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ABSTRACT
RUOYANG WANG. Three essays on empirical finance. (Under the direction of DR.
STEVEN P. CLARK)

This dissertation includes 3 papers in empirical finance.

In chapter 1, since theory suggests a relationship between both volatility of volatil-
ity, variance risk premium, and the equity risk premium; we empirically investigate
the relationship between volatility of volatility and the equity risk premium, and the
relationship between the variance risk premium and the equity risk premium; we find
that volatility of volatility alone explains 5 to 10% of the total variation of equity
risk premium, and together with VIX data, it explains more than 20% of the total
variation of equity premium; and we fail to find a significant relationship between
volatility of volatility and the variance risk premium; we also use six measures of
volatility of volatility based on non-parametric models, a GARCH model and VVIX
data.

In chapter 2, we proposes a new way to measure the variance risk premium by
applying a fractional cointegration relationship between implied variance and realized
variance. To find the fractional cointegration coefficient between implied variance and
realized variance, we develop a search method based on minimization of the score test
statistic proposed by Robinson(1994). We use daily, weekly and monthly data of five
stock market indexes (S&P500, S&P100, DJIA, NASDAQ100 and Russell2000) and
their volatility indexes from the CBOE. We find our new measure improves the return

prediction power of the variance risk premium both in-sample statically and out-of-
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sample dynamically, and the result is robust for the monthly data among all five
indexes.

In chapter 3, by using submortgage data, we found that investors are being charged
with a significant risk premium over owner occupants; besides that, they are also fac-
ing a more restricted loan; with the market getting hotter, this risk premium and
restrictions are getting even worse. Being treated like that, our findings show that
investors were actually not more risky than owner occupants in terms of both pre-
payment and default. We suspect the reason for this puzzle is that when the market
getting hotter, there are more speculative investors who commit occupancy fraud to
get a more favorable loan. And these speculative investors were actually recorded as
owner occupants on loan documents, which increased our estimation of the hazard of
owner occupants group. And our information asymmetry test actually reaffirmed our
suspect. Therefore, this paper, for the first time, give statistical evidence on occu-
pancy fraud, and we also proposed a statistical scanning way to reduce to potential

occupancy fraud.
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CHAPTER 1: VOLATILITY OF VOLATILITY, EXPECTED STOCK RETURN
AND VARIANCE RISK PREMIUM

Theory suggests a relationship between both volatility of volatility, variance risk
premium, and the equity risk premium. We empirically investigate the relationship
between volatility of volatility and the equity risk premium, and the relationship be-
tween the variance risk premium and the equity risk premium. We find that volatility
of volatility alone explains 5 to 10% of the total variation of equity risk premium, and
together with VIX data, it explains more than 20% of the total variation of equity
premium. We fail to find a significant relationship between volatility of volatility and
the variance risk premium. We use six measures of volatility of volatility based on

non-parametric models, a GARCH model and VVIX data.
1.1  Introduction

There are always gaps between the expectations of market participants and sub-
sequent reality. What insights can be gleaned from studying the differences between
expected volatility implied by option prices and ex post realized volatility of the time
series of prices of the underlying security? (See, Christensen and Prabhala (1998)
and Demeterfi et al (1998).) When the implied volatility is higher than the real-
ized volatility, it means traders anticipated certain risks and usually these risks could
be hedged by trading financial derivatives. However, when the implied volatility is

smaller than the realized volatility , it means on the market there are some risk that
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has not been expected by investors and that’s when some extreme events happens.
Usually, crash will happen when the implied volatility is smaller than the realized
volatility.

However, due to the measurement error of implied volatility and realized volatility,
the idea of variance risk premium is only theoretical, it’s hard to quantify the variance
risk premium to predict extreme cases(see, Chernov(2007) and Carr and Wu (2009)).
However, from both the equilibrium model and probabilistic model, people can prove
that this variance risk premium primarily (if not solely) depends on the volatility
of volatility. Therefore, the measurement of volatility of volatility becomes a crucial
variable to measure the risk of extreme cases. It’s easier to understand this from
a risk management perspective: for example, nowadays, Basel II require banks to
calculate Value at Risk every day based on their historical volatility. However, this
will only help to prevent some common risk. To prevent some extreme cases, people
not only need to know the historical volatility, but also the volatility of volatility,
or the probability that this historical volatility itself is going to change. that’s why
volatility of volatility is a crucial variable to measure the potential extreme risk(see
Jullizrd and Ghosh(2012) and Liu, Pan and Wang(2005)).

But so far, there is no literature measuring volatility of volatility, although lots
of literature mentioned its existence(see, Jones(2003) and Bollerslev and Todorov
(2011)). The reason why so far it’s not in the literature might because in a equilibrium
model, if one assume the consumption growth rate is constant, or the volatility of
consumption growth rate is constant, then when solving the equilibrium model, there

will be no volatility of volatility term. And also in a probabilistic model, if one
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assume the return is normal distributed, there will also be no volatility of volatility
term. Only when we set our model to be more realistic, with a changing volatility of
consumption growth rate, or allow the return follow a Lévy process, we will recognize
the volatility of volatility term.

Usually when people measure volatility, especially in stochastic volatility model,
people tend to think the volatility itself is unobservable, so usually people use state
space model to measure it. However, due to the importance of volatility of volatility
in risk management and derivative pricing, it will be useful if we have explicit mea-
surements of volatility of volatility. This paper proposed 6 different measurements of
volatility of volatility based on different ideas. One measurement is an almost non-
parametric measurement of volatility of volatility; 3 measurements based on GARCH
model: we proposed a new GARCH model for volatility of volatility, which we call
nested GARCH model. We also proposed estimation method for this GARCH model.
And from the empirical test, the measurement based on this nested GARCH model
has the best performance when predicting future return. The other two measure-
ments come from the trading price of options on S&P500 indexes and options on VIX
index. Our empirical results show that volatility of volatility, together with VIX,
could explain more than 20% of the variation of equity premium and it has some
prediction power on future market returns.

Our paper is structured as follows. In Section 2, we discuss the theoretical motiva-
tion for this paper. In Section 3, we propose our six measures of volatility of volatility.
We describe the data we use in Section 4 and we do the empirical tests in Section 5.

Section 6 concludes.



1.2 Motivation
1.2.1  Variance Risk Premium and Volatility of Volatility

We begin by highlighting two models in the literature that imply that the variance
risk premium depends on volatility of volatility .Bollerslev et al. (2009) and Drechsler
and Yaron (2011) presented equilibrium models in which the variance risk premium

depends on the volatility of volatility.
1.2.1.1  General Equilibrium Model

The general equilibrium model developed by Bansel and Yaron (2004), Bollerslev,
Tauchen and Zhou (2009) and Dressler and Yaron (2011) all start from the geometric
growth rate of consumption, which is assumed to be

Jt+1 = Hg T OgtZgt+1
The volatility of this growth rate is stochastic, following
Ts 141 = o + PoTy, + /G 70111
Qi+1 = Qg + et + Pg\/AiZg,141
where a, > 0, a; > 0, |ps| < 1, |pg| < 1, ¢y > 0, {254}, {20+} and {z,:} are i.id.
series with mean zero and unit variance.

They assume the representative agent has recursive preferences as described in

Epstein and Zin (1989) and Weil (1989),
Vo= [(1-8)C,7 + 3BV
then using the approximation by Campbell and Shiller (1988), solve this model for
an equilibrium,

Ti41 = Ko + KiWip1 + W + Gegt
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where r;,1 is the logarithm return of any consumption asset from time t to ¢ + 1,
wy is the logarithm of the price-consumption ratio and ko and k; are coefficients for
approximation.

By assuming the solution follows an affine form of these two state variables o,

and ¢,

Wt = AO + Aao-;t + Ath
by solving the Euler equation from the standard asset pricing condition Ey[M; 1 R;¢41] =
1 where the logarithm of the inter-temporal marginal rate of substitution should be

the form

My = 0logd — 0Y ' grr + (0 — 1)re
where § refers to the subjective discount factor.
Since the Euler condition must hold for all values of the state variables, we can

solve the 3 coeflicients:

Clogd+ (1 =Y g + ko + K1 [Acas + Agag]

A
0 1— K1
)2
A - =)
20(1 — K1po)
e 1 — Kipg — \/(1 — K1po)? — O2R]P2A2

‘ 0532

Based on the solution of this model !, we will get the relationship between variance

'In the appendix



risk premium and volatility of volatility
VRP = B(0%1) — Bi011) = (0 — Vs Ay + Ai(A2 + A26) 62
where
O=(1-y)(1—-u )"

Here ~ denotes the coefficient of risk aversion and 1 refers to the inter-temporal
elasticity of substitution, usually both of them are bigger than 1, which makes 6 < 0.
And the expression of coefficient A, and A, is in the appendix. Since both of them
are negative, we can see the variance risk premium is positively correlated with the

volatility of volatility, and we will test this in Section 5.
1.2.1.2  Probabilistic Model

Barndorff-Nielsen and Veraart (2012) proposed the volatility modulated non-Gaussian
Ornstein-Uhlenbeck (VMOU) processes and quantified the impact of the volatility of
volatility on the variance risk premium. They assume the volatility process V; follows

AV, = =A\Vidt + qid L,
where L, is a levy process with characteristic triplet (v, 0, q), which means the char-
acteristic function of L; E(exp(i0L;)) = exp(t¥(0)) satisfy
U, (0) =iby + /Oo(ewm — 1v(dx)
0
They proved that if the volatility of volatility ¢; follows
dg: = a(b — q)dt + g/qdW,
where a,b and g are positive constants satisfying the Feller condition (2ab > ¢?,

¢o > 0) and W is a standard Brownian motion, then the variance risk premium and



the volatility of volatility satisty
VRP, i1n = qF1(h) + Fa(h)
where Fj(h) and Fy(h) are explicitly known deterministic functions.
By defining
a+1 a 1 —ah

h) = — h—
G(h) a * 1—a" +(JL(l—a)e

and the risk-neutral measure for a and b are a? and %, and G?(h) = G(a%, h),

according to Barndorff-Nielsen and Veraart (2012), we have:
1—e" 1

N ) — E(/‘ﬂlG(h) — K7G2(h))

Fy(h) = %[Hla(mb QGO

where k; is the 1st cummulant of the Levy subordinator L;, and /@? is the risk-
neutral measure of x;.

It is difficult to determine the sign of Fi(h) and Fy(h), but at least we know that
they are deterministic functions depends on the frequency of data. Also, we can see,
if there is no volatility of volatility, the variance risk premium would be deterministic.
Therefore, the probabilistic model proposed by Barndorff-Nielsen and Veraart (2012)
also imply the variance risk premium depends on the volatility of volatility, and the
coefficient depends on the frequency of data. We will empirically test this in Section

d.



1.2.2  Expected Stock Return and Volatility of Volatility

Returning to the Bollerslev, Tauchen and Zhou (2009) model, if we substitute the
solution of w; into the approximation
Tl = Ko + KWt + W + Gi

we have

(1—79)

20 0;,t+(Rlpq_l)Ath+Ug,tZg,t+1 +K1 \/@[Agzg,pﬂ —I—Aq%zq,tﬂ]

Tip1 = —logs +0 7 g —
So according to their model, the return from ¢ to ¢ + 1 positively related to the
the volatility o,; and the volatility of volatility ¢, compensating investors for the
additional volatility risk.

Then, plug the solution into the logarithm of inter-temporal marginal rate of sub-
stitution,

My = 0logd — 00~ gy + (0 — 1)repy
one can get the equity premium r,, — ry:
Tt = —Covg(Myg1, 1e41) = 70§,t + (1 - 9),%%(143@21 + A%)q

From the above expression, one can see the equity premium can be decomposed
into two parts: the first comes from the volatility, which has been well studied by
previous literature, and the second comes from the volatility of volatility. Moreover,

since 6 is smaller than zero, the equity premium is positively correlated with volatility

of volatility, or, say, the shock to volatility. We will test this result in Section 5.
1.3 Measurement of Volatility of Volatility

We investigate six possible measures for volatility of volatility based on three differ-

ent ideas. One is a direct method with minimal assumptions except that returns can
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be decomposed into a time varying volatility times a normal innovation. The second
category is based on GARCH modeling and the third category is based on the option
implied volatility. We list the basic idea of each of the measures in table 1, also plot
each of them in Figures 2 and 3, and will explain them in this section one by one.
From Figures 2 and 3, one can see although the detailed plot of each measurement
is different, these six measurements almost peak at the same time around September
2008, this verified our statement about volatility of volatility is good at detecting

extreme things.
1.3.1 A Semi parametric Way to Estimate Volatility of Volatility

According to Figure 1 in Anderson et al. (2001) , the returns scaled by realized
standard deviations is approximated Gaussian, so we can model the stock return as
r =o€
where 0 > 0 and € ~ N(0,1), if we further assume that ¢ and e are uncorrelated,

then we will have the expected return as:

and

2
B(ll) = E0)E() = |/ 2(0)
since we know that if € ~ N(0,1), we have E(e?) = 1, E(|e|) = 4/2. Therefore, to

estimate E(0?) and E(c), we can use:
N

B(o?) =y 37

=1
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and

PO =5 2o

Therefore, to estimate the realized variance of volatility, we use
N N

Var(r) = E(0*) - B¥0) = 5 312 = 3 S Inll’ g

i=1 i=1

Since this measurement cannot guarantee it’s always positive, we take the absolute

value of this measurement as the variance of volatility.
1.3.2  GARCH type of model to measure VolVol

Here, we proposed three ways to measure volatility of volatility by using GARCH

model.
1.3.2.1  the realized volatility of the GARCH volatility

Here, if we assume the daily return follows a simple GARCH(1,1) process as fol-
lowing:
Ty = pyp + Iy

h? = Qg + Oélh?_l + Blu?_l
then we could get a estimated volatility hy every day, the realized volatility of this

estimated volatility based on GARCH model

n

~

RVi(h) = Z[ht-s-%A - ht+%A]2
i=1
would be a very straight forward measurement of volatility of volatility. To get a

monthly RV;(h), n is around 22 each month.
1.3.2.2  The volatility of realized volatility

According to Corsi et al. (2006), if we define

RV, = Z[pH%A - pt+%A]Q
i—1
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then the logarithm of realized volatility actually follows a normal distribution with a

time-varying variance.

