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ABSTRACT 

 
 

ALVIN LEMUEL FARREL.  Algorithms for structure based-prediction of transcription 
factor binding sites.  (Under the direction of DR. JUN-TAO GUO) 

 
 

Transcription factors (TFs) regulate gene expression through binding to specific target 

DNA sites. Accurate annotation of transcription factor binding sites (TFBSs) at genome 

scale represents an essential step toward our understanding of gene regulation networks. 

In this dissertation, we present a structure-based method for computational prediction of 

TFBSs using a novel, integrative energy (IE) function and an efficient pentamer 

algorithm. The integrative energy function combines a multibody (MB) knowledge-based 

potential and atomic energy terms (hydrogen bond and π-interaction) that might not be 

accurately captured by the knowledge-based potential owing to the mean force nature and 

low count problem. A pentamer algorithm is developed to address the computational 

complexity issue due to the exponential increase of the number of DNA sequences for 

longer binding sites that need to be evaluated. Test results show that the new energy 

function improves the prediction accuracy over the knowledge-based, statistical 

potentials based on a non-redundant dataset that consists of TF-DNA complexes from 12 

different families. The pentamer algorithm improves TFBS prediction accuracy while 

greatly reducing the time complexity for long binding sites.  
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CHAPTER 1: INTRODUCTION 
 
 

1.1 Background
 

Regulation of gene expression is critical for proper cellular function. Discovering 

gene regulatory networks embedded in the genome and fully understanding the 

mechanism of sequence-specific protein-DNA interactions remains a key challenge in 

post-genomic bioinformatics. Transcription factors (TFs) regulate gene expression by 

interacting with specific DNA sequences called transcription factor binding sites (TFBSs) 

and identification of TFBSs on a genomic scale represents a crucial step in deciphering 

transcription regulatory networks and in genomic annotation (Lemon and Tjian, 2000; 

Levine and Tjian, 2003). Knowledge of protein-DNA interactions at the structural-level 

can provide insights into the mechanisms of gene regulation. In addition, understanding 

the mechanisms of protein-DNA interactions can also help engineer novel TF specificity, 

design new therapeutic drugs, and elucidate pathologies of genetic disorders with altered 

gene expressions. Mutations in TFs can be deleterious and lead to diseases (Alibes, et al., 

2010; D'Elia, et al., 2001; Muller and Vousden, 2013) or they can be advantageous 

evolutionary adaptations (Luscombe and Thornton, 2002). Changes in binding affinities 

of TFs to specific DNA sequences can also affect how the transcription factors interact 

with other regulatory proteins, leading to phenotypic consequences potentially causing 

evolutionary changes (Borneman, et al., 2007; Schmidt, et al., 2010; Wray, 2007).  
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1.2 Experimental Identification of Transcription Factor Binding Sites 
 
 DNase I footprinting and gel-mobility shift assay represent two traditional 

experimental methods for determining binding sites of TFs. However, these methods are 

time-consuming and unsuitable for large-scale studies (Bulyk, 2003). High-throughput 

experimental methods such as Systematic Evolution of Ligands by Exponential 

enrichment (SELEX)(Ellington and Szostak, 1990; Oliphant, et al., 1989; Tuerk and 

Gold, 1990), Chromatin ImmunoPrecipitation (ChIP)-based technologies such as ChIP-

chip (Ren, et al., 2000) and ChIP-seq (Johnson, et al., 2007), and Protein Binding 

Mircoarrays (PBM) (Bulyk, et al., 1999), are more efficient methods for determining 

TFBSs in large scale studies. SELEX and PBM are in vitro experimental methods. In a 

recent comparative study, SELEX and PBM derived TFBSs were in agreement for most 

transcription factors (Orenstein and Shamir, 2014). These in vitro methods directly 

measure TF-DNA specificity, represented by a Position Weight Matrix (PWM) (Stormo 

and Zhao, 2010). However, it’s not a true representation of DNA binding within a 

cellular environment, which may include cofactors, epigenetic factors, and other 

regulatory machinery. The ChIP-based technologies are in vivo high-throughput methods 

where TFBSs are identified by microarrays or parallel DNA sequencing technologies 

after antibodies are used to isolate TFs bound to their binding sequences.  The DNA is 

sequenced, aligned, and used to generate a binding motif represented by a PWM (Boeva, 

et al., 2010; Georgiev, et al., 2010; Guo, et al., 2012; Hu, et al., 2010; Johnson, et al., 

2007; Kulakovskiy, et al., 2010; Ren, et al., 2000). While these experimental techniques 

for determining TFBSs are fairly accurate, they require time and resources. An accurate 



	 3 
computational method for determining TFBSs of native and mutated TFs can 

complement the experimental methods and save time and resources.   

1.3 Computational methods for prediction of transcription factor binding sites 

 With the rapidly increasing genomic data becoming available, very effective 

sequence-based methods for TFBSs predictions have been developed (Stormo, 2000). A 

number of algorithms use promoter sequences for TFBS prediction including 

Expectation-Maximization (EM) (Lawrence and Reilly, 1990) and Gibbs sampling 

(Lawrence, et al., 1993). Some algorithms now include phylogenetic footprinting or 

orthologous sequences into the conventional prediction methods (Bulyk, 2003). 

Sequence-based methods have also been combined with ChIP-based methods for the 

identification of TFBSs (Furey, 2012).  One issue of sequence-based methods is that they 

tend to generate high number of false positives. This can occur when the binding signal is 

weak or the TF’s DNA-binding site is significantly different from the consensus 

sequence. In addition, some TFs also bind to multiple distinct sequence motifs, adding 

more complications to TF binding predictions (Badis, et al., 2009; Dowell, 2010; 

Friedman and O'Brian, 2003). 

 Structure-based prediction methods, on the other hand, focus on protein-DNA 

interactions rather than sequence conservation. Therefore, they are not constrained by 

sequence information. These prediction methods mimic real binding and recognition 

events because specific binding between a TF and its binding sites in the cell relies on 

their biophysical interactions. Sequence-based methods and experimental technologies 

can identify the genome binding site locations and binding site sequences. Structure-

based methods can also explain why and how these proteins bind at these locations and 
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sequences because they provide insight into the mechanisms of TF-DNA interactions. 

Understanding these mechanisms, how mutations affect these mechanisms, and the 

downstream effects on gene expression can contribute to our understanding of diseases 

and lead to rational design of therapeutic agents.  

Although research on protein-DNA recognition began in the 1970s (Seeman, et 

al., 1976), structure based methods weren’t developed until years ago when the high-

resolution protein-DNA complex structures became available in the protein data bank 

(PDB) (Berman, et al., 2000). The basic workflow of structure-based prediction of TFBSs 

starts with a TF-DNA complex structure. A scoring function is used to calculate the 

interaction energy between the TF and every permutation of the DNA sequence in the 

structure. The energy scores and their corresponding DNA sequences are then used to 

generate a binding motif (Figure 1.1) (Liu and Bradley, 2012). The binding motif can be 

generated by aligning the top scoring sequences to generate a PWM (Stormo and Zhao, 

2010) or using innovative alignment-independent statistical approaches to determine a 

representative PWM of the binding motif (Newburger and Bulyk, 2009). 

One key component in structure-based TFBS prediction is the scoring function for 

evaluating binding affinity or binding energy between proteins and DNA. While there is 

no simple recognition code or pairing between amino acids and DNA bases, it has been 

found that some amino acids has preferred pairings with some DNA bases (Matthews, 

1988; Pabo and Nekludova, 2000). There are two general types of energy functions in 

studying protein-DNA interactions: the physics-based molecular mechanics force fields 

and the knowledge-based statistical potentials.  Both the physics-based energy functions 
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and the knowledge-based protein-DNA interaction potentials have their distinct 

advantages as well as limitations.  

 

 
 
Figure 1.1: Flowchart of structure-based transcription factor binding site prediction.  
 
 
1.4 Physics-based Energy Functions for Protein-DNA Interactions  

Physics based energy functions consist of physicochemical interactions including 

electrostatic interactions, van der Waals (VDW) forces, solvation energy, and others (Liu 

and Bradley, 2012). Some methods use both experimental and theoretical data from small 

molecules for parameter training such as AMBER and CHARMM (Donald, et al., 2007; 

Kollman, et al., 2000; MacKerell and Banavali, 2000). Other methods use experimental 
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results from macromolecules to derive parameters, such as ROSETTA (Havranek, et al., 

2004).  These physics-based potentials rely on approximations and often assume fixed 

charges. They have been applied to protein-DNA interaction studies with some success 

(Alibes, et al., 2010; Havranek, et al., 2004; Morozov, et al., 2005; Siggers and Honig, 

2007). Other approaches use quantum mechanical calculations to extend the Schrodinger 

equation for molecular modeling of complex systems, however, these approaches are 

very computationally intensive (Donald, et al., 2007). 

 Besides the general terms such as VDW and electrostatic interactions, which 

include hydrogen bonds, π-cation and π-π interactions have been studied in protein-DNA 

recognition. It was previously thought that these interactions have a primary role of 

establishing the stability of the protein-DNA complexes but new data suggests that these 

interactions may have a bigger role in protein-DNA recognition (Baker and Grant, 2007; 

Corona and Guo, 2016; Luscombe, et al., 2001). Understanding the intricate mechanisms 

of these molecular interactions may help improve the accuracy of structure-based TFBS 

prediction. 

 The impact of water mediated hydrogen bonds and their importance in protein-

DNA recognition prediction is highly debated (Jiang, et al., 2005; Li and Bradley, 2013; 

Li, et al., 2011; Schneider, et al., 1992; Tucker-Kellogg, et al., 1997; van Dijk, et al., 

2013). The effects of water on the energetics of TF-DNA complex can be used at 

different details. Some methods neglect the interactions completely while including an 

implicit solvation potential (Morozov, et al., 2005). On the other end of the spectrum, the 

water molecules are included as part of the complex structure when the molecular 

mechanics energy functions are applied (Beierlein, et al., 2011; Liu and Bader, 2009; 



	 7 
Seeliger, et al., 2011). The including of explicit water molecules typically improves 

predictions but the improvement tends to be modest (Li and Bradley, 2013; van Dijk, et 

al., 2013).  

Protein-DNA complexes are intrinsically dynamic. A protein-DNA structure in 

the PDB represents either a snapshot of one of the many possible conformations, or a 

derived averaged structure. Protein-DNA complexes change their conformations due to 

protein backbone flexibility or at a much more detailed level due to amino acid side chain 

flexibility. Different conformations may result in different TFBS predictions because 

physics-based predictions depend on energies of specific distance dependent interactions 

in a crystal structure’s conformation.  Flexibility of the amino acid side chains in the 

protein-DNA interface, where the distance and conformation dependent details matter 

most, need to be addressed in a manner that is not too computationally expensive but can 

improve the accuracy of physics-based predictions. 

1.5 Knowledge-based Protein-DNA Interaction Potentials 	

Knowledge-based potentials are based on statistical analysis of a set of known, 

non-redundant protein-DNA complexes. The potentials are generally derived from the 

mean force theory and are often preferred because they are relatively simple and less 

computationally expensive while producing comparable predictions to physics-based 

predictions. Knowledge-based potentials vary in resolution from residue-based (Aloy, et 

al., 1998; Liu, et al., 2005; Mandel-Gutfreund and Margalit, 1998; Takeda, et al., 2013) 

to atom-based potentials (Donald, et al., 2007; Robertson and Varani, 2007; Zhang, et al., 

2005). They also vary in their distance scales from distance independent (Aloy, et al., 

1998; Mandel-Gutfreund and Margalit, 1998) to distance dependent (Liu, et al., 2005; 
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Robertson and Varani, 2007; Takeda, et al., 2013; Zhang, et al., 2005). All knowledge-

based energy functions are calculated using a log ratio of the observed frequencies over 

the expected frequencies. 

