
IMPLEMENTATION OF MULTI ROBOT SIMULTANEOUS LOCALIZATION
AND MAPPING

by

Jaydeep Kshirsagar

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial ful�llment of the requirements
for the degree of Master of Science in

Electrical Engineering

Charlotte

2018

Approved by:

Dr. James Conrad

Dr.Andrew Willis

Dr.Ronald Sass



ii

©2018
Jaydeep Kshirsagar

ALL RIGHTS RESERVED



iii

ABSTRACT

JAYDEEP KSHIRSAGAR. Implementation of Multi Robot Simultaneous
Localization and Mapping. (Under the direction of DR. JAMES CONRAD)

For any robot to e�ectively traverse its environment, it requires a map and its pose

(location along with the orientation) within that map. Often, a map will not be avail-

able if the robot is presented with an unfamiliar environment. This scenario requires

a robot to construct the map and localize itself in it to navigate. The problem of

concurrently building the map and localizing a robot in that environment is de�ned

as Simultaneous Localization and Mapping (SLAM). Many SLAM applications al-

ready exist for a single robot such as navigating the unmanned mines and exploring

the sites with natural calamities. With the advent of swarming robots that must

interact with each other, extensive research is being conducted for the extension of

the SLAM problem to multiple robots known as Multi-Robot SLAM (MR-SLAM).

In the MR-SLAM environment, the e�ciency is improved, and time constraints are

reduced, but its implementation is restricted due to constraints such as communica-

tion bandwidth, memory requirements and problems faced during map merging and

coordinate transformation.

This research introduces a way to simulate a multi-robot environment in the Gazebo

simulator by creating a launch �le with attributes and speci�cations for many robots.

A generalized MATLAB script is written in order to populate a Gazebo world with

user de�ned number of TurtleBots along with their communication topics. This sys-

tem is further tested with an implementation of Sparse Extended Information Filter

(SEIF) with known correspondences for such multi-robot environment.



iv

ACKNOWLEDGEMENTS

I wish to present my sincere thanks to my advisor, Dr. James M. Conrad for his

constant encouragement during this journey. This work would not have been pos-

sible without his support and belief in me. I am grateful to Dr.Andrew Willis and

Dr.Ronald Sass for accepting my request to be on my thesis committee. Each of the

members of my thesis committee has provided me with an extensive personal and

professional guidance. A special thank you to Dr.Willis for the technical guidance

and making available all the resources.

I would like to thank all those whose assistance proved to be a milestone in the

accomplishment of my end goal. I am especially indebted to Dr. Sam Shue, whose

advice for my research proved to be a landmark e�ort towards the success of my

thesis. I am grateful to my friends Aishwarya Panchpor and Mukul Gosavi. It has

been a pleasure working with these researchers.

Finally, I would like to appreciate the e�orts and support provided by my parents

and sisters. Their love, encouragement, and inspiration always aspire me to go an

extra mile.



v

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF TABLES x

LIST OF ABBREVIATIONS xi

CHAPTER 1: INTRODUCTION 1

1.1. Motivation 2

1.2. Simultaneous Localization And Mapping 3

1.3. Completed Research Work 5

1.4. Organization of Thesis 6

CHAPTER 2: LITERATURE: MULTI ROBOT SLAM 7

2.1. Problem Of Localization And SLAM 8

2.2. Problem Of Mapping in SLAM 15

CHAPTER 3: IMPLEMENTATION 21

3.1. System Overview 21

3.2. TurtleBot 22

3.3. Gazebo 22

3.4. ROS 24

3.5. Multi Turtlebot Spawning Tool 27

3.6. Implementaion of Multi-Robot System 31

3.6.1. Creation of World 33

3.6.2. Sparse Extended Information Filter 35

3.6.3. SEIF With Known Initial Pose 39



vi

3.6.4. SEIF with Unknown initial pose 39

3.6.5. Map Merging 40

CHAPTER 4: RESULTS 43

4.1. Multi TurtleBot Spawning Tool 43

4.2. SLAM Using SEIF 47

4.2.1. SEIF With Known Initial Position 48

4.2.2. Update Time Per Measurement 50

4.2.3. SEIF With Unknown Initial Position 51

4.2.4. Map Merging 52

CHAPTER 5: CONCLUSIONS AND FUTURE WORK 54

5.1. Conclusion 54

5.2. Future Work 55

REFERENCES 57

APPENDIX A: Multi TurtleBot Spawning Tool 61

APPENDIX B: SEIF Algorithm 65

APPENDIX C: Map Merging Algorithm 68

APPENDIX D: E�ects of Sparsi�cation in SEIF 69



vii

LIST OF FIGURES

FIGURE 2.1: (a) Centralized System (b)Decentralized System 8

FIGURE 2.2: MR-SLAM for particle �lter [1] 10

FIGURE 2.3: Eight local maps obtained by splitting map [1]. 14

FIGURE 2.4: Above eight maps merged using SEIF [1]. 15

FIGURE 2.5: Loop Closing and Loop Merging [2] 18

FIGURE 2.6: Map developed by Robot 1 [3]. 19

FIGURE 2.7: Map developed by Robot 2 [3]. 20

FIGURE 2.8: Common map after map merging [3]. 20

FIGURE 3.1: Overview of multi-robot architecture. 21

FIGURE 3.2: TurtleBot2 [4] 22

FIGURE 3.3: Gazebo world with TurtleBot 23

FIGURE 3.4: ROS Structure 25

FIGURE 3.5: ROS Topics 26

FIGURE 3.6: GUI for MATLAB script to produce a .launch �le 28

FIGURE 3.7: Topics namespaced for two TurtleBots in Gazebo 29

FIGURE 3.8: Launch �le for two TurtleBots in Gazebo, located at [-1 0
0] and [1 0 0]

30

FIGURE 3.9: Two TurtleBots in Gazebo, located at [-1 0 0] and [1 0 0] 31

FIGURE 3.10: Topics with namespacing 32

FIGURE 3.11: Block Diagram of a System 33

FIGURE 3.12: Gazebo world with walls, landmarks and TurtleBots 34

FIGURE 3.13: Information Matrix 35



viii

FIGURE 3.14: Information Vector 35

FIGURE 3.15: E�ect of measurement update 36

FIGURE 3.16: E�ect of motion update 37

FIGURE 3.17: E�ect of sparsi�cation 38

FIGURE 3.18: Transform between planes 41

FIGURE 4.1: Section of A Launch File Generated 44

FIGURE 4.2: Five TurtleBots spawned in Gazebo using MATLAB script 45

FIGURE 4.3: Namespacing for `turtlebot' 46

FIGURE 4.4: RGB camera visuals from both TurtleBots. 47

FIGURE 4.5: SEIF implemented on individual TurtleBots with known
poses

49

FIGURE 4.6: SEIF implemented on individual TurtleBots with unknown
poses

52

FIGURE 4.7: Decentralized MR-SLAM with map merging 53

FIGURE A.1: Launch File Generated - section 2 61

FIGURE A.2: Launch File Generated - section 3 62

FIGURE A.3: Namespacing for turtlebot2 and turtlebot3 63

FIGURE A.4: Namespacing for turtlebot4 and turtlebot5 64

FIGURE B.1: Measurement update algorithm [5] 65

FIGURE B.2: Motion update algorithm [5] 66

FIGURE B.3: Sparsi�cation algorithm [5] 66

FIGURE B.4: State estimation algorithm [5] 67

FIGURE C.1: Map merging algorithm [5] 68



ix

FIGURE D.1: Decentralized MR-SLAM with map merging with
sparsi�cation

70

FIGURE D.2: Decentralized MR-SLAM with map merging without
sparsi�cation

71



x

LIST OF TABLES

TABLE 3.1: Landmark Placement and respective Signatures 34

TABLE 4.1: Robots and their coordinates 43

TABLE 4.2: Landmark prediction for TurtleBots 50

TABLE 4.3: Landmark prediction for TurtleBots 51



xi

LIST OF ABBREVIATIONS

EKF Extended Kalman Filter

GUI Graphical User Interface

JCBB Joint Compatibility Branch and Bound

LIDAR Light Detection and Ranging

MR-SLAM Multi-Robot Simultaneous Localization and Mapping

NN Nearest Neighbor

RBPF Rao-Blackwellized Particle Filter

ROS Robot Operating System

SEIF Sparse Extended Information Filter

SLAM Simultaneous Localization and Mapping

SR-SLAM Single Robot Simultaneous Localization and Mapping

URDF Universal Robotic Description Format



CHAPTER 1: INTRODUCTION

Many applications in industries like health care, military, and consumer electronics

are now using robots. The tremendous growth in automation can be witnessed by

products such as vacuum cleaners which will clean the �oor by itself without any

human participation. Such applications of robotics can be extended to situations

like:

� natural or civil disasters

� industrial accidents

� crime scenes where there is a need to respond quickly and e�ectively

To justify the fact that human tasks are more e�ciently and accurately performed

by robots, robots have to function more like humans. Similarly, for a robot to traverse

in any environment, it should be well acquainted with the environment's features and

its own position with respect to those features. The process of collecting information

about environment features and building a virtual environment for local reference is

commonly referred to as `mapping'. Similarly, localization can be de�ned as a process

through which a robot determines its position in a given environment. To build an

error-free map with essential information about the environment, it is important for

a robot to have knowledge about its precise location in the environment and at the

same time to determine a precise location of a robot, an accurate map is required. To

address this problem, an innovative approach called Simultaneous Localization and

Mapping (SLAM) is introduced, where a robot maps an environment concurrently

with the localization.



