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ABSTRACT

CARLOS E. SEMINARIO. Evaluating accuracy and robustness impacts of power
user attacks on collaborative recommender systems. (Under the direction of DR.

DAVID C. WILSON)

Recommender systems help people quickly sort through large amounts of possible

options by providing lists of personalized recommendations tailored to satisfy the

end-user’s preferences and inquiries. Today, these systems are used in a variety of

applications such as e-commerce, travel, health care, education, news, research arti-

cles, financial services, online dating, and many others. For example, many top online

retailers use systems to provide shoppers with recommendations on what products

and services to buy, such as Amazon.com’s “Customers Who Bought This Item Also

Bought ..” list of product offerings generated by their underlying recommender sys-

tem. As with many online systems, however, there is a potential for malicious users to

“game the system” for personal benefit or pleasure. This constitutes an “attack” on

recommender systems and usually consists of having malicious users enter a number

of fake ratings or reviews in order to promote or disparage an item for personal gain,

or just to disrupt the system’s recommendations.

The problem with attacks on recommender systems is that they bias the underly-

ing data and cause the system to deliver erroneous or misleading recommendations

to users. This can cause users to lose trust in the system. In the case of online retail

systems, the user may choose to either (1) shop elsewhere, negatively impacting the

sales of the attacked service/product provider, or (2) purchase the product only to

find out that it does not meet their needs, negatively impacting user satisfaction with
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the online recommender. There is abundant evidence in the media regarding the neg-

ative impacts that attacks on recommender systems can have on consumer behavior

and the concomitant negative effects on system and service/product providers. And

the impacts of attacks on recommender systems can potentially extend over many

different applications and domains beyond e-commerce.

Recommender systems allow users to rate items and store those ratings into “user

profiles”, and they use different approaches to determine recommendations. The most

popular approach, and the focus of this dissertation, is to use Collaborative Filtering,

wherein many users rate items and the recommender’s predictions are computed

based on ratings provided by other “similar” users or items. This is in contrast to

Content-Based systems where the basic process consists of matching attributes of a

user profile, where preferences and interests are stated, with the attributes of other

items in order to find and recommend new items that may be of interest to the user.

Because recommender systems attacks have not been studied “in the wild”, prior

research has relied on laboratory-developed models of malicious users. Those models

consist of user profiles containing item ratings based on statistical distributions, e.g.,

random or “average” ratings for items. These attack models have been analyzed

in detail and attack detection methods based on those models have been researched.

Our concern is that attackers continue to find new and less detectable forms of attack;

therefore, extensions to current attack research are needed in order to keep up with

advances in attack formulation.

This dissertation extends the body of knowledge of attack models by designing novel

attacks based on explicitly-determined “influence” characteristics of users within a
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recommender system. For collaborative recommenders, i.e., those based on ratings

similarities between users, a social graph describing the relationships between users

can be defined. And from Social Network Analysis, we know that central, or “power”,

users are those that wield influence over other users. In the recommender system

context, the term “power user” denotes users who have considerable influence over the

recommendations presented to other users. We are not advocating or suggesting that

real power users will use their influence to attack recommender systems; instead, the

concern is whether malicious users can attack a recommender system using carefully

crafted synthetic power user identities capable of eluding detection. Power users are

known to have strong influence over large groups of users; therefore, attackers that

can acquire the influence accorded to power users may have strong impacts on system

recommendations. This gives rise to the main research questions for this dissertation:

(1) Does the use of Social Network Analysis identify more influential Power Users

than other methods? (2) Will synthetic Power User profiles generated from power

user characteristics retain the same level of influence of real Power Users? (3) What

happens to Recommender System accuracy and robustness when power users attack?

(4) Can a novel attack be crafted to achieve power user capability with strong influence

and “low” cost of attack? (5) What is the most effective method of mitigating power

user attacks?

The research strategy adopted in this dissertation consists of a quantitative ex-

perimental design using system accuracy and robustness as the constructs. In this

context, accuracy is a measure used to evaluate a recommender system’s predictive

performance based on the difference between the predicted and actual user ratings;
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robustness is a measure used to evaluate the stability of recommendations in the pres-

ence of fake information. The approach for this dissertation is empirically-focused

in order to evaluate the accuracy and robustness of recommender systems under

influence-based models of attack rather than previously studied statistically-based at-

tack models. The variables include novel attack models developed in this dissertation

(Power User Attack, Power Item Attack), power user selection methods (In-Degree

Centrality, Aggregated Similarity, Number of Ratings), collaborative filtering algo-

rithms (User-based, Item-based, SVD-based), and publicly-available domain datasets

(MovieLens, Yahoo! Music). To evaluate the experimental results, accuracy metrics

(Mean Absolute Error) and robustness metrics (Hit Ratio, Prediction Shift, Rank)

are used, and statistical analyses are performed to test pre-established dissertation

hypotheses.

The major findings are:

• A relatively small number of power users (5% or less of the user base on selected

datasets) can have significant effects (from the attacker’s viewpoint) on recom-

mender system predictions and top-N lists of recommendations across multiple

power user selection methods, collaborative filtering algorithms, and the movie

and music domains tested.

• Power User Attack profiles generated from characteristics of In-Degree and

Number of Ratings power users result in more effective attacks (from the at-

tacker’s viewpoint) than attack profiles generated from characteristics of Ag-

gregated Similarity power users across collaborative filtering algorithms and

the movie and music domains tested.
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• The use of In-Degree Centrality to select a set of power users results in power

users with higher influence than other selection techniques for user-based rec-

ommenders in the movie domain tested.

• A significant percentage of synthetic user profiles generated from statistical

characteristics of power users were identified by the In-Degree and Number of

Ratings power user selection methods in the movie and music domains tested.

• Item-based collaborative recommenders, previously considered robust to attack,

are vulnerable to the novel Power Item Attack using a novel Multiple-Target

design approach.

• Reducing the influence of power users is a more effective and less impactful

mitigation strategy than completely removing power users from the dataset for

user-based recommenders for the movie domain tested.

The principal conclusions are: (1) Power user attacks can have significant impact

on the predictions generated by popular collaborative recommender algorithms across

the movie and music domains tested, i.e., these attacks can efficiently and effectively

bias the recommender predictions as measured by accuracy and robustness metrics,

(2) Synthetic power user profiles generated from the In-Degree and Number of Ratings

power user selection methods result in effective power user attacks, and (3) Due to

its low “cost” of attack, the simple Number of Ratings method is the most efficient

approach for selecting and generating power user profiles.

The implications of these findings are that system operators should be aware that

collaborative recommenders are vulnerable not only to traditional attack models, but

also to new attack vectors such as the Power User Attack model. System operators
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should consider using an “influence reduction” mitigation strategy to defend against

such attacks rather than power user elimination, i.e., they should seek to balance sys-

tem accuracy and robustness objectives given the trade-offs between these measures

during power user attacks. In order to generalize these findings, future work will need

to experiment using larger, production-sized datasets with millions of users and items

as well as testing in several domains.
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CHAPTER 1: INTRODUCTION

Recommender Systems (RS) help people quickly sort through large amounts of pos-

sible options by providing lists of personalized recommendations tailored to satisfy

the end-user’s preferences and inquiries. Today, these systems are used in a variety

of applications such as e-commerce, travel, health care, education, news, research

articles, financial services, online dating, and many others. For example, online shop-

ping and browsing presents users with a vast amount of information and product

choices. In order to deal with this type of information overload, many top online re-

tailers use Recommender Systems to provide shoppers with a more personalized, and

less daunting, shopping experience. In general, recommender systems analyze large

amounts of data and information on behalf of application/system users to provide (a)

recommendations on actions the user should take such as buying a product, selecting

a restaurant, renting a movie, reading an article, etc., and (b) predictions, i.e., the

expected value of the user’s rating for an item (product, restaurant, movie, article,

etc.), as a single value or as a ranked list of predicted values. There exist various

types of recommender systems based on how they determine their recommendations

and predictions [1]; the most popular are Collaborative Filtering (CF), wherein many

users rate items and the recommender’s predictions are computed based on the rat-

ings provided by other “similar” users or items and Content-Based, where the basic

process consists of matching attributes of a user profile, where preferences and inter-
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ests are stated, with the attributes of other items in order to find and recommend

new items that may be of interest to the user.

Recommender systems not only help users overcome the problem of information

overload, they can also help online businesses drive sales by providing recommen-

dations of additional items to online shoppers based on products they are currently

browsing, e.g., Amazon.com’s “Customers Who Bought This Item Also Bought ..”

provides a list of product offerings generated by their underlying recommender sys-

tem. As with many online systems, there is a potential for some users to abuse the

prediction mechanisms or subvert the results. For example, in order to have rec-

ommender systems favor their own product or diminish their competitor’s product,

unscrupulous or malicious sellers may attempt to “shill” 1 the system to have their

products recommended more often and, hence, to increase their sales volume.

1.1 Problem of Attacks on Recommender Systems

One of the key problem areas in recommender systems is protecting “robustness”,

i.e., stability of recommendations in the presence of fake information [38] while main-

taining a high level of system “accuracy”, i.e, predictive performance based on the

difference between the predicted and actual user ratings [56]. The problem with RS

attacks is that, if left undetected or unmitigated, the system’s database becomes

compromised and can generate biased recommendations for users, thereby negatively

impacting the system’s accuracy and robustness characteristics. For example, this

can cause online shoppers to waste time and money by following inaccurate or false

1A person who publicizes or praises something or someone for reasons of self-interest, personal
profit, or friendship or loyalty.
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recommendations and, in the long term, this problem could also diminish the users’

trust in the online shopping experience.

Evidence of attacks on recommender systems are difficult to come by directly in

the research literature because online system operators are loathe to share details of

attacks on their systems for obvious security, privacy, and business reasons. However,

some attacks to online recommender systems have been documented in the media

and research literature. Amazon2 was forced to remove a link to a sex manual that

appeared associated with a spiritual guide by a well-known Christian televangelist;

the two titles were somehow linked as a result of a recommender system that tracks

and displays lists of merchandise under the title, “Customers who shopped for this

item also shopped for these items”3. Online auction website eBay4 which uses a rec-

ommender system as a reputation mechanism, found users who subverted the system

by purchasing good ratings (feedback) from other members in order to bolster their

own reputations.5 More recently, online websites such as TripAdvisor6 and Yelp7

have been subjected to attacks known as “opinion spam” that include fake reviews to

either promote or degrade specific products and services8 9 10. Burson-Marsteller11,

a global Public Relations and Communications consulting firm, surveyed 1,000 in-

fluential consumers’ trust of online reviews. The study found that, compared to a

2www.amazon.com
3http://news.cnet.com/2100-1023-976435.html
4www.ebay.com
5http://www.auctionbytes.com/cab/abn/y03/m09/i17/s01
6www.tripadvisor.com
7www.yelp.com
8http://www.businessweek.com/magazine/a-lie-detector-test-for-online-reviewers-09292011.html
9http://www.dailymail.co.uk/travel/article-2059000/TripAdvisorcontroversy-Reviews-website-

launches-complaints-hotlines.html
10http://www.cs.uic.edu/˜liub/FBS/media-coverage.html
11www.burson-marsteller.com
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similar poll conducted previously, an increasing number of consumers believed that

fake reviews or positive comments on online websites were considered a problem.12

Detection and analysis of opinion spam reviews have been studied by researchers

[22, 42] using machine learning and semantic analysis methods.

1.2 Attack Methodology and Illustrative Example

In general, attacks can be perpetrated against content-based or collaborative fil-

tering recommenders. In collaborative recommenders, attacks are typically used to

either promote (“push”) or demote (“nuke”) a target item. Content-based systems are

subject to “opinion spam” or fake reviews that either promote or demote (disparage)

a product or service. In the collaborative filtering literature, attempts to influence

recommender system results by providing false ratings are known as “shilling attacks”

[26], or “profile injection attacks” [36]. A user profile contains the set of ratings a

user has made when using the recommender system and attackers will submit one or

more user profiles (called attack user profiles) containing fake item ratings that push

or nuke a specific item called the target item. For a push attack, the target item’s

rating is set to the maximum rating value and for a nuke attack, the target item’s

rating is set to the minimum rating value. So, in order to mount an effective attack

against collaborative recommender systems, malicious users carefully construct attack

user profiles so that they appear to be “similar” to many other users by manipulating

the number of profiles, the number ratings per profile, and the specific rating values

inserted into the profiles including the target item [26, 10, 8, 36].

In order to illustrate a simple attack on a collaborative recommender system, con-

12http://www.adweek.com/news/advertising-branding/influencers-wary-fakes-90768
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sider the user-item matrix shown in Figure 1, with 8 legitimate users (Bob, Ted,

Fred, Ginger, Jodie, Jill, Tom, Corey), 3 attack users (Alice, Axel, Alvin), and 6

movie items (Avengers, Titanic, Avatar, Twilight, Psycho, Alien), as adapted from

[36]. It shows the ratings that users have given to the items on a scale of 1 (dis-

liked) to 5 (liked very much). The attackers have implemented a push attack on the

target item Alien, they have attempted to increase the similarity between Avengers

and Alien with ratings of 5, and they have also attempted to increase the similarity

between the attackers and Bob with ratings of 5. In this example, Bob will request

a recommendation from the recommender system for the movie Alien. Before the

attack, popular collaborative recommender algorithms used for prediction (see Sec-

tion 2.1 for more details), such as the user-based algorithm, would provide Bob a

predicted rating of 2 for the movie Alien. After the attack by just one attacker (Al-

ice), this same user-based algorithm would provide Bob a predicted rating of 4 for the

movie Alien. Although the predicted rating, after the attack, will vary depending on

the collaborative filtering algorithm used, the prediction will be higher than it would

have been before the attack, misleading Bob to believe that he would actually enjoy

the movie (see Section 3.4 for more details).

1.3 Research Problem and Research Questions

The possibility of designing and injecting user profiles into recommender systems

to deliberately and maliciously manipulate the recommendation output of a Collab-

orative Filtering system was first raised by O’Mahony et al in 2002 [39]. Further

work determined that attacks on recommender systems can be mounted by using

one of several attack models. Attack models such as Random, Average, Bandwagon,
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Figure 1: Example – Push attack on a target item

Segment, etc., define the attack user profile data based on the attacker’s knowledge

of the underlying recommender system’s algorithms, database, items, and/or users

[6, 7, 26, 36, 34, 59]. These attack models inject artificial or synthetic attack user pro-

files that contain either random item ratings whose values are selected from a normal

distribution around the mean rating of the dataset (this is not a very effective attack),

item ratings whose values are selected from a normal distribution around the mean

rating for each item (a more effective attack against neighborhood-based collabora-

tive filtering algorithms), or a variant of these approaches. An important dimension

of attacks on recommender systems is known as the cost of attack [9]. The cost to

mount an attack is controllable by the attacker and relates to the effort required to

yield the desired outcome; the objective is to keep the cost low. Furthermore, the

more knowledge an attacker has about the dataset’s users, items, and ratings, the

more effective the attack. However, that knowledge is difficult albeit not impossible

to obtain. Therefore, attack models that have low knowledge requirements have an
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edge over other models, costs being equal. Attacks on recommender systems have

continued to be studied using a variety of machine learning and statistical analysis

techniques in the areas of attack detection and improvements in algorithm robustness

[38, 40, 10, 8, 36, 31]. The Influence Limiter algorithm [46] proves successful at miti-

gating attacks, albeit with low prediction accuracy [5]. Recommender systems using

dimensionality reduction techniques, such as matrix factorization based on Singular

Value Decomposition (SVD) [30, 32, 24], also appear to be robust to attack. A

recent summary on RS robustness has been provided in [9]. It should be noted that

none of these attacks explicitly consider the impact that user influence can have on

recommendations.

Although attacks on RS have been studied in the past, users with malicious intent

continue to find new ways to bias predictions and disrupt the system. Given that

existing attack models use synthetic user profiles that are not representative of actual

users and are more like statistically “average” users, we posit that there is a gap

in the prior research that has ignored the characteristics of real, and more influen-

tial, “power” users that can be used to generate synthetic user profiles for attacking

recommender systems.

So, what is a power user? The definition varies according to the context and

usually refers to a small percentage of the user population. For computer users, a

power user is a user of a personal computer who has the ability to use advanced

features of programs which are beyond the abilities of “normal” users, but is not

necessarily capable of computer programming and system administration. Power

user can also be a marketing term referring to a computer user who seeks and uses



8

products having the most features and the fastest performance. In the social media

context, for example, Pew Internet research found that 20-30% of Facebook13 users

are considered to be power users14; they are active users and participate heavily in

core Facebook activities such as sending friend requests, tagging friends in photos,

posting status updates, commenting, pressing the “like” button, and sending private

messages. Due to this high level of activity, they are likely to be influencers and

are targeted by online businesses to influence other users15. Yahoo! researchers [63]

found that about 20,000 users (less than 0.05% of the user population) generated 50%

of all tweets read and shared on Twitter16. Pinterest posts a list of most followed

users17 and social media marketers have written a book on “how to pin down more

customers, crush your competition, and increase your company’s revenue” by taking

advantage of the Pinterest power user list 18. The common theme, in the social media

context, is that a small number of power users are able to influence a large number

of other (non-power) users in the spread of ideas and opinions.

Power users in recommender systems are similar to those defined in the social media

context. Power users in RSs have been referred to as users with a large number of

ratings [20] as well as those that are able to influence the largest number of other

users [14, 44, 3, 18].

13www.facebook.com
14http://www.pewinternet.org/Press-Releases/2012/Facebook-users.aspx
15http://mashable.com/2012/05/21/facebook-power-user-infographic/
16www.twitter.com
17http://pinterest.com/pinterestpower/most-followed-pinterest-users/
18http://www.powerofpinterest.com/resources/pinterest-power-user-list/
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Therefore, in this dissertation, the term “power user”

denotes users who have considerable influence over the

recommendations presented to other users and can be

characterized as the top x% of users in a dataset when

ranked by influence over the recommendations given to

other users.

To measure influence, Rashid et al [44] used the number of prediction differences

above a prediction threshold when a user is removed from the dataset, Goyal and

Lakshmanan [18] used the number of users that had the prediction for a target item

shifted sufficiently above a threshold so that the item appears in their top-N list,

Anand and Griffiths [3] used MAE and coverage to evaluate various seed (influential

user) selection algorithms, and Domingos and Richardson [14] used the expected lift

in profit earned by influencing other users, recursively. Influence, for our purposes, is

measured as the ability of a power user i to change (positively or negatively) the RS

prediction of another user j, or for an power user attacker i’s target item to appear

in user j’s top-k list.

These power users are of interest to system operators and marketers when launching

a new product because a positive endorsement (high rating) can translate into product

recommendations to a large number of users. This is known as market-based use of

RS and has been previously promoted as a solution to the “cold-start” or “new item”

problem wherein new items cannot be recommended to users because they have few

or no ratings [14, 3]. At the core of every CF RS is a user-item matrix, containing
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user ratings for items; the user-user relationships and similarity matrix derived from

the user-item matrix can, therefore, be viewed as a social network with users as nodes

and nearest-neighbor relationships between users as edges. Social Network Analysis

has well-known concepts that can be readily applied to RS, especially with regard

to the levels of influence that some users have over others. The concept of Degree

Centrality [57] specifies that nodes (users) who have more edges (connections) to

other nodes may have advantages; high in-degree refers to nodes that many other

nodes connect to and corresponds to high prominence, prestige, or popularity and

high out-degree refers to nodes that connect to many other nodes and corresponds

to high expansiveness. Also, some authors claim that “it is advantageous to be

connected to those who have few options; power comes from being connected to those

who are powerless” [4]. Collaborative relationships in recommender systems can be

represented as a social network [43], where in-degree represents the number of contact

lists a user appears in and out-degree indicates the number of users on a contact list

that can be used to ask opinions or advice. A high in-degree indicates a higher level

of trust in this user and that this user has more power because they can influence

other users with their opinions; a high out-degree means that this user trusts the

advice and opinions of others. Additionally, neighborhood characteristics and power

user identification in recommender systems were analyzed in [27] as part of study on

temporal social networks. Prior work in this area has determined that maximizing

the spread of influence through a social network is an NP-hard problem to solve

optimally [23, 18] and Rashid et al [44] proposed a technique to measure influence

in a network of users and found it to be computationally expensive. To circumvent
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these issues, heuristics have been used as power user selection methods to identify

and select groups of influential users [18, 27]. In this dissertation, we follow the lead

of [18, 27] and specify heuristic power user selection methods.

Studies such as [14, 3, 18] show that power users possess the influence to sufficiently

impact a RS for “white hat” marketing purposes. The question is whether the influ-

ence these power users have could also be used for “black hat” purposes, i.e, what

happens when attack user profiles look more like power user profiles? The potential

for power user attacks exists and there are documented instances of power users who

have gamed online systems, such as the July 2012 Wired article on Digg power users19.

Our conjecture is that an influence-based attack model will enhance the effectiveness

of RS attacks (from the attacker’s perspective), i.e., attackers that can acquire the

influence accorded to power users will have high impacts on RS recommendations.

Thus, this dissertation posits a novel attack model known as the Power User Attack

(PUA) that uses the concept of “power users” and their influence over other users.

Our assertion is that attack user profiles, with the influential characteristics of power

users, can have significant (negative) impacts on RS accuracy and robustness. We

analyze various power user attack scenarios to determine the accuracy and robustness

impacts on the RS in order to understand and mitigate these attacks. For clarity,

the power user attack envisioned in this research is not about having hundreds or

thousands of actual power users colluding to mount an attack, rather, it is about

an attacker being able to generate a set of synthetic power user profiles that, when

stealthily injected into an RS, can effectively bias the recommendations.

19http://www.wired.com/gadgetlab/2012/07/mklopez-digg-power-user-interview/
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The Research Gap investigated in this dissertation can be summarized as follows:

Having the ability to generate a set of synthetic user profiles can leave systems vulner-

able to exploitation from more subtle, yet powerful, attacks based on influential power

user characteristics and properties. This vector of attack remains an open question

in RS robustness research.

The central thesis of this work is that attacks on recommender systems using

influence-based methods of generating user profiles (rather than previously-studied

statistical “average” methods) are able to effectively bias recommendations to suit the

attacker’s objectives and negatively impact system accuracy and robustness measures.

Given that power users are known to have strong influence over large groups of users,

attackers that can acquire the influence accorded to power users may have strong

impacts on system recommendations. This gives rise to the main dissertation research

questions (DRQ) that are addressed in the body of this dissertation (Chapters 5, 6,

7, 8, 9):

DRQ-1: Does the use of Social Network Analysis identify more influential Power

Users than other methods?

DRQ-2: Will synthetic Power User profiles generated from power user characteristics

retain the same level of influence of real Power Users?

DRQ-3: What happens to Recommender System accuracy and robustness when power

users attack?

DRQ-4: Can a novel attack be crafted to achieve power user capability with strong

influence and “low” cost of attack?

DRQ-5: What is the most effective method of mitigating power user attacks?
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1.4 Dissertation Scope and Objectives

To address the problem of power user attacks on recommender systems, this dis-

sertation covers the following topic areas:

1. Power User Selection and Evaluation of their Impact in RS: The following

heuristic methods are described, analyzed, and evaluated in this dissertation:

• In-Degree Centrality: Users with the highest user-user in-degree values are

selected as power users.

• Aggregated Similarity: Users with highest user-user similarity correlation

values are selected as power users.

• Number of Ratings: Users with the most number of ratings are selected as

power users.

The evaluation of power user selection techniques include analyses before and

after a power user attack. The objectives are to evaluate different techniques

for power user selection in RS and to study alternative methods of evaluating

power user selection in the context of power user attacks.

2. Power User Characteristics and Generation of User Profiles: This research inves-

tigates the statistical characteristics of power users contained in the social graph

within the RS, how they influence other users, how they differ statistically from

typical users, how their influence can be used to modify RS recommendations,

and how this data can be used to generate fake/synthetic attack user profiles

that can be injected into the RS to impact recommendations. This work also

specifies how power user profiles are different (or similar) to well known attack
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signatures such as random, average, bandwagon, and segment attacks, among

others. The objectives are to model power user characteristics and to develop

synthetic attack user profiles based on the power user model.

3. Power User Attack Execution and Evaluation of their Impact in RS: This ef-

fort defines and executes the Power User Attack (PUA) model with simulated

or synthetic power user attack profiles. This attack model is evaluated with

respect to impacts to RS accuracy and robustness across multiple power user

selection techniques, CF algorithms, datasets, and domains; trade-offs between

accuracy and robustness measures are also analyzed. In addition, this disserta-

tion investigates and evaluates the complementary Power Item Attack (PIA),

where the power user profiles are populated with influential “power items” that

are selected using the same techniques used to select power users. The objectives

are to develop new attack models based on the analysis of power user, and power

item, characteristics and to study alternative methods of evaluating the impacts

of power users and power items used to attack collaborative recommenders.

4. Power User Attack Mitigation: While removing attack user profiles from rec-

ommendation calculations is a straightforward approach to eliminating the at-

tacker’s influence in a laboratory environment, in live RS environments this ap-

proach could also have unwanted side effects [32]. For instance, in cases where a

legitimate power user is mistakenly identified as an attacker, the users that rely

on that power user’s neighborhood influence may be impacted and could lead

to satisfaction issues. This dissertation analyzes the impacts on RS accuracy

and robustness when power user attack profiles are removed from recommen-
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dation calculations to mitigate the attack impacts as well as the impacts when

power user influence is reduced by adjusting the similarity weighting during the

prediction calculations. The objectives are to determine more effective power

user attack impact mitigation strategies compared to 100% removal of identified

power users.

1.5 Research Strategy and Hypotheses

1.5.1 Research Strategy

The research strategy adopted in this dissertation consists of a quantitative exper-

imental design using system accuracy and robustness as the constructs. This work

extends previous research [39, 26, 36, 9] on RS attack models, attack evaluation, and

attack mitigation. This is also a data-driven and empirically-focused dissertation that

evaluates the accuracy and robustness of recommender systems under attack using

established metrics [20, 36, 9, 56]. The experimentation uses an Apache Mahout

platform20 and publicly-available research datasets in the movie and music domains

(MovieLens21 and Yahoo! Music22, respectively).

The variables used in this dissertation include:

• Novel attack models: Power User Attack and Power Item Attack (see Chap-

ters 5 and 7, respectively).

• Power user selection methods: In-Degree Centrality, Aggregated Similarity, and

Number of Ratings (see Section 6.2).

• Collaborative filtering algorithms: User-based, Item-based, and SVD-based (see

20apache.mahout.org
21www.grouplens.org
22http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
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Section 2.1).

• Publicly-available domain datasets: MovieLens and Yahoo! Music.

To evaluate the experimental results, accuracy metrics (Mean Absolute Error) [56]

and robustness metrics (Hit Ratio, Prediction Shift, Rank) [36] were used; descriptions

of these measures are provided in Section 2.2. Hypotheses were developed for the

experiments in this dissertation and were tested using statistical analysis.

1.5.2 Dissertation Hypotheses

In the body of this dissertation (Chapters 5, 6, 7, 8, 9), empirical analysis was con-

ducted to answer research questions and to test specific hypotheses directly related to

each of those experiments. In order to summarize the results of these various exper-

iment hypotheses, the following dissertation hypotheses (DH ) have been developed

to answer the research questions posed in Section 1.3. Therefore, these dissertation

hypotheses are general forms of the specific hypotheses used in the empirical analysis:

DH-1: The use of In-Degree Centrality to select a set of power users results in power

users with higher influence than other selection techniques, across multiple datasets

and domains.

DH-2: A significant percentage of synthetic user profiles generated from statistical

characteristics of power users will be identified by selected power user selection tech-

niques across multiple datasets and domains.

DH-3: Power user attack profiles generated from characteristics of InDegree-selected

power users will result in more effective attacks (from the attacker’s viewpoint) than

attack profiles generated from characteristics of power users selected from other tech-
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niques across CF algorithms, datasets, and domains.

DH-4: A relatively small number of power users (5% or less of the user base on

selected datasets) can have significant effects on RS predictions and top-N lists of rec-

ommendations across multiple power user selection techniques, collaborative filtering

algorithms, datasets, and domains.

DH-5: Reducing the influence of power users is a more effective and less impactful

mitigation strategy than completely removing power users from the dataset.

The disposition of these dissertation hypotheses is provided in the Summary sections

of Chapters 5, 6, 7, 8, 9 and in the Dissertation Summary Chapter 10. Furthermore,

the dissertation research questions (DRQs) addressed by each of the dissertation hy-

potheses (DHs) can also be found in the Dissertation Summary Chapter 10.

1.6 Dissertation Contributions

The main contributions of this research are:

1. Power User Attack Model: This is a novel attack model based on influential

power users. The model specifies how power users are selected from a dataset

and how the power user profiles are configured for the attack. Different tech-

niques for power user selection were evaluated and alternative methods of eval-

uating power user selection were analyzed in the context of power user attacks.

See Chapters 5 and 6.

2. Power User Model: This model specifies the statistical characteristics of power

users in sufficient detail so that synthetic power user attack profiles can be gen-

erated for attack purposes. This effort mainly involved characterizing power

users according to their statistical properties and generating synthetic power
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user profiles. The degree to which synthetic power user profiles resemble actual

power user profiles was evaluated across multiple power user selection tech-

niques. See Chapter 6.