RV, — J;il o%(s)ds

4 N(0,1)
Q;
2MRV;
where 4/ 5 A%;% is an approximation of the standard deviation of the realized volatility.

And following Corsi et al. (2006), without loss of generality, we can assume that the

logarithm of realized volatility actually follows a GARCH (1,1) process as
Yr =ty + Ve

ht =w + Cklhtfl -+ ﬁlu?_l

where y is VRV and u; 1 = 0y_16,_1 and {¢} is a sequence of i.i.d. random variables
with mean 0 and variance 1. Since here, we use the daily price to get the monthly
realized volatility, then by using the GARCH model on the realized volatility, we

actually get the monthly volatility of the realized volatility as hy.
1.3.2.3 A nested GARCH model

Here, we assume the return as following
Ty = by + O€pry (2)
where p, could be an ARMA process itself, but since we are focusing on volatility
and volatility of volatility, for simplicity, we just put it as p,., and {¢,;} is a sequence

of i.i.d. random variables with mean 0 and variance 1.

For the volatility, we assume part of it is deterministic as a GARCH process, but
the other part is stochastic.

sz2 = Qg + 04103_1 + Bluf_l + Gi€ot (3)
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where w;_; = 041641, {€,+} 18 a sequence of i.i.d. random variables with mean 0
and variance 1 as well, and it’s independent from {¢,+}. ap >0, a3 >0, f; > 0 and

a1+ (1 < 1. Here, ¢ is the volatility of volatility and we assume this part also follow

a GARCH process

%2 =g+ qugfl + ¢q77t271 (4)

where 7,1 = q—1€54-1, g > 0, pg >0, ¢, > 0 and p, + ¢, < 1.
If we put them together, it would be
(

Ty = My + Ot€rg

2 __ 2 2
o = Qo+ q10;_1 + Brui_y + qt€ot

\ G = g+ pediy + deni—y
The 3-step estimation method for this “nested” GARCH model is as following:

First, by ignoring any ARCH effects, we can estimate the mean equation p; of a

return series by using MLE; denote the residual series by w;, we get
Up =1y — ﬂr,t

For the second step, we can treat {2} as an observed time series, and denote & =
u? — o2, and plug it into equation (2), we get
up = ag+ (o + B)ui g + & —an&y + Gt€ot

So we can treat {u?} as a ARMA process, say, the AR coefficient estimate is 6, and
for MA is gzgl, then Bl =0, — él and &y = qgl. Since it’s easy to check that E(&) =0
and cov(&, &—s) = 0 for s > 1, so {&} is a martingale difference series, therefore the
estimation of ag, oy and S; is unbiased.

The third step is very similar to the second step, again, we can denote the residual



13

series by 7); and treat 77 as an observed time series, define m; = n? — ¢?, plug it into

equation (3), we get

N = g+ (pg + SNy + My — Py

so we can treat n? as a ARMA process and get unbiased estimation of «y, p, and
ds.

Although both & and m; are martingale martingale difference series, so we can get
unbiased estimation for our model, in general, they are not i.i.d. sequences. There
we will inevitably lose some efficiency by this 3-step estimation.

The ¢; would be a daily measurement of volatility of volatility, but since here we
care about the monthly measurement of volatility of volatility, so we only use the ¢,

at the end of each month.
1.3.3  Volatility of VIX

Since VIX is considered to be a barometer of market volatility, the volatility of VIX
naturally becomes a measure of volatility of volatility 2. So there are two ways to
measure the volatility of VIX: the realized volatility of VIX and the implied volatility

of VIX.

2Chicago Board of Exchange explained the volatility of volatility by using VIX at http://www.
cboe.com/micro/vix/VIXoptionsFAQ.aspx\#9
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1.3.3.1  The realized volatility of VIX

Since VIX is an index for volatility, it is straight forward to use the realized volatility

of VIX as a measures of volatility of volatility

RV,(VIX) =Y [VIX, in — VIX, i1 a)

i=1
1.3.3.2  The implied volatility of VIX

When CBOE first launched options written on VIX in 2006, people were worrying
about the liquidity of these options, we plot the trading volume of options on VIX in
Figure 2, the trading volume of the options on VIX has increased exponentially from
several thousand contracts per day in 2006 to more than 1 million contract in 2013
3. With such a big volume of options trading everyday, the volatility of VIX itself is
crucial in pricing these options. To give the market an opportunity to see the implied
volatility from the trading of these options, CBOE launched VVIX in March 2012,
the method to determine the option implied volatility of VIX is similar to what they
used to determine VIX, the implied volatility of options on SP500. So the VVIX is a

natural measure of volatility of volatility.
1.4  Data and Measurement
1.4.1  Realized Volatility

Barndorff-Nielsen and Shephard (2002) proved that when n — oo and A is fixed,

(using the same notation as Bollerslev et al. (2009), ) the realized volatility measured

3see http://ir.cboe.com/releasedetail .cfm?ReleaseID=756850
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by the following

n

E;D(UitH) =RV, = Z[pH%A - pt+%A]2
will be a good approximation of the unob;;ved integrated volatility, where p, is the
logarithmic price.

Here, we used the daily data to get the monthly realized volatility, so A is one
month, and n is around 22 for each month*. The data is from January 1st, 1990 to
December 31st, 2012. The reason it start from January 1st, 1990 is because that’s
the earliest data we can get from CBOE for the VIX which we will use later.

We plot this monthly realized volatility time series on the second chart of Figure
4, comparing with Figure 2 in Bollerslev et al. (2009), we get very similar result
from Jan 1990 to December 2007, but the financial crisis drove the realized volatility
around 2009 much higher than before. We list the 10 months with the highest realized

volatility from Jan 1990 to Dec 2012 in table 1, 7 out of these 10 highest realized

volatility months is the 7 consecutive months from Sep 2008 to Mar 2009.
1.4.2  Implied volatility

Just like the “implied” interest rate can be extracted from bond price, implied
volatility could also be extracted from option price. Historically, people used the
famous Black-Scholes formula to get the implied volatility from option price, but it’s
based on the Gaussian distribution and only incorporated one strike price; to incor-
porate more information from option prices with different striking prices, Carr and

Madan (1998) and Demeterfi et al. (1999) proposed a “model-free” way to incorpo-

4the reason we didn’t use the 5 minute data is because according to the Table 1 in Drechsler and
Yaron (2010), the “nontrivial auto-correlation” in the five-minute returns tend to drive the mean of
realized volatility based on 5 minute data much smaller than that for the daily data.
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rate prices of both call options and put options with different striking prices but the
same expiration date, but because of the put-call parity and sometimes the illiquidity
of put options, the following way, which is proved by Britten-Jones and Neuberger
(2000) to be the risk neutral expectation of the integrated volatility, become a popular

way in the market to calculate implied volatility.
K

)EIVEQ/OOOt(t+1’M)_Ct(t,K)
0

Qr 2
Ey (Ur,t+1 K2

dK

where Cy(T, K) denote the price of a European call option at time ¢ with the strike

price at K and Maturity at T’ is the discount rate from ¢ to t + 1. And since

2003, CBOE start using this “model-free” measurement for the VIX index, which is
based on S&P 500 index options with a 30 day maturity.

Here, to plot the monthly implied volatility, we used the last observation of each
month of the VIX data, and plot it in the first chart of figure 4. We can see although
the implied volatility was very high during the financial crisis, but it’s not as high as
the realized volatility during that time.

We also listed the highest 10 months with the highest implied volatility in the same
table, from which we can see that there is a lead-lag relationship between realized
volatility and implied volatility as documented by other literature, that if one month
get a high realized volatility, then people will trade the options with a higher implied

volatility the same month or the next month, which drive the implied volatility from

the same month or the next month higher.
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1.4.3  Variance Risk Premium

Following Bollerslev, Tauchen and Zhou (2009) and Drechsler and Yaron (2011),
We define the variance Risk Premium as the difference between the Implied Variance
and the Realized Variance:

VRP = EtQ(Uz,t—i-l) - Et(Uf,tH) =1V - RV
Most of the time, options are traded with an implied volatilities higher than the
realized volatilities, which means usually, the realized volatility has been expected, so
the implied volatility subtracted from option price are usually higher than the realized
volatility, so the variance risk premium is usually positive, and the higher the variance
risk premium, the higher the implied volatility than the realized volatility, it means
the more cautious people are, or the more risk averse people are during that period.
However, when the realized volatility is bigger than the implied volatility, that’s when
there are uncovered, or unpredicted risk, then at these extreme cases, the variance
risk premium become negative. We used our daily data to get the realized variance
and the VIX data to get the implied variance; and then get the difference between
these two as the variance risk premium, and plot it in Figure 1, and we get the similar

results as Bollerslev, Tauchen and Zhou (2009) °.
1.4.4  Data Description

We select the daily data of S&P500 index to do empirical test, there are three
major reasons we chose S&P500 index, one is it has a good coverage of the entire

market, which means it’s a good representative for the market; the second reason is

5We appreciate that the authors of this paper shared the data:
http://www.federalreserve.gov/econresdata/researchdata/feds200711.x1s
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the options based on S&P500 has good liquidity, and the implied volatility based on
these options are calculated everyday as VIX, and every the options based on VIX
are also liquid now, so it’s easy get data for us to verify our thoughts on volatility of
volatility; the third reason is that S&P500 index data has been used by many scholars
before us, so it’s easy for us to compare our results with previous literature.
We have four different data sets here: Data Set 1 is from January 1st, 1990 to
September 30th, 2012, that’s the longest data we can get so far, but since the authors
of Bollerslev, Tauchen and Zhou(2009) only updated their realized volatility measure
by 5-min high-frequency data to December 2008, for data set 1, we used our own
measurement of realized volatility, which is based on daily data. For robustness check,
we have data set 2, which is from January 1990 to December 2008, with the Realized
volatility data updated by the authors of Bollerslev, Tauchen and Zhou(2009). To
compare our results with Bollerslev, Tauchen and Zhou(2009), we have data set 3,
which is from January 1990 to December 2007, and also the other reason for data 3
is to see if we get rid of the peak data, will that affect our results. To incorporate
Measurement 6 based on the VVIX data, which was launched January 1st, 2007, we
use data set 4, which is from January 1st, 2007 to September 30th, 2012, the other
reason for checking this data set is to see if our model works with the most recent
data. To summarize our data sets, we have table 2.

Besides all 6 measurements of variance of volatility, realized variance, implied vari-
ance and the variance risk premium that we’ve discussed earlier in this section and

the previous section, we also used the excess return, defined by the difference be-
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tween the market return and the risk free rate, we used Fama-French data 5. We
also used other popular predicting variables from previous literature (Lamont(1998),
Lettau and Ludvigson (2001), Ang and Bekaert (2007) and Bollerslev, Tauchen and
Zhou(2009)): the price-earning ratio and the price-dividend ratio of S&P500 index
comes from public data set 7; the default spread (DFSP), defined as the difference
between Moody’s BAA and AAA Bond Yield Indices, the term spread (TMSP), de-
fined as the difference between the ten year and three month treasury yields, and the
stochastically detrended risk free rate (RREL), defined as the difference between the
one month T-bill rate and its trailing twelve month averages, come from the Fed-
eral reserve website 8. The consumption-wealth ratio CAY comes from the Lettau’s
website °.

We listed basic summary statistics for the monthly returns and predictor variable
for data set 1 in Table 3. For robustness check, we also listed the summary statistics

for data set 2, 3, 4 in Table 4, 5 and 6.
1.5 Empirical Results
1.5.1  Expected Stock Return and Volatility of Volatility

With the equilibrium theory developed by Bansel and Yaron (2004), Bollerslev,

Tauchen and Zhou (2009) and Dressler and Yaron (2011), at the existence of volatility

SWe do appreciate their effort on updating the data http://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/ftp/F-F_Research_Data_Factors.zip
"http://www.multpl.com/table?f=m and http://www.multpl.com/
s-p-500-dividend-yield/table?f=m
8http://www.federalreserve.gov/releases/hi5/data.htm
http://faculty.haas.berkeley.edu/lettau/data/cay_q_12Q3.txt
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of volatility, the equity premium should follow
s = —Covg(myy1, 1) = 70§7t + (1= 0)r7(A202 + A)q,

To test the relationship between the equity premium and the volatility of volatil-
ity, we run the simple regression for all the measurements of volatility of volatility
first, and then also other predictor variables, such as the realized variance, implied
variance, the variance risk premium, and other macro-economic predictor variables.
We listed the result in Table 7, from which we can see that measurement 1, 2 and 5
perform really good in the simple regression context, with the R? being 9%, 5% and
11% respectively. In the multiple regression context, since the implied variance (IV)
is significant in the simple regression context as well, we put IV as the additional
explanatory variable. then the R? is more than 20%.

The coefficient before volatility of volatility is negative in the simple regression
context, however, after we add the implied volatility as the additional explanatory
variable, the coefficient before volatility of volatility becomes positive and the coeffi-
cient before IV is negative. Since we are testing the relationship between the equity
premium and volatility of volatility, Implied Volatility is a good approximation of
volatility itself. So we can see there is a positive variance risk premium due to the
positive coefficient in front of volatility of volatility. However, the negative coefficient
in front of implied volatility could more likely be the risk-return tradeoff.

For robustness check, we run the same regression on the other three data sets,
and the results are in table 8, 9 and 10. From which we can see that although the
performance varies a little bit with different data sets, for example, with measurement

4 of volatility of volatility and implied volatility, the R? could get to as high as 33% for
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data set 2, which means 33% of variation in equity premium could be explained by just
these two variables, and for data set 4, these two variables together with the realized
volatility could explain 42% of the total variation of equity premium. Although the
performance for data set 3 is not as good as other data sets, the result is still quite
robust for all these 4 data sets: measurement 1, 2 and 5 for volatility of volatility
always perform good in the simple regression context, and the measurement 2 or 4
of volatility of volatility, together with the implied volatility and realized volatility,
could explain more than 20% of the total variation of equity premium.

