
THE CORRELATES OF CONGESTION: INVESTIGATING THE LINKS BETWEEN 
CONGESTION AND URBAN AREA CHARACTERISTICS   

 
 
 

by 
 

Milton Gregory Fields 
 
 
 
 

A dissertation submitted to the faculty of  
The University of North Carolina at Charlotte 

in partial fulfillment of the requirements 
for the degree of Doctor of Philosophy in  
Geography and Urban Regional Analysis 

 
Charlotte 

 
2014 

 
 
 
 
 
 

         
    
        Approved by: 
 
 

______________________________ 
Dr. Jean-Claude Thill 

 
 

______________________________ 
Dr. Tyrel Moore 

 
 

______________________________ 
Dr. Harrison Campbell 

 
 

______________________________ 
Dr. Diane Brockman 

 



  
 

ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

©2014 
Milton Gregory Fields 

ALL RIGHTS RESERVED 
 

 



  
 

iii

ABSTRACT 
 
 

MILTON GREGORY FIELDS.  The correlates of congestion: investigating the links 
between congestion and urban area characteristics.  (Under the direction of DR. JEAN-

CLAUDE THILL) 
 

 Traffic congestion is a major quality of life issue, as well as being a major drain 

on productivity and urban competitiveness.  This exploratory research seeks to identify 

the set of urban characteristics that are most correlated with traffic congestion.  It 

considers just the background in which congestion occurs and does not consider causal 

relationships.  After a review of the literature concerning congestion and urban areas, 

three dependent congestion variables representing the three dimensions of congestion 

(intensity, extent and duration) and 52 potential predictor variables are identified for 100 

cities in the United States, using predominantly 2010 data.  Variables are analyzed using 

multiple methods: simple correlation, partial least squares (PLS) regression and chi-

square automatic interaction detection (CHAID) decision trees.  Of the 52 predictor 

variables, 19 are determined to be important in all three dimensions of congestion, 13 are 

important in some dimensions, but not in others, and 20 are not important in any of the 

three dimensions. Fifteen of the 19 important variables have effects in the expected 

direction, including per capita freeway and arterial mileage, population density, per capita 

income, network intersections on the upper level system, workers per upper level network 

mile, jobs-housing balance, the level of sprawl, housing affordability, and urban area size 

(both in footprint and in population). Four more important variables (the density of transit 

service, level of poly-centricity, percentage of commuters driving alone, and per capita 

number of special events) have effects in the opposite direction as expected, which 

indicates that additional research is needed to clarify their relationship with congestion.  
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The analysis concludes that, although no causal relationships are determined, efforts to 

improve congestion levels through adding supply are reasonable, particularly if the focus 

is on both arterial and freeway capacity; efforts to improve congestion levels by 

decreasing demand are also reasonable, although the results of some strategies might not 

have the expected results and results may diminish as cities become large and very large.   

 



  
 

v

DEDICATION 
 
 

 To my wife, Ellis, who allowed me the freedom to indulge myself in this pursuit 

of knowledge and provided unflagging support along the long journey.  Also to my 

parents, Milton and Lea, who provided the background and support through the years for 

me to be all I could be – and also for the unique weight-loss incentive. 

 
 

 
 
 
 
 
 
 



  
 

vi

ACKNOWLEDGMENTS 
  
 
 This study was conducted under the direction of Professor Jean-Claude Thill and I 

would like to express my sincere appreciation to him for his guidance and mentorship, as 

well as for his reviews and critiques of the many drafts of this dissertation.  He 

continually challenged my thinking and pushed me to a higher level of understanding.  

 I would like to thank my committee members, Professors Tyrel Moore, Harrison 

Campbell and Diane Brockman, for their thoughtful questions and suggestions.  Of 

particular benefit was Professor Campbell’s detailed reading of the proposal and final 

drafts, along with insightful comments, which made me pause and reconsider some of my 

initial concepts.  All input helped me keep the paper clear and understandable, enhancing 

the end product considerably.    

 I would also like to thank the researchers at the Texas Transportation Institute, 

and in particular Drs. Tim Lomax and David Shrank, for their efforts in producing the 

annual Urban Mobility Report.  Their perspective and detailed understanding of 

congestion measurement was an invaluable resource on which my effort was based.   

 Finally, I would like to thank Emeritus Professor David Hartgen for his longtime 

mentorship and support. Time spent over the past ten years working with him on a variety 

of transportation studies has been both a challenging and a rewarding experience – and 

the “grasshopper” has learned much. 

  

 
 
 
 
 



  
 

vii

TABLE OF CONTENTS 
 

 
LIST OF TABLES  ix 

LIST OF FIGURES  xi 

LIST OF ABBREVIATIONS  xii  

CHAPTER 1: INTRODUCTION  1 

 1.1  Statement of Research 3 

 1.2  Research Questions  4 

CHAPTER 2: THE CONGESTION-URBAN AREA LINK  6 

 2.1. Defining Congestion  6 

 2.2. Causes of Congestion  7 

 2.3. Types of Congestion  7 

 2.4. Measures of Congestion  10 

 2.5. Defining Urban  Areas and Cities  16 

 2.6. Theoretical Underpinnings of Urban Congestion  18 

 2.7. Points of Intersection between Theories and Concepts, Travel and  
                   Urban Structure 

36 

CHAPTER 3: THE RESEARCH IN CONTEXT 45 

 3.1. Congestion Research to Date  45 

 3.2. The Contribution of this Research to Understanding Congestion  50 

CHAPTER 4: RESEARCH DESIGN  51 

 4.1. Overview  51 

 4.2. Measures of Network Congestion 51 

 4.3. The Selected Urban Areas  54 

 4.4. Potential Predictor Variables 61 



  
 

viii

 4.5. Variable Roll-up 94 

 4.6. Methods 100 

CHAPTER 5: RESULTS AND DISCUSSION  107 

 5.1. Overview  107 

 5.2. Pearson Correlations 107 

 5.3. Partial Least Squares (PLS) Regression Results  111 

 5.4. The Linearity Assumption  132 

 5.5. Chi-square Automatic Interaction Detection (CHAID) Analysis 
                   Results 
 

133 

 5.6. Analysis Results by Congestion Dimension 153 

 5.7. Variable Importance  156 

 5.8. Analysis Results vs. Variable Selection  157 

CHAPTER 6: CONCLUSIONS 166 

 6.1. Summary 166 

 6.2. Research Corroborated  167 

 6.3. Lessons Learned  168 

 6.4. Future Research  168 

 6.5. Final Thoughts  169 

REFERENCES  171 

  

 
 
 

 



  
 

ix

LIST OF TABLES 
 

 
TABLE 1: Descriptions of the levels of service for network links 11 

TABLE 2: Average delay by level of service for network nodes 13 

TABLE 3: Measures of network congestion  53 

TABLE 4: Selected 100 urban areas by population group 57 

TABLE 5: Urban area congestion measures by UMR size category, sorted by 
                  population,2010  
 

58 

TABLE 6: Urban area congestion measures by census region, sorted by  
                  population, 2010 
 

59 

TABLE 7: Variables impacting supply  62 

TABLE 8: Variables impacting demand  69 

TABLE 9: Variables impacting flow  75 

TABLE 10: Measures of spread across urban area census tracts 82 

TABLE 11: Other variables potentially impacting congestion 86 

TABLE 12: Study variables with selected descriptive statistics 94 

TABLE 13: Study variables with selected descriptive statistics with estimates 
                    for the missing values 
 

98 

TABLE 14: Pearson correlations for the three dependent (congestion)  
                   variables 
 

108 

TABLE 15: Top ten Pearson correlations by congestion variable 109 

TABLE 16: Variance Inflation Factors (VIFs) for the independent variables 111 

TABLE 17: Model quality results for the four separate models 113 

TABLE 18: Goodness of fit results for the three separate models 113 

TABLE 19: Variable Importance in the Projection (VIP) 114 

TABLE 20: Standardized coefficients and revealed effects 118 

TABLE 21: Expected effects compared to revealed effects 120 



  
 

x

TABLE 22: Top ten standardized coefficients by congestion variable 130 

TABLE 23: Splitting variables for each CHAID model in order of importance 140 

TABLE 24: Order of variable involvement in a first split by congestion  
                    dimension 
 

142 

TABLE 25: Top ten first split variables by congestion variable 144 

TABLE 26: Relationships between the dependent and independent variables 146 

TABLE 27: Expected effects compared to revealed effects  149 

TABLE 28: Effects and importance by congestion dimension 153 

TABLE 29: Variable importance summarized 156 

TABLE 30: Overall results for variables impacting supply 157 

TABLE 31: Overall results for variables impacting demand 159 

TABLE 32: Overall results for variables impacting flow 161 

TABLE 33: Overall results for measures of spread across urban area census  
                    tracts  
 

162 

TABLE 34: Overall results for other variables potentially impacting 
                    congestion 
 

164 

  

 



  
 

xi

LIST OF FIGURES 
 

 
FIGURE 1: Relationships between travel behavior, urban transportation   
         models and urban structure  
 

37 

FIGURE 2: Selected 100 urban areas by population group 56 

FIGURE 3: Calculating the Gini coefficient 81 

FIGURE 4: Freeway speed-flow curves 133 

FIGURE 5: CHAID tree structure for the congestion intensity (TTI) model 137 

FIGURE 6: CHAID tree structure for the congestion extent (PortLMCong)  
                    model 
 

138 

FIGURE 7: CHAID tree structure for the congestion duration (PkHrs) model 139 

 
 
 
  
 

 



  
 

xii

 
LIST OF ABBREVIATIONS 

 
 
ACS American Community Survey 

AWSC all-way stop control 

CART classification and regression tree 

CBD central business district 

CHAID chi-square automatic interaction detection 

CTPP Census Transportation Planning Package 

FARS Fatality Analysis Reporting System  

FHWA Federal Highway Administration 

GIS geographical information system 

GWR geographically weighted regression 

HOT high occupancy toll 

HPMS Highway Performance Monitoring System 

ITE Institute of Transportation Engineers 

LOS level of service 

LU land use 

MPO Metropolitan Planning Organization 

NHTSA National Highway Traffic Safety Administration 

OLS ordinary least squares (regression) 

PLS partial least squares (regression) 

POV privately owned vehicle 

SEM structural equations methodology 

SOV single occupant vehicle 



  
 

xiii

TAZ traffic analysis zone 

TDM transportation demand management 

TSM transportation system management 

TTI travel time index 

TWSC two-way stop control 

UA urban area 

UMR Urban Mobility Report 

UTPP Urban Transportation Planning Process 

V/C volume/capacity 

VHT vehicle hours of travel 

VMT vehicle miles of travel 

VIP variable importance in the projection 

  

  

  

  

 
 
 

 



 
 
 
 
 

CHAPTER 1:   INTRODUCTION 
  

 The Texas A&M Transportation Institute (TTI) estimates that traffic congestion 

costs each automobile commuter in the nation’s 498 urban areas about $818 annually in 

2011 (based on time and fuel savings).  This translates into about $121 billion annually 

nationwide, 2.9 billion gallons of wasted fuel, and 56 billion pounds of additional carbon 

dioxide emissions.  (Schrank, Lomax and Eisele 2012).  This extraordinary cost suggests 

that congestion is a major quality of life issue, as well as being a major drain on 

productivity and urban competitiveness.  But is it?  There are other views about 

congestion that differ from the TTI’s widely accepted assessment.  For example, Littman 

(2013, p. 2) finds that congestion is a “modest cost overall, increasing total travel time 

and fuel costs at most by 2%.”  Balaker and Staley (2006) argue that the real costs of 

congestion are less in the time and fuel savings than in the loss of accessibility to the 

destinations that matter most to us (employment, recreation, romance, etc.) which is 

associated with a lower level of income and wealth.  Dumbaugh (2012) finds that 

congestion and productivity go hand-in-hand (an increase in one is associated with an 

increase the other) and argues that efforts to eliminate or reduce congestion are 

misguided, noting that cities are not adversely affected by congestion.  Others (Downs 

2012; Duranton and Turner 2011) add that regardless of the costs of congestion, there is 

little we can do about it except learn to live with it.  Downs (2012, p. 20) further notes 
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“Traffic congestion is not essentially a problem.  It’s the solution to our basic mobility 

problem.” 

 As these examples indicate, there is a wide range of beliefs about the nature of 

congestion, beliefs which impact on the solutions to and remediation of the congestion 

problem.  There are supply-oriented solutions, such as adding highway capacity; there are 

demand-oriented solutions, such as reducing demand for the road network by decreasing 

the need to travel by car; and, there are flow-oriented solutions, such as improving 

intersection mobility.  While all of these remedial actions have their place, there seems to 

be no approach that has “buy-in” from all quarters.  One’s perspective about the nature of 

the city, as well as regional cultural preferences, helps shape the approaches to tackling 

the congestion issue. For example, Joel Kotkin (2013) observed a disconnect between 

urban area planners and residents: 

"Under almost any imaginable scenario, we are unlikely to see the creation of 
regions with anything like the dynamic inner cores of successful legacy cities 
such as New York, Boston, Chicago, or San Francisco. For better or worse, 
demographic and economic trends suggest our urban destiny lies increasingly 
with the likes of Houston, Charlotte, Dallas-Ft. Worth, Raleigh, and even 
Phoenix. The critical reason for this is likely to be missed by those who worship 
at the altar of density and contemporary planning dogma. These cities grow 
primarily because they do what cities were designed to do in the first place: help 
their residents to achieve their aspirations—and that's why they keep getting 
bigger and more consequential, in spite of planners who keep ignoring or 
deploring their ascendance." 

 
 Given this interrelationship between urban areas and congestion, it seems 

imperative that the link be more fully explored.  Are there characteristics of the urban 

area that seem to be associated with congestion?  In this exploration, it is not necessary to 

take sides or adopt a preferred approach to congestion remediation.  It is only necessary 
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to use solid data and rigorous statistical analysis to disentangle these relationships. 

1.1  Statement of Research 

 This research seeks to uncover the underlying conditions that are associated with 

traffic congestion.  It does not deal with the proximate causes of congestion, which at its 

base is simply a supply and demand problem; demand exceeds supply at a point in time 

and space.  Instead, the focus is on identifying the urban characteristics that comprise the 

background in which congestion occurs.  These conditions are not necessarily the causes 

of congestion, but they are conditions that are present in many, if not most, cases where 

congestion is problematic. Given that congestion is extremely complex and multi-faceted, 

these conditions and their interactions must necessarily be disentangled using a number 

of complementary measures examined separately or in conjunction with one another.  It 

is the nature and strength of the interrelationships between the underlying urban 

conditions and traffic congestion that are the target of the research, and not a 

determination of causality.    

 Causal variables are extremely difficult to determine, especially in the realm of 

human behavior, and congestion is a behavioral issue.  To begin to explore congestion 

from a cause and effect perspective would require a micro-analysis of one or just a few 

urban areas, and even then any causes of congestion would be suspect.  As long as people 

have the freedom to act in a manner of their choosing, human behavior will be difficult to 

predict.  Collective behavior is statistically easier to predict than individual behavior; 

indeed there are behavioral models of travel that are used widely. Congestion, however, 

is a time/space phenomenon that occurs at the confluence of individual travel behavior 

and system supply, so identifying these confluences to a degree useful to planning 
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officials even for one city would likely be difficult.  Moreover, extending the findings for 

one city to others, that by nature will have different circumstances, culture and people, 

can be seen as reaching.    

 This research circumvents the causality issue altogether.  Instead, it explores the 

background in which congestion occurs, seeking to identify the urban characteristics that 

are present when congestion is also present.  Knowing these characteristics should lead to 

a better understanding of urban congestion and perhaps a better ability to predict its 

occurrence without getting bogged down in questions of causality.  Additionally, 

knowing which urban characteristics are more important allows follow-on research in 

areas such as causality to be more soundly grounded.  

1.2  Research Questions 

 Before we can assess congestion, we need to know what it is and how it is 

measured.  This understanding will allow us to identify characteristics of urban areas that 

might have an impact on regional or localized traffic congestion.  Much research has 

already been done in defining congestion and developing metrics to assess its effects.  It 

is important that we identify those metrics that will best enable the exploration of the 

links between congestion and the urban landscape. With this understanding at hand, we 

can investigate the following research questions: 

 1.2.1  What set of urban area characteristics impact traffic congestion? 
 
 There are a wide number of measures that are available to describe the urban 

landscape. From population counts of various types, to employment statistics of various 

aggregations, to highway statistics, to social measures, the available metrics are well in 

the hundreds.  Many of these measures will overlap and extracting ones that are relatively 
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independent from one another will be difficult, if not impossible.  (It should be noted here 

that urban areas can be considered analogous to living organisms that grow according to 

their own demands, with each new “growth spurt” impacting on the whole.  In this light, 

most urban area characteristics will have some level of interrelationship with the others.)  

While most of the focus would be on policy-type variables (those characteristics that 

could be affected by changes in policy), other variables may emerge that are interesting 

and offer insight to our understanding of the urban area-congestion dynamic.  (It could be 

argued, of course, that most variables could be controlled, at least somewhat, by policy, 

depending on the level of governmental control.  This study considers policy variables 

from a US perspective.) 

To identify those urban characteristics that might be used as variables, it seems 

prudent to start with a review of the theories and models that have been developed over 

the years that address congestion, the urban condition, and urban travel.  With these 

theories and models in hand, we can determine the points of intersection where potential 

variables of interest may reside.  Once identified, we can hypothesize their potential 

effects by magnitude and direction.   

1.2.2  How do these urban area characteristics correlate with traffic congestion? 

 Once characteristics that might impact traffic congestion are identified, we can 

analyze them to determine if they do indeed have an impact and the extent of that impact.  

Moreover, we can identify which are the most important.  This is the crux of the study. It 

is this knowledge that should enhance policy makers’ ability to develop sound strategies 

to lessen the negatives associated with congestion. 
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CHAPTER 2:  THE CONGESTION-URBAN AREA LINK 

 
 
2.1  Defining Congestion 

 The verb “congest” is defined in the Merriam-Webster Dictionary as “to obstruct 

by overcrowding” (1997, p. 170).  So congestion is the obstruction caused by 

overcrowding, which suggests three underlying causes: inadequate supply, excessive 

demand and/or poor flow. Traffic congestion then, is the obstruction (or delay in 

vehicular travel) caused by the presence of other vehicles, with the three underlying 

causes being inadequate highway capacity, excessive travel demand and poor traffic 

flow.  These underlying causes do not generally apply to the entire transportation 

network, but just to specific geographic points at specific times.  For example, most 

congestion is limited to a few links in the network during peak hours of travel.  Most 

streets are not congested during peak hours and virtually no streets are congested at night.  

So traffic congestion is a time-space issue.   

 Traffic congestion results in the delay of travel as compared to travel during times 

of “free flowing” traffic.  Vehicles may encounter stoppages or stop-and-go traffic on 

roadways, wait for more than one cycle to pass through signalized intersections, see 

travel times that are slower (and in some cases much slower), and experience variations 

in travel times that make trip planning difficult.  Congestion has three main components, 

or dimensions: intensity (the severity of the congestion present), extent (the portion of the 
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network with the congestion problem), and duration (the number of hours in the day 

when congestion is a problem).  

 Traffic congestion has been increasing over time with increasing urbanization, as 

more and more people crowd into areas with transportation networks that for a number of 

reasons to be explored below cannot or do not keep pace with the growth in vehicular 

demand.  Interestingly, as traffic congestion has become more common, people have 

adapted somewhat and become more tolerant of travel delays and even more skilled at 

negotiating congested roadways.  With this adaptation, congestion is often considered 

simply a cost of living in crowded areas – what passed for severe congestion in 1990 

might be considered only moderate congestion in 2010. 

2.2  Causes of Congestion 

 The Federal Highway Administration has identified seven root causes of traffic 

congestion, grouped into three categories: traffic-influencing events [traffic incidents, 

work zones, and weather]; traffic demand [fluctuation in normal traffic and special 

events]; and, physical highway features [traffic control devices and physical bottlenecks 

(capacity)]. (FHWA 2008) These causes routinely interact with one another to compound 

their individual effects and make it more difficult for traffic managers and planners to 

devise remedial actions. 

2.3  Types of Congestion 

 The above root causes of congestion can be grouped into two basic types: 

recurrent and non-recurrent.  Recurrent congestion is that congestion that is experienced 

on a routine basis and is due to the general conditions of the transportation network, 
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while non-recurring congestion occurs when specific non-routine incidences serve to 

reduce the number of vehicles that a segment of the network can handle. 

 From the public’s perspective, non-recurrent congestion is perhaps more 

understandable (though often highly frustrating) and often beyond the control of 

transportation planning officials, while the recurrent congestion falls within the planning 

purview and many feel could be fixed if the political will were there and sufficient funds 

allocated.  Although non-recurrent congestion accounts for over half of total congestion 

delay,1 it is the recurrent congestion that is arguably the more irritating.  Accidents do 

happen, weather events do occur, and special events are one of the attractive amenities of 

the urban experience, but they are sporadic and often come with “advance notice” that 

allows some prior planning.  Recurrent congestion happens daily and is “in ones face” 

during large portions of the urban drive.  Hence, it tends to be more memorable.   

2.3.1  Recurrent Congestion.  Causes of recurrent congestion include:  

• Physical Bottlenecks (“Capacity”): The maximum number of vehicles a given 

segment or link in the transportation network can handle under normal prevailing 

operational conditions is called its capacity.  Capacity is dependent largely on the 

physical characteristics of the roadway (number of lanes, widths of lanes and 

shoulders, the geometries of the roadbed (curvature and slope), and the level of 

access or number of entry exit points).  Inadequate capacity equates to inadequate 

supply in the supply-demand relationship which yields traffic congestion. 

                                                           
1 The Federal Highways Administration (FWHA) estimates that 55 percent of congestion is non-recurrent, 
broken out as follows: incidents: 25 percent, bad weather: 15 percent, work zones/construction: 10 percent, 
and special events: 5 percent.  The remaining 45 percent of congestion is recurrent (bottlenecks: 40 percent 
and poor traffic signal timing: 5 percent) (FHWA 2012b).  
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• Traffic Control Devices: As congestion is at its heart a flow issue, anything 

impeding flow can cause congestion.  Traffic control devices (e.g. stop signs, stop 

lights, and railroad crossing gates) by design impede traffic flow and cause the 

existing traffic to “bunch up”, effectively reducing the highway supply available 

to those vehicles.  If travel demand is sufficiently high, then congestion is 

generated.   

• Fluctuations in Normal Traffic:  Travel demand varies by season, day of the week 

and time of day.  Since it is generally not cost-effective to design roads for the 

worse case situations, demand can regularly exceed supply at points in time, such 

as during the proverbial rush hours on weekday mornings and evenings, and 

Saturdays in the summer when beach houses turn over.  When demand exceeds 

supply, congestion follows. 

• Poor or Distracted Driving:  Congestion is a flow issue and disruptions to the 

smooth flow of traffic cause it.  Vehicle operators who are distracted (texting, 

talking on a cell phone, reading office papers, eating, fiddling with radios/GPS 

devices, disciplining children in the back seat, etc.) or of diminished capacity 

(intoxicated, sleepy, under the influence of prescription medication, overly timid 

or unsure of themselves, etc.) often drive erratically or slower than the prevailing 

traffic flow, which can reduce throughput and if demand is sufficiently high, 

contribute to congestion.   

2.3.2  Non-recurrent Congestion.  Causes of non-recurrent congestion include: 

• Traffic Incidents:  Events such as traffic accidents, vehicle breakdowns, and 

debris on the roadways are known as traffic incidents, and can contribute to 
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congestion in two ways.  They can reduce the available capacity (supply), as well 

as impeding the flow by reducing speeds and decreasing throughput.  

• Work Zones: Construction/maintenance activities long the roadway, whether 

marked as a work zone or not, often cause congestion when demand is sufficiently 

high.  Similar to traffic incidents, work zones may reduce available capacity (by 

reducing speed limits, closing lanes and shoulders, and reducing lane widths) and 

impede flows (by traffic shifts, lane diversions, and distracting drivers).   

• Weather: Weather conditions can significantly affect flow as drivers slow down in 

response to limited visibilities caused by precipitation and fog and the adverse 

roadway conditions caused by rain, ice, and snow.  Additionally, the weather can 

reduce the available capacity by narrowing and even closing some lanes to traffic.  

• Special Events:  Special events (e.g. sporting events, concerts, high school 

graduations, funerals, etc.) can cause congestion in and around the event.   This 

happens in three ways: demand can increase in the vicinity of the event, capacity 

can decrease in the same area as lanes may be blocked by event attendees or by 

police officers controlling traffic, and flow can be inhibited by driver uncertainty 

and distraction.    

2.4  Measures of Congestion 

 There are a number of ways to measure congestion; one can focus on a link (road 

segment) or node (intersection) in the transportation network or one can focus on the 

network as a whole.  The link/node measures are essential when micro-analyzing the 

transportation grid so that specific, often highly localized improvements can be made.  

Network-wide measures are better for the macro-analysis of the region as a whole as one 



  
 

11

tries to get a handle on the extent and scope of the congestion problem so that decisions 

can be made in the allocation of resources to provide congestion relief.    

2.4.1  Measuring Congestion on a Link.  There are two widely used ways to describe 

congestion on a link, both of which address the supply/demand connection and both of 

which are useful in identifying specific road segments that need attention. 

• Level of Service (LOS).  This measure is widely used throughout transportation 

planning and assessment.2  For highway links, the LOS is a primarily visual 

measure of supply and demand, where traffic flows are rated from A to F, with 

LOS A being smooth free-flowing traffic and LOS F showing severe congestion.  

Littman (2012) provides a nice summary of the levels of service, derived from the 

description in the Highway Capacity Manual (TRB 2010): 

 
 Table 1: Descriptions of the levels of service for network links 

LOS Description 
A  Traffic flows at or above the posted speed limit and all motorists have complete mobility 

between lanes 
B  Slightly congested, with some impingement of maneuverability. Two motorists might be 

forced to drive side by side, limiting lane changes.  
C  Ability to pass or change lanes is not assured. Most experienced drivers are comfortable, 

and posted speed is maintained, but roads are close to capacity. This is often the target for 
urban highways. 

D  Typical of an urban highway during commuting hours. Speeds are somewhat reduced, 
motorists are hemmed in by other cars and trucks.  

E  Flow becomes irregular and speed varies rapidly, but rarely reaches the posted limit. On 
highways this is consistent with a road over its designed capacity. 

F  Flow is forced; every vehicle moves in lockstep with the vehicle in front of it, with 
frequent drops in speed to nearly zero mph. A road for which the travel time cannot be 
predicted. 

 Source: Littman (2012), TRB (2010) 
 
 

• Volume/capacity (V/C) ratio.  This measure is a straightforward measure of 

supply and demand.  The supply, or capacity, is derived from parameters in the 

                                                           
2 For example, the Highway Capacity Manual (TRB 2010) applies the Level of Service concept to most 
modes of traffic and often to several conditions within a single mode. 
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Highway Capacity Manual (TRB 2010) and indicates the maximum amount of 

traffic a road segment can carry at the posted speed limit based on its design and 

geometry.  Modern freeways have capacities of about 2400 vehicles per lane per 

hour (or one vehicle passing a roadside observer every 1.5 seconds), while 

modern highways and older freeways have lower capacities (1800-2200 vehicles 

per lane per hour); other roads and streets may have even lower capacities 

because of their design characteristics and cross-street flow. The demand, or 

volume, is the actual number of vehicles on that road segment per unit time.  Both 

volume and capacity are typically measured in one-hour increments, and routinely 

grouped in peak (morning and evening rush hours) and non-peak (mid-day and 

night) periods.   

 Values for the V/C ratio can range from 0 to 1.0+, with 0 denoting a road 

segment devoid of any traffic whatsoever and 1.0 denoting a segment with a flow 

rate at maximum capacity.  It should be noted that a road segment can carry more 

than its maximum capacity for brief periods, although congestion when V/C ratios 

are near or above 1.0 is quite severe. Moderate to heavy congestion occurs when 

V/C ratios are in the 0.7 – 0.9 range. 

2.4.2  Measuring Congestion at a Node.  Congestion also occurs at nodes, or 

intersections, in the network where the smooth flow of traffic is disrupted by design. 

Most intersections have signage and/or traffic signals that constrict the flow in some 

manner to enhance safety in and around the intersection and to prevent vehicles from 

occupying the node at the same time, so there is some delay at virtually all intersections.  

This delay does not include the reduction in speed upon approach to the intersection or 
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the reduction in speed while resuming the posted speed limit; only the wait times are 

considered.  This delay is typically assessed by the average delay per vehicle as measured 

in seconds of delay and assigned a level of service, as noted in the table below.  Today at 

signalized intersections, severe congestion occurs when the delay exceeds 80 seconds per 

vehicle, which happens when the vehicle takes more that one timing cycle to pass 

through the light.  Interestingly, the delay needed to rate as severe has increased over 

time as congestion has become more ubiquitous and drivers more tolerant.  Two decades 

ago, a delay of 60 seconds was rated as severe (LOS F).       

 
Table 2: Average delay by level of service for network nodes 

LOS Signalized 
Intersection 

All-way-stop-control 
(AWSC) 

Two-way-stop-control 
(TWSC) 

A 0-10 sec 0-10 sec 0-10 sec 
B > 10-20 sec > 10-15 sec > 10-15 sec 
C > 20-35 sec > 15-25 sec > 15-25 sec 
D > 35-55 sec > 25-35 sec > 25-35 sec 
E > 55-80 sec > 35-50 sec > 35-50 sec 
F > 80 sec > 50 sec > 50 sec 

Source: Highway Capacity Manual (TRB 2010). 
 
 
2.4.3  Measuring Congestion in the Network.  Any area, urban or rural, could have 

specific links or nodes in the transportation network that are congested.  For example, in 

rural areas near a high school, the links in and around the school may become congested 

when school is dismissed in the afternoons.  Nonetheless, in these areas, congestion is not 

necessarily a problem.  To assess the congestion in a region, a regional measure is 

needed, and there are many.  Given that congestion has three dimensions (intensity, 

extent, and duration), these regional measures attempt to address one or more of these 

dimensions.  It should be noted that these measures are average measures, which can 

effectively “hide” real congestion problems on specific links and intersections.  Even 
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cities with acceptable regional congestion ratings may have location and time-specific 

congestion issues, so care must be taken in their application. 

• Travel Time Index (TTI).  One of the more prominent regional congestion 

measures is the travel time index (TTI), developed by the Texas Transportation 

Institute (also abbreviated as TTI) and used in its annual Urban Mobility Report.  

Although originally developed for larger cities, where congestion is greatest and 

also where it makes the most sense to allocate the needed funds to make the 

necessary measurements, TTIs have been calculated for all cities in the nation 

with populations of 50,000 and above (Hartgen and Fields, 2006).   

 The TTI is an indirect measure of supply and demand.  Instead of focusing 

on the road capacities and traffic volumes, TTIs focus on travel times, which 

addresses the supply/demand problem as it impacts on traffic flows.  The TTI is 

the ratio of travel in the peak hours (rush hours in the mornings and evenings) to 

travel in the off-peak (mid-days and nights):   

 
  TTI =      Average travel time in peak hour      
             Average travel time in off-peak hours 
 
For example, a TTI of 1.17 means that it will take 17 percent longer to travel the 

same routes in the peak hours as compared to off-peak (free-flow) hours.  While 

there are no current TTI congestion standards, interpolations based on the 

Highway Capacity Manual suggest that a TTI of 1.18 indicates severe congestion 

(TRB 2010).  The TTI is predominantly an intensity measure although it does get 

at the extent issue as well.  Since the peak hour period is undefined, the TTI does 

not deal with the duration problem.  Although TTI could be calculated for 
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individual links in the traffic network, it is most commonly used as a regional 

measure of congestion.   

• VMT (vehicle miles of travel) traveled in congested conditions. This measure 

assesses the extent of the congestion problem; that is, how much of the network 

has supply/demand issues.  This metric may be expressed in total congested miles 

during peak hours or congested miles as a percent of the total mileage.  

• VHT (vehicle hours of travel) traveled in congested conditions.  This measure 

also assesses the extent of the congestion problem, but from a time perspective.  

This metric may be expressed in total travel time over congested links during 

peak hours or congested travel times as a percent of the total travel time. 

• Percent of lane miles that are congested.  This measure is another way to assess 

the extent of the congestion problem and considers congestion from the network’s 

perspective rather than the individual’s experience on the network, as the two 

previous metrics do. 

• Peak Hour Length.  This measure estimates the length of the morning and evening 

“rush hours” to assess the duration of the congestion problem.  It does not address 

the severity of congestion or the extent within the region. 

• Average Traffic Speeds.  A key difference in the flow of traffic during congested 

and uncongested periods is that of travel speed.  Comparing average speeds to 

average free flow speeds is a metric that indicates the intensity and extent of the 

congestion problem.   

• Hours of Delay.  A comparison of congested speeds with free-flow speeds can 

lead to calculations of the delay caused by congestion.  Measures of delay (annual 
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hours of delay, delay per capita, delay per commuter, etc.) are common ways to 

make the costs of congestion less “geeky” and more meaningful to highway users.  

While these type metrics do a good job of addressing the intensity, extent and 

duration of congestion collectively, they are too general to use for targeting 

remedial efforts to improve the system. 

• Costs of Congestion.  Similar to the measures of delay, these metrics attempt to 

quantify costs to the highway users of congestion. Costs, which can include the 

value of delays, the value of the excess fuel consumed, and the value of additional 

vehicle operating costs, are often expressed as component costs or total costs, or 

as costs per capita, per driver, per commuter, etc.  These measures also tackle the 

intensity, extent and duration aspects of congestion, but they too are too general to 

assist with targeted corrective strategies.      

2.5  Defining Urban Areas and Cities 

 While people often use the terms “urban areas” and “cities” interchangeably, there 

is a difference.  The various definitions of cities include terms such as “centers of 

population, commerce and culture”, “large”, “densely populated”, “important”, 

“historical”, “permanent”, “socially heterogeneous”, and “with self-government”.  Most 

descriptions of cities seem to denote a long-term structured entity that serves a large, 

concentrated number of people.   Urban areas, on the other hand, are described in 

geographical and population terms without regard to jurisdictional boundaries or 

administrative structure. Since the descriptions of urban areas and cities are different and 

approach the idea of the concentration of people from different perspectives, an 
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exploration of both would be useful in uncovering some of the characteristics potentially 

associated with urban congestion. 

2.5.1 Cities.  Louis Wirth (1938), of the highly regarded “Chicago School” of urban 

sociology, included four traits in his definition of cities: relatively large (population-

wise), dense, permanent, and socially heterogeneous. He regarded a city as being 

something more than its physical structure and regarded urban living as a “machine-

based” style of living (vs. the “nature-based” style in rural areas).  He further noted that 

large populations were associated with increasing differentiation between people and that 

high population densities were associated with increasing specialization of employment, 

goods, and services.  This sociologically-focused definition is compared with others that 

are more characteristic-based.  The Demographia website (Demographia 2013) discusses 

cities as municipalities, as metropolitan areas, and as urban areas, noting that 

interpretations of the term city differ among countries and cultures.  Municipalities are 

generally the smallest entities of the three, while metropolitan areas typically include 

multiple municipalities.  A city’s urban area would include the core municipality and the 

adjacent suburbs, and a metropolitan area’s urban area would include all the area of 

continuous urban development. 

2.5.2 Urban Areas.  A simple definition of urban area might be the city area plus the 

continuous built-up surrounding areas, irrespective of local body administrative 

boundaries.  Demographia (2013) observes that an urban area will unlikely ever be the 

same as a municipality (some urban areas might be larger or smaller than the cities with 

which they are associated) and suggests that an urban area “might be thought of as 

defined by the lights seen from an airplane on a clear night.”  Demographia further notes 
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that metropolitan areas mean labor markets, or the areas from which the region’s 

employees come, and because of this the metropolitan area will always be larger than the 

urban area since many of the metropolitan employees will come from the rural regions 

beyond the urban development.    

 The Census Bureau differentiates urban and rural areas based largely on 

population density and land uses.  For the 2010 Census, an urban area comprised a 

“densely settled core of census tracts and/or census blocks that meet minimum population 

density requirements, along with adjacent territory containing non-residential urban land 

uses as well as territory with low population density included to link outlying densely 

settled territory with the densely settled core” (Census 2010).  The Census Bureau 

subdivides urban areas into urbanized areas (centers with populations of 50,000 or more) 

and urban clusters (centers with populations of 2,500 or more, but less than 50,000).  

Rural areas would include anything not characterized as an urbanized area or urban 

cluster.   

2.6  Theoretical Underpinnings of Urban Congestion  
 
2.6.1  Key Theories and Concepts.  Urban agglomeration and urban travel involve both 

individual and collective decisions.  More specifically, both are the aggregated result of 

thousands of individual decisions based on individual needs and preferences, which are 

often affected by normalizing forces of their social networks.  These decisions are made 

at the various stages in aggregation/travel process and are infinitely complex.  Urban 

agglomeration involves decisions about where to work, where to live and how to live; 

while urban travel involves why to go, when to go, where to go, and how to go.  Multiple 

factors impact these decisions, to include education, work credentials, financial resources, 
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time, destination alternatives, time of day, and end of trip activities.  Academics and 

planning practitioners have studied both aspects of human behavior in an urban setting 

and have developed any number of theories to explain it (some examples are discussed 

below). Most of these theories are more valuable as explanations of behavior rather than 

predictors of it.  For example, a rational actor may well act to maximize his/her utility, 

but it is extremely difficult to determine this utility until after the fact.  Short term goals 

compete with long term goals and the eventual utility that is maximized cannot be easily 

predicted.  Still there are several key theories and concepts that merit mention in 

exploring the link between congestion and urban characteristics.  

• Central Place Theory.  Developed by Walter Christaller in the 1930s while 

studying urbanized areas in southern Germany,  this theory sought to explain how 

towns and cities evolve in relation to one another; how many would arise, how 

big would they grow, and how far apart would they be (Christaller 1966).  Much 

of central place theory revolved around geometric shapes and topographic 

relationships and has been criticized heavily through the years, but its notion of a 

city as a distribution center of goods and services to the surrounding populace 

remains a core characteristic of cities to this day.  The number and variety of the 

goods and services available in the urban area, together with the number and 

density of the people, are the pre-determinants of urban congestion.   

• Structural functionalism.  Based on Herbert Spencer’s theory of functionalism in 

the mid-1800s, which had been expanded by Emile Durkheim in the following 

decades, structural functionalism is an underlying theory of self-sustaining social 

interaction.  Championed by Talcott Parsons in the 1950s-60s, this theory holds 
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that society, as a system, more so than any particular actor, develops those 

systems needed to support and sustain itself (Ritzer 1996).  (These systems, or 

structures, are functional, hence the name.) In keeping with this theory, cities and 

transportation networks have arisen and evolved to meet some universal need(s).  

