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ABSTRACT

TAPOBRATA BHATTACHARYA. Chaos in Non-Euclidean Geometries Arising in
Mechanics. (Under the direction of DR. SCOTT DAVID KELLY)

Chaotic systems are a class of nonlinear dynamical systems that have captured the

attention of mathematicians and engineers for long. Even though chaotic systems are

deterministic in nature, long term prediction of behavior of such systems is difficult.

Most of the studies on the evolution of such systems, have been restricted to the

Euclidean manifold. The proposed dissertation will

1. Examine the dependence of elementary concepts from dynamical systems the-

ory, particularly those that pertain to stability and measures of chaos, on the

metric structure assigned to the space or manifold in which a dynamical system

evolves.

2. Examine the way in which the input-output relationships defined by mechani-

cal control systems with nonlinear dynamics, particularly systems representing

problems in robotic locomotion, viewed as transformations between differen-

tiable manifolds, affect measures of chaos.

The present research summarizes background material and preliminary results and

explores chaos in the context of non-Euclidean manifolds. It also focuses on mechani-

cal systems that have the ability to locomote by internal shape change. Such systems

can be modeled by principal connections using geometric methods. The study in-

volves investigating the flow of the differential equations that govern the motion of
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the body under chaotic actuation of the shape parameters.
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CHAPTER 1: THEORY OF MANIFOLDS AND EXTERIOR ALGEBRA

1.1 Introduction

A dynamical system is characterized by its configuration variables that completely

identify the system. The set of all configuration variables is called the configuration

space of the system. The configuration spaces are generally metric spaces, i.e., topo-

logical spaces that are equipped with a metric. As an example, the configuration

spaces of dynamical systems that come up in this document are mostly Cartesian

products of SE(n), which are paracompact. A paracompact space is locally metriz-

able under certain conditions. In fact, every metric space satisfies the properties of

paracompact spaces. Hence, the study of topological spaces provide a general frame-

work to study convergence, continuity and compactness that lead up to the notion

of special kinds of topological spaces, the manifolds. The following section illustrates

some definitions and properties related to metric spaces. The proofs of the theorems

can be found in [6].

1.2 Topological Spaces

Definition 1.2.1. (Topology) A topology τ on a set X is a collection of subsets of X,

under the following conditions,

1. the empty set φ and X are open,

2. any arbitrary union of open sets remain open and
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3. any finite intersection of open sets remain closed.

Definition 1.2.2. (Topological space) A topological space is an ordered pair (X, τ),

such that the set X and τ (a topology on X) satisy the following,

1. the empty set φ and X are in τ ,

2. any arbitrary union of open subsets of X is in τ and

3. any finite intersection of open subsets of X is in τ .

A topological space is a generalized notion of mathematical space. The differences

in topological spaces arise on account of differences in the topologies assigned to

the set. The notions of base for a topology and separation axioms are key to the

definitions of manifolds. A base for a topology τ , where (X, τ) is a topological space,

is a collection B, such that every open subset G of X can be expressed in terms of

the indexed family Bα ∈ B as G = ∪αBα. If V denotes the family of neighborhoods

of x ∈ X, a neighborhood base for x is collection of neighborhoods B ⊂ V, such that

∀V ∈ V, ∃B ∈ B satisfying B ⊂ V . A topological space X is first countable if it has

a countable base for every x ∈ X. The set X is second countable if τ has a countable

base. The separation axioms impose restrictions on topologies of spaces and are the

basis of classification of topological spaces. The one space relevant to the theory

of smooth manifolds is the Hausdorff space. A topological space X is Hausdorff or

T2, if for every pair of distinct points x, y ∈ X, there exists disjoint open sets that

satisfy x ∈ X and y ∈ Y . Hausdorff spaces are of significance as every sequence in a

Hausdorff space converges to a unique limit point.
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Definition 1.2.3. (Metric space) A metric space is a topological space (M,d), where

M is a set with a metric d on itself. A metric is a function,

d : M ×M → R

such that the following holds for any x, y, z ∈M :

1. d(x, y) ≥ 0

2. d(x, y) = 0 ⇐⇒ x = y

3. d(x, y) = d(y, x) and

4. d(x, z) ≤ d(x, y) + d(y, z).

The metric spaces are characterized by the propeties of completeness, continuity

and compactness.

1.2.1 Completeness

The definition of completeness of a metric space depends on the notion of conver-

gence of a sequence. A sequence {xn} in X is convergent at x ∈ X if for any ε > 0,

there exists N(ε) ∈ N, such that, d(xm, x) < ε for all m ≥ N . A sequence is a Cauchy

sequence one for which any ε > 0, there exists N(ε) ∈ N, such that, d(xm, xn) < ε

for all m,n ≥ N . The convergence of sequences is related to the idea of Cauchy

convergence. Every convergent sequence is a Cauchy sequence. A metric space is

complete if every Cauchy sequence converges to a point in X. A Banach space is a

normed linear space that is complete with respect to the metric.
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1.2.2 Continuity

The notion of continuity is fundamental in topology and can be defined in terms

of mapping between open sets. Let (X, dX) and (Y, dY ) be metric spaces. A function

f : X → Y is continuous at x ∈ X, iff for any ε > 0, there exists δ(ε) > 0 such that if

dX(x, y) < δ(ε), then dY (f(x), f(y)) < ε where y ∈ X. Function continuity in metric

spaces is generally defined in terms of sequences. If there exists a sequence {xn} in

X such that xn → x for f(xn) → f(x), then the map f : X → Y is continuous at

x ∈ X. A continuous function is a function that is continuous at all points in the

metric space.

1.2.3 Compactness

The extension of a property that is defined at a point, to the entire space, depends

on the set being compact. The property of compactness ensures the retention of

properties of finite sets. An open cover of a set S is a family of indexed subsets

{Uα}α∈A that contain the set S for all Uαs being open sets. A metric space is said

to be compact if each of its open cover has a finite subcover, i.e., there exists a finite

subset J of A satisfying X ⊂ ∪β∈JUbeta. Alternatively, convergence of sequences is

used to define compact sets on metric spaces. A metric space X is compact if every

sequence in X has a converging sequence in X. This notion of compactness is known

as sequential compactness. An important result with regard to compact subsets of

Rn is the Heine-Borel theorem.

Definition 1.2.4. (Heine-Borel theorem) The following statements are equivalent for

a subset S of the Euclidean space Rn,
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1. S is closed and bounded,

2. S is compact and

3. every open cover of S has a finite subcover (or every sequence in S has a

convergent subsequence).

1.3 Manifold

The theory of manifolds with added algebra for differentiability is central to the

analysis of physical systems. The systems dealt with in the succeeding chapters are

systems whose configuration spaces are Lie groups. The dynamics of such systems

can be expressed in terms of reduced configuration variables by exploiting symmetry.

The definitions, theorems and lemmas are gleaned from [12] , [16] and [22].

Definition 1.3.1. (Manifold) An n dimensional topological space M is a manifold if it

satisfies the following criteria,

1. M is Hausdorff (i.e. any two points in M are separated by discrete neighbour-

hood),

2. M is second countable (i.e. there exists a local countable basis for M) and

3. for any arbitrary point in M , there exists an open open neighborhood that is

homeomorphic to a subset of Rn .

A coordinate chart on an n-manifold M is a pair (U, φ). For any point p ∈ M ,

there exists a neighborhood U ⊂ M and a homeomorphism φ : U → Rn. The vector

φ(q) = {q1, ..., qn} are local coordinates on M when q ∈ U . The number of basis
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vectors of a coordinate chart of an open subset on an n-dimensional manifold is n. A

collection of coordinate charts S = {(Uα, φα)}α∈I is called an atlas of M , if M can be

written as a union of coordinate charts, {Uα}α∈I . α is an element of an indexed array

set I. The functions fαβ and fβα, known as transition maps, are homeomorphisms

defining the change of coordinates between two coordinate charts. All topological

manifolds are constructed by global union of coordinate charts that are related to

each other by homeomorphism. If the change of coordinate maps happen to be

diffeomorphisms, then the manifold is differentiable or smooth. The rich structure of

differentiable manifolds enable one to do calculus on manifolds.

Definition 1.3.2. If S = {(Uα, φα)}α∈I be the atlas of a topological manifold M , such

that the transition maps fβα = φβ ◦ φ−1
α are k-times continuously differentiable, then

S is known as a Ck atlas. A Ck atlas determines a Ck structure on the manifold and

M is called a Ck differentiable manifold.

Definition 1.3.3. Two overlapping coordinate charts (Uα, φα) and (Uβ, φβ) are said to

be compatible if

1. φα(Uα ∩ Uβ) and φβ(Uα ∩ Uβ) are open subsets of Rn,

2. fβα = φβ ◦ φ−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ) and

fαβ = φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ) are infinitely differentiable.

A smooth atlas has compatible coordinate charts for every pair. An atlas, S =

{Uα, φ}α∈I of M is called a C∞ atlas, if all composition maps of the nature φβ ◦ φ−1
α

are C∞ maps. A manifold is smooth or differentiable if it has a smooth atlas. A C∞

manifold is a manifold with a C∞ structure.
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Figure 1: Compatible coordinate charts

1.3.1 Submanifold

Any open subset of a C∞ manifold is equipped with the structure of a C∞ manifold.

A submanifold can be viewed as images of level sets arising out of either immersion

or submersion or embedding. A smooth map f : M → N is an immersion if the

derivative Df is an injection; in other words, rank of the derivative of the linear

map is equal to the dimension of M . An immersed submanifold is the image of

an immersion map. It is worthwhile to note that the immersion map need not be

injective to be a submanifold. The map f is a submersion, if Df is a surjection. The

rank of the derivative of the map is equal to the the dimension of N . An embedding

is a special kind of immersion. It is homeomorphic to its image under the map

f(M) ⊂ N (topological embedding). The map f determines the subspace topology

that the embedded submanifold inherits. All immersions do not necessarily give rise

to embeddings. An injective immersion f : M → N that satisfies,
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1. f is closed

2. f is proper and

3. M is compact

is an embedding.

Definition 1.3.4. (Embedded submanifold) An embedded submanifold ofM is a subset

S ⊂ M with the property that for each q ∈ S, there exists an open neighborhood U

and a set of coordinate functions q1, ..., qk, such that S ∩ U = {q ∈ S : qk+1 = ... =

qn = 0}.

The dimension of the submanifold is given by k, a positive integer. Any open subset

of M is a locally closed submanifold. It means that every point q ∈ S admits an open

neighborhood U of q in a manner that U ∩ S is closed in U [19]. For a smooth map

between two manifolds, f : M → N , the set of regular values is the set of points in

the open neighborhood of f−1(c) in M , where Tqf is surjective; q ∈M and f(q) = c.

Then c is called the regular point.

1.3.2 Tangent vectors, tangent spaces and vector fields

A curve γ(t) on a manifold is a one parameter map t 7→M for any parameterization

t. Two curves on a manifold γ1(t) and γ2(t) are equivalent at a point q ∈M if

(i) γ1(0) = γ2(0) = p and

(ii) (φ ◦ γ1)′(0) = (φ ◦ γ2)′(0)

for some coordinate chart (U, φ).



9

Definition 1.3.5. A tangent vector at q is the equivalence class of curves passing

through q.

Alternatively, if γ(t) is any curve on M and γ(0) = q, the tangent vector at q is

given as,

vq =
d(γ(t))

dt
|t=0;∀t ∈ R (1.3.1)

If the coordinates on a n-dimensional manifold at point are designated as {x1, .., xn}

then the standard basis for tangent vectors at the point is given by ∂
∂x1
, ..., ∂

∂xn
. Tan-

gent vectors on a manifold can also be defined in terms directional derivatives.

Definition 1.3.6. For any scalar function f defined on M , the tangent vector at q is

the map f 7→ Dvqf known as the directional derivative of f at q.

It can be written as,

Dvq(f(q)) =
df

dt
f(q + tv)|t=0 = (f ◦ γ(t))′(0) (1.3.2)

The tangent space at q ∈ M , denoted by TpM , is the linear vector space of all

tangent vectors at q. A tangent bundle of a manifold M is the disjoint union of all

tangent spaces to M, denoted as,

TM = ∪q∈MTqM (1.3.3)

For an n-dimensional manifold, the dimensions of the tangent space and tangent

bundle are n and 2n respectively.

Definition 1.3.7. (Derivative of a map) Let f : M → N be a smooth map. The
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derivative of f , at point q ∈M , is defined as,

Tqf( ˙γ(0)) =
d

dt
(f ◦ γ)|t=0 (1.3.4)

for a curve γ(t) in M such that, γ(0) = q and ˙γ(0) = vq.

The notation of the derivative of the map or tangent map of f varies from f∗(q) to

Df(q). If πM and πN denote the bundle projection maps, then the following diagram

commutes.

TM TN

M N

Tf

πM πN

f

In local coordinates, the Jacobian of the map f evaluated at q represents the linear

tangent lifted map.

Definition 1.3.8. (Vector field) A vector field X on a manifold M is a map X : M →

TM that assigns a tangent vector X(q) ∈ TqM to every point q ∈M .

If πM denotes the projection map on to the first coordinate, πM : TM → M , then

a smooth vector field is a smooth section of TM and πM ◦X = IdM .

TM

M

πM

A smooth vector field is a differentiable map from M to TM . The real vector space

of vector fields on M is denoted as X(M).

