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ABSTRACT

RUOYANG WANG. Three essays on empirical finance. (Under the direction of DR.
STEVEN P. CLARK)

This dissertation includes 3 papers in empirical finance.

In chapter 1, since theory suggests a relationship between both volatility of volatil-

ity, variance risk premium, and the equity risk premium; we empirically investigate

the relationship between volatility of volatility and the equity risk premium, and the

relationship between the variance risk premium and the equity risk premium; we find

that volatility of volatility alone explains 5 to 10% of the total variation of equity

risk premium, and together with VIX data, it explains more than 20% of the total

variation of equity premium; and we fail to find a significant relationship between

volatility of volatility and the variance risk premium; we also use six measures of

volatility of volatility based on non-parametric models, a GARCH model and VVIX

data.

In chapter 2, we proposes a new way to measure the variance risk premium by

applying a fractional cointegration relationship between implied variance and realized

variance. To find the fractional cointegration coefficient between implied variance and

realized variance, we develop a search method based on minimization of the score test

statistic proposed by Robinson(1994). We use daily, weekly and monthly data of five

stock market indexes (S&P500, S&P100, DJIA, NASDAQ100 and Russell2000) and

their volatility indexes from the CBOE. We find our new measure improves the return

prediction power of the variance risk premium both in-sample statically and out-of-
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sample dynamically, and the result is robust for the monthly data among all five

indexes.

In chapter 3, by using submortgage data, we found that investors are being charged

with a significant risk premium over owner occupants; besides that, they are also fac-

ing a more restricted loan; with the market getting hotter, this risk premium and

restrictions are getting even worse. Being treated like that, our findings show that

investors were actually not more risky than owner occupants in terms of both pre-

payment and default. We suspect the reason for this puzzle is that when the market

getting hotter, there are more speculative investors who commit occupancy fraud to

get a more favorable loan. And these speculative investors were actually recorded as

owner occupants on loan documents, which increased our estimation of the hazard of

owner occupants group. And our information asymmetry test actually reaffirmed our

suspect. Therefore, this paper, for the first time, give statistical evidence on occu-

pancy fraud, and we also proposed a statistical scanning way to reduce to potential

occupancy fraud.
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CHAPTER 1: VOLATILITY OF VOLATILITY, EXPECTED STOCK RETURN
AND VARIANCE RISK PREMIUM

Theory suggests a relationship between both volatility of volatility, variance risk

premium, and the equity risk premium. We empirically investigate the relationship

between volatility of volatility and the equity risk premium, and the relationship be-

tween the variance risk premium and the equity risk premium. We find that volatility

of volatility alone explains 5 to 10% of the total variation of equity risk premium, and

together with VIX data, it explains more than 20% of the total variation of equity

premium. We fail to find a significant relationship between volatility of volatility and

the variance risk premium. We use six measures of volatility of volatility based on

non-parametric models, a GARCH model and VVIX data.

1.1 Introduction

There are always gaps between the expectations of market participants and sub-

sequent reality. What insights can be gleaned from studying the differences between

expected volatility implied by option prices and ex post realized volatility of the time

series of prices of the underlying security? (See, Christensen and Prabhala (1998)

and Demeterfi et al (1998).) When the implied volatility is higher than the real-

ized volatility, it means traders anticipated certain risks and usually these risks could

be hedged by trading financial derivatives. However, when the implied volatility is

smaller than the realized volatility , it means on the market there are some risk that



2

has not been expected by investors and that’s when some extreme events happens.

Usually, crash will happen when the implied volatility is smaller than the realized

volatility.

However, due to the measurement error of implied volatility and realized volatility,

the idea of variance risk premium is only theoretical, it’s hard to quantify the variance

risk premium to predict extreme cases(see, Chernov(2007) and Carr and Wu (2009)).

However, from both the equilibrium model and probabilistic model, people can prove

that this variance risk premium primarily (if not solely) depends on the volatility

of volatility. Therefore, the measurement of volatility of volatility becomes a crucial

variable to measure the risk of extreme cases. It’s easier to understand this from

a risk management perspective: for example, nowadays, Basel II require banks to

calculate Value at Risk every day based on their historical volatility. However, this

will only help to prevent some common risk. To prevent some extreme cases, people

not only need to know the historical volatility, but also the volatility of volatility,

or the probability that this historical volatility itself is going to change. that’s why

volatility of volatility is a crucial variable to measure the potential extreme risk(see

Jullizrd and Ghosh(2012) and Liu, Pan and Wang(2005)).

But so far, there is no literature measuring volatility of volatility, although lots

of literature mentioned its existence(see, Jones(2003) and Bollerslev and Todorov

(2011)). The reason why so far it’s not in the literature might because in a equilibrium

model, if one assume the consumption growth rate is constant, or the volatility of

consumption growth rate is constant, then when solving the equilibrium model, there

will be no volatility of volatility term. And also in a probabilistic model, if one
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assume the return is normal distributed, there will also be no volatility of volatility

term. Only when we set our model to be more realistic, with a changing volatility of

consumption growth rate, or allow the return follow a Lévy process, we will recognize

the volatility of volatility term.

Usually when people measure volatility, especially in stochastic volatility model,

people tend to think the volatility itself is unobservable, so usually people use state

space model to measure it. However, due to the importance of volatility of volatility

in risk management and derivative pricing, it will be useful if we have explicit mea-

surements of volatility of volatility. This paper proposed 6 different measurements of

volatility of volatility based on different ideas. One measurement is an almost non-

parametric measurement of volatility of volatility; 3 measurements based on GARCH

model: we proposed a new GARCH model for volatility of volatility, which we call

nested GARCH model. We also proposed estimation method for this GARCH model.

And from the empirical test, the measurement based on this nested GARCH model

has the best performance when predicting future return. The other two measure-

ments come from the trading price of options on S&P500 indexes and options on VIX

index. Our empirical results show that volatility of volatility, together with VIX,

could explain more than 20% of the variation of equity premium and it has some

prediction power on future market returns.

Our paper is structured as follows. In Section 2, we discuss the theoretical motiva-

tion for this paper. In Section 3, we propose our six measures of volatility of volatility.

We describe the data we use in Section 4 and we do the empirical tests in Section 5.

Section 6 concludes.
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1.2 Motivation

1.2.1 Variance Risk Premium and Volatility of Volatility

We begin by highlighting two models in the literature that imply that the variance

risk premium depends on volatility of volatility .Bollerslev et al. (2009) and Drechsler

and Yaron (2011) presented equilibrium models in which the variance risk premium

depends on the volatility of volatility.

1.2.1.1 General Equilibrium Model

The general equilibrium model developed by Bansel and Yaron (2004), Bollerslev,

Tauchen and Zhou (2009) and Dressler and Yaron (2011) all start from the geometric

growth rate of consumption, which is assumed to be

gt+1 = µg + σg,tzg,t+1

The volatility of this growth rate is stochastic, following

σ2
g,t+1 = aσ + ρσσ

2
g,t +

√
qtzσ,t+1

qt+1 = aq + ρqqt + φq
√
qtzg,t+1

where aσ > 0, aq > 0, |ρσ| < 1, |ρq| < 1, φq > 0, {zg,t}, {zσ,t} and {zq,t} are i.i.d.

series with mean zero and unit variance.

They assume the representative agent has recursive preferences as described in

Epstein and Zin (1989) and Weil (1989),

Vt = [(1− δ)C
1−γ
θ

t + δ(Et[V
1−γ
t+1 ])

1
θ ]

θ
1−γ

then using the approximation by Campbell and Shiller (1988), solve this model for

an equilibrium,

rt+1 = κ0 + κ1ωt+1 + ωt + gt+1
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where rt+1 is the logarithm return of any consumption asset from time t to t + 1,

ωt is the logarithm of the price-consumption ratio and κ0 and κ1 are coefficients for

approximation.

By assuming the solution follows an affine form of these two state variables σg,t

and qt,

ωt = A0 + Aσσ
2
g,t + Aqqt

by solving the Euler equation from the standard asset pricing conditionEt[Mt+1Ri,t+1] =

1 where the logarithm of the inter-temporal marginal rate of substitution should be

the form

mt+1 = θ log δ − θψ−1gt+1 + (θ − 1)rt+1

where δ refers to the subjective discount factor.

Since the Euler condition must hold for all values of the state variables, we can

solve the 3 coefficients:

A0 =
log δ + (1− ψ−1)µg + κ0 + κ1[Aσaσ + Aqaq]

1− κ1

Aσ =
(1− γ)2

2θ(1− κ1ρσ)

Aq =
1− κ1ρq −

√
(1− κ1ρσ)2 − θ2κ4

1φ
2
qA

2
σ

θκ2
1φ

2
q

Based on the solution of this model 1, we will get the relationship between variance

1In the appendix
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risk premium and volatility of volatility

V RP ≡ EQ
t (σ2

r,t+1)− Et(σ2
r,t+1) = (θ − 1)κ1[Aσ + Aqκ

2
1(A2

σ + A2
qφ

2
q)φ

2
q]qt

where

θ ≡ (1− γ)(1− ψ−1)−1

Here γ denotes the coefficient of risk aversion and ψ refers to the inter-temporal

elasticity of substitution, usually both of them are bigger than 1, which makes θ < 0.

And the expression of coefficient Aσ and Aq is in the appendix. Since both of them

are negative, we can see the variance risk premium is positively correlated with the

volatility of volatility, and we will test this in Section 5.

1.2.1.2 Probabilistic Model

Barndorff-Nielsen and Veraart (2012) proposed the volatility modulated non-Gaussian

Ornstein-Uhlenbeck (VMOU) processes and quantified the impact of the volatility of

volatility on the variance risk premium. They assume the volatility process Vt follows

dVt = −λVtdt+ qtdLt

where Lt is a levy process with characteristic triplet (γ, 0, q), which means the char-

acteristic function of Lt E(exp(iθLt)) = exp(tΨL(θ)) satisfy

ΨL(θ) = iθγ +

∫ ∞
0

(eiθx − 1)ν(dx)

They proved that if the volatility of volatility qt follows

dqt = a(b− qt)dt+ g
√
qtdWt

where a, b and g are positive constants satisfying the Feller condition (2ab > g2,

q0 > 0) and W is a standard Brownian motion, then the variance risk premium and
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the volatility of volatility satisfy

V RPt,t+h = qtF1(h) + F2(h)

where F1(h) and F2(h) are explicitly known deterministic functions.

By defining

G(h) = −a+ 1

a
+ h− a

1− a
e−h +

1

a(1− a)
e−ah

and the risk-neutral measure for a and b are aQ and bQ, and GQ(h) = G(aQ, h),

according to Barndorff-Nielsen and Veraart (2012), we have:

F1(h) ≡ (κ1 − κQ1 )(1− 1− e−h

h
)− 1

h
(κ1G(h)− κQ1 GQ(h))

F2(h) ≡ 1

h
[κ1G(h)b− κQ1 GQ(h)bQ]

where κ1 is the 1st cummulant of the Levy subordinator Lt, and κQ1 is the risk-

neutral measure of κ1.

It is difficult to determine the sign of F1(h) and F2(h), but at least we know that

they are deterministic functions depends on the frequency of data. Also, we can see,

if there is no volatility of volatility, the variance risk premium would be deterministic.

Therefore, the probabilistic model proposed by Barndorff-Nielsen and Veraart (2012)

also imply the variance risk premium depends on the volatility of volatility, and the

coefficient depends on the frequency of data. We will empirically test this in Section

5.
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1.2.2 Expected Stock Return and Volatility of Volatility

Returning to the Bollerslev, Tauchen and Zhou (2009) model, if we substitute the

solution of ωt into the approximation

rt+1 = κ0 + κ1ωt+1 + ωt + gt+1

we have

rt+1 = − logδ +Ψ−1µg−
(1− γ)2

2θ
σ2
g,t+(κ1ρq−1)Aqqt+σg,tzg,t+1+κ1

√
qt[Aσzσ,t+1+Aqφqzq,t+1]

So according to their model, the return from t to t + 1 positively related to the

the volatility σg,t and the volatility of volatility qt, compensating investors for the

additional volatility risk.

Then, plug the solution into the logarithm of inter-temporal marginal rate of sub-

stitution,

mt+1 = θ log δ − θψ−1gt+1 + (θ − 1)rt+1

one can get the equity premium rm − rf :

πr,t ≡ −Covt(mt+1, rt+1) = γσ2
g,t + (1− θ)κ2

1(A2
qφ

2
q + A2

σ)qt

From the above expression, one can see the equity premium can be decomposed

into two parts: the first comes from the volatility, which has been well studied by

previous literature, and the second comes from the volatility of volatility. Moreover,

since θ is smaller than zero, the equity premium is positively correlated with volatility

of volatility, or, say, the shock to volatility. We will test this result in Section 5.

1.3 Measurement of Volatility of Volatility

We investigate six possible measures for volatility of volatility based on three differ-

ent ideas. One is a direct method with minimal assumptions except that returns can
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be decomposed into a time varying volatility times a normal innovation. The second

category is based on GARCH modeling and the third category is based on the option

implied volatility. We list the basic idea of each of the measures in table 1, also plot

each of them in Figures 2 and 3, and will explain them in this section one by one.

From Figures 2 and 3, one can see although the detailed plot of each measurement

is different, these six measurements almost peak at the same time around September

2008, this verified our statement about volatility of volatility is good at detecting

extreme things.

1.3.1 A Semi parametric Way to Estimate Volatility of Volatility

According to Figure 1 in Anderson et al. (2001) , the returns scaled by realized

standard deviations is approximated Gaussian, so we can model the stock return as

r = σε

where σ ≥ 0 and ε ∼ N(0, 1), if we further assume that σ and ε are uncorrelated,

then we will have the expected return as:

E(r) = E(σε) = E(σ)E(ε)

and if σ2 and ε2 are also uncorrelated,

E(r2) = E(σ2)E(ε2) = E(σ2)

and

E(|r|) = E(σ)E(|ε|) =

√
2

π
E(σ)

since we know that if ε ∼ N(0, 1), we have E(ε2) = 1, E(|ε|) =
√

2
π
. Therefore, to

estimate E(σ2) and E(σ), we can use:

E(σ2) =
1

N

N∑
i=1

r2
i
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and

E(σ) =

√
π

2

1

N

N∑
i=1

|ri|

Therefore, to estimate the realized variance of volatility, we use

V ar(σ) = E(σ2)− E2(σ) =
1

N

N∑
i=1

r2
i −

π

2
[

1

N

N∑
i=1

|ri|]2 (1)

Since this measurement cannot guarantee it’s always positive, we take the absolute

value of this measurement as the variance of volatility.

1.3.2 GARCH type of model to measure VolVol

Here, we proposed three ways to measure volatility of volatility by using GARCH

model.