These needs could be evidence of the failure or shortcomings of some other 

organization entrusted with a particular responsibility, of the lack of an 

organization to address the needs, or of the lack of agreement of what the 

universal needs should be.  A working system becomes entrenched and part of the 

culture and as people are educated and socialized to fit into society, they are 

trained in their roles within the new system.  So the opportunities and amenities 

afforded in the urban environment have become an accepted part of the landscape 

and many individuals have come to expect and desire them.  Likewise, the urban 

transportation grid allows these individuals to partake of the urban offerings.  The 

structural functionalist would argue that the degree to which cities and their 

transportation networks are integrated into local society and meet the needs of the 

people would determine the levels of aggregation and travel, respectively.      

• Land-rent Theory.  This theory holds that the most valuable land in an urban area 

is in the central business district (CBD).  As one moves farther away from the 

CBD and the economic activity that occurs there, one loses some of the 

advantages that occur with geographic proximity and face-to-face interaction.  

The land becomes less valuable as there is less competition for it and it is used 

less intensively (Forkenbrock, Mathur and Schweitzer 2001).  (It should be noted 

here, that distance is not only Euclidean distance, but network distance, as well, 
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measured in both distance and travel time. It is the quickness of access to the 

CBD and other key destinations within the city than affect land rents.)  This most 

often translates into residential areas located “out” from the commercial regions, 

although changes in accessibility can change land value and land use.  Land-rent 

theory offers a good explanation of the link between the transportation grid and 

city form.  Both transportation costs and land costs are factors in location 

decisions; the more accessible the land is the more valuable land. The better the 

transportation network, the less variability in land accessibility and hence prices, 

and the more decentralized development tends to be.  Accessibility follows the 

street network. 

• Circuit-switched networks vs. packet-switched networks.  In the world of data 

transmission, there are two basic methods of transmitting data.  Circuit-switched 

data requires a dedicated circuit from the point of origin to the destination.  The 

whole data set travels along this route without deviation.  Packet-switched data, 

on the other hand, takes advantage of any alternate routes that the network offers.  

Here the data set is broken into packets at the origin, with each packet moving 

independently to the destination, to be reassembled at that point in time into the 

proper configuration.  Packet-switching has proven superior to circuit-switching; 

especially as computers have become more and more powerful (packets require 

far more power than circuits) and information networks have become denser.  

This concept has been applied to the transportation world in the discussion of 

transit vs. automobiles (Fleming 2007).  Although the analogy is not exact, there 
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is merit in the idea that the more alternate routes that are available, the more 

quickly the packets can arrive at their destinations.    

• Changing Urban Needs over Time.  The needs of an urban area will naturally 

change over time with advances in technology and changing demographics.  

Legacy cities, those cities that came into primacy before the street car era (prior to 

about 1890), needed a different city structure and transportation grid than did 

cities that developed in conjunction with street car capability.  Street car cities, in 

turn, had different requirements than cities that came to fore in the 1920s when 

the automobile democratized urban travel and made cheap land available to large 

segments of the urban populace.  Cities developing after the Second World War 

and the rise of the freeway had still different needs.  The size, density, robustness 

and connectivity of the street networks were different in each era and the land use 

varied accordingly.  As needs evolved, efforts were made to adapt the street 

network.  Often this required reconstructing urban areas that were adapted for the 

previous paradigm, which sometimes proved to be too expensive to attempt.  The 

result is that many of the legacy cities are ill-designed to accommodate today’s 

mobility preferences and would likely have different structures had they come 

into prominence more recently.  

• The Demand for Transportation is Derived.  The demand for transportation is not 

generally a demand for transportation itself, but a demand for mobility and access 

to get to a good or service.  Although there is some travel just for the sake of 

travel (e.g., a drive through the country to look at the fall leaves, a quick drive 

around the neighborhood to put the baby to sleep, and a conspicuous cruise 
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through the teen-gathering areas to make one’s presence known), the vast 

majority of travel is undertaken to reach a particular destination.  Derived demand 

is compared to direct demand where the demand is for that particular good or 

service.  Here, the supply-demand curve works well; as the price of the 

good/service decreases, demand increases.  For derived demand, the demand for 

that good/service does not necessarily increase as price decreases.  This is 

particularly true for transportation, in which cheap travel does not necessarily 

mean more travel.  Most travelers need somewhere to go to make the travel 

worthwhile, regardless of transportation cost.  There is, of course, some impact on 

travel due to costs.  For example, decreases in costs (e.g., the cost of gas) may 

make some worthwhile trips affordable when they were previously not.  Still, 

travelers need destinations to drive their travel.    

• Rational choice theory.  This theory, predicated on the assumption that human 

beings are rational creatures with free will and have perfect knowledge of the 

characteristics of alternatives, holds that when faced with a decision of any type, 

people will consider their options, weigh the pros and cons, and make the decision 

that is in their own individual best interests.  Rational choice theory, first 

developed in the field of economics (Zafirovski 2001) where individual decisions 

are fundamental considerations in most aspects of the discipline, has wide-ranging 

applications and is now used to explain individual behavior in all types of 

circumstances.  Gill and Gain (2002) describe this “rational” decision-making 

behavior using five key aspects: utility (an outcome that provides the individual 

some relative benefit), purposefulness (the decision will lead to an increase in 
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utility), certainty (higher certainty is preferred over lower certainty), sincerity (the 

tendency to choose what one believes is best, as compared to strategic decisions-

making or “gaming”), and comparability (alternatives can be compared).  In 

making decisions about moving to an urban area or going somewhere, rational 

choice theorists maintain that people would attempt to maximize their individual 

utility (which, in traveling, is generally taken to mean minimizing their travel 

times), regardless of how that decision might affect the public as a whole. 

• Social exchange theory.  A key sociological theory about urban life seems to be 

social exchange theory, which holds that people (or organizations) maintain 

relationships that benefit themselves (Cook and Rice 2001).  Reciprocity is the 

key factor in this theory and systems will tend to fail unless there is some mutual 

benefit.  City dwellers and the businesses they support (and that support them) 

enjoy a symbiotic relationship that is mutually beneficial.  Social exchange theory 

holds that as long as the exchange is balanced, the system will continue.  It is 

clear that this theory, while very reasonable and readily defendable, avoids a key 

question about the exchange between agents within the city context: what 

constitutes a benefit to the individual?    

• Reference group theory.  Reference group theory takes a different tack and 

explains individual decisions within a group context.  Sociologists have studied 

the impacts of such reference groups extensively, focusing primarily along two 

lines of thought: the Lewinian approach (because of face-to-face interactions 

between group members, individuals behave in a manner consistent with the 
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norms of the group3) and the social identity model (individuals behave in a 

manner consistent with the norms of the group simply because they identify with 

the group, whether they have face-to-face interactions with other group members 

or not) (Koch 1995).  So the reference groups included in this theory can be 

formal and tight-knit, where people interact with one another directly, or open-

ended with no defined membership, as long as one identifies with the group and 

will follow the normative behavior of the group. 

• Interest group pluralism.  Two of the cornerstones of the American constitutional 

system are freedom of speech and freedom of association. These two rights 

together mean that people can associate by forming organizations that pursue 

activities with different objectives.  Such objectives include making a living, 

maintaining social networks, enhancing the personal enjoyment of life, and 

achieving social goals.  All routinely involve mobility and access to the city’s 

transportation network.  How one uses this mobility and access is often shaped by 

the interest groups with which one is affiliated.   

• Tragedy of the Commons.4  When individuals act in their own enlightened self-

interest to a portion of a commonly shared resource, with little regard to the 

compounding effects of other individuals acting in a similar manner, the end 

result is an overuse or even depletion of the shared resource. Road congestion is 

an example of such a tragedy of the commons; roads are seen as essentially free, 

                                                           
3 Derived from Kurt Lewin’s dynamic approach rule, which states that the “elements of any situation 
should be regarded as parts of a system” (Neumann 2005). 
4 Although the problem of the commons had been known in the time of Aristotle, it was ecologist Garrett 
Hardin (1968) who coined the term “tragedy of the commons” in a journal article of that name (Ostrom 
1990).  
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and there is little incentive to avoid overuse.  This is especially true when 

selecting the time and routes of travel. 

• Queuing Theory.  Queuing theory considers the competition for the use of a 

shared, but limited, resource.  This theory depends heavily on mathematical 

relationships and formulas to describe the flow of a service, whether it be at the 

checkout counter, on the assembly line, or at a telephone switchboard.  In the field 

of transportation, queuing theory is used to analyze traffic flows at traffic 

bottlenecks, such as places with lane reductions and signalized intersections.  

Here, the traffic volumes may exceed the capacity of the roadway/signal and 

interrupt the stability of the flow causing traffic to back up to wait their turn;  the 

more the delay, the increasingly more the back-up.  Queuing theory helps to 

explain one of the issues of concentration that plague the transportation system.  

The varying levels of service can provide acceptable performance in the upper 

ranges, but once they become degraded, very little additional traffic is needed to 

produce gridlock. The speed curves in the Highway Capacity Manual (TRB 2010) 

are testament to this idea.  Queuing theory suggests that moderate congestion can 

become problematic very quickly and with few additional vehicles added to the 

mix.     

• Loss aversion.  Loss aversion is the idea that people are more sensitive to the 

value of something they lose (or may lose) than they are to something of similar 

value that they gain (or may gain).  That is, people will work harder to avoid a 

loss than they will to make an equivalent gain. Behavioral studies have found that 

losses have about twice the power over us that gains do (Tversky and Kahneman 
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1981).  Loss aversion affects travel behavior, especially in congested conditions, 

as drivers try to protect their “turf”, follow too closely, and engage in rude and 

inconsiderate driver behavior, which can lead to stop and go traffic, rather than 

smoothly flowing, but slower moving traffic.  Loss aversion also plays a role in 

the resistance drivers have to certain congestion remediation efforts, such as 

congestion pricing and high occupancy toll (HOT) lanes.  People tend to resist 

paying fees and tolls, especially where none has been charged before (FHWA 

2009). 

2.6.2  Models of Urban Travel.  Travel demand forecasting began in the early 1960s with 

area-wide transportation studies in Chicago and Detroit.  The initial motivation for the 

development of travel demand models was fundamental: to provide an objective tool to 

evaluate major transportation projects and develop long-range regional transportation 

plans (Martin and McGuckin 1998).  The early models were crude and cumbersome by 

today’s standards, but with the advent of the personal computer and the steady and 

dramatic improvements in computer software, they have evolved into fairly sophisticated 

tools.  The four-step, trip-based Urban Transportation Planning Process (UTPP), first 

developed in the 1950s (Weiner 1997), remains the framework for most of the current 

travel demand models. 

 There is some major effort to develop activity, tour-based models5 and travel 

simulation models.6 Although these new approaches are now beginning to bear fruit, 

                                                           
5 Tour or activity-based models treat travel differently than trip-based models. Instead of building the 
model upon individual trips from point A to point B, tour-based models combine multiple trip legs into 
tours or trip chains. For example, a parent might pick up a child at soccer practice and stop at the grocery 
store on the way home from work. These trip legs, which are considered separately in the UTPP, are linked 
together into tours, which are then modeled as a whole.  When so considered, the modeled travel behavior 
of this parent could easily be different than if all of these trip legs were considered separately.  
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especially in transportation related air quality issues (Beckx et al. 2009, Hatzopoulou and 

Miller 2010), many in the transportation field believe that our underlying understanding 

of travel behavior is currently inadequate to support such models, which rely heavily on 

combining the various trips made by individuals into some coherent, predictable 

behavior.  Research and development efforts are continuing and the advent of new and 

improved model paradigms are likely.  Meanwhile, the four-step method is the paradigm 

of choice and used by all the major models currently in widespread use.  The four steps 

are: 

• Trip Generation.  Trip generation is the process in which the amount and type of 

trips in the planning region are calculated, based on the use of the land and the 

preferences and needs of the people making the trips, as well as the various socio-

economic and employment data that impact on these two factors.  Both the 

number of trips “produced” in a zone (based on travel surveys and socioeconomic 

data and categorized into a number of trip purposes) and “attracted” by a zone 

(based on land use data and ITE tables7) are determined for all zones in the 

region.  It is these productions and attractions that generate the demand side of the 

supply-demand function of urban traffic.   

                                                                                                                                                                             
6 Travel simulation models attempt to model individual travel behavior through the use of decision matrices 
at specific points in the trip.  These matrices are based on situations and routinely include some probability 
functionality to reflect the notion that many stops along the trip route, or even the trip routes themselves, 
are often unplanned at the outset.  Because of the vast numbers of decision points in a single trip, travel 
simulation models are best suited for modeling behavior at specific points in the network, such as 
intersections and on and off ramps. 
   
7 The Institute of Transportation Engineers (ITE) publishes periodically a Trip Generation Manual 
(currently in its 9th edition) that contains instructional material, a recommended practice on the use of this 
resource, and data on land use descriptions, trip generation rates, equations, and data plots. Transportation 
planners use this information to determine the number of trips “attracted” by a business establishment, 
recreational facility, or other destination. 
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• Trip Distribution.  This step in the four-step process matches the productions with 

the attractions and a “gravity” model (based on the idea that people (productions) 

tend to go to the closest attraction that will meet their need) is almost universally 

used to do so.  To reflect the amount of difficulty to move between zones, some 

type of impedance measures are included in the model.  These impedance 

measures can be a single “friction” factor, a look-up table of friction factors, or 

some form of travel time decay function.  Once trips are distributed, trip lengths 

are, in practice, checked against the household survey or Census data.  And 

finally, to ensure the external trips (those trips with one end of the trip outside of 

the planning area) are properly integrated, external overlays are generally used, 

particularly in smaller cities. Trip distribution adds a spatial component to the 

demand side of urban traffic.  Congestion has a spatial component and the 

proximity of the productions and attractions would seem to have some impact on 

its formation. 

• Mode Choice.  This step splits the trips into the various modes so that they can be 

assigned to the traffic network.  Transit is the most common mode, but other 

modes include walking, bicycling, and carpooling.  In most areas, solo automobile 

use is so dominant that the mode choice step is often skipped.  In the larger cities, 

and especially those with large percentages of pedestrians and transit riders, this 

step is essential for realistic traffic assignment.  To the extent that mode choice 

moves users off the street network, the numbers of trips will be reduced and 

traffic flow positively affected. 
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• Traffic Assignment.  As the name implies, in this step the trips are assigned to the 

traffic network.  The desktop computer has allowed for far more sophisticated 

assignment techniques than in times past, and “equilibrium” methods dominate.  

These methods use an iterative process to continually adjust the trips assigned to 

each link based on the traffic volumes.  Traffic assignment is typically based on 

rational actor models, where drivers have perfect knowledge of road conditions 

and use that knowledge to minimize their travel times.  Here the supply side of the 

supply-demand function comes into play, and the size, density, connectivity, and 

“thickness” of the network is a key component of urban congestion. 

 The four-step method, though the paradigm of choice, is not without its 

shortcomings.  Several of these are problem areas and the manner in which they are being 

addressed is noted below: 

• Time variations.  Travel behavior varies by time (of day, of week, of month, and 

of year) and this variation can often be lost in the aggregated nature of the trip 

generation process.  For such time variations to be captured in the modeling 

process, the specific time periods of interest must be isolated and the 

transportation behavior patterns within them considered separately.  Time of day 

considerations for the smaller MPOs are especially important, since often 

congestion problems are limited to certain hours of the day, such as peak hours or 

factory shift change.  In areas near recreational attractions such as beaches and ski 

resorts, transportation issues would likely be more seasonal with congestion 

problems becoming more acute during the summer or winter months.  So it is 

important for the trip generation process to incorporate time variations if the 
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situation so demands and this is best handled by modeling the various time 

periods separately.  

• Low use trips/modes.  Low use trips/modes can also be lost in the aggregated 

nature of trip generation.  Trip generation tables and travel surveys can often hide 

or overlook those trips that are rare for the individual but numerous enough to 

support a successful business in the whole.  (Examples might include trips to 

make donations to the Salvation Army or to Boy Scout carwashes hosted by the 

local McDonalds.)  Such trips may not ‘fit’ anywhere in the process, but can, or 

may, still be influential on traffic patterns.  These type trips are difficult to isolate 

in the UTPP and most often are not fully accounted for.  It would seem likely that 

the more diversified and specialized a city, the more such low use trips and modes 

would be in evidence.  

• Multi-mode trips.  In a similar fashion, multi-mode trips are not routinely 

accounted for.  The trip generation process considers origins and destinations and 

for multi-modal trips to be fully incorporated, these origins and destinations 

would need to include mode change points, such as park and ride sites and van 

pool pick-up points.  This could be done with more expansive trip generation 

procedures, but is most often omitted.  Modes of travel other than the automobile 

are important primarily in the larger MPOs, but most often are not a major factor 

in the smaller regions.  In larger regions, though, they can have a significant 

impact, with more multi-mode trips likely in areas with more transit or bike-

pedestrian options. 
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• Transportation System Management/Transportation Demand Management 

(TSM/TDM) efforts.  Travel behavior can be affected by external attempts to 

control or influence individual access to and use of the transportation network.  

Such attempts (e.g. encouraging the use of mass transportation modes or 

telecommuting during high ozone days, regulating access to freeways through 

ramp controls, and the use of tolling and other pricing mechanisms) can affect the 

trip generation, trip distribution, and the mode split processes, and can be 

captured in normal modeling procedures only by micro-analyzing the issues of 

concern.  In other words, modelers would need to develop specific parameters for 

TSM/TDM activities and model them separately.  As this would routinely require 

the allocation of additional resources, the costs and benefits would need to be 

considered carefully.  Likely, this effort would not be worth the cost (especially 

for the small MPOs) except in the study of specific, and perhaps somewhat 

unique, policy issues.   

• Zone structures.  Because of the vast numbers of potential travel origins and 

destinations even in the smallest MPOs, such Os and Ds are typically grouped 

into zones called Traffic Analysis Zones (TAZs).  All travel in and out of these 

zones is said to originate from the TAZ centroids, a notion that obscures the 

nature of the travel within a particular zone.  When the zones are small, this may 

be only a minor problem, but when the zones are large, the problem can be quite 

substantial.  Currently, TAZs, which are typically based on census tracts or 

portions thereof, are subdivided as traffic volumes increase to make the zonal size 
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less problematic.8  Moreover, traffic congestion within TAZs is typically not a 

problem. 

• Land use feedback.  Most regions have land use zoning restrictions of some type 

to control the development of the urbanized area.  Travel between TAZs regularly 

occurs between zones of different land uses (e.g., people leave home (areas zoned 

residential) to go to work (areas zone commercial or industrial)), but the resulting 

traffic patterns do not seem to figure into the zoning decisions made by municipal 

agencies.  Indeed, the link between land use and the transportation grid is one of 

the weakest links in the urban planning process.  This is widely recognized and 

there are many land use models that attempt to feed into travel demand models 

and strengthen this connection.  Thus far, however, a good linking process 

remains elusive.  Still, the variation and distribution in the land uses may be a 

factor that impacts on urban congestion.    

• Behavior choices.  Individual travel preferences form the basis for all travel, and 

capturing these preferences is difficult.  Travel surveys, which try to identify the 

trips a population sample takes in a given time period, and trip generation tables, 

which identify the average number of trips a type of land use attracts, are the 

instruments of choice in codifying travel behavior.  But these methods are 

lacking: what folks say they do and what they actually do are different, and land 

uses do not uniformly draw the same visitors over time and across geographies.  

                                                           
8 It is possible, however, to eliminate this problem altogether.  Today’s PC technology allows the 
distribution of trips to and from their actual origins and destinations, without the use of TAZs.  In his 
assessment of traffic patterns in Pocatello, ID, Horner (1998) found this technique to smooth out the traffic 
flow within TAZs and better capture the use of the transportation network.  This approach does, however, 
require additional resources, and may not be worth the additional expense, especially in the smaller MPOs, 
where TAZs are fully adequate. 
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Additionally, the same individuals often exhibit different travel activity patterns 

depending on the combination of trips (trip chains) they are making.  So travel 

behavior estimates are quite problematic and provide a shaky foundation for the 

entire travel demand modeling process.  Still, surveying techniques are getting 

better, trip generation tables becoming more sophisticated, and household activity 

algorithms becoming more reflective of actual behavior.  But there is clearly more 

improvement needed in this area. 

2.6.3  Models of Urban Development.  There are many models of urban development, 

whether they be predicated on the idea that cities formed for trade purposes before the 

advent of agriculture (Jacobs 1969) or required the development of agriculture to allow 

large numbers of people to gather and thrive in one location (Bairoch 1988).  Three basic 

models that have since been improved upon in the detail and complexity that defines 

today’s urban areas are briefly discussed below:   

• Concentric Zone Model.  Ernest Burgess of the famed Chicago School introduced 

the Concentric Zone Model (Dreidger 1991) where cities grew around a central 

business district (CDB) in rings, much like a tree.  Rings tend to be business or 

class-based, with business occupying the inner rings and residential areas the 

outer rings. As the city’s size increases, the rings push outward through the 

process of invasion and succession, with the best land going to the more dominant 

group (i.e., the group that controlled more wealth).  Additionally, as the rings 

push outward, heterogeneity increases along with increased segregation and class 

differentiation. 
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• Sector Theory.  Homer Hoyt noted that transportation advancements seemed to 

allow the bypass of Burgess’s concentric zones and developed a Sector Theory 

(Dreidger 1991), where “pie slices” along the high speed transportation corridors 

were integrated into the concentric zone concept, effectively mixing up the city 

structure.  The CBD was still the key economic sector but the other rings (light 

manufacturing and residential) followed the access offered by transportation 

technologies instead of remaining in their rings.  Again, the best land, which 

commanded the highest “rent”, went to the more dominant group.   

• Multi-nuclei theory.  Chauncey Harris and Edward Ullman attempted to improve 

on Hoyt’s sector theory by suggesting that as a city grew, it diversified.  This 

diversification engendered a diversification of land use as well, as people and 

businesses sought to take advantage of increased transportation options and 

cheaper land at the city’s periphery.  This resulted in a city that had more than one 

center of economic activity, a city with multiple nuclei (Dreidger 1991).  While 

the CBD remained the dominant economic driver, other outlying business districts 

developed, often with their own concentric rings or supporting sectors.  

 The city structure has an impact on the supporting transportation network.  No 

major urban areas are purely concentric zone or sector models, nor are they exactly how 

Harris and Ullman envisioned them in their Multi-Nuclei model; with increasing size, 

they generally exhibit traits of all three.  The predominance of any one structure, or the 

spread of the three, is a factor of the underlying city’s history, geography, and dynamics.  

The degree of centralization and spread of the economic drivers affect the resulting street 

network and the traffic flows over that network. Research by Meijers and Burger (2010) 
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found that poly-centricity is associated with higher labor productivity, which may be 

because poly-centricity appears to be a function of urban growth and urban growth leads 

to knowledge spillover, which in turn enhances productivity.   This suggests that it may 

be advantageous for businesses, over time, to locate outside the CBD to take advantage of 

this increased productivity. This, in turn, supports the observation that city organization 

gets more complex as the city ages.  

2.6.4 Models of Land Use.  The city structure is also affected by the use of the land, 

which is largely determined by the people and the free market, in conjunction with the 

zoning authority.  There are a number of models used to project land use into the future, 

all of which begin with existing population and employment totals, the existing zoning 

structure and a knowledge of recent growth patterns.  While future land use is important 

to planners and will shape city development, it is the current land use that is most 

important in this analysis.  It seems likely that zoning patterns are correlated at least to 

some degree to congestion.       

2.7  Points of Intersection between Theories and Concepts, Travel and Urban Structure 

 The theories and concepts that may affect travel behavior, the urban transportation 

models, and the underlying urban structure are the three circles in a Venn diagram, with 

the intersection of all three offering some insights into the understanding of urban 

congestion.  These are discussed below within the template of supply, demand and flow.   
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Figure 1: Relationships between travel behavior, urban transportation models and urban 
structure 
 

2.7.1  Supply.  Central place theory provides a basis for the rise of urban areas and 

structural functionalism provides a basis for their organization.  Given that the needs of 

the city are fundamental, it seems clear that a transportation network would arise to 

support those needs, needs which are likely to be at least somewhat different in different 

urban areas depending on culture, expectations of city services and responsibilities, and 

city wealth.   Land-rent theory further shaped urban area and the underlying street grid, 

with the supply of streets and roads directly related to the dimensions of the network, its 

size, density, robustness and connectivity.  These dimensions, in turn, are affected by the 

structure and layout of the urban area.  Cities following the concentric zone model 
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commonly have a hub-and-spoke, radial network with all major arterials leading to the 

CBD. Sector zone and multi-nucleic cities have more complex networks with major 

arterials leading to the key sectors and the other nuclei in addition to the CBD.   

Networks with more intra-connectivity offer more routes of travel from origins to 

destinations and according to packet-switching network theory should offer faster and 

more consistent travel times.  City age also has a role to play in both the urban form and 

the resulting transportation network.  Needs change over time and older cities may have 

street networks that are inadequate to support the way the populace wishes to travel, but 

have limited options for improvement, primarily because of cost and a need for extensive, 

and perhaps excessive, use of eminent domain.   

 The supply of transportation is measured by the size, density, and robustness of 

the street network, as well as its ability to effectively link people with where they want to 

go.   

• Network size is characterized by descriptive numbers without regard to the 

underlying population, the underlying area, or any other underlying feature. 

Measures of size include such metrics as miles of freeway, lane miles of freeway, 

miles of local streets, and numbers of links and nodes.  Size measures are 

somewhat limited in their value when exploring congestion since congestion is a 

spatial and temporal phenomenon that typically occurs only in limited areas and 

during specific time periods.  Size measures do not “get at” the concentration of 

vehicles in space-time. Nonetheless, one would expect cities with larger networks 

to have more congestion, simply because of the theory of structural functionalism.  

The cities built these networks because they were needed and the lag time 
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between identifying the need and adding to supply usually means that urban areas 

are continually in a state of playing “catch up”. 

• Network Density is the size of the network in relation to another underlying 

parameter (population, commuter, area, etc.).  Density can reflect a number of 

different circumstances, such as age of the city, structure of the city, use of the 

land, and under- or over-building of the highway network.  

• Network Structure is the nature of the network in relation to itself.  Given that the 

transportation network will follow the urban area network, this measure is 

concerned less with network layout (radial, grid, or natural) and more with the 

proportional sizes of the various functional classes of highway.  One measure 

along these lines is the size of the freeway system in relation to the network as a 

whole.  Different network structures will be able to carry different loads of traffic 

and have differing susceptibilities to congestion. 

• Network Robustness is the carrying capacity of the network; i.e., the number of 

lanes, the speed limits, and the level of access of the roads in the grid.  The more 

robust the network, the more traffic it can carry.  This is particularly true of the 

freeway system as it tends to carry the most traffic, especially from the outskirts 

of the urban area where land rent theory posits people will choose to live because 

of housing costs. 

• Network intra-connectivity is a measure of the number of nodes in the network, 

which allow the movement of vehicles from one link to another.  The more 

connected the network, the more routes that “packets” have from origin to 

destination. 
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• Network inter-connectivity is a measure of the ability for people outside the 

network area (often taking advantage of cheaper or more attractive places to live) 

to access the attractions in the urban area and also the ability of people inside the 

network to access attractions outside the urban area.  Higher speed roads 

connecting the urban area with the hinterland (surrounding area and nearby 

towns) are essential to good inter-connectivity.   

2.7.2  Demand.  The driving principle behind transportation demand is that it is derived.  

While there is the occasional joyride, the vast majority of travel is to go a destination.  

The destinations of choice are explained, at least partially by a number of behavioral 

theories.  Rational choice theory posits that travelers make rational decisions, thereby 

maximizing their utility.  Social exchange theory would explain the basis for the utility 

that is being maximized.  Both reference group theory and interest group pluralism 

suggest that the social networks to which travelers belong can sometimes override their 

rational decision-making or at least alter what travelers may consider rational.  These last 

three theories are sociologically-based and are affected by cultural norms and likely lead 

to different outcomes in different urban areas and in different parts of the country. 

Regardless the motivation, however, people will make their travel decisions to best fit 

their needs.  Unfortunately, these decisions are commonly made without full 

consideration of the external costs of using the network at that point in time and along the 

chosen route.  Hence, demand can overwhelm supply at points in time and space and 

result in congestion, which is a tragedy of the commons. 

 As noted, the demand for transportation is derived, so it would be affected by the 

characteristics of the travelers as well as by the characteristics of the places they go.  The 
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four-step model estimates this demand by identifying productions and attractions; their 

numbers are important but their nature may matter even more, because it may cause the 

distribution of the trips be different than might be expected if all productions and 

attractions were uniformly “vanilla”.  People may choose “more exotic flavors” of 

destinations that are farther from their origins than “more vanilla” destinations nearby.  

• Internal Productions are the points of origin for the trips generated within the area 

covered by the transportation network.  These trips generated trips are derived – 

travelers have to want to go somewhere.  Their desire and ability to go, however, 

is driven by the characteristics of the travelers, which include the numbers of 

travelers, the density of travelers (in relation to the area or the network), the 

incomes of travelers (wealthier people tend to travel more)(Balaker and Staley 

2006), the levels of automobile ownership (absolute or in relation to the area or 

the network), and the levels of solo automobile commuting (absolute or in relation 

to the area or the network).  Internal productions are also affected by the numbers 

of people who may not travel at all because of low income or age.  These 

traveler/non-traveler characteristics are influenced by the reference groups and 

interest groups with which the individuals identify, which in turn have a regional 

component. 

• Internal Attractions are the points of destination for the trips generated within the 

area covered by the transportation network.  These are driven by the 

characteristics of the attractions; e.g., the size of the employment centers, 

restaurants, and malls (which indicates their “pull” within the gravity model), the 

number and types of specialty shops (which may indicate the degree of variety in 
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the attractions which may propel people to travel farther than the gravity model 

would suggest), and the model of urban development (which might cause people 

to travel farther to get to work, school or shopping than in other models of 

development).  These metrics can be assessed as absolute measures or in relation 

to population, area or the network.  Like the internal productions above, the 

attractions also have cultural and regional components – attractions can be more 

or less attractive in different parts of the country. 

• External Productions are the points of origin for the trips generated outside the 

area covered by the transportation network and are similar in nature to internal 

productions.  These are measured by the inflows of people from outside the urban 

area; e.g., people from surrounding areas commuting to employment, attending 

local schools, or shopping at local businesses.   

• External Attractions are the points of destination for the trips generated outside 

the area covered by the transportation network and are similar in nature to internal 

attractions.  These measured by the outflows of people from the urban area; e.g., 

people commuting to outside employment, attending outside schools, or shopping 

at outside businesses. 

• Mode Split determines the number of trips that is assigned to the street network 

and is affected by the numbers of travelers who choose not to travel by car (users 

of transit and bicycles, pedestrians, and telecommuters).  Key determinants of this 

choice is car ownership (individuals without access to an automobile are more 

likely to use transit), age (older and younger people tend to have less access to 

cars), and the penetration and extend of the available transit services.  
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2.7.3  Flow.  As people move out onto the network (the supply) to go to their choice of 

destinations (the demand), they move into the flow where their choices will interact with 

the choices of the other users of the network to determine the level of service (LOS) for 

the facility. If they behave as good stewards of the facility, they can minimize the adverse 

effects their driving behavior will have on flow.  If they are inattentive, or engage in 

overly aggressive or loss averse behavior, they can negatively affect throughput and 

unnecessarily increase congestion.  Regardless of their behavior, there will be 

interruptions in flow caused by other factors that may cause queues to develop, which 

will need to be resolved per queuing theory.  These other factors may be characteristics of 

the drivers and vehicles that use the network, the network itself, or the non-recurring 

interruptions of flow (traffic incidents, work zones, weather, and special events) 

discussed in Section 2.3.2 above.    

• Trucks affect the flow by slowing it down and reducing throughput, so the 

number of trucks using the network (absolute or in relation to the population, the 

area or the network) would make a difference.   

• Distracted drivers impede the flow of traffic in a number of ways: by failing to 

maintain pace with the flow; by delaying unnecessarily at intersections; and, by 

driving erratically, which forces other drivers out of a smooth traffic flow.  

• Intersections with traffic signals and stop-controlled signage are designed to 

interrupt the flow of traffic to allow access from other links in the network.  In 

crowded conditions, this can lead to queues and congestion. Poorly timed signals 

or ill-conceived signage can add to this congestion, often significantly.  However, 

even well-designed signals and signage can have a detrimental impact on travel 
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speeds, which is a key reason freeways, which do not have intersections, typically 

allow for faster travel times.   

• Traffic Incidents impede the smooth flow of traffic and the more accidents or 

breakdowns the more the impedance. Even with identical accident rates, urban 

areas with more vehicle miles of travel (VMT) will have more accidents, which 

will, in turn, lead to increased congestion.  

• Work Zones impede the smooth flow of traffic and the more work zones the more 

impedance.   Even with similar construction rates, urban areas with more VMT 

will have more construction and hence a larger impact on congestion. 

• Weather may impede the smooth flow of traffic, but bad weather is fairly 

widespread and travelers routinely adapt to the prevailing conditions.  Still urban 

areas with more adverse weather may experience a larger impact on congestion 

that areas with more benign weather patterns. 

• Special Events impede the smooth flow of traffic and the more special events the 

more impedance.   Urban areas with more special events will have a larger impact 

on congestion. 
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CHAPTER 3:  THE RESEARCH IN CONTEXT 
 
 
3.1  Congestion Research to Date 

 Congestion is a practical problem, and also an expensive one as noted above.  

Consequently, most recent congestion research has tended to focus along three axes: 

impacts, mechanics and remediation.  These perspectives are all practical and lend 

themselves to developing or supporting public policy.  Theoretical aspects of congestion 

have received less attention.  There has been some additional work to describe congestion 

further and examine its causes, but this has occurred generally within the context of 

standardizing terminology and immediate causation.  Congestion researchers have 

sometimes explored the causes of congestion from their own perspective, but they 

generally have limited themselves to the immediate causes (demand exceeding supply for 

whatever reason) and often have begun with the reality that congestion already exists.  To 

date no one seems to have taken a holistic approach to the underlying urban dynamics 

that result in congestion. 

 There has, however, been research on aspects of urban travel that are related to 

congestion, such as travel behavior and vehicle usage.  These factors have been weighed 

against various characteristics of the urban arena (density, education, income, 

sustainability, etc.) to assess relationships.  Since these studies often suggest or infer 

impacts on traffic congestion, they are included in the review of the literature. 
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3.1.1  Congestion Impacts.  A key focus of transportation researchers has been to 

quantify the impacts of traffic congestion.  These impacts are known to be large and their 

quantification is likely to draw attention to the congestion problem and beg some 

resolution.  Consequently, the lead agencies in this research have been the government, 

universities and privately funded think tanks.  The Texas Transportation Institute (TTI) is 

one of the key players in this area and publishes a frequently cited annual Urban Mobility 

Report.  The 2012 report (Schrank, Eisele, and Lomax 2012) uses measured traffic data 

for selected urban areas (provided by INRIX, a private company and a leading provider 

of traffic information) to calculate the impacts of congestion in a variety of ways (wasted 

time, wasted fuel, wasted money, additional CO2 emissions, and cost to shipping 

companies) and from several perspectives (total cost, cost per urban area, and cost per 

commuter).  The Federal Highway Administration (FHWA) (2013b) provides aggregate 

data annually on the annual change in hours of congestion, travel time index (average 

congestion), and planning time index (worst-day congestion).     

 While the preceding research served to assess the generalized costs of congestion 

on urban regions as a whole, other research has focused on assessing the effects of 

congestion on specific aspects of the urban condition.  Such aspects include regional 

productivity (Hartgen and Fields 2009; Prud’homme and Lee 1999), greenhouse gas 

emissions (Kelly 2012; Hartgen, Fields and Moore 2011), and sustainability (Li et al. 

2012; Ramani et al. 2011).  Finally, Llewelyn-Davies (2004) reviewed several hundred 

sources, many of which concerned congestion, for their assessment of the link between 

transportation and city competitiveness.   
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3.1.2  Congestion Mechanics.  Much of the research on congestion impacts is at the 

macro level, which considers congestion as a regional phenomenon.  Other research is 

conducted at the micro level and explores the mechanics of how congestion works.  This 

tends to be the world of traffic engineers and proponents of specific policy issues.  The 

various sections of the Highway Capacity Manual (TRB 2010) that are concerned with 

traffic flows and congestion are based on such research.  Other authors have worked on 

details, exploring the links between congestion and two-way (vs. one-way) street 

networks (Gayah 2012; Gunay 2009), the transportation of school children (Wang, 

Campbell, and Parsons 2010), rain events (Watkins and Hallenbeck 2010), various non-

recurring traffic events (Chin et al. 2002a and 2002b), cell phones (Yager 2013; Holden 

2009; Strayer, Drews and Crouch 2006), roundabouts (Dahl and Lee 2012; Uddin  2011), 

ramp metering (Shen and Zhang 2010; Varaiya 2008), left turn assessments (Yu and 

Prevedouros 2013; Chowdury et al. 2005), and signalization (Aziz and Ukkusuri 2012; 

Wu and Liu 2011). 

3.1.3  Congestion Remediation.   Most, but not all, of the research on congestion impacts 

and mechanics tends to set the stage for suggestions for congestion remediation.  

Moreover, there are additional documents that propose methods to alleviate congestion 

that do not include discussions of the impacts or mechanics, but instead build upon those 

that do.  The congestion problem is an expensive one and there is no shortage of potential 

solutions.  Remediation efforts are discussed in terms of supply, demand and flow.  

• Supply-oriented solutions generally involve adding new capacity or using exiting 

capacity more efficiently.  Cox and Pisarski (2004) and Hartgen and Fields (2006) 

argue for more roads and Zimmerman et al. (2011) make the case for increased 
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network connectivity.  Supply solutions are not without their detractors.  A 

number of researchers (e.g., Duranton and Turner 2011; Downs 2004; Cervero 

2003a; Cervero 2003b, Littman 2001, and Hansen 1995) find that generated 

traffic, also known as induced traffic, will eat up much of the increased capacity 

offered by the new construction.  This is not necessarily a bad thing – induced 

travel can also lead to induced growth and induced investments, which can add to 

the urban area’s vitality and attractiveness.  Still, this does not help the congestion 

remediation efforts.  

• Demand-oriented solutions generally involve decreasing demand for travel 

through pricing strategies (Glaister and Graham 2006), changes in travel behavior 

(Strickland and Berman 1995; Viegas 2001), increased modal alternatives 

(Crampton 2000; Aftabuzzaman, Currie and Sarvi 2010; Aftabuzzaman 2011), 

changes in urban design (Zhao, Luë, and de Roo 2010; Boarnet 2008; Buliung 

and Kanaroglou 2006; Crane and Chatman 2003; Cervero 2001) or some 

combination of these (Smart Growth America 2012; Littman 2012).   

• Flow-oriented solutions generally involve improved traffic operations (Hensher 

2003; FHWA 2012a) and improved public information to allow drivers to make 

more informed decisions (Ogunbodede 2007). 

These various strategies are summed up in good detail by Cambridge Systematics (2005) 

and the Federal Highway Administration (2013). 

3.1.4  Congestion Description and Discussion.  There has, of course, been other 

congestion research with a focus other than impacts, mechanics and remediation efforts.  

