical representation of its own.  Parts must be added to the robot object as 

components. For example, the body of a virtual robot could be a cylinder.  The user 

would first create a SEAR-native cylinder, create a new robot object, then add this 

cylinder to the robot object.  SEAR will automatically move the cylinder's XML file to 

the “robot” folder within the SEARproject. Similarly, if a model is utilized as a 

component of the robot,  the XML file for the model will be moved to the robots folder of
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the SEARproject, though the actual model meshes and images will remain in the “assets” 

folder. 

Objects that are added as components to a robot object change their translation 

and rotation reference from the jME3 world frame to the robot body frame.  This means 

that an object with a translation of (1,0,0) would be located 1 meter along the X-axis of 

the robot body.  Similarly, an object with a rotation of (0,45,0) will point 45 degrees 

counterclockwise of the front of the robot.

 5.5   Manual Control

There is still the need for manual control of the simulation in some cases.  This 

can be useful for debugging. The camera angles can be manually controlled. By default, 

the flycam in SEAR is disabled.  This means the default action of the camera is to follow 

the robot automatically.  By pressing the space bar on the keyboard during a simulation, 

the flycam can be toggled on or off.  This will then allow the user to control the camera 

angle using the Q, W, A, S, D, and Z keys on the keyboard. Additionally for current 

debugging purposes, the H,K,U,J, and ; (colon) keys will allow the user to manually drive

the robot when there is no user code being used.  The Enter button will reset the robot to 

the beginning location and rotation, and reset the odometer; therefore, effectively starting 

the simulation over again.  Table 5.5 shows the binding of each key. 
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Table 5.5 Keyboard controls of the Simulator Window

Key Action

H Spin Vehicle Left

K Spin Vehicle Right

U Accelerate Vehicle

J Reverse Vehicle

; (colon) Stop Vehicle

Enter Reset Robot Position

Space Bar Toggle Flycam

Q Pan Camera Up (requires Flycam)

W Pan Camera Forward (requires Flycam)

A Pan Camera Left (requires Flycam)

S Pan Camera Backward (requires Flycam)

D Pan Camera Right (requires Flycam)

Z Pan Camera Down (requires Flycam)

 5.6   Sesnor Simulation in SEAR

Moving into the developer-level abstraction layer (as opposed to the user-level 

abstraction layer), sensors in the SEAR simulator consist of two separate types which are 

referred to as “physical” and “visual.” Simulators that rely directly on values from the 

physics engine in jME3 such as positional sensors (GPS, compass, etc) are referred to as 

“physical” sensors. These sensors don't require any visual representation to work. They 

assume a position of the 0,0,0 point in the vehicle (robot's) body reference frame. 

 5.6.1   Position-Related Sensor Simulation(“Physical” Sensors)

Autonomous robotic vehicles rely very heavily on knowledge of their locations in 

3D space.  Without this information, autonomous control of the vehicle is impossible.  

For this reason, the class of positional sensor simulators was created.  
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 5.6.1.1  GPS

GPS simulation is not a new concept as shown by Balaguer and Carpin [42].  

Though Balaguer and Carpin, as well as Durst and Goodin [94] describe and test 

advanced GPS simulation algorithms, it is sufficient to simulate GPS with only basic 

functionality.  To simplify GPS simulations, satellite tracking is not simulated in SEAR 

and as such, no atmospheric anomalies are simulated either.  Basic functionality of GPS 

is simulated to provide only the latitude, longitude and altitude measurements of the 

vehicle's current position.  To further simplify the simulation, GPS is simulated as a 

roughly flat projection of the terrain.  This is similar to the simple version of the 

GarminGPS sensor in early Gazebo simulations [95].  Developments will improve or 

replace this implementation, but it is important to have a simple and basic version of this 

sensor for initial tests of the simulator.  

There are several important settings that the user must enter before using the GPS 

sensor in a simulation.  The first set of values represents the latitude, longitude and 

altitude values of the center point of the terrain map being used.  These values are then 

converted from a string to complete decimal format and will be used as an offset which 

helps calculate the updated latitude, longitude and altitude of the robotic vehicle during 

simulated movement.  

Since the Earth is not a perfect sphere, the length of a longitude degree varies 

from 111,320 meters per degree at 0 degrees latitude (the equator) to 0 meters per degree 

at 90 degrees latitude (the poles) [96].  Calculating this value on a constant basis can 

prove rather costly on computing resources.  To simplify the changes in longitudinal 

distances, a look up table based on the Zerr's table is used to simulate distance per degree 
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latitude [96].  The value entered by the user of the starting position of the robot vehicle 

will be used in this look up table to find the closest matching latitude. 

Since it is impractical that a simulation will require a vehicle to travel more than 

five latitudinal degrees, the value of the length of a degree is never recalculated during 

the simulation.  

To find the distance per degree longitude in this simulator, a simple distance 

formula (shown in 5.6.1.1.1) is used [97].  

Length of a degree of Longitude
= Radius of Earth at the Equator×cos ( Latitude)

              (5.6.1.1.1)

Distance of a degree of longitude at the equator = 111320.3411 meters as shown 

by Zerr.  The final formula is shown in Formula (5.6.1.1.2).

Length of one degree of Longitude
=111320. 3411 meters×cos ( Latitude)

                      (5.6.1.1.2)

Since this formula is a fast calculation, it can be calculated each time the GPS 

simulator is polled (about 60 times a second) without a large determent to the speed of 

the overall simulation.  

When the GPS simulator is polled, it finds the distance in three dimensions of the 

vehicle from the center of the world space from the current position of the vehicle.  These

values are returned in world units and are treated as meters (in this simulator, one world 

unit equals one meter).  Knowing the offset in three dimensions (in meters) from the 

center point of the map as well as the values of the center of the map, the latitude, 

longitude, and altitude of the vehicle can be calculated.  The current vehicle position on 

the X-axis in meters of the vehicle is converted to latitude using the values from Zerr's 

table [96].  The latitude of the vehicle is then known and can be used in Formula 5.6.1.1.2
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to find the length per degree longitude.  The current vehicle position in the Z-axis (in 

meters) is then divided by this value to find the current longitude of the vehicle.  The 

current vehicle offset in the Y-axis is added to the value of the altitude of the center of the

terrain map.  This gives the actual vehicle altitude in relation to the original center value. 

The GPS simulator is accessible through a virtual serial port within MRL.  It streams 

GPGGA NMEA strings formatted to match the San Jose MTK-3301 GPS receiver series 

(specifically the FV-M8) [93].

 5.6.1.2  Compass

The compass simulator is single-axis and simple. A Vector3f object is used to 

store the position of North. For example, the default location of North is located at x, y, z 

ordinates (100000, 0, 0). Since one world unit equals one meter in this simulator, this 

means the North Pole is located at 100km on the X-axis of any simulation. Of course, this

value can be changed by the user to a more accurate estimation of actual pole distance 

when the latitude and longitude of the terrain are considered. For an accurate calculation, 

users can select to enable a magnetic declination calculation. This will use the current 

GPS location of the robot to calculate the location of magnetic North relative to the robot.

This calculation uses the NOAA (National Oceanic and Atmospheric Administration) 

National Geospatial-Intelligence Agency (NGA) World Magnetic Model (WMM) for the 

years of 2010-2015 [98]. The declination is calculated using "GeomagneticField.Java” 

from the Android Project [99], [100]. These values are stored in a table and can be 

updated by the developer as newer models are released. 

The simulator calculates the angle of the robot to north by getting the values of 

the forward direction of the robotic vehicle using the getForwardVector() method.  The 



58

values of this vector of the X and the Z directions represent the forward facing direction 

in the X-Z plane.  These values are compared to the X and Z values of “North.” The 

angle between these two values is the angle between the forward-facing direction of the 

robotic vehicle and North.  This angle is represented in +/-180 degrees (or +/- PI radians).

When importing terrains from Google Maps, it is important to note that the 

location of North in the Google Maps terrain corresponds to the X direction when the 

terrain is exported correctly (with North facing upward).  This automatically sets North in

the terrain model to the X direction in the simulator when models are loaded from Google

Maps into Sketchup. 

The user's code must poll the compass to obtain a current value using code such as

int currentHeading = sear.getCompassResult("comp1") where “comp1” is the compass's 

name given by the user. This will return a float value between +/- 180 degrees. The user 

can scale and format this data any way they might need to simulate actual hardware. This 

sensor doesn't have its own serial port (in many cases in actual hardware as well) so for a 

user to communicate with the simulated sensor in the same way as they would with actual

hardware, the user can write a custom controller script which will accept serial 

commands,  poll the simulator for sensor values, format and scale the data, and return the 

data over the virtual serial port.

 5.6.1.3  Three-Axis Accelerometer

The use of MEMS (Microelectromechanical Systems) accelerometers is becoming

very common in robotics.  Accelerations can be used in dead-reckoning systems as well 

as force calculations. 

Simulations of accelerations are made simpler because of several methods built 
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into jME3. jME3 provides a getLinearVelocity() method which will return the current 

linear velocity of a VehicleControl object in all three dimensions.  To get accelerations 

from this method, a simple integration of these values over time is taken. To get an 

accurate time, the timer class was used.  The timer class provides two important methods 

used in this integration, getResolution() and getTime(). getResolution() returns the 

number of “ticks” per second and getTime() returns the time in “ticks.” These two values 

together are used to find time in seconds. 