            (1.1) 

where R is the gas constant, T is the temperature, N(i,j,r)obs and N(i,j,r)exp represent the 

observed and the expected number between residues (for residue-based ) or atoms (for 

atomic-based) i and j separated by a distance  r.  

 While knowledge-based potentials can produce relatively good predictions, the 

mean force nature affects accuracy in capturing the hydrogen bond interaction as they are 

affected by distance as well as the angles of the atoms involved in the hydrogen bond 

potential (Robertson and Varani, 2007). This is important because about two-thirds of the 

hydrogen bonds between amino acids and bases lead to specific complex interactions 

(Luscombe, et al., 2001). Carefully choosing a bins size can help this issue and improve 

prediction accuracy (Burghardt, et al., 2002). One bin is typically used for combining 

distances less than 0.3 nm, which add noise in describing the energies. Alternatively, 

finer bins require many data points to avoid the low count problem, however, there aren’t 

sufficient non-redundant high-resolution protein-DNA complexes available in the PDB 

for this purpose. 

 High-resolution all-atom based potentials can provide detailed atomic positions 

for a more accurate calculation of the energies present in a protein-DNA complex. 

However, these high-resolution potentials are very sensitive to protein backbone, side 

chains, and docking conformations, which could be a problem due to the dynamic nature 

e(i, j, r) = −RT ln N(i, j, r)obs
N(i, j, r)exp

"

#
$
$

%

&
'
'
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of macromolecules (Bradley, et al., 2005; Gopal, et al., 2010; Vreven, et al., 2011). 

Therefore, residue level potentials are considered advantageous because they are not as 

sensitive to slight changes in the protein-DNA complex conformations. Also, in protein-

DNA docking studies, residue level potentials produce less rugged energy landscapes, 

which make it less likely for complexes to get stuck in local energy minima during a 

conformational search (Ayton, et al., 2007; Flores, et al., 2012; Liu, et al., 2008; Poulain, 

et al., 2008; Takeda, et al., 2013; Wu, et al., 2012). 

 Both atomic level and residue-level energy potentials have been applied to predict 

TFBSs. Xu et al. developed an energy function that uses structure-based templates for 

DNA binding sites, which lead to increased accuracy over their previous all-atom based 

potential vcFIRE (Xu, et al., 2013; Xu, et al., 2009). Two of the residue level knowledge-

based potentials with comparable results to all-atom based potentials are a multibody 

energy function by Liu et al. (Liu, et al., 2005) and an orientation-dependent potential by 

Takeda et al. (Takeda, et al., 2013). The multibody potential uses tri-nucleotides, called 

triplets, as an interaction unit to score interactions between the TF’s amino acids and the 

DNA bases. The multibody potential considers the environment of the TF-DNA 

interactions and captures the essential physical interactions between the TF and the DNA 

including hydrogen bond interactions within short distances and van der Waals 

interactions. The orientation-dependent potential introduces an angle term to represent 

the angle between two vectors from the bases and the amino acids’ sidechains to 

compensate for the angle term lost in capturing hydrogen bond energy in other distant-

dependent knowledge based potentials. The predictions of the orientation potential are 
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close to those of some atomic-level energy potentials such as vFIRE (Takeda, et al., 

2013). 

 Atomic resolution statistical potentials are sometimes used to predict protein-

DNA binding specificity because it is thought that residue level potentials do not always 

have sufficient resolution to make accurate predictions, however they are well suited for 

protein-DNA docking studies (Joyce, et al., 2015). Recent residue-level potentials have 

proven to work just as well as atomic-level predictions (Takeda, et al., 2013). 

Furthermore, the atomic potentials accuracy depends heavily on the conformation of the 

complex and the amino acid side chains. Overall, statistical potentials require much less 

computational power than physics-based potentials. While neither the atomic-level nor 

the residue-level method is ideal in determining TF recognition sequences, their 

advantages can be combined for a better description of TF-DNA interactions. 

1.6 Evaluating Binding Site Prediction Performance. 

The quality of a transcription factor binding site prediction can be evaluated by 

comparing it to an experimentally derived TFBS. These experimentally annotated TFBSs, 

determined using methods discussed in 1.2, are typically stored in two databases, 

JASPAR (Mathelier,	 et	 al.,	 2016)	 and UniPROBE (Newburger and Bulyk, 2009). 

UniPROBE only contains TFBSs generated by PBM, while JASPAR includes TFBSs 

identified by various in vitro and in vivo methods including PBM, SELEX, and ChIP-

based methods. The PWMs representing TF-DNA specificity in these databases can be 

directly compared to the PWMs generated by TFBS prediction algorithms using various 

statistical measures such as Pearson correlation coefficient, average log-likelihood ratio, 

Pearson chi-squared test, Fisher-Irwin exact test, Kullback-Leibler divergence, Euclidean 
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distance, and the Sandelin –Wasserman similarity function (Gupta, et al., 2007). These 

statistical methods can be built on to better evaluate the similarity between binding 

motifs. For example, asymmetrical methods, such as Kullback-Leibler divergence, can be 

symmetrized by averaging the two Kullback-Leibler distances (Seghouane and Amari, 

2007). Also, information content from the PWMs being evaluated can be used to weight 

the importance of the various matrix columns, representing base positions in the binding 

motif, by conservation when performing Pearson correlation coefficient. (Persikov	and	

Singh,	2014). 

1.7 Dissertation Goals 

There are two major issues in structure-based prediction of transcription factor 

binding sites: an accurate scoring function to assess the protein-DNA interactions and the 

availability of TF-DNA complex models. Since simple base recognition codes for TF-

DNA recognition do not exist (Benos, et al., 2002), many interaction models, including 

biophysical and statistical approaches, have been developed for studying specific protein-

DNA recognitions (Benos, et al., 2002; Desjarlais and Berg, 1992; Harr, et al., 1983; 

Luscombe, et al., 2001; Mandel-Gutfreund and Margalit, 1998; Mandel-Gutfreund, et al., 

1995; Mulligan, et al., 1984; Staden, 1984; Suzuki, et al., 1995; Suzuki and Yagi, 1994; 

von Hippel and Berg, 1989). Each model has its advantages and limitations in TFBS 

prediction (Benos, et al.). While physics-based energy is more accurate in describing 

protein-DNA interactions, it is very computationally expensive. Moreover, a physics-

based energy may not fully capture the essence of protein-DNA recognition. Knowledge 

based statistical potentials include residue-level and atom-level energy functions (Liu, et 

al., 2005; Takeda, et al., 2013; Xu, et al., 2009). Though they are relatively simple when 
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compared to the physics-based energy functions, they can have comparable prediction 

performance to physics-based potentials.  

Another issue with structure-based transcription factor binding site prediction lies in 

its requirement of TF-DNA complex models. Due to technical limitations, the number of 

TF-DNA complex structures in the PDB is rather small when compared to the number of 

transcription factors in genomes of all three domains in the tree of life. This raises the 

question, assuming we have a near-perfect scoring function for assessing the TF-DNA 

interactions, how can we expand application of structure-based approaches for TFBS 

prediction? Protein structure modeling is a cost effective method to complement the 

experimental approaches, especially homology modeling techniques, which can offer 

relatively high accuracy structural models. 

In this dissertation project I have addressed two questions. Can we develop novel 

energy functions and algorithms for efficient and accurate prediction of TF binding sites? 

Can we expand structure-based TFBS prediction models to cases without known TF-

DNA complex structures in the PDB? There are three specific aims in this dissertation 

research: 1) develop an integrative energy function for structure-based prediction of 

transcription factor binding specificity; 2) develop an efficient algorithm to improve the 

structure-based TFBS prediction with longer binding sites, especially for binding sites of 

TF dimers or tetramers; and 3) develop a homology modeling-based approach to expand 

the application of the above methods to transcription factors without known TF-DNA 

complex structures. 
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CHAPTER 2: STRUCTURE-BASED PREDICTION OF TRANSCRIPTION FACTOR 
BINDING SPECIFICTY USING AN INTEGRATIVE ENERGY FUNCTION   

	
	
2.1 Introduction 

 As described in Chapter 1, structure-based TFBS prediction methods focus on 

physical protein-DNA interactions by mimicking real binding and recognition events as 

specific binding between a TF and its binding sites in the cell relies on biophysical 

interactions. One of the key issues in structure-based TFBS prediction is accurate 

assessment of the binding affinity or binding energy between proteins and DNA. Of the 

two major types of energy functions, the physics-based energies can accurately describe 

protein-DNA interactions but are computationally	expensive, while the knowledge-based 

potentials are computationally efficient with reasonable accuracy.   

Knowledge-based potentials, derived from statistical analysis of known TF-DNA 

complex structures, are simple to use. However, these statistical potentials may be limited 

by two factors. One is the mean force nature of the knowledge-based potentials. For 

example, amino acids arginine and lysine can contribute to both specific interactions with 

DNA through hydrogen bonding and non-specific interactions through electrostatic 

interaction with the DNA backbone. They form hydrogen bonds in the major groove 

when highly specific DNA-binding proteins (DBPs) interact with DNA. Contrastingly, 

they form hydrogen bonds predominantly in the minor grooves when non-specific DBPs 

interact with DNA (Corona and Guo, 2016). Though the hydrogen bonds important for 

DNA sequence recognition are implicitly captured in knowledge-based potentials, they 
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are “averaged” with the non-specific interactions. The accuracy of the knowledge-based 

potentials is also affected by the low count problem. More recent studies have suggested 

that π-interactions between aromatic amino acids and DNA bases are more prevalent than 

previously thought, though very little is known about their critical role in specific protein-

DNA binding (Wilson, et al., 2014; Wilson and Wetmore, 2015). Through comparative 

analysis, we recently found that tyrosine and histidine are enriched in interacting with 

DNA bases in highly specific DNA-binding proteins. We hypothesize that π-interactions 

between aromatic residues and DNA bases contribute to TF-DNA binding specificity. 

These interactions may not be accurately captured in knowledge-based potentials, as the 

number of aromatic residues that are involved in protein-DNA interactions is relatively 

low.  

Here we propose a novel, integrative energy (IE) function that combines a 

knowledge-based multibody potential with hydrogen bond and π-interaction information 

for prediction of TFBSs and apply it to the binding site prediction of non-redundant 

datasets of transcription factors. The results show that TFBS prediction using our new 

integrative energy function improves accuracy when compared to other residue-level and 

atomic-level knowledge-based potential. 

2.2 Methods	

2.2.1 Integrative Energy Function 

The integrative energy function consists of a knowledge-based multibody (MB)  

potential (Liu, et al., 2005; Takeda, et al., 2013) and two physics-based terms, hydrogen 

bond energy and electrostatic potentials from π interactions: 

E!"#$% = W!"E!" +W!"E!" +W!E! (2.1) 
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where !!"#$% is the total energy, !!", !!", and !! represent the normalized multibody 

energy, hydrogen bond energy, and π interaction energy respectively, and WMB, WHB, and 

!! are weights for each term. Since there are only a limited number of non-redundant 

TF-DNA complexes with known TFBSs, we were unable to use training methods to get 

an optimal set of weights.  We used 1, 1, and 0.5 for WMB, WHB, and !! respectively in 

this study. The hydrogen bond energy has equal weight to the knowledge-based potential 

due to its important contribution to protein-DNA binding specificity (Luscombe, et al., 

2001). The weight for π-interaction is half the weight of the multibody and hydrogen 

bond terms because it is less abundant and its role in specific protein-DNA interaction is 

not as well defined as the hydrogen bonds.   