3. Evaluation Approach for Power User Selection and Power User Attacks: The

approach consists of metrics collected before and after the power user attack

and is used to evaluate both the power user selection and the power user attack.

A power user evaluation process that combines impacts to accuracy metrics be-

fore an attack and impacts to accuracy and robustness metrics after an attack

was analyzed. The use of In-Degree Centrality to select a set of power users

compared to other power user selection techniques was evaluated across mul-

tiple collaborative filtering algorithms, datasets, and domains. The degree to

which power user attacks using synthetic profiles can impact RS recommenda-

tions across multiple power user selection techniques and collaborative filtering

algorithms was also evaluated. See Chapters 5 and 6.

4. Power Item Attack Model and Power Item Model: The novel power item at-

tack model uses synthetic power user profiles populated with power items in a

novel attack configuration using multiple targets. The power item model de-

scribes how synthetic power users are generated using characteristics of influen-

tial (power) items. The power item attack was evaluated across multiple power

user selection techniques and collaborative filtering algorithms. See Chapter 7.

5. Mitigation Approach for Power User Attacks: The approach is to reduce the

impact of the power user attack without having to remove 100% of the power

users because of the important role that power users play in maintaining a
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higher level of recommender system accuracy. The approach reducing the in-

fluence of power users is a more effective and less impactful mitigation strategy

than completely eliminating the influence of power users was evaluated across

multiple power user selection techniques and collaborative filtering algorithms.

See Chapter 8.

6. New Evaluation Metrics: Throughout this dissertation, several metrics were

developed when evaluating accuracy and robustness measures. The AC met-

ric discussed in Chapter 4 was used to show the trade-offs between accuracy

and coverage when evaluating collaborative filtering algorithms, the NTPU and

NNTPU metrics discussed in Chapter 7 were used to determine the effective-

ness of the Power Item Attack within and between experiments, and the ARM

metric discussed in Chapters 8 and 9 was used to evaluate the trade-offs be-

tween accuracy and robustness when evaluating power user attack mitigation

strategies.

1.7 Dissertation Organization

This dissertation is organized as follows:

Chapter 1 is an introduction to the dissertation research effort, including the research

problem, an example Recommender System attack, a discussion of research gaps,

scope and objectives, research questions and hypotheses, contributions, publications

related to this research, and organization of this dissertation.

Chapter 2 provides background on Collaborative Filtering Recommender Systems and

Evaluation methods for Recommender Systems.

Chapter 3 provides background on Attacks on Collaborative Filtering Recommender
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Systems.

Chapter 4 documents research [53] that describes and evaluates the changes made to

Mahout, the recommender system platform used in this research, in order to make

Mahout fit for our purposes. This research also shows how power users contribute to

providing accuracy and robustness in RS using composite metrics, such as the novel

AC measure [52] (see § 4.3) for accuracy and coverage.

Chapter 5 documents research [60, 51, 54] that describes the power user attack model

and initial investigation relative to power user selection, power user attacks, and

evaluation of power user selection methods and power user attacks against user-based,

item-based, and SVD-based CF algorithms.

Chapter 6 documents research [61] that describes the power user model based on power

user characteristics, the generation of synthetic attack user profiles based on the power

user model, the evaluation of power user selection methods, and the execution and

evaluation of the power user attack using synthetic power users against user-based

and SVD-based CF algorithms.

Chapter 7 documents research [55] that describes a power user attack model using

power items as well as the execution and evaluation of the power user attack using

synthetic power users against user-based, item-based, and SVD-based CF algorithms.

Chapter 8 documents research [62] that describes and evaluates power user attack

mitigation strategies using synthetic power users against the user-based CF algorithm

for the movie domain.

Chapter 9 documents research experiments evaluating power user selection methods,

execution and evaluation of the power user attack using synthetic power users, and
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mitigation strategies for power user attacks against user-based recommender systems

using music domain datasets.

Chapter 10 provides a summary of the results and contributions of this dissertation.

Appendix A provides the list of research papers published during the development of

this dissertation.

Appenidx B contains a table of statistics for datasets used in this dissertation.



CHAPTER 2: COLLABORATIVE RECOMMENDER SYSTEMS

Collaborative filtering employs user profiles that typically consist of item ratings,

often on a five point Likert scale. So, an initial user rating profile for a movie rec-

ommender might consist of a few ratings, such as: Avatar = 4; The Muppets = 5;

Hugo = 2. Arranging data on dimensions of m users and n items gives the traditional

CF user-item matrix data structure. In order to generate predictions, user-based and

item-based CF recommender systems follow a consistent process:

• Establish similarity between users (user-based) or items (item-based)

• Weight the similarities to emphasize users (or items) that are most influential

in establishing similarity

• Compute a prediction that takes into account the users’ (or items’) ratings as

well as their similarities.

In addition to the user-item matrix, SVD-based CF recommenders require knowl-

edge of the number of latent features and use matrix factorization techniques to

compute predictions.

2.1 Collaborative Filtering Algorithms

2.1.1 User-Based Algorithms

In user-based systems, recommendations made to the active user are based on what

other similar users have liked in the past; similar users are selected based on statistical

methods and form a neighborhood of rating influence for the active user. For user-
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based CF systems, similarities between users often employ Pearson Correlation, as

described in [45] and [19]. Similarity weighting is then used to rank similarity values

according to the number of co-rated items between two users; similarities calculated

from user pairs with a large number of co-rated items will be ranked higher (i.e., given

a higher weight). Other parameters include similarity thresholding (ignoring users

with similarity below the threshold value) and kNN neighborhood size (bounding the

number of users comprising the neighborhood).

Two popular methods are often used for prediction calculation: weighted and mean-

centered. The weighted prediction method [13] ensures that predicted ratings are

within an allowable range (e.g., between 1.0 and 5.0). After similarities are calcu-

lated, the k most similar users that have rated the target item are selected as the

neighborhood. After identifying a neighborhood, a prediction is computed for a target

item i and target user u as follows:

pu,i =

∑
vεV simu,v ∗ rv,i∑
vεV | simu,v |

(1)

where V is the set of k similar users and rv,i is the rating of those users who have

rated item i, and simu,v is the mean-adjusted Pearson correlation coefficient described

above. Rating predictions calculated based on zero or one co-rated items are typically

discarded as one co-rated item is insufficient to provide a reliable prediction. The

mean-centered prediction method, as documented in [45, 19, 13], is computed for a

target item i and target user u as follows:

pu,i = ru +

∑
vεV simu,v(rv,i − rv)∑

vεV | simu,v |
(2)
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where V is the set of k similar users who have rated item i, rv,i is the rating of those

users who have rated item i, ru is the average rating for the target user u over all

rated items, rv is the average rating for user v over all co-rated items, and simu,v is

the mean-adjusted Pearson correlation coefficient described above. This technique is

used to compensate for the fact that different users may use different rating values

to quantify the same level of satisfaction for an item.

2.1.2 Item-Based Algorithms

In item-based systems, recommendations made to the active user are based on

ratings of similar items within the active user’s profile. Similar items are determined

based on statistical methods across all the users in the user-item matrix. For item-

based CF systems, similarities between items are determined using either the Pearson

Correlation coefficient or the Adjusted Cosine Similarity measure [47]. Similar to

Pearson Correlation, Adjusted Cosine subtracts the corresponding user average from

each co-rated pair to take into account the differences in rating scale between different

users. As with user-based approaches, similarity weighting and thresholding may be

employed.

Popular prediction calculation approaches again include weighted and mean-centered.

The weighted prediction method [47] ensures that the predicted ratings are within

allowable range. The prediction of item i for user u is made by computing the sum

of the ratings given by user u on the items similar to item i. Each rating is then

weighted by the corresponding similarity s(i, j) between items i and j.

pu,i =

∑
jεallsimilaritems(si,j ∗ ru,j)∑
jεallsimilaritems(| simi,j |)

(3)
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This method computes the prediction on an item i for a user u by computing the sum

of the ratings given by the user on the items similar to i. Each rating is weighted by

the corresponding similarity si,j between items i and j. This approach captures how

the active user rates the similar items. Also, rating predictions calculated based on

zero or one co-rated items are typically discarded as one co-rated item is insufficient to

provide a reliable prediction. The mean-centered prediction method [13], is computed

for a target item i and target user u as follows:

pu,i = ri +

∑
jεNu(i) simi,j(ru,j − rj)∑

jεNu(i) | simi,j |
(4)

where Nu(i) is the set of items rated by user u most similar to item i, ru,j is u’s rating

of item j, rj is the average rating for item j over all users who rated item j, ri is the

average rating for target item i, and simi,j is the similarity measure.

2.1.3 Singular Value Decomposition (SVD)

Item ratings provided by users are influenced by a set of (latent) factors or fea-

tures specific to a domain. For example, in the movie domain latent factors may

include genre, actors, directors, etc. Users tend to give high ratings to certain movies

with actors/actresses they like or to action movies if that is the genre they prefer.

Although these factors are not always obvious, the goal is to infer these latent fac-

tors using mathematical techniques known as matrix factorization. SVD is a matrix

factorization technique used in RS [25]. In SVD-based systems, users and items are

mapped into the same latent factor space; this latent space is then used to develop

recommendations for the active user that are based on latent factors automatically

inferred from user ratings, i.e., each rating is estimated as the dot product of the user
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feature vector and the item feature vector. Moreover, recommender systems with

many users (rows) and items (columns), consist of a dataset with factors that define

a high-dimensional space and have sparse information in that space. The data matrix

is sparse because, typically, most of the users have rated a small percentage of the

items available. High dimensional data is difficult to work with because adding more

factors can increase the noise and the error and there aren’t enough observations

to get good estimates or predictions. In order to deal this problem, dimensionality

reduction techniques such as SVD have been applied [48, 25, 2].

2.2 Evaluating Recommender Systems

A comprehensive set of guidelines for evaluating recommender systems was pro-

vided by Herlocker et al [20] and recently in Shani and Gunawardana [56]. While the

number of measures for evaluating has expanded over the years and includes metrics

for accuracy, coverage, robustness, confidence, trust, novelty, serendipity, diversity,

scalability, and others, the focus in this dissertation will be on the measurement of

accuracy, coverage, and robustness of recommender systems under attack.

2.2.1 Evaluating Accuracy and Coverage

Measures of accuracy include Mean Absolute Error and Root Mean Squared Error;

they are used to measure prediction accuracy of a recommender system.

Mean Absolute Error is calculated as follows,

MAE =

∑n
i=1 | PredictedRatingi − ActualRatingi |

n
(5)

where n is the total number of ratings predicted in the test run.

Another popular metric used in evaluating accuracy of predicted ratings is Root
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Mean Squared Error (RMSE). This metric penalizes large errors, e.g., a prediction

that is off by 2 points is more than twice as “bad” as one that is off by 1 point. RMSE

is calculated as follows,

RMSE =

√∑n
i=1(PredictedlRatingi − ActualRatingi)2

n
(6)

where n is the total number of ratings predicted in the test run.

As suggested in [20], the easiest way to measure coverage is to select a random

sample of user-item pairs, ask for a prediction for each pair, and measure the per-

centage for which a prediction was provided. To calculate coverage, compute the total

number of rating predictions requested that are unable to be calculated as well as the

total of number of rating predictions requested that are actually calculated; the sum

of these two numbers is the total number of ratings requested. Coverage is calculated

as follows:

Coverage =
Total#RatingsCalculated

Total#RatingsRequested
(7)

2.2.2 Evaluating Robustness

Robustness metrics such as Hit Ratio and Prediction Shift have been discussed in

detail in [36] and [9]. These were used to measure the success of the attack (from the

attacker’s standpoint) such that a high Hit Ratio or a high Prediction Shift meant

that the attack succeeded in changing the recommendations produced by the CF

system. The Prediction Shift metric is defined as follows: Let UT and IT be the sets

of users and items, respectively, in the test data. For each user-item pair (u, i), the

Prediction Shift denoted by ∆u,i can be measured as ∆u,i = p′u,i − pu,i where p and
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p′ are the pre-and post-attack predictions, respectively. A positive value means that

the attack has succeeded in making the pushed target item more positively rated.

The Average Prediction Shift for a target item i over all users can be computed as

∆i =
∑
uεUT

∆u,i

|UT |
and the Average Prediction Shift for all items tested can be computed

as,

∆ =

∑
iεIT

∆i

| IT |
. (8)

Although prediction shift is a good indicator that an attack has successfully (from

the attacker’s standpoint) made a pushed item more desirable, or a nuked item less

desirable, the item may still not make it into the top N list of recommendations

presented to the user. So, another metric, Hit Ratio, was developed to indicate the

percentage of users that have the target item in their top N list of recommendations.

Let Ru be the set of top N recommendations for user u. If the target item appears

in Ru for user u, the scoring function Hui has value 1; otherwise it is zero. Hit Ratio

for a target item i is given by HitRatioi =
∑
uεUT

Hu,i

|UT |
. The Average Hit Ratio can be

calculated as,

HitRatio =

∑
iεIT

HitRatioi

| IT |
. (9)

Average Rank [36], in the robustness context, is a measure that indicates the

relative position of a target item i in a top-N list of recommendations produced

after an attack. Let Tu be the set of predicted ratings in a top-N list for user u, and

let Rankui denote the ordinal position of target item i in the set Tu that is sorted

in descending (highest to lowest) order based on the predicted rating value. The

Average Rank for target item i, therefore, is the sum of the Rankui over all users u
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divided by the total number of users, i.e.,

Ranki =

∑
uεU Rankui
| U |

. (10)

2.2.3 Evaluating Recommender System Platforms

Revisiting evaluation in the context of recommender platforms has received recent

attention in the thorough evaluation of the LensKit platform using previously tested

collaborative filtering algorithms and metrics, as reported in [15]. A comprehensive

set of guidelines for evaluating recommender systems was provided by Herlocker et

al [20]; these guidelines highlight the use of evaluation metrics such as accuracy and

coverage and suggest the need for an ideal “general coverage metric” that would

combine coverage with accuracy to yield an overall “practical accuracy” measure.

Many of these evaluation metrics and techniques have also been covered recently in

[56].

Recommender system research has been primarily concerned with improving rec-

ommendation accuracy [29]; however, other metrics such as coverage [49, 17] and also

novelty and serendipity [20, 16] have been deemed necessary because accuracy alone

is not sufficient to properly evaluate the system. Mcnee et al [29] states that recom-

mendations that are most accurate according to the standard metrics are sometimes

not the most useful to users and outlines a more user-centric approach to evaluation.

The interplay between accuracy and other metrics such as coverage and serendipity

creates trade-offs for recommender system implementers and this has been widely dis-

cussed in the literature, e.g., see [17, 16] and our previous work discussing trade-offs

between accuracy and robustness [53].



CHAPTER 3: ATTACKS ON RECOMMENDER SYSTEMS

Attempts to influence recommender system results by providing false ratings feed-

back are known as “shilling attacks” [26], or “profile injection attacks” [36]. A user

rating profile contains the set of ratings a user has made using the recommender

system. Attacks are used to either promote (“push”) a target item by setting the

rating to the maximum value or demote (“nuke”) a target item by setting the rating

to the minimum value; furthermore, attackers will submit one or more user profiles

containing item ratings (called attack profiles) that push or nuke a specific item. Re-

search in attacks on recommender systems started in 2002 [39] and has continued to

be studied, especially in the areas of attack detection and improvements in algorithm

robustness [26, 38, 40, 10, 8, 36, 31].

3.1 Attack User Profile

A user profile contains the ratings data that has been entered by a specific user;

please refer to Table 1. Attack user profiles contain rating data consisting of the

following items [35, 36, 59]:

1. Ratings for selected items (IS), usually with particular characteristics deter-

mined by the attacker. The set of selected items represents a small group of

items that have been selected because of their association with the target item

(or a targeted segment of users). For some attacks, this set is empty.

2. Ratings for filler items (IF), are usually set randomly according to some distri-
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Table 1: Elements of an attack user profile

Attack User Profile
Selected Filler Unrated Target

Items Items Items Item
IS1,..s IF1,..f IU1,..u ITt

Ratings Ratings Ratings Rating
1 to 5 1 to 5 null 1 to 5

bution. On the other hand, the set of filler items represent a group of randomly

selected items in the database which are assigned ratings within the attack user

profile. Since the selected item set is small, the size of each profile (total number

of ratings) is determined mostly by the size of the filler item set.

3. Unrated items (IU). For some attacks, this set is empty.

4. Rating for the target item (IT), is usually a single item that is typically set to

the maximum or minimum rating depending on the attack intent.

Attack models, to be discussed below, can be defined by the methods by which they

identify the selected items, the proportion of the remaining items that are used as

filler items, and the way that specific ratings are assigned to each of these sets of items

and to the target item. In experimental results, filler size is reported as a proportion

of the size of the attack user profile (i.e., the set of all items in the attack user profile).

3.2 Attack Intent

The basic attack intents are carried out by adding attack user profiles to conduct

an attack. The purpose of the attack can be [26, 39]:

1. Push attack: boost the ratings for a specific product or group of products (called

a “push”) so that they get recommended more often,
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2. Nuke attack: to reduce the ratings for a specific product or group of products

(called a “nuke”) so that they get recommended less often.

It is also possible that a third intent could be added to this list, i.e., a purely malicious

intent to disrupt the recommender system for nefarious, gratuitous or “entertainment”

purposes; this attack intent has not been widely studied in shilling attack detection

research.

3.3 Attack Models

The attack intent is carried out using one of several models defined in the literature

[6, 7, 26, 36, 34, 59]; these models define the attack user profile data based on the

attacker’s knowledge of the underlying recommender system’s algorithms, database,

items, and users. Attack models include:

1. Average attack [26, 36]: In the average attack, each assigned rating for a filler

item corresponds (either exactly or approximately) to the mean rating for that

item, across the users in the database who have rated it. This attack user profile

uses the individual mean for each item rather than the global mean (except for

the target item). The attacker would have to have extensive knowledge of the

ratings in the dataset in order to effectively implement this attack.

2. Random attack [26, 36]: The random attack user profiles consist of random

ratings assigned to the filler items and a pre-specified rating assigned to the

target item. In this attack model, the set of selected items is empty. Items

not in the target set are rated randomly on a normal distribution with mean

3.6 and standard deviation 1.1. The attacker only needs a limited amount of
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knowledge to implement this attack.

3. Bandwagon attack [36]: The goal of the bandwagon attack is to associate the

attacked item with a small number of frequently rated items. This attack takes

advantage of the Zipf’s law distribution of popularity in consumer markets23.

The attacker using this model will build attack user profiles containing those

items that have high visibility; this attack only needs a limited amount of knowl-

edge to implement. Such profiles will have a good probability of being similar

to a large number of users, since the high visibility items are those that many

users have rated. O’Mahony et al [40, 41] used the k-Nearest Neighbor user-

based Collaborative Filtering algorithm for attack detection for early versions of

the Bandwagon (Popular) attack model and the push and nuke attack intents;

the authors coined the terms item popularity and item likeability to denote items

(in this case, movies) that were frequently rated and highly rated, respectively.

4. Segment attack [35, 36]: The segment attack model is designed to push an item

to a targeted group of users with known or easily predicted preferences. It is

especially effective against item-based Collaborative Filtering algorithms and

requires less knowledge on the part of the attacker than the Average attack

model. O’Mahony et al [40] use the k-Nearest Neighbor user-based Collabora-

tive Filtering algorithm for attack detection for early versions of the Segment

(aka Probe) attack model and the push and nuke attack intents.

5. Love/Hate Attack [36]: This is a simple attack with no knowledge requirements.

23Zipf’s law distribution of popularity in consumer markets: a small number of items, bestseller
books for example, will receive the majority of attention and also ratings.
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The attack consists of attack profiles in which the target item is given the

minimum rating value while other ratings in the filler item set are the maximum

rating value. A variation of this attack can also be used as a push attack by

switching the roles of minimum and maximum values.

6. Average over Popular (AOP) [21]: Chooses filler items from the top x% of most

popular items, rather than from the entire catalog of items, where x is chosen

to ensure that the profiles are undetectable by the PCA detector proposed in

that study.

7. Obfuscation Attack [58, 21]: This is an attack that deviates from other known

attack models, mentioned in this section, to avoid detection. Three types of

deviations from the known attack models have been proposed by Williams et

al [58]:

• Noise Injection: involves adding a Gaussian distributed random number

multiplied by a constant governing the amount of noise to be added to

each rating within a set of attack user profile items. This noise can be

used to blur the profile signatures that are often associated with known

attack models.

• User Shifting: involves incrementing or decrementing (shifting) all ratings

for a subset of items per attack user profile in order to reduce the similarity

between attack users.

• Target Shifting: for a push attack, is simply shifting the rating given to

the target item from the maximum rating to a rating one step lower, or in

the case of nuke attacks increasing the target rating to one step above the
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lowest rating.

Random and Average attack models represent, respectively, the low and high ends of

the dataset content knowledge spectrum. Random attacks require very limited knowl-

edge of the ratings distribution of the items in the dataset and the only requirement

is that the attacker know the overall average rating and standard deviation which

can be obtained by sampling the system. On the other hand, Average attacks require

knowledge of the average rating for each item in the dataset, which is much more

difficult, if not impossible, knowledge to obtain.

It should be noted that none of these attacks explicitly consider the impact that user

influence can have on recommendations. Thus, the Research Gap investigated in this

dissertation can be summarized again as follows: Having the ability to generate a set

of synthetic user profiles can leave systems vulnerable to exploitation from more subtle,

yet powerful, attacks based on influential power user characteristics and properties.

This vector of attack remains an open question in RS robustness research.

3.4 An Illustrative Example

In order to illustrate the various collaborative filtering algorithms and attacks on

recommender systems, consider the matrix shown in Figure 2 that was also presented

in Section 1.2. This matrix contains 8 legitimate users (Bob, Ted, Fred, Ginger,

Jodie, Jill, Tom, Corey), 3 attack users (Alice, Axel, Alvin), and 6 movie items

(Avengers, Titanic, Avatar, Twilight, Psycho, Alien), as adapted from [36]. It shows

the ratings that users have given to the items on a scale of 1 (disliked) to 5 (like very

much). The attackers have implemented a push attack on target item Alien, they
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Figure 2: Example – Push attack on a target item

have attempted to increase the similarity between Avengers and Alien with ratings

of 5, and they have also attempted to increase the similarity between the attackers

and Bob with ratings of 5. In this example, Bob will request a recommendation from

the recommender system for the movie item Alien.

Figure 3: Example – Recommender system predictions, before and after attacks

Figure 3 shows the results for Bob and Alien across three sequential attack profile

injections. Before the attack, Alien would likely not be recommended to Bob given

that the predicted rating is somewhere between 1.83 and 2.01, depending on the

algorithm used for prediction. However, if all three attackers struck at the same time

(After Alice, Axel, Alvin), the user-based algorithm would recommend Alien to Bob
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with a predicted rating of 5, whereas the item-based and SVD-based algorithms would

provide Bob with predicted ratings for Alien of 2.45 and 2.98, respectively. This result

indicates that the attackers successfully raised the predicted rating from 2 to 5 for

Alien in a user-based recommender system: Bob may take the advice and purchase

the movie item only to be disappointed by the manipulated recommendation. This

result also shows that the item-based and SVD-based algorithms appear to be more

resistant to attack than the user-based approach and that Bob would likely not be

recommended Alien since both item-based and SVD-based algorithms produce ratings

that are below 3.

This attack can also be viewed temporally, i.e., the attackers do not all strike at the

same time, rather, they spread the attack over time. Figure 3 shows the predicted

ratings for Bob and Alien, by algorithm, after each attacker has perpetrated their

respective push attack on the recommender system. Note that the Alice profile alone

is sufficient to significantly impact the user-based prediction. Subsequent attacks by

Axel and Alvin serve only to vary the item-based and SVD-based predictions; there is

no further change to the user-based prediction of 5 points. In this temporal view, the

results are the same as above, i.e., the item-based and SVD-based algorithms appear

to be more resistant to attack than the user-based approach.



CHAPTER 4: RECOMMENDER PLATFORM EVALUATION

In order to conduct the research described in this dissertation, it was necessary to

not only select a development and test platform, but also to customize that platform

to make it fit for purpose. This chapter describes some of the key functional changes

made and presents the evaluation of the platform both as it is provided “out of the

box’ and after the changes were implemented [53]. As part of this evaluation,

trade-offs between the evaluation metrics, accuracy and coverage, are discussed and

a combined metric is developed to address this measurement trade-off.

4.1 Introduction

Selecting a foundational platform is an important step in developing recommender

systems for personal, research, or commercial purposes. This can be done in many

different ways: the platform may be developed from the ground up, an existing recom-

mender engine may be contracted (e.g., OracleAS Personalization 24), code libraries

can be adapted, or a platform may be selected and tailored to suit (e.g., LensKit25,

MymediaLite26, Apache Mahout27, etc.). In some cases, a combination of these ap-

proaches will be employed.

For many projects, and particularly in the research context, the ideal situation

is to find an open-source platform with many active contributors that provides a

24http://docs.oracle.com/cd/B14099 19/bi.1012/b14052/intro.htm
25http://lenskit.grouplens.org/
26http://www.ismll.uni-hildesheim.de/mymedialite/
27http://mahout.apache.org
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rich and varied set of recommender system functions that meets all or most of the

baseline development requirements. Short of finding this ideal solution, some minor

customization to an already existing system may be the best approach to meet the

specific development requirements. Various libraries have been released to support the

development of recommender systems for some time, but it is only relatively recently

that larger scale, open-source platforms have become readily available. In the context

of such platforms, evaluation tools are important both to verify and validate baseline

platform functionality, as well as to provide support for testing new techniques and

approaches developed on top of the platform. We have adopted Apache Mahout as an

enabling platform for our research and have faced both of these issues in employing

it as part of our work in collaborative filtering recommenders.

This chapter presents a case study of evaluation for recommender systems in Apache

Mahout, focusing on metrics for accuracy and coverage. We have developed functional

changes to the baseline Mahout collaborative filtering algorithms to meet our research

purposes, and this chapter examines evaluation both from the standpoint of tools for

baseline platform functionality, as well as for enhancements and new functionality.

The objective of this case study is to evaluate these functional changes made to the

platform by comparing the baseline collaborative filtering algorithms to the changed

algorithms using well known measures of accuracy and coverage [20]. Our goal is not

to validate algorithms that have already been tested previously, but to assess whether,

and to what extent, the functional enhancements have improved the accuracy and

coverage performance of the baseline out-of-the-box Mahout platform. Given the

interplay between accuracy and coverage in this context, we developed a unified metric
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to assess accuracy vs. coverage trade-offs when evaluating functional changes made

to Mahout’s collaborative filtering algorithms.

4.2 Selecting Apache Mahout

To support our research in collaborative filtering, several recommender system plat-

forms were surveyed, including LensKit, easyrec28, and MymediaLite. We selected

Mahout because it provides many of the desired characteristics required for a recom-

mender development workbench platform. Mahout is a production-level, open-source,

system and consists of a wide range of applications that are useful for a recommender

system developer: collaborative filtering algorithms, data clustering, and data classifi-

cation. Mahout is also highly scalable and is able to support distributed processing of

large data sets across clusters of computers using Hadoop29. Mahout recommenders

support various similarity and neighborhood formation calculations, recommendation

prediction algorithms include user-based, item-based, SlopeOne and Singular Value

Decomposition (SVD), and it also incorporates Root Mean Squared Error (RMSE)

and Mean Absolute Error (MAE) evaluation methods. Mahout is readily extensi-

ble and provides a wide range of Java classes for customization. As an open-source

project, the Mahout developer/contributor community is very active; the Mahout

wiki also provides a list of developers and a list of websites that have implemented

Mahout30.

28http://easyrec.org/
29http://hadoop.apache.org/
30https://cwiki.apache.org/MAHOUT/mahout-wiki.html
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4.2.1 Uncovering Mahout Details

Although Mahout is rich in documentation, there are implementation details on

how Mahout works that could only be understood by looking at the source code.

Thus, for clarity in evaluation, we needed to verify the implementation of baseline

platform functionality. The following describes some of these details for Mahout 0.4

‘out-of-the-box’:

Similarity Weighting – Mahout implements the classic Pearson Correlation [45, 19]

similarity coefficient. Similarity weighting is supported in Mahout and consists of the

following method:

scaleFactor = 1.0 - count / (num + 1);

if (result < 0.0)

result = -1.0 + scaleFactor * (1.0 + result);

else

result = 1.0 - scaleFactor * (1.0 - result);

where count is the number of co-rated items between two users, num is the number

of items in the dataset, and result is the calculated similarity coefficient.

User-Based Prediction Algorithm – Mahout implements a Weighted Average pre-

diction method similar to the approach described in [13], except that Mahout does

not take the absolute value of the individual similarities in the denominator, however,

it does ensure that the predicted ratings are within the allowable range, e.g., between

1.0 and 5.0.

Item-Based Prediction Algorithm – Mahout implements a Weighted Average predic-
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tion method. This approach is similar to the algorithm in [47], except that Mahout

does not take the absolute value of the individual similarities in the denominator,

however, it does ensure that the predicted ratings are within the allowable range,

e.g., between 1.0 and 5.0. Also, Mahout does not provide support for neighborhood

formation, e.g., similarity thresholding, for item-based prediction.