The accelerometer method is called from the physicsTick loop in the simulator 

code. This allows it to function continuously during the simulation. The accelerometer 

simulator must not take too much time to execute; otherwise it will slow down the entire 

simulation. To make sure the main event loop executes quickly, the accelerometer method

does not stall for the given time between measurements, rather it stores a starting time 

and calculates the time that has passed every time the main event executes. The elapsed 

time is compared to the number of ticks between readings calculated from the bandwidth.

On the first run of a single reading, the first linear velocity is returned from the 

getLinearVelocity() method and saved, then the getTime() method saves the current time 

(in “ticks”) and a flag is set to prevent this from happening again until the next reading. 

Every time the physicsTick() loop runs, it calls the accelerometer method which now 

compares the elapsed time from the first reading with the number of ticks between 

readings calculated from the bandwidth. When this time has finally elapsed the second 

linear velocity is taken and immediately an ending time is saved.  The total number of 

seconds passed between readings is found by subtracting the number of ticks that have 

elapsed during the measurement, and dividing this difference by the resolution of the 
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timer from the getResoultion() method. The acceleration is equal to the second velocity 

minus the first velocity divided by the elapsed time in seconds as shown in Formula 

5.6.1.3. Once a single reading is finished, the flag for reading the first velocity and 

starting time is reset.

(Velocity2−Velocity1)
(Elapsed Time in Seconds )

                                     (5.6.1.3)

These readings are for all three axes.  Additional error could be simulated by 

manipulating these data before it is sent to the user, however, the decision was made not 

to handicap the user by forcing them to use a particular error calculation [94]. The user is 

free to model high-quality or low-quality accelerometer hardware. The resulting raw 

values from all three axes are returned every time the accelerometer is simulated to 

simplify coding. If a user is only interested in one axis, the others can be ignored. The 

user must poll the accelerometer from their userCode. They first need to start a SEAR 

MRL service, then access the simulator from within that service by making a function 

call directly to SEAR such as accelerations = sear.getAccelResult("accel") where “accel” 

is the name of the sensor given by the user. This sensor does not have its own serial port.  

To access the virtual accelerometers in the same way as an actual hardware distance 

sensor, a user can write a “custom controller” script which accepts serial messages, polls 

the simulator for sensor values, formats and scales the data, then returns the data over the 

virtual serial port.

 5.6.1.4  Three-Axis Gyroscope

Gyroscopes often accompany accelerometers in the design of inertial measuring 

systems.  They can be used to help correct offsets and errors given by real-world 

accelerometers.  There is no error in the simulated accelerometers in this simulator, but 
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the results are often “jittery” due to the way the physics engine simulates both 

accelerating and braking of the vehicle. Users may still want to use the gyroscope in the 

standard way to improve their filtering algorithms.  Real-world MEMS gyroscopes often 

have a large output drift.  This drift isn't currently simulated. 

jME3 has a method to return angular velocity, however, it does not return values 

in radians per second.  In fact, it could not be determined exactly what units it returned 

even with the help of the developer's forum.  A custom method for finding actual angular 

velocity was created that is very similar to the accelerometer simulator. 

Again, jME's timer class was used to find timer resolution (in “ticks” per second) 

and elapsed time, in ticks.  To find the angle traveled over an elapsed time, the 

getForwardVector() method was used.  This method returns the 3D normal vector of the 

forward direction of the VehicleControl object. For the first run of a sensor reading, the 

first forward direction vector and start time are recorded then a flag is set to prevent this 

from happening again until the next reading.  The current time is compared with the 

expected elapsed time until it is reached.  At this point the second forward direction 

vector is recorded as well as the stop time.  Since the Vector3f class has no methods for 

comparing the angle between the components, both of the forward vectors are projected 

on each of the three original planes; XY, YZ and XZ.  Each of these values are stored in a

Vector2f.  Using the angleBetween() method in the Vector2f class, the angle between 

each projected portion of the forward directions are calculated.  For example, XY1 are 

the X and Y components of the first forward vector and XY2 are the X and Y components

of the second forward vector.  XY1.angleBetween(XY2) returns the angle between these 

components.  This would describe a rotation about the Z-axis (yaw).  Once the angle 



62

traveled in each axis is found the elapsed time is used to find the angular velocity.  The 

angular velocity is then returned to the user.  As with the accelerometer, all three axes are 

always simulated regardless of how many axes the user is measuring and the resulting 

values are without error.  The user can choose to model error for any particular gyroscope

they plan to use. A very good scheme for modeling error for a MEMS gyroscope can be 

found in [94]. 

To access the gyroscope readings, a user must follow the same method as with the

accelerometer. (I.e. start a SEAR service within MRL, then poll the simulator for the gyro

values).  The function call would be GyroReadings = sear.getGyroResult("gyroscope") 

where “gyroscope” is the name of the sensor given by the user. This sensor does not have 

its own serial port. To access the virtual distance sensor in the same fashion as an actual 

hardware gyroscope sensor, a user can write a “custom controller” script which accepts 

serial messages, polls the simulator for sensor values, formats and scales the data, then 

returns the data over the virtual serial port.

 5.6.1.5  Odometer

Odometry is a very useful metric used in positioning calculations for vehicles. 

The odometer sensor tracks the distance the robot has moved in both the forward and 

reverse directions. As with the other “physical” sensors, the odometer assumes it is 

located at the center of the robot's body.  There is a minimum threshold that must be met 

in any linear direction before distances will be logged. This is due to the way jBullet 

simulates vehicle objects. When the robot (a type of vehicle object) is stopped, the brakes

are constantly “fighting” with the acceleration setting, causing the vehicle to shake ever 

so slightly. Without the threshold value mentioned above, these vibrations would accrue 
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to a very large error in odometer readings over time. 

The way users can access this sensor is different from any of the others because 

the odometer sensor is a component of a “robot” object by default in SEAR.  This means 

that a user can measure this sensor by sending a message to the robot object's virtual 

serial port in Roomba protocol format.  SEAR will return the data on the virtual serial 

port in the same format as an actual Roomba would.  Like an actual Roomba, SEAR 

stores the value of the distance as a 16-bit signed value (between -32,768 and +32,767) 

and sends the data as high-byte then low-byte when it is requested.   Once the value has 

been requested by the user it is reset to 0, again, the same as with an actual Roomba [84].

 5.6.2   Reflective Beam Simulation (“Visual” Sensors)

Beam reflection sensors are arguably the most common sensors used in robotics.  

This sensor class includes sensors such as Infrared (IR), RADAR, SONAR, LIDAR, and 

Ultrasonic sensors.  Though the technologies behind these types of sensor differ, they 

operate on the same principles.  In the real world, this type of sensor works by sending a 

signal out into the environment and measuring the time it takes for that signal to reflect 

back to the sensor.  SEAR uses ray casting to simulate this class of sensors. The reason 

these sensors are referred to as “visual” sensors in this dissertation is that the rays are cast

along graphical lines drawn in the environment. These lines help users determine exactly 

what objects are being detected by the simulated sensors. Many simulators use ray 

casting as a method for finding intersections with triangle meshes of objects in a virtual 

environment [101].

 5.6.2.1  Ultrasonic, Infrared, RADAR and SONAR Distance Sensors

The distance sensor class is used to simulate reflective sensors such as ultrasonic, 



64

infrared, RADAR and SONAR. The concept of these sensors is simple, though their 

implementation is quite complicated. To match specific sensors, actual hardware was 

designed and tested at specific distances and spread angles. Currently a “PING)))” 

ultrasonic sensor is the only one that has been validated against actual hardware 

measurements in this way.  Distance sensors are implemented by having nested cone-

shaped arrays of graphical lines.  This group of lines may be attached at any given point 

on the robot, and rotated to point in any direction [64], [102], [103].

Each nested cone of lines has a slightly different angle from the X-axis of the ray's

reference frame. Each nested cone also has a different length and color.  The angles and 

length correspond better to the actual lobes of the ultrasonic sensor. The number of lines 

in each particular cone and the total number of cones define the sensor's resolution. 

During simulation, a list of “distance sensor” objects is used to iteratively cast rays along 

each line of each sensor. For a given sensor, only the closest collision distance and 

collision point can be returned. The collision point is used to display a red sphere at the 

actual point of impact on whatever object the sensor happens to detect. This helps the 

user debug their robotics projects by visually representing the point that is being detected 

by the sensor. If no objects are detected within range of the sensor, then the maximum 

sensing distance is returned by the sensor. 
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                     (a)                                            (b)                                             (c)  
Figure 5.6.2.1.1 The distance sensor beam pattern is adjustable in SEAR. (a) Shows the 

beam pattern of a PING))) brand sensor which was experimentally 
acquired. (b) Shows an example of an infrared sensor beam. (c) Shows 
an example of the side lobes of the beam pattern being simulated

The angles, ranges, and resolution of the sensors are adjustable by end users (as 

well as developers) of SEAR as shown in Figure 5.6.2.1.1 and 5.6.2.1.2. This allows for a

wide range of sensors and sensor types to be simulated by this particular simulator. IR 

and Ultrasonic beams can have a variety of different shapes depending on the 

applications they are used for. Sensors in the Sharp family of IR sensors generally have 

an ovate or “football” shape. They have much more narrow beams and are less prone to 

errors due to collision with angled objects while the MaxBotix EZ series ultrasonic 

sensors have more of a teardrop beam pattern [104]–[106].  All of this can be simulated 

as long as the developer knows the particular beam pattern of the sensor to be simulated.  