2.2.2 Knowledge-based, Multibody Statistical Potential 

We have previously developed two residue-level knowledge-based potentials, a 

multibody potential and an orientation potential, for assessing protein-DNA interactions 

in transcription factor binding site prediction and protein-DNA docking (Liu, et al., 2005; 

Takeda, et al., 2013). The multibody potential utilizes structural environment for accurate 

assessment while the orientation potential uses both distance and angle information to 

better capture hydrogen bond information implicitly. Since we propose an explicit 

hydrogen bond term in our new integrative energy function to capture the key hydrogen 

bond interactions, we chose the multibody potential over the orientation potential to 

minimize the overlap between the hydrogen bond energy and the orientation potential 

while taking the structural environment into consideration. In addition, we found that 

even though the orientation potential performs better than the multibody potential for TF-

DNA docking (Liu, et al., 2005; Takeda, et al., 2013), the multibody potential predicts 
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TF-DNA binding motifs better than the orientation potential possibly due to the capture 

of interaction context as structure-based prediction of TFBSs and protein-DNA docking 

are two different computational problems (data not shown). The multibody potential uses 

the distance between an amino acid’s β-carbon and the geometric center of a nucleotide 

triplet. The position of a nucleotide is represented by the N1 atom in pyrimidines or the 

N9 atom in purines (Liu, et al., 2005; Takeda, et al., 2013).  

2.2.3 Hydrogen Bond Energy 

The hydrogen bond energy is calculated using the model described by Thorpe et 

al. (Eq. 2), which was adapted from Dahiyat et al. (Dahiyat, et al., 1997; Thorpe, et al., 

2001). 

E!" = V! 5 !!
!

!"
- 6 !!

!
!"

F θ,ϕ,φ  (2.2) 

where d0 (2.8 Å) and V0 (8 kcal/mol) are the hydrogen-bond equilibrium distance and 

well-depth respectively, and d is the distance between the donor and the acceptor. The 

angle function, F, varies depending on the hybridization state of the acceptor and donor 

atoms (Dahiyat, et al., 1997; Thorpe, et al., 2001). We used FIRST (Jacobs, et al., 2001), 

which implements Equation 2.2, to calculate the hydrogen bond energy between amino 

acids and nucleotides in the protein-DNA complexes (Abecasis, et al.).   

2.2.4 π-interaction Energy 

π-interactions typically exist between aromatic compounds and cations, partially 

charged atoms, or other aromatic compounds. These interactions consist of VDW forces 

and electrostatic interactions (Gromiha, et al., 2004; Luscombe, et al., 2001; McGaughey, 

et al., 1998; Wintjens, et al., 2000). In aromatic compounds, π-π interactions occur when 

the partially positive charges on the edges of an aromatic molecule interact with the 
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negatively charged electron cloud of another aromatic compound. These interactions can 

be in a parallel stacked, parallel displaced, or edge to face conformation (Figure 2.1). It 

appears that the VDW forces do not have a major impact on DNA-binding specificity of 

TFs, but they assist greatly in protein-DNA complex stability (2008; Gromiha, et al., 

2004; Wintjens, et al., 2000). However, the electrostatic charges on the edges of the 

bases, especially in the major groove, are different in the four DNA bases.  Figure 2.2 

shows the electronic landscape of the atoms on each base at the resonant state assuming a 

physiological pH. The partially charged edges of the bases exposed in the major groove 

(Table 2.1) were determined using MarvinSketch 6.1.4, a software package from 

Chemaxon (Marvin6.1.4).   

 

 
 
Figure 2.1: Geometries of π-Interactions between aromatic structures. A: Parallel stacked 
geometry, the least energetically favorable geometry. B: Parallel displaced geometry, the 
most energetically favorable geometry. C: T-shaped or edge to face geometry, more 
energetically favorable than the parallel stacked geometry but less favorable than the 
parallel displaced geometry. 
 

Mecozzi et al. calculated the binding energies of benzene as well as other aromatic 

compounds of biological and medicinal interest (Mecozzi, et al.). Based on the 

relationships between the binding energy of benzene and the binding energy of the side 

chains of the aromatic compounds, we estimated the charges on the electron clouds of the 

aromatic residues (Table 2.2).    
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Figure 2.2: Electronic landscape of the bases. Charge distributions of the four bases in the 
major groove. The blue regions represent partial positive charges while the red regions 
represent partial negative charges. The grey regions are neutral. MarvinSketch 6.1.4, a 
software package from Chemaxon (Marvin6.1.4), was used to generate the electronic 
landscape and calculate the charges on the atoms. 
 
 

 
Table 2.1: Quantified charges on nucleotide major groove atoms (blue and red regions on 
the electronic landscapes illustrated in Figure 2.2). 

 
Atom A C G T 
N4/O4 0.34 0.34 -0.44 -0.478 

C5 -0.015 0.066 0.00 0.087 
C6 - 0.085 - 0.096 
N7 -0.21 - -0.21 - 
C8 0.115 - 0.10 - 
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Table 2.2: Estimated electron cloud charges of aromatic amino acids. 

Molecule Electron cloud 
charge 

Benzene -0.372 
Tyrosine -0.369 

Phenylalanine -0.372 
Tryptophan -0.447 

 

The electrostatic potential was then calculated using: 

E!" = !!!!!!!!
!!                                              (2.3) 

where !!" is the energy between an atom ! on the base and the electron cloud c on the 

aromatic amino acid, !! is Coulomb’s constant, N! is Avogadro's number, !! and  !! are 

the charges of the atom and the electron cloud respectively,  ! is the dielectric constant 

and r is the distance between the point charges (meters). The charges, !! and !!, are 

determined by multiplying the partial charge values by the charge of an electron, 1.6 x 

10-19. The electrostatic potential is then converted from joules/mol to kcal/mol using the 

conversion factor of 2.39 x 10-4.  The electrostatic potential is then converted from 

joules/mol to kcal/mol using the conversion factor of 2.39 x 10-1. The electrostatic 

potential of each atom on the base with direct access to the electron cloud on the amino 

acid is summed together to calculate the total π interaction energy between the amino 

acid and base (Equation 2.4). 

E! = E!"!!
!                                                (2.4) 

where !! is the total π-π interaction energy between the base and the amino acid, !! is 

the number of atoms of the base that have an unblocked pathway to the electron cloud on 

the aromatic residue, !!" is the energy between an atom a on the base and the electron 

cloud c. 
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2.2.5 Prediction Algorithm 

The flowchart for structure-based TFBS prediction is shown in Figure 2.3. It 

begins with a TF-DNA complex structure consisting of a single TF-chain/domain 

interacting with a duplex DNA. Hydrogen atoms were added to the complex structure, 

which are needed for hydrogen bond calculations, using UCSF Chimera 1.8 (Pettersen, et 

al.). The addition of hydrogen atoms may introduce steric clashes, which was addressed 

by energy minimization using Chimera with the following parameters: 100 steepest 

descent steps with a step size of 0.02, 100 conjugate gradient steps with a step size of 

0.02, and an update interval of 10. A total of 8 base pairs, which include residues 

contacting bases and flanking bases, were used for the energy calculation. A residue-base 

contact is defined if the atom distance between the residue side chain and the base is 

within 3.9 Å. The native DNA sequence in the TF-DNA complex was mutated to 

generate all possible combinations of the 8 bases, 65536 sequences, using 3DNA (Lu and 

Olson). The three energy terms were then calculated for each of the 65536 TF-DNA 

complex structures. The score for each of the three terms, multibody energy, hydrogen 

bond energy, and π-interaction energy, was normalized using equation 2.5:  

E! = !-!!"#
!!"#-!!"#

                                                  (2.5) 

where !!  is the normalized energy, !  is the energy for a specific complex with a 

sequence, E!"# and E!"# are the maximum and minimum energies in the set of 65536 

TF-DNA complexes respectively. The total energy is then calculated using Equation 1. 

The distribution of integrative energy scores is generated using R and a significance level 

α is used to select the statistically significant sequences. In this study, we used α of 0.01 

divided by the number of contacted DNA bases to normalize the number of expected 
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sequences. The rationale of using adjusted α is that for a fixed number of DNA binding 

sequences, if more bases are involved in TF-DNA interaction and are conserved, the 

expected number of binding sequences should be smaller. The sequences with energy 

scores in the adjusted α region were then selected to generate a position weight matrix 

(PWM) and motif logo (Figure 2.3). 	

 

Figure 2.3: Flowchart for structure-based TFBS prediction. 
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2.2.6 Binding Motif Prediction and Validation 

PWMs are generated using the selected sequences from the distribution of 

integrative energy scores. First, a 4x8 position frequency matrix (PFM) is generated using 

these sequences. The PFM is then converted to a PWM and subsequently converted to a 

motif logo using the method described by Schnieder and Stephens (Crooks, et al., 2004; 

Schneider and Stephens, 1990). The predicted PWMs were compared with their 

corresponding annotated JASPAR PWMs (Mathelier, et al., 2016).  We used averaged 

Kullback-Leibler divergence (AKL) (Equation 2.6) to quantitatively measure the 

similarity between the predicted and reference TF-binging site PWMs(Wu, et al., 2001; 

Xu and Su, 2010).  

!!"# =  
!!"  !"# !!"!!" + !!"  !"#!!"!!"

2
!∈ !,!,!,!!

                                  (2.6) 

where !!"# is the AKL divergence, i represents the corresponding columns of the base 

positions being compared in the predicted and reference matrices, B represents the four 

bases A,C,G, and T, !!"  and !!"  represent the frequency of a particular base B in 

corresponding columns i, in the predicted and reference matrices respectively.  

We also used a method called Information content (IC)-weighted Pearson 

correlation coefficient (PCC) (Persikov and Singh, 2014), developed recently by Persikov 

and Singh, to measure the similarity of  corresponding columns from the predicted and 

experimentally derived PWMs. IC-weighted PCC is a method to measure the similarity 

of the corresponding columns from the predicted and reference PWMs representing the 

same base positions in the binding motif (Persikov and Singh, 2014). The information 

content is calculated using equation 2.7: 
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!" ! = 2+ !!
!∈ !,!,!,!

!"#  !!                                                (2.7) 

where the !" !  is the the information content function for column m in a PWM, and B 

represents the DNA bases frequencies in that PWM column. The IC-weighted PCC is 

then calculated using equation 2.8: 

 

!""!,!!" = (!! −!)(!! − !)!∈ !,!,!,!
(!! −!)!!∈ !,!,!,! • (!! − !)!!∈ !,!,!,!

× !"(!)2                      2.8  

 

where !"!,!!"  is the IC-weighted PCC between the reference column !, and the predicted 

column, !. !! and !! are the frequencies of the DNA bases, !, found in the rows of the 

corresponding reference and predicted PWM columns respectively. ! and ! are the mean 

frequencies in the reference and predicted columns respectively. A predicted column is 

considered a correct prediction when the IC-weighted PCC between the corresponding 

predicted and reference columns is at least 0.25 (Persikov and Singh, 2014). The 

advantage of using IC-weighted PCC measure is that it takes into consideration the 

conservation of a base-position in the reference binding motif (information content) and 

how well it matches the predicted binding motif (Pearson’s correlation coefficient). 

2.2.7 Datasets 

The first dataset is a non-redundant set of TF chain-DNA complexes. It was 

generated using all the high quality crystal structures of TF-DNA complexes in the 

Protein Data Bank (PDB) (Berman, et al., 2000) with corresponding JASPAR PWMs. 

These structures were solved by X-ray crystallography with a resolution less than 3Å and 

R-factors ≤ 0.3. All structures with a sequence identity of 35% or greater were first 
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grouped together. The TF-DNA complex structure with a corresponding JASPAR PWM 

and the highest resolution in a group was chosen as the group’s representative. This 

dataset has 29 non-redundant TF chain-DNA complexes found in Table 2.3. 

