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ABSTRACT

MOHAMMAD ASHIQUR RAHMAN. Automated formal analytics for smart grid
security and resiliency. (Under the direction of DR. EHAB AL-SHAER)

Smart grid is the modernization of the legacy electric power system in which cy-

ber computing and communications are integrated with the physical world of power

systems. A smart grid provides efficient and cost-effective management of the grid

by allowing real-time monitoring, coordinating, and controlling of the system using

communication networks among physical components. A smart grid exhibits complex

configurations due to the coexistence of legacy systems with the modern technolo-

gies and the interdependency between different cyber and physical components. This

inherent complexity significantly increases the vulnerabilities and attack surface in

smart grids due to misconfigurations and the lack of security hardening. In a critical

infrastructure like smart grid, a security breach can cause devastating damages. Thus,

there is a need for formal security analytics to automatically verify smart grid secu-

rity, provably identify potential attacks and their impacts, and devise cost-effective

mitigation plans in a proactive manner. In this dissertation, we focus on achieving

these goals through the following three research thrusts.

First, we develop a model to formally verify the compliance of the advanced meter-

ing infrastructure (AMI) configurations with the security requirements, and generate

remediation plans for potential security violations. The development of this model in-

cludes formal modeling of AMI configurations and security control requirements based

on NIST guidelines. We develop a similar formal model for verifying the supervisory
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control and data acquisition (SCADA) security. We primarily verify trusted commu-

nications between field devices and the control center along with different resiliency

constraints to ensure whether SCADA operations remain reliable in contingencies.

Second, we formally model a framework to automatically synthesize cost-effective,

network isolation-based resiliency architecture for the cyber systems in smart grids.

The framework considers isolation requirements and usability and cost constraints,

and synthesizes resiliency configurations by exploring various isolation patterns for

network traffic flows. We devise a hypothesis testing-based refinement mechanism

that systematically finds an optimal resilient architecture by investigating alternative

designs. We provide another framework to synthesize redundancy-based resilient con-

figurations for AMI, considering operational integrity and robustness requirements.

Third, we develop a formal model for analyzing attack evasions on state estimation,

a core control module of SCADA. The model identifies attack vectors (e.g., a set of

measurements to be altered) for compromising state estimation, considering (i) a

comprehensive set of attack attributes, including access capability, attack resources,

and knowledge, (ii) potential attack evasions, and (iii) the interdependency between

state estimation and other control modules. The modeling of interdependency enables

provable identification of novel stealthy attacks and their escalation to impact on the

economic operation of smart grids. For risk mitigation, we provide two techniques:

(i) we synthesize proactive security plans that recommend a minimal data integrity

of measurements in order to make such attacks infeasible, and (ii) we increase the

robustness of the control system against persistent attacks by frequently randomizing

state estimation parameters that are critical for launching such attacks.
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CHAPTER 1: INTRODUCTION

Driven by the rapid advancement of technology and the growing need of business

requirements, cyber communications are embedded in many physical systems. The

integration of cyber and physical capabilities leads to the creation of many applica-

tions with enormous societal impact and economic benefit. The emerging systems

that connect the cyber-world of computing and communications with the physical

world are cyber-physical systems (CPS). Operations are monitored, analyzed, and

controlled in CPS using cyber systems that interconnect physical components. Many

CPS are defined as critical infrastructures due to their national importance. Ac-

cording to the U.S. Department of Homeland Security, “Critical infrastructures are

the assets, systems, or networks, whose incapacitation or destruction would have a

debilitating effect on security, national economic security, national public health or

safety” [2]. Any damage or unavailability of such a critical infrastructure often has a

massive and broader impact.

A smart grid is a typical example of a critical cyber-physical system. Smart grids

are the modernization of the legacy power systems with the development of a com-

munication infrastructure. To delineate the importance of the safety and reliability

of smart grids, we can cite the following from a Schneider Electric report [3]: “The

financial impact of power disruption was demonstrated during the August 2003 black-

out, which affected 45 million people in eight US states and 10 million people in parts
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of Canada. Healthcare facilities experienced hundreds of millions of dollars in lost

revenue from cancelled services, legal liability, and damaged reputations. Six hospi-

tals were in bankruptcy one year later.” This incident clearly illustrates the extent of

the impact due to operational interruption in energy networks.

Since communication infrastructures are integrated with the legacy systems, a

smart grid exhibits a highly complex configuration comprised of heterogeneous cyber-

physical components. This complexity leads to various vulnerabilities and potential

security threats. An execution of such a threat can easily cause devastating dam-

ages to the grid. Therefore, there is a great need for security analytics to (i) verify

the compliance of smart grid configurations with security standards (provided by

NIST, NERC, and FERC [4, 5, 6]), (ii) identify potential threats on smart grids,

and (iii) design necessary defense mechanisms. This need for smart grid security is

reflected by three major security challenges: (i) proactive identification of potential

security threats, (ii) resiliency architecture to support the continuity of smart grid

operations, and (iii) automated security analytics that offer efficient verification and

synthesis of smart grid security properties.

In this dissertation, we address these challenges in three main research thrusts,

which will be discussed in detail in the subsequent chapters. We perform the proac-

tive identification of security threats by developing formal security verification tech-

niques that discover cyber and physical security threats on different components of

smart grids, including advanced metering infrastructure (AMI), supervisory control

and data acquisition (SCADA), and state estimation. We develop formal models

that synthesize cost-effective resiliency architectures for smart grids. We focus on
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cyber systems, AMI, and state estimation in smart grids. A resiliency architecture

primarily includes countermeasures (e.g., isolation, data integrity, and redundancy),

as well as physical and security devices’ configurations and their placements. We also

increase the resiliency of the system, particularly for state estimation, by frequently

randomizing its critical parameters. We address security automation for each of our

research goals, including automated verification of security properties and synthesis

of resiliency architecture.

In this chapter, we first describe a brief overview of smart grids. We explore the

potential attacks on smart grids and discuss the research challenges. Next, we present

our research objectives and contributions, along with the technical approach that we

take in this dissertation. Finally, we present the organization of the remainder of the

dissertation.

1.1 Background

1.1.1 Smart Grid Overview

Smart grids are modern power systems that represent a perfect example of cyber-

physical systems. In the last decade, the paradigm of power grid infrastructures has

been shifted to a new age. Legacy infrastructures are being replaced with state-

of-the-art smart grids. Leading utility providers in the U.S. have taken different

initiatives for deploying smart devices by replacing the existing legacy systems [7].

Smart grids provide intelligent devices with two-way communications among them,

which allow efficient management of the power while providing useful features. The

basic reason for moving to smart grids is to provide uninterrupted low-cost energy
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Figure 1: A conceptual model of the smart grid architecture.

considering 21st century demands. However, smart grids usually exhibit a complex

infrastructure as they consist of numerous cyber and physical smart devices along with

legacy equipment, wherein a device often needs to communicate with other devices.

Smart grids are designated as critical infrastructures. Thus, they require very rigid

security considerations.

We present a basic conceptual architecture of a smart grid [4] in Figure 1, which

shows different components of smart grids and their inter-connections. A detailed

diagram of a smart grid is presented in Figure 2, which shows the power generation,

transmission, and distribution. The figure also illustrates the major measuring and

controlling systems of the grid, namely AMI and SCADA, including the communica-

tion infrastructures and the control and utility centers.
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Figure 2: A detailed architecture of a smart grid, which shows the end-to-end power
transmission and distribution, AMI and SCADA communication infrastructures, and
the utility and control centers.

1.1.2 AMI

Advanced Metering Infrastructure (AMI) is one of the core components of a smart

grid. This system measures, collects, and analyzes energy usage of electricity cus-

tomers. A typical AMI consists of a large number of smart meters and data collectors.

Data collectors communicate with smart meters either on request or on a schedule,

collect data, and send the report to the utility through the backhaul communication

system. In fact, AMI is an extended version of the existing automatic meter reading

(AMR) technology by the addition of two-way communication capability, allowing

commands to be sent toward the meters for different purposes like demand-response

actions or remote service disconnects [8, 9]. The utility center is mainly responsible
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for billing the energy users for their usage. The scope of the utility center is broaden-

ing with the implementation of AMI. Different demand-response utility services are

being established in order to efficiently manage the electricity usage by reducing the

energy cost as well as the energy loss/theft.

A structure of the AMI network can be found in Figure 2. Usually a meter es-

tablishes an authenticated connection with a specific collector to report energy usage

data. A collector forwards this data to the utility center over a trusted path. The

server at the utility center that receives this data is often named as the headend

system. The control commands from the headend to the meters are also transmitted

through secure connections. A meter is connected to a collector directly or through

another meter. In the latter case, geographically collocated meters form a mesh net-

work. Heterogeneous communication links or communication systems are seen in

AMI. For example, there are power lines, wi-fi, ethernet, optical fibers, cellular or

serial communication, and proprietary or third-party communication infrastructures.

The collectors are usually connected with the utility network through a wide area

network (WAN). There are different delivery modes, push or pull, periodic or non-

periodic, that are followed by the AMI devices to communicate to each other. There is

also a provision to allow an energy user’s home area network (HAN) to be connected

with the AMI network through the smart meters. There are also different proprietary

communication protocols used in AMI other than TCP/IP. LonTalk is an example of

such protocols which is often used between a meter and a collector. An AMI network

also involves varieties of data stream types like energy usage data, control commands,

and software patches.
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1.1.3 SCADA

In the energy transmission and distribution side of the smart grid, different com-

munication networks exist for sensing measurements and transmitting control com-

mands. These networks are associated with the SCADA system. SCADA is the

major industrial control system (ICS) in smart grids, and connects the generating

stations, substations, and control centers. SCADA is mainly responsible for monitor-

ing and controlling the remote equipment by obtaining data from the remote devices,

analyzing the received data at the control centers, and executing necessary control

commands at the remote devices. We can notice in Figures 1 and 2 that the control

centers associated with the generation, transmission, and distribution systems are

connected to the physical power system using cyber infrastructure.

There are various kinds of SCADA devices, such as SCADA servers or master ter-

minal units (MTUs), human machine interfaces (HMIs), data historians, and different

field devices. Remote terminal units (RTUs), programmable logic controllers (PLCs),

and intelligent electronic devices (IEDs) are the typical field devices. IEDs often re-

ceive data from sensors, while they actuate the control commands received from the

SCADA control server. IEDs and PLCs are also designed to take pre-specified ac-

tions automatically when the designated situations occur. RTUs are mainly data

collecting and forwarding devices. Similar to AMI, there are different communication

links in SCADA. The modem-based serial communication is often seen in SCADA

for the communication between RTUs and MTUs. The SCADA communication is

done using industrial protocols like Modbus, DNP3, or IEC 61850, which are layered
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protocol similar to TCP/IP. Some variants of these protocols are built on top of the

TCP/IP communication architecture.

In addition to legacy SCADA devices, smart grids are currently being equipped

with phasor measurement units (PMUs), also known as synchrophasors, which are

capable of measuring both voltage and current phasor measurements with a precisely

synchronized timestamp. PMUs are often connected with a global positioning system

(GPS), which allows them to be synchronized with microsecond accuracy. There are

phasor data concentrators (PDCs) that collect the phasor measurements from con-

nected PMUs, sort the measurements according to the GPS timestamp, and provide

this data to the control server.

The control server takes the sensor measurements from field devices through the

power network and sends the control commands to them after analyzing the data

using the same infrastructure. There are different control modules/routines to manage

the grid efficiently and reliably. These modules are specified together as the energy

management system (EMS). As we see in Figure 2, state estimation, optimal power

flow (OPF), contingency analysis, and automatic generation control (AGC) are the

main control modules. These modules are interdependent with each other, and one’s

outputs are often used as inputs for others. The state estimation is the core component

of EMS. Its function is to compute the unknown state variables of the power system

from the sensor measurements received through the SCADA system. The output

of state estimation is used in OPF and contingency analysis. The objective of the

OPF process is to minimize the total generation cost satisfying the load and the

operating constraints (e.g., capacities of the transmission lines). Contingency analysis
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is important for maintaining the system’s security in contingencies, such as generation

unit failures and transmission line breakages. Outputs of these modules are finally

used by AGC, which adjusts the power outputs of generators at different power plants

such that the grid operates optimally with respect to the generation cost and the

physical safety of the grid.

1.2 Motivation: Potential Threats and Impact

Communication infrastructures are integrated with the legacy systems in a smart

grid, which produce a highly complex configuration comprised of heterogeneous cyber-

physical components. Moreover, these cyber-physical components are often intercon-

nected through different communication media and protocols, and they are operated

in different modes and policies. The inherent complexity of integrating multiple

heterogeneous systems in a smart grid significantly increases the potential of secu-

rity threats, which can cause massive and extremely devastating damage. It is well

documented that configuration errors cause 50-80% of vulnerabilities in cyber infras-

tructures [10]. Since smart grids are still evolving, weak security measures often exist

there. In fact, it is possible that there is no security measure present at all. As a re-

sult, cyber attacks can happen easily. We discuss the causes and impacts of potential

threats to smart grids in the following categories:

• Attacks on connectivity: In order to send or receive necessary measurements,

commands, etc., communication must be established between the sender and

the receiver. In AMI, there should be a path between the smart meters and

the utility servers, so that billing reports can reach the utility from the meters,
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while control commands (e.g., meter turn on or off) from the utility can reach

the designated meters. There are typically intermediate devices for collect-

ing, buffering, and forwarding the data between the meters and the utility. In

SCADA, power flow measurements must reach the control centers, often through

the intermediate devices, so that state estimation and control routines can be

performed. However, a connectivity requirement may fail due to misconfigured

devices, link failures, or compromised intermediate nodes.

• Attacks on data integrity: Data integrity is crucial for the smart grid oper-

ations. If data (e.g., measurements or control commands) is corrupted, then

corresponding applications may fail and serious cascading effects may occur.

Due to the lack of data integrity protection, cyber attacks like man-in-the-

middle and replay attacks can be launched, and the data can be maliciously

modified. In AMI, such false data injection attacks can create incorrect billing,

broken service, and inaccurate demand-response [11]. In the case of a SCADA

system, incorrect state estimation can cause inefficient or incorrect control de-

cisions that may create serious economical as well as physical damage to the

grid. For example, with the corrupted states, the OPF process will generate a

non-optimal solution for power generation outputs. This solution may be not

only economically expensive but also physically damaging, as it can lead elec-

tricity to flow through some transmission lines higher than their critical limits.

Similarly, the contingency analysis with corrupted states will have an erroneous

perception of security in contingencies.
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• Attacks on data or service availability: Smart grids are also subject to denial of

service (DoS), link flooding, and wireless link jamming attacks. For example, in

the case of a RF mesh network-based smart metering infrastructure, the com-

munication between smart meters and the associated collector can be disrupted

by creating radio jamming. More interestingly, incorrect scheduling of usage

data reports can also lead to self-generated DoS attacks because it may cause

overflowing of a data collector’s buffer. DoS attacks can cause data to be lost

or delayed in reaching the destination, which consequently can make different

utility services fail due to inadequate or out-of-date data. For example, if state

estimation is done using delayed data, the computed states can be too old to

make a correct control decision.

1.3 Work Objectives

The correct functioning of a smart grid requires consistent and secure data flow and

the timely execution of tasks. In order to ensure safe, secure, and reliable functioning

of smart grids, our objective in this dissertation is to address the following major

problems:

• Proactive security: Reactive security using intrusion response and mitigation

is insufficient for critical CPS like smart grids. Unlike traditional IT systems,

where the impact of an attack is mostly local, an attack in a critical infras-

tructure can be devastating in terms of damages and consequences. Thus, it

is required to proactively identify the potential threats in order to reduce the

attack surface for a smart grid and avoid the detrimental consequences.
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• Resiliency: This is the ability to maintain the integrity of smart grid opera-

tions and minimize potential damages despite the attack occurrences. Critical

infrastructures, such as smart grids, should be resilient to attacks in order to

assure the accepted operational state of the system under attacks, even if attack

intensity increases.

• Automation: Automating the security analysis is essential for large and com-

plex systems like smart grids, as manual security analysis is quite unrealistic.

The smart grid security guidelines developed by NIST [4] are highly detailed

and cumbersome to implement due to the complexity of cyber and physical

integrations. Therefore, automating security verification and configuration syn-

thesis techniques in a provable and scalable manner is a“holy-grail” challenge

for smart grids.

1.4 Research Challenges

Toward fulfilling our research objectives, there are many research challenges that

we need to address. The key challenges are as follows:

• Integration of cyber and physical systems: Since cyber and physical systems are

included together in AMI and SCADA, along with the coexistence of smart/intelligent

devices with legacy systems, modeling this integration is challenging.

• Interdependency modeling: There are interdependencies between different AMI

and SCADA physical and functional components. For example, the output from

the state estimation process is taken as an input to the OPF process. Thus, it
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is crucial to investigate such interdependencies and model them accordingly in

order to understand the broader space of attack and impact.

• Evasion modeling: There are algorithms to detect bad measurements in SCADA.

However, it is possible to corrupt the data without being detected by evading

these algorithms. It is important to inspect existing as well as potential evasion

techniques, and find defense mechanisms for them.

• Security and resiliency property modeling: There are security guidelines for

AMI and SCADA provided by NIST. It is quite challenging to translate these

guidelines into logical constraints, considering different AMI and SCADA com-

ponents and their interactions.

• Generic property modeling: Various energy providers may have different secu-

rity requirements. Thus, it is important to provide a general framework that

allows defining new requirements or constraints with minimum or no change to

the existing model.

• Scalability: A smart grid usually consists of a large number of field devices. For

example, an AMI typically consists of thousands of smart meters and hundreds

of data collectors. It is challenging to model this large number of devices such

that the security verification, as well as the resiliency architecture synthesis,

can be performed efficiently.
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1.5 Contributions

The main contribution of this dissertation is developing formal techniques and

tools that can address the security requirements, identify potential threats, and offer

remediation plans for smart grids, so that secure and reliable smart grids can be

established. In this research, we focus on AMI, SCADA, and EMS, as shown in

Figure 2, which are the most critical components of a smart grid. We address the

above-mentioned research challenges and contribute to the smart grid security and

resiliency through the following three research thrusts:

• Security verification for AMI and SCADA: We develop a scalable and provable

formal model to verify the compliance of AMI configurations with NISTIR 7628

security controls [12], and to generate remediation plans for potential security

violations. We implement this model as a tool named SmartAnalyzer. The tool

enables energy providers to proactively investigate AMI security configurations

in order to identify and mitigate potential security threats and to guarantee

AMI operational integrity and security requirements. Our main contribution in

this work lies in the formal modeling of novel security properties that are critical

for the integrity and security of AMI. These security properties include different

invariant and user-driven constraints, such as data overflow/overwrite protec-

tion, cyber bandwidth limitation, data integrity and confidentiality, assured

report delivery, and data freshness. We also develop an identical formal model

for the proactive security analysis of SCADA. In this analysis, we focus on the

integrity of the SCADA control routines along with the trusted communication
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between field devices and the control center.

• Automated synthesis of resiliency architectures: We build automated formal

models for synthesizing necessary configurations that satisfy resiliency require-

ments, as well as deployment cost and usability constraints. We first develop

a formal model that synthesizes isolation-based resiliency architecture for the

cyber systems in smart grids. There is a lack of techniques and tools for au-

tomatic security or resiliency architecture design that optimize security and

resiliency. Our formal model satisfies this need by automatically synthesizing

resiliency configurations, while considering resiliency design alternatives based

on network isolation patterns as well as usability and deployment cost. An iso-

lation pattern is defined as a restriction on the network connectivity, such as

access denial, authenticated communication, payload encryption, source iden-

tity hiding, etc. The model determines the appropriate isolation patterns along

with the correct placements of necessary security devices in the network that

satisfy the given requirements and constraints. We also devise a hypothesis

testing-based mechanism to find optimal isolation configurations by exploring

different design alternatives. The novelty of this framework lies in its com-

prehensiveness as a decision support system as it considers all basic network

isolation-based design parameters (both resiliency requirements and business

constraints) and provides a complete resiliency architecture (both configura-

tions and device placements). We develop another formal model to synthesize

redundancy-based resiliency architecture for AMI, satisfying the operational in-
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tegrity and robustness requirements. These requirements ensure the reporting

of usage data from meters to the utility without overflowing the data collectors,

even if some collectors or communication paths fail.

• Threat analytics and security hardening for power system state estimation: We

develop formal security analytics for the verification of false data injection at-

tacks against state estimation in power systems. We formally model potential

attack evasions on state estimation, interdependency between state estimation

and other EMS modules, and a comprehensive list of attack attributes, such as

access capability, resource constraint, knowledge limitation, and attack goal. A

solution to this model provides the attack vectors (e.g., the set of measurements

to be altered) required for compromising state estimation. More importantly,

the modeling of interdependent modules together allows us to investigate novel

stealthy attacks on state estimation. We also provide a mechanism to devise a

security architecture for state estimation, which includes a minimal set of mea-

surements (or associated buses) that require data integrity protection. We also

develop a proactive defense mechanism against persistent attacks by randomiz-

ing different critical parameters used in state estimation.

1.6 Technical Approach Overview

Our technical approach in this research primarily has five major tasks:

1. We formally model the security and resiliency verification and synthesis as con-

straint satisfaction problems.
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2. We encode the formal models using satisfiability modulo theories (SMT), a

powerful tool for constraint logic programming. Later in this section, we present

a brief description of SMT logics and their capabilities.

3. We implement the formal models, solve them using suitable SMT solvers, and

demonstrate them using examples.

4. We evaluate the formal models in terms of time and space requirements using

synthetic configurations and attack scenarios.

5. We increase the scalability of the formal models by applying property-based

abstraction during modeling or by providing efficient mechanisms for solving

the models.

In the following, we briefly discuss our technical approach with respect to each

research thrust:

1.6.1 Security Verification for AMI and SCADA

The correct functioning of AMI and SCADA depends on the security configuration

of the AMI/SCADA devices and the secure interactions among them across the net-

work. NIST has developed security guidelines, especially NISTIR 7628 and NIST SP

800-82 for AMI and SCADA security [12, 13, 14]. NERC also provides cyber security

requirements for bulk electric power systems [15, 16]. These guidelines consist of nu-

merous security controls that ensure secure and trusted communication and resource

availability toward controlling potential security threats on AMI and SCADA. There

is a large number of logical relations among the configuration parameters of AMI and
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SCADA devices, that must be satisfied in order to comply with these guidelines and

ensure the integrity and security of smart grid operations. We develop an automated

formal tool, SmartAnalyzer, that can verify smart grid security configurations with

standard and organizational security guidelines and identify potential security threats

as violations of those security requirements.

In the case of AMI, we formally model AMI configurations and security require-

ments motivated from NISTIR 7628. The major technical novelty of the tool is its

capability to analyze various operational integrity and security constraints on AMI,

which are often different than those in conventional IT systems. In this modeling, we

apply an SMT-based formal analysis mechanism. We apply property-based abstrac-

tion to model the configurations of AMI devices, so that the model can scale efficiently

with the large number of devices, particularly considering thousands of smart meters

and hundreds of collectors. We solve the model using an efficient SMT solver, Z3 [17],

which verifies whether the asserted clauses (i.e., constraints) within the model satisfy

each other. A violation of the constraint satisfaction indicates a threat. We system-

atically analyze the solver’s outcome if there is a constraint violation, and identify the

potential causes of the threat. In our diagnosis, we also identify remediation strategies

to mitigate this threat. The identified threats and remediation plans are presented

to smart grid operators to fix the security breaches. We demonstrate SmartAnalyzer,

particularly the verification of security constraints and the diagnosis of unsatisfied

results, with examples. We evaluate its accuracy with the ground truth using a small

AMI testbed established at our university [18]. Next, we evaluate the scalability of

the tool using synthetic AMI networks, in terms of time and memory requirements,
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by executing the tool in different problem sizes and constraint amplitudes.

We apply a similar technical approach for SCADA security analysis considering

NIST SP 800-82 security guidelines. Since there is a strong similarity between the

security guidelines of NISTIR 7628 and NIST SP 800-82, in this particular work

we primarily focus on requirements specific to SCADA. We model the secure data

communication from the field devices to the control center in order to verify whether

SCADA control routines can operate with trusted data. We consider the resiliency of

performing the control routines in contingencies, particularly when some field devices

fail due to accidents or attacks. We also illustrate the execution of the formal model

with an example.

1.6.2 Automated Synthesis of Resiliency Architecture

We develop a formal model that automatically synthesizes network isolation con-

figurations to construct a resiliency architecture for cyber systems in smart grids.

The synthesized configurations satisfy specific resiliency requirements (isolation) and

business constraints (usability and deployment cost). We name this formal synthesis

framework ConfigSynth. The synthesis framework is designed as a constraint satis-

faction problem and is encoded using SMT. The resiliency architecture, generated

by ConfigSynth, includes the isolation configurations and the placement of network

devices, including firewalls, IPSec gateways, and IDS, in the network topology.

We devise a hypothesis testing-based mechanism for ConfigSynth to find optimal

isolation configurations. This mechanism allows us to explore different design al-

ternatives through a feedback loop to ConfigSynth and find an optimal resiliency
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architecture. Thus, this framework provides a comprehensive decision support sys-

tem by considering both resiliency requirements and business constraints, generating

a satisfiable resiliency architecture including both configurations and device place-

ments, and allowing the exploration of design alternatives to enhance the ultimate

solution. It is worth mentioning that this resilient architecture synthesis framework

is generic in design. Therefore it is applicable for conventional IT networks as well.

We illustrate the executions of both ConfigSynth and the refinement mechanism with

examples. We analyze the relationship between isolation requirements and usability

and deployment cost constraints. We evaluate the time requirement for the execu-

tions of our solutions by varying the problem size as well as magnitudes of isolation

requirements and business constraints. We also evaluate the memory requirement for

executing the formal model.

We develop a similar formal framework to synthesize redundancy-based resiliency

architecture for AMI. We represent resiliency requirements in terms of operational in-

tegrity and robustness properties. The robustness property guarantees assured data

delivery even in the n− 1 contingency (i.e., a failure of a link or an intermediate de-

vice due to an accident or attack), while the operational integrity focuses on no loss

of data due to the limitation of resources (e.g., buffer, bandwidth, etc.) or improper

report schedules. We also consider a budget limitation for deploying of intermedi-

ate devices and paths. We formally model AMI configurations, their interactions,

integrity and robustness requirements, and a redundancy model. The solution to this

model automatically synthesizes the required AMI configurations to satisfy resiliency

requirements by introducing redundancy within the budget. This redundancy ensures
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alternative intermediate devices as well as paths toward the utility, such that data

loss cannot exceed a limit when a contingency occurs. Since a typical AMI consists of

a large number of smart meters and collectors, synthesizing resiliency configurations

individually for each device is highly time consuming, given this large number of de-

vices. Thus, we apply the property-based abstraction to model the configurations.

We illustrate the execution of this synthesis model with an example, and evaluate its

scalability using synthetic AMI networks by varying the problem size and constraints.

1.6.3 Threat Analytics and Security Hardening for Power System State Estimation

We characterize attacks in their most general form so that adversarial capabilities

against the power system state estimation can be modeled. We represent an attack

in terms of different attributes including the attacker’s accessibility, resources, and

knowledge. Unlike prior work, where the security of state estimation considers these

attack attributes in isolation, we assess the attack feasibility considering these at-

tributes combined in a single model. We formally model attacks on state estimation

using SMT. The solution to our model answers whether an attack can be launched

stealthily in a particular attack scenario. Our formal framework allows for the explo-

ration of potential threats under different attack scenarios.

We model other EMS modules, particularly the topology processor and OPF, which

are interdependent with the state estimation module. The modeling of topology

poisoning attacks with regards to the topology processor allow us to explore novel

stealthy attacks on state estimation. The modeling of OPF allows us to verify the

impact of stealthy attacks on the economic operation of the grid as well as its stability.
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We devise a mechanism that automatically synthesizes a security plan, which is a set

of measurements that need to be secured, in order to make state estimation immune

from stealthy bad data injection while considering the grid operator’s resources and

assumed attack model.

We also develop a novel idea based on moving target defense (MTD) to provide

proactive security to the grid by changing the physical parameters used for state

estimation. Our moving target defense technique employs frequent and operationally

safe randomization of (i) the set of measurements used for state estimation and (ii)

the electrical properties, particularly impedance, of a set of power transmission lines.

Due to the frequent randomization of these properties, an adversary cannot gain the

perfect knowledge that is required to successfully launch a stealthy attack. As a result,

the attack success probability reduces significantly. We also provide necessary formal

models to select valid randomization considering different operating constraints of

the grid, such as (i) ensuring the observability of the power system from the received

measurements and (ii) maintaining the existing optimal power flow solution.

We provide examples to demonstrate our formal models. We also evaluate the

scalability of each of the offered models using standard IEEE test power systems

along with synthetic attack scenarios. Since our formal model to analyze the impact

of stealthy attacks on OPF takes substantial time, we provide a mechanism to increase

its efficiency by pruning the search space.
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1.6.4 SMT Overview

In the past decade, Boolean formal methods (e.g., SAT [19, 20]) have been used suc-

cessfully in network security analysis, especially for verifying security policy, which is

defined as a sequence of propositional logical constraints [21, 22]. However, due to the

increasing complexity of network security and business requirements of CPS, Boolean

propositional logic constraints are not suitable to develop security analytics for com-

plex systems like smart grids. SMT has been developed to overcome this shortcoming

by offering various “background theories” that efficiently deal with integers, real num-

bers, arrays, uninterpreted functions, linear arithmetic, etc. In addition, SMT solvers

provide a much richer formal modeling platform compared to SAT solvers.

SMT solvers are proved to be powerful tools in solving constraint satisfaction prob-

lems that arise in many diverse areas including software and hardware verification,

type inference, extended static checking, test-case generation, scheduling, planning,

graph problems, etc. [23, 24]. An SMT instance is a formula in first-order logic, where

some functions and predicate symbols have additional interpretations according to the

background theories. SMT is the problem of determining whether a formula is satis-

fiable or not. For example, the following simple SMT instance has two constraints:

(2x+ y < 2) ∨ (x− 2y > 0)

x ≤ 1

This instance is satisfied with the assignments: x = 0 and y = 0. There can be other

assignments for x and y which can satisfy the constraints, and SMT can provide all of
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these assignments. SMT solvers are efficiently applied in solving large and complex

problems. It has been shown that modern SMT solvers can check formulas with

hundreds of thousands of variables, and millions of clauses [23, 24]. In this research,

we primarily use theories of integers, real numbers, and linear arithmetic for modeling,

and we find that our models are highly efficient in solving complex security problems

in smart grids.

1.7 Organization

The rest of the dissertation is organized as follows:

1. Chapter 2 presents formal security analytics for verifying AMI and SCADA

configurations against security guidelines. We illustrate the implemented formal

verification models with examples and present the evaluation results showing

their scalability.

2. Chapter 3 presents automated formal frameworks for synthesizing resiliency

configurations. We consider the synthesis of network isolation-based resiliency

architectures for cyber systems in smart grids and redundancy-based resiliency

architectures for AMI. We demonstrate the developed formal models with ex-

amples and evaluate their scalability using simulation experiments.

3. Chapter 4 presents a formal model for the verification of false data injection

attacks on power system state estimation. We also model the impact of these

attacks on economic operations of the grid. Then, we present mechanisms to

mitigate such attacks proactively using static protection as well as moving target



25

defense techniques. We illustrate these frameworks with examples and present

evaluation results by running experiments on different IEEE test systems.

4. Chapter 5 presents the summary of this dissertation, focusing on contributions

and evaluation results. We conclude this chapter, and thus the dissertation,

with a number of potential future research directions.



CHAPTER 2: SECURITY VERIFICATION FOR AMI AND SCADA

Smart grids provide innovative and efficient energy management services that of-

fer operational reliability and value-added advantages to both customers and energy

providers. The potential market for smart grids projects that it will be the most

widely deployed critical infrastructure in the 21st century. AMI and SCADA are

the major components in a smart grid. Unlike the traditional cyber networks, these

components consist of heterogeneous devices, such as smart meters, intelligent data

collectors, intelligent electronic devices (IEDs), remote terminal units (RTUs), head-

end systems, hosts, routers, firewalls, etc. AMI and SCADA devices communicate

with one other through various communication protocols, physical media, and secure

tunnels. These devices transfer measurement data following different modes of data

delivery, which are controlled by alternative security policies. Security attacks on such

networks due to misconfigurations or constraint violations have the potential to cause

critical damages including power outages and destruction of equipment [25, 26, 27].

In this work, our objective is to develop an automated security analysis tool for

smart grid networks, particularly AMI and SCADA. This tool takes smart grid con-

figurations and organizational security requirements as inputs, formally models con-

figurations and various security constraints, and verifies the compliances of the con-

figurations with the constraints using satisfaction checking. The tool generates a

comprehensive threat report that includes the traces and reasoning behind various
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Figure 3: A typical AMI network.

constraint violations and potential reconfiguration plans. The performance of the tool

is analyzed using various real and synthetic data.

2.1 Challenges

In this section, we first briefly discuss smart grids and potential threats on them.

Then, we discuss the state of the art with respect to the security analysis of smart

grids. Lastly, we briefly write our contributions in this particular work.

2.1.1 AMI and SCADA Complexity

We discuss the complexity of a smart grid considering its two major components:

AMI and SCADA.
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2.1.1.1 AMI Complexity

The general structure of an AMI network is shown in Figure 3, which usually

consists of millions of smart meters, thousands of intelligent data collectors, and

one or more headend systems as the main components. Although in some AMI

architectures, a meter directly reports energy usage data to the headend system,

often data collectors are used to collect and store meter data, and later to send the

stored data to the headend system when it is required [28, 29]. This collector based

AMI design gives better manageability by allowing scalable infrastructure design,

flexible protocol use, and efficient networking. A meter often establishes a secure

connection with a specific collector and reports energy usage data periodically. A

collector forwards the data received from a group of meters to a headend over a secure

connection. It also forwards control commands and patches from the headend to the

meters. A meter may be connected to a collector directly or through another meter.