Definition 1.3.9. An integral curve of X is a map γ(t) : t→M , with initial condition

γ(0) at t = 0, such that γ̇ = X(γ(t)),∀t ∈ (a, b), (a, b) being an open interval in R.
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The flow of a vector field X on M is a collection of maps φt : M → M such that

t → φt(γ(0)) is the integral curve of X with initial condition γ(0). If φt be the flow

of a smooth vector field X on a manifold M , then

• φ0 is the identity map (i.e. φ0(p) = p,∀p ∈M),

• φt+s = φt ◦ φs and

• the map φt : M →M is diffeomorphic.

Definition 1.3.10. A 1-form on a manifold M at point p is an assignment of a linear

operator or a covector that maps a tangent vector at TpM to R.

The cotangent space at p ∈ M is the vector space of all such linear functionals

(covectors) and is denoted by T ∗pM ; the cotangent space being dual to the tangent

space TpM . The disjoint union of all cotangent spaces on M is the cotangent bundle.

It may be noted that both the tangent and the cotangent bundle have the natural

structure of a vector bundle on the manifold. Just as tangent vectors provide a

coordinate-free definition of derivative of a curve in a manifold, the derivative of a

real valued function or differential on a manifold are the cotangent vectors.

1.4 Exterior Algebra

Exterior algebra on manifolds, also called wedge product or Grassmann algebra,

is an algebraic construction to study areas, volumes and other higher dimensional

constructs. The study of exterior algebra is also called Ausdehnungslehre or extension

calculus. The material for this section is sourced from [9], [19].
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1.4.1 Differential forms — revisited

A general expression of a k-form β on a manifold M is of the construction

β(q) =
∑

1≤i1,...,i2≤n

Fi1,...,ik(q)dxi1 ∧ dxi2 ∧ ...dxik (1.4.1)

for q ∈ M . A function on M is a 0-valued form. The map β is an element of the

vector space designated by T ∗qM , dual to the vector space TqM . The multiplication

in the algebra of differential forms is called the wedge product and is used to generate

higher dimensional forms. In general, β on M is an assignment of a skew-symmetric

k-fold multilinear map,

β(q) = TqM × ...× TqM → V (1.4.2)

at each point q. The skew-symmetric property ensures that

β(q)(V1, ..., Vi, Vj, ...Vk) = −β(q)(V1, ..., Vj, Vi, ...Vk) (1.4.3)

for Vi ∈ TqM . If α is a k-form and β is a l-form, then the wedge product of the two

forms is a (k + l)-form.

(α ∧ β)(q) =
(k + l)!

k!l!
A(α⊗ β) (1.4.4)

for q ∈M . A is the alteration operator that acts on a (0, p) tensor t by

A(t)(V1, ..., Vp) =
1

p!

∑
π∈Sp

sgn(π)t(Vπ(1), ..., (Vπ(p)) (1.4.5)
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where sgn(π) is the sign of permutation π,

sgn(π) =


+1 if π is even;

−1 if π is odd;

(1.4.6)

and Sp is the permutaion group of the set 1, 2, ..., p. The operator A skew-symmetrizes

the p-multilinear maps [19].

1.4.2 Exterior algebra — continued

Definition 1.4.1. (Exterior product) If f : M → V be a smooth function (0-form) on

a smooth manifold M , the extrior derivative of f , also known as the differential is a

smooth linear map df : TM → V .

In general, a the exterior derivative of a k-form is a (k + 1)-form. A differential

k-form is closed if dα = 0 and is said to be exact if it can be expressed as α = dβ

for any (β − 1)-form. Every exact form is closed. The exterior product of a general

k-form β(q) =
∑

1≤i1,...,i2≤n
Fi1,...,ik(q)dxi1 ∧ dxi2 ∧ ...dxik is computed as

dβ =
∑

1≤i1,...,i2≤n

dFi1,...,ik(q) ∧ dxi1 ∧ dxi2 ∧ ...dxik (1.4.7)

where dFi1,...,ik(q) is evaluated in the same manner as differential of a 0-form.

Definition 1.4.2. (Interior product) If X be a vector field and β be a k-form on M ,

then the interior product of X with α is a (k − 1)-form defined as,

Xyα(q)(V2, ..., Vk) = β(q)(X, V2, ..., Vk) (1.4.8)

for q ∈M .

Proposition 1.4.3. The differential of a smooth function f : M → R is the 1-form df
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such that, for any p ∈M , df(p) : TpM → R is the differential or derivative of f at p.

Relative to a choice of local coordinates the basis for T ∗pM , dual to the basis ∂
∂xi

for

TpM , is denoted by dxi. The differentilal for a smooth function f : M → R is given

by,

df(p) =
∂f

∂xi
dxi (1.4.9)

.

1.4.3 Lie derivative, pullback and push-forward of forms

Analogous to the fact that a smooth map between manifolds induces a linear map

on the tangent vectors, a dual map, the pullback, exists on the cotangent vectors.

Definition 1.4.4. (Pullback) If f : M → N is a diffeomorphism between manifolds,

from M to N and v1, ..., vk ∈ TPM for any p ∈ M , then the pullback of a k-form, α

on N , is defined as

(f ∗α)(p)(v1, ..., vk) = α(f(p))(Tpf.v1, .., Tpf.vk). (1.4.10)

The push-forward for any diffeomorphism f : M → N is defined by f∗ = (f−1)∗.

The pullback and push-forward commute with ∧ and d operations. The pullback of a

function g defined on a manifold N , by a diffeomorphism f : M → N is the function

f ∗g on M , given by,

f ∗g = g ◦ f. (1.4.11)

The push-forward of a function h defined on a manifold M , by a diffeomorphism
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f : M → N is the function f∗h on N , given by,

f∗h = h ◦ f−1. (1.4.12)

The pullback of a vector field Y on a manifold N , by a diffeomorphism f : M → N

is the vector field f ∗Y on M , given by,

f ∗Y = (f−1)∗Y = Tf−1 ◦ Y ◦ f. (1.4.13)

Likewise, the push-forward of a vector field X on manifold X, by a diffeomorphism

f : M → N is the vector field f∗X on N , given by,

f∗X = Tf ◦X ◦ f−1. (1.4.14)

The Lie derivative of a vector field or a differential form provides a natural choice

of formulation of derivative along a vector field or the flow of a vector field. Let

φt : M →M be the flow of a vctor field X on M . At any q ∈M ,

Xq =
d

dt
φt|t=0. (1.4.15)

Definition 1.4.5. (Lie derivative of vector fields) The Lie derivative of a vector field

Y in M , along the flow φt of a vector field X, is the vector field

LXY (q) = lim
t→0

1

t
[Yq − (φt∗Y )q]. (1.4.16)

The push-forward of the vector field Y by the flow map is defined by, Tφ−t(q)Yφ−t(q).

It may be noted that φt is locally diffeomorphic, i.e., φ−1
t = φ−t.

Definition 1.4.6. (Lie derivative of differential forms) The Lie derivative of a differ-
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ential form α, along the flow φt of a vector field X, is defined as

LXα(q) = lim
t→0

1

t
[(φ∗tα)(q)− α(q)]. (1.4.17)

The pullback of the form by the flow φ∗tα is defined by, evaluating α at p and

pushing forward the tangent vectors by the derivative of the flow map.

Theorem 1.4.7. (Lie derivative theorem) The Lie derivative theorem states that

d

dt
φ∗tα = φ∗tLXα. (1.4.18)

Cartan’s magic formula provides a means of computing Lie derivative of k-form α,

along a vector field X on a manifold M .

LXα = d(Xyα) +Xydα. (1.4.19)

If g : M → R is a function on a manifold M ; X be a vector field on M , then the Lie

derivative of g along X is given by the directional derivative of g along X.

LXα(q) := X[f ](q) = df(q) ·X. (1.4.20)

for q ∈M . If φt is the flow associated with the vector field X; φ0 = q and ·φ0 = X(q);

the formula can be rewritten as

LXα :=
d

dt
|t=0f ◦ φt(q). (1.4.21)

Definition 1.4.8. (Jacobi-Lie bracket) If X and Y are two vector fields on a manifold

M , then, the Jacobi-Lie bracket of X and Y is a unique vector field [X, Y ] on M .

If g : M → R is a derivation(function) on M , the Jacobi-Lie bracket is given by the
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equation

[X, Y ][g] = X[Y [g]]− Y [X[g]]. (1.4.22)

The Lie derivative of the vector field Y along X may be defined as LXY = [X, Y ]. For

finite dimensional manifolds, the formula for Jacobi-Lie bracket assumes the form,

[X, Y ]j = X i∂Y
j

∂xi
− Y i∂X

j

∂xi
= (X · ∇)Y j − (Y · ∇)Xj. (1.4.23)

It can be shown that that Lie derivative of a vector field Y along a vector field X,

LXY , is equal to the Jocobi-Lie bracket of X and Y , [X, Y ].

1.4.4 Orientable manifold

Let M be an n−dimensional manifold with u1, ..., un and v1, ..., vn being two ordered

bases for the tangent space TpM at p ∈M . If the determinant of the derivative of the

linear transformation between the two bases is positive,then the two bases are said

to be equivalent. In case of manifolds, orientation is decided by the choice of tangent

space orientation. An orientation of M at p is defined to be the equivalence class of

all ordered bases of the linear vector space TpM . If p be any point p ∈ M and the

orientation of M remains the same irrespective of choice of p, then M is orientable at

p. M is said to be an oriented manifold. Mobius strips and Klein bottles are examples

of surfaces that are not orientabled in a global sense. The exterior algebra provides

an elegant expression of classical Stokes theorem in terms of exterior derivative of

differential forms.

Theorem 1.4.9. (Stokes theorem) Let M be a compact, oriented, n-dimensional man-
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ifold with an (n-1)-form β on M . If ∂M denotes the boundary on M , then

∫
∂M

dβ =

∫
M

β. (1.4.24)

1.5 Riemannian Manifold

The notion of a Riemannian manifold is essential to the study of non-Euclidean

manifolds. As one of the goals of the thesis is to study chaotic systems in the context

of non-Euclidean setting, a brief outline of the theory of Riemannian manifolds is

presented here [15]. Riemannian manifolds fall under the category of complete and

normed spaces, the Banach spaces. A Riemannian manifold is a manifold that is

equipped with a smoothly varying inner product, defined on the tangent space at

each point in the manifold. An inner product induces a norm, which in turn induces

a metric. A Riemannian metric g is a 2-tensor field on the manifold M , that is

bilinear, symmetric and positive-definite. The inner product g(q) defined on TqM

for each q ∈ M is smooth, meaning that the components of the metric tensor gij

are smooth functions of coordinates q. The formula for inner product is expressed as

< vq, wq >q= g(q)(vq, wq) = gijv
i
qw

j
q; vq, wq ∈ TqM . The two vectors are said to be

orthogonal to each other if < vq, wq >q= 0. The corresponding norm is given in local

coordinates as < vq, vq >q= g(q)(vq, vq) = gijv
i
qv
j
q . Every manifold can be given a

Riemnannian metric; this can be proved by using the partition of unity. Let (M1, g1)

and (M2, g2) be two Riemannian manifolds. A diffeomorphism φ : M1 → M2 is an

isometry, if φ∗g2 = g1 (alternatively, T ∗φ(g2) = g1). The (M1, g1) and (M2, g2) belong

to the same equivalence class if they are isometric to each other. The composition
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and inverses of isometries are isometries themselves. The group of isometries of a

Riemannian manifold is an isometry group. The isometry group is a finite dimensional

Lie group that acts smoothly on M [12].

The evolution of the Lorenz equations are analyzed on the S2 and the hyperbolic

model, which are Riemannian manifolds. The Lorenz vector fields are also studied

as image of local connection form for mechanical systems that can be modeled as

principal fiber bundle. The theory of Riemannian manifolds play a key role in setting

up of the problem in both cases.



CHAPTER 2: DYNAMICAL SYSTEMS AND CHAOS

2.1 Autonomous Dynamical Systems

A smooth, continous-time and autonomous dynamical system, on a smooth mani-

fold Ω, can be modeled by the ordinary differential equation,

ẋ(t) = f(x) (2.1.1)

where x ∈ Ω and t ∈ R. The vector field f(x) is a C∞ map from R × Ω → TΩ.

The phase space of the dynamical system is denoted by Ω which is an open subset

of Rn. The integral curves of the vector field f(x) corresponding to various initial

conditions, constitute flows of the vector field in the phase space. A flow φt can be

viewed as a map φt : Ω→ Ω where,

φ̇t(x) = f(φt(x)), (2.1.2)

∀x ∈ Ω and t ∈ R. The definition of some of the terms that have been used exten-

sively in the upcoming treatment of the subject, is enunciated hereafter [32],[27]. All

subsequent theory is relevant for continuous time dynamical systems.

2.1.1 Orbits

The flow of a vector field is associated with orbits through points in phase space.

Definition 2.1.1. (Orbit) An orbit of a dynamical system γx, for a point x ∈ Ω, is the



21

set given by,

γx = {φt(x)|t ∈ R}. (2.1.3)

A semipositive orbit through x is the set

γ+
x = {φt(x)|t ≥ 0}. (2.1.4)

A seminegative orbit through x is the set

γ−x = {φt(x)|t ≤ 0}. (2.1.5)

2.1.2 Invariant set

Definition 2.1.2. (Invariant set) A set M ⊆ Ω is invariant with respect to the flow

map φt, if for any point x ∈M and any t ∈ R, φt(x) ∈M .