It is recommended to measure these values experimentally since datasheets often use 

different methods for determining values listed in the given charts and graphs which may 

not be useful for the particular environment in which the sensor will be used. The nested 
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cone implementation also allows for side lobe as well as main lobe beam patterns, which 

are best mapped experimentally.

                         (a)                                                                           (b) 
Figure 5.6.2.1.2 The distance sensor resolution is adjustable in SEAR. (a) shows a sensor 

with only eight lines used to simulation the nested cones. (b) shows a 
sensor that uses 36 lines to simulate each nested cone. 

For Maxbotics sensors, a one inch diameter pipe was moved in front of the beam 

and the resulting measurements were used to give a rough estimate of the beam pattern of

the sensor for the datasheets [106]. The method used to validate SEAR's PING))) sensor 

relied on a similar method, except the diameter of the sensor was 0.457 meters. It has 

been shown that this particular method for simulating ultrasonic sensor results in higher 

fidelity simulations than some standard robotics simulators [102]. 

The resolution of the reflective beam sensors can be modified by the developer by

increasing the number of lines that are used to define each of the nested cones of a given 

sensor. The higher the number of lines used to define a particular cone, the smaller the 

angle created between each line. This decreases the chances of an object being missed by 

the sensor if it is within range.  

For validation of the PING))) sensor, an actual Roomba robot was used as a 

mobile platform carrying a PING))) brand sensor. It was placed in a specific environment

that contained several obstacles. ROS was used to interpret userCode which only drove 
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the Roomba forward at a specified speed and recorded values from the Roomba's 

odometer and the PING))) to a file. The test robot and its validation test results can be 

seen in Figure 5.6.2.1.3.

                 (a)                                                                         (b)   
Figure 5.6.2.1.3 (a) The actual Roomba robot with ultrasonic sensor payload on top. (b) 

The resulting graph of the odometer reading versus the Ultrasonic 
reading as the robot drove through the test environment. 

The same environment was designed for the ROSStage simulator. A similar robot 

was designed for the simulator and the exact same code was tested. The resulting 

odometer and ultrasonic sensor values were saved to a file.  It should be noted that Stage 

does not simulate the correct beam-pattern of the sensor, rather it only simulates a section

of a circle. The Stage simulation and its test results can be seen in Figure 5.6.2.1.4. 
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                    (a)                                                                        (b) 
Figure 5.6.2.1.4  (a) The ROSStage simulation showing the ultrasonic sensor beam 

pattern used. (b) The resulting graph of the odometer reading versus the 
Ultrasonic reading as the robot drove through the test environment.

Again, the same environment was designed inside SEAR.  A similar robot was 

also designed.  The same userCode was again tested, this time on the SEAR simulator's 

robot.  The odometer and ultrasonic sensor values were recorded to a file. The SEAR 

simulation and its results can be seen in Figure 5.6.2.1.5.  It is clearly shown that the 

SEAR implementation of a PING))) sensor is very close to the readings from the physical

PING))) sensor, thereby validating the method used in SEAR.
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                     (a)                                                                    (b)
Figure 5.6.2.1.5  (a) The SEAR Roomba simulation showing the ultrasonic sensor beam 

pattern used. (b) The resulting graph of the odometer reading versus the 
Ultrasonic reading as the robot drove through the test environment. 

The user can attach multiple distance sensors to their robot any at attachment 

point they choose and orient the sensors in any way they choose (Figure 5.6.2.1.6 shows 

an example of this). Each sensor must have a custom name so SEAR will know from 

which one to acquire data.  To interface with these sensors in SEAR, the user must first 

start an instance of a SEARservice, then make a function call to the simulator from the 

SEARservice.  The user must pass to the function the name of the sensor they wish to 

poll such as distance = sear.getDistanceResult("Ping1") where Ping1 is the name the user 

gave the sensor when creating the robot.  The resulting value is returned in meters.  The 

user can scale and format this as needed. This sensor does not have its own serial port. To

access the virtual distance sensor in the same way as an actual hardware distance sensor, 

a user can write a “custom controller” script which accepts serial messages, polls the 

simulator for sensor values, formats and scales the data, then returns the data over the 

virtual serial port.
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Figure 5.6.2.1.6  Two ultrasonic sensors attached to a Roomba in an indoor environment.

 5.6.2.2  LIDAR Sensors

LIDAR (or Light Detection And Ranging) is a method of sensing in which a laser 

on the sensor directs a beam at an object and uses the time it takes the reflection of the 

laser to return to the sensor to calculate the distance to that object [92].  LIDAR units can 

scan the laser 90, 180, 300 and even 360 degrees [91], [107].  This scan results in the 

distances of all objects the laser encounters in a plane. Figure 5.6.2.2.1 shows a robot 

scanning the virtual environment with a virtual LIDAR.

LIDAR was simulated in this project using a simplified version of the distance 

sensor class, that is by ray casting.  This is a typical method used for simulating LIDAR 

sensors [101].  Instead of multiple nested cones of lines and rays as in the distance 
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sensors, a single flat plane of graphical lines are drawn on the screen originating from the

location of the sensor (as given by the user). The lines have a length equal to the 

maximum range of the LIDAR sensor.  The length of the visual line determines the 

maximum range of the ray cast along that line. This value is given in the LIDAR's 

datasheet and can be set by the user.  

Figure 5.6.2.2.1 A single scan from the LIDAR simulator on a test environment.  
The red lines show where the rays are cast and the yellow spheres 

shows where the rays collide with the box objects.  The 
results of this simulation can be seen in Figure 5.6.2.2.2b

Inside the SEAR simulator itself, the SICK LMS200 LIDAR was modeled and 

simulated.  The sensor interfaces through a virtualSearialPort object within MRL and is 

accessible from userCode in the same way as actual hardware. This requires the user to 

start a LIDAR service within MRL, and passing it the path of the virtualSerialPort object 
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as the port for the service to connect. Figure 5.6.2.2.2 shows a comparison of an actual 

SICK LMS200 scan of the lab environment versus a scan of the equivalent environment 

in the simulator (the environment shown in Figure 5.6.2.2.1).  The major differences that 

can be seen between the two scans are mainly due to the fact that the simulated LIDAR 

does not calculate the scattering or absorption of the laser beam once it hits an object. 

Otherwise it is very easy to identify the edges and sides of the boxes that were scanned. 
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Figure 5.6.2.2.2   (a) The readings from an actual SICK LMS200 (b) the readings from 

the SEAR simulated LIDAR in a similar environment. These readings
provide a top-down view of an environment in which there are two 
larger boxes at the left and right extremes and two smaller boxes in 
the front center of a wall in front of the LIDAR sensor.
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The algorithm for simulating the scan involves finding the current 3D translation 

and rotation of the LIDAR sensor. The sensor is placed on the robot's body by the user 

when designing the robot. As the robot moves within the world, the position of the 

LIDAR sensor updates. The graphical lines of the LIDAR are updated automatically 

(since they are part of the robot's Node object). During the physicTick() loop, in which all

of the physics are calculated in jME, rays are cast along each graphical line. The resulting

collision points with any other object in the physics space are returned. If no collision is 

detected within the distance of the maximum range, then the value of the maximum range

is returned.  The simulation results are a set of distances. Each distance corresponds to a 

particular line. 

An example scan with a maximum degree spread equal to 180 degrees and an 

angle step of 0.5 degrees per step would include 361 readings; one each at the following 

angles: 

0º, 0.5º, 1º, 1.5º, 2º   ...   178º, 178.5º, 179º, 179.5º, 180º 

The result of the measurements is an array of floating point decimal numbers 

representing distances to collisions in world-units.  Just as with actual LIDAR systems, 

this information is packaged with a header and checksum value.   Figure 5.6.2.2.2 shows 

two examples of LIDAR sensors with different properties.       
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                             (a)                                                                      (b) 
Figure 5.6.2.2.2 The LIDAR sensor is highly configurable. (a) shows a narrow spread and

long range LIDAR, where (b) shows a wide spread LIDAR with a short 
range. The blue spheres show the locations of any collisions of the lines.

 5.7   Serial Communication Between MRL and SEAR

At the developer level, serial communications between MRL and SEAR's simulated 

sensors works in a non-intuitive way.  First, when an instance of the SEAR simulator 

runs, it creates a HashMap containing the information about all the sensors related to that 

SEARproject and passes it to the SEARservice within MRL.  This SEAR-service then 

registers callback methods with each serial port using Java reflection.  Meanwhile, within

the SEAR simulator, each sensor creates two “virtualSerialPort” objects using an MRL 

library.  These objects look and act like hardware serial ports, but they do not exist 

anywhere but inside MRL's service structure. Each sensor's XML file contains the 

UARTport and userPort addresses associated with a given sensor. These two ports are 

nulled together such that data coming from one is sent out the other.  Also, a “Serial” 

object is created and set to the “UARTport” address.  Data generated by the sensor can be

sent out via this SerialPort object back to MRL. 

Sending commands or data to a particular simulated sensor is more complicated 

because the actual SEAR simulator is not registered as a part of MRL, it instead 
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communicates to MRL via the SEARservice.  When data is sent from userCode to a 

particular SEAR virtual sensor, it cannot travel directly on the sensor's serial port service 

like data coming the other direction.  Instead, it triggers a set of events within the MRL 

SEARservice.  First, the type of sensor is acquired by looking at the message being sent. 