Accuracy Evaluation calculation – Mahout executes the recommender system eval-

uator specified at run time (MAE or RMSE) and implements traditional techniques

found in [20, 56]. For MAE, this would be,

MAE =

∑n
i=1 | ActualRatingi − PredictedRatingi |

n
(11)

where n is the total number of ratings predicted in the test run.

4.2.2 Making Mahout Fit for Purpose

Through personal email communication with one of the Mahout developers, we

were informed that Mahout intended to provide basic rating prediction and similarity

weighting capabilities for its recommenders and that it would be up to developers

to provide more elaborate approaches. Several changes were made to the prediction

algorithms and the similarity weighting techniques for both the user-based and item-

based recommenders in order to meet our specific requirements and to match the best

practices found in the literature, as follows:

Similarity weighting – Defined as Significance Weighting in [19], this consists of the

following method:

scaleFactor = count/50.0;

if (scaleFactor > 1.0) scaleFactor = 1.0;
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result = scaleFactor * result;

where count is the number of co-rated items between two users, and result is the

calculated similarity coefficient.

User-user mean-centered prediction – After identifying a neighborhood of similar

users, a prediction, as documented in [45, 19, 13], is computed for a target item i and

target user u as follows:

pu,i = ru +

∑
vεV simu,v(rv,i − rv)∑

vεV | simu,v |
(12)

where V is the set of k similar users who have rated item i, rv,i is the rating of those

users who have rated item i, ru is the average rating for the target user u over all

rated items, rv is the average rating for user v over all co-rated items, and simu,v is

the Pearson correlation coefficient.

Item-item mean-centered prediction – A prediction, as documented in [13], is com-

puted for a target item i and target user u as follows:

pu,i = ri +

∑
jεNu(i) simi,j(ru,j − rj)∑

jεNu(i) | simi,j |
(13)

where Nu(i) is the set of items rated by user u most similar to item i, ru,j is u’s rating

of item j, rj is the average rating for item j over all users who rated item j, ri is the

average rating for target item i, and simi,j is the similarity measure.

Item-item similarity thresholding – This method was added to Mahout and used in

conjunction with the item-item mean-centered prediction described above. Similarity

thresholding, as described in [19], defines a level of similarity that is required for two

items to be considered similar for purposes of making a recommendation prediction;
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item-item similarities that are less than the threshold are not used in the prediction

calculation.

Coverage and combined accuracy/coverage metric – As suggested in [20], the easiest

way to measure coverage is to select a random sample of user-item pairs, ask for a

prediction for each pair, and measure the percentage for which a prediction was

provided. To calculate coverage, code changes were made to Mahout to provide, for

each test run, the total number of rating predictions requested that were unable to

be calculated as well as the total of number of rating predictions requested that were

actually calculated; the sum of these two numbers is the total number of ratings

requested. Coverage was calculated as follows:

Coverage =
Total#RatingsCalculated

Total#RatingsRequested
(14)

Code changes were also made to calculate a combined accuracy and coverage metric

as defined in Section 4.3.

4.3 Accuracy and Coverage Metric

The metrics selected for this case study, accuracy and coverage, were chosen be-

cause they are fundamental to the utility of a recommender system [49, 20]. Although

other metrics such as novelty and serendipity can, and should, be used in conjunction

with accuracy and coverage, our objective was to evaluate the very basic requirements

of a recommender system. Our implementation of coverage, referred to as prediction

coverage in [20], measures the percentage of a dataset for which the recommender

system is able to provide predictions. High coverage would indicate that the rec-

ommender system is able to provide predictions for a large number of items and is
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considered to be a desirable characteristic of the recommender system [20]. A com-

bination of high accuracy (low error rate) and high coverage are indeed desirable by

users and system operators because it improves the utility or usefulness of the system

from a user standpoint [49, 20].

Many collaborative filtering recommenders have a default value for predicting rat-

ings for low-coverage situations, e.g., they provide average ratings. However, average

ratings are not personalized and this may lead to user dissatisfaction with the recom-

mendations provided. Marketing studies indicate that personalization is valuable to

users and providers of e-commerce applications. Consumer perception of value for a

personalized web experience ranked highly compared to other channels such as web

ads, Facebook/Twitter, mobile ads, etc.; value was measured in terms of relevance, in-

formation accuracy, and memorability of experience.31 In a survey of 120 marketers,

84% report that personalization impacts customer retention and loyalty.32 Among

more than 1,100 consumers surveyed for opinions on their shopping and browsing

experiences, 40% said they buy more from retailers that personalize their shopping

experience across channels.33 And in a longitudinal experiment of how consumers

value online personalization [11], results indicated that personalized recommenda-

tions led to more clicks than random suggestions and that a positive attitude towards

personalization enhanced the consumer’s attitude towards the web site. Therefore,

it is important that recommender systems provide not only accurate recommenda-

31http://www.marketingcharts.com/online/marketers-value-personalization-of-the-web-
experience-what-about-consumers-37772/

32http://www.exacttarget.com/company/newsroom/2014/08/independent-research-reveals-
personalizing-customer-journeys-impacts

33http://www.marketingprofs.com/charts/2013/10235/personalized-marketing-drives-buyer-
readiness-and-sales
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tions, they also need to have a high degree of coverage to provide a more personalized

experience.

What constitutes ‘good’ accuracy or coverage, however, has not been well defined in

the literature: studies such as [49, 17, 19] and many others, endeavor to maximize ac-

curacy (achieve lowest possible value) and/or coverage (achieve highest possible value)

and view these metrics on a relative basis, i.e., how much the metric has increased

or decreased beyond a baseline value based on empirical results. Furthermore, the

interplay between accuracy and coverage, i.e., coverage decreases as a function of

accuracy [17, 16], creates a trade-off for recommender system implementers that has

been discussed previously but not been developed thoroughly. Inspired by the sug-

gestion in [20] to combine the coverage and accuracy measures to yield an overall

“practical accuracy” measure for the recommender system, we developed a straight-

forward “AC Measure” that combines both accuracy and coverage into a single metric

as follows:

ACi =
Accuracyi
Coveragei

, (15)

where i indicates the ith trial in an evaluation experiment.

The AC Measure simply adjusts (upward) the Accuracy according to the level of

Coverage metrics found in an experimental trial and is agnostic to the accuracy met-

ric used, e.g., MAE or RMSE. Using a family of curves for the Mean Absolute Error

(MAE) accuracy metric, Figure 4 illustrates the relationship between accuracy, cov-

erage, and the AC Measure. As an example, following the “MAE : 0.5’ ’ curve we see

that at 100% coverage, the AC Measure is 0.5, and at 10% coverage, the AC Measure
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Figure 4: Illustration of the AC Measure

has increased to 5. The intuition behind this metric is that when the recommender

system is able to provide predictions for a high percentage of items in the dataset, the

accuracy metric more closely indicates the level of system performance; conversely,

when the coverage is low, the accuracy metric is “penalized” and is adjusted upwards.

We believe that the major benefit of the AC Measure is that it formulates a solution

for addressing the trade-off between accuracy and coverage and can be used to create

a ranked list of results (low to high) from multiple experimental trials to find the best

(lowest) AC Measure for each set of test conditions. The simplified visualization of

the combined AC Measure shown in Figure 4 is an additional benefit. For our eval-

uation purposes, the use of a combined metric was ideal in addressing the inherent

trade-offs between accuracy and coverage, especially in the cases where accuracy is

found to be high when coverage is low; we posit that the AC Measure will also be

useful for other researchers performing evaluations using accuracy and coverage.
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4.4 Experimental Design

The objective of this case study was to understand Mahout’s baseline collabora-

tive filtering algorithms and evaluate functional changes made to the platform using

accuracy and coverage metrics. The main intent of making functional changes to Ma-

hout recommender algorithms was to bring the Mahout algorithms in line with best

practices found in the literature. Therefore, the overall hypothesis to be tested in this

case study was that the modified algorithms improve Mahout’s ‘out-of-the-box’ pre-

diction accuracy for both user-based and item-based recommenders while maintaining

reasonable coverage.

4.4.1 Datasets and Algorithms

The data used in this case study were the MovieLens datasets downloaded from

GroupLens Research34: the 100K dataset with 100,000 ratings for 1,682 movies and

943 users (referred to as ML100K in this case study) and the 10M dataset with

10,000,000 ratings for 10,681 movies and 69,878 users (referred to as ML10M in this

case study). Ratings provided in these datasets consist of integer values between 1

(did not like) to 5 (liked very much).

For User-based (see §4.2.1), Mahout uses Pearson Correlation similarity (with and

without similarity weighting), Neighborhood formation (similarity thresholding or

kNN), and Weighted Average prediction. This was tested against a modified al-

gorithm (see §4.2.2) consisting of Pearson Correlation similarity (with and without

similarity weighting), Neighborhood formation (similarity thresholding or kNN), and

Mean-centered prediction. For Item-based (see §4.2.1), Mahout uses Pearson Correla-

34http://www.grouplens.org
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tion similarity (with and without similarity weighting), no Neighborhood formation,

and Weighted Average prediction. This was tested against a modified algorithm (see

§4.2.2) consisting of the similarity measure (with and without similarity weighting),

Neighborhood formation (similarity thresholding), and Mean-centered prediction.

4.4.2 Test Cases

In order to test the overall hypothesis, the following test cases were developed and

executed for both user-based and item-based recommenders using the ML100K and

ML10M datasets:

1. Mahout Prediction, No weighting

2. Mahout Prediction, Mahout weighted

3. Mahout Prediction, Significance weighted

4. Mean-Centered Prediction, No weighting

5. Mean-Centered Prediction, Mahout weighted

6. Mean-Centered Prediction, Significance weighted

4.4.3 Accuracy and Coverage Metrics

We used Mahout’s MAE evaluator to measure the accuracy of the rating predic-

tions. For prediction coverage, we used dataset training data to estimate the rating

predictions for the test set; the random sample of user-item pairs in our testing was

30K pairs for ML100K and 25K pairs for ML10M (see §4.2.2). AC Measures were

calculated for all test cases.
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4.4.4 Dataset Partitioning

The Mahout evaluator creates holdout 35 partitions according to a set of run-time

parameters. For the tests using the ML100K dataset, the training set was 70% of the

data, the test set was 30% of the data, and 100% of the user data was used; a total of

30K rating predictions from 943 users were requested for each test set. For the tests

using the ML10M dataset, the training set was 95% of the data, the test set was 5%

of the data, and 5% of the user data was used; a total of 25K rating predictions from

3180 users were requested for each test set.

4.4.5 Test Variations

Various similarity thresholds and kNN neighborhood sizes were executed for each

test case in order to understand and evaluate the corresponding behavior of the

recommenders. For User-based recommender testing, similarity thresholds of 0.0,

0.1, 0.3, 0.5, and 0.7 and kNN neighborhood sizes of 600, 400, 200, 100, 50, 20, 10,

5, and 2 were tested. For Item-based recommender testing, in addition to using no

similarity thresholding, similarity thresholds of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7

were tested.

4.5 Results and Discussion

4.5.1 ML10M Results

Figures 5 and 6 show the results of test cases 1 through 6 for user and item-based

algorithms, respectively36. The key results of the experiment, for both user-based

35Holdout is a method that splits a dataset into two parts, a training set and a test set, and the
partitioning is performed by randomly selecting some ratings from all, or some, of the users. The
selected ratings constitute the test set, while the remaining ones are the training set.

36The following curves are superimposed over each other because the values are very similar:
MAE results for mean-centered prediction (no weighting and Mahout weighted), MAE results for
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and item-based algorithms unless otherwise noted, were as follows:

1. MAE for mean-centered prediction with significance weighting is a significant

improvement (p<0.01) over MAE for Mahout prediction, regardless of weighting,

across similarity thresholds (except item-based at similarity threshold of 0.7) and

kNN neighborhood sizes (except user-based at kNN of 2, not shown).

2. Mahout similarity weighting does not significantly improve (p<0.01) Mahout

prediction MAE over prediction with no similarity weighting (except Mahout predic-

tion for user-based and item-based at a similarity threshold of 0.4, not shown). This

would indicate that Mahout similarity weighting is not very effective as a weighting

technique, especially as compared to significance weighting.

4.5.2 ML100K Results

The results and trend lines for the ML100K experiment are similar to ML10M. The

key results, for both user-based and item-based algorithms unless otherwise noted,

were:

1. MAE for mean-centered prediction with significance weighting is a significant

improvement (p<0.01) over MAE for Mahout prediction, regardless of weighting,

across similarity thresholds and kNN neighborhood sizes (except user-based at kNN

of 400).

2. Mahout similarity weighting does not significantly improve (p<0.01) Mahout

prediction MAE over prediction with no similarity weighting (except Mahout predic-

tion for user-based and item-based at a similarity threshold of 0.4).

Mahout prediction (No weighting and Mahout weighted), Coverage results for Mahout prediction
and mean-centered prediction (No weighting and Mahout weighted), Coverage results for Mahout
prediction and mean-centered prediction (both Significance weighted).
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Figure 5: User-based Mahout recommender results for ML10M, Test cases 1 - 6

4.5.3 Discussion

As hypothesized, results for both of the ML100K and ML10M experiments show

significant improvements in MAE using the mean-centered prediction algorithm with

significance weighting compared to the Mahout baseline prediction algorithm. How-

ever, when coverage is considered, the “best” MAE results may need a second look.

Can an MAE of 0.5 or less be considered “good” when the associated coverage is

in the single digits? In this case, the recommender system may only be able to

provide recommendations to a very small subset of its users and is a situation that

must be avoided by system operators. To help address the accuracy vs. coverage

trade-off, combined measures such as the AC Measure (Section 4.3), can help by con-
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Figure 6: Item-based Mahout recommender results for ML10M, Test cases 1 - 6

sidering both accuracy and coverage simultaneously. For the ML10M experiment, we

determined that the lowest MAE for the User-based algorithm using mean-centered

prediction with significance weighting was 0.578 at a similarity threshold of 0.7 and

coverage of 0.833%; the AC Measure for this result is calculated as 69.42. Simi-

larly, the lowest MAE for the Item-based algorithm using mean-centered prediction

with significance weighting was 0.371 at a similarity threshold of 0.7 and coverage of

1.02%; the AC Measure for this result is calculated as 36.32. In each of these cases,

the exceedingly high values for the AC Measure indicate that these results are not

very desirable in a recommender system.

Figures 7 and 8 show the AC Measure results for user and item-based algorithms

using ML10M, respectively. Rather than show all 30 results for each algorithm (5
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Figure 7: AC Measure for selected user-based results (lower is better)

Figure 8: AC Measure for selected Item-based results (lower is better)

similarity thresholds x 2 prediction methods x 3 weighting types), we show only the

results with calculated AC Measure values less than 1.0; therefore, the lowest MAE

results reported above for user-based and item-based algorithms are clearly beyond

the range of this chart. We found that the best combined accuracy/coverage re-

sults were found at higher levels of coverage and lower levels of similarity threshold,

i.e., the best (lowest) AC Measure for user-based was 0.688 at a similarity thresh-

old of 0.1 and for item-based was 0.665 at a similarity threshold of 0.0, both using

mean-centered prediction and significance weighting. We can also see that, with few
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exceptions, mean-centered prediction is improved over the Mahout prediction for the

same similarity weighting and similarity threshold. We observed similar results using

the ML100K dataset where the best (lowest) AC Measure for user-based was 0.765

and for item-based was 0.746, both at a similarity threshold of 0.0 and both using

mean-centered prediction and significance weighting. These results demonstrate that

the “best” MAE may not always be the lowest MAE, especially when coverage is also

considered; furthermore, recommender system settings such as similarity weighting

and neighborhood size also need to be considered during system evaluation.

Other observations of our experiments that match results reported in [19] and serve

to validate our evaluation and increase our confidence in the results are: (a) In gen-

eral, significance weighting improves prediction MAE, as compared to predictions

using Mahout similarity weighting or no similarity weighting; (b) As the similarity

threshold increases, MAE for mean-centered prediction with significance weighting

improves and coverage degrades, whereas MAE and coverage both degrade for Ma-

hout prediction with Mahout weighting; (c) Coverage decreases as neighborhood size

decreases.

4.6 Summary of this Chapter

This case study of Mahout as a recommender system platform highlights evalu-

ation considerations for developers and also shows how straightforward functional

enhancements improve the performance of the baseline platform. We evaluated our

changes against current Mahout functionality using accuracy and coverage metrics

not only to assess baseline results, but also to provide a view of the trade-offs be-

tween accuracy and coverage resulting from using different recommender algorithms.
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We reported cases where the lowest MAE accuracy results were not necessarily always

the ‘best’ when coverage results were also considered, and we instrumented Mahout

for a combined accuracy and coverage metric (AC Measure) to evaluate these trade-

offs more directly. We believe that this case study will provide useful guidance in

using Mahout as a recommender platform, and that our combined measure will prove

useful in evaluating algorithm changes for the inherent trade-offs between accuracy

and coverage.

In the context of this dissertation, the objective of this case study was to eval-

uate and validate the Mahout platform for our research purposes. The focus of

the changes discussed here was to expand the functionality of the user-based and

item-based collaborative filtering algorithms since they are the most popular and

widely-used algorithms; analysis of the platform’s SVD-based algorithms is provided

in Chapters 5 and 6. Also, the work presented in this chapter does not consider

attacks on recommender systems, therefore, robustness metrics are not considered as

an evaluation metric; however, our research on attacks on recommender systems does

consider robustness metrics and details are provided in Chapters 5, 6, 7, 8, 9.



CHAPTER 5: POWER USER SELECTION EVALUATION

5.1 Introduction

In a Collaborative Filtering (CF) Recommender System (RS) context, power users

are those who can exert considerable influence over the recommendations presented

to other users. Previous research has indicated that power users can have major

impacts on RS ratings predictions and top-N recommendations lists, especially when

the underlying RS algorithms are neighborhood-based [27]. However, recommender

system operators encourage the existence of power user communities; e.g., Amazon

VineTMinvites the most trusted reviewers on Amazon to post opinions about new

and pre-release items to help their fellow users make informed purchase decisions37.

Furthermore, new items can sometimes pose significant market acceptance challenges

to producers of goods and services; in order to address this issue, marketers may rely

on the influence that power users have in recommending items to other users [14, 3].

But given the influence that power users can have over others, what happens when

power users provide biased ratings for, as yet unrated, new items?

To address this issue, we investigate identification and attack potential of RS power

users. We define and study a new “Power User Attack” as a set of power user

profiles that influence the results presented to other users by providing biased ratings.

This attack is distinct from previously studied types of RS attacks [39, 26, 36] (e.g.,

37http://www.amazon.com/gp/vine/help
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“Random”, “Average”, “Bandwagon”, etc.) that rely on a set of carefully configured

false user profiles, which are injected into the dataset to mount the attack. Power

User Attack analyses rely critically on power user identification, so we first develop

and evaluate a novel use of degree centrality concepts from social network analysis

[57, 27], for identifying the most influential RS power users.

The research questions for this analysis are:

RQ-1: How are power users best identified in a RS?

RQ-2: What happens to the accuracy and robustness of the RS rating predictions

when power users attack new items?

RQ-3: How do the popular RS algorithms compare in their robustness against power

user attacks?

The hypotheses to be tested are:

H-1: Using Degree Centrality to select a set of power users results in a more effective

attack than using either Aggregated Similarity or Number of Ratings.

H-2: A small number of power users (50 or less) can have significant effects on RS

predictions and top-N lists of recommendations for new items

H-3: User-based CF algorithms are more vulnerable to a power user attack than

item-based CF algorithms.

H-4: SVD-based and item-based CF algorithms are robust to power user attacks.

5.2 Power User Attack Model

We define the Power User Attack (PUA) as a new attack model where power

users bias the results of the RS predictions and top-N recommendation lists with

targeted fake ratings. The intent of this attack is similar to other attack models
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where a number of attack user profiles are injected into the dataset. Like other

attack models, PUA profiles contain target items that are set to the maximum or

minimum rating depending on attack intent. However, unlike classic attack models

(e.g., random, average, bandwagon) that employ straightforward statistical templates

(average rating, popularity, likability) for attack profile filler (non-target items), very

little is known about the profile characteristics of power users. And without this

knowledge, it is difficult to generate fake power user profiles. So, this initial work into

studying the impact of a PUA will use power user profiles that already exist in the

dataset (e.g., attack vector of external incentivization or internal collusion).

The number of power users participating in the attack defines the attack size; the

larger the attack size, the larger the expected disruption in RS predictions and top-N

recommendation lists.

5.3 Power User Selection

Power users in the RS context have been referred to as users with a large number

of ratings [20] as well as those that are able to influence the largest number of other

users [14, 44, 3, 18]. To measure influence, researchers have used the number of

prediction differences above a prediction threshold when a user is removed from the

dataset [44], the number of users that had the prediction for a target item shifted

sufficiently above a threshold so that the item appears in their top-N list [18], MAE

and coverage metrics to evaluate various seed (influential user) selection algorithms

[3], and the expected lift in profit earned by influencing other users, recursively [14].

Although maximizing the spread of influence through a social network is an NP-

hard problem to solve optimally [23, 18], several heuristics were analyzed by [18] in
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Table 2: Similarity matrix between user i and userj

Users User1 User2 .. Userj

User 1 ∅ S(u1,u2) .. S(u1, uj)
User 2 S(u2,u1) ∅ .. S(u2, uj)

.. .. .. .. ..
User i S(ui,u1) S(ui,u2) .. ∅

order to select groups of influential users including Most Central (those with highest

aggregate similarity to other users), Most Positive (those with the highest positive

average rating), Most Active (those who have rated the highest number of items),

and Random (a control group comprised of randomly selected users). The Number of

Unique Prediction Differences algorithm [44] was determined to be computationally

inefficient and was not considered further in this study.

We have developed an approach to power user selection for attack purposes, based

on social network analysis concepts of Degree Centrality [57, 27]. Specifically, we

use In-Degree Centrality (users who appear in the highest number of other users’

neighborhoods) with significance weighting [19] because when using similarity and

neighborhood-based methods to select power users, significance weighting encourages

strong connections between users who have rated many items in common. In a pre-

liminary study, we found that both our approach and the Most Central heuristic [18]

performed significantly better using significance weighting.

In our research, power users were identified using a method based on the in-degree

centrality concept from social network analysis: using Table 2 as an illustration,

for each user i compute its similarity with every other user j applying significance

weighting, then discard all but the top-n neighbors for each user i. Then count the
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number of similarity scores for each user j (column sums of similarity score counts

will indicate the number of neighborhoods user j is in) and select the top-k user j’s

based on their number of similarity scores.

5.4 Evaluating Power User Influence

In this study, we evaluate power user influence as follows:

• Before the attack: After selecting a set of power users, we analyze the impact

those power users have on the recommendations of other users in the dataset.

This analysis is carried out by removing a percentage of power users incremen-

tally (from 0% to 100% in increments of 10%) and then calculating the accuracy

of the system using Mean Absolute Error (MAE). The intuition is that if the

accuracy of the recommender were to get worse as power users are removed then

this would be an indicator that those power users provided a positive influence

on system accuracy. The accuracy of the system is measured removing selected

power users (using the methods described in §5.3) and randomly-selected users.

We understand that accuracy is not the same as influence, however, in this ap-

proach MAE is used as a proxy for an initial indicator of the “influence” power

users can have on system accuracy and recommendations.

• After the attack: To analyze the results of a power user attack and its influence

on system robustness, we use use Hit Ratio, Prediction Shift, and Average Rank

robustness measures [36, 9] where a high Hit Ratio and a low Average Rank

indicates that the attack was successful (from the attacker’s standpoint). These

robustness measures indicate a more reliable indicator of power user influence

after attack.
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5.5 Power User Attack against User-based and Item-based Algorithms

We have conducted an initial analysis to investigate several research questions (see

§5.1) related to RS power users and attacks on new items potentially perpetrated by

power users. To address these research questions we tested the following Hypotheses:

(H-1) Using Degree Centrality to select a set of power users results in a more effective

attack than using either Aggregated Similarity or Number of Ratings, (H-2) A small

number of power users (50 or less) can have significant effects on RS predictions and

top-N lists of recommendations for new items, and (H-3) User-based CF algorithms

are more vulnerable to a power user attack than item-based CF algorithms.

5.5.1 Experimental Design

Datasets and Algorithms – The data used in this study were the MovieLens38

100K39, 1M40, and 10M41 datasets, with item ratings from 1 (did not like) to 5 (liked

very much). For the user-based CF algorithm [45, 19, 13], we used Pearson Correlation

similarity (with significance weighting of nci/50, where nci is the number of co-rated

items), Neighborhood formation (similarity thresholding = 0.0 and kNN = 25 and

50), and Mean-centered prediction. For the item-based CF algorithm [47], we used

Pearson Correlation similarity (with significance weighting of nci/50), Neighborhood

formation (similarity thresholding = 0.0), and Weighted prediction. Following earlier

studies evaluating power user influence [14, 44, 18], we focus on traditional user-based

and item-based CF algorithms for this analysis. We used SVD with 50 features and

38http://www.grouplens.org
39nominal 100,000 ratings, 1,682 movies, and 943 users.
40nominal 1,000,209 ratings, 3,883 movies, 6,040 users.
41nominal 10,000,054 ratings, 10,676 movies, 69,878 users.
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50 iterations for the ML10M power user selection analysis only.

Power User Selection – The following methods were used:

InDegree (ID2550 and ID5050) - Our method is based on the in-degree centrality

concept from social network analysis — power users are those who participate in the

highest number of neighborhoods. For each user i compute its similarity with every

other user j applying significance weighting nci/50, then discard all but the top-n

neighbors for each user i (we used n=25 for ID2550 and n=50 for ID5050). Count

the number of similarity scores for each user j (# neighborhoods user j is in) and

select the top 50 user j’s.

AggregatedSimilarity (AS25NO) - This is the Most Central heuristic from [18]. The

top 50 users with the highest aggregate similarity scores become the selected set of

power users. This method requires at least 5 co-rated items between user i and user

j and does not use significance weighting42.

NumberRatings (NR) - This method is based on [20] where “power user” refers to

users with the highest number of ratings; it also is called the Most Active heuristic in

[18]. Select the top 50 users based on the total number of ratings they have in their

user profile.

Attack-related Target Item Selection – For each dataset, fifty target items were

selected randomly from a set of items with no more than one rating regardless of

their rating value, because our intent was to attack ‘new’ items.

Attack Parameter Selection – The Attack Intent is Push, i.e., target item rating is

set to max (= 5). The Attack Size or number of power users in each attack is 50,

42Based on personal communication with the authors.
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40, 30, 20, 10, 5, 3, and 2; 50 power user profiles equate to a 5% attack for ML100K

and a 1% attack for ML1M. The attack profiles used were actual power user profiles

with the target item rating inserted; the filler size is determined by each power users’

profile size. To implement our attack, a group of power users were selected (§5.3),

the attack intent (push / nuke) and target item(s) were specified, and the remainder

of the profile for the PUA (the filler) remained unchanged for each power user in the

attack. By keeping the power users’ profiles the same except for the target item, the

power users’ connections to other users, from a social network standpoint, remain

essentially the same43

Evaluation Metrics – As indicated in Section 5.4, we use Mean Absolute Error and

prediction coverage for accuracy and coverage [20, 56] using a holdout-partitioned

70/30 train/test dataset. We also use Hit Ratio, Prediction Shift, and Average Rank

robustness measures [36, 9] where a high Hit Ratio and a low Average Rank indicates

that the attack was successful (from the attacker’s standpoint). Since the PUA being

evaluated here is for new items (zero rating value), the Prediction Shift is expected

to be close to the maximum rating as defined by the RS.

Test Variations – Evaluation of the power user attack encompassed two prediction

algorithms (User-based CF and Item-based CF), two datasets (ML100K and ML1M),

four power user selection methods (Aggregated Similarity using 25 neighbors, InDe-

gree using 25 neighbors, InDegree using 50 neighbors, and Number of Ratings), and

eight attack sizes. Each test variation was executed once for each of the 50 target

43In a few cases, power user profiles that already had a target item rating were updated in certain
attack scenarios and, although the target item rating change might alter their neighborhoods, we
believe the impact to this initial analysis is not an overriding issue.
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items and data results were averaged over the 50 target items.

5.5.2 Results and Discussion

Figure 9: MAE impacts, before and after removing Power Users – In Degree using
ML100K and ML1M

(RQ-1) How are power users best identified in a RS? Our approach to evaluating

selection of power users and their influence is to use accuracy metrics (before the

attack) and robustness metrics (after the attack).

Before the power user attack, the measure of influence is the negative impact on RS

accuracy when removing power users. Prior to any attack, we removed power users

from datasets of user-item ratings for all three methods of power user selection. The

results for InDegree and ML1M (Figure 9) show that as power users are removed, ac-

curacy impacts are more significant on user-based recommenders (p <0.001 when the

number of power users removed is > 10) than on item-based recommenders (p <0.025
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Figure 10: MAE impacts, before and after removing Power Users – using ML10M

when the number of power users removed is = 30) across both dataset sizes. Similar

(ML1M) and weaker (ML100K) results occurred for AggregatedSimlarity and Num-

berRatings methods. Coverage results (not shown) indicate significant impacts as

more power users are removed, especially for user-based CF.