In other words, all complete orbits through all points in M remain within M . M is

a positively invariant set if φt(M) ⊆ M for all time t ≥ 0. M is negatively invariant

if φt(M) ⊆M for all time t ≤ 0.

Definition 2.1.3. (Invariant manifold) An invariant setM ⊆ Ω is an invariant manifold

if it has the differentiable structure of a Cr(r ≥ 1) smooth manifold.

A positively or negatively invariant set is positively or negatively invariant, respec-

tively, if it possesses the smooth structure of a Cr(r ≥ 1) differentiable manifold.

2.1.3 Limit set

The long term behavior of a dynamical system is characterized by its limit set.

It is the state of the system after passage of infinite time, either going forward or

backward in time.
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Definition 2.1.4. (Limit set) The ω-limit point x0 of any x ∈ Ω, denoted by ω(x), is

the limiting point of a sequence {ti}, ti →∞ , such that,

lim
i→∞

φti(x) = x0 (2.1.6)

if such limit exists.

An α-limit point is defined in terms of limit of the sequence for {ti} → −∞.

An ω-limit set Ω(x) is the set of all ω-limit points of x. The basin of attraction

BΩ of an attracting ω-limit set Ω, is the union of all open neighborhoods U of Ω(x)

such that Ω(x) = Ω for all x ∈ U . The set of all intial conditions that evolve towards

Ω, as t → ∞, constitute the basin of attraction. The types of limit sets are of the

following kind:

1. Fixed points: a fixed point is a point x ∈ Rn, for which φt(x) = x; ∀t.

2. Periodic orbits: a periodic orbit is characterized by φt(x) = φt+T (x), where

T > 0 is called the time period of flow. A limit cycle is a periodic, closed orbit

that is the limit set of some other trajectory.

3. Quasiperiodic orbits: If there are more than one frequency in the periodic solu-

tion of the system the trajectories are given by the solution φt = H(ω1t, ..., ωnt).

The function H is periodic on ω1t, ..., ωnts with period being 2π. The frequency

vector ω, given by (ω1t, ..., ωnt), is called the basis frequency vector. A solution

with n−frequency base with frequencies being irrational multiples is diffeomor-

phic to the T n torus. A T n torus is the Cartesian product of S1× ...×S1, where

each S1 represents a base frequency.



23

4. Strange attractors: The presence of strange attractors is indicative of chaotic

dynamics. The steady state trajectories of such systems are bounded and dis-

play sensitive dependence to initial conditions. A small perturbation in initial

conditions causes exponential divergence of trajectories in the long term. The

trajectories converge to strange attractors that have fractal geometry, meaning

that strange attractors have complex Hausdorff dimensions. A list of Hausdorff

dimensions for fractals sets can be had in reference Falconer [5].

2.1.4 Nonlinear systems: Local stability

The local behavior of a nonlinear dynamical system can be examined qualitatively

by studying the behavior of a linearized system. The Hartman-Grobman theorem

states that the nonlinear system has the same qualitative behavior as that of a linear

system about a hyperbolic fixed point [26].

Theorem 2.1.5. (Hartman-Grobman theorem) Let Ω be an open subset of Rn, f ∈

C1(Ω) and φt be the flow of an autonomous nonlinear system ẋ = f(x). If ẋ(0) = 0

and the matrix A = Df(x0) has eigenvalues that have nonzero real parts (x0 is

hyperbolic), then there exists a homeomorphism h : U → V , where U and V are open

sets that contain the origin, such that on an open interval I0 ⊂ R, containing the zero

for each x0 ∈ U , for all x0 and t ∈ I0, h maps orbits in of the nonlinear system onto

orbits of the linearized system in a manner that preserves time parameterization; i.e.,

h ◦ φt(x0) = eAth(x0). (2.1.7)
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2.1.5 Chaos in dynamical systems

Chaotic systems fall under the category of a special class of nonlinear dynamical

systems. A typical chaotic system is not stochastic and exhibits unpredictability with

small change in initial conditions. Chaos in dynamical systems has been the object of

much research; since Edward Lorenz chanced upon chaos in a dynamical system in the

1960s while creating a mathematical model for weather patterns. The term ’butterfly

effect’ is oft used to describe the essence of chaos and it signifies the sensitivity of

a chaotic dynamical system to initial conditions. Chaos in deterministic dynamical

systems is characterized by

1. topological transitivity or mixing,

2. closely packed aperiodic orbits and

3. sensitivity to initial conditions.

There is no universal definition of chaos. According to Devaney, for a metric space

X, a discrete map f : X → X is chaotic if,

1. f is transitive,

2. the periodic points in f are dense in X and

3. f is sensitive to initial conditions.

A map f is transitive, if for any two nonempty subsets U and V in the phase space,

there exists a natural number n such that, fn(U) ∩ V is nonempty [4]. The second

condition implies that periodic points of f form a dense subset in X. A map f is
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sensitively dependent on intial conditions if for any real ε > 0 and any x ∈ X, there

exist a natural number n and a y in the neighborhood of x, for which the n − th

iteration maps fn(x) and fn(y) are at a distance more that ε apart. However, if

condition 1 and 2 are satisfied then the map f is sensitive to initial conditions [1].

2.1.6 Lyapunov exponents

The separation of trajectories in the phase space of the system is characterized by

Lyapunov exponents. They measure the extent to which two integral curves diverge,

starting from nearby intial conditions. A chaotic system has at least one positive

Lyapunov exponent. A system with positive Lyapunov exponent evolves in a manner

that makes prediction impossible beyond a period of time, that is characteristic of

the system. The Lyapunov exponent is also a measure of the time scale on which

the system dynamics becomes unpredictable. Several approaches have been put forth

for numerically computing Lyapunov exponents by Bennetin et.al. [2] and Wolfe

et.al.[33].

Given an n-dimensional continuous-time dynamical system, an initial n-sphere of

initial conditions of infinitesimal δx-radius gets deformed to an n-ellipsoid under de-

formations of the phase space. The magnitude of the local stretching or contraction

of the phase space is of exponential order. The trajectories of the locally linearized

system are of exponential order of the eigenvalues. In general, for an n-dimensional

system, there are n Lyapunov exponents; the largest and the smallest Lyapunov ex-

ponents correspond to the directions of maximum and minimum deformations of the

phase space.
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For computation of Lyapunov exponents, consider two initial conditions, x0 and

x0 + δx(0) in the phase space, separated by infinitesimal distance δx(0) apart. If

the flow corresponding to the vector field defining the evolution of the system be φt

then, after time t the initial points get mapped to φt(x0) and φt(x0 + δx(0)) respec-

tively. The separation at time t is

δx(t) = φt(x0 + δx(0))− φt(x0). (2.1.8)

Linearizing the first term of the right hand side about x0 one gets,

δx(t) = φt(x0 + δx(0))− φt(x0) = Dx0φt(x0).δx(0) (2.1.9)

The Lyapunov exponent, that is the average exponential rate of stretching or con-

traction of the phase space can be written as,

λ(x(0), δx(0)) = lim
t→∞

1

t

||δx(t)||
||δx(0)||

= lim
t→∞

1

t
||Dx0φt(x0).δx(0)||, (2.1.10)

where ||δx(t)|| is the standard Euclidean vector norm derived from inner product.

Figure 2: Separation of trajectories

According to Oseledec’s ergodic theorem, the limit on the right hand side of the

eqution exists under certain weak smoothness conditions and is finite and is equal to
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the Lyapunov exponent over the entire phase space [24].

2.1.7 Computation of Lyapunov exponents

There exist different numerical schemes for computing the Lyapunov exponents of a

smooth continuous-time dynamical system. In this research, three numerical schemes

have been implemented for the purpose of computing the Lyapunov exponents.

1. Largest Lyapunov exponent using distance metric: The largest Lyapunov expo-

nent is computed by measuring the separation of trajectories and evaluating the

logarithmic rate of separation. The method calls for rescaling of the separation

distance after each iteration. The number of iterations necessary for convergence

is dependent on the characteristic of the system and choice of initial condition.

2. Lyapunov spectrum by method of Jacobian: For any continuous-time dynamical

system of the form (1), with initial condition x0 chosen to lie on the attractor on

the limit set, the Lyapunov exponents of the system can be calculated using (2).

A ball of initial conditions of radius δx around an intial condition x0, under the

flow map φt(x0), gets mapped from x0 + δx to x(t) + Jδx; where the Jacobian

J of the flow map φt is evaluated at x0. From geometric standpoint, a sphere of

initial conditions gets mapped to an ellipsoid by the Jacobian map. An initial

set of tangent vectors q0 evolves according to the following equation,

q̇(t) = Dxf(x0).q0, q0 = I. (2.1.11)

[25]. The expression Dxf(x0) is the spatial derivative of the flow φt(x0) eval-

uated at x0. A system of coupled differential equations is then solved for x(t)
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and q(t) with initial conditions x0 and q0. The coupled equations assume the

form,

ẋ(t) = f(x, t)

q̇(t) = Dxf(x0).q0

(2.1.12)

with initial conditions x(0) = x0 and (0) = q0 = I, the identity matrix. The

above mentioned variational equation is solved for a time step T , whereby x0

maps to xT and q0 to qT . The Gram-Schmidt orthonormalization procedure is

applied to qT to yield a new basis vT that spans the same subspace as spanned

by qT . The Lyapunov exponents for n iterations are computed by the equation,

λi = lim
n→∞

1

nT

N∑
i=1

log ||viT ||. (2.1.13)

3. Lyapunov spectrum for time series data: The method of computing the Lya-

punov spectrum from chaotic time series data involves computing the linearized

flow map of the tangent space by approximation of the Jacobian of flow [28].

If {xj} = x(t0 + (j − 1)∆τ) be a discrete data set, where j = (1, 2, 3, ...), the

displacement vectors yi of a set of datapoints {xki}, for k = {1, 2, 3, ...}, that

lie inside an ε-ball about xj, is given as

{yi} = {xki − xj|||xki − xj|| ≤ ε}. (2.1.14)

After evolution of the system by a single time step T = n∆t, for some integer

n, the data points xki and xj get mapped to xki+n
and xj+n respectively. For

infinitesimally small ε the tangent vector approximation yi is mapped to

zi = Ajyi (2.1.15)
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The matrix A represents the linearized flow map of the system, i.e. the linear

transformation of the tangent vectors between tangent spaces at xj and xj+n.

A is computed by employing the least-square-error evaluation alogrithm that

minimizes the average of the squared error norm of zi and Ajyi. The components

of the A matrix for a n-dimensional system is given by the following set of

equations:

Vkl =
1

n

n∑
i=1

yikyil, (2.1.16a)

Ckl =
1

n

n∑
i=1

zikyil, (2.1.16b)

AjV = C. (2.1.16c)

The term yik and zil denote the k-th and l-th terms of the tangent vectors yi and

zi respectively. The evolution of an initial set of basis for the tangent space ej

is computed by the map Ajej. The mapped basis Ajej is orthonormalized using

Gram-Schmidt orthonormalization technique in order to ensure orthogonality of

the basis vectors. The Lyapunov exponents can be computed by the expression,

λi = lim
n→∞

1

nT

n∑
i=1

log ||Ajej||. (2.1.17)

The Jacobian matrix in general, is not diagonal or diagonizable or constant. But by

polar decomposition theorem, the matrix J can be decomposed into the product of a

rotation tensor R and a stretch tensor U ,

J = RU. (2.1.18)
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The matrix R is an orthogonal matrix with determinant +1 and U is symmetric

positive definite matrix. The positive real eigenvalues λ1, ..., λn for an n-dimensional

system, of matrix U are called principal stretches. The eigenvectors of U , given by

u1, ..., un are orthogonal and indicate the directions of the principal stretches at the x0

and are known as principal axes of strain. In case of the map from a sphere of initial

conditions to an ellipsoid, the principal stretch directions correspond to the semi-axes

of the ellipsoid. The stretching is positive for λi > 1 and negative or compressive for

λi < 1. In continuum mechanics parlance U is the left Cauchy-Green strain tensor,

JTJ = U (2.1.19)

The same formulation can be arrived at by considering the right Cauchy-Green strain

tensor V , written as,

J = V R (2.1.20)

V and U are connected by the relation V = RURT . The eigenvectors v1, ..., vn

correspond to the principal stretch directions at x(t) after having flown along the

flow φt from initial condition x(0).

The finite-time Lyapunov exponents can be approximated as

λ(x0, t) = lim
t→∞

1

t

||δx(t)||
||δx(0)||

= lim
t→∞

1

t

||Jδx(0)||
||δx(0)||

= lim
t→∞

1

2t
(êJTJê) (2.1.21)

where ê = δx(0)
||δx(0)|| . The equation (2.1.21) ensures that the Lyapunov exponents depend

only on the initial orientation and not on the vector δx(0).
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2.1.8 Lorenz System

The Lorenz system is a set of differential equations that was developed by Edward

Lorenz in 1963 as a mathematical model for earth’s atmospheric convection. It is

a simplification of the governing equations for two-dimensional flow problem. The

Lorenz equations are,

ẋ = σ(y − x), (2.1.22a)

ẏ = x(ρ− z)− y, (2.1.22b)

ż = xy − βz. (2.1.22c)

The solutions to the equations are chaotic for σ = 10, β = 8
3

and ρ = 28. In addition,

the inital conditions must lie on the attractor or on the basin of attraction. for the

system to exhibit chaotic behavior. The coefficients σ and β are sometimes called the

Prandtl number and Rayleigh number respectively. The plot of the chaotic solution

of the Lorenz system is termed as gives rise to the strange attractor.