Then everything except the sensor's name is stripped from the message. For instance:  

"myLidar_LIDARsimulator_Serial_Service" becomes "myLidar".  Once the sensor's type 

and name are known, the SEARservice can then send the userData to that instance of the 

sensor.  Figure 5.7 shows a graphical representation of the dataflow when userCode sends

a message to a LIDAR to acquire data, and how that sensor sends data back to the 

userCode. The steps described in the figure are:

1. User code running within a python service sends a message to the LIDAR serial 
service requesting a scan (this is the same as with actual hardware). 

2. The LIDAR service sends the serial data to the LIDAR simulator's serial port, but 
the message is processed by the SEARservice. 

3. The SEARservice invokes the particular LIDAR simulator instance within the 
SEAR simulator. 

4. The SEAR simulator makes a method call to the particular LIDAR simulator 
instance. 

5. The LIDAR scans the simulated environment, formats the data and sends it to its 
Serial service. 

6. The LIDAR's serial service sends the data back to the LIDAR service. 

7. The LIDAR service sends the data to the userCode running within the Python 
service.
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Figure 5.7 The data flow diagram of serial messages between userCode in MRL's Python
service and SEAR simulated sensors. 

All of this action occurs to abstract the userCode so users will interface with the 

simulated LIDAR the same way they would as with an actual LIDAR, by a method call 

in the LIDARservice.  To the user, all of these other communications are hidden. The 

only difference the user will notice is the serial port name of the simulated LIDAR 

doesn't appear anywhere outside of MRL. If they check the device manger in windows or

run a directory listing in /dev/ on UNIX or LINUX-based machines, the serial port will 

not be listed.



 CHAPTER 6:   CONCLUSIONS AND FURTHER WORK

This research developed the methods and techniques for the design of a tool that 

can be used for a variety of academic uses, from teaching introductory programming 

concepts to performing accurate graduate-level robotics research. This design was 

demonstrated by the development of the Simulation Environment for Autonomous 

Robots. Most of the accomplishments planned for this research have been met.   These 

include the following: 

 Identification of features and a working architecture for a modern robotics 

simulator: 

 As defined in this work, a modern robotics simulator, SEAR, is available 

to users on any major platform (Windows, Mac and Linux). It also is open source 

meaning the source code is freely distributed, allowing a community of 

developers can improve it over time.  One of the most important aspects of a 

successful modern robotics simulator is the ability to interface with at least one of 

the many middleware applications that are currently available.  This greatly 

increases the usability of the simulator and extends the capability of the user by 

allowing them to use third-party libraries and software easily.

 The creation of methods for simulating different types of sensors in a virtual 3D 

environment: 

 Common sensors (a 3D accelerometer, a 3D gyroscope, a magnetic 

compass, an odometer, a GPS, a LIDAR, and a class of reflective distance sensors
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including ultrasonic and infrared) used in autonomous robotics projects have been

developed and several have been validated against actual hardware. The method 

of simulation of some of these sensors is novel. For example, the distance sensors 

are simulated in such a way that beam patterns of these sensors can be adjusted by

the user.

 The addition of new sensor types to SEAR and improvement of current sensors: 

The odometer sensor was added to keep track of the overall distance the 

robotic vehicle traverses.  Also, the new class of “visual” sensors which includes 

Ultrasonic, SONAR, RADAR and infrared sensors as well as a user-definable 

LIDAR sensor were added. 

Users can define custom beam shapes for the distance sensor class such 

that they can include all makes and models of sensors of this class.  The compass 

sensor class was made more efficient by the addition of a new declination 

calculation method.

 Implementation of an interface with common robotics middleware:

The same user-defined code can be used on actual hardware or the SEAR 

simulator with little to no modification. 

 The implementation of a method for users to import or create models: 

Custom terrains can now be designed by the user using SEAR's POJO 

library. Models of terrains can also be imported from external CAD software. The 

resulting terrains and obstacles are saved as XML files that are dynamically 

injected into SEAR at start up. These files can be created and manipulated by 

hand if needed and transferred from one user to another easily. 
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Robots can be built component by component using the SEAR POJO 

library. Components of robots can be imported from external CAD software. The 

suspension characteristics of the robot are completely accessible to the user 

including mass, damping, compression, wheel rest length, stiffness and maximum 

suspension force. 

 The implementation of a simple file extension for SEAR projects: 

Settings of entire SEARprojects are stored as a single zip file which 

contains all the user's code, models, and files for robots and terrains. 

 6.1   Virtual Serial Ports and ROS Integration

All of the goals set for this research were met or exceeded with the exception of 

interfacing with ROS middleware using virtual serial ports.  Previous iterations of SEAR 

had  interfaced with ROS directly (as it now does with MRL).  This proved hazardous for

development as the infrastructure of ROS changed multiple times, completely 

invalidating the deprecated method used.  The most effective way to interface with ROS 

was determined to be at the highest abstraction level, away from the internal changes 

within the ROS project.  For SEAR, it was determined that only serial communication to 

specific ROSnodes (such as the Brown University Roomba driver, or the Arduino serial 

driver) would protect SEAR from the constant code revisions.  The method for 

connecting two serial was to use pseudoterminals as virtual serial ports.  This method was

expected to provide a relatively clean connection between ROS and SEAR, while 

keeping one of the main concepts of SEAR intact; interfacing with SEAR simulated 

hardware should be the same as interfacing with actual hardware.  The pseudoterminals 

are configured in such a way to pass inputs from one pseudoterminal to the output of the 
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other and vice versa.  If this method had worked, a single implementation of SEAR could

be used to communicate with both MRL and ROS.  

Through many investigations, if was determined that the use of pseudoterminals 

does not work for piping ROS data through to MRL and subsequently SEAR. By adding 

a secondary hardware serial port in parallel with the an actual Roomba connected to 

ROS, it was shown that ROS sends different commands to an actual Roomba than it 

sends when connected to a pseudoterminal.  This makes it impossible to implement a 

serial interface with ROS using the ROS Roomba node via pseudoterminals.  

There are two possible solutions to this, and neither of which were determined to 

be suitable for the needs of most users. The first method requires nulling together two 

actual serial ports on the host machine that ROS and SEAR are running on.  This is a 

physical implementation of how the pseudoterminals work. 

The second way to allow ROS to communicate to MRL, and thereafter SEAR, 

would be to use a package called ROSbridge that converts ROS commands to TCP 

protocol.  This would require MRL to implement a TCP protocol as well which does not 

conform to the goals set out in this research; to interface with SEAR exactly the same 

way as with actual hardware.  As such, this method was not investigated any further.

 6.2   Further Work

There are many opportunities for improvement of the SEAR simulator. Additional

sensor types could extend the capability of SEAR. Some good candidates for new sensors

include visual cameras, infrared cameras, and 3D depth cameras (such as an XBOX 

kinect). More models of the currently supported sensors could be added as well. For 

instance the GPS and LIDAR simulators are each based on only one actual sensor brand 
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and model respectively.  The addition of new beam shapes for the infrared is also 

possible, though this ability is already available to the end user as they can use one of the 

overloaded constructors in the POJOs library to define their own beam shapes.  It would 

be simple to add in different beam shapes based on names so that when a user names a 

sensor “MaxBotics EZ1” SEAR will automatically use the beam pattern built in to 

simulator that particular sensor. 

Moving each sensor simulation into their own threads would also increase the 

ability of SEAR by reducing lag time when large amounts of data are being collected.  

Each sensor could be encapsulated in its own thread.  This would also allow for an 

expansion of SEAR from simulating a single robot, to the ability to simulate multiple 

robots.  Since there is a large amount of graduate-level research in these areas this ability 

would increase the usage of SEAR.  
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APPENDIX A: SEAR USER INTERACTIONS

There is a need to describe a typical user interaction with SEAR and MRL using 

the highest level of abstraction, the “User Space”.  To this end, this user case can serve as 

both a clear example of user interaction and as a guide for users of SEAR.

 A.1  Creation of Environments and Objects

In MRL, a python service must be started.  In this example, the python service is 

also named “python.” From this service, a user can import the SEAR.POJOs library and 

create the environment using SEAR-native objects. These objects will be stored in a 

folder titled “SEARproject” inside the main MRL working directory. Code Listing 1 

shows the creation of an environment with an example of each SEAR-native element. 

Code Listing 1: Python script that can create the XML files for a simulation environment.
1 from org.SEAR.POJOs import Cylinder 
2 from org.SEAR.POJOs import Box 
3 from org.SEAR.POJOs import Cone 
4 from org.SEAR.POJOs import model
5
6 floor = Floor("floor", 50, 50)   #create floor 
7
8  #create some obstacles 
9 box = Box("Box1_name", 0.25, 0.25, 0.25, 0) 
10 box.move(-1.5, 1.25, 0) 
11 box.rotate(45, 0, 0) 
12
13 cyl = Cylinder("trash Can", 0.25, 0.75, 10) 
14 cyl.move(-3, 0, -3.5) 
15 cyl.rotate(0, 30, 30) 
16
17 coneA = Cone("Traffic Cone", 0.25, 2, 10) 
18 coneA.move(-2, 0, 0) 
19 coneA.rotate(0, 0, 45) 
20
21 tree = Model("Tree1_name","models/Tree/Tree.mesh.xml") 
22 tree.move(0, 0, -3) 
23
24 print "Done creating Environment"
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 A.2  Creation of a Virtual Robot in SEAR

Virtual robotic vehicles are created in a similar fashion as environments. The 

difference is that the objects are then added as components to a “robot” object. Code 

Listing 2 shows example code for the creation of a robot with sensors. 