 
Table 2.3: Non-redundant dataset of 29 TF chain-DNA structures. 

 
PDB ID Chain Protein Family Annotation 
1AM9 A HLH, Helix Loop Helix DNA-binding domain 
1BC8 C ets domain 
1BF5 A STAT,STAT DNA-binding domain, SH2 domain 
1DSZ A Nuclear Receptor 
1GU4 A Leucine Zipper Domain 
1H8A 
1H9D 

C 
A 

Myb/SANT domain 
RUNT domain 

1JNM A Leucine Zipper Domain 
1NKP A HLH, Helix Loop Helix DNA-binding domain 
1NLW A HLH, Helix Loop Helix DNA-binding domain 
1NLW B HLH, Helix Loop Helix DNA-binding domain 
1OZJ A SMAD MH1 domain 
1P7H M Rel/Dorsal transcription factors, DNA-binding domain 
1PUF A Homeodomain 
1PUF B Homeodomain 
1T2K 
2A07 

A 
F 

Interferon regulatory factor 
Forkhead DNA-binding domain 

2AC0 A p53 DNA-binding domain-like 
2DRP 
2QL2 

A 
A 

Classic zinc finger, C2H2 
HLH, helix-loop-helix DNA-binding domain (CATH) 

2QL2 B HLH, helix-loop-helix DNA-binding domain (CATH) 
2UZK A Fork head domain (PFAM) 
3F27 D HMG (high mobility group) box (PFAM) 
3HDD A Homeodomain 
2YPA A Helix-loop-helix DNA-binding domain (PFAM) 
2YPA B Helix-loop-helix DNA-binding domain (PFAM) 
4F6M A Kaiso zinc finger DNA binding domain - Transcriptional regulator 

Kaiso (Gene annotation) 
4HN5 
4IQR 

A 
A 

Erythroid Transcription Factor GATA-1 (CATH) 
Zinc finger, C4 type (PFAM) 
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Family classifications in Table 2.3 are primarily based on SCOP. CATH 

classifications are used when SCOP domain classifications are unavailable. If both SCOP 

and CATH classifications are unavailable, PFAM classifications are adopted. 

We also generated a second non-redundant set for special case studies. 

Homeodomain proteins are involved in regulation of many cellular processes in 

mammals and represent the second largest family of transcription factors (Tupler, et al., 

2001). There are a large number of experimentally determined PWMs for homeodomains 

and a relatively large number of homeodomain-DNA complex structures in the PDB. A 

homeodomain is a three α-helical DNA binding domain that binds to both the major 

groove and minor groove of the target DNA sequences (Gehring, et al.).  To generate this 

dataset, we combined both the protein sequence similarity and binding site similarity. The 

homeodomain dataset consists of TF chain-DNA complexes with a corresponding 

JASPAR PWM. Each pair of the homeodomains in the dataset has less than 55% protein 

sequence similarity and different annotated binding sites in JASPAR (based on the IC-

weighted PCC criteria of 0.25 or larger for the matching positions). This dataset includes: 

1B8I:A, 1B8I:B, 1IC8:A, 1IG7:A, 1JGG:B, 1PUF:A, 1PUF:B, 3RKQ:A, 2HDD:A, 

3A01:A, and 3A01:B. One exception is that we included both 1B8I:B and 1PUF:B 

because they have different binding sites even though they share 82% sequence identity. 

This is to test the capability of the new integrative energy function to see if we can 

accurately predict very different binding sites for highly similar proteins. 

2.3	Results 
	

We applied the new integrative energy function to the prediction of TFBSs using 

the non-redundant dataset of 29 TF-DNA complex structures and compared the 
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prediction with multibody potential and DDNA3, a knowledge-based atomic-level 

protein-DNA interaction potential (Zhang, et al., 2005).  The predicted TF-binding motifs 

and the corresponding JASPAR motifs are shown in Figure 2.4. We also applied three 

different quantitative methods, Chi-square test, averaged Kullback-Leibler divergence 

and Euclidean distance, to compare the prediction accuracy as described in the Methods. 

The lower the AKL divergence value, the more similar between the predicted PWMs and 

JASPAR PWMs. Figure 2.5 shows the results based on AKL divergence to demonstrate 

the similarity between the predicted PWMs and the reference JASPAR PWMs. Results 

from the other two methods are consistent with the AKL divergence results. As shown in 

Figure 2.4 and 2.5, IE outperforms both MB and DDNA3 or at least one of them in the 

majority of the cases, for example, 1AM9:A and 1PUF:B.  There are three cases that IE 

performs worse than MB and/or DDNA3, such as 1BF5:A and 2UZK:A. In several cases, 

the prediction accuracies are similar among all three energy functions, for example, 

1DSZ:A.  

To check if the overall improvements are statistically significant, we performed 

Wilcoxon signed rank test to compare the predictions between IE and MB as well as 

between IE and DDNA3 based on the predicted similarity to JASPAR PWMs.  The null 

hypothesis is that prediction accuracy of the IE method is equal or worse than the MB (or 

DDNA3) method while the alternative hypothesis is that the prediction accuracy of the IE 

method is better than MB and DDNA3.  The p-values for the three comparison metrics, 

Chi-square, AKL divergence and Euclidian distance are 0.003, 0.003, and 0.048 between 

IE and MB predictions, and 0.003, 0.005, and 0.025 tween IE and DDNA3 respectively, 

suggesting that the improvements are statistically significant.   
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Zinc fingers and homeodomains represent the two largest and extensively studied 

transcription factor families. In our non-redundant dataset, we found six zinc finger 

chains (Figure 2.6) and three homeodomains (Figure 2.7). Zinc fingers usually function 

as a dimer or multimers. A single zinc finger domain typically contains three to four 

conserved recognition bases (Persikov and Singh, 2014). Three of the six zinc finger 

cases (1LLM:C, 2DRP:A and 4F6M:A) show better binding site prediction using the IE 

function while the other three have no significant differences (1DSZ:A, 4HN5:A, and 

4IQR:A, Figures 2.4, 2.5 and 2.6). 

 Each homeodomain recognizes a variation of the typical TAAT core binding site. 

There were three homeodomains in the non-redundant dataset. Figure 2.7 shows the 

predicted binding motifs and significant improvement in prediction accuracy when using 

the IE function over the MB and DDNA3 statistical potentials. The quantitative 

improvement is shown in Figure 2.5. In all three cases, predictions using the integrative 

energy consistently outperform both MB and DDNA3 potentials. Since we have a 

relatively large number of high quality homeodomain-DNA complex structures in the 

PDB and a large number of experimentally derived homeodomain binding motifs, we 

generated a larger dataset of homeodomains by combining the protein sequence similarity 

and binding site similarity as described in the Methods section. Figure 2.8 shows the 

predicted binding motifs using the IE (blue), MB (red), and DDNA3 (green) energy 

functions and their accuracy when compared with the JASPAR motifs. The data 

demonstrate that our new integrative energy function can also accurately predict the 

binding sites of homeodomains with high sequence similarity but with different binding 

sites (Figure 2.8).   
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Figure 2.4; Comparison of JASPAR motifs with the predicted motifs using the IE, 
multibody and DDNA3.  
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Figure. 2.5: Comparison of integrative energy prediction accuracy with multibody and 
DDNA3 potentials. AKL divergence of the predicted PWMs with JASPAR PWMs using 
the integrative function (IE: blue), multibody potential (MB: red), and DDNA3 (green).  	

 
 

 
 

Figure 2.6: Comparison of zinc finger binding site predictions. Red lines under the 
JASPAR logos indicate the DNA sequences involved in binding to the TF-chain/domain. 
 
 

 
Figure 2.7: Binding site prediction of three homeodomains in the non-redundant dataset.	

 

1A
M

9:
A

1B
C8

:C
1B

F5
:A

1D
SZ

:A
1G

U4
:A

1H
8A

:C
1H

9D
:A

1J
NM

:A
1N

KP
:A

1N
LW

:A
1N

LW
:B

1O
ZJ

:A
1P

7h
:M

1P
UF

:A
1P

UF
:B

1T
2K

:A
2A

07
:A

2A
C0

:A
2Q

L2
:A

2Q
L2

:B
2U

ZK
:A

2Y
PA

:A
3F

27
:A

2H
DD

:A
4H

N5
:A

4I
Q

R:
A

1L
LM

:C
2D

RP
:A

4F
6M

:A

AK
L 

Di
ve

rg
en

ce

0

5

10

15

IE
MB
DDNA3



	 30 

 
Figure 2.8: Prediction of homeodomain binding sites.  (A) Quantitative comparison 
between the predicted binding motifs and JASPAR motifs of the homeodomain dataset 
using the integrative energy (blue), multibody potential (red), and DDNA3 (green) using 
Averaged Kullback-Leibler divergence. (B) Comparison of the predicted binding motifs 
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We also used a recently developed IC-weighted PCC method to calculate the 

correctly predicted core-binding positions (PWM columns) in the homeodomain dataset. 

Persikov and Singh suggested that a reference column is correctly predicted if the IC-

weighted PCC between the corresponding predicted and reference columns is at least 

0.25 (Persikov and Singh, 2014). Figure 2.9 shows that approximately 93% of the core 

base positions (44 columns) are correctly predicted by the integrative energy function, 

86% by the MB potential, and 63% by the DDNA3 potential. The columns predicted by 

the IE function have a higher correlation to their corresponding JASPAR columns than 

the MB and DDNA3 energy functions.   

 

 

Figure 2.9: Performance comparison of integrative energy (blue), multibody (red), and 
DDNA3 (green) based on IC-weighted PCC. (A) Distribution of IC-weighted PCC. For 
each threshold of IC-weighted PCC score (x-axis), the fraction of predicted columns that 
achieves a score that high or more when compared to their corresponding JASPAR PWMs. 
(B) Percent of correctly predicted positions in the core 4mer PWMs. The percent of 
proteins with correct columns (percentage) using an IC-weighted PCC threshold of 0.25. 
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2.4 Discussion 

 We report here improved accuracy of structure-based TF binding site prediction 

using an integrative energy function. The integrative energy function consists of the 

multibody potential (Liu, et al., 2005), and two atomic terms: hydrogen bond energy and 

π-interaction energy. The multibody energy is a residue-level knowledge-based protein-

DNA interaction potential derived from the mean force theory. Even though this 

multibody potential implicitly captures biophysical interactions including hydrogen 

bonds and π-interactions and showed its predictive power in both TF binding site 

prediction and protein-DNA docking studies (Liu, et al., 2008; Liu, et al., 2005), the 

mean force nature and the typical low count problem limit its ability to accurately capture 

the key hydrogen bond and π-interactions. For example, arginine has the ability to form 

bidentate hydrogen bonds, which allows it to bind specifically to guanine because 

guanine has two hydrogen acceptors present in the major groove of DNA. Bidentate 

hydrogen bonds are considered key contributors to protein-DNA binding specificity 

(Luscombe, et al., 2001; Seeman, et al., 1976). In the case of arginine and lysine, both 

can contribute to specific (through simple and complex hydrogen bonding) and non-

specific (through electrostatic interactions) interactions; however, knowledge-based 

potentials cannot differentiate these two types of interactions. Therefore, adding explicit 

hydrogen bond terms can improve the accuracy of TFBS prediction by distinguishing 

hydrogen bonds that contribute to specificity from other interaction energies. We found 

that adding the explicit hydrogen bond term to the multibody potential improves the 

TFBS prediction accuracy of 1B8I:B and 1IC8:A in the homeodomain dataset (Figure 
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2.10A) as it captures the hydrogen bonds formed between arginine 258 and lysine 273 

respectively and the guanine of the conserved G:C base pair (Figures 2.10B and 2.10C).   