The Lorenz attractor is an example of chaos in a deterministic system. The system

has one globally stable equilibrium, the origin, for ρ < 1. A supercritical bifurcation

occurs at ρ = 1; giving rise to two additional symmetric pair of attracting fixed points

at (
√

(β(ρ − 1)),−
√

(β(ρ − 1)), ρ − 1). The new equilibrium points are stable, if,

ρ < σ σ+β+3
σ−β−1

.

The strange attractor is characterized by complex fractal geometry. Their Hausdorff

dimension lies between 2.05 − 2.07 and the correlation dimension is estimated to be

2.04− 2.06 [31].



CHAPTER 3: FILTERING CHAOS

An appropriate approach to model the dynamics of a rigid body in a fluid is to

introduce the added mass or virtual mass effect. A body undergoing acceleration or

deceleration in a fluid medium, displaces the surrounding fluid. The displaced fluid

has the effect of increasing the inertia of the body; the added inertia term being the

added mass of the system. An outline on the theory of added mass can be found in

[14], [21]. A non axisymmetric planar body will experience non uniform distribution of

added mass. Consequently, an ellipse moving in a plane in an ideal fluid, will have less

translational inertia along the direction of the major axis, as compared to translational

inertia along the minor axis. A case in point could be an ellipse in the configuration

space SE(2), acted upon by an external force, in a manner such that the momentum

vector field is chaotic and is measured with respect to body fixed coordinates. The

inertia of the body effectively scales the momentum vector field along the direction

of major axis, minor axis and rotation axis. In this dissertation the effect of inertia

on the dynamics of body in presence of chaotic actuation of of the momentum vector

field is studied. The nature of flows of the vector field, over a range of variation of

inertia values is investigated. The chaotic forcing of the ellipse is implemented by

applying the Lorenz vector field as externally applied momentum vector field, in the

body fixed frame. The second integral of motion yields the evolution of the body

and is examined for existence of strange attractors. The present research explores



33

the case where the momentum vector field is actuated chaotically. The objective is

to determine whether the input differential equations remains chaotic or not, after

scaling by inertia terms. The system can be construed as a filter that resizes the

chaotic vector fields that pass through it. The vector field studied in the present case

is the Lorenz equations.

3.1 Lorenz Equations

The Lorenz system is a set of third order nonlinear ordinary differential equations.

The equations are attributed to the mathematician Edward Lorenz who formulated

the equations as a simple model for atmospheric convection. The Lorenz system is

one of the earliest instances of a strange attractor. A detailed study of the equations

can be found in [30], [31]. The set of equations are

ẋ = σ(y − x) (3.1.1a)

ẏ = x(r − z)− y (3.1.1b)

ż = xy − bz (3.1.1c)

where σ, b and r are parameters characteristic to the system. The Lorenz system has

been studied in detail over its dependency of the r parameter. The salient features

of the Lorenz equations are,

1. the system has symmetry (invariant under the transformation S(x, y, z) =

S(−x,−y,−z)),

2. the system is dissipitive in nature, i.e. the divergence of the vector field is

negative and
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3. there is a trapping region for which orbits of all points that lie on the interior

to the region, stay inside the region.

One can define a Lyapunov function and show that there exists an ellipsoidal trapping

region, where all solutions of Lorenz equations lie. The system parameters for the

Lorenz equations are typically set at σ = 10, b = 8
3
. As r is varied over a range of

values, the system exhibits interesting dynamics.

1. The origin is globally stable for 0 < r < 1. At r = 1, the origin loses its

stability, giving rise to two stable equilibrium ponts, C+ and C−. This event is

a pitchfork bifurcation.

2. C+ and C− lose their stability at a critical value of r = rH and Hopf bifurcation

occurs. The value of rH turns out to be rH = σ(σ+b+3)
σ−b−1

, provided σ − b− 1 > 0.

The fixed points are marked by presence of unstable limit cycles as the Hopf

bifurcation is subcritical.

3. The strange attractor appears for r = 28 (Fig.3).

4. A series of infinite period doubling bifurcations take place, as r is tuned up from

0.99524 to 100.795.

3.2 Lyapunov Exponents Of Strange Attractor

Lyapunov exponents are a local measure of divergence of nearby trajectories - a

singular feature of any chaotic system. The number of Lyapunov exponents of the

Lorenz system is three, as the dimension of the system is three. The set of Lyapunov

exponents of a system is called a spectrum. There is an abundance of literature on
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Figure 3: Parametric plot of Lorenz equations

the study of Lyapunov spectrum of the Lorenz equations. The typical values of the

Lyapunov exponents for the Lorenz equations are (1.50, 0,−22.46) for σ = 10, b = 8
3

and r = 28. The exponents are computed in base e.

3.3 Scaling Of Chaotic Vector Fields

An ellipsoid with non uniform translaional inertia in the direction of its principal

axes, is excited by a chaotic vector field, the Lorenz equations in this case, with

respect to body fixed frame of reference. Consequently, the momentum vectors can
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Figure 4: Lyapunov spectrum

expressed in body fixed coordinates as

M1ẋ = σ(y − x) (3.3.1a)

M2ẏ = x(r − z)− y (3.3.1b)

M3ż = xy − bz. (3.3.1c)

The components of the vector field on the right hand side of the differential equations

are scaled by their respective translational inertia terms. The parameters σ, b and r

are set at the the usual values of 10, 8
3

and 28 for the purpose of simulation.

3.3.1 Variation in M1 and M2

The Lyapunov spectrum for the Lorenz equations are plotted for a range of values

of M1, while M2 and M3 are set at unity. The value of M1 is incremented in steps of

0.025 from an intial value set at 1. The plot of the Lyapunov spectrum indicate that

the strange attractor undergoes change in its topology of the phase space at around
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(a) M1 = 1.83
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(b) M1 = 2.00
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Figure 5: Lyapunov spectrum for Lorenz system

M1 = 1.9 and disappears completely. The largest Lyapunov exponent then rapidly

converges to zero (Figures 3-5).

The Lyapunov spectrum for Lorenz equations are studied for variations in M2

values, with M1 and M3 kept constant at unity. The departure of the chaotic nature

of the flow of the vector field is observed for approximate value of M2 = 1.45. The

largest Lyapunov exponent collpases to zero, the rate of convergence of which increases

with increase in M2 value (Figures 4-6).

The plot of the solution curves indicate the break down of the strange attractor

into two attracting fixed points. In case of M1 = 2, an orbit with initial condition

(1, 1, 1) spirals into the fixed point C2 (Fig.7). The pattern is repeated in case of

M2 = 1.45.
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Figure 6: Lyapunov spectrum for Lorenz system

3.3.2 Lorenz map

The Lorenz equations is an instance of deterministic chaos. Lorenz was able to

extract the order of chaos by constructing the Lorenz map. In order to construct the

map, the z(t) data sequence is initially obtained from numerical integration of the

differential equations. The set of local maxima of the sequence is then extracted by

identifying the peaks. The Lorenz map is the plot of every z(t) data point against

its preceding value. The map is a spread of data points, even though it has the

appearance of a smooth curve. Lorenz conjectured that since zn+1 = f(zn), it is

possible to predict the dynamics of the system by forward iteration of the present

z-value. The construction enabled Lorenz to eliminate the possibility of existence of

stable limit cycles. As the slope of the curve is |f ′(z)| > 1 everywhere, except for

one point where the curve intersect the line of slope unity, existence of stable limit
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cycles can be effectively ruled out (Fig.6). The point of intersection zn corresponds

to a closed orbit as zn+p = zn for some p. It may be proved, by applying linearization

method, that small perturbations around zn tend to grow monotonically [31].

The Lorenz maps were plotted forM1 andM2 values corresponding to 1.83, 2.00, 2.30

and 1.25, 1.45, 1.50, respectively. The map loses its coherent structure and the slope

of the curve does not exhibit the property |f ′(z)| > 1 for M1 ≥ 1.99 and M2 ≥ 1.45

(Fig.9-10). This fact implies the possibility of existence of stable limit cycles, since

|f ′(z) < 1|.

As the inertia parameters are varied over a range of values, there exists a subset

of inertia values for which the integral curves of flow of the vector field are no longer

chaotic. The system behaves like linear filter in the sense that it has the ability to

scale a chaotic vector field; the solution curves of the vector field after rescaling is

nonchaotic.
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Figure 9: Lyapunov spectrum for Lorenz system
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Figure 10: Lyapunov spectrum for Lorenz system



CHAPTER 4: CHAOS IN NON-EUCLIDEAN SETTING

The investigation of chaos in the setting of configuration spaces that are non-

Euclidean manifolds provides a resource for analyzing a wide range of dynamical

systems that evolve on spaces other than Rn. Vector fields assigned on Riemannian

manifolds, are of common occurance while modeling physical systems. As an exam-

ple, a mathematical model for ocean currents or atmospheric convection have the

configuration space S2. The study of chaos in non-Euclidean manifolds involves de-

termining the sensitivity of the system to small perturbations in initial conditions.

The evaluation of finite-time Lyapunov exponents (FTLE) for spaces with different

metrics, call for development of different computational strategies. A generalized

numerical scheme for computation of FTLE and Lagrangian coherent structures to

arbitrary Riemannian manifolds can be found in [17]. The scope of present research

includes projecting the Lorenz vector fields onto S3/{0} and investigating the nature

of the vector field in terms of its Lyapunov exponents. The topological equivalence

between the vector field defined by the ordinary differential equations that portrays

the evolution of the Lorenz system on S3/{0} and the vector field of the canonical

Lorenz equations on R3, is examined. The study of chaotic systems is extended to

other Riemannian manifold: the hyperbolic model (one of the models of hyperbolic

geometry); the largest Lyapunov exponent being computed using the distance metric.

Some of the definitions that will come up in course of stating the results are given as



44

follows. The theoretical introduction to topology of vector fields is sourced from [32].

4.1 Equivalence Of Vector Fields

Let f : M → M and g : N → N be continuous functions defined on oriented

manifolds M and N , respectively. The functions f and g are topologically conjugate,

if there exists a homeomorphism h : M → N , such that h ◦ f = g ◦ h. The following

diagram commutes for topologically conjugate functions:

M M

N N

f

h h

g

.

If h is r-times differentiable, then f and g are Cr-conjugate.

The notion of topological equivalence follows from the definition of topological conju-

gacy. The two vector fields X1 ∈ X(M) and X2 ∈ X(N) on M and N are topologically

equivalent, if there exists a homeomorphism h : M → N , which maps orbits in M to

orbits in N ,

h(φ1
t (x)) = φ2

t (h(x)) (4.1.1)

for x ∈M ; φ1
t and φ2

t being the flows of the vector fields X1 and X2 respectively.

Definition 4.1.1. An orbit γ of a vector field X is positively (or negatively) stable if

for any point p ∈ γ and ε > 0, there exists a real δ(p, ε), such that, if ||q−p|| < δ, then

the positive (or negative) semi-orbit of X through the point q lies within ε distance

of the positive (or negative) semi-orbit of X passing through p.

In other words, if nearby orbits of γ of X stay in the neighborhood of γ in positive

time, then the orbit γ is positively stable.
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Definition 4.1.2. An orbit is positively (or negatively) unstable if it is not positively

(or negatively) stable.

Definition 4.1.3. An orbit is is singular if it is unstable, or if it is an equilibrium.

In cases of vector fields on S2 that have finite number of singular points, the singular

orbits are either

1. the equilibria or,

2. the separatrices of hyperbolic sectors at equilibria or,

3. isolated closed orbits.

The theorem on topological equivalence of a class of vector fields on S2 with polynomial

vector fields can be stated in the following manner.

Theorem 4.1.4. Let X be a C1 vector field on S2, such that,

1. no open subset of S2 is the union of closed orbits of S2;

2. X has finite number of singular orbits and

3. X satisfies the separatrix cycle condition.

Then X is topologically equivalent to a polynomial vector field.

The theorem along with a non-constructive proof can be found in [29]. The vector

fields that describe the evolution of the Lorenz equations on R3 are mapped onto the

S3, embedded in R4, by an orientation preserving homeomorphism. The stereographic

projection is employed to project orbits in R3 to S3. The topologies of the vector fields

have been studied for the two manifolds with reference to Lyapunov exponents. The
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Figure 11: Attractor

influence of the metric and the homeomorphism on the qualitative behavior of the

phase space is of special interest.

4.2 Stability Of Dynamical Systems On S2

The stability of a fixed point of a nonlinear autonomous system can be determined

by the analysis of the linearized vector field about the point . This is true only if the

conditions criteria in Theorem 2.1.5 is satisfied.