2

1.1 Motivation

Extensive research is being conducted in the �eld of robotics [6]. Robots performing

day-to-day tasks are not surprising to a common man. For a robot to perform these

actions, it has to understand its surroundings and react according to it. A lot of work

has been done on a robot standing in an environment. Questions like "How will it

perceive the world?" and "How will it �nd its way to the destination?" have been

explored to a great depth and engineers have succeeded to create many state-of-the-

art solutions for the problem above.

To explore a large area, multiple robots will take much less time than a single

robot. For example, exploration and mapping of a full house require a single robot

to traverse through the entire house. The total time required to build a map of the

house can be reduced by deploying multiple robots in di�erent areas of the house and

combining their respective information to map the environment.

Even though state-of-the-art-solutions are available for Single robot Simultaneous

Localization and Mapping (SR-SLAM), its immediate extension for an implementa-

tion of Multi robot Simultaneous Localization and Mapping (MR-SLAM) is restricted

due to factors such as dependency on wireless communication, limitations on memory

requirements and sensor networks.

Many simulators are available to imitate the operation of the real-world system.

Although Gazebo is the most popular amongst them, it becomes complicated to

spawn multiple robots in a Gazebo environment. The default Gazebo con�gurations

will spawn a default robot along with its communication attributes. Even for the

multiple numbers of robot, name and communication attributes for those robots will

be common which makes it complicated to control each robot individually. It has

been a challenging problem for many researchers to develop a simulation system with

multiple robots to test the application. This motivated the idea of having a tool

which will help Gazebo to support multi-robot simulations.



3

1.2 Simultaneous Localization And Mapping

SLAM can be de�ned as a process of developing a map of an environment and

simultaneously localizing a robot in it. SLAM consists of four major tasks:

� Perception

� Localization

� Cognition

� Motion Control

Perception can be viewed as the robot's interpretation of its environment, where a

robot tries to collect and process information from the outside world through the

use of sensors such as cameras and range-�nders. Localization is an estimation of

a robot's pose using the data collected from sensors and a previously constructed

map. Data collected from the sensors is used by a robot to estimate the current

position during motion as well as to generate a map of the environment. Cognition

is a process of analyzing the environment and deciding the response of the robot.

Motion control can be de�ned as a process of traversing in an already mapped or

unmapped environment.

SLAM can be implemented for several di�erent topologies such as SLAM for a sys-

tem having a single robot in a static environment, a system with a robot in a dynamic

environment and a system with multiple robots in an environment. Extensive research

has already been done on SR-SLAM. Many techniques, including the use of recur-

sive estimators such as Extended Kalman Filter (EKF), Rio-Blackwellized particle

�lter(RBPF), and Sparse Extended Information Filter (SEIF), have been developed

to solve the problem of localization in SR-SLAM. Research regarding mapping tech-

niques has brought into focus several types of maps such as topological maps, metric

maps, and hybrid maps.



4

The SLAM problem can be categorized into two main parts: Online SLAM and

Full SLAM. In Online SLAM, the posterior (probability of next state, i.e location and

orientation of a robot) is only estimated over the current pose of the robot, whereas

in Full SLAM the posterior is calculated over the entire path, i.e. all the previous

readings are considered for the estimation of the posterior.

The posterior of a robot and map is described by:

p(x1:t ,m | z1:t , u1:t−1)

Where,

x1:t : pose of a robot from time T = 0 to T = t

m : map (a vector containing landmark positions)

z1:t : Observations from time T = 1 to T = t

u1:t−1 : controls from time T = 1 to T = t− 1

For Full SLAM:

p(xt,m|z1:t , u1:t−1) =

∫
· · ·
∫

(x1:t,m|z1:t, u1:t−1)dx1dx2...dxt (1.1)

For Online SLAM, the posterior is obtained by integrating out previous robot poses

of a Full SLAM algorithm and then summing it over all past correspondences.

For Online SLAM:

p(xt,m, ct|z1:t , u1:t−1) =

∫
· · ·
∫ ∑

c1

∑
c2

· ·
∑
c3

(x1:t,m|z1:t, u1:t−1)dx1dx2...dxt−1

(1.2)

Where ct is de�ned as the correspondence for the landmark.

Though very e�cient techniques are developed for SR-SLAM, they cannot be im-

mediately extended to the MR-SLAM. In MR-SLAM, observations of a robot are

dependent on every other robots' pose, which makes the posterior of one robot de-



5

pendent on the trajectory or pose of the other. Major challenges faced during im-

plementation of MR-SLAM are posterior estimation from data gathered by di�erent

robots, limitations due to unreliable wireless sensing network, coordination between

robots, an individual frame of reference to shared world representation, complexity,

memory requirements, and dynamic environment [7, 8]. Knowledge of the initial posi-

tion of the robot also plays a key role in underlying techniques. If the initial position

of a robot is known then MR-SLAM is a simple extension from SR-SLAM [9, 10] but

for an unknown initial position, consistent integration over a common map is di�-

cult. For MR-SLAM with a known initial robot position, there must be a third agent

monitoring the pose of all the robots or they should be initialized to a known position

in a common map. In MR-SLAM with unknown initial positions, every robot will

take its own sensor measurements and fuse them into a common map including the

measurements by other robots.

1.3 Completed Research Work

Many state-of-the-art solutions can be found for SR-SLAM. The advantages of MR-

SLAM over SR-SLAM was a motivating factor for the study of the MR-SLAM and

complications in extending the methods used to implement SR-SLAM to MR-SLAM

provided an opportunity to contribute to this area of study.

Using Gazebo for a multi-robot simulation was a challenging part for the research.

This research introduced a tool which can be used to spawn multiple TurtleBots in

the Gazebo world. This tool enabled researchers to use as many numbers of TurtleBot

as an application requires with an individual interface to each TurtleBot.

This research implemented SEIF algorithm followed by the map merging routine.

Map merging has an important contribution to this area of study in exploiting the

advantages of the multi-robot systems. A decentralized system with two TurtleBots

and six unique feature based landmarks was developed to test the TurtleBot spawning

tool during the research.



6

1.4 Organization of Thesis

This thesis is divided into following Chapters: Literature Survey, Implementation,

Results, Conclusion and Future Work, and Bibliography.

Chapter 2 is a literature survey for MR-SLAM. It discusses various current methods

and state-of-the-art solutions. Chapter 3 introduces ROS along with its structure,

Gazebo, TurtleBots and their contribution to the implementation. It includes a pro-

cess to build a simulation environment along with the system block diagram. Chapter

4 presents the results of the implementation in Chapter 3. It further discusses results

and factors a�ecting them. Chapter 5 concludes the research and discusses the future

work followed by the bibliography.



CHAPTER 2: LITERATURE: MULTI ROBOT SLAM

Solutions to MR-SLAM can be classi�ed as follows according to their method of

controlling and processing distribution structure (Figure 2.1):

� Centralized System

� Decentralized System

� Distributed System

In a centralized system, all the robots are connected to a central server in which each

robot will gather its local information and transfer the data to a central server. This

central server is responsible for collecting and fusing all the data into a single global

map and transfer back the fused data (map). This method imposes an immense

amount of overhead due to a continuous high exchange of large amounts of data

between server and robots. Its complexity is directly related to the number of robots

connected to a server because it becomes impractical to connect many robots to

a single server and it requires continuous monitoring of each deployed robot. One

major drawback of this system includes functionality dependency on a single unit

such as a central server because the failure in server functionality will cause the

entire system to break down. In Decentralized systems data processing power is

divided amongst predetermined few robots. Robots will continue to gather the data

in the local frame and this data is shared with the robots having the processing

power. This system is more robust than the centralized system. Distributed systems

consist of many robots implementing its own SLAM and generating a local map with

respect to the local frame. Whenever there is a meeting of two robots, data will

be exchanged between them and this data will be used for mapping individual map.



8

This approach implements a more �exible and scalable algorithm for MR-SLAM.

This paper showcases di�erent techniques used to solve the problem of MR-SLAM

and several types of maps that can be implemented along with it.