Aromatic residues can interact with DNA through π-interactions (Baker and 

Grant, 2007; Wilson, et al., 2014). T-shaped π-interaction with a base having partial 

positive charges in the major groove can contribute to binding specificity because of the 

variations of the electronic landscape of the bases in the major groove (Figure 2.2). 

However, these interactions are masked due to the low count problem and the mean force 

nature in knowledge-based potentials. Adding an explicit π-interaction term increases the 

accuracy of TFBS prediction. For example, the explicit π-interaction term captures the π-

interaction formed between tyrosine 191 and the cytosine in the conserved G:C pair in 

3RKQ:A  (Figure 2.10B), improving the TFBS prediction accuracy. This suggests that 

the partial positively charged atoms (large blue spheres in Figure 2.10C) of cytosine 

interact electrostatically with the partial negatively charged atoms (large red spheres in 

Figure 2.10C) in the aromatic ring of tyrosine 191, which may contribute to TF-DNA 

binding specificity.   

The integrative energy function shows an overall improvement in TFBS 

prediction over other knowledge-based potentials. However, in several cases in the multi-

family dataset, the integrative energy function does not perform as well as the multibody 

and DDNA3 potentials (Figure 2.4 and 2.5). We investigated the complex structures and 

performed rigidity tests using FIRST (Jacobs, et al., 2001) and found that in those cases, 

the amino acids that interact with the DNA were from flexible regions or loops. For 

example, in the STAT1-DNA complex (1BF5:A), the residues involved in interacting 

with DNA are on the loops (Figure 2.11). As discussed in the introduction, both hydrogen 
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Figure 2.10: Contribution of energy terms to prediction accuracy. (A)The hydrogen bond 
energy term improves the prediction accuracy of 1B8I:B and 1IC8:A when compared to the 
multibody energy. The increased prediction accuracy of 3RKQ:A has a major contribution 
from the π-interaction energy term. (B) Physical interactions involving hydrogen bonds 
from arginine (1B8I:B), lysine (1IC8:A), and a π-interaction involving tyrosine (3RKQ:A) 
with the conserved G:C base pairs. (C) All-atom rendering of residue-base interactions 
showing the hydrogen bonds (black dotted lines) between Arg258 and guanine in 1B8I:B, 
between Lys273 and guanine in 1IC8:A where the green, blue, red, and white atoms 
represent carbon, nitrogen, oxygen, and hydrogen respectively. Tyrosine 191 is involved in 
π-interaction with cytosine where the blue, red, and grey spheres represent partial positive, 
partial negative, and neutral charged atoms respectively.  
 
 



	 35 

 
bonds and π-interactions are high-resolution functions that are sensitive to conformational 

changes. For complex structures with highly flexible regions for DNA contacts, there is a 

large variation of interaction energies for different conformations of the complex and the 

structure used for prediction is just a snapshot of multiple possible conformations. In 

addition, if a TF structure is not in an ideal docked conformation and the amino acids do 

not have favorable torsion angles to achieve favorable bidentate hydrogen bonds with the 

DNA, then the sensitive physical energies may not help the prediction, which is the case 

in 1NLW:A and 2UZK:A. Future work will need to incorporate the flexibility 

information into the prediction process. 

 
 

 

Figure 2.11:  Complex structure STAT-1/DNA complex (1BF5:A). The interaction involves 
many coils (red spheres) with DNA (green).   
 

2.5 Conclusion 

We developed a novel integrative energy function that consists of three 

components, a knowledge-based multibody potential, a hydrogen bond energy function, 
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and an electrostatic potential for π-interaction energy. We applied the new integrative 

energy function to the prediction of transcription factor binding sites. The results show an 

overall improvement in binding site prediction and there is a significant improvement in 

predicting binding sites of homeodomains when compared to the multibody and DDNA3 

potentials. The improved accuracy using the integrative function demonstrates the 

importance of considering hydrogen bonds and π-interactions explicitly in structure-

based transcription factor binding site predictions, as they are not accurately captured by 

the knowledge-based potentials. 
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CHAPTER 3. A PENTAMER ALGORITHM FOR IMPROVING STRUCTURE-
BASED TRANSCRIPTION FACTOR BINDING SITE PREDICTION 

 
 

3.1. Introduction 

In chapter 2, we developed a structure-based transcription factor binding site 

prediction algorithm using an integrative energy (IE) function that consists of three terms, 

a residue-level knowledge-based multibody potential (Liu, et al., 2005), an explicit 

hydrogen bond energy (Dahiyat and Mayo, 1997; Thorpe, et al., 2001), and an 

electrostatic potential for π-interaction energy (Farrel, et al., 2016). The new IE scoring 

function improves TFBS prediction accuracy over both residue-based and atomic-based 

knowledge-based potentials. However, the algorithm cannot scale well for predicting 

longer TF binding sites, especially for binding sites from homo/hetero TF dimers or 

tetramers. The previous algorithm first generates TF-DNA complexes consisting of a TF 

and every possible permutation of its target-sequence, an octamer (8 base pairs), which 

typically covers the full length of a single TF-domain binding site. The IE function is 

then applied to each TF-DNA complex to calculate their binding energy and subsequently 

predict their binding sites. The total number of TF-DNA complex energy calculations is 

4L, where L is the length of the binding motif. For example, in our previous full-length 

(octamer) approach, a binding motif of length eight base pairs requires evaluating a total 

of 48 = 65,536 TF-DNA complexes. As the size of the binding sites increases, the time 

complexity increases exponentially. Here we propose a new approach, called the 

pentamer algorithm, for more efficient and accurate TFBS prediction. We also modified 
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our IE function to simplify the calculation of the hydrogen bond energy and π-interaction 

energy proposed in our previous method. Our results show that the new approach 

improves the prediction speed and accuracy, especially in the cases of TF dimers.  

3.2 Methods 

3.2.1 Modified Integrative Energy Function 

The integrative energy function combines a residue level, knowledge-based 

multibody potential (Liu, et al., 2005), with a physics-based electrostatic energy potential 

(Equation 3.1). In our previous study, in addition to the multibody potential, we added a 

hydrogen bond term (Dahiyat and Mayo, 1997; Thorpe, et al., 2001) and a π-interaction 

term (Farrel, et al., 2016). The FIRST program is used to calculate the hydrogen bond 

energy (Farrel, et al., 2016; Jacobs, et al., 2001), which makes the calculation less 

efficient to use. Since both types of interactions are fundamentally electrostatic 

interactions, in this study, we combine the hydrogen bond energy and π-interaction into 

one electrostatic energy term to reduce the complexity of the calculation. The modified 

integrative energy function is: 

!!" =!!"!!" +!!!!!!      (3.1) 

where EIE is the integrative energy score, WMB and EMB  are the weight and normalized 

energy score of the multibody potential respectively, and WEE and EEE  are the weight and 

normalized energy score of the electrostatic energy respectively. Each energy term is 

normalized using the Min-Max normalization method as described in Chapter 2 (Farrel, 

et al., 2016). Since there are only a limited number of non-redundant TF-DNA complexes 

with known TFBSs, which is not enough to have a separate training set to optimize the 

weights, we use a weight of 1 for both WMB and WEE. Partial charges of the atoms 
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involved in electrostatic interactions between the TF and the DNA were determined by 

MarvinSketch, (Marvin6.1.4.) (Table 3.1):  

 
Table 3.1: Charges of atoms used in electrostatic potential calculation. 

 
Amino 
Acid 

Atom Charge 
fraction 

Amino 
Acid 

Atom Charge 
fraction 

SER 
HG 0.21 

PHE 

CZ -0.372 
HB2 0.056 CG -0.372 
HB3 0.056 HD1 0.062 

THR HG1 0.21 HD2 0.062 
HB 0.059 HE1 0.062 

ASP OD1 -0.482 HE2 0.062 
OD2 -0.482 HZ 0.062 

GLU OE1 -0.482 

TRP 

CG -0.685 
OE2 -0.482 CH2 -0.685 

ASN 
OD1 -0.466 HD1 0.104 
D21 0.157 HE1 0.252 
D22 0.157 HZ2 0.054 

GLN 
OE1 -0.466 

DG 
 
 
 

N3 -0.206 
E21 0.157 H21 0.152 
E22 0.157 H22 0.152 

ARG 

HE 0.140 H1 0.174 
H11 0.268 O6 -0.441 
H12 0.268 N7 -0.215 
H21 0.292 H8 0.107 
H22 0.292 

DA 

N3 -0.239 

LYS 
HZ1 0.255 N1 -0.241 
HZ2 0.255 H2 0.089 
HZ3 0.255 H61 0.157 

TYR 

CZ -0.249 H62 0.157 
CG -0.249 N7 -0.21 

HD1 0.062 H8 0.115 
HD2 0.062 

DC 

O2 -0.468 
HE1 0.065 N3 -0.22 
HE2 0.065 H41 0.157 
HH 0.218 H42 0.157 

CYS HG 0.102 H5 0.066 

HIS 

ND1 -0.255 H6 0.085 
HD2 0.068 

DT 

O2 -0.373 
HE1 0.107 H3 0.194 
HE2 0.217 

 
O4 
H6 

-0.478 
0.096 
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The electrostatic potential is calculated with a variation of Coulomb’s law (Equation 3.2): 

                                 (3.2) 

where Eab is the electrostatic energy between an atom ! of the amino acid and an atom b 

of the base, !! is Coulomb’s constant, is Avogadro's number, !!  and  !!  are the 

charges of the amino acid atom and base atom respectively,  ! is the dielectric constant 

and d is the distance between the point charges (meters). The charges, !! and !!, are 

determined by multiplying the partial charge values (Table 3.1) by the charge of an 

electron, 1.6 x 10-19. The electrostatic potential is then converted from joules/mol to 

kcal/mol using the conversion factor of 2.39 x 10-4. The electrostatic potential of each 

atom is added together to calculate the total electrostatic energy between the TF and the 

DNA sequence (Equation 3.3). 

      (3.3) 

where is the total electrostatic energy between the TF and the DNA, !!" is the 

number of amino acid-base atom interactions, Eab is the electrostatic energy between an 

amino acid atom a and the base atom b. The interaction distance for atoms involved in a 

possible hydrogen bond, the hydrogen atoms and hydrogen bond acceptor atoms, was 

1.5Å <= d <= 2.9Å (Dahiyat and Mayo, 1997; Thorpe, et al., 2001). REDUCE, a program 

for adding and removing hydrogen atoms to PDB structure files, is used to add hydrogen 

atoms to the TF-DNA complexes (Word, et al., 1999). The cutoff distance for atoms 

involved in a possible π-interaction between an aromatic amino acid and a base was at 4.5 

Å based on previous studies (Gallivan and Dougherty, 1999). The sum of the charges 

found in the electron cloud of aromatic residues, are used as the charge for the 

Eab =
keNAqaqb

εd

NA

EEE = Nab
Eab∑

EEE
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electrostatic energy calculation to account for the delocalization of electrons in π-systems 

and their involvement in π-π interaction (Farrel, et al., 2016; Michael Gromiha, et al., 

2004) (McGaughey, et al., 1998; Wintjens, et al., 2000).    

3.2.2 Pentamer Algorithm 

The pentamer algorithm applies the IE function to TF-pentamer DNA complexes 

derived from a single TF-DNA complex structure. The first step is to determine the 

binding sequence for the transcription factor. It can be determined by prior knowledge or 

automatically detected based on the TF-DNA complex structure. The TF-DNA complex 

is checked for the first and the last bases that are in contact with the TF using an atom 

distance cutoff of 5Å. Though the non-interacting, flanking bases are less conserved, 

recent studies have shown that these flanking bases contribute to DNA binding specificity 

by affecting DNA shape and stability (SantaLucia, et al., 1996) (Afek, et al., 2014; 

Barrera, et al., 2016; Gordan, et al., 2013; Slattery, et al., 2014; Zhou, et al., 2015). 