Topics are varied and include comparing various mobility and congestion measures 
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(Bertini 2005), developing improved measures of congestion (Maitra, Sikdar and Dhingra 

1999; Mallinckrodt 2010), differentiating between recurrent and non-recurrent congestion 

(McGroarty 2010; Skabardonis, Varaiya, and Petty 2002), exploring the link between 

congestion and economic development (OECD/ECMT 2007), and changing how travel 

behavior research is done (Gärling, Gillholm, and Gärling 1998).   

 Finally, there is research to support the notion that congestion is here to stay 

(Duranton and Turner 2011).  Indeed, Downs (2004, p. 20) says that “Traffic congestion 

is not essentially a problem.  It’s the solution to our basic mobility problem.” He further 

asserts (p. 21) that “Peak-hour congestion is the balancing mechanism that makes it 

possible for Americans to pursue goals they value, such as working while others do, 

living in low-density settlements, and having many choices of places to live and work.”  

If this is true, then perhaps most research on congestion is an academic drill with little 

practical application.  

3.1.5 Studies Related to Congestion.  There have also been other studies that have 

looked at travel behavior and vehicle usage in relationship to characteristics of travelers 

and their environment.  These studies do not address congestion directly, but since travel 

behavior and vehicle usage are key components of congestion, they merit a quick look.  It 

seems to be commonly accepted that increased car ownership and family wealth lead to 

increased travel.  Martin and McGuckin (1998) use the level of car ownership as a factor 

in estimating trips and Balaker and Staley (2006) argue that the increases in wealth that 

generate more travel is a good thing.  Both assessments find links with increased travel, 

which could lead to increased congestion.  Baum-Snow (2007) investigated the 

relationship between highway development and intercity growth and concluded that “one 
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new highway passing through a central city reduces its population by about 18 percent” 

(p. 2.), suggesting that freeways promote an exodus from the city center, which has 

implications (both positive and negative) for congestion.  Research in sustainable 

development regularly considers the relationships between development/city form/land 

use and travel.  One such study (Boarnet and Crane 2001) found that while land use can 

affect the price of travel, the evidence of a link with increased travel is mixed; i.e., 

sustainable development practices cause some people to travel more and others to travel 

less.   

3.2  The Contribution of this Research to Understanding Congestion 

 Regardless of whether or not congestion research serves a practical purpose, it can 

serve an academic one.  It is hoped that this research will extend the understanding of the 

underlying foundations of congestion.  While the research to date has focused on the 

immediate causes of congestion and the necessary steps to resolve the congestion issue, 

none has considered the underlying urban characteristics that are present when 

congestion arises.  This study seeks to identify these correlates of congestion and assess 

their relative importance. 
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CHAPTER 4: RESEARCH DESIGN 
 
 
4.1  Overview  

 The purpose of this study is to uncover the set of urban characteristics that are 

correlated with traffic congestion.  This involves identifying measures of congestion for 

assessment, specifying a study area and time frame for which there are a wide variety of 

potential correlates, selecting key datasets from which to gather the potential correlates, 

isolating a number of urban characteristics from the multitude of possible variables 

available based on theories and the literature, and identifying methods of analyses that 

can handle this number of variables, which are likely to be correlated with one another, 

often highly so.  Of these steps, the first, and most fundamental, is identifying measures 

of congestion, so we begin with this.  

4.2  Measures of Network Congestion   

 There are two basic types of data: primary data, which are collected first hand by 

individual researchers/research teams for use in their own studies, and secondary data, 

which are collected by other people or organizations and then used by individual 

researchers/teams in their studies.  Primary data can be quite expensive, often 

prohibitively so, and moreover can be extremely difficult to collect.  These issues steer 

researchers/teams to use secondary data, which have their own set of problems. Often, 

secondary data were not collected for the purpose(s) of the study, so care must be taken 

to ensure that the data are appropriate.  Care must also be taken to ensure that data come 
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from a single source so that measurement is consistent across the dataset.  In this light, 

existing studies of congestion that have a national scope and a wide variety of city sizes 

are reviewed in search of measures of congestion; specifically, measures of the three 

dimensions of congestion – intensity, extent and duration.  All of these measures are 

found in the Urban Mobility Report (UMR) using INRIX data, published annually since 

1992 by the Texas Transportation Institute.  (It should be noted that the UMR uses 

roadway inventory data from the Federal Highway Administration’s Highway 

Performance Monitoring System (HPMS) in most of its calculations.  Beginning in 2011, 

private sector traffic speed data from INRIX data was incorporated into the mobility 

performance measures.)  

 The UMR contains a wealth of data for the years 1992-2011 and will serve as the 

foundation for this analysis.  (Given this 20-year period of data availability, 2010 is 

selected as the base year of the study in anticipation of using published 2010 census data 

for at least some of the potential predictor variables.)  In addition to the three measures of 

congestion, data include two key demographic metrics (population and number of 

commuters) and key network metrics (lane miles and daily vehicle miles of travel (VMT) 

for both freeways and arterials). There are other data concerned with calculations of 

delay, fuel costs, and value of time that are not used in this assessment.  

 Several potential measures of congestion are identified in Section 2.4.3.  Of these, 

the UMR uses three network-wide measures, which characterize the three dimensions of 

congestion.  These measures are summarized in Table 3 and discussed in the ensuing 

paragraphs. The 2010 data taken directly from the UMR are used for each of these 

measures.  
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Table 3: Measures of network congestion 
VARIABLE EXPECTED 

EFFECT 
 
SOURCE 

 
JUSTIFICATION CONCEPTUAL OPERATIONAL 

Congestion – 
Intensity 

Travel Time Index 
(TTI) 

NA -
Dependent 
variable 

UMR Measure of congestion intensity 
Used in UMR 
 

Congestion – 
Extent 

Portion of lane 
miles that are 
congested 

NA -
Dependent 
variable 

UMR Measure of congestion extent 
Used in UMR 
 

Congestion – 
Duration 

Length of peak 
periods 

NA -
Dependent 
variable 

UMR Measure of congestion duration 
Used in UMR 
 

 
 

• Congestion – Intensity (Travel Time Index (TTI)).  The TTI is a solid measure of 

the intensity of traffic congestion (see Section 2.4.3).  Moreover, it is widely used 

and accepted. Specific details of its calculation are in the UMR (Schrank, Eisele 

and Lomax 2012), but in general, vehicular speeds are measured at specific points 

on the network at various times in the day and then generalized across the 

network.  Finally, travel times in the peak hours are compared to travel times in 

the off-peak hours to derive the TTI (recall that the TTI is the ratio of travel time 

in the peak to travel time in the off-peak).   

• Congestion – Extent (Portion of Lane Miles that are Congested).  This metric is a 

clear and understandable measure of the extent and scope of the congestion 

problem.  Additionally, its calculation is relatively straightforward as explained in 

the UMR (Schrank, Eisele and Lomax 2012).  In general, the UMR uses measured 

vehicular speeds, generalized across the network, to calculate the percent of the 

freeway and arterial lane miles that are congested, with the idea that once free 

flow speeds are reduced to a certain point (depending on the road classification), 

then the road is congested.  The UMR, however, calculates the percent of lane 

miles that are congested.  The portion of lane miles that are congested (or percent 
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in decimal form) is used in this analysis instead, so that that the decision tree 

analysis works properly. 

• Congestion – Duration (Length of Peak Periods).  The duration of the congestion 

problem is perhaps best measured by the congested hours data recorded in the 

quarterly Urban Congestion Report (hours: minutes of congested travel per 

weekday).  Unfortunately, these data are available only for a small number of 

cities.  In lieu of this metric, the length of the peak travel periods (specifically, the 

number of rush hours) in the UMR is used (Schrank, Eisele and Lomax 2012). 

This calculation is explained in detail in the UMR, but in general, TTIs are 

calculated for each hour in the day, and rush hours are then derived from the 

TTIs.  

4.3  The Selected Urban Areas   

 The UMR is selected as the foundation for this analysis because of the availability 

of the three congestion variables. This will necessarily limit the studied urban areas to 

those included in the UMR.  

  The 2012 UMR identifies 498 urban areas in the United States (Schrank, Eisele, 

and Lomax 2012).  Of these 498, the UMR includes hard, measured data for 101, which 

are grouped based on population: 15 very large (more than 3 million people); 32 large    

(1 million to 3 million); 33 medium (500,000 to 1 million); and, 21 small (less than 

500,000).  The hard data include the three congestion variables used as dependent 

variables in the analysis, which restricts the selected urban areas to these 101.  

Recognizing that congestion is a function of the supply, the demand and the flow and that 

these traits are fundamentally affected by culture and personal preferences, this study will 
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focus on US cities only; specifically those in the contiguous 48 states, Alaska and 

Hawaii.  Cities in US territories will not be considered, so the territorial city of San Juan, 

Puerto Rico is dropped from the list.  The selected urban areas, now an even 100, include 

a range of city sizes and are geographically dispersed. 

 This set of 100 urban areas is not a random sample, but instead is “top heavy.”  

All the very large and large urban areas in the US are included in the study set (except 

San Juan, PR) (100% of the very large and large cities in the 50 states and the District of 

Columbia), as are 33 of the 36 mid-size urban areas (92%).  Of the 415 remaining small 

urban areas only 21 (5%) are represented and these are in the upper half in population.  

Boulder, CO, with a population of about 150,000, is the smallest city in the study area.  

This over-representation of the more populated areas is not expected to be a problem; 

however, as it is in the more populated areas where congestion is a real problem and a 

random sample could hinder the identification of factors of congestion.  In a national 

assessment of the urban congestion problem, Hartgen and Fields (2006) estimated the 

costs of the additional highway capacity needed to eliminate severe congestion, which 

was defined as a Travel Time Index (TTI) of at least 1.18.  To arrive at this cost estimate, 

they calculated the TTI for all urbanized areas in the US for 1995, 2003 and 2030.  When 

cross-referencing these TTIs with city populations, severe congestion was most always 

present in cities with populations of 700 thousand or more, commonly present in cities 

with populations of 300-700 thousand, and rarely present in cities with populations of 

150-300 thousand.  For cities smaller than 150,000, severe congestion was never present 

or estimated to be present in 2030.  While the TTI is but one measure of congestion and it 

is a regional measure that would not preclude severe congestion occurring at specific 
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points in the network and at specific times, the Hartgen-Fields study seems to support the 

concentration of generalized severe congestion in the larger urban areas.  Moreover, as 

the goal of the study is not to study congested cities in and of themselves, but rather to 

uncover the urban characteristics that are most linked to congestion, it is essential that the 

larger urban areas where congestion is a problem be well represented in the sample.  It is 

most likely that a random sample would include fewer of the larger cities and thus make 

the identification of the targeted urban characteristics much more difficult.  In essence, it 

seems, to achieve the goal of the study, the sample must be “top-heavy.” 

 The selected urban areas are shown on the map (highlighted by population 

grouping) and in the table (grouped by population size) below.  

 

 
Figure 2: Selected 100 urban areas by population group 
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Table 4: Selected 100 urban areas by population group 
Very Large Urban Areas  
(15 areas) 

Large Urban Areas 
 (31 areas) 

Mid-size Urban Areas   
(33 areas) 

Small Urban Areas 
 (21 areas) 

Atlanta GA  Austin TX  Akron OH  Anchorage AK  

Boston MA-NH-RI  Baltimore MD  Albany NY  Beaumont TX  

Chicago IL-IN  Buffalo NY  Albuquerque NM  Boise ID  

Dallas-Fort Worth-Arlington 
TX  

Charlotte NC-SC  Allentown-Bethlehem PA-NJ  Boulder CO  

Detroit MI  Cincinnati OH-KY-IN  Bakersfield CA  Brownsville TX  

Houston TX  Cleveland OH  Baton Rouge LA  Cape Coral FL  

Los Angeles-Long Beach-Santa 
Ana CA  

Columbus OH  Birmingham AL  Columbia SC  

Miami FL  Denver-Aurora CO  Bridgeport-Stamford CT-NY  Corpus Christi TX  

New York-Newark NY-NJ-CT  Indianapolis IN  Charleston-North Charleston SC  Eugene OR  

Philadelphia PA-NJ-DE-MD  Jacksonville FL  Colorado Springs CO  Greensboro NC  

Phoenix-Mesa AZ  Kansas City MO-KS  Dayton OH  Jackson MS  

San Diego CA  Las Vegas NV  El Paso TX-NM  Laredo TX  

San Francisco-Oakland CA  Louisville KY-IN  Fresno CA  Little Rock AR  

Seattle WA  Memphis TN-MS-AR  Grand Rapids MI  Madison WI  

Washington DC-VA-MD  Milwaukee WI  Hartford CT  Pensacola FL-AL  

 Minneapolis-St. Paul MN  Honolulu HI  Provo-Orem UT  

 Nashville-Davidson TN  
Indio-Cathedral City-Palm 
Springs CA  

Salem OR  

 New Orleans LA  Knoxville TN  Spokane WA-ID  

 Orlando FL  Lancaster-Palmdale CA  Stockton CA  

 Pittsburgh PA  McAllen TX  Winston-Salem NC  

 Portland OR-WA  New Haven CT  Worcester MA-CT  

 Providence RI-MA  Oklahoma City OK   

 Raleigh-Durham NC  Omaha NE-IA   

 
Riverside-San Bernardino 
CA  

Oxnard CA   

 Sacramento CA  Poughkeepsie-Newburgh NY   

 Salt Lake City UT  Richmond VA   

 San Antonio TX  Rochester NY   

 San Jose CA  Sarasota-Bradenton FL   

 St. Louis MO-IL  Springfield MA-CT   

 Tampa-St. Petersburg FL  Toledo OH-MI   

 Virginia Beach VA  Tucson AZ   

  Tulsa OK   

  Wichita KS   

 

 Tables 5 and 6 show the urban areas grouped by UMR size category and census 

region, respectively.  In both tables, urban areas are sorted within the groupings by 

population.  Congestion variables are shaded based on the quartile, with darker shades 

indicating higher measures of congestion. These tables are good reference points when 

considering the findings from this analysis.  Knowing where cities are and relatively how 
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large they are in their neighborhoods aids in the understanding and interpretation of the 

results. Note that the averages based on population grouping show that the larger urban 

areas are worse than the smaller urban areas in each dimension of congestion (a detail 

reinforced by the quartile shading).  The averages based on geographic groupings, 

however, show a more mixed result (also reinforced by the shading).  For TTI, the 

Northeast region has the highest average and the Mid-west the lowest; for PortLMCong, 

the West region has the highest and the Mid-west the lowest; and, for PkHrs, the 

Northeast region has the highest and the South the lowest.  So in general, it appears that if 

all other factors are equal, it pays to be a smaller city in the Mid-west region, as far as 

congestion is concerned.  All other factors, however, are rarely equal, but which factors 

matter? 

 
Table 5: Urban area congestion measures by UMR size category, sorted by population, 
2010 

Urban Area TTI PortLM 
Cong 

PkHrs  Urban Area TTI PortLM 
Cong 

PkHrs 

Very Large Urban Areas  Mid-size Urban Areas 

New York-Newark  1.33  0.52     6.75   Oklahoma City  1.15  0.36  2.50  

Los Angeles-L. Beach-S. Ana  1.37  0.62  8.00   Richmond  1.11  0.36  2.50  

Chicago  1.25  0.70  5.25   Bridgeport-Stamford  1.27  0.40  5.00  

Miami  1.25  0.80   5.00   Hartford  1.18  0.29  3.50  

Philadelphia  1.26  0.54  5.00   Birmingham  1.19  0.39  3.25  

Dallas-Fort Worth-Arlington  1.25  0.43  5.00   Rochester  1.13  0.18  2.50  

Washington  1.31  0.68  7.00   Dayton  1.11  0.24  2.50  

Atlanta  1.24  0.58  5.00   El Paso  1.21  0.25  3.50  

Boston  1.28  0.39  5.00   Honolulu  1.36  0.51  4.25  

San Francisco-Oakland  1.22  0.58  6.00   Tucson  1.16  0.58  2.50  

Houston  1.26  0.48  5.75   Tulsa  1.12  0.37  2.50  

Detroit  1.18  0.47  5.00   Oxnard  1.10  0.42  2.50  

Phoenix-Mesa  1.18  0.51  5.00   Fresno  1.08  0.38  2.50  

Seattle  1.26  0.46  6.00   Sarasota-Bradenton  1.12  0.56  2.50  

San Diego  1.18  0.58  5.00   Omaha  1.11  0.39  2.50  

Large Urban Areas  Allentown-Bethlehem  1.17  0.42  2.50  

Minneapolis-St. Paul  1.21  0.34  5.00   Springfield  1.13  0.24  2.50  

Baltimore  1.23  0.57  4.25   Albuquerque  1.10  0.33  2.50  

Tampa-St. Petersburg  1.20  0.65  4.00   Akron  1.12  0.19  2.50  

St. Louis  1.14  0.25  4.00   New Haven  1.17  0.29  3.25  
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Urban Area TTI PortLM 
Cong 

PkHrs  Urban Area TTI PortLM 
Cong 

PkHrs 

Denver-Aurora  1.27  0.58  5.25   Albany  1.16  0.32  2.50  

Riverside-San Bernardino  1.23  0.51  4.00   Grand Rapids  1.09  0.33  2.50  

Portland  1.28  0.50  4.50   Baton Rouge  1.22  0.39  5.00  

Sacramento  1.20  0.60  4.00   Lancaster-Palmdale  1.08  0.32  2.50  

San Jose  1.24  0.62  6.00   Indio-Cath.City-Palm Springs  1.08  0.37  2.50  

Pittsburgh  1.24  0.34  4.00   McAllen  1.16  0.40  2.50  

Cincinnati  1.20  0.35  4.00   Colorado Springs  1.13  0.27  3.00  

Cleveland  1.16  0.21  4.00   Poughkeepsie-Newburgh  1.12  0.37  2.50  

Kansas City  1.13  0.23  4.00   Bakersfield  1.11  0.30  2.50  

Virginia Beach  1.20  0.44  4.00   Charleston-North Charleston  1.15  0.50  4.25  

San Antonio  1.19  0.45  4.00   Toledo 1.13  0.23  2.50  

Milwaukee  1.15  0.26  4.00   Wichita  1.09  0.09  2.50  

Orlando  1.20  0.74  4.00   Knoxville  1.16  0.32  2.50  

Las Vegas  1.20  0.58  4.00   Small Urban Areas 

Austin  1.31  0.48  5.50   Columbia  1.11  0.39  1.50  

Columbus  1.18  0.36  4.00   Provo-Orem  1.14  0.35  1.50  

Providence  1.16  0.34  4.00   Cape Coral  1.15  0.39  2.25  

Indianapolis  1.17  0.56  4.00   Little Rock  1.07  0.32  2.00  

Nashville-Davidson  1.23  0.48  4.00   Worcester  1.13  0.28  1.50  

Raleigh-Durham  1.14  0.51  4.00   Jackson  1.10  0.22  1.50  

Louisville 1.18  0.49  4.00   Stockton  1.10  0.31  1.50  

Jacksonville  1.14  0.50  4.00   Madison  1.11  0.30  1.50  

Charlotte  1.20  0.51  4.00   Winston-Salem  1.11  0.23  1.50  

Memphis 1.18  0.30  4.00   Spokane  1.12  0.15  1.75  

New Orleans  1.20  0.36  4.00   Pensacola  1.11  0.37  1.50  

Buffalo  1.17  0.21  4.00   Greensboro  1.10  0.28  1.50  

Salt Lake City  1.14  0.53  4.00   Corpus Christi  1.04  0.16  1.50  

Averages  Boise  1.06  0.48  2.00  

Very Large Urban Areas 1.25  0.56  5.65   Anchorage  1.18  0.26  1.50  

Large Urban Areas 1.20  0.45  4.21   Eugene  1.08  0.23  1.50  

Mid-size Urban Areas 1.14  0.34  2.88   Salem  1.14  0.29  1.50  

Small Urban Areas 1.12  0.33  1.67   Beaumont  1.10  0.15  1.50  

Top Quartile     Laredo  1.14  0.23  1.50  

2nd Quartile     Brownsville  1.18  0.24  1.50  

3rd Quartile     Boulder  1.18  0.22  3.00  

Bottom Quartile         

 

 
Table 6: Urban area congestion measures by census region, sorted by population, 2010 

Urban Area TTI PortLM 
Cong PkHrs  Urban Area TTI PortLM 

Cong PkHrs 

Urban Areas in the South Region  Urban Areas in the Northeast Region 

Miami 1.25  0.80  5.00   New York-Newark 1.33  0.52  6.75  

Dallas-Fort Worth-Arlington 1.25  0.43  5.00   Philadelphia 1.26  0.54  5.00  

Washington 1.31  0.68  7.00   Boston 1.28  0.39  5.00  

Atlanta  1.24  0.58  5.00   Pittsburgh 1.24  0.34  4.00  
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Urban Area TTI PortLM 
Cong 

PkHrs  Urban Area TTI PortLM 
Cong 

PkHrs 

Houston  1.26  0.48  5.75   Providence 1.16  0.34  4.00  

Baltimore 1.23  0.57  4.25   Buffalo 1.17  0.21  4.00  

Tampa-St. Petersburg 1.20  0.65  4.00   Bridgeport-Stamford 1.27  0.40  5.00  

Virginia Beach 1.20  0.44  4.00   Hartford  1.18  0.29  3.50  

San Antonio 1.19  0.45  4.00   Rochester 1.13  0.18  2.50  

Orlando 1.20  0.74  4.00   Allentown-Bethlehem 1.17  0.42  2.50  

Austin 1.31  0.48  5.50   Springfield  1.13  0.24  2.50  

Nashville-Davidson 1.23  0.48  4.00   New Haven  1.17  0.29  3.25  

Raleigh-Durham 1.14  0.51  4.00   Albany  1.16  0.32  2.50  

Louisville 1.18  0.49  4.00   Poughkeepsie-Newburgh 1.12  0.37  2.50  

Jacksonville 1.14  0.50  4.00   Worcester  1.13  0.28  1.50  

Charlotte  1.20  0.51  4.00   Urban Areas in the West Region 

Memphis 1.18  0.30  4.00   Los Angeles-L. Beach-S.Ana  1.37  0.62  8.00  

New Orleans 1.20  0.36  4.00   San Francisco-Oakland 1.22  0.58  6.00  

Oklahoma City 1.15  0.36  2.50   Phoenix-Mesa  1.18  0.51  5.00  

Richmond 1.11  0.36  2.50   Seattle  1.26  0.46  6.00  

Birmingham  1.19  0.39  3.25   San Diego  1.18  0.58  5.00  

El Paso 1.21  0.25  3.50   Denver-Aurora  1.27  0.58  5.25  

Tulsa 1.12  0.37  2.50   Riverside-San Bernardino  1.23  0.51  4.00  

Sarasota-Bradenton 1.12  0.56  2.50   Portland  1.28  0.50  4.50  

Baton Rouge 1.22  0.39  5.00   Sacramento  1.20  0.60  4.00  

McAllen 1.16  0.40  2.50   San Jose  1.24  0.62  6.00  

Charleston-North Charleston 1.15  0.50  4.25   Las Vegas 1.20  0.58  4.00  

Knoxville 1.16  0.32  2.50   Salt Lake City 1.14  0.53  4.00  

Columbia  1.11  0.39  1.50   Honolulu 1.36  0.51  4.25  

Cape Coral 1.15  0.39  2.25   Tucson  1.16  0.58  2.50  

Little Rock  1.07  0.32  2.00   Oxnard  1.10  0.42  2.50  

Jackson  1.10  0.22  1.50   Fresno 1.08  0.38  2.50  

Winston-Salem 1.11  0.23  1.50   Albuquerque 1.10  0.33  2.50  

Pensacola  1.11  0.37  1.50   Lancaster-Palmdale 1.08  0.32  2.50  

Greensboro 1.10  0.28  1.50   Indio-Cath. City-Palm Sprngs 1.08  0.37  2.50  

Corpus Christi  1.04  0.16  1.50   Colorado Springs  1.13  0.27  3.00  

Beaumont 1.10  0.15  1.50   Bakersfield  1.11  0.30  2.50  

Laredo 1.14  0.23  1.50   Provo-Orem  1.14  0.35  1.50  

Brownsville  1.18  0.24  1.50   Stockton 1.10  0.31  1.50  

Urban Areas in the Midwest Region  Spokane 1.12  0.15  1.75  

Chicago 1.25  0.70  5.25   Boise  1.06  0.48  2.00  

Detroit 1.18  0.47  5.00   Anchorage  1.18  0.26  1.50  

Minneapolis-St. Paul  1.21  0.34  5.00   Eugene 1.08  0.23  1.50  

St. Louis  1.14  0.25  4.00   Salem  1.14  0.29  1.50  

Cincinnati  1.20  0.35  4.00   Boulder 1.18  0.22  3.00  

Cleveland  1.16  0.21  4.00   Averages 

Kansas City 1.13  0.23  4.00   Northeast Region 1.19  0.34  3.63  

Milwaukee  1.15  0.26  4.00   South Region 1.17  0.42  3.34  

Columbus 1.18  0.36  4.00   Mid-west Region 1.15  0.32  3.51  

Indianapolis 1.17  0.56  4.00   West Region 1.17  0.43  3.47  

Dayton 1.11  0.24  2.50       
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Urban Area TTI PortLM 
Cong 

PkHrs  Urban Area TTI PortLM 
Cong 

PkHrs 

Omaha  1.11  0.39  2.50   Top Quartile    

Akron  1.12  0.19  2.50   2nd Quartile    

Grand Rapids  1.09  0.33  2.50   3rd Quartile    

Toledo  1.13  0.23  2.50   Bottom Quartile    

Wichita  1.09  0.09  2.50       

Madison  1.11  0.30  1.50       

 

4.4  Potential Predictor Variables   

 The selection of the most appropriate factors (predictor variables) is key to the 

validity of the analysis.  The variables to be used with their expected effect, source, and 

justification are reflected in the tables below and discussed further in ensuing paragraphs.  

Most variables have a national scope to facilitate comparisons between urban areas; 

locally developed variables are avoided to the extent possible.  Variables are linked 

where applicable to the discussion in Section 2.7 (Points of Intersection between Theories 

and Concepts, Travel and Urban Structure), with additional “wild card” variables added 

in an effort to address the congestion issue from additional angles.   

 As noted above, congestion is often strongly influenced by the size of the urban 

area, in that larger cities are more prone to congestion.  With this in mind, variables are 

selected and expressed to control for the size effect.  For the most part, variables are 

expressed in ratio terms in order to explore the underlying structural foundations of 

congestion.  Still size is an issue and its importance in relation to structure is assessed 

with specific population and size variables.   

 The use of only US urban areas in this study allows the use of excellent sources of 

secondary data, to include US Census data in all its many forms (to include the American 

Community Survey), Federal Highway Administration (FHWA) highway statistics, and 
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TransCAD9 GIS and network data.  Data from each of these sources are reliable, well 

tested and almost universally accepted and are the basis for most of the selected 

variables.  The specific data sources used in the calculations are noted for each variable. 

 There are some differences in the data years for some of the variables.  The year 

2010 is considered the base year of the study and data of that year are the target of the 

data collection effort, but there are many cases where 2010 data are not available.  In 

these situations, the nature of the variables (i.e., that they are expressed in ratio terms) 

should serve to mitigate the problem.  While many measures will change with the growth 

of a city over time, they often will change in tandem, so the ratios of the measures will 

likely show less variation. 

4.4.1  Variables Impacting Supply.  Table 7 summarizes the independent variables 

impacting supply, with each variable discussed in the ensuing paragraphs. The 

justification column includes references to theories and concepts discussed in Section 2.7 

above.  

 
Table 7: Variables impacting supply 

VARIABLE EXPECTED 
EFFECT 

 
SOURCE 

 
JUSTIFICATION CONCEPTUAL OPERATIONAL 

Network* Size Percent change in 
population 2000 to 
2010 

High/Negative UMR Measure of inadequacy of 
network size  
-Structural functionalism 
-Lag-time concept 

 Political party 
control in 2000 
(political 
affiliation of 
mayor) 

Low/Negative City 
Records 
World-
statesmen 
website 

Measure of transportation 
investments  
-Structural functionalism 
-Political party trends  

Network* 
Density 

Network miles per 
square mile 

Mod/Positive FHWA 
Census  

Measure of network ability to 
accommodate demand 
-Structural functionalism 

 
 

    

                                                           
9 TransCAD© is a geographical information system (GIS)-based transportation analysis platform produced 
by Caliper Corporation, Newton, MA (http://www.caliper.com). 
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VARIABLE EXPECTED 
EFFECT 

 
SOURCE 

 
JUSTIFICATION CONCEPTUAL OPERATIONAL 

 Freeway miles per 
square mile 

Mod/Positive FHWA  
Census 

Measure of network ability to 
accommodate demand 
-Structural functionalism  
-Land rent theory 

Network* 
Structure 

Freeway lane 
miles per network 
lane mile 

Mod/Positive UMR 
FHWA  

Measure of network ability to 
accommodate demand 
-Structural functionalism 
-Land rent theory 

Network* 
Robustness 

Freeway lane 
miles per thousand 
commuters 

High/Positive UMR  Measure of network ability to 
accommodate demand 
-Structural functionalism  
-Land rent theory 

 Freeway miles + 
arterial miles per 
capita 

Mod/ Positive FHWA 
UMR 

Measure of network ability to 
accommodate demand 
-Structural functionalism  
-Land rent theory 

 City Age (Census 
urban area reached 
50k in population 
(decades before 
2010)) 

Low/Negative Census 
Wikipedia 
city pages 

Measure of network ability to 
accommodate demand 
-Structural functionalism 
-Changing urban needs over 
time 

Network* intra-
connectivity 

Network nodes / 
Network links 

Mod/Positive TransCAD 
Census 

Measure of available alternate 
routes  
-Structural functionalism 
-Packet-switching network 
theory 

*Unless otherwise noted, the network includes all streets and highways in the urban area; i.e., those 
that one would find on Mapquest or Google Maps 
 
 
• Network Size (Percent change in population from 2000 to 2010).  As an urban 

area grows, there is a need for additional network capacity to accommodate this 

growth.  More people require more roads.  Unfortunately, there is a time lag 

between the identification of this growth need and the provision of the additional 

capacity.  When an area grows very rapidly, any unused capacity tends to be used 

up rather quickly and congestion worsens before new capacity can be brought on 

line.  The speed of growth, then, may be a factor affecting congestion, with more 

rapidly growing areas having a larger congestion problem.  Calculation: the 2000 

and 2010 populations for each urban area as listed in the UMR are compared to 

determine the percent change. 
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• Network Size (Political party control in 2000 as indicated by the political 

affiliation of the mayor).  With population growth, additional transportation 

network capacity is needed.  The mode of this additional capacity, however, can 

come in several flavors: additional highways and streets, increased public 

transportation, enhanced bicycle and pedestrian pathways, or some combination 

of these.  Since most people choose to travel by car, and most municipal and 

private-provider services are delivered by cars and trucks (police protection, fire 

and emergency response, garbage collection, meter readings, mail/package 

delivery, lawn services, etc.), there is a need for additional highway and street 

mileage. Unfortunately, there are limited municipal resources, and this need for 

streets bumps up against the need for increases in the other modes of 

transportation.  This allocation of resources issue is resolved in the political arena.  

Some anecdotal evidence suggests that Republicans tend to favor adding capacity 

to the street/highway network to allow people to follow their revealed preference 

for the automobile, while Democrats tend to favor the other modes in a bid to 

improve the sustainability of the urban area.  Since traffic congestion is by 

definition a street/highway problem and the modal share of non-auto travel is 

quite small, the control of the municipal government by Republicans would seem 

to favor local congestion relief.  Given the time lag in the identification of 

network needs to additional supply, party control of the system would likely lag 

as well.  Even if the anecdotal evidence is incorrect, it is still of interest to 

determine if political control has any correlation with the levels of congestion.  

Still it should be noted here that not all local roads are controlled locally.  Indeed, 
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most of the higher functional classes of roads and highways are maintained with 

funds from outside the municipal government, e.g. from county, state and federal 

agencies.   Calculation: the city websites are reviewed to determine the mayor in 

2000 and his/her party affiliation at that time.  Where the political affiliation is not 

readily apparent, additional websites (individual sites, collective sites such as 

World Statesmen (worldstatesmen.org), newspaper sites, etc.) are consulted to 

make this determination. Republican mayors are assigned a value of 0; 

Democratic mayors a value of 1. 

• Network Density (Network miles per square mile).  The ability to move about by 

car within an area is affected by the supply of streets and highways.  A denser 

network, then, would seem to favor easier movement and less congestion. 

Calculation: total urban area network mileage from the Federal Highway 

Administration’s (FHWA) Highway Statistics series (2010 Table HM-71) is 

divided by urban area square mileage from the 2010 census urban area list. 

• Network Density (Freeway miles per square mile).  As measured by vehicle miles 

of travel (VMT), automobile and truck travel occurs disproportionately on the 

upper level system, the arterials and freeways.  In other words, more traffic is 

concentrated on the freeways than the local streets.  A denser freeway network, 

like the network as a whole, would seem to favor easier movement and less 

congestion. Calculation: total urban area freeway mileage from the Federal 

Highway Administration’s (FHWA) Highway Statistics series (2010 Table HM-

71) is divided by urban area square mileage from the 2010 census urban area list. 
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• Network Structure (Freeway lane miles per network lane mile).  The make-up of 

the street grid is an important factor in the ability to move from one point to 

another.  A typical automobile trip might involve movement from a local street to 

a collector to an arterial to a freeway and back down the ladder to a local street.  

Since VMT is disproportionately on the freeways, the ratio of freeway lane miles 

to total network lane miles may be linked to congestion, with a higher ratio 

associated with lower congestion. Calculation: 2010 freeway lanes miles come 

directly from the UMR.  Urban area freeway and arterial miles from the FHWA’s 

Highway Statistics series (2010 Table HM-71) are subtracted from total network 

miles to get total non-freeway/arterial mileage, which is then multiplied by 2 to 

get non-freeway/arterial lane-mileage (assuming two lanes for all lower classes of 

streets). This total is added to urban area freeway lane-mile and arterial lane-mile 

totals from the 2010 UMR to get total network lane miles.  Freeway lane miles are 

then divided by total network lane miles. 

• Network Robustness (Freeway lane miles per thousand commuters).  The 

robustness of the street grid is an indicator of how well it does its job, which is to 

allow vehicular movement.  Since congestion tends to be more problematic during 

the morning and evening “rush hours,” the ease of commuter movement would 

seem to be an important factor in the congestion issue.  More freeway lane miles 

per commuter would likely be associated with less congestion. Calculation: 2010 

urban area freeway lane-miles from the UMR are divided by 2010 urban area 

commuters from the UMR. 
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• Network Robustness (Freeway miles + arterial miles per capita).  Another 

measure of the robustness of the street grid is the size of the upper level system 

relative to the population.  More upper level system miles per person should 

translate into lower congestion levels. Calculation: freeway plus arterial miles 

from the Federal Highway Administration’s (FHWA) Highway Statistics series 

(2010 Table HM-71) are divided by 2010 UMR population.   

• Network Robustness (City Age – census year when the urban area reached 50,000 

in population, measured in decades before 2010).  The ability and political will to 

develop and maintain a robust street network are affected by a variety of factors.  

Perhaps most important is cost.  Legacy cities, those cities that came into primacy 

before the street car era (prior to about 1890), have inherited an infrastructure and 

built-up area that were not constructed for the automobile.  Costs, in both dollars 

and cultural destruction/change, to retrofit these cities for the automobile can be 

quite high and are often prohibitive.  Newer cities have not had this level of 

constraint and city officials have had more latitude to respond to the increased 

infrastructure demands of cars.  City age, then, may impact network robustness 

and congestion.  While public transit, which legacy cities were designed for, will 

remove some of the traffic from the streets, it is not a major player in most cities, 

especially the smaller ones.  Commuters tend to prefer automobiles for the 

commute (Cambridge Systematics 2005). With respect to city age, older cities 

would be expected to have more congestion.  Calculation: census records, city 

records and other websites are checked to determine the census year when the city 

reached a population of 50,000; that year is compared to 2010 to calculate the 
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decades before 2010 measure.  For example, Akron reached at least 50,000 in the 

1910 census, 10 decades before 2010.  

• Network intra-connectivity (Network links / Network nodes).  The ability to move 

from one point another is in large part a factor of the number of routes available.  

The more connected a network is, the more routes one has to reach a particular 

destination and to avoid congested thoroughfares.  Intra-connectivity can be 

measured by the ratio of nodes to links, with a higher ratio being associated with 

increased connectivity and lower congestion.  While most VMT occurs on the 

upper system (freeways and arterials), the intra-connectivity of the entire system 

is used since additional routes on the collector and local street system provide 

drivers flexibility in when and where they access the upper level system.  

Calculation: The 2010 census urban area boundary layers are exceedingly 

complex and prove to be difficult to manipulate in a GIS, so this analysis is 

carried out using 2010 census tracts.  All tracts with some portion falling in the 

urban area boundary are selected and mapped in TransCAD.  The 2006 

TransCAD street layer (the most recent available) is added and a clipping 

operation performed to find all the streets that fall into the collective tracts.  Links 

are then divided by nodes.   

4.4.2  Variables Impacting Demand.  Table 8 summarizes the independent variables 

impacting demand, with each variable discussed in the ensuing paragraphs.  The 

justification column includes references to theories and concepts discussed in Section 2.7 

above. 
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Table 8: Variables impacting demand 
VARIABLE EXPECTED 

EFFECT 
 
SOURCE 

 
JUSTIFICATION CONCEPTUAL OPERATIONAL 

Internal 
Productions 

Commuters per 
square mile 

Mod/Negative UMR 
Census 

Measure of commuter 
productions 
-Social exchange theory 
-4-Step Urban Travel Demand 
Model 

 Persons per square 
mile 

Mod/Negative UMR 
Census 

Measure of total productions 
-Social exchange theory 
-4-Step Urban Travel Demand 
Model 

 Cars per 
household 

Mod/Negative Census 
ACS12-1 

Measure of trip productions 
-Social exchange theory 
-4-Step Urban Travel Demand 
Model 

 Income per capita Mod/Negative Census 
ACS12-1 

Measure of trip productions 
-Social exchange theory 
-4-Step Urban Travel Demand 
Model 

Internal 
Attractions 

Employment per 
capita 
 

Mod/Negative Census 
ACS12-1 

Measure of commuter 
attractions 
-Transportation demand is 
derived  
-Rational choice theory 
-Various sociological theories 

 Persons per 
restaurant 

Mod/Positive US Census 
Economic 
Census 
2007 

Measure of other attractions 
-Transportation demand is 
derived 
-Rational choice theory 
-Various sociological theories 

External 
Productions  

In-commuting 
flows per worker 
(Jobs in UA tracts 
- Workers in UA 
tracts) 

Low/Negative CTPP 5-
Year ACS 
2006-2010 

Measure of external 
productions 
-Social exchange theory 
-Land rent theory  
-Transportation demand is 
derived 

Trip Distribution Average 
commuting time 
in minutes 

Mod/Negative Census 
ACS12-1 

Measure of time on network 
-Rational choice theory 
-Land rent theory 

Mode Split Percent of 
commuters in 
single occupant 
vehicles (SOV) 

Low/Negative Census 
ACS12-1 

Effects of decreasing highway 
demand 
-Rational choice theory 
-Various sociological theories 

 Transit vehicle 
revenue miles per 
square mile 

Low/Positive NTD 
Census 

Effects of decreasing highway 
demand 
-Rational choice theory 
-Various sociological theories 
 

Variations in 
Demand between 
Urban Areas 

Dummy variables 
based on city size 
(population) 

Mod/Negative UMR Measure of variations in 
demand 
-Rational choice theory 
-Various sociological theories 
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VARIABLE EXPECTED 
EFFECT 

 
SOURCE 

 
JUSTIFICATION CONCEPTUAL OPERATIONAL 

 Dummy variables 
based on 
geography (US 
region) 

Low/Unknown Census Measure of variations in 
demand  
-Rational choice theory 
-Various sociological theories 

 
 

• Internal Productions (Commuters per square mile).  The demand for 

transportation is derived and a key source of demand is from commuters, 

especially given that congestion is more common during the principal commuting 

periods in the mornings and evenings.  As the number of commuters per square 

mile increases, one would expect congestion to worsen. Calculation: the 2010 

urban area commuters from the UMR are divided by urban area square mileage 

from the 2010 census urban area list. 