The results for ML10M44 (Figure 10) show that as power users are removed, MAE

is negatively impacted in all CF algorithms tested. Compared to a baseline where no

power users are removed, InDegree selection impacts MAE by an average high of 2.2%

across all three CF algorithms, Number of Ratings by 1.8%, and Aggregated Similarity

by 0.5%; all these impacts were significant (p <0.02). InDegree selection, compared

to the other methods, has a higher MAE impact in User-based CF. Both InDegree

and Number of Ratings methods are better at selecting power users than Aggregated

44We selected 3500 power users or about 5% of all ML10M users.
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Figure 11: User-based results – ML1M

Similarity, i.e., they have the most significant impacts on MAE with removal of fewer

power users, especially in SVD-based and User-based CF. The Number of Ratings

method performs relatively well across all CF algorithms and begs the question of

whether having a large number of ratings is really the only requirement to become a

power user. These accuracy and coverage results are consistent with results found in

[27].

After the attack, we believe that the method that selects the most influential set

of power users is the one producing the highest Hit Ratio and lowest Average Rank.

Both InDegree and NumberRatings power user selection methods dominated (attack

was more successful) the AggregatedSimilarity method as indicated by the Average

Hit Ratio and Average Rank results for user-based CF using ML100K and ML1M

(Figure 11). While Hit Ratio and Average Rank results for InDegree and Number-
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Figure 12: Item-based results – ML1M

Ratings were about the same for ML100K (not shown), InDegree performed better

than NumberRatings on the ML1M dataset (p<0.05). For item-based CF, none of

the power user selection methods tested here produced a major impact to Hit Ratio

or Average Rank using ML100K or ML1M (Figure 12). From the attacker’s perspec-

tive, the AggregatedSimilarity method was slightly more effective than InDegree and

NumberRatings.

Therefore, using In Degree Centrality to select a set of power users results in a

more effective attack than using either Aggregated Similarity or Number of Ratings,

confirming our first Hypothesis H-1 for user-based CF only. Impacts to the accuracy

metrics (Figure 9) and robustness metrics (Figure 11) indicate that a small number of

power users45 can have significant effects on RS predictions and top-N recommenda-

45Note that 50 power users is < 1% of the ML1M user base.
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tion lists for new items, confirming our second Hypothesis H-2 for user-based CF only.

Hypotheses H-1 and H-2 are accepted for user-based CF and rejected for item-based

CF.

(RQ-2) What happens to the accuracy and robustness of the RS rating predictions

when power users attack new items? Accuracy and robustness metrics were nega-

tively impacted due to the PUA. Accuracy results were mixed across datasets, CF

algorithms, selection methods, and size of attack. Notably after attack, all four selec-

tion methods yielded MAE values significantly higher (p <0.05) for ML1M user-based

CF and 30 or more power users, and InDegree and NumberRatings yielded MAE val-

ues significantly higher (p <0.05) for ML1M item-based CF with 30 or 40 power

users. As noted above, robustness results (Figures 11 and 12) indicate that InDegree

and NumberRatings impact user-based CF recommenders more significantly than

AggregatedSimilarity; however, we found the reverse to be true for item-based CF

recommenders.

(RQ-3) How do the popular RS algorithms compare in their robustness against

power user attacks? User-based CF is significantly more vulnerable to the power user

attack than Item-based CF, confirming our third Hypothesis H-3. This is consistent

with previous findings [26, 36, 9] because the PUA, like the random and average

attacks, are able to exploit the similarity between the attackers and non-attackers

to favor the target item. For item-based CF, the AggregatedSimilarity method pro-

duced a more effective set of power users for the attack as compared to InDegree

and NumberRatings across both datasets (ID5050 and AS25NO Hit Ratio difference

was significant at p <0.001 for ML1M); however, the impact of the attack was weak,
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i.e. relatively low Hit Ratio and high Average Rank, compared to user-based CF.

Hypothesis H-3 is accepted for user-based CF.

5.6 Power User Characterization

In order to understand the differences between power and non-power user groups

within a given dataset, we have collected various statistical measures for each group

across ML100K, ML1M, and ML10M. Notably for InDegree across these datasets,

a statistically significant (p <0.02) pattern is emerging: power users have a lower

average rating, higher average number of ratings, higher average number of co-rated

items, and higher rating entropy when compared to the non-power user group and

the entire dataset of users. Although the absolute number for each measure varies

according to the dataset, the pattern is consistent. Knowledge of these and other

statistical characteristics of power users will be needed in order to construct fake

power user attack profiles required to mount a PUA.

5.7 Power User Attack against an SVD-based Algorithm

5.7.1 Singular Value Decomposition (SVD)

The implementation of matrix factorization SVD [48, 25, 2] we used was the Expec-

tation Maximization (EM) algorithm [12] provided in the Apache Mahout platform46.

This algorithm requires two parameters: number of features and number of training

steps. A sensitivity analysis was performed on these parameters to observe the im-

pact on Mean Absolute Error (MAE) using the MovieLens ML100K dataset 47 and

results are shown in Figure 13. Based on these results, we found that when holding

46http://mahout.apache.org/
47www.grouplens.org; MovieLens dataset with 100,000 ratings, 1,682 movies, 943 users, 93.7%

sparsity.
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the number of training steps constant, MAE remains relatively flat as the number of

features is varied. Conversely, when holding the number of features constant, MAE

decreases to a minimum and then begins to increase. For 100 features, the minimum

MAE occurs at 75 training steps; the differences in MAE between 25 and 75 steps

and between 100 and 75 steps are significant (p < 0.01).

Figure 13: MAE impacts when varying SVD parameters using ML100K

5.7.2 Experimental Design

To address our research questions, we conducted an experiment using the Movie-

Lens 100K dataset with an SVD-based recommender. Power users were selected from

the dataset using three identification/selection methods. To simulate the PUA, power

user profiles were converted to attack profiles by setting target items in those profiles

to the maximum rating. Target items selected had no more than one rating in order

to simulate a “new” item. Evaluations of accuracy and robustness were performed

before and after the attack.

Evaluation Metrics – We use Mean Absolute Error (MAE) and prediction cover-

age for accuracy and coverage [20, 56] using a holdout-partitioned 70/30 train/test

dataset. We also use Hit Ratio, Prediction Shift, and Rank robustness measures

[36, 9] where a high Hit Ratio and a low Rank indicates that the attack was success-
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ful (from the attacker’s standpoint). Since the PUA being evaluated here is for new

items (zero rating value), the Prediction Shift is expected to be close to the maximum

rating as defined by the RS.

Datasets and Algorithms – We used the ML100K dataset with item ratings from 1

(did not like) to 5 (liked very much). For the SVD-based CF algorithm, we used the

EM (see §5.7.1) algorithm as implemented in Mahout 0.4. Run-time parameters used

for this algorithm were number of features (100) and number of training steps (75);

settings were determined empirically as described in §5.7.1. The more traditional

user-based and item-based CF algorithms were studied in a previous effort (see § 5.5)

and those results will be used here for comparative purposes.

Power User Selection – The following methods were used,

InDegree - Our method is based on the in-degree centrality concept from social net-

work analysis, where power users are those who participate in the highest number of

neighborhoods. For each user i compute its similarity with every other user j apply-

ing significance weighting, then discard all but the top 50 neighbors for each user i.

Count the number of similarity scores for each user j (# neighborhoods user j is in)

and select the top 50 user j’s.

AggregatedSimilarity (AggSim) - This is the Most Central heuristic from [18]. The

top 50 users with the highest aggregate similarity scores become the selected set of

power users. This method requires at least 5 co-rated items between user i and user

j and does not use significance weighting48.

NumberRatings (NumRatings) - This method is based on [20] where “power user”

48Based on personal communication with the authors.
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refers to users with the highest number of ratings; it also is called the Most Active

heuristic in [18]. We selected the top 50 users based on the total number of ratings

they have in their user profile.

Target Item Selection – For the ML100K dataset, 5 target items with no more

than one rating, regardless of their rating value, were selected randomly, given our

objective to attack only ‘new’ items. We recognize that 5 target items is a limitation

in this study; however, new items are more vulnerable to attack than more popular

items so this should provide a strong signal even with a small number of target items.

We are considering a larger mix of new/existing target items as a future work.

Attack Parameter Selection – The Attack Intent is Push, i.e., target item rating is

set to max (= 5). The Attack Size or number of power users in each attack is 50,

30, 10, 5, 3, 2, and 1. The maximum attack size (50) was selected based on previous

research [36, 9], where a 5-10% attack was shown to be effective; with ML100K, a 5%

attack size is about 50 users. The attack profiles used were actual power user profiles

and we added the target item rating. The Filler Size, or number on non-target items

in each attack user profile, is determined by each power users’ profile size; therefore,

filler size is not specified in this experiment.

Test Variations – One prediction algorithm, one dataset, three power user selection

methods, and seven attack sizes. Each test variation was executed once for each of

the 5 target items and data results were averaged over the 5 target items.

5.7.3 Results and Discussion

(RQ-1) How are power users best identified in a RS? Our assertion is that the

amount of influence power users exerted on other users, before and after an attack,
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Figure 14: MAE impacts after removing power users using ML100K

Figure 15: MAE impacts after removing power users using ML100K

would indicate the best identification method. Before the power user attack, one

measure of influence is the negative impact on RS accuracy (MAE) when removing

power users [27]. We removed from 0 to 50 (0% to 100%) of the identified power users

from the dataset before any attacks took place for all three methods of power user

selection; the most influential power users identified are removed first. The results

for InDegree (Figure 14) show that as power users are removed, accuracy impacts are

significant on SVD-based recommenders (p <0.01) when power users removed are >

20%. Similar results occurred for the NumRatings method when power users removed

are > 60%, and influence of AggSim-selected power users remained flat. Furthermore,

InDegree has significantly more impact on MAE than AggSim (p <0.01) at all levels
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Figure 16: MAE impacts, after removing power users using ML10M

of power user removal and NumRatings (p <0.01) when power users removed are >

20% and < 80%. As a baseline, we removed users at random and found that the

ablation curve for randomly-selected users is flat from 0% to 100% removed, i.e.,

their removal shows no significant impact on MAE. Coverage results (not shown)

remained flat and at a high level (> 99%) for all power user selection methods and

number of power users removed. Hypothesis H-1 is partially accepted, given that

InDegree and NumRatings are about equal in their impact in the ablation results

and after the power user attack; also, InDegree and NumRatings both have more

impact than AggSim in the ablation results and all three selection methods are about

the same after the power user attack. Hypothesis H-2 is accepted for InDegree and

NumRatings for the ablation results, and rejected for AggSim for the ablation results.

Hypothesis H-2 is accepted for all three selection methods based on results after the
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power user attack. The results obtained here are also consistent with those observed

in our previous work [60, 51] using various CF algorithms: Figure 15 shows results

using the ML100K dataset and Figure 16 shows results using the ML10M dataset49.

After the attack, we expect for influence to be measured mainly by the impact on

robustness metrics, i.e., the method that selects the most influential set of power

users is the one producing the highest Hit Ratio and lowest Rank. Results show that

all the power user selection methods were successful (from the attacker’s standpoint)

at impacting the robustness metrics.

Figure 17: ML100K – SVD-based results

(RQ-2) What happens to the accuracy and robustness of the RS rating predictions

when power users attack new items? We found that the PUA was successful (from the

attacker’s standpoint) at impacting RS robustness metrics across all three power user

selection methods, as indicated by the Average Hit Ratio and Average Rank results

49MovieLens dataset with 10,000,054 ratings, 10,676 movies, 69,878 users, 98.7% sparsity
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Figure 18: ML100K – User and Item-based results

shown in Figure 21; no significant differences were found between the three methods

with 50 power user attack profiles. High levels of Average Hit Ratio and low levels

of Average Rank were achieved with as few as 5 to 10 power users. Impacts to the

robustness metrics indicate that a small number of power users50 can have significant

effects on RS predictions and top-N recommendation lists for new items. With 50

power user attack profiles, the InDegree method showed a significantly lower (better)

Average Rank than AggSim (p <0.01) and a significantly higher (worse) Average

Rank than NumRatings (p <0.01). As expected, Prediction Shift (not shown) was

high (> 4) given that the target items were “new” items.

This result is interesting given that SVD-based systems have been shown to be

robust to attacks [32]. In that work, the authors used clustering techniques to iden-

50Note that 10 power users is < 1% of the ML100K user base.
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tify the attackers based on their statistical signatures, i.e., Random, Average, and

Bandwagon attack models; the attack clusters were then eliminated from, or ignored

during, the prediction calculation. In our experiment, the attackers were not elimi-

nated from the dataset nor ignored during the prediction calculation, therefore, we

see a more effective attack against the SVD algorithm.

(RQ-3) How do the popular RS algorithms compare in their robustness against

power user attacks? As noted above, robustness results (Figure 21) indicate that

SVD-based recommenders are vulnerable to attack by power users with results com-

parable to user-based recommenders as shown on the left side of Figure 18 [60],

especially for the InDegree and NumRatings power user selection methods. The right

side of Figure 18 indicates that item-based recommenders are less vulnerable to the

impacts of the PUA. User-based CF is significantly more vulnerable to the power user

attack than Item-based CF and is also consistent with previous findings [26, 36, 9] be-

cause the PUA, like the random and average attacks, are able to exploit the similarity

between the attackers and non-attackers to favor the target item. For item-based CF,

the AggSim method produced a more effective set of power users for the attack as

compared to InDegree and NumRatings; however, the impact of the attack was weak,

i.e. relatively low Hit Ratio and high Rank, compared to user-based CF. Hypothesis

H-4 is rejected for SVD-based and accepted for item-based.

Compared to user-based and item-based algorithms, we have shown a strong attack

using an EM implementation of SVD although it appears insensitive to power user

selection methods. Additional research to determine whether this is due to scale given

ML100K’s size, use of the EM SVD algorithm vs. other SVD techniques, or the input
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parameters to the EM SVD algorithm has been conducted in Chapters 6, 7, 8, and

9. Varying the SVD algorithm, algorithm parameters, and dataset size/domain does

not appear to affect the fact that SVD results are insensitive to power user selection

methods.

5.8 Summary of this Chapter

Power users are important to recommender systems and contribute to their im-

proved prediction accuracy; however, we have found that power user attacks can be

effective (from the attacker’s perspective) against recommender systems. In this ini-

tial study, we have shown that a relatively small number of power users can have

significant effects on RS predictions and top-N recommendation lists. We have also

shown that the InDegree method of power user selection produces a set of power users

that are able to mount more effective attacks than the AggregatedSimilarity and Num-

berRatings methods, especially on user-based CF systems. The contributions of this

research have been to provide a new attack model called Power User Attack and to

evaluate a social network analysis method for selecting the top-k influential power

users for attack purposes.

With respect to the Dissertation Hypotheses provided in Section 1.5.2, this chap-

ter has indicated the following level of support for the applicable hypotheses; final

acceptance/rejection of the Dissertation Hypotheses are provided in the Dissertation

Summary, Section 10.1:

DH-1: The use of In-Degree Centrality to select a set of power users results in power

users with higher influence than other selection techniques, across multiple datasets

and domains. This hypothesis is supported for the user-based algorithm for the
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ML100K, ML1M, and ML10M datasets; the hypothesis is not supported for item-

based and SVD-based algorithms. In some of the unsupported cases, In-Degree and

Number of Ratings methods select power users with similar influence.

DH-4: A relatively small number of power users (5% or less of the user base on

selected datasets) can have significant effects on RS predictions and top-N lists of rec-

ommendations across multiple power user selection techniques, collaborative filtering

algorithms, datasets, and domains. This hypothesis is supported for user-based and

SVD-based algorithms for the ML100K and ML1M datasets; the hypothesis is not

supported for item-based algorithms.



CHAPTER 6: POWER USER ATTACK MODEL AND EVALUATION

6.1 Introduction

As a foundation for understanding influence based attacks, we adapt established

network measures of influence to the context of RSs, in order to identify power users in

the underlying dataset. In our previous work [54, 60], we identified real power users

(RPUs) using selection methods based on network centrality, user-user similarity,

and, rating behavior. We then used those RPUs to mount a Power User Attack

(PUA) and found that accuracy and robustness metrics were negatively impacted for

commonly used RS approaches. For clarity, the power user attack envisioned in this

research is not about having hundreds or thousands of actual power users colluding

to mount an attack, rather, it is about an attacker being able to generate a set of

power user profiles that, when stealthily injected into a RS, can effectively bias the

recommendations. Knowing that a Power User Attack with RPUs can be effective,

the natural next question is whether RPUs can be modeled to enable / automate the

generation of completely synthetic power user (SPU) profiles with the same degree

of impact as attack vectors. In effect, the “evil twins” of the real power users. This

Chapter describes our approach to generate synthetic attack profiles to emulate and

exploit the influence characteristics of real power users, and it studies the impact of

attack vectors that employ synthetic power user profiles.

The research questions for this analysis are:
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RQ-1: Can SPU profiles be generated that effectively model RPUs?

RQ-2: Can SPU profiles be effective in attacking RSs?

The hypotheses to be tested are:

H-1: A majority of the SPU profiles injected into a given dataset will be successfully

identified by the same power user selection method used to identify the respective

RPU profiles, i.e., precision and recall scores will be > 50%.

H-2: Datasets, with SPU profiles for each power user selection method, evaluated

using an ablation approach will indicate a statistically significant increase in MAE as

SPU profiles are removed from the dataset.

H-3: The MAE differences achieved for the power user selection methods will be

comparable to what was observed when RPUs were removed from those same datasets.

H-4: Statistical characteristics of RPUs and PUM-generated SPUs will be measured

and no statistically significant differences will be found between them for average

number of ratings per user, average user rating, and average item rating.

H-5: SPU profiles identified using the InDegree power user selection method will

have a higher level of impact, compared to SPU profiles identified using NumRatings

or AggSim, on RS predictions and top-N recommendation lists as measured with

Average Hit Ratio and Average Rank robustness metrics.

H-6: A relatively small number of power users (<=5% of all users) can have significant

effects on RS predictions and top-N lists of recommendations, measured with an

Average Hit Ratio > 50% and Average Rank < 10.
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6.2 Overview of Foundational Power User Attack Research

The PUA relies critically on the method of power user identification/selection, so

we also developed and evaluated a novel use of degree centrality concepts from social

network analysis for identifying influential RS power users for attack purposes [60].

In addition, we chose to use the Most Central and Most Active heuristics from [18]

because this would provide us with their best-case and worst-case scenarios that we

could then use to compare with our degree centrality approach. The power user

selection methods that we have used previously (see § 5.5.1) are as follows:

1. InDegree: Our approach based on in-degree centrality — power users participate

in the highest number of neighborhoods. For each user i compute similarity

with every other user j applying significance weighting ncij/50, where ncij is

the number of co-rated items and 50 items was determined empirically by [19]

to optimize RS accuracy; then discard all but the top-N neighbors for each user

i. Count the number of similarity scores for each user j (# neighborhoods user

j is in), and select the top-N user j’s.

2. Aggregated Similarity (AggSim): The Most Central heuristic from [18]. Top-N

users with the highest aggregate similarity scores become the selected set of

power users. This method requires at least 5 co-rated items between user i and

user j and does not use significance weighting.51

3. Number of Ratings (NumRatings): This method is based on [20] where “power

user” refers to users with the highest number of ratings; it also is called the

Most Active heuristic in [18]. We selected the top-N users based on the total

51Based on personal communication with the authors.
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number of ratings they have in their user profile.

When evaluating power item selection methods, there are attack dimensions such

as cost and knowledge required that should be considered [26, 9]. The cost to mount

an attack is controllable by the attacker and relates to the effort required to yield

the desired outcome; the objective is to keep the cost low. The more knowledge

an attacker has about the dataset’s users, items, and ratings, the more effective the

attack; however, that knowledge is difficult, albeit not impossible, to obtain. We note

here that the knowledge required for the NumRatings method can be considerably

lower than InDegree or AggSim because popular items are usually well known and

are publicly-available information; this may give NumRatings an edge over the other

selection methods, costs being equal.

To evaluate power user selection methods, we use an ablation approach [27, 60],

where accuracy of the RS is measured as power users are removed from the dataset.

If accuracy gets worse when power users are removed, the implication is that power

users are impacting the RS recommendations. The intuition is that the power user

selection method that is able to identify the set of users with the greatest negative

impact on system accuracy is the better method. We previously reported an ablation

analysis for RPUs using the MovieLens 100K, 1M, and 10M datasets for user-based,

item-based, and SVD-based recommenders [60, 51, 54]. The results indicated that

all three power user selection methods described above show an increase in Mean

Absolute Error (MAE), i.e., accuracy gets worse, as power users are removed and

that this effect is stronger with the InDegree and NumRatings methods than with



85

AggSim.

6.3 Power User Model

Our first research question (RQ-1) is how to effectively generate synthetic power

user profiles, which has two main aspects. First, we must be able to effectively identify

real power users. For this study we employ the methods we have used previously in

Section 5.5.1 and described above in (§ 6.2). Second, with a mechanism in place to

identify real power users, the next step is to develop a generative model for synthetic

power users based on the identified RPUs. This section describes our proposed new

model.

In a laboratory environment it would be possible to create synthetic power users

with specific influence characteristics; however, from a practical perspective, attack-

ers may not have the ability or resources to be that precise. Attackers recognize

that there is a tradeoff between the effort (or cost) of mounting an attack and the

effectiveness (or impact) of the attack; their intent is to maximize the impact at a

minimal cost. Furthermore, it is not our intention to create synthetic power users that

maximize the values of the respective power user selection methods, i.e, maximum

possible in-degree, or number of ratings, or aggregated similarity. Although it would

be interesting to understand the maximal impacts that those power users could have

when attacking a collaborative recommender, these attacks may not be very practical

to mount from an attacker’s perspective; additionally, such strong attacks may be

easy to detect or mitigate, e.g., attacks with synthetic users that have rated 100%

of all items. Therefore, we chose a more practical middle ground that generates syn-

thetic power users that emulate characteristics of real power users. Our objective is
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to investigate the extent to which synthetic power users (based on real power user

characteristics) are influential enough to impact recommendations.

Unlike classic attack models (e.g., random, average, bandwagon) that employ

straightforward statistical templates (e.g., average item rating, popularity, and lika-

bility) to generate synthetic attack profile filler items [36], very little is known about

the characteristics of power users. And without this knowledge, it is difficult to gener-

ate synthetic power user profiles. Therefore, we have developed a Power User Model

(PUM) that can be used to generate synthetic power users (SPU) for attack purposes.

We base our PUM on the primary factors considered in order to build effective RS

attacks [26, 36], which include:

1. Attack size: the number of attack user profiles to be injected. A larger attack

size is more effective, however, it is more easily detectable.

2. Filler size: the number of item ratings in the attack user profile, excluding the

target item. A larger filler size is more effective, however, it is also more easily

detectable.

3. Filler item selection: items that are likely to correlate with many other users in

the system will be more effective.

4. Filler item rating: ratings that are likely to correlate with many other users in

the system will be more effective.

5. Target item selection: items with few ratings are more vulnerable to attack.

6. Target item rating: on a 1-5 rating scale, use 5 for “push” attacks and 1 for

“nuke” attacks

With these dimensions as guidelines, we generate synthetic user profiles in the fol-



87

lowing manner by collecting targeted statistics of identified real power users. For this

initial evaluation of the PUM, we use the MovieLens 100K dataset52 to identify/select

RPU’s. We then collect user, item, and neighborhood characteristics from the dataset

and begin to build the power user model to generate SPU profiles:

1. Power User selection methods are InDegree, NumRatings, and AggSim de-

scribed in § 6.2.

2. Attack size: The attack size or number of profiles is an experimental design

parameter and is usually expressed as a percentage of the total number of user

profiles in the dataset. Previous work [36] has shown that a 5-10% attack size

should be sufficient to have an impact on recommendation robustness; therefore,

we use a conservative 5% attack size or 50 SPU’s for this analysis.

3. Filler size or the number of items in each profile is an experimental design

parameter and is usually expressed as a percentage of the total number of items

in the dataset. Previous work [36] has shown that a 5-10% filler size should

be sufficient to have an impact on recommendation robustness. However, in

this study, the filler size for each profile is selected randomly from a normal

distribution around the mean and standard deviation (σ) of the number of

ratings in the dataset for the RPUs identified/selected by each selection method.

This approach was used so that it would closely mimic the behavior of real power

users. For this study, the filler size distributions varied by selection method:

InDegree (µ=317.78 and σ=124.981), NumRatings (µ=395.32 and σ=93.031),

and AggSim (µ=35.64 and σ=21.886).

52100,000 ratings, 1,682 movies, 943 users, 93.7% sparsity.
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Table 3: Distribution of items by popularity bucket

% items/bucket Low MedLow Medium MedHigh High

InDegree 25.79% 32.20% 21.65% 12.52% 7.83%
NumRatings 29.86% 32.75% 19.83% 11.08% 6.48%

AggSim 14.42% 23.79% 23.63% 16.44% 21.72%

4. Item selection is based on the average number of user ratings by item category

for the RPU’s identified in the dataset; for this study, the item category is

popularity or the number of ratings for the item. We selected popularity as an

initial approach with the intent of using other characteristics, such as likability

and genre, in the future. For each power user selection method, we determined

the distribution of items rated for the RPU’s in five item popularity “buckets”

and required each SPU profile to contain a similar distribution, as shown in

Table 3. The buckets were defined taking into account that the “number of

ratings” characteristic usually follows a power law wherein a large number of

items have a relatively small number of ratings (i.e., the least popular movies)

and a small number of items have a large number of ratings (i.e., the most

popular movies):

• Low: items with an average number of ratings

• Medium Low: items with an average number of ratings + 1σ

• Medium: items with an average number of ratings + 2σ

• Medium High: items with an average number of ratings + 3σ

• High: items with greater than average number of ratings + 3σ

5. Item rating value for each item in the profile is selected randomly from a normal

distribution around the mean and standard deviation of the average item’s
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rating in the dataset for the RPU’s identified/selected by each selection method.

Our intent was for SPU’s to have a rating profile similar to RPU’s rather than

just randomly assigning rating values. We used a normal distribution because

this has been typical in RS attack research [26, 36] and because it may be

the best fit given the overall average item rating for ML100K of µ=3.077 and

σ=0.780 on a 1-5 scale.

6. Target items selected will be “new” items, i.e., those with only one rating.

7. Attack intent for this study will be “push”, i.e., the target item rating will be

set to the max rating value of 5.

6.3.1 Evaluating the Power User Model: Results and Discussion

For RQ-1, we want to know whether SPU profiles can be generated that effectively

model RPUs. For this experiment, we consider the following hypotheses:

• H-1: A majority of the SPU profiles injected into a given dataset will be suc-

cessfully identified by the same power user selection method used to identify

the respective RPU profiles, i.e., precision and recall scores will be > 50%.

• H-2: Datasets, with SPU profiles for each power user selection method, evalu-

ated using an ablation approach will indicate a statistically significant increase

in MAE as SPU profiles are removed from the dataset.

• H-3: The MAE differences achieved for the power user selection methods will

be comparable to what was observed when RPUs were removed from those same

datasets.

• H-4: Statistical characteristics of RPUs and PUM-generated SPUs will be mea-

sured and no statistically significant differences will be found between them for
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average number of ratings per user, average user rating, and average item rating.

To evaluate the SPU profiles (before the attack), we remove the top 50 RPU’s from

the original ML100K dataset using each of the three selection methods (InDegree,

NumRatings, AggSim) and replace them with 50 SPU profiles to create modified

ML100K datasets.53 We remove the RPU’s to see how well the 50 SPU’s would

replace them. Then, we identify/select the top 50 power users from the modified

datasets using each of the three selection methods.

First, we use precision and recall metrics to determine the extent to which the

50 SPU’s are actually selected by each method. The PUM generated SPU profiles

with varying degree of success based on the power user selection method used. For

InDegree, 70% of the SPU’s were identified and NumRatings achieved 83% preci-

sion and recall scores, while AggSim was only able to achieve a 32% precision and

recall score. Although there is no precedent for determining whether these scores

are adequate or inadequate, the next two evaluation methods will also need to be

considered. Hypothesis H-1 is accepted for InDegree and NumRatings, rejected for

AggSim, meaning that the PUM generated an acceptable number of SPU’s that were

successfully identified/selected by the InDegree and NumRatings methods and not

the AggSim method.

Next, we look at the ablation results in Figures 19 and 20 comparing RPU (left

graphs) and SPU (right graphs) behavior. We observe that as InDegree-selected

SPU’s are removed, MAE increases (p < .01 for SVD-based and p < .05 for User-

53NB: The desired attack size (5% of users in the dataset) is equivalent to 50 SPU’s; the same
number of SPU profiles are evaluated before and after the attack.
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based); for NumRatings and AggSim, MAE is either flat or decreases (p < .02 for

decrease in SVD-based NumRatings). Hypothesis H-2 is accepted for InDegree and re-

jected for NumRatings and AggSim, and this would indicate that InDegree-generated

SPU’s are more effective in influencing recommendations than the other two methods.