Therefore, we add two base pairs on each side of the binding sequence of length n 

(Figure 3.1A). For example, a DNA binding sequence of 5 base pairs (bps) becomes a 9 

bp sequence after adding two flanking bases on each side (Figure 3.1B). A TF-DNA 

complex was first energy minimized using UCSF Chimera 1.8 as described in Chapter 2 

(Farrel, et al., 2016; Pettersen, et al., 2004). The DNA sequence from the previous step is 

then split into a series of overlapping 5bp DNA sequences using each contacted bp as the 

center of a pentamer. Five TF-pentamer DNA complex structures are generated for 

energy calculation (Figure 3.1B). The DNA sequence in each TF-pentamer is mutated to 

every possible permutation of the four bases using 3DNA (Lu and Olson, 2008), which 

results in 45 or 1024 TF-pentamer complex structures for each original TF-pentamer 
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(Figure 3.1B). In total, there are n∗1024 TF-pentamer complex structures to be evaluated, 

where n is the number of base pairs of the initial binding sequence. The binding energy 

for each TF-pentamer DNA complex is then calculated (Equation 3.1).  

To predict the TF binding sites from these pentamer interaction energies, we 

applied two different methods, the tiling array algorithm and position weight matrix 

(PWM) stacking algorithm.  In the tiling array algorithm, the IE score of a binding 

sequence is the sum of the interaction energy of overlapping pentamer sequences (Figure 

3.1C).  The statistically significant scores from the binding sequence IE score distribution 

of all the permutations are determined and their corresponding DNA sequences are used 

to generate the binding motif as we did previously (Chapter 2)(Farrel, et al., 2016). In this 

study, the critical value for statistical significance in the tiling array algorithm was 0.01 

normalized by the length of the predicted motif. For the PWM stacking algorithm, the 

binding sequence is broken up into pentamer subsequences. The IE score of each 

permutation of each pentamer sequence is calculated. For a given pentamer representing 

5 contiguous bases on the binding motif, a PWM representing the statistically significant 

pentamer sequences is determined from the distribution of the IE scores of all the 

possible sequence permutations of that pentamer. Each position (column) in each 

pentamer PWM represents a specific position (column) in the binding motif PWM. All of 

the corresponding cells representing the frequency of a particular nucleotide in a specific 

position are added together to generate a PFM of the binding motif (Figure 3.1D). The 

PFM is then converted to a PWM and converted to a motif logo using the method 

described by Schnieder and Stephens(Crooks, et al., 2004; Schneider and Stephens, 

1990). 
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Figure 3.1: The pentamer algorithm. (A) The original TF-DNA structure is broken into 
TF-DNA pentamer structures. The green bases are TF-DNA contacts and the red bases 
are the 2 flanking bases on each side. (B) The DNA sequence is broken into overlapping 
pentamer subsequences. (C) The tiling array algorithm adds the IE scores of the TF-
pentamer structures to determine a full length sequence IE score. The motif is predicted 
based on the sequences with statistically significant IE scores among all possible 
sequences. (D) The PWM stacking algorithm generates a distribution of IE scores based 
on the sequence permutations for each pentamer of the original sequence. The PWM 
positions corresponding to the same position in the original structure are added together 
to form a PFM representing the TF’s TFBS, which is then converted to a PWM for the 
binding motif. 
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3.2.3 Dataset 

The modified energy function and pentamer algorithm was tested on a non-redundant 

shown in Table 3.2. This dataset was generated in a similar way as described in Chapter 

2. In addition, each TF chain structure was checked manually for similarity between the 

bound DNA and the corresponding JASPAR PWM. Uniprot (Wu, et al., 2006) and 

JASPAR were used to determine TF PDB structures with annotated binding PWMs by 

cross-referencing the Uniprot IDs used in both databases. However, not all DNA-binding 

domains in a multi-domain TF are represented in JASPAR. Furthermore, in selecting a 

representative for TF chains with high sequence identity, TF chains with more contacts in 

the major groove have higher priority. The dataset contains 27 non-redundant TF chain-

DNA complexes (Table 3.2). The same dataset of  homeodomains in Chapter 2 was also 

used for testing the new algorithm. For dimer binding site prediction, eight TF-DNA 

complex structures were used: 1AM9, 1GU4, 1JNM, 1NKP, 1NLW, 1OZJ, 2QL2, and 

2YPA. Similar to chapter 2, domain family classifications are primarily based on SCOP. 

CATH classifications are used when SCOP domain classifications are unavailable. 

PFAM classifications are used if both SCOP and CATH do not have annotations. 

3.2.4 Performance Evaluation 

  The predicted PWMs were compared with their corresponding JASPAR PWMs 

using the same methods reported in Chapter 2 (Mathelier, et al., 2016). Averaged 

Kullback-Leibler divergence (AKL) (Equation 2.6) was used to quantitatively measure 

the similarity between the predicted and reference TF-binding site PWMs (Wu, et al., 

2001; Xu and Su, 2010). IC-weighted PCC was used to determine the number of 
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correctly predicted columns in the aligned predicted and reference PWMs (Equations 2.7 

and 2.8).  

	
Table 3.2: Non-redundant dataset of 27 TF chain-DNA structures.  
 
PDB ID Chain Protein Family Annotation 
1AM9 A HLH, Helix Loop Helix DNA-binding domain 
1BC8 C ets domain 
1BF5 A STAT,STAT DNA-binding domain, SH2 domain 
1DSZ A Nuclear Receptor 
1GU4 A Leucine Zipper Domain 
1H9D A RUNT domain 
1JNM A Leucine Zipper Domain 
1NKP A HLH, Helix Loop Helix DNA-binding domain 
1NKP B HLH, Helix Loop Helix DNA-binding domain 
1NLW A HLH, Helix Loop Helix DNA-binding domain 
1OZJ A SMAD MH1 domain 
1P7H L Rel/Dorsal transcription factors, DNA-binding domain 
1PUF A Homeodomain 
1PUF B Homeodomain 
2A07 F Forkhead DNA-binding domain 
2AC0 A p53 DNA-binding domain-like 
2DRP 
2QL2 

A 
A 

Classic zinc finger, C2H2 
HLH, helix-loop-helix DNA-binding domain (CATH) 

2QL2 B HLH, helix-loop-helix DNA-binding domain (CATH) 
2UZK A Fork head domain (PFAM) 
3F27 D HMG (high mobility group) box (PFAM) 
3HDD A Homeodomain 
4IQR A Zinc finger, C4 type (PFAM) 
2YPA A Helix-loop-helix DNA-binding domain (PFAM) 
2YPA B Helix-loop-helix DNA-binding domain (PFAM) 
4F6M A Kaiso zinc finger DNA binding domain - Transcriptional 

regulator Kaiso (Gene annotation) 
4HN5 A Erythroid Transcription Factor GATA-1 (CATH) 
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3.3 Results 

  The modified and original integrative energy function functions were applied to 

the multi-family non-redundant dataset of 27 TF-DNA complex structures using the 

original full-length algorithm (Farrel, et al., 2016) to evaluate the performance of the 

modified IE function. The old and modified IE functions have overall similar 

performances when the predicted binding motifs are compared to their corresponding 

experimentally annotated binding motifs found in JASPAR (Figure 3.2). A Wilcoxon 

Signed Rank test was performed to evaluate the null hypothesis that the modified and 

original IE functions had equal AKL divergences. The p-value of this test was 0.67 

inferring that the performance of the two IE functions are similar. 

 

 

Figure 3.2: Comparison of TFBS prediction accuracy using the original full-length 
algorithm with the modified integrative energy function and original integrative function.  
 
 

The pentamer algorithm with the modified energy function was tested on the 

multi-family non-redundant dataset of 27 TF-DNA complex structures. The PWMs of the 

predicted TF binding sites and their corresponding JASPAR binding sites were compared 

using IC-weighted PCC to determine the number of matching columns. We compared the 

performance of the new pentamer algorithm with our previous full-length algorithm 
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(Chapter 2), which showed overall improved performance of the new algorithm (Figures 

3.3 and 3.4). Not only does the pentamer algorithm run much faster due to the greatly 

reduced total number of interaction energy calculations, in majority of the cases, the 

pentamer method produced better or comparable results than the original full-length 

method in terms of the number of correctly predicted columns based the IC-weighted 

PCC (Figure 3.3A).  For example, more columns are predicted correctly using either the 

tiling array or the PWM stacking pentamer algorithm for 1GU4:A and 1P7H:L, which 

also reflected in the binding motifs (Figure 3.3A and Figure 3.4).  We performed 

statistical analysis using Wilcoxon Signed Rank test with an alternative hypothesis that 

the pentamer algorithm generated a greater number of correctly predicted base positions 

than the full-length algorithm. The p-values are 0.016 and 0.0051 for the tiling array and 

PWM stacking algorithms respectively, suggesting that performance increase is 

significant. There are no apparent performance differences between the two pentamer 

methods, tiling array and PWM stacking (Figure 3.3).  

In some cases, both the pentamer and the full-length methods have similar results, 

such as 1AM9:A and 1PUF:B (Figure 3.3A and Figure 3.4). However, since the cutoff 

for correctly predicted columns is set at 0.25 as proposed by Persikov and Singh 

(Persikov and Singh, 2014), there is a large range of IC-weighted PCC values for the 

correctly predicted columns, from 0.25 to 1. A closer look at distributions of the IC-

weighted PCC values revealed that even though the correctly predicted columns are 

comparable between the pentamer and full-length algorithms in some cases, such as 

1NKP:B, 1NLW:A, and 2DRP:A, the IC-weighted PCC values are better (closer to 1) 

from the pentamer prediction than the full-length prediction (Figure 3.3B). The 
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distribution of the IC-weighted PCC of all 27 cases shows a similar trend (Figure 3.3C). 

More data points are close to the perfect IC-weighted PCC score in the pentamer 

algorithms than the full-length method. Among the 27 cases, there are only 4 cases 

(1BC8:C, 1NLW:A, 2QL2:A, and 3F27:D) that the full-length method has a slightly 

better prediction (Figure 3.3A, D and Figure 3.4).  

We also tested the new pentamer algorithm on a non-redundant dataset of 

homeodomains as described in Chapter 2 (Farrel, et al., 2016). Since we know the core 

binding sites of homeodomains, it is easier to distinguish the core binding sites from the 

flanking regions of reference binding motifs in JASPAR. The pentamer and full-length 

algorithms have comparable performance in predicting homeodomain binding sites   

(Figures 3.5A and B). The pentamer algorithm predicts better for 1IC8:A, 1PUF:A, and 

3RKQ:A while full-length algorithm produces better predictions for 1JGG:B, 2HDD:A, 

and 3A01:B (Figure 3.5A and B). The remaining 5 cases have similar accuracy. As for 

the core binding sites, we used AKL divergence to compare the prediction accuracy with 

the reference binding core motifs in JASPAR (underlined in Figure 3.5A). A smaller 

AKL divergence value indicates a better match. While statistical test (Wilcoxon Signed 

Rank test) shows no significant AKL divergence difference between the pentamer 

algorithms, tiling array or PWM stacking, and the full-length algorithm for the 4-base 

core site prediction with p-values of 0.22 and 0.056 respectively, the predictions of core 

binding sites for 1JGG:B and 3A01:A are much better using the full-length method 

(Figure 3.5C). 
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Figure 3.3: Comparison of TFBS prediction between pentamer and full-length 
algorithms. (A) Comparison of the number of correctly predicted columns (based on the 
IC-weighted PCC scores) by the tiling array (blue), PWM stacking (red), and full-length 
(green) algorithms. (B) Distributions of IC-weighted PCC values of correctly predicted 
columns by tiling array (blue squares), PWM stacking (red circles), and full-length (green 
triangles) algorithms. (C) Distributions of IC-weighted PCC scores predicted correctly in 
27 cases by the tiling array (blue), PWM stacking (red), and full-length (green) 
algorithms in the multi-family dataset. (D) AKL divergence between JASPAR annotated 
binding motifs and motifs predicted by the tiling array (blue), PWM stacking (red), and 
full-length (green) algorithms. 
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Figure 3.4: Comparison of the reference binding motif logos in JASPAR with the motif 
logos predicted by the tiling array, and PWM stacking, and full-length algorithms.  
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Figure 3.5: Comparison of reference and predicted homeodomain binding sites. (A) 
Comparison of homeodomain binding motifs predicted by the tiling array, PWM 
stacking, and full-length algorithms. The core binding positions are underlined. (B) 
Comparison of the number of correctly predicted columns based on IC-weighted PCC 
and (C) comparison of the similarity between the 4-base core-binding region based on 
AKL divergence between the JASPAR annotated binding motifs and the predicted 
binding motifs by the tiling array (blue), PWM stacking (red), and full-length (green) 
algorithms.  
 