Figure 2.1: (a) Centralized System (b)Decentralized System

2.1 Problem Of Localization And SLAM

Localization in SLAM is the process by which the position of a robot in a known or

unknown environment is computed. The main challenge faced in localization is the

design of the transformation matrix. A robot perceives the world through its sensors,

so environmental information is perceived with reference to the robot's perspective,

or local frame, and must be transmitted to the maps reference frame, or the global

frame. To resolve the di�erences between these two reference frames, and to convert

a robot's local coordinate system to a global coordinate system, a transformation

matrix is computed. Usually, transformation matrices consider the relative pose -

delta distance (distance between two robots), theta (angle) and noise in the observa-

tions from the sensors. Sensors that are used as an interaction between environment

and robot can be categorized into two types: exteroceptive sensors and propriocep-

tive sensors. Exteroceptive sensors like Light Detection and Ranging (LIDAR) and

SOund Navigation And Ranging (SONAR) use acoustic or electromagnetic energy to

sense and to interact with the environment. Whereas proprioceptive sensors do not



9

rely on the environment for sensing and they use the system's internal sensors for

measurement. The odometer can be categorized as an example of a proprioceptive

sensor as it uses wheel encoders to estimate the current pose of a robot. Sensors

are susceptible to noise and they induce some error in data over time. As this error

a�ects the precision of localization, many �lters are used to eliminate those errors.

State-of-the-art solutions to MR-SLAM implements �lters such as Kalman �lter, Ex-

tended Kalman �lter, and Particle �lter to eliminate error and increase the precision

of Localization.

Howard [11] developed an Online approach for MR-SLAM using Rao-Blackwellized

particle �lter with known initial positions as well as with unknown initial positions.

This algorithm can be explained using two robots exploring the environment. When-

ever there is an encounter between these two robots, their respective poses along with

the data are fed to �lter. The �lter generates two virtual robots and these measure-

ments are fed to them in reverse time order to build a common map. For MR-SLAM

each particle will be a tuple of < xit1, x
i
t2,m

i
t, w

i
t >, where x

i
t1, x

i
t2 are Robot 1 and

Robot 2 poses (location along with its orientation) respectively, mi
t is map and wi

t

represent weight of that particle. At the starting point, each robot will implement

individual SLAM with occupancy grid mapping and store robot pose measurements

in a data structure during continue independent exploration. Now whenever Robot

1 and Robot 2 are in the line of sight of each other or able to detect each other,

Robot 2 will establish a communication and transfer its data to Robot 1. Now Robot

1 will update the tuple and occupancy grid. For this algorithm to work, a relative

pose of Robot 2 with respect to Robot 1 is considered to de�ne the transformation

matrix. This algorithm assumes that the pose of robots will not interfere with the

measurements of each other and it is implemented in an algorithm to ignore those

readings.

For MR-SLAM with unknown initial poses, the encounter will be detected before



10

incorporating the data into the map. In this approach, only one robot with arbitrary

pose will start mapping and wait for an encounter with each additional robot before

taking the data. All the subsequent encounters are neglected. Figure 2.2 Shows a

Figure 2.2: MR-SLAM for particle �lter [1]

multi-robot SLAM with unknown initial poses using particle �lter. At some point in

time, t, ∆21 represents the relative pose of Robot 2 with respect to Robot 1 which

is used to incorporate data into a map along with the coordinate transform. For a

successful implementation of this �lter, the author makes following approximations:

� Conditional dependencies between robot trajectories are ignored and treated as

an independent variable.

� Uncertainty in the relative pose (∆21) is small.

All the data collected by the �rst robot will be considered and incorporated into the

map, while data obtained only after the encounter is considered from other robots.



11

Another approach suggested by Thrun [1] to solve MR-SLAM is to implement

Sparse Extended Information Filter (SEIF) with known initial correspondences. SEIF

uses a Bayesian approach and instead of localizing robots in each other's map, this

solution focuses on comparing local maps acquired by robots. SEIF is an intermediate

algorithm between an Online SLAM and a full-SLAM algorithm. SEIF, just like

online SLAM, implements the solution to determine the posterior over current pose

and the map and at the same time SEIF takes advantages from full SLAM algorithm

by keeping all the information. SEIF represents the SLAM posterior with the natural

parameters of multivariate Gaussian in the form of an information matrix (Ω) and

information vector (ε). An information matrix is a square matrix comprising pose of

a robot and positions of the landmarks. It contains numerical links across the robot

- landmark or landmark - landmark which gives the direct correlation between them.

An information vector is an informative representation of the state vector.

SEIF is implemented in four steps: a motion update step, a measurement update

step, a sparsi�cation step, and a state estimation step. A measurement update step

updates the elements in the information matrix and information vector corresponding

to a robot and the respective landmarks by a non-zero number. These elements corre-

sponding to robot and landmarks (non-diagonal elements) are denoted as links. This

step in SEIF, links features to the current robot pose. A motion update step does

not consider measurements from the environment features but it takes into account

the command issued to the wheel motors (control signal). It updates the information

matrix and information vector based on the control signal (ut). A motion update

algorithm takes previous information matrix and information vector as an input and

incorporates motion control signal to update information vector and information ma-

trix. Before robot motion, a link was established between features and poses. So,

after a movement of the robot, these links are weakened as a robot motion introduces

uncertainty in the information state. This uncertainty in the pose of a robot relative



12

to the map results in the loss of information. This information is not entirely lost

because of the fact that it lost information about pose relative to the map, but the

relative information of features with respect to other features was retained in the

map. This causes the �lter to shift the information from pose-feature to feature-

feature pair. This step updates direct links between feature pairs. Sebastian Thrun

suggests that this transformation of a link is possible only if a feature has an active

measurement link between itself and pose. This feature of SEIF helps to limit the

computational complexity. So, by controlling the number of active features at any

point of time, the computational complexity during the motion update and measure-

ment update step can be controlled. This transformation of highly dense information

matrix to sparsely populated information matrix by approximating the elements be-

tween passive features and robots state to near zero is also called as 'Sparsi�cation'.

One important advantage of this algorithm is the time required for sparsi�cation is

independent of a size of the map.

The last step in SEIF deals with the state estimation which can be estimated using

equation 2.1:

µ = Ω−1t ∗ εt (2.1)

Where,

Ωt : information matrix

εt : information state

This step introduces high time complexity in the algorithm and so to avoid this

SEIF exploits `relaxation algorithm'. In relaxation algorithm, each step is updated

based on the best estimates of nearby elements in the information graph. The accu-

racy of the results for SEIF and computational e�ciency is decided by the degree of

sparseness (number of active landmarks) in SEIF.

Extending this approach to MR-SLAM can be viewed as an implementation of



13

SR-SLAM in a local reference frame with respect to each robot and then exchanging

of data between robots. Additivity and locality of update step make this algorithm

amenable for MR-SLAM. In [1], Thrun explains the fusion of maps faces mainly two

problems: each robot maintains its own coordinate system so transformation from one

robot reference frame to another is nonlinear and along with it the data association

problem must be solved while fusing the maps. Suppose we have two robots j and k

each with information as (Ωk
t , ε

j
t) and (Ωk

t , ε
k
t ) respectively. In order to fuse the maps,

we require a transformation vector with linear displacement matrix `d' rotational

di�erence element `A'. Using this transformation matrix, we can map the positions

of robot j and its features to the k robot's coordinate system with a rotation of `A'

and a displacement by `d'. Equations for map fusing can be written as:

Ωj→k = A ∗ Ωj ∗ AT

εj→k = A ∗ (εj − Ωj→kd)

(2.2)

Where,

A =


cosα sinα 0

−sinα cosα 0

0 0 1


d =

[
dx dy 0

]T

Fused maps are now having a common coordinate system, which enabled Infor-

mation state and information vector both to be added to �nd the joint information

state. For a correspondence list with identical features in the joint map, common

information can be computed by Equation 2.3 and Equation 2.4 as given below:



14



Ω11 Ω12 Ω13 Ω14

ω21 Ω22 Ω23 Ω24

Ω31 Ω32 Ω33 Ω34

Ω41 Ω42 Ω43 Ω44


=


Ω12 Ω12 + Ω14 Ω13

Ω21 + Ω41 Ω22 + Ω42 + Ω24 + Ω44 Ω23 + Ω43

Ω31 Ω32 + Ω34 Ω33

 (2.3)



ε1

ε2

ε3

ε4


=


ε1

ε2 + ε4

ε3

 (2.4)

The results obtained using above algorithm are shown in Figure 2.3 and Figure

2.4 Thrun divided data collected from a single robot into eight local subsets (Figure

2.3) and ran map merging algorithm on them to produce a common map as shown

in Figure 2.4.

Figure 2.3: Eight local maps obtained by splitting map [1].



15

Figure 2.4: Above eight maps merged using SEIF [1].