The latter case occurs in a mesh network of meters, where intermediate meters relay

the data to the collector. A large number of collectors are connected with a headend,

usually through a proprietary but third party network. There are one or more firewalls

for restricting the access between AMI and the energy provider’s network. There are

two data delivery modes, which can be used between meter and collector, and between

collector and headend: (i) push-driven mode (simply, push mode) in which a meter or

a collector reports data periodically based on a pre-configured delivery schedule, and

(ii) pull-driven mode (simply, pull mode) in which a meter or a collector reports data

only upon receiving a request. In the pull mode, requests are usually sent periodically
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Figure 4: The push-pull mode of data delivery in smart grids.

following a schedule. In practice, the push mode is used between meter and collector,

while the pull mode is used between collector and headend (Figure 4).

AMI networks are more complex than traditional networks mainly due to the fol-

lowing reasons. First, AMI is a hybrid network consisting of (i) heterogeneous devices

(e.g., meters, collectors, firewalls, routers, IPSec gateways, etc.), (ii) varieties of links

(e.g., power lines, wired, and wireless), and (iii) different protocols (e.g., LonTalk

protocol [30] between meter and collector, and TCP/IP protocol between collector

and headend). Second, an AMI network involves varieties of data stream types (e.g.,

power usage data, control commands, and software patches), which exhibit different

priorities and resource requirements. Third, unlike the policy-based Internet forward-

ing, data delivery in AMI is either time-driven or request-driven and it follows specific

schedules. For the purpose of successful delivery of data, AMI must be configured

carefully to synchronize the data delivery without overflowing the network or its de-

vices. Moreover, an AMI network must be accessible from the utility network for

different purposes like control and patch management. Energy users from Home Area

Networks (HANs) can also access the AMI network via the Internet or smart meters.
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Figure 5: A typical SCADA network.

2.1.1.2 SCADA Complexity

Industrial Control Systems (ICS) are often found in industries, such as electric,

water, oil, natural gas, chemical, transportation, etc. SCADA is the most impor-

tant type of ICS, which is responsible for monitoring and controlling dispersed assets

by gathering and analyzing real-time data. A typical topology of SCADA is shown

in Figure 5. Typical SCADA operations are automatic and human control loops

and remote diagnostics and maintenance utilities. There are various kinds of control

components, such as SCADA servers or Master Terminal Units (MTUs), Remote Ter-

minal Units (RTUs), Programmable Logic Controllers (PLCs), Intelligent Electronic

Devices (IED), Human Machine Interfaces (HMI), data historian, etc. In addition to
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these control components, there are different network components, such as commu-

nications routers, modems, and remote access points. These components usually use

ICS protocols like Modbus, DNP3, or IEC 61850 variants for communicating with

one another. SCADA networks are also complex like AMI networks due to possess-

ing heterogeneous field devices, various communication links and protocol standards,

and different data delivery modes and requirements, as well as integrating different

systems like renewable energies, vehicle-to-grid, and microgrids with the grid.

2.1.2 Potential Cyber Threats on AMI and SCADA

In order to promote connectivity and remote access capabilities among corporate

business systems, information technology (IT) is now increasingly used in AMI and

SCADA, which escalates the possibility of cyber security vulnerabilities and incidents,

as these systems have not been built taking security into consideration from the first

place. The inherent complexity associated with integrating multiple heterogeneous

systems in smart grids significantly increases the potential of security threats, which

can cause massive and devastating damage. The root causes of security threats on a

smart grid have been shown in Figure 6. There are two main causes of threats [12].

The first is the misconfiguration that might cause inconsistency, unreachability, bro-

ken secure tunnels, and many other security breaches. It is well documented that

configuration errors cause 50-80% of vulnerabilities in cyber infrastructure [10]. The

second is the weakness or absence of security controls that can cause cascaded cyber

attacks, such as scanning, man-in-the-middle, denial of service (DoS), and jamming.

Moreover, there are threats due to operational errors. For example, if the data deliv-
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Figure 6: Root sources of smart grid security threats.

ery is request-driven rather than time-driven, an operational error, such as requesting

data from a large number of collectors at the same time, may lead to cyber breakdown.

To achieve successful data delivery, reachability must hold between the sender and

the receiver. Inconsistencies in communication protocols or authentication/encryption

parameters of the communicating devices may cause failed data transmission leading

to service disruptions. In addition, data should be delivered such that it satisfies

end-to-end integrity. The violation of this requirement not only can cause incorrect

billing but may also launch malicious control commands toward physical devices. In

the case of AMI, improper scheduling of data delivery between meters and collec-

tors can lead to buffer overflow and data loss in the collector side. This can cause

delay in data delivery and even data loss at the endpoints due to limited link band-

width. For example, if UDP protocol is used between a collector and a headend,

improper scheduling may allow a large number of nodes to transfer data to a head-

end, which can flood links on the path and consequently cause data loss. A SCADA

network can face similar threats. The main purpose of AMI and SCADA is to deliver

measurement data from the field/physical devices (meters/sensors) to the provider’s

side (control center/utility), while delivering control commands from the provider’s
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side to the field/physical devices. Hence, the resource unavailability threats can be

dangerous. Other than these threats, there are typical cyber threats on AMI and

SCADA communication networks, such as endpoint DoS, link flooding, and wireless

link jamming.

2.2 Related Work

Throughout the last decade, the security policy misconfiguration and its verifica-

tion have been studied extensively [31, 32, 21, 22]. In these approaches, the formal

definition of configuration anomalies and safe deployment of single or multiple se-

curity devices are proposed and algorithms are presented to discover configuration

inconsistency. There are also a number of works on risk-based security configuration

analysis. Risk analysis using attack graphs is proposed in several works [33, 34]. Noel

and Jajodia [33] present attack graphs to predict the various possible ways of pen-

etrating a network to reach critical assets. Dewri et al. [34] model the problem of

selecting a set of security hardening measures to minimize the residual damages in

a predefined attack graph within a budget. There are some existing works [35, 36]

that propose solutions to find optimal deployment of security devices using attack

graphs in order to block all attack scenarios. However, all these above mentioned

security analysis tools are proposed for analyzing misconfiguration problems in tradi-

tional networks. These tools do not model time-driven data forwarding and different

operational and security controls specific to a smart grid.

During the last few years, a distinctive number of works [12, 13, 37, 38, 39] have been

initiated to describe the interoperability among heterogeneous smart grid components,
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including security issues based on different attack scenarios. These works also describe

the operational functionalities of smart grid components and the corresponding energy

provider’s internal system with guidelines for secure communication between them.

They advise that the utilities should not be trusted to ensure that proper security

is implemented. McDaniel et al. [26, 40] present the security and privacy challenges

in smart grid networks. The works report that customers work closely with utilities

to manage energy usage in smart grids, requiring that they share more information

about how they use energy, thus exposing them to privacy invasions. Energy use

information stored at the meter and distributed thereafter acts as an information-

rich side channel, exposing customer behaviors.

Wang et al. [41] present an artificial intelligence-based approach for analyzing risks

in smart grid networks. However, in their analysis they do not consider network link

capacity, bandwidth, or different modes of communication between the smart grid

components. Anwar et al. propose a couple of frameworks [42, 43] for modeling

power grids and their control elements using first order logic. These frameworks are

capable of evaluating power flows and overloading violations in smart grids. Liu et.

al. [44] present a study on false data injection attacks in power grids. McLaughlin et.

al. [27] present an approach for penetration testing on AMI systems. They develop

archetypal and concrete attack trees for energy fraud, denial of service, and targeted

disconnect attacks. However, these works do not analyze various misconfiguration

problems and security controls on power grid networks.

The survey reveals that no significant research has been done on formal model-

ing of the complex AMI and SCADA configurations for analyzing various security
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constraints. Therefore, it is necessary to build a novel and useful tool for provably

analyzing operational consistency and security controls in smart grids.

2.3 Contributions

The correct functioning of AMI and SCADA stands on consistent and secure ex-

ecution of tasks in time. The safe security configuration depends not only on the

local device parameters but also on the secure interactions and flows of these pa-

rameters across the network. There is a significant number of logical constraints on

configuration parameters of many AMI/SCADA devices, which need to be satisfied

to ensure safe and secure communications among AMI/SCADA components. NIST

has developed security guidelines (e.g., NISTIR 7628 and NIST SP 800-82 [12, 13])

consisting of hundreds of security controls for ensuring trusted path, resource avail-

ability, boundary security protection, etc., toward controlling different security threats

on smart grids. Implementing these security controls in a scalable manner is one of

the major challenges in smart grid security modeling. In addition, there is no such

formal framework to support energy providers by analyzing these security properties

and organizational business requirements.

The main contribution of this work is that we develop an automated tool, Smar-

tAnalyzer, that allows energy providers to objectively assess and investigate smart

grid security configurations to identify and mitigate potential security threats, and

to enforce smart grid operational and organizational security requirements. In this

work, we consider two core components of a smart grid: AMI and SCADA. In the

first part of this work, we develop SmartAnalyzer considering AMI configurations and
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Figure 7: The architecture of SmartAnalyzer.

its operational integrity and security requirements. The major technical novelty of

the tool lies in its capability of analyzing various operational integrity and security

critical constraints on AMI, such as data overwrite protection, device scheduling and

cyber bandwidth constraints, assured data delivery, data freshness, etc. Apart from

these, the tool is capable of verifying various basic security properties, such as trusted

path, data integrity, confidentiality, etc. Most importantly, the tool uses an SMT-

based formal analysis engine as the core and provides a proof-based threat report as

the outcome, which can be comprehensively used for fixing the errors. Second, we

extend SmartAnalyzer for SCADA security analysis. In this extension, we primarily

model the trusted/secure data communication from the field devices, so that SCADA

control routines can operate with valid/correct data.

2.4 Overview of the Security Analysis Framework

The smart grid security analyzer, SmartAnalyzer, is an automated security analysis

tool for smart grids that has the following functionalities:
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• Provides an extensible global model abstraction capable of representing millions

of smart grid (e.g., smart meters in AMI) configurations.

• Formally models and encodes of various constraints into SMT logic.

• Verifies the satisfaction of the constraints with smart grid configurations using

an SMT solver.

• Identifies security threats from the constraint violations and provides remedia-

tion plans for security hardening by analyzing the verification results.

The SmartAnalyzer architecture is shown in Figure 7. First, the tool parses given

smart grid configurations. The input regarding smart grid configurations is given fol-

lowing a template/format (often a CSV file). It consists of the device configurations,

topology, communication between the devices, etc. SmartAnalyzer formally models

the basic organizational requirements and various security guidelines as invariant and

user-driven constraints, and encodes these constraints into SMT logic with respect to

the given smart grid configurations. Then, the Verifier module of the tool uses the Z3

SMT solver [45] to verify these constraints with the configurations. A comprehensive

threat report is generated based on the verification results. These threats correspond

to those constraints whose verifications are unsatisfied. Finally, the tool’s Hardener

module creates a remediation plan by systematically analyzing the traces of unsat-

isfied results, which helps the administrators to reconfigure the corresponding smart

grid system by directly fixing the configuration values or further incorporating new

security alternatives.
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Figure 8: An example data of AMI topology configurations.

2.5 AMI Security Analysis

We start this section with a brief preliminary discussion about an AMI and its

security. Then, we present the formal model corresponding to the AMI security

verification. Lastly, we describe the implementation of this formal model along with

necessary demonstrations using examples.

2.5.1 Preliminary

A partial example of an AMI configuration template is shown in Figure 8. It

consists of the device configurations, topology, communication between the devices,

data delivery schedules in the network, etc. The device configurations are modeled

using an abstraction model. The abstraction is done by exploiting the correlation

between the configuration parameters of different AMI devices, as there is often a

very large number of smart meters in a smart grid. The organizational requirements

and various security guidelines (e.g., NISTIR) are modeled as AMI invariant and

user-driven constraints.
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Table 1: Formal definition of a meter and a collector

Smart Meter:

SMi → Typei ∧ Patchi ∧ SRatei ∧Modei ∧RSchei∧
Authi ∧ Encri ∧ Servi ∧ CommProtoi ∧ TRatei

Patchi →
∧
j=0... Patchi,j

SRatei → SSizei ∧ STimei

RSchei → RScheBasei ∧RScheInti

Authi →
∧
j=0...(AAlgoi,j ∧AKeyi,j)

Encri →
∧
j=0...(EAlgoi,j ∧ EKeyi,j)

Servi →
∧
j=0... SPorti,j

CommProtoi →
∧
j=0...CommProtoi,j

Intelligent Data Collector:

ICi → Typei ∧ Patchi ∧BufSizei ∧Modei ∧RSchei∧
PRSchei ∧Authi ∧ Encri ∧AttachSMi ∧ LinkToSMi∧
AttachHSi ∧ Servi ∧ CommProtoi ∧ TRatei

· · · · · · · · ·
PRSchei →

∧
j=0...(PScheBasei,j ∧ PScheInti,j ∧RDevi,j)

ConnSMi →
∧
j=0...(CSMIdi,j ∧ CSMNumi,j)

2.5.2 Formal Model of AMI Security Verification

First, we discuss the modeling of AMI configurations. Next, we present the threat

analysis model.

2.5.2.1 AMI Configuration Model

An AMI smart grid network consists of different types of devices, heterogeneous

communication links, and sets of traffic control rules as well as security properties.

Here, we describe these components along with their formalization.
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2.5.2.1.1 Modeling of AMI Physical Components

Here, we present the formalizations of different AMI physical device components

including meters, collectors, and hosts. We first briefly describe the idea of logical

abstraction that we apply for modeling AMI configurations.

Configuration level abstraction: An enterprise smart grid network typically consists

of millions of smart meters and thousands of collectors distributed over different ge-

ographical regions. In order to perform data delivery, these devices communicate

with each other based on device configurations and communication properties. For

the purpose of achieving better scalability, we apply the idea of configuration level

abstraction that leverages the similarities between configurations of the devices. In

our model, according to this abstraction we define classes for each kind of devices. A

particular class of devices shares the same (physical and logical) configuration prop-

erties. We are not limited with this class-based concept within meters and collectors.

In order to have a common design model, the same concept is applied for all kinds of

AMI devices. However, the cyber-physical devices (e.g., routers, firewalls, etc.) are

not modeled as classes. Since these classes do not associated with network identities

(i.e., IP addresses), we introduce the concept of zone as a collection of similar (but

not only limited to same class) AMI devices and provide network identity (usually

subnet-based) to the zone.

Smart meter: A meter class is identified by an ID. Its profile SM is represented as

a conjunction (∧) of different parameters as shown in Table 1. The vendor type (i.e.,

Echelon, GE, etc.) is represented by parameter Type. We represent the sampling
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information of a meter using SInfo that consists of two components: sampling size

(SSize in KB) and sampling time (STime). A meter can deliver data to a collector in

two different modes: pull and push. In pull mode, the meter reports data based on the

request from the collector that follows a specific pull schedule of the collector. On the

other hand, in push mode, the meter reports data to the collector (without waiting

for a request) based on its own report schedule. This reporting mode is captured by

Mode. The reporting time schedule of a meter (in push mode) is modeled using RSche

that consists of RScheBase and RScheInt. This indicates that the meter will report

periodically in a regular interval of RScheInt starting from RScheBase after the base

time. To achieve end-to-end security, the communicating devices must agree in their

authentication and encryption properties. We model the authentication properties of

a meter using parameter Auth as conjunction of algorithm (AAlgo) and key length

(AKey). A meter may support multiple authentication properties. The encryption

property is modeled similarly as Encr. The running services and communication pro-

tocols associated with a meter are represented by Serv and CommProto, respectively.

Parameter Patch denotes the patches that are installed in the meter. The maximum

transmission rate (in Mbps) of a meter is denoted by TRate. The formalization of a

meter class is shown in Table 1.

Intelligent data collector: A collector class profile IC is represented as a conjunction

of different parameters, which include all those of the meter class profile except the

sampling information. In addition, each collector may have a pull schedule that is

represented by parameter PRSche. It has three components: PSBTime, PInt, and
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RDev, which denote that the collector periodically pulls data from a reporting device

(RDev, a meter) starting at PScheBase with interval PScheInt. A collector has a

buffer for storing the report data from different meters. BufSize represents the buffer

size (in KB). The parameter ConnSM is a conjunction of meter classes (CSMId) and

their numbers (CSMNum), and they represent the meters connected to the collector.

LinkToSM represents the ID of the link that connects the collector to the meter.

Parameter AttachHS represents the headend system to which data is reported by the

collector.

Headend system: A headend system class profile HS is a conjunction of various

parameters: Type, OS, Mode, TRate, Patch, PRSche, Auth, Encr, Serv, and Comm-

Proto. These properties are modeled as similar to those of meter/collector.

Host devices: An AMI network contains different type of hosts, such as (i) hosts of

home area network (enterprise clients), (ii) enterprise internal hosts, (iii) enterprise

application servers (backend systems), and (iv) external hosts from the Internet.

Hosts have considerably less parameters. For example, an enterprise client host class

profile has OS, Auth, Encr, Serv, CommProto, and TRate parameters only.

2.5.2.1.2 Modeling of AMI Topology

AMI topology defines the physical and logical connectivity between different AMI

and network devices.

Router, firewall and IPSec devices: We model router (R), firewall (F ), and IPSec

(IS ) devices similar to the work by Ehab et al. [21]. We also introduce the traffic

limiting capability of a firewall in the model using parameter FwLim along with its
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Table 2: Modeling of a zone and its relation with AMI devices

Zone:

Zonei → ZSni ∧ ZMemi ∧ ZGwi

ZSni → Ipi,j ∧Maski,j

ZMemi,j → ZMIdi,j ∧ ZMNumi,j

· · · · · · · · ·
ZMemi →

∧
j=0... ZMemi,j

Representation of a source:

(S → Id ∧ ZId)→ (Id = ZMId)

action (FwAct) in its policy (FwPolicy). A router selects the next-hop (RNext) for a

particular traffic based on its forwarding policy (RPolicy).

Link: A link is identified by an ID (LId). Its profile is a conjunction of NodePair

(i.e., the node-pair connected by the link) and LinkStatus (i.e., up or down). LId

binds the specified link type to parameter LinkProp that represents the properties of

that link including MediaType (i.e., wireless, ethernet, etc.), SharedStatus (i.e., shared

or not), CommMode (i.e., half-duplex, full-duplex, etc.), and LinkBw (in Mbps).

Zone: We model a zone as a collection of similar AMI devices. Each zone has an ID.

The profile of a zone (Zone) is comprised of three parameters: ZSn, ZMem, and ZGw.

The parameter ZSn denotes an IP-address (with subnet Mask) that covers all devices

in that zone. ZMem represents the IDs of different device classes and the number of

devices (that belong to the zone) under each class. ZGw denotes the gateway router

ID for that zone. The formalization of a zone, Zonei is represented in Table 2. The

source or destination node of a traffic flow is represented as a conjunction of its ID

(Id) and its zone’s ID (ZId). The number of traffic sources/destinations depends on
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the number of zones and the number of classes in the zones. For example, if there

are 50 zones and 4 collector classes per zone on average, then there are 200 possible

source/destination collectors. In the rest of the paper, we refer to a source/destination

(especially in traffic) as a node associated with its zone. Note that a group of meters

is directly associated with a collector, thus addressable through this collector.

2.5.2.2 AMI Threat Verification Model

Appropriate modeling of the constraints is required to identify security threats on

AMI. We classify these constraints into invariant and user-driven constraints, many

of which are mapped to the NISTIR [12] guidelines.

2.5.2.2.1 Modeling of Invariant Constraints

There are various invariant constraints based on connectivity, data delivery sched-

ule, resource availability, etc. between AMI components. These constraints must be

satisfied for any successful communication.

Reachability constraint: Reachability must hold between a pair of devices, if data

is required to be transmitted between them. For example, a meter should be able

to reach a collector to deliver the report to the collector. Similarly, there should be

reachability from collector to headend, so that the collector can deliver the report to

the headend. This constraint intuitively verifies the links between a pair of devices for

the satisfaction of routing and security device policies. The formalization of general

reachability constraint is shown in Table 3. We first define Forward that checks

whether a specific traffic TrS,D (i.e., from S to D) can be transferred from a node

(X) to another node (Y ) (like state transition). Then, we define Reachable and
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Table 3: Formalizations of reachability and pairing constraints

Reachability Constraint:

ForwardX,Y,TrS,D,T rR →
LinkX,Y ∧
(((X = S) ∧ (ZGwS = Y )) ∨ (Y = D)∨

(RX ∧RPolicyX,TrS,D ∧ (RNextX = Y ))∧
((FX → FwPolicyX,TrS,D ∧ FwActX∧

(FwLim→ (TrR = min(LimV al, LinkBwX,Y ))))∨
(¬FX → (TrR = LinkBwX,Y )))

ReachableA,B,TrS,D,T rR →
ForwardA,B,TrS,D,T rR∨
(∃C,ForwardA,C,TrS,D,T rR1 ∧ReachableC,B,TrS,D,T rR2∧

(TrR = min(TrR1, T rR2))

ReachabilityConstrTrS,D,T rR → ReachableS,D,TrS,D,T rR

Pairing Constraint:

AuthPairingS,D →
(AAlgoS = AAlgoD) ∧ (AKeyS = AKeyD)

EncrPairingS,D →
(EAlgoS = EAlgoD) ∧ (EKeyS = EKeym,D)

ProtoPairingS,D →
(Proto ∈ CommProtoS) ∧ (Proto ∈ CommProtoD)

PairingConstrS,D →
AuthPairingS,D ∧ EncrPairingS,D ∧ ProtoPairingS,D

the reachability constraint (ReachabilityConstr) on top of this. In the constraint

formalization, we also model the maximum possible transmission rate (TrR) by taking

the minimum bandwidth of the links across the path along with the limits that may

be imposed by a firewall.

Connectivity pairing constraint: Consistent pairing between a meter and a collector

is required over reachability for successful communication. This constraint is con-

sidered as a conjunction of security pairing and protocol pairing. In other words,

it states that the authentication and confidentiality properties of the communicat-

ing devices should match and they have a common protocol to communicate. For
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example, in Figure 8, although there are 4 meters of class m000123 connected with

collector c0003, they are not allowed to communicate as the security pairing will be

violated due to a mismatch in their authentication properties (i.e., auth0 and auth1).

Similarly, a host from HAN will not be able to communicate with a meter if that host

does not support the LonTalk protocol, which is the only protocol supported by a

meter. PairingConstr in Table 3 checks these issues.

Schedule constraint: The schedule constraints (Table 4) ensure the basic correctness

of the report or pull schedule configuration. The MeterSampConstr constraint states

that the sampling time and the reporting base-start time of a meter must be less than

or equal to its reporting interval, such that no reporting is done without new data. It

also verifies that the sampling rate cannot be more than its maximum transmission

rate. If a meter is in push mode (Mode is true), then it should have a reporting

schedule. A similar constraint (CollectorPullScheConstr) is true for a collector. If a

collector is connected with some meters, whose reporting modes are pull (Mode is

false), then the collector should have a pull schedule for them.

Resource constraint: There are different resource constraints (Table 4), which are

often related to report/pull schedules. The CollectorBufConsrt constraint states that

the buffer size of a collector should be greater than or equal to the cumulative sam-

pled data size of all the meters connected to that collector. Otherwise, data loss

must occur in the collector buffer under any report schedule. Similarly, the Collec-

torTrRateConstr constraint states that the cumulative sampling rate of the connected

meters cannot be more than the transmission rate of the collector. The CollectorB-
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Table 4: Formalizations of schedule and resource constraints

Schedule Constraints:

MeterSampConstrM →
SMM ∧ (ModeM → ((STimeM ≤ RScheIntM )∧
(RScheBaseM ≤ RScheIntM )))∧

((SSizeM/ST imeM ) ≤ TRateM )

CollectorPullScheConstrC →
ICC ∧ (((M = CSMIdC) ∧ ¬ModeM )→ PRScheC)

Resource Constraints:

(TotalSDataC =
∑

M SDataM )→
(M = CSMIdC)→

(SDataM = (SSizeM × CSMNumC)))

CollectorBufConstrC →
ICC ∧ (BufSizeC ≥ TotalSDataC)

(TotalSRateC =
∑

M SRateM )→
(M = CSMIdC)∧
(SRateM = ((SSizeM/ST imeM )× CSMNumC)))

CollectorTrRConstrC →
ICC ∧ (TrRC ≥ TotalSRateC)

CollectorBwOutConstrC →
ICC ∧ (TotalSRateC ≤ LinkBwC,ZGwC

)

wConstr constraint states that the bandwidth of the link from the collector to its

gateway must be greater than or equal to the accumulated sampling rate of all the

meters connected to it. Otherwise, no schedule will be possible without data loss.

2.5.2.2.2 Modeling of User-driven Constraints

To achieve correct and secure functioning of the AMI network, there can exist dif-

ferent user-driven constraints. We focus on AMI-specific constraints. Formalizations

of these constraints are shown in Table 5.
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Table 5: Formalizations of different user-driven constraints

Data Overwrite Protection Constraint:

(TotalRDataC = TotalSRateC × Period)→
((ModeC → (Period = RSIntC))∨

(¬ModeC → (H = AttachHSC) ∧ (Period = PRSIntH)))

OverwriteProtectConstrC →
ICC ∧ (BufSizeC ≥ TotalRDataC)

Cyber Bandwidth Constraint:

(NumC =
∑

Z ZMNumZ)→ (MIdZ = C)

(TotalRRateH,Sche =
∑

C (TotalSRateC ×NumC))→
(H = AttachHSC) ∧ModeC ∧ (RScheC = Sche)

LinkBwConstrH,X,Y →
HSH ∧ (LinkBwX,Y ≥ TotalRRateH)

Assured Data Delivery Constraint:

AssuredDeliveryM,C,H →
SMM ∧ ICC ∧HSH∧
PairingM,C ∧ (M = CSMIdC) ∧ReachableM,C∧
PairingC,H ∧ (H = AttacheHSC) ∧ReachableC,H∧
ResourceConstrM,C,H ∧ CyberConstrM,C,H

Availability Protection Constraint (Limit DoS Attack):

(MaxTrRH,X,Y =
∑

C TrRC ×NumC)→
CompromiseC ∧ (AttachHSC = H) ∧ ForwardX,Y,TrC,H ,T rR

AvailProtectionConstrH,X,Y →
ICC ∧ (LinkBwX,Y ≥MaxTrRH,X,Y )

Data overwrite protection constraint: This constraint states that the aggregate re-

port data of all the meters connected to a specific collector must not flood the collector

buffer within the reporting interval [46, 47]. For example, in Figure 8, collector c0005

receives reports from 5 meters of class m00129 (sampling rate: 20KB/30secs) and

5 meters of the m0003 class (sampling rate: 18KB/40secs). Therefore, c0005 will

receive 335KB (average) data every 60 seconds, which is to be stored in its buffer.

Based on the report schedule, the collector pushes the data to the headend every
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1, 440 seconds. Thus, during this period, an aggregate of 8, 040KB data will be sent

to the collector by these meters. This amount of data will flood the collector buffer

(size 8, 000 KB), which will in turn cause data loss (i.e., initial 40KB report data will

be overwritten).

Cyber bandwidth constraint: The LinkBwConstr constraint is to confirm that the

aggregate report rate of collectors reporting simultaneously due to matching report

schedule should not exceed the bandwidth limitation of the network path (considering

a link from X to Y ) connecting to the headend (H). A violation of this constraint

will cause link congestion/DoS.

Assured data delivery constraint: This constraint requires checking the end-to-end

data delivery (from a meter to a headend through a collector) to satisfy the AMI

global functionality. This constraint intuitively implies the satisfaction of the follow-

ing constraints: (i) reachability, (ii) successful security pairing, (iii) availability of

resources (conjunction of all resource constraints including data overwrite constraint

as ResourceConstr), and (iv) synchronous reporting without flooding the cyber to-

ward the headend. A violation of these constraints can create failure in data delivery.

Quality-of-delivery constraint: There are user-driven constraints for ensuring the

quality of delivery. For example, the report freshness constraint (FreshnessConstr)

restricts the delivery of data within a specific time window along with assured data

delivery. A user can have a quality requirement on trusted paths. For example, this

requirement can be defined as the satisfaction of (i) end-to-end encryption level based

on key length (e.g., 256 bits); and (ii) specific single or nested tunnels (e.g., 2-level
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nested tunnels) requirements.

Availability Protection Constraint: This constraint (AvailProtectionConstr) ensures

that if there are X number (or portion) of AMI devices being compromised, the

assured data delivery constraint is still preserved. It intuitively verifies that DoS

attack is not possible on links or endpoints, when the number of compromised nodes

is no more than X (say, 5% collectors).

2.5.3 Implementation

2.5.3.1 SMT Encoding and Constraint Verification

We use Boolean terms to encode the Boolean configuration parameters. We also

use Boolean terms to encode some of the integer configuration parameters, which

usually take a very small range of values. The remaining parameters are modeled as

integer terms. We normalize the parameters into integers that may take real values

(e.g., bandwidth). We use bit-vector terms for encoding IP addresses. In some of

the computations, we require multiplying/dividing two variables. But, Yices SMT

solver [48] does not support such non-linear operations (multiplication or division of

two variables). Due to this shortcoming of Yices, we choose Z3, another well-known

SMT solver [45]. This tool supports non-linear operations. We apply Z3 NET API

to implement SmartAnalyzer. The tool (the Parser module) reads the configuration

from the input template file and directly builds the model using the API.

After defining the configuration parameters as SMT variables, we model the con-

figurations associated with the AMI network topology and the AMI components. We

encode each constraint under the same formalism. Then SmartAnalyzer creates a
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verification query that checks the satisfaction of a constraint with the configuration.

If MConf and MConstr are the AMI configuration and constraint models respectively,

the verification query Q is encoded as the following clause:

Q→MConf ∧MConstr

The verification engine of SmartAnalyzer generates the verification results, which

are either sat (satisfiable) or unsat (unsatisfiable). In the case of an unsat, the verifi-

cation engine provides an unsat-core that basically represents the traces of constraint

violations in the configuration. Then, SmartAnalyzer (through its Diagnoser module)

systematically examines these violation traces and generates a comprehensive threat

report. This report includes threat sources, targets, violating rules and reasonings,

and a remediation plan showing possible reconfigurations for hardening the system

with respect to the identified problems.

2.5.3.2 Methodology of Unsatisfied-core Generation

If the SMT solver gives an unsat result, we get the unsat-core, which describes

the unsatisfied constraints and the corresponding configurations that the constraint

does not support. In order to get the unsat-core, we use the concept of hard and

soft clauses (a verification of assumptions in Z3). We separate configurations and

constraints into these two groups. We often take fixed properties as hard clauses,

while the rest as assumptions or soft clauses. If the model verification fails, the

unsat-core shows the list of assumptions, i.e., the constraints and the configurations,

which are not satisfied. From the list of the unsatisfied configurations, it is possible
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to trace the reasoning of a constraint failure.

2.5.3.3 Methodology of Remediation Plan Synthesis

In order to get a remediation plan, we consider a policy for the reconfigurations.

The policy shows feasible or preferred invariant and user-driven guidelines for possible

reconfiguration candidates. An invariant guideline represents the configurations that

are practically infeasible to modify. The vendor specific device configurations (such

as the buffer size of a collector) are usually constant for a device. Hence, changing

this property requires replacing the device with a different or newer product that

has the required configuration property. The user-driven guidelines represent the

organizational priorities or capabilities for performing reconfigurations. For example,

the organization may be fine with deploying many collectors, but a minimum number

of meters must be connected to each collector.

In the process of exploring the reconfiguration plan, the diagnoser module continu-

ously checks the satisfaction of the model by releasing the assumptions (soft clauses)

of the configurations systematically according to the remediation guidelines until the

model verification gives a sat result. Releasing an assumption lets the solver choose

the configuration values associated with the assumption that satisfy the hard clauses

along with the remaining assumptions. This process is an implementation of max-

sat [20]. Then, a remediation plan is generated from the max-sat output. It is worth

mentioning that we use quantifiers for the purpose of verifying some constraints. In

such cases, Z3 may return unknown instead of sat. This implies that there is no

constraint violation found by the solver. Hence, if the result is not unsat, we consider
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Table 6: An example of resource constraint verification

(assert (M 0)) ;; Meter 1 (Id 0)
(assert (= (Id 0) 0))
(assert (= (SSize 0) 25))
(assert (= (SInt 0) 45))

(assert (M 1)) ;; Meter 2 (Id 1)
(assert (= (MId 1) 1))
(assert (= (SSize 1) 15))
(assert (= (SInt 1) 30))

(assert (IC 10)) ;; Collector 1 (Id 10)
(assert (= (Id 10) 10))
(assert (= (BufSize 10) 200))
(assert (=> P0 (= (CSMId 10 0) 1)))
(assert (=> P1 (= (CSMId 10 1) 0)))
(assert (=> P2 (= (CSMNum 10 0) 8)))
(assert (=> P3 (= (CSMNum 10 1) 8)))

(assert (=> PC
(=> (CollectorBufConstr 10)

(and (M (CSMId 10 0)) (M (CSMId 10 1))
(= (SData 10 0) (* (CSMNum 10 0) (SSize (CSMId 10 0))))
(= (SData 10 1) (* (CSMNum 10 1) (SSize (CSMId 10 1))))
(>= (BufSize 10) (+ (SData 10 0) (SData 10 1)))))))

(assert (CollectorBufConstr 1))

(check-sat PC P0 P1 P2 P3) ;; Sat
(get-model)
(get-unsat-core) ;; Unsuccessful

that the model is satisfied with the given constraints.

2.5.3.4 Verification Trace Analysis: An Example

This section describes how verification traces (results) from the SMT solver are

analyzed to find the causes of constraint violations, along with the remediation plans

for them. We explain the procedure with the example of a constraint verification.