A close examination of 1JGG:B and 3A01:A revealed that both proteins have 

long N-terminal tails interacting with the minor groove, especially in 3A01:A (Figure 

3.6). Homeodomains consist of 3 alpha helices and an N-terminal arm with the carboxyl-

terminal recognition helix binding in the major groove of DNA (Gehring, et al., 1994; 

Noyes, et al., 2008). Typically arginine and lysine residues in the N-terminal tail within 6 

residues of a homeodomain’s first alpha helix interact in the minor groove for stability 

and may contribute to specificity  (Figure 3.6) (Christensen, et al., 2012; Noyes, et al., 

2008). The N-terminal tails of homeodomains are relatively flexible and interact with the 
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minor groove. The complex structure is just a snapshot of the dynamic N-terminal and 

DNA minor groove interaction. In addition, most of the minor groove interactions are 

non-specific due to the relatively non-discriminative surface of the minor groove (Corona 

and Guo, 2016). Since the pentamer algorithm captures relative local interactions, the 

“noise” from these non-specific interactions may get amplified when compared with the 

full-length algorithm.   

 

 

Figure 3.6:  Effect of homeodomain N-terminal tails on core prediction accuracy using 
the pentamer algorithm. The original complex structures and the predicted binding sites 
are shown on the left and the structures after removing the N-terminal tails and their 
binding site predictions are shown on the right.     
 
 

To test if the N-terminal tails affect the prediction accuracy, we redid the 

pentamer prediction after removing most of the N-terminal tails and only keeping 6 

residues upstream of the first alpha helix. Removing the N-terminal residues greatly 

improves the binding site prediction (Figure 3.6). The AKL divergences between the 

predicted and JASPAR core binding motifs are reduced from 9.30 and 5.98 to 0.19 and 

0.82 for the tiling array and PWM stacking algorithms respectively for 1JGG:B, and from 

5.36 and 3.02 to 1.47 and 0.53 for the tiling array and PWM stacking algorithms 

respectively for 3A01:A when using the structures without the N-terminal tails. These 
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results are consistent with our previous observation that more contacts from dynamic 

coils in a crystal structure may affect the integrative energy function due to the sensitivity 

of the physics-based electrostatic energy  (Chapter 2) (Farrel, et al., 2016), which affects 

the binding energy more for the pentamer algorithm than the full-length algorithm since 

the “noise” can be masked better in the full-length method.  

 

  
 
Figure 3.7: Comparison of TF dimer binding site predictions between pentamer and full 
length algorithms. (A) Comparison of the number of correctly predicted columns in TF 
dimers by the tiling array (blue), PWM stacking (red), and full-length (green) algorithms. 
(B) AKL divergence between dimer’s JASPAR binding motifs and their corresponding 
binding predictions by the tiling array (blue), PWM stacking (red), and full-length (green) 
algorithms. (C) Comparison of TFBSs of TF dimers predicted by the tiling array, PWM 
stacking, and full-length algorithms. (D) Multi-domain TF prediction of the Ubx-Exd 
TFBS, which does not have an annotated binding site for the hetero-dimer in JASPAR.  
 

 
The pentamer algorithm performs calculations at a linear time complexity for 

subsections of the binding site allowing the prediction of longer binding motifs, for 

example, multi-domain TFBSs. We compiled eight TFs from the multi-family dataset 
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that appear to work as homo or hetero dimers (See 3.2 Methods). While the pentamer 

method significantly reduces the time for energy calculation, except for 1GU4 and 2QL2, 

all other six dimer cases have improved TFBS predictions when compared to predictions 

using all possible sequences of the binding lengths (Figure 3.7). We also made 

predictions for Hox proteins Extradenticle (Exd) and Ultrabithorax (Ubx). Ubx and Exd 

form a dimer to regulate gene expression (Crocker, et al., 2015; Passner, et al., 1999). 

Though both Ubx and Exd have separate annotations of PWMs in JASPAR (Figure 

3.7D), there are no JASPAR binding motif for the Ubx-Exd dimer.  However, binding 

sites of Ubx-Exd dimer have been reported in structural studies (Foos, et al., 2015; 

Passner, et al., 1999). The predicted Ubx-Exd dimer binding sites are consistent with the 

published data. Furthermore, the Drosophila limb-promoting gene Distalless regulatory 

element, which is in part regulated by Ubx-Exd interactions (Gebelein, et al., 2002; 

Merabet, et al., 2007), also has a similar binding site to the our predicted binding motif 

using the pentamer algorithm.  

As for the two pentamer prediction algorithms, tiling array and PWM stacking, 

there are no apparent differences. While both pentamer algorithms reduce the time 

complexity by lowering the total number of TF-DNA complexes for energy calculation, 

calculating the final binding motif using the tiling array algorithm requires more 

computation than the PWM stacking approach as it requires calculating scores for all 

possible sequence permutations of the binding site (Figure 3.1C).  For TF dimer binding 

sites that have longer spacing (>= 4bps) between two monomer binding sites, it is more 

efficient to calculate each of the binding sites separately using the pentamer algorithms 

and then combine the two to form one binding motif.   
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3.4. Discussion 

 In this chapter, we developed an efficient pentamer algorithm and a simplified 

energy function that combines the hydrogen bond term and the π-interaction term into 

one electrostatic energy term. While the previous method described in Chapter 2 

improves TF binding site prediction over the knowledge-based multibody and DDNA3 

potentials, it requires evaluation of a total of nL (where L is the length of the binding 

sequence) TF-DNA complexes. As the length of the binding motif increases, the number 

of energy calculations increases exponentially. In Chapter 2, we used a fixed sequence 

length (8bps or octamer), which typically covers the full-length of a binding site for a 

single TF-domain, for TFBS prediction of single TF domain-DNA complexes. Each 

TFBS prediction requires energy calculations for each of the 65536 (48) possible 

permutations of the TFBS sequence for the full-length algorithm, which can be calculated 

in reasonable time (Farrel, et al., 2016). However, for longer binding sequences, it 

becomes impractical even with large computer clusters.  

There are many examples where we need to evaluate longer binding sequences. 

For example, we need to consider flanking sequences for binding site predictions as it has 

been demonstrated that flanking sequences contribute to binding specificity even though 

these they are not conserved (Gordan, et al., 2013). Secondly, some sites are regulated by 

the binding of TF dimers or tetramers, which are usually longer than an octamer. Finally, 

in homology model based TF binding site prediction, it would be nice to consider 

multiple homology models to increase the conformation coverage, which demands more 

energy calculations.  
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Our new algorithm with the modified IE energy improves both the speed and 

accuracy, especially for longer binding sites. The increase of prediction speed is obvious 

since we only need to calculate energies of 1024 (45) TF-pentamer complexes times the 

number of splits (Figure 3.1). The overall improvement of accuracy may lie in the fact 

that long range interactions from the coarse multibody function may introduce noise to 

the original full-length algorithm. In the pentamer algorithm the noise level is reduced.  

Therefore, for short binding site predictions that do not command more computations, an 

full-length approach can be applied. For longer binding site predictions, a pentamer 

method offers better accuracy and is more time-efficient. There is no apparent difference 

between the two methods for deriving the binding motifs based on the energies of all TF-

pentamer complexes. The tiling array approach uses more computing time than the PWM 

stacking approach with an advantage of providing the actual binding sequences, while the 

PWM stacking approach only produces the binding motifs using a statistical approach.     

3.5 Conclusion  

We developed a pentamer algorithm with a modified energy function that speeds 

up the TFBS prediction by reducing the number energy calculations and improves TFBS 

prediction accuracy.  Two algorithms, tiling array and PWM stacking, have been used to 

combine the TF-pentamer results for binding motif prediction with comparable 

performance in terms of TFBS prediction accuracy. The PWM stacking algorithm is 

relatively faster than the tiling array approach, as it does not need to calculate the 

individual sequence binding energy.  Our results also show that the longer the binding 

sequences, the higher the increase in speed and accuracy can be achieved, for example, 

the binding site prediction of multi-domain TFs. 
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CHAPTER 4. PREDICTION OF HOMEODOMAIN BINDING SPECIFCITY USING 
HOMOLOGY MODELS 

 
 
4.1 Introduction 

As described earlier, structure-based prediction of TFBSs requires known TF-

DNA complex structures. Experimental determination of high-resolution TF-DNA 

complex structures remains a difficult task and most TFs do not have a resolved TF-DNA 

complex structure in the PDB. As a result, the number of known TF sequences vastly 

outnumbers the number of TF-DNA structures in the PDB. The unavailability of TF-

DNA complex structures limits the application of structure-based TFBS prediction. 

Computationally predicting TF-DNA complexes can address this issue but remains a 

challenge in computational structural biology. 

In general, there are two computational methods for generating TF-DNA complex 

models. One is homology modeling using existing homologous TF-DNA complexes as 

templates. The other approach is to generate TF-DNA models through computational 

docking studies (Dominguez, et al., 2003; Roberts, et al., 2013; Takeda, et al., 2013; van 

Zundert, et al., 2015). While computational docking is a promising approach, protein-

DNA docking has lagged behind other docking studies, such as protein-protein and 

protein-ligand docking. Currently, TF-DNA docking accuracy is not good enough for 

routine applications of TFBS predictions, especially using methods with atomic terms 

that are sensitive to atomic distances. On the other hand, homology modeling is quite 
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mature and can offer very good structural models (Morozov, et al., 2005; Schueler-

Furman, et al., 2005). 

Homology modeling is a common method used to predict structure of proteins 

using known protein structures with high sequence identity as templates. Baker and Sali 

showed that homology modeling can be used to predict structures up to 1 Å root mean 

square (RMS) error if the template has a high sequence identity (>50%), and mid range 

sequence identity (30-50%) up 1.5 Å RMS error (Baker and Sali, 2001). However, 

homology modeling of TF-DNA complexes for the application of structure-based TFBS 

prediction adds another level of complexity as some energy functions are sensitive to 

atomic terms and rely on the amino acid sidechains and nucleotides to be in a specific 

range of conformations to produce an accurate TFBS prediction. In this chapter we 

present a method of generating multiple TF-DNA homology models, and use these 

models to predict the TFBSs of homeodomains. 

4.2. Method 

4.2.1 Dataset 

 The dataset of homeodomains described in Chapter 2 and Chapter 3 were used to 

compare how well homology TF-DNA models can be applied to predict TF binding sites. 

In a recent study by Barrera et al. (Barrera, et al., 2016), transcription factors with point 

mutations were investigated for changes in binding specificity and binding affinity.   