Here, the negative coefficient in front of the implied variance term and the positive
coefficient in front of the variance of volatility term also reflect that people are aware
of the volatility of the market: when the volatility is low, people tend to get into
the market, which drives the return to be higher, and when the market volatility is
high, people actually get scared by the high volatility of the market, so people tend
to leave the market, which in turn drives the return lower. However, most people are
not aware of the volatility of volatility, or the risk of the extreme cases, so even after
considering the volatility, there are still some risk left uncovered for some extreme
cases, and because people’s unawareness of this risk, the returns are even higher
when this uncovered risk is higher, when this effect accumulate to some extent, some

extreme event, like crash, will happen.
1.5.2  Return forecasting

To see whether our measurements of volatility of volatility have some predicting

power on stock market return, we run simple regression to predict return of different
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horizons from 1 month to 24 months by using 1-month lagged volatility of volatility
measurement. We tried all of our 5 measurements, we find although the measurements
1, 2 and 5 perform good in explaining the equity premium at the same period, they
don’t really have a lot of predicting power in the long run. We put the predicting
market return result by measurement 4 in table 15 and 16, respectively. We also
plot the estimated slope coefficient and the 95% confidence band for the estimated
slope coefficient, and also the adjusted R? in Figure 5.

From the results we can see that for measurement 3, with the increase of the
predicting horizon, the predicting power is getting stronger from less than 1 percent
in 5 months, to more than 4 percent in 2 years. For measurement 4 of volatility of
volatility, the prediction get best when the predicting horizon is from 9 months to 16
months, the prediction power could get to as high as 6%, which is a good result even

comparing with previous literature.
1.5.3  Variance Risk Premium and Volatility of Volatility

To test the relationship between variance risk premium and the volatility of volatil-
ity predicted by both the equilibrium model and probabilistic model in section 2 of
this paper, we run regression between the variance risk premium and 5 different mea-
surements of volatility of volatility for data sets 1, 2 and 3, and we put the results in
table 17, 18 and 19, respectively.

We get very mixed results: for data set 1, the relationship is not significant at all,
but for data set 2 and 3, the relationship is significant, especially for measurement 2,

3, 4 and 5; but the sign of those coefficients in front of volatility of volatility measures
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changed from one data set to another. We think the reason for this is because for data
set 1, the variance risk premium is measured by daily data instead of high frequency
data, but for data set 2 and 3, the variance risk premium is measured by the 5-min
high frequency data, this might cause the different result between data set 1 and data
set 2,3. The other reason is the data for the whole year 2008 is very different from
previous data due to the 2008 financial crisis. So by including the data in 2008, data
set 2 perform differently than data set 3, this could be the reason why the sign of
coefficients changed from data set 2 to data set 3. To test this relationship, we need

data with longer horizon and high frequency data to measure realized volatility.
1.6 Conclusion

From the empirical tests we can see that volatility of volatility itself could explain 5-
10% variation of equity premium, together with VIX, these two variables could always
explain more than 20% of variation of equity premium, this result is robust through
all 4 of our data sets. The volatility of volatility also have some predicting power
on the future returns, especially good at one year around. To test the relationship
between the volatility of volatility and variance risk premium, we need high frequency
data and longer time series.

All in all, with the 6 different measurements of volatility of volatility, we provide
empirical evidence that volatility of volatility itself could be a good measure of the
risk of extreme cases and it has predicting power on future returns and could explain

a fair amount of equity premium in the same period.
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Table 11: Monthly return multiple regression for data set 1

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) 1.86***  1.79** 1.43** 1.33***  0.93* 0.81*
(0.30) (0.30) (0.32) (0.34) (0.36) (0.38)
VoV2 0.06™*  0.07***
(0.01) (0.01)
1AV —0.08* —0.08"*** —0.05"*  —0.05*** —0.05"* —0.04***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
RV 0.00r 0.00 0.00
(0.00) (0.00) (0.00)
VoV3 0.66™*  0.75"**
(0.17) (0.19)
VoV4 0.02**  0.02***
(0.00) (0.01)
R? 0.24 025 020  0.21 0.22 0.2
Adj. R? 0.23 0.24 0.20 0.20 0.21 0.21
Num. obs. 273 273 273 273 273 273

*

**p < 0.001, “p < 0.01, "p < 0.05 p<0.1

Table 12: Monthly return multiple regression for data set 2

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) 3.07*  2.45** 2.43%** 2.17* 1.72%** 1.92%**
(0.39) (0.40) (0.36) (0.41) (0.37) (0.41)
VoV2 0.05**  0.09***
(0.01) (0.01)
1AY —0.117* —0.08"* —0.10"* —0.08"* —0.09*** —0.11***
(0.01) (0.01) (0.01) (0.02) (0.01) (0.02)
RV —0.07** —0.02 0.01
(0.02) (0.01) (0.01)
VoV3 0.90*** 0.94***
(0.18) (0.18)
VoV4 0.04*** 0.04**
(0.01) (0.01)
R? 0.26 0.32 0.28 0.28 0.32 0.33
Adj. R? 0.25 0.31 0.27 0.27 0.32 0.32
Num. obs. 228 228 228 228 228 228

*

**p < 0.001, “"p < 0.01, "p < 0.05, p < 0.1
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Table 13: Monthly return multiple regression for data set 3

32

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) 227 1.67* 1.21* 1.04* 1.85%* 1.85%**
(0.42) (0.40) (0.47) (0.49) (0.43) (0.44)
VoV2 0.13**  0.25***
(0.02) (0.03)
1AV —0.13** —0.10"* —0.11"* —0.09"** —0.10*** —0.10***
(0.02) (0.02) (0.01) (0.02) (0.01) (0.02)
RV —0.21* —0.04 0.00
(0.03) (0.03) (0.03)
VoV3 2,14 2.31%*
(0.36) (0.38)
VoV4 0.04*** 0.04***
(0.01) (0.01)
R? 0.24 0.35 0.24 0.25 0.24 0.24
Adj. R? 0.23 0.34 0.23 0.24 0.23 0.23
Num. obs. 216 216 216 216 216 216
p < 0.001, p < 0.01, *p < 0.05, p<0.1
Table 14: Monthly return multiple regression for data set 4
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) 1.56* 2.28** 1.52* 2.14** 0.75 1.33
(0.65) (0.79) (0.69) (0.80) (0.80) (0.78)
VoV2 0.04* 0.05**
(0.02) (0.02)
1A% —0.06"* —0.05"** —0.04*** —0.03"* —0.04"** —0.01
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
RV 0.00 0.00 —0.01*
(0.00) (0.00) (0.00)
VoV3 0.34 0.51*
(0.21) (0.24)
VoV4 0.02* 0.04***
(0.01) (0.01)
R? 0.33 0.35 0.30 0.32 0.33 0.42
Adj. R? 0.31 0.32 0.28 0.29 0.31 0.39
Num. obs. 69 69 69 69 69 69

**p < 0.001, “Fp < 0.01, "p < 0.05, p<0.1
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Table 17:

Variance risk premium and volatility of volatility for data set 1

Model 1 Model 2 Model 3 Model 4 Model 5

(Intercept) — 9.31** 11.10** 10.84** 10.43** 11.26**
(1.92)  (211)  (231)  (259)  (1.93)
VoV1 0.11

(0.06)
VoV2 —0.01
(0.04)
VoV3 —0.01
(0.85)
VoV4 0.01
(0.03)

VoV’ —0.09

(0.16)
R? 0.01 0.00 0.00 0.00 0.00
Adj. R? 0.01 0.00 0.00 0.00 0.00
Num. obs. 273 273 273 273 273

Table 18:

*p < 0.001, *p < 0.01, *p < 0.05, p < 0.1

Variance risk premium and volatility of volatility for data set 2

Model 1 Model 2 Model 3 Model 4 Model 5

(Intercept) 17.54*  21.13"* 18.83** 13.24"*  20.06™**
(144)  (L47)  (L70)  (1.89)  (1.34)
VoV1 —0.04

(0.04)
VoV2 —0.15"*
(0.03)
VoV3 —1.07
(0.65)
VoV4 0.07**
(0.02)
VoV5 —0.65"""
(0.11)
R2 0.00 0.11 0.01 0.03 0.13
Adj. R? 0.00 0.11 0.01 0.03 0.13
Num. obs. 228 228 228 228 228

p < 0.001, "p < 0.01, "p < 0.05, 'p < 0.1
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Table 19: Variance risk premium and volatility of volatility for data set 3

Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) — 15.47* 12.74**  9.85** 10.79** 15.07**

(1.11)  (1.52)  (L81)  (1.46)  (1.17)
VoV1 0.29***

(0.06)
VoV2 0.26***

(0.05)
VoV3 5.95%*
(1.08)
VoV4 0.14***
(0.02)
VoV’ 0.96***
(0.19)

R? 0.11 0.10 0.13 0.17 0.10
Adj. R? 0.11 0.09 0.12 0.17 0.10
Num. obs. 216 216 216 216 216

Table 20:

*p < 0.001, *p < 0.01, *p < 0.05, p < 0.1

Variance risk premium and volatility of volatility for data set 4
Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) —0.79 4.09 5.10 8.28 4.82
(6.95) (7.57) (7.92) (9.35) (7.12)
VoV1 0.24
(0.13)
VoV2 0.02
(0.08)
VoV3 0.01
(1.75)
VoV4 —0.03
(0.08)
VoV5 0.03
(0.34)
R? 0.05 0.00 0.00 0.00 0.00
Adj. R? 0.03 —0.01 —0.01 —0.01 —0.01
Num. obs. 69 69 69 69 69

p < 0.001, "p < 0.01, "p < 0.05, 'p < 0.1
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Figure 1: Realized variance,implied variance and volatility of volatility
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Variance of Volatility: Measurement 4

L

I h L n i L L

Jan-90 Jan-92 Jan-94 Jan-96 Jan-98 Jan-00 Jan-02 Jan-04 Jan-06 Jan-08 Jan-10 Jan-12

120

100

80

60

40

20

0

Variance of Volatility: Measurement 5

Jan-90 Jan-92 Jan-94 Jan-96 Jan-98 Jan-00 Jan-02 Jan-04 Jan-06 Jan-08 Jan-10 Jan-12

200

150

100

50

Jan-07

The Variance of Volatility: Measusrement 6

Jan-08 Jan-09 Jan-10 Jan-11 Jan-12 Jan-13
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Estimated Slope Coefficient and 95% confidence band for VoV4
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CHAPTER 2: LONG MEMORY IN VOLATILITY AND RETURN
PREDICTABILITY

This chapter proposes a new way to measure the variance risk premium by applying
a fractional cointegration relationship between implied variance and realized variance.
To find the fractional cointegration coefficient between implied variance and realized
variance, we develop a search method based on minimization of the score test statistic
proposed by Robinson(1994). We use daily, weekly and monthly data of five stock
market indexes (S&P500, S&P100, DJIA, NASDAQ100 and Russell2000) and their
volatility indexes from the CBOE. We find our new measure improves the return
prediction power of the variance risk premium both in-sample statically and out-of-
sample dynamically, and the result is robust for the monthly data among all five

indexes.
2.1  Introduction

Variance Risk Premium has been a concept that attracted lots of research attention
recently because of its potential to exlain the difference between the market expected
volatility and the realized volatility, and also its return prediction power, see Carr and
Wu (2006), Carr and Wu (2009), Barndorff-Nielsen and Veraart (2011) and Drechsler
and Yaron (2011). The standard way to measure the variance risk premium is the
difference between implied variance and realized variance. The implied variance is

usually measured daily from the option data, whereas the realized variance is usually



42

measured from high frequency data. Because of the frequency difference of these two
measurements, there is not a concensus about what the coefficient should be in front
of the realized variance for us to get a better measurement of variance risk premium.

This chapter provides a method to find the coefficient between implied variance
and realized variance from the well developed fractional cointegration literature. Be-
cause it’s stylized fact that return is usually stationary where as volatility, different
measurement of it, are always fractionally integrated, see Poon and Granger (2003)
and Bandi and Perron (2006). Statistically speaking, the reason that return could
be explained by variance risk premium migh partly due to that the stationarity of
variance risk premium.

Given the possible fractional cointegration between implied variance and realized
variance, we are able to find a fractional cointegration coefficient between them.
Currently in the literature, there are two ways to find the degree of integration of a
time series, see Robinson and Yajima (2002). One way is to measure it directly by
minimizing a likelihood function, see Shimotsu (2007) and Shimotsu(2012), the other
way is to assume that it equals to dy and test it by a score test statistic, see Gil-Alana
(2000). We combined these two ways to find the fractional cointegration coefficient.
We find the degree of two time series by the first way, and find the coefficient by
minimizing the test statistic from the second way.

We started from a big pool of data, it’s the daily, weekly and monthly data for
the 5 stock indexes and their volatility indexes from Chicago Board of Exchange, the
variables include return and volatility. Given the previous literature in volatility and

volume, see Fleming and Kirby (2010), we also add stock indexes trading volume into
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our data, we start by estimating the degree of integration of these time series. Our
finding is in line with the stylized facts that the return is always stationary whereas
volatility and volume are usually fractionally integrated. However, because of the
significant different degree of integration between volatility and volume, the only
fractional cointegration relationship we find is between implied volatility and realized
volaltility (and also different measures of them) for monthly data, which gives us a
chance to improve the measurement of variance risk premium by using this fractional
cointegration relationshi between implied variance and realized variance.

By minimizing the test statistic 72 proposed by Robinson(1994), we did find the
fractional cointegration coefficient in front of realized variance could improve the
return prediction power of variance risk premium.

The remainder of this chapter is organized as follows: Section 2 introduces the
fractional integration and fractional cointegration model we use and proposed our
way to estimate the frational cointegration coefficient. Section 3 describes the dataset
and details of our construction of different measurement of realized volitility and
implied volatility, and discusses the summary statitics of our data. Section 4 is the
empirical results and investigated return forecast power by our improved measurement

of variance risk premium. Section 5 offers some concluding remarks.
2.2 Model and Econometric Methodology
2.2.1  Fractionally Integration

We model the potential persistence in return, volatility and volume through a long

memory model. The memory parameter d in the fractionally integrated processes is
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estimated in a semiparametric way. We report results for the “two step feasible exact
local whittle estimator with detrending” [Shimotsu(2010)] '%n our paper. We have
also considered the gaussian semiparametric local whittle estimator [Kunsch(1987)
and Robinson (1995)] as well as the exact local whittle estimator [Shimotsu and
Phillips (2005)]. Our main findings are not affected by the choice of estimator. The
corresponding results are available upon request. We briefly review the two step
feasible exact local whittle estimator with detrending by Schimotsu as it serves as the

basis for our estimation of the memory parameter d in this chapter.
2.2.1.1  The Exact Local Whittle Estimator

Consider a univariate series y; which has the representation
Aty = (1— L)%, = u,1{t > 1} (5)
where 1{-} denotes the indicator function and w; is assumed to be stationary with
zero mean and spectral density f, () satisfying f,(A) ~ G for A ~ 0. More specificitly,

by expanding (1 — L)%, (5) can be rewritten as
t

I'(k —d) B
kz:; —k!F(—d) Yt—k = Ut

Define the Discrete Fourier Transform (DFT) and the periodogram of a time series

at evaluated at the fundamental frequencies as

L(As) = [wa()[?