• Internal Productions (persons per square mile).  Using reasoning similar to that 

above, the demand for transportation is also affected by the concentrations of 

people other than just commuters. These people derive benefits from 

transportation and so would generate trip productions.  As population densities 

increase, one would expect congestion to increase as well.  Calculation: the 2010 

urban area population from the UMR is divided by urban area square mileage 

from the 2010 census urban area list. 

• Internal Productions (Cars per household).  Jane Jacobs famously noted that 

traffic congestion is “caused by vehicles, not by people in themselves” (Jacobs 

1961).  People do, however, choose to drive vehicles, especially when they are 

readily available.  Several studies have found that increased car ownership is 

associated with increased travel (e.g. Aftabuzzaman 2011).  It therefore seems 

likely that increased car ownership would also be linked to increased congestion.  
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Indeed, “autos per household” is a factor in trip generation in the four-step model 

(Martin and McGuckin 1998).  Calculation: the urban area data from the ACS 

2012-1, Table DP-04 includes the total number of households and the numbers of 

households with 0, 1, 2, 3, 4+ vehicles, respectively.  The total vehicles is 

calculated (assuming that no households had more than four vehicles) and then 

divided by the total households. 

• Internal Productions (Income per Capita).  Income is also a factor in the trip 

generation calculations (Martin and McGuckin 1998), with higher incomes being 

linked to increased travel.  Increased travel seems likely linked to increased 

congestion, so cities with higher incomes are likely to have worse congestion.  

Calculation: Income per capita is taken directly from the urban area data in ACS-

2012-1, Table DP-03.   

• Internal Attractions (Employment per capita).  People travel to get somewhere 

and a key attraction is work, especially since congestion is largely a “rush hour” 

problem, especially in the smaller urban areas.  Clearly, more jobs available for 

each man, woman and child generate more commuters, which in turn increases 

the potential for congestion.  Calculation:  Total employment data from the urban 

area data in ACS-2012-1, Table DP-03 is divided by population data from the 

same table. 

• Internal Attractions (Persons per restaurants).  People also travel to take 

advantage of the many amenities that lie within the urban area.  Restaurants are 

used here as a proxy for these amenities. In the US, as in much of the developed 

world, there are three times of the day when meals are usually consumed.  Two of 
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these meal times (breakfast and supper) coincide with the morning and evening 

“rush hours” and the third (lunch) occurs during the mid-day traffic spike.  

Restaurant customers frequenting these facilities during these time periods can 

add to the traffic burden.  Since restaurants are generally opened in response to 

demand (and demand has risen with the rise of two-income households), and one 

might expect the greater the number of restaurants per capita, the greater the 

congestion.  Conversely, the greater number of persons per restaurant would 

likely be associated with lower congestion.  Calculation: The metropolitan area 

population from the ACS-2007-1, Table DP-05 is divided by the number of 

restaurants for metropolitan areas (urban area data is not available) from the 2007 

Economic Census (the most recent year available).  While this geography may not 

be the same as the rest of the study (metropolitan areas vs. urban areas), the ratio 

of people to restaurant seems likely to be less varied between the two areas.  

• External Productions and Attractions (In-commuting flows per worker: Jobs in 

UA tracts - Workers in UA tracts).  The hinterlands of an urban area serve two 

key purposes: markets for finished goods and services and sources for raw 

materials and workers.  With today’s globalized markets resulting in large part to 

decreased transportation costs, it is the source of workers that is arguably the 

hinterlands’ most important purpose.  These in-bound commuters can add 

significantly to the network burden, especially on the upper level system which 

they typically use most often.  (In this regard, in-commuting flows might be a 

measure of network inter-connectivity, as well.)  One might reasonably expect 

that the higher the share of commuters from outside the urban area, the greater the 
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congestion.  Calculation: The UA census tract workers (workers by place of 

residence) from the CTPP 5-Year ACS 2006-2010 are subtracted from the UA 

census tract jobs (workers by place of work) from the same source to determine 

the net flow into the UA from the hinterlands.  (This assumes one worker per job 

and no out-commuting.  If one worker has more than one job, in-commuting 

would decrease; if there are some out-commuters, in-commuting would increase.  

It seems likely that these assumptions would at least partially offset one another.) 

This net in-flow is then divided by the UA census tract workers. 

• Trip Distribution (Average commuting time in minutes).  The time it takes people 

to travel to work is a straight-forward measure of the extent they use the network.  

The longer they travel, the longer they are on the streets and freeways and the 

more they add to the burden on the network, which if heavy enough, becomes 

congestion. Calculation: Mean travel time to work is taken directly from urban 

area in the ACS-2012-1, Table DP-03. 

• Mode Split (Percent of commuters in single occupant vehicles (SOV)).  The vast 

majority of commuters drive to work alone.  There have been extensive efforts to 

encourage the public to commute in other than SOVs (transit, carpools, vanpools, 

bicycles, etc.), but as yet, these efforts have not had much success.  The number 

of commuters using SOVs has a direct impact on the number of cars on the roads 

and hence, a direct impact on congestion.  It seems likely that a larger share of 

commuters using SOVs would be associated with higher levels of congestion. 

Calculation: Workers commuting to work who drove alone from urban area data 
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in the ACS-2012-1, Table DP-03 is divided by the total workers commuting to 

work from the same source. 

• Mode Split (Transit vehicle revenue miles per square mile).  Not all travelers use 

the street/highway network in their own vehicles; some use public transportation.  

While this percentage is quite small in most urban areas, it is likely to have some 

impact on congestion.  The number of riders is affected by the availability (and 

quality) of transit service; the more that transit is able to satisfy the derived 

demand for transportation, the more likely it is to attract riders.  One manner of 

assessing transit availability is using the number of miles transit vehicles travel to 

provide their service per square mile.  It seems likely that more densely packed 

transit vehicle revenue miles would be associated with increased ridership and 

lower congestion. Calculation: 2010 vehicle revenue miles for all types of transit 

from the National Transit Database are divided by urban area square mileage from 

the 2010 census urban area list. 

• Variations in Demand (Dummy variables based on city size and geography).  

There are likely to be variations in demand based on the cultural aspects of the 

urban area’s populace.   Interest groups and reference groups help shape demand 

and these associations vary.  Two basic ways to assess any differences in travel 

demand are by city size (by population) and city location. People in larger cities 

with perhaps larger congestion problems might adapt and travel less, which might 

offset some congestion.  Larger populations, however, are likely to have more 

aggregate travel, outstripping any such offsets, which could reasonably lead to 

worse congestion.  People in different parts of the country might also travel 
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differently and there may be differences in the urban planning cultures and city 

amenity expectations in different regions. The nature of these impacts on 

congestion, while expected to be small, are unknown.  Calculation: Four variables 

are created for each of the two categories (city size and geography).  Recognizing 

that the use of all four variables of the same category in a single analysis leads to 

perfect collinearity and that some analytical methods cannot handle perfect 

collinearity, the number of dummy variables used will be reduced as needed.  

This will be discussed in the methods section below.  The city size dummies are 

based on the four population categories of the 2010 UMR (small cities, medium 

cities, large cities and very large cities).  The geographic dummies are based on 

city location within the four 2010 census regions (South, Northeast, Midwest, and 

West).   

4.4.3  Variables Impacting Flow.  Table 9 summarizes the independent variables 

impacting traffic flow, with each variable discussed in the ensuing paragraphs.  The 

justification column includes references to theories and concepts discussed in Section 2.7 

above. 

 
Table 9: Variables impacting flow 

VARIABLE EXPECTED 
EFFECT 

 
SOURCE 

 
JUSTIFICATION CONCEPTUAL OPERATIONAL 

Trucks Percent of trucks 
on freeways 

Mod/ 
Negative 

FHWA 
 

Measure of truck impact on 
flow  
-Differences in truck-car 
nimbleness 

Distracted 
Driving 

Percent of 
population 16-24 
plus percent of 
population 65 and 
over 

Low/ 
Negative 

Census 
ACS12-1 

Measure of flow interruptions 
due to distracted drivers  
-Consequences of human 
interaction 
-Loss aversion 

Intersections with 
traffic signals and 
stop-controlled 
signage 

Nodes per 
network mile 
(upper level 
system only) 

Mod/ 
Negative 

TransCAD 
Census 

Measure of flow interruptions 
due to signals/signage  
-Queuing theory 
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VARIABLE EXPECTED 
EFFECT 

 
SOURCE 

 
JUSTIFICATION CONCEPTUAL OPERATIONAL 

Road Condition Pavement 
condition (percent 
in poor condition) 

Low/ 
Negative 

TRIP Urban 
Roads  
Report 

Measure of decreases in flow 
caused by lower speeds due to 
poor pavement 
-Human nature and driving 
skills 

Traffic Incidents Accident rate x 
VMT per capita 

Low/ 
Negative 

NHTSA 
FHWA 
UMR 

Measure of flow interruptions 
due to traffic accidents  
-Consequences of human 
interaction 
-Loss aversion  

Weather Annual 
precipitation 

Low/ 
Negative 

NCDC Measure of flow interruptions 
due to bad weather  
-Mother nature and geography 

Special Events Number of upper 
level sports teams 

Low/ 
Negative 

Various 
Internet 
Websites 

Measure of flow interruptions 
due to special events  
-Structural functionalism 
-Social exchange theory 

 
  

• Trucks (Percent of trucks on freeways).  The flow of traffic can be adversely 

affected by vehicles that are less nimble than the norm.  Trucks fit this 

description; moreover they often present obstacles to the line of sight of nearby 

drivers impacting their ability to react in traffic.  Together these truck 

characteristics can reduce throughput and contribute to congestion.  Since truck 

traffic largely uses the upper level system and in particular, the freeways, the 

focus of this measure is there.  A larger percentage of trucks would likely have a 

larger negative impact on congestion. Calculation: The percent of each state’s 

urban VMT comprised by trucks is published in the Federal Highway 

Administration’s (FHWA) Highway Statistics series (2008 Table PS-1, the most 

recent available).  These data are allocated to urban areas based on their primary 

state. 

• Distracted Driving (Percent of drivers 16-25 plus percent of drivers over 65).  The 

flow of traffic can also be affected by distracted, inattentive, or less responsive 
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drivers.  In general, younger drivers and older drivers are more at risk for 

distracted driving and being slow to respond to highway conditions.   If this is 

true, then the more of these drivers on the network, the more likely congestion 

will be present, as well.  Ideally, driver data by age by urban area would be used 

for this variable.  Unfortunately, these are not available and census age data are 

used as a surrogate. (This approach does assume that the percentages of drivers in 

each age group are uniform across the nation.  This may not always be the case, 

however, especially in areas where alternative transportation modes are readily 

available.)  Calculation: This measure is calculated from the urban area sex and 

age data in the ACS 2012-1, Table DP-05. 

• Intersections with traffic signals and stop-controlled signage (Nodes per network 

mile for the upper level system only).  The smooth flow of traffic is interrupted by 

design at many intersections in the network to allow increased access.  These 

interruptions can significantly reduce throughput and decrease the available 

capacity.  An increased number of intersections per mile is likely associated with 

increased congestion. Calculation: The 2010 census urban area boundary layers 

are exceedingly complex and prove to be difficult to manipulate in a GIS, so this 

analysis is done using 2010 census tracts.  All tracts with some portion falling in 

the urban area boundary are selected and mapped in TransCAD.  The 2006 

TransCAD street layer (the most recent available) is added and a clipping 

operation performed to find all the streets that fall into the collective tracts.  This 

street file includes TIGER line file data on the types of roads and streets.  The 
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primary, secondary, and connecting roads are segregated, node counts and link 

lengths are summed, and total nodes are then divided by total length. 

• Road Condition (percent of pavement in poor condition).  Traffic flows faster and 

more smoothly on good pavement than on poor pavement.  Pavement in poor 

condition (i.e., is rough and bumpy) can cause drivers to reduce speeds and 

thereby reduce throughput.  Calculation: data is taken from the 2013 TRIP10 

Urban Roads Report, which is based on a 2011 FHWA survey of state 

transportation officials on the condition of major state and locally maintained 

roads and highways (Interstates, freeways, and other arterial routes).  Pavement 

condition is determined from a uniform pavement rating index. 

• Traffic Incidents (Accident rate x VMT per capita).  Traffic incidents are perhaps 

the key source of total travel delay, but they are non-recurrent (although often 

common).  Nonetheless, delays associated with the traffic incidents are typically 

captured in the congestion calculations in the Urban Mobility Report.11 

Calculation: daily VMT miles from the Federal Highway Administration’s 

(FHWA) Highway Statistics series (2010 Table HM-71) are multiplied by 365 to 

determine annual VMT, which is then multiplied by the national crash rate 

calculated from the 2010 Data Summary from the Fatality Analysis Reporting 

System (FARS) General Estimates System (published by the National Highway 

                                                           
10 TRIP is a Washington, DC-based nonprofit organization that researches, evaluates and distributes 
economic and technical data on highway transportation issues. 
 
11 Current TTI methodology calls for real-time measures of traffic speeds, which will capture travel from 
any origin and to any destination as long as it happens during the measured periods.  These speeds are an 
annual average of traffic speeds for each section of road for every 15 minutes of each day for a total of 672 
day/time period cells (24 hours x 7 days x 4 periods per hour) (Schrank, Eisele, and Lomax 2012). 
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Traffic Safety Administration (NHTSA)).  Finally, this crash total is divided by 

the 2010 UMR UA population.  

• Weather (Annual precipitation).  Weather issues are ubiquitous; all urban areas 

have them, but some areas may be more impacted than others.  Annual 

precipitation is used to represent all weather issues since life goes on in the rain in 

a way that it does not during hurricanes, tornados, and snow and ice storms.  

Since rain tends to slow down traffic and reduce throughput, one would expect 

that higher annual precipitation totals would be associated with greater 

congestion.  Calculation: Monthly precipitation data from the 2010 Annual 

Climatological Summaries (published by the National Climate Data Center and 

providing historical monthly temperature and precipitation data for reporting 

stations throughout the United States) is summed to get annual totals. One station 

is selected for each urbanized area; when there are multiple stations available in 

an area, primacy is given to those stations adjacent to major airports and those 

with complete data. In one case (Riverside-San Bernardino), complete data is not 

available for 2010.  In this case, the average annual precipitation for Riverside-

San Bernardino from The Weather Channel website is used instead. 

• Special Events (Number of upper-level sports teams).  Special events can be a key 

cause of non-recurrent congestion as they become a point of convergence on the 

traffic grid.  There are numerous special events in a given urban area, too many to 

assess in a macro-analysis like this one.  Moreover, detailed data on special events 

by urban area are not available.  As a surrogate for all special events, the number 

of upper level (NCAA Division I, Minor League, and Major League) sports teams 
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is used, with the acknowledgement that this surrogate is imperfect.  Still, sporting 

events of such teams routinely occur, at least in part, during the evening commute 

where any traffic delays associated with the event are captured in the congestion 

calculations in the Urban Mobility Report.12 Calculation:  base data from the 

website 50States.com (listing the sports teams in each state by location) is 

crosschecked against city websites and lists of professional sports teams, minor 

league baseball teams, NASCAR racetracks, and NCAA Division I institutions in 

Wikipedia.    

4.4.4  Variations across Urban Areas of Variables Potentially Impacting Congestion 

(Measures of Spread). The above variables are single variables representing an entire 

urbanized area.  It is almost certain that there is some variation in these variables across 

the urban area, variations that may have some impact on congestion.  This variation can 

be thought of as an unequal distribution of the measure in question and a method is 

needed to assess unequal distribution. There are several measures that could be used here, 

to include the variance, the standard deviation and the Gini coefficient. The first two are 

related (the standard deviation is the square root of the variance) and measure the 

variation around the mean.  Small variances and standard deviations indicate that the data 

dispersion is close to the mean, while high variances indicate that the data are more 

dispersed from the mean.  In the former case, the data points are closer to one another 

than in the latter case.  Small and high variances, however, are relative and their 

meanings are not always straightforward.     

                                                           
12 Current TTI methodology calls for real-time measures of traffic speeds, which will capture travel from 
any origin and to any destination as long as it happens during the measured periods.  These speeds are an 
annual average of traffic speeds for each section of road for every 15 minutes of each day for a total of 672 
day/time period cells (24 hours x 7 days x 4 periods per hour) (Schrank, Eisele, and Lomax 2012). 
 



  
 

81

 On the other hand, the Gini coefficient conveys meaning in the coefficient itself.  

Developed by and named for Italian sociologist Corrado Gini, the Gini coefficient is a 

dimensionless measure of statistical dispersion most commonly used to assess the equal 

distribution of income and wealth.  Coefficients range from 0 to 1, with 0 indicating 

perfect equality (all measured units have an equal share) and 1 indicating perfect 

inequality (one measured unit has all).  The Gini coefficient is the ratio of the area 

between the Lorenz curve (developed by economist Max Lorenz to assess wealth 

distribution) and the perfect equality line to the area under the perfect equality line 

(Figure 3.)  Since Gini coefficients are between 0 and 1, comparisons can be readily 

made between variables. 

 

 
Source: Spagnoli 2008 
Figure 3: Calculating the Gini coefficient 
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Calculation: Online calculators are used to determine the Gini coefficients.  To ensure 

correct calculations, two different calculators are used and the results are crosschecked.  

The first calculator offers extensive explanatory tables and graphs (Wessa 2014), while 

the second is much easier to use (Had2Know.com 2014).  In general, for each of the 100 

urban areas, eight variables are calculated for all census tracts inside or partially inside 

the urban area boundary, and then the Gini coefficient are calculated for each of the eight 

variables.  As noted above, the Gini coefficient is dimensionless, so there are no units of 

measure, but it is based on census tract data and the numbers of tracts in urban areas vary 

widely from 4,454 in New York to 32 in Boulder.  

 Table 10 summarizes these Gini coefficient variables, with each variable 

discussed in the ensuing paragraphs.  The justification column includes references to 

theories and concepts discussed in Section 2.7 above. 

 
Table 10: Measures of spread across urban area census tracts 

VARIABLE EXPECTED 
EFFECT 

 
SOURCE 

 
JUSTIFICATION CONCEPTUAL OPERATIONAL 

Network Layout Gini coefficient of 
population per 
network mile 

Low/Negative CTPP 5-
Year ACS 
2006-2010 
TransCAD 

Measure of network layout 
efficiency 
-Structural functionalism 
-Changing urban needs over 
time 

 Gini coefficient of 
workers per upper 
level network mile 

Low/Negative CTPP 5-
Year ACS 
2006-2010 
TransCAD 

Measure of network layout 
efficiency 
-Structural functionalism 
-Changing urban needs over 
time 

Internal 
Productions 

Gini coefficient of 
car ownership 
(aggregate 
vehicles per HH) 

Low/Negative CTPP 5-
Year ACS 
2006-2010 

Measure of trip productions 
-Social exchange theory 
-4-Step Urban Travel Demand 
Model 

 Gini coefficient of 
median income 
per HH 

Low/Negative CTPP 5-
Year ACS 
2006-2010 

Measure of trip productions 
-Social exchange theory 
-4-Step Urban Travel Demand 
Model 

 Gini coefficient of 
workers per capita  

Low/Negative CTPP 5-
Year ACS 
2006-2010 

Measure of time on network 
-Level of mixed land use 
-Land rent theory 
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VARIABLE EXPECTED 
EFFECT 

 
SOURCE 

 
JUSTIFICATION CONCEPTUAL OPERATIONAL 

Urban Spatial 
Structure 

Gini coefficient of 
employment 
(jobs) density 

Mod/Negative CTPP 5-
Year ACS 
2006-2010 

Measure of degree of 
monocentricity  
-Central place theory 
-Land rent theory 

 Gini coefficient of 
jobs/HH balance 

Mod/Negative CTPP 5-
Year ACS 
2006-2010 

Measure of degree of 
monocentricity  
-Central place theory 
-Land rent theory 

 Gini coefficient of 
jobs/worker 
balance 

Mod/Negative CTPP 5-
Year ACS 
2006-2010 

Measure of degree of 
monocentricity  
-Central place theory 
-Land rent theory 

 

• Network Layout (Gini coefficient of population per network mile).  The network 

layout itself is important in the flow of people and goods and access to the 

network essential to fully participate in what the urban area has to offer.  The 

equality of this access may have an impact on congestion, with a larger disparity 

of access (higher Gini) being associated with more congestion.  Calculation: 

Population data from the Census CTPP 5-Year ACS 2006-2010 is divided by 

network mileage from the 2006 TransCAD Street Layer.  

• Network Layout (Gini coefficient of workers per upper level network mile).  The 

upper level network is important for the commute and its access may make 

commuting faster and more convenient.  The upper level system (freeways, 

expressways and major arterials and connectors) carries the major portion of 

commuters, who presumably use it because it affords travel time advantages. Less 

access to this system may be associated with longer commutes and more 

congestion and less uniform access (higher Gini) may be likewise associated.  

Calculation: Employment by place of work data from the Census CTPP 5-Year 
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ACS 2006-2010 is divided by upper level network mileage in the 2006 TransCAD 

Street Layer (selected using Census TIGER codes). 

• Internal Productions (Gini coefficient of car ownership (aggregate vehicles per 

HH)).  As noted above, car ownership is a factor in the trip generation process – 

the more cars a household has, the more trips it makes.  An unevenly distributed 

number of cars (higher Gini) across the network might make the network 

unbalanced (depending, of course, on the network layout) and lead to more 

congestion.  Calculation:  aggregate vehicles per household are divided by the 

number of households, both from the Census CTPP 5-Year ACS 2006-2010. 

• Internal Productions (Gini coefficient of median income per HH).  In a similar 

manner as car ownership, higher median incomes are associated with increased 

trip-making, and unevenly distributed income might lead to an unbalanced 

network and higher congestion levels.  Calculation: median household income 

data is taken directly from the Census CTPP 5-Year ACS 2006-2010. 

• Internal Productions (Gini coefficient of workers per capita).  Like the two above 

variables, an unequal distribution of workers might lead to an unbalanced network 

and higher congestion.  Calculation: workers by place of residence are divided by 

the population, both from the Census CTPP 5-Year ACS 2006-2010. 

• Urban Spatial Structure (Degree of mixed land use (LU)) (Gini coefficient of 

employment density).  Most urban theorists hold that city design is a key factor in 

the demand for travel in general and travel by car in particular.  Well-designed 

cities with mixed LU allow people to travel less often and less far.  The degree of 

mixed LU can be measured by the spread of employment across the city 
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landscape.  While this measure is not perfect (it does not differentiate between 

types of use), it does allow ready comparisons across urban areas using easily 

accessible data.  If these urban theorists are correct, lower levels of mixed use 

development (higher Ginis) would be associated with higher congestion.  

Calculation: Calculation: workers by place of work from the Census CTPP 5-Year 

ACS 2006-2010 are divided by the area from the TransCAD census tract layer.  

• Urban Spatial Structure (Degree of mixed LU) (Gini coefficient of jobs-household 

balance).  Another measure of mixed LU is the ratio of jobs within a census tract 

to households and how this measure is spread out though the urban area.  Lower 

levels of mixed use development (higher Ginis) would be associated with higher 

congestion.  Calculation: workers by place of work are divided by the number of 

households, both from the Census CTPP 5-Year ACS 2006-2010.  

• Urban Spatial Structure (Degree of mixed LU) (Gini coefficient of jobs-worker 

balance).  Similar to the jobs-household balance, the jobs-worker balance gets at 

the degree of mixed LU issue.  An even balance across the city (lower Gini) 

would be good for congestion. Calculation: workers by place of work are divided 

by workers by place of residence, both from the Census CTPP 5-Year ACS 2006-

2010.  

4.4.5  Other Variables Potentially Impacting Congestion.  Table 11 summarizes other 

independent variables of interest, with each variable discussed in the ensuing paragraphs.  

The justification column includes references to theories and concepts discussed in 

Section 2.7 above.  
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Table 11: Other variables potentially impacting congestion 
VARIABLE EXPECTED 

EFFECT 
 
SOURCE 

 
JUSTIFICATION CONCEPTUAL OPERATIONAL 

Centrality Percent of 
Employment in 
Job-Rich, Job-
Dense Tracts 

Mod/Negative CTPP 5-
Year ACS 
2006-2010 
TransCAD 

Measure of the spread of 
employment 
-Central place theory 
-Land rent theory 

Sprawl Percent of 
Population in Job-
Poor Tracts 

Mod/Negative CTPP 5-
Year ACS 
2006-2010 
TransCAD 

Measure of the spread of 
population 
-Central place theory 
-Land rent theory 

Urban Spatial 
Structure 

Degree of poly-
centricity (higher 
more poly) 

Mod/Positive Lee and 
Gordon 
(2007) 

Measure of degree of 
monocentricity  
-Central place theory 
-Land rent theory 

Land Costs Housing 
affordability 

Mod/Negative Int’l 
Housing 
Afford. 
Survey 

Measure of the bid-rent 
function 
-Land rent theory 

Government 
Employment 

Percent of 
employees 
working for 
government  

Low/Negative Census 
ACS12-1 

Measure of private-public 
employment split 
-Degree of peak hour 
participation 

8-hour work day 
 

Percent of 
employment in 
retail 

Low/Positive Census 
ACS12-1 

Measure of employees not 
working a standard 8-hour day 
-Rational choice theory 
-Degree of peak hour 
participation 

Creativity Patents per 1000 
workers 

Low/Positive Brookings 
Institute 

Measure of participation in the 
status quo 
-Transportation demand is 
derived  
-Rational choice theory 
-Various sociological theories 

Activity Density Real GDP per 
VMT 

Mod/Negative BEA 
UMR 
FHWA 

Measure of city density of 
activity 
-Structural functionalism 
-Social exchange theory 
 

Size Urban area square 
miles 

Mod/Negative Census Measure of city size 
-Rational choice theory 
-Various sociological theories 

Size Urban area 
population 

Mod/Negative Census Measure of city size 
-Rational choice theory 
-Various sociological theories 

 
 

• Centrality (Percent of Employment in Job-Rich, Job-Dense Tracts).  A principal 

characteristic of city formation is centrality.  Indeed, the centralizing of people 

and economic interests are the essence of city development and the central 
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business district (CBD) is commonly synonymous with the city as a whole, often 

providing the primary source of employment for the entire urban area.  

Unfortunately, the CBD is an uncertain geography and its nature can vary from 

city to city.  Moreover, as cities grow over time, the CBD often ceases to be the 

primary source of employment; multiple nuclei arise and employment is 

centralized at multiple nodes throughout the urbanized region.    Regardless of 

whether there is a single employment center or multiple centers, commuter traffic 

will tend to converge on these centers, generating congestion, especially during 

the morning and evening commutes.  The degree of concentration of employment 

in these employment centers should vary with congestion, with a greater 

concentration being associated with greater congestion.  If this idea is true, then 

defining these concentrations becomes the challenge.  When identifying the CBD 

(or any other employment center), how far out does the boundary extend?  Should 

non-contiguous areas be included?  Most often, designations of employment 

centers include some measures of employment density, but there is no industry 

standard. Employment centers are identified here as census tracts in terms of job 

richness and job density.  Calculation: workers by place of work (jobs) are 

compared to workers by place of residence, both from the Census CTPP 5-Year 

ACS 2006-2010, to identify job-rich tracts (tracts with at least twice as many jobs 

as workers).  Workers by place of work are divided by the area to determine 

employment density by census tract, which is compared to average employment 

density for all tracts to identify job-dense tracts (tracts with at least five times the 

average jobs per square mile).  The jobs in tracts that are both job-rich and job-
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dense are then summed and compared to the total jobs in all tracts.  Note that job-

richness and job-density are relative measures: job-richness is a function of the 

jobs-to-worker ratio and job-density is a function of the tract jobs per square mile 

relative to the urban area average jobs per square mile.  Relative measures will, of 

course, vary from city to city, but so too will the notion of centrality – what is 

considered “central” in Laredo might be considered by a New Yorker to be just 

another neighborhood.     

• Sprawl (Percent of Population in Job-Poor Tracts).  While the definition of sprawl 

varies among the term’s users, most will agree that sprawl involves some form of 

low density development.  It is thought by many that sprawl leads to increased 

congestion by increasing the driving needed to overcome the longer distances 

between productions and attractions (Newman and Kenworthy 1999).  If this is 

true, then greater sprawl should be associated with greater levels of congestion.  

Like the employment centers above, sprawl is difficult to define, much less 

measure.  It is likely that the effects of sprawl are at least partially included in 

some of the demand-focused and spread-focused variables above.  The net in-

commuting flows, in particular, provide a measure of sprawl, although they would 

likely include some people from outside the limits of sprawling development.  For 

this study, sprawl is defined in terms of the percent of the population living in job-

poor census tracts (those without sufficient jobs for the workers who live in those 

tracts).  Calculation:  workers by place of work (jobs) are compared to workers by 

place of residence, both from the Census CTPP 5-Year ACS 2006-2010, to 

identify job-poor tracts (tracts with at least twice as many workers as jobs).  The 
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population in tracts that are job-poor are then summed and compared to the total 

population in all tracts. 

• Urban Spatial Structure (Degree of poly-centricity).  Akin to the ideas of 

centrality and sprawl is the nature of the urban spatial structure; whether it is 

mono- or polycentric.  This harkens to the discussion of the models of urban 

development (Section 2.6.3), which notes that the degree of centralization and 

spread of the economic drivers affect the resulting street network and the traffic 

flows over that network.  There has been some research done on developing 

measures of dispersion and centralization.  One notable effort is by Lee and 

Gordon (2007), who ranked the larger US metropolitan areas using measures of 

dispersion, decentralization and poly-centricity.  Their poly-centricity metric is a 

ratio of the employment in all the primary employment centers (less the CBD) to 

the employment in the all primary employment centers (to include the CBD).  The 

CBD and employment centers were identified using a geographically weighted 

regression (GWR) procedure that identified peaks in the employment density 

surfaces across census tracts, with peaks having to have 10,000 jobs or more to 

qualify as employment centers. Since congestion is a concentration issue, it is 

expected that the higher this metric, the more poly-centric the city is and the 

better the congestion problem will be.    Calculation:  This measure is taken 

directly from Lee and Gordon (2007), which is based on 2000 data.  Although this 

data is ten years older than the 2010 base year data for this study, it should not be 

too troublesome; urban spatial structure should be slow to change, especially in 
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the larger cities, and any changes that might occur in a ten year period would 

likely be towards increased poly-centricity and away from concentration.  

• Land Costs (Housing affordability).  A sprawling form of development tends to 

follow the availability of cheaper land for development.  Cheaper land typically 

leads to cheaper, more affordable housing.  This can also be accompanied by an 

increase in the consumption of land and housing, which can in turn lead to more 

sprawl.  This is a key reason that propels urban areas to seek to control sprawl 

(and development along with it) by enacting various urban containment 

regulations.  A side effect of such regulations is the increase in the cost of land 

and the decrease in the affordability of housing (Cox, 2013).  Urban containment 

regulations are often associated with increased planning activities designed to 

steer urban development towards a particular vision rather than allowing the city 

to grow and develop on its own.  Such increased planning activities are in turn 

associated with non-auto focused transportation solutions, suggesting that 

network supply may not be expanding as much as needed.  It thus seems 

reasonable that decreased housing affordability is associated with increased 

traffic congestion.  Calculation: The affordability measure used is the median 

multiple (the ratio of the median housing cost to the median household income) 

and is provided in the 7th Annual Demographia International Housing 

Affordability Survey (2010: 3rd Quarter) (Cox 2011). 

• Government Employment (Percent of employees working for local government).  

Is there a difference in the congestion generation potential of the private and 

public sectors?  Government workers are viewed by many as nine-to-five clock 
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punchers.  If this assessment is correct, then one might expect that a larger percent 

of employees working for government would be associated with greater levels of 

congestion since the government workers would all commute during prime rush 

hours. It is recognized that this assessment might not be correct and that the 

average government worker might works odd hours.  This might be especially 

true with emergency, law enforcement, and military personnel. It is tested as 

noted, however, and any contrary findings are addressed in the results section 

below.  (It is also recognized that there are a number of state capitals, as well as 

the national capital, included in the studied urban areas and that these cities are 

likely to have a larger percentage of government workers.  As the study is 

concerned with the background characteristics linked with congestion and is not 

comparing cities head-to-head, this should not be a problem.  If the percentage of 

government workers is an important correlate, then the congestion in these 

capitals would reflect this.)  Calculation: This measure is calculated from urban 

area class of worker data in the ACS 2012-1, Table DP-03. 

• 8-hour work day (Percent of employment in retail).  Much of the congestion 

problem centers around the morning and evening “rush hours” as commuters 

move back and forth to work.  These peak travel periods exist largely because of 

the standard 8-hour workday.  Not all workers have these hours, however, and 

many travel during “shoulder periods” (those adjacent to the peak) or non-peak 

periods.  These workers are often in retail, so the percentage of employment in the 

retail sector may be linked to congestion, with a higher percentage of retail 

employees linked to lower levels of congestion. Calculation: This measure is 
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calculated from the urban area employment by industry data in the ACS 2012-1, 

Table DP-03. 

• Creativity (Patents per 1000 workers).  There has been extensive research on the 

creative class, a socioeconomic class developed and popularized by economist 

and social scientist Richard Florida in a number of publications beginning in 2002 

with The Rise of the Creative Class.  Florida believes this group to be a primary 

propellant of technological advancement.  Urban areas with a large and well-

established creative class will edge ahead of cities with a less developed creative 

class.  While the traits of the creative class are as many and varied as they are 

with people in general, a key characteristic seems to be the ability to think 

creatively, outside the box, to tackle problems and develop solutions.  This 

involves a certain degree of challenging the status quo.  The creative class might 

be expected to do things some differently, such as working a non-standard work 

week (odd hours or working outside the office), favoring less commonly used 

modes of transportation (transit, bike, or walking), and having a less economic 

focus on their productive working hours.  With these notions in mind, one might 

expect that a more developed the creative class would be associated with lower 

congestion levels.   Calculation: The creativity measure used is the patents per 

1000 workers and is provided in a Brookings Institution study on patenting and 

innovation in metropolitan America (Rothwell et al. 2013). 

• Activity Density (Real GDP per VMT).  People travel to go someplace.  More 

destinations provide more opportunities and larger urban areas tend to have 

disproportionately more destinations; i.e., urban areas enjoy benefits from 
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agglomeration.  Increased levels of urban activity, as measured by money 

available to spend, are likely associated with increased congestion. Sivak (2013) 

examined the relationship between economic activity (GDP) and the amount of 

driving (VMT) for the 50 states and the District of Columbia using the metric 

GDP per VMT.   He found that in 2011, GDP/VMT for states ranged from 

$30.04/mile in DC to $2.51/mile in Mississippi, with a US median value of 

$4.66/mile.  This study uses this same metric at the urbanized area level.  

Calculation: 2010 real GDP per capita for each city’s metropolitan statistical area 

from the Bureau of Economic Analysis is expanded to the urbanized area using 

the population data from the UMR to get total real GDP.  Real GDP is then 

divided by annual VMT (daily VMT data from the FHWA Highway Statistics 

series (2010 Table HM-71) multiplied by 365). 

• Size (Square miles of Urban Area Footprint).  Congestion is a problem of 

concentration – too many cars using too little capacity at a point in time. It seems 

likely that a larger “driver shed” (the area from which the drivers come) would 

have a greater potential for cars to concentrate.  If this is true, then a larger city 

would likely have worse congestion than a smaller city simply based on the city 

footprint.  Calculation: The urban area square mileage is taken directly from the 

2010 census.  

• Size (Urban Area Population).  In a like manner, it would seem that a more 

populous “driver shed” would also have a greater potential for cars to concentrate.  

If this is true, then a more populous city would likely have worse congestion than 

a smaller city simply based on the numbers of people.  A dummy variable is 
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already being used to address the demand aspects of the population issue, with a 

focus on the size delineations used in the UMR.  This variable addresses the 

population issue without regard to category.   Calculation: The urban area 

population is taken directly from the 2010 UMR. 

4.5  Variable Roll-up   

 Table 12 lists the 55 variables (3 dependent and 52 independent) along with 

selected descriptive statistics.  Shaded variables have some missing observations.   