1.3.2.1 the realized volatility of the GARCH volatility

Here, if we assume the daily return follows a simple GARCH(1,1) process as fol-

lowing: 
rt = µr + htεt

h2
t = α0 + α1h

2
t−1 + β1u

2
t−1

then we could get a estimated volatility ĥt every day, the realized volatility of this

estimated volatility based on GARCH model

RVt(ĥ) ≡
n∑
i=1

[ĥt+ i
n

∆ − ĥt+ i−1
n

∆]2

would be a very straight forward measurement of volatility of volatility. To get a

monthly RVt(h), n is around 22 each month.

1.3.2.2 The volatility of realized volatility

According to Corsi et al. (2006), if we define

RVt ≡
n∑
i=1

[pt+ i
n

∆ − pt+ i−1
n

∆]2
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then the logarithm of realized volatility actually follows a normal distribution with a

time-varying variance.
√
RVt −

√∫ t
t−1

σ2(s)ds√
Q∗
t

2MRVt

d→ N(0, 1)

where
√

Q∗
t

2MRVt
is an approximation of the standard deviation of the realized volatility.

And following Corsi et al. (2006), without loss of generality, we can assume that the

logarithm of realized volatility actually follows a GARCH (1,1) process as
yt = µy +

√
htεt

ht = ω + α1ht−1 + β1u
2
t−1

where y is
√
RV and ut−1 = σt−1εt−1 and {εt} is a sequence of i.i.d. random variables

with mean 0 and variance 1. Since here, we use the daily price to get the monthly

realized volatility, then by using the GARCH model on the realized volatility, we

actually get the monthly volatility of the realized volatility as ĥt.

1.3.2.3 A nested GARCH model

Here, we assume the return as following

rt = µr + σtεr,t (2)

where µr could be an ARMA process itself, but since we are focusing on volatility

and volatility of volatility, for simplicity, we just put it as µr, and {εq,t} is a sequence

of i.i.d. random variables with mean 0 and variance 1.

For the volatility, we assume part of it is deterministic as a GARCH process, but

the other part is stochastic.

σ2
t = α0 + α1σ

2
t−1 + β1u

2
t−1 + qtεσ,t (3)
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where ut−1 = σt−1εr,t−1, {εσ,t} is a sequence of i.i.d. random variables with mean 0

and variance 1 as well, and it’s independent from {εq,t}. α0 > 0, α1 ≥ 0, β1 ≥ 0 and

α1 + β1 < 1. Here, qt is the volatility of volatility and we assume this part also follow

a GARCH process

q2
t = αq + ρqq

2
t−1 + φqη

2
t−1 (4)

where ηt−1 = qt−1εσ,t−1, αq > 0, ρq ≥ 0, φq ≥ 0 and ρq + φq < 1.

If we put them together, it would be
rt = µr + σtεr,t

σ2
t = α0 + α1σ

2
t−1 + β1u

2
t−1 + qtεσ,t

q2
t = αq + ρqq

2
t−1 + φqη

2
t−1

The 3-step estimation method for this “nested” GARCH model is as following:

First, by ignoring any ARCH effects, we can estimate the mean equation µt of a

return series by using MLE; denote the residual series by ût, we get

ût = rt − µ̂r,t

For the second step, we can treat {û2
t} as an observed time series, and denote ξt ≡

u2
t − σ2

t , and plug it into equation (2), we get

u2
t = α0 + (α1 + β1)u2

t−1 + ξt − α1ξt−1 + qtεσ,t

So we can treat {u2
t} as a ARMA process, say, the AR coefficient estimate is θ̂1 and

for MA is φ̂1, then β̂1 = θ̂1 − φ̂1 and α̂1 = φ̂1. Since it’s easy to check that E(ξt) = 0

and cov(ξt, ξt−s) = 0 for s ≥ 1, so {ξt} is a martingale difference series, therefore the

estimation of α0, α1 and β1 is unbiased.

The third step is very similar to the second step, again, we can denote the residual
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series by η̂t and treat η̂2
t as an observed time series, define mt ≡ η2

t − q2
t , plug it into

equation (3), we get

η2
t = αq + (ρq + φq)η

2
t−1 +mt − ρqmt−1

so we can treat η2
t as a ARMA process and get unbiased estimation of αq, ρq and

φq.

Although both ξt and mt are martingale martingale difference series, so we can get

unbiased estimation for our model, in general, they are not i.i.d. sequences. There

we will inevitably lose some efficiency by this 3-step estimation.

The q̂t would be a daily measurement of volatility of volatility, but since here we

care about the monthly measurement of volatility of volatility, so we only use the q̂t

at the end of each month.

1.3.3 Volatility of VIX

Since VIX is considered to be a barometer of market volatility, the volatility of VIX

naturally becomes a measure of volatility of volatility 2. So there are two ways to

measure the volatility of VIX: the realized volatility of VIX and the implied volatility

of VIX.

2Chicago Board of Exchange explained the volatility of volatility by using VIX at http://www.

cboe.com/micro/vix/VIXoptionsFAQ.aspx\#9
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1.3.3.1 The realized volatility of VIX

Since VIX is an index for volatility, it is straight forward to use the realized volatility

of VIX as a measures of volatility of volatility

RVt(V IX) ≡
n∑
i=1

[V IXt+ i
n

∆ − V IXt+ i−1
n

∆]2

1.3.3.2 The implied volatility of VIX

When CBOE first launched options written on VIX in 2006, people were worrying

about the liquidity of these options, we plot the trading volume of options on VIX in

Figure 2, the trading volume of the options on VIX has increased exponentially from

several thousand contracts per day in 2006 to more than 1 million contract in 2013

3. With such a big volume of options trading everyday, the volatility of VIX itself is

crucial in pricing these options. To give the market an opportunity to see the implied

volatility from the trading of these options, CBOE launched VVIX in March 2012,

the method to determine the option implied volatility of VIX is similar to what they

used to determine VIX, the implied volatility of options on SP500. So the VVIX is a

natural measure of volatility of volatility.

1.4 Data and Measurement

1.4.1 Realized Volatility

Barndorff-Nielsen and Shephard (2002) proved that when n → ∞ and ∆ is fixed,

(using the same notation as Bollerslev et al. (2009), ) the realized volatility measured

3see http://ir.cboe.com/releasedetail.cfm?ReleaseID=756850
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by the following

EP
t (σ2

r,t+1) ≡ RVt ≡
n∑
i=1

[pt+ i
n

∆ − pt+ i−1
n

∆]2

will be a good approximation of the unobserved integrated volatility, where pt is the

logarithmic price.

Here, we used the daily data to get the monthly realized volatility, so ∆ is one

month, and n is around 22 for each month4. The data is from January 1st, 1990 to

December 31st, 2012. The reason it start from January 1st, 1990 is because that’s

the earliest data we can get from CBOE for the VIX which we will use later.

We plot this monthly realized volatility time series on the second chart of Figure

4, comparing with Figure 2 in Bollerslev et al. (2009), we get very similar result

from Jan 1990 to December 2007, but the financial crisis drove the realized volatility

around 2009 much higher than before. We list the 10 months with the highest realized

volatility from Jan 1990 to Dec 2012 in table 1, 7 out of these 10 highest realized

volatility months is the 7 consecutive months from Sep 2008 to Mar 2009.

1.4.2 Implied volatility

Just like the “implied” interest rate can be extracted from bond price, implied

volatility could also be extracted from option price. Historically, people used the

famous Black-Scholes formula to get the implied volatility from option price, but it’s

based on the Gaussian distribution and only incorporated one strike price; to incor-

porate more information from option prices with different striking prices, Carr and

Madan (1998) and Demeterfi et al. (1999) proposed a “model-free” way to incorpo-

4the reason we didn’t use the 5 minute data is because according to the Table 1 in Drechsler and
Yaron (2010), the “nontrivial auto-correlation” in the five-minute returns tend to drive the mean of
realized volatility based on 5 minute data much smaller than that for the daily data.
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rate prices of both call options and put options with different striking prices but the

same expiration date, but because of the put-call parity and sometimes the illiquidity

of put options, the following way, which is proved by Britten-Jones and Neuberger

(2000) to be the risk neutral expectation of the integrated volatility, become a popular

way in the market to calculate implied volatility.

EQ
t (σ2

r,t+1) ≡ IV ≡ 2

∫ ∞
0

Ct(t+ 1, K
B(t,t+1)

)− Ct(t,K)

K2
dK

where Ct(T,K) denote the price of a European call option at time t with the strike

price at K and Maturity at T , 1
B(t,t+1)

is the discount rate from t to t+ 1. And since

2003, CBOE start using this “model-free” measurement for the VIX index, which is

based on S&P 500 index options with a 30 day maturity.

Here, to plot the monthly implied volatility, we used the last observation of each

month of the VIX data, and plot it in the first chart of figure 4. We can see although

the implied volatility was very high during the financial crisis, but it’s not as high as

the realized volatility during that time.

We also listed the highest 10 months with the highest implied volatility in the same

table, from which we can see that there is a lead-lag relationship between realized

volatility and implied volatility as documented by other literature, that if one month

get a high realized volatility, then people will trade the options with a higher implied

volatility the same month or the next month, which drive the implied volatility from

the same month or the next month higher.
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1.4.3 Variance Risk Premium

Following Bollerslev, Tauchen and Zhou (2009) and Drechsler and Yaron (2011),

We define the variance Risk Premium as the difference between the Implied Variance

and the Realized Variance:

V RP ≡ EQ
t (σ2

r,t+1)− Et(σ2
r,t+1) = IV −RV

Most of the time, options are traded with an implied volatilities higher than the

realized volatilities, which means usually, the realized volatility has been expected, so

the implied volatility subtracted from option price are usually higher than the realized

volatility, so the variance risk premium is usually positive, and the higher the variance

risk premium, the higher the implied volatility than the realized volatility, it means

the more cautious people are, or the more risk averse people are during that period.

However, when the realized volatility is bigger than the implied volatility, that’s when

there are uncovered, or unpredicted risk, then at these extreme cases, the variance

risk premium become negative. We used our daily data to get the realized variance

and the VIX data to get the implied variance; and then get the difference between

these two as the variance risk premium, and plot it in Figure 1, and we get the similar

results as Bollerslev, Tauchen and Zhou (2009) 5.

1.4.4 Data Description

We select the daily data of S&P500 index to do empirical test, there are three

major reasons we chose S&P500 index, one is it has a good coverage of the entire

market, which means it’s a good representative for the market; the second reason is

5We appreciate that the authors of this paper shared the data:
http://www.federalreserve.gov/econresdata/researchdata/feds200711.xls
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the options based on S&P500 has good liquidity, and the implied volatility based on

these options are calculated everyday as VIX, and every the options based on VIX

are also liquid now, so it’s easy get data for us to verify our thoughts on volatility of

volatility; the third reason is that S&P500 index data has been used by many scholars

before us, so it’s easy for us to compare our results with previous literature.

We have four different data sets here: Data Set 1 is from January 1st, 1990 to

September 30th, 2012, that’s the longest data we can get so far, but since the authors

of Bollerslev, Tauchen and Zhou(2009) only updated their realized volatility measure

by 5-min high-frequency data to December 2008, for data set 1, we used our own

measurement of realized volatility, which is based on daily data. For robustness check,

we have data set 2, which is from January 1990 to December 2008, with the Realized

volatility data updated by the authors of Bollerslev, Tauchen and Zhou(2009). To

compare our results with Bollerslev, Tauchen and Zhou(2009), we have data set 3,

which is from January 1990 to December 2007, and also the other reason for data 3

is to see if we get rid of the peak data, will that affect our results. To incorporate

Measurement 6 based on the VVIX data, which was launched January 1st, 2007, we

use data set 4, which is from January 1st, 2007 to September 30th, 2012, the other

reason for checking this data set is to see if our model works with the most recent

data. To summarize our data sets, we have table 2.

Besides all 6 measurements of variance of volatility, realized variance, implied vari-

ance and the variance risk premium that we’ve discussed earlier in this section and

the previous section, we also used the excess return, defined by the difference be-
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tween the market return and the risk free rate, we used Fama-French data 6. We

also used other popular predicting variables from previous literature (Lamont(1998),

Lettau and Ludvigson (2001), Ang and Bekaert (2007) and Bollerslev, Tauchen and

Zhou(2009)): the price-earning ratio and the price-dividend ratio of S&P500 index

comes from public data set 7; the default spread (DFSP), defined as the difference

between Moody’s BAA and AAA Bond Yield Indices, the term spread (TMSP), de-

fined as the difference between the ten year and three month treasury yields, and the

stochastically detrended risk free rate (RREL), defined as the difference between the

one month T-bill rate and its trailing twelve month averages, come from the Fed-

eral reserve website 8. The consumption-wealth ratio CAY comes from the Lettau’s

website 9.

We listed basic summary statistics for the monthly returns and predictor variable

for data set 1 in Table 3. For robustness check, we also listed the summary statistics

for data set 2, 3, 4 in Table 4, 5 and 6.

1.5 Empirical Results

1.5.1 Expected Stock Return and Volatility of Volatility

With the equilibrium theory developed by Bansel and Yaron (2004), Bollerslev,

Tauchen and Zhou (2009) and Dressler and Yaron (2011), at the existence of volatility

6We do appreciate their effort on updating the data http://mba.tuck.dartmouth.edu/pages/

faculty/ken.french/ftp/F-F_Research_Data_Factors.zip
7http://www.multpl.com/table?f=m and http://www.multpl.com/

s-p-500-dividend-yield/table?f=m
8http://www.federalreserve.gov/releases/h15/data.htm
9http://faculty.haas.berkeley.edu/lettau/data/cay_q_12Q3.txt
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of volatility, the equity premium should follow

πr,t ≡ −Covt(mt+1, rt+1) = γσ2
g,t + (1− θ)κ2

1(A2
qφ

2
q + A2

σ)qt

To test the relationship between the equity premium and the volatility of volatil-

ity, we run the simple regression for all the measurements of volatility of volatility

first, and then also other predictor variables, such as the realized variance, implied

variance, the variance risk premium, and other macro-economic predictor variables.

We listed the result in Table 7, from which we can see that measurement 1, 2 and 5

perform really good in the simple regression context, with the R2 being 9%, 5% and

11% respectively. In the multiple regression context, since the implied variance (IV)

is significant in the simple regression context as well, we put IV as the additional

explanatory variable. then the R2 is more than 20%.

The coefficient before volatility of volatility is negative in the simple regression

context, however, after we add the implied volatility as the additional explanatory

variable, the coefficient before volatility of volatility becomes positive and the coeffi-

cient before IV is negative. Since we are testing the relationship between the equity

premium and volatility of volatility, Implied Volatility is a good approximation of

volatility itself. So we can see there is a positive variance risk premium due to the

positive coefficient in front of volatility of volatility. However, the negative coefficient

in front of implied volatility could more likely be the risk-return tradeoff.

For robustness check, we run the same regression on the other three data sets,

and the results are in table 8, 9 and 10. From which we can see that although the

performance varies a little bit with different data sets, for example, with measurement

4 of volatility of volatility and implied volatility, the R2 could get to as high as 33% for
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data set 2, which means 33% of variation in equity premium could be explained by just

these two variables, and for data set 4, these two variables together with the realized

volatility could explain 42% of the total variation of equity premium. Although the

performance for data set 3 is not as good as other data sets, the result is still quite

robust for all these 4 data sets: measurement 1, 2 and 5 for volatility of volatility

always perform good in the simple regression context, and the measurement 2 or 4

of volatility of volatility, together with the implied volatility and realized volatility,

could explain more than 20% of the total variation of equity premium.