Figure 19: MAE impacts after removing power users using ML100K

Figure 20: MAE impacts after removing power users using ML100K

For SVD RPU’s, MAE differences for all three methods are only significantly differ-

ent from each other at 100% removal (p < .02). For SVD SPU’s, with the exception

of NumRatings at 100% removal, both InDegree and NumRatings are significantly

different from AggSim (p < .01) at all removal levels; and there is no significant dif-

ference between InDegree and NumRatings at any level of removal. For User-based

RPU’s, MAE differences for all three methods are only significantly different from
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each other at 100% removal as follows: InDegree-NumRatings (p < .05), InDegree-

AggSim (p < .02). For User-based SPU’s, InDegree-AggSim are significantly differ-

ent at all removal levels and InDegree-NumRatings are significantly different only at

100% removal (p < .01). Hypothesis H-3 is rejected for SVD-based and accepted

for User-based analyses. This would indicate that, in general for SPU’s, InDegree

and NumRatings tend to have better ablation performance than AggSim; further-

more, InDegree SPU’s achieve an equal or higher MAE at 100% removal than RPU’s

indicating a strong level of influence for these SPU’s.

Finally, when comparing statistical characteristics between SPU’s and the RPU’s

upon which they are based, we found significant differences in user and item rating

entropy as well as global rating values for SPU’s across all three power user selec-

tion methods (p < .01). Notably, the NumRatings method was able to significantly

impact the global average rating value (downward from 3.302 to 3.190) between the

RPU’s and SPU’s groupings as well as for the full ML100K dataset (p < .01 in both

cases); this may help to explain the performance of the NumRatings method in the

ablation study as well as in the PUA results. Hypothesis H-4 is accepted for In-

Degree, NumRatings, and AggSim, i.e., no statistically significant differences were

found between RPU’s and SPU’s for the key measures of average number of ratings

per user, average user rating, and average item rating. This indicates that the PUM

is generating SPU’s that match the key statistical measures, however, work is needed

to improve the user and item rating entropy measures.
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6.4 Synthetic Power User Attack

For RQ-2, we want to understand whether generated SPU profiles can be effective

in attacking RSs. For this experiment, we consider the following hypotheses:

• H-5: SPU profiles identified using the InDegree power user selection method

will have a higher level of impact, compared to SPU profiles identified using

NumRatings or AggSim, on RS predictions and top-N recommendation lists as

measured with Average Hit Ratio and Average Rank robustness metrics.

• H-6: A relatively small number of power users (<=5% of all users) can have sig-

nificant effects on RS predictions and top-N lists of recommendations, measured

with an Average Hit Ratio > 50% and Average Rank < 10.

To mount the PUA, synthetic power user profiles were generated as described in § 6.3

and converted to attack profiles by setting target items to the max rating. Target

items were selected to simulate a ‘new’ item attack because this is a typical scenario

in which power users are asked to provide ratings. Evaluations were performed before

and after the attack using the Apache Mahout 0.8 platform54.

Evaluation Metrics – To evaluate the PUA, we use Mean Absolute Error (MAE)

and prediction coverage [20, 56] using a random holdout-partitioned 70/30 train/test

dataset. We also use Hit Ratio, Prediction Shift, and Rank robustness measures [36, 9]

where a high Hit Ratio and a low Rank indicates that the attack was successful (from

the attacker’s standpoint). Since the PUA being evaluated here is for new items (i.e.,

not very many ratings in the dataset), the Prediction Shift is expected to be close to

54http://mahout.apache.org/
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the max rating defined by the RS.

Datasets and Algorithms – We used MovieLens 100K (ML100K) where each user has

20 or more ratings to avoid the ‘new’ user problem. The algorithms used were provided

in Apache Mahout. For SVD, we used RatingStochasticGradientDescent (RSGD);

run-time parameter settings were number of features (=100) and number of training

steps or iterations (=50) and were determined empirically to optimize recommender

accuracy. The user-based weighted CF algorithm was used for comparative purposes.

Power User Selection – Methods are described in § 6.2.

Target Item Selection – Given our objective to attack ‘new’ items, 50 target items

with only one rating were selected randomly from the dataset.

Attack Parameter Selection – The Attack Intent is Push, i.e., target item rating is set

to max (= 5). The Attack Size or number of power users in each attack was varied

in this experiment: 50, 30, 10, 5, 2, and 1, where 50 power user profiles equate to a

5% attack for ML100K. The Attack profiles used were SPU profiles described in § 6.3

and we injected the target item rating at run time. The Filler size for each profile

varied for each SPU and is described in § 6.3.

Test Variations – The test variations consisted of 2 prediction algorithms, one dataset,

3 power user selection methods, and 6 attack sizes. Each test variation was executed

50 times (once for each of the 50 target items) and data results were averaged over

the 50 target items.

6.4.1 Evaluating the Power User Attack: Results and Discussion

The PUA on SVD in Figure 21 shows significant impacts to recommendations be-

tween 5 and 50 SPU’s for InDegree, NumRatings, and AggSim. NumRatings SPU
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Figure 21: ML100K – SVD-based results

Figure 22: ML100K – User-based results

influence on Avg Hit Ratio begins to break down below 30 power users and is also

evident in the Avg Rank; the difference between NumRatings and both InDegree

and AggSim is significant between 5 and 30 power users (p < .01). The results for

InDegree and AggSim, as well as the trend for NumRatings, are consistent with our

previous work with attacks on SVD recommenders using RPU’s [54]. Previous work

on RS attacks has indicated that SVD is robust to attack [31]. However, this is the

case only when attackers have been detected and removed from the recommendations;

our experimentation does not remove attackers prior to generating recommendations.

The PUA on User-based in Figure 22 shows significant impacts to recommendations

between 10 and 50 power users for InDegree and NumRatings while AggSim is never

a factor(p < .01). These findings are consistent with our previous PUA research [60].
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The InDegree-generated SPU’s produces a strong set of power users, both before

and after the attack; InDegree results are significantly different from NumRatings

in the range of 2 to 30 power users (p < .01). Hypothesis H-5 is rejected for SVD-

based and partially accepted for User-based analyses (no difference at 50 SPU’s).

The interpretation of this result is that InDegree may be a more superior power user

selection method than NumRatings and AggSim for User-based recommenders and

that there is no clear superior power user selection method for SVD-based recom-

menders. Hypothesis H-6 is accepted for both SVD-based and User-based analyses,

meaning that a relatively small number of power users (5% or less of the user base

on a given dataset) can have significant effects on RS predictions and top-N lists of

recommendations regardless of power user selection method.

6.5 Summary of this Chapter

Power users are important to recommender systems and contribute to their im-

proved prediction accuracy; however, we have found power user attacks that are

effective against popular recommender systems. In this chapter we have developed a

power user model that is able to generate synthetic power user profiles that, in specific

configurations, can be used to mount effective power user attacks against SVD-based

and User-based recommenders measured by Hit Ratio and Rank robustness metrics.

We have shown that our power user model generates effective synthetic (vs. actual)

power user profiles as measured with accuracy, precision, and recall metrics. We

have also shown that a relatively small number of synthetic power users can have

significant effects on RS predictions and top-N recommendation lists for new items.

The contributions of this research have been to provide a new Power User Model
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and a process for generating synthetic power user attack profiles based on statistical

characteristics of power users.

In Chapters 5 and 6, all of the experiments use “new” target items, i.e., those with

only one rating. The reason for this was to ensure that the attacks were capable of

producing a strong signal or impact, essentially providing an upper bound on attacker

influence. However, there are well-known techniques that system operators can use

to protect the robustness of new items until they have enough ratings and become

less vulnerable to attack, e.g., new item quarantine,55 content-boosted collaborative

filtering [33], market-based use of recommender systems [14, 3], and Local Collective

Embeddings, a matrix factorization approach that exploits items’ properties and past

user preferences [50]. So to continue to establish the effectiveness of power user

attacks on collaborative recommenders, in Chapters 7, 8, and 9, we conduct power

user (and power item) attacks using not only “new” target items but also “new and

established” targets. In many instances, we find that power user/item attacks with

“new and established” targets are effective albeit not as effective as those with only

“new” target items.

With respect to the Dissertation Hypotheses provided in Section 1.5.2, this chap-

ter has indicated the following level of support for the applicable hypotheses; final

acceptance/rejection of the Dissertation Hypotheses are provided in the Dissertation

Summary, Section 10.1:

DH-1: The use of In-Degree Centrality to select a set of power users results in power

users with higher influence than other selection techniques, across multiple datasets

55http://www.inf.unibz.it/dis/research/seminar slides/burke.ppt
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and domains. This hypothesis is supported for user-based and partially accepted for

SVD-based algorithms for the ML100K dataset. It is partially supported for SVD-

based recommenders because In-Degree shows higher influence than Aggregated Sim-

ilarity and equal influence with Number of Ratings.

DH-2: A significant percentage of synthetic user profiles generated from statistical

characteristics of power users will be identified by selected power user selection tech-

niques across multiple datasets and domains. This hypothesis is supported for In-

Degree and Number of Ratings methods for the ML100K dataset; the hypothesis is

not supported for the Aggregated Similarity power user selection method.

DH-3: Power user attack profiles generated from characteristics of InDegree-selected

power users will result in more effective attacks (from the attacker’s viewpoint) than

attack profiles generated from characteristics of power users selected from other tech-

niques across CF algorithms, datasets, and domains. This hypothesis is not supported

for SVD-based and partially supported for user-based algorithms for the ML100K al-

gorithm, i.e, In-Degree is a more superior power user selection method than Number

of Ratings and Aggregated Similarity for user-based recommenders and there is no

clear superior power user selection method for SVD-based recommenders.

DH-4: A relatively small number of power users (5% or less of the user base on

selected datasets) can have significant effects on RS predictions and top-N lists of rec-

ommendations across multiple power user selection techniques, collaborative filtering

algorithms, datasets, and domains. This hypothesis is supported for user-based and

SVD-based algorithms for the ML100K dataset.



CHAPTER 7: POWER ITEM ATTACK MODEL AND EVALUATION

7.1 Introduction

Recommender systems that use model-based approaches such as item-based and

SVD matrix factorization algorithms have been found to be robust to many types of

attack [36, 31, 59, 21]. The conventional advice in designing for system robustness

has thus been to employ model-based approaches [37]. We have previously studied a

novel category of RS attacks based explicitly on measures of influence, in particular

the potential impact of high-influence, or power users [54, 60, 61]. We found that

Power User Attacks (PUAs) are able to successfully impact SVD-based and user-

based recommenders [54, 60, 61]. However, we also confirmed previous research [26,

36, 61] that item-based systems remained fairly robust to attack. Because attackers

continue to develop new approaches for biasing RS results, it is critically important

for researchers to keep pace in analyzing potentially new attack vectors. Therefore,

our challenge was to determine how to attack the item-based algorithm.

In order to successfully attack (from the attacker’s viewpoint) the item-based al-

gorithm, we turned our attention to the complementary notion of influential power

items. Selected in the same manner as power users, we conjectured that power items

would exhibit the same type of influence found with power users. To successfully

attack item-based recommender systems [47], prior research showed that item-item

similarities can be manipulated; e.g., this was demonstrated in the Bandwagon and
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Segment attacks [6, 36]. And with this knowledge, it is possible that an attacker

could generate attack user profiles that exploit this vulnerability in the item-based

CF algorithm. Furthermore, it is conceivable that an attacker would want to attack

multiple items, e.g., promoting a set of related items from a single supplier or pro-

moting similar items from multiple suppliers. So, rather than mount multiple attacks

each of which targets a single item, the attacker can more efficiently impact multiple

items in a single attack. However, while an attack using multiple target items could

be effective against the item-based CF algorithm, it may not be as effective against

user-based CF recommenders: User-based recommenders would compute user-user

similarities of attack user profiles (containing multiple target items) and form neigh-

borhoods of users that have similar tastes not only with filler items but also with the

multiple target items, effectively reducing the focus and effectiveness of the attack.

To eliminate confounds between the filler/selected items (that are used to correlate

with other users) and the target item, only single target item attacks have been used

in the past [36, 9] against user-based recommender systems. Therefore, we believe

that using influential power items as filler/selected items is particularly well-suited

to attack the item-based collaborative filtering algorithm that generates recommen-

dations based on the similarity between items (not users) and will not suffer from the

confounds between power items and the multiple target items. Instead, the multi-

ple target items become strongly associated with the power items in the attack user

profile that are, in turn, used to correlate with other users in the dataset.

This Chapter presents our definition of power items and the power item attack

model, as well as a series of experiments conducted to determine how well the Power
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Item Attack (PIA) is able to impact the traditional item-based algorithm [47].

The research question for this analysis is:

RQ-1: Can a Power Item Attack successfully (from the attacker’s viewpoint) impact

item-based recommenders as measured with Hit Ratio, Prediction Shift, and Rank

robustness metrics?56

The hypotheses to be tested are:

H-1: A PIA with relatively small number of Synthetic Power Item Profiles (SPIP’s)57,

i.e., <=5% of all users, can have significant effects on RS predictions and top-N lists

of recommendations, measured with robustness metrics.

H-2: SPIP’s identified using the InDegree power user selection method will have a

higher level of impact, compared to SPIP’s identified using NumRatings or AggSim,

on RS predictions and top-N recommendation lists as measured with Hit Ratio and

Rank.

7.2 Selecting Power Items

To select power items our initial study employs the same methods we used pre-

viously for power user selection [61]. We believe this is sound for similarity-based

methods because the similarity calculations between items are symmetric to those

between users. The methods are as follows:

InDegree or ID – Our approach is based on in-degree centrality [57], where power

items participate in the highest number of similarity neighborhoods. For each item i

compute similarity with every item j applying significance weighting ncij/50, where

56See § 7.5 for description of robustness metrics.
57See § 7.3 for a description of SPIP’s
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ncij is the number of users that have rated the same items i and j, then discard all

but the top-N neighbors for each item i.58 Count the number of similarity scores for

each item j (# neighborhoods item j is in), and select the top-N item j’s.

Aggregated Similarity (AggSim or AS) – Analogous to the user-based Most Central

heuristic from [18]. The top-N items with the highest aggregate similarity scores be-

come the selected set of power items. This method requires at least 5 users who have

rated the same item i and item j; this method does not use significance weighting.59

Number of Ratings (NumRatings or NR) – Power users were defined in [20] as users

with the highest number of item ratings, thus the analog for power items would be

those items with the highest number of user ratings. Therefore, we select the top-N

items based on the total number of user ratings they have in their profile. Items

selected by this method are also referred to as popular items in the context of Band-

wagon, Segment, and AOP attacks [6, 36, 21].

Although PIA detection is beyond the scope of this dissertation, we should note

that detailing the Power Item Model (§ 7.3) and the methods for selecting power

items (§ 7.2) provides the basic information required for detection analysis.

7.3 Power Item Model

We have developed a Power Item Model (PIM) that can be used to generate syn-

thetic power item profiles (SPIP) for attack purposes. Unlike classic attack models

(e.g., random, average, bandwagon) that employ straightforward statistical templates

(e.g., average item rating, popularity, and likability) to generate synthetic attack pro-

58We used a divisor of 50 users as an analog to work done with co-rated items in user neighborhoods
by [19] to optimize RS accuracy.

59Based on personal communication with the authors.
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file filler items [36], very little is known about the characteristics of power items. And

without this knowledge, it is difficult to build attack user profiles. So, for the PIA,

our initial work uses influence-based methods to select power items (§ 7.2) and we set

other attack user profile elements in the SPIP according to more traditional attack

models.

To describe the PIM, we use the specification framework from [36]. The attack

user profile elements consist of the following:

Selected items (IS) have particular characteristics determined by the attacker. For

the PIM, these are the power items and they are items that are likely to correlate

with many user profiles in the system. The selected item size, or the number of items

in each profile, is an experimental design parameter and is usually expressed as a

percentage of the total number of items in the dataset. A larger size may have more

impact, however, it is also more easily detectable. Previous work [36] has shown

that a 5-10% profile size should be sufficient to have an impact on recommendation

robustness. IS selection is based on the methods described in § 7.2. The IS rating

value for each of these items in the profile is selected randomly from a normal distri-

bution around the mean and standard deviation of the item’s rating in the dataset.

Our intent was for SPIP’s to have a rating profile that was strong rather than just

randomly assigning rating values. We used a normal distribution because this has

been typical in RS attack research. [26, 36].

Filler items (IF ) are usually set randomly according a normal distribution and are

used to establish correlations with other users in the dataset. For the PIM, this set is

empty because we wanted a strong correlation between the selected items IS and the
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target item IT ; we believe that having filler items would tend to confound or dilute

this relationship.

Unrated items (IU) are the items exclusive of the IS, IF , and IT and have null values

in the PIM.

Target item (IT ) is usually a single item that is typically set to the maximum rmax

or minimum rmin rating depending on the attack intent (push or nuke). Our initial

experiment in this study consisted of a single target item attack (PIA-ST) in keeping

with traditional attack models; our subsequent experiments (2 and 3) used the novel

multiple target item attack (PIA-MT) on the item-based algorithm. The selection of

the target item is also a key part of the attack model. We experiment with “new”

items (those with only one rating) because this is a typical scenario in which power

users are asked to provide ratings and because items with few ratings are more vul-

nerable to attack; we also use a mix of “new and established” items for subsequent

experiments.

Other factors in building effective RS attacks include [26, 36]:

Attack size, the number of attack user profiles to be injected. A larger attack size may

be more effective, however, it is more easily detectable. The attack size or number of

profiles is an experimental design parameter and is usually expressed as a percentage

of the total number of user profiles in the dataset. Previous work [36] has shown

that a 5-10% attack size should be sufficient to have an impact on recommendation

robustness. We vary the attack size for our experiments to understand the scope of

impact.

Attack intent, for a typical 1-5 rating scale, 5 is used for push attacks and 1 for nuke
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attacks. In this study, we focus on push attacks, leaving nuke attacks for future work.

Therefore, to generate a set of SPIP’s for a given PIA, we specify the following

elements:

• Dataset with (user, item, rating) triples

• Power Item selection methods: similarity-based, influence-based, etc.

• Attack size or number of attackers: Expressed as a percentage of number of

users in the dataset

• Selected Item (IS) size or number of power items: Expressed as a percentage of

number of items in the dataset

• Target Item (IT ): New items, Established items

• Target Item size or number of target items: Expressed as a percentage of number

of items in the dataset

• Attack intent: Push

The push version of the PIA-ST is similar to the Bandwagon, Segment, and AOP

attacks, when the power item selection method is based on the Number of Ratings

method, as described in § 7.2. However, these attack models differ primarily in the

contents of IF and IS as shown in Table 4. Furthermore, the PIA-MT differs radically

from previously studied attacks using popular items, not only in the profile contents

shown in Table 4 but also in that the PIA-MT uses multiple targets simultaneously

rather than a single target item in order to mount the attack.

The PIM approach goes beyond prior research primarily in two areas: first, we

utilize influence-based methods (§ 7.2) to select the power items for the attack user

profile, and second, we utilize multiple rather than just single target items. We believe



106

Table 4: Attack model profile content differences

Attack Model IS IF

Popular items, Random items,
Bandwagon ratings set to rmax ratings set with normal

dist around system mean
Segment Segment items, Random items,

ratings set to rmax ratings set to rmin
Average x-% Popular Items,
Over Empty ratings set with normal
Popular dist around item mean

Power items,
Power Item ratings set with normal Empty

dist around item mean

that this combination can yield powerful attacks, especially against the item-based

algorithm that has been resistant to attack in the past [26, 36].

7.4 Analyzing Power Item Attacks

We conducted a series of three experiments to address our main research question

— whether the PIA could have a substantial impact on item-based recommenders.

First, to see whether the PIA had traction as an attack vector overall, which it did.

Second, to see whether a multiple-target variant would have a greater impact on

item-based approaches, which it did. And third, to see whether the multiple-target

PIA could have an impact on both new and established items, which it can. The line

of experimentation was to find a PIA approach that was more successful in attacking

item-based recommenders than previous research [36] had indicated.

Experiment 1 – Consists of the PIA with a number of “new” (low # ratings) item

targets pushed one at a time and averaged over all target items. We call this the PIA

Single Target (PIA-ST) attack because we are, in effect, attacking the recommender

with a single target item. The objective of this experiment is to determine the ef-
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fectiveness of the PIA against various recommender algorithms and to compare with

the results we obtained with the PUA against similar recommenders.

Experiment 2 – Although it is easy to envision an attacker with an intent to pro-

mote a single item, e.g., a book they just published, it is also possible for an attacker

to have several items to attack at once in order to promote (or disparage) a group

of products as opposed to only one product. This experiment consists of the PIA

with multiple “new item” targets all pushed at the same time and is called the PIA

Multiple Target (PIA-MT). The objective of this experiment is to test how well the

power item approach can significantly impact item-based systems, above and beyond

previously-observed results by further exploiting item-item similarities in the SPIP’s.

Experiment 3 – A question that also needs to be answered is whether the PIA can still

be effective when using a mix of new and established target items rather than just

new items. This experiment consists of the PIA with multiple “new and established

item” targets all pushed at the same time and is another variation of the PIA-MT.

The objective of this experiment is to determine how well the PIA-MT is able to

impact recommendations for a mix of new and established items.

Based on our research question, we note two hypotheses:

H-1: A PIA with relatively small number of SPIP’s (<=5% of all users) can have

significant effects on RS predictions and top-N lists of recommendations, measured

with robustness metrics. For Experiments 1 and 2 that use new items as targets, we

expect Hit Ratio to be > 50% and Rank < 20 to qualify as significant impacts. For

Hit Ratio, a majority of users (> 50%) should have target items in their top-N lists.

In our experiments we use a top-N value of 40 for Hit Ratio calculations based on
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the analysis in [26] that the median recommendation search ends within the first 40

items displayed. Therefore, a Rank of 20 would be well within the median search.

Since there is no precedent for measuring a PIA that uses new and established items

as targets, for Experiment 3 we used values based on the “all-users” Hit Ratio and

Prediction Shift results for the Segment attack against the item-based systems [6, 36],

i.e, Hit Ratio > 11% and Prediction Shift > 0.1.

H-2: SPIP’s identified using the InDegree power user selection method will have a

higher level of impact, compared to SPIP’s identified using NumRatings or AggSim,

on RS predictions and top-N recommendation lists as measured with Hit Ratio and

Rank. This hypothesis is based on the findings from Social Network Analysis [57]

that high InDegree centrality is indicative of nodes (users) that have strong influence

over other users.

7.5 Experimental Design

Evaluation Metrics – Evaluations were performed before and after the attacks using

the Apache Mahout 0.8 platform60. For robustness metrics [36, 9], we use Hit Ratio

(HR), Average HR (HR), Prediction Shift (PS), Average PS (PS), Rank (R), and

Average R (R). For example, a high Hit Ratio and a low Rank indicates that the

attack was successful (from the attacker’s standpoint). Since we are using multiple

targets simultaneously in Experiments 2 and 3, the interpretation of Hit Ratio is

changed from its traditional meaning, i.e., HR is now the percentage of users that

have at least one of the multiple target items in their top-N list. We also defined

a new metric, Number of Targets per User (NTPU), associated with Hit Ratio that

60http://mahout.apache.org
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provides the average number of target items present in a user’s top-N list of recom-

mendations. This metric provides a measure of the effectiveness of a multiple-item

attack, a higher NTPU meaning higher attack effectiveness, and is averaged over all

users with hits (target items in their top-N lists). For a test run T , let UT be the

set of users, UHT the set of users with hits, and ITT the set of target items; and let

Ru be the set of top-N recommendations for user u. If the target item appears in

Ru for user u, the scoring function Hui has value 1; otherwise it is zero. NTPU for a

user u is given by NTPUu =
∑

iεITT
Hui , and then averaged over all users with hits

to yield NTPU =
∑
iεUT

NTPUu

|UHT |
. The range of values for NTPU is from one to the

total number of target items used in the attack. Because we are averaging over all

users with hits, if only one user had any hits and got all of them, the attack would be

considered maximally effective. While this scenario is possible, it indicates that the

attack is maximally effective for only one user, i.e., from an attacker’s viewpoint, this

attack would be effective only if that one user was being targeted. Such an attack

would be costly to mount and not likely to be pursued. A more likely scenario is that

a relatively small number of users garner many of the hits and NTPU is relatively

high. In this case, the attack is considered effective for that subset of users. The

objective of NTPU is to provide a measure that considers the level of “penetration”

for a given attack in terms of the number of targets appearing in a given set of user

top-N lists; the set of users ranging from one to the total number of users in the

dataset. The value of the NTPU is limited by this objective. Other measures such

as Recall (% relevant retrieved) could be used for this purpose, however, those mea-

sures do not directly indicate number of targets per user. To compare the NTPU
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metrics within and between experiments, a Normalized NTPU or NNTPU is calcu-

lated using average Hit Ratio as the normalizing factor. So, for a given test run T ,

NNTPUT = HRT ∗NTPUT . Since the PIA’s being evaluated for Experiments 1 and

2 are for “new” items, i.e., items with one rating, the Prediction Shift is expected to

be close to rmax of 5.

Datasets and Algorithms – We used MovieLens61 ML100K62, ML1M63, and ML10M64

datasets. The RS algorithms used were provided in Apache Mahout and customized

for this study. The CF user-based weighted algorithm (UBW) [13] uses Pearson sim-

ilarity with a threshold of 0.0 (positive correlation), neighborhood size of 50, and

significance weighting of n/50 where n is the number of co-rated items [19]. The

item-based weighted algorithm (IBW) [47] uses Pearson Correlation similarity with

a threshold of 0.0 and significance weighting of n/50. For the SVD-based algorithm

(SVD), we used RatingStochasticGradientDescent (RSGD); run-time parameter set-

tings were number of features (=100) and number of training steps or iterations (=50)

and were determined empirically to optimize recommender accuracy.

Attack User Profiles – To mount the Power Item Attack, attack user profiles were

generated as described in § 7.3 and converted to attack profiles by setting target items

to the Attack Intent.

Power Item Selection – Methods used for power item selection are described in § 7.2.

Target Item Selection – For Experiments 1 and 2, we used ‘new’ items, i.e., target

items with only one rating were selected randomly from the corresponding dataset.

61http://www.grouplens.org
62nominal 100,000 ratings, 1,682 movies, and 943 users.
63nominal 1,000,209 ratings, 3,883 movies, 6,040 users.
64nominal 10,000,054 ratings, 10,676 movies, 69,878 users.
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Table 5: Attack parameters by dataset

Attackers Power Items Target Items

MovieLens 100K:
% of Dataset 1, 5 1, 5, 10 1, 5
# Attackers, Items 10, 50 17, 83, 166 10, 50

MovieLens 1M:
% of Dataset 0.1, 1 0.1, 1, 10 0.5, 1, 3
# Attackers, Items 6, 60 4, 37, 368 18, 37, 110

MovieLens 10M:
% of Dataset 0.1, 1 0.1, 1, 10 0.5, 1
# Attackers, Items 70, 699 11,107,1068 50, 100

Experiment 3 used “new and established” items, i.e., target items were selected ran-

domly and had the following average number of ratings, average rating, and average

rating entropy, respectively: ML100K (73.78, 3.13, 1.77), ML1M (253.40, 3.26, 1.81),

Ml10M (675.76, 3.15, 1.71).

Attack Parameter Selection – The Attack Intent is Push, i.e., target item rating is set

to max (= 5). The Attack Size or number of power users in each attack was varied

for these experiments; the IS size (number of power items) and the number of target

items used were also varied as shown in Table 5. The Attack profiles were generated

as described in § 7.3 and the target item rating was injected at run time.

Test Variations – For all three experiments, we used all three power item selec-

tion methods (§ 7.2). For Experiment 1 we used UBW, IBW, and SVD algorithms,

ML100K and ML1M datasets, and single new target items. For Experiments 2 and

3 we focused on the IBW algorithm and used all three datasets. Experiment 2 used

new multiple target items and Experiment 3 used new and established multiple target

items.



112

7.6 Experiments and Results

7.6.1 E1: PIA-ST with “New” Item Targets

Single target item attacks have been used in the past [36, 9] to eliminate confounds

between the selected/filler items (that are used to correlate with other users) and

the target item. This is especially important for user-based recommenders because

user-user similarities with multiple target items would form neighborhoods of users

that have similar tastes not only with selected/filler items but also with the multiple

target items, effectively reducing the focus of the attack. To successfully attack item-

based systems, prior research showed that item-item similarities can be manipulated;

e.g., this was demonstrated in the Bandwagon and Segment attacks [6, 36].