 
Table 12: Study variables with selected descriptive statistics 

Variable Description Variable Code n Minimum Maximum Mean Std. 
deviation 

Dependent Variables 
Travel Time Index (TTI) TTI 100 1.04 1.37 1.17 0.07 
Portion of lane miles that are 
congested 

PortLMCong 100 0.09 1.23 0.40 0.17 

Length of Peak Periods PkHrs 100 1.50 8.00 3.45 1.45 

Independent Variables Impacting Supply 
Percent change in population 
2000-2010 

PctPopCh 100 -5.49 71.21 17.66 13.03 

Political party control in 2000  Rep-Dem 97 0.00 1.00 0.69 0.46 

Network miles per square mile NetMi_SqMi 100 4.59 43.45 11.00 4.06 

Freeway miles per square mile FwyMi_SqMi 100 0.08 1.67 0.32 0.17 
Freeway lane miles per network 
lane mile 

FwyLM_NetLM 100 0.02 0.17 0.07 0.02 

Freeway lane miles per 1000 
commuters 

FwyLM_KCmtr 100 0.25 2.99 1.36 0.50 

Freeway and arterial miles per 
capita 

FwyArtMi_Cap 100 287.89 1627.00 755.35 256.57 

City Age (decade before 2010 
when city reached 50k in 
population) 

DecBeforeNow 99 0.00 21.00 9.83 4.36 

Network links per Network node Links_Node 100 1.11 1.45 1.27 0.06 

Independent Variables Impacting Demand 

Commuters per square mile Cmtr_SqMi 100 602.53 4531.34 1470.35 717.56 

Persons per square mile Pers_SqMi 100 1150.29 8681.54 2875.88 1443.76 

Cars per Household Veh_HH 100 1.17 2.09 1.68 0.12 

Income per Capita Inc_Cap 100 13391.00 46808.00 27377.82 5425.16 

Employment per capita Empl_Cap 100 0.35 0.57 0.46 0.04 

Persons per restaurant Pers_Rest 94 541.95 1094.78 710.99 83.40 

In-commuting flows per worker  Inflows_Wkr 100 -0.21 0.54 0.05 0.09 
Average commuting time in 
minutes 

AvgCmtTime 100 17.60 35.20 23.90 3.64 

Percent of commuters in single 
occupant vehicles (SOV) 

PctSOV 100 48.96 87.23 77.85 6.46 
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Variable Description Variable Code n Minimum Maximum Mean Std. 
deviation 

Transit vehicle revenue miles per 
square mile 

VRM_SqMi 100 0.00 278438.26 41741.24 45728.54 

Population dummy variable-
Small 

PopSm 100 0.00 1.00 0.21 0.41 

Population dummy variable-
Mid-size 

PopMed 100 0.00 1.00 0.33 0.47 

Population dummy variable-
Large 

PopLg 100 0.00 1.00 0.31 0.46 

Population dummy variable-
Very large 

PopVLg 100 0.00 1.00 0.15 0.36 

Geographic dummy variable -
Northeast 

GeoNE 100 0.00 1.00 0.15 0.36 

Geographic dummy variable -
South 

GeoS 100 0.00 1.00 0.39 0.49 

Geographic dummy variable -
Midwest 

GeoMW 100 0.00 1.00 0.17 0.38 

Geographic dummy variable -
West 

GeoW 100 0.00 1.00 0.29 0.46 

Independent Variables Impacting Flow 

Percent of trucks on freeways PctTrks 100 3.45 17.45 7.94 2.49 
Percent of population young (16-
24) and old (65+) 

PctOldYng 100 21.14 38.84 25.92 3.09 

Nodes per network mile, upper 
level system only 

Nodes_UpNetMi 100 4.53 10.33 7.24 1.16 

Percent pavement in poor 
condition 

PctPrPvmt 95 1.00 64.00 26.41 14.987 

Crashes per 1000 persons Crashes_Kcap 100 6.38 25.12 15.42 3.64 

Annual precipitation in inches YrPrecipIn 100 5.90 65.10 35.13 14.02 
Number of professional sports 
teams or NCAA Division I 
colleges per  million people 

SpTms_Mcap 100 0.00 9.54 3.39 1.93 

Variations across Urban Area Census Tracts 
Gini of population per network 
mile  

GPop_NetMi 100 0.20 0.99 0.35 0.16 

Gini of workers per upper 
network mile  

GWkr_UpNetMi 100 0.55 0.99 0.82 0.11 

Gini of car ownership per 
household 

GVeh_HH 100 0.08 0.32 0.13 0.03 

Gini of median income per 
household 

GMedInc_HH 100 0.16 0.35 0.23 0.03 

Gini of workers per capita GWkr_Cap 100 0.06 0.16 0.10 0.02 

Gini of employment density GJobs_SqMi 100 0.43 0.78 0.64 0.07 

Gini of jobs-household balance GJobs_HH 100 0.44 0.89 0.66 0.10 

Gini of jobs-worker balance GJobs_Wkr 100 0.47 0.88 0.65 0.09 

Other Variables Potentially Impacting Congestion 
Percent of Employment in Job-
Rich, Job-Dense Tracts 

PctJobsJRDTcts 100 17.09 54.35 35.26 8.39 

Percent of Population in Job-
Poor Tracts 

PctPopJPTcts 100 29.14 62.19 46.07 6.33 

Degree of poly-centricity  LeePoly 72 0.00 91.00 38.69 25.15 

Housing affordability  Med_Mult 100 2.02 8.45 3.51 1.14 
Percent of employment in 
government  

PctGovtEmp 100 8.48 23.26 14.60 3.82 

Percent of employment in retail PctRetEmp 100 8.26 16.85 11.86 1.36 

Patents per 1000 workers Pat_KWkrs 98 0.02 10.29 0.94 1.33 
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Variable Description Variable Code n Minimum Maximum Mean Std. 
deviation 

Real GDP per VMT GDP_VMT 98 2.03 14.52 5.32 2.29 

Size - Area UASqMi 100 32.49 3450.20 569.23 582.37 

Size - Population UAPop-K 100 150.00 18852.00 1696.34 253.94 

 

4.5.1 Missing Values. For each of the 55 variables, there are 100 potential observations, 

one for each urban area.  While most variables have values for all cities, there are seven 

independent variables that do not.  These missing observations are spread across 30 urban 

areas.  Deleting these observations would either reduce the usable independent variables 

to 48 or the usable urban areas to 70.  Since the former would eliminate some urban 

characteristics from consideration and the latter would significantly reduce the size of the 

study group, the decision is made to estimate the missing values so that all variables may 

be used.  Details on the missing values follow:  

• Political party control in 2000.  There are three missing values for this variable.  

In each of these cases, the elections were non-partisan and while the mayor in 

2000 is identified, extensive Internet searches on his/her party affiliation are 

inconclusive.  Since the other values are either 0 (Republican) or 1 (Democrat), a 

value of 0.5 is assigned for the three unknowns.  

• City Age (decade before 2010 when city reached 50k in population).  There is one 

missing value for this variable and it is the result of cities with populations below 

50k being combined into a larger urbanized area.  The missing value is estimated 

by comparing growth patterns of the two cities involved and the growth in other 

urban areas in the vicinity.  

• Persons per restaurant. There are six missing values for this variable, four for 

small urban areas and two for mid-sized urban areas.  All large and very large 
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urban areas are accounted for.  The number of restaurants includes both full 

service and limited service facilities.  The cities are segregated by size and two 

regression equations (one for full service and one for limited service) are 

developed for the two sizes of urban areas with the missing values (small and 

mid-sized).  Since the restaurant data is from the 2007 Economic Census, 2007 

population data from the American Community Survey is used as the independent 

variable.  The regression equations are then used to calculate the missing number 

of restaurants and the ACS population data to determine the persons per 

restaurant.   

• Percent pavement in poor condition.  There are five missing values for this 

variable, all for small cities.  Regressions against population and network miles, 

together or separately, do not yield a model with good fit to the data, so the 

average value of percent poor pavement for small cities is used as the missing 

value for each urban area.  

• Degree of poly-centricity.  There are 28 missing values for this variable, 17 for 

small cities, eight for mid-sized cities and three for large cities.  All very large 

cities are all accounted for.  Regressions against population do not yield a model 

with good fit to the data, so the average poly-centricity measure is used for each 

urban area based on the size category. 

• Patents per 1000 workers.  There are two missing values for this variable, both for 

mid-sized cities.  The average patents per 1000 workers for mid-sized urban areas 

is used for the two missing values.  
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• Real GDP per VMT.  There are two missing values for this variable, both for mid-

sized cities.  The average GDP per capita for mid-sized urban areas is used for the 

two missing GDP per capita values.  The population data from the UMR is then 

used to determine total real GDP and the annual VMT from FHWA Highway 

Statistics to determine the Real GDP per VMT. 

4.5.2 Revised Variable Roll-up. Table 13 lists the 55 variables, with the selected 

descriptive statistics updated to reflect the 47 missing values.  The variables with the 

missing data are again shaded for easy reference. 

 
Table 13: Study variables with selected descriptive statistics with estimates for the 
missing values 

Variable Description Variable Code n Minimum Maximum Mean Std. 
deviation 

Dependent Variables 
Travel Time Index (TTI) TTI 100 1.04 1.37 1.17 0.07 
Portion of lane miles that are 
congested 

PortLMCong 100 0.09 1.23 0.40 0.17 

Length of Peak Periods PkHrs 100 1.50 8.00 3.45 1.45 

Independent Variables Impacting Supply 
Percent change in population 
2000-2010 

PctPopCh 100 -5.49 71.21 17.66 13.03 

Political party control in 2000  Rep-Dem 100 0.00 1.00 0.68 0.46 

Network miles per square mile NetMi_SqMi 100 4.59 43.457 11.00 4.06 

Freeway miles per square mile FwyMi_SqMi 100 0.08 1.67 0.32 0.17 
Freeway lane miles per network 
lane mile 

FwyLM_NetLM 100 0.02 0.17 0.07 0.02 

Freeway lane miles per 1000 
commuters 

FwyLM_KCmtr 100 0.25 2.99 1.36 0.50 

Freeway and arterial miles per 
capita 

FwyArtMi_Cap 100 287.89 1627.00 755.35 256.57 

City Age (decade before 2010 
when city reached 50k in 
population) 

DecBeforeNow 100 0.00 21.00 9.83 4.34 

Network links per Network node Links_Node 100 1.11 1.45 1.27 0.06 

Independent Variables Impacting Demand 

Commuters per square mile Cmtr_SqMi 100 602.53 4531.34 1470.35 717.56 

Persons per square mile Pers_SqMi 100 1150.29 8681.54 2875.88 1443.76 

Cars per Household Veh_HH 100 1.17 2.09 1.68 0.12 

Income per Capita Inc_Cap 100 13391.00 46808.00 27377.82 5425.16 

Employment per capita Empl_Cap 100 0.35 0.57 0.46 0.04 

Persons per restaurant Pers_Rest 100 541.95 1094.78 711.04 82.20 

In-commuting flows per worker  Inflows_Wkr 100 -0.21 0.54 0.05 0.09 
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Variable Description Variable Code n Minimum Maximum Mean Std. 
deviation 

Average commuting time in 
minutes 

AvgCmtTime 100 17.60 35.20 23.90 3.64 

Percent of commuters in single 
occupant vehicles (SOV) 

PctSOV 100 48.96 87.23 77.85 6.46 

Transit vehicle revenue miles per 
square mile 

VRM_SqMi 100 0.00 278438.26 41741.23 45728.54 

Population dummy variable-
Small 

PopSm 100 0.00 1.00 0.21 0.41 

Population dummy variable-
Mid-size 

PopMed 100 0.00 1.00 0.33 0.47 

Population dummy variable-
Large 

PopLg 100 0.00 1.00 0.31 0.46 

Population dummy variable-
Very large 

PopVLg 100 0.00 1.00 0.15 0.36 

Geographic dummy variable -
Northeast 

GeoNE 100 0.00 1.00 0.15 0.36 

Geographic dummy variable -
South 

GeoS 100 0.00 1.00 0.39 0.49 

Geographic dummy variable -
Midwest 

GeoMW 100 0.00 1.00 0.17 0.38 

Geographic dummy variable -
West 

GeoW 100 0.00 1.00 0.29 0.46 

Independent Variables Impacting Flow 

Percent of trucks on freeways PctTrks 100 3.45 17.45 7.94 2.49 
Percent of population young (16-
24) and old (65+) 

PctOldYng 100 21.14 38.84 25.92 3.09 

Nodes per network mile, upper 
level system only 

Nodes_UpNetMi 100 4.53 10.33 7.24 1.16 

Percent pavement in poor 
condition 

PctPrPvmt 100 1.00 64.00 26.23 14.61 

Crashes per 1000 persons Crashes_Kcap 100 6.37 25.12 15.42 3.64 

Annual precipitation in inches YrPrecipIn 100 5.90 65.10 35.13 14.02 
Number of professional sports 
teams or NCAA Division I 
colleges per  million people 

SpTms_Mcap 100 0.00 9.54 3.39 1.93 

Variations across Urban Area Census Tracts 
Gini of population per network 
mile  

GPop_NetMi 100 0.20 0.99 0.35 0.16 

Gini of workers per upper 
network mile  

GWkr_UpNetMi 100 0.55 0.99 0.82 0.116 

Gini of car ownership per 
household 

GVeh_HH 100 0.08 0.32 0.13 0.03 

Gini of median income per 
household 

GMedInc_HH 100 0.16 0.35 0.23 0.03 

Gini of workers per capita GWkr_Cap 100 0.06 0.16 0.10 0.02 

Gini of employment density GJobs_SqMi 100 0.43 0.78 0.64 0.07 

Gini of jobs-household balance GJobs_HH 100 0.44 0.89 0.66 0.10 

Gini of jobs-worker balance GJobs_Wkr 100 0.47 0.88 0.65 0.09 

Other Variables Potentially Impacting Congestion 
Percent of Employment in Job-
Rich, Job-Dense Tracts 

PctJobsJRDTcts 100 17.09 54.35 35.26 8.39 

Percent of Population in Job-
Poor Tracts 

PctPopJPTcts 100 29.14 62.19 46.07 6.33 

Degree of poly-centricity  LeePoly 100 0.00 91.00 33.47 23.18 

Housing affordability  Med_Mult 100 2.02 8.45 3.52 1.14 
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Variable Description Variable Code n Minimum Maximum Mean Std. 
deviation 

Percent of employment in 
government  

PctGovtEmp 100 8.48 23.26 14.60 3.82 

Percent of employment in retail PctRetEmp 100 8.26 16.85 11.86 1.36 

Patents per 1000 workers Pat_KWkrs 100 0.02 10.29 0.94 1.32 

Real GDP per VMT GDP_VMT 100 2.03 14.52 5.418 2.36 

Size - Area UASqMi 100 32.49 3450.20 569.23 582.37 

Size - Population UAPop-K 100 150.00 18852.00 1696.34 253.94 

 

4.6  Methods   

 When selecting a method or methods of analysis, it is important to keep in mind 

the nature of the research, of which there are several types.  Explanatory research seeks to 

uncover the causal relationships between variables to achieve a better understanding of 

the studied phenomena.  Predictive research seeks to develop models that allow the 

prediction of the studied phenomena without necessarily understanding the causal 

relationships involved.  Confirmatory research seeks to confirm proposed hypotheses, 

and so combines somewhat the explanatory and predictive approaches.  All three of these 

research types begin with a sound understanding of the studied subject.  If this sound 

understanding is not yet in hand, descriptive or exploratory research may be needed.  The 

former seeks to describe the population or phenomenon being studied, while the latter 

seeks to develop the understanding of the population or phenomenon more fully through 

the exploration of variable relationships.  Both descriptive and exploratory research can 

lead to hypothesis development, which can then be studied using explanatory, predictive, 

or confirmatory approaches.   

 This research is exploratory in nature.  It does not seek to predict congestion, nor 

does it seek to uncover causal relationships between congestion and urban area 

characteristics; it has no formal hypotheses to test.  Instead, it seeks to identify those 
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urban area characteristics that are linked with congestion so that follow-on research into 

causes and effects might be pursued. 

 In determining those urban characteristics that are linked with congestion, it is 

prudent to state how this determination is to be made.  While there may be many 

characteristics that are linked with congestion (indeed, it may be that all urban 

characteristics are so linked), the interest here is only in the ones that are most important 

and influential.  Important and influential are vague terms and call for some, perhaps 

arbitrary, thresholds.  These thresholds are made within the context of the particular 

method being used and generally consider the size of the effect and the importance within 

the model.  Characteristics with tiny effects are not considered important, nor are those 

characteristics that are statistically insignificant or unimportant in model development. 

Also of limited importance are those variables that are not useful in differentiating 

between the observations (i.e., urban areas).  If every city, those with low levels of 

congestion and those with high levels, has the same “degree” of a particular variable, than 

using that variable to distinguish between urban areas becomes problematic.  Importance 

is discussed in each part of the results section.     

 One of the challenges in this analysis is the nature of the data – characteristics of 

urbanized areas are commonly interrelated in complex ways, with each having some 

effect on or being affected by one or more of the others.  This precludes, or at least makes 

more difficult, the use of one of the most common analytical methods, ordinary least 

squares (OLS) multiple regression.  There are other approaches that are less sensitive to 

multicollinearity and get around this issue.   One such approach is a form of linear 

regression, partial least squares (PLS) regression, which has the added benefits of 
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working well with a larger number of independent variables and being well-suited for 

exploratory research (Garson 2014).  This method, does, however, assume a linear 

relationship between the variables, and that may not always be the case.   

 Another approach that handles both the highly correlated variables and the 

linearity issues is the method of decision tree induction, which involves the sequential 

subdivision of observations on the basis of the discriminating power of independent 

variables in accounting for their relationship with the dependent variable, which in this 

case, is congestion.  This relationship can be derived from a number of measures 

depending on the particular method, to include correlation, covariance, least square 

deviation, and minimum likelihood ratio. The resulting “decision trees” are then 

interpreted within the constraints of the study.  There are several widely used decision 

tree algorithms, to include Chi-square Automatic Interaction Detection (CHAID), 

exhaustive CHAID, Classification and Regression Tree (CART), and QUEST.  QUEST 

deals with categorical data and is inappropriate for this study.  It has been suggested that 

CART is more useful for prediction while CHAID is better for analysis (Shmueli 2007).  

Since this research is exploratory, then it seems that either CHAID or exhaustive CHAID 

are the better alternative.   

 Both methods (PLS and CHAID) can assist in identifying the key correlates of 

congestion, and while the general approaches to these two methodologies are linked to 

the methodology itself, the specific algorithms used in the calculations are often 

dependent upon the software package being used. 

4.6.1  Analytical Software Platforms. There are a number of software packages that offer 

these types of data analysis approaches, to include packages from SAS, SPSS, XLSTAT, 
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StatSoft, and others.  The XLSTAT package is selected based on cost, ease of use and 

background support materials.  This platform has the added benefit of being an MS Excel 

add-on, so data do not have to be exported/imported between software packages.  This 

platform supports partial least squares regression (PLS), four decision tree methods 

(CHAID, exhaustive CHAID, CART, and QUEST) as well as a variety of other methods, 

to include Pearson correlations and ordinary least squares regression (OLS).   

4.6.2  Partial Least Squares (PLS) Regression.  Introduced by Wold in the 1980s after 

two decades of development (Sanchez 2013), PLS is an extension of linear modeling that 

combines features of principal components analysis (PCA) and multiple regression.  It is 

a dimension reduction technique where a large number of independent variables are 

analyzed to create a reduced number of components and then an ordinary least squares 

(OLS) regression step is used to predict values of the dependent variable.  Unlike PCA, 

which develops components based on just the relationships among the independent 

variables, PLS finds the set of components that explains as much of the covariance 

between the dependent and independent variables as possible (Maitra and Yan 2008). As 

these components are orthogonal and non-overlapping (Garson 2014), PLS is less 

restrictive than OLS and is well-suited for situations where there are a large number of 

independent variables that are likely correlated.  (Like OLS, however, PLS cannot handle 

perfect collinearity between variables and so care must be taken with dummy variables to 

ensure that only k-1 variables are used to represent k conditions (Garson 2014).)   PLS 

also has an advantage over OLS in its ability to model more than one dependent variable 

at a time.  Including the three congestion variables in the same model allows covariances 
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between them to be captured in the calculations and adds another dimension to the 

results.   

 Unlike OLS, PLS is often characterized as a distribution-free technique in that no 

particular distribution of the data is assumed, which has some advantages and 

disadvantages.  On the minus side, the lack of a common distribution among the data can 

affect the calculations of the sizes of the effects and also precludes significance testing, 

which limits the ability to generalize the results (Garson 2014).  On the plus side, the lack 

of a need for a common distribution gives tremendous flexibility with the data.  As this 

study is exploratory in nature and aimed at identifying the most important correlates of 

congestion rather than predicting specific effects or explaining causal relationships, the 

inability to generalize the results is less of a concern.  Also of less concern is the 

exactness of the sizes of the effects; general magnitudes should be adequate.   

4.6.3 Chi-square Automatic Interaction Detection (CHAID).  CHAID was developed by 

Kass (1980) and then extended by Biggs, Ville and Suen (1991) to include the exhaustive 

CHAID method.  The former allows decision trees with splits of more than two branches, 

while the latter involves an additional repetitive sub-routine that always produces a 

binary tree.  Both methods allow the use of nominal, ordinal and ratio data and involve 

three steps: splitting, merging and stopping.  In the splitting step, the chi-square test for 

independence is used to assess whether splitting a node improves the purity by a 

significant amount, with a goal of maximizing the variance between nodes while 

minimizing the variance within nodes (Ratner 2007).  Independent variables are analyzed 

and the one with the lowest criterion value is selected as the split variable (as long as the 

criterion value is lower than user-defined threshold).  The criterion for quantitative 
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dependent variables is the p-value and for qualitative dependent variables is either 

Tschuprow’s T or the maximum likelihood ratio (as defined by the user). In the merging 

step, similar categories are merged into common sub-nodes by comparing Tschuprow’s T 

or the maximum likelihood ratio to a user-defined threshold (if the maximum value is 

greater than the threshold, the two groups are merged).  In exhaustive CHAID, merging 

continues until only two categories remain.  Splitting and merging continue recursively 

until the stopping criteria are met.  The stopping criteria are primarily used-defined 

(maximum tree depth, minimum size for a parent-node, and minimum size for a child-

node), but also include reaching a pure node (a node containing only objects of one 

category or one value of the dependent variable), which cannot be further split. Variables 

are considered individually, so it is important that dummy variables for all conditions are 

included in the mix, i.e. k dummy variables vs. k-1 dummy variables.  While it is possible 

to make the k-1 dummy variable approach work, it is inefficient and requires the 

development of multiple trees (Shmueli 2014).    

 When considering which of the CHAID options to use, it is important to 

remember that one reason for using decision trees is to avoid the linearity issues 

associated with forms of regression.  With this in mind, it seems that an algorithm that 

permits more than two branches off a single node would better allow the uncovering of 

non-linear relationships between the variables.  Regular CHAID allows this.    

4.6.4 Multiple Methods.  Upon considering the data, together with the various methods, 

there appears to be no single best method.  Given that the research is exploratory in 

nature and that the goal is to identify the most important and influential urban 

characteristics that are correlated with congestion, multiple methods are used.  Each 
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method is used to identify the important characteristics within the limitations of its 

strengths and weaknesses.  The important characteristics in each analysis are then 

compared with the results from the other analyses to determine the characteristics that are 

common across all methods.  It is these commonly important variables that are likely to 

be the most influential.   Four methods are used: Pearson correlations, PLS regression, 

and CHAID decision trees, which are used in two ways: the decision tree as a whole and 

the first split in the decision tree.  All four methods are discussed in detail in Chapter 5.    
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CHAPTER 5:   RESULTS AND DISCUSSION 
  

5.1  Overview   

 First, the simple correlations between the variables are examined, since as noted 

in Chapter 4, urban characteristics are likely to be correlated, often highly so.  Next, the 

relationships between the variables are investigated using PLS and the linearity 

assumption is explored.  Then the relationships between the variables are investigated 

using CHAID, both in whole trees and in a first split analysis.  Next, the results are 

summarized, compared across all methodologies, and discussed by congestion dimension 

and variable importance.  Finally, results are related back to variable selection.  

5.2  Pearson Correlations   

 The goal in variable selection is to uncover those variables that might be 

correlated with the measures of congestion.  A review of the simple correlation matrix 

indicates that of the 52 independent variables, all but 13 have a statistically significant 

correlation at the 5% level with at least one of the congestion measures, with 19 having 

such a significant correlation with all three measures.  The congestion duration measure 

(PkHrs) is the dependent variable with the broadest set of significant correlations, with 36 

statistically significant correlations, to include a high correlation of 0.696 (UASqMi).  

The congestion extent measure (PortLMCong) has the poorest matches with potential 

predictors; only 22 correlations are statistically significant, with a high of -0.559 

(FwyArtMi_Cap).  The congestion intensity measure (TTI) falls between the two.  
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Notably, the lowest correlations for all three congestion variables are not statistically 

significant.  

 
Table 14: Pearson correlations for the three dependent (congestion) variables 

 Correlations Ranks 

Variables TTI PortLMCong PkHrs TTI PortLMCong PkHrs 
TTI 1 0.477 0.828 NA NA NA 

PortLMCong 0.477 1 0.476 NA NA NA 

PkHrs 0.828 0.476 1 NA NA NA 

PctPopCh** -0.153 0.139 -0.167 38 27 38 

Rep-Dem 0.271 0.043 0.216 25 46 34 

NetMi_SqMi** -0.082 -0.136 -0.081 46 28 43 

FwyMi_SqMi -0.051 -0.236 -0.051 48 16 47 

FwyLM_NetLM 0.210 -0.032 0.220 34 48 33 

FwyLM_KCmtr -0.220 -0.420 -0.185 32 3 37 

FwyArtMi_Cap* -0.439 -0.559 -0.407 10 1 13 

DecBeforeNow 0.397 0.017 0.487 12 51 9 

Links_Node** 0.087 0.156 0.118 45 26 41 

Cmtr_SqMi* 0.198 0.225 0.249 35 19 31 

Pers_SqMi* 0.254 0.245 0.310 28 14 26 

Veh_HH** -0.183 0.021 -0.154 36 50 40 

Inc_Cap 0.472 0.120 0.552 8 29 7 

Empl_Cap 0.319 -0.011 0.360 21 52 19 

Pers_Rest -0.230 -0.066 -0.247 31 41 32 

Inflows_Wkr** -0.006 -0.094 0.015 51 38 50 

AvgCmtTime* 0.626 0.476 0.650 1 2 3 

PctSOV* -0.480 -0.253 -0.374 7 12 16 

VRM_SqMi* 0.527 0.329 0.537 4 7 8 

PopSm* -0.421 -0.241 -0.638 11 15 5 

PopMed* -0.280 -0.252 -0.279 24 13 28 

PopLg 0.248 0.173 0.352 29 24 20 

PopVLg* 0.527 0.384 0.640 5 4 4 

GeoNE** 0.140 -0.157 0.053 50 23 44 

GeoS** 0.011 0.194 -0.062 41 25 46 

GeoMW -0.151 -0.219 0.020 39 20 49 

GeoW** 0.003 0.096 0.010 52 36 52 

PctTrks** -0.133 -0.084 -0.094 42 39 42 

PctOldYng* -0.248 -0.257 -0.338 30 11 23 

Nodes_UpNetMi* 0.394 0.225 0.369 13 18 17 

PctPrPvmt 0.353 0.095 0.343 17 37 22 

Crashes_Kcap** -0.105 -0.038 -0.047 44 47 48 

YrPrecipIn** 0.067 -0.052 0.014 47 44 51 

SpTms_Mcap* -0.310 -0.308 -0.271 22 8 29 

GPop_NetMi 0.214 0.079 0.212 33 40 36 

GWkr_UpNetMi* 0.269 0.207 0.323 27 21 24 

GVeh_HH 0.492 0.100 0.456 6 34 11 
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 Correlations Ranks 

Variables TTI PortLMCong PkHrs TTI PortLMCong PkHrs 
GMedInc_HH 0.271 -0.063 0.362 26 42 18 

GWkr_Cap** 0.118 0.108 0.167 43 32 39 

GJobs_SqMi 0.355 -0.044 0.215 16 45 35 

GJobs_HH 0.303 0.114 0.313 23 30 25 

GJobs_Wkr* 0.390 0.206 0.474 14 22 10 

PctJobsJRDTcts** 0.012 -0.110 -0.054 49 31 45 

PctPopJPTcts* 0.362 0.264 0.348 15 10 21 

LeePoly* 0.337 0.276 0.553 19 9 6 

Med_Mult* 0.448 0.227 0.384 9 17 14 

PctGovtEmp -0.150 -0.058 -0.309 40 43 27 

PctRetEmp -0.319 -0.023 -0.418 20 49 12 

Pat_KWkrs 0.168 0.105 0.271 37 33 30 

GDP_VMT 0.352 0.097 0.374 18 35 15 

UASqMi* 0.623 0.366 0.696 2 5 1 

UAPop-K* 0.618 0.365 0.685 3 6 2 
Variables with a Statistically 
Significant Correlation 35 22 36    

Highest Correlation 0.626 -0.559 0.696    

Lowest Correlation 0.003 -0.011 0.010    

Average Correlation 0.277 0.176 0.299    

Notes: Values in bold are different from 0 with a significance level alpha=0.05 
            * Variable is statistically correlated with all three dependent variables. 
            ** Variable is not statistically correlated with any dependent variable. 
 

Table 15: Top ten Pearson correlations by congestion variable 
TTI Rank PortLMCong Rank PkHrs Rank 
AvgCmtTime* 1 FwyArtMi_Cap 1 UASqMi* 1 

UASqMi* 2 AvgCmtTime* 2 UAPop-K* 2 
UAPop-K* 3 FwyLM_KCmtr 3 AvgCmtTime* 3 
VRM_SqMi* 4 PopVLg* 4 PopVLg* 4 

PopVLg* 5 UASqMi* 5 PopSm 5 
GVeh_HH 6 UAPop-K* 6 LeePoly 6 

PctSOV 7 VRM_SqMi* 7 Inc_Cap 7 
Inc_Cap 8 SpTms_Mcap 8 VRM_SqMi* 8 

Med_Mult 9 LeePoly 9 DecBeforeNow 9 
FwyArtMi_Cap 10 PctPopJPTcts 10 GJobs_Wkr 10 

* Variable is in the top ten for all three dependent variables. 

 
 
 The top ten Pearson correlations are shown in Table 15.  Five variables are in the 

top ten for each congestion dimension: AvgCmtTime, UASqMi, UAPop-K, VRM_SqMi, 

and PopVLg.  Three of these are urban area size variables, which may not be surprising 

given the relationships uncovered in Table 4 above.  Recall, however, that these reflect 
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binary relationships and do not consider the interactive play these variables are likely to 

have.   

 While it is desirable for the independent variables to be highly correlated with the 

dependent variables, it is not so desirable for them to be correlated with one another.  The 

nature of the variables themselves, however, as characteristics of urbanized areas, 

suggests that they are not likely to be independent and that there would be some overlap.  

A review of the variance inflation factors (VIFs) for each of the independent variables 

indicates that this is indeed the case. The VIF is derived from the R2 from a multiple 

regression of each independent variable on all the other independent variables.  (The 

tolerance is 1 - R2 and the VIF is the reciprocal of the tolerance.)  VIF values above 2.50 

are troublesome and indicate high multicollinearity (Allison 1999). While this is less of a 

problem in a global predictive model, high multicollinearity presents a real challenge in 

understanding the complex relationships between urban characteristics and identifying 

the more important predictor variables.  Highly correlated independent variables can 

obscure the impacts of other variables in the same model.  As Table 16 shows, this data 

set is highly correlated – only two variables have VIFs under the 2.50 threshold.  This 

lack of independence between the “independent” variables indicates that models based on 

multinomial ordinary least squares (OLS) regression would be problematic.  Other 

methods are needed.  (It should be noted that two of the dummy variables (PopSm and 

GeoNE) were dropped from the variable set in the tolerance calculations and do not have 

a VIF value.  These were dropped to avoid the perfect collinearity problem and allow the 

VIFs to be calculated.  If dummy variables other than these two are dropped, the VIFs for 

all the dummy variables are changed, however, they still remain above the 2.50 threshold 
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and the VIFs for the other independent variables remain unchanged to two decimal 

places.)  

 
Table 16: Variance Inflation Factors (VIFs) for the independent variables 

Variable VIF Variable VIF Variable VIF 

PctPopCh 3.55 VRM_SqMi 14.54 GWkr_UpNetMi 3.09 

Rep-Dem 2.15 PopSm  GVeh_HH 17.93 

NetMi_SqMi 28.62 PopMed 6.23 GMedInc_HH 5.22 

FwyMi_SqMi 30.15 PopLg 10.83 GWkr_Cap 5.65 

FwyLM_NetLM 33.27 PopVLg 16.70 GJobs_SqMi 7.65 

FwyLM_KCmtr 23.41 GeoNE  GJobs_HH 3.62 

FwyArtMi_Cap 6.86 GeoS 16.23 GJobs_Wkr 7.37 

DecBeforeNow 11.22 GeoMW 6.14 PctJobsJRDTcts 3.99 

Links_Node 7.28 GeoW 23.88 PctPopJPTcts 8.20 

Cmtr_SqMi 167.72 PctTrks 2.57 LeePoly 3.52 

Pers_SqMi 181.88 PctOldYng 5.95 Med_Mult 11.31 

Veh_HH 5.82 Nodes_UpNetMi 4.59 PctGovtEmp 2.95 

Inc_Cap 12.04 PctPrPvmt 5.00 PctRetEmp 5.36 

Empl_Cap 9.24 Crashes_Kcap 16.16 Pat_KWkrs 2.67 

Pers_Rest 2.77 YrPrecipIn 4.87 GDP_VMT 14.37 

Inflows_Wkr 6.55 SpTms_Mcap 2.69 UASqMi 25.98 

AvgCmtTime 9.19 GPop_NetMi 2.41 UAPop-K 22.45 

PctSOV 14.37     

Note: shaded variables have VIFs below 2.50 

 
5.3  Partial Least Squares (PLS) Regression Results   

 As noted in Chapter 4, PLS handles highly correlated independent variables by 

combining them into orthogonal components for analysis (Garson 2014).  Moreover, 

since it estimates relationships between matrices, it also allows the inclusion of the three 

dependent variables in the same model so that their interactions can be included in the 

analysis.  With this in mind, four PLS regression models are developed: one combined 

model with the three dependent and the 50 independent variables (two dummy variables 

are excluded to prevent perfect collinearity), and three additional models with just one of 

the three dependent variables and the 50 independent variables.  These last models are 

used to assess the effects of the independent variables on each of the dependent variables 
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separately.  In model development, a 95% confidence interval is used and the software is 

keyed to determine automatically the optimal number of components. (XLSTAT uses an 

iterative algorithm to develop orthogonal components that maximize the explained 

variance of and the relationship between the dependent and independent variables.  

Components are developed such that the collective explanatory/predictive power of the 

components increases until the global quality begins to decline, at which point the 

number of components is determined to be optimal.  See below for a description of the 

various indices used in this process.)  The optimal number of components according to 

this criterion differs among the models: 3, 1, 1 and 2 for the combined, TTI, PortLMCong 

and PkHrs models, respectively.  Finally, the various results, to include model quality, 

goodness of fit, variable importance in the projection, standardized coefficients and 

residuals are analyzed and discussed.   

5.3.1 Model Quality and Goodness-of-Fit.  Table 17 shows the number of components 

and the model quality for each model.  The Q2 cumulative index is a measure of the 

model’s global quality, that is, the contribution of all components to its predictive quality.  

Values range between -1 and 1 (although only very bad models have negative values) 

with higher values indicating better model quality.  The R2Y cumulative and R2X 

cumulative indices are measures of the explanatory/predictive power of the model for the 

dependent and independent variables, respectively, with values ranging between 0 and 1.  

The cumulative indices measure the cumulative effect for all the components together.  

When there is only one component, of course, the cumulative measure is the same as the 

measure for just the one component.   It should be noted that the R2Y value is the same as 

the R2 and can be used to measure goodness-of-fit. 
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Table 17: Model quality results for the four separate models 

Item Combined TTI PortLMCong PkHrs 
Number of Components 3 1 1 2 
Q² Cumulative Index 0.504 0.515 0.242 0.726 
R²Y Cumulative Index 0.649 0.591 0.370 0.812 
R²X Cumulative Index 0.370 0.186 0.159 0.265 

 

  From these measures, the PkHrs model appears to be the model with the highest 

global quality, followed somewhat closely by the TTI model.  The PortLMCong model is 

substantially weaker than these, while the combined model’s Q2 cumulative index falls 

just below the TTI model. The combined model, however, has very good R2Y numbers 

(better than all but the PkHrs model) and better R2X scores than any other model. This 

indicates that the combined model does a better job of representing both the independent 

and dependent variables in the model without sacrificing too much of the global quality.  

When considering only the goodness-of-fit for each of the congestion variables (Table 

18), the combined model tops each of the separate models except the PkHrs model, where 

the R2 values are very comparable (0.802 vs. 0.812).  All in all, the combined model 

appears to be the best of the four and only this model will be used for the rest of this 

section.  

 
Table 18: Goodness-of-fit results for the three separate models 

 Combined Separate 

Item TTI PortLMCong PkHrs TTI PortLMCong PkHrs 

Observations 100.000 100.000 100.000 100.000 100.000 100.000 

Sum of weights 100.000 100.000 100.000 100.000 100.000 100.000 

DF 96.000 96.000 96.000 98.000 98.000 97.000 

R² 0.665 0.479 0.802 0.591 0.370 0.812 

Std. deviation 0.039 0.122 0.655 0.043 0.133 0.636 

MSE 0.001 0.014 0.412 0.002 0.017 0.392 

RMSE 0.039 0.120 0.642 0.043 0.132 0.626 
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5.3.2 Variable Importance to the Projection (VIP).  One of the outputs of PLS 

regression is the VIP, which is a measure of the importance of an independent variable in 

component development. VIPs are calculated for each component in the analysis, with 

higher VIP values indicating that the variable is more influential.  Highly influential 

variables have values above 1.000, moderately influential variables have values between 

0.800 and 1.000, and variables with low or no influence have values below 0.800 

(XLSTAT 2014).  VIPs for each component in the combined model are shown in Table 

19, rank ordered by the average for all three components, weighted by the component’s 

Q2 quality index. (Weighting the average in this way gives increased influence to the 

VIPs in the better quality, more meaningful components.)  VIPs below 0.800, the 

threshold noted above for moderate to high influence, are shaded to facilitate 

understanding. Note that the VIP scores for all but four variables are either all above the 

0.800 threshold (27 variables) or all below the threshold (19 variables) on each 

component.  Interestingly, the four variables with the mixed values all have low VIPs for 

Component 1 and moderate VIPs for Components 2 and 3.  A case could be made for 

dropping the bottom 19 (or even the bottom 23) variables if a predictive model were the 

goal.  As the goal here is the exploring the relationships between urban characteristics 

and congestion, however, retaining these variables is important for further analysis.  