Here, the negative coefficient in front of the implied variance term and the positive

coefficient in front of the variance of volatility term also reflect that people are aware

of the volatility of the market: when the volatility is low, people tend to get into

the market, which drives the return to be higher, and when the market volatility is

high, people actually get scared by the high volatility of the market, so people tend

to leave the market, which in turn drives the return lower. However, most people are

not aware of the volatility of volatility, or the risk of the extreme cases, so even after

considering the volatility, there are still some risk left uncovered for some extreme

cases, and because people’s unawareness of this risk, the returns are even higher

when this uncovered risk is higher, when this effect accumulate to some extent, some

extreme event, like crash, will happen.

1.5.2 Return forecasting

To see whether our measurements of volatility of volatility have some predicting

power on stock market return, we run simple regression to predict return of different
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horizons from 1 month to 24 months by using 1-month lagged volatility of volatility

measurement. We tried all of our 5 measurements, we find although the measurements

1, 2 and 5 perform good in explaining the equity premium at the same period, they

don’t really have a lot of predicting power in the long run. We put the predicting

market return result by measurement 4 in table 15 and 16, respectively. We also

plot the estimated slope coefficient and the 95% confidence band for the estimated

slope coefficient, and also the adjusted R2 in Figure 5.

From the results we can see that for measurement 3, with the increase of the

predicting horizon, the predicting power is getting stronger from less than 1 percent

in 5 months, to more than 4 percent in 2 years. For measurement 4 of volatility of

volatility, the prediction get best when the predicting horizon is from 9 months to 16

months, the prediction power could get to as high as 6%, which is a good result even

comparing with previous literature.

1.5.3 Variance Risk Premium and Volatility of Volatility

To test the relationship between variance risk premium and the volatility of volatil-

ity predicted by both the equilibrium model and probabilistic model in section 2 of

this paper, we run regression between the variance risk premium and 5 different mea-

surements of volatility of volatility for data sets 1, 2 and 3, and we put the results in

table 17, 18 and 19, respectively.

We get very mixed results: for data set 1, the relationship is not significant at all,

but for data set 2 and 3, the relationship is significant, especially for measurement 2,

3, 4 and 5; but the sign of those coefficients in front of volatility of volatility measures
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changed from one data set to another. We think the reason for this is because for data

set 1, the variance risk premium is measured by daily data instead of high frequency

data, but for data set 2 and 3, the variance risk premium is measured by the 5-min

high frequency data, this might cause the different result between data set 1 and data

set 2,3. The other reason is the data for the whole year 2008 is very different from

previous data due to the 2008 financial crisis. So by including the data in 2008, data

set 2 perform differently than data set 3, this could be the reason why the sign of

coefficients changed from data set 2 to data set 3. To test this relationship, we need

data with longer horizon and high frequency data to measure realized volatility.

1.6 Conclusion

From the empirical tests we can see that volatility of volatility itself could explain 5-

10% variation of equity premium, together with VIX, these two variables could always

explain more than 20% of variation of equity premium, this result is robust through

all 4 of our data sets. The volatility of volatility also have some predicting power

on the future returns, especially good at one year around. To test the relationship

between the volatility of volatility and variance risk premium, we need high frequency

data and longer time series.

All in all, with the 6 different measurements of volatility of volatility, we provide

empirical evidence that volatility of volatility itself could be a good measure of the

risk of extreme cases and it has predicting power on future returns and could explain

a fair amount of equity premium in the same period.
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Table 11: Monthly return multiple regression for data set 1

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

(Intercept) 1.86∗∗∗ 1.79∗∗∗ 1.43∗∗∗ 1.33∗∗∗ 0.93∗ 0.81∗

(0.30) (0.30) (0.32) (0.34) (0.36) (0.38)
VoV2 0.06∗∗∗ 0.07∗∗∗

(0.01) (0.01)
IV −0.08∗∗∗ −0.08∗∗∗ −0.05∗∗∗ −0.05∗∗∗ −0.05∗∗∗ −0.04∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
RV 0.00· 0.00 0.00

(0.00) (0.00) (0.00)
VoV3 0.66∗∗∗ 0.75∗∗∗

(0.17) (0.19)
VoV4 0.02∗∗∗ 0.02∗∗∗

(0.00) (0.01)

R2 0.24 0.25 0.20 0.21 0.22 0.22
Adj. R2 0.23 0.24 0.20 0.20 0.21 0.21
Num. obs. 273 273 273 273 273 273
***p < 0.001, **p < 0.01, *p < 0.05, ·p < 0.1

Table 12: Monthly return multiple regression for data set 2

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

(Intercept) 3.07∗∗∗ 2.45∗∗∗ 2.43∗∗∗ 2.17∗∗∗ 1.72∗∗∗ 1.92∗∗∗

(0.39) (0.40) (0.36) (0.41) (0.37) (0.41)
VoV2 0.05∗∗∗ 0.09∗∗∗

(0.01) (0.01)
IV −0.11∗∗∗ −0.08∗∗∗ −0.10∗∗∗ −0.08∗∗∗ −0.09∗∗∗ −0.11∗∗∗

(0.01) (0.01) (0.01) (0.02) (0.01) (0.02)
RV −0.07∗∗∗ −0.02 0.01

(0.02) (0.01) (0.01)
VoV3 0.90∗∗∗ 0.94∗∗∗

(0.18) (0.18)
VoV4 0.04∗∗∗ 0.04∗∗∗

(0.01) (0.01)

R2 0.26 0.32 0.28 0.28 0.32 0.33
Adj. R2 0.25 0.31 0.27 0.27 0.32 0.32
Num. obs. 228 228 228 228 228 228
***p < 0.001, **p < 0.01, *p < 0.05, ·p < 0.1
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Table 13: Monthly return multiple regression for data set 3

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

(Intercept) 2.27∗∗∗ 1.67∗∗∗ 1.21∗ 1.04∗ 1.85∗∗∗ 1.85∗∗∗

(0.42) (0.40) (0.47) (0.49) (0.43) (0.44)
VoV2 0.13∗∗∗ 0.25∗∗∗

(0.02) (0.03)
IV −0.13∗∗∗ −0.10∗∗∗ −0.11∗∗∗ −0.09∗∗∗ −0.10∗∗∗ −0.10∗∗∗

(0.02) (0.02) (0.01) (0.02) (0.01) (0.02)
RV −0.21∗∗∗ −0.04 0.00

(0.03) (0.03) (0.03)
VoV3 2.14∗∗∗ 2.31∗∗∗

(0.36) (0.38)
VoV4 0.04∗∗∗ 0.04∗∗∗

(0.01) (0.01)

R2 0.24 0.35 0.24 0.25 0.24 0.24
Adj. R2 0.23 0.34 0.23 0.24 0.23 0.23
Num. obs. 216 216 216 216 216 216
***p < 0.001, **p < 0.01, *p < 0.05, ·p < 0.1

Table 14: Monthly return multiple regression for data set 4

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

(Intercept) 1.56∗ 2.28∗∗ 1.52∗ 2.14∗∗ 0.75 1.33·

(0.65) (0.79) (0.69) (0.80) (0.80) (0.78)
VoV2 0.04∗ 0.05∗∗

(0.02) (0.02)
IV −0.06∗∗∗ −0.05∗∗∗ −0.04∗∗∗ −0.03∗∗ −0.04∗∗∗ −0.01

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
RV 0.00 0.00 −0.01∗∗

(0.00) (0.00) (0.00)
VoV3 0.34 0.51∗

(0.21) (0.24)
VoV4 0.02∗ 0.04∗∗∗

(0.01) (0.01)

R2 0.33 0.35 0.30 0.32 0.33 0.42
Adj. R2 0.31 0.32 0.28 0.29 0.31 0.39
Num. obs. 69 69 69 69 69 69
***p < 0.001, **p < 0.01, *p < 0.05, ·p < 0.1
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Table 17: Variance risk premium and volatility of volatility for data set 1

Model 1 Model 2 Model 3 Model 4 Model 5

(Intercept) 9.31∗∗∗ 11.10∗∗∗ 10.84∗∗∗ 10.43∗∗∗ 11.26∗∗∗

(1.92) (2.11) (2.31) (2.59) (1.93)
VoV1 0.11·

(0.06)
VoV2 −0.01

(0.04)
VoV3 −0.01

(0.85)
VoV4 0.01

(0.03)
VoV5 −0.09

(0.16)

R2 0.01 0.00 0.00 0.00 0.00
Adj. R2 0.01 0.00 0.00 0.00 0.00
Num. obs. 273 273 273 273 273
***p < 0.001, **p < 0.01, *p < 0.05, ·p < 0.1

Table 18: Variance risk premium and volatility of volatility for data set 2

Model 1 Model 2 Model 3 Model 4 Model 5

(Intercept) 17.54∗∗∗ 21.13∗∗∗ 18.83∗∗∗ 13.24∗∗∗ 20.06∗∗∗

(1.44) (1.47) (1.70) (1.89) (1.34)
VoV1 −0.04

(0.04)
VoV2 −0.15∗∗∗

(0.03)
VoV3 −1.07

(0.65)
VoV4 0.07∗∗

(0.02)
VoV5 −0.65∗∗∗

(0.11)

R2 0.00 0.11 0.01 0.03 0.13
Adj. R2 0.00 0.11 0.01 0.03 0.13
Num. obs. 228 228 228 228 228
***p < 0.001, **p < 0.01, *p < 0.05, ·p < 0.1
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Table 19: Variance risk premium and volatility of volatility for data set 3

Model 1 Model 2 Model 3 Model 4 Model 5

(Intercept) 15.47∗∗∗ 12.74∗∗∗ 9.85∗∗∗ 10.79∗∗∗ 15.07∗∗∗

(1.11) (1.52) (1.81) (1.46) (1.17)
VoV1 0.29∗∗∗

(0.06)
VoV2 0.26∗∗∗

(0.05)
VoV3 5.95∗∗∗

(1.08)
VoV4 0.14∗∗∗

(0.02)
VoV5 0.96∗∗∗

(0.19)

R2 0.11 0.10 0.13 0.17 0.10
Adj. R2 0.11 0.09 0.12 0.17 0.10
Num. obs. 216 216 216 216 216
***p < 0.001, **p < 0.01, *p < 0.05, ·p < 0.1

Table 20: Variance risk premium and volatility of volatility for data set 4

Model 1 Model 2 Model 3 Model 4 Model 5

(Intercept) −0.79 4.09 5.10 8.28 4.82
(6.95) (7.57) (7.92) (9.35) (7.12)

VoV1 0.24·

(0.13)
VoV2 0.02

(0.08)
VoV3 0.01

(1.75)
VoV4 −0.03

(0.08)
VoV5 0.03

(0.34)

R2 0.05 0.00 0.00 0.00 0.00
Adj. R2 0.03 −0.01 −0.01 −0.01 −0.01
Num. obs. 69 69 69 69 69
***p < 0.001, **p < 0.01, *p < 0.05, ·p < 0.1
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Figure 1: Realized variance,implied variance and volatility of volatility
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CHAPTER 2: LONG MEMORY IN VOLATILITY AND RETURN
PREDICTABILITY

This chapter proposes a new way to measure the variance risk premium by applying

a fractional cointegration relationship between implied variance and realized variance.

To find the fractional cointegration coefficient between implied variance and realized

variance, we develop a search method based on minimization of the score test statistic

proposed by Robinson(1994). We use daily, weekly and monthly data of five stock

market indexes (S&P500, S&P100, DJIA, NASDAQ100 and Russell2000) and their

volatility indexes from the CBOE. We find our new measure improves the return

prediction power of the variance risk premium both in-sample statically and out-of-

sample dynamically, and the result is robust for the monthly data among all five

indexes.

2.1 Introduction

Variance Risk Premium has been a concept that attracted lots of research attention

recently because of its potential to exlain the difference between the market expected

volatility and the realized volatility, and also its return prediction power, see Carr and

Wu (2006), Carr and Wu (2009), Barndorff-Nielsen and Veraart (2011) and Drechsler

and Yaron (2011). The standard way to measure the variance risk premium is the

difference between implied variance and realized variance. The implied variance is

usually measured daily from the option data, whereas the realized variance is usually
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measured from high frequency data. Because of the frequency difference of these two

measurements, there is not a concensus about what the coefficient should be in front

of the realized variance for us to get a better measurement of variance risk premium.

This chapter provides a method to find the coefficient between implied variance

and realized variance from the well developed fractional cointegration literature. Be-

cause it’s stylized fact that return is usually stationary where as volatility, different

measurement of it, are always fractionally integrated, see Poon and Granger (2003)

and Bandi and Perron (2006). Statistically speaking, the reason that return could

be explained by variance risk premium migh partly due to that the stationarity of

variance risk premium.

Given the possible fractional cointegration between implied variance and realized

variance, we are able to find a fractional cointegration coefficient between them.

Currently in the literature, there are two ways to find the degree of integration of a

time series, see Robinson and Yajima (2002). One way is to measure it directly by

minimizing a likelihood function, see Shimotsu (2007) and Shimotsu(2012), the other

way is to assume that it equals to d0 and test it by a score test statistic, see Gil-Alana

(2000). We combined these two ways to find the fractional cointegration coefficient.

We find the degree of two time series by the first way, and find the coefficient by

minimizing the test statistic from the second way.

We started from a big pool of data, it’s the daily, weekly and monthly data for

the 5 stock indexes and their volatility indexes from Chicago Board of Exchange, the

variables include return and volatility. Given the previous literature in volatility and

volume, see Fleming and Kirby (2010), we also add stock indexes trading volume into



43

our data, we start by estimating the degree of integration of these time series. Our

finding is in line with the stylized facts that the return is always stationary whereas

volatility and volume are usually fractionally integrated. However, because of the

significant different degree of integration between volatility and volume, the only

fractional cointegration relationship we find is between implied volatility and realized

volaltility (and also different measures of them) for monthly data, which gives us a

chance to improve the measurement of variance risk premium by using this fractional

cointegration relationshi between implied variance and realized variance.

By minimizing the test statistic r̂2 proposed by Robinson(1994), we did find the

fractional cointegration coefficient in front of realized variance could improve the

return prediction power of variance risk premium.

The remainder of this chapter is organized as follows: Section 2 introduces the

fractional integration and fractional cointegration model we use and proposed our

way to estimate the frational cointegration coefficient. Section 3 describes the dataset

and details of our construction of different measurement of realized volitility and

implied volatility, and discusses the summary statitics of our data. Section 4 is the

empirical results and investigated return forecast power by our improved measurement

of variance risk premium. Section 5 offers some concluding remarks.