In our example, we demonstrate the collector resource (buffer) constraint (Table 3).
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Table 7: An example of the diagnosis process

Modified Model:

· · · · · · · · ·
(assert (= (BufSize 10) 100))
· · · · · · · · ·
(check-sat PC P0 P1 P2 P3) ;; Unsat
(get-unsat-core)

Solver Output:

unsat
(P0 P1 P2 P3 PC)

Max-SAT Implementation:

· · · · · · · · ·
(assert (forall ((c Int) (x Int))

(=> (and (>= c 10) (<= c 10) (>= x 0) (<= x 1))
(and (>= (CSMId c x) 0) (<= (CSMId c x) 1)))))

(assert (forall ((c Int) (x Int))
(=> (and (>= c 10) (<= c 10))

(>= (+ (CSMNum c 0) (CSMNum c 1)) 6)
(>= (CSMNum c 0) 0) (>= (CSMNum c 1) 0))))

· · · · · · · · ·
(check-sat P0 P1 P2 PC) ;; Unsat
(get-model) ;; Unsuccessful
(get-unsat-core) ;; (P0 P1 P2 PC)
· · · · · · · · ·
(check-sat P0 P1 PC) ;; Sat
(get-model) ;; Successful
(get-unsat-core) ;; Unsuccessful

Satisfied Model:

· · · · · · · · ·
CSMNum − > {

10 1 − > 6 ;; The number of type 1 meter is 6
else − > 0} ;; The number other type (type 0) meter is 0

· · · · · · · · ·

Table 6 shows the SMT-LIB encoding of the AMI configuration (required segment

only) and the collector resource constraint. To comprehend the verification trace,

we consider a tiny AMI configuration with two meters, one collector, and one head-
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end. Here, the constraint verification gives a sat result. This signifies that the AMI

configuration satisfies the resource constraint. Thus, there is no unsat-core in this

evaluation. However, we get an unsat result when the AMI configuration model is

modified by setting the buffer size to a reduced value, 100 KB.

The experiment’s result is presented in Table 7. It shows that there is no model

that satisfies the collector resource constraint. It also shows the unsat-core, i.e., the

unsatisfied constraints (assumptions). To find a sat result, we next run the max-

sat implementation on the configuration model sequentially by intuitively weakening

the configuration constraint following the unsat-core. This is done by removing one

predicate (among the predicates of the unsat-core) from the configuration constraint

each time and running the model verification until the verification result converges

to sat. The resultant satisfiable model indicates the configurations that satisfy the

resource constraint. Then, we use the immediately preceding unsat trace as the

potential cause of the constraint violation. For example, Table 7 shows that the

resource constraint (PC) is satisfied with the configuration predicates P0 and P1.

In this case, the number of the type 0 meters and that of the type 1 meters are

respectively 6 and 0. The immediately preceding unsat-core is “PC P0 P1 P2”,

which indicates that the predicate P2 leads the violation. It can be observed that

the predicate P2 in the configuration (as shown in Table 6) asserts the number of

each type of meters as 8, which leads to the unsatisfiability of the resource constraint

when the buffer size is 100 KB.

From the unsat-core, it is found that the remediation to the collector resource con-

straint violation is possible by applying one of the following measures: (i) changing
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the collector’s buffer size, (ii) changing the sampling size or rate of the meter(s), and

(iii) changing the number of meters to transmit data to the collector. The buffer size

of a collector is basically vendor-specific and this is not configurable except by replac-

ing the collector with a different one (having a larger buffer). This is an example of

invariant guidelines, which specifies that the collector’s buffer size cannot be consid-

ered in the remediation plan. The sampling rate of a meter is also vendor-specific.

However, it might be possible to replace a meter with a different one (chosen from

the available meters) that has a smaller sampling size or rate. Hence, in our example,

we consider the meters connected to the collector as assumptions (the predicates P0

and P1). It is easy to change the number of meters connected to the collector. We

take the assumptions P2 and P3 corresponding to the number of meters. However,

in the diagnosis process, we could assume that the organization is using only one

vendor-specific type of meter (e.g., the type 0 meter) and presently the organization

is not willing to try different vendors. This is an example of user-driven guidelines,

when we would not consider the assumptions P2 and P3.

2.6 SCADA Security Analysis

In this section, we first briefly discuss the SCADA configurations and their security.

Next, we present the formal model corresponding to SCADA security requirements.

We conclude this section with an example illustrating the verification of a requirement

using our formal model.
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Figure 9: An example data of SCADA configurations.

2.6.1 Preliminary

SmartAnalyzer takes necessary SCADA configurations from a template file. Fig-

ure 9 shows an example of partial SCADA configurations, particularly with regards

to the physical components, the topology, and the communication and security prop-

erties. It is worth mentioning that, unlike SmartAnalyzer for AMI, we do not use

abstraction to model SCADA components (i.e., the data communicating field devices

like IEDs, RTUs, and PLCs), because they are limited in number compared to smart

meters in AMI. SmartAnalyzer formally models SCADA configurations and security

guidelines as constraints and encodes these constraints into SMT logics. Then, these

constraints are verified using the Z3 SMT solver [45] and a violation of these con-

straints is identified as a threat. In this particular extension of SmartAnalyzer, we

do not present the generation process of necessary remediation plans for identified
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Table 8: Formal (partial) definition of a remote terminal unit

Remote Terminal Unit (RTU):

RTUi → Typei ∧ Patchi ∧Modei ∧ Crypti ∧OSi ∧ Servi∧
ICommProtoi ∧MACi ∧ Ipi

Patchi →
∧
j=0... Patchi,j

Crypti →
∧
j=0...(CAlgoi,j ∧ CKeyi,j)

Servi →
∧
j=0... SPorti,j

ICommProtoi →
∧
j=0... ICommProtoi,j

threats, since the approach is the same as we have presented in Section 2.5.3.4.

2.6.2 Formal Model of SCADA Security Verification

The formal modeling for the SCADA security verification has two parts: the mod-

eling of SCADA configurations and that of the security requirements.

2.6.2.1 SCADA Configuration Model

A SCADA network consists of different types of devices, heterogeneous communi-

cation links, and various access control and security policies. The formalizations of

these SCADA configurations are similar to those of AMI configurations. Therefore,

we present some selective formalizations of these configurations.

2.6.2.1.1 Modeling of SCADA Physical Components

SCADA consists of different physical device components, among which IEDs, PLCs,

RTUs, and MTUs are important. Usually IEDs, PLCS, RTUs, and PMUs are associ-

ated with substations, while an MTU is associated with a control center. IEDs, PLCs,

and RTUs are referred to as field devices. We model each SCADA physical device

based on its parameters, as shown in Figure 9. The modeling of physical devices



59

are similar to that of AMI physical devices, except we do not use the class-based

abstraction in modeling the field devices. Here we present the formalization of an

RTU, while the others have similar modeling.

The formalization of an RTU is shown in Table 8. An RTU is identified by an

ID. Its profile Rtu is represented as a conjunction of different parameters. Parameter

Type represents the vendor type (e.g., ABB, SEL, and Siemens) of the RTU. Although

an RTU typically delivers data (measurements) to the control server (i.e., MTU, re-

siding at the control center) upon receiving a request from the server, we consider

both of the possible reporting modes: pull and push, which is captured by Mode.

The reporting time schedule of an RTU is modeled similarly to a smart meter or a

collector. To achieve end-to-end security, the communicating devices must agree in

their cryptographic (authentication and encryption) properties. We model the cryp-

tographic properties of a meter using Crypt as a conjunction of algorithm (CAlgo)

and key length (CKey). A device often supports multiple cryptographic properties.

The running services associated with an RTU are represented by Serv. The commu-

nication protocols are specified using CommProto. Typically, there are ICS-specific

protocols (e.g., modbus, DNP3, etc.) for communication. Since we do not use the

class-based abstraction in formalizing an RTU, each RTU has a unique address. The

MAC address and the IP address of an RTU are specified using MacAddr and IpAddr,

respectively. Parameter Patch denotes the patches that are installed in the RTU.



60

2.6.2.1.2 Modeling of SCADA Topology

Typically, multiple IEDs/PLCs are connected with an RTU, while all or some RTUs

are connected to an MTU directly or through some intermediate RTUs and/or WAN.

There can be more than a single MTU, in which case one of them works as the main

MTU (corresponding to the main control center), while the rest of the MTUs are

connected to the main one. The measurements and control commands flow through

this communication topology between the devices. If PMUs exist in SCADA, there

is usually a separate network from PMUs to MTUs through WAN, where multiple

PMUs are connected to one or more intermediate PDCs and these PDCs feed data to

MTUs. Usually communications to control centers (MTUs) are restricted by firewalls.

Here, we present the formalizations of communication links.

A link in SCADA is formalized similarly to that in AMI. Identified by an ID, a link

is a conjunction of NodePair (i.e., the nodes connected by the link), LinkStatus (i.e.,

up or down), and LType (i.e., ethernet, modem, etc.). LType binds this link with

another profile corresponding to the link type. This profile consists of LinkProp that

represents the properties of that link, including MediaType (i.e., wireless, ethernet,

etc.), SharedStatus (i.e., shared or not), and LinkBw (in Mbps). In this topology

formalization, we do not use any abstraction, like zone, which we use in the AMI

topology modeling (Section 2.5.2.1). Thus, each of the end nodes for a link is a single

node, with a specific MAC or IP address.
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2.6.2.2 SCADA Threat Verification Model

The potential threats to SCADA are very similar to the threats that we see in the

case of AMI. The security controls specified in NIST SP 800-82 [13] also comply with

those specified in NISTIR [12] guidelines. As they share similar logics, most of the

invariant and user-driven constraints modeled in Section 2.5.2 are also applicable to

SCADA with no or minor modification in logics. Therefore, in this particular work

we consider those security constraints that are specific for SCADA. These constraints

are mainly user-driven requirements, which ensure if a SCADA control process has

sufficient secure (particularly, authenticated and integrity protected) data to provide

correct results in normal cases or contingencies. In this case, we consider the observ-

ability analysis, a prior and crucial requirement for performing the power system state

estimation control routine [1, 49]. We consider the following user-driven security con-

straints: (i) secured observability, (ii) k-resilient secured observability, and (iii) bad

data detectability. These constraints inherently use different invariant constraints

like reachability and security pairing within their formalizations. To model these

constraints, we also define another constraint named secured data delivery, similar to

assured data delivery.

2.6.2.2.1 Secured Data Delivery Constraint

The assured data delivery constraint verifies whether data can reach from the source

to the destination, particularly a field device to the MTU through zero, one, or more

intermediate devices, without ensuring whether the transmission has occurred un-

der necessary security measures. Although this constraint checks security pairing
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between the communicating parties, it is only to ensure necessary handshaking for

communication. In the secured data delivery constraint (SecuredDelivery), we verify

whether data is sent under proper security measures, particularly authentication and

integrity protection including the assured data delivery. That is, the communicating

nodes, e.g., an RTU and the MTU, may have correct security pairing, as they are

using the same security protocol, e.g., Challenge-Handshake Authentication Protocol

(CHAP). However, this security pairing on CHAP only ensures secure authentica-

tion. In this case, the transmission will not be data integrity protected. Moreover,

we need to consider the vulnerabilities of the security measures in use. For example,

if DES (Data Encryption Standard) is used for data encryption, the transmitted data

cannot be considered as protected, as a good number of vulnerabilities of DES have

already been found. We take expert and widely accepted knowledge about the secu-

rity/cryptographic measures applied to the communication in order to realize whether

the data is authenticated and integrity protected. Table 9 shows the formalization

of this constraint, in which we also define two sub-constraints Authenticated and In-

tegrityProtected, which ensure the authentication of the communicating parties and

the integrity of the transmitted data, respectively.

2.6.2.2.2 Secured Observability Constraint

The power system is observable when the measurements can solve a list of unknown

variables. Each of these variables stands for a state. Typically, each measurement

represents a power equation. Therefore, we need to know each equation regarding

a particular measurement, where the equation specifies the variables that produce
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Table 9: Formalizations of the secured data delivery constraint for SCADA (partial)

Secured Data Delivery Constraint:

AuthenticatedS,D →
CryptPropS,D∧
∀K(K = CryptTypeS,D∧

((AlgoK = hmac ∧KeyLengthK ≥ 128) ∨ . . .))

IntegrityProtectedS,D →
CryptPropS,D∧
∀K(K = CryptTypeS,D∧

((AlgoK = sha2 ∧KeyLengthK ≥ 128) ∨ . . .))

# An IED is directly connected to the MTU
SecuredDeliveryI,M →
IedI ∧MTUM∧
AssuredDeliveryI,M ∧AuthenticatedI,R ∧ IntegrityProtectedI,M

# An IED is connected to the MTU through an RTU
SecuredDeliveryI,R,M →
IedI ∧RtuR ∧MtuM∧
AssuredDeliveryI,R,M ∧AuthenticatedI,R ∧AuthenticatedR,M
IntegrityProtectedI,R ∧ IntegrityProtectedR,M

# Other possible communication paths from field devices toward the MTU
SecuredDeliveryI,R,R′,M →
. . . . . . . . .

this measurement. As we have already mentioned, we consider the state estimation

control routine in this formalization. In state estimation, there is a Jacobian Ma-

trix that represents the relationships between the measurements and the unknown

variables [49]. The secured observability constraint ensures two conditions: (i) the

authenticated and data integrity protected distinct measurements can cover all the

variables (i.e., unknown states), and (ii) the number of these measurements is greater

than or equal to the number of variables. These two conditions are minimal require-

ments to ensure that there is a secure as well as a unique solution. There are often

more than one measurement that actually represents the same electrical component.

For example, the power flow through a line can be measured at both ends of the
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line [49]. Therefore, these two measurements (forward line power flow and back-

ward line power flow) represents the same electrical component. In the following we

describe the formalizations of this constraint.

Each row of the Jacobian matrix has a set of entries (column values), where each

entry is associated with a state/variable:

h1,1 h1,2 · · · h1,n

h2,1 h2,2 · · · h2,n

...
...

. . .
...

hm,1 hm,2 · · · hm,n


In the matrix, hi,j is an entry where i is the row number associated with measurement

i and j is the column number associated with variable j. This entry is often zero,

i.e., the variable corresponding to this entry does not influence the measurement

value associated with this row. Therefore, the variables corresponding to the nonzero

entries only have impact on the measurement. Let X define a state/variable while Z

defines a measurement. Let 1 ≤ X ≤ n and 1 ≤ Z ≤ m. We define StateSetZ as the

set of states that constitute measurement Z. StateSetZ is built as follows:

∀XX ∈ StateSetZ → hZ,X 6= 0

If two measurements represent the same electrical components, their corresponding

rows should have non-zero entries on the same columns, and they must be the same

values, although the direction (sign) can be the opposite (e.g., forward and backward

line power flows). We define UMsrSetE as the set of measurements that represent
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the same electrical component, E. These sets are built using a clustering process,

where each pair of sets, UMsrSetE and UMsrSetE′ , satisfy the following property:

∀Z∈UMsrSetE ∀Z′∈UMsrSetE′ ∃X (hZ,X 6= hZ′,X) ∧ (hZ,X 6= −hZ′,X)

Similarly, there are power consumption measurements at buses, each of which cor-

responds to a particular bus. The power consumption at a bus is the summation

of the all power flows incident to that bus. Thus, if all of these power flows are re-

ceived as measurements, then the bus consumption measurement is redundant (i.e.,

not unique). We also consider this condition to get the unique bus consumption

measurements.

A field device can be responsible for delivering one or more measurements. There-

fore, from the mappings between communicating field devices and measurements,

we can logically identify which measurements are secure, while from the mappings

between the measurements and the states, we can find out whether the secure mea-

surements can observe the system. Let us assume that IedSet is the set of IEDs

that are responsible for taking the necessary measurements (meters/sensor data) and

sending them to the MTU through an RTU. Let MsrSetI be the set of measurements

transmitted by IED I, while SZ is a Boolean variable denoting whether measurement

Z is secure. A measurement is secure if the following two conditions hold:

∀I∈IedSet ∀Z∈MsrSetI (∃R SecuredDeliveryI,R,M)→ SZ

∀Z SZ → ∃I∈IedSet (Z ∈MsrSetI) ∧ (∃R SecuredDeliveryI,R,M)

If a measurement is secured, then the variables corresponding to this measurement



66

can be securely estimated. Let SEX denote whether stateX can be securely estimated

or not. Then, the following formalization specify when a state is securely estimated:

∀Z ∀X∈StateSetZ SZ → SEX

∀X SEX → ∃Z SZ ∧ (X ∈ StateSetZ)

We define SecUMsrE to denote whether one or more measurements within UMsrSetE

are secured:

∀E ∃Z∈UMsrSetE SecUMsrE → SZ

Now, we formalize the secured observability constraint (SecuredObservability), en-

suring that each state/variable is covered by the secure measurements and the mini-

mum number (i.e., at least m) of secure measurements (i.e., equations):

SecuredObservability → (∀X SEX) ∧ (
∑
E

SecUMsrE ≥ m)

2.6.2.2.3 k-Resilient Secured Observability Constraint

This constraint verifies whether secured observability is ensured even if k field de-

vices (i.e., IEDs and RTUs) are unavailable. A device can be unavailable because of

its failure to communicate with the MTU or the next device toward the MTU, due to

its technical failure or remote attacks (e.g., DoS) on it or the path toward the desti-

nation. In this constraint modeling, we assume RTU failures, although formalizations

are the same for IEDs or others.

In order to model this constraint, we first define a parameter for each field device

to denote whether that device is unavailable. Let URtuR be denote whether RTU R
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is unavailable. Therefore, the following relation holds:

∀R URtuR → ¬RtuR

We formalize the k-resilient secured observability constraint (ResilientSecuredObserv-

ability) as follows:

ResilientSecuredObservability → ∀∑
R URtuR≤k SecuredObservability

The above formalization of the k-resilient secured observability constraint needs

to execute all possible combinations of RTU failures up to the number k, which is

not efficient. Therefore, we devise an efficient but heuristic-based modeling of this

constraint as follows. Let SRtuMsrR,Z denote whether measurement Z is securely

transmitted from the IED associated with this measurement to the MTU through

RTU R. Then, we define SRtuMsrR,Z as follows when there is only one intermediate

RTU in the transmission path:

SRtuMsrR,Z → ∃I (Z ∈MsrSetI) ∧ SecuredDelivery(I, R,M)

When, there are two or more intermediate RTUs in this transmission path, the RTU

at the top of the hierarchy is the most critical one with respect to the availability

of these RTUs. Therefore, we only consider that RTU in defining SRtuMsrR,Z , as

shown in the below for two intermediate RTUs:

∀R ∀Z SRtuMsrR,Z → ∃I (Z ∈MsrSetI) ∧ ∃R′ SecuredDelivery(I, R′, R,M)

Let SRtuStateR,X denote whether RTU R securely transmits a measurement that
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is influenced by state X. Then, the following constraint holds:

∀R ∀X SRtuStateR,X → ∃Z SRtuMsrR,Z ∧ (X ∈ StateSetZ)

A state can be securely estimated even after k failures of RTUs, considering the

worst case when all of these unavailable RTUs are responsible for transmitting dif-

ferent measurements associated with this state, if there is at least one available RTU

that also transmits one or more measurements corresponding to that state. Moreover,

we also need to ensure that there are sufficient unique measurements to observe the

system. We must consider the number of missing unique measurements when k RTUs

are unavailable. The most conservative calculation of this number is taking the max-

imum possible missing unique measurements for k unavailable RTUs. Since it needs

union operations of unique measurement sets for all combinations of k RTUs, we take

a weak heuristic to calculate this number by considering the average number of unique

measurements that an RTU transmits. However, this heuristic approach cannot en-

sure the observability. A sound and complete, as well as time efficient, modeling of

this constraint remains as a topic for future research. Let us define SecUMsrRtuk

to denote the number of missing unique measurements when k RTUs are unavailable.

Now, k-resilient secured observability constraint is formalized as follows:

ResilientSecuredObservability → ∀X (
∑
R

SRtuStateR,X ≥ k + 1)

∧ ((
∑
E

SecUMsrE)− SecUMsrRtuE,k ≥ m)
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2.6.2.2.4 Bad Data Detectability Constraint

The obtained measurements for observability must be able to detect bad data. Note

that a measurement can be secured or trusted, but the data itself can be an outlier due

to containing noise (random variations) and other inaccuracies at the censor/meter

corresponding to this measurement, or the censor/meter being compromised. If there

is a single measurement associated with a state, then the measurement is a critical

one and it is not possible to detect if that measurement is bad. Therefore, in order

to detect bad data it is required to have at least two measurements corresponding to

each state, if we assume no more than one measurement among them can be bad at

a time. We can generalize the bad data detectability constraint as k, r-resilient bad

data detectability, where if k RTUs (IEDs) are unavailable, the bad data is detectable

even if r measurements are available. It is worth mentioning that we only rely on

secured measurements for detecting the bad data, since non-secured measurements

cannot be trusted [44]. We model this constraint by extending the formalization of

the previous constraint, where we assume the failures of RTUs only:

ResilientBadDataDetectability → ∀X (
∑
R

SRtuStateR,X ≥ k + r + 1)

In this modeling, we consider a worst case scenario where an RTU, corresponding

to a state, may be involved with transmitting only a single measurement associated

with that state.
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2.6.3 Implementation

In this section, we briefly discuss the implementation of the model and illustrate

the model’s execution with an example.

2.6.3.1 SMT Encoding

Similar to the case of implementing AMI security verification formalizations, we use

SMT to encode the formalizations for SCADA security verification in SmartAnalyzer.

In this case, we use the same SMT solver, Z3, but a python-based API for encoding

the formalizations. The solution to the model gives the result sat or unsat. In the

case of sat, from the results we can find out the detailed scenario that makes the

constraints/requirements satisfied. For example, in our particular modeling it will

show us the measurements that are secure (authenticated and integrity protected), as

a result of which the observability is secure. In the case of unsat, taking the unsat-core

we can trace the constraint violations, i.e., the potential threat points.

2.6.3.2 An Example

In our example, we demonstrate the k-resilient secured observability constraint. We

consider a small 5-bus SCADA system, as shown in Figure 10. The corresponding

input is partially presented in Table 10. The input includes primarily the Jacobian

matrix corresponding to the SCADA system, the topology (connectivity between the

communicating devices and the association of the measurements with the IEDs), and

security profiles of each communicating host pair. We assume that the measurements

are taken/collected by different IEDs only and these measurements are sent to an
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Figure 10: An example SCADA topology of a 5-bus power grid.

MTU (i.e., the SCADA server at the control center) through RTUs. Each row of the

Jacobian matrix corresponds to a measurement (first row corresponds to measurement

1, and so on). Each row has 5 entries (columns) for each state (corresponding to each

bus). The resiliency requirements specify that the secured observability must be

satisfied even if an IED or an RTU is unavailable. The solution to the formal model

corresponding to this example returns a satisfiable answer, i.e., the given SCADA

system is securely observable. From the assignment to the variables, it is found that

all of the measurements, except measurements 1, 2, and 12, are transmitted securely

to the MTU, and these measurements are sufficient to observe the system even an

IED or an RTU is unavailable. However, if we lower the security properties of the

communication from RTU 9 to the MTU to authentication-only (e.g., hmac [50]),

then there is no solution even if we increase those of RTU 10 to both authentication
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Table 10: The input for an example of verifying secured observability in a SCADA

# Number of states and measurements
5 14

# Jacobian matrix (the relation between the states and the measurements)
0 -5.05 5.05 0 0
0 -5.67 0 5.67 0
0 -5.75 0 0 5.75
0 0 0 -23.75 23.75
16.9 -16.9 0 0 0
4.48 0 0 0 -4.48
0 5.67 0 -5.67 0
0 5.75 0 0 -5.75
0 0 5.85 -5.85 0
0 0 0 23.75 -23.75
-16.9 33.37 -5.05 -5. 67 -5.75
0 -5.05 10.9 -5.85 0
. . . . . . . . .

# Number of each type of devices in the topology
# IEDs (Id 1 to 8), RTUs (Id 9-12), MTU (Id 13), Router (Id 14), and Firewall (Id 15)
8 4 1 1 1

# Connectivity (among the IEDs, the RTUs, and the MTU)
. . . . . . . . .

# Measurements corresponding to IEDs
1 1 2
2 3 5
3 11
4 12
5 4 7 9
6 13
7 6 8 10
8 14

# Security profile (source, destination, applied cryptographic algorithms/keys)
11 # Number entries of security profiles
1 9 hmac 128
2 9 chap 64 sha2 128
3 9 chap 64 sha2 128
5 11 chap 64 sha2 256
6 11 chap 64 sha2 256
7 12 chap 64 sha2 128
8 12 chap 64 sha2 128
9 13 rsa 2048 aes 256
10 13 hmac 128
. . . . . . . . .

# k-resiliency requirements (IED, RTU)
1 1
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and data integrity protection (rsa and aes [51, 52]). This is because RTU 9 is more

critical than RTU 10, as the former node is responsible for transmitting a greater

number of measurements than the latter. In this case, if we reduce the resiliency

requirement to unavailability of a single IED only, while no unavailability of RTUs,

then there is again a satisfiable solution.

2.7 Evaluation

We first evaluate the accuracy of SmartAnalyzer. Then, we evaluate the scalability

of the tool. We analyze the tool by evaluating different constraints under synthetic

configuration data.

2.7.1 Accuracy

We evaluate our tool, particularly the AMI security verification model, with ground

truth scenarios by deploying it in a small AMI testbed created at our university [18].

The testbed setup typically represents a small subset of the network as shown in

Figure 3. We analyze some of the security constraints, especially data overwrite pro-

tection and cyber bandwidth constraints. The results of our tool are cross-validated

with the real scenario. For the purpose of analyzing the constraints, we slide the

values of different configuration parameters, such as taking very low and high pull

schedule intervals for the headend, and changing the bandwidth of the links from

high to very low. We find some constraint violations that lead to link flooding and

data loss. In addition, we inject a high amount of data through the simulation (by

adding multiple simulated collectors in the testbed) to observe the effect on the cy-

ber bandwidth constraint. After observing the constraint violations, we reconfigure
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the setup according to the remediation plan and reevaluate the constraint to see the

effect. For example, in the case of a cyber bandwidth constraint violation, we add

traffic limits to the firewall rules and observe the mitigation of link flooding. These

tests significantly help us in verifying the accuracy of the tool.

2.7.2 Scalability Evaluation

2.7.2.1 Methodology

We evaluate the scalability of SmartAnalyzer by analyzing the time and memory

required in constraint verification by varying the smart grid network size. In this

scalability evaluation, we again focus on AMI, since the number of devices, partic-

ularly the smart meters, in an AMI system is much larger than the number of field

devices in a SCADA system. We consider the size of AMI as the total number of

collectors in AMI (the number of meters are proportional to the number of collectors).

The number of collectors depends on the number of collector zones and their sizes.

We consider only a single headend zone (10 headends of two headend classes) in the

network. We take 100 and 50 meter and collector classes respectively, while each

collector is connected with 10 meters (of 2 random meter classes) on average. Each

collector zone consists of around 1, 000 collectors (of 5 random classes). We keep the

values of these parameters fixed in most of the experiments, except in those cases

where their impacts on the scalability are analyzed. We use the Z3 SMT solver [17]

to execute our formal model. We run the experiments in an Intel Core i3 processor

with 4 GB memory and 32 bit operating system.
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Figure 11: Impact of network size on (a) invariant and (b) user-driven constraints
verification time.
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Figure 12: Impact of (a) the zone size and (b) the number of collector classes per
zone on constraint verification time.

2.7.2.2 Evaluation Results

Impact of the network size: Figure 11(a) and Figure 11(b) show constraint verifi-

cation time with respect to network size. We show the verification time for different

invariant constraints (i.e., reporting mode, collector resource, and reachability) and

user-driven constraints (i.e., assured data delivery and availability protection con-

straint). A significant part of the constraint analysis time is covered by the modeling
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Figure 13: Impact of (a) the network size and (b) the number of classes on memory
requirement.

time, which is almost linearly dependent on the network size that varies with the

number of zones. Verifications of some constraints (e.g., reachability) involves all (or

a large portion of) possible potential source/target nodes that implicitly increase with

the number of zones. Thus, the verification time of such constraints increases more

with the size of the network than that of the constraints (e.g., collector resource),

which are involved with the class size only. Usually, the user-driven constraint analy-

sis time is more than the invariant constraint analysis time (as shown in Figure 11(b)),

since most of the former type of constraints subsume the later type of constraints.

Impact of the zone size and the member classes: We evaluate constraint verification

time with respect to the network size considering different network zone sizes. This

analysis is shown in Figure 12(a) with respect to the reachability constraint. We

observe that the analysis time significantly reduces with the increase in the number

of collectors in the zone. This is due to the fact that the number of zones decreases

as the zone size increases, which in turn decreases the overall model size and the



77

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  5  10  15  20  25  30

T
im

e 
(i

n 
Se

co
nd

)

Number of Collectors (in Thousands)

Analysis Time in Extreme Cases

Reachability Constraint (All Collectors to the Headend)
Cyber (Link) Bandwidth Constraint

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  5  10  15  20  25  30

Sp
ac

e 
(i

n 
M

B
)

Number of Collectors (in Thousands)

Required Memory Space in Extreme Cases

Reachability Constraint (All Collectors to the Headend)
Cyber (Link) Bandwidth Constraint

(b)

Figure 14: Impact of the AMI network size on the analysis time and the memory
requirement for cyber bandwidth constraint verification, which show that the analysis
of this constraint may fail when the number of collectors increases more than some
certain labels.

potential sources/targets. Figure 12(b) shows the constraint verification time taking

a fixed zone size and varying the number of average classes per zone. We find that

the time increases if the variation among the classes increases.

SMT memory requirement: The memory requirement of the SMT solver [17] is eval-

uated by changing the network size (i.e., number of zones) and the number of classes.

Such analysis results are shown in Figure 13(a) and Figure 13(b). We observe almost

linear growth of the memory with the network size. Similar to the analysis time, the

memory for constraint verification is the sum of the memory for modeling of AMI

configurations and that for modeling a constraint. The figures justify this by showing

that less memory is required when no constraint is verified. The constraints involving

more quantifiers require larger memory memory for encoding. Figure 13(a) shows

such a comparison between collector resource and reachability constraints.
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Extreme cases when the SMT solver fails : If the model size increases significantly,

SmartAnalyzer may fail to give a solution. An increase of the model size depends

not only on the problem size but also on the constraint type. We present this event

in Figure 14(a) and Figure 14(b). In the figures, we show the time and memory

requirements of verifying the all reachability constraint (ReachableConstr for all col-

lectors to the headend) as well as the cyber bandwidth constraint (LinkBwConstr).

The modeling of LinkBwConstr also requires knowing all the traffics (and traffic size)

from collectors to the headend passing through a link at a particular time (according

to the reporting schedules). Due to the modeling of all possible traffics between the

collectors and the headend, the model size becomes very large. The figures show that

if the number of collectors increases more than 23 thousand (arrow sign in the figure),

the cyber-bandwidth constraint verification fails. Similarly, the reachability satisfac-

tion constraint fails if the number of collectors is over 26 thousand. These failures

happen due to the out-of-memory-exception given by the SMT solver. Figure 14(b)

shows the memory consumed by the model. However, the 64 bit implementation of

our model overcomes this memory explosion problem.

2.7.3 Discussion

SmartAnalyzer can successfully identify possible threats on AMI and SCADA by

constraint satisfaction checking. It is highly scalable with the network size. However,

there are a couple of limitations of the tool. First, we use device and property

level abstraction, particularly in the case of threat verification for AMI, to achieve

scalability under large scale smart grid configurations, which in turn may not provide
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fine-grain attack paths. Second, since an SMT solver is used as the core analysis

engine, different normalizations are considered for real valued calculations. Moreover,

the tool does not provide the functionality for analyzing some of the inherent smart

grid security properties, such as LonTalk, DNP3, or Modbus protocol configurations.

2.8 Conclusion

Automated analysis of smart grid configurations is an important but challenging

problem. A smart grid contains a large number of cyber and physical devices that

exhibit highly dependent configuration parameters, which makes potential miscon-

figurations and security vulnerabilities likely. In this chapter, we present automated

smart grid configuration verification, diagnosis, and repair techniques, that are imple-

mented in a tool called SmartAnalyzer. We particularly focus on AMI and SCADA,

two major components of a smart grid. We define various AMI and SCADA specific

constraints and requirements that are important for protecting smart grids from var-

ious security threats. According to these constraints and smart grid configurations,

we create logic-based threat verifying models and we use SMT to solve these models

as constraint satisfaction problems. Our implemented tool performs static configura-

tion analysis in order to determine potential threats due to violations to the smart

grid security requirements. We evaluate the accuracy and scalability of our presented

tool using different test configurations and we achieve significantly high scalability

by applying the property level abstractions in the model. The constraint verification

time lies within few seconds for a network of thousands of collectors.



CHAPTER 3: AUTOMATED SYNTHESIS OF RESILIENCY ARCHITECTURE

Today, organizational security requirements are complex due to the extensive use

of various network services and newly evolving security threats. In addition, most

organizations are emphasizing not only on the security enforcement but also on being

resilient against attacks, while, at the same time, requiring the satisfaction of different

business constraints, particularly on usability and deployment cost. The problem of

providing strong resiliency, which includes security as well, in a network by exploring

different design alternatives, as well as resolving the contention between the resiliency

requirements and the business constraints, is important. In this chapter, we address

this research problem for smart grids.

We first develop a framework for the automated design of isolation-based resiliency

architectures for cyber systems in smart grids. The literature review shows that this

problem has not been addressed comprehensively even for traditional IT networks.

Therefore, we discuss this framework from a general network’s point of view. Next,

we provide another framework for the automated design of redundancy-based re-

siliency architectures for smart grids, particularly AMI. With the first framework we

achieve pre-attack resiliency through resistance against potential attacks, while with

the second framework we receive during-attack resiliency through robustness.
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3.1 Challenges

A system is resilient if it can run its mission (services) under attacks. The resiliency

of a system is a combination of pre-attack, during-attack, and post-attack resiliency.