2.2 Problem Of Mapping in SLAM

SLAM is de�ned as a process of concurrently building a map of the environment

from sensor measurement and using this map to obtain an estimate of the position of

a robot. In SR-SLAM, a mapping is limited to a robot itself but in MR-SLAM the

�nal aim of the system is to build a joint map. Thus, an extension of the techniques

used for SR-SLAM to MR-SLAM is challenged by the factors: constraints on memory

requirements, coordination between robots, data association problem - where robots

have to decide if the current observation belongs to a previously observed landmark,

or a di�erent landmark of similar properties, the loop closure problem, and transfor-



16

mation of reference frames. In an environment with two robots with unknown initial

locations, each robot will start exploring and use data from sensors like a laser scan,

and Pan-Tilt camera [7],[8] to build a local map. Each robot maintains its own local

map with a respective local reference frame. Once communication is established be-

tween two robots, each robot will transfer previous readings to fuse into a common

map (global map).

Andrew Howard describes a similar approach in [11] with a Rao-Blackwellized

particle �lter. In any multi-robot environment, a starting point for a solution can be

an implementation of single robot SLAM, unless and until there is an encounter with

another robot. Initially, no robot will know the locations of any other robots, and

so each robot will start individual SLAM. Once it encounters another robot it will

localize other robot with relative to the self-position. Each robot will maintain a data

structure, either a queue or a listing, to store the observations by laser and odometry

sensors (sometimes odometry along with laser also known as `Lodometry' is also used

for precision). These reading can be divided into casual and acasual readings (before

and after an encounter with another robot). This data is then fused into a common

map avoiding the similar observations and incorporating the associated data that

was recorded by the robot before an encounter. Each particle in the �lter, used to

develop a map and localize through �lter, is a tuple <x, m, w>, where x is a robot

pose at time t, m is a map generated at time t and w is the particle weight which

eventually decides the validity of a respective particle. Particle having large weights

are incorporated in the map and those with the low weights are discarded [11].

Di�erent types of maps can be implemented while solving a problem of SLAM,

amongst which topological maps (graph) are highly scalable due to their compact

description and on the other hand grid-based maps have higher resolution but at the

cost of a larger amount of memory [2]. P�ngsthorn et. al. put hybrid approach

[2], where sensor data without any processing will be stored at nodes and edges



17

will represent the transformation between these nodes. In MR-SLAM each robot

will have an individual part of a map (either same or di�erent), this method helps

to merge di�erent section of maps by correctly connecting the proper nodes. Two

important concepts to be considered during merging maps are loop closing and overlap

detection. `Loop closing' is a process of connecting two separate regions of a map,

which also helps to reduce the cumulative error. Seemingly two di�erent observations

in a map may belong to the same location in the environment. When displacement

between two nodes is computed, inconsistency introduced by the this is resolved by

incorporating the additional information regarding common landmark into the global

map [2, 12, 13]. This additional information is in the form of correspondences, their

relative distance and bearing in local maps. `Map merging' is a process of connecting

two di�erent regions into the common or global map. It is very di�cult to decide how

two di�erent maps from the two robots are connected to each other. For this reason,

a common point of reference is decided, and map overlap is checked.

Every robot has its own local reference frame and therefore to merge maps in MR-

SLAM, a transformation between their coordinate frames must be determined either

by searching for common landmarks in two maps or by a robot to robot measurement

when the robot meets [3]. Zhou et. al. propose another approach in which, when two

robots are in communication range but with unknown relative locations, one robot

will receive data from another robot and try to estimate its location by matching

the received scan patch with respect to its own map. These robots then try to meet

at a location on this assumed common map and if and only if they succeed, maps

will be combined permanently, otherwise, maps will be discarded and exploration will

continue. For e�cient merging of two maps, a transformation between their respective

frames must be determined. To determine the transformation vector, estimation of

both robot poses, robot to robot distance and bearing measurements is essential.

Both robots use Kalman Filters for individual mapping before rendezvous and a



18

Figure 2.5: Loop Closing and Loop Merging [2]

combined map will be computed from the above information. As these individual

maps can contain common regions, map overlapping, and matching is also performed

to reduce alignment errors and state vector matrix. There are two primary techniques

used for the identi�cation of ideal landmarks as Nearest neighbor (NN) [3] and Joint

Compatibility Branch and Bound (JCBB) algorithms [14]. NN simply search for the

closest two landmarks from two maps whereas JCBB �nd the largest number of many

compatible pairing. NN is easier to implement whereas JCBB is robust but with high

computational cost.

Figure 2.6, 2.7 and 2.8 shows map generated during MR-SLAM. Local map de-

veloped by Robot 1 is shown in Figure 2.6 while local map generated by Robot 2



19

is shown in Figure 2.7. Then these two maps are compared for common areas and

merged together to form a global map shown in Figure 2.8.

Figure 2.6: Map developed by Robot 1 [3].



20

Figure 2.7: Map developed by Robot 2 [3].

Figure 2.8: Common map after map merging [3].



CHAPTER 3: IMPLEMENTATION

3.1 System Overview

The objective of this research was to develop a simulation environment for multiple

robots and to implement a SLAM algorithm. Figure 3.1 can be used to represent

a multi-robot distributed environment with two robots. MR-SLAM environment

Figure 3.1: Overview of multi-robot architecture.

focuses on an idea that each robot will run an individual SLAM and develop a local

map with a goal of creating a global map by merging the information collected. A

multi-robot system can be considered as an integration of a real world, TurtleBot



22

platform (Kobuki base, sensors and wheels) and Robot Operating System (ROS).

3.2 TurtleBot

TurtleBot is a low-cost development platform with open source software [4]. It was

designed at Willow Garage by Melonee Wise and Tully Foote. This robotic platform

was developed to navigate through the house and it can be quali�ed as a home service

robot due to its core technologies such as SLAM and navigation. There are three types

of TurtleBots named as `TurtleBot', `TurtleBot2' and `TurtleBot3'.

Figure 3.2: TurtleBot2 [4]

TurtleBot2 has a Kobuki base, a Kinect 3D sensor, and a laptop running ROS.

A user can use TurtleBots to implement real-time obstacle avoidance, autonomous

navigation algorithms explore the house using a laptop or an android device, and

implement SLAM algorithms. This system uses TurtleBot2 for an implementation

because of its features and availability.

3.3 Gazebo

The Gazebo is a 3D rigid body robot simulator developed for the robotic environ-

ment. `gazebo_ros_pkg' is a set of ROS packages used for an interface to simulate



23

a robot in Gazebo environment [15]. ROS messages are used for the communication

between a simulator and ROS.

Figure 3.3: Gazebo world with TurtleBot

Figure 3.3 shows a robotic environment for TurtleBot. Simulators are essential

aspects of a robotic toolkit because of its scalability, ease of implementation, and

absence of real-world unwanted data. Robotic applications can be regressively tested

with the realistic scenarios using a robot simulator.

Gazebo simulations are launched using a `launch �le' in a ROS package. These

ROS packages need to be compiled using catkin_make. The simulation in 3.3 was

launched using a .launch �le `turtlebot_world.launch' located in the package `Turtle-

bot_gazebo'. Launch �les are written in XML format. These launch �les are com-



24

prised of a path to world �le with an extension of .world (environment containing the

list of objects used for the simulation), parameters and arguments those are passed

along with it and a path to a `urdf �le' (Uni�ed Robot Description Format). An urdf

�le is a descriptive �le of a robot which contains all the information related to the

robot dynamics, robot appearances and `links and joints' of a robot. For example, the

construction of a TurtleBot includes a Kinect 3D sensor mounted on a black mobile

Kobuki base, battery on the same base, motors, and all the appearances of a robot

are de�ned in an urdf �le. When the `.launch' �le is launched, it publishes all the

topics related to the spawned robot on the network.

3.4 ROS

Robot Operating System can be de�ned as a framework developed for creating

complex and robust robot environments across a wide variety of robotic platforms.

ROS is a collection of tools and libraries [16]. ROS is an open source platform which

was built for collaborative robotics software development. Discrete development in

the robotics has collaborated in ROS.

ROS uses a central master known as a `roscore' for the low-level publisher/subscriber

communication architecture. This communication enables ROS for e�cient commu-

nication. Suppose task A requests data from the sensor and task B processes that

data. Data published by task A is written to a �le by ROS, which can be republished

at a later time. Task B can request the data without caring about the source. This

�exibility and modularity in the system improves the encapsulation and promotes

code reuse.

ROS consist of nodes, topics, services, messages, bags, master and parameter server.

A `node' is a process which is used for the computation. It is a program which will

process the data. A robot control system comprises many nodes. For example, the

software driving a Kinect sensor is a node, a laser range �nder is a node, there will be

a node dedicated for robot localization and path planning. Nodes are written in pro-



25

gramming languages such as C++, Python, Java or Lisp. This �exibility encourages

many programmers to develop custom nodes which perform special services.