4.2.1 Limit sets on S2

A limit set on the 2-sphere can be one of the following types: fixed points, periodic

orbits, quasiperiodic orbits and strange attractors. As part of the analysis, the flows

of the vector fields for some of the limit sets, namely attractor, repeller, saddle and

center on R2, are studied by projecting the vector fields stereographically onto S2

(Fig.11-14). It is worth noting that each fixed point in R2 gives rise to two fixed

points in S2, indicating the fact that topological properties preserved locally and not

globally.
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Figure 14: Saddle point
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4.2.2 Bifurcations on S2

The study of topological structure of the flow or integral curve of a vector field

enables characterization of the vector field in the study of stability of dynamical

systems. The solutions of some differential equations display explicit dependence

on parameters that are contained in the mathematical model of the system. Typi-

cally, a variation in the bifurcation parameter causes the flow to alter qualitatively

about the fixed points. The Lorenz system is an example of a system that exhibits

one-parameter family of bifurcations with change in the scalar r. One observes su-

percritical pitchfork bifurcation, subcritical Hopf bifurcation and a series of period

doubling bifurcations as r varies over a range of values. The bifurcations of a dy-

namical system with one-parameter bifurcation are studied on S2 in the context of

a homeomorphism. The bifurcations - saddle-node, transcritical, pitchfork and Hopf

bifurcation are plotted on S2 by a conformal map in the following section. A detailed

exposition of bifurcation theory can be found in [13].

1. Saddle-node bifurcation: A saddle-node bifurcation, also called a blue sky bi-

furcation, is a local bifurcation involving two fixed points that disappear after

colliding with each other. A prototypical example of a system involving saddle-

node bifurcation is

ẋ = α + x2 (4.2.1a)

ẏ = −y. (4.2.1b)

The parameter α is varied from −1 to 1. The system has two fixed points (1, 0)
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Figure 15: Saddle node bifurcation (α = −1)
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Figure 16: Saddle node bifurcation (α = 0)

and (−1, 0) for α = −1. The first one is an attractor with eigenvalues −1 and

−2, where as the second fixed point is a saddle with eigenvalues 2 and −1. As

α is increased, the fixed points disappear for α > −1 and there are no real fixed

points (Fig.15-17).

2. Transcritical bifurcation: A transcritical bifurcation is one in which fixed points

exchange their stability. The fixed points of the system exist for all range of
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Figure 17: Saddle node bifurcation (α = 1)
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Figure 18: Transcritical bifurcation (α = −1)

parameters. A typical example of transcritical bifurcation is given by

ẋ = αx+ x2 (4.2.2a)

ẏ = −y. (4.2.2b)

The fixed points are an attractor at (0, 0) and a saddle at (1, 0), for α = −1.

The fixed points switch their stability as the value of α goes from −1 to 1

(Fig.18-20).

3. Pitchfork bifurcation: Pitchfork bifurcations occur in one of the two modes:
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Figure 19: Transcritical bifurcation (α = 0)
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Figure 20: Transcritical bifurcation (α = 1)
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Figure 21: Supercritical pitchfork bifurcation (α = −1)

supercritical and subcritical. A supercritical pitchfork bifurcation is one where

the fixed point loses its stability, giving rise to two additional fixed points, as

the bifurcation parameter is varied. Consider the two-dimensional dynamical

system

ẋ = αx− x3 (4.2.3a)

ẏ = −y. (4.2.3b)

A supercritical pitchfork bifurcation takes place in x-y configuration space as α

is turned up from −1 to 1 (Fig.21-23).

In case of subcritical pitchfork bifurcation, two stable saddle points collide as

the value of the critical parameter α passes from −1 to 1, causing the orbit

to collapse. A second order set of differential equations that yield subcritical
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Figure 22: Supercritical pitchfork bifurcation (α = 0)
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Figure 23: Supercritical pitchfork bifurcation (α = 1)
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Figure 24: Subcritical pitchfork bifurcation (α = −1)
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Figure 25: Subcritical pitchfork bifurcation (α = 0)

pitchfork bifurcation is given by,

ẋ = αx+ x3 (4.2.4a)

ẏ = −y (4.2.4b)

The plots (Fig.24-26) show the the flow of the vector fields with change in

parameter α.

4. Hopf bifurcation: Hopf bifurcation occurs in two modes - supercritical and
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Figure 26: Subcritical pitchfork bifurcation (α = 1)

subcritical. A system that undergoes subcritical Hopf bifurcation is

ẋ = −y + x(α + (x2 + y2)) (4.2.5a)

ẏ = x+ y(α + (x2 + y2)). (4.2.5b)

The eigenvalues of the linearized differential equations about the fixed point

(0, 0) are α+ i and α− i. The fixed point is a hyperbolic fixed point for negative

real part of the eigen values — the limit set of the system being a attractor.

As α increases to positive range of values, the fixed point loses stability and

switches to a repelling limit set (Fig.27-29).

A generic set of differential equations for subcritical Hopf bifurcation is

ẋ = −y + x(α− (x2 + y2)) (4.2.6a)

ẏ = x+ y(α− (x2 + y2)). (4.2.6b)

The origin is a hyperbolic attractor for α < 0: the eigenvalues of the linearized

system at the fixed point being −α + i and −α − i. The origin switches to a
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Figure 27: Supercritical Hopf bifurcation (α = −1)
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Figure 28: Supercritical Hopf bifurcation (α = 0)
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Figure 29: Supercritical Hopf bifurcation (α = 1)
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Figure 30: Subcritical Hopf bifurcation (α = −1)
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Figure 31: Subcritical Hopf bifurcation (α = 0)

repeller and a stable limit attracting cycle appears. (Fig.30-32).

4.2.3 Bifurcation of the Lorenz system in S3

The Lorenz system in R3 exhibits pitchfork bifurcation when the value of the pa-

rameter r crosses 1. The globally stable fixed point at the origin loses its stablity and

splits into two stable equilibrium points. The newly formed equilibria emerge close to

the origin and migrate away from it as r is turned up (Figure 23a). The bifurcation

curve appears to be the mirror image of its counterpart in R3. This can be attributed
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Figure 32: Subcritical Hopf bifurcation (α = 1)

to the fact that the stereographic projection maps points in R3, that are close to the

origin, to points in S3 that are further away from it (Fig.33b).

1 Equivalence of vector fields in S3 and R3

Let X(x1, x2, x3) be C1 vector field on R3. The push-forward of the vector field,

the stereographic projection map

X1 =
2x1

x2
1 + x2

2 + x2
3 + 1

X2 =
2x2

x2
1 + x2

2 + x2
3 + 1

X3 =
2x3

x2
1 + x2

2 + x2
3 + 1

X4 =
x2

1 + x2
2 + x2

3 − 1

x2
1 + x2

2 + x2
3 + 1

,
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Figure 33: Lorenz bifurcation on R3 and S2

maps the the vector field onto the sphere S3/(0, 0, 0, 1). The invertible projection

map is smooth and is

x1 =
X1

(1−X4)

x2 =
X2

(1−X4)

x3 =
X3

(1−X4)
.

The derivative of the projection map restricts the C1 vector field to S3/(0, 0, 0, 1),

mapping the origin {0, 0, 0, 0} to {0, 0, 0,−1}. If the vector field X satisfies the

conditions of Theorem 4.1.4, the projection map preserves the topological properties

of the vector fields. Then a topologically equivalent vector field X̂ can be defined on

S3 in line with the theory of topologically equivalent vector fields [29]. The pull back

of the vector field X̂ on R3, by multiplication by suitable power of x2
1 + x2

2 + x2
3, is a
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polynomial vector field. X̂ and X are topologically equivalent.

4.3 Lyapunov Spectrum Of Lorenz System On S3

The Lorenz equations are mapped onto the manifold S3/{0} via the push forward

of the stereographic projection. As S3 is an embedded submanifold of R4, the vector

fields are expressed in terms quadruplet of rectangular coordinates. The manifold

S3 being a manifold of dimension 3, the vector field is written in terms of spherical

coordinates by transformation of coordinates from R4 to S3. It is pertinent to keep in

mind that the Lorenz spectrum is three dimensional with three Lyapunov exponents

along the coordinate directions. The computation of Lyapunov exponents in S3 pro-

vides a basis for comparison of Lyapunov exponents between Lorenz vector fields in

R3 and S3. A choice of spherical coordinates enables the components of the vector

fields to lie on the tangent plane at each point on the manifold, with no component

pointing to the outward direction normal to S3. The Lyapunov exponents are eval-

uated by computing the derivative of the vector field and then solving a system of

coupled differential equations. The method has been described in detail in chapter

2. The Lyapunov spectrum plot indicate that the Lyapunov exponents on the S3 is

identical to the one on R3. The steady state values of the three exponents are 0.92, 0

and −20.55, which are the acceptable values for the Lorenz equations in R3.

The flow maps of the Lorenz vector field φ1
t : R3 → R3 and φ2

t : S3 → S3 are Cr

diffeomorphisms. The stereographic projection h : R3 → S3 is a Ck diffeomorphism

where r ≤ k. By definition, the flow maps φ1
i and φ2

t are Ck conjugate if the following

diagram commutes:
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R3 R3

S3 S3

φ1t

h h

φ2t

.

The maps φ1
t and φ2

t are topologically conjugate if k = 0. The orbits of φ1
t get mapped

to orbits of φ2
t by a diffeomorphism h if φ1

t and φ2
t are Ck conjugate. Morever, the

eigenvalues of the derivative of the map D(φ1
t (x0)) at any fixed point x0 ∈ R3 are equal

to the eigenvalues of D(φ2
t (h(x0))) [32]. The three critical points of the Lorenz attrac-

tor on S3 are (0, 0, 0,−1), (0.019, 0.019, 0.062, 0.1) and (−0.019,−0.019, 0.062, 0.099).

The eigenvalues of the linearized set of equations around the fixed points yield the

eigenvalues (−22.828, 11.828,−2.667, 0), (−13.855, 0.094+10.195i, 0.094+10.195i,−1.048×

10−13) and (−13.855, 0.094 + 10.195i, 0.094 + 10.195i,−1.048 × 10−13) respectively.

The sets of eigenvalues are the same as that of the linearized Lorenz equations on

R3, about the fixed points. The fact that the Lyapunov exponents remain the same

for both manifolds indicate an identical local rate of stretching and folding of the

configuration spaces in both cases.
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CHAPTER 5: REDUCTION IN MANIFOLDS

5.1 Lie Groups

Lie groups model continuous symmetry of mathematical objects. The importance

of Lie groups lies in the fact that the configuration spaces of physical systems are Lie

groups. A salient features of Lie group theory is outlined here.

Definition 5.1.1. (Lie groups) A Lie group is a C∞ manifold that is also a group with

(i) smooth group operation, G×G→ G and

(ii) smooth inversion, G→ G.

More precisely, group operation and inversion are C∞ maps of manifolds. For any

element g ∈ G the maps Lg, Rg : G × G → G, called the left and right translation

respectively, are defined as

Lg(h) = gh (5.1.1)

Rg(h) = hg (5.1.2)

where h ∈ G. The inversion map is defined as g 7→ g−1.

Definition 5.1.2. (Lie group action) Given a smooth manifold M and a Lie group G,

the left action of G on M is the map φ : G×M →M , φ(g, q) 7→ gq such that

(i) φ(gφ(h, q)) = φ(gh, q)
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(ii) φ(e, q) = q

where g, h ∈ G, q ∈M and e is the identity elemnt.

The map gM , defined as φ(g, .), is the group of diffeomorphism of M onto itself for

each g ∈ G. The set of all such gMs can defined as

ρ : G→ Diff(M) (5.1.3)

g 7→ gM . (5.1.4)

ρ is a group homomorphism that maps from the group G to the group of diffeomor-

phisms on M with the properties

(i) ρ(e) = idM and

(ii) ρ(g1)(g2) = ρ(g1)ρ(g2).

where e is the group identity and g1, g2 ∈ G.

The action of a group G on a manifold M is called

1. transitive, if for any x, y ∈M , ∃g ∈ G, such that gx = y,

2. free, gx = x, ⇐⇒ x = e, the identity element,

3. effective or faithful, for any g, h ∈ G, ∃x ∈M , such that gx 6= hx. Alternatively,

g 6= e⇒ gx 6= x.

Theorem 5.1.3. (Closed subgroup theorem) If H is a closed subgroup of a Lie group

G, i.e. H < G, then,

(i) H is a Lie group with induced topology of G and
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(ii) H is an embedded submanifold of G.

Definition 5.1.4. (Lie algebra) A Lie algebra g, is a vector space together with a

bilinear bracket operation (called the Lie bracket), [., .] : g→ g, which is

(i) skew symmetric, [ξ, η] = −[η, ξ] and

(ii) satisfies the Jacobi identity, [ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] = 0

for ξ, η, ζ ∈ g.

Given a Lie group G, it has an associative Lie algebra g = TeG, which is the tangent

space at the identity and is equipped with a bracket operation, called the Lie bracket

that can be derived from the Jacobi-Lie bracket. In particular, if a Lie group is finite

dimensional, the Lie algebra is a linear vector space of the same dimension.

Definition 5.1.5. (Left invariant vector field)A vector field XL on a Lie group G is

left inavriant if

ThLg(X
L) = XL(Lgh);∀g, h ∈ G. (5.1.5)

The notion of reduction in physical systems is based on the famous Noether’s

theorem [23]. The symmetries of the system are exploited to compute the conserved

integrals of motion of Hamiltonian systems. In particular, symmetries give rise to

underlying conservation laws, thereby leading to reduction in configuration space.

All conservation laws such as translational and rotational momentum, energy, arise

from corresponding symmetries of the system. Subsequently, Noether’s theorem has

been formulated in the setting of symplectic and Poisson manifolds for systems that

are Hamiltonian. A more detailed exposition on reduction of Poisson manifolds is
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available in [9] and for reduction in the symplectic setting as well, in [19]. The classical

reduction in symplectic manifolds is due to the work of Marsden and Weinstein [20].