The pre-attack resiliency is the resistance against attacks, which is the result of the

deployed security configurations. The during-attack resiliency is the robustness of

the system, i.e., alternative ways to run the mission if some hosts or links fail due to

contingencies or attacks. The post-attack resiliency is the capability of the system to

recover/restore swiftly such that damage is minimal due to the disruption of services.

The pre-attack resiliency of a host is ensured by isolating it from others in order

to restrict unnecessary access to this host. The resiliency requirements of such kind

can be indicated by isolation measures among the hosts. The isolation patterns

are defined based on different security devices and their capabilities. An isolation

pattern signifies the type of security resistance, e.g., traffic filtering (firewall), trusted

communication (IPSec), and payload traffic inspection (IDS). However, a resiliency

design has to satisfy the business constraints of the organization, which are mainly

represented in terms of usability and deployment cost. The connectivity requirements

influence usability, which define the essential traffic/service flows between various

network devices. The implementation of isolation measures significantly affects these

constraints. For example, the use of an IPSec-based isolation pattern might reduce

the usability by causing some applications to be inaccessible for a host, while the use

of a firewall-based access denial would give no usability. Therefore, it is necessary to

determine resiliency configurations by exploring different isolation design alternatives
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that maintain the resiliency and usability within an expected level. Moreover, since

there is a cost to deploy a security device, it is also required to find an isolation

design at an affordable cost. Thus, the pre-attack resiliency architecture design is a

challenging task.

We have similar challenges to design during-attack resiliency measures. For exam-

ple, in order to make a system robust we need to implement redundant communication

paths, backup/alternative collecting/forwarding devices (i.e., collectors), etc., each of

which requires additional cost. The usability can also be affected due to implement-

ing the plan for robustness. For example, although a mesh network of smart meters

provides robustness from communication path failures [53], it offers delayed data

transmission compared to direct communication from smart meters to the collector.

Designing a strong resiliency architecture manually is burdensome, even for a secu-

rity expert. Again, misconfigurations are common in manual design. Therefore, the

automated synthesis of a strong resiliency architecture is a crucial research problem.

3.2 Related Work

In this section, we first present previous research works that focus on security man-

agement of cyber systems in general. Then, we describe prior research on resiliency

of smart grids in particular.

3.2.1 Security Verification and Hardening

Throughout the last decade, security policy misconfigurations have been studied

extensively [31, 54, 55, 56, 21]. These works formally define configuration anomalies

and propose algorithms to discover configuration inconsistency as well as the safe
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deployment of single or multiple security firewalls. These works follow the traditional

bottom-up approach of analyzing existing security policies, which cannot be used to

automatically synthesize policies based on business requirements.

Several studies have been done on attack graph based security configuration anal-

ysis. For instance, Sheyner et al. [57] present techniques for automated generation

and analysis of attack graphs. Noel et al. [58] present an attack graph-based security

hardening technique that considers costs of the security measures and minimizes the

overall hardening cost. Noel and Jajodia [33] propose a technique to place IDS sensors

and prioritize IDS alarms using attack graph analysis. The IDS sensors are placed to

cover all attack paths. Dewri et al. [34] have modeled the selection of security hard-

ening measures to minimize the residual damage in a predefined attack graph within

a certain budget. Several works propose to find optimal deployment of security de-

vices using attack graphs in order to block all attack scenarios [59, 35]. Several risk

analysis-based techniques have also proposed for security management [60, 61, 62, 63].

However, these works cannot automatically find optimal security or resiliency con-

figurations nor the security device placements within the deployment budget and

usability constraint.

The research on the automated security and resiliency configuration synthesis is in

a premature stage. ConfigAssure [64] is a requirement solver, which is close to this

synthesis idea. The tool takes security requirements and configuration variables as

inputs and produces the values of the configuration variables as outputs that make

the requirements true. ConfigAssure requires complete and well-defined properties

and it cannot satisfy optimal security requirements based on isolation, usability, and
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deployment cost. Zhang and Ehab [65, 66] present procedural approaches for gener-

ating firewall configurations considering the device deployment cost. However, they

address only the generation of firewall policy configurations without considering dif-

ferent isolation measures (i.e., firewalls, IPSec, IDS, etc.) in the context of resiliency

requirements and usability and deployment cost constraints. In addition, their work

cannot find the optimal placements of security devices in the network and it does

not relate security device placements (according to the topology) with the computa-

tion of residual risks. Hence, although the above described works can generate some

sorts of security design architectures, they do not consider the security or resiliency

requirements and business constraints together and cannot explore various resiliency

design alternatives to determine satisfiable resiliency configurations.

3.2.2 Resiliency of Smart Grids

The above-mentioned existing research works are often not suitable for the security

or resiliency analysis of smart grids as those works do not consider the relations

between the cyber and physical components and their interactions. As we have seen

in our description about the related research in smart grid security in Chapter 2, a

significant number of works (e.g., [38, 12]) have been initiated over the last several

years that describe the interoperability among heterogeneous smart grid components,

including security issues based on different attack scenarios. McDaniel et al. [26, 40]

discuss the security and privacy challenges in smart grid networks with case studies,

while Wang et al. [41] present an artificial intelligent based approach for analyzing

risks in smart grid networks. Anwar et al. [42] propose a framework for modeling
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power grids and their control elements using first order logic. A study on false data

injection attacks in power grids is performed by Liu et al. [44]. To understand the

security of an AMI system, McLaughlin et al. [27] present a penetration testing-based

mechanism. SmartAnalyzer, which we have presented in Chapter 2, is a formal model-

based tool for provably analyzing operational consistency and security controls in

AMI systems. This tool provides possible remediation plans for constraint violations,

which are useful for reconfiguration planning toward security hardening. However,

all these works follow the traditional bottom-up approach of analyzing existing or

deployed security policies.

With regards to automated security or resiliency architecture design for CPS, par-

ticularly smart grids, to our knowledge, no substantial research has been done. Since

there is an important need to solve the problem of synthesizing smart grid’s config-

urations to ensure resiliency of the system within the grid operator’s capability, our

work focuses to meet this need.

3.3 Contributions

In this work, we develop two frameworks to solve the resilience architecture synthe-

sis problem. First, we develop a formal framework that automatically synthesize pre-

attack resiliency architecture. It is worth mentioning that, the pre-attack resiliency

primarily refers to the traditional proactive security against attacks. The synthesized

resiliency architecture includes isolation-based network security configurations and

physical placements of security devices. The framework is named Configuration Syn-

thesizer or ConfigSynth. The framework takes the network’s topology, isolation-based



86

resiliency requirements, and business constraints as inputs, formulates the resiliency

architecture synthesis model, and solves the model to get the configuration values.

ConfigSynth is a novel framework that incorporates the security device placements in

the network topology within the design in order to model the deployment cost, which

is crucial for a resiliency architecture. The framework can be used as a decision

support system to find optimal resilience configurations for a network by exploring

different design alternatives.

Second, we develop a framework that automatically synthesizes AMI configurations

that satisfy during-attack resiliency requirements within resource constraints. Here,

our focus is to add necessary redundancy to the system and configure corresponding

parameters in order to satisfy resiliency requirements in terms of operational integrity

and robustness properties. These properties mainly ensure the successful delivery of

data both in normal (no failure) and partially failed (link or device failures due to

accidents or attacks) environments. We also consider other organizational require-

ments like data freshness. The deployment budget is the main resource constraint.

This framework is easily extensible for modeling further resiliency requirements.

3.4 Overview of the Configuration Synthesis Framework

The security or resiliency configurations synthesizer, ConfigSynth, follows a top-

down design automation approach instead of the traditional bottom-up security anal-

ysis approach. The major contributions of ConfigSynth are as follows:

• It formally models the network topology, resiliency requirements, and business

(organizational/user-driven) constraints.
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Figure 15: The configuration synthesis (ConfigSynth) framework.

• It formalizes the resilience architecture synthesis problem as the determination

of appropriate resiliency measures satisfying the given requirements/constraints.

• It encodes the synthesis problem using SMT logics and solves the model using

an SMT solver.

The ConfigSynth framework is shown in Figure 15. ConfigSynth takes the follow-

ing as its main inputs: (i) the current/existing system (e.g., network topology), (ii)

resiliency requirements, and (iii) business constraints, and (iv) design specification or

guidelines. We model the relations/interdependency among the security or resiliency

measures with the necessary system configurations, their impacts on operations, as

well as the expense regarding their deployment/implementation. ConfigSynth for-

malizes the resiliency architecture synthesis as the conjunction of the constraints that

guide the design of the resiliency configurations. In ConfigSynth, the formalizations
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Figure 16: The isolation-based resiliency architecture synthesis framework.

are encoded using SMT logics. The formal model is solved using Z3, a powerful SMT

solver [45]. We specialize this general architecture of ConfigSynth with respect to the

problem context.

3.5 Resiliency Architecture Synthesis Based on Isolation

In this section, we first describe the architecture of ConfigSynth. Then, we present

the formal model of the isolation-based resiliency architecture synthesis and a brief

description of its implementation, and an illustrative example. We also present a

hypothesis testing-based mechanism using ConfigSynth in order to have an improved

security or resiliency architecture. Finally, we present the evaluation results regarding

ConfigSynth and the refinement mechanism.

3.5.1 Synthesis Framework

ConfigSynth, the resiliency design synthesizer, follows a top-down security or re-

siliency design automation approach instead of the traditional bottom-up approach.
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The major contributions of ConfigSynth are as follows:

• It formally models the network topology, resiliency requirements and business

constraints.

• It formalizes the resiliency architecture synthesis problem as the determination

of appropriate isolation patterns along with the correct placements of necessary

security devices in the network that satisfy the given requirements/constraints.

• It encodes the synthesis problem using SMT logics and solves it using an SMT

solver.

The ConfigSynth framework is shown in Figure 16. ConfigSynth takes the follow-

ing as its main inputs: (i) the network topology, (ii) resiliency requirements in terms

of isolation, and (iii) business constraints in terms of usability and deployment cost.

The tool provides its users with three sliders in order to select the constraints on the

isolation measure taken in the network, the usability of the system, and the cost for

deploying necessary security devices. The sliders are scaled from 0 to some upper

limit. As inputs, the tool also takes partial or complete specifications about the qual-

ities of isolation patterns, the demands of different traffic flows, and the deployment

costs of different security devices. The isolation requirements are conditioned on the

specifications of different primitive and composite isolation patterns along with their

relative order based on their capabilities. ConfigSynth models the functional map-

ping from each flow to an isolation decision variable. Finally, it calculates the overall

isolation of the network by accumulating isolation measures between different host

pairs under various services.
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The usability is modeled based on the connectivity requirements and the ranks of

the services and service flows as provided in the specifications. The connectivity re-

quirements are modeled as a set of rules, where each rule functionally maps a flow to

a decision variable. We model impacts of different isolation patterns on the usability.

The deployment of isolation measures is associated with a cost. The cost depends on

the security devices required for implementing the isolation patterns. The number of

security devices depends on the network topology. ConfigSynth also models different

invariant and user-defined constraints on selecting the resiliency design. ConfigSynth

formalizes the resiliency architecture synthesis as the conjunction of all of the iso-

lation, usability, and cost constraints. Therefore, the tool determines the isolation

patterns between each service flow in the network such that the overall isolation in

the network and the usability of the system satisfy the associated constraints, while

the cost for isolation measures deployment does not exceed the organization’s given

budget. ConfigSynth solves the model using Z3, and the resiliency configurations are

synthesized as an output.

3.5.2 Formal Model of Synthesis Framework

ConfigSynth models the network topology as a graph. The network model is defined

as 〈N,L〉, where,

• N defines a finite set of network nodes including hosts and routers. Thus, N is

a union of two sets: H and R. H denotes a finite set of hosts. R denotes a finite

set of routers. Each host is identified by an ID (e.g., IP address). A host may

execute one or more services, which are accessed by different hosts. A service is
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denoted using g ∈ G, where G is the set of all services. The term g(i, j) defines

the traffic/service flow between a pair of hosts {i, j} under a service g, where i

is the source and j is the destination of the flow.

• L ⊆ N × N is a finite set of links that define the interconnections between the

network hosts.

ConfigSynth formalizes different requirements and constraints which are the building-

blocks for formulating the configuration synthesis problem. The requirements can be

classified into two categories: (i) isolation-based resiliency requirements, and (ii) busi-

ness constraints. There are also invariant and user-defined constraints on resiliency

implementations.

3.5.2.1 Modeling Isolation

Usually, the more a host is isolated from other hosts in the network, the lower the

security threat to it. We define isolation as the resistance or restriction on the con-

nectivity, i.e., network communication. The communication between two hosts can

be restricted by applying different security devices or systems, such as firewall, IPSec,

IDS, NAT, etc. For example, a firewall can be placed to simply block some traffic

flows (i.e., complete isolation), while IPSec can be placed to ensure authenticated

transmission for the allowed flows (i.e., restriction based on authorization). Both of

these devices are required to ensure authenticated and controlled traffic flow.

In order to formalize isolation, it is required to define different isolation patterns,

considering different kinds of security devices, the levels of restrictions they can en-

force on the flows (i.e., their effectiveness on the isolation), and their impact on the



92

usability. The objective of isolation requirements is to have fine-grained security or

resiliency measures in the network. Therefore, it is necessary to devise an appropriate

combination of security devices for providing fine-grained resiliency controls.

3.5.2.1.1 Isolation Patterns

Isolation patterns can be network level, host level, or application level. In this

research, we consider the network level isolation. The following patterns are examples

of the network level isolation:

• Access deny. This is naturally enforced by a firewall.

• Trusted communication, i.e., authenticated and encrypted communication. IPSec

devices are used to build a trusted path (a.k.a. tunnel).

• Payload inspection. This is done by an intrusion detection system (IDS).

• Source identity hiding. A network address translation (NAT) device is applied in

order to use a different address (typically a real IP address) instead of the orig-

inal address. NAT gives a kind of security by ensuring one way communication

(i.e., internal hosts to external hosts).

• Traffic forwarding through Proxy. For example, a reverse proxy gives a layer of

security in terms of traffic filtering or implementing access control rules (ACLs)

in the proxy instead of the server.

ConfigSynth allows network administrators to define isolation patterns considering

different security devices (primitive isolation) and their combinations (composite iso-

lation), along with their relative order based on the capabilities and functionalities of
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Table 11: Network level isolation patterns

Isolation
(k)

Isolation Pattern Decision Isolation
Score

1 Access Deny y1
i,j(g) 4

2 Trusted Communication y2
i,j(g) 2

3 Payload Inspection y3
i,j(g) 1

4 Traffic Forwarding through Proxy y4
i,j(g) 1

5 Traffic Forwarding through Proxy with
Trusted Communication

y5
i,j(g) 3

the devices. A set of primitive isolation patterns is shown in Table 11. Each pattern

is represented using an ID, k. As shown in the table, k = 1 denotes “access deny”

and k = 2 indicates “trusted communication”, and so on. We formalize the isolation

measures as a set of rules, where each isolation rule is defined as follows:

yki,j(g),where, i, j ∈ H and g ∈ G

The term yki,j(g) indicates that corresponding kth isolation pattern must be de-

ployed between the host pair {i, j} for service g. Note that a host can represent a

group of hosts that have the same properties (e.g., OS, services, etc.), the same level

of users, and reside in the same subnet.

3.5.2.1.2 Isolation Patterns and Security Devices

An application of an isolation pattern requires the deployment of one or more

security devices. Usually, an isolation pattern is related to a particular type of security

device. This one-to-one matching is true for primitive isolation patterns. In the case

of a composite isolation pattern, it is necessary to deploy more than one security

device. The following equation models the relationship between an isolation pattern



94

Table 12: Security devices

Id (d) Device Name Primitive Isolation Pattern

1 Firewall Access Deny

2 IPSec Trusted Communication

3 IDS Payload Inspection

4 Proxy Traffic Forwarding through Proxy

and associated security device(s):

∀i,j,g, yki,j(g)→ xdi,j(g) (1)

Equation (1) specifies that if the kth isolation is selected for g(i, j) flow, the dth

(type of) security device is required to be deployed between the host pair {i, j} (i.e.,

on the route of the flow). A particular value of d denotes a particular type of security

device. For example, as shown in Table 12, d = 1 represents a firewall security device.

If the kth isolation pattern is a composite one, multiple security devices are required

to implement the pattern. Hence, in this case, multiple xdi,j(g)s are true. Usually, a

security device deployment depends on the isolation pattern only, not on the flows

(i.e., i, j, or g). Equation (1) considers this. Table 12 shows a list of network security

devices and the associated primitive isolation patterns.

3.5.2.1.3 Score of an Isolation Pattern

We define the isolation score (can also be named rank) of the kth isolation pattern

between a pair of hosts {i, j} under the network service g by the parameter Lki,j(g).

The score of an isolation pattern denotes its isolation capability compared to others.

The scores are computed based on the relative order of the isolation patterns accord-

ing to their isolation capabilities. An administrator can provide the relative order
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explicitly or provide partial information about the order. A simple formal model

is developed based on the given partial order between different isolation patterns.

The model generates a complete relative order by assigning a value to each isolation

pattern. The value assigned to a pattern denotes its (relative) isolation score. The

highest value specifies the maximum isolation score. We assume the same score (Lk)

for a particular isolation pattern irrespective of hosts and services. Table 11 shows

an example of relative isolation scores from the following partial information:

∀k 6=1, L
k < L1

(L2 > L3) ∧ (L2 > L4) ∧ (L5 > L2)

The isolation scores are normalized according to a specified range (e.g., a scale of

0−1). Note that this scoring of isolation patterns is relative, and resiliency require-

ments based on this scoring system reflect the same relative meaning.

3.5.2.1.4 Isolation of a Host

The decision variables yki,j(g) for all k, represent isolation patterns between a pair

of hosts {i, j} for the flow g(i, j). These decision variables and associated isolation

weights Lki,j(g) are used to formally define the total isolation (Īi,j) of j with respect

to the incoming traffic from i. Īi,j is formalized as follows:

Īi,j =

∑
g

∑
k y

k
i,j(g)× Lki,j(g)∑

g

∑
k y

k
i,j(g)× 1

The equation indicates that the isolation between a pair of hosts {i, j} is the sum of

the isolation measures taken for different services between these hosts. The equation
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also indicates that the isolation is normalized by dividing the sum by the maximum

possible isolation (i.e., the maximum isolation for a flow g(i, j) is 1 in the scale of 0−1).

We use a similar normalization throughout the model. For the ease of presenting the

equations, we do not show the normalization factors (i.e., the denominators at the

right-hand side of the equations) for the rest of this chapter.

The isolation of a host depends not only on the hosts that can connect to it, but

also on the hosts to which it can connect. For example, if a host can connect to

the Internet, the host can download malicious content from the Internet and can get

infected. However, the threat due to the outgoing communication is expected to be

less compared to the incoming communication. Since the outgoing traffic from j to i is

the incoming traffic for i from j, the total isolation Ii,j considering both the incoming

and the outgoing traffic with respect to j for the pair of hosts {i, j} is defined as

follows:

Ii,j = αĪi,j + (1− α)Īj,i (2)

Here, α (0 ≤ α ≤ 1) is the weight for the isolation due to the incoming traffic, while

1 − α is the weight for the isolation due to the outgoing traffic. The total isolation

score of a host j is defined in Equation (3).

Ij =
∑
i 6=j

Ii,j (3)

Equation (4) represents the overall isolation in the network (i.e., the network iso-

lation) considering all of the hosts.

I =
∑
i

Ii (4)
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3.5.2.2 Modeling Business Constraints: Usability

Business constraints (i.e., usability and deployment cost constraints) play a sig-

nificant role in synthesizing usable and cost-effective resiliency configurations in a

network. For example, a higher network isolation provides strong defense, but the

network usability may be reduced to a level which is unacceptable to the organization.

Resolving the contention between resiliency requirements and business constraints is

a challenge. In ConfigSynth, we formalize the synthesis problem under two business

constraints: (i) usability and (ii) deployment cost. In this subsection, we discuss the

formalization of the usability.

3.5.2.2.1 Connectivity Requirements

Every organization usually has a number of service flows, which are essential for its

successful operation. Each of these connectivity requirements represents a flow that

must be able to reach the destination from its source. Connectivity requirements are

formalized as a set of rules, where each connectivity rule defines the mapping from

a flow (i.e., a tuple of source, destination, and service) to a decision variable c that

represents whether the flow is required to be allowed. The formal definition of each

rule is as follows:

ci,j(g),where, i, j ∈ H and g ∈ G

Here, ci,j(g) is a binary variable. When it is true, it represents that the service flow

g must be allowed from i to j. If it is false, then nothing has been specified for this

flow, i.e., the flow can either be allowed or denied. CR represents the conjunction of



98

all connectivity requirements.

CR→
∧
i,j,g

ci,j(g) (5)

3.5.2.2.2 Usability Calculation

The usability of the network depends on the ranks of the service flows between the

hosts in the network. The rank of a service flow denotes the demand of the flow. Each

service flow g(i, j) is associated with a rank, ai,j(g). These ranks are expected to be

given to the synthesis model in the form of a relative order based on the organizational

requirements. Partial information can be given, from which a complete relative order

can be derived, as it has been shown in the case of the isolation patterns. If no

specification is given about the demand of different flows, all flows receive the same

rank. The ranks are normalized between 0 and 1. The usability of a service g running

on a host j is formalized as follows:

Sj(g) =
∑
i

∑
k

yki,j(g)× bki,j(g)× ai,j(g)

The application of an isolation pattern to a flow can affect its usability. The param-

eter bki,j(g) represents the usability of the flow g(i, j) due to applying the k isolation

pattern between {i, j}. We assume that the usability depends on the isolation pat-

tern, not on the host-pair (i.e., bki,j(g) = bk(g)). The value of bk(g) can be determined

based on the knowledge of network security experts by considering the time or effort

required to access a service under an isolation measure. The valuation of the param-

eter bk(g), in the simplest form, can be as follows: the ‘access deny’ isolation pattern
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reduces the usability to zero (i.e., ∀g, b1(g) = 0), while other isolation patterns main-

tain the same usability (i.e., ∀g,k 6=1, b
k(g) = 1). The usability Sj with respect to a

host j represents the accumulated usability considering all of the services running in

the host.

Sj =
∑
g

Sj(g)

The overall usability of the network (i.e., the network usability) is represented by

Equation (6).

U =
∑
j

Sj (6)

3.5.2.3 Modeling Business Constraints: Deployment Cost

The deployment of a security device incurs costs and an organization often has a

limited budget for deploying security measures. The deployment cost is the sum of the

prices of the security devices that are required to be deployed in different segments of

the network in order to implement necessary isolation patterns between different host-

pairs. The number of security devices depends not only on the isolation measures,

but also on the topology. The cost cannot be calculated from the isolation measures

alone. This is because there are usually similar types of isolation between multiple

host-pairs, and these host-pairs can share one or more links for communication. In

this case, placing a single security device at one of the shared links may ensure the

desired isolation. Moreover, if there is more than one routing path between a host-

pair, we have to secure all of the alternative paths. Therefore, modeling correct and

optimal placements of the security devices is challenging, considering the network

topology, the isolation patterns, and the budget.
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3.5.2.3.1 Flow Routes

ConfigSynth requires the flow routes between the hosts for the purpose of deter-

mining the placements of the security devices satisfying the isolation measures. A

flow route, F z
i,j is defined as a set of links {li,j,z,1, li,j,z,2, ...} ⊆ L, that form a path

from a source i to a destination j. As multiple routes are possible between a pair of

hosts, z indicates the index of a flow route (i.e., the zth route), between the host-pair

{i, j}. The term |F z
i,j| denotes the path length, i.e., the number of hops or links in

the path. Fi,j denotes all of the flow routes possible from i to j.

Fi,j →
∧
z

F z
i,j

ConfigSynth finds the flow routes for a host pair by applying a path searching

algorithm on the network topology.

3.5.2.3.2 Device Placements

Equation (1) specifies the security devices which are required to employ an isolation

pattern. The placements of the security devices on the flow routes are modeled from

these specifications. If an isolation pattern (e.g., “access deny”) is selected for the

traffic from a host i to a host j, then it is required to block the traffic through all

possible flow routes between {i, j}. Equation (1) specifies a firewall to be deployed for

implementing an “access deny” isolation pattern. Hence, there should be a firewall

deployed on a link of each flow route. We formalize the placement of a security device

d for a particular pair of hosts as follows:

xdi,j(g)→ ∀z∃tldi,j,z,t (7)
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In the equation, ldi,j,z,t represents that a security device of type d is deployed on

link li,j,z,t. Here, t is the index of a link on the zth routing path from host i to host

j). Note that if there a security device, e.g., firewall, is deployed on the flow route of

a host pair, this deployment does not imply that the flow access between the pair is

denied. The firewall will deny the access only if the “access deny” isolation pattern

is specified for the host pair.

The placement of an IPSec device requires special modeling which is different from

that of security devices like firewall and IDS. The “trusted communication” isola-

tion pattern usually requires encrypted communication (i.e., tunnel) to take place

throughout the unsecured or untrusted part of the network, which is likely to be host

to host. Moreover, to ensure an encrypted tunnel between a host pair, it is necessary

to place two IPSec devices, one at the source side (start of the tunnel) and another

at the destination side (end of the tunnel). A network administrator needs to specify

the guidelines for placing the IPSec gateways. The administrator can specify the

maximum number of hops (i.e., the number of links) from the end-hosts that can be

outside of the tunnel. For example, it can be specified that the source-gateway and

the destination-gateway should be deployed within two hops from the source and the

destination respectively. We model this as follows:

x2
i,j(g)→∀z, (|F z

i,j| ≥ (2× T ))∧

(∃t(l2i,j,z,t ∧ (t ≤ T ))∧

∃t′ , (l2i,j,z,t′ ∧ ((|F z
i,j| − t′) ≤ T )))

Here, |F z
i,j| represents the length of the flow route F z

i,j, and T denotes the maximum
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number of hops that can be outside of the tunnel. According to this approach, if the

flow route between the source and the destination has only a few hops (e.g., less than

2T + 1 hops), then “trusted communication” is not possible to be deployed between

this pair of hosts.

For the deployment of the security devices, the deployment cost is computed as the

summation of the costs of all of the devices deployed in different links. We define Cd

as the average deployment cost of the security device d. Now, if ld denotes whether

a security device d is deployed on the link l ∈ L, the total deployment cost C is

computed as follows:

C =
∑
l∈L

∑
d

ld × Cd,where ld → ∃i,j,z,t, ldi,j,z,t (8)

3.5.2.4 Modeling Constraints

ConfigSynth synthesizes resiliency configurations by solving a number of constraints.

In the following, we discuss these constraints in different categories.

3.5.2.4.1 Threshold Constraints

In ConfigSynth, we have three generic threshold based constraints in selecting the

isolation measures for the network flows:

TC : (I ≥ ThI) ∧ (U ≥ ThU) ∧ (C ≤ ThC) (9)

In the equation, ThI , ThU and ThC represent the slider values, the constraints on the

network isolation, usability, and deployment cost, respectively. The network isolation

and the network usability must be greater than or equal to their respective threshold
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values, ThI and ThU . The deployment cost must also be within the budget, ThC .

3.5.2.4.2 Invariant Constraints on Isolation Selections

In ConfigSynth, there are different invariant constraints. These constraints ensure

the consistency between functional behaviors of the isolation patterns and the business

requirements.

IIC1 : yki,j(g)→ ∀ k̄ 6=k¬yk̄i,j(g)

IIC2 : ci,j(g)→ ¬y1
i,j(g)

IIC →
∧
c

IICc (10)

The constraint IIC1 states that only one isolation pattern can be selected for a

flow. The constraint IIC2 ensures that when “access deny” is chosen as the isolation

pattern for the flow from i to j, there should be no connectivity requirement for that

flow. Equation (10) combines all invariant constraints.

3.5.2.4.3 User-defined Isolation Policy Constraints

User-defined constraints represent organizational requirements. The following are

examples of some user-defined constraints:

UIC1 : (g = SSH)→ ¬y2
i,j(g)

UIC2 : ¬y1
i,ĵ

(g)→ ¬y1
ī,i(g) ∧ ¬(̄i = Internet)

UIC3 : (g = WEB)→ ¬y2
i,j(g)

UIC →
∧
c

UICc (11)

An organizational policy (UIC1) may state that IPSec should not be deployed
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for a pair of hosts in the case of Secure Shell (SSH)-based communication. The

isolation requirement for a particular type of flow can be defined by stating that

access will be allowed from a source i to a specific destination ĵ under the service

g, if the Internet is not allowed to connect to i. This is modeled in UIC2. The

organizational policy may require that no web service should be protected by the

“trusted communication” isolation pattern (UIC3), while the flow is already specified

to be allowed as a connectivity requirement. Equation (11) represents all user-defined

constraints.

3.5.2.5 The Complete Synthesis Model

The main objective of our configuration synthesis problem is to maximize the re-

siliency in the network by satisfying various resiliency requirements as well as the

organization’s business constraints. Thus, the synthesis problem is formalized as the

satisfaction of the constraint (Constr), which is the conjunction of all of the con-

straints as follows:

Constr → CR ∧ TC ∧ IIC ∧ UIC (12)

The equation specifies that the solution to the synthesis problem produces resiliency

configurations, i.e., isolation patterns between different host pairs (yki,j(g)s), along

with the placements of necessary security devices (lds), by ensuring the fulfillment of

all the constraints.
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(a)

(b)

Figure 17: (a) An example network for synthesizing resiliency configurations and
corresponding security device placements. An ID is assigned to each of the hosts,
routers, and links. (b) The solution to the example problem, i.e., the placements of
necessary security devices.

3.5.3 An Example Case Study

3.5.3.1 SMT Encoding

We implement our model by encoding the system configuration and the constraints

using SMT logics [23]. In this encoding purpose we use the Z3 Dot Net API [45].

For encoding the formalizations of the network topology, device configurations, traf-

fic modeling, and the resiliency and business properties, we use mainly two types of

terms: Boolean and integer. We use Boolean terms for encoding the Boolean con-

figuration parameters and decision variables, such as isolation patterns and device
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placements. The remaining parameters are modeled as integer terms. The param-

eter values that may take real numbers (e.g., the isolation and usability scores) are

normalized into integer values. In our modeling, we represent a host using an integer

ID, which is not necessarily in IP address format, since no IP address-based compu-

tation is required in this model. Each service is also encoded as an integer value (as

an ID specifying a protocol-port pair). ConfigSynth takes the system configurations,

requirements and constraints from a input file. ConfigSynth also provides a graphical

interface so that its user can select or edit the inputs.

3.5.3.2 Example

Figure 17(a) shows a small network for which an optimal resiliency design will be

synthesized based on the given input file as shown in Table 13. In this example, the

connectivity requirements are considered as a list of allowed services between different

hosts. In order to keep the example simple, we consider only three primitive isolation

patterns (i.e., “access deny”, “trusted communication”, and “payload inspection”).

We also assume a single flow type (i.e., a single service) between each pair of hosts.

ConfigSynth gives a satisfiable result for this example. From the resultant satisfiable

instance, we find the necessary isolation patterns along with the necessary device

placements. Figure 17(b) shows the placements of the security devices. Table 14

shows the isolation patterns. For example, the first row of the table specifies the

isolation patterns that are selected on the traffic flows toward host 1.
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Table 13: Input (partial) of the example

# Number of Security Devices
3 # 1 for Firewall, 2 for IPSec, and 3 for IDS, while 0 for None

# Isolation Specifications (partial orders)
2 # Device, Device, Comparison (1 for =, 2 for >, and 3 for >=)
1 2 2
2 3 2

# Usability if an isolation pattern is applied
0 2 3

# Cost of each isolation device (in thousand dollars)
20 18 15

# Number of Hosts and Routers
10 8

# Links
18
1 11
2 11

· · · · · · · · ·
# Connectivity Requirements (each row for a host, which ends with 0)
3 0 # The flow from Host 1 to Host 3 must be allowed
4 0
1 2 0
2 0
3 4 0
3 4 0
1 2 0
1 0
0
1 0

# Sliders’ Values (Isolation 0-10, Usability 0-10, Cost in thousand dollars)
6 5 90

3.5.4 Resiliency Architecture Refinement

ConfigSynth provides an isolation-based resiliency architecture satisfying the pre-

attack resiliency requirements and business constraints, as we have seen in the last

section. We can compute the optimal solution by running the ConfigSynth framework

many times by increasing the isolation requirement slowly or by running a binary

search algorithm within a range of maximum and minimum isolation requirements.
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Table 14: Output of the example: selected isolation patterns for the flows

Destination Sources Classified according to Selected Isolation Patterns

Host Access Deny Trusted Com-
munication

Payload
Inspection

No Isola-
tion

1 5, 6 3, 4, 7, 8 9, 10 2
2 5, 6 3, 4, 7, 8 9, 10 1
3 − 1, 2, 7, 8 6, 9, 10 4, 5
4 − 1, 2, 7, 8 9, 10 3, 5, 6
5 1, 2, 3, 4, 7, 8, 9, 10 − − 6
6 1, 2, 3, 4, 7, 8, 9, 10 − − 5
7 5, 6 1, 2, 3, 4, 9, 10 − 8
8 5, 6 1, 2, 4, 9, 10 3 7
9 5, 6 7, 8 1, 2, 3, 4 10
10 5, 6 7, 8 1, 2, 3, 4 9

Unfortunately, from evaluation results (Section 3.5.5), we find that if the isolation

requirement is close to the optimal, above or below the optimal value, with respect to

the business constraints, the time for executing the ConfigSynth framework turns out

to be significantly high. This time is found to be extremely high when the number of

hosts is more than 100 hosts. Moreover, if the network is in a clean state, i.e., there is

no given isolation measure as well as security device placement, the time for finding a

satisfiable resiliency architecture by ConfigSynth becomes long, as the search space is

large. On the other side, if there is already a given resiliency architecture, the time to

improve the architecture by adding more isolation measures or security devices within

the constraints is much shorter. Considering the above mentioned learning, we devise

a statistical hypothesis testing-based resiliency architecture refinement mechanism for

tuning or improving the resiliency architecture. This improved architecture essentially

may not be the optimal one, but it will be a close one, which is synthesized in a

plausible time period. The corresponding extended architecture of ConfigSynth is

shown in Figure 18.
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Figure 18: The extended architecture of ConfigSynth for the design refinement.