Figure 23: ML100K – Experiment 1 Hit Ratio results

For this experiment we select 50 target items from the ML100K dataset that only
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have one rating, with the intent of attacking a “new” item. We calculate impacts

on robustness metrics (see § 7.5) for each target item individually and then average

the results over all 50 targets. We repeat this calculation for three levels of power

items (17, 83, and 166) and two levels of SPIP’s (10 and 50) for each of the three

power item selection methods (InDegree, NumRatings, and AggSim) and using each

of the three recommender algorithms (UBW, IBW, SVD). The Hit Ratio results for

ML100K are shown in Figure 23. For the case with 50 attackers or 5% of user base

(top of Figure 23), both InDegree and NumRatings show strong HR results using

166 power items for UBW and SVD (70% to 75% for UBW and 96% for SVD) and

significantly weaker results for IBW (21% to 22%). AggSim shows strong results for

SVD (96%) and very weak results for UBW and IBW (< 5%). Results for R (not

shown) indicate little variation across the power item selection methods and average

as follows: 3.0 for UBW, 14.6 for IBW, and 2.0 for SVD. And results for PS (not

shown) also indicate little variation across the power item selection methods and are

at a higher level (> 4) because of the “new” item targets. For the case with 10

attackers or 1% of user base (bottom of Figure 23), we observe similar results against

IBW and SVD as well as a significantly weaker attack against UBW.

To see whether these results would scale, we repeated a similar experiment using the

ML1M dataset for two levels of power items (37 and 368) and two levels of SPIP’s (6

and 60) for each of the three power item selection methods (InDegree, NumRatings,

and AggSim) and using each of the three recommender algorithms (UBW, IBW,

SVD). Results for this ML1M attack (not shown) using 60 attackers (1% of user

base) and each with 368 power items (10% of all items), are similar to those obtained
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for ML100K with 10 attackers (also 1% of user base), i.e., a weak attack for UBW

(high of 21% to 36% HR) and IBW (13% to 19% HR), and a strong attack for SVD

(81% to 98% HR). This would indicate that more attackers are required for a stronger

attack. Results for R average as follows over all power item selection methods: 6.7

for UBW, 15.4 for IBW, and 5.5 for SVD.

Overall, these results indicate that under a specific set of conditions (e.g., using

50 attackers and 166 power items for ML100K), the PIA is effective (high HR, low

R) against the UBW and SVD algorithms. We also found that the PIA is not very

effective against the IBW, regardless of the test conditions. While we had hoped to

see a larger impact on IBW using the PIA, our results are consistent with previous

findings (including our PUA) [26, 36, 60], showing that the item-based algorithm is

resistant or robust to attack. Hypothesis H-1 is accepted for both UBW and SVD rec-

ommenders, meaning that a relatively small number of power users (5% or less of the

user base on a given dataset) can have significant effects on RS predictions and top-N

lists of recommendations regardless of power user selection method. IBW is partially

accepted because R < 20, however, HR does not meet the 50% requirement. Hypoth-

esis H-2 is rejected for all three algorithms. Although the InDegree and NumRatings

perform well at a high level, NumRatings is a slightly better method for selecting

power items, i.e., simply inserting popular items into SPIP’s creates very effective

attacks against some recommender systems (UBW and SVD in our experiment).

7.6.2 E2: PIA-MT with “New” Item Targets

The motivation for Experiment 2 was to develop a PIA model that had higher im-

pacts on IBW than had been previously observed. Intuitively, we expect for carefully
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configured single-item attacks such as Average, Bandwagon, and Segment attacks

[26, 36, 9] to be effective against user-based algorithms because of the similarity

correlations established between the selected and filler items of the attacker profiles

and the corresponding items in the profiles of non-attackers in the dataset. Once

that strong correlation is made (by the algorithm), then the correlation between the

selected/filler items and the target item allows the algorithm to calculate a higher

prediction value for the target item which is then recommended to the non-attacker.

Previous results indicate that larger attack and filler sizes create stronger attacks and

research has shown that these attack models consistently impact user-based systems

with impunity [26, 36, 9]. The item-based algorithm, however, establishes similar-

ity correlations between the selected/filler items and the target item of the attacker

profiles that are then used to calculate recommendations for non-attackers. The Seg-

ment attack [36, 6] was successful against the item-based algorithm to the extent

that it impacted users who belonged to a particular segment of the user base (e.g.,

the “Horror” movie crowd), however, this attack did not have a high impact over

the entire user base. We believe that to mount a stronger attack against item-based

systems, two elements are required in the attack user profile. First, the set of selected

items must correlate with a broad cross-section of the user base and second, multiple

target items must be used to establish strong correlations with the selected items.

Experiment 2 takes on this challenge.

We recognize that because of multiple target items, there can be impacts to the

robustness metrics, i.e., the HR for a single target item will be different due to

confounding when a target item is grouped with multiple other target items during
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the similarity and prediction calculation process. An analysis of this situation was

performed and we found that a metric such as Hit Ratio decreases slightly for any

given target item as the number of multiple target items in the SPIP increase. For

example, for a set of attacks using ML100K and IBW, we found that the HR for a

single target item across all users decreased from 0.225 to 0.208 to 0.184 going from 1

to 10 to 50 targets, respectively. However, at the same time, the HR across all target

items and users increased from 22% to 70%, so the confounding effect for IBW does

not present a major issue for the PIA.

Figure 24: ML100K / ML10M – Experiment 2 Hit Ratio results

The effectiveness of Experiment 2 was measured using robustness metrics (see

§ 7.5). For each dataset used in this experiment, we select a specified number of target

items that only had one rating with the intent of attacking “new” items. Those target
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Figure 25: ML100K / ML10M – Experiment 2 Normalized Number of Targets Per
User (NNTPU) results

items are injected into the dataset at one time and then HR, R, and PS impacts over

all targets are calculated. This process is repeated for three levels of power items, up

to three levels of SPIP’s for each of the three power item selection methods (InDegree,

NumRatings, and AggSim), and using only the IBW recommender algorithm. See

Table 5 for parameter settings. The ML100K HR results shown in the upper chart of

Figure 24 indicate some interesting characteristics for this type of attack. InDegree

and NumRatings show strong HR values (80% to 90%) when attack profiles used 166

and 83 power items and 50 target items, while AggSim impacts were weaker (15%

to 34%) for the same number of power items and target items. Average Hit Ratio is

sensitive to the number of power items and target items, and somewhat insensitive to

number of attackers; i.e., the PIA can be effective with a small number of attack user
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profiles. NumRatings shows the least amount of this sensitivity across the number

of power items and target items, i.e., 10 attackers, each with 17 power items and 10

target items (a total of 270 ratings) impacts over 60% of the user base with 100,000

ratings.

To see if these results scaled, we also ran this experiment on ML1M and ML10M.

For the ML1M dataset (not shown), we observed a similar set of characteristics in the

results. InDegree and NumRatings continue to show strong HR results while AggSim

results are much weaker. And a NumRatings attack with 6 attackers, each with 4

power items and 37 target items (a total of 888 ratings) impacts 40% of the user base

with a million ratings. For the ML10M dataset, results are shown in the lower chart

of Figure 24. InDegree and NumRatings continue to show strong HR results while

AggSim results are much weaker. And a NumRatings attack with 70 attackers, each

with 11 power items and 50 target items (a total of 38,500 ratings or 0.4% of the total

number of ratings) impacts 64% of the user base with ten million ratings. Average

Rank for each of these cases was also calculated: for ML100K, R varied from 9 to 19

(mean 15.9); for ML1M, R varied from 14 to 19 (mean 16); and for ML10M, R varied

from 10 to 20 (mean 16). To compare the attack effectiveness within and between

datasets in the experiment, the NNTPU metric is shown in Figure 25. The highest

number of targets per user occurs with the SPIP’s containing 11 power items and

100 target items generated using the NumRatings method for ML10M; a close second

would be SPIP’s containing 107 power items generated using the InDegree method.

For all three datasets, the results for PS (not shown) indicate little variation across

the power item selection methods and are at a higher level (> 4) because of the “new”
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item targets. To further confirm our results, we also ran a complete set of baseline

PIAs across all datasets, attack sizes, and power item levels for IBW without any

target items. The robustness metrics were all zero, meaning that injecting SPIP’s

without any target item ratings had no effect on the RS recommendations.

Most notable is that the HR results exceed Hit Ratio measurements reported pre-

viously for attacks against item-based recommenders, including the Segment attack.

We conclude that the use of power items and multiple (new) target items in the SPIPs

has resulted in a powerful attack against the item-based algorithm. Hypothesis H-1

is accepted for the higher levels of attack size and number of targets for all power

item selection methods and all three datasets. Hypothesis H-2 is partially accepted

for the IBW algorithm. Although the InDegree and NumRatings both perform well

at a high level, NumRatings is a slightly better method for selecting power items,

especially at lower levels of power items; both methods are superior to AggSim.

7.6.3 E3: PIA-MT with “New and Established” Item Targets

In general, the robustness results for this experiment were lower than Experiment

2; this was expected since new items are more vulnerable to attack than established

items. For each dataset used in this experiment, we select a specified number of target

items to obtain a mix of items with a range of “age” based on number of ratings.

The attack and calculation processes described for Experiment 2 are used again here.

See Table 5 for parameter settings. For the ML100K dataset, we added a third level

of SPIP’s with 100 target items (10% of the total number of items) to compare with

the three levels of target items in ML1M and to observe the impacts resulting from

adding more target items to the SPIP’s. The HR results shown in the upper chart
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Figure 26: ML100K / ML1M – Experiment 3 Hit Ratio results

of Figure 26 indicate sensitivity to the number of target items and insensitivity to

number of attackers and power items. A similar pattern can be observed for the

ML1M dataset shown in the lower chart of Figure 26; this is also the case for ML10M

(not shown) except for the sensitivity to the number of power items for NumRatings

and InDegree. For higher numbers of target items, ML100K and ML1M show strong

HR results across all power item selection methods; for ML10M, NumRatings and

InDegree still have a slight edge (40% to 50%) over AggSim (31%) although not quite

as substantial as in Experiments 1 and 2. Average Rank for each of these cases was

also calculated: for ML100K, R varied from 17 to 21 (mean 19.6); for ML1M, 18 to

23 (mean 20.6); and for ML10M, 19 to 21 (mean 20.3).

To compare the attack effectiveness between Experiments 2 and 3, we used the
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Figure 27: ML100K and ML1M – Experiment 3 Normalized Number of Targets Per
User (NNTPU) results

NNTPU metric shown in Figure 27 for ML100K and ML1M. The results confirm that

attacks in Experiment 2 had more impact than those in Experiment 3. For example,

for ML100K and 50 target items, Experiment 2 had NNTPU values between 4.5 and

11 for NumRatings and InDegree, AggSim had values between 0 and 2. Experiment 3

had NNTPU values between 1.3 and 2.1 for all three selection methods. An interesting

result for ML100K is that NNTPU displays a phenomenon similar to one reported in

previous work, i.e., as the number of power items increases, the attack effectiveness

decreases (see upper chart in Figure 27); this occurs consistently for all three power

item selection methods. Reported in [36], as the number of filler items increases, PS

decreases; the explanation for this was that attack user profiles need to achieve a

balance between “coverage” (including enough item ratings to correlate with other
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users) and “generality” (including too many item ratings that could make the profile

dissimilar to a given user). We also observed this for NumRatings and InDegree for

ML10M in this experiment (not shown) and in Experiment 2 (see Figure 25).

Regarding Prediction Shift results, for ML100K we observed PS values in the range

of 0.2 to 0.4 and for ML1M they ranged from 0.03 to 0.19. By comparison, [6, 36]

reported PS values of 0.1 and 0.15 for the Segment and Bandwagon attacks, respec-

tively, against the item-based algorithm for all users in ML100K with an attack size

of 1%. Our HR and PS results for ML100K were significantly improved over previ-

ously reported results. Given time constraints, full re-implementation, testing, and

execution of Segment / Bandwagon attacks for more direct comparison was beyond

the scope of the experiment. It is a limitation of the study to be addressed in future

work.

To further determine the quality of our results, we computed PS for attack datasets

that included the power items but not the target items and compared results statisti-

cally. For ML100K and 100 target items, differences in PS with and without the tar-

get items were significant (p <0.005) for NumRatings, InDegree, and AggSim across

all three levels of power items. For ML1M, differences were significant (p <0.05) for

NumRatings and InDegree (368 power items only). As in Experiment 2, we ran a

set of PIA’s across all datasets, attack sizes, and power item levels for IBW without

any target items as a baseline. In this case, the robustness metrics were all > zero.

The interpretation is that, because Experiment 3 uses “new and established” items

as target items, it is possible (and expected) that some of them will show up in top-N

recommendation lists as confirmed by our findings. However, we found significant
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differences in key metrics for cases with and without targets. For example, averaged

over all the cases run with ML1M, NNTPU was 2.29 (with targets) and 1.38 (without

targets) and PS was 0.09 and 0.01, respectively; this indicates that the attack had

impacts above and beyond the baseline.

Hypothesis H-1 is accepted for the highest levels of attack size and number of

targets across all power item selection methods for ML100K and ML1M, given the

threshold rates of 11% HR and 0.1 PS. H-1 is partially accepted for ML10M for

HR. Hypothesis H-2 is partially accepted for the IBW algorithm. We find that the

InDegree and NumRatings methods, on average, perform the same at all levels of

power items and both methods are superior to AggSim.

7.7 Summary of this Chapter

In this chapter we have developed a power item model that is able to generate

synthetic power item profiles that can be used to mount effective power item attacks

against user-based and SVD-based recommenders measured by traditional Hit Ratio,

Rank, and Prediction Shift robustness metrics. In addition, we showed how the power

item attack using a novel multi-target approach can generate effective attacks against

the typically robust item-based algorithm using new, as well as established, dataset

items. We have also compared power item selection methods used to generate syn-

thetic power item profiles and shown that, because of its low-cost and low-knowledge

requirements, the NumRatings method is the more effective, by a small margin, in

attacking recommenders than the influence-based InDegree method. We have shown

that a relatively small number of NumRatings and InDegree synthetic power item

profiles can have significant effects on RS predictions and top-N recommendation
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lists. And, in order to compare attack effectiveness results within and between our

experiments, we developed a metric that measures the number of target items per

user resulting from the multi-target approach.

With respect to the Dissertation Hypotheses provided in Section 1.5.2, this chap-

ter has indicated the following level of support for the applicable hypotheses; final

acceptance/rejection of the Dissertation Hypotheses are provided in the Dissertation

Summary, Section 10.1:

DH-3: Power user attack profiles generated from characteristics of InDegree-selected

power users will result in more effective attacks (from the attacker’s viewpoint) than

attack profiles generated from characteristics of power users selected from other tech-

niques across CF algorithms, datasets, and domains. For this chapter, the power user

selection methods were used to select power items, therefore, the power user attack

profiles were generated from characteristics of InDegree-selected power items. Never-

theless, this hypothesis is still valid and serves to determine how well the InDegree

method can be used to generate influential power users. For the single-item (ST)

Power Item Attacks, this hypothesis is not supported for user-based, item-based, and

SVD-based algorithms for ML100K and ML1M. Although the InDegree and Number

of Ratings perform well and at a high level, Number of Ratings is a slightly better

method for selecting power items; they are both superior to Aggregated Similarity.

For the multiple-item (MT) Power Item Attacks, this hypothesis is partially sup-

ported for the item-based algorithm for the ML100K, ML1M, and ML10M datasets.

We find that the InDegree and Number of Ratings methods, on average, perform

about the same at all levels of power items and both methods are superior to Aggre-
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gated Similarity.

DH-4: A relatively small number of power users (5% or less of the user base on

selected datasets) can have significant effects on RS predictions and top-N lists of rec-

ommendations across multiple power user selection techniques, collaborative filtering

algorithms, datasets, and domains. This hypothesis is supported for the item-based

algorithm for the ML100K, ML1M, and ML10M datasets.



CHAPTER 8: POWER USER ATTACK MITIGATION

8.1 Introduction

In previous work [61, 55], we have shown that attackers emulating power users are

effective against user-based, item-based, and SVD-based recommenders. In the lit-

erature, mitigating RS attacks usually consists of detecting the attackers and either

removing them from the dataset or ignoring them during the prediction calculations

[10, 32]. While removing attack user profiles from recommendation calculations is a

straightforward approach to eliminating the attacker’s influence in a laboratory en-

vironment, using this approach in live RS environments could have unwanted side

effects [32]. For instance, in cases where a legitimate power user is mistakenly iden-

tified as an attacker (false positive) and is removed, two issues could occur: (1) the

removed legitimate power user would no longer receive recommendations, and (2)

the users that rely on that legitimate power user’s neighborhood influence may be

impacted. These approaches also assume that all attackers will be detected, i.e., no

provision is provided for attackers that are not detected (false negatives).

This study investigates the potential for more effective impact mitigation ap-

proaches against Power User Attacks (PUAs), as compared to 100% removal of identi-

fied power users. PUA mitigation walks a fine line between two key RS measures (see

§8.4): accuracy (too many power user attack profiles are removed) and robustness

(too few power user attack profiles are removed). In this work, removal of identified
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power user attack profiles is considered a worst-case scenario for attack mitigation

and may not be applicable in situations where system operators want to prevent at-

tackers from knowing that they have been detected. As an alternative strategy for

power user attack mitigation, we propose and investigate approaches that keep all the

identified power users in the dataset and reduce the influence that those power users

have on recommendations for other users. The influence reduction approaches consist

of (1) attenuating the similarity (influence) that power users have with other users in

their k-nearest neighborhood [27], and (2) reducing the number of power users that

are allowed to participate in other users’ k-nearest neighborhoods. We then evaluate

these removal and influence reduction approaches to determine the approach that

best balances RS accuracy and robustness measures.

The research questions for this analysis are:

RQ-1: What happens to RS accuracy and robustness when power user profiles are re-

moved from recommendation calculations to mitigate the power user attack impacts?

RQ-2: What happens to RS accuracy and robustness when power user influence is

reduced during similarity calculations?

RQ-3: What are the trade-offs between accuracy and robustness when power user

attacks are mitigated?

The hypothesis to be tested is:

H-1: Reducing the influence of power users is a more effective and less impactful

mitigation strategy than removing the profiles of identified power users.
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8.2 Power User Attack Background

In order to study RS attacks based explicitly on measures of influence, we previously

defined a Power User Attack model as a set of power user profiles with biased ratings

that influence the results presented to other users [60]. The PUA relies critically on

the method of power user identification/selection, so we developed and evaluated a

novel use of degree centrality concepts from social network analysis for identifying

influential RS power users for attack purposes [60]. In addition, we chose to use other

heuristics because this would provide best-case and worst-case scenarios that we could

use to compare with our degree centrality approach.

The power user selection methods used in this analysis are as follows:

• In-Degree Centrality: Users with the highest user-user in-degree values are se-

lected as power users.

• Aggregated Similarity: Users with highest user-user similarity correlation values

are selected as power users.

• Number of Ratings: Users with the most number of ratings are selected as

power users.

For more details, please refer to Section 6.2.

8.3 Mitigation Strategies

Removing 100% of the power user attackers as a mitigation strategy could result

in various issues: (1) reduced coverage for the “removed” users including legitimate

users (false positives), 2) reduced accuracy for users whose similarity neighborhoods

no longer benefit from the influence of the “removed” users including legitimate au-
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thoritative users (false positives) [32], and (3) no provision for attackers that are not

detected (false negatives) and assumes that all (true) power user attackers will be de-

tected. In this analysis, removal of identified power user attack profiles is considered

a worst-case scenario for attack mitigation and may not be applicable in situations

where system operators want to prevent attackers from knowing that they have been

detected. As an alternative strategy for power user attack mitigation, we investigate

approaches that keep all the identified power users in the dataset and reduce the in-

fluence that those power users have on recommendations for other users. Therefore,

the following mitigation strategies were initially evaluated in this study:

• Remove attackers incrementally from 0% to 100%.

• Reduce the similarity weighting factor of all attackers incrementally from 1.0 to

0.0.

• Combine removal and influence reduction.

Our analysis of these initial mitigation strategies determined the following:

When removing power user attackers incrementally from the dataset, removal se-

quence matters. From the attacker’s standpoint, it would be better to remove starting

from least influential to most influential; while from the system operator’s standpoint,

removing starting from most influential to least influential would be better. And we

also analyzed the impacts when removing power user attackers randomly. Since this

is a mitigation study, we decided to use a removal sequence that favored system oper-

ators. Comparative results (§ 8.5) indicate that removing power users starting from

most influential to least influential improves robustness at a faster rate than the other

two methods.
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When mitigating the PUA, the type of target item matters. We used “New” target

items (those with one rating) and “New and Established” target items (those with

one or more ratings). From previous research [55], we knew that New target items

are more vulnerable to attack than New and Established targets. We analyzed the

impacts of the PUA and found that, for New targets, robustness metrics were rela-

tively high until the weighting was set to zero (ignore power user influence). For New

and Established targets we found that robustness measures were significantly lower

between weightings from 1.0 to 0.1, indicating that the PUA was not as effective with

these target items.

Combining power user attacker removal and influence reduction resulted in outcomes

similar to the removal approach when the similarity weighting was greater than zero.

Robustness was at a minimum only when the similarity weighting was zero. So,

this approach did not provide additional information regarding power user attack

mitigation (§ 8.5).

In our initial approach, all injected attackers were also considered to be power users

(even when they were not) so that removing and/or reducing the influence of power

users assumed a perfect power user attacker detection method. This was not a very

realistic assumption so we decided to use our power user selection methods (§ 8.2)

to allow for a mix of real and synthetic power users. Furthermore, only synthetic

users were injected as attackers; this meant that a subset of synthetic users selected

as power users were also attackers and the rest of the synthetic users were attackers

but not power users. Consequently, the final mitigation strategies (MS) for this study

are:
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MS1: Remove selected power users incrementally from 0% to 100%, starting from

most influential to least influential.

MS2: Reduce the similarity weighting factor of all selected power users incrementally

from 1.0 to 0.0.

MS3: Reduce the number of power users that influence predictions. The percentage

of power users selected is reduced incrementally from 100% to 0% and the similarity

weighting is set to one if selected, zero otherwise.

To implement these mitigation strategies, the following methodology was used:

1. Generate power user lists from selected datasets using power user selection

techniques, including InDegree, NumRatings, and AggSim (see § 8.2). This

generates a list of real power users (RPUs).

2. Generate synthetic power user (SPU) attack profiles based on power user statis-

tical characteristics [61] and insert into the dataset. Select power users from the

updated dataset using the power user selection techniques described in § 8.2. A

top-k list of power users will, therefore, be a combination of RPUs and SPUs.

3. Select target items from a given dataset: New Items (items with one rating),

New and Established Items (randomly-selected items with a range of popularity

and likeability values).

4. Create incremental datasets with most-to-least-influential power users removed

i.e., from the top of the top-k list of power users.

5. Execute attacks for each mitigation strategy for the selected target items and

calculate averaged metrics over all target items. Only SPUs will be used for

attack purposes, leaving RPUs to provide their influence but not be part of the
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attack. Note that some SPU attack profiles will remain in the dataset after the

top-k power users are removed during the experiments as described in § 8.4.

6. Compare accuracy, coverage, and robustness metrics for variations of the mit-

igation strategy to determine impacts of removing and reducing influence of

power users.

Other parameters such as recommender algorithm, datasets, and metrics were also

specified (see § 8.4).

8.4 Experimental Design

To address our research questions and hypothesis, we conducted three main exper-

iments to correspond with the three final mitigation strategies (MS1-MS3 ) described

in § 8.3:

• E1: Power User Removal

• E2: Power User Influence Reduction: All power users

• E3: Power User Influence Reduction: Selected power users

Evaluation Metrics – Evaluations were performed before and after the attacks. We

use Mean Absolute Error (MAE) for accuracy and prediction coverage [20, 56] using

a holdout-partitioned 70/30 train/test dataset. To compare MAE before and after

attacks, we use δMAE = MAEafter −MAEbefore. For robustness metrics [36, 9],

we use Hit Ratio (HR), Average HR (HR), Prediction Shift (PS), Average PS (PS),

Rank (R), and Average R (R), where a high Hit Ratio and a low Rank after the attack

indicate that the attack was successful (from the attacker’s standpoint) assuming

that the target item had a lower Hit Ratio and higher Rank before the attack. The

top-N size for Hit Ratio calculations is N=40. To compare the effectiveness of the
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mitigation strategies and to assess the trade-offs between accuracy and robustness, we

developed a new metric called the Accuracy/Robustness/Mitigation measure (ARM),

ARM = (2∗MAEafter∗HR
MAEafter+HR

)∗(1−ρ), where ρ is the percentage of power users or influence

being evaluated. ARM varies between 0 and 1 and a higher ARM value indicates a

more effective mitigation for a given experiment.

The major motivation behind the ARM metric is to find a measure that determines

the level of power removal or influence reduction that is best for mitigating the PUA.

We know from power user ablation studies [60, 51, 61], that MAE tends to increase

(get worse) as power users (or their influence) are removed from the RS dataset.

Those same studies show that as power user attackers (or their influence) are re-

moved from the dataset, Hit Ratio decreases (the attack becomes less effective). And

there is evidence in this study that as power user attackers (or their influence) are

removed/reduced, MAE tends to increase (get worse). So, we need a metric that can

indicate how much power user removal or influence reduction can be used to mitigate

a power user attack and still leave MAE and Hit Ratio as low as possible. The ARM

metric combines MAE and Hit Ratio in such a way that it balances the increase in

MAE with the reduction in Hit Ratio as power user influence is removed or reduced.

It should also be noted that when the PUA being evaluated uses “New” target items

(items with 1 rating), the Prediction Shift is expected to be close to the maximum

rating as defined by the RS. For “New and Established” target items, the Prediction

Shift may also be high because some of the SPUs may fall below the threshold of

power users to be removed or have their influence reduced; the SPUs that remain

after removal or influence reduction are still used in the attack and may contribute
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to the high Prediction Shift.

Datasets and Algorithms – We used MovieLens65 ML100K66 and ML1M67 datasets.

The CF user-based weighted algorithm (UBW) [13] uses Pearson similarity with

a threshold of 0.0 (positive correlation), neighborhood size of 50, and significance

weighting of n/50 where n is the number of co-rated items [19]. We used UBW from

Apache Mahout68 and added functionality to implement the MS2 and MS3 strategies

(see § 8.3).

Power User Selection – The InDegree (ID), NumRatings (NR), and AggSim(AS)

methods described in § 8.2 were used.

Target Item Selection – Fifty target items with no more than one rating, regardless

of their rating value, were selected randomly as “New” target items. We also used

50 “New and Established” target items, i.e., target items were selected randomly

and had the following average number of ratings, average rating, and average rating

entropy, respectively: ML100K (73.780, 3.133, 1.769), ML1M (280.399, 3.296, 1.883).

Attack Parameter Selection – The Attack Intent is Push, i.e., target item rating is

set to max (= 5). The Attack Size or number of SPUs in each attack varied by dataset:

50 for ML100K and 300 for ML1M. Attack sizes, also expressed as (#attackers
#users

∗100)%,

were selected based on previous research [36, 9], where a 5-10% attack size was shown

to be effective; we use a 5% attack size for each dataset. Power user attack profiles

were generated as described in [61] and target item ratings were injected at run time.

65http://www.grouplens.org
66nominal 100,000 ratings, 1,682 movies, and 943 users.
67nominal 1,000,209 ratings, 3,883 movies, 6,040 users.
68http://mahout.apache.org
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Test Variations – To evaluate the final mitigation strategies, we used three exper-

iments, one prediction algorithm, two datasets, three power user selection methods,

two target item types, and eight attack sizes.

Figure 28: Hit Ratio and MAE as InDegree synthetic power users decrease from 50
to 5 using ML100K and UBW

Figure 29: E1 – Hit Ratio and MAE as 0% to 100% of power users (real and synthetic)
are removed using ML100K
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Figure 30: E2 – Hit Ratio and MAE as power users’ (real and synthetic) influence
reduced from 1.0 to 0.0 using ML1M

8.5 Results and Discussion

(E1) Power User Removal – Consisted of removing power users from the dataset

(incrementally from 0% to 100%) prior to recommendation calculations (similarity

and prediction). We conducted a series of PUA’s against the user-based CF algorithm.

Each PUA in this experiment uses a dataset with a specified number of injected SPU

attackers (§ 8.4). SPUs are generated based on three power user selection methods:

InDegree (ID), NumRatings (NR), and AggSim (AS). Generated SPUs are added

to the dataset for attack purposes and then the top-k power users (a mix of RPUs

and a subset of the SPUs) selected by the three power user selection methods, are

incrementally removed from the dataset; top-k = 50 for ML100K and 300 for ML1M.

The SPUs are injected with either 50 New or 50 New and Established target items



137

at runtime to evaluate the PUA in separate trials (one target item attack at a time)

and the HR/Rank/PS metrics are averaged across all 50 target items. Initially, we

analyzed various SPU removal approaches: most-to-least-influential (Top), least-to

most-influential (Bottom), and Random, see Figure 28. For E1, however, we chose the

most-to-least-influential (Top) approach since that would better mitigate the attack

effectiveness based on Hit Ratio, from a system operator’s perspective.