 
Table 19: Variable Importance in the Projection (VIP) 

  Component Weighted 

No. Variable 1 2 3 Average 

17 AvgCmtTime 2.007 1.895 1.840 1.984 

49 UASqMi 1.986 1.801 1.755 1.949 

50 UAPop-K 1.965 1.764 1.713 1.924 

22 PopVLg 1.803 1.624 1.580 1.766 

19 VRM_SqMi 1.624 1.474 1.453 1.593 

7 FwyArtMi_Cap 1.504 1.628 1.592 1.528 

13 Inc_Cap 1.426 1.310 1.330 1.403 
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  Component Weighted 

No. Variable 1 2 3 Average 
43 LeePoly 1.370 1.231 1.196 1.342 

35 GVeh_HH 1.305 1.329 1.294 1.309 

18 PctSOV 1.290 1.183 1.185 1.269 

40 GJobs_Wkr 1.278 1.163 1.135 1.254 

44 Med_Mult 1.244 1.128 1.099 1.221 

8 DecBeforeNow 1.169 1.164 1.188 1.169 

28 Nodes_UpNetMi 1.156 1.048 1.034 1.134 

42 PctPopJPTcts 1.114 1.044 1.024 1.099 

48 GDP_VMT 1.018 1.068 1.061 1.028 

46 PctRetEmp 0.982 1.034 1.022 0.992 

29 PctPrPvmt 0.974 1.007 0.984 0.980 

32 SpTms_Mcap 0.977 0.965 0.961 0.975 

27 PctOldYng 0.954 0.982 0.968 0.959 

21 PopLg 0.912 1.027 1.157 0.937 

6 FwyLM_KCmtr 0.830 1.230 1.206 0.909 

34 GWkr_UpNetMi 0.923 0.849 0.831 0.908 

11 Pers_SqMi 0.915 0.845 0.897 0.902 

20 PopMed 0.910 0.853 0.840 0.898 

39 GJobs_HH 0.886 0.880 0.868 0.885 

14 Empl_Cap 0.878 0.862 0.984 0.877 

36 GMedInc_HH 0.783 0.819 0.872 0.791 

10 Cmtr_SqMi 0.748 0.681 0.731 0.735 

38 GJobs_SqMi 0.704 0.793 0.782 0.722 

15 Pers_Rest 0.669 0.720 0.701 0.679 

2 Rep-Dem 0.663 0.597 0.703 0.652 

47 Pat_KWkrs 0.653 0.593 0.580 0.641 

45 PctGovtEmp 0.648 0.599 0.655 0.640 

33 GPop_NetMi 0.612 0.718 0.753 0.634 

5 FwyLM_NetLM 0.538 0.743 0.731 0.579 

12 Veh_HH 0.423 0.599 0.583 0.457 

37 GWkr_Cap 0.452 0.425 0.423 0.447 

1 PctPopCh 0.317 0.924 0.897 0.438 

4 FwyMi_SqMi 0.304 0.861 0.846 0.415 

24 GeoMW 0.321 0.601 0.605 0.377 

9 Links_Node 0.381 0.342 0.451 0.375 

3 NetMi_SqMi 0.310 0.620 0.606 0.372 

26 PctTrks 0.355 0.318 0.319 0.347 

30 Crashes_Kcap 0.222 0.422 0.598 0.265 

23 GeoS 0.070 0.889 0.872 0.233 

41 PctJobsJRDTcts 0.137 0.183 0.244 0.148 

16 Inflows_Wkr 0.056 0.357 0.392 0.117 

25 GeoW 0.086 0.109 0.435 0.097 

31 YrPrecipIn 0.065 0.063 0.274 0.069 
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5.3.3 Standardized Coefficients.  Table 19 provides an insight into the relative 

importance of the variables, but it is not complete. While variable importance deals with 

the development of the separate components, it does not address the questions of the size 

and direction of the effects on the dependent variable. These two questions can be 

answered by analyzing the standardized coefficients.  Standardized coefficients are a 

measure of the number of standard deviations the dependent variable will change with a 

one standard deviation change in the independent variable.  Regression coefficients are 

commonly in different units of measurement, which makes comparisons between the 

independent variables problematic. Coefficients are standardized so that the independent 

variables can be compared head-to-head to determine which has the greater effect.  It 

should be noted here that the VIP still retains importance.  Variables with low VIPs 

(below 0.8) are problematic, regardless of the size of the standardized coefficient, and 

“should not be taken in account in the analysis” (Jakobowicz 2014). 

 Table 20 shows the standardized coefficients for each of the congestion variables 

in the combined model and the average VIP (weighted by the component’s Q2 quality 

index).  These effects, “revealed” in the PLS regression analysis, are categorized in terms 

of size and direction based on the standardized coefficients.   The size of the revealed 

effects range from low to high: a high effect is assessed if the standardized coefficient is 

above 0.100; a low effect is assessed if the standardized coefficient is below 0.050; and a 

moderate effect assessed otherwise. (These cut-offs are determined after analyzing the 

standardized coefficient dataset together with the VIPs, and reflect a relative value more 

than an absolute one.)  The direction of the effect is either positive or negative, depending 

on the sign of the standardized coefficient, with a positive sign indicating a negative 
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effect on congestion (recall that increased congestion is a negative).  Since there are three 

dependent variables and thus three coefficients for each independent variable, there is a 

chance that the size and effect for all three will not be the same.  Indeed, for over half of 

the variables (28 of 50), this is the case.  This clearly suggests that the dimensions of 

congestion are linked to the characteristics of the urban areas in different ways.  The 

speed of population growth (PctPopCh), for example, seems to have a more negative 

association with the portion of the network that is congested (PortLMCong) than the TTI 

or the duration of the peak travel period.  As another example, the portion of the network 

that comprises freeways (FwyLM_NetLM) has a positive relationship with the extent of 

the congestion problem (PortLMCong), but a negative one with TTI and peak hour 

duration.  In these cases with discrepancies between the coefficients (17 for size and 13 

for direction, including two cases for both size and direction), the standardized 

coefficients are compared and an overall category assessed.  These “summarized” effects 

are indicated in bold.  Note that there are variables with high VIPs that have small 

standardized coefficients (e.g., GVeh_HH with a 1.309 VIP and standardized coefficients 

of 0.24, -0.17, and 0.24).  This suggests that a variable that is important in model 

development may not always have a large effect on model outcomes (and it is the size 

and direction of effect that are important in this analysis). Conversely, there are also 

variables with low VIPs (below 0.800) that have relatively large standardized 

coefficients.  As noted above, these low VIP variables should not be considered in the 

analysis and are shaded in the table below.   

 A comment on the dummy variables is warranted here.  Two of the dummies 

(PopSm and GeoNE) serve as the base cases for their groups (Pop and Geo), and hence 
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do not have standardized coefficients.  The other six dummies do have standardized 

coefficients which must be interpreted in relation to the base cases.  This leads to some 

interesting results. When compared to small cities and with all other things being equal, 

congestion levels are lower in midsize cities, much higher in large cities and higher in 

very large cities.  Moreover, these relationships hold for all dimensions of congestion.  

When compared to cities of the Northeast and with all other things being equal, 

congestion levels are higher in cities in the South and lower in cities in the Mid-west and 

West.  Unlike the city size variables, the relationship differs slightly across dimensions.  

While the direction of effect is the same, the relative improvements in congestion levels 

in midwestern and western cities vary.  The interpretation of dummy variables can be 

tricky at times, but worth the effort for the nuances they can uncover.   

 
Table 20: Standardized coefficients and revealed effects 

No. Variable 
VIP  

(Wtd Avg) 

Standardized Coefficients Revealed Effects 

TTI LMCong PkHrs Size Direction 

1 PctPopCh 0.438 0.024 0.070 0.026 Low Negative 

2 Rep-Dem 0.652 0.053 0.027 0.066 Low Negative 

3 NetMi_SqMi 0.372 -0.041 -0.060 -0.046 Mod Positive 

4 FwyMi_SqMi 0.415 -0.040 -0.083 -0.041 Mod Positive 

5 FwyLM_NetLM 0.579 0.006 -0.034 0.009 Low Positive 

6 FwyLM_KCmtr 0.909 -0.067 -0.114 -0.070 Mod Positive 

7 FwyArtMi_Cap 1.528 -0.092 -0.129 -0.097 High Positive 

8 DecBeforeNow 1.169 0.050 -0.008 0.061 Low Negative 
9 Links_Node 0.375 -0.001 0.011 -0.007 Low Negative 

10 Cmtr_SqMi 0.735 0.009 0.011 0.004 Low Negative 

11 Pers_SqMi 0.902 0.010 0.009 0.004 Low Negative 

12 Veh_HH 0.457 0.004 0.029 0.006 Low Negative 

13 Inc_Cap 1.403 0.072 0.020 0.086 Mod Negative 

14 Empl_Cap 0.877 0.053 -0.002 0.067 Low Negative 

15 Pers_Rest 0.679 -0.015 0.015 -0.018 Low Positive 
16 Inflows_Wkr 0.117 -0.007 -0.033 -0.004 Low Positive 

17 AvgCmtTime 1.984 0.113 0.116 0.125 High Negative 

18 PctSOV 1.269 -0.028 -0.017 -0.025 Low Positive 

19 VRM_SqMi 1.593 0.046 0.029 0.045 Low Negative 

20 PopSm       

21 PopMed 0.898 -0.041 -0.050 -0.042 Low Positive 
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No. Variable 
VIP  

(Wtd Avg) 

Standardized Coefficients Revealed Effects 

TTI LMCong PkHrs Size Direction 
22 PopLg 0.937 0.099 0.087 0.119 High Negative 

23 PopVLg 1.766 0.078 0.069 0.084 Mod Negative 

24 GeoNE       

25 GeoS 0.233 0.048 0.084 0.055 Mod Negative 

26 GeoMW 0.377 -0.027 -0.057 -0.026 Low Positive 

27 GeoW 0.097 -0.024 -0.006 -0.034 Low Positive 

28 PctTrks 0.347 -0.011 -0.011 -0.010 Low Positive 

29 PctOldYng 0.959 -0.071 -0.074 -0.080 Mod Positive 

30 Nodes_UpNetMi 1.134 0.067 0.051 0.076 Mod Negative 

31 PctPrPvmt 0.980 0.014 -0.016 0.013 Low Negative 
32 Crashes_Kcap 0.265 0.031 0.029 0.042 Low Negative 

33 YrPrecipIn 0.069 0.019 0.005 0.026 Low Negative 

34 SpTms_Mcap 0.975 -0.047 -0.066 -0.047 Mod Positive 

35 GPop_NetMi 0.634 -0.010 -0.025 -0.016 Low Positive 

36 GWkr_UpNetMi 0.908 0.053 0.046 0.060 Mod Negative 

37 GVeh_HH 1.309 0.024 -0.017 0.024 Low Negative 

38 GMedInc_HH 0.791 0.036 -0.013 0.047 Low Negative 
39 GWkr_Cap 0.447 0.020 0.025 0.020 Low Negative 

40 GJobs_SqMi 0.722 0.018 -0.021 0.022 Low Negative 
41 GJobs_HH 0.885 0.013 -0.008 0.011 Low Negative 
42 GJobs_Wkr 1.254 0.040 0.021 0.041 Low Negative 

43 PctJobsJRDTcts 0.148 -0.002 -0.016 0.001 Low Positive 
44 PctPopJPTcts 1.099 0.052 0.062 0.054 Mod Negative 

45 LeePoly 1.342 0.059 0.048 0.063 Mod Negative 

46 Med_Mult 1.221 0.041 0.023 0.043 Low Negative 

47 PctGovtEmp 0.640 -0.051 -0.034 -0.062 Mod Positive 

48 PctRetEmp 0.992 -0.030 0.018 -0.037 Low Positive 
49 Pat_KWkrs 0.641 0.028 0.012 0.032 Low Negative 

50 GDP_VMT 1.028 0.008 -0.020 0.004 Low Positive 
51 UASqMi 1.949 0.105 0.086 0.117 High Negative 

52 UAPop-K  1.924 0.086 0.067 0.093 Mod Negative 
Bold text indicates summarized effects. 
Shaded cells indicate low VIPs. 

 
5.3.4  Revealed Effects versus Expected Effects.  Table 21 shows these revealed effects 

are compared to the expected effects noted in the variable tables in Chapter 4.  The 

discrepancies between the expected and revealed effects are indicated in bold and 

variables with low VIPs (below 0.800) are shaded.  As noted above, these variables are 

problematic and any discrepancies in effects are suspect.  Note that the two dummy 

variables that serve as the base cases (PopSm and GeoNE) do not have individual 
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revealed effects, which would be determined in relationship to the other dummies in the 

group and within the model as a whole.  (Recall again that increased congestion is a 

negative effect.) 

 
Table 21: Expected effects compared to revealed effects 

No. Variable Focus 

Expected Effects Revealed Effects 

Size Direction Size Direction 
1 PctPopCh Supply High Negative Low Negative 

2 Rep-Dem Supply Low Negative Low Negative 

3 NetMi_SqMi Supply Mod Positive Mod Positive 

4 FwyMi_SqMi Supply Mod Positive Mod Positive 

5 FwyLM_NetLM Supply Mod Positive Low Positive 

6 FwyLM_KCmtr Supply High Positive Mod Positive 

7 FwyArtMi_Cap Supply Mod Positive High Positive 

8 DecBeforeNow Supply Low Negative Low Negative 

9 Links_Node Supply Mod Positive Low Negative 

10 Cmtr_SqMi Demand Mod Negative Low Negative 

11 Pers_SqMi Demand Mod Negative Low Negative 

12 Veh_HH Demand Mod Negative Low Negative 

13 Inc_Cap Demand Mod Negative Mod Negative 

14 Empl_Cap Demand Mod Negative Low Negative 

15 Pers_Rest Demand Mod Positive Low Positive 

16 Inflows_Wkr Demand Low Negative Low Positive 

17 AvgCmtTime Demand Mod Negative High Negative 

18 PctSOV Demand Low Negative Low Positive 
19 VRM_SqMi Demand Low Positive Low Negative 

20 PopSm Demand Mod Negative   
21 PopMed Demand Mod Negative Low Positive 

22 PopLg Demand Mod Negative High Negative 

23 PopVLg Demand Mod Negative Mod Negative 

24 GeoNE Demand Low Unknown   
25 GeoS Demand Low Unknown Mod Negative 
26 GeoMW Demand Low Unknown Low Positive 

27 GeoW Demand Low Unknown Low Positive 
28 PctTrks Flow Mod Negative Low Positive 

29 PctOldYng Flow Low Negative Mod Positive 
30 Nodes_UpNetMi Flow Mod Negative Mod Negative 

31 PctPrPvmt Flow Low Negative Low Negative 

32 Crashes_Kcap Flow Low Negative Low Negative 

33 YrPrecipIn Flow Low Negative Low Negative 

34 SpTms_Mcap Flow Low Negative Mod Positive 
35 GPop_NetMi Spread Low Negative Low Positive 

36 GWkr_UpNetMi Spread Low Negative Mod Negative 

37 GVeh_HH Spread Low Negative Low Negative 

38 GMedInc_HH Spread Low Negative Low Negative 
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No. Variable Focus 

Expected Effects Revealed Effects 

Size Direction Size Direction 
39 GWkr_Cap Spread Low Negative Low Negative 

40 GJobs_SqMi Spread Mod Negative Low Negative 

41 GJobs_HH Spread Mod Negative Low Negative 

42 GJobs_Wkr Spread Mod Negative Low Negative 

43 PctJobsJRDTcts Other Mod Negative Low Positive 
44 PctPopJPTcts Other Mod Negative Mod Negative 

45 LeePoly Other Mod Positive Mod Negative 
46 Med_Mult Other Mod Negative Low Negative 

47 PctGovtEmp Other Low Negative Mod Positive 

48 PctRetEmp Other Low Positive Low Positive 

49 Pat_KWkrs Other Low Positive Low Negative 

50 GDP_VMT Other Mod Negative Low Positive 
51 UASqMi Other Mod Negative High Negative 

52 UAPop-K  Other Mod Negative Mod Negative 
Bold text indicates discrepancies between expected and revealed effects. 
Shaded cells indicate low VIPs. 

 

 While the sizes of the effects are often estimated incorrectly (for 26 of the 50 

variables), the errors are small in all cases but one, going up or down by one gradation 

(e.g., low to moderate or high to moderate).  This is likely because of the uncertainty of 

the borders between low, moderate and high, or perhaps simply in the interpretation of 

what is considered low, moderate and high.  Either way, for these cases, it is likely of 

little concern. In one case, however, the error is two gradations: the change in population 

is expected to have a large impact, when the impact is revealed to be small.  While the 

direction of the effect is as expected (faster growth linked to higher congestion levels), 

the size of the effect suggests that the rate of city growth is not a big player in the 

congestion problem.  Moreover, as the VIP is low, then confidence in this variable as a 

player is of concern.  

 More problematic are the discrepancies with the direction of the effects.  In 14 

cases, the direction of the effect is opposite of that expected, and in three other cases, the 

expected direction of the effect is unknown (i.e., is not estimated in Chapter 4 above).  In 
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most of these cases (12 of 17), the revealed effect on congestion is positive, when the 

expected effect is negative or unknown; in the other five cases, it is the opposite.  For 

example, one might expect that a larger relative transit network (VRM_SqMi) would 

have a positive impact on congestion (congestion would decrease); instead, the effect is 

revealed to be negative.  This could indicate the effects of an unidentified variable, or an 

insufficient reaction-type problem (i.e., the larger relative transit systems arose in 

response to increasing congestion but not quite enough, which may require a time-lag 

analysis to delineate).  Alternatively, the estimates of both the size and the direction of 

the effects could simply be poor estimates, although I think there is a sound case for the 

estimates made.  (It could also be that the revealed effect is accurate and that the net 

impact of transit on congestion is negative.  Transit may not remove enough cars from the 

network to offset the contribution to congestion of large, plodding buses with their many 

stops, a possibility that might be better studied in a micro-analysis.) Regardless, the 

revealed effects are important in understanding the relationships between the selected 

urban characteristics and congestion so these conflicts need some discussion.  It is 

important to note that ten of the 17 discrepancies in direction are for variables with low 

VIPs.  These ten are included in the discussion, even though the discrepancy is suspect. 

 The twelve “negative, but positive” or “unknown, but positive” cases are in order 

of size of effect, high to low: PctOldYng, SpTms_Mcap, PctSOV, PopMed, GDP_VMT, 

and seven low VIP variables (PctGovtEmp, Inflows_Wkr, GeoMW, GeoW, PctTrks, 

GPop_NetMi, and PctJobsJRDTcts).  

• PctOldYng – the percentage of the population that is either old or young is an 

attempt to address the “driving while distracted” set, with the idea that older and 
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younger drivers are more likely to be part of this set.  Since drivers’ ages are not 

available for each urban area, population ages are used, with the assumption that 

the percentages of drivers in each age group are uniform across the nation.  If this 

is true, then reasonably, more distracted drivers are linked with worse congestion.  

The revealed effect is the opposite, so either the assumption is invalid or other 

mitigating variables are at play. In urban areas with abundant alternative 

transportation modes, many old-young people may choose to use these modes in 

lieu of driving.  In such instances, a larger percentage of the old-young could 

actually translate to fewer drivers.  Instead of more distracted drivers having a 

negative effect on congestion, fewer drivers have a positive effect.  

• SpTms_Mcap – this variable is a surrogate for the special events that disrupt 

traffic flows, with more special events having a negative impact on congestion.  

The revealed effect, however, is positive; more sports teams per capita are linked 

to lower congestion.  How can this be?  A review of the rank-ordered data 

indicates that the higher values for this measure are for the mid-size and even 

some of the smaller cities.  (For example, Boulder is the smallest city, but has the 

fifth largest SpTms_Mcap value.)  This is because the larger number of sports 

teams in the larger cities is more than offset by the increased population in these 

cities.  So this variable actually points to urban areas with less of a congestion 

problem than can perhaps more readily absorb the increased traffic woes 

associated with special events.  Clearly, this surrogate is not up to the task of 

capturing the degree of disruption in traffic flows from special events; better data 

are required.  It may be, however, that even with better data, the effect would be 
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unclear. The number of special events may be a manifestation of city size and 

population and their disruptive effects may be a wash. 

• PctSOV – in popular culture, the large percentage of drivers commuting in SOVs 

seems to be the “poster child” for urban area congestion problems.  Much has 

been written about the negative effects of so many SOV drivers and the need to 

reduce their number.  It seems reasonable, then, that a larger percentage of SOV 

drivers would be linked to worse congestion.  Instead, this assessment shows the 

opposite.  This totally counter-intuitive result is likely a chicken-and-egg type 

problem.  People may drive SOVs in large numbers where there are fewer 

alternative modes and where traffic flows smoothly enough so that there are fewer 

penalties for using SOVs.  Indeed, rank ordering the PctSOV shows that the larger 

cities are clustered together at the bottom of the list. Perhaps, smaller percentages 

of SOVs are a reaction to congestion rather than a factor of it.   

• PopMed – the UMR population groupings, as a whole, are expected to have a 

moderate, negative effect on congestion; i.e., as city populations increase, 

congestion worsens.  When the groupings are broken out into four dummy 

variables, however, the collective effect must also be broken out into expected 

effects for the four groups.  The average data from Table 5 above show that, in 

general, the smaller cities have less congestion in all dimensions than the larger 

cities, with congestion in large and very large urban areas being the most 

problematic.  The PLS regression results show that mid-size city congestion is 

only slightly worse than that in the small cities, which suggests that a better 

expected effect for small and medium cities would be positive; the expected effect 
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for large and very large cities would remain negative.  This positive effect for 

mid-size cities is what the results revealed.  

• GDP_VMT – real GDP per VMT is expected to have a negative effect on 

congestion; as it increases, congestion increases as well.  This is the effect for two 

of the three congestion dimensions (intensity and duration), but the effect is very 

low, with both standardized coefficients falling below 0.01.  The effect on 

congestion extent, however, is positive and this effect, while still low, is an order 

of magnitude larger at -0.20 (which explains the overall positive effect assessed).  

Greater GDP per VMT, therefore, is linked to a smaller portion of lane-miles that 

are congested, a counterintuitive finding.  Perhaps, here, the total wealth of the 

urban area, while being linked with more intense and longer duration travel, can 

also serve to provide funds to tackle some of the problem areas in the network, 

thereby reducing the extent of the problem. 

• PctGovtEmp – with government employees predicted to work more regular jobs 

and thus contribute more to the peak hour rush, a negative impact on congestion is 

expected.  Instead, as the percentage of government workers increases, congestion 

decreases.  Perhaps government workers do not work more regular hours.  Indeed, 

at the local level, the sheriff’s department and the school system are often the 

largest government departments and workers in these fields often work outside 

the “normal” 9-to-5 day. Regardless, the VIP for this variable is low, so these 

effects are problematic. 

• Inflows_Wkr – the net inflows of workers from outside the urban area relative to 

those already in the urban area would logically have a negative effect on 
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congestion with a greater relative in-flow being linked with worse congestion.  

The data reveal the opposite, although with a low VIP, the results are suspect.  

Since the relative inflow is a ratio variable (net in-commuters to total workers), it 

may be that it is easier to have a high value in smaller urban areas.  In the larger 

areas; the inflow numbers in the numerators are simply overpowered by the total 

worker numbers in the denominators. 

• GeoMW and GeoW – there is a question of the impact of culture (and in 

particular, planning culture) on congestion and the dummy variables representing 

the four Census regions of the country (Northeast, South, Mid-west, and West) try 

to address it.  For each variable the effect is unknown and any results are new 

information.  In the analysis, the Northeast region dummy variable is the base 

case (i.e., is excluded from the model to prevent perfect collinearity) and the 

results must be interpreted with this in mind, which can be tricky and less 

straightforward than the population dummy variables.  Here, the results suggest 

that relative to the Northeast, being in the South is linked with worse congestion 

in all dimensions, while being in the Mid-west or West is linked with lower 

congestion in all dimensions.  This does not fully jibe with the Census region 

averages in Table 6, but those averages do not consider the interactions among the 

variables that are included in the PLS regression results.  As the VIP is very low, 

however, confidence in this new information is also low. 

• PctTrks – most people would probably agree that a larger percentage of trucks on 

the freeways would be associated with higher congestion (a negative effect), but 

the PLS regression results reveal that the effect is positive.  These effects are quite 
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small, however, (the standardized coefficients are -0.011, -0.011, and -0.010), and 

the VIP for this variable is low, so these effects are suspect.  Still, further research 

using a larger sample might better tease out the effects of trucks on urban 

congestion. 

• GPop_NetMi – a higher Gini coefficient of population per network mile means a 

less equitable distribution of network mileage across all census tracts in the urban 

area, which is expected to lead to worse congestion.  So as the Gini coefficient 

increases, congestion is expected to increase also.  Surprisingly, it decreases. 

While the standardized coefficients range between -0.010 and 0.025 and the 

effects are quite small, they are nonetheless positive.  A review of the rank-

ordered values of this variable reveals no clear pattern in the data; cities with 

known high TTIs are scattered throughout the list.  It could be that people have 

adapted to the network they have, or the network has responded to the demands of 

the people and the people are not uniformly demanding network access.  It could 

also be that uniform access to the network is not a good measure of congestion for 

these same reasons.  Regardless, the VIP is low, so these effects are somewhat 

questionable. 

• PctJobsJRDTcts – the percentage of jobs in job-dense, job-rich Census tracts is a 

measure of centrality, with the idea that higher levels of centrality are associated 

with higher levels of congestion.  The PLS regression results show that this is true 

only for congestion duration and even that effect is extremely small (the 

standardized coefficient is 0.001) The revealed effects for intensity and extent are 

positive, although they are also very small (standardized coefficients of -0.002 
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and -0.016, respectively).  It could be that this variable does not fully capture the 

notion of centrality.  It could also be that the low VIP makes the results 

questionable at best. 

 The five “positive, but negative” or “unknown, but negative” cases are again in 

order of size of effect, high to low: LeePoly, VRM_SqMi, and three low VIP variables 

(GeoS, Links_Node, and Pat_KWkrs). 

• LeePoly – a higher level of poly-centricity might reasonably be linked to less 

congestion, with the idea that more centers of employment in an urban area allow 

more of the network to be utilized in the commute.  This does assume that 

households have made location decisions based on employment center proximity, 

which may not always be the case, especially in two-worker households or when 

school quality does not mesh with network access. This also assumes that the 

network is uniform in its support of all employment centers, and since the results 

seem to say that increased poly-centricity is linked to worse congestion, this 

assumption may not always be valid.  It may be that the transportation networks 

supporting the newer nuclei in the urban region are unable to handle the 

commuter loads that can often arise quite rapidly.  A more micro-analysis would 

be needed to determine if this were the case.   

• VRM_SqMi – the density of transit service has a low, negative effect on 

congestion – the higher the density the worse the congestion, which is somewhat 

counterintuitive.  One might reasonably think that more widespread transit service 

would alleviate traffic flows, but if increases in transit service lagged the 

increases in privately owned vehicles (POVs), then this variable could be a 
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marker for increased congestion.  It might also be that increased transit traffic 

might interrupt traffic flows to a greater extent than it removes POVs from the 

network.  Another possibility is that any increases in transit coverage are a direct 

response to increased congestion, so more coverage would be linked to worse 

congestion.  It could also be that different types of transit are correlated with 

congestion in different ways.  For example, rail cars and buses with dedicated 

guideways may be linked with congestion much more differently than transit that 

uses the street network. Since the VRM_SqMi includes all types of transit, these 

impacts may be offsetting and contributing to the unexpected effect.  

• GeoS – like the GeoMW and GeoW variables in the “negative, but positive” 

paragraph above, the expected effect for this variable is unknown, so the results 

are new information more than a contradiction of an expected effect.  Also like 

the other two dummy variables, the results for GeoS must be interpreted given the 

GeoNE dummy variable as the base case.  Here it seems that relative to the 

Northeast, being in the South is linked with worse congestion in all dimensions.  

The VIP is low, however, so the results may not be correct. 

• Links_Node – it is expected that increased connectivity is linked with lower 

congestion levels; the more routes one has to a destination, the more one can 

avoid traffic.  This assumes, as do many of the rational actor models, that 

information is perfect an all congested areas are known as are all alternative 

routes around the congested areas.  This is clearly not the case – we all have run 

into unexpected congestion with no idea how to get around it.  The effect here is 
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extremely small (standardized coefficients range from -0.001 to 0.011 and the 

VIP is low) so the results are problematic. 

• Pat_KWkrs – it is theorized that a creative workforce, as measured by patents per 

thousand workers, might be “good for congestion,” but its revealed impact is 

negative.  This might be an indicator that “creative” people are not that different 

from “normal” people, and the measure of patents is another measure of urban 

area vitality, with the idea that urban areas with higher levels of vitality or energy 

have higher congestion levels.  Regardless, the VIP is low, so the results are 

suspect.  

5.3.5  Most Important Variables as Determined by PLS Regression Results.  The top ten 

variables in terms of size of effect as measured by the size of the standardized 

coefficients are shown in Table 22.  Seven of these are common to all congestion 

dimensions (AvgCmtTime, UASqMi, PopVLg, PopLg, FwyArtMi_Cap, 

FwyLM_KCmtr, and PctOldYng) and three of these deal with urban area size (UASqMi, 

PopVLg, and PopLg).  The presence of the size variables is not that all surprising given 

the population group averages in Table 5 and the Pearson correlations in Table 14.  Their 

continued presence in a multivariate assessment does, however, suggest that size seems to 

matter greatly, at least as far as congestion is concerned.  It may be that large cities can 

really do little to eliminate congestion, but instead just have to adapt to it. 

 
Table 22: Top ten standardized coefficients by congestion variable 

TTI Rank S.C. PortLMCong Rank S.C. PkHrs Rank S.C. 
AvgCmtTime* 1 0.113 FwyArtMi_Cap* 1 -0.129 AvgCmtTime* 1 0.125 

UASqMi* 2 0.105 AvgCmtTime* 2 0.116 PopLg* 2 0.119 

PopLg* 3 0.099 FwyLM_KCmtr* 3 -0.114 UASqMi* 3 0.117 

FwyArtMi_Cap* 4 -0.092 PopLg* 4 0.087 FwyArtMi_Cap* 4 -0.097 

UAPop-K 5 0.086 UASqMi* 5 0.086 UAPop-K 5 0.093 

PopVLg* 6 0.078 GeoS 6 0.084 Inc_Cap 6 0.086 
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TTI Rank S.C. PortLMCong Rank S.C. PkHrs Rank S.C. 

Inc_Cap 7 0.072 FwyMi_SqMi 7 -0.083 PopVLg* 7 0.084 

PctOldYng* 8 -0.071 PctOldYng* 8 -0.074 PctOldYng* 8 -0.080 

FwyLM_KCmtr* 9 -0.067 PctPopCh 9 0.070 Nodes_UpNetMi 9 0.076 

Nodes_UpNetMi 10 0.067 PopVLg* 10 0.069 FwyLM_KCmtr* 10 -0.070 
* Variable is in the top ten for all three dependent variables. 

 
 Of the other four in the top ten that are common to all dimensions, three seem 

reasonably self-evident: a measure of travel time (AvgCmtTime) has a negative effect on 

congestion (as it increases congestion gets worse), while two measures of network supply 

(FwyArtMi_Cap and FwyLM_KCmtr) have a positive effect (as they increase, 

congestion improves).  The final member of the “common seven” is unexpected.  

PctOldYng has an effect on congestion that is surprising both in direction (revealed 

positive versus expected negative, as discussed above) and in size (revealed moderate 

versus expected low). 

 There are three variables in the top ten that are common to two of the dimensions 

of congestion: UAPop-K, Inc_Cap, and Nodes_UpNetMi are common to both TTI and 

PkHrs.  In other words, the dimensions of intensity and duration have the same variables 

in the top ten, although not in the same order. The revealed effects for each are as 

expected.  The dimension of extent has three different variables in its top ten: 

FwyMi_SqMi has a negative association with congestion and GeoS and PctPopCh have a 

positive one.  The size and direction of the effects for the geographic dummy variable, 

GeoS, are discussed above as is the unexpected size of effect from PctPopCh (revealed to 

be low but expected to be high).  

 The remaining variables in the data set, those which have not been discussed in 

this section, generally have revealed results that were as expected and follow the ideas 

laid out in variable development.  Most were low in importance and/or small in the size 
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of their effect and are not likely to be important players in congestion analysis and 

remediation, at least not according to the PLS results.  These results do, however, assume 

a linear relationship between the components and the congestion variables.  Is this 

assumption valid? 

5.4 The Linearity Assumption  

 A review of the binary scatter plots shows no obvious non-linear relationships 

between the independent and the dependent variables, so the relationship is presumed to 

be linear.  An analysis of the residuals in the PLS regression also does not suggest that 

these relationships are anything but linear.  There are, however, two concerns here; the 

former presumes linearity unless non-linearity is clear and the latter reflects relationships 

between the dependent variables and the components and not the independent variables 

themselves.  There is other evidence that suggests that at least some variables have a non-

linear relationship with congestion.  For example, the freeway speed-flow curves (Figure 

4) from the 2010 Highway Capacity Manual (TRB 2010), which show the relationship 

between the levels of service, the speed and the flow rate.  These curves indicate that 

speeds are largely unaffected by traffic volumes until volumes begin to reach facility 

capacity, at which time speeds begin to fall off with increasing rapidity.  This would 

seem to have implications for other variables as well.  It does not seem coincidental that 

urban area size measures figure so prominently in the most influential variables.  Perhaps 

a non-linear relationship is at play.   
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Source: 2010 Highway Capacity Manual  
Notes: LOS = level of service; pc = passenger car; ln = lane 
 
Figure 4: Freeway speed-flow curves 
 

 One way to get around this linearity issue is to use an analytical method that does 

not assume a linear (or non-linear) relationship between the dependent and independent 

variables, but instead, considers the variables as they are.  Decision tree methodologies 

do just this.  

5.5  Chi-square Automatic Interaction Detection (CHAID) Analysis Results   

 A decision tree analysis allows the uncovering of the key independent variables 

by analyzing the splits that occur as the tree is grown.  There are at least two ways of 

assessing the significance of these splits: by a variable’s use as a “splitting” variable, 

together with the portion of the observations that it is used to split, and by the order of a 

variable’s use in a first splitting operation, that is, the order in a stepwise reduction 
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process in which the variables are used to begin tree growth.  (This will be explained 

more fully below.)   

 In general, the earlier a variable is used in the splitting process, the larger the 

portion of observations involved and the more important the variable is in the growth of 

the tree (Shmueli, Patel and Bruce 2007).  This is not always true, of course, especially as 

the tree grows deeper.  This “whole tree” approach, which is the primary purpose of a 

CHAID analysis, allows the development of good predictive models, and also furthers the 

understanding of which variables are important on the various branches of the tree; it 

generally considers variable importance in the context of the whole tree.  

 There is, however, an alternative to the whole tree perspective; a decision tree 

analysis also allows the assessment of variable importance at the first split.  This is 

important because the first split is the only split that considers all the observations for the 

dependent variable.  In subsequent splitting operations as the tree grows “deeper,” ever 

smaller subsets of the total observations are considered in each split.  While it may be 

that variable x is useful in splitting small urban areas with a high GDP per VMT and 

located in the Mid-west, it may not be useful at all in splitting all urban areas, regardless 

of characteristic. To consider just the first split, a stepwise approach to tree growth is 

used.  In this iterative process, the decision tree is grown and the first splitting variable is 

identified and then eliminated from the variable set.  A second decision tree is then grown 

from the reduced variable set and so on until all variables have been used in a first split.  

The order in which the variables are used in a first split and then eliminated from the 

variable set is an indicator of their importance.  This process has the added benefit of 
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allowing the relationships between the dependent and independent variables to be 

graphed and reviewed for indications of non-linearity.  

5.5.1  Tree Structure and Variable Importance.  A CHAID analysis is completed for each 

of the three dependent congestion variables, with a focus on identifying the splitting 

variables.  (Unlike PLS regression, CHAID does not allow all three dependent variables 

to be considered together in one model so that their interrelationships would be included 

in the model results.  Instead, the dependent variables are considered separately.)  The 

XLSTAT default values are used, which include a maximum tree depth of six tiers, a 

significance level of five percent, and merge and split levels of five percent each.  These 

default values seem reasonable: the tree depth seems to be appropriate given a sample 

size of 100 cities (more tiers would mean more smaller branches, each with increasingly 

less meaning) and the significance levels are widely used research parameters.  Once 

completed, the independent variables and the number of cases (i.e., urban areas) involved 

in each split are identified and the splitting variables are rank ordered to determine their 

importance in the model.  There are several instances where an independent variable is 

used more than once in the splitting operations.  In some, this involved a split along the 

same branch; in others, the split is on a different branch.  In both situations, the numbers 

of cases are added in the variable importance calculations.  

 The tree structures for each of the three models are shown in Figures 5-7 below.  

Each node has a number assigned by the software and includes four data items: the 

splitting variable, the range of values for the splitting variable, the percent of cases 

included in the split, and the predicted value of the dependent variable.  (Note that since 
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there are 100 cases, the percentage of cases is the same as the number of cases.) Terminal 

nodes are shaded. 

 The tree structure for the TTI model includes 39 nodes, 19 of which are terminal.  

There are 19 splitting operations involving 16 different independent variables.  There are 

36 nodes in the tree structure for the PortLMCong model with 19 of these being terminal.  

Sixteen different independent variables are used in 17 splitting operations.  The PkHrs 

model has 21 terminal and 40 total nodes.  There are 19 splitting operations involving 14 

different independent variables.   