In the following, we present a mechanism for the resiliency architecture refinement.

We also present a case study demonstrating the refinement process.

3.5.4.1 Hypothesis Testing based Refinement

In this refinement process, our objective is to disprove the null hypothesis, which we

take as “there is no better resiliency architecture within the given business constraints

other than the known best resiliency architecture.” Thus, in order to reject this null

hypothesis, we need to prove the alternative hypothesis, i.e., there are resiliency

architectures significantly better than the known best resiliency architecture, which

satisfies the given business constraints as well. Let us define N as the number of

alternative resiliency architectures that will be used to verify our null hypothesis. We

would like to reject the null hypothesis if we find just one better resiliency architecture

from the N number of architectures. The reason for this idea is to increase the

refinement efficiency because each search for a resiliency architecture consumes a

substantial time.
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In this hypothesis testing, we consider standard values for necessary parameters.

For example, the standard deviation is considered to be 5% of the isolation provided by

the known best resiliency architecture. We find that, when we consider the significant

level as 5% and the standard deviation as the 5% of the maximum isolation (in the

scale of 0-10), then if N is taken as 25, the null hypothesis can be rejected if and only

if one resiliency architecture is found that offers an isolation significantly better than

the known best isolation. If the known best isolation is 5, then the increase needs to

be around 10% of the known best isolation. However, it is worth mentioning that for

a larger known best isolation value, the increase in the isolation requirement can be

smaller, while for a smaller known best isolation, we need to have a larger increase

in the requirement, in order to reject the null hypothesis when a single resiliency

architecture is found providing that increased isolation irrespective of the others in

the sample set. The potential of a type II error is unknown when we have N number

of alternative resiliency architectures, as we do not know the maximum number of

alternative resiliency architectures. However, if we do have architectures less than N ,

then there is no Type II error.

We adopt the one-sided test in our hypothesis testing mechanism. As we look for

better resiliency architectures in the refinement process, we consider the right-sided

test, in which the alternative hypothesis specifies the set of values strictly greater

than the critical value. In the following, we present an example process of hypothesis

testing with respect to a particular scenario. This example illustrates our choices for

N in the hypothesis testing.
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3.5.4.1.1 Computation of Parameter Values with Regards to Hypothesis Testing

According to the isolation scale of 0 to 10, the known best isolation I is 5. The

sample size (i.e., the number of alternative resiliency architectures) N is 25. The

standard deviation D is 0.05. Then, the standard error E is calculated as follows:

E = D/
√

(N) = 0.05/5 = 0.01

Assume that each of the N− 1 resiliency architectures provides isolation I in av-

erage, while the remaining one provides I ′ isolation significantly greater than I. Let

I ′ = I + 10% of I. Then, I ′ = (5 + 0.5) = 5.5.

Thus, the average isolation Ī provided by the sample resiliency architectures is (5

× 24 + 5.5) / 25 = 5.02. Then, we calculate test statistic z as follows:

z = Ī − I)/E = (5.02− 5)/0.01 = 0.02/0.01 = 2

The significance level α is considered as 5%. At this significance level, from the

table of z-scores, the critical value CV is found as 1.645. Since z > CV , the null

hypothesis is rejected.

3.5.4.2 Refinement Algorithm

According to the hypothesis testing based refinement idea discussed in the previous

subsection, we devise a mechanism as presented in Algorithm 1. The mechanism starts

with a null hypothesis specifying an isolation value (Imean) which is the isolation

provided by the known best resiliency architecture. If the null hypothesis is rejected,

then we update the null hypothesis with the isolation of the resiliency architecture
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Algorithm 1 Systematic Refinement of Resiliency Architecture
Require: Synth is the synthesis model (i.e., ConfigSynth) as of Equation 12.
Require: Imean is the mean isolation.
Require: Null Hypothesis (H0): There is no resiliency architecture possible providing higher isolation score than

Imean.
Require: N is the number of alternative resiliency architectures, i.e., the sample size.
Require: Imin is the minimum isolation requirement for a resiliency architecture to be a member of the sample set.

Imin ≤ Imean.
Require: ThI is initialized with Imin.
Require: X (e.g., 10% of Imean) is the minimum increase in the isolation score provided by a resiliency architecture

in order to reject the null hypothesis.
Require: Imax is the maximum isolation provided by a resiliency architecture after improvement.
Require: ZBest is the known best resiliency architecture.
1: for i = 1 to N do
2: if Solver returns sat then
3: Get the model, M.
4: From M fetch the complete resiliency architecture, Z (it includes the isolation measures for all the flows

and security device placements for all the links).
5: FromM fetch the applied resiliency, Z̄ (it specifies the flows with positive isolation measures and the links

with one or more device placements).
6: Update Synth by adding ¬Z.
7: Push or save Synth in the memory.
8: Set Imax to I as it is obtained from M.
9: Update Synth by adding Z̄.
10: Increase ThI with a small value Y , such that Y ≤ X,
11: while Solver returns sat do
12: Get the model, M′.
13: From M′ fetch the complete resiliency architecture, Z′.
14: From M′ fetch the applied resiliency, Z̄′.
15: Pop or retrieve Synth from the memory, that we saved in Steps 7 or 17.
16: Update Synth by adding ¬Z.
17: Push Synth in the memory.
18: Update Synth by adding Z̄.
19: Set Imax to I as it is obtained from M.
20: Update Synth by adding Z.
21: ThI = ThI + Y .
22: end while
23: if Imax ≥ Imean +X then
24: Reject H0.
25: Update Imean with Imax.
26: Update ZBest with Z′.
27: Reinitialize i with 1.
28: end if
29: Pop Synth from the memory, that we saved in Steps 7 or 17.
30: end if
31: Return ZBest.
32: end for

that beats the null hypothesis and start the hypothesis testing from the beginning

according to the updated hypothesis. The refinement process continues until we fail

to reject the null hypothesis.

3.5.4.3 An Example Case Study

In this case study, we use the same network that we have used in Section 3.5.3.2.

The corresponding inputs are similar to Table 13. Therefore, the objective of the
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Figure 19: The placements of necessary security devices after the refinement.

refinement process is to find the optimal resiliency architecture that provides the

best isolation, considering isolation 6 as the minimum resiliency requirement and

satisfying the business constraints. After the execution of Algorithm 1, we receive

the best resiliency architecture, which provides isolation 6.63. The placement of

security devices is shown in Figure 19 and the resiliency policy (i.e., the isolation

measures) is presented in Table 15.

As the algorithm executes, we observe 4 updates of the null hypothesis. The null

hypothesis starts with the known best isolation 6. That is, the hypothesis specifies

that there is no resiliency architecture that provides isolation greater than 6, as well

as satisfies the business constraints. This null hypothesis is rejected by the first alter-

native resiliency architecture as this architecture provides isolation 6.07. Thus, the

null hypothesis is updated with this isolation 6.07. That means the hypothesis states

that there is no resiliency architecture which provides isolation greater than 6.07,

as well as satisfies the business constraints. Based on this updated null hypothesis,

the algorithm starts from the beginning. This null hypothesis is rejected by the 2nd

alternative resiliency architecture. We receive isolation around 6.40 according to this
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Table 15: Selected isolation patterns for the flows in the example corresponding to
the refinement mechanism

Destination Sources Classified according to Selected Isolation Patterns

Host Access Deny Trusted Com-
munication

Payload In-
spection

No Isola-
tion

1 5, 6, 9 − 3, 4, 7, 8, 10 2
2 5, 6, 8, 9 − 3, 4, 7, 9, 10 1
3 7, 8, 9, 10 5, 6 1, 2 4
4 7, 8, 9, 10 5, 6 1, 2 3
5 1, 2, 3, 4 7, 8, 9, 10 − 6
6 1, 2, 4 3, 7, 8, 9, 10 − 5
7 1, 3, 4 5, 6, 9, 10 2 8
8 1, 2, 3, 4 5, 6, 9, 10 − 7
9 1, 2, 3, 4 5, 6, 7, 8 − 10
10 1, 3, 4 5, 6, 7, 8 2 9

architecture. Therefore, the current null hypothesis is rejected, while the null hypoth-

esis is renewed with isolation 6.40. This null hypothesis is rejected, as we find that the

16th resiliency architecture provides isolation 6.44. The null hypothesis is updated

according to this new isolation. This null hypothesis is rejected again. It is rejected

by the 16th alternative resiliency architecture as it provides isolation 6.63. Thus, the

null hypothesis is updated again with isolation 6.63. This time, we cannot reject this

updated null hypothesis, as none of the 25 consecutive resiliency architectures can

provide isolation greater than 6.63.

3.5.5 Evaluation

Here, we first present the analysis on the relationships between the isolation, us-

ability, and deployment cost. Then, we present the scalability performance analysis

of the tool. We run our experiments on different synthetic test networks.
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Figure 20: (a) The maximum possible isolation with respect to the usability constraint
considering a fixed cost constraint (i.e., $200K) and (b) the maximum possible iso-
lation with respect to the deployment cost constraint considering a fixed usability
constraint (i.e., 5).

3.5.5.1 Analysis of the Relation Between Isolation, Usability, and Deployment Cost

In this analysis, we run a number of experiments considering the same network

topology as is shown in Figure 17(a). The impact of the network usability constraint

on the network isolation is shown in Figure 20(a) under two different deployment cost

constraints. We find that with the increase of the usability constraint, the maximum

possible isolation reduces. However, due to the connectivity requirements, the isola-

tion cannot be more than a particular point, though the usability constraint is very

low. At the lower values of the usability constraint, the rate of the isolation decrease
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is less in comparison to the rate at the higher values of the usability constraint.

The deployment cost constraint has an impact on the isolation. Figure 20(a) shows

that in the case of the higher cost constraint (i.e., $200K), a higher isolation is

achieved compared to the case of the lower cost constraint (i.e., $100K). A higher

cost allows ConfigSynth to deploy more security devices, particularly IPSec devices,

in these experiments, which helps in increasing the isolation. We also find that with

the increase of the usability constraint (i.e., from 0 to 7), the difference between the

maximum possible isolation values in both of the cases reduces. At the usability value

7, we find that the isolation difference sharply increases, then slowly reduces. The

reasons behind this behavior are that different security devices have different prices

and different impacts on the usability. Even different deployment aspects influence

the deployment cost. For example, IPSec-based security usually requires deployment

of two IPSec gateways close to the end hosts, which are at the boundary of the core

network. This does not allow many hosts to share these gateways for implementing

the “trusted communication” isolation pattern. As a result, IPSec-based security

incurs a higher deployment cost compared to the firewall or IDS based security.

Figure 20(b) shows the relationship between the isolation and the deployment cost

more adequately, considering two different usability constraints. We change the cost

constraint and observed the maximum possible isolation. As expected, in the case of

the lower usability constraint (i.e., 5), the isolation is higher compared to the case

of the higher usability constraint (i.e., 7). We also find that after a certain level,

it is not possible to increase the isolation, despite increasing the deployment budget.

This is due to the usability constraint. To increase the isolation after a certain point,
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it is required to use the highly scored isolation patterns (e.g., “access deny”), which

at the same time reduce the usability.

3.5.5.2 Scalability of ConfigSynth Framework

We evaluate the scalability of ConfigSynth by analyzing the time and space required

in synthesizing the configurations (i.e., satisfying the constraints) by varying the

problem size and the constraints. The problem size depends mainly on the number

of flows, since the synthesis problem considers the isolation pattern for each flow.

The number of flows mostly depends on the number of hosts. We also evaluate the

performance of the resiliency architecture refinement mechanism.

3.5.5.2.1 Methodology

We run ConfigSynth in a machine running Windows 7 OS. The machine was

equipped with an Intel Core i3 processor and a 4 GB memory. We generate the

test networks, taking hosts within the range of 50−500 and the routers within the

range of 8−20. In the test networks, we randomly choose 1−3 services (i.e., maxi-

mally 3 flows) between a pair of hosts. The isolation and usability constraints were

chosen from normalized scales (sliders) of 0−10 (0 for no isolation/usability, while 10

for complete isolation/usability).

3.5.5.2.2 Impact of the Problem Size

Figure 21(a) and Figure 21(b) show the model synthesis time with respect to the

problem size. In the first analysis, we consider two different scenarios. In one scenario,

the volume of the connectivity requirements is 10% of all the flows possible between

the hosts. In the other scenario, the percentage is 20%. In this analysis, we vary the
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Figure 21: The model synthesis time w.r.t. (a) the number of hosts and (b) the
number of routers.

problem size with respect to the number of hosts, and the corresponding results are

shown in Figure 21(a). We observe that the analysis time increases rapidly with the

number of hosts. This is because the problem size depends on the number of possible

flows in the network. The number of flows is O(N2), where N is the number of hosts

and the number of services is constant. The volume of the connectivity requirements

also increases with the increase in the number of flows. As a result, the model size

increases, which requires the verification of more constraints. All of these increase

the running time over O(N2).

In the second analysis, we vary the core network by changing the number of routers

in two different connectivity requirements. The results are presented in Figure 21(b).

In this case, since the number of hosts in the network remains the same, there is

no increase in the number of flows. However, due to the increase in the number of

routers, the core network becomes larger, such that the hosts are more distributed and

more links are found to bes candidates for security device placements. As a result,
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Figure 22: The impact of (a) the isolation constraint and (b) the deployment cost
constraint on the model synthesis time.

more search is required to find a satisfiable model, which increases the synthesis time.

We observe quadratic increase in the synthesis time.

3.5.5.2.3 Impact of the Constraints

We analyze the impact of the tight or relaxed constraints on the model synthesis

time. Tightening (relaxing) the network isolation or usability constraint requires in-

creasing (decreasing) the associated constraint value. On the other hand, tightening

(relaxing) the deployment cost constraint requires decreasing (increasing) the con-

straint value. The analysis results are shown in Figures 22(a) and 22(b), varying the

isolation constraint and the deployment cost constraint, respectively. In these anal-

yses, we consider a fixed number of hosts (300) and a fixed volume of connectivity

requirements (10% of all flows) in two different network usability constraints (3 and

5 in a scale of 10).

We observe that the execution time increases significantly with the increase of

the network isolation constraint (see Figure 22(a)). This is because increasing the



120

Table 16: The memory requirement (MB) w.r.t. problem size

Hosts Scenario 1 Scenario 2

200 6.71 6.59
400 30.48 41.72
600 113.99 160.70
800 376.21 532.89
1000 818.92 1158.54

isolation constraint reduces the number of possible solutions to the model with respect

to a particular usability constraint and a specific deployment budget. As a result,

usually more search (i.e., a longer time) is required to find a solution. After a certain

value of the isolation constraint (i.e., 3-4), a small increase in the constraint increases

the synthesis time sharply. We observe almost similar behavior in the case of the

deployment cost constraint, as shown in Figure 22(b). In this case, the higher the

budget, the more satisfiable options are available. Hence, the synthesis time decreases

with the increase of the budget. We observe that after a certain increase in the

budget ($1,500K), the synthesis time does not decrease further because the number of

potential satisfiable models does not increase any more despite increasing the budget.

3.5.5.2.4 Memory Requirement

We evaluate the space (memory) requirement for executing the formal model cor-

responding to ConfigSynth with respect to the SMT solver [45]. We vary the number

of hosts to understand the impact of the problem size on the space requirement. The

memory requirement actually specifies the memory required for modeling the syn-

thesis problem, which is the sum of the memory for modeling the system parameters

and that for modeling the constraints. The analysis results are shown in Table 20

in two different scenarios of the network isolation constraint. In the first scenario,
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Figure 23: A comparison between the optimized isolation provided by the refinement
mechanism and the optimum isolation with respect to (a) various deployment cost
and (b) various usability constraints.

the isolation constraint is 3 (in a scale of 10), while in the second scenario, this is 5.

We observe that the memory requirement increases quadratically (O(N2)) with the

increase in the number of hosts. The table shows that the memory requirement in

the second scenario is larger than the memory requirement in the first scenario. If the

isolation constraint is high, the solver needs to search more options for a satisfiable

solution, which incurs larger space.

3.5.5.3 Performance of ConfigSynth Refinement Mechanism

We first evaluate the capability of the our refinement mechanism in optimizing the

resiliency architecture in terms of isolation. Next, we also evaluate the time-efficiency

of the mechanism.

3.5.5.3.1 Isolation Optimization Capability

We compare the optimized isolation provided by the refinement mechanism with the

optimum isolation found by applying the brute-force method. We consider a random
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Figure 24: The resiliency architecture refinement mechanism execution time with
respect to: (a) the number of hosts and (b) the number of routers.

network of 50 hosts and 10 routers, execute the refinement process (Algorithm 1) to

get the optimized isolation, and compare it with the optimum value. The results are

shown in Figures 23(a) and 23(b), where we vary the deployment cost and usability,

respectively for two different values of the base isolation requirement, 5 and 6. In

the first case, the usability constraint is kept at 5, while in the second case the cost

constraint is fixed at $100. In Figure 23(a), we observe that the improved isolation

received after the refinement process is close (< 10%) to the optimum value, and

when the base isolation requirement is high, the refined isolation becomes more close.

However, with the increase in the base isolation requirement, the execution time

also increases rapidly, which ultimately increases the running time of the refinement

process. We observe almost 5 times higher time consumption on average in the case

of base isolation requirement 6 compared to the lower base. We observe similar

characteristics in Figure 23(a).
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3.5.5.3.2 Time Efficiency

Figures 24(a) and 24(b) show the execution time of the ConfigSynth refinement

mechanism with respect to the problem size: the number of hosts and the number of

routers, respectively. In the first case, where we vary the problem size with respect to

the number of hosts, we consider two different sizes of connectivity requirements. In

one scenario, the volume of the connectivity requirements is 10% of all possible flows,

while in the second scenario, it is 20%. The execution times are shown in Figure 24(a).

We observe that the analysis time increases quadratically with the number of hosts.

This is due to various reasons. The first reason is the quadratic time complexity of

ConfigSynth (Section 3.5.5.2.2). Second, the refinement process needs to execute the

framework many times (often hundreds of executions) although the time requirement

is not simply the multiplication of the number of times the ConfigSynth framework is

executed. This is because the resiliency architecture is often improved based on the

initial resiliency architecture. Therefore, the increase is within a reasonable amount of

time. It is worth mentioning that the isolation, which we receive after the refinement

process, most often cannot be achieved within the execution time of the refinement

process if that isolation is given as the initial isolation requirement.

In the second case, the core network is varied by changing the number of routers.

We again considered the same two different connectivity requirements. The results

are presented in Figure 24(b). Due to the increase in the number of routers, the

core network becomes larger, and more links are found to be candidates for security

device placements. Therefore, both the synthesis time and the execution time of the
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refinement mechanism increase.

3.5.5.4 Discussion

Our evaluation results show that the time and memory requirements of ConfigSynth

increases quadratically with the problem size. However, a synthesis problem with 500

hosts (i.e., several thousands of flows) needs 800 seconds and 100 MB memory. It

may seem that this number of hosts is small compared to large enterprise networks.

However, in most of the large networks, it is common for many hosts to exhibit similar

properties. They are often running the same OS and services, and are operated by the

same level of users (e.g., a student lab in a university or a customer service center

in an organization). They usually reside under the same subnet. The resiliency

configurations required for such a group is expected to be the same. Therefore, this

group can easily be assumed as a single host.

3.6 Resiliency Architecture Synthesis Based on Redundancy

We start this section with a description of the architecture of ConfigSynth in the

case of redundancy-based resiliency design, particularly with respect to the opera-

tional integrity and robustness requirements. Then, we discuss the corresponding

formal model and illustrate the model with an example. Finally, we present the

evaluation results for this redundancy-based resiliency synthesis.

3.6.1 Synthesis Framework

We formally model the problem of synthesizing AMI configurations with respect

to several during-attack resiliency requirements, which particularly include a set of

operational integrity and robustness constraints. The framework architecture, as
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Figure 25: The AMI resiliency configurations synthesis framework.

shown in Figure 25, follows a top-down resiliency design automation approach. The

framework includes the following tasks:

• Formal modeling of the AMI system, i.e., the topology, devices, and interactions

(e.g., data deliveries) among the devices.

• Formal modeling of operational integrity and robustness requirements on top of

the AMI system model, satisfaction of which determines necessary AMI config-

urations, which include an appropriate deployment of AMI devices (particularly

collectors) and their report schedules.

• Implementing or encoding of the model using satisfiability modulo theories

(SMT) and solving it using an SMT solver.

The synthesis framework takes different inputs as shown in Figure 25: (i-ii) specifi-

cations about the AMI topology and devices (smart meters and collectors), (iii) AMI

topological and system invariants which are required for the operational integrity,
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and (iv) user-driven constraints including resiliency/robustness requirements along

with deployment budget constraints. Our main resiliency requirement specifies the

maximum tolerable damage (i.e., the loss of reported usage data) in the case of the

failure of a collector or a communication path. For a particular AMI topology, the

smart meters are considered as already deployed, while the collectors are required to

be deployed satisfying the requirements. With respect to the inputs, the framework

models the deployment of collectors, reachability among the devices, report schedules,

topological and operational integrity invariants, and robustness and other user-driven

requirements. We follow a group based abstraction in modeling meters and collectors

by considering the similarity among the properties to cope with the big number of

AMI devices. The solution to the model provides the deployment design of AMI

including topology and devices’ configurations, satisfying invariant and user-driven

constraints that provide operational integrity and robustness to AMI. Topology con-

figurations specify the placements of collectors, while devices’ configurations include

report schedules of the meters and the deployed collectors.

3.6.2 Formal Model of the Synthesis Framework

In this section, we first define the parameters that define AMI configurations. Then,

we present the formalizations of the synthesis framework as a constraint satisfaction

problem. In our notations, variables start with small alphabetic letters, while con-

stants start with capital letters.
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3.6.2.1 AMI Configurations Parameters

We define different parameters to denote AMI configurations that include AMI

devices and topology properties.

3.6.2.2 Configuration Level Abstraction

An enterprise AMI network typically consists of thousands of smart meters dis-

tributed over different geographical regions. These devices communicate to collectors

for delivering data based on device configurations and communication properties.

For the purpose of achieving better scalability, we apply the concept of abstraction

in terms of groups based on the similarities between the configurations of the meters.

A particular group or class of devices shares the same (physical and logical) config-

uration properties. Collectors are modeled as individual devices. Moreover, we use

the idea of zone (similar to Section 2.5.2.1) to denote a collection of meters residing

at the same geographical area. The meters within a zone form a mesh network to

communicate to one or more collectors deployed in that zone. This collection of me-

ters often forms a number of meter groups. Therefore, a meter group is identified or

localized with the help of a zone.

3.6.2.3 AMI Device Configurations

A meter group is identified by mk,i, where k is the zone index and i is the meter

group index. There can be one or more meter groups in a zone, while the number of

groups in the zone cannot be more than a threshold value. A meter group exists when

mk,i is true. The objective of our synthesis framework is to synthesize properties
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of each existing meter group. Each group consists of a particular type of meters.

Other properties of a meter group include the number of meters (i.e., group size),

the reporting schedule for them, and the collector to which the meters of this group

need to report the usage data. We use mTypek,i for denoting the meter type and

mSizek,i for representing the group size. A particular type of meter is mainly specific

to a vendor and it has a specific data sampling rate (i.e., the number of samples per

time slot), as well as a specific size for each sample. Since each meter in a group

has the same type, they have the same property values. That is, the sampling rate

and the sample size of each meter of a group are the same and they are denoted by

mSamplingRk,i and mSampleS k,i, respectively. The report schedule is represented by

two parameters, the base (starting) time of reporting (mReportBk,i) and the reporting

interval (mReportI k,i), which indicate that the meters of this group report periodically

at each interval starting from the base time with respect to a specific time period,

e.g., during a day. We use mC k,j to identify the collector that is associated to the

meter group. We assume minute as the unit for time slots and kilo bytes (KB) for

the data or storage size.

A collector is represented by ck,j, where k is the zone index and j is the collector

index. Like a finite number of meter groups in a zone, we consider a finite number

of (maximally) possible collectors in a zone. If ck,j is true, then the associated col-

lector is deployed in the system. The objective of our synthesis framework includes

synthesizing the configurations (i.e., properties) of each collector that is deployed,

and the correspondence between the meter groups and the collectors in a particular

zone. We model a collector’s profile with two properties: the type of the collector
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and its reporting schedule. A collector often follows the pull mode to forward the

stored report data to the headend system. Therefore, the reporting schedule of a

collector represents the report requesting schedule of the headend system specific to

the collector. We use cTypek,j to denote the collector type. A particular type of

collector has a specific buffer size and a specific cost (price) to deploy this particular

type of collector. The buffer size is denoted by cBufferS k,j and the deployment cost

by cCostk,j. Similar to a meter, the report schedule of a collector is also represented

by two parameters: the base time cReportBk,j and the reporting interval cReportI k,j.

3.6.2.4 AMI Topology Configurations

An AMI topology mainly defines the connectivity (i.e., communication paths) be-

tween the AMI devices. As shown in Figure 3 in Chapter 2, the AMI topology, i.e.,

the connectivity between the AMI devices, is well defined. The meters in a particular

zone are considered to be connected to one or more collectors by forming a mesh

network between them. Each collector is considered to be individually connected

to the headend system through WAN communication, although all of the collectors

share the path in the energy provider’s network after the border router. We consider

MeshBW as the bandwidth of the mesh network communication, IndividualBW as

the bandwidth for each individual collector to the border router, and SharedBW as

the shared link bandwidth. The bandwidths of these communication paths play an

important role for choosing the report schedules and the redundancy policy for ro-

bustness. In this particular work, we do not consider other details of the topology,

because those details are not necessary for our synthesis objective.
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3.6.2.5 Modeling of AMI Operational Integrity and Robustness Constraints

Ensuring the constraints associated with the system invariants (operational in-

tegrity constraints) and robustness requirement for an AMI system mitigates the

threats due to the potential violations of these constraints.

3.6.2.6 Meter Groups and their Properties

The meters in a group have the same meter type. A valid meter type (between 1

to MTypes number of available types) for group i in zone k is ensured as follows:

mk,i → (mTypek,i ≥ 1) ∧ (mTypek,i ≤ MTypes)

We assume that the meters are already deployed. That is, the number of a partic-

ular type of meters in a zone is given. Since a meter group in a zone has a specific

type, the size of the group must be within the number of meters of that particular

type residing in the zone. The following equation ensures this constraint:

mk,i →(mTypek,i = t)→

((mSizek,i ≥ 1) ∧ (mSizek,i ≤ MSizek,t))

In the above constraint formulation, MSizek,t denotes the number of meters of type

t residing in zone k. Moreover, if we sum up the sizes of all meter groups in a zone

having the same meter type, then the summation must be equal to the total of this

particular type of meters in the zone. Therefore:



131

mk,i ∧ (mTypek,i = t)→ (mSizek,i,t = mSizek,i)

¬(mk,i ∧ (mTypek,i = t))→ (mSizek,i,t = 0)

MSizek,t =
∑
i

mSizek,i,t

The sampling rate and the sample size of each meter of a meter group in a zone

depend on its type. If MSamplingRt and MSampleS t are the sampling rate and sample

size of a meter of type t, then the following is true:

(mTypek,i = t)→ (mSamplingRk,i = MSamplingRt)

∧ (mSampleS k,i = MSampleS t)

The meters of a meter group in a zone send their sampled data to a specific collector

deployed in the same zone. If CNum is the maximum number of potential collectors

in a zone, then:

mk,i → (mC k,i ≥ 1) ∧ (mC k,i ≤ CNum)

In a particular zone, no two meter groups can have the same values for all properties.

That is:

mk,i ∧mk,̂i ∧ i 6= î→ ¬((mTypek,i = mTypek,̂i) ∧ (mC k,i = mC k,̂i)

∧ (mReportBk,i = mReportBk,̂i)∧

(mReportI k,i = mReportI k,̂i))

3.6.2.7 Collectors and their Properties

There is a finite number of collector types. Let this number be CTypes . A collector’s

type must be within this set of types. Therefore, if collector j exists in zone k, then
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its type should satisfy the following constraint:

ck,j → (cTypek,j ≥ 1) ∧ (cTypek,j ≤ CTypes)

The buffer size and deployment cost of each collector in a zone depend on its type.

Therefore, if CBufferS t and CCost t are the buffer size and the deployment cost of a

collector of type t, then:

(cTypek,j = t)→(cBufferS k,j = CBufferS t)∧

(cCostk,j = CCost t)

If a collector is selected as the designated collector for a meter group in a zone for

reporting, that indicates that the particular collector is deployed. Therefore:

∨
i

(mC k,i = j) → ck,j

3.6.2.8 Report Schedule Constraints

We consider a finite number of potential values for the base time of the report

schedule for meters as well as collectors. That is, if BM and BC are the set of po-

tential base times for meters and collectors respectively, then mReportBk,i ∈ BM and

cReportBk,j ∈ BC . Similarly, we consider a finite set of potential values for reporting

intervals. We have a number of invariant constraints to choose the reporting sched-

ules. First, the base time of a report schedule must be lower than its interval. Second,

a collector should report less frequently than its associated meters, considering that

the latest data sampled by the meters can reach the headend system. The following
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equations ensure these constraints:

mk,i → mReportBk,i < mReportI k,i

ck,j → cReportBk,j < cReportI k,j

(mC k,i = j)→ mReportI k,i ≤ cReportI k,j

A collector should forward its stored usage data to the headend system in a timely

manner so that no part of this data is overwritten with any new incoming report

data. That is, the total incoming data from the meters within the report interval of

the collector should not exceed its buffer. Moreover, the reporting data should not

exceed the communication bandwidth. In order to formalize these constraints, we

use mReportAt and mReportS to denote whether a meter reports at a particular time

slot and the size of the reported data (on average), respectively. Similarly, cReportAt

and cReportS are used for collectors. We find mReportAt and cReportAt as follows:

mReportAtk,i,s → mk,i →

((s−mReportBk,i)%mReportI k,i = 0)

cReportAtk,j,s → ck,j →

((s− cReportBk,j)%cReportI k,j = 0)

We compute the report size of a meter considering the average number of times

a meter sends data to the associated collector within the reporting interval of the

meter. We do the same for the case of reporting from a collector to the headend
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system. That is:

mk,i → (mReportS k,i = mSizek,i ×mSampleS k,i×

mReportI k,i/mSamplingRk,i)

ck,j → (cReportS k,j =∑
{i|(mCk,i=j)}

mReportS k,i × cReportI k,j/mReportI k,i)

With the above formations of cReportS , which is ultimately the total usage data

sent to the collector by the associated meters, the following equation ensures no

overwrite on the stored data in the collector’s buffer:

ck,j → cReportS k,j ≤ cBufferS k,j

We assume that the bandwidth in a mesh network is shared by the participating

nodes in the network. That is, all the meters (often hundreds in number) and the

collectors (one or more in number) share a particular data transmission bandwidth

(i.e., they have a shared data throughput). Therefore, to ensure the successful delivery

of usage data to a collector from the associated meters, the accumulated rate of data

transmission by the meters must be within the bandwidth. The following equation

ensures this communication bandwidth constraint:

∑
{i|mk,i}

mReportS k,i ≤ MeshBW ×mReportI k,i

Each collector is connected to the border router of the energy provider’s network in-

dividually. Then, the rest of the communication path is shared by all of the collectors.

Thus, the communication bandwidth constraints for the communication between the
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collectors and the headend system are as follows:

cReportS k,j ≤ IndividualBW × cReportI k,j

∑
{k,j|ck,j}

cReportS k,j ≤ SharedBW × cReportI k,j

The grid operators may have constraints (often known as organizational or user-

driven constraints) on the quality of the data delivery, especially with respect to the

reporting delay. For example, a meter should report its usage data to the associ-

ated collector within a particular time interval, while a collector should not delay in

forwarding the data to the headend system more than a threshold time. All these con-

straints are reflected in choosing the set of potential values for the report intervals for

meters and collectors (i.e., BM and BC). Different organizational constraints can limit

the data transmission delay (latency). For example, the data transmission delay from

a meter to a collector should reach within a threshold time (MaxDelayMtoC ). In the

case of simultaneous reporting, i.e., data delivery at the same time slot (e.g., at slot

s), the total data should be delivered within the threshold time. A similar threshold

limit (MaxDelayCtoH ) on the data transmission delay can be applied for collectors

to the headend system. The following equations establish the above constraints:

(
∑

{i|mk,i∧mReportAtk,i,s}

mReportS k,i)

≤ MeshBW ×MaxDelayMtoC

cReportS k,j ≤ IndividualBW ×MaxDelayCtoH



136

(
∑

{k,j|ck,j∧cReportAtk,j,s}

cReportS k,j)

≤ SharedBW ×MaxDelayCtoH

3.6.2.9 Robustness (Fault-tolerance) Constraints

The energy provider can have a robustness or fault-tolerance policy such that when

one or more intermediate devices (i.e., collectors) or one or more communicating

links fail, the system still can operate without any damage (e.g., data loss). In this

work, we consider the standard n− 1 contingency verification in smart electric grids,

which is the 1-fault tolerance. More specifically, we assume a single node (device or

communication link) failure maximally in a zone. As we consider mesh networks of

smart meters for connectivity between meters and collectors, these networks are self-

healing because there are alternative paths in the cases of intermediate meter or link

failures toward the associated collector. Therefore, we focus on the collector failures

and communication link failures from collectors to the headend system. We define

robustness as one minus damage, where the damage is the number of meters (with

respect to the meter groups) whose usage data is not ensured to be delivered to the

headend system in the case of a collector or communication path (the path from a

collector to the border router of the energy provider’s network) failure.