A significant work in the theory of Poisson reduction is the publication by Marsden

and Ratiu [18].

5.2 Hamiltonian Dynamics In Symplectic Manifold

Let (M,ω) be a symplectic manifold with a closed and nondegenerate symplectic

2-form ω. The smooth action of a Lie group G on M is symplectic, if under the group

action φ : G×M →M , the symplectic form remains invariant under the pull-back of

∀g ∈ G,

φ∗ω = ω. (5.2.1)

A smooth action of G on a member q ∈M induces an equivalence class that consists

of all points that lie in the orbit of q.

[q] := {x : x ∈ Orb(q)}. (5.2.2)

A quotient space is the set of all orbits and is written as M/G. Let a surjective map

be defined as

π : M →M/G (5.2.3)

such that π(q) = [q] = Orb(q) for all q ∈M . The quotient space inherits the quotient

topology meaning, any U ⊆M/G is open, iff π−1U is open in M . An important result

in the theory of reduction of smooth manifolds is the quotient manifold theorem.

Theorem 5.2.1. (Quotient manifold theorem) If a Lie group G acts on a manifold M

by a group action φ : G×M →M that is free, smooth and proper, then the orbit space
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defined by M/G is a topological manifold equipped with a unique smooth structure.

The quotient map π : M → M/G is a smooth submersion and the dimension of the

quotient manifold is given by dim(M)− dim(G).

An outcome of this theorem is the fact that all orbits are immersions in the quotient

space. The additional fact that the group action is free and proper ensures that they

are embedded submanifolds. The tangent space at the identity e is the Lie algebra

g of G. The dual of g, denoted by g∗, is related to g by the natural pairing between

the two,

〈ξ, α〉 = R (5.2.4)

for ξ ∈ g and α ∈ g∗. The exponential map exp : g → G is γ(t) is the time t flow

along the one parameter subgroup of G,

exp(tξ) = γ(t) (5.2.5)

satisfying γ(0) = e and γ̇(t) = ξ. γ(t) is the flow of the left invariant vector field on

G, generated by left translation of ξ. The action of the group G on M is given by the

infinitesimal generator vector field on M for a Lie algebra element ξ is given as,

ξM(q) =
d

dt

∣∣∣∣∣
t=0

φ(exp(tξ), q) (5.2.6)

for q ∈M . An inner-automorphism on G can be defined as a map Ig : G→ G,

Igh = (Lg ◦R−1
g )h = ghg−1 (5.2.7)

for g, h ∈ G. The map Ig is map from G to the set of automorphisms Aut(G). The
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push-forward of Ig evaluated at the identity is the adjoint map, denoted by Adg,

Adgξ =
d

dt

∣∣∣∣∣
t=0

g. exp(tξ).g−1 = TeIgξ (5.2.8)

given ξ ∈ g. The adjoint map Adg represents the set of automorphisms Aut(g) on

the Lie algebra.

Adg : g 7→ Aut(g) (5.2.9)

Given g ∈ G, the adjoint map can be viewed as a Lie algebra homomorphism from G

to Aut(g). The map

Ad : g 7→ Adg (5.2.10)

is a representation ofG on the group Aut(g) and is known as the adjoint representation

of G. There exists a co-adjoint action of G on g∗ in manner similar to the adjoint

action of G on g. The co-adoint action of G on g∗ is the inverse dual of its adjoint

action and is given by Ad∗g−1,

〈Ad∗g−1α, ξ〉 = 〈α,Adg−1ξ〉 (5.2.11)

for α ∈ g∗ and ξ ∈ g.

Definition 5.2.2. (Momentum map) Let a Lie group G act on a symplectic manifold M

by symplectic action φ : G×M →M . Suppose there exists a function J(ξ) : M → R,

which depends linearly on ξ ∈ g, such that

XJ(ξ) = ξM (5.2.12)
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∀ξ ∈ g, then the map J : M → g∗ defined by,

< J(q), ξ >= J(ξ)(q) (5.2.13)

for q ∈M is called the momentum map for the group action φ.

A momentum map exists if a symplectic action gives rise to infinitesimal generator

vector fields that are Hamiltonian.

5.2.1 Symplectic reduction

Let a Lie group G act symplectically on a symplectic manifold (M,ω). The action

of G on M induces a momentum map J that is Ad∗-equivariant. A momentum map

is Ad∗-equivariant, if J(φg(q)) = Ad∗g−1(J(q)) for g ∈ G and q ∈ M . The symplectic

reduction involves two stages :

1. Let µ = g∗ be a regular valued dual Lie algebra element. The evolution of the

system happens over the level momentum set µ and the restricted manifold is

given as J−1(µ). The inclusion map iµ onto M is defined as

iµ : J−1(µ)→M. (5.2.14)

2. The isotropy subgroup Gµ of G acts on elements of g∗ by the Ad∗ action.

The action is free, proper and leaves µ fixed. This action induces a restricted

equivariant momentum map Jµ : Mµ → g∗µ. The dual Lie algebra g∗µ is the

reduced dual Lie algebra corresponding to Gµ. The group action Gµ is used

for further reduction to get the reduced manifold by the quotient action Mµ =

J−1(µ)/Gµ. The manifold Mµ inherits a unique symplectic form ωµ that is given
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by,

π∗µωµ = i∗µω (5.2.15)

where πµ is the canonical projection map πµ : J−1(µ)→Mµ.

5.3 Hamiltonian Dynamics In Poisson Manifold

A Poisson manifold is a manifold P along with a bracket operation [·, ·] and is

designated by (P, [·, ·]). A Poisson bracket is a derivation on the algebra C∞(P ) that

is skew symmetric, distributive and obeys Leibniz rule. A Poisson algebra is the pair

(C∞, [·, ·]). Since there exists a natural isomorphism between vector fields on P and

derivations on C∞(P ), for any H ∈ C∞(P ) there is a unique vector field XH on P ,

which is given by the expression XH = {·, H}. XH is called the Hamiltonian vector

field for the Hamiltonian function H. The equations of motion of the system can be

expressed in terms of the Poisson bracket. If φt be the flow of the Hamiltonian vector

field XH , then H is constant along φt. Then it follows that for any F ∈ C∞(P ),

d

dt
{F ◦ φt} = {F,H} ◦ φt = {F ◦ φt, H ◦ φt} = {F ◦ φt, H}. (5.3.1)

Alternatively, this can be written as Ḟ = {F,H}. A function G ∈ C∞(P ) is a

Casimir if {G, f} = 0 for any function f ∈ C∞(P ). The Casimir G is constant along

the integral curves of the Hamiltonian vector field XH , i.e., {G,H} = 0. The set of

Casimir functions form the center C(P ) of the Lie algebra (C∞(P ), [·, ·]).

A smooth map Φ: P1 → P2 between two Poisson manifolds (P1, {·, ·}1) and (P2, {·, ·}2)

is a Poisson map if Φ∗{F,K}2 = {Φ∗F,Φ∗K}1 ∀F,K ∈ C∞(P2).
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5.3.1 Poisson reduction

An action φ of a Lie group G on a Poisson manifold (P, [·, ·]) is a map φ : G×P → P .

The map φ is canonical if for any g ∈ G and F,K ∈ C∞(P ),

{F,K} ◦ φg = {F ◦ φg, K ◦ φg}. (5.3.2)

If the group action φg is smooth, free and proper, then the orbit space P/G is a smooth

regular quotient manifold and the projection π : P → P/G is a submersion. The

submanifold P/G inherits a unique Poisson bracket {·, ·}P/G,induced by the projection

map π, such that

{F,K}P/G ◦ π = {F ◦ π,K ◦ π} (5.3.3)

for any F,K ∈ C∞(P/G). The reduced Hamiltonian h : P/G → R on P/G can

be computed as H = h ◦ π for a G-invariant H : P → R. If φ be the flow of the

Hamiltonian vector field XH , then the flow of the reduced Hamiltonian vector field

Xh is given as

φP/H ◦ π = π ◦ φ. (5.3.4)

5.4 Principal Fiber Bundle

The canonical reduction methods on symplectic and Poisson manifolds with sym-

metry are powerful reduction techniques that can be extended to manifolds that are

principal fiber bundles. The configuration spaces of the dynamical systems that are

studied in this document are principal fiber bundles. The following material illustrates

some key definitions and results on prinipal fiber bundles. An elaborate treatment

on theorems and proofs on the subject can be found in [12] and [22].
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Definition 5.4.1. (Fiber bundle) A fiber bundle is a manifold that is a quadruple

(E,M,F, π), where E is the total space, M the base space, F the fiber space and π

the projection map; π : E →M .

A fiber bundle is differentiable if it is locally trivial. For any x ∈M there exists an

open neighborhood U around x and a diffeomorphism ψ,such that ψ : π−1(U) ∼= U×F ,

or in other words, the following diagram commutes:

π−1U U × F

U

ψ

π
π1

.

For any u ∈ π−1(U), π(u) = π1 ◦ ψ(u), where π1 is the projection on to the first

component of U . The fiber over any x ∈M is denoted either by π−1(x) or Fx, and is

homeomorphic to F . A bundle map between two fiber bundles (E1,M1, F1, π1) and

(E2,M2, F2, π2) is the collection of maps f̃ : E1 → E2 and f : M1 → M2, such that

the following diagram commutes:

E1 E2

M1 M2

f̃

π1 π2

f

.

Two fiber bundles over the same base manifold M , E1 and E2, having the same

fiber F , are isomorphic if the bundle map consisting of the maps, f̃ : E1 → E2 and

the identity map f : M → M and is an isomorphism itself. A trivial fiber bundle is

globally isomorphic to the product bundle M × F .

A transition function enables comparison of coordinate charts in a neighborhood of

an atlas of a manifold. The transition functions are defined on overlapping coordinate

charts and are defined as inverse composition of local trivializations.
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Definition 5.4.2. (Transition function) Let (E,M,F, π) be a smooth fiber bundle.

Since, there exists a trivialization for any open cover Uα in M , ψα : π−1(Uα)→ Uα×F ;

for any two adjacent open covers Uα and Uβ, there is an isomorphism of F over Uα

and Uβ;

ψα ◦ ψ−1
β = (Uα ∩ Uβ)× F ∼= (Uα ∩ Uβ)× F (5.4.1)

The map has the form, ψα ◦ ψ−1
β (b, p)→ b, gαβ(p), for b ∈ Uα ∩ Uβ and p ∈ F ; where

gαβ is called transition function.

The transition functions belong to the set of all diffeomorphisms of the fibers on

to themselves. When the subgroup of such diffeomorphisms is a Lie group G, such

that G acts on F by the natural smooth map G × F → F , the Lie subgoup is

called a structure group G. The actions of transition functions gαβ to the set of

diffeomorphisms of F define smooth maps from Uα ∩ Uβ into a Lie transformation

group G, which is a subset of the group of diffeomorphisms. In this case, {Uα, ψα}

defines a G structure in (E, π,M, F ) with structure group G [7].

Definition 5.4.3. (Principal fiber bundle) Let G be a Lie group. A principal fiber

bundle (right) is a manifold that is a quadruple (Q,M,G, π), where Q is the total

space, M the base space, G the fiber space and π the projection map, π : Q → M ,

satisfying the following conditions:

1. G acts on itself by left translation, that is, Lg : h 7→ gh, where g, h ∈ G

2. M is the quotient space of Q induced by the equivalence relation, M = Q/G.

An action (left) of the group G on the principal bundle Q is the map Q×G→ Q
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and is defined as (x, h)g → (x, gh) for x ∈ M and g, h ∈ G. The action is free,

meaning, if (x, h)g = (x, h), then g = e, the identity element.

5.5 Connection

In general, there is no natural way of comparing tangent vectors that belong to

different fibers in a fiber bundle. A connection is a construct that enables one to

relate tangent vectors along fibers on separate base points. Relatedly, a connection

on a fiber bundle makes it possible to compute parallel transport, a map that describe

the way tangent vectors move along a curve on the base manifold. The theory on

connection and parallel transport has been sourced from [22].

Definition 5.5.1. (Ehresmann connection) Let (E,M,F, π) be a smooth fiber bundle,

where E is the total space, M the base space, F the fiber space and π the projection

map. An Ehresmann connection is an assignment of a vertical subspace Vu of the

tangent space TuE, at each point u ∈ E, such that, Vu is the complement of the

direct sum decomposition of the tangent space with the horizontal subspace Hu.

Vectors that are tangent to the fiber are ’naturally’ identified with vertical vectors.

However, there is no natural identification of horizontal vectors. Ehresmann connec-

tion (generalized Cartan connection) provide a basis for decomposition of the tangent

space of the fiber bundle at each point in the manifold. The tangent space TuE can be

written as TuE = TuM ⊕ TuF . The vertical subspace is given by, Vu = TuEx ⊂ TuE,

where π(u) = x and π−1(x) = Ex for x ∈M .

Alternatively, the vertical subspace can be defined as the kernel of the push-forward

of the projection map, Vu = ker(Tuπ), u ∈ E. Any arbitrary fiber bundle admits a
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connection. A special kind of Ehresmann connection is the principal connection.