2.2 Model and Econometric Methodology

2.2.1 Fractionally Integration

We model the potential persistence in return, volatility and volume through a long

memory model. The memory parameter d in the fractionally integrated processes is
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estimated in a semiparametric way. We report results for the “two step feasible exact

local whittle estimator with detrending” [Shimotsu(2010)] 10in our paper. We have

also considered the gaussian semiparametric local whittle estimator [Kunsch(1987)

and Robinson (1995)] as well as the exact local whittle estimator [Shimotsu and

Phillips (2005)]. Our main findings are not affected by the choice of estimator. The

corresponding results are available upon request. We briefly review the two step

feasible exact local whittle estimator with detrending by Schimotsu as it serves as the

basis for our estimation of the memory parameter d in this chapter.

2.2.1.1 The Exact Local Whittle Estimator

Consider a univariate series yt which has the representation

∆dyt = (1− L)dyt = ut1{t ≥ 1} (5)

where 1{·} denotes the indicator function and ut is assumed to be stationary with

zero mean and spectral density fu(λ) satisfying fu(λ) ∼ G for λ ∼ 0. More specificitly,

by expanding (1− L)d, (5) can be rewritten as
t∑

k=0

Γ(k − d)

k!Γ(−d)
yt−k = ut

Define the Discrete Fourier Transform (DFT) and the periodogram of a time series

at evaluated at the fundamental frequencies as

wa(λs) =
1√
2πn

n∑
t=1

ate
itλs , λs =

2πs

n
, s = 1, ..., n,

Ia(λs) = |wa(λs)|2

10We do appreciate that Dr. Shimotsu share the code with us.
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Shimotsu and Phillips define the exact local whittle estimator as

d̂ = arg minR(d),

and

R(d) = log Ĝ(d)− 2d

m

m∑
s=1

log λj,

where

Ĝ(d) =
1

m

m∑
s=1

I∆dy(λj).

This exact local whittle estimator has been shown to be asymptotically normal:

√
m(d̂− d)→ N(0,

1

4
)

m here is a bandwidth parameter that determines the locality of the estimates;

the choice of it usually involves a standard bias-variance tradeoff. To make sure our

result is robust with the choice of this bandwidth parameter, we showed our results

as m equals to [n.5], [n.55] and [n.6], where [x] is the integer part of x.

2.2.1.2 The Two Step Feasible Exact Local Whittle Estimator with Detrending

For the two step feasible exact local whittle estimator with detrending, there are

several elements that we need to review one by one:

1. Exact local whittle estimator with unknown mean

If yt is generated by a process with unknown mean:

yt = µ0 + y0
t , y0

t = (1− L)dut1{t ≥ 1}

then if we define

µ̃(d) = w(d)ȳ + (1− w(d))y1



46

where

w(d) =



1 if d ≤ 1
2

0 if d ≥ 3
4

twice differentiable function otherwise

the estimator d now minimize the following objective function

RF (d) = log ĜF (d)− 2d

m

m∑
s=1

log λj, where ĜF (d) =
1

m

m∑
s=1

I∆d(y−µ̃(d))(λj)

(6)

2. Two step exact local whittle estimator

Since it’s hard to prove its global consistency in 6, Shimotsu proposed the two

step exact local whittle estimator: if we denote d̂T as the first-stage estimator,

then the two-step exact local whittle estimator d̂2ELW should be:

d̂2ELW = d̂T −R′F (d̂T )/R′′F (d̂T )

3. Detrending

Besides the unknown mean, if the data also have a polynomial time trend:

yt = µ0 + β10t+ β20t
2 + · · ·+ βk0t

k + y0
t , y0

t = (1− L)dut1{t ≥ 1}

to detrend, regress yt on (1, t, t2, ..., tk) first and then apply the two-step estima-

tion to the residual yt − ŷt, the estimator d would be the two step exact loacal

whittle estimator with detrending.

4. Feasible

Again, because of the difficulty in proving the the global consistency of the two-
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step exact local whittle estimator, the feasible set to search for d to minimize

the objective function would not be [0, 1], but for arbitray small ν > 0, the

feasible set would be [ν, 1 − ν]. so the two step exact local whittle estimator

with detrending that search within the feasible set [ν, 1 − ν] would be the two

step feasible exact local whittle estimator with detrending.

2.2.2 Fractional Cointegration

The definition of fractionally cointegration, as appeared in Cheung and Lai (1993)

for the first time, comes from a generalization to fractional cointegration of the defi-

nition of standard cointegration as given in Engle and Granger (1987):

The component processes of an (n × 1) vector Xt are said to be fractionally cointe-

grated of order d, b with b > 0 (denoted Xt ∼ CI(d, b)) if

1. for each i, 1 ≤ i ≤ n, Xi,t ∼ I(d), and

2. there exists a vector ξ ∈ Rn such that Yt = ξ′Xt ∼ I(d− b).

This is so far the most used definition of fractional cointegration, we will discuss

how to test it and how to find ξ next.

2.2.2.1 Robinson’s (1994) score r̂2

Robinson (1994) proposed a way to test the degree of integration of a linear combi-

nation Yt = ξ′Xt, by using a score statistic r̂2, which follows a χ2
p distribution where

p is the number of restrictions tested: given an (n× 1) vector Xt, the components of

which are each I(d) series, assume that the spectral density of the linear combination

is given by f(ω; τ, σ2), for 0 < ω < 2π; with τ ∈ Rm, where m is the number of

frequencies we chose and σ ∈ R is unknown, but f is linear in σ2. So f could be
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written as:

f(ω; τ, σ2) =
σ2

2π
g(ω; τ),

Robinson(1994) choose Bloomfield (1973)’s exponential model as the base function

g(ω, τ), because “it leads to an especially neat version of frequency domain test statis-

tic” 11

g(ω; τ) = exp[2
m∑
r=1

τr cos(rω)]

where this τr is just a nuisance parameter that could help to optimize the statistic r̂2,

and we will talk about that later. So to test if the linear combination ξ′Xt is integrated

with degree d as (1− L)dξ′Xt = ut, where ut is a stationary process, Robinson’s test

statistic is:

r̂2 = T [(
â

σ̂2
)′Â−1(

â

σ̂2
)]

which has a typical form of a score test statistic: where T is the sample size, or

the length of the time series; â is the random variable which will be asymptotically

normal;

â = −2π

T

T−1∑
j=1

ψ(ωj)
I(ut;ωj)

g(ωj; τ̂)

σ̂2 is a scaler to standardize â,

σ̂2 = min
τ
σ2(τ) = min

τ

2π

T

T−1∑
j=1

I(ut;ωj)

g(ωj; τ)
, τ̂ = arg min

τ
σ2(τ)

whereas Â is the typical estimator of variance-coveriance matrix,

Â =
2

T
[
T−1∑
j=1

ψ(ωj)ψ(ωj)
′ −

T−1∑
j=1

ψ(ωj)ε̂(ωj)
′(
T−1∑
j=1

ε̂(ωj)ε̂(ωj)
′)−1

T−1∑
j=1

ε̂(ωj)ψ(ωj)
′]

11majorly it was often possible to approximate the logarithm of an estimated spectral density by
a truncated Foureier series.
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The only difference here is â, σ̂2 and â is in the frequency domain instead of time

domain, that’s why we have:

ψ(ωj) = log[2 sin(ωj/2)], ε̂(ωj) = Dτ [log(g(ωj); τ̂)], ωj =
2πj

T

and I(·;ω) is the periodogram of its argument evluated at ω,

I(ut;ωj) =
1

2πT
|
T∑
t=1

ute
itωj |2

2.2.2.2 A Search Procedure for Identifying the Cointegrating Vector

Although Robinson(1994) proposed the score statistic r̂2 to test if the linear combi-

nation ξ′Xt is integrated with degree d as (1−L)dξ′Xt = ut, where ut is a stationary

process, but he didn’t specify what ξ′ should be, and theory actually suggests a range

of possible values for the cointegrating vector. We propose a search procedure to find

ξ by minimizing r̂2.

ξ̂ = arg min
ξ∈Rn−1

r̂2 = arg min
ξ∈Rn−1

T [(
â

σ̂2
)′Â−1(

â

σ̂2
)]

We search ξ in Rn−1 because we can always scale down one of them to 1 and then

search for the other coefficients. To search ξ for a given d, since A is a scalar that

will not be affected by the choice of ξ, to minimize r̂2, we are minimizing â
σ̂2 :

â

σ̂2
=
−2π

T

∑T−1
j=1 ψ(ωj)

I(ut;ωj)

g(ωj ;τ̂)

2π
T

∑T−1
j=1

I(ut;ωj)

g(ωj ;τ)

=
−
∑T−1

j=1 ψ(ωj)
I(ut;ωj)

g(ωj ;τ̂)∑T−1
j=1

I(ut;ωj)

g(ωj ;τ)

Since I(ut;ωj) is like a variance, â
σ̂2 is like the ratio of a weighted variance and an

average variance. So the crucial part here is the weight ψ(ωj) here. We plot it for

ω ∈ (0, 2π) in figure .

It’s obvious showed in the figure that the weight is positive between π
3

and 5π
3

, but

when ω get close to 0 or 2π, the weight goes to negative infinite, therefore, a local
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Figure 6: The weight function ψ(ωj) = log[2 sin(
ωj
2

)] when ωj ∈ (0, 2π)

minimum of r̂2 will be at a point for which the “weighted variance” has the smallest

magnatitude possible relative to the “average variance”. Or, put it in another way,

values of ξ that produce local minima of r̂2 correspond to linear combination of ξ′Xt

in which the frequencies near 0+ and 2π− contribute less variance than in other linear

combination in a neighborhood near ξ.

2.3 Data and Measurements

We covered 5 major indexes in US market: SP500, SP100, DJIA, NASDAQ100

and Russell2000. The reason we chose these 5 indexes is because, first, they represent

different companies in US market, from big to small, from technology to traditional

firms; second, CBOE has implied volatility indexes based on these 5 indexes respec-

tively. The start date of these 5 implied volatility index is documented in the following

table. But for us to be able to compare these 5 indexes, we focus on the time period

from Jan 2004 to Jun 2013.

Therefore, with 5 indexes and 3 different frequencies (Daily, Weekly and Monthly),

we have 15 datasets to work with. For all the 5 daily datasets, we have data on
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Table 21: Sample size for different data set

Market Index Volatility Index Start End Daily Weekly Monthly

SP500 VIX 1/2/1990 6/28/2013 5921 1225 282
SP100 VXO 1/2/1986 6/28/2013 6925 1433 330
DJIA VXD 11/3/1997 6/28/2013 3938 816 188

NASDAQ100 VXN 2/1/2001 6/28/2013 3116 646 149
RUSSELL2000 RVX 1/2/2004 6/28/2013 2387 495 114

Return, Implied Volatility Index, Volume and Range; whereas for the 5 weekly and 5

monthly datasets, we have data on Return, Implied Volatility Index, Volume, Range,

Realized Volatility and Variance Risk Premium, we will talk about the measurement

of these variables one by one.

We measured index return by the formula:

rt ≡ ln(
Pt
Pt−1

) ∗ 100

and since it’s from two consecutive prices, it’s not annualized return. The implied

volatility index comes from CBOE (Chicago Board of Exchange) website, VIX, VXD,

VXN and RVX are all calculated by this ”model-free” method:

EQ
t (σ2

r,t+1) ≡ IV ≡ 2

∫ ∞
0

Ct(t+ 1, K
B(t,t+1)

)− Ct(t,K)

K2
dK

where Ct(T,K) denote the price of a European call option at time t with the strike

price at K and Maturity at T , 1
B(t,t+1)

is the discount rate from t to t + 1, and for

out data, the maturity is always 30 days. But VXO are still calculated by the classic

at-the-money Black-Scholes formula. We used the daily squared returns to estimate

Realized Variance:

RVt =
m∑
i=1

r2
t+ i

m

Since we are using daily return, we don’t have data for realized variance for daily

data, for weekly data, m = 5, and for monthly data m is around 22. And due to the
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lack of daily data for realized variance, we used another estimator to measure relized

volatility, the high-low range-based volatility estimator, as proposed by Gallant, Hsu

and Tauchen (1999), Alizadeh, Brandt and Diebold(2002) and Chernov(2007):

Ranget = ( max
1≤i≤m

rt+ i
m
− min

1≤i≤m
rt+ i

m
)2

The variable volume is the trading volume for SP500, SP100, DJIA and NAS-

DAQ100 indexes. But for Russell2000, we used the trading volume of Russell2000

ETF. We construct the weekly volume for each index by aggregating the all the trad-

ing volumes everyday during that week, and we did the same thing to get monthly

volume.

Following Bollerslev, Tauchen and Zhou(2009), we defined the variance risk pre-

mium as the difference between the risk-neutral expectation of the future return

variation over the [t, t + 1] time interval and the realized variance over the [t − 1, t]

time interval,

V RPt = IVt −RVt

where we define the implied variance following Bollerslev et al. (2013): for example,

for VIX, since it’s the annualized observation, we define the weekly implied variance

as

WeeklyIVt = V IX2
t =

7

365
(V IXCBOE

t )2

and monthly implied variance as

MonthlyIVt = V IX2
t =

30

365
(V IXCBOE

t )2

And since we don’t have daily data for realized variance, we don’t have variance

risk premium for daily data either. We summarize the variable we used for each data

set in the following table:
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Table 22: Variables for each dataset

Implied Volatility Index Range Return Volume RV VRP

Daily
√ √ √ √

Weekly
√ √ √ √ √ √

Monthly
√ √ √ √ √ √

During the empirical tests, we also used other variables such as
√
RV ,

√
Range,

ln IV , lnRV and lnV olume, but since they are all calculated from the original data,

we didn’t list them in the above table.

Basic summary statistics for these variables in all these 15 datasets are given

through Table 24 to Table 38. The mean excess return on SP100 over the sam-

ple period from Jan 2004 to Jun 2013 is around 2.83% annualy, whereare the same

for NASDAQ100 is about 7.2% annually, the return relationship between these 5

indexes is:

rSP100 < rSP500 < rDJIA < rRussell2000 < rNASDAQ100

which make sense since SP100, SP500 and DJIA are indexes for big and mature

companies and Russell2000 and NASDAQ100 are for smaller and growth companies.

Their volatility relationship actually doesn’t follow exactly as the return rank:

σDJIA < σSP100 < σSP500 < σNASDAQ100 < σRussell2000

And this relationship is consistent among different measures of volatility: option

implied volatility index, realized volatility and range. For the volume, we used the

same volume for SP500 and SP100, and we use ishares volume for Russell2000. So

lthe volume relationship is:

V olumeRussell2000 < V olumeDJIA < V olumeNASDAQ100 < V olumeSP500

which means SP100 and SP500 have the highest volume and the ETF for Russell2000
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has the lowest volume.

The implied volatility index and volume, for all 5 indexes and through 3 different

frequencies, are highly persistent with first-order autocorrelation ranging from 0.94 to

0.99. In contrast, the serial correlation in the realized variance and range are between

0.59 to 0.78, it might because of the square form of these two variables. Return is

following the efficient market hypothesis, especially for the weekly return, with the

first-order autocorrelation between −0.01 and −0.07, and daily return between −0.08

to 0.12.