Figure 3.4: ROS Structure

For a robot to perform a speci�c task, there has to be communication between

nodes. Path planning algorithm might ask for services from laser range �nder and

robot wheel motors. In this scenario, communication between these nodes is achieved

over a bus called as `Topic'. Topics can be explained as a medium over which nodes

communicate with each other. Topics, due to its anonymous publish/subscribe se-

mantic, keeps source and client separate from each other. Nodes are not aware of

the other node to which they are communicating. Nodes that are interested in the

data, subscribe to the topic and nodes those are generating the data, publishes to the

topic. In the example provided above, a laser range �nder and a motor control both

publish to the respective topic. All the topics present on the roscore can be viewed



26

using rostopic list command.

Figure 3.5: ROS Topics

Figure 3.5 displays topics presented on a network for an environment having a

TurtleBot. Every topic can carry a message to the node for further computing. For

example, `/scan' publishes data obtained from laser range �nder and for a node to

get the data related to an odometry, it needs to subscribe to the topic `/odom'.



27

Robot movement can be controlled by publishing linear and angular velocities to the

`/mobile_base/commands/velocity'.

3.5 Multi Turtlebot Spawning Tool

The default Gazebo launch �le can spawn a TurtleBot in a Gazebo environment

and publishes all the topics related to it. The system requirements needed a good

simulator for a multi-robot environment. Lack of such robotic simulator was an

encouraging factor to write a MATLAB script that will take the number of robots

along with their respective names and locations on the map. This script will generate

a launch �le in XML format which can be used to spawn multiple robots in the

environment. Following Figure 3.6 depict the GUI created by a MATLAB script to

generate a launch �le.



28

(a) Number of Robots

(b) Name and Position for TurtleBot

(c) Name and Position for TurtleBot

Figure 3.6: GUI for MATLAB script to produce a .launch �le

A TurtleBot launched in the environment can be communicated through the topics

related to it. To communicate with these two TurtleBots, there was a need for



29

individually associated topics. This was achieved using `namespace' in the launch

�le. It allowed us to launch di�erent TurtleBots in Gazebo and communicate to each

one individually. Figure 3.7 depicts the general concept of using namespace in the

multi-robot environment.

Figure 3.7: Topics namespaced for two TurtleBots in Gazebo

The launch �le created by the MATLAB script is shown in Figure 3.8. It mainly

comprises of a path to an empty world, names of the TurtleBots, namespacing for

the respective topics and their coordinate positions. Figure 3.9 shows two TurtleBot

spawned by launch �le generated using the MATLAB script. Two TurtleBots were

named as `TurtleBot' and `turtlebot2'.



30

Figure 3.8: Launch �le for two TurtleBots in Gazebo, located at [-1 0 0] and [1 0 0]



31

Figure 3.9: Two TurtleBots in Gazebo, located at [-1 0 0] and [1 0 0]

Figure 3.10 shows topics published on ROS with the namespace. All the topics re-

lated to turtlebot are namespaced under `/turtlebot' and in the same manner all the

topics related to turtlebot2 are namespaced under `/turtlebot2'. To drive `turtlebot'

around, its linear and angular velocities should be published through a message to

the topic `/turtlebot/mobile_base/commands/velocity' and similarly to drive `turtle-

bot2', the topic used should be `/turtlebot2/mobile_base/commands/velocity'.

3.6 Implementaion of Multi-Robot System

Figure 3.11 represent the high-level block diagram of the system. This system is

divided into two major parts: Development of simulation tool and Implementation of



32

(a) Topics for `turtlebot'

(b) topics for `turtlebot2'

Figure 3.10: Topics with namespacing



33

SLAM algorithm. The MATLAB script takes inputs from the user about the names

and the positions of the TurtleBots. Then it creates a launch �le which has a path

to an empty world �le, a path to base launch �le, individual robot positions, and list

of the sensors associated with a robot. The launch �le can be used to create a world

and to populate it with the TurtleBots at provided locations. When the simulation

system is launched, algorithms like path �nding [17, 18] and SLAM can be used to

perceive the environment and navigate through it.

Figure 3.11: Block Diagram of a System

3.6.1 Creation of World

The world was created in Gazebo around TurtleBots through MATLAB. This world

consisted of four Grey walls, two obstacles and six di�erent landmarks. These land-

marks were colored balls placed on a bar each with a di�erent color from one another



34

and so they were identi�ed by the unique signature associated with it. Table 3.1 lists

all the landmarks along with their color, signature and positions in the system.

Table 3.1: Landmark Placement and respective Signatures

Landmark Color Signature Position

Landmark1 Red [1 0 0] [3.5,0.2]

Landmark2 Green [0 1 0] [1.8,3.0]

Landmark3 Blue [0 0 1] [-1.4,3.0]

Landmark4 Yellow [1 1 0] [-3.1,0.2]

Landmark5 Cyan [0 1 1] [-1.4,-2.6]

Landmark6 Magenta [1 0 1] [1.8,-2.6]

Figure 3.12 shows the created world. Two TurtleBots are placed such that turtle-

bot1 could see four landmarks and turtlebot2 could map three landmarks. Out of

these landmarks, one landmark was common between them which was used to deter-

mine the transform between local references frames of the TurtleBots.

Figure 3.12: Gazebo world with walls, landmarks and TurtleBots



35

3.6.2 Sparse Extended Information Filter

When a system in Gazebo, with TurtleBots and landmarks, is launched, a SLAM

algorithm using SEIF with known correspondence was implemented to verify the

working of the system. In SEIF, posterior is represented by information matrix `Ω'

and information vector ε. Information matrix `Ω' is a square matrix containing the

robot and landmark states. Figure 3.13 and 3.14 shows information matrix and

information vector with single robot and 4 landmarks. Here X1 denotes the robot

and L1, L2, L3 and L4 are the landmarks.

Figure 3.13: Information Matrix Figure 3.14: Information Vector

For multi-Robot applications, every TurtleBot runs its own SEIF to build its lo-

cal map. Each robot communicates with the other using a network. This network

structure was simulated in the Gazebo using a transmission and reception of ROS

messages over di�erent topics. Each individual TurtleBot maintain it's own local pos-

terior and a local map according to its reference frame. When a common landmark

is detected in both the TurtleBots, the transformation between their local reference

frames is calculated. This transformation is then applied to the posterior received

from another TurtleBot to merge the data and create a global map. As stated in the

survey, SEIF is divided into four steps:

� Measurement update step

� Motion update step

� Sparsi�cation step



36

� State estimation step

Measurement Update: Whenever a landmark was observed by a TurtleBot

through its camera, it's distance and angle from the TurtleBot was calculated by

using arithmetic equations used in optics. The correspondence test was conducted

by checking the index and signature of that landmark. All the observed landmarks

by the individual TurtleBots were stored using the respective index of the landmark.

When the correct landmark was identi�ed and if it was never seen before, it's loca-

tion was computed in the local map and it is then added to the state vector. This

step introduced new links in the information matrix and information vector between

a robot and the landmark. If that landmark was seen before and it was present in

the maintained data structure for correspondence vector then previously estimated

information was updated in the information matrix and information vector. Figure

3.15 illustrate the e�ect of the measurement update on information matrix and in-

formation vector. When turtlebot1 observed L1 (y1) and L2 (y3), new links were

established between X1 and L1. Similarly for the turtlebot2 (x2) and L3 (y3).

Figure 3.15: E�ect of measurement update

Figure 3.15[a] and 3.15[b] depicts the information matrix before and after landmark

is observed.

The algorithm depicted in Figure B.1 was used to either introduce a link or to up-

date the information in an implementation of �lter when a landmark was observed.

Here Q is the zero mean white Gaussian measurement noise matrix, C is a correspon-



37

dence list and µ is a state vector of the individual robot.

Motion Update: The motion command issued to any TurtleBot caused it to

add some uncertainty to the information available between robot pose and landmark

state. This introduced uncertainty reduced the strength of elements related to the

robot pose vector. This algorithm shifted the lost information to the links between

two landmarks. Figure 3.16 depicts the e�ects of motion in the information matrix.

As it can be seen, the robot's movement reduced information between L1, L2 and

turtlebot1 and also in between L3 and turtlebot2.

Figure 3.16: E�ect of motion update

The algorithm used to implement the motion update step is in Figure B.2. Here Fx

is a projection matrix which extracts robot pose elements. δ is a motion model which

determines the e�ect of motion commands(angular velocity and linear velocity) on

the current state (pose) of the robot.

Sparsi�cation: One of the advantages of SEIF over EKF is that it is less com-

putationally expensive and consumes less memory. For every update in EKF, all the

elements in covariance matrix are populated, making its memory requirement to be

quadratic to the number of landmarks i.e its memory requirements increases quadrat-

ically with an increase in the number of landmarks. Sparsi�cation in SEIF helps to

reduce these constraints by removing the unnecessary links in the landmarks. In SEIF,

all the observed landmarks were divided into two main categories: `active landmarks'

and `passive landmarks'. A robot performed update on some pre-determined number



38

of landmarks, also called as active landmarks, making the information matrix sparsed

at all the time. Figure 3.17 shows the graphical representation of the e�ects on the

information matrix before and after Sparsi�cation step.