Definition 5.5.2. (Principal connection) Let (P,M,G, π) be a smooth principal fiber

bundle, where P is the total space, M the base space, F the fiber space and π the

projection map. A principal connection on P is an assignment of a smoothly varying

assingnment of a horizontal subspace Hq of the tangent space TqP , ∀q ∈ P , such that,

(i) Hq is the complement (transverse) of the direct sum decomposition of the tan-

gent space with respect to the fiber, TqP = Hq ⊕ Vq

(ii) Hq is invariant under left action of G on P , that is, if φg : P → P is defined as

φg(q) : q 7→ φgq, then (φg)∗(Hq) = Hφgq, ∀g ∈ G.

(φg)∗ is the canonical ‘push-forward’ map, (φg)∗ : TqP → TφgqP along the fiber

direction. The assignment of the horizontal subspace Hq is unique to the connection.

A connection on a principal bundle is a right invariant distribution of the tangent

bundle that is transverse to the fiber at each point. The dimension of the horizon-

tal subspace Hu is the same as the dimension the tangent space TxM by the fact,

Tqπ(Hq) = Tπ(q)M , where π(q) = x.

Since the fiber group in the bundle is a Lie group, the tangent space to the fiber

can be canonically identified with the tangent space at the identity, which is the Lie

algebra g of the group; i.e. TgG ∼= g. Given a connection Γ on a principal fiber bundle

P , a Lie algebra valued 1-form ω can be defined on P . It may be noted that every

Lie algebra element, ξ ∈ g induces a infinitesimal generator vector field ξP (q) on TP ,

∀q ∈ P . Alternatively, a prinicipal connection can also be defined as folllows.
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Figure 35: Principal connection

Definition 5.5.3. (Principal connection) A connection 1-form Γq on a principal bundle

P is a Lie algebra-valued 1-form that satisfies, for each q ∈ P ,

1. Γq(ξP (q)) = ξ; ξ ∈ g,

2. Γφg(q)(Tqφg(v)) = Adg(Γq(v));∀v ∈ TqP, ∀g ∈ G.

The second condition implies that the connection form Γ is Ad-equivariant.

A curve c̃(t) : [a, b] → P on the bundle P is called a lift of a smooth curve

c(t) : [a, b] → M in the base manifold M , if the projection map π(c̃(t)) = c(t) for

each t in t ∈ [a, b]. The curve c̃(t) is a horizontal lift if the velocity vector ˙̃c(t) lies

in the horizontal subbundle HP , determined by the connection. For any piecewise

C∞ smooth curve c(t) : [a, b] → M in the base manifold M, such that xa = c(a) and

xb = c(b), then at any point qa ∈ Pxa , there is a unique horizontal lift in the bun-

dle, given by c̃(t) : [a, b] → P , satisfying c̃(a) = qa [12]. For any piecewise smooth
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c(t) : [a, b]→M curve in M , there exists a map hc : Pxa → Pxb that maps qa to hc(qa)

from the fibers Exa to Exb . This map is called parallel transport associated with the

curve c(t). The problem of constructing hc for a vector field on M boils down to

computing the integral curves of the horizontal lift of the vector field in the total

space TQ, for an initial tangent vector. The map does not depend on the choice of

parameterization of t for the curve c(t) [22]. Associated with each connection form is

a curvature form.

Figure 36: Parallel translation on principal fiber bundle

If Γ: TP → g be the connection 1-form, then the curvature of the connection is a

2-form given by the covariant exterior derivative of Γ,

DΓ(X, Y ) = dΓ(Xh, Yh) (5.5.1)

where Xh, Yh ∈ HP for any two vector fields X, Y ∈ X(P ). The curvature form

DΓ: TP × TP → g, for a connection form Γ: TP → g, can be explicitly computed

using the equation,

DΓ(X, Y ) = dΓ(X, Y )− [Γ(X),Γ(Y )] (5.5.2)
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This equation is known as the Cartan’s structure equation.

Let c(t) : [a, b] → M be a piecewise smooth closed curve in M passing through a

reference point x ∈ M , such that c(a) = x and π−1(x) = q. Given a connection Γ

in P , there exists a unique horizontal lift c̃(t) : [a, b] → P that generally maps q on

to some other point c̃(a) = p on the same fiber Px (Fig.37). The points p and q are

related by an equivalence q ∼ p for p = gq where g ∈ G. The element g is called the

geometric phase or holonomy of the curve c(t). The holonomy group is defined as

H(q) = {g ∈ G|q ∼ gq}. (5.5.3)

If the parallel translation is restricted to contractible curves in M the subgroup that

arises out of the holonomy group is called the restricted holonomy group, H0(q).

Figure 37: Holonomy on principal fiber bundle

5.6 Distributions And Frobenius Theorem

A k-dimensional distribution of a C∞ manifoldM is an assignment of a k-dimensional

linear subspace Dq ⊂ TqM at each point q ∈ M . Dq is C∞ with respect to q, if for
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some neighborhood U ⊂M , there exists a set of vector fields X1, ..., Xk that span Dq

for each q ∈ U . The vector fields X1, ..., Xk then form a basis of Dq. A submanifold

N ⊂ M is an integral submanifold if TqN = Dq for all q ∈ M . A distribution D is

said to be integrable, if at each point of M there exists an integral manifold. If D is

an integrable distribution, then for any two vector fields X and Y with Xq, Yq ∈ U for

all q in some neighborhood U ⊂M , the vector field [Xq, Yq] ∈ Dq. Then distribution

D is called involutive. An involutive distribution is integrable. An important result

in the theory of integrability of submanifolds is the Frobenius theorem.

Theorem 5.6.1. (Frobenius theorem) A distribution D on a C∞ manifold M is inte-

grable, if and only if it is involutive.

5.7 Connection And Locomotion

The locomotion of certain classes of physical systems are driven by internal shape

change. The mathematical representation of such systems can be done with a con-

nection. The geometric aspects of the dynamics of mechanical systems with nonholo-

nomic systems and symmetry have been dealt with in [3], [10]; among others. The

utility of this approach is justified by the separation of dynamics of the shape and

group variables in the reconstruction equation

g−1ġ = −A(r)ṙ +B(r)p. (5.7.1)

The above equation is an expression of body fixed velocity g−1ġ in terms of local

connection form A(r) and the generalized momentum p. If the body evolves on level
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set of zero initial momentum, the equation simplifies to

g−1ġ = −A(r)ṙ. (5.7.2)

The momentum equation describes the evolution of the momentum as

ṗ = ṙTα(r)ṙ + ṙTβrp+ ṗTγ(r)p. (5.7.3)

Some physical systems may be driven by conservation laws, some by constraints and

the rest may be mix of both. In the kinematic case, the distribution (velocities that

are annihilated by the constraint form) specified by the constraints provide a way

to construct the connection. On the other hand, the presence of constraints may

destroy the conservation laws in a system. The connection in a purely mechanical

case is computed relative to a metric, the kinetic energy metric. There are three

possible cases:

1. Kinematic connection: for systems governed by constraints

2. Mechanical connection: for systems governed by conservation laws

3. Nonholonomic connection: for systems governed by conervation laws and con-

straints

The kinematic and mechanical connections for two separate instances are worked out

as illustrations in the present and subsequent chapter.

5.7.1 Principal kinematic connection

An example of a physical system that can be implemented by a kinematic connec-

tion is the kinematic car, a general abstraction of a car. The kinematic car has been
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worked out in [11], [10]. The position and orientation of the car is designated by the

triplet (X, Y, θ) with respect to an inertial frame of reference. The steering angle and

the angular rotation of the wheels is given by φ and ψ respectively. The configuration

space of the system is Q = SE(2)× S1 × S1 or Q = SE(2)× T2.

Figure 38: Kinematic car

The constraints that act on the car can be modeled as follows.

1. The rear cannot slip along the transverse to the longitudinal direction,

ẋ sin θ − ẏ cos θ = 0. (5.7.4)

2. The front wheel does not slip in the direction transverse to the direction of

rolling,

ẋ sin(θ + φ)− ẏ cos(θ + φ)− lθ̇ cosφ = 0. (5.7.5)

3. There is no slip of the rear wheels in the longitudinal direction,

ẋ cos θ + ẏ sin θ − rψ̇ = 0. (5.7.6)
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Solving for ẋ, ẏ and θ̇, the velocity at q ∈ Q is given as

vq =



ψ̇

φ̇

ẋ

ẏ

θ̇


=



0

0

rψ̇ cos θ

rψ̇ sin θ

(rψ̇)
l

tanφ


. (5.7.7)

The velocity vq can be decomposed into two mutually orthogonal complements, the

vertical vervq along the fiber direction,

vervq =



0

0

ẋ− rψ̇ cos θ

ẏ − rψ̇ sin θ

θ̇ − (rψ̇)
l

tanφ


(5.7.8)

and the horizontal horvq (in compliance with the constraints),

horvq =



0

0

rψ̇ cos θ

rψ̇ sin θ

(rψ̇)
l

tanφ


. (5.7.9)

It may be recalled that for a given Lie algebra element ξ(ξx, ξy, ξθ) the infinitesimal

generator vector field on SE(2) at (x, y, θ) is (ξx − yξθ, ξy + xξθ, ξθ). The connection

Γ(q) maps the velocity vq to vervq or ξ. So, one can solve for ξx, ξy and ξθ in terms of
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the configuration variables.

Γ(vq) =


ẋ− (r cos θ + ry

l
tanφ)ψ̇ + yθ̇

ẏ − (r sin θ − rx
l

tanφ)ψ̇ − xθ̇

θ̇ − r
l
ψ̇ tanφ

 . (5.7.10)

The local connection form A(r) can be recovered by recasting the right hand side

of the above equation in line with the reconstruction equation Adg(g
−1ġ + A(r)ṙ).

The local connection form works out to

A(ψ, φ) =


−rdψ

0

− r
l

tanφdφ

 . (5.7.11)



CHAPTER 6: CHAOS IN PRINCIPAL FIBER BUNDLE

Dynamical systems that have principal fiber bundles as configuration spaces are

of interest from the mathematical standpoint. The differential equations of motion

can be written explicitly as input-output systems, where the input variables can be

decoupled from output variables. The reduction technique for systems with symmetry,

as well as for systems with nonholonomic constraints has been enunciated in previous

chapter. The behavior of the system, characterized by the group variables (output),

under chaotic actuation of the shape variables (input) is of special concern. The

connection of the system, as modeled either by the energy metric or the constraints

or both, is essentially a map from the shape manifold to the group manifold. Whether

the connection preserves the topological property of a chaotic vector field in the shape

space when mapped onto the group space, is relevant to the investigation of chaos

in Riemannian manifolds that have product structure. Relatedly, a system with

symmetry and modeled by principal connection is implemented using the reduction

techniques on principal fiber bundle in this document. The shape variables are excited

by a chaotic control input. The motion of the body, given by the group variables, is

investigated for presence of chaos.

The mass-beanie system that will be introduced later in the chapter is used to illus-

trate the result. The beanie is actuated by the Lorentz vector field and the evolution

of the beanie is along trajectories on the strange attractor. The configuration space
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of the system is SE(2) × SE(2). The Lie group SE(2) is a Riemannian manifold

that can be equipped with a smoothly varying inner product at each point. In the

next section, we recall some of the properties the Lie group SE(2) and construct a

Riemannian norm in the manifold [8].

6.1 Special Euclidean Group SE(2)

The special Euclidean group is the group of all translations and rotations on the

Euclidean group R2. It is a semidirect product of the Lie groups the group of planar

translations R2 and the group of rotations in a plane SO(2).

6.1.1 The Lie group SE(2)

A member of SE(2) is represented by a pair g = (Rθ, x), where Rθ ∈ SO(2) and

x ∈ R2. The elements of the group SE(2) is in one to one correspondence with the

set of all transformation matrices of the form

ĝ =

Rθ x

0 1

 . (6.1.1)

As a topological space SE(2) is homeomorphic to the product group R2 × S(1). The

elements of SE(2) act on each other by translation which is the group multiplication.

In terms of matrix multiplication, this can be written as

ĝ1 · ĝ2 = (Rθ, x) · (Rφ, y) = (Rθ+φ, Rθy + x). (6.1.2)

The inverse group operation is given by,

(Rθ, x)−1 = (R−θ,−R−θx). (6.1.3)
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6.1.2 The Lie algebra se(2)

The Lie algebra of the SE(2) is the linear vector subspace at the identity of the

group that is closed under matrix addition and scalar multiplication and is equipped

with a matrix commutator bracket [·, ·]. The Lie algebra is denoted by se(2). The

elements of the Lie algebra can be viewed as infinitesimal planar translations and

rotations. The representation of the Lie algebra is a vector ξ = (ξx, ξy, ξθ) ∈ R3.

The Lie algebra elements ξ share a one to one correspondence with the set all 3× 3

matrices of the form

ξ̂ =


0 −ξθ ξx

ξθ 0 ξy

0 0 0

 . (6.1.4)

The Lie bracket on se(2) is the matrix commutator defined as

[ξ̂, η̂] = ξ̂η̂ − η̂ξ̂. (6.1.5)

The linear vector space dual to se(2) is the dual of the Lie algebra and is denoted

as se(2)∗. The element wise representation of se(2)∗ is given as π = (πx, πy, πθ) ∈ R3.