The sample autocorrelation between return and volume are always negative, and

become stronger with the frequency from daily to monthly. But all three volatility

measures are positively correlated with the volume. The return and 3 different mea-

surements of volatility are always negatively correlated as the risk-return tradeoff.

We also calculated the correlation of return and volatility among these 5 indexes in

Table 39 to Table 44. From daily data to monthly data, the correlation of volatility

and return among these 5 indexes actually dropped, which might indicate that the

diversification among these 5 indexes will be more efficient when adjusting positions

in the portfolio less frequently. However, the correlation of volume among these 5 in-

dexes (from Table 45 to Table 47)are less correlated, which might be due to investors

diversification among these 5 indexes.

2.4 Empirical Results

In this section, we do the fractional integration test for the variables we are inter-

ested in, then we test if they are fractionally cointegrated, then we use the method we
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proposed to get the coefficient for fractionally integrated variables, and at the end, we

use the fractionally cointegration relationship identified by our coefficents to predict

future return.

2.4.1 Memory Parameter d for each variable

First, we test if these three sets of variables we are interested in (return, volatility

and volume) are fractionally integrated. We used “the 2 step feasible exact local

whittle estimator with detrending” proposed by shimotsu (2010) to test if the memory

parameter d equals to zero or not, for daily, weekly and monthly data and for all 5

indexes, respectively.

Since d̂ follows a normal distribution:

√
m(d̂− d)→ N(0,

1

4
)

and we chose m as [n.5], [n.55] and [n.6], where the sample size for daily data is 2387,

weekly 495 and monthly 114. so for each indexes, the standard deviation for d̂ are

the same, there is a set of (3 × 3 = 9) standard deviations for each variables for

each indexes. We documented the estimatmion of the memory parameter d from

table 48 to table 52, for all the varaibles we are interested in, even including possible

transformations for these variables, such as taking square root of realized variance

and range and taking logarithm of implied variance, realized variance and volume.

From the results of our estimation, we find that the excess returns, no matter

it’s daily, weekly or monthly, and no matter which index we use, they are almost

always I(0), and so does the variance risk premium. Therefore, the prediction power

of variance risk premium on excess return by using monthly data as suggested by
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Bollerslev, Tauchen and Zhou (2009) might come from the similar memory parameter

d; it might also be why variance risk premium perform better than the different forms

of volatility (implied variance, realized variance and range, as well as taking square

root and logarithms of them): since volatility, as showed in our results are always

fractionally integrated with a d around 0.3 to 0.7, whereas returns can not reject the

null hypothesis that d = 0.

We also find that the daily implied volatility index (including the implied variance

and the logarithm of it), for all 5 of them, are always almost I(1), but not true with

weekly or monthly data, which implied the highly persistency of the daily implied

volatility index. We also find that the memory parameter of volume (including the

logarithm of it) is always significantly from 0, sometimes even close to 1, but it varies

a lot from daily to monthly, from index to index.

2.4.2 Fractional Cointegration

Here, we are interested in the relationship among return, volatility and volume,

we want to find if there is any fractionally cointegrating relationship among these 3

variables for all the 5 indexes. But since we’ve already know that return is almost

always I(0), so we will only test if there is any cointegrating relationship among

volatility and volume, but since we have 3 different measures of volatility (realized

volatility, implied volatility and range) and several transformation of volatility, we will

do a comprehensive test to see if there is any frationally cointegrating relationship

between different form of volatility, and also between volatility and volume.
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2.4.2.1 Same Degree of Integration

Since the first requirement for two time series to be fractionally cointegrated would

be they have the same degree of integration. We used a t-statistic to test it:

If two time series xt and yt are fractionally integrated with degree d1 and d2, which

means:

(1− L)d1xt = ut, (1− L)d2yt = vt

where both ut and vt are stationary processes. Since our two-step feasible exact

whittle estimater with detrending d̂1 and d̂2 have the property as

√
m(d̂1 − d1) ∼ N(0,

1

4
),

√
m(d̂2 − d2) ∼ N(0,

1

4
)

to test the null hypothesis if d1 = d2, the t-statistic would be

d̄1 − d̄2√
1
m

∼ t2m−2

So we used this t-statistic to test if two time series have the same degree of integra-

tion. We tested for different forms of implied volatility with different forms of realized

volatility and range; we also tested for different forms of volaitlity with different forms

of volume for all 5 indexes with daily, weekly and monthly data.

We put the results in Table 53 to Table 57. To be more conservative, we use 1.96

as the 5% critical value for t-statistics, which means, if the t statistic is bigger than

1.96, then the null hypothesis that d1 = d2 is rejected, and we will not look further

for fractionally cointegrating relationships between these two variables.

From the results we can see that sometimes different forms of volatility and volume

might have the same degree of integration here and there, but it’s not consistent
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through all the 5 indexes. Actually, we can see some evidence that volatility and

volume might be fractionally cointegrated for DJIA-VXD data and NASDAQ100-

VXN data, but not for SP500 and Russell2000. So it might really depends on what

kind of volume data we use (not like other indexes, we use ETF data for Russell2000,

and that might be the reason why there is no evidence of fractionally cointegration

between volatility and volume in Russell2000). So we are not pursuing volatility-

volume relationship in this chapter any more.

Actually, the only thing we found consistent with all 5 indexes is the relationship

between implied volatility and realized volatility (or range) in monthly data. This

fractionally cointegrating relationship between implied volatility and realized volatil-

ity in monthly data is so robust that it actually worked also in other forms: such as

ln(IV ) and ln(RV ), VIX and
√
RV , IV and Range, VIX and

√
Range,we summarized

them in table 58. So the next step would be to find the fractionally cointegrating

vector by the searched procedure we proposed in section 2.2.2.

2.4.2.2 Coefficient for the Fractionally Cointegration

Here, we consider the fractional cointegration relationship between 5 sets of two

variables (IV and RV, ln(IV ) and ln(RV ), VIX and
√
RV , IV and Range, VIX and

√
Range) for the monthly data for all 5 indexes. so ξ′ = (ξ1, ξ2) and X = (X1, X2)′,

first, we record d(X1) and d(X2), when ξ = (1, 0) and ξ = (0, 1), then by using the

searching method we proposed in section 2.2.2, we find the (1, ξ∗) and record the

degree of integration d(ξ′min r̂2Xt). To compare the results, with other method, we

also tested the degree of integration when ξunity = (1,−1) and ξOLS = (1, β̂1), where
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β̂1 is the OLS estimation from the regression

X1 = β0 + β1X2 + ε

We still used the same “2 step feasible exact local whittle estimator with detrending”

to estimate the degree of integration for ξ′X with different ξ. We repeated this process

for different number of frequency, for m = n0.5, m = n0.55 and m = n0.6. And we

documented the result of this whole process from table 59 to table 61.

From the results we can tell that first of all, our estimation of the coefficient of

fractional cointegration through the minimization of the r̂2 does not really get affected

by the choice of number of frequency. Second, for all five sets of variables and 5

different indexes, both our searching for minimum r̂2 way, and unity difference, reduce

the degree of integration for both variables in most cases, which corresponds to that

theory that there is a range of possible values for the cointegrating vector. But the

ξOLS does not work that way, it always get a degree of integration for d(ξ′OLSX) is

always between d(X1) and d(X2). Comparing the results for ξmin r̂2 and ξunity, for

most of cases, ξmin r̂2 will get a lower degree of integration for d(ξ′X). However, we

still want to test if this could help to predict future return.

2.4.3 Return Forecast

Here, since ξ′OLS can not really deintegrate ξ′OLSX to a lower degree of integration,

we only compare the forecast power of ξ′min r̂2X and ξ′unityX. And we only test it

for the variables X = (IV,RV )′ for all the 5 indexes because the economic meaning

behind it.

ξ′unityX = (1,−1)(IV,RV )′ = IV −RV = V RPstandard



60

is actually the so-called Variance Risk Premium, which attracted a lot of research

attention recently. Our estimation

ξ′min r̂2X = (1, ξ∗)(IV,RV )′ = IV − ξ∗RV = V RPimproved

is an attempt to find the correct coefficient between implied variance and realized

variance for variance risk premium, because previous research find that there is a

almost always postive difference between implied variance and realized variance, but

because of the scale of measurement of realized variance, it’s actually hard to deter-

mine what is the correct coefficient for realized variance when estimating the variance

risk premium. So our return forecast power comparison is actually between the old

variance risk premium and this new variance risk premium improved by our fractional

cointegration coefficient.We compared the return forecast power by two ways: static

in sample way and dynamic out of sample way.

2.4.3.1 Static In-Smaple Prediction

The static in sample forecast is based on the estimation of ξmin r̂2 from the whole

sample, and then construct the predictor time series as IV − ξ′min r̂2RV ; then we

followed Bollerslev, Tauchen and Zhou (2009)’s way to compare our prediction result

by the new improved variance risk premium with the result by the standard variance

risk premium from their paper.

1

h

h∑
j=1

rt+j = b0(h) + b1(h)(V RPt−1) + ut+h,t (7)

so the explanatory power, as measured by the coefficient of determination,

R2(h) =
Cov( 1

h

∑h
j=1 rt+j, V RPt−1)

V ar( 1
h

∑h
j=1 rt+j)V ar(V RPt−1)

To compare the return forecasting power of the 2 different Variance Risk Premium
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(the new improved Variance Risk Premium proposed by us and the standard Variance

Risk Premium), we plot the results of R2 with different horizons, from h = 1 to 24,

for all the 5 indexes in Figure 7. From this figure we can tell that the R2 of the

newly improved variance risk premium almost always dominate R2 for the standard

variance risk premium from horizon h = 1 to 24, especially when h ≥ 3. And this

result is robust for all the 5 indexes we tested.

Since at this point, the results are based on the estimation of the fractional coin-

tegration coefficient from the whole sample, and we believe that since the implied

variance and realized variance have this long-term relationship, ξ∗ should be quite

stable. So the performance should be good if we just use this ξ∗ we estimated here

for future forecast. However, we still tested the out of sample performance of the new

variance risk premium.

2.4.3.2 Dynamic Out-of-Sample Prediction

To see the out of sample prediction power, we did the 1 step ahead forecast dynam-

ically: we start from 0.15T , where T is the length of the time series, we used the first

0.15T data to estimate the fractionally cointegration coefficient ξ∗ by minimizing the

score statistic r̂2, then get the V RPimproved = IV − ξ∗RV , then run OLS regression

between rt+1 and V RPimproved(t), get b̂0(t) and b̂1(t) from equation 7, then for the

next step, when we observe V RPimproved(t+ 1), we use it to predict the future return,

so the prediction is

Et+1(rt+2) = b̂0(t) + b̂1(t)V RPimproved(t+ 1)
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Then compare the forecast Et+1(rt+2) with the true value of rt+2, and do this stepwise

from t = 0.15T to T, so the forecast power is

R2 = 1−
∑T

t=0.15T [rt+2 − Et+1(rt+2)]2∑T
t=0.15T r

2
t+2

For the forecast power for the standard variance risk premium, we did the similar

thing without estimate ξ∗, because we just keep it as 1. Then we documented R2

from both ways for all 5 indexes in the following table:

Table 23: Comparison of return forecasting power for all 5 indexes

R2 VIX VXO VXD VXN RVX

min r̂2 0.7237 0.494 0.6483 0.3149 0.6957
VRP 0.6863 0.4097 0.5627 0.2976 0.3336
Ratio 0.948321 0.829352 0.867962 0.945062 0.479517

From the result we can see that the dynamic out-of-sample prediction by our “im-

proved” variance risk premium always out perform the standard variance risk pre-

mium.

2.5 Concluding Remarks

We did a comprehensive study of the fractionally cointegrated relationship among

return, volume and volatility, by using 5 indexes (SP500, SP100, DJIA, NASDAQ100

and Russell2000) for daily, weekly and monthly data, we also tried different measures

of volatility (implied volatility, realized volatility and range). From the results we can

tell that the time series of index return is always stationary, whereas the degree of

various form of volatility and volume is always between 0.3 and 0.7. However, there

is not significant evidence that volatility and volume are fractionally cointegrated.

The only robust fractional cointegration relationship we found among these data
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are between different measurements of implied volatility and realized volatility for

monthly data. We developed our own way to estimate the frational cointegration

coefficient by minimizing the score test statistic r̂2 proposed by Robinson (1995). By

this way, we also improved the standard measurement of variance risk premium and

then compared the return forecast power on these two measurement of variance risk

premium. And our results showed that the prediction by our measurement of variance

risk premium almost always outperform the standard measurement of variance risk

premium, both in-sample statically and out-of-sample dynamically.

For the future study, we believe that our way to estimate the fractional cointegra-

tion coefficient could be used in pair trading when determining the relative holding

position in this pair.
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Table 24: Summary statistics for daily SP500-VIX data

Ex. Return VIX Range Volume

Mean 0.015397 20.48553 3.188024 3.54E+09
Std.Dev 1.313964 10.05466 8.412467 1.58E+09

Skewness -0.31635 2.258896 8.162741 0.722556
Kurtosis 13.62777 9.570921 86.38276 3.733853

AR(1) -0.113051 0.99658 0.6874 0.98293

Return 1
VIX -0.13311 1

Range -0.07866 0.661246 1
Volume -0.03149 0.701753 0.465645 1

Table 25: Summary statistics for weekly SP500-VIX data

Ex. Return VIX Range Volume RV VRP

Mean 0.074936 20.38422 17.55966 1.71E+10 8.330006 1.628528
Std.Dev 2.592809 10.19607 45.2569 7.53E+09 19.4987 11.15739

Skewness -0.94518 2.33447 9.621347 0.628409 6.194703 -6.73895
Kurtosis 11.99928 10.18902 127.9165 3.320049 50.99497 67.4479

AR(1) -0.061019 0.98905 0.67246 0.97698 0.74514 0.04325

Return 1
VIX -0.26631 1

Range -0.31289 0.707237 1
Volume -0.10107 0.713661 0.469533 1

RV -0.17488 0.767291 0.78374 0.500688 1
VRP -0.02714 -0.20969 -0.4283 -0.1542 -0.75969 1

Table 26: Summary statistics for monthly SP500-VIX data

Ex. Return VIX Range Volume RV VRP

Mean 0.32266 20.48912 72.745 7.43E+10 36.1706 5.421871
Std.Dev 4.342834 9.327422 148.23 3.06E+10 72.53436 37.67888

Skewness -1.05285 1.857956 4.967921 0.451539 4.947516 -4.57124
Kurtosis 5.752631 6.882143 30.75245 2.871369 31.8925 31.96977

AR(1) 0.23191 0.97749 0.67459 0.98475 0.78276 0.42985

Return 1
VIX -0.47087 1

Range -0.44033 0.798796 1
Volume -0.20536 0.803232 0.564535 1

RV -0.51087 0.813386 0.936159 0.587108 1
VRP 0.354421 -0.381 -0.72087 -0.25069 -0.83512 1
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Table 27: Summary statistics for daily SP100-VXO data