10We do appreciate that Dr. Shimotsu share the code with us.
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Shimotsu and Phillips define the exact local whittle estimator as
d = argmin R(d),
and
R(d) = log G(d) 2d ijl A
g m g Ajs
where
R 1 —
Gd) = — > Tau, (V).
s=1
This exact local whittle estimator has been shown to be asymptotically normal:
A 1
vm(d —d) — N(0, 1)
m here is a bandwidth parameter that determines the locality of the estimates;
the choice of it usually involves a standard bias-variance tradeoff. To make sure our

result is robust with the choice of this bandwidth parameter, we showed our results

as m equals to [n°], [n°°] and [n®], where [z] is the integer part of x.
2.2.1.2  The Two Step Feasible Exact Local Whittle Estimator with Detrending

For the two step feasible exact local whittle estimator with detrending, there are
several elements that we need to review one by one:
1. Exact local whittle estimator with unknown mean

If y,; is generated by a process with unknown mean:
Yt = o + yf, yf =(1- L)dutl{t > 1}

then if we define

(d) = w(d)y + (1 — w(d))y,

=
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where

1 ifd <

N =

w(d) = 1 o if d >

0o

twice differentiable function otherwise
\

the estimator d now minimize the following objective function

Rp(d) = log Gp(d) — %d ; log \;,  where Gp(d) = % ; Inaty—p(an(N))
(6)

. Two step exact local whittle estimator

Since it’s hard to prove its global consistency in 6, Shimotsu proposed the two

step exact local whittle estimator: if we denote dr as the first-stage estimator,

then the two-step exact local whittle estimator 622 erLw should be:
doprw = dr — Rip(dr)/Rp(dr)

. Detrending

Besides the unknown mean, if the data also have a polynomial time trend:
e = o + Brot + Poot® + -+ + Brot” + uy, y) = (1 — L)% 1{t > 1}

to detrend, regress y; on (1,t,t2, ..., t*) first and then apply the two-step estima-
tion to the residual y; — ¥, the estimator d would be the two step exact loacal
whittle estimator with detrending.

. Feasible

Again, because of the difficulty in proving the the global consistency of the two-
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step exact local whittle estimator, the feasible set to search for d to minimize
the objective function would not be [0, 1], but for arbitray small v > 0, the
feasible set would be [v,1 — v]. so the two step exact local whittle estimator
with detrending that search within the feasible set [v,1 — v] would be the two

step feasible exact local whittle estimator with detrending.
2.2.2  Fractional Cointegration

The definition of fractionally cointegration, as appeared in Cheung and Lai (1993)
for the first time, comes from a generalization to fractional cointegration of the defi-
nition of standard cointegration as given in Engle and Granger (1987):

The component processes of an (n x 1) vector X; are said to be fractionally cointe-
grated of order d, b with b > 0 (denoted X; ~ CI(d,b)) if

1. for each i, 1 <i <mn, X;; ~ I(d), and

2. there exists a vector £ € R" such that Y; = ' X, ~ I(d — b).

This is so far the most used definition of fractional cointegration, we will discuss

how to test it and how to find & next.
2.2.2.1  Robinson’s (1994) score 72

Robinson (1994) proposed a way to test the degree of integration of a linear combi-
nation Y; = &'Xy, by using a score statistic 7%, which follows a x2 distribution where
p is the number of restrictions tested: given an (n x 1) vector X}, the components of
which are each I(d) series, assume that the spectral density of the linear combination
is given by f(w;T,0?), for 0 < w < 2m; with 7 € R™, where m is the number of

frequencies we chose and o € R is unknown, but f is linear in ¢2. So f could be
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written as:

0.2

ﬁg(w77)7

Robinson(1994) choose Bloomfield (1973)’s exponential model as the base function

flw;T,0%) =

g(w, T), because “it leads to an especially neat version of frequency domain test statis-

tic” 1

m

g(w;T) = exp[2 Z 7, cos(rw)]

r=1
where this 7, is just a nuisance parameter that could help to optimize the statistic 72,

and we will talk about that later. So to test if the linear combination &' X, is integrated
with degree d as (1 — L)4¢'X; = uy, where u; is a stationary process, Robinson’s test

statistic 1s:

A

= T() A7

g

a

)]

Q>
[

which has a typical form of a score test statistic: where T is the sample size, or
the length of the time series; a is the random variable which will be asymptotically
normal;
27 — I(ug; wy)
__ =" LUt Wy )
T 2:: WjaT)
6?2 is a scaler to standardize a,

27 % I(uy; wy) X

6% = mino?(7) = min — : # = arg min (1)
T

whereas A is the typical estimator of variance-coveriance matrix,
g T-1 T-1 T—1
A= v Z@M@% (D elw)elws))™ 3 elw)u
7j=1 7=1 7j=1

Hmajorly it was often possible to approximate the logarithm of an estimated spectral density by

a truncated Foureier series.
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The only difference here is a, 62 and a is in the frequency domain instead of time
domain, that’s why we have:
U(wj) = log[2sin(w;/2)],  é(w;) = D-llog(g(w;); 7)],  wj=—

and I(-;w) is the periodogram of its argument evluated at w,
itw; |2
I(up; wy) = 5 TZue 7|

2.2.2.2 A Search Procedure for Identifying the Cointegrating Vector

Although Robinson(1994) proposed the score statistic 72 to test if the linear combi-
nation £’X; is integrated with degree d as (1 — L)%’ X, = u,, where v, is a stationary
process, but he didn’t specify what &’ should be, and theory actually suggests a range
of possible values for the cointegrating vector. We propose a search procedure to find
¢ by minimizing 72.

~

~ a ~
— — T /A*l
§ = arg_min = arg_min, T((5)'A(

)]

We search € in R"™! because we can always scale down one of them to 1 and then

ql3| >

search for the other coefficients. To search £ for a given d, since A is a scalar that

will not be affected by the choice of £, to minimize 72, we are minimizing %

T T—-1 Iu;w- T—1 u7w
—F Y ) - ) G

B

g(w;
52 - 27 ZT 1 I(ut,wj ZT 1 I(utywj)
)

j=1 ¢( w], J=1 g(wj;T)
Since I(u;wj) is like a variance, 75 is like the ratio of a weighted variance and an

average variance. So the crucial part here is the weight 1)(w;) here. We plot it for
€ (0,27) in figure .
It’s obvious showed in the figure that the weight is positive between F and 5“ , but

when w get close to 0 or 27, the weight goes to negative infinite, therefore, a local
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_04+ log[2sin(w/2)]

Figure 6: The weight function t(w;) = log[2sin(%)] when w; € (0,2n)

minimum of 72 will be at a point for which the “weighted variance” has the smallest
magnatitude possible relative to the “average variance”. Or, put it in another way,
values of ¢ that produce local minima of 72 correspond to linear combination of £'X,
in which the frequencies near 0% and 27~ contribute less variance than in other linear

combination in a neighborhood near &.
2.3  Data and Measurements

We covered 5 major indexes in US market: SP500, SP100, DJIA, NASDAQ100
and Russell2000. The reason we chose these 5 indexes is because, first, they represent
different companies in US market, from big to small, from technology to traditional
firms; second, CBOE has implied volatility indexes based on these 5 indexes respec-
tively. The start date of these 5 implied volatility index is documented in the following
table. But for us to be able to compare these 5 indexes, we focus on the time period
from Jan 2004 to Jun 2013.

Therefore, with 5 indexes and 3 different frequencies (Daily, Weekly and Monthly),

we have 15 datasets to work with. For all the 5 daily datasets, we have data on
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Table 21: Sample size for different data set

Market Index  Volatility Index Start End Daily Weekly Monthly
SP500 VIX 1/2/1990 6/28/2013 5921 1225 282
SP100 VXO 1/2/1986 6/28/2013 6925 1433 330
DJIA VXD 11/3/1997 6/28/2013 3938 816 188

NASDAQ100 VXN 2/1/2001 6/28/2013 3116 646 149

RUSSELL2000 RVX 1/2/2004 6/28/2013 2387 495 114

Return, Implied Volatility Index, Volume and Range; whereas for the 5 weekly and 5
monthly datasets, we have data on Return, Implied Volatility Index, Volume, Range,
Realized Volatility and Variance Risk Premium, we will talk about the measurement
of these variables one by one.

We measured index return by the formula:
I

t—1

re = In( ) % 100

and since it’s from two consecutive prices, it’s not annualized return. The implied
volatility index comes from CBOE (Chicago Board of Exchange) website, VIX, VXD,
VXN and RVX are all calculated by this "model-free” method:

EtQ(Uf,tH) =1V = 2/ ! B(t,t+1) t JK
0

K2
where Cy(T, K') denote the price of a European call option at time ¢ with the strike

price at K and Maturity at T’ ] is the discount rate from ¢ to t + 1, and for

1
" Bt,t+1
out data, the maturity is always 30 days. But VXO are still calculated by the classic

at-the-money Black-Scholes formula. We used the daily squared returns to estimate

Realized Variance:

m

m
RV, = Z rt2+i
i=1
Since we are using daily return, we don’t have data for realized variance for daily

data, for weekly data, m = 5, and for monthly data m is around 22. And due to the
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lack of daily data for realized variance, we used another estimator to measure relized

volatility, the high-low range-based volatility estimator, as proposed by Gallant, Hsu

and Tauchen (1999), Alizadeh, Brandt and Diebold(2002) and Chernov(2007):
Range, = (125551 Fipi = 121%7171 7«t+%)2

The variable volume is the trading volume for SP500, SP100, DJIA and NAS-
DAQ100 indexes. But for Russell2000, we used the trading volume of Russell2000
ETF. We construct the weekly volume for each index by aggregating the all the trad-
ing volumes everyday during that week, and we did the same thing to get monthly
volume.

Following Bollerslev, Tauchen and Zhou(2009), we defined the variance risk pre-
mium as the difference between the risk-neutral expectation of the future return
variation over the [t,¢ + 1] time interval and the realized variance over the [t — 1,1
time interval,

VRP, =1V, — RV,
where we define the implied variance following Bollerslev et al. (2013): for example,

for VIX, since it’s the annualized observation, we define the weekly implied variance

as

7 (VIXtCBOE)2

WeeklylV, = VIX? = 365

and monthly implied variance as

MonthlylV;, = V[Xt2 — %(V[XtcBOE)Z

And since we don’t have daily data for realized variance, we don’t have variance

risk premium for daily data either. We summarize the variable we used for each data

set in the following table:
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Table 22: Variables for each dataset

‘ Implied Volatility Index ‘ Range ‘ Return ‘ Volume ‘ RV ‘ VRP

Daily v v v v
Weekly v i v v ViV
Monthly v v v v ViV

During the empirical tests, we also used other variables such as VRV, /Range,
In IV, In RV and In Volume, but since they are all calculated from the original data,
we didn’t list them in the above table.

Basic summary statistics for these variables in all these 15 datasets are given
through Table 24 to Table 38. The mean excess return on SP100 over the sam-
ple period from Jan 2004 to Jun 2013 is around 2.83% annualy, whereare the same
for NASDAQ100 is about 7.2% annually, the return relationship between these 5
indexes is:

TsP100 < TSsP500 < T"DJIA < T Russeli2000 < TN ASDAQ100
which make sense since SP100, SP500 and DJIA are indexes for big and mature
companies and Russell2000 and NASDAQ100 are for smaller and growth companies.
Their volatility relationship actually doesn’t follow exactly as the return rank:
OpJjiA < 0sp100 < 05P500 < ONASDAQ100 < O Russell2000
And this relationship is consistent among different measures of volatility: option
implied volatility index, realized volatility and range. For the volume, we used the
same volume for SP500 and SP100, and we use ishares volume for Russell2000. So
lIthe volume relationship is:
Volumepryssenizo00 < Volumepjra < Volumenaspagioo < Volumegpsoo

which means SP100 and SP500 have the highest volume and the ETF for Russell2000
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has the lowest volume.

The implied volatility index and volume, for all 5 indexes and through 3 different
frequencies, are highly persistent with first-order autocorrelation ranging from 0.94 to
0.99. In contrast, the serial correlation in the realized variance and range are between
0.59 to 0.78, it might because of the square form of these two variables. Return is
following the efficient market hypothesis, especially for the weekly return, with the
first-order autocorrelation between —0.01 and —0.07, and daily return between —0.08
to 0.12.

The sample autocorrelation between return and volume are always negative, and
become stronger with the frequency from daily to monthly. But all three volatility
measures are positively correlated with the volume. The return and 3 different mea-
surements of volatility are always negatively correlated as the risk-return tradeoft.
We also calculated the correlation of return and volatility among these 5 indexes in
Table 39 to Table 44. From daily data to monthly data, the correlation of volatility
and return among these 5 indexes actually dropped, which might indicate that the
diversification among these 5 indexes will be more efficient when adjusting positions
in the portfolio less frequently. However, the correlation of volume among these 5 in-
dexes (from Table 45 to Table 47)are less correlated, which might be due to investors

diversification among these 5 indexes.
2.4 Empirical Results

In this section, we do the fractional integration test for the variables we are inter-

ested in, then we test if they are fractionally cointegrated, then we use the method we
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proposed to get the coefficient for fractionally integrated variables, and at the end, we
use the fractionally cointegration relationship identified by our coefficents to predict

future return.
2.4.1  Memory Parameter d for each variable

First, we test if these three sets of variables we are interested in (return, volatility
and volume) are fractionally integrated. We used “the 2 step feasible exact local
whittle estimator with detrending” proposed by shimotsu (2010) to test if the memory
parameter d equals to zero or not, for daily, weekly and monthly data and for all 5
indexes, respectively.