Code Listing 2: The creation of a simple Roomba-like robot
1 from org.SEAR.POJOs import Cylinder 
2 from org.SEAR.POJOs import Box 
3 from org.SEAR.POJOs import Cone 
4 from org.SEAR.POJOs import Wheel 
5 from org.SEAR.POJOs import SEARrobot 
6 from org.SEAR.POJOs import Gyroscope 
7 from org.SEAR.POJOs import Accelerometer 
8 from org.SEAR.POJOs import GPS 
9 from org.SEAR.POJOs import Compass 
10 from org.SEAR.POJOs import Odometer 
11 from org.SEAR.POJOs import Distance 
12 from org.SEAR.POJOs import LIDAR 
13 from org.SEAR.POJOs import Dynamics 
14
15 robot = SEARrobot("myRoomba");#create a “robotObject” entity 
16
17 #setup suspension and communications ports
18 dyna = Dynamics("robotDynamics1", 400, 60, 0.3, 0.4, 10000, 0.1, 

0, 0.1, 0, 0, 0, 180) 
19 dyna.setPorts("/dev/my_Robot01", "/dev/SEAR_Robot_01") 
20 robot.addComponent(dyna) 
21
22 #create a cylinder for the body of the Roomba and apply a custom 

image to it 
23 body = Cylinder("Roomba Body",  0.1666875, 0.0762, 400, 

"./textures/roomba.jpg") 
24 robot.addComponent(body) 
25
26 #create and add the wheels to the robot object
27 cyl1 = Wheel("frontWheel", 0.0381, 0.03, 0) 
28 cyl1.move(0, 0, 0.16) 
29 robot.addWheel( cyl1);
30
31 #adding wheels saves wheel specs in the robot XML 
32 cyl2 = Wheel("rightWheel", 0.0381, 0.03, 1) 
33 cyl2.move(-0.16, 0, 0) 
34 robot.addWheel( cyl2) 
35
36 cyl3 = Wheel("leftWheel", 0.0381, 0.03, 1) 
37 cyl3.move(0.16, 0, 0) 
38 robot.addWheel( cyl3) 
39
40 cyl4 = Wheel("backWheel", 0.0381, 0.03, 0) 
41 cyl4.move(0, 0, -0.16) 
42 robot.addWheel( cyl4);
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 A.3  Controlling a Virtual Robot in SEAR

Once both the environment and robot have been created, the user can write the 

code to control the robot and read sensors. To drive the robot within SEAR, the user must

write code which starts a SEAR simulation which will load this robot from the XML 

files, then connects to the robot's virtual serial port to communicate with the robot. An 

example of this can be seen in Code Listing 3. Notice that first, a Roomba MRL service is

created.  This is because the robot dynamics in SEAR expects to use the Roomba 

protocol to receive drive commands, and to return sensor data. The Roomba protocol is 

very simple to understand, easy to implement on other robotics platforms and almost 

universally supported by many other software applications (including other robotics 

middleware). 

Code Listing 3: Example userCode that drives a robot in SEAR.
1 from time import sleep 
2 from org.myrobotlab.service import Roomba 
3
4 sear = Runtime.createAndStart("SEAR","SEAR") 
5 sear.startSimulation();         #start SEAR simulation 
6  
7 roomba = Runtime.create("robot_Dynamics1","Roomba") 
8 roomba.connect( "/dev/SEAR_Robot_01" ) 
9 roomba.startService() 
10 roomba.startup() 
11 roomba.control() 
12 roomba.goForward() 
13 roomba.sleep( 1000 ) 
14 roomba.goBackward()

 A.4  Creating and Communicating with a Virtual LIDAR in SEAR

The user must first create the XML file for a LIDAR sensor in the robots folder of

the SEARProject.  This is done easily by using a python script or Java class written 

within MRL.  The creation of the XML file will be done automatically in Code Listing 4. 

This snippet should be added to the script that creates the virtual robot (Code Listing 2). 
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Code Listing 4: The creation of a virtual LIDAR sensor
1 from org.SEAR.POJOs import LIDAR 
2
3 lidar1 = LIDAR ("myLidar")#creates LIDAR object named "myLidar" 
4 lidar1.setRange(8.191)           
5 lidar1.setSpread(180) 
6 lidar1.setResolution(1.0) 
7
8 #sets UART port, then the port the user will communicate with 
9 lidar1.setPorts("/dev/my_Lidar01", "/dev/SEAR_LIDAR_01")  
10 lidar1.setBaud(9600) 
11 lidar1.move(0,0.15,0.2)  #move the physical location of this 

sensor on the robot's body 
12 lidar1.LMS(1) 
13 robot.addComponent(lidar1) #add as a component of the robot

Access to this sensor during a simulation is simple. First, an instance of SEAR 

must be created and started either by manually starting a SEAR service in MRL or 

programmatically as shown in Code Listing 5, then a LIDAR service should be started in 

MRL just as if an actual physical LIDAR device was being used. The communications 

options (LIDAR name, UARTport, and userPort) should be the same as those set in the 

XML description of the LIDAR sensor. 

Code Listing 5: Starting a LIDAR MRL service
1 from time import sleep 
2 sear = Runtime.createAndStart("SEAR","SEAR") 
3 sear.startSimulation(); #start SEAR simulation 
4 sleep (2); # Give some time for things to fall into their natural 

place. 
5          
6 #These lines are initialization of the LIDAR 
7 lidar = Runtime.createAndStart("myLidar", "LIDAR")  # creates 

LIDAR service named "myLidar" 
8 lidar.startService() 
9 print "connect LIDAR service to /dev/SEAR_LIDAR_01" 
10 lidar.connect("/dev/SEAR_LIDAR_01") 
11 #have python listening to lidar 
12 print "adding the LIDAR service listener" 
13 lidar.addListener("publishLidarData", python.name, "input") 
14 # set scan mode for 100 degree spread with a reading every 1 

degree 
15 print "setting scan mode" 
16 lidar.setScanMode(100, 1) 
17
18 print "Ready to receive LIDAR data... " 
19 while 1:        # infinite loop 
20         lidar.singleScan()  #get a single scan  
21         sleep(2)        #wait two seconds and repeat
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While the simulation is running, the LIDAR data can be viewed in the LIDAR 

service tab named "myLidar" in MRL.  This will update once each time the LIDAR 

scans.  To access the data of the LIDAR within the userCode script, a listener must be 

added to the LIDAR service's publishLdarData method.  This will call a userCode 

method each time the LIDAR service receives a valid message.  In Code Listing 6, the 

listener calls the userCode method "input" each time the LIDAR service publishes data.  

There are several examples (commented out) of how to use the raw LIDAR data.  The 

example that is not commented in this method will print the results out in the python 

console window of MRL's python service as Cartesian coordinates of collisions using the 

placement of the LIDAR in the simulated world as the reference (0,0). 

Code Listing 6: Example code for accessing the raw LIDAR data
1 from time import sleep 
2 import Java.lang.String 
3 import math 
4  # This script only uses the LIDAR sensor on the simulated robot, 

the user is expected to drive the robot using the i,j,k,l,and ; 
keys 

5
6 def input(): 
7   startingAngle = 0 
8   code = msg_myLidar_publishLidarData.data[0]  
9   length = len(code) 
10   print "received " + str(length) +"readings:" 
11   if length==101 or length==201 or length==401: 
12         startingAngle = 40 
13   else:  
14         startingAngle = 0 
15          
16   for i in range(0, length):     
17 #       print hex(code[i])      #print result in hexadecimal 
18 #       print (code[i])         #print results (without units) 
19 #       print (code[i]/float(100))      #Print results in 

centimeters (if LIDAR was in CM mode) 
20
21 #       print ((code[i]/100)/2.54)      #Print results in inches 

(if LIDAR was in CM mode) 
22
23 #       print str(i)+"\t"+str((code[i]))  #print polar Coordinates

(without units) 
24 #convert polar to Cartesian 
25         x = (code[i])*math.cos(((i*100/length)+startingAngle)* 

(3.14159 / 180)) 
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Code Listing 6 Continued:
26         y =(code[i])*math.sin(((i*100/length)+startingAngle)* 

(3.14159 / 180)) 
27         print str(x) +"\t"+str(y) 
28
29 # create and start the SEAR simulator instance 
30 sear = Runtime.createAndStart("SEAR","SEAR") 
31 sear.startSimulation(); #start SEAR simulation 
32 sleep (2); # Give some time for things to fall into their natural 

place. 
33          
34 print "Attempting to create the LIDAR service..."
35
36  #These lines are initialization of the LIDAR 
37 lidar = Runtime.createAndStart("myLidar", "LIDAR") 
38 lidar.startService() 
39 print "connect LIDAR service to /dev/SEAR_LIDAR_01" 
40 lidar.connect("/dev/SEAR_LIDAR_01") 
41
42  #have python listening to lidar 
43 print "adding the LIDAR service listener" 
44 lidar.addListener("publishLidarData", python.name, "input") 
45
46  # sets scan mode for 100 degree spread with a reading every 1 

degree 
47 print "setting scan mode" 
48 lidar.setScanMode(100, 1)  
49
50 print "Ready to receive LIDAR data... " 
51 while 1:        # infinite loop 
52         lidar.singleScan()  #get a single scan 
53         sleep(2)        #wait two seconds and repeat

Note that in Code Listing 6, line 6 is the function that the userCode uses to access 

the raw LIDAR service data.  This line has to be constructed carefully to ensure it will 

acquire the correct data. In this line, the variable getting loaded is called “code”.   The 

raw LIDAR data is stored in a variable which follows the format msg_<LIDAR service 

name>_pubishLidatData[0].  The “<LIDAR service Name>” should be replaced with the

name of the LIDAR service created in this code.  This can be seen in line 8: code = 

msg_myLidar_publishLidarData.data[0], where “myLidar” is the name given to the 

LIDAR sensor in line 37: lidar = Runtime.createAndStart("myLidar", "LIDAR").  It is 

important to note that this variable will return as an array. Each element of this array will 

contain the result of a LIDAR reading.  The length of the array is determined by the 
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settings of a particular LIDAR scan. 