Figure 3.17: E�ect of sparsi�cation

Figure B.3 depicts the algorithm used to implement the sparsi�cation step.

State Estimation: SEIF algorithm uses respective state vector elements for the

motion as well as measurement update steps. State vector can be computed using

an equation µ = Ω−1 ∗ ε, but this calculation includes high computational costs due

to a multiplication of large matrices. Due to this reason, SEIF algorithm depicted in

Figure B.4 was used to estimate state from the information vector and information

matrix. In Figure B.4, Fx is a projection matrix which extracts elements respective

to the robot state for the calculation of robot state estimate or the elements respec-

tive to the landmark state for the computation of landmark state estimate from the

information matrix.

Graphical representation in Figures 3.15, 3.16 and 3.17 shows that the information

matrix is a squared matrix of state estimates for both the robots and all the landmark

state estimates, but in the actual implementation of this research, a separate state

vector and information matrix were maintained for each individual robot and only

contained it's own robot state and landmark states as shown in Figure 3.13 and Figure

3.14.



39

3.6.3 SEIF With Known Initial Pose

When SEIF SLAM was implemented with known initial position, both TurtleBots

knew their own initial pose with respect to the global reference frame. Each TurtleBot

predicted the coordinates of a landmark with respect to the global reference frame

(A coordinate system with the origin located such that robots positions are known).

In such a scenario, map merging is a simple extension of combining the information.

Since both TurtleBots followed a global coordinate system, computation of trans-

formations between their local frames was not needed. To illustrate this case, an

environment was populated with landmarks located at [3,0], turtlebot1 at [-1,0] and

turtlebot2 at [1,0]. Both TurtleBots predicted the landmark at [3,0] instead of [4,0]

and [2,0] respectively.

3.6.4 SEIF with Unknown initial pose

When the TurtleBots were not aware of their respective initial poses, each TurtleBot

mapped the environment with its own local reference frame, which had an origin

located at the starting position of the robot with X-axis as the facing direction at

time t = 0 (starting point of odometry). To illustrate this, consider two TurtleBots at

[-1,0 ] and [1,0] and a landmark at [2,0]. For the same landmark located at `3' distance

on X-axis and `0' distance on Y-axis from turtlebot1 and `1' distance on X-axis and `0'

distance on Y-axis for turtlebot2 is plotted as [2,0] and [-2,0] respectively irrespective

of their position in the global coordinate system. Each TurtleBot maintained posterior

over its own local reference frame.

The basic di�erence between centralized and decentralized MR-SLAM is the dis-

tribution of controlling and data processing capabilities amongst the robots. In this

implementation, a decentralized approach was taken where turtlebot1 communicated

with turtlebot2 each time a landmark is seen. Data was in terms of the information

matrix, information vector, correspondence vector and state vector. ROS messages



40

were used to simulate the data transfer. For the world depicted in Figure 3.12, turtle-

bot1 and turtlebot2 were able to map landmarks 1, 3, 4, 5, and 1,2,6 respectively. Both

TurtleBots continued to implement individual SLAM in the local reference frames un-

less and until a common landmark was detected. Once a correspondence was detected

between them from the correspondence data shared amongst the TurtleBots, turtle-

bot1 started to transmit its information matrix and information �lter to turtlebot2,

which in turn was used to detect the transformation between two reference frames.

3.6.5 Map Merging

A key concept in MR-SLAM is map merging. When two robots have determined

the correspondences and identi�ed the common landmarks, information was mathe-

matically manipulated such that one robot could interpret information obtained from

another and this information was then amended to its own Gaussian parameters.

This process of fusing the information is known as map merging and the process

of aligning the posterior through mathematical manipulation is commonly known as

`Transformation of local coordinate frames'.

In an implementation of decentralized MR-SLAM system with turtlebot1 and

turtlebot2, each time turtlebot1 detected a landmark, it sent a correspondence list

to the other robot. This list was the array of indices for the landmarks observed be

the TurtleBot. This landmark list was then compared to the correspondence list of

self by turtlebot2 to detect mutual landmarks. These mutual landmarks were used

to determine the transformation between two local reference frames.

For every point in turtlebot1's reference frame, it can be mapped in turtlebot2's

reference frame with a translational shift and rotational shift. Both TurtleBots had

some landmarks in common, which were used to determine the distance and orienta-

tion between the reference frames. Figure 3.18 depicts the general idea for the same.

In order to map the data observed by another TurtleBot, all the observations from

other TurtleBot had to be shifted by some distance and rotated by a particular angle.



41

Additive property of multivariate Gaussian parameters is exploited here to add the

information regarding the common landmarks [5].

Figure 3.18: Transform between planes

xt1→t2

yt1→t2

 = d+ A ∗

xt1
yt2

 (3.1)

A =

cosθ −sinθ
sinθ cosθ

 (3.2)

d =

dx
dy

 (3.3)



42

Once the distance and the rotational di�erence are known then the Equation 3.1

was be used to transform a point from turtlebot1's plane to the reference frame of

turtlebot2. Equation 3.3 and 3.2 implies the translational shift and rotational shift

between two reference frames respectively. A point [x,y] in a plane has to be shifted

by dx and dy and rotated by the respective angle (θ is the counter clockwise di�erence

between the reference frames) to represent in another plane.

Figure C.1 depicts the algorithm used to merge the maps using information matrix

and information �lter. Information matrix and information vectors from both the

TurtleBots, displacement factor (d) and relative rotational angle (α(θ)) were input

for the same.

Posterior from turtlebot1 was aligned with the turtlebot2 using the transform ma-

trix and equations on line 4 and 5 in Figure C.1 by shifting and rotating the informa-

tion matrix and information vector. These maps were fused by simply adding them

to previous posterior. All the information related to common landmarks are added

using Equations 2.3 and 2.4 by exploiting the additive property of information state.

[5].



CHAPTER 4: RESULTS

This research was divided into two parts: development of a multi-robot spawning

tool and implementation of SEIF to test the working of a tool. This tool enabled

standard ROS environment for the multi-robot applications without any modi�cations

in the ROS directory.

4.1 Multi TurtleBot Spawning Tool

During the implementation of the �rst part, a MATLAB script was written to

generate an XML �le. This �le launched the Gazebo simulator with an environment

with as many TurtleBots as an application needed. This tool was tested by spawning

5 di�erent TurtleBots on the locations as Table 4.1 and communicating with each of

them individually.

Table 4.1: Robots and their coordinates

Robot Name Coordinates

System

Position

Turtlebot [x,y,z] [0 0 0]

Turtlebot2 [x,y,z] [2 2 0]

Turtlebot3 [x,y,z] [-2 2 0]

Turtlebot4 [x,y,z] [-2-2 0]

Turtlebot5 [x,y,z] [2 -2 0]

This MATLAB script generated an XML launch �le. A section of this �le is de-

picted in the Figure 4.1 which lists the type of robot (Kobuki base), path to an

empty world, and an information regarding turtlebot1. Figure A.1 and A.2 in the



44

appendix A depicts the same information regarding turtlebot2, turtlebot3, turtlebot4

and turtlebot5. It has the name of TurtleBots, their respective locations along with

a path to the urdf �le.

Figure 4.1: Section of A Launch File Generated



45

To launch a Gazebo simulator with an environment containing multi TurtleBots,

`roslauch' command is used along with the �le name. Figure 4.2 depicts a Gazebo

environment populated with �ve TurtleBots spawned on the given locations. The

`world' tab on the left side of the Figure 4.2 has a list of all the objects in the Gazebo

environment. This environment comprises of a dumpster, a solid block, a ground

plane, and �ve TurtleBots. A dumpster and a solid block were populated manually

using the GUI of Gazebo.

Figure 4.2: Five TurtleBots spawned in Gazebo using MATLAB script



46

Each individual TurtleBot can be communicated with topics associated with it. To

operate each Turtlebot separately, topics should have a namespace according to the

respective TurtleBot name. All the topics associated with the individual TurtleBot

are shown in Figure 4.3, A.3 and A.4. Topics to be used for the `turtlebot' are shown

in Figure 4.3. Similarly, for turtlebot2 and turtlebot3 are shown in Figure A.3. Figure

A.4 list all the topics related to turtlebot4 and turtlebot5.

Figure 4.3: Namespacing for `turtlebot'

This namespacing was used to control TurtleBots by publishing to the respective

topic and taking camera data from the sensor by subscribing to the respective topic.

Figure 4.4 shows two windows, each with processed data acquired from Kinect and

visual perception of the robot.



47

Figure 4.4: RGB camera visuals from both TurtleBots.