Since d follows a normal distribution:

- 1

vm(d —d) = N(0, 7)
and we chose m as [n°], [n°°] and [n%], where the sample size for daily data is 2387,
weekly 495 and monthly 114. so for each indexes, the standard deviation for d are
the same, there is a set of (3 x 3 = 9) standard deviations for each variables for
each indexes. We documented the estimatmion of the memory parameter d from
table 48 to table 52, for all the varaibles we are interested in, even including possible
transformations for these variables, such as taking square root of realized variance
and range and taking logarithm of implied variance, realized variance and volume.
From the results of our estimation, we find that the excess returns, no matter
it’s daily, weekly or monthly, and no matter which index we use, they are almost

always 1(0), and so does the variance risk premium. Therefore, the prediction power

of variance risk premium on excess return by using monthly data as suggested by
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Bollerslev, Tauchen and Zhou (2009) might come from the similar memory parameter
d; it might also be why variance risk premium perform better than the different forms
of volatility (implied variance, realized variance and range, as well as taking square
root and logarithms of them): since volatility, as showed in our results are always
fractionally integrated with a d around 0.3 to 0.7, whereas returns can not reject the
null hypothesis that d = 0.

We also find that the daily implied volatility index (including the implied variance
and the logarithm of it), for all 5 of them, are always almost (1), but not true with
weekly or monthly data, which implied the highly persistency of the daily implied
volatility index. We also find that the memory parameter of volume (including the
logarithm of it) is always significantly from 0, sometimes even close to 1, but it varies

a lot from daily to monthly, from index to index.
2.4.2  Fractional Cointegration

Here, we are interested in the relationship among return, volatility and volume,
we want to find if there is any fractionally cointegrating relationship among these 3
variables for all the 5 indexes. But since we’ve already know that return is almost
always 1(0), so we will only test if there is any cointegrating relationship among
volatility and volume, but since we have 3 different measures of volatility (realized
volatility, implied volatility and range) and several transformation of volatility, we will
do a comprehensive test to see if there is any frationally cointegrating relationship

between different form of volatility, and also between volatility and volume.
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2.4.2.1  Same Degree of Integration

Since the first requirement for two time series to be fractionally cointegrated would
be they have the same degree of integration. We used a t-statistic to test it:
If two time series x; and y; are fractionally integrated with degree d; and dsy, which
means:
(1— L)z, = uy, (1— L)%=y, =,
where both u; and v, are stationary processes. Since our two-step feasible exact

whittle estimater with detrending d; and dy have the property as

m@il - dl) ~ N(07 Z)v \/%(dZ - d2) ~ N(Oa i)

to test the null hypothesis if d; = ds, the t-statistic would be

dy — dy

1

m
So we used this t-statistic to test if two time series have the same degree of integra-

~ tom—2

tion. We tested for different forms of implied volatility with different forms of realized
volatility and range; we also tested for different forms of volaitlity with different forms
of volume for all 5 indexes with daily, weekly and monthly data.

We put the results in Table 53 to Table 57. To be more conservative, we use 1.96
as the 5% critical value for t-statistics, which means, if the t statistic is bigger than
1.96, then the null hypothesis that d; = ds is rejected, and we will not look further
for fractionally cointegrating relationships between these two variables.

From the results we can see that sometimes different forms of volatility and volume

might have the same degree of integration here and there, but it’s not consistent
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through all the 5 indexes. Actually, we can see some evidence that volatility and
volume might be fractionally cointegrated for DJIA-VXD data and NASDAQ100-
VXN data, but not for SP500 and Russell2000. So it might really depends on what
kind of volume data we use (not like other indexes, we use ETF data for Russell2000,
and that might be the reason why there is no evidence of fractionally cointegration
between volatility and volume in Russell2000). So we are not pursuing volatility-
volume relationship in this chapter any more.

Actually, the only thing we found consistent with all 5 indexes is the relationship
between implied volatility and realized volatility (or range) in monthly data. This
fractionally cointegrating relationship between implied volatility and realized volatil-
ity in monthly data is so robust that it actually worked also in other forms: such as
In(IV) and In(RV), VIX and v RV, IV and Range, VIX and /Range,we summarized
them in table 58. So the next step would be to find the fractionally cointegrating

vector by the searched procedure we proposed in section 2.2.2.
2.4.2.2  Coefficient for the Fractionally Cointegration

Here, we consider the fractional cointegration relationship between 5 sets of two
variables (IV and RV, In(IV) and In(RV), VIX and RV, IV and Range, VIX and
v/Range) for the monthly data for all 5 indexes. so & = (£1,&) and X = (X1, X5)/,
first, we record d(X;) and d(X3), when £ = (1,0) and £ = (0,1), then by using the
searching method we proposed in section 2.2.2, we find the (1,£*) and record the
degree of integration d({ . ..X;). To compare the results, with other method, we

also tested the degree of integration when &, = (1, —1) and &ors = (1, Bl), where
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$, is the OLS estimation from the regression

X1=0o+ i Xa+€
We still used the same “2 step feasible exact local whittle estimator with detrending”
to estimate the degree of integration for &’ X with different £&. We repeated this process
for different number of frequency, for m = n%® m = n%% and m = n%®. And we
documented the result of this whole process from table 59 to table 61.

From the results we can tell that first of all, our estimation of the coefficient of
fractional cointegration through the minimization of the 7 does not really get affected
by the choice of number of frequency. Second, for all five sets of variables and 5
different indexes, both our searching for minimum 72 way, and unity difference, reduce
the degree of integration for both variables in most cases, which corresponds to that
theory that there is a range of possible values for the cointegrating vector. But the
€ors does not work that way, it always get a degree of integration for d(&,;¢X) is
always between d(X;) and d(X3). Comparing the results for &2 and &y, for

most of cases, {ninsz Will get a lower degree of integration for d(§’X). However, we

still want to test if this could help to predict future return.
2.4.3  Return Forecast

Here, since £}, ¢ can not really deintegrate £, ¢X to a lower degree of integration,
we only compare the forecast power of £ . X and &, X. And we only test it
for the variables X = (IV, RV') for all the 5 indexes because the economic meaning

behind it.

& iy X = (1,=1)(IV,RV) = IV — RV =V RPagndard

unity
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is actually the so-called Variance Risk Premium, which attracted a lot of research
attention recently. Our estimation
EimmX = (LEYIV,RV) =1V — &RV =V RPimproved

is an attempt to find the correct coefficient between implied variance and realized
variance for variance risk premium, because previous research find that there is a
almost always postive difference between implied variance and realized variance, but
because of the scale of measurement of realized variance, it’s actually hard to deter-
mine what is the correct coefficient for realized variance when estimating the variance
risk premium. So our return forecast power comparison is actually between the old
variance risk premium and this new variance risk premium improved by our fractional
cointegration coefficient.We compared the return forecast power by two ways: static

in sample way and dynamic out of sample way.
2.4.3.1  Static In-Smaple Prediction

The static in sample forecast is based on the estimation of &, 2 from the whole
sample, and then construct the predictor time series as IV — ¢ . RV then we
followed Bollerslev, Tauchen and Zhou (2009)’s way to compare our prediction result
by the new improved variance risk premium with the result by the standard variance
risk premium from their paper.

h
> iy = boh) + b (W)(VRP ) + g ™
j=1

so the explanatory power, as measured by the coefficient of determination,
h
B Cov(; > i1 T4, VRP 1)
Var(% Z?:l re45)Var(VRP,_y)

To compare the return forecasting power of the 2 different Variance Risk Premium

R*(h)
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(the new improved Variance Risk Premium proposed by us and the standard Variance
Risk Premium), we plot the results of R? with different horizons, from h = 1 to 24,
for all the 5 indexes in Figure 7. From this figure we can tell that the R? of the
newly improved variance risk premium almost always dominate R? for the standard
variance risk premium from horizon h = 1 to 24, especially when h > 3. And this
result is robust for all the 5 indexes we tested.

Since at this point, the results are based on the estimation of the fractional coin-
tegration coefficient from the whole sample, and we believe that since the implied
variance and realized variance have this long-term relationship, ¢* should be quite
stable. So the performance should be good if we just use this £* we estimated here
for future forecast. However, we still tested the out of sample performance of the new

variance risk premium.
2.4.3.2  Dynamic Out-of-Sample Prediction

To see the out of sample prediction power, we did the 1 step ahead forecast dynam-
ically: we start from 0.157", where T is the length of the time series, we used the first
0.15T data to estimate the fractionally cointegration coefficient £* by minimizing the
score statistic 72, then get the VRPproved = IV — §* RV, then run OLS regression
between .1 and VRP,proved(t), get Bo(t) and b (t) from equation 7, then for the
next step, when we observe VRP,provea(t + 1), we use it to predict the future return,
so the prediction is

Et+1<7nt+2) - BO (t) + I;l (t)VRIDimproved(t + 1)
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Then compare the forecast Fyyq(riy2) with the true value of 7,12, and do this stepwise

from ¢t = 0.157 to T, so the forecast power is

T
> iconsrlrire — Erpi(rge))?
T
Zt:o.lST r152+2

For the forecast power for the standard variance risk premium, we did the similar

R*=1-

thing without estimate £*, because we just keep it as 1. Then we documented R?

from both ways for all 5 indexes in the following table:

Table 23: Comparison of return forecasting power for all 5 indexes

R? VIX VXO VXD VXN RVX

min 72 0.7237 0.494 0.6483 0.3149 0.6957
VRP 0.6863 0.4097 0.5627 0.2976 0.3336
Ratio 0.948321 0.829352 0.867962 0.945062 0.479517

4

From the result we can see that the dynamic out-of-sample prediction by our “im-
proved” variance risk premium always out perform the standard variance risk pre-

mium.
2.5 Concluding Remarks

We did a comprehensive study of the fractionally cointegrated relationship among
return, volume and volatility, by using 5 indexes (SP500, SP100, DJIA, NASDAQ100
and Russell2000) for daily, weekly and monthly data, we also tried different measures
of volatility (implied volatility, realized volatility and range). From the results we can
tell that the time series of index return is always stationary, whereas the degree of
various form of volatility and volume is always between 0.3 and 0.7. However, there
is not significant evidence that volatility and volume are fractionally cointegrated.

The only robust fractional cointegration relationship we found among these data
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are between different measurements of implied volatility and realized volatility for
monthly data. We developed our own way to estimate the frational cointegration
coefficient by minimizing the score test statistic 72 proposed by Robinson (1995). By
this way, we also improved the standard measurement of variance risk premium and
then compared the return forecast power on these two measurement of variance risk
premium. And our results showed that the prediction by our measurement of variance
risk premium almost always outperform the standard measurement of variance risk
premium, both in-sample statically and out-of-sample dynamically.

For the future study, we believe that our way to estimate the fractional cointegra-
tion coefficient could be used in pair trading when determining the relative holding

position in this pair.



Table 24: Summary statistics for daily SP500-VIX data

Ex. Return VIX Range Volume
Mean 0.015397 20.48553 3.188024 3.54E+09
Std.Dev 1.313964 10.05466 8.412467 1.58E409
Skewness -0.31635 2.258896 8.162741  0.722556
Kurtosis 13.62777 9.570921 86.38276  3.733853
AR(1) -0.113051  0.99658 0.6874 0.98293
Return 1
VIX -0.13311 1
Range -0.07866 0.661246 1
Volume -0.03149 0.701753 0.465645 1
Table 25: Summary statistics for weekly SP500-VIX data
Ex. Return VIX Range Volume RV VRP
Mean 0.074936  20.38422 17.55966 1.71E+4+10 8.330006 1.628528
Std.Dev 2.592809 10.19607  45.2569 7.53E4+09  19.4987 11.15739
Skewness -0.94518  2.33447 9.621347  0.628409 6.194703 -6.73895
Kurtosis 11.99928 10.18902 127.9165  3.320049 50.99497  67.4479
AR(1) -0.061019  0.98905  0.67246 0.97698  0.74514  0.04325
Return 1
VIX -0.26631 1
Range -0.31289 0.707237 1
Volume -0.10107 0.713661 0.469533 1
RV -0.17488 0.767291  0.78374  0.500688 1
VRP -0.02714  -0.20969 -0.4283 -0.1542  -0.75969 1
Table 26: Summary statistics for monthly SP500-VIX data
Ex. Return VIX Range Volume RV VRP
Mean 0.32266 20.48912 72.745 T7.43E+10  36.1706 5.421871
Std.Dev 4.342834  9.327422 148.23 3.06E+10 72.53436 37.67888
Skewness -1.05285 1.857956 4.967921  0.451539 4.947516 -4.57124
Kurtosis 5.752631 6.882143 30.75245  2.871369  31.8925 31.96977
AR(1) 0.23191 097749  0.67459 0.98475  0.78276  0.42985
Return 1
VIX -0.47087 1
Range -0.44033 0.798796 1
Volume -0.20536  0.803232 0.564535 1
RV -0.51087 0.813386 0.936159  0.587108 1
VRP 0.354421 -0.381  -0.72087  -0.25069 -0.83512 1
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Table 27: Summary statistics for daily SP100-VXO data

Ex. Return VXO Range Volume
Mean 0.01194 20.27243 3.007663 3.54E+09
Std.Dev 1.267834 10.64045 8.183512 1.58E+09
Skewness -0.26201 2.376938 8.631755  0.725158
Kurtosis 13.98328 10.36119 97.44118  3.737536
AR(1) -0.123306  0.99571  0.69327 0.98329
Return 1
VXO -0.14144 1
Range -0.06771  0.66249 1
Volume -0.03242 0.691929 0.462067 1
Table 28: Summary statistics for weekly SP100-VXO data
Ex. Return VXO Range Volume RV VRP
Mean 0.054588 20.36543 16.24501 1.71E+410 7.757294  2.467179
Std.Dev 2.480214 10.89137 43.52697 7.55E4+09 18.27395  10.04207
Skewness -0.95499  2.445295 10.69109  0.636998 6.123977  -5.48126
Kurtosis 12.67049 11.05924 156.5459  3.353797 48.97961  55.37069
AR(1) -0.071335  0.98704  0.62025 0.97676  0.74857 -0.148289
Return 1
VXO -0.28457 1
Range -0.32183 0.710473 1
Volume -0.09992 0.702335  0.46103 1
RV -0.16111  0.77115 0.762539  0.501036 1
VRP -0.16423 -0.00269 -0.17313 -0.03325 -0.58822 1
Table 29: Summary statistics for monthly SP100-VXO data
Ex. Return VXO Range Volume RV VRP
Mean 0.235769 20.30298  68.2362 T7.43E+4+10 33.68317 8.226233
Std.Dev 4151149  9.92729  137.325 3.06E+10 67.97647 32.29908
Skewness -0.91382 1.951168 5.048676  0.459463 5.015302 -3.67462
Kurtosis 4.767258 7.268549 31.96599  2.884506 32.60511 29.75585
AR(1) 0.22227 097428  0.67103 0.98437  0.78382  0.27413
Return 1
VXO -0.48286 1
Range -0.42553  0.802812 1
Volume -0.1845 0.780293 0.565754 1
RV -0.48264 0.816314 0.936266  0.582031 1
VRP 0.208855 -0.20505 -0.58161 -0.13952  -0.70959 1
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Table 30: Summary statistics for daily DJIA-VXD data