Ex. Return VXO Range Volume

Mean 0.01194 20.27243 3.007663 3.54E+09
Std.Dev 1.267834 10.64045 8.183512 1.58E+09

Skewness -0.26201 2.376938 8.631755 0.725158
Kurtosis 13.98328 10.36119 97.44118 3.737536

AR(1) -0.123306 0.99571 0.69327 0.98329

Return 1
VXO -0.14144 1

Range -0.06771 0.66249 1
Volume -0.03242 0.691929 0.462067 1

Table 28: Summary statistics for weekly SP100-VXO data

Ex. Return VXO Range Volume RV VRP

Mean 0.054588 20.36543 16.24501 1.71E+10 7.757294 2.467179
Std.Dev 2.480214 10.89137 43.52697 7.55E+09 18.27395 10.04207

Skewness -0.95499 2.445295 10.69109 0.636998 6.123977 -5.48126
Kurtosis 12.67049 11.05924 156.5459 3.353797 48.97961 55.37069

AR(1) -0.071335 0.98704 0.62025 0.97676 0.74857 -0.148289

Return 1
VXO -0.28457 1

Range -0.32183 0.710473 1
Volume -0.09992 0.702335 0.46103 1

RV -0.16111 0.77115 0.762539 0.501036 1
VRP -0.16423 -0.00269 -0.17313 -0.03325 -0.58822 1

Table 29: Summary statistics for monthly SP100-VXO data

Ex. Return VXO Range Volume RV VRP

Mean 0.235769 20.30298 68.2362 7.43E+10 33.68317 8.226233
Std.Dev 4.151149 9.92729 137.325 3.06E+10 67.97647 32.29908

Skewness -0.91382 1.951168 5.048676 0.459463 5.015302 -3.67462
Kurtosis 4.767258 7.268549 31.96599 2.884506 32.60511 29.75585

AR(1) 0.22227 0.97428 0.67103 0.98437 0.78382 0.27413

Return 1
VXO -0.48286 1

Range -0.42553 0.802812 1
Volume -0.1845 0.780293 0.565754 1

RV -0.48264 0.816314 0.936266 0.582031 1
VRP 0.208855 -0.20505 -0.58161 -0.13952 -0.70959 1
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Table 30: Summary statistics for daily DJIA-VXD data

Ex. Return VXD Range Volume

Mean 0.015648 18.68246 2.973224 2.21E+08
Std.Dev 1.202541 9.008344 8.203976 84926194

Skewness -0.06801 2.355877 9.388949 1.244964
Kurtosis 13.67838 10.16727 117.315 5.92239

AR(1) -0.110053 0.99654 0.69001 0.96179

Return 1
VXD -0.12972 1

Range -0.03429 0.62555 1
Volume -0.0446 0.352357 0.385386 1

Table 31: Summary statistics for weekly DJIA-VXD data

Ex. Return VXD Range Volume RV VRP

Mean 0.072576 18.82889 15.48024 1.07E+09 6.973678 1.421818
Std.Dev 2.428721 9.13272 42.08829 3.7E+08 16.29313 10.76802

Skewness -1.01046 2.293158 11.39926 0.876426 6.594742 -8.88362
Kurtosis 13.38716 9.564089 174.7235 4.688911 58.66029 128.0126

AR(1) -0.072195 0.98881 0.59985 0.96872 0.75743 0.45208

Return 1
VXD -0.04959 1

Range -0.30962 0.55446 1
Volume -0.11585 0.379579 0.357173 1

RV -0.13339 0.707603 0.767971 0.406747 1
VRP 0.157325 -0.11785 -0.58552 -0.22529 -0.76294 1

Table 32: Summary statistics for monthly DJIA-VXD data

Ex. Return VXD Range Volume RV VRP

Mean 0.311428 18.63965 62.90537 4.63E+09 30.28201 4.11469
Std.Dev 4.013598 8.466726 125.7395 1.38E+09 61.57219 44.76955

Skewness -0.90628 2.064496 5.492772 0.808422 5.519517 -5.60347
Kurtosis 5.09417 8.086338 38.25379 4.851008 39.34235 46.16755

AR(1) 0.1763 0.97521 0.62885 0.97962 0.74656 0.43566

Return 1
VXD -0.13758 1

Range -0.39995 0.65402 1
Volume -0.23961 0.365292 0.452119 1

RV -0.45182 0.674941 0.945818 0.452826 1
VRP 0.500886 -0.07828 -0.72878 -0.27316 -0.77093 1
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Table 33: Summary statistics for daily NASDAQ100-VXN data

Ex. Return VXN Range Volume

Mean 0.028638 23.16799 3.617515 2E+09
Std.Dev 1.432362 9.093661 7.798821 1.46E+09

Skewness -0.12269 2.441344 8.560389 42.89744
Kurtosis 10.42264 11.03018 100.9107 2006.667

AR(1) -0.089144 0.9977 0.65777 0.66988

Return 1
VXN -0.12432 1

Range -0.08689 0.647934 1
Volume -0.03934 0.093649 0.112595 1

Table 34: Summary statistics for weekly NASDAQ100-VXN data

Ex. Return VXN Range Volume RV VRP

Mean 0.138816 23.41281 21.0073 9.63E+09 9.901493 2.247437
Std.Dev 2.865919 9.246246 37.97679 3.6E+09 19.98787 13.69058

Skewness -0.50014 2.333065 6.321876 13.19802 7.817407 -10.0511
Kurtosis 5.724656 10.01252 53.79559 246.7741 84.82735 138.9452

AR(1) -0.010531 0.99095 0.7755 0.89481 0.61497 0.13951

Return 1
VXN -0.04076 1

Range -0.22673 0.658163 1
Volume -0.11512 0.159203 0.213505 1

RV -0.13457 0.688246 0.800931 0.17989 1
VRP 0.162262 -0.11919 -0.52715 -0.12986 -0.78635 1

Table 35: Summary statistics for monthly NASDAQ100-VXN data

Ex. Return VXN Range Volume RV VRP

Mean 0.600148 23.13368 94.34052 4.18E+10 42.9941 6.793093
Std.Dev 5.39977 8.43809 148.9011 9.07E+09 68.58144 36.27729

Skewness -0.69082 1.994339 4.402492 4.130837 4.916042 -4.06816
Kurtosis 3.950406 7.739138 24.78702 30.9811 32.09293 29.11609

AR(1) 0.17361 0.9802 0.7307 0.96473 0.78738 0.31664

Return 1
VXN -0.40899 1

Range -0.44192 0.7879 1
Volume -0.2113 0.321488 0.318342 1

RV -0.48475 0.814243 0.912437 0.322961 1
VRP 0.381139 -0.33447 -0.67428 -0.24793 -0.80695 1
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Table 36: Summary statistics for daily Russell2000-RVX data

Ex. Return RVX Range Volume

Mean 0.024353 26.83433 4.71745 54475269
Std.Dev 1.703458 10.5987 9.847043 35593837

Skewness -0.33802 2.073579 7.577981 1.851465
Kurtosis 8.068723 8.268848 82.6967 10.38643

AR(1) -0.095064 0.99803 0.66159 0.94172

Return 1
RVX -0.11502 1

Range -0.06067 0.65322 1
Volume -0.06801 0.477446 0.478304 1

Table 37: Summary statistics for weekly Russell2000-RVX data

Ex. Return RVX Range Volume RV VRP

Mean 0.112227 27.09234 28.71136 2.63E+08 13.98715 2.336138
Std.Dev 3.390251 10.83443 56.98056 1.6E+08 25.64745 15.98082

Skewness -0.45244 2.05861 7.312416 1.483982 5.137575 -5.52669
Kurtosis 6.218215 8.033777 75.84479 7.349192 35.35512 44.40461

AR(1) -0.044926 0.99138 0.71384 0.94765 0.73236 0.32489

Return 1
RVX -0.03122 1

Range -0.24253 0.654351 1
Volume -0.17646 0.477619 0.468598 1

RV -0.14814 0.75567 0.781207 0.49098 1
VRP 0.218485 -0.21855 -0.54065 -0.36175 -0.78879 1

Table 38: Summary statistics for monthly Russell2000-RVX data

Ex. Return RVX Range Volume RV VRP

Mean 0.493486 26.98333 125.6372 1.14E+09 60.73803 8.257451
Std.Dev 5.840154 10.59859 239.3675 6.29E+08 93.85868 64.97962

Skewness -0.82046 2.062968 5.254285 0.902631 3.741556 -5.00612
Kurtosis 4.817933 8.086289 33.87714 4.029912 18.61797 34.75251

AR(1) 0.12158 0.97755 0.67053 0.95437 0.79434 0.35879

Return 1
RVX -0.04937 1

Range -0.40155 0.582048 1
Volume -0.33722 0.409721 0.42574 1

RV -0.38576 0.711932 0.904089 0.527236 1
VRP 0.532615 -0.01303 -0.70957 -0.40404 -0.69193 1
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Figure 7: 24 months static in sample forecast by different dataset



CHAPTER 3: DOES OCCUPANCY STATUS MATTER IN SUBPRIME
MORTGAGE?

By using submortgage data, we found that investors are being charged with a sig-

nificant risk premium over owner occupants; besides that, they are also facing a more

restricted loan; with the market getting hotter, this risk premium and restrictions

are getting even worse. Being treated like that, our findings show that investors

were actually not more risky than owner occupants in terms of both prepayment and

default.

We suspect the reason for this puzzle is that when the market getting hotter, there

are more speculative investors who commit occupancy fraud to get a more favorable

loan. And these speculative investors were actually recorded as owner occupants on

loan documents, which increased our estimation of the hazard of owner occupants

group. And our information asymmetry test actually reaffirmed our suspect. There-

fore, this paper, for the first time, give statistical evidence on occupancy fraud, and

we also proposed a statistical scanning way to reduce to potential occupancy fraud.
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3.1 Introduction

It is common knowledge among real estate investors that when they fill a pre-

assessment table as in table 62; for the item “Home will be”, once “Investment” is

checked, they have to pay more interest rate and meet higher requirement(e.g. more

down payment) to get the loan.

For a rational investor who is trying to minimize his cost; apparently, to avoid a

check on the “Investment” item is a good choice, and it’s also an easy choice for them

since in some cases, they only need to claim that they “intend” to live in that house

(though they know they won’t).

But investors know that “the easy choice” will be occupancy fraud, which is vi-

olating the federal law. Investors need to balance the cost of going to jail and the

benefit of saving some interest. If banks only focus on the volume and put less effort

to detect the fraud while mortgage brokers and real-estate agents eager to close a

home sale so that they can tolerate that fraud; the temptation to commit fraud can

be substantial and actually “encouraged” to some extent by both banks and agents.

And also, when home prices fall, non-occupancy investors tend to be more likely

to walk away from their purchases than ordinary homebuyers.If occupancy fraud

happens a lot, there will be much risk hidden in the loans which are supposed to be

backed by those homebuyers who live in their house but turn out to be non-occupancy

investors. The loans backing these non-occupancy purchases turn out to be riskier

than the rating agencies and those investors who bought mortgage-backed securities

once thought.
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So when the home prices really fall, there will be lots of “unexpected” defaults

whose risk is not priced into the loans or the pools, so it will cause problems for the

whole housing and mortgage market, and then the whole financial market, so the

financial crisis comes.

Academically, there are lots of papers from law school’s that discuss this occupancy

issue from “a lawyer’s” point of view. Simon and Corkery (2008) analyzed the whole

process including the incentive of non-occupancy investors to defraud on occupancy

and how banks and real estate agencies encourage or at least tolerate them to do so,

and how these occupancy frauds can be part of the cause of problems on the housing

and mortgage market today, and at last they conclude that speculators (especially

those who did occupancy fraud) may have accelerated housing downturn. This small

article in the Wall Street Journal got lots of attention both from the industry and

academia, and especially in law school.

The most recent one, Lefcoe (2009) recounts the extent to which speculating buyers

contributed more than proportionately to housing price volatility and the rate of

mortgage foreclosure; then the author disclosed the way that spec buyers deceived

mortgage lenders by committing occupancy fraud, claiming falsely that they were

buying as owner occupants so they could benefit from more favorable mortgage rates

and terms; at last, the author explored the rational for a government imposed ban

on home flipping.

Also, by examining the flipping activity in Las Vegas from 1994 through mid-2007,

Depken et al (2009) found that flip homes tend to be older and smaller than non-flip

homes; and flippers appear to purchase the flip home at a discount and they sell the
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flip home at a premium to otherwise similar properties, they also found that as the

residential property market in Las Vegas begins to take off, flip homes become a more

significant percentage of total sales.

This paper is structured as following: in section 2, we introduce the data we use for

the empirical tests, including both the pool level data and loan level data; insection

3, we do empirical tests to see how much higher interest the investors are charged and

how much more restrictions (in terms of LTV ratio) are put on them by banks; in

section 4, we do empirical tests to see how dangerous these non-occupancy investors

are and get an idea how dangerous those occupancy fraud performers are; in section

5, we test the information asymmetry and introduce some ways to prevent potential

occupancy fraud, then we conclude in section 6.

3.2 Data

Here we used two sets of data, loan level and pool level.

3.2.1 Loan Level Data

For the loan level data, the author got it from FHFA (Federal Housing Finance

Agency12). The data include static section and dynamic section. For the static sec-

tion, it includes 20,000 individual subprime mortgage loans initiated from 10/9/2003

to 10/23/2007, all the loans are from two states:Arizona and Florida; these two states,

according to Simon and Corkery (2008) are where “much of the occupancy fraud was

concentrated”. Among our data, there are 15968 owner occupants, 1388 second home

owner and 2639 investors, see figure 8.

12We appreciate Dr. Robert Dunsky’s help on getting the data.
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All of these loans are adjusted rate mortgages (ARM). The number of loans issued

each month in our data is 200 at the beginning of 2004, then it increased with the

housing market getting hotter, from the second quarter of 2005 to the end of 2006, the

number of loans issued each month trippled; however, after 2006, with this subprime

mortgage crisis, the number of loans issued each month dropped dramatically to less

than 100 at the end of 2007. We summarized origination date of our data in figure 9.

For all these loans, we have borrowers information at the loan origination, including

borrower’s FICO score at initiation, loan type(whether there is a balloon payment

or not), loan purpose (purchase or refinance), document status (whether it’s a “low

doc” loan or not), which state it belongs to (Florida or Arizona), in which year this

loan was originated (04, 05, 06 or 07), loan maturity (15, 20, 30 or 40 years) and

the original amount of the loan. The description of all the variables we are using is

summarized at table 63.