4.2 SLAM Using SEIF

During the second part of the research, the SEIF algorithm was implemented to

test the built environment. SEIF was implemented in two cases: known initial pose

and unknown initial pose. The �nal aim of the multi-robot system was to transfer



48

the information from one TurtleBot to other and merge the map.

4.2.1 SEIF With Known Initial Position

When SEIF was implemented with known initial poses, a robot detected the land-

marks at the positions with respect to the global coordinate system. Figure 4.5

depicts the result for this case. It can be inferred from the Figure 4.5 that each

TurtleBot is implementing their own SEIF SLAM and building a map with respect

to the global coordinate system. This process was important to check the functioning

of a multi-robot tool in a multi-robot scenario because each TurtleBot observed the

same landmarks and gave individual readings. This process helped to deduce the

factors a�ecting the performance of a system such as time complexity.

In the Figure 4.5, starting positions of turtlebot2 and turtlebot1 are indicated by

blue color diamonds at [2,0] and [-1,0] respectively. A line of red dots represents

the trajectory of the TurtleBot. Gray arrows embedded by the gray circles represent

the actual positions of the TurtleBots and sky blue arrows with a sky blue circles

represent the predicted value of the robot states through the �lter. Actual positions

of the landmarks are indicated by six small circles in the environment with their

respective unique colors. Arrows embedded by a circle near those landmarks represent

the predicted values from each TurtleBot. The unique color of that landmark is

represented by the color of an arrow at the predicted value, and color of the outer

circle di�erentiates the predictions by the TurtleBot. All the predictions by turtlebot2

and turtlebot1 are represented by green and black circle respectively.



49

Figure 4.5: SEIF implemented on individual TurtleBots with known poses



50

Table 4.2 contains all the measurement values of the landmarks for both TurtleBots.

It can be seen that, there is a di�erence between both the values which are Dependant

on factors such as computation e�ciency and simulation speed.

Table 4.2: Landmark prediction for TurtleBots

Landmark Position Turtlebot1 turtlebot2

Landmark1 [3.5,0.2] [3.2,0.3] [3.4,0.2]

Landmark2 [1.8,3.0] [1.7,3] [1.8,3]

Landmark3 [-1.4,3.0] [-1.4,3] [-1.6,2.28]

Landmark4 [-3.1,0.2] [-2.85,0.2] [-3,0.1]

Landmark5 [-1.4,-2.6] [-1.4,-2.6] [-1.4,-2.6]

Landmark6 [1.8,-2.6] [1.8,-2.6] [1.8,-2.6]

4.2.2 Update Time Per Measurement

Theoretically, EKF has quadratic time complexity compared to SEIF. The com-

putational complexity of EKF tends to increase quadratically with the number of

landmarks. Whereas, SEIF had a constant computational complexity. It can be in-

ferred from Table 4.3 that for a small number of landmarks (6 for the implementation

of this research) SEIF showed minute di�erences in the time required per update.



51

Table 4.3: Landmark prediction for TurtleBots

Landmark Turtlebot1 turtlebot2

Landmark1 0.000000000000000000000000

sec

0.000000000000000000000000

sec

Landmark2 0.010000000000000000208167

sec

0.010000000000000000208167

sec

Landmark3 0.000000000000000000000000

sec

0.010000000000000000208167

sec

Landmark4 0.030000000000000002359224

sec

0.000000000000000000000000

sec

Landmark5 0.010000000000000000208167

sec

0.010000000000000000208167

sec

Landmark6 0.030000000000000002359224 0.010000000000000000208167

sec

4.2.3 SEIF With Unknown Initial Position

Figure 4.6 depicts the SEIF with unknown initial pose. When SEIF with unknown

initial poses was implemented, each TurtleBot started mapping with respect to its

own local reference frame. Its measurements are according to odometry readings and

the processed image from the RGB camera. Color coding used in the Figure 4.6 is

same as the case with known initial positions i.e arrow colors are landmarks colors

along with the predicted locations, all the predictions by turtlebot2 and turtlebot1 are

represented by green and black circle respectively. Obstacles put in the environment

blocked some part of the environment for both the TurtleBots. As it can be inferred

from the Figure 4.6 that turtlebot1 could see only landmark 1,3,4,5 and turtlebot2

could see landmark numbers 1,2,6.



52

Figure 4.6: SEIF implemented on individual TurtleBots with unknown poses

4.2.4 Map Merging

For the above scenario, each TurtleBot maintains a posterior for observed land-

marks. When turtlebot1 shared its posterior with turtlebot2, turtlebot2 aligned and

fused it with its own posterior. It can be seen that before map merging that turtle-

bot2 was able to map 1,2, and 6 but map merging algorithm enabled it to map all the

remaining landmarks. Figure 4.7 depicts the merged maps through the map merging



53

algorithm.

Figure 4.7: Decentralized MR-SLAM with map merging



CHAPTER 5: CONCLUSIONS AND FUTURE WORK

This chapter concludes the research carried out so far and state the future work

for this research. Literature regarding the MR-SLAM and SLAM was read to under-

stand the current technologies and to analyze the current state-of-the-art solution.

Many available solutions for MR-SLAM can be categorized in centralized, decentral-

ized and distributed systems. Implementation of centralized systems often requires

an external agent or server to monitor the processing of all the present robots, which

makes it the most complex system compared to others. In a centralized system the

number of robots present in the environment are restricted due to the limitations on

the communication bandwidth and processing power. Decentralized systems are com-

paratively more robust than centralized systems. Processing and controlling power is

divided amongst a few robots in a team. many restrictions regarding the number of

the robots and communication bandwidths are loose for it. Distributed systems are

more e�cient and robust where each TurtleBot is responsible for processing the data

so any numbers of TurtleBot can be added without increasing the complexity of the

system.

5.1 Conclusion

Many state-of-the-art solutions include the use of recursive estimators such as EKF

and RBPF where they are required to localize the other TurtleBot in its own posterior.

This process may include an identi�cation of the TurtleBots while navigating in the

environment. This research was focused on developing a tool which will enable Gazebo

for multi-robot simulations. This tool was further tested with the implementation of

a decentralized system with two TurtleBots. A lack of multi-robot simulator patch on



55

Gazebo for TurtleBot was noticed and a tool was developed which will take arguments

such as robot names and their coordinates from the user. It then generates a `.launch'

�le which can be used to spawn multiple robots in the Gazebo environment. Its ability

to spawn as many robots as a user wants to, make it an outstanding solution to the

current multi-robot simulator problem.

In an implementation of SEIF, two TurtleBots shared their posterior in the form

of information vectors and information matrices. When compared to EKF, SEIF is

more computationally e�cient. Every update in EKF iterates through an entire pos-

terior and its computational complexity is quadratic in time with respect to the size

of the map. SEIF, on the other hand, has constant computational complexity irre-

spective of the size of the map. Similarly, for the memory requirements, EKF memory

requirements grow quadratically with respect to map size whereas in SEIF memory

requirements grow linearly with the size of the map. SEIF maintains sparseness to

regulate the update time at any point in the algorithm. This sparseness causes SEIF

to approximate the recovery of the states of robot and landmarks. Due to this factor,

EKF tends to generate more accurate results than SEIF. Figure D.2 and Figure D.1

depicted the e�ects of sparsi�cation.

5.2 Future Work

Future work involves working with the multi-robot tool to the next level. A com-

mon GUI which takes names and coordinates as an input can be extended to a more

complex and functionally advanced GUI with preemptive error �ndings. The inability

of the current tool to detect the TurtleBots with the same name and same coordinates

can be used as a motivation to extend this tool to detect those errors. The current

research regarding the SEIF only considers the case with known correspondences and

a limited number of landmarks. This research can be extended to a more complex al-

gorithm to identify a landmark whose correspondence is unknown. Use of simulators

put many constraints on factors such as communication, processing time and process-



56

ing requirements during an implementation and analysis of the multi-robot system.

Assumptions made during the implementations such as replacing network commu-

nication with messages and implementing object-oriented programming to simulate

di�erent system can be studied in a great depth during an implantation on the actual

TurtleBots. Since there are many applications for multi-robot systems and current

research is based on the simulation, there is an opportunity for improvement.



57

REFERENCES

[1] S. Thrun and Y. Liu, �Multi-robot SLAM with sparse extended information
�lers,� in Robotics Research. The Eleventh International Symposium, pp. 254�
266, Springer, 2005.

[2] M. P�ngsthorn, B. Slamet, and A. Visser, �A scalable hybrid multi-robot SLAM
method for highly detailed maps,� in Robot Soccer World Cup, pp. 457�464,
Springer, 2007.

[3] X. S. Zhou and S. I. Roumeliotis, �Multi-robot SLAM with unknown initial
correspondence: The robot rendezvous case,� in Intelligent Robots and Systems,
2006 IEEE/RSJ International Conference on, pp. 1785�1792, IEEE, 2006.