Ex. Return VXD Range Volume
Mean 0.015648 18.68246 2.973224 2.21E408
Std.Dev 1.202541 9.008344 8.203976 84926194
Skewness -0.06801 2.355877 9.388949  1.244964
Kurtosis 13.67838 10.16727  117.315 5.92239
AR(1) -0.110053  0.99654  0.69001 0.96179
Return 1
VXD -0.12972 1
Range -0.03429  0.62555 1
Volume -0.0446 0.352357 0.385386 1
Table 31: Summary statistics for weekly DJIA-VXD data
Ex. Return VXD Range Volume RV VRP
Mean 0.072576 18.82889 15.48024 1.07E+409 6.973678 1.421818
Std.Dev 2.428721  9.13272 42.08829  3.7E+4+08 16.29313 10.76802
Skewness -1.01046 2.293158 11.39926  0.876426 6.594742 -8.88362
Kurtosis 13.38716  9.564089 174.7235  4.688911 58.66029 128.0126
AR(1) -0.072195  0.98881  0.59985 0.96872  0.75743  0.45208
Return 1
VXD -0.04959 1
Range -0.30962  0.55446 1
Volume -0.11585 0.379579 0.357173 1
RV -0.13339 0.707603 0.767971  0.406747 1
VRP 0.157325 -0.11785 -0.58552 -0.22529  -0.76294 1
Table 32: Summary statistics for monthly DJIA-VXD data
Ex. Return VXD Range Volume RV VRP
Mean 0.311428 18.63965 62.90537 4.63E+4+09 30.28201  4.11469
Std.Dev 4.013598 8.466726 125.7395 1.38E+09 61.57219 44.76955
Skewness -0.90628 2.064496 5.492772  0.808422 5.519517 -5.60347
Kurtosis 5.00417 8.086338 38.25379  4.851008 39.34235 46.16755
AR(1) 0.1763  0.97521  0.62885 0.97962  0.74656  0.43566
Return 1
VXD -0.13758 1
Range -0.39995  0.65402 1
Volume -0.23961 0.365292 0.452119 1
RV -0.45182 0.674941 0.945818  0.452826 1
VRP 0.500886 -0.07828 -0.72878 -0.27316  -0.77093 1
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Table 33: Summary statistics for daily NASDAQ100-VXN data

Ex. Return VXN Range Volume
Mean 0.028638 23.16799 3.617515 2E+-09
Std.Dev 1.432362 9.093661 7.798821 1.46E+09
Skewness -0.12269 2.441344 8.560389  42.89744
Kurtosis 10.42264 11.03018 100.9107  2006.667
AR(1) -0.089144 0.9977  0.65777 0.66988
Return 1
VXN -0.12432 1
Range -0.08689 0.647934 1
Volume -0.03934 0.093649 0.112595 1

Table 34: Summary statistics for weekly NASDAQ100-VXN data

Ex. Return VXN Range Volume RV VRP
Mean 0.138816 23.41281  21.0073 9.63E+09 9.901493 2.247437
Std.Dev 2.865919 9.246246 37.97679  3.6E+09 19.98787 13.69058
Skewness -0.50014 2.333065 6.321876  13.19802 7.817407 -10.0511
Kurtosis 5.724656 10.01252 53.79559  246.7741 84.82735 138.9452
AR(1) -0.010531  0.99095 0.7755 0.89481  0.61497  0.13951
Return 1
VXN -0.04076 1
Range -0.22673 0.658163 1
Volume -0.11512  0.159203 0.213505 1
RV -0.13457 0.688246 0.800931 0.17989 1
VRP 0.162262 -0.11919 -0.52715  -0.12986 -0.78635 1

Table 35: Summary statistics for monthly NASDAQ100-VXN data

Ex. Return VXN Range Volume RV VRP
Mean 0.600148  23.13368 94.34052 4.18E+10 42.9941  6.793093
Std.Dev 5.39977 8.43809  148.9011 9.07E+09 68.58144  36.27729
Skewness -0.69082  1.994339  4.402492 4.130837 4.916042  -4.06816
Kurtosis 3.950406  7.739138  24.78702 30.9811  32.09293  29.11609
AR(1) 0.17361 0.9802 0.7307 0.96473 0.78738 0.31664
Return 1
VXN -0.40899 1
Range -0.44192 0.7879 1
Volume -0.2113  0.321488 0.318342 1
RV -0.48475  0.814243  0.912437 0.322961 1
VRP 0.381139  -0.33447  -0.67428 -0.24793  -0.80695 1




Table 36: Summary statistics for daily Russell2000-RVX data

Ex. Return RVX Range Volume
Mean 0.024353 26.83433  4.71745 54475269
Std.Dev 1.703458  10.5987 9.847043 35593837
Skewness -0.33802 2.073579 7.577981 1.851465
Kurtosis 8.068723 8.268848  82.6967  10.38643
AR(1) -0.095064  0.99803  0.66159 0.94172
Return 1
RVX -0.11502 1
Range -0.06067  0.65322 1
Volume -0.06801 0.477446 0.478304 1

Table 37: Summary statistics for weekly Russell2000-RVX data

Ex. Return RVX Range Volume RV VRP
Mean 0.112227 27.09234 28.71136 2.63E+08 13.98715 2.336138
Std.Dev 3.390251 10.83443 56.98056 1.6E+08 25.64745 15.98082
Skewness -0.45244 2.05861 7.312416 1.483982 5.137575 -5.52669
Kurtosis 6.218215 8.033777 75.84479 7.349192 35.35512 44.40461
AR(1) -0.044926  0.99138  0.71384 0.94765 0.73236  0.32489
Return 1
RVX -0.03122 1
Range -0.24253 0.654351 1
Volume -0.17646 0.477619 0.468598 1
RV -0.14814 0.75567 0.781207 0.49098 1
VRP 0218485 -0.21855 -0.54065  -0.36175 -0.78879 1
Table 38: Summary statistics for monthly Russell2000-RVX data
Ex. Return RVX Range Volume RV VRP
Mean 0.493486 26.98333 125.6372 1.14E+09 60.73803 8.257451
Std.Dev 5.840154 10.59859 239.3675 6.29E4+08 93.85868 64.97962
Skewness -0.82046 2.062968 5.254285 0.902631 3.741556 -5.00612
Kurtosis 4.817933 8.086289 33.87714  4.029912 18.61797 34.75251
AR(l) 0.12158 0.97755 0.67053 0.95437 0.79434 0.35879
Return 1
RVX -0.04937 1
Range -0.40155 0.582048 1
Volume -0.33722 0.409721 0.42574 1
RV -0.38576 0.711932 0.904089 0.527236 1
VRP 0.532615 -0.01303 -0.70957 -0.40404 -0.69193 1
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CHAPTER 3: DOES OCCUPANCY STATUS MATTER IN SUBPRIME
MORTGAGE?

By using submortgage data, we found that investors are being charged with a sig-
nificant risk premium over owner occupants; besides that, they are also facing a more
restricted loan; with the market getting hotter, this risk premium and restrictions
are getting even worse. Being treated like that, our findings show that investors
were actually not more risky than owner occupants in terms of both prepayment and
default.

We suspect the reason for this puzzle is that when the market getting hotter, there
are more speculative investors who commit occupancy fraud to get a more favorable
loan. And these speculative investors were actually recorded as owner occupants on
loan documents, which increased our estimation of the hazard of owner occupants
group. And our information asymmetry test actually reaffirmed our suspect. There-
fore, this paper, for the first time, give statistical evidence on occupancy fraud, and

we also proposed a statistical scanning way to reduce to potential occupancy fraud.
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3.1  Introduction

It is common knowledge among real estate investors that when they fill a pre-
assessment table as in table 62; for the item “Home will be”, once “Investment” is
checked, they have to pay more interest rate and meet higher requirement(e.g. more
down payment) to get the loan.

For a rational investor who is trying to minimize his cost; apparently, to avoid a
check on the “Investment” item is a good choice, and it’s also an easy choice for them
since in some cases, they only need to claim that they “intend” to live in that house
(though they know they won'’t).

But investors know that “the easy choice” will be occupancy fraud, which is vi-
olating the federal law. Investors need to balance the cost of going to jail and the
benefit of saving some interest. If banks only focus on the volume and put less effort
to detect the fraud while mortgage brokers and real-estate agents eager to close a
home sale so that they can tolerate that fraud; the temptation to commit fraud can
be substantial and actually “encouraged” to some extent by both banks and agents.

And also, when home prices fall, non-occupancy investors tend to be more likely
to walk away from their purchases than ordinary homebuyers.If occupancy fraud
happens a lot, there will be much risk hidden in the loans which are supposed to be
backed by those homebuyers who live in their house but turn out to be non-occupancy
investors. The loans backing these non-occupancy purchases turn out to be riskier
than the rating agencies and those investors who bought mortgage-backed securities

once thought.
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So when the home prices really fall, there will be lots of “unexpected” defaults
whose risk is not priced into the loans or the pools, so it will cause problems for the
whole housing and mortgage market, and then the whole financial market, so the
financial crisis comes.

Academically, there are lots of papers from law school’s that discuss this occupancy
issue from “a lawyer’s” point of view. Simon and Corkery (2008) analyzed the whole
process including the incentive of non-occupancy investors to defraud on occupancy
and how banks and real estate agencies encourage or at least tolerate them to do so,
and how these occupancy frauds can be part of the cause of problems on the housing
and mortgage market today, and at last they conclude that speculators (especially
those who did occupancy fraud) may have accelerated housing downturn. This small
article in the Wall Street Journal got lots of attention both from the industry and
academia, and especially in law school.

The most recent one, Lefcoe (2009) recounts the extent to which speculating buyers
contributed more than proportionately to housing price volatility and the rate of
mortgage foreclosure; then the author disclosed the way that spec buyers deceived
mortgage lenders by committing occupancy fraud, claiming falsely that they were
buying as owner occupants so they could benefit from more favorable mortgage rates
and terms; at last, the author explored the rational for a government imposed ban
on home flipping.

Also, by examining the flipping activity in Las Vegas from 1994 through mid-2007,
Depken et al (2009) found that flip homes tend to be older and smaller than non-flip

homes; and flippers appear to purchase the flip home at a discount and they sell the
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flip home at a premium to otherwise similar properties, they also found that as the
residential property market in Las Vegas begins to take off, flip homes become a more
significant percentage of total sales.

This paper is structured as following: in section 2, we introduce the data we use for
the empirical tests, including both the pool level data and loan level data; insection
3, we do empirical tests to see how much higher interest the investors are charged and
how much more restrictions (in terms of LTV ratio) are put on them by banks; in
section 4, we do empirical tests to see how dangerous these non-occupancy investors
are and get an idea how dangerous those occupancy fraud performers are; in section
5, we test the information asymmetry and introduce some ways to prevent potential

occupancy fraud, then we conclude in section 6.
3.2 Data
Here we used two sets of data, loan level and pool level.
3.2.1  Loan Level Data

For the loan level data, the author got it from FHFA (Federal Housing Finance
Agency'?). The data include static section and dynamic section. For the static sec-
tion, it includes 20,000 individual subprime mortgage loans initiated from 10/9/2003
to 10/23/2007, all the loans are from two states:Arizona and Florida; these two states,
according to Simon and Corkery (2008) are where “much of the occupancy fraud was
concentrated”. Among our data, there are 15968 owner occupants, 1388 second home

owner and 2639 investors, see figure 8.

12We appreciate Dr. Robert Dunsky’s help on getting the data.
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All of these loans are adjusted rate mortgages (ARM). The number of loans issued
each month in our data is 200 at the beginning of 2004, then it increased with the
housing market getting hotter, from the second quarter of 2005 to the end of 2006, the
number of loans issued each month trippled; however, after 2006, with this subprime
mortgage crisis, the number of loans issued each month dropped dramatically to less
than 100 at the end of 2007. We summarized origination date of our data in figure 9.

For all these loans, we have borrowers information at the loan origination, including
borrower’s FICO score at initiation, loan type(whether there is a balloon payment
or not), loan purpose (purchase or refinance), document status (whether it’s a “low
doc” loan or not), which state it belongs to (Florida or Arizona), in which year this
loan was originated (04, 05, 06 or 07), loan maturity (15, 20, 30 or 40 years) and
the original amount of the loan. The description of all the variables we are using is
summarized at table 63.

For the dynamic section, there are 555,512 monthly observations after the loan
get initiated. It includes the monthly payment, current balance and the status of
each loan (whether it’s prepaid, delinquent or default). The data is right censored on
10/1/2007. By the right censored date, there are 80 percent of the loan still current
(neither prepaid nor default yet), 3 percent prepaid and 17 percent default, see figure

10.
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3.2.2  Pool Level Data

The pool level data '3 the author uses are from Freddie Mac PC(Participation
Certificate). To be in this dataset, they must be 30 year fixed rate mortgages and
have at least 150 mortgages included within the pool, and they are issued as Mortgage
Backed Securities between Jan 2006 and Mar 2006. There are 434 PCs in total,
including 142815 loans in them. The description of all the variables we are using is

summarized at table 64.
3.3  Risk Premium

In this section, we are trying to quantify what is the “risk premium” being charged
on investors over owner occupants. Here the “risk premium” contain two folds: one
is the real risk premium in term of interest rate, which means how much higher the
interest rate investors were being charged by subprime mortgage lender over owner
occupants; the other is not the real risk premium, but the restrictions investors have
to face. Since owner occupants, not only being charged with lower interest rate, but
also qualify for much smaller down payment. So, as an investor, she/he also has to
face a lower Loan To Value(LTV) ratio. So basically in this section, we quantified
how much restrictions investors have to face, both in terms of interest rate and LTV

ratio.