 The tree structure is relatively easy to understand.  As an example, in the TTI 

model, the variable GDP_VMT allows the best split based on the splitting criteria noted 

above.  The tree (Node 1) is split into two branches, one (Node 2) with 14% of the cases 

(observations), which have GDP_VMT values between 2.033 and 7.712, and one (Node 

3) with 84% of the cases, which have GDP_VMT values between 7.712 and 14.524.  The 

predicted TTI in the former is 1.166 and in the latter, 1.204.  Considering only these two 

branches, as GDP_VMT increases, TTI also increases.  Each node can be so analyzed to 

determine how the splitting variable behaves on the branches off that node.  If only two 

branches are grown from a node, then the “revealed” relationship must be linear; if more 

than two are grown, then non-linear relationships may be revealed.  In the next tier, two 

splits are performed using two different variables.  For urban areas with smaller 

GDP_VMT, the splitting variable is GMedInc_HH; for urban areas with larger 

GDP_VMT, the splitting variable is PopMed.  For the former, a spread variable yields the 

best split while in the latter, it is a population dummy variable.  At different points in tree 

development, then, variables that are not useful anywhere else may well come to the fore.
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         35      39 
         PctPopCh      UASqMi 
      7   [21.045, 58.904[      [923.055, 3450.2[ 
      PopMed   Cases: 3%      Cases: 3% 
      [0.5, 1[   Pred TTI: 1.087   37   Pred TTI: 1.307 
      Cases: 4%   34   DecBeforeNow    
      Pred TTI: 1.133   PctPopCh   [6, 21[   38 
   3      [16.375, 21.045[   Cases: 7%   UASqMi 
   GDP_VMT      Cases: 1%   Pred TTI: 1.266   [251.39, 923.055[ 
   [7.712, 14.524[      Pred TTI: 1.270   36   Cases: 4% 
   Cases: 14%         DecBeforeNow   Pred TTI: 1.235 
   Pred TTI: 1.204      33   [3, 6[    
         GeoMW   Cases: 2%    
         [0.5, 1[   Pred TTI: 1.180    
         Cases: 1%      31 
      6   Pred TTI: 1.110      AvgCmtTime 
      PopMed         [22.35, 25.5[ 
      [0, 0.5[   32      Cases: 3% 
      Cases: 10%   GeoMW   25   Pred TTI: 1.190 
      Pred TTI: 1.233   [0, 0.5[   FwyArtMi_Cap   30 
         Cases: 9%   [667.203, 1303.471[   AvgCmtTime 
         Pred TTI: 1.247   Cases: 2%   [19.1, 22.35[ 
         11   Pred TTI: 1.095   Cases: 4% 
         PctSOV   24   Pred TTI: 1.133 
1         [82.839, 87.23[   FwyArtMi_Cap   29 
All      5   Cases: 9%   [1303.471, 1626.998[   PopVLg 
Cases: 100%      GMedInc_HH   Pred TTI: 1.143   Cases: 7%   [0.5, 1[ 
Pred TTI: 1.171      [0.246, 0.303[      Pred TTI: 1.157   Cases: 5% 
      Cases: 31%         Pred TTI: 1.278 
      Pred TTI: 1.183      23   28 
            Nodes_UpNetMi   PopVLg 
            [7.774, 8.691[   [0, 0.5[ 
            Cases: 8%   Cases: 3% 
            Pred TTI: 1.240   Pred TTI: 1.177 
         10      27 
         PctSOV      PopMed 
         [69.749, 82.839[   22   [0.5, 1[ 
         Cases: 22%   Nodes_UpNetMi   Cases: 4% 
         Pred TTI: 1.200   [5.883, 7.774[   Pred TTI: 1.125 
   2         Cases: 14%    
   GDP_VMT         Pred TTI: 1.176   26 
   [2.033, 7.712[            PopMed 
   Cases: 86%         15   [0, 0.5[ 
   Pred TTI: 1.166         FwyLM_NetLM   Cases: 10% 
            [0.125, 0.167[   Pred TTI: 1.197 
         9   Cases: 2%    
         GJobs_HH   Pred TTI: 1.270   21 
         [0.714, 0.892[      AvgCmtTime 
         Cases: 12%      [27.35, 28[ 
         Pred TTI: 1.185   14   Cases:1% 
            FwyLM_NetLM   Pred TTI: 1.250 
            [0.044, 0.125[    
            Cases: 10%   20 
            Pred TTI: 1.168   AvgCmtTime 
               [20.6, 27.35[ 
               Cases: 9% 
               Pred TTI: 1.159 
               19 
      4         AvgCmtTime 
      GMedInc_HH         [22.8, 31.3[ 
      [0.164, 0.246[      13   Cases: 8% 
      Cases: 55%      PctPopJPTcts   Pred TTI: 1.191 
      Pred TTI: 1.156      [49.057, 55.279[   18 
            Cases: 13%   AvgCmtTime 
            Pred TTI: 1.172   [19.6, 22.8[ 
         8      Cases: 5% 
         GJobs_HH      Pred TTI: 1.140 
         [0.442, 0.714[      17 
         Cases: 43%      GeoW 
         Pred TTI: 1.148      [0.5, 1[ 
               Cases: 6% 
               Pred TTI: 1.100 
            12   16 
            PctPopJPTcts   GeoW 
            [31.707, 49.057[   [0, 0.5[ 
            Cases: 30%   Cases: 24% 
            Pred TTI: 1.137   Pred TTI: 1.147 

 
Figure 5: CHAID tree structure for the congestion intensity (TTI) model 
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          30   34    
         GJobs_HH   Pers_Rest    
      7   [0.703, 0.838[   [691.466, 712.921[   36 
      AvgCmtTime   Cases: 8%   Cases: 1%   FwyMi_SqMi 
      [23.1, 35.2[   Pred LMC: 0.574   Pred LMC: 0.800   [0.359, 0.501[ 
      Cases: 12%      33   Cases: 5% 
      Pred LMC: 0.510      Pers_Rest   Pred LMC: 0.582 
   3      29   [541.952, 691.466[    
   Pers_SqMi      GJobs_HH   Cases: 7%    
   [3775.291, 8681.536[      [0.545, 0.703[   Pred LMC: 0.541   35 
   Cases: 17%      Cases: 4%   32   FwyMi_SqMi 
   Pred LMC: 0.461      Pred LMC: 0.383   Rep-Dem   [0.266, 0.359[ 
            [0.5, 1[   Cases: 2% 
         28   Cases: 1%   Pred LMC: 0.440 
         PctPopCh   Pred LMC: 0.600    
      6   [15.264, 58.904[   31    
      AvgCmtTime   Cases: 4%   Rep-Dem    
      [20.5, 23.1[   Pred LMC: 0.373   [0, 0.5[   26 
      Cases: 5%      Cases: 3%   FwyLM_KCmtr 
      Pred LMC: 0.342   27   Pred LMC: 0.310   1.295, 1.486[ 
         PctPopCh      Cases: 2% 
         [11.111, 15.264[   22   Pred LMC: 0.395 
         Cases: 1%   Inc_Cap    
         Pred LMC: 0.220   [30467, 46808[    
1            Cases: 5%   25 
All      5   12   Pred LMC: 0.516   FwyLM_KCmtr 
Cases: 100%      Nodes_UpNetMi   UAPop-K      [1.088, 1.295[ 
Pred LMC:       [7.741, 10.326[   [6974, 8583[      Cases: 3% 
    0.394      Cases: 24%   Cases: 1%      Pred LMC: 0.597 
      Pred LMC: 0.428   Pred LMC: 0.700       
         11   21   24 
         UAPop-K   Inc_Cap   LeePoly 
         [230, 6974[   [14239, 30467[   [34.2, 81.1[ 
         Cases: 23%   Cases: 18%   Cases: 8% 
         Pred LMC: 0.417   Pred LMC: 0.389   Pred LMC: 0.450 
               23 
               LeePoly 
            14   [0, 34.2[ 
            PopMed   Cases: 10% 
   2      10   [0.5, 1[   Pred LMC: 0.340 
   Pers_SqMi      PctPopCh   Cases: 2%    
   [1150.291, 3775.291[      [27.928, 52.459[   Pred LMC: 0.380    
   Cases: 83%      Cases: 8%   13   20 
   Pred LMC: 0.380      Pred LMC: 0.451   PopMed   Links_Node 
            [0, 0.5[   [1.285, 1.291[ 
            Cases: 6%   Cases: 1% 
            Pred LMC: 0.475   Pred LMC: 0.390 
                
               19 
               Links_Node 
               [1.156, 1.285[ 
               Cases: 5% 
         9      Pred LMC: 0.492 
         PctPopCh       
         [26.668, 27.928[       
         Cases: 3%       
         Pred LMC: 0.527       
                
      4          
      Nodes_UpNetMi          
      [4.871, 7.741[      16    
      Cases: 59%      VRM_SqMi    
      Pred LMC: 0.361      [71021.19, 114675.06[    
            Cases: 4%    
            Pred LMC: 0.465    
         8       
         PctPopCh       
         [-5.495, 26.668[      18 
         Cases: 48%      GWkr_Cap 
         Pred LMC: 0.335      [0.112, 0.156[ 
               Cases: 11% 
               Pred LMC: 0.254 
            15   17 
            VRM_SqMi   GWkr_Cap 
            [0, 71021.194[   [0.063, 0.112[ 
            Cases: 44%   Cases: 33% 
            Pred LMC: 0.324   Pred LMC: 0.347 

 
Figure 6: CHAID tree structure for the congestion extent (PortLMCong) model 
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            34   40 
            FwyArtMi_Cap   GWkr_Cap 
         23   [1034.293, 1211.86[   [0.109, 0.146[ 
         GVeh_HH   Cases: 1%   Cases: 5% 
         [0.162, 0.21[   Pred PkHrs: 2.50   Pred PkHrs: 4.55 
         Cases: 9%   33   39 
         Pred PkHrs: 4.81   FwyArtMi_Cap   GWkr_Cap 
      7      [287.889, 1034.293[   [0.098, 0.109[ 
      PctPrPvmt      Cases: 8%   Cases: 3% 
      [28.5, 60[      Pred PkHrs: 5.09   Pred PkHrs: 6.00 
      Cases: 30%         38 
      Pred PkHrs: 4.01         Cmtr_SqMi 
               [2696.47, 3346.39[ 
            32   Cases: 1% 
            PopLg   Pred PkHrs: 6.00 
         22   [0.5, 1[   37 
         GVeh_HH   Cases: 7%   Cmtr_SqMi 
         [0.098, 0.162[   Pred PkHrs: 4.54   [1163.20, 2696.47[ 
         Cases: 21%      Cases: 6% 
         Pred PkHrs: 3.67      Pred PkHrs: 4.29 
               36 
   3            Inflows_Wkr 
   Rep-Dem            [0.071, 0.216[ 
   [0.25, 1[         31   Cases: 6% 
   Cases: 70%         PopLg   Pred PkHrs: 2.33 
   Pred PkHrs: 3.64         [0, 0.5[   35 
            Cases: 14%   Inflows_Wkr 
            Pred PkHrs: 3.23   [-0.083, 0.071[ 
               Cases: 8% 
               Pred PkHrs: 3.91 
               30 
         21      PctPopCh 
         PopMed      [31.688, 39.091[ 
         [0.5, 1[      Cases: 1% 
      6   Cases: 11%      Pred PkHrs: 2.00 
      PctPrPvmt   Pred PkHrs: 2.75      29 
      [1, 28.5[      25   PctPopCh 
      Cases: 40%      LeePoly   [18.663, 31.688[ 
      Pred PkHrs: 3.36      [36.95, 74.1[   Cases: 3% 
1            Cases: 16%   Pred PkHrs: 3.17 
All         20   Pred PkHrs: 4.02   28 
Cases: 100%         PopMed      PctPopCh 
Pred PkHrs:          [0, 0.5[      [-4.157, 18.663[ 
    3.45         Cases: 29%      Cases: 12% 
         Pred PkHrs: 3.59      Pred PkHrs: 4.40 
            24   27 
            LeePoly   GMedInc_HH 
      5   11   [0, 36.95[   [0.244, 0.26[ 
      PctPrPvmt   Cmtr_SqMi   Cases: 13%   Cases: 5% 
      [27, 64[   [3023.845, 3756.293[   Pred PkHrs: 3.08   Pred PkHrs: 4.10 
      Cases: 11%   Cases: 1%      26 
      Pred PkHrs: 3.80   Pred PkHrs: 8.00   17   GMedInc_HH 
            PopSm   [0.164, 0.244[ 
            [0.5, 1[   Cases: 8% 
         10   Cases: 3%   Pred PkHrs: 2.44 
   2      Cmtr_SqMi   Pred PkHrs: 1.50   19 
   Rep-Dem      [864.255, 3023.845[   16   PopMed 
   [0, 0.25[      Cases: 10%   PopSm   [0.5, 1[ 
   Cases: 30%      Pred PkHrs: 3.38   [0, 0.5[   Cases: 4% 
   Pred PkHrs: 3.02         Cases: 7%   Pred PkHrs: 3.13 
            Pred PkHrs: 4.18   18 
         9   13   PopMed 
         PctPopCh   Empl_Cap   [0, 0.5[ 
         [18.632, 52.459[   [0.474, 0.505[   Cases: 3% 
         Cases: 14%   Cases: 4%   Pred PkHrs: 5.58 
      4   Pred PkHrs: 2.80   Pred PkHrs: 3.50    
      PctPrPvmt         15 
      [3, 27[         PopLg 
      Cases: 19%      12   [0.5, 1[ 
      Pred PkHrs: 2.57      Empl_Cap   Cases: 1% 
            [0.355, 0.474[   Pred PkHrs: 4.00 
         8   Cases: 10%   14 
         PctPopCh   Pred PkHrs: 2.53   PopLg 
         [3.056, 18.632[      [0, 0.5[ 
         Cases: 5%      Cases: 9% 
         Pred PkHrs: 1.90      Pred PkHrs: 2.36 

 

Figure 7: CHAID tree structure for the congestion duration (PkHrs) model 
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 The independent variables involved in the CHAID splitting operations are shown 

in Table 23 with their relative importance as measured by the number of different cases 

in the splits in which they were involved.  Of these important variables, only two are 

common among all dimensions.  Interestingly, they are two urban size variables.  One is 

the dummy variable for mid-size cities (PopMed) and the other is the change in city size 

variable (PctPopCh).  Again, city size is at the top of the leader board in variable 

importance. 

 
Table 23: Splitting variables for each CHAID model in order of importance 

Intensity (TTI)  Model Extent (PortLMCong) Model Duration (PkHrs) Model 

Variable Splits Cases Variable Splits Cases Variable Splits Cases 

GDP_VMT 1 100 Pers_SqMi 1 100 PctPrPvmt 2 100 

GMedInc_HH 1 86 Nodes_UpNetMi 1 83 Rep-Dem 1 100 

GJobs_HH 1 55 PctPopCh* 2 64 PopMed* 2 47 

PctPopJPTcts 1 43 VRM_SqMi 1 48 PctPopCh* 2 35 

PctSOV 1 31 GWkr_Cap 1 44 PopLg 2 31 

AvgCmtTime 3 30 UAPop-K 1 24 GVeh_HH 1 30 

GeoW 1 30 Inc_Cap 1 23 LeePoly 1 29 

PopMed* 2 28 LeePoly 1 18 Cmtr_SqMi 2 18 

Nodes_UpNetMi 1 22 AvgCmtTime 1 17 Empl_Cap 1 14 

FwyLM_NetLM 1 12 GJobs_HH 1 12 Inflows_Wkr 1 14 

GeoMW 1 10 Pers_Rest 1 8 GMedInc_HH 1 13 

DecBeforeNow 1 9 PopMed* 1 8 PopSm 1 10 

FwyArtMi_Cap 1 9 FwyMi_SqMi 1 7 FwyArtMi_Cap 1 9 

PopVLg 1 8 Links_Node 1 6 GWkr_Cap 1 8 

UASqMi 1 7 FwyLM_KCmtr 1 5    

PctPopCh* 1 4 Rep-Dem 1 4    
* Variable is listed as statistically significant for all three dependent variables. 
 

5.5.2  The First Split and Variable Importance.  A series of CHAID analyses are 

completed for each of the three dependent congestion variables, with a focus on 

identifying the splitting variables involved in the first split only.  Again, the XLSTAT 

default values are used, which include a maximum tree depth of six tiers, a significance 

level of five percent, and merge and split levels of five percent each.  Once completed, 
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the independent variable used in the first split is identified and then deleted from the 

variable set. (Note: XLSTAT does not have a sub-routine to complete this iterative 

process, so it must be completed manually.) The CHAID analysis is run again and again 

with the ever smaller variable set until all independent variables have been involved in a 

first split.  Since an analysis is completed for each of the three dependent variables and 

the order of independent variable elimination varies for each of the three sets of runs, 156 

separate runs (3 x 52) are required. As the process wears on and the variable set grows 

smaller, there comes a time when there is no variable that will make the first split at the 

original default significance settings.  At this point, the significance levels are loosened 

so that a first split is attained.  The order in which the variables are used in a first split 

and then eliminated from the variable set reflects their relative importance to the 

particular dimension of congestion as a whole.  (One limitation of the variable 

importance in the tree structure calculations above is that every variable after the first 

split is involved only with a branch of the tree.  Their importance to the branch may not 

extend to the whole tree.  This approach gets around this limitation.)     

 Table 24 shows the order of involvement of the independent variables in a first 

split operation for each of the three congestion dimensions, along with the significance 

level of the split.   The variables that are not able to split with a significance level above 

0.05 are shaded; these variables are unlikely to be important to the particular dimension 

of congestion.  (While one may argue for inclusion of variables able to split at a 

significance level of 0.10, this study uses a cut-off of 0.05.) 

   

 



  
 

142

Table 24: Order of variable involvement in a first split by congestion dimension 
Intensity (TTI) Model Extent (LMCong) Model Duration (PkHrs) Model 

Split Variable Significance Split Variable Significance Split Variable Significance 
GDP_VMT 5 Pers_SqMi* 5 Rep-Dem 5 

FwyArtMi_Cap* 5 GeoMW 5 Links_Node 5 

GWkr_UpNetMi* 5 Inc_Cap* 5 Pers_SqMi* 5 

GMedInc_HH 5 Inflows_Wkr 5 Empl_Cap 5 

VRM_SqMi* 5 PopMed* 5 FwyLM_NetLM 5 

GJobs_SqMi 5 PopLg* 5 AvgCmtTime* 5 

PctSOV* 5 Med_Mult* 5 DecBeforeNow 5 

Empl_Cap 5 GJobs_HH* 5 FwyLM_KCmtr* 5 

LeePoly* 5 Nodes_UpNetMi* 5 GWkr_UpNetMi* 5 

Rep-Dem 5 UAPop-K* 5 PctGovtEmp 5 

Pers_SqMi* 5 GWkr_UpNetMi* 5 Cmtr_SqMi 5 

FwyLM_KCmtr* 5 FwyLM_KCmtr* 5 PctOldYng 5 

FwyMi_SqMi 5 FwyMi_SqMi 5 FwyArtMi_Cap* 5 

DecBeforeNow 5 GJobs_Wkr* 5 PctPopJPTcts* 5 

Cmtr_SqMi 5 PctPopJPTcts* 5 GJobs_HH* 5 

PopLg* 5 FwyArtMi_Cap* 5 GMedInc_HH 5 

PctRetEmp 5 LeePoly* 5 PopMed* 5 

GJobs_HH* 5 PctSOV* 5 PctSOV* 5 

PopMed* 5 SpTms_Mcap* 5 PctPrPvmt 5 

AvgCmtTime* 5 AvgCmtTime* 5 VRM_SqMi* 5 

Pers_Rest 5 PopSm* 5 Nodes_UpNetMi* 5 

PctPopJPTcts* 5 UASqMi* 5 Inc_Cap* 5 

GJobs_Wkr* 5 VRM_SqMi* 5 GVeh_HH 5 

PctPrPvmt 5 PopVLg* 5 Pers_Rest 5 

Inc_Cap* 5 NetMi_SqMi** 10 SpTms_Mcap* 5 

Nodes_UpNetMi* 5 PctPrPvmt 10 PopLg* 5 

SpTms_Mcap* 5 Cmtr_SqMi 15 PctRetEmp 5 

GVeh_HH 5 GeoNE** 15 UAPop-K* 5 

UAPop-K* 5 GeoW** 15 Med_Mult* 5 

Med_Mult* 5 GPop_NetMi** 15 GJobs_Wkr* 5 

PopSm* 5 GJobs_SqMi 15 LeePoly* 5 

UASqMi* 5 FwyLM_NetLM 20 UASqMi* 5 

PopVLg* 5 Pers_Rest 20 PopSm* 5 

Veh_HH** 10 PctOldYng 20 PopVLg* 5 

Inflows_Wkr 10 GeoS** 20 Inflows_Wkr 10 

NetMi_SqMi** 10 PctJobsJRDTcts** 20 Pat_KWkrs** 10 

Crashes_Kcap** 10 PctPopCh** 20 Crashes_Kcap** 10 

PctTrks** 15 YrPrecipIn** 20 GDP_VMT 10 

Links_Node 15 Pat_KWkrs** 20 GJobs_SqMi 15 

GeoMW 15 PctTrks** 20 GPop_NetMi** 15 

FwyLM_NetLM 15 GVeh_HH 20 FwyMi_SqMi 20 

PctPopCh** 20 Veh_HH** 25 NetMi_SqMi** 20 

GeoNE** 20 PctGovtEmp 50 PctPopCh** 25 

PctOldYng 25 Links_Node 50 PctTrks** 50 

GPop_NetMi** 50 GDP_VMT 50 PctJobsJRDTcts** 50 
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Intensity (TTI) Model Extent (LMCong) Model Duration (PkHrs) Model 

Split Variable Significance Split Variable Significance Split Variable Significance 
Pat_KWkrs** 50 Empl_Cap 50 Veh_HH** 75 

GWkr_Cap** 75 Crashes_Kcap** 75 GeoNE** 75 

PctGovtEmp 75 GMedInc_HH 75 GeoS** 75 

GeoW** 99 DecBeforeNow 99 GeoW** 99 

YrPrecipIn** 99 PctRetEmp 99 YrPrecipIn** 99 

GeoS** 99 GWkr_Cap** 99 GeoMW 99 

PctJobsJRDTcts** 99 Rep-Dem 99 GWkr_Cap** 99 
* Important in all three dimensions 
** Not important in any dimension 

  

 The TTI model has 33 important variables, the LMCong model has 24, and the 

PkHrs model has 34.  There are 21 variables that are important in all three dimensions 

and there are 13 that are not important in all dimensions; the other 18 are important in 

one or two dimensions only.  The variation between the dimensions in important 

variables suggests that there are different underlying factors associated with each 

dimension of congestion and that different strategies would likely be required for 

remedial actions.     

 The top ten variables in terms of importance in first splits are shown in Table 25.  

The top variables are determined by ranking the variables by dimension based on their 

order of use in first splits, adding the ranks of the three dimensions, and then sorting the 

sum of the ranks.  This moves the variables that are important to congestion collectively 

to the top of the list; the top ten are marked.  Finally, the top ten variables are sorted by 

rank by dimension so that their relative order within the dimension is readily discernable.  

Skipped rankings indicate a variable that, while important within one dimension, is not 

important in all dimensions collectively.  

 All ten of these variables are common to all congestion dimensions, although the 

variables rankings within each dimension are different.  Two variables deal with urban 
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area size (PopMed and PopLg) which continues to reinforce the notion that with 

congestion, size matters.  Three others are repeat top tens from the PLS regression 

results: FwyArtMi_Cap, FwyLM_KCmtr and AvgCmtTime.  None of these are real 

surprises; the size and magnitude of the effects for each variable are about as expected.  

Of the remaining five, two (PctSOV and VRM_SqMi) have some counterintuitive effects 

that are discussed in the PLS results section above, and two (GWkr_UpNetMi and 

GJobs_HH) that indicate that the distribution of the workforce across the urban footprint 

is linked to the levels of congestion.   The final variable in the top ten is population 

density (Pers_SqMi).  It seems clear from these results that density has a negative 

relationship with congestion (as urban areas become more dense, congestion worsens), 

although many new urbanists believe that increased density is a necessary precondition 

for renewed urban vitality and the development of alternative modes of transportation 

that could reduce the prominence of the automobile, thereby leading to a reduction in 

congestion.   

 
Table 25: Top ten first split variables by congestion variable 

TTI Sig. Rank PortLMCong Sig. Rank PkHrs Sig. Rank 

FwyArtMi_Cap* 5 2 Pers_SqMi* 5 1 Pers_SqMi* 5 3 

GWkr_UpNetMi* 5 3 PopMed* 5 5 AvgCmtTime* 5 6 

VRM_SqMi* 5 5 PopLg* 5 6 FwyLM_KCmtr* 5 8 

PctSOV* 5 7 GJobs_HH* 5 8 GWkr_UpNetMi* 5 9 

Pers_SqMi* 5 11 GWkr_UpNetMi* 5 11 FwyArtMi_Cap* 5 13 

FwyLM_KCmtr* 5 12 FwyLM_KCmtr* 5 12 GJobs_HH* 5 15 

PopLg* 5 16 FwyArtMi_Cap* 5 16 PopMed* 5 17 

GJobs_HH* 5 18 PctSOV* 5 18 PctSOV* 5 18 

PopMed* 5 19 AvgCmtTime* 5 20 VRM_SqMi* 5 20 

AvgCmtTime* 5 20 VRM_SqMi* 5 23 PopLg* 5 26 
* Variable is in the top ten for all three dependent variables. 

 

5.5.3  Linearity and Congestion Dimension.  Understanding the nature of the 

relationships between the dependent variables and the independent variables is important.  
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As discussed above, these relationships are commonly assumed to be linear.  An analysis 

of the scatter plots for the first split results, however, suggests that this is not always the 

case.  In the first split operations performed in Section 5.5.2, the 100 observations (i.e., 

urban areas) are divided into two or more groups (tree branches).  The number of 

observations in each group and a predicted value for the dependent variable are computed 

in tree development.  These values are plotted, trend lines are added, and the resulting 

graphs are assessed with a focus on identifying relationships that are not linear.  In most 

cases (42 of 52 for TTI, 39 of 52 for PortLMCong, and 40 of 52 for PkHrs), there are 

only two groups in the first split, so the relationship is revealed to be linear, even though 

it may not be.  In 14 of the 35 variables with three or more groups in the first split, the 

scatter plots show relationships that are linear, increasing (arcs bending upwards for 

negative or downwards for positive) or decreasing (arcs bending to the right for both 

negative and positive).  In the 21 remaining cases, the scatter plots show evidence of a 

non-linear relationship, with three U-shaped, twelve inverted U-shaped, and six in an up-

and-down, indeterminate pattern.  Table 26 shows these relationships, which may vary 

between the dimensions, along with their relative importance (order of use) in the first 

split operations.    The variables that are not involved in a first split at the 0.05 level of 

significance are shaded; for these variables the relationships are suspect.  Also included 

in the table is the direction of effect indicated by the trend line.  For the linear (L), the 

increasing, and the decreasing relationships, this direction of effect accurately reflects the 

scatter plot.  For the indeterminate non-linear (NL), the U, and the inverted U 

relationships, this direction of the trend line is suspect. 
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Table 26: Relationships between the dependent and independent variables 
   TTI PortLMCong PkHrs 

No. Variable Focus Imp Rel Dir Imp Rel Dir Imp Rel Dir 
1 PctPopCh Supply 42 L Pos 37 L Neg 43 L Pos 
2 Rep-Dem Supply 10 L Neg 52 U Pos 1 L Neg 
3 NetMi_SqMi Supply 36 InvU Pos 25 L Pos 42 InvU Pos 
4 FwyMi_SqMi Supply 13 L Pos 13 L Pos 41 L Pos 
5 FwyLM_NetLM Supply 41 L Neg 32 L Neg 5 L Neg 
6 FwyLM_KCmtr Supply 12 InvU Neg 12 L Pos 8 InvU Pos 
7 FwyArtMi_Cap Supply 2 L Pos 16 L Pos 13 NL Pos 
8 DecBeforeNow Supply 14 U Neg 49 InvU Neg 7 NL Neg 
9 Links_Node Supply 39 L Neg 44 InvU Pos 2 InvU Neg 
10 Cmtr_SqMi Demand 15 L Neg 27 L Neg 11 L Neg 
11 Pers_SqMi Demand 11 NL Neg 1 L Neg 3 Decr Neg 
12 Veh_HH Demand 34 L Pos 42 L Neg 46 NL Pos 
13 Inc_Cap Demand 25 NL Neg 3 L Neg 22 L Neg 
14 Empl_Cap Demand 8 L Neg 46 InvU Pos 4 Decr Neg 
15 Pers_Rest Demand 21 L Pos 33 L Pos 24 L Pos 
16 Inflows_Wkr Demand 35 L Pos 4 L Pos 35 L Pos 
17 AvgCmtTime Demand 20 Decr Neg 20 L Neg 6 Decr Neg 
18 PctSOV Demand 7 Decr Pos 18 L Pos 18 L Pos 
19 VRM_SqMi Demand 5 Decr Neg 23 L Neg 20 L Neg 
20 PopSm Demand 31 L Pos 21 L Pos 33 L Pos 
21 PopMed Demand 19 L Pos 5 L Pos 17 L Pos 
22 PopLg Demand 16 L Neg 6 L Neg 26 L Neg 
23 PopVLg Demand 33 L Neg 24 L Neg 34 L Neg 
24 GeoNE Demand 43 L Neg 28 L Pos 47 L Neg 
25 GeoS Demand 51 L Neg 35 L Neg 48 L Pos 
26 GeoMW Demand 40 L Pos 2 L Pos 51 L Neg 
27 GeoW Demand 49 L Neg 29 L Neg 49 L Neg 
28 PctTrks Flow 38 L Pos 40 L Pos 44 L Pos 
29 PctOldYng Flow 44 L Pos 34 L Pos 12 L Pos 
30 Nodes_UpNetMi Flow 26 L Neg 9 L Neg 21 L Neg 
31 PctPrPvmt Flow 24 L Neg 26 L Neg 19 L Neg 
32 Crashes_Kcap Flow 37 L Pos 47 L Pos 37 L Pos 
33 YrPrecipIn Flow 50 L Neg 38 L Pos 50 L Neg 
34 SpTms_Mcap Flow 27 L Pos 19 L Pos 25 L Pos 
35 GPop_NetMi Spread 45 L Neg 30 L Neg 40 L Neg 
36 GWkr_UpNetMi Spread 3 L Neg 11 L Neg 9 L Neg 
37 GVeh_HH Spread 28 L Neg 41 L Neg 23 L Neg 
38 GMedInc_HH Spread 4 L Neg 48 InvU Pos 16 L Neg 
39 GWkr_Cap Spread 47 L Pos 51 U Neg 52 NL Neg 
40 GJobs_SqMi Spread 6 L Neg 31 L Neg 39 L Neg 
41 GJobs_HH Spread 18 L Neg 8 L Neg 15 L Neg 
42 GJobs_Wkr Spread 23 L Neg 14 L Neg 30 L Neg 
43 PctJobsJRDTcts Other 52 L Neg 36 InvU Pos 45 L Pos 
44 PctPopJPTcts Other 22 L Neg 15 L Neg 14 L Neg 
45 LeePoly Other 9 L Neg 17 L Neg 31 L Neg 
46 Med_Mult Other 30 L Neg 7 L Neg 29 L Neg 
47 PctGovtEmp Other 48 L Pos 43 L Pos 10 L Pos 
48 PctRetEmp Other 17 L Pos 50 InvU Pos 27 L Pos 
49 Pat_KWkrs Other 46 L Neg 39 L Neg 36 L Neg 
50 GDP_VMT Other 1 L Neg 45 InvU Pos 38 L Neg 
51 UASqMi Other 32 L Neg 22 L Neg 32 L Neg 
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   TTI PortLMCong PkHrs 
No. Variable Focus Imp Rel Dir Imp Rel Dir Imp Rel Dir 
52 UAPop-K Other 29 L Neg 10 L Neg 28 L Neg 

Notes: Values are shaded for variables unable to split at a 0.05 significance level. 
 All variable data are shaded when unable to split at a 0.05 significance level in all areas. 
 Differences in direction of effect are in bold. 

 

 For linear relationships, the direction of effect is as it seems.  A positive direction 

indicates that an increase in the independent variable is associated with a decrease in the 

dependent variable.  (Recall that congestion is a negative situation and that a positive 

effect is when congestion decreases.)  A negative direction results in the opposite 

situation.  For increasing non-linear relationships, the dependent variable increases or 

decreases increasingly more quickly as the independent variable increases, positively or 

negatively.  The situation is reversed for a decreasing relationship, where the positive or 

negative effects begin to decrease as the independent variable increases.  In the U and 

inverted U relationships, the effect of a change in the independent variable changes 

direction as the variable increases.  This effect is either higher in the middle than on the 

ends (inverted U) or lower in the middle (U). 

 The non-linear relationships are of particular interest to efforts at congestion 

remediation.  For example, the freeway lane-miles per commuter (FwyLM_KCmtr) have 

an inverted U relationship with congestion intensity and duration, but a linear relationship 

with extent.  Additions to freeway lane-mileage after a point might well have a 

diminishing effect on TTI and the number of peak hours, while continuing to improve the 

portion of the network that is congested.  (The term “might” is used here since there is no 

evidence of causality in the relationships, only correlation.)   

 Note that there are 14 cases where there is disagreement on the direction of effect 

between the dimensions; five are two positives and one negative and nine are two 
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negatives and one positive.  Thirteen of these involve results from a split at a significance 

level below 0.05, so the disagreement is problematic.  The remaining variable 

(FwyLM_KCmtr) involves only statistically significant splits, but does have two inverted 

U and one linear relationship.  Since the direction of effect is derived from the trend line, 

the disagreement in this instance is possibly due to the trend line in the inverted U 

relationship not accurately representing the overall effects.  (It could also be, of course, 

that the relationship is different for this dimension of congestion, though this seems 

somewhat unlikely since this occurs on one variable only.)  In the 38 other cases, there is 

no disagreement and the effects are the same in all dimensions.  A positive effect of one 

variable on TTI, for example, is also a positive effect on PortLMCong and PkHrs.   

5.5.4  Expected vs. Revealed Effects.  The expected effects theorized in Chapter 4 

include both size and direction.  In the PLS analysis, the regression output provided both 

size and direction data.  The CHAID results are not so generous.  While the directions of 

effect can be gleaned from the scatter plots, the sizes of effect are less evident.  The 

coefficients from the trend lines are non-standardized, so comparisons are meaningless.  

While it is possible to derive standardized coefficients for all 156 scatter plots, the cost-

benefit of this effort is questionable, especially since parsing the sizes of effects into three 

groups (high, moderate and low) has its own issues.  Instead, the focus here is on the 

directions of effect only.  

 Table 27 shows the effects expected for congestion in general with the revealed 

effects for each congestion dimension.  Also included in the table are the variables’ focus 

and relative importance (as determined by the order in which they are used in the first 

split operations).  Since this order varies by congestion dimension, the variables are listed 
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in the order of discussion in Section 4.  (For convenience, Table 24 above lists the 

variables in order of importance for each dimension.)  

 There are 26 cases where the expected effects differ from the revealed effects for 

at least one of the three congestion dimensions.  Of these 26, eleven are cases where all 

the revealed data result from splitting operations at significance levels above the 0.05 

threshold and another four are cases where the disagreement between the expected and 

revealed effect are only in the results of non-statistically significant splits.   If the results 

of these 15 cases are discounted, there are 11 remaining cases where the expected effects 

differ from the revealed effects and the revealed effects are from statistically significant 

splits. In five of these 11, the expected effect is negative, while the revealed effect in the 

statistically significant cases is positive; in five, the expected effect is positive and the 

revealed effect is negative or mixed; and in one, the expected effect is unknown and the 

revealed effect is positive.   

 
Table 27: Expected effects compared to revealed effects 

   Expected TTI LMCong PkHrs 
No. Variable Focus Size Dir Imp Dir Imp Dir Imp Dir 
1 PctPopCh Supply High Neg 42 Pos 37 Neg 43 Pos 
2 Rep-Dem Supply Low Neg 10 Neg 52 Pos 1 Neg 
3 NetMi_SqMi Supply Mod Pos 36 Pos 25 Pos 42 Pos 
4 FwyMi_SqMi Supply Mod Pos 13 Pos 13 Pos 41 Pos 
5 FwyLM_NetLM Supply Mod Pos 41 Neg 32 Neg 5 Neg 
6 FwyLM_KCmtr Supply High Pos 12 Neg 12 Pos 8 Pos 
7 FwyArtMi_Cap Supply Mod Pos 2 Pos 16 Pos 13 Pos 
8 DecBeforeNow Supply Low Neg 14 Neg 49 Neg 7 Neg 
9 Links_Node Supply Mod Pos 39 Neg 44 Pos 2 Neg 
10 Cmtr_SqMi Demand Mod Neg 15 Neg 27 Neg 11 Neg 
11 Pers_SqMi Demand Mod Neg 11 Neg 1 Neg 3 Neg 
12 Veh_HH Demand Mod Neg 34 Pos 42 Neg 46 Pos 
13 Inc_Cap Demand Mod Neg 25 Neg 3 Neg 22 Neg 
14 Empl_Cap Demand Mod Neg 8 Neg 46 Pos 4 Neg 
15 Pers_Rest Demand Mod Pos 21 Pos 33 Pos 24 Pos 
16 Inflows_Wkr Demand Low Neg 35 Pos 4 Pos 35 Pos 
17 AvgCmtTime Demand Mod Neg 20 Neg 20 Neg 6 Neg 
18 PctSOV Demand Low Neg 7 Pos 18 Pos 18 Pos 
19 VRM_SqMi Demand Low Pos 5 Neg 23 Neg 20 Neg 
20 PopSm Demand Mod Pos 31 Pos 21 Pos 33 Pos 



  
 

150

   Expected TTI LMCong PkHrs 
No. Variable Focus Size Dir Imp Dir Imp Dir Imp Dir 
21 PopMed Demand Low Pos 19 Pos 5 Pos 17 Pos 
22 PopLg Demand Low Neg 16 Neg 6 Neg 26 Neg 
23 PopVLg Demand Mod Neg 33 Neg 24 Neg 34 Neg 
24 GeoNE Demand Low Unk 43 Neg 28 Pos 47 Neg 
25 GeoS Demand Low Unk 51 Neg 35 Neg 48 Pos 
26 GeoMW Demand Low Unk 40 Pos 2 Pos 51 Neg 
27 GeoW Demand Low Unk 49 Neg 29 Neg 49 Neg 
28 PctTrks Flow Mod Neg 38 Pos 40 Pos 44 Pos 
29 PctOldYng Flow Low Neg 44 Pos 34 Pos 12 Pos 
30 Nodes_UpNetMi Flow Mod Neg 26 Neg 9 Neg 21 Neg 
31 PctPrPvmt Flow Low Neg 24 Neg 26 Neg 19 Neg 
32 Crashes_Kcap Flow Low Neg 37 Pos 47 Pos 37 Pos 
33 YrPrecipIn Flow Low Neg 50 Neg 38 Pos 50 Neg 
34 SpTms_Mcap Flow Low Neg 27 Pos 19 Pos 25 Pos 
35 GPop_NetMi Spread Low Neg 45 Neg 30 Neg 40 Neg 
36 GWkr_UpNetMi Spread Low Neg 3 Neg 11 Neg 9 Neg 
37 GVeh_HH Spread Low Neg 28 Neg 41 Neg 23 Neg 
38 GMedInc_HH Spread Low Neg 4 Neg 48 Pos 16 Neg 
39 GWkr_Cap Spread Low Neg 47 Pos 51 Neg 52 Neg 
40 GJobs_SqMi Spread Mod Neg 6 Neg 31 Neg 39 Neg 
41 GJobs_HH Spread Mod Neg 18 Neg 8 Neg 15 Neg 
42 GJobs_Wkr Spread Mod Neg 23 Neg 14 Neg 30 Neg 
43 PctJobsJRDTcts Other Mod Neg 52 Neg 36 Pos 45 Pos 
44 PctPopJPTcts Other Mod Neg 22 Neg 15 Neg 14 Neg 
45 LeePoly Other Mod Pos 9 Neg 17 Neg 31 Neg 
46 Med_Mult Other Mod Neg 30 Neg 7 Neg 29 Neg 
47 PctGovtEmp Other Low Neg 48 Pos 43 Pos 10 Pos 
48 PctRetEmp Other Low Pos 17 Pos 50 Pos 27 Pos 
49 Pat_KWkrs Other Low Pos 46 Neg 39 Neg 36 Neg 
50 GDP_VMT Other Mod Neg 1 Neg 45 Pos 38 Neg 
51 UASqMi Other Mod Neg 32 Neg 22 Neg 32 Neg 
52 UAPop-K Other Mod Neg 29 Neg 10 Neg 28 Neg 

Notes: Values are shaded for variables unable to split at a 0.05 significance level. 
 All variable data are shaded when unable to split at a 0.05 significance level in all areas. 
 Differences in direction of effect are in bold. 

  

 The five “negative, but positive” cases are: Inflows_Wkr, PctSOV, PctOldYng, 

SpTms_Mcap, and PctGovtEmp. All of these are also “negative, but positive” cases in 

the PLS regression analysis above.  Since the statistically significant relationships with 

the congestion variables for all five variables are either linear or decreasing, the reasoning 

for the disagreement in effect would be the same.  Please refer to Section 5.3.3 for the 

discussion on these five variables.  
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 The five “positive, but negative” cases: FwyLM_NetLM, FwyLM_KCmtr, 

Links_Node, VRM_SqMi, and LeePoly.  Two of these (VRM_SqMi, and LeePoly) are 

also “positive, but negative” cases in the PLS regression analysis above and are discussed 

in that section.  Both exhibit linear or decreasing relationships with the congestion 

variables, so there is little else to add.  The remaining three are discussed below: 

• FwyLM_NetLM – it seems reasonable that a larger freeway system in relation 

to the entire network would be associated with lower congestion.  According 

to the trend line data, however, the effect is negative: relatively more freeways 

are linked with greater congestion.  These results are the same for all three 

dimensions of congestion, although only for the duration dimension are the 

results significant.  Still one wonders why.  Ever larger freeway/network 

ratios are probably associated with the larger urban areas where congestion is 

already problematic, which suggests that this effect is confounded by other 

urban characteristics.   