[4] I. Open Source Robotics Foundation, �TurtleBot2 open-source robot develop-
ment kit for apps on wheels.� "https://www.turtlebot.com/turtlebot2.

[5] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press, 2005.

[6] J. Kshirsagar, S. Shue, and J. Conrad, �Survey of multiple robot simultaneous
localization and mapping,� IEEE SoutheastCon 2018, 2018.

[7] L. Carlone, M. K. Ng, J. Du, B. Bona, and M. Indri, �Rao-Blackwellized parti-
cle �lters multi robot SLAM with unknown initial correspondences and limited
communication,� in Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pp. 243�249, IEEE, 2010.

[8] L. Carlone, M. K. Ng, J. Du, B. Bona, and M. Indri, �Simultaneous localization
and mapping using Rao-Blackwellized particle �lters in multi robot systems,�
Journal of Intelligent & Robotic Systems, vol. 63, no. 2, pp. 283�307, 2011.

[9] S. B. Williams, G. Dissanayake, and H. Durrant-Whyte, �Towards multi-vehicle
simultaneous localisation and mapping,� in Robotics and Automation, 2002. Pro-
ceedings. ICRA'02. IEEE International Conference on, vol. 3, pp. 2743�2748,
IEEE, 2002.

[10] S. Thrun, �A probabilistic on-line mapping algorithm for teams of mobile robots,�
The International Journal of Robotics Research, vol. 20, no. 5, pp. 335�363, 2001.

[11] A. Howard, �Multi-robot simultaneous localization and mapping using particle
�lters,� The International Journal of Robotics Research, vol. 25, no. 12, pp. 1243�
1256, 2006.

[12] A. Howard, G. S. Sukhatme, and M. J. Mataric, �Multirobot simultaneous local-
ization and mapping using manifold representations,� Proceedings of the IEEE,
vol. 94, no. 7, pp. 1360�1369, 2006.



58

[13] D. Fox, J. Ko, K. Konolige, and B. Stewart, �A hierarchical Bayesian approach
to the revisiting problem in mobile robot map building,� in Robotics Research.
The Eleventh International Symposium, pp. 60�69, Springer, 2005.

[14] J. Neira and J. D. Tardós, �Data association in stochastic mapping using the
joint compatibility test,� IEEE Transactions on robotics and automation, vol. 17,
no. 6, pp. 890�897, 2001.

[15] . O. S. R. Foundation, �Gazebo ROS overview.� "http://gazebosim.org/

tutorials?tut=ros_overview.

[16] O. S. R. Foundation, �About ROS.� "http://www.ros.org/about-ros/.

[17] S. Shue and J. M. Conrad, �Reducing the e�ect of signal multipath fading in
RSSI-distance estimation using Kalman �lters,� in Proceedings of the 19th Com-
munications & Networking Symposium, p. 5, Society for Computer Simulation
International, 2016.

[18] A. A. Panchpor, Implementation of Path Planning Algorithms on a Mobile Robot
in Dynamic Indoor Environments. PhD thesis, The University of North Carolina
at Charlotte, 2018.

[19] G. Grisetti, G. D. Tipaldi, C. Stachniss, W. Burgard, and D. Nardi, �Fast and ac-
curate SLAM with rao�blackwellized particle �lters,� Robotics and Autonomous
Systems, vol. 55, no. 1, pp. 30�38, 2007.

[20] H. J. Chang, C. G. Lee, Y. C. Hu, and Y.-H. Lu, �Multi-robot SLAM with
topological/metric maps,� in Intelligent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on, pp. 1467�1472, IEEE, 2007.

[21] A. Eliazar and R. Parr, �Dp-SLAM: Fast, robust simultaneous localization and
mapping without predetermined landmarks,� in IJCAI, vol. 3, pp. 1135�1142,
2003.

[22] J. Ko, B. Stewart, D. Fox, K. Konolige, and B. Limketkai, �A practical, decision-
theoretic approach to multi-robot mapping and exploration,� in Intelligent Robots
and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International
Conference on, vol. 4, pp. 3232�3238, IEEE, 2003.

[23] R. Vincent, D. Fox, J. Ko, K. Konolige, B. Limketkai, B. Morisset, C. Ortiz,
D. Schulz, and B. Stewart, �Distributed multirobot exploration, mapping, and
task allocation,� Annals of Mathematics and Arti�cial Intelligence, vol. 52, no. 2-
4, pp. 229�255, 2008.

[24] J. W. Fenwick, P. M. Newman, and J. J. Leonard, �Cooperative concurrent map-
ping and localization,� in Robotics and Automation, 2002. Proceedings. ICRA'02.
IEEE International Conference on, vol. 2, pp. 1810�1817, IEEE, 2002.



59

[25] S. I. Roumeliotis and G. A. Bekey, �Bayesian estimation and Kalman �ltering:
A uni�ed framework for mobile robot localization,� in Robotics and Automation,
2000. Proceedings. ICRA'00. IEEE International Conference on, vol. 3, pp. 2985�
2992, IEEE, 2000.

[26] S. I. Roumeliotis and G. A. Bekey, �Distributed multirobot localization,� IEEE
Transactions on Robotics and Automation, vol. 18, no. 5, pp. 781�795, 2002.

[27] H. Durrant-Whyte and T. Bailey, �Simultaneous localization and mapping: part
i,� IEEE robotics & automation magazine, vol. 13, no. 2, pp. 99�110, 2006.

[28] T. Bailey and H. Durrant-Whyte, �Simultaneous localization and mapping
(SLAM): Part ii,� IEEE Robotics & Automation Magazine, vol. 13, no. 3, pp. 108�
117, 2006.

[29] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun,
and H. Younes, �Coordination for multi-robot exploration and mapping,� in
Aaai/Iaai, pp. 852�858, 2000.

[30] L. A. Andersson and J. Nygards, �C-sam: Multi-robot SLAM using square root
information smoothing,� in Robotics and Automation, 2008. ICRA 2008. IEEE
International Conference on, pp. 2798�2805, IEEE, 2008.

[31] R. J. Alitappeh, G. A. Pereira, A. R. Araújo, and L. C. Pimenta, �Multi-robot
deployment using topological maps,� Journal of Intelligent & Robotic Systems,
vol. 86, no. 3-4, pp. 641�661, 2017.

[32] S. Saeedi, L. Paull, M. Trentini, and H. Li, �Occupancy grid map merging for
multiple robot simultaneous localization and mapping,� International Journal of
Robotics and Automation, vol. 30, no. 2, pp. 149�157, 2015.

[33] J. Jessup, S. N. Givigi, and A. Beaulieu, �Robust and e�cient multirobot 3-D
mapping merging with octree-based occupancy grids,� IEEE Systems Journal,
vol. 11, no. 3, pp. 1723�1732, 2017.

[34] S. S. Kia, S. F. Rounds, and S. Martínez, �A centralized-equivalent decentral-
ized implementation of extended Kalman �lters for cooperative localization,�
in Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on, pp. 3761�3766, IEEE, 2014.

[35] X. Chen, H. Lu, J. Xiao, H. Zhang, and P. Wang, �Robust relocalization based on
active loop closure for real-time monocular SLAM,� in International Conference
on Computer Vision Systems, pp. 131�143, Springer, 2017.

[36] A. Torres-González, J. R. Martinez-de Dios, and A. Ollero, �Range-only SLAM
for robot-sensor network cooperation,� Autonomous Robots, vol. 42, no. 3,
pp. 649�663, 2018.



60

[37] S. L. Bowman, N. Atanasov, K. Daniilidis, and G. J. Pappas, �Probabilistic
data association for semantic SLAM,� in Robotics and Automation (ICRA), 2017
IEEE International Conference on, pp. 1722�1729, IEEE, 2017.



61

APPENDIX A: Multi TurtleBot Spawning Tool

Figure A.1: Launch File Generated - section 2



62

Figure A.2: Launch File Generated - section 3



63

Figure A.3: Namespacing for turtlebot2 and turtlebot3



64

Figure A.4: Namespacing for turtlebot4 and turtlebot5



65

APPENDIX B: SEIF Algorithm

Figure B.1: Measurement update algorithm [5]



66

Figure B.2: Motion update algorithm [5]

Figure B.3: Sparsi�cation algorithm [5]



67

Figure B.4: State estimation algorithm [5]



68

APPENDIX C: Map Merging Algorithm

Figure C.1: Map merging algorithm [5]



69

APPENDIX D: E�ects of Sparsi�cation in SEIF

SEIF estimated states of the robots and landmarks using the information matrix

and information vector. When the sparsi�cation was used in an implementation, it

generated the approximated results as shown in Figure D.1. It can be compared to

the state estimation of an implementation without the sparsi�cation step as shown

in Figure D.2.



70

Figure D.1: Decentralized MR-SLAM with map merging with sparsi�cation



71

Figure D.2: Decentralized MR-SLAM with map merging without sparsi�cation