13T appreciate Jason Berkowitz who provided me with the pool level data which is hand collected
by himself.
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3.3.1  Risk Based Mortgage Pricing Model

Here, following Hendershott and Shilling (1989) , Ambrose, LaCour-little and
Sanders (2004) and An, Do, Rosenblette and Yao (2012) , we use the following lin-
ear regression model to test the investor’s risk premium while controling other risk
factors:

ri=X;0+¢€,i=1,...n

where here r; is the subprime mortgage spread, X; is a vector of pricing factors
recorded on the loan documents, such as borrower’s FICO score at initiation, loan
type(whether there is a balloon payment or not), loan purpose (purchase or refinance),
document status (whether it’s a “low doc” loan or not), which state it belongs to
(Florida or Arizona), in which year this loan was originated (04,05,06 or 07), loan
maturity (15, 20, 30 or 40 years) and the original amount of the loan. ¢; here is the
disturbance.

Here, we put our result in table 65, the basic model we just stated is model 1 in
table 2; to test the dynamic trend of the risk premium investors being charged over
owner occupants from 2004 to 2007, we added the cross product of the time dummy
and the investor dummy, which is model 2 in table 65. From both of these model, we
can see that investors were being charged by a statistically significant risk premium,
which is around 0.5 percent per year; according to the result of model 2, we can
see that this premium is even increasing over the years, from 0.5 percent in 2004 to
almost 1 percent in 2007 (see figure 1 on this trend).The reason why this investor risk

premium was increasing every year, we think it might because the housing market
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is getting hot from 2004 to 2007, so banks charge investors a higher premium every
year to compensate their risk. And other parameters also get the predicted sign: for
example, after controlling other variables, the higher the FICO score, the lower the
interest rate being charged; and “low-doc” applicants in average got a higher interest
rate than non “low-doc” applicants. But no matter which model we use, our pricing
factors recorded on the loan documents could only explain less than 50 percent of the
total variation in interest rate. We plot the risk premium in figure 11.

So, by running this risk based mortgage pricing model, we found that investors
did get a statistically significant risk premium around 0.5 percent to 1 percent, and
this risk premium is increasing from 2004 to 2007. After finding this statistically
significant risk premium, the next question is how restricted in terms of LTV ratio

investors have to face.
3.3.2 LTV Ratio

The LTV ratio is a very important indicator to see the applicants leverage. Usually,
since favorable home mortgage terms are reserved for owner occupants, as typical first
time home buyers in US, people only are required to pay a very low down payment,
which means the LTV ratio of owner occupants could be very high, close to 100
percent. However, as investors they do not only have to make a lot of effort to
demonstrate their abilities in managing properties for some history (at least two
years), and more reserve of cash to pay property taxes and insurance, but they also
have to pay a higher down payment, which will reduce their ability to leverage, so

investors will have a lower LTV ratio compared to owner occupants.
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Here, we want to quantify, despite the higher risk premium, what other restrictions
investors have to face, so we use LTV ratio as an indicator of the restrictions investors
have to face. We are running a similar model as the risk based mortgage pricing model:

LTV, =Xf+¢€,i=1,...n
where this LTV} is the loan to value ratio, X; is a vector of pricing factors stated in
the previous model, and ¢; is the disturbance.

The result is in table 66, in which model 3 is just as stated above, while model
4 is trying to test the dynamic trend of this LTV ratio over the years. From the
result in table 5, we can see that investors have to face a more restricted loan: with
other factors beging controlled, investors in average are getting a loan with a LTV
ratio 3.2 percent lower than the owner occupants in absolute value. Even worse,
investors are getting loans with a LTV ratio from around 3 percent lower in 2004 to
almost 6 percent lower in 2007 than owner occupants. (see figure 2 for this trend).
Still, in these two models, the coeffcients for other control variables also make sense,
such as: the bigger the original loan amount, the lower the LTV ratio (due to some
restrictions on Jumbo mortgage); the higher the FICO score, the higher the LTV ratio
the applicants could get; and “low-doc” applicants are in average getting a lower LTV
ratio than non “low-doc” applicants.

Therefore, from the analysis of interest rate and LTV ratio investors have to face,
we can get the result that as an investor, she/he has to be charged by a higher interest
rate than occupant owner and has to face a more restricted loan (less leverages, lower
LTV ratio than occupant owner. What makes things even worse is, with the housing

market getting hotter from 2004 to 2007, the risk premium also increased and the
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restrictions tightened. To test the robustness of our result, we use the pool level data

to see whether the result is similar to loan level data.
3.3.3  Pool level data

Here, by using the pool level data, we are still running the previous two models as

Ti:Xiﬂ—FEi,Z':l,...n

the only difference here is that for pool level data, we don’t have as much detail on
applicant’s information as in loan level data: for the prcing factors, we only have the
average FICO score, average maturity, LTV ratio, percentage of purchasing (instead
of refinancing), percentage of investors (instead of owner occupants), average loan
amount at origination for each pool.

So we put all the information we get from the pool level data into the above model
and our result is consistent with what we get from the loan level data (see table
67): apprently, even in pool level, we could still see evidence that investors were
being charged with a statistically significant risk premium, and have to face a more
restricted (much lower LTV ratio) loan. So this pool level data analysis could be a

robustness check of our loan level data.
3.4 Investors’ Hazards

From the previous section we found that investors have to face a statistically sig-
nificant risk premium around 0.5 to 1 percent, and a statistically significant lower
LTV ratio around 3 to 6 percent in absolute value. the next question we want to ask

is “do investors deserve this risk premium?” or “are they really that risky?” so we
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used the competing risk model to test the hypothesis of whether investors are more
risky (in terms of both default and prepayment) than owner occupants.

From previous literature on analyzing mortgage risk, Campbell and Dietrich (1983)
, Cunningham and Capone (1990) , Archer, Ling and McGill (1996) and Calhoun and
Deng (2002) used the multinomial logit model, but the problem with multinomial
logit model is the assumption that alternative termination risks are independent, but
apparently, they are not. Lots of people also used single risk cox partial likelihood
model, such as Green and Shoven (1986) , Clapp, Goldberg, Harding and Lacour-
Little (2001) , and Pavlov (2001) . But this single risk model usually only consider
default, without recognizing the prepayment risk, which will also affect the default
risk: for example, sometimes when people are close to default, they will try to re-
finance to reduce the payment first, if they were able to refinance, this loan itself
become prepaid instead of default. So actually, prepayment risk and default risk are
intercorrelated with each other, to recognize this property of mortgage, we are using

the competing risk model.
3.4.1  Competing Risk Model

Competing risk model is a well developed model using in biological literature for
many years, it’s first used in analyzing mortgage data by Deng, Quigley and Order
(2000) a decade ago. Following the classical textbook Lancaster (1990) , we define

the prepayment hazard rate as

< >
Ap(tx) = C}imo Prp(t <T <;t+ dt|T > t, x)
s
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which is the conditional probability that an individual with covariates x prepays in
the interval [t, t 4 dt], given the individual was still “current” (not default not prepaid

yet) just before time t. The default hazard rate as

< >
Ap(t.z) = C}imo Prp(t<T <;t—i— dt|T > t,x)
t—

which has the similar explanation as Ap(t, z) except it’s default instead of prepayment
this time. We assume the only risk for a mortgage is prepayment and default, so,
A(t,x) = Ap(t,x) + Ap(t, )
There for the survival function can be defined as
S(t,x) = exp {— /t A(u, a:)du} = exp {— /t[)\p(u,x) + )\p(u,x)]du}
0 0
which is the probability an individual with covariates x being “current” at time t. so

the unconditional density that an individual default at time t would be

. Prp(t <T <t+dtlr)
folt) = jin, @

= Ap(t,x)S(t, z)

the same thing for an individual prepay at time t would be

. Prp(t <T <t+dt|z)
Felte) = Jm, @

= Ap(t,x)S(t, x)

Therefore the likelihood function for estimation is

n n t;
L= Hf(tz,xz) = H H \j(ti, m3) % exp {—/ /\j(u,xi)du}
i=1 i=1 je{P,D} 0
where d;p is 1 if individual ¢ default, 0 if individual i get censored, and also d;p is 1
if individual 4 prepaid, 0 if individual i get censored.

Fine and Gray (1999) proposed a proportional hazard model for competing risk,

they seperated the baseline hazard from the regression coefficient by assuming the

hazard rate

Aj(ti, w3) = Ajo(ti)exp {x; B}
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so the likelihood function become

n t;
L= H H Njo(ti)exp {3} eap {—/ Ajo(ti)exp {z: B} du}
i=1 je{P,D} 0
so we don’t have to estimate the baseline hazard function anymore, so the whole

estimation becomes easier, and we used this estimation method in R by following

Fine and Gray (1999) .
3.4.2 Estimation Result

Here, we first estimated the predicted cumulative probability of default and pre-
payment and the result is in figure 13. From this figure we can see that after 5 years,
the probability of prepayment is around 3-5 percent and the probability of default is
almost 50 percent.

The next issue we want to address is whether there is any difference between in-
vestors and owner occupants in terms of their prepayment and default behavior. The
result is in figure 14, from which we can not tell the difference between owner occu-
pants and the investors; by using the competing risk model to test the null hypothesis
that there is no significant difference between investors and owner occupants behavior

on prepayment and default, we get the t statistic as following:

t-statistic Probability

Default 0.1643705  0.6851641

Prepayment 0.6007734  0.4382831

from which we can see that we can not actually reject the null hypothesis that there
is no significant difference between investors and owner occupants behavior on pre-

payment and default.
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Controlling other variables, we run the competing risk model again and the result
is in table 68, from which we still could not reject the null hypothesis that there is no
significant difference between investors and owner occupants in terms of prepayment
and default. But the other variables still make sense, for example, the higher the
FICO score, the lower the default hazard; low doc borrowers tend to be more likely
to default than non low doc borrowers. So from this competing risk model, in terms
of default and prepayment, owner occupants are at least as risky as investors.

so why do investors is being charged with a much higher risk premium and have to
face a more restricted loan and then is not more risky than owner occupants? Is the
market not so efficient to correct this error?

We think there are majorly two reasons. First, owner occupants get a lower interest
rate and a more favorable loan because the government want to promote the idea that
everyone has his own house, the government want to let people have their own house.
so the most favorable loans are always reserved for the owner occupants instead of
investors, even in terms of default and prepayment, owner occupants are as risky as
investors.

The second reason is that in fact, investors are more risky than owner occupants,
which is documented in some of previous literature, however, with the strong incen-
tive to commit occupancy fraud, lots of investors were actually recorded as owner
occupants to get a more favorable loan; and it’s these investors who commit occu-
pancy fraud but recorded as owner occupants in the data set increased the estimated
hazard of default of the group of owner occupants, so we can not tell the difference

between the investors and owner occupants in terms of default. To illustrate this, see
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the table as following:

Record as Owner Occupants Record as Investors

Real Owner Occupants ~ A(honest owner occupants) B(no one)

Real Investors C(Occupancy Fraud) D(honest investors)

Apparently, no one would be in group B, because real owner occupants have no
incentive to lie to become investor to get a less favorable loan. The problem comes
from group C. As a group, investors are more risky than real owner occupants, but
among this group, those who recorded as owner occupants are more risky than those
investors who didn’t commit occupancy fraud. With the number of group C increas-
ing, the whole group as what we estimated as the owner occupants become as risky as
group D. That’s why by our estimation, we can not tell the difference between group
A+C and group D in terms of riskiness.

To test whether our prediction about group C is correct or not, we will do some

information asymmetry analysis in next section.
3.5 Information Asymmetry

3.5.1  the model

To test whether there is any information asymmetry during this process, there is
a well developed two step procedure by Puelz and Snow (1994) and Kau et al (2012)
. First we run that risk-based mortgage pricing model again,
ri=X;0+¢€,i=1,...n
and get the residual €; from this regression. Since the residual means the risk premium

that can not be explained by our mortgage pricing model, or to be more clearly, if
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there are two individuals with the same characteristics, one accept an interest rate
higher than the other, which can not be explained by the observable characteristics,
we call that as the excess risk premium. It represents the extent of information
asymmetry there.

Then the second step would be adding the excess risk premium into our competing
risk model to see whether this excess risk premium, or the information asymmetry
could explain the default hazard and the prepayment hazard which we observed in

the data set.

L= H H [Njo(ti)exp {x; B + vé Y™ exp {— / No(ti)exp {z:B + v€é} du}
i=1 je{P.D} 0
If this excess risk premium has some explanatory power on the competing risk model,

then that’s also some evidence for the occupancy fraud.
3.5.2  Estimation Result

Here, after adding the “excess risk premium” as an explanatory variable in the
competing risk model to test whether this information asymmetry would have some
prediction power over the future hazard of borrowers, we get some result in table
69, which showed that this “excess risk premium”, or the infomration asymmetry do
explain parts of the hazard, which affirms our suspect on the occupancy fraud. To
test whether this information asymmetry has different effect on different groups, we
devided our data into two groups, one is the group recorded as owner occupants, and
the other is the group recorded as investor, then we did this information asymmetry
test on both of these groups to see if there is any difference between these two groups

in terms of the extent of information asymmetry, and the result is in table 70.
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From this table, we find that among the group recorded as owner occupants, the
information asymmetry problem is more serious than the group recorded as investors
which reaffirmed our suspect in the last section that because in the group of owner
occupants, it’s not only true owner occupants in this group, but also those speculative
investors who was trying to reduce their financing cost by commiting occupancy fraud.
That’s why this group include more information asymmetry than the group recorded

as investors, which group is made up by honest investors.
3.5.3  Possible ways to prevent occupancy fraud

Here, we propose a “statistical scanning” way to help prevent the potential occu-
pancy fraud. Since our ultimate goal would be to prevent the default, first, we will

use historical data to “train” a competing risk model as

n t;
L= H H [Njo(ti)exp {3} exp {—/ Ajo(ti)exp {z: B} du}
i=1 je{P,D} 0
then we will get the parameter estimation 3, after we get this estimation, we used

this well-trained model to predict the cummulative probability of default

. Prp(t <T <t+dt|r)
folt. o) = Jim, @

= )‘D(tv x)S(tv l‘)
and if this probability is above some critical value, say ¢, then we should ask the loan
officer to scrutinize this loan again. By this way, we don’t have to scrutinize every

loan, but we will significantly reduce the probability of future default.
3.6  Conclusion

By using submortgage data, we found that investors are being charged with a sig-
nificant risk premium over owner occupants; besides that, they are also facing a more

restricted loan; with the market getting hotter, this risk premium and restrictions
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are getting even worse. Being treated like that, our findings show that investors
were actually not more risky than owner occupants in terms of both prepayment and
default.