Figure 29 shows the results for ML100K as the percentage of power users removed

increases from 0% to 100% (0-50 power users). HR before the attack (not shown) is

0% for New target items and 2% for New and Established target items for ML100K

across all power user removal levels. These values serve as the HR baseline and

indicate that without attackers, the target items do not appear in any top-N lists

of recommendations. The drop in HR is not as dramatic compared to results in

Figure 28 because some SPU attackers remain in the dataset, i.e, they were below

that power user selection threshold, and contribute to increasing the HR. New and

Established target items are more difficult to attack compared to New targets as

evidenced by a lower HR in the right hand side of Figure 29. Removing 100% of the

power users still leaves SPUs in the dataset, hence HR remains high; HR for the AS

attack is not significant at any level of removal. The PUA is not as effective when

using New and Established target items (this was expected). PS for ML100K and

New target items was 4.9 for all power user selection methods across all removal levels;

for New and Established target items PS was 4.5 for InDegree and NumRatings,

across all removal levels; 3.0 for AggSim. R for ML100K and New target items varied

between 3 and 4 for all power user selection methods across all removal levels; for
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New and Established target items R varied between 13 and 15 across all selection

methods and removal levels, indicating a less effective attack.

We observed similar results with ML1M (not shown) except that for ID, HR in-

creased slightly as power users were removed, most likely due to the influence char-

acteristics of the SPUs. R for New target items varied between 7 and 9, and for New

and Established target items varied between 16 and 21 for all power user selection

methods across all removal levels. The ARM measure (not shown) indicated that

100% removal is the best mitigation for all E1 attacks in Figure 29.

Figure 31: Examples of Hit Ratio impacts as SPU influence is reduced (0.2 & 0.0)
and removed (50 to 10) using ML100K

(E2) Influence Reduction, all Power Users – Consisted of varying the similarity

weighting (incrementally from 0.0 to 1.0) applied to power users (selected RPUs and

SPUs) who are nearest neighbors during the prediction calculation. We conducted a

series of PUA’s against the user-based CF algorithm. Each PUA in this experiment

uses a dataset with the same number of power users, i.e., there is no removal of power

users in this experiment. HR before the attack (not shown) is 0% for New target

items and 1% for New and Established target items for ML1M across all power user

influence reduction levels. New target item results in Figure 30 for ML1M (left side of
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Figure 32: E3 – Hit Ratio and MAE as 100% to 0% of power users’ (real and synthetic)
influence is applied using ML1M

Figure 33: E3 – ARM Measure as 100% to 0% of power users’ (real and synthetic)
influence is applied using ML1M

charts) indicate that as similarity weighting is reduced from 1.0 to 0.1, HR remains

flat for ID (81%), NR (74%), and AS (4%). When similarity weighting is set to zero,

HR drops significantly for ID (to 16%) and for NR (to 9%), while remaining flat

for AS (4%). And as similarity weighting is reduced from 1.0 to 0.1, MAE increases

for ID and NR,and remains flat for AS. R (not shown) ranges between 9-14 over
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all similarity weightings and selection methods. The interpretation for the small

reduction in HR for ID and NR as similarity weighting is reduced from 1.0 to 0.1,

can be attributed to the fact that the SPUs are, in most cases, the only users that

have rated the New target items; therefore, the SPUs dominate the influence within

the neighborhoods keeping HR high and R low. New and Established target results

in Figure 30 for ML1M (right side) indicate that HR begins at a much lower level

(40% for ID and NR, 4% for AS) and remains flat until similarity weighting drops

to 0.0, mainly because SPU influence is not very dominant within the neighborhoods

as many other users have rated established items. R (not shown) ranges between

14-22 over all similarity weightings and selection methods. The influence of power

users (a mix of RPUs and some SPUs) can be observed in the significantly higher

MAE results (less accuracy) when similarity weighting is set to zero, i.e., without the

power user influence, accuracy becomes much worse. The low HR when similarity

weighting is set to zero indicates that not all attackers (SPUs) have been removed

from the prediction calculations. PS for ML1M and New target items was 4.9 for

all power user selection methods across all reduction levels; for New and Established

target items this averages 4.4 for InDegree, 4.2 for NumRatings, 3.8 for AggSim across

all reduction levels.

We observed very similar results with ML100K (not shown) except that HR starts

slightly higher (90%) and R ranges lower (4-6 for New, 15-17 for New and Established

targets) for ID and NR. For all attacks in E2 (ML100K and ML1M), a similarity

weighting reduction of 0.0 is required to significantly reduce HR, at the expense of

a higher MAE (lower accuracy). However, the ARM measure (not shown) indicated



141

that a similarity weighting reduction setting of 0.1 is the best mitigation for ID and

NR, avoiding the spike in MAEafter albeit with high HR, and 0.0 for AS.

In our initial analysis, we developed a hybrid mitigation approach that combined

power user removal (E1) and similarity reduction (E2). We found that HR followed

the E1 results across all similarity weighting values > 0.0 and we provide an example

of results with 0.2 similarity weighting in Figure 31 (left); at similarity weighting

= 0.0, HR was near zero in Figure 31 (right). Based on these results, a hybrid

approach was not pursued any further. We also were concerned about coverage,

i.e, % of items for which recommendations can be formed, as power users had their

influence reduced. Our results indicated that coverage remained flat over the course

of influence reduction and varied according to selection method used, ID (73%), NR

(77%), and AS (65%).

(E3) Influence Reduction, selected Power Users – Each PUA in the experiment uses

a dataset with the same number of injected SPUs (there is no power user removal in

this experiment) and will only allow a percentage (incrementally from 0% to 100%)

of them to be involved in the prediction calculation. The power users are selected

randomly and will have a similarity weighting of 1.0 if selected and 0.0 if not selected,

during the prediction calculation. HR before the attack (not shown) is 0% for New

target items and 1% for New and Established target items for ML1M across all

power user influence reduction levels. For ML1M with New target items shown in

Figure 32 (left side), as the percentage of power users is reduced from 100% to 10%,

HR decreases from 82% to 22% for ID and 74% to 17% for NR; for AS, HR remains

flat at about 4%. When the percentage of power users is set to zero, HR goes to 16%
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and 9% for ID and NR, and no change for AS. As the percentage of power users is

reduced from 100% to 10%, MAE increases for ID and NR, remains flat (0.79) for

AS. PS for ML1M and New target items was 4.9 for all power user selection methods

across all reduction levels. R ranges between 9 and 17 over all power user percentages

and selection methods; when the percentage of SPUs is 0.0, R is 14 for ID and NR,

11 for AS. For ML1M with New and Established targets, we observed a similar set

of results except that HR begins at a lower level. As the percentage of power users

is reduced from 1.0 to 0.1, HR decreases from about 40% to 10% for both ID and

NR; for AS, HR remains flat at 3%. When the percentage of power users is set to

zero, HR goes to 8% and 5% for ID and NR, and 3% for AS. As the percentage of

power users is reduced from 1.0 to 0.1, MAE increases for ID and NR, remains flat

(0.79) for AS. PS for ML1M and New and Established target items averages 4.4 for

InDegree, 4.2 for NumRatings, 3.8 for AggSim across all reduction levels. R ranges

between 13 and 25 over all power user percentages for ID and NR, and between 15

and 16 for AS; when the percentage of power users is 0.0, R is 14 for ID and NR, 15

for AS.

We observed very similar results with ML100K except that HR starts slightly

higher (90%) and R ranges lower (3-6 for New, 13-18 for New and Established targets)

for ID and NR. For New and New and Established target items, the ARM measure

(see Figure 33) indicated that a percentage of power user reduction of 20-40% is the

best mitigation for ID and NR (avoiding the larger values of MAEafter) and 0.0 for

AS. ARM results for ML100K were very similar (not shown).

Based on our results and using the ARM metric, the mitigation strategy that best
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balances accuracy and robustness for ID and NR PUAs is MS3; the AS PUA was

not an effective attack in this study and did not require mitigation. For MS1, the

ARM metric indicates 100% removal which leaves a very high Hit Ratio. And MS2 is

marginally better than MS1, with the ARM metric indicating a similarity weighting

of 0.1. Our hypothesis is accepted for MS3, partially accepted for MS2, and rejected

for MS1.

8.6 Summary of this Chapter

This chapter evaluated power user attack mitigation approaches to address issues

encountered when legitimate influential users (false positives) are removed along with

attackers. We have shown that reducing similarity weighting during prediction calcu-

lation is an improvement over removal. We showed that there is a trade-off between

accuracy (MAE) and robustness (Hit Ratio) when implementing mitigation strate-

gies and have developed a metric to assist in evaluating this trade-off. Consistent

with our previous work using user-based recommenders, we also showed that reduc-

ing the influence of power users contributes to a reduction in recommender system

accuracy indicated by an increase in MAE; this shows how power users can impact

recommendations.

With respect to the Dissertation Hypotheses provided in Section 1.5.2, this chap-

ter has indicated the following level of support for the applicable hypotheses; final

acceptance/rejection of the Dissertation Hypotheses are provided in the Dissertation

Summary, Section 10.1:

DH-3: Power user attack profiles generated from characteristics of InDegree-selected

power users will result in more effective attacks (from the attacker’s viewpoint) than
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attack profiles generated from characteristics of power users selected from other tech-

niques across CF algorithms, datasets, and domains. Although this hypothesis was

not tested explicitly, the E1 results reported in Section 8.5 indicate that the InDegree-

based PUA shows higher Hit Ratio metrics than those of NumRatings and AggSim.

Therefore, this hypothesis is supported for ML100K and ML1M using the UBW al-

gorithm.

DH-4: A relatively small number of power users (5% or less of the user base on

selected datasets) can have significant effects on RS predictions and top-N lists of

recommendations across multiple power user selection techniques, collaborative fil-

tering algorithms, datasets, and domains. Although this hypothesis was not tested

explicitly, the E1 results reported in Section 8.5 indicate that the InDegree-based

and NumRatings-based PUA, show significantly high Hit Ratio metrics > 90% for

ML100K and > 80% for ML1M (not shown); on the other hand, results for Ag-

gSim indicate very little impact on robustness metrics . Therefore, this hypothesis

is supported for InDegree and NumRatings using UBW algorithm and ML100K and

ML1M.

DH-5: Reducing the influence of power users is a more effective and less impactful

mitigation strategy than completely removing power users from the dataset. This hy-

pothesis is supported for the “Power User Influence Reduction: Selected power users”

strategy and was tested with the user-based algorithm on the ML100K and ML1M

datasets.



CHAPTER 9: EVALUATING POWER USER ATTACKS ON COLLABORATIVE
RECOMMENDER SYSTEMS USING YAHOO! MUSIC DATA

9.1 Introduction

In prior work, we have developed, implemented, and evaluated the Power User

Model and the Power User Attack (PUA) across popular collaborative recommender

algorithms and movie domain datasets (see Chapters 5, and 6). We have also studied

the mitigation of power user attacks on user-based collaborative recommenders using

movie domain datasets (see Chapter 8). Results from those studies indicate that the

PUA is effective in negatively impacting the accuracy and robustness of collaborative

recommender systems.

The research question motivating this Chapter is whether the PUA can also be

successful (from the attacker’s viewpoint) using data from another domain. Therefore,

this analysis investigates the impacts of power user attacks on user-based collaborative

recommenders using a music domain dataset from Yahoo! Music69.

The research question for this analysis is:

RQ-1: Can the Power User Attack be successful (from the attacker’s viewpoint) using

data from a domain other than movies?

The hypotheses to be tested are:

H-1: The use of In-Degree Centrality to select a set of power users results in power

69R3 at http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
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users with higher influence than other selection techniques.

H-2: A significant percentage of synthetic user profiles generated from statistical char-

acteristics of power users will be identified by selected power user selection techniques.

H-3: Power user attack profiles generated from characteristics of InDegree-selected

power users will result in more effective attacks (from the attacker’s viewpoint) than

attack profiles generated from characteristics of power users selected from other tech-

niques.

H-4: A relatively small number of power users (5% or less of the user base on selected

datasets) can have significant effects on RS predictions and top-N lists of recommen-

dations across multiple power user selection techniques.

H-5: Reducing the influence of power users is a more effective and less impactful

mitigation strategy than completely removing power users from the dataset.

9.2 Power User Attack Background

In order to study RS attacks based explicitly on measures of influence, we previously

defined a Power User Attack model as a set of power user profiles with biased ratings

that influence the results presented to other users (see Chapter 5). The PUA relies

critically on the method of power user identification/selection, so we also developed

and evaluated a novel use of degree centrality concepts from social network analysis

for identifying influential RS power users for attack purposes. In addition, we chose

to use other heuristics because this would provide best-case and worst-case scenarios

that we could use to compare with our degree centrality approach.

The power user selection methods used in this analysis are as follows:

• In-Degree Centrality: Users with the highest user-user in-degree values are se-
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lected as power users.

• Aggregated Similarity: Users with highest user-user similarity correlation values

are selected as power users.

• Number of Ratings: Users with the most number of ratings are selected as

power users.

For more details on power user selection methods, please refer to the summary in

Section 6.2.

9.3 Mitigation Strategies

Removing 100% of the power user attackers as a mitigation strategy results in (1)

reduced coverage for the “removed” users, some of which could be legitimate users

(false positives), and (2) reduced accuracy for users whose similarity neighborhoods no

longer enjoy the influence of the “removed” users, some of which could be legitimate

users (false positives) [32]. For live RSs, this could lead to dissatisfaction problems

in both cases. This 100% removal approach also assumes that all (true) power user

attackers will be detected, i.e., no provision is provided for attackers that are not

detected (false negatives).

The mitigation strategies (MSs) for this study were described in Section 8.3 and

consist of:

MS1: Remove selected power users incrementally from 0% to 100%, starting from

most influential to least influential.

MS2: Reduce the similarity weighting factor of all selected power users incrementally

from 1.0 to 0.0.
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MS3: Reduce the similarity weighting of a percentage of all selected power users; the

percentage of power users is varied incrementally from 100% to 0%. The similarity

weighting is set to one if selected, zero otherwise.

To implement these mitigation strategies, the following methodology was used (see

§ 8.3):

1. Generate power user lists from selected datasets using power user selection

techniques, including InDegree, NumRatings, and AggSim (see § 9.2). This

generates a list of real power users (RPUs).

2. Generate synthetic power user (SPU) attack profiles based on power user sta-

tistical characteristics (see 6.3) and insert into the dataset. Select power users

from the updated dataset using the power user selection techniques described

in § 9.2. A top-N list of power users will, therefore, be a combination of RPUs

and SPUs.

3. Select target items from a given dataset: New Items (items with one rating),

New and Established Items (randomly-selected items with a range of popularity

and likeability values).

4. Create incremental datasets with most-to-least-influential power users removed

i.e., from the top.

5. Execute attacks for each mitigation strategy for the selected target items and

calculate averaged metrics over all target items. Only SPUs will be used for

attack purposes, leaving RPUs to provide their influence but not be part of the

attack. Note that some SPU attack profiles will remain in the dataset after

power users are removed during our experiments as described in § 9.4.
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6. Compare accuracy, coverage, and robustness metrics for variations of the mit-

igation strategy to determine impacts of removing and reducing influence of

power users.

Other parameters such as recommender algorithm, datasets, and metrics were also

specified (see § 9.4).

9.4 Experimental Design

We conducted four experiments to test the five hypotheses (H-1 through H-5)

described in § 9.1:

• E1: Power User Ablation

• E2: Synthetic Power User Identification

• E3: Power User Attack Effectiveness

• E4: Power User Attack Mitigation

– E4-M1: Power User Removal (MS1)

– E4-M2: Power User Influence Reduction: All power users (MS2)

– E4-M3: Power User Influence Reduction: Selected power users (MS3)

Evaluation Metrics – Evaluations were performed before and after the attacks.

We use Mean Absolute Error (MAE) for accuracy and prediction Coverage, i.e., the

percentage of users for which the system can form a recommendation [20, 56], using

a holdout-partitioned 70/30 train/test dataset. To compare MAE before and after

attacks, we use δMAE = MAEafter −MAEbefore. For robustness metrics [36, 9],

we use Hit Ratio (HR), Average HR (HR), Prediction Shift (PS), Average PS (PS),

Rank (R), and Average R (R), where a high Hit Ratio and a low Rank indicate that

the attack was successful (from the attacker’s standpoint). To compare the effective-
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ness of the mitigation strategies and to assess the trade-offs between accuracy and

robustness, we developed a new metric called the Accuracy/Robustness/Mitigation

measure (ARM),

ARM = (2 ∗ MAEafter∗HR
MAEafter+HR

) ∗ (1 − ρ), where ρ is the percentage of power users or

influence being evaluated. Higher ARM indicates a more effective mitigation.

Datasets and Algorithms – We used the Yahoo! Music R3 dataset and called it

Y365K70 in this study. The CF user-based weighted algorithm (UBW) [13] uses

Pearson similarity with a threshold of 0.0 (positive correlation), neighborhood size

of 50, and significance weighting of n/50 where n is the number of co-rated items

[19]. We used UBW from Apache Mahout71 and added functionality to implement

the MS2 and MS3 strategies (see § 9.3). We also added functionality to Mahout to

implement the user-based mean-centered prediction algorithm (UMCP) [45].

Power User Selection – The InDegree (ID), NumRatings (NR), and AggSim(AS)

methods described in § 9.2 were used. For experiments E1 and E2, we also used a

randomized method (Rand) of selecting power users, for comparison purposes. In all

cases, for top-N users and neighbors, we use N=50.

Target Item Selection – In previous work (see Chapters 5 and 6) we have randomly

selected 50 target items with no more than one rating, regardless of their rating value,

as “New” item targets. The rationale for using new items as targets is that they are

easier to attack and, hence, produce a better signal. However, the Y365K dataset has

a minimum of 66 ratings per item, so we used 50 “New and Established” items, i.e.,

70365,704 ratings, 1,000 songs, 15,400 users, and 97.62% sparsity.
71http://mahout.apache.org
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target items were selected randomly and had the following average number of ratings,

average rating, and average rating entropy, respectively: 350.38, 2.522, 1.086. Our

expectation was that attacking “New and Established” target items will produce

a weaker signal. For experiments with power user attacks (E3 and E4), each test

variation was executed once for each of the 50 target items and data results were

averaged over the 50 target items.

Attack Parameter Selection – The Attack Intent is Push, i.e., target item rating is

set to max (= 5). The Attack Size or maximum number of SPUs in each attack was

770 for Y365K. The attack size was selected based on previous research [36, 9], where

a 5-10% attack was shown to be effective; we chose a 5% attack size for each dataset,

where 770 is 5% of 15,400 users. The power user attack profiles were generated as

described in Section 6.3 and the target item rating was injected at run time. For

experiments with power user attacks (E3 and E4), each test variation was executed

with a percentage of the maximum number of power users, incrementally from 0% to

100%.

9.5 Results and Discussion

9.5.1 Initial Investigation

Before the start of this experimentation, we investigated the use of various Yahoo!

Music datasets. We began with a large dataset72 consisting of 717 million ratings of

136 thousand songs given by 1.8 million users of Yahoo! Music services. We extracted

two smaller datasets from R2, Y9M73 and Y1M74 to match the sizes of MovieLens

72R2 at http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
738,846,899 ratings, 136,736 songs, 23,179 users, and 99.72% sparsity.
741,002,415 ratings, 126,038 songs, 2,717 users, and 99.71% sparsity.
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Figure 34: Hit Ratio and MAE as 0% to 100% of real power users are removed using
UBW and Y1M

Figure 35: Prediction Coverage and Hit Ratio correlation for power user attacks on
Yahoo! Music datasets

datasets of similar ratings size. We set up PUAs using synthetic power users generated

with the power user selection methods described in § 9.2 and user-based collaborative

algorithms (UBW and UMCP). Even in the best-case scenarios (from an attacker’s

standpoint), the attacks resulted in HR < 12% and R >= 15, e.g., see Figure 34.

We were concerned that the Yahoo! Music datasets would not have the same accu-
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racy/robustness profiles exhibited during a PUA that we had seen with MovieLens

datasets. We conjectured that, because of the 99%+ sparsity of the datasets, we

would need larger neighborhood sizes and experimented with various settings from

50 to 400; however, even with kNN=400 (labeled “Y1M-400kNN” in Figure 35) for

UBW, we did not see a change in the attack metrics. We then turned our attention

to the datasets’ prediction Coverage and its impact on Hit Ratio. We observed a

correlation between a given level of Coverage and the corresponding Hit Ratio, i.e.,

low Coverage (< 50%) correlated with low Hit Ratio (< 12%) and determined that we

need to use a dataset with higher Coverage values. We then selected the smaller R3

dataset from Yahoo! Music and called it Y365K in our experiments. After executing

initial power user attacks using Y365K, we found that higher Coverage (>70%) corre-

lated with higher Hit Ratio (>90%) results, as shown in Figure 35. Although we are

not claiming this as a general rule, it appears that a minimum amount of prediction

coverage is required (between 50% and 70%) in order to have successful power user

attacks.

9.5.2 E1: Power User Ablation

In previous work (see Chapters 5 and 6) we described how power user influence

can be illustrated by observing the change in system accuracy (MAE) as power users

are removed from the system. Our ablation studies showed that as power users

were removed from the dataset, MAE increased; i.e., the system became less accu-

rate. This was the case using our chosen power user selection methods, InDegree,

NumRatings, and AggSim (see § 9.2), with multiple collaborative algorithms and

MovieLens datasets. In this experiment, we repeat the ablation analysis using the
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Figure 36: E1 - MAE as 0% to 100% of real power users are removed using UBW,
UMCP, and Y365K

Figure 37: E1 - MAE as 0% to 100% of real power users are removed using IBW,
SVD, and Y365K
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Y365K dataset and four popular collaborative filtering algorithms (§ 9.4); we added

a fourth selection method called Random (Rand) to compare with the other three

methods. In addition, we ran the ablation by removing power users “from the top”

(most influential to least influential) and “from the bottom” (least influential to most

influential) to see the accuracy impacts this would produce. Results are shown in

Figures 36 and 37.

The top two charts in Figure 36 show results for UBW and the bottom two charts

show results for UMCP; the left two charts show results as power users are removed

“from the top” and the right two charts show results as power users are removed

“from the bottom”. For UBW, AggSim MAE is significantly higher than InDegree,

NumRatings, and Rand at 100% removal (p < 0.01) indicating that the AggSim

influence is superior. There is no significant difference between InDegree and Num-

Ratings at 100% removal, indicating that these two selection methods select power

users of equal influence; also, InDegree and NumRatings MAE at 100% removal is

significantly higher than Rand (p < 0.01) indicating higher influence impact. For

UMCP, there is no difference between AggSim, InDegree, and NumRatings at 100%

removal indicating that all three methods have the same level of influence; results also

indicate that the AggSim, InDegree, and NumRatings methods perform significantly

better than Rand at 100% removal (p < 0.01) indicating that selecting power users

with the AggSim, InDegree, and NumRatings methods results in more influential

users than selecting users at random. For UBW and UMCP, for each power user

selection method except Rand, there is a significant increase in MAE comparing 0%

to 100% removal (p < 0.01); for Rand, there is no significant difference indicating
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that randomly selected power users are removed, they not influential enough to vary

the system accuracy. And as expected for each algorithm, MAE for 0% power users

removed is the same regardless of whether removal is from the top or bottom, 1.23 for

UBW and 1.12 for UMCP. This difference indicates that the accuracy of the UMCP

algorithm is significantly better (p < 0.01) than UBW.

The top two charts in Figure 37 show results for IBW and the bottom two charts

show results for SVD; the left two charts show results as power users are removed

“from the top” and the right two charts show results as power users are removed

“from the bottom”. For IBW, NumRatings MAE is significantly higher than InDe-

gree, AggSim, and Rand at 100% removal (p < 0.01) indicating that the NumRatings

influence is superior. There is no significant difference between InDegree and AggSim

at 100% removal, indicating that these two selection methods select power users of

equal influence. For SVD, NumRatings MAE is significantly higher than InDegree,

AggSim, and Rand at 100% removal (p < 0.01) indicating that the NumRatings in-

fluence is superior. There is no significant difference between InDegree and AggSim

at 100% removal, indicating that these two selection methods select power users of

equal influence. Results also indicate that the AggSim, InDegree, and NumRatings

methods perform significantly better than Rand at 100% removal (p < 0.01) indicat-

ing that selecting power users with the AggSim, InDegree, and NumRatings methods

results in more influential users than selecting users at random. For IBW and SVD,

for each power user selection method except Rand, there is a significant increase in

MAE comparing 0% to 100% removal (p < 0.01); for Rand, there is no significant

difference indicating that when randomly selected power users are removed, they are
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not influential enough to vary the system accuracy. And as expected for each algo-

rithm, MAE for 0% power users removed is the same regardless of whether removal is

from the top or bottom, 1.032 for IBW and 0.922 for SVD. This difference indicates

that the accuracy of the SVD algorithm is significantly better (p < 0.01) than IBW.

The H-1 hypothesis is rejected for user-based, item-based, and SVD-based collabo-

rative recommenders using the Y365K dataset because AggSim and NumRatings were

able to select a better set of power users than InDegree. NumRatings had the best

performance for item-based and SVD-based recommenders and AggSim had the best

performance for user-based weighted recommenders. All three of these power user

selection methods had the same level of performance for user-based mean-centered

recommenders. In all cases, InDegree, NumRatings, and AggSim provided a more

influential power user selection than randomly selected power users.

9.5.3 E2: Synthetic Power User Identification

To evaluate the SPU profiles (before the attack), we removed the top 770 RPUs

from the original Y365K dataset using each of the selection methods (InDegree, Num-

Ratings, AggSim, and Rand) and replace them with 770 SPU profiles to create modi-

fied Y365K datasets.75 We remove the RPUs to see how well the SPUs would replace

them. Then, we identify/select the top 770 power users from the modified datasets

using each of the three selection methods. In all cases, the top power users consisted

of a mix of RPUs and SPUs

To determine the extent to which the 770 SPU’s are actually selected by each

75NB: The desired attack size (5% of users in the dataset) is equivalent to 770 SPUs for Y365K;
the same number of SPU profiles are evaluated before and after the attack.
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method, we use precision and recall metrics. We observe that the power user model

generated SPU profiles with varying degree of success based on the power user selec-

tion method used. For InDegree, 59.9% of the SPU’s were identified and NumRatings

achieved 78.1% precision and recall scores, while AggSim was only able to achieve a

13.1% precision and recall score and Rand achieved a 6.0% score. As a precedent for

comparison, in Chapter 6 we achieved precision/recall scores of 70%, 83%, and 32%

for InDegree, NumRatings, and AggSim, respectively. To evaluate the hypothesis

for this experiment, we expect that a majority of the SPU profiles injected into a

given dataset will be successfully identified by the same power user selection method

used to identify the respective RPU profiles, i.e., precision and recall scores will be >

50%. Therefore, Hypothesis H-2 is accepted for InDegree and NumRatings, rejected

for AggSim and Rand methods, meaning that the power user model generated an ac-

ceptable number of SPUs that were successfully identified/selected by the InDegree

and NumRatings methods and not the AggSim or Rand methods.

9.5.4 E3: Power User Attack Effectiveness

Two types of power user attacks were used in this experiment, based on previous

PUA analyses (see Chapters 5 and 6). In one case, we select RPUs using power user

selection techniques (see § 9.2); in the second case, we generate SPUs, replace the

RPUs with the SPUs, and then select power users using the same power user selection

techniques (see § 9.2) as in the first case. In both cases, the PUA is mounted with

a varying percentage, from 0% to 100%, of power user attackers removed from the

dataset; in the first case, RPUs are the attackers and in the second case, SPUs are

the attackers. We also use New and Established item targets for both attacks. These
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Figure 38: E3 - accuracy and robustness metrics for an RPU-based PUA using UBW
and Y365K

Figure 39: E3 - accuracy and robustness metrics for an SPU-based PUA using UBW
and Y365K
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two approaches allow us to more broadly explore the impacts of the PUA on the

Y365K dataset and to compare with previously observed results. The results of these

analyses are shown in Figures 38 and 39.

In Figure 38, we see that for InDegree and NumRatings, HR (upper left) remains

at a 90% level with up to 60% of the power users removed and R is no higher than

7. For AggSim, these metrics are slightly more subdued. In many cases, MAEafter

increases from its value at 0% removal indicating the impact of power user influence

and PS remains at a high level (> 4) indicating the high level of influence of this

attack. At 100% power user removal, HR is at 4%, R at 21, and PS drops to zero

indicating that without the power users attacking, there still is an impact on the

target items from other users, albeit minimal.

In Figure 39, we see that for InDegree and NumRatings, HR (upper left) remains

at about a 90% level with up to 40% of the power users removed and R is no higher

than 11. For AggSim, these metrics are slightly more subdued. In some cases,

MAEafter increases from its value at 0% removal indicating a reduction of power user

influence and PS remains at a high level (> 4) indicating the high level of influence

of this attack. For NumRatings, we see that both HR and MAEafter decrease which

would indicate that removing NumRatings power users improves the accuracy and

robustness characteristics of the system. At 100% power user removal, HR is at 4%,

R at 21, and PS drops to zero indicating that without the power users attacking,

there still is an impact on the target items from other users, albeit minimal.

Based on these results, Hypothesis H-3 is partially accepted for InDegree since

it is better than AggSim albeit virtually tied with NumRatings in terms of attack
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effectiveness.

Given the high levels of HR and low levels of R in Figures 38 and 39, Hypothesis

H-4 is accepted for InDegree and NumRatings. For the RPU-based attack, an attack

size of 2% shows major impacts to accuracy and robustness; for an SPU-based attack,

a 3% attack shows major impacts.