 A.5  Creating and Communicating with a Virtual GPS in SEAR

The user must first create the XML file for a GPS sensor in the robots folder of 

the SEARProject.  This is done easily by using a python script or Java class written 

within MRL.  The creation of the XML file will be done automatically in Code Listing 7. 

Notice that the user must provide a starting GPS coordinate. This represents the starting 

point of the robot and the center of the world. 

Code Listing 7: Creation of a GPS sensor XML file for SEAR.  This snippet should be 
added to Code Listing 2.

1 from org.SEAR.POJOs import GPS 
2  # create a new GPS object (myGPS) with the name “gpsUnit1”
3 myGPS = GPS("gpsUnit1", 33.61, 182.5, -80.865)          
4 myGPS.setPorts("/dev/my_GPS_01","/dev/SEAR_GPS_01")
5 robot.addComponent(myGPS)

There are two methods for users to access this sensor during a simulation.  Firstly,

the user can see the results from GPGGA NMEA strings by initializing a GPS service in 

MRL. This can be performed either manually (using the MRL GUI) or programmatically 

using MRL's python or Java service. Figure 5.1.2 shows a screenshot of the GPS service 

GUI printing data.  To access the GPS data inside the userCode, the user can start a GPS 

service in python or Java, then add a listener to that service. Code Listing 8 shows an 

example that simply prints the resulting GPS values to the terminal. Note that the name of

the GPS agrees with the XML file.  This is especially important in the lines that get the 

GPS data. 

Code Listing 8: Example code to access raw GPS data.
1 from time import sleep 
2
3  # This script only uses the GPS sensor on the simulated robot, 

the user is expected to drive the robot using the i,j,k,l, and ; 
keys 

4
5 sear = Runtime.createAndStart("SEAR","SEAR") 
6 sear.startSimulation(); #start SEAR simulation 
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Code Listing 8 continued
7 initialized = 0 
8
9 gps1 = Runtime.createAndStart("gpsUnit1", "GPS") 
10 gps1.startService() 
11 gps1.connect("/dev/SEAR_GPS_01") 
12 sleep(1) 
13 def input(): 
14   startingAngle = 0 
15   Latitude = msg_gpsUnit1_publishGGAData.data[0][2] 
16   Longitude =  msg_gpsUnit1_publishGGAData.data[0][4] 
17   altitude = msg_gpsUnit1_publishGGAData.data[0][9] 
18   print "Lat: " + Latitude 
19   print "Long: " + Longitude 
20   print "Alt: " + altitude + "\n" 
21   
22  #have python listening to GPS 
23 gps1.addListener("publishGGAData", python.name, "input") 
24
25 print "Ready to receive Data from GPS..."

 A.6  Simple Sensors

Simple sensors are those which do not contain their own serial connection which 

users can communicate with.  This includes accelerometers, gyroscopes, compass 

sensors, and the distance sensors. These sensors can be accessed in two ways; a very 

simple method call to directly the simulator, or a by simulating a custom microelectronic 

that handles the sensors and serial communications. This section describes the former 

case. 

Simple sensors can be accessed directly from userCode using method calls to the 

simulator within the SEARservice. This interface is straightforward and can easily be 

understood by users with little skill or knowledge of programming.  The concept with this

implementation was to make it easy for users with little skill to access the sensors.  The 

aspiration is that SEAR would be used to help teach programming concepts such as 

conditionals and loops.  By having a simple method for accessing sensor data, the focus 

of lessons could be on the  overall programming concept rather than the specifics of 

SEAR or MRL. 
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 A.7  Custom Controller for Simple Sensors

For user who wish to more accurately emulate actual hardware, interfacing with 

simple sensors (accelerometers, gyroscopes, compasses and distance sensors) happens by 

proxy.  In reality, the user would connect these sensors to a microcontroller which can 

handle serial communications with userCode in MRL, and performs the actions required 

to request and format data from these sensors.  The processes of this microcontroller can 

be simulated using a template python script provided with SEAR. 

The communications protocol used by the template is based on the Roomba serial 

protocol and is very simple to implement both in a simulation as well as with actual 

hardware. The last “sensor command” in the Roomba protocol requests data from sensor 

message number 42 [84].  SEAR’s custom controller accepts the same “sensor request 

message” as the Roomba protocol, except it begins with number 43.  Given that this is an 

8-bit number, the user can add more than 200 additional commands.  

The virtual controller handles the serial communications, parses the serial 

commands, and selects the appropriate function to perform based on the command.  Just 

as would be required of actual hardware, functions must be supplied by the user.  If the 

command is received to “read the left ultrasonic sensor”  then the user must insert code to

perform this action within the SEAR simulator. This simply consists of a call to SEAR's 

ultrasonic sensor simulator class.  Data is returned to this custom controller template 

which then writes the data back on the serial port.  When in use during a simulation, 

abstraction allows this to be a black box to which a user issues commands and receives 

data in return.  This implementation is exactly the same as would be required to connect 

to physical hardware.  The pseudo-code in Table A.7 compares the code of a SEAR 
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virtual controller and a physical microcontroller.

Table A.7: Comparison of communications between userCode and physical hardware 
versus userCode and SEAR virtual hardware 

Physical Microcontroller SEAR's Virtual Controller

User sends command via serial connection 
to the physical microcontroller  to get a 
reading from the compass module. 
Usercode snippet: 

1 Serial.writeByte(42)  # send
sensor request

2 Serial.writeByte(30)  # 
sensor “address”

User sends command via serial connection 
to the simulated controller object to get a 
reading from the compass module. 
Usercode snippet:
 
1 Serial.writeByte(42)  # send

sensor request
2 Serial.writeByte(30)  # 

sensor “address”

Command is sent via serial connection to 
the physical microcontroller

Command is sent via serial connection to 
the virtual controller object.

Microcontroller on the robot parses the 
command and calls the function to read the 
compass module's current value: 
(Microcontroller code snippet:)
1 int heading = 

getCompassValue(); #Assuming
a function performs this for
the user.

Simulated controller object parses the 
command and calls the function to read the 
compass module's current value: (virtual 
controller code snippet:)
1 int heading = 

sear.getCompassResult("comp1")
#The name of this sensor on 
the robot is in quotes to 
identify it from other sonar 
sensors that the robot might 
have.

Microcontroller on the robot sends data 
back to the user over the same serial port:
2 Serial.writeInteger(heading)

Custom controller sends data back to the 
user over the same serial port:
  2   Serial.writeInteger(heading)

The suggested method of using the custom controller is to send a request to the 

controller’s serial port from the user’s code.  The user should know the size of the 

message the controller will return (this will be known since the user would have written 

that code as well). The custom controller receives the message, parses it, performs the 

selected action (such as taking the reading from the front-left ultrasonic sensor) then 

returning the resulting data to the user’s code over its serial connection. 

The custom controller code uses code written in a Python or Java file by the user 
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previous to running the simulation.  The controller code simply utilizes MRL’s 

virtualSerialPort objects to communicate to the main userCode (controlling the overall 

simulation).  The messages from this serial connection get parsed and a set of if 

statements help select which action to perform.  The user can choose to write custom 

code for each if statement based on the needs and design of the robot.  

To access SEAR’s simulated sensors the user will use methods from the SEAR 

service. For the ultrasonic example above, the user would use code like 

sear.getDistanceResult("leftFrontPing") which will return the distance in centimeters to 

the nearest object that is within the range of that specific sensor.  The name of the sensor, 

leftFrontPing must match the name of the sensor in its XML file within the 

SEARproject/robot folder. Once this value is acquired, it is sent back over the virtual 

serial port to the user’s overall simulation code. 

To simplify the process of creating a custom controller in SEAR, a template is 

provided that listens for serial events on the virtual ports. There is also a list of empty “if”

statements with commented examples for each type of sensor.  This template also has a 

function to send the acquired data back to the main simulator. The suggested method of 

using the custom controller is to send a request to the controller’s serial port from the 

user’s code.  The user should know the size of the message the controller will return (this 

will be known since the user would have written that code as well). The custom controller

receives the message, parses it, performs the selected action (such as taking the reading 

from the front-left ultrasonic sensor) then returning the resulting data to the user’s code 

over its serial connection. 