• FwyLM_KCmtr – one would expect that more lane miles of freeway for each 

commuter would translate into lower congestion.  Instead, the trend line data 

show the opposite.  Worse congestion accompanies a rise in the freeway lane-

mile/commuter ratio.  This is likely a result of the inverted U relationship 

between this ratio and the intensity and duration dimensions of congestion.  

(The relationship with extent is linear.)  After an initial rise in congestion 

levels, which may be a manifestation of supply lagging demand, there reaches 

a point where the demand is met and continual increases in supply begins to 
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improve the congestion situation.  If this point is far enough along the curve, 

the overall trend line would show a negative effect. 

• Links_Node – more intra-connectivity would reasonably be associated with 

lower congestion levels (a positive effect), but the trend line data show a 

negative effect.  The relationship with two of the congestion dimensions 

(extent and duration), however, is an inverted U; the other one is linear.  The 

inverted U allows an increase in the links per node initially to accompany a 

worsening of congestion before congestion begins to improve.  This could be 

the effect of the supply of intra-connecting roads lagging their demand early 

on before demand is satisfied.  It could also be that increased intra-

connectivity does not affect congestion until a threshold is achieved (although 

congestion worsens due to other factors), after which increased intra-

connectivity begins to have an increasing effect.  

 The one “unknown, but positive” case is one of the geographic dummy variables, 

GeoMW, which has a positive revealed effect on intensity and extent but a negative 

revealed effect on duration.  However, only the positive effect on extent is based on a 

statistically significant split.  Apparently, an urban area in the Mid-west census region is 

less likely to be congested than in other regions, especially with regard to the extent of 

the system congested.  Whether this is due to regional attitudes, city size or some other 

factor is unclear.  This is the only geographic dummy variable to have a statistically 

significant first split and then only in the one dimension.  Of the other geographic dummy 

variables, only GeoW showed results consistent in each dimension.  To be in the West is 

unfavorable as far as congestion is concerned. 
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5.6  Analysis Results by Congestion Dimension   

 The results above show that the results from the various analyses differ depending 

on the congestion dimension.  With this in mind, the results are now displayed by 

dimension.  Variable size effects come from the correlation and PLS regression analyses, 

while the direction effects come from the correlation, PLS regression and the CHAID 1st 

split analyses.  The relationship effect comes from just the CHAID 1st split analysis. In 

cases where there is disagreement in the size or direction of the effects, the results from 

the various methods are compared, the importance of the results considered, and an effect 

that best represents the variable is estimated.  Variables are grouped by importance into 

four categories: important (those that are important in all four analyses (correlations, PLS 

regression, CHAID tree and CHAID 1st split)); somewhat important (those important in 

three analyses); somewhat unimportant (those important in one or two analyses); and, 

unimportant (those that are not important in any analysis).   Data cells for variables that 

are somewhat unimportant or unimportant are shaded; variable name cells are shaded 

when data cells in all dimensions are shaded.   

 
Table 28: Effects and importance by congestion dimension 

  Intensity (TTI) Extent (PortLMCong) Duration (PkHrs) 

 Variable Code Size Dir Rel Imp Size Dir Rel Imp Size Dir Rel Imp 

Supply Variables 

1 PctPopCh Low Pos L SU Low Neg L SU Low Pos L SU 

2 Rep-Dem Low Neg L SU Low Neg U SU Low Neg L SI 

3 NetMi_SqMi Low Pos InvU U Mod Pos L U Low Pos InvU U 

4 FwyMi_SqMi Low Pos L SU Low Pos L SI Low Pos L U 

5 FwyLM_NetLM Low Neg L SU Low Pos L U Low Neg L SU 

6 FwyLM_KCmtr Mod Pos InvU SI Mod Pos L I Mod Pos InvU SU 

7 FwyArtMi_Cap Mod Pos L I High Pos L SI Mod Pos NL I 

8 DecBeforeNow Low Neg U I Low Pos InvU SU Mod Neg NL SI 

9 Links_Node Low Neg L U Low Neg InvU SU Low Pos InvU SU 

Demand Variables 

10 Cmtr_SqMi Low Neg L SU Low Neg L SU Low Neg L SI 

11 Pers_SqMi Low Neg NL SI Low Neg L I Low Neg Incr SI 
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  Intensity (TTI) Extent (PortLMCong) Duration (PkHrs) 

 Variable Code Size Dir Rel Imp Size Dir Rel Imp Size Dir Rel Imp 

12 Veh_HH Low Pos L U Low Neg L U Low Neg NL U 

13 Inc_Cap Mod Neg NL SI Low Neg L SI Mod Neg L SI 

14 Empl_Cap Mod Neg L SI Mod Pos InvU SU Mod Neg Incr I 

15 Pers_Rest Low Pos L SU Low Pos L SU Low Pos L SU 

16 Inflows_Wkr Low Pos L U Low Pos L SU Low Pos L SU 

17 AvgCmtTime High Neg Decr I High Neg L I High Neg Incr SI 

18 PctSOV Low Pos Decr I Low Pos L SI Low Pos L SI 

19 VRM_SqMi Low Neg Decr SI Low Neg L I Low Neg L SI 

20 PopSm Low Pos L SI Low Neg L SI Mod Pos L I 

21 PopMed Low Pos L I Low Pos L I Low Pos L I 

22 PopLg Mod Neg L SI Mod Neg L SU Mod Neg L I 

23 PopVLg Mod Neg L I Mod Neg L SI Mod Neg L SI 

24 GeoNE Low Neg L U Low Pos L U Low Neg L U 

25 GeoS Low Neg L U Low Neg L U Mod Pos L U 

26 GeoMW Low Pos L SU Low Pos L SU Low Neg L U 

27 GeoW Low Neg L SU Low Neg L U Low Neg L U 

Flow Variables 

28 PctTrks Low Pos L U Low Pos L U Low Pos L U 

29 PctOldYng Mod Pos L SU Mod Pos L SU Mod Pos L SI 

30 Nodes_UpNetMi Mod Neg L I Mod Neg L I Mod Neg L SI 

31 PctPrPvmt Low Neg L SI Low Neg L SU Low Neg L I 

32 Crashes_Kcap Low Pos L U Low Pos L U Low Pos L U 

33 YrPrecipIn Low Neg L U Low Pos L U Low Neg L U 

34 SpTms_Mcap Low Pos L SI Mod Pos L SI Low Pos L SI 

Spread Variables 

35 GPop_NetMi Low Neg L SU Low Neg L U Low Neg L SU 

36 GWkr_UpNetMi Mod Neg L SI Low Neg L SI Mod Neg L SI 

37 GVeh_HH Low Neg L SI Low Neg L SU Low Neg L I 

38 GMedInc_HH Low Neg L SI Low Pos InvU U Low Neg L SI 

39 GWkr_Cap Low Neg L U Low Neg U SU Low Neg NL SU 

40 GJobs_SqMi Low Neg L SU Low Pos L U Low Neg L SU 

41 GJobs_HH Low Neg L I Low Neg L SI Low Neg L SI 

42 GJobs_Wkr Low Neg L SI Low Neg L SI Low Neg L SI 

Other Variables 

43 PctJobsJRDTcts Low Neg L U Low Pos InvU U Low Pos L U 

44 PctPopJPTcts Mod Neg L I Mod Neg L SI Mod Neg L SI 

45 LeePoly Mod Neg L SI Low Neg L I Mod Neg L I 

46 Med_Mult Low Neg L SI Low Neg L SI Low Neg L SI 

47 PctGovtEmp Low Pos L U Low Pos L U Low Pos L SU 

48 PctRetEmp Low Pos L SI Low Neg InvU SU Low Pos L SI 

49 Pat_KWkrs Low Neg L U Low Neg L U Low Neg L SU 

50 GDP_VMT Low Neg L I Low Pos InvU SU Low Neg L SU 

51 UASqMi High Neg L I Mod Neg L SI High Neg L SI 

52 UAPop-K Mod Neg L SI Mod Neg L I Mod Neg L SI 
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 There are 11 variables that are important in their relationship with congestion 

intensity (TTI) and 17 more that are somewhat important.  This leaves 24 that are not 

important.  Not surprisingly, the important variables include three urban area size 

variables (UASqMi, PopVLg and PopMed). Note that there are four demand variables 

among those rated as important and another four variables (three other and one spread) 

that may well be linked with demand.  In intensity considerations, demand-related 

variables seem perhaps more influential.  There are also eight cases where the 

relationships between the variables are not linear, all for supply or demand variables.   

  There are eight variables that are important and another 13 that are somewhat 

important in their relationship with congestion extent (PortLMCong).  Over half the 

variables considered (31 of 52) are either somewhat unimportant or unimportant. Again 

size variables are well-represented in the top of the table, and again four demand 

variables are in the top category, along with two other variables that could be linked with 

demand.  Nine variables, in all focus categories except flow, have relationships with the 

PortLMCong that are not linear.   

   Finally, there are eight variables that are important in their relationship with 

congestion duration (PkHrs) (three of which are urban size related), 21 that are somewhat 

important, and 23 that are somewhat unimportant or unimportant.  In duration, as in 

intensity and extent above, it seems that demand variables dominate the top category – 

four of the top eight are demand and one other and one spread variable are also demand-

related.  Note that there are 16 cases where there is disagreement in effect size and 11 

cases in effect direction.  There are ten cases where the relationships between the 

variables are not linear; nine of these are for supply or demand variables. 
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5.7  Variable Importance   

 As the main goal for this research is to identify those urban characteristics that 

have the most important relationships with congestion, it is worth summarizing variable 

importance from Table 28 above.  Table 29 shows that there are 19 variables that are 

important or somewhat important in all three dimensions of congestion, 20 that are not 

important in all three dimensions, and 13 that are of varying importance among 

dimensions.  These will be discussed further in the section below.  Note that there are 24 

cases where the size of the effect is not as expected (shaded in gray) and 14 cases where 

the direction of the effect is not as expected (in bold font).  In all cases but one, the size 

difference was just one gradation up or down; for PctPopCh, the difference was two 

gradations. 

Table 29: Variable importance summarized 

Focus Important 
(Size/Direction of Effect) 

Of Varying Importance 
(Size/Direction of Effect) 

Not Important 
(Size/Direction of Effect) 

Supply 

FwyArtMi_Cap (High/Pos) Rep-Dem (Low/Neg) PctPopCh (Low/Neg) 

 FwyMi_SqMi (Mod/Pos) NetMi_SqMi (Mod/Pos) 

 FwyLM_KCmtr (Mod/Pos) FwyLM_NetLM (Low/Pos) 

 DecBeforeNow (Low/Neg) Links_Node (Low/Neg) 

Demand 

Pers_SqMi (Low/Neg) Cmtr_SqMi (Low/Neg) Veh_HH (Low/Neg) 

Inc_Cap (Mod/Neg) Empl_Cap (Mod/Neg) Pers_Rest (Low/Pos) 

AvgCmtTime (High/Neg) PopLg (High/Neg) Inflows_Wkr (Low/Pos) 

PctSOV (Low/Pos)  GeoNE (Base variable) 

VRM_SqMi (Low/Neg)  GeoS (Mod/Neg) 

PopSm (Base variable)  GeoMW (Low/Pos) 

PopMed (Low/Pos)  GeoW (Low/Pos) 

PopVLg (Mod/Neg)   

Flow 

Nodes_UpNetMi (Mod/Neg) PctOldYng (Mod/Pos) PctTrks (Low/Pos) 

SpTms_Mcap (Mod/Pos) PctPrPvmt (Low/Neg) Crashes_Kcap (Low/Neg) 

  YrPrecipIn (Low/Neg) 

Spread 

GWkr_UpNetMi (Mod/Neg) GVeh_HH (Low/Neg) GPop_NetMi (Low/Pos) 
GJobs_HH (Low/Neg) GMedInc_HH (Low/Neg) GWkr_Cap (Low/Neg) 

GJobs_Wkr (Low/Neg)  GJobs_SqMi (Low/Neg) 

Other 

PctPopJPTcts (Mod/Neg) PctRetEmp (Low/Pos) PctJobsJRDTcts (Low/Pos) 

LeePoly (Mod/Neg) GDP_VMT (Low/Pos) PctGovtEmp (Low/Pos) 
Med_Mult (Low/Neg)  Pat_KWkrs (Low/Neg) 
UASqMi (High/Neg)   

UAPop-K (Mod/Neg)   
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5.8  Analysis Results vs. Variable Selection   

 The overall results from above are now superimposed on the variable selection 

tables in Chapter 4 and discussed to “close the loop”.  Variable importance is shown by 

shading (no shading for important in all dimensions, dark gray for not important in any 

dimension, and light gray for important in some dimensions but not in others).  Variable 

codes are added for ease of reference, revealed effects are noted under expected effects, 

and variables with possible linearity problems are indicated with an asterisk.  As noted 

above, there are a number of cases where the expected effects and the revealed effects are 

different.  Most of these are effect size-related and only one of which, PctPopCh, is more 

than one gradation in difference (expected – high, revealed – low); and this variable is 

unimportant in all congestion dimension.  The differences in directions of effect are of 

more concern and, although discussed above in the specific analysis results sections 

above, they may merit additional comment in the discussion below. 

Table 30: Overall results for variables impacting supply 
VARIABLE EXPECTED 

EFFECT 
 
SOURCE 

 
JUSTIFICATION CONCEPTUAL OPERATIONAL 

Network Size Percent change in 
population 2000 to 
2010 
(PctPopCh) 

High/Negative 
Revealed 

Low/Negative 

UMR Measure of inadequacy of 
network size  
-Structural functionalism 
-Lag-time concept 

 Political party 
control in 2000 
(political 
affiliation of 
mayor)* 
(Rep-Dem) 

Low/Negative  
Revealed 

Low/Negative 

City 
Records 
World-
statesmen 
website 

Measure of transportation 
investments  
-Structural functionalism 
-Political party trends  

Network Density Network miles per 
square mile* 
(NetMi_SqMi) 

Mod/Positive  
Revealed 

Mod/Positive 

FHWA 
Census  

Measure of network ability 
to accommodate demand 
-Structural functionalism 

 Freeway miles per 
square mile 
(FwyMi_SqMi) 

Mod/Positive  
Revealed 

Mod/Positive 

FHWA  
Census 

Measure of network ability 
to accommodate demand 
-Structural functionalism  
-Land rent theory 

Network 
Structure 

Freeway lane 
miles per network 
lane mile 
(FwyLM_NetLM) 

Mod/Positive  
Revealed 

Low/Positive 

UMR 
FHWA  

Measure of network ability 
to accommodate demand 
-Structural functionalism 
-Land rent theory 
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VARIABLE EXPECTED 
EFFECT 

 
SOURCE 

 
JUSTIFICATION CONCEPTUAL OPERATIONAL 

Network 
Robustness 

Freeway lane 
miles per thousand 
commuters* 
(FwyLM_KCmtr) 

High/Positive  
Revealed 

Mod/Positive 

UMR  Measure of network ability 
to accommodate demand 
-Structural functionalism  
-Land rent theory 

 Freeway miles + 
arterial miles per 
capita* 
(FwyArtMi_Cap) 

Mod/ Positive  
Revealed 

High/Positive 

FHWA 
UMR 

Measure of network ability 
to accommodate demand 
-Structural functionalism  
-Land rent theory 

 City Age (Census 
urban area reached 
50k in population 
(decades before 
2010))* 
(DecBeforeNow) 

Low/Negative  
Revealed 

Low/Negative 

Census 
Wikipedia 
city pages 

Measure of network ability 
to accommodate demand 
-Structural functionalism 
-Changing urban needs over 
time 

Network intra-
connectivity 

Network nodes / 
Network links* 
(Links_Node) 

Mod/Positive  
Revealed 

Low/Negative 

TransCAD 
Census 

Measure of available 
alternate routes  
-Structural functionalism 
-Packet-switching network 
theory 

Note: Shading is based on variable importance: none - important in all dimensions, light gray - important in 
some dimensions but not in others, and dark gray - not important in any dimension. 
* Possible non-linear relationships with one or more dependent variables. 

  

 Of the nine supply variables, only one is important in all congestion dimensions; 

four are not important in any dimension and four are mixed in their importance.  The 

important variable, FwyArtMi_Cap, is a measure of network robustness, which seems to 

be the more influential category of supply variables.  The variables used to assess the 

size, density, structure and intra-connectivity of the network are either not important in 

all dimensions or of mixed importance.   One variable has a counter-intuitive direction of 

effects, Links_Node, but that variable is unimportant in all dimensions and this result is 

somewhat suspect.  There are six variables with possible non-linear relationships with 

one or more of the dependent variables and one of these is the important variable, 

FwyArtMi_Cap.  Care must be taken when interpreting the revealed effects for these 

variables.  All in all, supply variables seem relatively less important in their links with 

congestion than variables in other categories. 
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Table 31: Overall results for variables impacting demand 
VARIABLE EXPECTED 

EFFECT 
 
SOURCE 

 
JUSTIFICATION CONCEPTUAL OPERATIONAL 

Internal 
Productions 

Commuters per 
square mile 
(Cmtr_SqMi) 

Mod/Negative  
Revealed 

Low/Negative 

UMR 
Census 

Measure of commuter 
productions 
-Social exchange theory 
-4-Step Urban Travel Demand 
Model 

 Persons per square 
mile* 
(Pers_SqMi) 

Mod/Negative  
Revealed 

Low/Negative 

UMR 
Census 

Measure of total productions 
-Social exchange theory 
-4-Step Urban Travel Demand 
Model 

 Cars per 
household* 
(Veh_HH) 

Mod/Negative  
Revealed 

Low/Negative 

Census 
ACS12-1 

Measure of trip productions 
-Social exchange theory 
-4-Step Urban Travel Demand 
Model 

 Income per 
capita* 
(Inc_Cap) 

Mod/Negative  
Revealed 

Mod/Negative 

Census 
ACS12-1 

Measure of trip productions 
-Social exchange theory 
-4-Step Urban Travel Demand 
Model 

Internal 
Attractions 

Employment per 
capita* 
(Empl_Cap) 
 

Mod/Negative  
Revealed 

Mod/Negative 

Census 
ACS12-1 

Measure of commuter 
attractions 
-Transportation demand is 
derived  
-Rational choice theory 
-Various sociological theories 

 Persons per 
restaurant 
(Pers_Rest) 

Mod/Positive  
Revealed 

Low/Positive 

US Census 
Economic 
Census 
2007 

Measure of other attractions 
-Transportation demand is 
derived 
-Rational choice theory 
-Various sociological theories 

External 
Productions  

In-commuting 
flows per worker 
(Jobs in UA tracts 
- Workers in UA 
tracts) 
(Inflows_Wkr) 

Low/Negative  
Revealed 

Low/Positive 

CTPP 5-
Year ACS 
2006-2010 

Measure of external 
productions 
-Social exchange theory 
-Land rent theory  
-Transportation demand is 
derived 

Trip Distribution Average 
commuting time 
in minutes* 
(AvgCmtTime) 

Mod/Negative  
Revealed 

High/Negative 

Census 
ACS12-1 

Measure of time on network 
-Rational choice theory 
-Land rent theory 

Mode Split Percent of 
commuters in 
single occupant 
vehicles (SOV)* 
(PctSOV) 

Low/Negative  
Revealed 

Low/Positive 

Census 
ACS12-1 

Effects of decreasing highway 
demand 
-Rational choice theory 
-Various sociological theories 

 Transit vehicle 
revenue miles per 
square mile* 
(VRM_SqMi) 

Low/Positive  
Revealed 

Low/Negative 

NTD 
Census 

Effects of decreasing highway 
demand 
-Rational choice theory 
-Various sociological theories 
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VARIABLE EXPECTED 
EFFECT 

 
SOURCE 

 
JUSTIFICATION CONCEPTUAL OPERATIONAL 

Variations in 
Demand between 
Urban Areas 

Dummy variables 
based on city size 
(population) 
(PopSm) 
(PopMed) 
(PopLg) 
(PopVLg) 

Mod/Negative  
Revealed 

(Base variable) 
Low/Positive  
High/Negative  
Mod/Negative 

UMR Measure of variations in 
demand 
-Rational choice theory 
-Various sociological theories 

 Dummy variables 
based on 
geography 
(GeoNE) 
(GeoS) 
(GeoMW) 
(GeoW) 

Low/Unknown 
Revealed 

(Base variable) 
Mod/Negative  
Low/Positive  
Low/Positive 

Census Measure of variations in 
demand  
-Rational choice theory 
-Various sociological theories 

Note: Shading is based on variable importance: none - important in all dimensions, light gray - important in 
some dimensions but not in others, and dark gray - not important in any dimension. 
* Possible non-linear relationships with one or more dependent variables. 

 
 
 There are 18 demand variables, eight of which are dummies associated with either 

population or geography.  Of these 18, eight are of importance in all dimensions, three of 

mixed importance and seven of no importance.  The important variables (Pers_SqMi, 

Inc_Cap, AvgCmtTime, PctSOV, VRM_SqMi, and all population dummies except 

PopLg) are largely focused on the trip production part of the four step travel modeling 

process, assuming that the population variables are drivers of productions more so than 

attractions.  The mode split variables also figure prominently, but the revealed effects are 

in the opposite direction as expected, so there may be some confounding interactive 

effects at play in these two cases. Interestingly, the unimportant variables include 

Veh_HH, which although a key driver in trip productions in the four-step model, appears 

less useful in differentiating between urban areas based on congestion levels.  Also 

unimportant are the geographical locations of the cities, the net traffic inflows and the 

number of attractions (as measured by Pers_Rest).  It seems likely that these too, are 

similar enough cross the cities as to be less useful in differentiation.  There are seven 

variables with unexpected directions of effect, although three of these are the geographic 
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dummy variables, where the expected direction is unknown, so the difference is less an 

unexpected effect than just new knowledge.  Another unexpected direction is for one of 

the population dummies (PopMed) and this results from the interpretation of this variable 

in relation to the base variable more so than in relation to congestion itself.  The other 

discrepancies in direction seem valid and are discussed in detail above.  Seven variables 

show evidence of non-linear relationships with at least one dimension of congestion, and 

care should be exercised in interpreting the revealed effects.  Demand variables, as a 

whole, seem to be very important in their relationships with congestion. 

 
Table 32: Overall results for variables impacting flow 

VARIABLE EXPECTED 
EFFECT 

 
SOURCE 

 
JUSTIFICATION CONCEPTUAL OPERATIONAL 

Trucks Percent of trucks 
on freeways 
(PctTrks) 

Mod/ Negative  
Revealed 

Low/Positive 

FHWA 
 

Measure of truck impact on 
flow  
-Differences in truck-car 
nimbleness 

Distracted 
Driving 

Percent of 
population 16-24 
plus percent of 
population 65 and 
over 
(PctOldYng) 

Low/ Negative  
Revealed 

Mod/Positive 

Census 
ACS12-1 

Measure of flow interruptions 
due to distracted drivers  
-Consequences of human 
interaction 
-Loss aversion 

Intersections with 
traffic signals and 
stop-controlled 
signage 

Nodes per network 
mile (upper level 
system only) 
(Nodes_UpNetMi) 

Mod/ Negative  
Revealed 

Mod/Negative 

TransCAD 
Census 

Measure of flow interruptions 
due to signals/signage  
-Queuing theory 

Road Condition Pavement 
condition (percent 
in poor condition) 
(PctPrPvmt) 

Low/ Negative  
Revealed 

Low/Negative 

TRIP Urban 
Roads  
Report 

Measure of decreases in flow 
caused by lower speeds due 
to poor pavement 
-Human nature and driving 
skills 

Traffic Incidents Accident rate x 
VMT per capita 
(Crashes_Kcap) 

Low/ Negative  
Revealed 

Low/Negative 

NHTSA 
FHWA 
UMR 

Measure of flow interruptions 
due to traffic accidents  
-Consequences of human 
interaction 
-Loss aversion  

Weather Annual 
precipitation 
(YrPrecipIn) 

Low/ Negative  
Revealed 

Low/Negative 

NCDC Measure of flow interruptions 
due to bad weather  
-Mother nature and 
geography 
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VARIABLE EXPECTED 
EFFECT 

 
SOURCE 

 
JUSTIFICATION CONCEPTUAL OPERATIONAL 

Special Events Number of upper 
level sports teams 
(SpTms_Mcap) 

Low/ Negative  
Revealed 

Mod/Positive 

Various 
Internet 
Websites 

Measure of flow interruptions 
due to special events  
-Structural functionalism 
-Social exchange theory 

Note: Shading is based on variable importance: none - important in all dimensions, light gray - important in 
some dimensions but not in others, and dark gray - not important in any dimension. 
  
 
 On the other hand, flow variables appear to be less important in their relationships 

with congestion.  Just two of the seven are important in all dimensions and one of these 

has an unexpected direction of effect, which may indicate the presence of a confounding 

variable.  The other important variable, Nodes_UpNetMi, seems to be a clean and 

expected link with congestion, although it may have limited use in remediation efforts 

(assuming that the variable is causal); many of the existing intersections are needed to 

allow network access and alternatives to intersections can often be prohibitive in cost.  

Three flow variables are unimportant and the remaining two are of mixed importance.  

The two other variables with unexpected directions of effects are of limited or no 

importance and have been discussed already.  Interestingly, all flow variables appear to 

have linear relationships with all three congestion variables. 

Table 33: Overall results for measures of spread across urban area census tracts 
VARIABLE EXPECTED 

EFFECT 
 
SOURCE 

 
JUSTIFICATION CONCEPTUAL OPERATIONAL 

Network Layout Gini coefficient of 
population per 
network mile 
(GPop_NetMi) 

Low/Negative  
Revealed 

Low/Positive 

CTPP 5-
Year ACS 
2006-2010 
TransCAD 

Measure of network layout 
efficiency 
-Structural functionalism 
-Changing urban needs over 
time 

 Gini coefficient of 
workers per upper 
network mile 
(GWkr_UpNetMi) 

Low/Negative  
Revealed 

Mod/Negative 

CTPP 5-
Year ACS 
2006-2010 
TransCAD 

Measure of network layout 
efficiency 
-Structural functionalism 
-Changing urban needs over 
time 

Internal 
productions 

Gini coefficient of 
car ownership 
(aggregate 
vehicles per HH) 
(GVeh_HH) 

Low/Negative  
Revealed 

Low/Negative 

CTPP 5-
Year ACS 
2006-2010 

Measure of trip productions 
-Social exchange theory 
-4-Step Urban Travel 
Demand Model 
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VARIABLE EXPECTED 
EFFECT 

 
SOURCE 

 
JUSTIFICATION CONCEPTUAL OPERATIONAL 

 Gini coefficient 
for median income 
per HH* 
(GMedInc_HH) 

Low/Negative  
Revealed 

Low/Negative 

CTPP 5-
Year ACS 
2006-2010 

Measure of trip productions 
-Social exchange theory 
-4-Step Urban Travel 
Demand Model 

 Gini coefficient of 
workers per 
capita*  
(GWkr_Cap) 

Low/Negative  
Revealed 

Low/Negative 

CTPP 5-
Year ACS 
2006-2010 

Measure of time on network 
-Level of mixed land use 
-Land rent theory 

Urban Spatial 
Structure 

Gini coefficient of 
employment 
(jobs) density 
(GJobs_SqMi) 

Mod/Negative  
Revealed 

Low/Negative 

CTPP 5-
Year ACS 
2006-2010 

Measure of degree of 
monocentricity  
-Central place theory 
-Land rent theory 

 Gini coefficient 
for jobs/HH 
balance 
(GJobs_HH) 

Mod/Negative  
Revealed 

Low/Negative 

CTPP 5-
Year ACS 
2006-2010 

Measure of degree of 
monocentricity  
-Central place theory 
-Land rent theory 

 Gini coefficient of 
jobs/worker 
balance 
(GJobs_Wkr) 

Mod/Negative  
Revealed 

Low/Negative 

CTPP 5-
Year ACS 
2006-2010 

Measure of degree of 
monocentricity  
-Central place theory 
-Land rent theory 

Note: Shading is based on variable importance: none - important in all dimensions, light gray - important in 
some dimensions but not in others, and dark gray - not important in any dimension. 
* Possible non-linear relationships with one or more dependent variables. 

 
 
 Three spread variables are important in all dimensions of congestion: 

GWkr_UpNetMi, GJobs_HH, and GJobs_Wkr.  The first involves network layout, while 

the last two involve urban spatial structure.  All three, however, involve the degree of 

equal distribution of the workforce within the urban footprint, and all three have the 

expected effect – an increase in the inequality of the distribution is linked with worse 

congestion.  The other five spread variables are either of mixed importance (two) or not 

important (three).  Only one has an unexpected direction of effect (and that variable is an 

unimportant one, so it is unlikely to be of consequence) and two have potential non-linear 

relationships with one or more of the dependent variables (and these are of mixed or no 

importance).  On the whole, most spread variables are not so useful in this assessment 

and the time and effort involved in their calculation may make them “not worth the 

effort.” 
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Table 34: Overall results for other variables potentially impacting congestion 

VARIABLE EXPECTED 
EFFECT 

 
SOURCE 

 
JUSTIFICATION CONCEPTUAL OPERATIONAL 

Centrality Percent of 
Employment in 
Job-Rich, Job-
Dense Tracts* 
(PctJobsJRDTcts) 

Mod/Negative  
Revealed 

Low/Positive 

CTPP 5-
Year ACS 
2006-2010 
TransCAD 

Measure of the spread of 
employment 
-Central place theory 
-Land rent theory 

Sprawl Percent of 
Population in Job-
Poor Tracts 
(PctPopJPTcts) 

Mod/Negative  
Revealed 

Mod/Negative 

CTPP 5-
Year ACS 
2006-2010 
TransCAD 

Measure of the spread of 
population 
-Central place theory 
-Land rent theory 

Urban Spatial 
Structure 

Degree of poly-
centricity (higher 
more poly-centric) 
(LeePoly) 

Mod/Positive  
Revealed 

Mod/Negative 

Lee and 
Gordon 
(2007) 

Measure of degree of 
monocentricity  
-Central place theory 
-Land rent theory 

Land Costs Housing 
affordability 
(Med_Mult) 

Mod/Negative  
Revealed 

Low/Negative 

Int’l 
Housing 
Afford. 
Survey 

Measure of the bid-rent 
function 
-Land rent theory 

Government 
Employment 

Percent of 
employees 
working for 
government  
(PctGovtEmp) 

Low/Negative  
Revealed 

Low/Positive 

Census 
ACS12-1 

Measure of private-public 
employment split 
-Degree of peak hour 
participation 

8-hour work day 
 

Percent of 
employment in 
retail* 
(PctRetEmp) 

Low/Positive  
Revealed 

Low/Positive 

Census 
ACS12-1 

Measure of employees not 
working a standard 8-hour day 
-Rational choice theory 
-Degree of peak hour 
participation 

Creativity Patents per 1000 
workers 
(Pat_KWkrs) 

Low/Positive  
Revealed 

Low/Negative 

Brookings 
Institute 

Measure of participation in the 
status quo 
-Transportation demand is 
derived  
-Rational choice theory 
-Various sociological theories 

Activity Density Real GDP per 
VMT* 
(GDP_VMT) 

Mod/Negative  
Revealed 

Low/Positive 

BEA 
UMR 
FHWA 

Measure of city density of 
activity 
-Structural functionalism 
-Social exchange theory 

Size Urban area square 
miles 
(UASqMi) 

Mod/Negative  
Revealed 

High/Negative 

Census Measure of city size 
-Rational choice theory 
-Various sociological theories 

Size Urban area 
population 
(UAPop-K) 

Mod/Negative  
Revealed 

Mod/Negative 

Census Measure of city size 
-Rational choice theory 
-Various sociological theories 

Note: Shading is based on variable importance: none - important in all dimensions, light gray - important in 
some dimensions but not in others, and dark gray - not important in any dimension. 
* Possible non-linear relationships with one or more dependent variables. 
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 There are ten other variables that are considered to “round out the field”.  Of 

these, five are important in all dimensions of congestion, three are unimportant, and two 

are of mixed importance.  Two of the five important variables are size-related (UASqMi 

and UAPop-K) and three generally deal with the overall urban layout: sprawl 

(PctPopJPTcts), poly-centricity (LeePoly), and land costs (Med_Mult).  While LeePoly 

has an unexpected direction of effect (which could indicate the interactive effects of other 

confounding variables), all other important variables behave about as expected.  The 

issue of centrality, the level of government employment and the creative nature of the 

workforce are not important, at least as far as the variables used as metrics are concerned.  

Of some interest, but of less importance are the level of retail employment and the 

amount of money “available” for each vehicle mile of travel.  There are three variables 

with possible non-linear relationships with the congestion variables, but these are 

unimportant or of mixed importance.  All in all, these other “round-out” variables were a 

valuable addition to the analysis.
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CHAPTER 6: CONCLUSIONS 
 
 
6.1  Summary   

 This exploratory research sought to identify the set of urban characteristics that 

are correlated with traffic congestion.  After a review of the literature concerning 

congestion and urban areas, with a focus on theories and concepts, models, and urban 

structure, three dependent congestion variables representing the three dimensions of 

congestion (intensity, extent and duration) and 52 potential predictor variables were 

identified for 100 urban areas in the United States, using 2010 data predominantly.  

Variables were analyzed using multiple methods.  Simple correlation, PLS regression, 

CHAID decision trees, and CHAID first split analysis results were all considered in 

determining the relationships between the predictor and response variables.  Each method 

was used to uncover the influential variables for each dimension and then these method-

based results were compared with one another to determine the variables’ influence 

across all four methods.  Of the 52 predictor variables, 19 were determined to be 

important (i.e. well-correlated) in all three dimensions of congestion, 20 were not 

important in any of the three dimensions, and 13 were important in some dimensions, but 

not in others. While in most cases the direction of effect was as expected, there were 17 

instances where the effect was in the opposite direction, most likely due to the presence 

of interaction effects from confounding variables.  In most cases, the revealed effects 
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suggested a linear relationship with the dependent variable; however, there were 18 cases 

where the relationship was possibly non-linear. 

 Of the 19 variables that were most correlated with congestion, one was supply-

focused (FwyArtMi_Cap), eight were demand-focused (Pers_SqMi, Inc_Cap, 

AvgCmtTime, PctSOV, VRM_SqMi, PopSm, PopMed, and PopVLg), two were flow-

focused (Nodes_UpNetMi and SpTms_Mcap), three were spread-focused 

(GWkr_UpNetMi, GJobs_HH, and GJobs_Wkr), and five were in the “other” category 

where the focus was unclear or overlapping (PctPopJPTcts, LeePoly, Med_Mult, 

UASqMi, and UAPop-K).  The revealed effects of congestion were in the expected 

direction for 15 of these 19; four, however, had counterintuitive revealed effects 

(PctSOV, VRM_SqMi, SpTms_Mcap and LeePoly).   

6.2  Research Corroborated    

 Most of the congestion research heretofore has focused on congestion impacts, 

mechanics and remediation.  While the first is relatively independent of causality 

concerns, the last two are built around cause-and-effect relationships.  This research did 

not establish any causal connections, nor can they be inferred.  Nonetheless, there are 

some links between this analysis and the previous literature that might be noted, 

especially in the congestion remediation area.  Efforts to improve congestion levels 

through adding supply are reasonable, particularly if the focus is on both arterial and 

freeway capacity.  Efforts to improve congestion levels by decreasing demand are also 

reasonable, although the results of some strategies (e.g. decreasing PctSOV or increasing 

VRM_SqMi) might not have the expected results and results may diminish as cities 

become large and very large.  Flow-focused efforts to reduce congestion are reasonable, 
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but perhaps to a lesser degree and might be better targeted to the upper level system.  

There are some congestion remediation proposals that are spread-focused, although land-

use solutions are long-term propositions.  Still, the data show that a more uniform 

distribution of jobs and housing is linked with lower congestion levels.  Finally, there is 

support for the idea that lower levels of sprawl are correlated with lower levels of 

congestion.     

6.3  Lessons Learned  

 Congestion is a most complex issue.  Non-linear relationships, the presence of 

confounding, and perhaps unknown, variables, and the varying degrees of importance 

among reasonably formulated variables all serve to muddy the waters of understanding.  

Nonetheless, some broad lessons are learned, in addition to the specific findings noted in 

the summary.  Size variables seem to be overly represented among those deemed 

important and population density seems to be influential.  Certain measures of spread are 

also important.  All of which point to the idea that size matters, at least as far as 

congestion goes.  Another key lesson learned is that some variables just do not seem to 

matter and can be safely excluded from the congestion discussion.  One final word of 

caution in the lessons learned: this assessment looked exclusively at correlative 

relationships.  No causal inferences were determined or implied.   

6.4  Future Research   

 As noted, this research is exploratory in purpose.  There is no intent to explain 

congestion or identify any causal relationships.  It would be extremely difficult, if not 

impossible, to “get at” the causality issue in a macro analysis such as this one.  Human 

behavior, and traffic congestion certainly falls under this heading, is eminently adaptable 
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and notoriously difficult to predict.  While it is true that Sherlock Holmes noted in The 

Sign of Four: 

“While the individual man is an insoluble puzzle, in the aggregate he becomes a mathematical 
certainty.  You can, for example, never foretell what any one man will be up to, but you can say 
with precision what an average number will be up to.  Individuals vary, but percentages remain 
constant. So says the statistician.”  
― Sir Arthur Conan Doyle 

 
percentages may well change, especially over the long periods of time needed to 

implement congestion remedies.  Hence, the percentages are likely to become 

increasingly difficult to predict.  Nonetheless, efforts to understand congestion are not 

misplaced.  Additional research using only those variables identified here as important, 

and especially those with likely linear relationships, is a reasonable “next step” forward.  

As causality issues are better studied at the micro-level, such research should be targeted 

at one or at a small group of cities, similar in size and geography. Also of potential 

benefit is research within a single congestion dimension.  Most discussion of congestion 

in the literature seems to consider congestion as a whole, and possible approaches to 

more effective congestion remediation could be uncovered with a single dimension focus.  

Finally, there may be some merit to additional exploratory research conducted on a more 

micro level.  It could be that some important relationships are lost in higher level 

analyses.  It could also be that some of the counter-intuitive relationships found in this 

study no longer hold in a more localized assessment.   

6.5  Final Thoughts   

 Larger cities, in terms of square mileage and population, tend to be accompanied 

by increased poly-centricity, a more variegated landscape, and a more sprawling footprint 

as people try to balance housing and jobs and employers try to adapt to the changing 

worker pool.  A quick look at the urban areas in the study shows that it is the larger ones 
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that have the most congestion issues.  It may turn out that congestion is simply another 

one of the “amenities” (although negative in nature) offered by urban regions that the 

citizenry will need to embrace, or at least accept.  As this amenity does not seem to be a 

major deterrent to city growth, it could be that Anthony Downs is right when he said: 

“Traffic congestion is not essentially a problem.  It’s the solution to our basic mobility 

problem.” (Downs 2004, p. 20)  Individuals can and do adapt. 
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