A system is robust when there are alternatives to perform necessary operations.

These alternatives can be found only if there is sufficient redundancy. For example,

if one collector is sufficient for the meters in a zone, another collector is required for

a single collector failure. Since the meters are connected with each other in a mesh



137

network, and the collectors are connected to this mesh network, a meter can report

data to a different collector through the same network. Therefore, the deployment

of redundant collectors is only considered as a step to be applied for ensuring the

robustness.

There are a number of constraints which must be satisfied to ensure the robustness.

If a collector fails, the rest of the collectors in a zone must have enough buffer space to

store the data reported by the meters of the zone. Since different collectors often have

different reporting intervals (and base times), we can describe the same constraint in

different words: the total data reported by the meters during the general cycle period

(e.g., a day) must be less than or equal to the maximum possible data that the rest of

the collectors can store (i.e., total buffer sizes) throughout the period (considering the

number of times each collector reports to the headend system) without any overwrite.

The following equation formalizes this constraint:

cRobustk,j →
∑
{j|ck,j}

cReportS k,j × Period/cReportI k,j ≤

∑
{j|(j 6=ĵ)∧ck,j}

cBufferS k,j × Period/cReportI k,j

Here, Period is the cycle period, often a day. This constraint needs to be ensured for

each of the collectors’ failures.

We need to consider the bandwidth limit in the contingency of a communication

path failure. Although communication paths between collectors of neighboring zones

could be deployed to be used to cover-up a link failure, redundant collectors deployed

in zones can solve the problem. The collectors will provide alternative links to the
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headend system, as we assume without loss of any practicality that the collectors

in a zone are connected to each other (often through the mesh access points) and

each of them is connected to the utility (up to the border router) through a separate

communication path. The following equation ensures enough extra bandwidth to

forward the stored usage data from the collectors to the headend system in the case

of a communication path failure:

cRobustk,j →
∑
{j|ck,j}

cReportS k,j/cReportI k,j

≤
∑

{j|(j 6=ĵ)∧ck,j}

IndividualBW

The above constraint must be ensured for the communication path failure for each

of the collectors in the zone. A meter group is robust with respect to its collector

failure or the associated communication path failure if, despite the failure of that

collector, the system remains in operation. That is:

mRobustk,i → mk,i ∧ ∃j ((mC k,i = j) ∧ cRobustk,j)

The robustness constraint, i.e., the maximum possible damage (MaxDamage) in

the case of a single node failure is formalized as follows:

∑
{i|¬mRobustk,i}

mSizek,i ≤ MTotal ×MaxDamage
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3.6.3 An Example Case Study

3.6.3.1 SMT Encoding

We encode the system configurations and the constraints into SMT [23]. We write

a program leveraging the Z3 Dot Net API [17] for encoding the formal model. We en-

code our formalizations mainly using Boolean (i.e., for logical variables, such as mk,is,

ck,js, etc.) and integer (e.g., for the property values like mSampleS k,is, cBufferS k,js,

etc.) terms. We use real terms for some of the variables (e.g., mReportS k,is, cReportS k,js,

etc.), where either they take real values or they are used in division, which can gener-

ate fractions. In our formalizations, presented earlier, we can see a number of division

operations. Unfortunately, Z3 does not scale well in the case of divisions. That is

why, in our encoding, we apply each division by taking the inverse of the correspond-

ing denominator as a (real) variable. By executing the model (in Z3), we obtain the

verification result as either satisfiable (sat) or unsatisfiable (i.e., no solution exists).

In the case of sat, we get the necessary AMI configurations from the assignments of

the variables.

3.6.3.2 Example

We illustrate the execution of our formal synthesis model with a synthetic exam-

ple. In this example, we consider an arbitrary AMI system of 1,000 smart meters

distributed in 5 zones. It is required to find safe and reliable configurations of the

AMI system, including the deployment of collectors and the report schedules (for

both meters and collectors) within the given budget and robustness constraints. The

input of the example is shown in Table 17. There are 2 types of meters. The number
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Table 17: Input of the example in Section 3.6.3.2

# Number of meters and Zones
1000 5

# Distribution of meters in each zone based on meter types
100 1 100 2 0
250 1 50 2 200
120 1 60 2 60
230 1 100 2 130
300 1 200 2 100

# Number of Meter Types
2

# Meter Properties (Sampling interval (minute) starting from 0, sampling size (KB))
5 2
10 3

# Reporting Schedule (Potential base time (minute))
4
0 10 30 60
# Potential interval time (minute)
3
30 60 120

# Potential Maximum Meter Groups and minimum number of meters in a group
6 20

# Number of Collector types
2

# Collector Properties (Buffer size (KB) and deployment cost (k$))
20000 12
30000 16

# Reporting Schedule (Potential base time (minute))
4
0 60 120 240
# Potential interval time (minute) 3
120 240 360

# Potential Maximum Number of Collectors per Zone
4

# Link Bandwidth (kbps) (meter to collector, collector to headend- individual/shared)
40 100 200

# Freshness Constraint: Max report transmission delay
5 15 80 # meter to collector, collector to headend), % of data satisfying freshness

# Maximum Data Loss in Contingency
5

# Budget (Cost constraint in k$)
200

of each type of meters in a specific zone is given. Each type of meter has a particular

set of properties (i.e., sampling rate and size of each sample). A type 1 meter takes

a sample (of size 2 KB) at each 5 minutes, while a type 2 meter takes a sample (of

size 3 KB) at each 10 minutes. Two lists of potential values for the base time and the

interval of the report schedule of a meter are also given. According to these values,

we can see that the minimum reporting interval is 30 minutes, while the maximum is
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Table 18: Output of the example: meters’ configurations

Zone Group Id Meter Type Group Size Associated Col-
lector Id

Reporting Base
Time

Reporting In-
terval

1 1 1 20 2 60 120
1 2 1 20 2 10 120
1 3 1 20 2 0 30
1 5 1 20 1 0 30
1 6 1 20 1 0 120
2 1 1 30 1 30 60
2 3 2 200 1 10 30
2 5 1 20 3 60 120
3 1 2 60 1 0 30
. . . . . . . . . . . . . . . . . . . . .

120 minutes. The maximum number of meter groups expected in a zone is 6, while

each group should have at least 20 meters. A collector can be either of 2 types,

while each type has a different buffer size (e.g., type 1 has 20,000 KB buffer, while

type 2 has 30,000 KB buffer) and deployment cost. Similar to meters, there are two

given lists of potential values of the reporting base time and the reporting interval.

The maximum number of collectors that can be deployed in a zone is 4. The com-

munication bandwidth between meters and collectors (i.e., the mesh network) is 40

kbps. The individual link from a collector to the utility’s border router is 100 kbps,

while the shared link after the utility border router toward the headend system is

200 kbps. The organizational requirements specify the data freshness constraint and

the robustness constraint, as well as the collector deployment budget. According to

the freshness constraint, at least 80% of the data should reach (i.e., the transmission

delay) from a meter to a collector in 5 minutes, while from a collector to the headend

system in 15 minutes. The robustness constraint specifies that the maximum data

loss in a contingency (i.e., in the case of a single node or link failure) is no more than

5%.

Our framework corresponding to this example returns a satisfiable result along with
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Table 19: Output of the example: collectors’ configurations

Zone Collector Id Collector Type Reporting Base Time Reporting Interval
1 1 1 240 360
1 2 1 120 360
2 1 1 60 120
2 3 2 60 360
3 1 2 0 240
3 2 1 60 120
4 1 1 60 120
4 4 1 120 240
5 1 2 60 120
5 2 1 60 120
5 3 2 120 360
5 4 1 60 120

the synthesis of necessary configuration parameters. The configurations associated

with the meters are shown in Table 18, where we see that 5 meters groups are selected

in each of zones 1 and 5, while 4, 3, and 2 meter groups are selected in zones 4, 2,

and 3, respectively. The collector’s id associated to each meter group is also shown.

Similarly, in Table 19, we can see that 4 collectors are selected to be deployed in

zone 5, while 2 collectors are selected for each of the remaining zones. The report

schedules are selected in such a way that the collectors do the reporting in distributed

time slots, which also consider the limited shared bandwidth. Moreover, reporting

intervals are chosen such that report sizes satisfy the associated collector’s buffer limit

as well as the limited bandwidth. We can see the same in the case of meters. Note

that the framework only synthesizes a satisfiable set of configurations that may not

be the optimal solution.

3.6.4 Evaluation

We evaluate our AMI synthesis framework mainly in terms of scalability. We also

verify the accuracy of the framework.
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3.6.4.1 Accuracy

Although the formal modeling of the AMI resiliency architecture synthesis ensures

the provability of the accuracy of the synthesized configurations, we still verify the

accuracy of this model by executing the synthesized configurations with the help

of SmartAnalyzer (presented in Chapter 2). We mainly verify the data overwrite

protection constraint and the bandwidth limit constraint and find that the synthesized

configurations correctly satisfy both of these constraints. In the case of the robustness

constraint, we pick a random collector to be out of the AMI network, and see whether

the data overwrite protection and bandwidth limit constraints still hold. Similarly, we

also arbitrarily consider a communication link from a collector to the border router

to be in a failure state (i.e., excluding the link from the topology) and see whether

the robustness constraints (e.g., the bandwidth limit constraint) associated with this

contingency still hold. In these cases, we find that the configurations synthesized by

the framework satisfy the robustness constraints.

3.6.4.2 Scalability

3.6.4.2.1 Methodology

We evaluate the scalability of the AMI resiliency architecture synthesis model by

analyzing the time and memory required in constraint verification by varying the

AMI network size. We consider the network size as the total number of smart meters

in the AMI system, which are distributed in different sizes of zones. We consider only

a single headend system in the network. The size of each zone is considered between

200 and 500 meters. Since an organization usually is limited within the choice of a
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Figure 26: The execution of the synthesis framework with respect to (a) the number
of meters and (b) the average size of each zone.

few types of meters and collectors, we consider up to 3 types of meters or collectors

in our experiments. The deployment cost of a particular type of collector is taken

arbitrarily. The number of potential values of the reporting base time as well as the

interval is kept less than or equal to 10. We run our experiments on an Intel Core i5

machine with 4 GB memory.

3.6.4.2.2 Impact of the Problem Size

Figure 26(a) shows the execution time of our synthesis framework with respect to

the AMI size, i.e., the number of smart meters. We show the execution time in two

different scenarios of the number of collector types. The graphs in the figure show

that with the number of meters, the increase in the execution time lies between linear

and quadratic growths. Although the number of parameters seems to be increased

exponentially (as does the execution time), we observe complexity less than that.

This is due to the application of the property-based abstraction (i.e., the grouping of

the meters when they share the same properties). The evaluation results with respect
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Figure 27: Impact of the budget constraint on the execution time, (a) satisfiable cases
and (b) unsatisfiable cases.

to the average size of each zone are shown in Figure 26(b). From the graphs we can

see that the execution time decreases with the zone size. If the zone size increases,

the number of zones reduces in a particular AMI network, which ultimately reduces

the effective problem size.

3.6.4.2.3 Impact of the Constraints

The synthesis of AMI configurations depends on the given constraints, e.g., the

budget, freshness, and robustness requirements. However, the tighter the constraint,

the more time is required to synthesize the configurations. We analyze the impact

of this budget (i.e., the deployment cost limit), on the execution time. The analysis

results are shown in Figure 27(a). The graphs show that the execution time increases

rapidly with the decrease of the budget. This is because the lower the budget, the

more space is required by the solver to search for a satisfiable set of configurations,

and thus the execution time increases. If the budget becomes much lower, there

may be no solution. In the unsatisfiable cases, the execution time is often high, as
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Table 20: Memory requirements (in MB) w.r.t. the problem size

Hosts Scenario 1 Scenario 2

1000 43.20 46.20
2000 105.30 110.40
3000 168.10 175.00
4000 330.50 340.90
5000 465.90 478.60

whole of the search space needs to be traversed to conclude that there is no solution.

However, if a constraint is too tight (e.g., the budget is too low), the solver takes a

much shorter time to conclude with unsatisfiability. In such cases, the potential space

is small due to the highly tight constraints. Figure 27(b) shows the evaluation results

in the unsatisfiability cases.

3.6.4.2.4 Memory Requirement

We evaluate the space (memory) requirement for executing our model in the SMT

solver [23] by changing the number of meters. The memory requirement mainly

includes the memory required for the variables that we use in modeling, and the

intermediate variables that the solver uses to implement the theories applied in our

constraint modeling. The analysis results are shown in Table 20 for two different

scenarios. In the first scenario, the number of collector types is 2, while in the second

scenario, the number is 3. We observe that the memory requirement lies between

the linear and quadratic orders with respect to the number of meters. The table

shows that the memory requirement in the second scenario is larger than the memory

requirement in the first because, due to a larger number of collector types, there are

more options (and so more variables) to design the deployment of collectors.
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3.7 Conclusion

In this chapter, we present automated frameworks for synthesizing resiliency ar-

chitectures in order to provide the secure and robust operation of the system. Both

of these models are implemented using SMT. First, we present a formal framework

for isolation-based resiliency design for cyber systems in smart grids. The framework

synthesizes correct and cost-effective network isolation configurations. It formally

models the network topology, pre-attack resiliency requirements in terms of network-

based isolation, and the organizational business constraints in terms of usability and

deployment cost, along with different invariant and user-defined constraints. Then,

the framework formalizes the resiliency architecture synthesis as the conjunction of

all the requirements and constraints. It solves the problem and results in a resiliency

design along with optimal placements of security devices. We also develop a refine-

ment mechanism that adds a feedback loop to ConfigSynth and applies hypothesis

testing to find an improved resiliency architecture in a scalable manner. We evaluate

ConfigSynth as well as the refinement mechanism in different synthetic networks and

find that our solutions scale reasonably well with the problem size.

Next, we present a formal framework for the automated synthesis of AMI configu-

rations that satisfy redundancy-based resiliency in terms of operational integrity and

robustness properties. We model various constraints that are crucial for safe and ro-

bust data delivery in AMI systems. We model the robustness with respect to a single

node (or link) failure, which is extendable for further robustness requirements. The

execution of the formal model synthesizes necessary configurations satisfying the con-
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straints. The accuracy of our framework is evaluated using an existing AMI threat

analyzer. We evaluate the scalability of our framework in different synthetic AMI

networks and requirements, and observe that its execution time is around an hour

for a network of 10,000 smart meters in our particular computing environment. We

achieve significantly high scalability by applying the group level abstractions to the

model. In our future work, we would like to address the post-attack resiliency, which

is the after-attack recoverability aiming to keep the attack damage minimum.



CHAPTER 4: THREAT ANALYTICS AND SECURITY HARDENING FOR
POWER SYSTEM STATE ESTIMATION

In modern energy control centers, the energy management system (EMS) refers

to a set of computational tools which are employed for system wide monitoring,

analysis, control, and operation. A schematic diagram of EMS and its modules are

shown in Figure 28. State estimation is the core module in EMS that estimates the

system state variables from a set of real-time telemetered measurements (from meters)

and topology statuses (from breakers and switches). The term “states” denotes bus

voltages, from which power flows through transmission lines can be computed. As seen

in Figure 28, the output of state estimation is required by several other modules, i.e.,

optimal power flow (OPF), contingency analysis, and automatic generation control

(AGC), for economic dispatch calculations and security assessment.

Cyber technologies are increasingly used in smart power grids with the promise of

providing larger capacity, higher efficiency, and more reliability [67]. While this inte-

gration helps energy providers to offer smarter services, real time demand responses,

and economic advantages, power grids also become vulnerable to cyber attacks. Par-

ticularly, cyber intrusions and false data injections can be launched against power

grids, which can cause improper controls leading to serious damages, including power

outages and destruction of critical equipment [26, 68].

In the case of state estimation, an attacker can compromise meters or commu-
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Figure 28: Energy control center system security schematic (thanks to Allen J.
Wood and Bruce F. Wollenberg, Power Generation, Operation, and Control, 2nd
Edition [1]).

nication media to introduce malicious measurements, which can lead to incorrect

state estimation. There are bad data detection algorithms [49, 69], which detect

bad measurements principally based on the square of differences between observed

and estimated measurements with some threshold values. It has been shown that

an attacker can generate bad measurements with the knowledge of the grid, which

can bypass the bad data detection [44]. As a result, states are estimated incorrectly,

which can easily lead the system to a non-optimal and vulnerable situation. Stealthy

attacks of this kind are known as undetected false data injection (UFDI) attacks. It

is crucial to develop a threat analytics framework which can identify potential UFDI

attacks considering different attack models, as well as the interdependency among

different EMS modules.
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4.1 Background

We start this section with a brief overview of the DC power flow model, which has

been widely used to analyze stealthy attacks on state estimation (e.g., [44, 70]). This

DC model is simplistic, yet useful in preliminary analytical power systems studies.

4.1.1 DC Power Flow Model

The DC power flow model describes the power balance equations in a lossless power

system [1]. With voltage magnitudes at all buses fixed at 1 per unit (p.u.), the only

variables are phase angles. Therefore, the voltage phasor at bus i is given by 1∠θi.

Denoting the admittance of the transmission line between buses i and j by Yij, the

real power flow (Pij) across a transmission line is given by: Pij = Yij(θi−θj) where Yij

is the reciprocal of the reactance. The model expresses the power-balance constraint

which equates the algebraic sum of powers incident at every bus to zero. This yields

a linear system of equations of the form: [B][θ] = [P]. One of the buses is designated

as the reference bus (also known as the slack bus), where θi = 0. Assuming n buses,

[B] is an n − 1 dimensional square matrix, and P is an n − 1 dimensional column

vector whose elements denote the net power demand (i.e., load minus generation) at

a bus and [θ] is a column vector of unknown phases corresponding to the bus voltage

phasors. The model solves unknown bus voltages, given admittances of the lines and

net power demands at the buses. This linear model provides the basis for DC state

estimation which is described next.
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4.1.2 State Estimation

The state estimation problem based on the DC model is to estimate the bus volt-

ages given several measurements of transmission line power flows. Specifically, one

needs to estimate n number of the state variables x = (x1, x2, · · · , xn)T based on m

number of meter measurements z = (z1, z2, · · · , zm)T [49]. Under the DC power flow

assumptions, the measurement model is linear (i.e., the measured power flows are

linear functions of the bus voltages) and hence the measurement model reduces to:

z = Hx + e, where H = (hi,j)m×n

The measurement set has redundant elements (i.e., m > n), which are used for creat-

ing an over-determined set of linear equations. The redundancy enables the detection,

elimination, and smoothing of unavoidable gross measurement errors. When the mea-

surement error distribution is Gaussian with zero mean, state estimate x̂ is expressed

by the following equation:

x̂ = (HTWH)−1HTWz (13)

Here, W is a diagonal “weighting” matrix whose elements are reciprocals of meter

error variances. Thus, estimated measurements are calculated as Hx̂. The measure-

ment residual ||z−Hx̂|| is used to determine bad data. If ||z−Hx̂|| is greater than

τ , a selected threshold value, it indicates bad data.
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4.1.3 Topology Processor

EMS uses a topology processor (refer to Figure 28) to map the grid topology. This

processor receives telemetered statuses of various switches and circuit breakers in the

system to determine network connectivity. When the connectivity matrix A and the

branch admittance matrix D are known, the measurement matrix H is computed as

follows (as in [71]):

H =


DA

−DA

ATDA

 (14)

Matrices DA (i.e., multiplication of D and A) and −DA represent the line power

flows in forward and backward directions, respectively. The matrix ATDA represents

power consumption at the buses.

4.1.4 Optimal Power Flow

The state estimated solution (from Equation (13)) estimates bus voltages from

which the system power flows are computed. Summing up the net power flows incident

on a bus then yields the estimated power (or load) at that bus. System conditions

determined from state estimation are then used in the OPF module (see Fig 28).

The OPF problem aims to minimize the total cost of generation subject to the

following constraints: (i) the total system load is served and (ii) equipment ratings,

transmission line limits, and control variables are satisfied [1]. Denoting the genera-

tion cost of generator k by Ck(Pk), where Ck depends on the nature of the plant (e.g.,

fossil fired, combined cycle, etc.), the OPF routine with respect to the DC power flow
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model is described by:

min
∑
i

Ck(Pk) s.t. (15)

[B][θ] = [P] (16)

|Pij| ≤ Pmax
ij (17)

Pmin
k ≤ Pk ≤ Pmax

k (18)

Here, Equation (15) describes the objective function of minimizing the total cost

of generation, subject to power flow constraints in Equation (16), transmission line

capacities in Equation (17), and generation capacities in Equation (18).

4.2 Challenges

Here we describe the idea behind the stealthy attacks on state estimation. We also

define the attack attributes that must be considered to identify potential threats.

4.2.1 UFDI Attack

Liu et al. have introduced a interesting kind of attack, named UFDI attack, against

state estimation [44]. They have shown that it is possible to generate a stealthy

attack vector that can bypass the bad data detection process. The idea is briefly

explained here. Consider an attacker who injects arbitrary false data a to the original

measurements z such that a = Hc, i.e., a linear combination of the column vectors of

H. Here, c is added to the original state estimate x̂ due to the injection of a. Since

z+a = H(x̂+c), the residual ||(z+a)−H(x̂+c)|| still remains the same as ||z−Hx̂||.

Thus, the bad data detection is evaded. Note that this requires knowledge of H, i.e.,

the system topology, electrical properties of the transmission lines, and measurement
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configurations. Moreover, the attacker’s capability should be considered to identify

the potential threats on state estimation.

4.2.2 Attack Model

Our goal is to describe attacks in their most general form so that adversarial capa-

bilities can be modeled. Thus, we characterize attacks in terms of different attributes.

The attributes that represent the attack model include mainly the attacker’s accessi-

bility, resources, and knowledge of the system, which are described below.

Accessibility: An attacker may not have access to all of the measurements when

physical or remote access to substations is restricted, or when certain measurements

are already secured. For example, in order to inject false data into the measure-

ments taken at a substation (i.e., bus), an attacker needs to have the access to that

substation (or to the corresponding remote terminal unit) [72].

Resource constraint: An adversary may be constrained in cost or effort to mount

attacks on vastly distributed measurements. In such cases, an adversary is constrained

to compromising or altering a limited subset of measurements at a time. It is useful

to represent this resource limitation with respect to buses. In order to launch an

attack, if it requires false data injections to a set of measurements distributed in

many substations (i.e., buses), then it would be harder for the attacker to inject false

data into those measurements compared to the set of measurements distributed in a

small number of substations.

Grid topology and knowledge: State estimation of a power system is done based on

the given topology (i.e., connectivity among the buses) of the grid. This topology is



156

mapped by the topology processor. For a successful UFDI attack, an attacker needs

to know the grid topology and the electrical parameters of the transmission lines,

which is not trivial [44]. In the case of partial knowledge, the attacker’s capabilities

become restricted. On the other hand, an attacker can inflict novel UFDI attacks

against state estimation by conveying false status information at the transmitting

devices or media, such that the topology generated by the processor includes one or

more open lines (i.e., non-existing in the true topology), or excludes one or more

closed lines (i.e., existing in the true topology).

Attack goal: An attacker may have the aim of corrupting a chosen set of states or

a specific portion of the system, which often requires to perform false data injections

to a certain set of measurements.

Modeling the state estimation, its interdependency with other EMS modules, and

the consideration of all these attack attributes in a single model is crucial to iden-

tify potential stealthy threats and their impact on the power grid. We address this

challenge in this work.

4.3 Related Work

The concept of an undetected false data injection attack is presented by Liu et

al. for the first time in [44], and this concept is extended later in [73]. The authors

discuss UFDI attacks considering different scenarios, such as limited access to meters

and limited resources to compromise meters, under arbitrary or specific targets, as-

suming that the adversary has complete information about the grid. In the general

case, the attack vector computation problem is NP-complete. Therefore, the authors
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present few heuristic approaches that can find attack vectors. Bobba et al. [74] show

that for detecting UFDI attacks it is necessary and sufficient to protect a set of basic

measurements, which is actually a minimum set of measurements ensuring observ-

ability. Kim and Poor [75] propose a greedy suboptimal algorithm, which selects a

subset of measurements that can be made immune from false data injection for the

protection against UFDI attacks. Kosut et al. [76, 77] propose a mechanism based

on the generalized likelihood ratio test to detect UFDI attacks. A similar approach

is found in [78] with the help of adaptive cumulative sum control chart test.

Vukovic et al. [72] propose a number of security metrics to quantify the importance

of individual buses and the cost of attacking individual measurements considering

the vulnerability of the communication infrastructure. Sou et al. [79] claim that an l1

relaxation-based technique provides an exact optimal solution of the data attack con-

struction problem. UFDI attacks with incomplete or partial information are discussed

in [70, 80]. These works mathematically show the impact of incomplete knowledge

on the potentiality of UFDI attacks. Recently, Kim and Tong present algebraic con-

ditions of undetected topology attacks in power grids [81]. However, none of the

works discussed above provides a comprehensive model of UFDI attacks considering

different attack attributes together. It is also necessary to investigate the other forms

of attacks, e.g., topology poisoning attacks along with the measurement alterations,

in order to introduce novel UFDI attacks on states. In addition, we need to devise

an automated security architecture synthesis mechanism that can consider the grid

operator’s resource constraints with respect to an attack model. A grid may not re-

quire the absolute security which needs expensive deployment of security measures,
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or the grid operator may choose to use its available but limited resources to secure

the system up to a desired level.

There is a few works that show the impact of the stealthy attacks on the economic

operation of the power grid. For example, Esmalifalak et al. [82] present a game-

theoretic analysis showing the impact of UFDI attacks on energy markets considering

the locational marginal pricing (LMP). However, we still need to investigate other

economic operation modules, e.g., optimal power flow. Moreover, we need to consider

multiple modules together to understand the conjoint impact.

As we have seen that UFDI attacks can be defended by securing a strategically

selected number of measurements, the associated cost can be beyond the capability of

the stakeholders. Therefore, an easier and cheaper security solution like moving target

defense mechanisms can be a good option. MTD techniques have been presented

for traditional enterprise networks in recent literature. Antonatos et al. propose a

network address space randomization scheme to offer an IP hopping approach that

can defend against hitlist worms [83]. Duan et al. [84, 85] present proactive random

route mutation techniques, which enables the random and simultaneous changes of

the routes of the multiple flows in a network. However, to the best of our knowledge,

moving target based defenses have not received as much attention in SCADA and

other control networks. Mo and Sinopoli [86] propose perturbing the input signal to

a control system in order to detect replay attacks. Controlled perturbation of line

admittances to detect UFDI is proposed in [87, 88]. Line admittance perturbation and

parameter estimation are used to enhance the detectability of UFDI attacks on non-

linear state estimation in [89]. However, none of these works studies the security of
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the grid applying the idea of MTD. Therefore, it is crucial to explore the potentiality

of MTD to defend UFDI attacks against state estimation.

4.4 Contributions

The prior work addresses UFDI attacks considering different attack attributes in

isolation. Therefore, we take the challenge to assess the attack feasibility when all the

attack attributes are considered simultaneously. The interrelation among the attack

variables has an integral impact on the attack feasibility. We model the UFDI attack

on state estimation as a constraint satisfaction problem, the solution to which answers

whether a UFDI attack can be launched in a particular scenario with respect to a

given set of constraints.

Our formal model framework allows a grid operator to analyze and explore potential

threats under different attack scenarios and initiate appropriate security measures.

The framework is also extended to consider the impact of UFDI attacks on other in-

terdependent modules, particularly OPF, to understand the economic loss. In order

to make the state estimation secure against stealthy attacks, we propose an auto-

mated mechanism to synthesize a security architecture (i.e., measurements that need

to be secured) within the grid operator’s resources. This architecture satisfies the

security requirements that actually specify the protection of state estimation from

UFDI attacks with respect to a given attack model. In addition, we also devise a

mechanism which provides proactive security to the grid by introducing agility in the

system with the help of moving target defense strategies.
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Table 21: Modeling parameters

Notation Definition
b The number of buses in the grid.
l The number of lines in the grid topology.
fi The from-bus of line i.
ei The to-bus of line i.
di The admittance of line i.
gi Whether the admittance of line i is known.
PL
i The power flow through line i.
PB
j The power consumption at bus j.

θj The state value, i.e., the voltage phase angle, at bus j.
n The number of states.
m The number of potential measurements.
ai Whether measurement i is required to be altered for the attack.
cj Whether state j is infected/affected due to false data injection.
hj Whether any measurement residing at bus j is required to be changed.
ti Whether potential measurement i is taken (i.e., reported by a meter).
ri Whether measurement i is accessible to the attacker.
si Whether the measurement is secured or not.
ui Whether line i exists in the true (real) topology.
vi Whether line i is fixed in the topology.
wi Whether the status information regarding line i is secured.
pi Whether line i is excluded from the topology by an exclusion attack.
qi Whether line i is included in the topology by an inclusion attack.
ki Whether line i is considered (though it may not exist) in the topology.

4.5 Attack Vector Verification

In this section, we present our model of verifying the potentiality of UFDI attacks.

In order to model UFDI attacks, we need a number of parameters to denote different

system properties and attack attributes. These parameters are shown in Table 21.

4.5.1 Preliminaries

According to the DC power flow model, the admittance of a line or branch is

computed from its reactance. The direction of the line is taken based on the current

flow direction, i.e., from one end-bus to another end-bus. The two end-buses of line

i are denoted using fi (from-bus) and ei (to-bus), where 1 ≤ i ≤ l, 1 ≤ fi, ei ≤ b, and

b is the number of buses. The admittance of the line is denoted by di.

Each row of H corresponds to a power equation. The first l rows correspond to

the forward line power flow measurements. The next l rows are the backward line
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power flow measurements, which are the same as the first l except the directions of

the power flows are opposite. We use PL
i to denote the power flow through line i,

while PB
j to denote the power consumption at bus j, and θj to denote the state value

(i.e., the voltage phase angle at bus j). Then, we have the following relation between

the power flow of line i (PL
i ) and the states of the connected buses (fi and ei):

∀1≤i≤l PL
i = di(θfi − θei) (19)

Equation (19) specifies that power flow PL
i depends on the difference of the connected

buses’ phase angles and the line admittance. The last b rows of H correspond to the

bus power consumptions. The power consumption at bus j is simply the summation

of the power flows of the lines connected to this bus. Let Lj,in and Lj,out be the sets

of incoming and outgoing lines of bus j, respectively. Then, the following equation

represents the power consumption at bus j:

∀1≤j≤b PB
j =

∑
i∈Lj,in

PL
i −

∑
i∈Lj,out

PL
i (20)

The power consumption at a bus is also equal to the load power at this bus minus

the power injected to it by the connected generators. If PD
j and PG

j denote the load

power and generated power of bus j, respectively, the following equation holds:

∀1≤j≤b PB
j = PD

j − PG
j (21)

If bus j is not connected with any generator, then PG
j = 0. Similarly, if bus j does

not have any load, then PD
j = 0.

Basically, state estimation in DC model is the solution to the linear equations for
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all of the measurements (PL
i s and PB

j s) given the line admittances (dis).

4.5.2 Parameters for Modeling UFDI Attack

We use cj to denote whether state xj (1 ≤ j ≤ n) is affected (i.e., changed to an

incorrect value) due to false data injection. In the DC model, each state corresponds

to a bus. Thus, n is equal to b. Parameter ai denotes whether measurement zi

(1 ≤ i ≤ m) is required to be altered (by injecting false data) for the attack. If any

measurement at bus j is required to be changed, hj becomes true.

Here, we model incomplete information with respect to line admittance only and

use the variable gi to denote whether the attacker knows the admittance of line i.

Note that if the end-buses of a line are unknown, the corresponding row in A is fully

unknown to the attacker. In this case, there is no way for an adversary to launch

UFDI attacks on the system. In the DC model, two measurements, the forward

and backward power flows, can be taken for each line. We use the term “taken”

to specify that the measurement is recorded by a meter/censor at a targeted point

(here, one end of the transmission line), and it is reported to the control center.

For each bus, a measurement can be taken for the power consumption at the bus.

Therefore, for a power system with l number of lines and b number of buses, there

are 2l + b number of potential measurements (zis). Though a significantly smaller

number of measurements are sufficient for state estimation, redundancy is provided

to identify and filter bad data. We use ti to denote whether potential measurement

zi is taken. Note that though m is often used to represent the taken measurements,

in this model, m represents the maximum number of potential measurements (i.e.,
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2l+ b). The attacker may not be able to alter a measurement due to inaccessibility or

existing security measures. We use ri to denote whether measurement zi is accessible

to the attacker. We also use si to denote whether the measurement is secured.

4.5.3 Parameters for Modeling Topology Poisoning

The topology of a power grid represents the connectivity among the grid buses.

An attacker can inject false data in the topology information sent by various circuit

breakers and switches in order to change the topology. Changes in the topology

that we assume in this work include: (i) exclusion of a closed line from the topology

(exclusion attack), and (ii) inclusion of an open line in the topology (inclusion attack).

Here, we also assume that the adversary can coordinate a topology error with other

measurements to render the attack undetected. Therefore, a UFDI attack can be

performed by leveraging the modified topology.