HOXD13, a homeodomain associated with developmental regulatory systems has 

mutations that can cause synpolydactyly. Barrera et al. experimentally studied the change 

in binding specificity and affinity of five mutated variants of HOXD13, I322L, Q325K, 

Q325R, R306Q, and S316C, using protein binding microarrays (Newburger and Bulyk, 
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2009). We used homology models to investigate the changes of binding affinity and 

binding specificity of the five mutations.    

 

Figure 4.1: Homology modeling of TF-DNA complexes. MODELLER is used to 
generate homology models of a transcription factor. TM-Align is used to perform a 
structural alignment of the homology model onto the template TF-DNA complex. The 
template TF is then removed from the aligned structure, producing in a homology model 
of a TF-DNA complex. 
 
 
4.2.2 Homology Modeling 

The homology models of transcription factors are generated using MODELLER 

(Eswar, et al., 2006). Available homeodomain-DNA complex structures from the PDB 

are used as templates. The five TF-DNA structures with the highest sequence identity and 

sequence coverage of the query sequence are chosen as templates. Ten models are 

generated for each TF template and each model is evaluated using PROCHECK 

(Laskowski, et al., 1993). The five models with the least number of residues in the 

disallowed region of the Ramachandran plot and the least number of bad contacts are 

selected for each template, resulting in twenty-five total models. TF-DNA complex 

structures are then generated using TM-align (Zhang and Skolnick, 2005) to structurally 
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align a modeled TF on the template TF-DNA complex (Figure 4.1). The template TF is 

then removed, leaving the TF model with the template DNA.  Each of the twenty-five TF 

models was paired to each of the 5 DNA templates producing 125 TF-DNA models 

(Figure 4.2). 

 

Figure 4.2: Generating 125 TF-DNA homology models. 

 
4.2.3 TF-DNA Complex Model Selection and TF Binding Site Prediction 

van der Waals  (VDW) energy and TF-DNA contacts are used to assess the 

quality of the 125 TF-DNA complex models. TF-DNA models with low van der Waals 

energy are preferred because they have minimal steric clashes. Also, complexes having 

more amino acids within interacting distance of the major groove of the DNA are 

preferred as these interactions are important for the energy calculation required for the 

TFBS prediction. The VDW energy is estimated using our in-house protein DNA 

docking energy function (Liu, et al., 2008; Liu, et al., 2005). The number of TF-DNA 

contacts is the number of unique TF-DNA heavy atom pairs within 3.9Å of each other. A 
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quality score is determined simply by subtracting the number of TF-DNA contacts from 

the VDW energy. The lower quality scores represent better structures. The energy of the 

complex models with the lowest quality scores is minimized using GROMACS (Van Der 

Spoel, et al., 2005) to add hydrogen atoms to the structures and optimize them for the 

energy calculations. GROMACS is also used to filter out TF-DNA models with other 

structural issues not captured in the previous evaluation steps.  The five structures with 

the lowest quality scores that underwent successful energy minimization were then 

revaluated for VDW energy and amino acid-base contacts as the structure has changed 

after energy minimization.  

TFBS prediction is performed on the 3 lowest scoring TF-DNA models using the 

tiling array and PWM stacking pentamer algorithms and the modified integrative energy 

functions (Chapter 3). In Chapter 3, we observed that TF-DNA structures with accurate 

TFBS predictions had similar binding motifs generated by the tiling array and PWM 

stacking algorithms. Therefore, we used the similarity between the binding motifs 

generated by the tiling array algorithm and the PWM stacking algorithm as a confidence 

measure for the TFBS predictions of the TF-DNA models. For this reason, the TFBS 

predictions of the 3 lowest scoring TF-DNA models are ranked based on the similarity of 

the PWMs generated by the two pentamer algorithms. To compare the prediction 

accuracy of homology TF-DNA models, the predicted PWMS using TF-DNA models 

were compared to their corresponding JASPAR binding motifs and the predicted motifs 

using the TF-DNA structures from the PDB. We used averaged Kullback-Liebler 

divergence (Wu, et al., 2001; Xu and Su, 2010) to compare the overall similarity between 
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the predicted and reference binding sites, and IC-weighted PCC (Persikov and Singh, 

2014) to compare the number of correctly predicted columns. 

4.2.4 Prediction of binding sites of HOXD13 variants using homology models 

To test if homology modeling can be used to predict the change in binding 

specificity of HOXD13 with point mutations, HOXD13 and HOXD13 mutant models 

were generated using the homology modeling techniques described above. The predicted 

binding sites of the variants were compared to their experimentally annotated binding site 

and the binding site of the wildtype to determine if this method can predict a change in 

specificity between wildtype and mutants.  

4.3 Results and Discussion 
 
 The homeodomain binding site predictions using homology models were 

comparable to the binding site predictions using the native PDB structures (Figure 4.3). 

The quantitative analysis also reveals that Model 1, the best scoring model, has a lower 

AKL divergence in seven of the eleven homeodomains. Furthermore, Model 1 has equal 

or greater correctly predicted binding site positions in eight of the eleven homeodomains. 

TFBS Predictions using Models 2 and 3 were comparable to the predictions using the 

native PDB structure. Further developments to the TF-DNA model selection scoring 

function and increasing the initial number of models generated may improve the 

probability of selecting near-native TF-DNA models that produce accurate TFBS 

predictions. 
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Figure 4.3: Comparison of TF binding site prediction using the native TF-DNA complex 
structures (PDB) and the top 3 homology models.   
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Figure 4.4: Quantitative comparison of homeodomain binding site predictions using the 
native complex structures from PDB and top 3 homology models. The binding site 
predictions were compared with their corresponding JASPAR PWMs using  (A) AKL 
divergence and (B) IC-weighted PCC for the number of correctly predicted columns 
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Barrera et al. reported that the I322L and Q325K variants of HOXD13 had 

decreased binding affinity and changed binding specificity, while the Q325R and R306W 

variants only had a change in binding specificity. While R306W is not on the recognition 

helix (Figure 4.5), this variant still affects the binding specificity. The S316C variant does 

not affect the binding specificity or the affinity (Barrera, et al., 2016). Mutant HOXD13-

DNA complex models were generated as shown in Figure 4.1 and Figure 4.2. TFBS 

predictions were carried out using the modified integrative energy function and the 

pentamer algorithm, and compared with the binding sites determined experimentally by 

PBM in UniPROBE (Figure 4.6). The binding site predictions of the variants on the 

recognition helix (Q325K, Q325R, and I322L) were in agreement with the UniPROBE 

annotations when compared to the TFBS predictions using this simple modeling 

approach.    

 

 

Figure 4.5: TF-DNA model of HOXD13 showing the amino acid positions of the 
variants’ mutations.  
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Figure 4.6: TFBS prediction of variants using models generated with MODELLER. 
  

 The TFBS predictions of the variants were compared to the wildtype binding sites 

and their corresponding binding sites from UniPROBE using IC-weighted PCC (Figure 

4.7). All four models of the variants that were reported to have a change in specificity 

showed less matching columns than the wildtype model when the predicted binding 

motifs were compared to the wildtype binding motif from UniPROBE (Figure 4.7A). The 

S316C variant and wildtype TFBS predictions have similar matching columns to the 

wildtype binding motif from UniPROBE. This is in agreement with the observation that 

this S316C variant does not change binding specificity. Interestingly, the two variants 

that have lower affinity and specificity have relatively low matching predicted motif 

columns with both the wildtype and their corresponding binding motif from UniPROBE.  
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Figure 4.7: Comparison of variant predicted binding sites with UniPROBE binding sites. 
(A) IC-weighted PCC for the number of correctly predicted columns when compared to 
the wildtype (blue and red) and their corresponding (green and purple) UniPROBE 
binding sites. (B) Summed IC-weighted PCC scores of correctly predicted columns. 
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We discussed in chapter 3 that a correctly predicted column using IC-weighted 

PCC can range between 1 and 0.25. When we sum the IC-weighted PCCs of the 

matching columns, we observed that the predicted binding motif of the Q325K variant is 

more similar to the variant binding motif from UniPROBE than the wildtype. On the 

other hand, the S316C variant’s summed IC-weighted PCC values from the comparison 

with the wildtype binding site are similar to values of the wildtype model. These results 

show the potential of this method to study the effects of mutations in transcription factors  

4.4. Conclusion 

We developed a method to generate TF-DNA homology models and used them 

for TFBS predictions. This method was tested on a small dataset of homeodomains. The 

structure-based binding site predictions of the modeled structures were comparable to the 

binding site predictions of the corresponding experimentally derived crystal structures in 

the PDB. Furthermore, a preliminary study of HOXD13 and mutants showed that 

homology models could be used to predict the changes in specificity of homeodomains 

with point mutations. Future work is needed to improve the methods of selecting TF-

DNA models for the application of the energy functions. Furthermore, this method needs 

to be tested on other TF families. 
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CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 
 
 

In this dissertation, we developed new energy functions and efficient algorithms 

for improving structure-based transcription factor binding site predictions. We 

demonstrated that physics-based and knowledge-based potentials could be combined to 

improve TFBS predictions by maximizing their strengths while compensating for each 

other’s limitations. The importance of π-interactions and hydrogen bonds in TF-DNA 

recognition and binding specificity is clearly demonstrated in this study. The method is 

extended to prediction of longer binding sites with a novel pentamer algorithm. It 

increases the prediction efficiency as well as prediction accuracy. Using homeodomain 

family as an example, we also showed that homology TF-DNA models can be used to 

predict TF binding sites with good accuracy  

One of the key steps in structure-based prediction of TFBS is the choice of energy 

functions. Knowledge-based methods are efficient but sometimes generate inaccurate 

predictions due to mean force potentials and the low count problem. Physics-based 

methods are typically time consuming and sometimes generate inaccurate predictions 

because we do not fully understand all the force fields involved in molecular interactions. 

We developed an integrative energy function that combines a knowledge-based 

multibody potential with physics-based atomic potentials, specifically, hydrogen bond 

interactions and π-interactions.  Both hydrogen bond interactions and π-interactions 

contribute to TF-DNA binding specificity.  Incorporation of these interactions explicitly 
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into energy function improves the binding site prediction accuracy of multiple 

transcription factor families, especially for homeodomains family. It also revealed the 

importance of π-interactions between aromatic amino acids and bases in transcription 

factor binding specificity, a finding that has been previously overlooked. Overall, 

developing the integrative energy function improved the accuracy of structure-based 

predictions and our understanding of protein-DNA interactions. 

 Structured-based predictions require an energy function to be applied to protein-

DNA complexes with all sequence permutations. As the length of the binding site 

increases, the number of permutations increases exponentially and thus requires an 

exponential increase of energy calculations. We addressed this problem by implementing 

a novel pentamer algorithm that breaks a DNA structure into a series of pentamers. This 

algorithm requires a linear increase of energy calculations as the binding site length 

increases instead of an exponential increase of energy calculations required by traditional 

methods. The pentamer algorithm increases efficiency of structure-based methods 

without compromising the prediction accuracy. In fact, it improves prediction accuracy 

for longer binding sites. This new algorithm expands the application of structure-based 

binding-site prediction to multi-domain transcription factors with longer binding 

sequences. 

Finally, we developed a workflow to apply structure-based prediction methods to 

transcription factors without known TF-DNA experimental structures. We generated TF-

DNA homology models and applied the integrative energy function and pentamer 

algorithm for binding site predictions. This preliminary study showed potential for future 

expansion of applying structure based methods to homology models. 
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Future work needs to be done to expand the application of structured-base 

prediction of TFBSs using homology models of TFs to other TF families. Furthermore, 

these approaches can go beyond transcription factor binding site prediction and be 

applied to the study of the effects of mutations on binding specificity changes and their 

implications and possible roles in diseases, such as cancer.   
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