For the dynamic section, there are 555,512 monthly observations after the loan

get initiated. It includes the monthly payment, current balance and the status of

each loan (whether it’s prepaid, delinquent or default). The data is right censored on

10/1/2007. By the right censored date, there are 80 percent of the loan still current

(neither prepaid nor default yet), 3 percent prepaid and 17 percent default, see figure

10.
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3.2.2 Pool Level Data

The pool level data 13 the author uses are from Freddie Mac PC(Participation

Certificate). To be in this dataset, they must be 30 year fixed rate mortgages and

have at least 150 mortgages included within the pool, and they are issued as Mortgage

Backed Securities between Jan 2006 and Mar 2006. There are 434 PCs in total,

including 142815 loans in them. The description of all the variables we are using is

summarized at table 64.

3.3 Risk Premium

In this section, we are trying to quantify what is the “risk premium” being charged

on investors over owner occupants. Here the “risk premium” contain two folds: one

is the real risk premium in term of interest rate, which means how much higher the

interest rate investors were being charged by subprime mortgage lender over owner

occupants; the other is not the real risk premium, but the restrictions investors have

to face. Since owner occupants, not only being charged with lower interest rate, but

also qualify for much smaller down payment. So, as an investor, she/he also has to

face a lower Loan To Value(LTV) ratio. So basically in this section, we quantified

how much restrictions investors have to face, both in terms of interest rate and LTV

ratio.

13I appreciate Jason Berkowitz who provided me with the pool level data which is hand collected
by himself.
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3.3.1 Risk Based Mortgage Pricing Model

Here, following Hendershott and Shilling (1989) , Ambrose, LaCour-little and

Sanders (2004) and An, Do, Rosenblette and Yao (2012) , we use the following lin-

ear regression model to test the investor’s risk premium while controling other risk

factors:

ri = Xiβ + εi, i = 1, . . . n

where here ri is the subprime mortgage spread, Xi is a vector of pricing factors

recorded on the loan documents, such as borrower’s FICO score at initiation, loan

type(whether there is a balloon payment or not), loan purpose (purchase or refinance),

document status (whether it’s a “low doc” loan or not), which state it belongs to

(Florida or Arizona), in which year this loan was originated (04,05,06 or 07), loan

maturity (15, 20, 30 or 40 years) and the original amount of the loan. εi here is the

disturbance.

Here, we put our result in table 65, the basic model we just stated is model 1 in

table 2; to test the dynamic trend of the risk premium investors being charged over

owner occupants from 2004 to 2007, we added the cross product of the time dummy

and the investor dummy, which is model 2 in table 65. From both of these model, we

can see that investors were being charged by a statistically significant risk premium,

which is around 0.5 percent per year; according to the result of model 2, we can

see that this premium is even increasing over the years, from 0.5 percent in 2004 to

almost 1 percent in 2007 (see figure 1 on this trend).The reason why this investor risk

premium was increasing every year, we think it might because the housing market
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is getting hot from 2004 to 2007, so banks charge investors a higher premium every

year to compensate their risk. And other parameters also get the predicted sign: for

example, after controlling other variables, the higher the FICO score, the lower the

interest rate being charged; and “low-doc” applicants in average got a higher interest

rate than non “low-doc” applicants. But no matter which model we use, our pricing

factors recorded on the loan documents could only explain less than 50 percent of the

total variation in interest rate. We plot the risk premium in figure 11.

So, by running this risk based mortgage pricing model, we found that investors

did get a statistically significant risk premium around 0.5 percent to 1 percent, and

this risk premium is increasing from 2004 to 2007. After finding this statistically

significant risk premium, the next question is how restricted in terms of LTV ratio

investors have to face.

3.3.2 LTV Ratio

The LTV ratio is a very important indicator to see the applicants leverage. Usually,

since favorable home mortgage terms are reserved for owner occupants, as typical first

time home buyers in US, people only are required to pay a very low down payment,

which means the LTV ratio of owner occupants could be very high, close to 100

percent. However, as investors they do not only have to make a lot of effort to

demonstrate their abilities in managing properties for some history (at least two

years), and more reserve of cash to pay property taxes and insurance, but they also

have to pay a higher down payment, which will reduce their ability to leverage, so

investors will have a lower LTV ratio compared to owner occupants.
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Here, we want to quantify, despite the higher risk premium, what other restrictions

investors have to face, so we use LTV ratio as an indicator of the restrictions investors

have to face. We are running a similar model as the risk based mortgage pricing model:

LTVi = Xiβ + εi, i = 1, . . . n

where this LTVi is the loan to value ratio, Xi is a vector of pricing factors stated in

the previous model, and εi is the disturbance.

The result is in table 66, in which model 3 is just as stated above, while model

4 is trying to test the dynamic trend of this LTV ratio over the years. From the

result in table 5, we can see that investors have to face a more restricted loan: with

other factors beging controlled, investors in average are getting a loan with a LTV

ratio 3.2 percent lower than the owner occupants in absolute value. Even worse,

investors are getting loans with a LTV ratio from around 3 percent lower in 2004 to

almost 6 percent lower in 2007 than owner occupants. (see figure 2 for this trend).

Still, in these two models, the coeffcients for other control variables also make sense,

such as: the bigger the original loan amount, the lower the LTV ratio (due to some

restrictions on Jumbo mortgage); the higher the FICO score, the higher the LTV ratio

the applicants could get; and “low-doc” applicants are in average getting a lower LTV

ratio than non “low-doc” applicants.

Therefore, from the analysis of interest rate and LTV ratio investors have to face,

we can get the result that as an investor, she/he has to be charged by a higher interest

rate than occupant owner and has to face a more restricted loan (less leverages, lower

LTV ratio than occupant owner. What makes things even worse is, with the housing

market getting hotter from 2004 to 2007, the risk premium also increased and the
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restrictions tightened. To test the robustness of our result, we use the pool level data

to see whether the result is similar to loan level data.

3.3.3 Pool level data

Here, by using the pool level data, we are still running the previous two models as


ri = Xiβ + εi, i = 1, . . . n

LTVi = Xiβ + εi, i = 1, . . . n

the only difference here is that for pool level data, we don’t have as much detail on

applicant’s information as in loan level data: for the prcing factors, we only have the

average FICO score, average maturity, LTV ratio, percentage of purchasing (instead

of refinancing), percentage of investors (instead of owner occupants), average loan

amount at origination for each pool.

So we put all the information we get from the pool level data into the above model

and our result is consistent with what we get from the loan level data (see table

67): apprently, even in pool level, we could still see evidence that investors were

being charged with a statistically significant risk premium, and have to face a more

restricted (much lower LTV ratio) loan. So this pool level data analysis could be a

robustness check of our loan level data.

3.4 Investors’ Hazards

From the previous section we found that investors have to face a statistically sig-

nificant risk premium around 0.5 to 1 percent, and a statistically significant lower

LTV ratio around 3 to 6 percent in absolute value. the next question we want to ask

is “do investors deserve this risk premium?” or “are they really that risky?” so we
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used the competing risk model to test the hypothesis of whether investors are more

risky (in terms of both default and prepayment) than owner occupants.

From previous literature on analyzing mortgage risk, Campbell and Dietrich (1983)

, Cunningham and Capone (1990) , Archer, Ling and McGill (1996) and Calhoun and

Deng (2002) used the multinomial logit model, but the problem with multinomial

logit model is the assumption that alternative termination risks are independent, but

apparently, they are not. Lots of people also used single risk cox partial likelihood

model, such as Green and Shoven (1986) , Clapp, Goldberg, Harding and Lacour-

Little (2001) , and Pavlov (2001) . But this single risk model usually only consider

default, without recognizing the prepayment risk, which will also affect the default

risk: for example, sometimes when people are close to default, they will try to re-

finance to reduce the payment first, if they were able to refinance, this loan itself

become prepaid instead of default. So actually, prepayment risk and default risk are

intercorrelated with each other, to recognize this property of mortgage, we are using

the competing risk model.

3.4.1 Competing Risk Model

Competing risk model is a well developed model using in biological literature for

many years, it’s first used in analyzing mortgage data by Deng, Quigley and Order

(2000) a decade ago. Following the classical textbook Lancaster (1990) , we define

the prepayment hazard rate as

λP (t, x) = lim
dt→0

PrP (t ≤ T < t+ dt|T ≥ t, x)

dt
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which is the conditional probability that an individual with covariates x prepays in

the interval [t, t+dt], given the individual was still “current” (not default not prepaid

yet) just before time t. The default hazard rate as

λD(t, x) = lim
dt→0

PrD(t ≤ T < t+ dt|T ≥ t, x)

dt

which has the similar explanation as λP (t, x) except it’s default instead of prepayment

this time. We assume the only risk for a mortgage is prepayment and default, so,

λ(t, x) = λD(t, x) + λP (t, x)

There for the survival function can be defined as

S(t, x) = exp

{
−
∫ t

0

λ(u, x)du

}
= exp

{
−
∫ t

0

[λD(u, x) + λP (u, x)]du

}
which is the probability an individual with covariates x being “current” at time t. so

the unconditional density that an individual default at time t would be

fD(t, x) = lim
dt→0

PrD(t ≤ T < t+ dt|x)

dt
= λD(t, x)S(t, x)

the same thing for an individual prepay at time t would be

fP (t, x) = lim
dt→0

PrP (t ≤ T < t+ dt|x)

dt
= λP (t, x)S(t, x)

Therefore the likelihood function for estimation is

L =
n∏
i=1

f(ti, xi) =
n∏
i=1

∏
j∈{P,D}

λj(ti, xi)
dijexp

{
−
∫ ti

0

λj(u, xi)du

}
where diD is 1 if individual i default, 0 if individual i get censored, and also diP is 1

if individual i prepaid, 0 if individual i get censored.

Fine and Gray (1999) proposed a proportional hazard model for competing risk,

they seperated the baseline hazard from the regression coefficient by assuming the

hazard rate

λj(ti, xi) = λj0(ti)exp {xiβ}
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so the likelihood function become

L =
n∏
i=1

∏
j∈{P,D}

[λj0(ti)exp {xiβ}]dijexp
{
−
∫ ti

0

λj0(ti)exp {xiβ} du
}

so we don’t have to estimate the baseline hazard function anymore, so the whole

estimation becomes easier, and we used this estimation method in R by following

Fine and Gray (1999) .

3.4.2 Estimation Result

Here, we first estimated the predicted cumulative probability of default and pre-

payment and the result is in figure 13. From this figure we can see that after 5 years,

the probability of prepayment is around 3-5 percent and the probability of default is

almost 50 percent.

The next issue we want to address is whether there is any difference between in-

vestors and owner occupants in terms of their prepayment and default behavior. The

result is in figure 14, from which we can not tell the difference between owner occu-

pants and the investors; by using the competing risk model to test the null hypothesis

that there is no significant difference between investors and owner occupants behavior

on prepayment and default, we get the t statistic as following:

t-statistic Probability

Default 0.1643705 0.6851641

Prepayment 0.6007734 0.4382831

from which we can see that we can not actually reject the null hypothesis that there

is no significant difference between investors and owner occupants behavior on pre-

payment and default.
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Controlling other variables, we run the competing risk model again and the result

is in table 68, from which we still could not reject the null hypothesis that there is no

significant difference between investors and owner occupants in terms of prepayment

and default. But the other variables still make sense, for example, the higher the

FICO score, the lower the default hazard; low doc borrowers tend to be more likely

to default than non low doc borrowers. So from this competing risk model, in terms

of default and prepayment, owner occupants are at least as risky as investors.

so why do investors is being charged with a much higher risk premium and have to

face a more restricted loan and then is not more risky than owner occupants? Is the

market not so efficient to correct this error?

We think there are majorly two reasons. First, owner occupants get a lower interest

rate and a more favorable loan because the government want to promote the idea that

everyone has his own house, the government want to let people have their own house.

so the most favorable loans are always reserved for the owner occupants instead of

investors, even in terms of default and prepayment, owner occupants are as risky as

investors.

The second reason is that in fact, investors are more risky than owner occupants,

which is documented in some of previous literature, however, with the strong incen-

tive to commit occupancy fraud, lots of investors were actually recorded as owner

occupants to get a more favorable loan; and it’s these investors who commit occu-

pancy fraud but recorded as owner occupants in the data set increased the estimated

hazard of default of the group of owner occupants, so we can not tell the difference

between the investors and owner occupants in terms of default. To illustrate this, see
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the table as following:

Record as Owner Occupants Record as Investors

Real Owner Occupants A(honest owner occupants) B(no one)

Real Investors C(Occupancy Fraud) D(honest investors)

Apparently, no one would be in group B, because real owner occupants have no

incentive to lie to become investor to get a less favorable loan. The problem comes

from group C. As a group, investors are more risky than real owner occupants, but

among this group, those who recorded as owner occupants are more risky than those

investors who didn’t commit occupancy fraud. With the number of group C increas-

ing, the whole group as what we estimated as the owner occupants become as risky as

group D. That’s why by our estimation, we can not tell the difference between group

A+C and group D in terms of riskiness.

To test whether our prediction about group C is correct or not, we will do some

information asymmetry analysis in next section.

3.5 Information Asymmetry

3.5.1 the model

To test whether there is any information asymmetry during this process, there is

a well developed two step procedure by Puelz and Snow (1994) and Kau et al (2012)

. First we run that risk-based mortgage pricing model again,

ri = Xiβ + εi, i = 1, . . . n

and get the residual ε̂i from this regression. Since the residual means the risk premium

that can not be explained by our mortgage pricing model, or to be more clearly, if
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there are two individuals with the same characteristics, one accept an interest rate

higher than the other, which can not be explained by the observable characteristics,

we call that as the excess risk premium. It represents the extent of information

asymmetry there.

Then the second step would be adding the excess risk premium into our competing

risk model to see whether this excess risk premium, or the information asymmetry

could explain the default hazard and the prepayment hazard which we observed in

the data set.

L =
n∏
i=1

∏
j∈{P,D}

[λj0(ti)exp {xiβ + γε̂i}]dijexp
{
−
∫ ti

0

λj0(ti)exp {xiβ + γε̂i} du
}

If this excess risk premium has some explanatory power on the competing risk model,

then that’s also some evidence for the occupancy fraud.

3.5.2 Estimation Result

Here, after adding the “excess risk premium” as an explanatory variable in the

competing risk model to test whether this information asymmetry would have some

prediction power over the future hazard of borrowers, we get some result in table

69, which showed that this “excess risk premium”, or the infomration asymmetry do

explain parts of the hazard, which affirms our suspect on the occupancy fraud. To

test whether this information asymmetry has different effect on different groups, we

devided our data into two groups, one is the group recorded as owner occupants, and

the other is the group recorded as investor, then we did this information asymmetry

test on both of these groups to see if there is any difference between these two groups

in terms of the extent of information asymmetry, and the result is in table 70.
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From this table, we find that among the group recorded as owner occupants, the

information asymmetry problem is more serious than the group recorded as investors

which reaffirmed our suspect in the last section that because in the group of owner

occupants, it’s not only true owner occupants in this group, but also those speculative

investors who was trying to reduce their financing cost by commiting occupancy fraud.

That’s why this group include more information asymmetry than the group recorded

as investors, which group is made up by honest investors.