We assume that some of the lines in the topology are fixed (i.e., they are never

opened), which form the core part of the topology. We also allow the declaration

of secure line statuses, i.e., their topology is always faithfully represented in state

estimation. In order to model all these properties plus the topology change, we use a

list of notations as shown in Table 21. We use ui to denote whether line i is the true

or real topology, while vi and wi denote whether the line is fixed and the line status is

secure, respectively. In order to denote exclusion and inclusion attacks on line i, we

use pi and qi, respectively. Finally, ki represents whether line i is considered/mapped

in the topology.
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4.5.4 Formalization of Change in State Estimation

The attack on state xj specifies that the phase angle at bus j is changed. This

condition is formalized as follows:

∀1≤j≤n cj → (∆θj 6= 0) (22)

From Equation (19), it is obvious that a change of PL
i is required based on the

changes in state xfi (θfi) and/or state xei (θei). In the case of false data injection,

PL
i , θfi , and θei are changed to P ′Li , θ′fi , and θ′ei , respectively, and Equation (19)

turns into the following form:

P ′
L
i = di(θ

′
fi − θ′ei)

The subtraction of Equation (19) from the above equation represents whether there

are changes in the measurements and the states. The following is the resultant equa-

tion:

∆PL
i = di(∆θfi −∆θei)

In this equation, ∆PL
i = P ′Li −PL

i , ∆θfi = θ′fi−θfi , and ∆θei = θ′ei−θei . If ∆θfi 6= 0

(or ∆θei 6= 0), then it is obvious that state xfi (or xei) is changed (i.e., attacked). The

above relation for line i holds only if the line is taken in the topology. We formalize

this constraint as follows:

∀1≤i≤l ki → (∆PL
i = di(∆θfi −∆θei)) (23)

If a line is not considered in the topology, then there should be no requirement of
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false data injection to corresponding measurements for launching UFDI attacks:

∀1≤i≤l ¬ki → (∆PL
i = 0) (24)

4.5.5 Formalization of Topology Change

In the case of an inclusion attack, a line is considered in the topology though the

line is open in reality. Conversely, a closed line in service is omitted in an exclusion

attack. These are formalized as follows:

∀1≤i≤l ki → (ui ∧ ¬pi) ∨ (¬ui ∧ qi) (25)

A line can be excluded from the topology if and only if the line exists in the real

or true topology and it is not a securely fixed line. This is formalized as follows:

∀1≤i≤l pi → ui ∧ ¬fl i ∧ ¬wi (26)

Similarly, a line can be included in the topology if the following condition holds:

∀1≤i≤l qi → ¬ui ∧ ¬wi (27)

Note that for a topology error to remain undetected, it is necessary to alter certain

measurements in necessary amounts. If a closed line is excluded from the topology,

the corresponding line power flow measurement must be zero. As the states remain

the same after the topology change, the corresponding connected buses’ power con-

sumption measurements are adjusted accordingly. On the other hand, when an open

line is included in the topology, there should be a non-zero line power flow according

to the phase difference between the connected buses. Let ∆P̄L
i be the change amount
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in the power flow measurement of line i in the case of a topology change. Then, the

following constraints hold:

∀1≤i≤l pi → (∆P̄L
i = −PL

i ) (28)

∀1≤i≤l qi → (∆P̄L
i = PL

i ) (29)

If no exclusion or inclusion attack is done on line i, then ∆P̄L
i = 0. Now, if line

power flow measurement i (or l+ i) needs to change, according to Equations (28) and

(29), we need to know PL
i . In the case of an exclusion attack, PL

i already exists (i.e.,

the actual measurement) and the attacker must have access to it. In the case of an

inclusion attack, PL
i needs to be estimated based on the difference between the states

of the connecting buses.

4.5.6 Formalization of False Data Injection to Measurements

Here, we compute and formalize required changes to be applied to the measure-

ments for coordinating the attack. The change for a power flow measurement is the

summation of individual changes that are required for topology poisoning and state

corruption. If ∆PL
i,total is the total change required on the line i’s power flow, then:

∀1≤i≤l ∆PL
i,total = ∆PL

i + ∆P̄L
i (30)

According to Equation (20), the change in the measurement of the power con-

sumption (∆PB
j,total) at a bus depends on the total changes done in the power flow

measurements of the lines incident to this bus. Therefore,

∀1≤j≤b ∆PB
j,total =

∑
i∈Lj,in

∆PL
i,total −

∑
i∈Lj,out

∆PL
i,total (31)
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When ∆PL
i,total 6= 0, the measurements corresponding to line i (i.e., ti and tl+i)

are required to be altered if they are taken. Similarly, when ∆PB
j,total 6= 0, the power

consumption measurement at bus j needs to be changed if this measurement is taken.

Therefore:

∀1≤i≤l(∆P
L
i,total 6= 0)→ (ti → ai) ∧ (tl+i → al+i)

∀1≤j≤b (∆PB
j,total 6= 0)→ (t2l+j → a2l+j)

(32)

Conversely, measurement zi is altered only if it is taken and the corresponding

power measurement is changed:

∀1≤i≤l ai → ti ∧ (∆PL
i,total 6= 0)

∀1≤i≤l al+i → tl+i ∧ (∆PL
i,total 6= 0)

∀1≤j≤b a2l+j → t2l+j ∧ (∆PB
j,total 6= 0)

(33)

4.5.7 Formalization of Attack Attributes

4.5.7.1 Attacker’s Knowledge

If the admittance of a line is unknown, then an adversary cannot determine the

necessary changes that need to be applied to the measurements associated with the

line. We formalize this condition as follows:

∀1≤i≤l (∆PL
i 6= 0)→ ((ti ∨ tl+i ∨ tfi ∨ tei)→ gi) (34)

The following equation shows an example of specifying the attacker’s knowledge

about the admittances of the lines:

g1 ∧ g2 ∧ g3 ∧ ¬g4 ∧ · · · ∧ gl (35)



168

4.5.7.2 Attacker’s Accessibility

The attacker usually does not have the necessary physical or remote access to inject

false data into all the measurements. If a measurement is secured, then, although the

attacker may have the ability to perform false data injection to the measurement, the

false data injection will not be successful. Hence, the attacker will only be able to

change measurement zi if the following condition holds:

∀1≤i≤m ai → ri ∧ ¬si (36)

It is necessary to specify whether a measurement is secured or not, as well as

whether or not a measurement is accessible to the attacker. The following equations

are examples of such specifications:

¬s1 ∧ s2 ∧ ¬s3 ∧ ¬s4 ∧ · · · ∧ sm (37)

r1 ∧ ¬r2 ∧ r3 ∧ ¬r4 ∧ · · · ∧ rm (38)

4.5.7.3 Attacker’s Capability for Simultaneous Attacks

The resource limitation specifies that, at a particular time, the attacker can inject

false data into TA number of measurements, at the maximum:

∑
1≤i≤l

ai ≤ TA (39)

Due to limited resources, an attacker can only access or compromise a limited

number of buses at a particular time. A bus is required to be accessed or compromised
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if a measurement residing at this bus is required to be altered. Therefore:

∀1≤i≤l ai → hfi

∀1≤i≤l al+i → hei

∀1≤j≤b a2l+j → hj

(40)

Let TH be the maximum number of substations that the attacker can compromise.

Then: ∑
1≤j≤b

hj ≤ TH (41)

4.5.7.4 Attacker’s Target

The attacker most often has a selected set of states for launching an attack. How-

ever, the attacker usually has no specification on the rest of the states. Thus, an

unspecified state might be attacked or not. For example, if the attacker targets states

1, 4, and 6, then:

c1 ∧ c4 ∧ c6 (42)

It is possible to launch a UFDI attack on a number of measurements if the attacker

can form a cut that divides the grid into two disjoint islands [80]. The attacker can

attack all of the buses of one side of the cut with respect to the other side by altering

the power flow and consumption measurements of the lines and the buses on the cut.

However, in this case, all of the attacked buses have the same change of their states

(i.e., phase angles). If the state change of a bus is the same as that of the neighboring

buses, then there is no state change relative to each other. In this case, the impact due

to the attack might not be significant. Therefore, we also consider the constraints
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Figure 29: The diagram of the IEEE 14-bus test system. Red circles are used for bus
numbers, green squares are for transmission line numbers, and round cornered blue
squares are for measurement numbers.

specifying whether state changes are required to be different. For example, if the

attacker requires that state 1 and state 4 must have a different amount of change,

then:

(θ1 6= θ4) ∧ · · · (43)

4.5.8 An Example Case Study

In this section, we briefly discuss the process of implementing our formal model.

Later, we present a synthetic case study.
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Table 22: Line information of the example in Section 4.5.8

Line # From Bus To Bus Line Admittance Knowledge? True? Core? Secured? Can Alter?
1 1 2 16.90 1 1 1 0 0
2 1 5 4.48 1 1 1 0 0
3 2 3 5.05 0 a 1 1 0 0
4 2 4 5.67 1 1 1 0 0
5 2 5 5.75 1 1 0 b 0 0
6 3 4 5.85 1 1 1 0 0
7 4 5 23.75 0 1 1 0 0
8 4 7 4.78 1 1 1 0 0
9 4 9 1.80 1 1 1 0 0
10 5 6 3.97 1 1 1 0 0
11 6 11 5.03 1 1 1 0 0
12 6 12 3.91 1 1 1 0 0
13 6 13 7.68 1 1 0 0 0
14 7 8 5.68 1 1 1 0 0
15 7 9 9.09 1 1 1 0 0
16 9 10 11.83 1 1 1 0 0
17 9 14 3.70 0 1 1 0 0
18 10 11 5.21 1 1 1 0 0
19 12 13 5.00 1 1 1 0 0
20 13 14 2.87 1 1 1 0 0

aThe attacker does not know the impedance of this line.
bThis line is not fixed in the topology (i.e., it is not a part of the core topology).

4.5.8.1 SMT Encoding

We encode the system configuration and the constraints into SMT [23]. We write

a program leveraging the Z3 Dot Net API [17] for encoding our formal model. We

encode our formalizations mainly using Boolean (i.e., for logical constraints) and real

(e.g., for the relation between power flows or consumptions with states) terms. The

system configurations and the constraints are given in an input file. By executing

the model (in Z3), we obtain the verification result as either satisfiable (sat) or un-

satisfiable (unsat). If the result is unsat, it means that there is no attack vector

that satisfies the constraints. In the case of sat, we get the attack vector from the

assignments of the variables, ais (and his), which represent the measurements that

must be altered for the attack.
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Table 23: Measurement info of the example in Section 4.5.8

Measurement # Is Recorded? Secured Can Alter?

1 1 a 1 b 0
2 1 1 0
3 1 0 1 c

4 1 0 1
5 0 0 0
. . . . . . . . . . . .
11 1 0 1
12 1 0 1
13 1 0 1
14 0 0 0
15 1 1 1
. . . . . . . . . . . .
21 1 0 1
22 0 0 0
23 1 0 1
24 1 0 1
25 1 1 1
. . . . . . . . . . . .
41 1 1 0
42 1 0 1
43 1 0 1
44 1 0 1
45 1 1 0
. . . . . . . . . . . .

aThe measurement is taken or recorded for state estimation.
bThe measurement is secured, especially in terms of integrity.
cThe attacker has the accessibility to alter the measurement.

4.5.8.2 Example

We present our results on the IEEE 14-bus test system (see Figure 29) [90]. The

input about the line information is shown (partially) in Table 22. The line information

includes a set of data for each line: line number, end buses of the line, a value

indicating the line admittance, the knowledge status (i.e., whether the line admittance

is known to the attacker), and three types of data about this line regarding the

grid topology (i.e., whether this line is included in the actual topology, whether its

existence is fixed in the topology, and whether associated topology information is

secured). In this example, the admittances of lines 3, 7, and 17 are unknown. All of

the 20 lines (as shown in Figure 29) are included in the true topology, though lines

5 and 13 are not a part of the core topology. The topology statuses regarding these
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two lines are crucial to estimate whether they are in open state or closed state.

The input about the measurements is partially shown in Table 23. Since this sys-

tem has 14 buses and 20 lines, the maximum number of potential measurements is

54. Each row of Table 23 includes (i) whether the measurement is taken for state esti-

mation (all the potential measurements are taken except measurements 5, 10, 14, 19,

22, 27, 30, 35, 43, and 52), (ii) whether the measurement is secured (measurements

1, 2, 6, 15, 25, 32, and 41 are secured) and (iii) whether the attacker has the accessi-

bility to alter the measurement (e.g., among the taken measurements 1, 2, 3, and 4,

measurements 3 and 4 are accessible, while measurements 1 and 2 are inaccessible).

Let us now consider two different objectives of the attacker.

Attack objective 1: Let the attacker’s objective be to attack states 9 and 10 but in

different amounts. Due to resource limitations, the attacker cannot alter more than

16 measurements at a time, and these measurements cannot be distributed in more

than 7 substations (i.e., buses). The execution of the model corresponding to this

example returns sat along with the assignments to different variables of the model.

From the assignments, we find that the measurements selected for attacking states

9 and 10 are 8, 9, 16, 18, 20, 28, 29, 36, 38, 40, 44, 47, 50, 51, 53, and 54. These

measurements are distributed in buses 4, 7, 9, 10, 11, 13, and 14. If the attacker’s

resources are more limited (e.g., 15 measurements and/or 6 buses only), then unsat

is returned. However, if the attacks on states 9 and 10 can be the same, then there

is a solution. In this case, the measurements for false data injection are 8, 9, 11, 13,

28, 29, 31, 33, 39, 44, 46, 47, 49, 51, and 53, while the corresponding buses are 4, 6,
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7, 9, 11, and 13. In both of these cases, along with 9 and 10, some other states are

also required to be corrupted; only states 9 and 10 cannot be attacked alone.

Attack objective 2: Here the attacker’s objective is to attack state 12 only (i.e., no

other states will be affected). The execution of the corresponding model shows that

measurements 12, 32, 39, 46, and 53 must be altered in this case. If measurement 46

is considered as secured, then no attack vector is possible. Let us now consider that

the attacker has the ability to alter the topology information. In this scenario, we

have a solution, where line 13 is excluded from the topology by injecting false data

into the topology information. In this case, the measurements for false data injection

are 12, 13, 32, 33, 39, and 53, which include necessary changes required for the state

change along with the topology change.

4.6 Attack Impact Verification

In this section, we first discuss briefly the framework of verifying the impact of

stealthy attacks on OPF. Then, we discuss the associated formal models. We provide

explanatory examples to demonstrate the formal framework.

4.6.1 Framework

We follow the framework as shown in Figure 30 for verifying the impact of stealthy

attacks on OPF. The framework includes two models: (i) the stealthy attack model

that finds attack vectors corresponding to stealthy topology attacks, and (ii) the OPF

model that verifies whether there is an OPF solution within a threshold cost. Since

the objective is to launch a stealthy attack such that the cost of power generation

(according to the OPF solution) increases by a specific amount or more, the idea of
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Figure 30: The framework for finding the impact of UFDI attacks on OPF.

impact analysis is as follows. First, we look for an attack vector according to the

attack model (i.e., attack attributes). If the attack model gives an attack vector,

we update the system with respect to that vector (i.e., according to the changed

loads and the modified topology). Then, we verify whether there is an increase in

the generation cost by executing the OPF model. In order to verify this increase, we

set the threshold cost by adding the expected raise with the original (i.e., in the no

attack scenario) OPF solution and check whether there is still an OPF solution within

this threshold value. If the result is no, then we are successful in finding an attack

vector that causes a minimum amount of increase in the generation cost. Otherwise,

the same process will be executed for a new attack vector until either we find a vector

satisfying the objective or there are no more vectors. It is worth mentioning that

the objective is to increase the generation cost while ensuring convergence of OPF,

considering the power generation limit of each generator and the capacity of each
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transmission line. The framework combines the stealthy attack model and the OPF

model into a single model, although they can be executed separately as shown in

Figure 30.

4.6.2 Formalization of Impact of UFDI Attacks on OPF

In order to model the impact of stealthy attacks on OPF, we first model the OPF

process as a problem of verifying whether there is a generation dispatch plan satisfying

the demand within a threshold generation cost. Then, we model the feasibility of a

stealthy attack inducing a particular increase in the generation cost.

4.6.2.1 Optimal Power Flow

The objective of the OPF is to optimally control the generation according to the

load requirement. Let P̂G
j be the changed power produced by the generator connected

at bus j after considering the state estimation result. The main constraint for OPF

is that the total generation must be equal to the total expected load. Therefore:

∑
1≤j≤b

P̂G
j =

∑
1≤j≤b

P̂D
j (44)

Each generator has lower and upper bounds on power production. If P̂G
j,max and

P̂G
j,min denote the maximum and minimum generation limits of the generator at bus

j, then this constraint is formalized as follows:

∀1≤j≤b P̂
G
j,min ≤ P̂G

j ≤ P̂G
j,max (45)

The OPF process considers the entire set of power flow equations as constraints,

as illustrated in Equation (16) (Section 4.1). In the case of OPF, let θ̂, P̂L
i , and
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P̂B
j be the state of bus j, the power flow on line i, and the power consumption at

bus j, respectively. Then, in the case of a power flow measurement, the following

equation, similar to Equation (19) must hold, if and only if the line is considered in

the topology:

∀1≤i≤l ki → (P̂L
i = di(θ̂fi − θ̂ei)) (46)

Consequently, the following equations, similar to Equations (20) and (21), must

hold:

∀1≤j≤b P̂B
j =

∑
i∈Lj,in

P̂L
i −

∑
i∈Lj,out

P̂L
i

∀1≤j≤b P̂B
j = P̂D

j − P̂G
j

(47)

Each line has a capacity for the power flow (i.e., the maximum power that can flow

through that line). Let PL
i,max be the upper bound for the line capacity. Therefore:

∀1≤i≤l P̂L
i ≤ PL

i,max (48)

Let Cj(.) denote the cost function for the generator connected at bus j, which takes

the total generated power as the parameter and returns the total cost to generate that

power. Usually, Cj(.) is a strictly increasing convex function. Many electric utilities

prefer to represent their generator cost functions as piecewise linear equations (i.e.,

single or multiple segment linear cost functions [1]). Considering the viability of

modeling the cost function, we consider the latter form for cost functions, given by

the following equation:

Cj(P̂G
j ) = α + βP̂G

j (49)

Here α and β represent the cost-coefficients for that particular generator. In OPF, the
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objective is to minimize the total generation cost based on expected or estimated loads

at different buses. With the loss of generality, we model this objective as a constraint

which specifies that the cost must be less than a limit, TOPF . This constraint is

sufficient to understand the minimum impact of a UFDI attack. The constraint is

formalized as follows: ∑
1≤j≤b

Cj(P̂G
j ) ≤ TOPF (50)

We use notation OPF to denote the conjunction of the OPF constraints that we

have described above.

4.6.2.2 Change in Loads Due to Stealthy Attacks

According to Equation (21), ∆PB
j 6= 0 specifies that there is a load and/or gen-

eration power change at the bus. In this work, we assume that a change in the

measurement of a bus power consumption specifies a change exclusively in the load,

which leads to ∆PG
j = 0. The reason behind this assumption is as follows: The mea-

surement of the power produced by a generator (i.e., the power injected to the bus by

a generator) is well-defined, which is changed only if AGC suggests that. Typically,

after the estimation of states, if any load change is found, the optimal power flow

process (along with contingency analysis) is run, the result of which shows whether

(and which) change in the generation is required for optimal efficiency. Therefore,

according to Equation (21), the change in the power consumption of a bus specifies

the change in the load at that bus. The following equation denotes this:

∀1≤j≤b ∆PD
j = ∆PB

j,total
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Let P̂D
j be the estimated load (according to the result of state estimation) at bus

j, which is also the input to the OPF model. Therefore:

∀1≤j≤b P̂D
j = PD

j + ∆PD
j

At a particular bus j, there is usually an expected bound for the load. If P̂D
j,max

and P̂D
j,min are the maximum and minimum loads at bus j, the following constraint

holds:

∀1≤j≤b P̂
D
j,min ≤ P̂D

j ≤ P̂D
j,max (51)

4.6.2.3 Impact on OPF

In order to define the increase in the generation cost (i.e., the increase of TOPF

in the OPF model), let TOPF be the optimal cost of generation in the normal (i.e.,

attack-free) situation. Now, if the attacker’s objective is to increase the cost by I%

of the optimal cost, then TOPF = TOPFI/100. Therefore, the constraint to impose the

desired impact by launching a UFDI attack is formalized as follows:

(TOPF = TOPFI/100)→ ¬ (∃P̂G
1 ,P̂

G
2 ,··· ,P̂G

b
OPF ) (52)

The above constraint states that there is no possible allocation of generation that can

cost less than TOPF .

In addition, since the attacker’s goal is not to make the OPF solution fail to con-

verge (possible when the line capacity constraints fail), it must be ensured that there

are OPF solutions for larger values:

(TOPF >> TOPFI/100)→ OPF (53)
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Table 24: Input of the example in Section 4.6.3

# Topology (Line) Information
# (line no, from bus, to bus, admittance, line capacity, knowledge?, in true topology?,
# in core topology?, secured?, can alter?)
1 1 2 16.90 0.30 1 1 1 1 0
2 1 5 4.48 0.30 1 1 1 1 0
3 2 3 5.05 0.20 1 1 1 1 0
4 2 4 5.67 0.30 1 1 0 0 1
5 2 5 5.75 0.30 1 1 1 1 1
6 3 4 5.85 0.30 1 1 1 1 1
7 4 5 23.75 0.30 1 1 1 1 1
. . . . . . . . . . . .

# Measurement Information
# (measurement no, measurement taken?, secured?, can attacker alter?)
1 1 1 0
2 1 1 0
3 1 0 1
4 1 0 1
5 0 0 0
6 1 0 1
7 1 0 1
8 1 0 1
9 1 0 1
10 0 0 0
. . . . . . . . . . . .

# Attacker’s Resource Limitation (measurements, buses)
28 7

# Generator Information (bus no, max generation, min generation, cost coefficient)
5
1 1.80 0.20 15 200
2 1.20 0.10 20 220
3 1.60 0.10 25 120
6 1.60 0.20 20 200
8 1.60 0.20 15 140

# Load Information (bus no, existing load, max load, min load)
11
2 0.20 0.30 0.10
3 0.40 0.40 0.10
4 0.15 0.40 0.05
5 0.15 0.40 0.05
6 0.25 0.40 0.05
9 0.15 0.30 0.05
10 0.10 0.30 0.05
11 0.20 0.30 0.10
12 0.15 0.30 0.05
13 0.15 0.40 0.00
14 0.10 0.30 0.05

# Cost Constraint, Minimum Cost Increase by Attack (in percentage)
412 5

4.6.3 An Example Case Study

Here, we present an example case study demonstrating the impact of the stealthy

attacks on the topology and the states. In these examples, we consider the same
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14-bus system as shown in Figure 29.

The complete input regarding the example is shown in Table 24. The line infor-

mation includes a set of data for each line: line number, end buses (from-bus and

to-bus) of the line, a value indicating the line admittance, the line capacity (i.e., the

maximum possible power flow through this line), the knowledge status, and the line

status properties: (i) whether this line is included in the true topology, (ii) whether

its existence is fixed in the topology, (iii) whether the topology information regarding

this line is secured, and (iv) whether the attacker has the ability to alter the data.

According to the input, all of the 20 lines are included in the true topology, while

lines 4, 14, and 17 are not included in the core topology. The topology mapping infor-

mation regarding lines 4 and 14 is not secured, while the attacker has the capability

to change the topology information regarding all of the lines, except 1, 2, and 3. Ac-

cording to the measurement information, all of the potential measurements are taken

except measurements 5, 10, 14, 19, 22, 27, 30, 35, 43, and 52. Measurements taken

at bus 1 are secured. The attacker has access to all measurements that are taken.

The information about the buses in terms of load and generation is also shown

in Table 24. The capability of the generators (i.e., the maximum and minimum

generations) corresponding to the buses are given. We assume that a generation bus

only has a single generator connected. The generation cost of power is followed from

the simple linear function as shown in Equation (49). The values of coefficient α and

β for each generator are given in the input. Note that these coefficients are taken

arbitrarily and do not correspond to the real costs. The total load of the system is

2.0 per unit, i.e., 200 MW (considering a 100 MVA base). The cost constraint in the
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attack-free condition is $4,120 (i.e., there is a satisfied OPF solution in this cost).

In this example, the attacker’s objective is to launch a stealthy topology attack,

such that he or she can create at least a 5% increase in the generation cost. In

this example, the attacker’s resource constraints limit alteration to a maximum of 28

measurements at a time. These measurements can be distributed at no more than 7

buses. The execution of the model corresponding to this example returns sat along

with the assignments to different variables of the model. From the assignments, we

find that:

• An exclusion attack on the topology is launched such that lines 4 and 14 are

unmapped in the topology.

• States 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, and 14 have been attacked.

• In order to keep this attack undetected, measurements 3, 4, 6, 7, 11, 13, 18,

23, 24, 26, 31, 33, 38, 39, 42, 44, 46, 50, 51, and 53 need to be altered. These

measurements are distributed in buses 2, 3, 4, 6, 10, 11, and 13.

The increased generation cost is almost $4,550, which is approximately 10% more

than the optimal value received in an actual (i.e., without attack) scenario.

4.7 Security Hardening Against Stealthy Attacks

In the last section, we have described the model for determining potential UFDI

attacks under given constraints. The formal verification model allows a grid operator

to understand potential threats on state estimation with respect to an expected scale

of attack (expressed in terms of different attack attributes) and to take necessary se-
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curity measures accordingly. However, we need an automated mechanism to generate

a security architecture. In this section, we present such a mechanism.

4.7.1 Preface

Although the authors in [74, 75] show that UFDI attacks can be defended if a

strategically chosen set of measurements are secured, they only consider a specific

attack model, where adversaries have perfect knowledge and unlimited capability.

Based on this worst case attack model, the set of measurements to be secured can

exceed the grid operator’s resource (e.g., budget). Therefore, a security design is

required that can provide security within the resources of the grid operator, while

keeping the power system state estimation secure with respect to an attack model

(i.e., security requirements).

Our solution utilizes the verification model to determine a security architecture,

which typically includes a list of measurements that must be secured. With respect

to the false data injection, we consider a measurement as secured if it is data integrity

protected. Since securing a number of measurements distributed in many substations

is very costly compared to a set of measurements distributed in a small number

of substations, we mainly focus on the substation/bus specific security architecture.

Moreover, securing a bus usually means securing all of the measurements taken in that

bus. A bus can be secured by deploying a PMU (can be multiple for a large bus) at the

bus with necessary security measures [91, 92]. By the security measures, we mainly

consider the data integrity protection of the measurements. Since the PMU can

provide the voltage phasor of the bus and current phasors of all the branches incident
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Figure 31: The flow diagram of the security architecture synthesis mechanism for
protecting state estimation attack.

to the bus, if the PMU is secured then all of these measurements become secured.

At the unit level, security is being provisioned by existing PMU vendors [93]. Here,

although we propose a mechanism to find the security architecture as a set of buses

to be secured, a similar mechanism can be used for synthesizing security architecture

with respect to measurements only.

4.7.2 Synthesis Design

Figure 31 shows the flow diagram of the security architecture synthesis mechanism

for resisting state estimation attacks. It is an iterative approach with the combina-

tion of two formal models. One of these models is the candidate security architecture

selection model. It selects the set of buses as a candidate of the security architecture

considering some invariant and user-driven constraints on the security architecture.

We discuss this candidate security architecture selection model in the following sub-

section.



185

The second model is our UFDI attack verification model, which verifies whether

the selected candidate architecture can protect state estimation from UFDI attacks

with respect to the security requirements (i.e., an expected attack model). Security

requirements are ensured when the verification model returns unsat (i.e., no attack

vector can be found). If a candidate architecture fails to ensure the required security,

a constraint is added to the candidate security architecture selection model so that

this architecture is removed from the potential candidate set. The updated model

is solved for another candidate architecture and the verification model is used to

ensure the security requirements. This process continues until a security architecture

is found (i.e., as long as the verification model returns unsat). However, when the

candidate architecture selection model fails to return a candidate set, then no security

architecture is possible according to the given security requirements.

4.7.3 Formalization of Candidate Architecture Selection

The main constraint for selecting the buses in the architecture is the resource

limitations of the grid operator. The number of selected buses cannot exceed a limit

(TH). If hj denotes whether bus j is secured, then:

∑
1≤j≤b

hj ≤ TH (54)

Securing a bus implies that all of the measurements that are recorded at this bus are

secured. If Lj denotes the lines connected to bus j, we formalize this as follows:

∀1≤j≤b hj → (t2l+j → s2l+j)

∀1≤j≤b hj →
∧
i∈Lj

(ti → si) ∧ (tl+i → sl+i)
(55)
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The grid operator may have the limitation that he or she is not capable of securing

a particular set of buses. Those buses should be excluded from the candidate set, as

shown in the following arbitrary example:

¬h2 ∧ ¬h6 ∧ · · · (56)

Different analytical constraints can be used to limit the search space in the security

architecture selection model. From Equation (23), we know that if no change is

possible in the line power flow, the phase difference between the two buses connected

by the line cannot be changed. Hence, if a bus is secured (i.e., all the measurements

at the bus are secured), the state of a connected bus cannot be changed with respect

to the state of the secured bus. UFDI attacks on the states of these two buses are

possible through a third bus which is not connected to the secured one but rather

to the other. Therefore, securing the connected bus is not required to protect state

estimation of the grid. Equation (57) formalizes this constraint.

∀1≤j≤b hj →
∧
i∈Lj

((fi = j) ∧ ti)→ ¬hei)∧

((ei = j) ∧ tl+i)→ ¬hfi)

(57)

4.7.4 An Example Case Study

In this subsection, we briefly describe the implementation of the synthesis technique

followed by a case study illustrating our security architecture synthesis mechanism.
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Algorithm 2 Security Architecture Synthesis

1: FAttack formalizes the UFDI attack verification model.
2: FSecure formalizes the security architecture selection model.
3: loop
4: Save (Push) current FAttack into F̄Attack.
5: if Solver returns a model M (i.e., sat) for FSecure then
6: Get the security architecture S from M .
7: else
8: Exit program.
9: end if

10: Add security constraints to FAttack based on S.
11: if Solver returns unsat for FAttack then
12: Return S.
13: else
14: Add the constraint !S to FSecure.
15: end if
16: Retrieve (Pop) the saved formalization F̄Attack into FAttack.
17: end loop

4.7.4.1 Implementation

Similar to our verification model, we encode the candidate security architecture

selection model using SMT [23]. Then, we implement the synthesis mechanism by

combining the verification model and candidate selection model as shown in Algo-

rithm 2. The algorithm is an iterative process, which stops when a security archi-

tecture is found (line 12) or there is no more candidate set available for verification

(line 8).

4.7.4.2 Example

Here we present a case study based on the IEEE 14-bus test system illustrating

how our security architecture synthesis mechanism produces different security archi-

tectures in various scenarios, as shown below:
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(a) (b)

(c)

Figure 32: The security architectures (the green squared buses needs to be secured)
in different scenarios: (a) incomplete information (the red circled line’s admittance
is unknown), (b) complete knowledge, and (c) incorporating with topology poisoning
attack (the read lines are potential to inclusion or exclusion topology attacks). In all
scenarios, bus 1 is the reference bus.

Scenario 1: The attack model of the first scenario is similar to the first part of

the example (attacker’s objective 1) as shown in Section 4.5.8. In this scenario, the

attacker has limited information (i.e., admittances of lines 3 and 17 are unknown).

The grid operator can consider such a constraint on the attacker’s knowledge, if he

or she is certain that the admittance information regarding this set of lines is neither

disclosed nor predictable. The attacker also has limited resources, such that he or

she cannot attack more than 12 measurements simultaneously. The grid operator,
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due to resource constraints, can secure 4 buses maximally. Bus 1 is considered as the

reference bus. In this scenario, the security architecture produced by our mechanism

suggests that buses 1, 6, 7, and 10 are must be secured, as shown in Figure 32(a)

(i.e., all the measurements in these buses are data integrity protected). However,

there can be different sets of buses, which also can secure the system. Our synthesis

mechanism can synthesize all of these sets.

Scenario 2: In the second scenario, the attacker knows the complete information

(i.e., all line admittances) for launching UFDI attacks and he or she has the ability

to inject false data into any number of measurements. In this case, there is no solution

with 4 buses that can secure state estimation of the grid against UFDI attacks. If

the grid operator can secure 5 buses, there is a solution. In this solution, we need to

secure buses 1, 3, 6, 8, and 9 (see Figure 32(b)).

Scenario 3: This scenario is the worst case situation compared to the last two sce-

narios. Here, the attacker has complete knowledge of the grid and he or she has the

ability to inject false data into any number of measurements. In addition, the attacker

can change the topology by injecting false data to the topology information. In this

scenario, only lines 5 and 13 are considered vulnerable to line exclusion or inclusion

attacks. However, in this case, no solution is possible by securing 5 buses only. If

it is possible to secure 6 buses, then we have a satisfiable security architecture (i.e.,

buses 1, 4, 6, 8, 10, and 14), which is shown in Figure 32(c).
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4.8 Proactive Defense Against Persistent Attacks

4.8.1 Preface

The idea of moving target defense (MTD) has been studied for a decade, especially

in the field of cybersecurity [94]. Typical information technology systems operate in a

static environment. Configuration parameters, such as IP addresses, DNS names, net-

work topology, routing entries, security policies, software stacks, etc. remain mostly

static over relatively long periods of time. When a system is static, attackers get

enough time to know the configuration and behavior of the system, to understand

the vulnerabilities and corresponding attack vectors, and consequently to launch at-

tacks on the system. The same is true for cyber-physical systems like power grids,

where the physical and cyber systems are highly static, the operations are fixed, and

the protocols are known.

Moving target defense is the concept of controlled change across multiple system

dimensions in order to (i) increase uncertainty and apparent complexity for attackers,

(ii) reduce their opportunity space, and (iii) increase the costs of their probing and

attack efforts [95]. Usually, MTD is not meant to provide perfect security. The

aim of MTD is to enable the operations to be executed safely in a compromised

environment, where the system is defensible rather than perfectly secure, particularly

against persistent attacks. We have already discussed the attack attributes for UFDI.

The potential of moving target defense mechanisms lies in being able to randomize

or perturb one or more of these attributes, where possible. In this work, we devise

a moving target defense mechanism considering the knowledge attribute, where we
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add uncertainty to the information by changing the set of measurements and the

topology properties (i.e., line admittances). Although a persistent attacker may still

be successful in launching UFDI attacks, due to the uncertainty introduced by the

MTD strategy, the attack space reduces.

4.8.2 Moving Target Defense Strategy

In order to increase the uncertainty of the attacker’s knowledge about the power

grid system with respect to state estimation, our MTD mechanism takes two proper-

ties of the system: (i) the set of measurements that are considered in state estimation,

and (ii) the admittances of a group of lines in the topology.