We suspect the reason for this puzzle is that when the market getting hotter, there
are more speculative investors who commit occupancy fraud to get a more favorable
loan. And these speculative investors were actually recorded as owner occupants on
loan documents, which increased our estimation of the hazard of owner occupants
group. And our information asymmetry test actually reaffirmed our suspect. There-
fore, this paper, for the first time, give statistical evidence on occupancy fraud, and
we also proposed a statistical scanning way to reduce to potential occupancy fraud.

For further study, we should check the robustness of our conclusion by using pool
level data, or even with multinomial probit model. We can also run a logit regression
to see the characteristic of tru e investors and using this model to find the potential

occupancy fraud.
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Occupancy Status

B Owner MSecondHome W Investor

Figure 8: Occupancy status in our data
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Table 62: Pre-assessment form by Universal American Mortgage Company

UAMC PRE-ASSESSMENT (FOR HOME PURCHASE ELIGIBILITY)

Builder: Community: Property State:
Estimated Sales Price: $ _ . Estimated Loan Amount: $ _ . i Property Type: .
Home will be: 71 Primary [ Secondary Investment | Buyer Applying: Ind|V|duaIIy Jointly | [1FHA [1VA [ICONV | [1JUMBO I ARM

CUSTOMER 1 CUSTOMER 2
Married: Yes No — Separated Yes No — Separated
Name (First/Middle/Last/Suffix):
4 Birthday (Month/Day/Year):
(®8 Social Security Number:
'<_( Current Address (Street):
=l City/State/Zip:
*8 Phone: ( ) ( )
E Cell Phone: ( ) ( )
=&l Email:
5 Time at Address: Years Months Years Months
E Oown Rent Rent Free Own Rent Rent Free
© Monthly Payment: $_ Monthly Payment: $_
U.S. Citizen: Yes No Yes No
Permanent Resident Alien: Yes No Yes No
Non-Resident Alien: Yes No Yes No
— Employed Self Employed Employed Self Employed
5 Current Employer:
E Length of Employment: Years Months Years Months
¥ Monthly Income: $ $
% Monthly Debt Payment: $ $
i (Car Payment, Credit Cards, Alimony, Child Support, etc.)  Have you or your co-borrower declared bankruptcy within the past 7 years? (1 Yes No
b4 Down Payment Amount: $ Sources: Sale of Present Home: $
% Savings: $ Gift: $ Sales of Stocks: $
fafll Other (Please indicate):
hdl Do you need to sell your home in order to purchase this home? Yes No

AUTHORIZATION TO RELEASE INFORMATION AND TO ORDER CREDIT REPORT

By signing below, I/We hereby authorize Universal American Mortgage Company or Universal American Mortgage Company of California, herein referred to as
“UAMC”, to obtain my/our credit report for use in connection with my/our eligibility to be considered as a home purchaser.

X X

Customer 1 Signature Date Customer 2 Signature Date

Joint credit application? Customer 1 and 2 each agree that they intend to apply for joint credit by initialing. C1: X [initial]  C2: X [Initial]

PERSONAL INFORMATION SHARING — SHARING WITH AFFILIATES

By law UAMC can and will share information about your pre-assessment status with their affiliated homebuilder without your permission in order to advise them of
your purchase eligibility (i.e., information provided is satisfactory or more information is needed). Under the Fair Credit Reporting Act (“FCRA”) UAMC is required
to obtain your consent before they can share specific personal information that concerns your assets, income, and employment as well as credit reports and other
credit related information (“FCRA-Covered Information”) with their affiliated homebuilder.

I (we) agree to allow UAMC to share our FCRA-Covered Information with our affiliated homebuilder.

X X

Customer 1 Signature Date Customer 2 Signature Date

CONSENT

By signing below, I/We hereby authorize Universal American Mortgage Company to contact me/us regarding its mortgage loan products and services using any of
the telephone number’s (including cellular phones) and/or email addresses provided above unless otherwise specified here,

X X

Customer 1 Signature Date Customer 2 Signature Date

Universal American Mortgage Company, LLC; AZ: Mortgage Banker License #BK-0904844; CO: Supervised Lender License #987996; DE: Licensed Lender #8488; FL: Mortgage Lender License
#MLO700915; IL: Residential Mortgage Licensee #MB0002095-2300 N. Barrington Road, Suite 750, Hoffman Estates, IL 60169; MD: Mortgage Lender License # 8101; MN: Mortgage Lender License #
8101; NV: Banker License #1310 and Mortgage Broker License #1055, 6750 Via Austi Parkway, Suite 130, Las Vegas, NV 89119 (702) 739-7933; NJ: Licensed by the NJ Department of Banking and
DULIOENS  Insurance #9933158, 800 West Main Street, Freehold, NJ 07728 (732) 625-2314. Licensee #L055199, 15550 Lighthouse Drive, Suite 200, Clearwater, Florida 33760 (727) 450-2733; NC: Mortgage
Lender's License #L-108346; PA: Licensed by the PA Department of Banking pursuant to the Mortgage Act; SC: Mortgage Loan Broker # MB-0508401 and Supervised Lender License # S-5, 665, 688,
689, 690, S-6, 529, 572; TX: Regulated Loan License # 4514-34262; VA: Mortgage Lender/Broker License # MLB-817, licensed by the "Virginia State Corporation Commission"; Universal American Mortgage Company
of California; CA: Licensed by the Department of Corporations under the CA Residential Mortgage Lending Act; NV: Banker License #3243 and Mortgage Broker License #3244, 10354 Professional Circle, Site 120,
Reno, NV 89521 (775)852-9980 July 01, 2009
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Table 63: Loan level data variable names and meaning

Variable Name

Meaning
Orig_Amt Original Loan Amount
Inv_Pro Dummy for Florida
Ini05 Dummy for loans initiated in 2005
Ini06 Dummy for loans initiated in 2006
Ini07 Dummy for loans initiated in 2007
FICO FICO score
ldoc Dummy for Low Doc and no doc status
LTV Loan to Value Raio
Term 180 Loan term is 15 years or less
Term 240 Loan term is between 15 years and 20 years
Term480 Loan term is 40 years or more
Purchase Dummy for Purchase (Not refinance)
Fixed Dummy for Fixed rate loan product
Balloon Dummy for balloon product
Age Days from the initial date to the last payment
Vprep Dummy for Voluntary Prepayment (not foreclosure)
ForeClosure Dummy for foreclosure
Noncurrent

Dummy for Noncurrent states (prepaid, foreclosure, delinquincy)

Table 64: Pool level data variable name and meaning

Variable Name

Meaning

COUPON dollar weighted average coupon rate of the pool

WAOLT dollar weighted average of loan term
WAOCS dollar weighted average of FICO score

OLTV dollar weighted average of LTV ratio
WAOLS dollar weighted average of loan size
Purchase percentage of “purchasing” (not refinancing) borrowers in this pool

Investment

percentage of “investing” (not occupancy) borrowers in this pool




Table 65: The risk based mortgage pricing model

Model 1

Model 2

Dependent Variable

Interest Rate

Interest Rate

Independent Variables Coefficients t-value Coefficient t-value
(Intercept) 11.400 74.095 11.410 74.095
Orig_Amt -7.264E-07  -11.79 -7.250E-07 -11.769
Inv_pro 0.579 18.469 0.474 6.898
Florida 0.108 4.858 0.108 4.84
Ini05 0.455 5.951 0.451 5.851
Ini06 0.884 11.468 0.860 11.07
Ini07 0.870 10.307 0.838 9.738
FICO -0.012 -68.023 -0.012 -68.025
Idoc 0.470 21.684 0.470 21.689
LTV 0.033 33.027 0.032 33.013
Term180 2.366 49.161 2.362 49.06
Term?240 0.575 7.838 0.573 7.82
Term480 -0.701 -10.318 -0.704 -10.362
Purchase 0.255 11.063 0.258 11.179
Balloon 0.424 11.237 0.432 11.416
Inv_Pro:Ini05 0.058 0.702
Inv_Pro:Ini06 0.119 2.297
Inv_Pro:Ini07 0.253 1.952
Goodness of Fit
R-square 0.4909 0.4911
Adjusted R-square 0.4905 0.4906

106



Table 66: The risk based mortgage pricing model
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Model 3 Model 4
Dependent Variable LTV Ratio LTV Ratio
Independent Variables Coefficients t-value Coefficient t-value
(Intercept) 42.190 45.086 42.210 45.042
Int_Rate 2.619 61.369 2.618 61.343
Orig_Amt -8.148E-06 -18.315 -8.149E-06 -18.319
Inv_pro -3.212 -13.852 -2.984 -5.856
Florida -0.240 -1.456 -0.239 -1.449
Ini05 -2.320 -11.374 -2.378 -10.929
Ini06 -3.844 -18.119 -3.764 -16.803
Ini07 -3.339 -10.17 -3.091 -8.815
FICO 0.038 31.414 0.038 31.361
Idoc -2.437 -15.124 -2.436 -15.119
Term180 2.366 49.161 2.362 49.06
Inv_Pro:Ini05 0.302 0.493
Inv_Pro:Ini06 -0.674 -1.049
Inv_Pro:Ini07 -1.866 -1.942
Goodness of Fit
R-square 0.2112 0.2115
Adjusted R-square 0.2108 0.211
Table 67: The risk based mortgage pricing model
Model 5 Model 6
Dependent Variable Interest Rate LTV Ratio
Independent Variables Coefficients t-value Coefficient t-value
(Intercept) 13.300 4.928 74.850 1.547
Term -0.015 -2.004 0.054 0.407
FICO -0.004 -5.346 -0.098 -7.919
LTV 0.020 7.543
Purchase -0.366 -3.54 19.060 12.052
Investment 2.198 10.96 -24.170 -6.367
Orig_Amt -7.00E-07  -5.627  1.40E-05  6.493
coupon 6.021 7.543
Goodness of Fit
R-square 0.4877 0.3972
Adjusted R-square 0.4805 0.3887




Table 68: Competing risk model to test the riskiness of investors

Competing Risk Model

Default Hazard Prepayment Hazard

Independent Variables Coefficients t-value Coefficient t-value
Orig_Amt 4.13E-07 4.136 7.09E-07  4.4243
Inv_pro 0.139 0.602 -0.006 -0.051
Int_Rate 0.183 14.870 0.234 7.251
Florida 0.03 0.647 -0.402 -4.660
Ini04 1.560 2.149 -0.247 -0.877
Ini05 2.970 4.097 -0.521 -1.898
Ini06 4.280 5.910 -0.677 -2.456
Ini07 5.340 7.318 -0.688 -2.198
FICO -0.001 -4.447 -0.002 -2.944
Idoc 0.331 8.351 0.144 1.618
LTV 0.018 8.996 0.005 1.324
Term180 -4.490 -12.340 -0.725 -3.465
Term240 -3.520 -4.915 -0.125 -0.370
Term480 0.233 2.768 -0.259 -0.809
Purchase 0.127 3.089 0.143 1.517
Fixed 0.490 11.237 0.432 11.416
Balloon 0.105 1.882 0.085 0.632
Goodness of Fit
Pseudo Log-likelihood -27339 -5613

Pseudo Likelihood ratio test 4205 169
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Table 69: Competing risk model to test information asymmetry

Competing Risk Model
Default Hazard Prepayment Hazard

Independent Variables Coeflicients t-value Coeflicient t-value
Orig_Amt 2.75E-07 2.75 5.36E-07  3.369
Inv_pro 0.256 0.8 0.132 1.058
Florida 0.047 1.01 -0.379 -4.383
Ini04 1.570 2.15 -0.246 -0.873
Ini05 3.080 4.26 -0.376 -1.381
Ini06 4.490 6.190 -0.429 -1.575
[ni07 5.550 7.6 -0.441 -1.4176
FICO -0.004 -11.97 -0.005 -7.440
Idoc 0.419 10.65 0.256 2.943
LTV 0.023 12.17 0.013 3.34
Term180 -4.060 -11.250 1.173 -0.914
Term240 -3.410 -4.77 0.015 0.0437
Term480 0.093 1.12 -0.437 -1.3553
Purchase 0.174 4.24 0.202 2.131
Balloon 0.176 3.15 0.175 1.301
Excess Premium 0.187 15.3 0.235 7.152
Goodness of Fit
Pseudo Log-likelihood -27335 -5613

Pseudo Likelihood ratio test 4212 169




Table 70: Information asymmetry test on both groups

Competing Risk Model for Default Hazard

Owner Occupants Investor
Independent Variables Coefficients t-value Coefficient t-value
Orig_Amt -2.35E-07 -4.12 1.22E-07 0.938
Florida -0.252 -13.101 -0.066 -1.439
Ini04 0.052 0.608 0.246 -0.827
Ini05 -0.221 -2.633 0.300 1.024
Ini06 -0.287 -3.433 0.393 1.336
ni07 0.09 1.058 0.744 2.491
FICO -0.002 -14.418 -0.001 -3.512
Idoc 0.004 0.239 -0.040 -0.829
LTV 0.002 1.799 0.004 1.513
Term180 0.580 14.433 0.568 5.773
Term240 0.304 4.547 0.227 1.223
Term480 -0.042 -0.851 -0.120 -1.071
Purchase -0.154 -7.961 0.126 2.368
Balloon -0.121 -4.226 -0.106 -1.134
Excess Premium 0.113 8.079 0.030 4.989

Goodness of Fit
Pseudo Log-likelihood -122943 -13944

Pseudo Likelihood ratio test 1292 142
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Figure 9: Origination date distribution in our data
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Figure 11: Risk premium for investors over the time
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Figure 12: Restrictions for investors (LTV difference) over the time
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