The group SE(2) being a Riemannian manifold, is equipped with a smoothly varying

inner product that is defined in terms of the Euclidean inner product on R3. The

elements of the Lie agebra and the dual space are paired naturally by the inner

product by

(π, ξ) = πT ξ = ξθπθ +

 πx

πy

[ ξx ξy

]
(6.1.6)

for ξ ∈ se(2) and π ∈ se(2)∗.
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6.1.3 Choice of norm on SE(2)

For any fixed parameter m > 0, a suitable left-invariant norm can be defined on

se(2) by

||ξ||2se(2) := mξ2
θ +

 ξx

ξy

[ ξx ξy

]
(6.1.7)

for ξ ∈ se(2) [8]. A left invariant norm can be constructed on the tangent space of

the group by left translation of the Lie algebra vectors, such that

||vg||2SE(2) = ||TgLg−1vg||2se(2) (6.1.8)

for all g ∈ SE(2) and vg ∈ TgSE(2). The standard representation of an element

g ∈ SE(2) is given as

g =


cos θ − sin θ x

sin θ cos θ y

0 0 1

 (6.1.9)

and

vg =

[
ẋ ẏ θ̇

]
(6.1.10)

for vg ∈ TgSE(2). The norm on SE(2) can be computed by plugging in vg in to

equation (8),

||vg||2SE(2) = mθ̇2 +

 ẋ

ẏ

[ ẋ ẏ

]
. (6.1.11)
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The left invariant property of the norm under left translation of the group SE(2) can

be shown as follows,

||(TgLh)vg||2SE(2) = ||(TgLhg−1)(TgLh)vg||2se(2) = ||(TgLg−1)vg||2se(2) = ||vg||2SE(2).

(6.1.12)

6.2 Ellipse With A Beanie

An ellipse with a beanie mounted on it is an example of a dynamical system that

generates locomotion by internal shape change. The beanie is kinematically coupled

with the ellipse at the base. In the absence of external forces and moments, the system

is governed by conservation laws; conservation of linear and angular momentum. The

dynamics of the beanie causes the motion of the ellipse in a manner, that the system

evolves on level sets of initial momentum. A dynamical system that is driven by

internal shape change can be reduced by exploiting the symmetries of the system.

The theory of such reduction is expounded in [3]. As the motion of the system is

restriced to a plane, the position and orientation of the ellipse is sufficient to identify

the system in configuration space. The position and orientation of center of mass of

the ellipse O is x,y and θ, expressed relative to an inertial frame (X-Y), while the

position and orientation of center of mass A of the beanie is ξ, η and φ, referenced

with respect to body fixed axes (ξ-η), located at the intersection of the principal axes

of the ellipse.

The configuration space of the system is a principal fiber bundle: Q = SE(2) ×

SE(2). The longitudinal and lateral translational inertia of the ellipse are denoted

by Mlong and Mlat respectively and the beanie is of mass m. The rotational intertia
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Figure 39: Ellipse with a beanie

and angular displacement about the axis of rotation of the ellipse and the beanie are

b, θ, c, φ, correspondingly. The position of the ellipse and beanie is given by

Xellipse = [x, y] (6.2.1a)

Xbeanie = [x+ ξ cos θ − η sin θ, y + ξ sin θ + η cos θ]. (6.2.1b)

The Lagrangian of the system L, which is the difference of kinetic and potential
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energy of the system is

L =
1

2
Mlong[ẋ cos θ + ẏ sin θ]2 +

1

2
Mlat[−ẋ sin θ + ẏ cos θ]2 +

1

2
m([ẋ− η̇ sin θ − ηθ̇ cos θ

− ξθ̇ sin θ + ξ̇ cos θ]2 + [ẏ + η̇ cos θ − ηθ̇ sin θ + ξθ̇ cos θ + ξ̇ sin θ]2) +
1

2
bθ̇2

+
1

2
c[θ̇ + φ̇]2. (6.2.2)

The group action of g ∈ G on the tangent bundle TQ leaves the Lagrangian L : TQ→

R invariant. The left invariant metric defined in the earlier section is the one associ-

ated with the kinetic energy metric of our system. As the evolution of the system is

solely governed by symmetries, the connection on the principal tangent bundle TQ

is a mechanical connection. The principal bundle, in this case, comprises the base

manifold M = Q/G populated by the fiber group G. The mechanical connection Γ

can be computed from the fact that the horizontal subspace of the tangent space at

a point q ∈ Q is the space obtained by the orthogonal complement of the tangent

space of the fiber (group orbit), relative to the kinetic energy metric. In order to

derive an expression for the momentum map J, the fiber derivative map FL needs to

be defined. The fiber derivative FL : TQ→ T ∗Q is defined in coordinate-free manner

as the derivative of the Langrangian along the fiber direction by

〈FL(q, vq), wq〉 =
dL

dt
(q, vq + twq)|t=0 (6.2.3)

for q ∈ Q and vq, wq ∈ TqQ. For finite dimensional systems, in local coordinates, the

fiber derivative has the expression FL(q, q̇) = ∂L
∂q̇

, for q ∈ Q. The momentum map
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J : TQ→ g∗ is expressed as

〈J(q, q̇), ξ〉 = 〈FL(q, q̇), ξQ(q)〉. (6.2.4)

The locked inertia tensor I can then be computed using the expression

〈I(q, q̇, ξ, η)〉 = 〈〈ξQ(q), ηQ(q)〉〉 (6.2.5)

where ξQ(q) and ηQ(q) represent the infinitesimal generator vector fields corresponding

to Lie algebra elements ξ and η and the double angular brace indicates the kinetic

energy metric. The mechanical connection Γ: TQ → g∗ is an equivariant, ‘dual of

the Lie algebra valued’ map and can be computed explicity from the equation

Γ(q, (q̇)) = I−1J. (6.2.6)

The mechanical connection enables one to express the dynamics of the system in

terms of its internal shape variables. This equation describes the evolution of the

group variable g and is known as reconstruction equation,

Γ = Adg(g
−1ġ + A(r)ṙ). (6.2.7)

The term A(r) is the local locked inertia tensor and is designated as A(r) : TM → g∗.

6.2.1 Chaos in principal fiber bundle

The local connection form A(r) can be viewed as a map of the shape vector fields

in TM to g, which is naturally identified with the tangent space of the fiber group.

The velocities of the shape variables represent control inputs to the physical system;

the group velocities being the output as modeled by the mechanical connection. The
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control vector fields in the shape space could be that of standard fixed points, like

attractors, repellers, saddle points or centers. The evolution of the group variables

in such cases present an interesting case study. As an example, the solution for the

group variables are plotted when the ordinary differential equations for the control

input happen to be a center. The shape space vector fields are given as

ξ̇ = − sin(t) (6.2.8a)

η̇ =
1√
2

cos(t) (6.2.8b)

η̇ =
1√
2

cos(t). (6.2.8c)

The integral curve of the solution indicate a monotonically increasing θ, thus elimi-

nating the presence of a center in the group space (Fig.40).
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Figure 40: Plot of group variables for center control vector field

The control vector fields on shape manifold, for a given mechanical connection,

determine the evolution of the group variables of the physical system. The scope of

the present research involves studying the motion of the body along the fiber when the

vector field in the shape space is chaotic. The connection of the system determines the
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motion of the body for a given control input. In the ‘ellipse with a beanie’ example,

the Lorenz equations describe the trajectory of the beanie. The plots of the group

group variables is indicative of non-chaotic nature of the system dynamics.
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Figure 41: Evolution of the ellipse under chaotic shape actuation

It is worth noting that the variable θ is identified with group R and not with the

quotient group R/2π. The group S1 can be shown to be homeomorphic to the real

number line R by ‘one point compactification’. The representation of θ by R is done

to make the distinction between rotations that are integral multiples of 2π of each

other.

6.2.2 Lyapunov exponents on SE(2)

The equations of motion of the ellipse can be expressed in terms of body fixed coor-

dinates solely by internal shape variables. The aforementioned reduction technique is

employed to arrive at the reduced equations of motion. The Lyapunov exponents are

computed by solving a set of coupled differential equations, consisting of the vector

field and its differential. The technique has been outlined in chapter 2 of the doc-



94

ument. The fact that the steady state values of the three Lyapunov exponents are

positive, indicate a departure from chaos (Fig.42). The evolution of the configuration

space variables are plotted by solving the reduced differential equations of motion in

terms of shape variables.

ẋ =
10 (ξ2 + 4) (η − ξ)
2 (2η2 + 6) + 3ξ2

+
ηξ(ξ(28− φ)− η)

2 (2η2 + 6) + 3ξ2
+

2η
(
ηξ − 8φ

3

)
2 (2η2 + 6) + 3ξ2

(6.2.9a)

ẏ =
20ηξ(η − ξ)

2 (2η2 + 6) + 3ξ2
+

(2η2 + 6) (ξ(28− φ)− η)

2 (2η2 + 6) + 3ξ2
−

3ξ
(
ηξ − 8φ

3

)
2 (2η2 + 6) + 3ξ2

(6.2.9b)

θ̇ = − 40η(η − ξ)
2 (2η2 + 6) + 3ξ2

+
3ξ(ξ(28− φ)− η)

2 (2η2 + 6) + 3ξ2
+

6
(
ηξ − 8φ

3

)
2 (2η2 + 6) + 3ξ2

(6.2.9c)

The above equations are devoid of shape velocity terms ξ̇, η̇ and φ̇ as they have

been substitued in the by the control vector fields which are given below:

ξ̇ = 10 (η − ξ) (6.2.10a)

η̇ = ξ (28− φ)− η (6.2.10b)

φ̇ = ξη − 8

3
φ (6.2.10c)

Of the three Lyapunov exponents of the Lorenz system on R3, one equals zero and

the absolute value of the positive exponent is smaller than the absolute value of the

negative exponent. In case of Hamiltonian systems, the nonzero Lyapunov exponents

are equal in magnitude and opposite in sign. If all three Lyapunov exponents end

up being positive, the system is non-dissipative in nature. It suggests that the con-

figuration space corresponding to all three directions along which the exponents are



95

measured, are stretching at exponential rates.
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Figure 42: Lyapunov spectrum



CHAPTER 7: CONCLUSION AND FUTURE WORK

7.1 Chaos In Riemannian Geometry

Dynamical systems that exhibit chaos differ from other nonlinear systems in terms

of their sensitivity to initial conditions, transitivity and topological mixing. The

‘stretching and folding’ of the phase space uniquely characterizes a chaotic system.

The study of chaos with reference to surface geometry is one of the objectives of this

thesis. The characterization of chaos may be influenced by the topology that one

defines on the topological space. As an example, a discrete topological space is a

topological space that is equipped with a metric

d(x, y) =


1, if x=y

0, if x 6= y.

The Lyapunov exponents for a dynamical system, in discrete space, can either be

0 or 1. The canonical notions of manifolds on the phase space, such as attractor,

repeller etc. on such a space are different from that of R3. In chapter 4 of the doc-

ument, the Lorenz equations have been examined for chaos under a diffeomorphic

map (stereographic projection) on S3. The study can be extended to other Rieman-

nian manifolds, like T3. A comparative examination of different spaces, equipped

with different metrics, can be carried out with reference to compactness and non-

compactness and abelianness and nonabelianness of the spaces. The study of chaos
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could include other instances of non-Euclidean geometry, like hyperbolic geometry.

Among the models of hyperbolic geometry, the hyperboloid model has been studied

with reference to sensitivity to initial conditions for the Lorenz system. The solution

of the Lorenz equations is projected onto the forward sheet of a three dimensional

hyperboloid, embedded in R4 and given by the equation

x2 − y2 − z2 − w2 = 1. (7.1.1)

The coordinate w was computed in terms of x, y, z, which are the solutions of the

Lorenz system. Using the distance metric for the hyperboloid model, the maximum

Lyapunov exponent was computed to be 2× 103.

7.2 Systems Modeled By Connection

Dynamical systems that generate locomotion by internal shape change are modeled

by connection. A system that is governed solely by symmetry (conservation laws)

gives rise to a mechanical connection. If the configuration space happens to be a Lie

group, by exploiting the symmetry of the system, the equations of motion can be

expressed in terms of shape variables. The nature of evolution of the group variables

for chaotic control input in the shape space is an area of interest. As an example,

the motion of an ellipse-with-a-beanie in an ideal fluid has been examined for chaotic

actuation of the shape variables. The investigation of behavior of group variables

under the connection map could include other connection forms. A connection derived

from the constraint equations is kinematic. Nonholonomic connection is a constraint

that is derived from the distribution specified by the constraints as well as from
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symmetry consideration. The effect of chaotic actuation of the shape variables on the

evolution of group variables, for such systems is part of wider problem of investigating

chaos in different configuartion spaces.

7.3 Left Invariant Vector Fields And Lie Algebra

A left invariant vector field on a Lie group can be generated by the push-forward of

a Lie algebra element at the identity by the group action. If the vector field defined by

the Lie algebra elements of a three dimensional Lie algebra (with respect to a three

dimensional basis) is the Lorenz vector field, the nature of evolution of the group

velocities under the tangent lifted map, is an area of interest. This problem amounts

to solving for the flow of a time-varying six-dimensional set of ordinary differential

equations. In physical terms, this is analogous to examining for chaos, the motion of

a body in an inertial frame of reference, when the measured velocities in the body

frame of reference happen to be chaotic. The inverse of problem could as well be

posed as, investigating for chaos in the body fixed reference frame, when the motion

of the body with respect to an inertial reference frame happen to be chaotic. The

pullback of the group velocities at the Lie algebra should be studied for chaos, in such

case. The suggestive Lie groups could be R3, SE(2) or SO(3). It is worthwhile to

bear in mind that push-forward by the group action for R3 is the identity map.
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