9.5.5 E4: Power User Attack Mitigation

(E4-M1) Power User Removal: This experiment consisted of removing power users

from the dataset (incrementally from 0% to 100%) prior to recommendation calcu-

lations (for similarity and prediction). We conducted a series of PUA’s against the

user-based CF algorithm. Each PUA in this experiment uses a dataset with a speci-

fied number of injected SPUs (§ 9.4); for Y365K, we use up to 770 SPUs. The SPUs

are generated based on three power user selection methods described in § 9.2: InDe-

gree, NumRatings, and AggSim. The SPUs are injected with target items at runtime;

the 50 targets are evaluated one at a time for the PUA and the HR/Rank/PS metrics

are averaged across all 50 target items.

In previous work (see Chapter 8), we analyzed various SPU removal approaches:

most-to-least-influential (Top), least-to most-influential (Bottom), and Random. For

E4-M1, power users are removed from most-to-least-influential (from the top) since

that would better mitigate the attack effectiveness based on Hit Ratio, from a system

operator’s perspective. Generated SPUs are added to the dataset for attack pur-

poses and then the top-N RPUs/SPUs, as selected by the three power user selection

methods, are incrementally removed from the dataset; top-N = 770 for Y365K. The

SPUs are injected with either 50 “New” or “New and Established” target items at
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runtime to evaluate the PUA in separate trials (one target item attack at a time) and

the HR/Rank/PS metrics are averaged across all 50 target items. Figure 40 shows

the results for Y365K as the percentage of power users removed increases from 0%

to 100% (0-50 power users); the left side shows power user removal for “New” item

targets and the right side shows “New and Established” targets. The reason they are

similar is that the “New” targets in the Y365K dataset have a minimum of 66 ratings,

so the contrast with “New and Established” targets is not as significant as what we

had observed in previous work using target items with only 1 rating (see Chapter 8).

Removing 100% of the RPUs/SPUs still leaves SPUs in the dataset, hence HR for

InDegree remains relatively high and is reduced to 30% for NumRatings. HR for

the AggSim attack remains high for all levels of removal because the AggSim power

user selection method did not find any SPUs in the top 770 power users, so none

are available for removal. The ARM measure indicated that 100% removal is the

best mitigation for InDegree and AggSim power user selection methods, and 80% for

NumRatings.

(E4-M2) Influence Reduction, all Power Users – Consisted of varying the similarity

weighting (incrementally between 0.0 to 1.0) applied to power users (selected RPUs

and SPUs) who are nearest neighbors during the prediction calculation. We conducted

a series of PUA’s against the UBW algorithm. Each PUA in this experiment uses a

dataset with the same number of injected RPUs/SPUs; there is no removal of power

users in this experiment. Furthermore, because we did not observe much difference

between New targets and New and Established targets in E4-M1 experiment, we

decided to only test with New and Established targets in E4-M2 and E4-M3.
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Figure 40: E4-M1 – Hit Ratio and MAE as 0% to 100% of power users (real and
synthetic) are removed using UBW and Y365K

Figure 41: E4-M2 – Hit Ratio and MAE as power users’ (real and synthetic) influence
reduced from 1.0 to 0.0 using Y365K

New and Established target item results in Figure 41 for Y365K indicate that

AggSim similarity weighting is reduced from 1.0 to 0.1, HR remains flat for InDegree

(94-96%), NumRatings (94-96%), and AggSim (88-92%). When similarity weighting

is set to zero, HR drops significantly for InDegree and NumRatings (to 1%), while

remaining high for AggSim (69%). The HR for AggSim remains high because the
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Figure 42: E4-M3 – Hit Ratio and MAE as 100% to 0% of power users’ (real and
synthetic) influence is applied using Y365K

AggSim power user selection method did not find any SPUs in the top 770 power users

that were removed; this result indicates that the RPUs contribute somewhat to the

attack, perhaps by correlating well with the SPU attackers. As similarity weighting

is reduced from 1.0 to 0.1, MAEafter increases slightly for InDegree, NumRatings,

and AggSim; MAEafter increases (accuracy gets worse) when all the power users are

removed as observed in E1. The R ranges between 6-9 over all similarity weightings

except 0.0 and selection methods; for a similarity weighting of 0.0, R increases to 13

for InDegree and AggSim, and to 17 for NumRatings. For New and Established target

items, the ARM measure indicated that a similarity weighting reduction setting of 0.1

is the best mitigation for all three power user selection methods, avoiding the spike

in MAEafter; however, the HR results remain high at 90% and provides little attack

mitigation from a robustness perspective.

(E4-M3) Influence Reduction, selected Power Users – Each PUA in the experiment

uses a dataset with the same number of injected SPUs (there is no power user removal

in this experiment) and will only allow a percentage (incrementally from 0% to 100%)

of them to be involved in the prediction calculation. The RPUs/SPUs are selected
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randomly and will have a similarity weighting of 1.0 if selected and 0.0 if not selected,

during the prediction calculation. Furthermore, because we did not observe much dif-

ference between New targets and New and Established targets in E4-M1 experiment,

we decided to only test with New and Established targets in E4-M2 and E4-M3.

For Y365K with New and Established target items shown in Figure 42, as the

percentage of RPUs/SPUs is reduced from 100% to 10%, HR decreases 96-69% for

InDegree, 96-66% for NumRatings, and 92-70% for AggSim. When the percentage

of RPUs/SPUs is set to zero, HR goes to 1% for InDegree and NumRatings, and

to 69% for AggSim. As the percentage of RPUs/SPUs is reduced from 100% to

10%, MAEafter increases 1.28-1.4 for InDegree and NumRatings, and 1.27-1.34 for

AggSim. The R ranges between 7 and 20 over all RPU/SPU percentages greater

than 0.0 and all selection methods; when the percentage of RPUs/SPUs is 0.0, R is

13 for InDegree and AggSim, 17 for NumRatings. The ARM measure indicated that

a similarity weighting reduction setting of 10% is the best mitigation for InDegree and

NumRatings (avoiding the larger values of MAEafter) and 0.0 for AggSim; however,

the HR results remain high at 70% and provides a small measure of attack mitigation

from a robustness perspective.

Based on these results, it appears that the mitigation strategy that best balances

accuracy and robustness is MS1 for NumRatings; MS3 for all power user selection

methods can be considered as a distant second choice. For MS3, the ARM metric

indicates a solution which leaves a relatively high Hit Ratio and vulnerability to

attack. Our hypothesis cannot be accepted for MS2 and MS3 strategies.
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9.6 Summary of this Chapter

This chapter evaluated power user selection methods, power user attacks, and power

user attack mitigation approaches with a Yahoo! Music ratings dataset to contrast

with previous evaluation results obtained using MovieLens movie ratings datasets

(see Chapters 5 and 6). Except for the findings in E1, we observed similar results

between the movie and music domain datasets.

We showed, through an ablation approach, that removing the influence of power

users causes a reduction in recommender system accuracy indicated by an increase

in MAE. This means that power users contribute positively to the accuracy of the

system. Unlike previous work, the InDegree method did not perform as well as the

NumRatings and AggSim methods for power user selection effectiveness. For InDegree

and NumRatings power user selection methods, we showed that our synthetic power

user generation method is effective not only from a selection perspective but also from

an attack perspective. We determined, as we have in previous work, that a small

number of power user attackers (less than 5% of all users) can have significant effects

on the RS recommendations. We evaluated power user attack mitigation approaches

to address issues encountered when legitimate influential users (false positives) are

removed along with attackers. We have shown that reducing similarity weighting

during prediction calculation is an improvement over removal. We showed that there

is a trade-off between accuracy (MAE) and robustness (Hit Ratio) when implementing

mitigation strategies and have developed a metric to assist in evaluating this trade-off.

Consistent with our previous work using user-based recommenders, we also showed
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that reducing the influence of power users contributes to a reduction in recommender

system accuracy indicated by an increase in MAE; this shows how the influence of

power users can impact recommendation accuracy.

With respect to the Dissertation Hypotheses provided in Section 1.5.2, this chap-

ter has indicated the following level of support for the applicable hypotheses; final

acceptance/rejection of the Dissertation Hypotheses are provided in the Dissertation

Summary, Section 10.1:

DH-1: The use of In-Degree Centrality to select a set of power users results in power

users with higher influence than other selection techniques, across multiple datasets

and domains. This hypothesis is not supported for user-based, item-based, and SVD-

based collaborative recommenders using the Y365K dataset because AggSim and

NumRatings were able to select a better set of power users than InDegree. Num-

Ratings had the best performance for item-based and SVD-based recommenders and

AggSim had the best performance for user-based weighted recommenders. All three of

these power user selection methods had the same level of performance for user-based

mean-centered recommenders. In all cases, InDegree, NumRatings, and AggSim pro-

vided a more influential power user selection than randomly selected power users.

DH-2: A significant percentage of synthetic user profiles generated from statistical

characteristics of power users will be identified by selected power user selection tech-

niques across multiple datasets and domains. This hypothesis is supported for InDe-

gree and NumRatings, and rejected for AggSim using Y365K.

DH-3: Power user attack profiles generated from characteristics of InDegree-selected

power users will result in more effective attacks (from the attacker’s viewpoint) than
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attack profiles generated from characteristics of power users selected from other tech-

niques across CF algorithms, datasets, and domains. This hypothesis is partially

supported because InDegree had more effective attacks than AggSim, however, the

results showed that InDegree and NumRatings were equally effective for Y365K using

user-based recommenders.

DH-4: A relatively small number of power users (5% or less of the user base on

selected datasets) can have significant effects on RS predictions and top-N lists of rec-

ommendations across multiple power user selection techniques, collaborative filtering

algorithms, datasets, and domains. This hypothesis is supported for InDegree, Num-

Ratings, and AggSim given that they all had Hit Ratio values greater than 80%; in

some cases, we observed significant impacts to robustness metrics with attack sizes

that were less than 5%. These tests were conducted with Y365K and user-based

recommenders.

DH-5: Reducing the influence of power users is a more effective and less impactful

mitigation strategy than completely removing power users from the dataset. This hy-

pothesis is not supported for the “Power User Influence Reduction” strategies tested

with the user-based algorithm on the Y365K dataset.



CHAPTER 10: DISSERTATION SUMMARY

The problem with attacks on recommender systems is that they bias the underly-

ing data and cause the system to deliver erroneous or misleading recommendations

to online users. This can cause users to lose trust in the system and either (1) shop

elsewhere, negatively impacting the sales of the attacked service/product provider,

or (2) purchase the product only to find out that it does not meet their needs, nega-

tively impacting user satisfaction with the online recommender. With the significant

growth in e-commerce in the last few years, this is a major problem that needs to be

studied. There is abundant evidence in the media regarding the negative impacts that

attacks on recommender systems can have on consumer behavior and the concomitant

negative effects on system and service/product providers.

The research effort in this dissertation was focused on analyzing recommender

system power users, how they are identified, selected and evaluated; how they are

characterized; how a novel Power User Attack is configured, executed, and evaluated;

and how power user attacks can be mitigated. In addition, we investigated a new,

complementary attack model, the Power Item Attack, that uses influential items to

successfully attack RSs. We showed that the Power Item Attack is able to impact not

only user-based and SVD-based recommenders but also the heretofore highly robust

item-based approach, using a novel multi-target attack vector. Furthermore, these

evaluations were conducted using user-based, item-based, and SVD-based collabo-
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rative filtering algorithms using a production-level platform (Mahout) and publicly-

available synthetic datasets in the movie and music domains.

This research is motivated by the concern that recommender systems continue to

be vulnerable to attack and that, although several attack models have been developed

in the past, users with malicious intent continue to find new ways to bias predictions

and disrupt the system. The novel Power User Attack, presented here and inspired

by social network analysis, is a new attack model that was shown to be capable of

impacting the accuracy of the system’s recommendations. The novel Power Item

Attack, presented here and complementary to the Power User Attack, was shown to

successfully attack the robust item-based algorithm using a multiple-target approach.

10.1 Dissertation Hypotheses

A summary of the dissertation hypotheses (DH) provided in Section 1.5.2 and

tested by this research is as follows:

DH-1: The use of In-Degree Centrality to select a set of power users results in power

users with higher influence than other selection techniques, across multiple datasets

and domains. Overall, this hypothesis is accepted only for user-based recommenders

in the movie domain tested. However, it must be rejected for user-based, item-based,

and SVD-based recommenders in the music domain tested. This hypothesis is not

supported for user-based, item-based, and SVD-based collaborative recommenders

using the Y365K dataset because AggSim and NumRatings were able to select a

better set of power users than InDegree across all three collaborative algorithms.

This hypothesis serves to answer the following research question, DRQ-1: Does

the use of Social Network Analysis identify more influential Power Users than other
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methods?

DH-2: A significant percentage of synthetic user profiles generated from statistical

characteristics of power users will be identified by selected power user selection tech-

niques across multiple datasets and domains. This hypothesis is accepted for InDegree

and NumRatings in the movie and music domains tested. This hypothesis serves to

answer the following research question, DRQ-2: Will synthetic Power User profiles

generated from power user characteristics retain the same level of influence of real

Power Users?

DH-3: Power user attack profiles generated from characteristics of InDegree-selected

power users will result in more effective attacks (from the attacker’s viewpoint) than

attack profiles generated from characteristics of power users selected from other tech-

niques across CF algorithms, datasets, and domains. This hypothesis is partially

accepted. The results are mixed in the movie and music domains tested, i.e., we

consistently found InDegree to generate power user attack profiles that were more

effective then those generated with AggSim but not always more effective than those

generated with NumRatings. If one considers the “cost” of attack, NumRatings is

the better choice because it has a very low cost to mount. This hypothesis serves

to answer the following research questions, DRQ-1: Does the use of Social Network

Analysis identify more influential Power Users than other methods? and DRQ-3:

What happens to Recommender System accuracy and robustness when power users

attack?

DH-4: A relatively small number of power users (5% or less of the user base on

selected datasets) can have significant effects on RS predictions and top-N lists of rec-
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ommendations across multiple power user selection techniques, collaborative filtering

algorithms, datasets, and domains. The results overwhelmingly support accepting

this hypothesis across user-based, item, based, and SVD-based collaborative recom-

menders using the movie and music domain datasets tested. This hypothesis serves

to answer the following research questions, DRQ-3: What happens to Recommender

System accuracy and robustness when power users attack? and DRQ-4: Can a novel

attack be crafted to achieve power user capability with strong influence and “low” cost

of attack?

DH-5: Reducing the influence of power users is a more effective and less impact-

ful mitigation strategy than completely removing power users from the dataset. This

hypothesis is accepted for the “Power User Influence Reduction” strategies for user-

based recommenders for the movie domain tested. This hypothesis serves to answer

the following research question, DRQ-5: What is the most effective method of miti-

gating power user attacks?

10.2 Contributions

The main contributions made by this research are:

• Power User Attack Model: This is a novel attack model based on influential

power users. The model specifies how power users are selected from a dataset

and how the power user profiles are configured for the attack. Different tech-

niques for power user selection were evaluated and alternative methods of eval-

uating power user selection were analyzed in the context of power user attacks.

See Chapters 5 and 6.

• Power User Model: This model specifies the statistical characteristics of power
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users in sufficient detail so that synthetic power user attack profiles can be gen-

erated for attack purposes. This effort mainly involved characterizing power

users according to their statistical properties and generating synthetic power

user profiles. The degree to which synthetic power user profiles resemble actual

power user profiles was evaluated across multiple power user selection tech-

niques. See Chapter 6.

• Evaluation Approach for Power User Selection and Power User Attacks: The

approach consists of metrics collected before and after the power user attack

and is used to evaluate both the power user selection and the power user attack.

A power user evaluation process that combines impacts to accuracy metrics be-

fore an attack and impacts to accuracy and robustness metrics after an attack

was analyzed. The use of In-Degree Centrality to select a set of power users

compared to other power user selection techniques was evaluated across mul-

tiple collaborative filtering algorithms, datasets, and domains. The degree to

which power user attacks using synthetic profiles can impact RS recommenda-

tions across multiple power user selection techniques and collaborative filtering

algorithms was also evaluated. See Chapters 5 and 6.

• Power Item Attack Model and Power Item Model: The novel power item at-

tack model uses synthetic power user profiles populated with power items in a

novel attack configuration using multiple targets. The power item model de-

scribes how synthetic power users are generated using characteristics of influen-

tial (power) items. The power item attack was evaluated across multiple power

user selection techniques and collaborative filtering algorithms. See Chapter 7.
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• Mitigation Approach for Power User Attacks: The approach is to reduce the

impact of the power user attack without having to remove 100% of the power

users because of the important role that power users play in maintaining a

higher level of recommender system accuracy. The approach reducing the in-

fluence of power users is a more effective and less impactful mitigation strategy

than completely eliminating the influence of power users was evaluated across

multiple power user selection techniques and collaborative filtering algorithms.

See Chapter 8.

• New Evaluation Metrics: Throughout this dissertation, several metrics were

developed when evaluating accuracy and robustness measures. The AC met-

ric discussed in Chapter 4 was used to show the trade-offs between accuracy

and coverage when evaluating collaborative filtering algorithms, the NTPU and

NNTPU metrics discussed in Chapter 7 were used to determine the effective-

ness of the Power Item Attack within and between experiments, and the ARM

metric discussed in Chapters 8 and 9 was used to evaluate the trade-offs be-

tween accuracy and robustness when evaluating power user attack mitigation

strategies.

10.3 Findings

The major findings from this dissertation were:

• A relatively small number of power users (5% or less of the user base on selected

datasets) can have significant effects (from the attacker’s viewpoint) on recom-

mender system predictions and top-N lists of recommendations across multiple



175

power user selection methods, collaborative filtering algorithms, and the movie

and music domains tested.

• Power user attack profiles generated from characteristics of In-Degree and Num-

ber of Ratings power users result in more effective attacks (from the attacker’s

viewpoint) than attack profiles generated from characteristics of Aggregated

Similarity power users across collaborative filtering algorithms and the movie

and music domains tested.

• The use of In-Degree Centrality to select a set of power users results in power

users with higher influence than other selection techniques for user-based and

SVD-based recommenders in the movie domain tested.

• A significant percentage of synthetic user profiles generated from statistical

characteristics of power users were identified by the In-Degree and Number of

Ratings power user selection methods in the movie and music domains tested.

• Item-based collaborative recommenders, previously considered robust to attack,

are vulnerable to the novel Power Item Attack using the novel Multiple-Target

design approach.

• Reducing the influence of power users is a more effective and less impactful

mitigation strategy than completely removing power users from the dataset for

user-based recommenders in the movie and music domains tested.

The implications of these findings are that malicious users can use synthetic power

users to mount efficient and effective attacks on popular collaborative recommenders.

User-based, item-based, and SVD-based collaborative recommenders have been shown

to be vulnerable to attack. These attacks may not be detectable using methods based



176

solely on statistical characteristics of “average” users; furthermore, the small attack

size required for effective power user/item attacks may also elude current detection

approaches. To defend against such attacks, system operators should consider using

“influence reduction” mitigation strategies rather than removal.

10.4 Limitations and Future Work

There are several areas that need to be studied beyond the scope of this disserta-

tion in order to further generalize the current findings. These limitations should be

considered as future work and consist of the following:

• An in-depth power user attack detection study. In the literature, attack de-

tection is limited to known models such as Random, Average, etc., and should

be extended to include new attack models such as the Power User Attack and

Power Item Attack. It would be interesting to know if existing attack detection

methods could be used to detect new attack models.

• Analysis of power user selection methods based on other Social Network Anal-

ysis techniques as well as methods based other heuristic and statistical ap-

proaches. For example, methods such as eigenvector centrality, page rank, most

entropy, most average user, and others should be investigated to determine if

they are able to generate synthetic attack user profiles that can significantly

impact recommender system accuracy and robustness.

• A replication of the Power User Attack and Power Item Attack experiments

using larger, production-sized datasets with millions of users and items across

several collaborative filtering algorithms and domains. For example, the use of
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Netflix Prize76 and Yahoo! Music77 datasets would be a good starting point.

Furthermore, attacks on content-based recommenders also need to be studied in

order to mitigate the numerous “opinion spam” attacks being perpetrated on today’s

online systems.

10.5 Conclusions

The principal conclusions were:

• Power user attacks can have significant impact on the predictions generated

by popular collaborative recommender algorithms across the movie and music

domains tested, i.e., these attacks can efficiently and effectively bias the recom-

mender predictions as measured by accuracy and robustness metrics.

• Synthetic power user profiles generated from the In-Degree and Number of

Ratings power user selection methods result in effective power user attacks.

• The cost to mount an attack is controllable by the attacker and relates to the

effort required to yield the desired outcome; the objective is to keep the cost

low. Due to its low “cost” of attack, the simple Number of Ratings method

appears to be the most efficient approach for selecting and generating power

user profiles. Furthermore, the more knowledge an attacker has about the

dataset’s users, items, and ratings, the more effective the attack; however, that

knowledge is difficult, albeit not impossible, to obtain. And the knowledge

required for the NumRatings method can be considerably lower than InDegree

or AggSim because popular items are usually well known and are publicly-

76http://www.netflixprize.com/
77http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
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available information; this gives NumRatings an edge over the other selection

methods, costs being equal.

• When implementing mitigation strategies, reducing similarity weighting during

prediction calculation is an improvement over removal of detected power users.

Furthermore, an influence reduction strategy also helps to optimize the trade-off

between recommender system accuracy and robustness.
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APPENDIX A: PUBLICATIONS RELATED TO THIS DISSERTATION

The research for this dissertation has focused on various areas: recommender sys-
tem evaluation, investigation of power user selection, power user modeling, power user
attacks, and mitigation of power user attacks. The following are the papers related
to this dissertation, presented in the order they were published:

[53] C. E. Seminario and D. C. Wilson. Robustness and accuracy tradeoffs for
recommender systems under attack. In Proceedings of the 25th Florida Artificial
Intelligence Research Society Conference, FLAIRS-25. AAAI, May 2012.
In [53], we show how the underlying implementation choices for item-based and user-
based collaborative filtering recommender systems can affect the accuracy and robust-
ness of recommender systems. We also show how accuracy and robustness can change
over a system’s lifetime by analyzing a set of temporal snapshots from system usage
over time. Results provide insight into some of the trade-offs between robustness and
accuracy that operators may need to consider in development and evaluation.

[52] C. E. Seminario and D. C. Wilson. Case study evaluation of mahout as a
recommender platform. In CEUR Proceedings series for the Workshop on Recom-
mendation Utility Evaluation: Beyond RMSE (RUE 2012), held in conjunction with
the 6th ACM Conference on Recommender Systems (RecSys ’12), September 2012.
In [52], we describe the evaluation of changes made to the Mahout-based78 devel-
opment/test platform using accuracy and coverage metrics, and a novel metric that
combines accuracy and coverage in order to address the trade-off between those two
metrics. We demonstrated that the “best” mean absolute error (MAE) may not
always be the lowest MAE, especially when coverage is also considered and that a
combined metric can be useful addressing the accuracy vs. coverage trade-off. Details
about this research are provided in Chapter 4.

[60] D. C. Wilson and C. E. Seminario. When power users attack: assessing impacts
in collaborative recommender systems. In Proceedings of the 7th ACM conference on
Recommender systems, RecSys ’13. ACM, October 2013.

[54] C. E. Seminario and D. C. Wilson. Assessing impacts of a power user attack
on a matrix factorization collaborative recommender system. In Proceedings of the
27th Florida Artificial Intelligence Research Society Conference, FLAIRS-27. AAAI,
May 2014.
In [60] and [54], we describe our initial work in the evaluation of power user selec-
tion techniques and the power user attack with a simulated power user attack on
“new” items. We used an ablation approach using accuracy and coverage to evalu-
ate power user selection before the attack; after the attack, we used accuracy and

78apache.mahout.org
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robustness metrics for evaluation. Results show that power users selected using the
SNA in-degree centrality technique have significant impacts on recommender system
accuracy and robustness, especially on user-based and SVD-based collaborative rec-
ommenders. This paper was nominated for Best Student Paper Award. Details about
this research are provided in Chapter 5.

[51] C. E. Seminario. Accuracy and robustness impacts of power user attacks on
collaborative recommender systems. In Proceedings of the 7th ACM conference on
Recommender systems, RecSys ’13. ACM, October 2013.
In [51], I summarize my research proposal on power user attacks and provide addi-
tional research results on the evaluation of power user selection techniques and power
user characteristics across multiple collaborative filtering algorithms. Details about
this research are also provided in Chapter 5.

[61] D. C. Wilson and C. E. Seminario. Evil twins: Modeling power users in attacks
on recommender systems. In Proceedings of the 22nd Conference on User Modelling,
Adaptation and Personalization, UMAP ’14, July 2014.
In [61], we describe the power user model and how it is used to generate synthetic
power users that can be used for attack purposes. Methods for generating synthetic
power users are evaluated before and after the power user attack. Results indicate
that synthetic power users can be used to mount effective attacks against user-based
and SVD-based recommender systems. Details about this research are provided in
Chapter 6.

[55] C. E. Seminario and D. C. Wilson. Attacking item-based recommender sys-
tems with power items. In Proceedings of the 8th ACM Conference on Recommender
Systems, RecSys ’14. ACM, October 2014.
In [55], we describe a power item model that uses influential (power) items to at-
tack collaborative recommenders. A novel power item attack model is also intro-
duced. Methods for generating synthetic power users using the power item model
are evaluated after the power item attack. Results show that power user attack pro-
files generated with power items can be effective against user-based, item-based, and
SVD-based recommenders. Details about this research are provided in Chapter 7.

[62] D. C. Wilson and C. E. Seminario. Mitigating power user attacks on a user-
based collaborative recommender system. In (To appear) Proceedings of the 28th
Florida Artificial Intelligence Research Society Conference, FLAIRS-28. AAAI, May
2015.
In [62], we posit various mitigation strategies against power user attacks based on
either removal or influence-reduction of power users. These mitigation strategies are
evaluated against power user attacks on user-based recommender systems. Results
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indicate that influence-reduction is a better strategy than power user removal. Details
about this research are provided in Chapter 8.

The following Computer Science Education paper, although not related to attacks
on recommender systems, was published during the time this dissertation was being
developed.

[28] Celine Latulipe, N. Bruce Long, and Carlos E. Seminario. Structuring Flipped
Classes with Lightweight Teams and Gamification In Proceedings of ACM SigCSE
Technical Symposium on Computer Science Education, SigCSE 2015, ACM, March
2015.
In [28], we present a new approach to help make computer science classes both more
social and more effective: “lightweight teams”. Lightweight teams are class teams in
which the team members have little or no direct impact on each other’s final grades,
yet where there is a significant component of peer teaching, peer learning and long-
term socialization built into the curriculum. We explain how lightweight teams have
been used in a CS1 class at our institution, and how this approach, combined with a
flipped class approach and gamification, has led to high levels of student engagement,
despite the difficulty of the material and the frustration that is common to those first
learning to program. This paper was selected as the winner of the SigCSE 2015 Best
Paper Award, presented in March 2015.
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APPENDIX B: STATISTICS FOR RECOMMENDER SYSTEM DATASETS USED
IN THIS DISSERTATION

These are the statistics for the datasets used in this study. The MovieLens79

datasets are ML100K, ML1M, and ML10M. The Yahoo! Music80 datasets are Y9M,
Y1M, and Y365K.

Table 6: Statistics for MovieLens and Yahoo! Music datasets

ML100K ML1M12 ML10M Y9M Y1M Y365K
# Users 943 6,034 69,878 23,179 2,717 15,400
# Items 1,664 3,678 10,676 136,736 126,038 1,000
# Ratings 99,693 904,757 10,000,034 8,846,899 1,002,415 365,704
Avg Global Rating 3.530 3.590 3.512 3.159 3.225 2.734
StDev Global Rating 1.126 1.120 1.060 1.596 1.589 1.565
Avg # Ratings/User 105.719 149.943 143.107 381.677 368.942 23.747
StDev # Ratings/User 100.567 174.143 216.709 825.134 714.678 20.224
Max # Ratings/User 736 2,029 7,358 33,920 8,541 648
Min # Ratings/User 19 2 20 20 20 10
Avg User Rating 3.588 3.708 3.614 3.455 3.476 2.822
StDev User Rating 0.445 0.431 0.428 0.886 0.886 0.965
Avg User Entropy 1.870 1.845 1.774 1.618 1.602 1.554
StDev User Entropy 0.260 0.269 0.272 0.556 0.554 0.536
Avg # Ratings/Item 59.912 245.992 936.684 64.701 7.953 365.704
StDev # Ratings/Item 80.655 356.893 2487.314 149.346 17.860 543.756
Max # Ratings/Item 583 3,291 34,864 4,106 467 5,587
Min # Ratings/Item 1 1 1 2 1 66
Avg Item Rating 3.077 3.236 3.192 2.970 3.048 2.492
StDev Item Rating 0.780 0.687 0.567 0.701 1.120 0.478
Avg Item Entropy 1.626 1.796 1.762 1.935 1.104 2.045
StDev Item Entropy 0.619 0.460 0.347 0.363 0.749 0.252
Sparsity 0.936 0.959 0.987 0.997 0.997 0.976

79www.grouplens.org
80http://webscope.sandbox.yahoo.com/catalog.php?datatype=r