The custom controller code uses code written in a Python or Java file by the user 
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previous to running the simulation.  The controller code simply utilizes MRL’s 

virtualSerialPort objects to communicate to the main userCode (controlling the overall 

simulation).  The messages from this serial connection get parsed and a set of if 

statements help select which action to perform.  The user can choose to write custom 

code for each if statement based on the needs and design of the robot.  

The custom controller is implemented in a second python script (controller.py) in 

addition to the user's code.  Inside this script, there are functions for listening to a 

specified virtual serial port, parsing the serial data, making the appropriate method calls 

in SEAR simulator, and then a method for returning the data back over the virtual serial 

port.  The user must execute this file from a method call in the main userCode.  Code 

Listing 9 is an example for a custom controller that access multiple sensors.  Users can 

modify this template to match the specific sensor names used in their simulation and 

desired sensor number (between 43 and 255, extended from the Roomba protocol sensor 

data request commands). 

This process becomes complicated when the controller attempts to send data back 

to the userCode.  The userCode must “listen” to its serial port “publishByte” command to

catch incoming messages from the controller. This “listener” method acts like an interrupt

that is triggered each time it receives a byte.  The userCode must wait until all of the 

bytes arrive before processing the data.  A simple method for performing this action is 

used in the pair of code listings for the simulated controller and userCode examples in 

Code Listings 9 and 10 respectively.  In this case, the user sets the expected size of the 

message that will be returned, and clears the message buffers before sending the request 

to the simulated controller.  The userCode then runs a blocking method that compares the 
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current size of the received message with the expected size.  When these values are equal,

the blocking method returns back to the main function.  This is only one simple example 

of how this may be accomplished. The userCode in listing 9 is only expecting data in big 

endian two-byte format, though the user is free to change this to any format they wish. 

Users are strongly encouraged to use the userCode and simulated controller code in 

listings 9 and 10 respectively as templates for their custom implementations.  

Debugging and testing of the simulated controller is simplest when the user 

appends the current file name to the print statements used within the code, making it 

easier to see which “thread” is printing at what time and in what order.  Additionally, it 

was found that for many data manipulation techniques used in this type of 

implementation it was simpler to test the techniques in their own python scripts in MRL. 

For example, for combining high byte and low byte of a two-byte array.  

Code listings 9 and 10 contain the simulated virtual controller code and the 

userCode that communicates with it respectively. 

Code Listing 9:  Example controller code named userCode.py
1 from time import sleep 
2 import sys 
3
4 print "\n \n executing serial send" 
5 python.execFile("controllerTest.py") #execute the simulated 

controller's code 
6 sleep(2) 
7
8 currentLength = 0 
9 messageLength = 2 
10 msgBuffer = list() 
11 msgResults = list() 
12
13
14 def sendControllerData(message): 
15 #write a series of bytes to the serial port 
16         serial.write(0x8E) #0x8E = 142 decimal which is the 

"Sensor request" roomba opcode 
17         serial.write(message) 
18 from org.SEAR.POJOs import Cylinder 
19 from org.SEAR.POJOs import Box 
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Code Listing 9 Continued:
20 from org.SEAR.POJOs import Cone 
21 from org.SEAR.POJOs import model
22
23 floor = Floor("floor", 50, 50)   #create floor 
24
25 #create some obstacles 
26 box = Box("Box1_name", 0.25, 0.25, 0.25, 0) 
27 box.move(-1.5, 1.25, 0) 
28 box.rotate(45, 0, 0) 
29
30 cyl = Cylinder("trash Can", 0.25, 0.75, 10) 
31 cyl.move(-3, 0, -3.5) 
32 cyl.rotate(0, 30, 30) 
33
34 coneA = Cone("Traffic Cone", 0.25, 2, 10) 
35 coneA.move(-2, 0, 0) 
36 coneA.rotate(0, 0, 45) 
37
38 tree = Model("Tree1_name","models/Tree/Tree.mesh.xml") 
39 tree.move(0, 0, -3) 
40
41 print "Done creating Environment"
42
43 def receiveMessage(): 
44
45         global msgBuffer 
46         global messageLeng--Add “Code Listing 1 Continued” 

headings where required 
47         global currentLength 
48         global msgResults       
49          
50         data = msg_serial_publishByte.data[0] & 0xff 
51         if (currentLength < messageLength): # if not the full 

message, then store this in our buffer 
52                 msgBuffer.insert(currentLength, data) # fill the 

message buffer full of bytes. 
53                 currentLength +=1 #increment index value         
54                  
55         if (currentLength == messageLength):  #otherwise, we are 

at the last byte in the message, clear everything and parse into 
short ints 10

56                 for i in range (0, messageLength, 2):   # for i in
range(start, finish, step) 

57
58                         if msgBuffer[i] >0 : 
59                                 msgResults.insert(i/2, (msgBuffer 

[i]<<8) + msgBuffer[i+1]) 
60                         elif msgBuffer[i] <0 : 
61                                 msgResults.insert(i/2, 256+

(msgBuffer [i]<<8) + msgBuffer[i+1]) 
62
63                         else: 
64                                 msgResults.insert(i/2, 0x00ff & 

msgBuffer[i+1]) 
65
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Code Listing 9 Continued:
66                 messageLength = 0  # reset this value to 0 so the 

user knows when to check msgResults for values 
67                 currentLength = 0 
68
69                  
70 def waitForReply():  #this just constantly checks messageLength to

see if it is 0, indicating the data has been received completely. 
71         global messageLength 
72         while(messageLength != 0): 
73                 pass     
74
75
76 def  clear(): 
77         global currentLength 
78         global msgBuffer 
79         global msgResults 
80         msgBuffer = [0,0,0,0,0,0,0] 
81         msgResults = [0,0,0,0,0,0,0] 
82         currentLength = 0 
83
84
85 #The below is the main function and actually calls the functions 

above: 
86 sear = Runtime.createAndStart("SEAR","SEAR") 
87
88 sear.startSimulation(); #start SEAR simulation 
89 sleep(1) 
90 roomba = Runtime.createAndStart("robot_Dynamics1","Roomba") 
91 roomba.connect( "/dev/SEAR_Robot_01" ) 
92 roomba.startup() 
93 roomba.control() 
94 sleep(1) 
95
96 #create a Serial service named serial 
97 serial = Runtime.createAndStart("serial","Serial") 
98 #connect to a serial port COM4 57600 bitrate 8 data bits 1 stop 

bit 0 parity 
99 serial.connect("/dev/user_CONTROLLER_01", 9600, 8, 1, 0) 
100  
101 serial.addListener("publishByte", python.name, "receiveMessage") 
102 print "listening to: "+serial.name 
103
104
105
106 sleep(1) 
107 print "Main: Requesting Sonar 1" 
108 messageLength = 2       # set the number of bytes I expect the 

controller to return (1 16-bit U-ints) 
109 sendControllerData(0x2B) # get SONAR 1 reading 
110 waitForReply() 
111 print "\nBack in Main, Sonar 1 value received = " + 

str(msgResults[0]) 
112
113
114 print "Main: Requesting Sonar 2" 
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Code Listing 9 Continued:
115 clear() 
116 messageLength = 2       # set the number of bytes I expect the 

controller to return (1 16-bit U-ints) 
117 sendControllerData(0x2C) # get SONAR 1 reading 
118 waitForReply() 
119 print "\nBack in Main, Sonar 2 value received = " + 

str(msgResults[0]) 
120
121
122 print "Main Requesting Accel" 
123 clear() 
124 messageLength = 6       # set the number of bytes I expect the 

controller to return (3 16-bit U-ints) 
125 sendControllerData(0x2D) # get Accel readings (x, y, z) 
126 waitForReply() 
127 print "Back in Main, AccelX = " + str(msgResults[0]) +" AccelY = "

+ str(msgResults[1]) +" AccelZ = " + str(msgResults[2]) 
128
129
130 print "Main Requesting Gyro" 
131 clear() 
132 messageLength = 6       # set the number of bytes I expect the 

controller to return (3 16-bit U-ints) 
133 sendControllerData(0x2E) # get Accel readings (x, y, z) 
134 waitForReply()      
135 print "Back in Main, GyroX = " + str(msgResults[0]) +" GyroY = " +

str(msgResults[1]) +" GyroZ = " + str(msgResults[2]) 
136
137
138 print "Main Requesting Compass" 
139 messageLength = 2       # set the number of bytes I expect the 

controller to return (3 16-bit U-ints) 
140 sendControllerData(0x2F) # get Compass reading 
141 waitForReply() 
142 # The compass sensor modeled here is the simple HMC6352 in 

"heading" mode which will return a single value from 0-360.0 
degrees in tenths of a degree (in steps of 0.5 degrees). 