3.5.3 Possible ways to prevent occupancy fraud

Here, we propose a “statistical scanning” way to help prevent the potential occu-

pancy fraud. Since our ultimate goal would be to prevent the default, first, we will

use historical data to “train” a competing risk model as

L =
n∏
i=1

∏
j∈{P,D}

[λj0(ti)exp {xiβ}]dijexp
{
−
∫ ti

0

λj0(ti)exp {xiβ} du
}

then we will get the parameter estimation β̂, after we get this estimation, we used

this well-trained model to predict the cummulative probability of default

fD(t, x) = lim
dt→0

PrD(t ≤ T < t+ dt|x)

dt
= λD(t, x)S(t, x)

and if this probability is above some critical value, say q, then we should ask the loan

officer to scrutinize this loan again. By this way, we don’t have to scrutinize every

loan, but we will significantly reduce the probability of future default.

3.6 Conclusion

By using submortgage data, we found that investors are being charged with a sig-

nificant risk premium over owner occupants; besides that, they are also facing a more

restricted loan; with the market getting hotter, this risk premium and restrictions
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are getting even worse. Being treated like that, our findings show that investors

were actually not more risky than owner occupants in terms of both prepayment and

default.

We suspect the reason for this puzzle is that when the market getting hotter, there

are more speculative investors who commit occupancy fraud to get a more favorable

loan. And these speculative investors were actually recorded as owner occupants on

loan documents, which increased our estimation of the hazard of owner occupants

group. And our information asymmetry test actually reaffirmed our suspect. There-

fore, this paper, for the first time, give statistical evidence on occupancy fraud, and

we also proposed a statistical scanning way to reduce to potential occupancy fraud.

For further study, we should check the robustness of our conclusion by using pool

level data, or even with multinomial probit model. We can also run a logit regression

to see the characteristic of tru e investors and using this model to find the potential

occupancy fraud.
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Figure 8: Occupancy status in our data
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Table 62: Pre-assessment form by Universal American Mortgage Company

 
 
 
 

Builder:  Community: Property State: 
Estimated Sales Price:  $ Estimated Loan Amount:  $ Property Type: 
Home will be:  Primary   Secondary   Investment  |  Buyer Applying:  Individually   Jointly  |   FHA   VA   CONV |   JUMBO   ARM 
 

  CCUUSSTTOOMMEERR  11  CCUUSSTTOOMMEERR  22  
Married:  Yes     No   —    Separated   Yes     No   —    Separated 
Name (First/Middle/Last/Suffix):    
Birthday (Month/Day/Year):    
Social Security Number:    
Current Address (Street):    
City/State/Zip:    
Phone: (        )    (        )   
Cell Phone: (        )    (        )   
Email:    
Time at Address:             Years                     Months              Years                     Months 
  Own     Rent     Rent Free   Own     Rent     Rent Free 
           Monthly Payment:   $            Monthly Payment:   $ 
U.S. Citizen:  Yes     No   Yes     No 
Permanent Resident Alien:  Yes     No   Yes     No 

G
EN

ER
A

L 
IN

FO
R

M
A

TI
O

N
 

Non-Resident Alien:  Yes     No   Yes     No 
 

  Employed     Self Employed  Employed     Self Employed 
Current Employer:    
Length of Employment:             Years                     Months              Years                     Months 
Monthly Income: $  $ 
Monthly Debt Payment: $  $ 

EM
P

LO
Y

M
EN

T 

(Car Payment, Credit Cards, Alimony, Child Support, etc.)      Have you or your co-borrower declared bankruptcy within the past 7 years?   Yes     No 
 

Down Payment Amount:   $ Sources: Sale of Present Home:   $ 
Savings:   $                                                Gift:   $                                                Sales of Stocks:   $ 
Other (Please indicate): 

$
 D

O
W

N
 

Do you need to sell your home in order to purchase this home?      Yes     No  
 
 
 
 
 
 

By signing below, I/We hereby authorize Universal American Mortgage Company or Universal American Mortgage Company of California, herein referred to as 
“UAMC”, to obtain my/our credit report for use in connection with my/our eligibility to be considered as a home purchaser. 
 

   
Customer 1 Signature                                                             Date  Customer 2 Signature                                                              Date 
 
 

Joint credit application? Customer 1 and 2 each agree that they intend to apply for joint credit by initialing.    C1:                        [Initial]   C2:                       [Initial] 

 

 
 

By law UAMC can and will share information about your pre-assessment status with their affiliated homebuilder without your permission in order to advise them of 
your purchase eligibility (i.e., information provided is satisfactory or more information is needed).  Under the Fair Credit Reporting Act (“FCRA”) UAMC is required 
to obtain your consent before they can share specific personal information that concerns your assets, income, and employment as well as credit reports and other 
credit related information (“FCRA-Covered Information”) with their affiliated homebuilder.   
 
I (we) agree to allow UAMC to share our FCRA-Covered Information with our affiliated homebuilder. 
 

   
Customer 1 Signature                                                             Date  Customer 2 Signature                                                              Date 
 
 
 
 
 
 
 

 
By signing below, I/We hereby authorize Universal American Mortgage Company to contact me/us regarding its mortgage loan products and services using any of 
the telephone number’s (including cellular phones) and/or email addresses provided above unless otherwise specified here_______________________________.   
 

   
Customer 1 Signature                                                             Date  Customer 2 Signature                                                              Date 
 

Universal American Mortgage Company, LLC; AZ: Mortgage Banker License #BK-0904844; CO: Supervised Lender License #987996; DE: Licensed Lender #8488; FL: Mortgage Lender License 
#ML0700915; IL: Residential Mortgage Licensee #MB0002095-2300 N. Barrington Road, Suite 750, Hoffman Estates, IL 60169; MD: Mortgage Lender License # 8101; MN: Mortgage Lender License # 
8101; NV: Banker License #1310 and Mortgage Broker License #1055, 6750 Via Austi Parkway, Suite 130, Las Vegas, NV 89119 (702) 739-7933; NJ: Licensed by the NJ  Department of Banking and 
Insurance #9933158, 800 West Main Street, Freehold, NJ 07728 (732) 625-2314. Licensee #L055199, 15550 Lighthouse Drive, Suite 200, Clearwater, Florida 33760 (727) 450-2733; NC: Mortgage 
Lender's License #L-108346; PA: Licensed by the PA Department of Banking pursuant to the Mortgage Act; SC: Mortgage Loan Broker # MB-0508401 and Supervised Lender License # S-5, 665, 688, 

689, 690, S-6, 529, 572; TX: Regulated Loan License # 4514-34262; VA: Mortgage Lender/Broker License # MLB-817, licensed by the "Virginia State Corporation Commission"; Universal American Mortgage Company 
of California; CA: Licensed by the Department of Corporations under the CA Residential Mortgage Lending Act; NV: Banker License #3243 and Mortgage Broker License #3244, 10354 Professional Circle, Suite 120, 
Reno, NV 89521 (775)852-9980.   July 01, 2009 
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Table 63: Loan level data variable names and meaning

Variable Name Meaning

Orig Amt Original Loan Amount
Inv Pro Dummy for Florida

Ini05 Dummy for loans initiated in 2005
Ini06 Dummy for loans initiated in 2006
Ini07 Dummy for loans initiated in 2007
FICO FICO score
ldoc Dummy for Low Doc and no doc status
LTV Loan to Value Raio

Term 180 Loan term is 15 years or less
Term 240 Loan term is between 15 years and 20 years
Term480 Loan term is 40 years or more
Purchase Dummy for Purchase (Not refinance)

Fixed Dummy for Fixed rate loan product
Balloon Dummy for balloon product

Age Days from the initial date to the last payment
Vprep Dummy for Voluntary Prepayment (not foreclosure)

ForeClosure Dummy for foreclosure
Noncurrent Dummy for Noncurrent states (prepaid, foreclosure, delinquincy)

Table 64: Pool level data variable name and meaning

Variable Name Meaning

COUPON dollar weighted average coupon rate of the pool
WAOLT dollar weighted average of loan term
WAOCS dollar weighted average of FICO score
OLTV dollar weighted average of LTV ratio

WAOLS dollar weighted average of loan size
Purchase percentage of “purchasing” (not refinancing) borrowers in this pool

Investment percentage of “investing” (not occupancy) borrowers in this pool
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Table 65: The risk based mortgage pricing model

Model 1 Model 2
Dependent Variable Interest Rate Interest Rate

Independent Variables Coefficients t-value Coefficient t-value

(Intercept) 11.400 74.095 11.410 74.095
Orig Amt -7.264E-07 -11.79 -7.250E-07 -11.769
Inv pro 0.579 18.469 0.474 6.898
Florida 0.108 4.858 0.108 4.84
Ini05 0.455 5.951 0.451 5.851
Ini06 0.884 11.468 0.860 11.07
Ini07 0.870 10.307 0.838 9.738
FICO -0.012 -68.023 -0.012 -68.025
Idoc 0.470 21.684 0.470 21.689
LTV 0.033 33.027 0.032 33.013

Term180 2.366 49.161 2.362 49.06
Term240 0.575 7.838 0.573 7.82
Term480 -0.701 -10.318 -0.704 -10.362
Purchase 0.255 11.063 0.258 11.179
Balloon 0.424 11.237 0.432 11.416

Inv Pro:Ini05 0.058 0.702
Inv Pro:Ini06 0.119 2.297
Inv Pro:Ini07 0.253 1.952

Goodness of Fit
R-square 0.4909 0.4911

Adjusted R-square 0.4905 0.4906
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Table 66: The risk based mortgage pricing model

Model 3 Model 4
Dependent Variable LTV Ratio LTV Ratio

Independent Variables Coefficients t-value Coefficient t-value

(Intercept) 42.190 45.086 42.210 45.042
Int Rate 2.619 61.369 2.618 61.343
Orig Amt -8.148E-06 -18.315 -8.149E-06 -18.319
Inv pro -3.212 -13.852 -2.984 -5.856
Florida -0.240 -1.456 -0.239 -1.449
Ini05 -2.320 -11.374 -2.378 -10.929
Ini06 -3.844 -18.119 -3.764 -16.803
Ini07 -3.339 -10.17 -3.091 -8.815
FICO 0.038 31.414 0.038 31.361
Idoc -2.437 -15.124 -2.436 -15.119

Term180 2.366 49.161 2.362 49.06
Inv Pro:Ini05 0.302 0.493
Inv Pro:Ini06 -0.674 -1.049
Inv Pro:Ini07 -1.866 -1.942

Goodness of Fit
R-square 0.2112 0.2115

Adjusted R-square 0.2108 0.211

Table 67: The risk based mortgage pricing model

Model 5 Model 6
Dependent Variable Interest Rate LTV Ratio

Independent Variables Coefficients t-value Coefficient t-value

(Intercept) 13.300 4.928 74.850 1.547
Term -0.015 -2.004 0.054 0.407
FICO -0.004 -5.346 -0.098 -7.919
LTV 0.020 7.543

Purchase -0.366 -3.54 19.060 12.052
Investment 2.198 10.96 -24.170 -6.367
Orig Amt -7.00E-07 -5.627 1.40E-05 6.493
coupon 6.021 7.543

Goodness of Fit
R-square 0.4877 0.3972

Adjusted R-square 0.4805 0.3887
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Table 68: Competing risk model to test the riskiness of investors

Competing Risk Model
Default Hazard Prepayment Hazard

Independent Variables Coefficients t-value Coefficient t-value

Orig Amt 4.13E-07 4.136 7.09E-07 4.4243
Inv pro 0.139 0.602 -0.006 -0.051
Int Rate 0.183 14.870 0.234 7.251
Florida 0.03 0.647 -0.402 -4.660
Ini04 1.560 2.149 -0.247 -0.877
Ini05 2.970 4.097 -0.521 -1.898
Ini06 4.280 5.910 -0.677 -2.456
Ini07 5.340 7.318 -0.688 -2.198
FICO -0.001 -4.447 -0.002 -2.944
Idoc 0.331 8.351 0.144 1.618
LTV 0.018 8.996 0.005 1.324

Term180 -4.490 -12.340 -0.725 -3.465
Term240 -3.520 -4.915 -0.125 -0.370
Term480 0.233 2.768 -0.259 -0.809
Purchase 0.127 3.089 0.143 1.517

Fixed 0.490 11.237 0.432 11.416
Balloon 0.105 1.882 0.085 0.632

Goodness of Fit
Pseudo Log-likelihood -27339 -5613

Pseudo Likelihood ratio test 4205 169
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Table 69: Competing risk model to test information asymmetry

Competing Risk Model
Default Hazard Prepayment Hazard

Independent Variables Coefficients t-value Coefficient t-value

Orig Amt 2.75E-07 2.75 5.36E-07 3.369
Inv pro 0.256 0.8 0.132 1.058
Florida 0.047 1.01 -0.379 -4.383
Ini04 1.570 2.15 -0.246 -0.873
Ini05 3.080 4.26 -0.376 -1.381
Ini06 4.490 6.190 -0.429 -1.575
Ini07 5.550 7.6 -0.441 -1.4176
FICO -0.004 -11.97 -0.005 -7.440
Idoc 0.419 10.65 0.256 2.943
LTV 0.023 12.17 0.013 3.34

Term180 -4.060 -11.250 1.173 -0.914
Term240 -3.410 -4.77 0.015 0.0437
Term480 0.093 1.12 -0.437 -1.3553
Purchase 0.174 4.24 0.202 2.131
Balloon 0.176 3.15 0.175 1.301

Excess Premium 0.187 15.3 0.235 7.152

Goodness of Fit
Pseudo Log-likelihood -27335 -5613

Pseudo Likelihood ratio test 4212 169
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Table 70: Information asymmetry test on both groups

Competing Risk Model for Default Hazard
Owner Occupants Investor

Independent Variables Coefficients t-value Coefficient t-value

Orig Amt -2.35E-07 -4.12 1.22E-07 0.938
Florida -0.252 -13.101 -0.066 -1.439
Ini04 0.052 0.608 0.246 -0.827
Ini05 -0.221 -2.633 0.300 1.024
Ini06 -0.287 -3.433 0.393 1.336
Ini07 0.09 1.058 0.744 2.491
FICO -0.002 -14.418 -0.001 -3.512
Idoc 0.004 0.239 -0.040 -0.829
LTV 0.002 1.799 0.004 1.513

Term180 0.580 14.433 0.568 5.773
Term240 0.304 4.547 0.227 1.223
Term480 -0.042 -0.851 -0.120 -1.071
Purchase -0.154 -7.961 0.126 2.368
Balloon -0.121 -4.226 -0.106 -1.134

Excess Premium 0.113 8.079 0.030 4.989

Goodness of Fit
Pseudo Log-likelihood -122943 -13944

Pseudo Likelihood ratio test 1292 142
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Figure 9: Origination date distribution in our data
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Figure 10: Mortgage status by the right censor date
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Figure 11: Risk premium for investors over the time



114

Figure 12: Restrictions for investors (LTV difference) over the time
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Figure 13: Cummulative probability for default and prepayment
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Figure 14: The difference between owner occupants and investors
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