4.8.2.1 Randomization of the Set of Measurements

In regular practice, a fixed number of measurements is used in the state estimation

process. According to the bad data detection algorithms, some of the measurements

can be ignored in the process, if they are noisy enough (i.e., bad) relative to the

rest of the measurements. An adversary needs to know the set of measurements

used in state estimation and alter a group of measurements from the set in order to

launch a specific UFDI attack. If the attacker does not know the measurement set

correctly, he or she may be unable to identify this group of required measurements

perfectly (i.e., one or more measurements can be missing in the group or included

without necessity). Therefore, if we can randomize the measurement set used in state

estimation by including a number of measurements from the unused (but possible)

measurements, attackers’ knowledge about the measurement set becomes uncertain.

For example, let us consider the IEEE 14-bus test system [90], which has 14 buses
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and 20 lines. With respect to the DC power model, it is possible to have 54 measure-

ments (considering forward and backward power flows through transmission lines and

power consumption at buses). Among these possible measurements, let us assume

that a fixed set of 30 measurements is taken (i.e., recorded and reported using sen-

sors/meters) for state estimation, while the remaining 24 potential measurements are

not. According to our MTD mechanism, we can take a set of 7 measurements from

the unused measurements by deploying sensors there if necessary. Then, from the

total of 37 measurements, we can select 30 at random to be used in state estimation.

However, the selected set must be capable of observing the system. Later in this

section, we present a formal model for selecting a measurement set according to the

observability requirement.

4.8.2.2 Perturbation of Line Admittances

There are distributed flexible AC transmission system (D-FACTS) devices, which

can be deployed on transmission lines and are capable of performing active impedance

(i.e., reactance) injections [96]. Leveraging this capability of D-FACTS devices, we

consider the randomization of line admittances in our MTD mechanism. We assume

that the admittance of a line can only be randomized if a D-FACTS device is deployed

there. However, there are some limitations of using D-FACTS devices. Changes in

impedance have impacts on the power flows, which can easily affect the power system

operations (e.g., the optimal power flow of the system [69]).

In order to obtain the effect on the power flows due to the deliberate changes in

impedance of power lines with the help of D-FACTS devices, a sensitivity analysis
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related to D-FACTS devices is thoroughly explained in [97]. In our MTD mechanism,

we consider a feasibility constraint in changing line admittances, which ensures that

the secured optimal power flow solution [69] remains the same in spite of the changes

in the admittances, although some of the power flows must change. We also need to

ensure that the changes cannot be trivial. Further, all the lines with D-FACTS devices

will not always be randomized. A set of lines among them will be chosen during each

state estimation, and only admittances of these chosen lines will be perturbed. We

assume that an adversary may know the actual admittance (i.e., base admittance) of

each of these lines, although he or she does not know the change amount. Therefore,

the changed admittance is assumed to be unknown to the adversary. We also assume

that when a set of line admittances is changed, the previously changed admittances are

returned back to the base admittances. As a result, at a particular time, admittances

of only the selected set of lines are unknown to the adversary.

Arguably, power system operations personnel may not be willing to perturb line

impedances for the exclusive purpose of detecting attacks. However, D-FACTS-based

perturbation of line parameters has been considered for minimization of power system

losses and voltage control applications [97]. In practice, such line parameter changes

could be leveraged for detecting attacks. In the rest of the paper, we illustrate the

MTD through perturbation of line parameters as exclusively done for attack detection,

while keeping in mind that perturbation done for other optimization applications

could be leveraged instead.
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Figure 33: The moving target defense (MTD) mechanism for hardening the security
of state estimation.

4.8.3 Formal Model for Strategy Selection

In Figure 33, we show the architecture of our MTD mechanism. It is a combination

of two modules, as shown in the figure: one for the selection of an arbitrary set of

measurements for state estimation, and another for the selection of an arbitrary set

of lines and corresponding admittance perturbations. In this section, we present the

formal designs of these two modules.

4.8.3.1 Selection of a Measurement Set

The power system is observable when the measurements, each of which represents

a power equation, must solve the unknown states. Therefore, we consider Equa-

tions (19) and (20) as constraints. Now, if a measurement is taken, its power flow or
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consumption measurement value is assumed to be zero. That is:

∀1≤i≤l (ti ∨ tl+i)→ (PL
i = 0)

∀1≤j≤b t2l+j → (PB
j = 0)

If the set of taken measurements can observe the system, when we consider each

of them as zero, all of the states must be the same, i.e., the difference between the

states of each connecting pair of buses should be zero. Therefore, if the system is not

observable with this set, then there exists at least a pair of buses which have different

states with respect to each other (i.e., nonzero difference). We find whether a set is

observable using this contradiction. Therefore, we take the following constraint that

all of the states cannot be the same:

∃1≤j1,j2≤b,j1 6=j2 θj1 6= θj2

Now, if there is no satisfiable solution to this model, we can conclude that the set of

measurements can observe the system.

4.8.3.2 Selection of Lines and Admittance Perturbations

In the selection of the lines and corresponding changes in admittances, the main

constraint is that the changes need to be done such that the OPF cost does not

increase. Specifically, our aim is to keep the generation dispatch as it is according to

the existing OPF, so that there is a minimum impact on the system operation due to

the topology change.

The main constraint for OPF is that the total generation must be equal to the

total expected load. Since we are not changing the demands at different buses, the
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required total generation remains the same. Now, the existing OPF solution can

remain optimal after the admittance changes, if and only if the changed power flows

still remain within associated transmission limits. Since all the power flow and con-

sumption equations must hold, we consider them (i.e., Equations (19) and (20)) as

constraints:

∀1≤i≤l PL
i = d̂i(θfi − θei)

∀1≤j≤b PB
j =

∑
i∈Lj,in

PL
i −

∑
i∈Lj,out

PL
i

Here, d̂i is the changed admittance of line i, such that d̂i = di + ∆di, where ∆di

is the change made on line i. The admittance of a line can be changed only if D-

FACTS devices are deployed. Therefore, considering that a line will be chosen for

admittance change when the necessary D-FACTS facility is installed there, we define

hi for denoting whether the line is chosen for admittance change. Then, the following

constraint holds on ∆di:

∀1≤i≤l ¬hi → (∆di = 0)

If there is a change in the line admittance, the change cannot be so small that

it does not have an impact. If R is the ratio of the minimum change over the line

admittance, then we can express this constraint as follows:

∀1≤i≤l hi → (∆di ≥ R× di) ∨ (∆di ≤ −R× di)

Each line has a capacity for the power flow (i.e., the maximum power that can flow
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through that line). Let PL
i,max be the line capacity. Therefore:

∀1≤i≤l PL
i ≤ PL

i,max

The change of a line’s admittance is useful to hinder adversaries from launching an

attack, if one or more measurements associated with this line are taken. It is worth

mentioning that there are four measurements associated with a line: two (forward

and backward) line flow measurements and two bus consumption measurements at

the end buses. Usually, it is beneficial to take a larger number of measurements

associated with a line so that we can have greater impact if the admittance of the line

is perturbed. However, in this model, we consider the minimum case as a constraint

such that at least one of the measurements associated with the line needs to be taken:

∀1≤i≤l hi → mi ∨ml+i ∨mfi ∨mei

The solution to this model verifies whether a given choice of admittance changes

on a selected set of lines satisfies the constraints. This model can even synthesize all

(or a number of) potential sets of lines for admittance randomization with changed

admittance values.

4.8.3.3 Impact of MTD on Attack Attributes

In order to launch a UFDI attack, power flows through various lines and power con-

sumptions at different buses are impacted (i.e., changed by ∆PL
i and ∆PB

j amounts,

as shown in Section 4.5.4). The attacker needs to inject necessary false data to the

measurements (i.e., meter readings associated with those power flows and consump-

tions). However, the attacker only needs to inject necessary false data to measurement
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i when it is taken. That is:

∀1≤i≤l (∆PL
i 6= 0)→ (ti → ai) ∧ (tl+i → al+i)

∀1≤j≤b (∆PB
j 6= 0)→ (t2l+j → a2l+j)

The randomization of the set of measurements, considered in state estimation, make

ti uncertain for the adversary.

If the admittance of a line is unknown to the attacker, he or she cannot determine

the necessary changes that need to be applied on the power flow measurements of the

line. The condition is formalized as:

∀1≤i≤l (∆PL
i 6= 0)→ ((ti ∨ tl+i)→ gi)

Moreover, when the admittance of a line is perturbed (i.e., randomized), we also

consider that the admittance is now unknown to the adversary, although the ac-

tual/base admittance of the line may be known to the adversary. Therefore, we take

the following constraint:

∀1≤i≤l hi → ¬gi

4.8.4 An Example Case Study

In this section, we present a case study demonstrating the performance of our

MTD mechanism with respect to successful UFDI attacks on the IEEE 14-bus test

system [90]. We use attackability, defined as the number of states which can be

attacked (i.e., infected by UFDI attacks) over the total number of states, as the

performance metric.



199

4.8.4.1 Implementation

In order to implement a prototype of the MTD mechanism, we again use SMT. We

encode the formal model of verifying whether a measurement set is observable. By

solving this model using Z3, we generate a number of measurement sets to be used

in state estimation. In our MTD mechanism, we randomly choose one measurement

set among them following the uniform distribution. We also encode the formal model

for the line admittance randomization. We first use the uniform distribution to select

a subset of lines among those where the D-FACTS devices are deployed. Then, by

executing this model in Z3, we determine whether the admittances of these lines can

be changed while satisfying all the necessary constraints.

4.8.4.2 Case Analysis Results

We analyze the performance of our MTD mechanism by analyzing attackability

under different scenarios considering access capabilities, knowledge limitations, and

security measures. In this case study, we mainly consider two kinds of adversaries:

(i) naive and (ii) sophisticated. The first type of adversary, as the name indicates,

is unaware of the MTD scheme. He or she believes that a fixed set of measurements

is used in state estimation. The second type of adversary knows that the MTD

mechanism is running at the grid operator’s side. As a result, in order to maximize the

chances of a successful attack, he or she picks an attack vector that can cover as many

potential sets of measurements as possible within resource and access limits. For both

kinds of adversaries, we consider the same resource constraints. An adversary can

attack 13-15 measurements at a time, while these measurements cannot be distributed
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Figure 34: The probability of attack success in the cases of different access capabilities:
(a) measurement-based MTD strategy and (b) measurement and line admittance-
based MTD strategy.

over more than 7-8 buses of the system. We execute each experiment at least 30 times

and take the arithmetic average of them.

Figure 34(a) shows the attackability (i.e., the number of states that can be at-

tacked out of the total) in three different cases with respect to the application of

our MTD mechanism and the adversary type. In the first case no MTD strategy is

applied, while in the latter two cases the MTD is used but the type of adversary is

different. In the second case the adversary is naive, while in the third case he or she

is sophisticated. In this set of experiments, only the MTD strategy of randomizing

the set of measurements used for state estimation is applied. Here, we consider the

14-bus test system. We take 100 sets of 30 measurements arbitrarily chosen from 37

taken measurements. We vary the accessibility of the adversary in the experiments

from 50% to 100%. We observe that the attack success probability is always high

when there is no MTD. In both of the cases of naive and sophisticated adversaries,

the attackability reduces significantly. In the case of a sophisticated adversary, the
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attackability reduction is smaller compared to a naive adversary. This is because the

sophisticated adversary uses all available resources to cover as many potential sets of

measurements as possible, while the naive adversary only knows one particular set of

measurements to be used in the state estimation process. The graphs in Figure 34(a)

also show the impact of the adversary’s access capability on attackability. The results

are obvious: the lower the attacker’s access capability, the better the performance of

MTD strategy. In this case, the MTD mechanism is able to reduce attackability down

to 5% when the access capability is no more than 60%.

Figure 34(b) shows the attackability under different attack capabilities of the adver-

sary, as well. However, in this set of experiments, the MTD strategy of perturbing line

admittances is applied along with the randomization of the set of measurements used

for state estimation. We assume that D-FACTS devices are deployed on an arbitrary

set of 5 lines, while only 2 lines are chosen among them for admittance perturbation

at each time. According to the graphs in Figure 34(b), we can see that the MTD

mechanism shows improved performance when we apply both of the MTD strategies.

This performance improvement is more than 10% with respect to the measurement

set randomization-based MTD alone.

We analyze the impact of the adversary’s knowledge limitation on the performance

of the MTD. Again, we consider the same three cases: without MTD, MTD with naive

adversary, and MTD with sophisticated adversary. Figure 35(a) shows the impact of

knowledge limitation when only measurement based-MTD strategy is applied. We

observe that when the adversary has limited knowledge, MTD strategies perform

better. However, the impact of knowledge limitation is significant in the case of the
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Figure 35: The attackability in the cases of different levels of knowledge about line
admittances: (a) measurement-based MTD strategy and (b) measurement and line
admittance-based MTD strategy.

sophisticated adversary. Since a sophisticated adversary leverages knowledge about

the system and the MTD strategy in order to increase attack success, when the

knowledge is limited to less than 80%, the success drops significantly.

In the case of the MTD mechanism with both randomization of the measurement set

and perturbation of line admittances, we see similar behavior (see Figure 35(b)). The

only difference is that the impact of limited knowledge is higher in this case. That is,

the performance of the MTD increases with the decrease of the adversary’s knowledge,

and this increase is more significant when both MTD strategies are applied.

4.9 Evaluation

In this section, we present the evaluation results showing the scalability of the

our formal verification model, as well as that of the security architecture synthesis

mechanism.
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4.9.1 Methodology

We evaluate the scalability of our verification model by analyzing the time and

memory requirements for executing the model in different problem sizes. Problem

size depends mainly on the number of buses. We evaluate the scalability of our

model based on different sizes of IEEE test systems: 14-bus, 30-bus, 57-bus, 118-

bus, and 300-bus [90]. We also evaluate the impact of constraints on the scalability.

Similarly, we evaluate the scalability of our security architecture synthesis mechanism.

We run our experiments on an Intel Core i5 Processor with 8 GB memory. In this

evaluation, we do not compare the time complexity of our formal model with that of

the related work, especially with respect to [74] and [75], as neither of them provide

results showing the complexity of their respective mechanisms.

4.9.2 Time Complexity of Verification Model

4.9.2.1 Impact of the Problem Size

Figure 36(a) shows the execution time of our UFDI attack verification model with

respect to the problem size. We vary the problem size by considering different IEEE

bus test systems. We execute three experiments taking different states to be attacked

for each test case. The execution time of each case is shown in Figure 36(a) using a bar

chart. A graph is also drawn using the average execution time for each bus system. We

observe that with respect to the bus size the increase in the execution time lies between

linear and quadratic orders. For a specific bus size, we also observe that the execution

time differs with a different choice of states to be attacked. It is worth mentioning

that, although the general problem seems to have a quadratic growth considering the
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Figure 36: The verification model execution time in different experiments: (a) the
execution time with respect to the number of buses, (b) the execution time with
respect to the number of recorded measurements, (c) the execution time with respect
to the attacker’s resource limit, and (d) the execution time in unsatisfiable cases with
respect to the number of buses.

number of buses and the connectivity between them, we observe smaller execution

time. This is because the complexity depends not only on the number of buses,

but also on the number of lines, measurements, and attack attributes. An important

feature of power grid networks is that the average degree of a node (or bus) is roughly

3, regardless of the number of buses in the system [98]. This feature can explain why

the complexity is not strictly quadratic.

We also analyze the impact of the number of taken measurements (represented as
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the percentage of the total potential measurements) on the model execution time.

Figure 36(b) presents the evaluation results for the 30 and 57-bus test systems. The

results show that the execution time increases linearly with the increase in the number

of taken measurements. We also observe similar results for the other test systems.

When the number of recorded measurements increases, the number of measurements

to be considered for false data injection also increases, which results in a longer

verification time.

4.9.2.2 Impact of the Constraints

The verification of potential UFDI attacks depends on the given constraints, espe-

cially the attacker’s access capability and resource limit. We evaluate the impact of

the attacker’s resource limit on the analysis time. We consider IEEE 14- and 30-bus

systems. The analysis result is shown in Figure 36(c). We observe that the analysis

time decreases with the increase in the attacker’s resources (i.e., the resource con-

straint is relaxed) because the potential of UFDI attacks increases with the increase

of the attacker’s resources. However, this increase does not help in UFDI attacks after

some point (e.g., when the attacker’s resource limitation is almost 20 measurements,

as shown in Figure 36(c)). This is because the attacker already has resources which

are sufficiently large to launch a UFDI attack to one or more states.

4.9.2.3 Performance in Unsatisfiable Cases

When constraints are tight (e.g., when the attacker can attack a very limited num-

ber of measurements), there can be no satisfiable solution. In such cases, the SMT

solver often takes a longer amount of time to give the unsatisfiable (unsat) results
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compared to the execution time in satisfiable cases. In unsatisfiable cases, the SMT

solver needs to explore the entire solution space to conclude that there is no solution

based on the given constraints. Figure 36(d) shows a comparison between the execu-

tion times for satisfiable and unsatisfiable cases, with respect to different bus systems.

Since we consider different constraints and specific attack goals (corresponding to the

attack attributes) for an attacker, the potentiality of an attack vector is already lim-

ited. Therefore, in our experiments we observe smaller execution time differences

between satisfiable and unsatisfiable cases.

4.9.3 Time Complexity of Impact Analysis

As we are considering real values, there is usually an extremely large number of

stealthy attack vectors possible in an attack scenario. We observe that finding the

impact on OPF, considering such a large number of attack vectors, becomes exceed-

ingly time consuming when the number of buses becomes large. In order to keep

the computation cost tractable, we enhance our formal framework with the following

ideas:

• Although there can be a larger number of attack vectors, many vectors are close

to each other and the difference between them is insignificant with respect to

changes in loads. Therefore, it is enough to consider one of these similar attack

vectors to see the impact for each of them. According to this idea, the number of

attack vectors considered for finding the impact becomes limited, which leads

to a reduced execution time. In our experiments, we take the precision of 2

digits to consider two attack vectors as the same one.
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• The typical OPF model, as we present in Section 4.6.2, takes a very long time

for 57, 118, or larger bus systems, which makes the impact verification often

infeasible. In order to reduce the OPF model execution time, we adopt the idea

of using generation-to-load distribution factors for calculating the line power

flows in the OPF model [69, 99]. The use of shift factors alone cannot replace

the voltage phase angle based line power flow calculation as in Equation (46),

because it is conditioned with the existence of the line in the topology. There-

fore, we use the line outage or line closure distribution factors (LODF/LCDF)

to work with any line exclusion or inclusion attack [100]. However, since these

LODF/LCDF are usually calculated for single line breakage or closure, in our

evaluations, we only consider single line inclusion or exclusion-based topology

attacks.

4.9.3.1 Impact of the Problem Size

Figures 37(a), 37(b), and 37(c) show the execution time of our impact analysis

formal model in different scenarios, considering different kinds of stealthy attacks.

The graphs show the impact of the problem size on the execution time. We vary the

problem size by considering different IEEE bus test systems. At each problem size, we

perform three experiments taking different random scenarios, especially in terms of

the attacker’s resource limitation. We consider a 1-2% increase in the generation cost.

The execution time of each of these experiments is shown using a bar chart. A graph

is also drawn using the average execution time for each bus system. We see that, with

respect to the bus size, the increase of the execution time follows exponential order.
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Figure 37: The execution time of Impact verification on OPF with respect to the
number of buses in (a) UFDI attacks including topology attacks, (b) UFDI attacks
without topology attacks, (c) topology attacks without infecting states, and (d) un-
satisfiable cases.

The execution time of an SMT model depends on the number of variables and the

complexity of the theories applied in the model. The number of variables increases

with the problem size, particularly in this model due to the number of generators and

lines. However, we observe that the execution time is much higher in the scenario

when infection to the topology and states (Figure 37(a)) is considered together than

the cases when either one of them performed (Figures 37(b), and 37(c)). This is

because it is possible to launch multiple attacks on one or more states with respect

to a single line inclusion or exclusion attack, which increases the attack space (i.e.,
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search space), significantly. It is worth mentioning that, due to this larger attack

space, the second scenario can make larger (and various) impact on OPF compared

to the first.

4.9.3.2 Performance in Unsatisfiable Cases

Figure 37(d) shows the execution time in the unsatisfiable cases. If we compare the

graphs in this figure with those in Figure 37(c) and Figure 37(a), we can see that the

execution time in unsatisfiable cases is higher than the time in the satisfiable cases.

This is because the SMT solver requires verification of all the potential attack vectors

in order to conclude that there is no attack that can create the desired impact.

4.9.4 Time Complexity of Synthesis Mechanism

4.9.4.1 Impact of the Problem Size

The execution time of our security architecture synthesis mechanism with respect

to different test bus systems is shown in Figure 38(a). We consider two scenarios in

our experiments: (i) 90% of the measurements are recorded for state estimation, and

(ii) all of the measurements are recorded for state estimation. We can see in the figure

that the increase in the execution time is quadratic in order. However, this execution

time is significantly longer than that of the UFDI attack verification model that we

see in Figure 36(a). This is because, in order to synthesize the security architecture,

the verification model may need to be executed many times till a security architecture

is found.

We again analyze the impact of the number of taken measurements, specified as the

percentage of the total potential measurements, on the time of security architecture
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Figure 38: The execution time of the security architecture synthesis mechanism in
different experiments: (a) the execution time with respect to the number of buses,
(b) the execution time with respect to the number of taken measurements, (c) the
execution time with respect to the attacker’s resource limit, and (d) the execution
time in unsatisfiable cases with respect to the number of buses.

synthesis. Figure 38(b) shows the evaluation results corresponding to the 30 and

57-bus test systems. We observe that, with the increase in the number of taken

measurements, the execution time increases linearly. Since the selection of security

architecture is based on the buses, any increase in taken measurements does not

increase the selection time. However, we know that verification time increases with

the increase in taken measurements (as shown in Figure 36(b)). As a result, the time

for the security architecture synthesis increases.
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4.9.4.2 Impact of the Constraints

A security architecture depends on the given constraints (e.g., the attacker’s re-

source limit). We analyze the impact of this resource limit, represented as the per-

centage of the total measurements, on the security architecture synthesis time. The

analysis result is shown in Figure 38(c). We observe that the synthesis time decreases

slowly with the increase in the attacker’s resource limit value. This is because the in-

crease of the attacker’s resources decreases the time to find that a candidate security

architecture is unsuccessful, which is actually the satisfiability of the UFDI attack

model. As a result, the synthesis time decreases.

4.9.4.3 Performance in Unsatisfied Cases

When the grid operator’s resources can be so limited that there is no security

solution. The execution time in such an unsatisfiable case is usually high because the

synthesis mechanism requires verification of all the potential security architectures to

conclude that there is no security solution based on the given constraints. Figure 38(d)

shows the execution times of the synthesis mechanism in unsatisfiable cases. In this

analysis, we take the IEEE 30-bus test system and vary the resource limit values in

two different scenarios. In the first scenario a security plan needs a minimum number

of 10 buses, while in the second the number is 12. No security plan is possible with

less than this many buses. In the figure, we see that the closer the resource limit is to

the minimum number of necessary buses, the higher the execution time is to discover

that there is no solution. When the limit is too close to the minimum requirement, the

unsatisfiability comes at the very end of the search, and thereby the early rejection



212

 0

 0.5

 1

 1.5

 2

 2.5

 0  20  40  60  80  100  120

T
im

e 
(S

ec
on

d)

Number of Buses

Observability Model Execution Time

A single Observable Set
A group of 10 Observable Set

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  20  40  60  80  100  120

T
im

e 
(S

ec
on

d)

Number of Buses

Line Admittance Randomization Model Execution Time

Admittance of 5% lines are changed
Admittance of 10% lines are changed

(b)

Figure 39: These two graphs shows the model execution time with respect to the
number of buses: (a) the execution time of the observability model and (b) the
execution time of the line admittance randomization model.

of a potential search mostly does not take place.

4.9.5 Time Complexity of MTD Strategy Selection Models

We run experiments to evaluate the efficiency of our developed models for MTD

strategy selections and we find that both of these models are time-efficient. Fig-

ure 39(a) shows the execution time of our observability verification model with re-

spect to the problem size. We observe that the model execution time lies within

a few seconds in the case of 100 buses. The execution time of the line admittance

perturbation model is presented in Figure 39(b), which shows that the model takes

approximately 15 seconds for 100 buses.

4.9.6 Memory Complexity

The memory required by the SMT solver [17] for executing our verification model

(refer to Section 4.5) and candidate security architecture selection model (refer to

Section 4.7) is evaluated in different IEEE bus test systems. The memory requirement
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Table 25: The required memory space (in MB)

# of Buses Verification Model Candidate Selection Model

14 1.32 0.05
30 2.60 0.10
57 4.56 0.16
118 9.69 0.31

for an execution of the SMT model depends mainly on the number of variables defined

in the model and the number of intermediate variables generated by the solver to

implement the satisfiability modulo theories used in the model. The memory analysis

results are presented in Table 25, which shows that memory usage of our models

increases almost linearly with the number of buses.

We also evaluate the memory or space required by the SMT solver [17] for executing

our MTD strategy selection models as presented in Section 4.8. Here, we consider

the 14-bus test system. The memory requirement for an execution of the SMT model

depends mainly on the number of variables defined in the model and the number of

intermediate variables generated by the solver to implement the satisfiability modulo

theories used in the model. Our analysis results show that the observability model

takes less than 4 MB of memory, while the line admittance randomization model

needs less than 22 MB of memory.

4.10 Conclusion

Securing state estimation against cyber-attacks is of paramount importance to

maintain the integrity of the power grid. We propose an SMT-based formal frame-

work to systematically investigate potential security threats, particularly the feasi-

bility of stealthy cyber-attacks, on state estimation. We also extend the framework
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to show the impact of stealthy attacks on the economic operation of a power system

by considering the OPF module. Thus, our formal framework is capable of mod-

eling stealthy attacks considering an adversary’s constraints, analyzing the attack’s

feasibility, and quantifying consequences in terms of increases in overall generation

costs. The framework also allows an operator to capture interdependency among at-

tack attributes to synthesize a security architecture, which secures a set of buses for

immunity against UFDI attacks. In addition, we propose an agility-based security

solution by introducing uncertainty in the system following the MTD idea. In this

mechanism, we apply randomization on the power grid system properties, particu-

larly the set of measurements that is used in state estimation and the admittances of

a set of lines. We present formal models to find the observable sets of measurements

and the lines for randomizing admittances. The scalability of the models is evaluated

with experiments and case-studies on different IEEE bus test systems. Our results

show that our frameworks can solve problems up to a few hundreds of buses, although

with different levels of efficiency. Our stealthy attack verification model executes in

a few seconds for a grid system with 100 buses, while the time for the attack impact

verification model takes several hours for a similarly sized system. The formal models

provide a basis for the development of cyber-security tools for modern power grids.

In the future, we would like to investigate stealthy attacks and their impact on the

energy market’s security.



CHAPTER 5: SUMMARY AND FUTURE WORK

Throughout this dissertation, we discuss the security of different major components

of a smart grid and develop formal models for its security analysis. The research has

two primary goals: (i) to develop analytics to proactively identify potential security

threats, and (ii) to devise mechanisms for hardening the security of the grid against

those threats. We achieve these two primary goals in three research thrusts that

we have already discussed in the previous chapters in detail. In this chapter, we

summarize those works. Next, we present an outline of potential research problems

for future work, some of which are potential extensions of this dissertation, while the

rest are new problems with a potential for applying the technical approaches similar

to this dissertation.

5.1 Overview of Contributions, Technical Approaches, and Evaluation Results

In this section, we summarize our contributions and corresponding technical ap-

proaches. We also summarize the evaluation results.

5.1.1 Security Verification for AMI and SCADA

In the first chapter, we present a security verification framework for smart grids.

Due to the heterogeneity in physical and network device configurations and emerging

cyber-physical security threats, an automated analysis of smart grid configuration

is an important as well as challenging problem. Considering this challenge, we first
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build a formal model for verifying threats on AMI. We analyze and identify different

invariant and user-driven constraints, violations of which can cause various threats.

Then, based on these constraints, we develop SmartAnalyzer, an SMT solver based

tool. Under any constraint violation, the tool generates a threat report that includes

the reason for the violation and the possible remediation plan.

Second, we develop an identical formal model for verifying the security threats for

SCADA systems, considering the aspect of control operations. Next, we evaluate

the scalability of SmartAnalyzer in different test configurations. As we apply the

property level abstractions to model the configurations, we achieve high scalability

and we observe that the constraint verification time lies within 10 seconds for a

network of 1 million collectors.

5.1.2 Automated Synthesis of Resiliency Architecture

According to our second thrust, we first present an automated framework for syn-

thesizing correct and cost-effective network isolation-based resiliency configurations

for cyber systems in smart grids. The framework formalizes the resiliency architec-

ture synthesis problem as the conjunction of all the security requirements (in terms of

isolation) and business constraints (in terms of usability and deployment cost). This

formal model is encoded using SMT and its solution provides a resiliency architecture

that includes necessary network isolation measures along with placements of security

devices. Although this framework produces a solution that satisfies the resiliency

requirements, it is interesting and useful to get an optimal solution, considering the

given requirements as the base necessity. However, the formal model takes a sub-



217

stantially long time to execute when the isolation requirement is close to the optimal.

Thus, we also develop a hypothesis testing-based mechanism that follows an iterative

and feedback process to find an optimal/improved resilient architecture.

Second, we present a formal framework that automatically provides a redundancy-

based resilient architecture for AMI which includes safe, secure, and robust configura-

tions. We model various constraints that are crucial for safe and robust data delivery

in AMI systems. Although we model the robustness considering a single node or link

failure, this design is extendable for further robustness requirements.

We also evaluate both of these frameworks in different synthetic test networks.

We find that isolation-based resiliency architecture synthesis generates a satisfiable

security design in 10−20 minutes for a problem with several hundreds of hosts. In

the case of redundancy-based resiliency architecture synthesis, the model takes few

minutes for a problem with thousands of smart meters.

5.1.3 Threat Verification and Security Hardening for Power System State Es-

timation

We present security analytics for the power system state estimation. Correct state

estimation is critical for the stability and reliability of a power grid. An adversary

can attack state estimation by intelligently injecting false measurements. Thus, it is

important for the grid operators to understand the potential threats based on secu-

rity requirements and attack attributes. Therefore, we propose a formal framework

for the power system state estimation security verification, which is comprehensive

with respect to different constraints and requirements. The solution to this formal
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model gives potential threat vectors showing the attack feasibility with respect to the

attacker’s capabilities. We extend this formal model to show the impact of stealthy

attacks on the economic operation of a power system by considering the OPF module.

We present a mechanism utilizing this framework to capture the relation between

attack attributes and security properties to synthesize a pan which secures a set of

buses to protect the grid against stealthy attacks. We also propose an interesting

security solution by introducing agility in the system, in which we randomize the

set of measurements considered in state estimation and the admittances of a set of

lines. We develop formal models to select safe randomizing measures. We use SMT

to formalize these models, and demonstrate our solutions with respect to different

case studies. We evaluate our models in terms of scalability by performing a number

of experiments using different IEEE test systems. Our evaluation results show that

our model can efficiently solve problems with hundreds of buses. In the case of the

IEEE 118-bus test system, our threat verification model executes in 20 seconds.

5.2 Future Research

From our deep study and contributions in developing automated formal analytics

for smart grid security and resiliency, we have found various potentially challenging

problems for future research, including the following:

• Automated synthesis of resilient architectures for cyber and cyber-physical sys-

tems: We know that resiliency is the ability of the system to keep the potential

damage limited while the attack intensity increases. In this dissertation, we

address resiliency architecture synthesis based on some pre-attack and during-
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attack resiliency mechanisms. In our future work, we would like to extend our

work in order to include other forms of pre-attack and during-attack resiliency

techniques, such as diversity and moving targets. We would also like to explore

post-attack resiliency (i.e., by using recoverablility techniques), and develop a

comprehensive formal model that will consider all kinds of resiliency patterns

and will automatically provide an optimal resiliency architecture within the

business constraints.

• Analytics for threat identification and mitigation in smart grid energy mar-

kets: The restructuring of the power industry, led by Federal Energy Regula-

tory Commission (FERC)-mandated deregulations, has established a number

of energy markets. The participants in these markets engaged in short-term

and long-term contracts according to different trading information, e.g., supply

and demand, capacities, and offered bids. Adversaries can launch attacks on

energy markets directly by manipulating the trading information or indirectly

by attacking measurements or topology statuses to disrupt the energy market,

leading to an unfair benefit to dishonest participants as well as uneconomical

operations of the grid. Therefore, we would like to develop formal analytics

to identify potential threats on energy markets, analyzing their impacts, and

synthesize mitigation plans.

• Agility for the sustainability of smart grids: In this particular work, we would

like to extend our idea of applying moving target defense mechanisms to in-

crease the agility of smart grids, including AMI, SCADA, and Vehicle-to-Grid
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(V2G) systems in order to increase the unpredictability of the system properties,

thereby reducing the attack window for adversaries.

• Security analytics considering PMU-based SCADA measurements: In our threat

analytics framework in this dissertation, we consider SCADA measurements

(meter measurements as well as circuit breaker and switch statuses) only. In

this particular research, we would like to explore other types of measurements,

such as PMU and AMI data, and study the characteristics of the stealthy attacks

and the corresponding idea of security hardening.

• Electric power supply chain management: There is an electric power supply

chain between different generating stations, transmission and distribution sub-

stations, and power consumers. The different participants/components within

this chain are interconnected with one another. The security of each partic-

ipant is crucial for the security of the supply chain, while the chain should

be resilient in contingencies. Although significant research has been done on

the power grid’s robustness in contingencies, it is still important to formally

model the supply chain by considering each participant’s characteristics, inter-

actions between the participants, and contingencies in a single framework in

order to understand the interdependency between the components and explore

cost-effective resiliency plans.
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