143 #Now we must divide by 10 because the HMC6352 outputs are from 0-
3599 [https://www.sparkfun.com/datasheets/Components/HMC6352.pdf ]

144 print "Back in Main, Compass heading (out of 360 degrees) = " + 
str(float(msgResults[0])/10)
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Code Listing 10:  Example controller code named controller.py
1 from org.myrobotlab.serial import SerialDeviceFactory; 
2 from org.myrobotlab.serial import VirtualSerialPort; 
3 from org.myrobotlab.service import Serial; 
4 import Java.lang.String; 
5 import struct 
6 import math 
7
8 previousCodeValue=0 
9
10
11 # this function sends int data back to the userCode over the 

serial connection. 
12 def sendInt(message): 
13         lowByte =(message & 0x0000ff) 
14         highByte = ((message& 0x00ff00) >>8)
15         print "Sending HighByte:" + hex(highByte)#highByte, 

highByte.encode('hex')  
#http://stackoverflow.com/questions/12214801/python-print-a-
string-as-hex-bytes 

16         SEAR_CONTROLLER_Serial.write(highByte) 
17         print "Sending LowByte: " + hex(lowByte) #lowByte, 

lowByte.encode('hex') 
18         SEAR_CONTROLLER_Serial.write(lowByte) 
19
20  
21 def input(): 
22   global previousCodeValue 
23   currentCodeValue =  ord(struct.pack('B', 

msg_serialController_publishByte.data[0])) #pack into an unsigned 
byte 

24   if currentCodeValue == 0x8E and previousCodeValue != 0x8E :   
#142 in decimal is the Roomba opcode for "get sensor value" 

25 #It should be followed by a single byte stating which sensor to 
get the value of 

26 #since Roomba reserves 0-42, our first sensor will start at 43 
decimal and move up from there. 

27 #this gives us a possibility of 255-42 = 213 possible different 
commands (sensors) 

28 #The user must know how many bytes to expect back (how big the 
result of the sensor will be) 

29         previousCodeValue = 0x8E 
30
31   if currentCodeValue == 0x2B and  previousCodeValue == 0x8E: # 

0x2B = 43 decimal which is our first sensor number. 
32 #In here, you could request any sensor data from the SEAR 

simulator (specifically from 
33 #sensors that don't have their own serial ports. For now let's try

to get the PING sensor value. 
34 #The PING sensor will return a Java float 
35         distance1 = sear.getDistanceResult("testPing1") #The name 

of this sensor on the robot is in quotes to identify it from other
sonar sensors that the robot might have. 

36 # convert the distance to cm and send as an int back over serial: 
37         numCentimeters =int(distance1*100) 
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Code Listing 10 Continued:   
38 sendInt(int(distance1*100)) 
39  
40 if currentCodeValue == 0x2C and  previousCodeValue == 0x8E:# 0x2C 

= 44 decimal which is our second sensor number.    
41 distance2 = sear.getDistanceResult("MyNewestSONAR") #The name of 

this sensor on the robot is in quotes to identify it from other 
sonar sensors that the robot might have. 

42 # convert the distance to cm and send as an int back over serial. 
43         numCentimeters =int(distance2*100) 
44         sendInt(int(distance2*100)) 
45
46
47   if currentCodeValue == 0x2D and  previousCodeValue == 0x8E: # 

0x2D = 45 decimal which is our third sensor number. 
48         accelerations = sear.getAccelResult("accel") #This results

in a comma separated String containing X, Y and z respectively.  
We can simply parse the string to send the results. 

49
50 # convert each accel axis reading to a single int and send over 

serial. 
51 # SEAR's accelerometers output floats in meters/second^2. In the 

ADXL330 for instance, each axis responds based on a measurements 
of "g-forces". We can assume that on the actual hardware, the 
microcontroller would handle converting the analog input from the 
accelerometers to meters/second^2 before it sends the values back 
as 3 ints:  x, y, then z. 

52 #In the ADXL330 though, 0Gs is at the midpoint of the analog 
output (if Vcc=3v, midpoint = 1.5volts)  This will correspond to 
10-bit resolution (in an Arduino for example) of about 512.  So 
when an axis = 0G, the numeric value expected should be in the 
center of that range. 

53 # the ADXL330 also has a 300mV/G resolution, so all of this 
information should be taken into account when formatting the data 

54         tokens = accelerations.split(',')   # Split my CSV string 
into individual number-strings 

55 #from meters/sec^2 to #Gs 
56 #number of Gs to mV/G, Make sure not to go higher than the range 

of the ADXL330 +-3.6Gs 
57 #from Gs to volts (range must be shifted so 1.5volts = 0Gs) 
58 #from volts (what the ADXL330 outputs) to ADC steps 
59 #(an arduino with  3.3v AREF using 10-bit ADC) = 310.30303 ADC 

steps/volt 
60 #send this ADC value back to MRL (userCode), so it can handle 

converting it to useful values for a robot or filter it, etc. 
61  
62         integerAccelX = int((float(tokens[0]) /-9.8 * 0.3 + 1.5)* 

310.30303) 
63         if integerAccelX >1023: 
64                         integerAccelX = 1023 
65         #integerAccelX = int(float(tokens[0])) 
66
67         integerAccelY = int((float(tokens[1]) /-9.8 * 0.3 + 1.5)* 

310.30303) 
68            
69



110

Code Listing 10 Continued:
70 if integerAccelY >1023: 
71                         integerAccelY= 1023 
72         integerAccelZ = int((float(tokens[2]) /-9.8 * 0.3 + 1.5)* 

310.30303) 
73         if integerAccelZ >1023: 
74                         integerAccelZ = 1023 
75         print "accel ints =  "+ str(integerAccelX)+",  "+ 

str(integerAccelY)+",  "+ str(integerAccelZ) 
76         print "hex accel ints =  "+ hex(integerAccelX)+",  "+ 

hex(integerAccelY)+",  "+ hex(integerAccelZ) 
77         sendInt(integerAccelX)  # Sending X acceleration value 
78         sendInt(integerAccelY)  # Sending Y acceleration value 
79         sendInt(integerAccelZ)  # Sending Z acceleration value 
80
81
82   if currentCodeValue == 0x2E and  previousCodeValue == 0x8E: # 

0x2E = 46 decimal which is our fourth sensor number. 
83         gyroReadings = sear.getGyroResult("gyro1") #SEAR's Gyro 

returns a CSV string of angular velocities (in radians)  Let's 
convert these into the nearest integer value of rad/sec 

84         tokens = gyroReadings.split(',')   # Split the CSV string 
into individual number-strings 

85
86
87 # SEAR's Gyroscope returns values in radians / second.  
88 # In this example, we will mimic the IDG500 (which normally has 2 

axis, but we will scale all 3 the same. 
89 #the IDG500 returns values on an analog output.  Its datasheet 

values are for a VCC of 3.0 volts (not 3.3) 
90 # The value is scaled 2mv / (degree/second)  and the output at 0 =

1.35v. There are 57.2957795 degrees per radian 
91 # If we are using an arduino with a AREF of 3.3v, that = 310.30303

ADC steps / volt 
92  
93         integerGyroX = int(((float(tokens[0])*57.2957795 * 0.002)+

1.35)*310.30303) 
94         integerGyroY = int(((float(tokens[1])*57.2957795 * 0.002)+

1.35)*310.30303) 
95         integerGyroZ = int(((float(tokens[2])*57.2957795 * 0.002)+

1.35)*310.30303) 
96         sendInt(integerGyroX)   # Sending X Gyro value 
97         sendInt(integerGyroY)   # Sending Y Gyro value 
98         sendInt(integerGyroZ)   # Sending Z Gyro value 
99
100
101   if currentCodeValue == 0x2F and  previousCodeValue == 0x8E: # 

0x2F = 47 decimal which is our fifth sensor number. 
102         rawHeading = sear.getCompassResult("comp1") #The name of 

this sensor on the robot is in quotes to identify it from other 
sonar sensors that the robot might have. 

103 #Note that SEAR returns +-180 degrees, so we must make this 0-360:
104         if rawHeading < 0: 
105                 rawHeading = rawHeading + 360 
106
107
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Code Listing 10 Continued:
108 # The compass sensor modeled here is the simple HMC6352 in 

"heading" mode which will return a single value from 0-360.0 
degrees in tenths of a degree (in steps of 0.5 degrees). The 
simulated SEARcompass returns a float from 0-360.  

109         #We must convert the SERAcompass value to mimic the output
of the HMC6352.  So we will first round to the nearest 0.5 
degrees.  : 

110         heading = 0.5 * math.ceil(2.0 * rawHeading) #rounds to the
nearest 0.5 http://stackoverflow.com/questions/9758513/how-can-i-
round-up-numbers-to-the-next-half-integer 

111         #Now we must multiply by 10 because the HMC6352 outputs 
are from 0-3599 
[https://www.sparkfun.com/datasheets/Components/HMC6352.pdf ] 

112         intHeading = int(heading*10)   #  convert this to an 
integer after it is multiplied, giving us a range of 0-3599 

113         sendInt(intHeading)     # Now send it back to the userCode
on the virtual serial port 

114
115
116 # main function code goes below here. 
117 UARTport = "/dev/my_Controller01" 
118 userPort = "/dev/user_CONTROLLER_01" 
119
120
121 #Create two virtual ports for UART and user and null them 

together: 
122 # create 2 virtual ports 
123 vp0 =  VirtualSerialPort(UARTport); 
124 vp1 =  VirtualSerialPort(userPort); 
125
126 # make null modem cable ;) 
127 VirtualSerialPort.makeNullModem(vp0, vp1); 
128
129 # add virtual ports to the serial device factory 
130 SerialDeviceFactory.add(vp0); 
131 SerialDeviceFactory.add(vp1); 
132
133 # create the UART serial service 
134 SEAR_CONTROLLER_Serial =  

Runtime.createAndStart("serialController","Serial") 
135 SEAR_CONTROLLER_Serial.connect(UARTport); 
136
137 #have controller listening to userCode 
138 SEAR_CONTROLLER_Serial.addListener("publishByte", python.name, 

"input") 
139 print "user should connect to port named: "+userPort
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