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ABSTRACT 
 
 

YING RUAN CHEN. How does relative humidity affect electricity demand? (Under the 
direction of DR. TAO HONG) 

 
 

Weather is a key driving factor of electricity demand. Among all the weather 

variables included in load forecasting models over the past half a century, temperature is 

the most commonly used one. Although humidity has also been discussed in the load 

forecasting literature, it is not as formally studied as temperature. In reality, a large 

portion of the electricity demand is caused by heating, ventilation, and air conditioning in 

order to meet people’s comfort level, which is primarily determined by temperature and 

humidity. In this thesis, how relative humidity affects electricity demand will be 

investigated. 

The case study is conducted at North Carolina Electric Membership Corporation, 

a large generation and transmission cooperative in the United States, for its system total 

load and the loads of three power supply areas. It is found that relative humidity plays a 

vital role in driving electricity demand during the warm months (June, July, August and 

September). This thesis proposes a systematic approach to include relative humidity 

variables in a regression analysis framework, resulting in the recommendation of a group 

of relative humidity variables. The proposed models with the recommended addition of 

relative humidity variables improve the forecast accuracy of Tao’s Vanilla Model and its 

three derivatives in 24-hour ahead, one-week ahead, two-week ahead and one-year ahead 

ex post load forecasting settings. The improvement obtained from this case study ranges 

from 4.05% to 9.39% for NCEMC total ex post load forecasting on the test data (holdout 

sample).   
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NOMENCLATURE 
 
 

𝐻𝐻𝑡𝑡  Hour, class variable, 24 hours of a day. 

𝑀𝑀𝑡𝑡  Month, class variable, 12 months of the year. 

𝑅𝑅𝐻𝐻𝑡𝑡  Current hour relative humidity. 

𝑅𝑅𝐻𝐻𝑅𝑅𝑡𝑡  𝑅𝑅𝐻𝐻𝑡𝑡 × 𝑅𝑅, cross effect of relative humidity and summer. 

𝑅𝑅𝐻𝐻𝑅𝑅𝑡𝑡2   𝑅𝑅𝐻𝐻𝑡𝑡 × 𝑅𝑅𝐻𝐻𝑡𝑡 × 𝑅𝑅, cross effect of relative humidity and summer. 

𝑅𝑅𝑡𝑡 Summer, dummy variable. June, July, August and September is defined as 
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𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 A linear trend variable. 

𝑇𝑇𝑡𝑡  Current hour temperature. 

𝑇𝑇𝑡𝑡−𝑘𝑘  Temperature of the previous k-th hour. 

𝑊𝑊𝑡𝑡  Weekday, class variable, 7 days of a week. 
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CHAPTER 1: INTRODUCTION 
 
 

The electricity grid has been labelled as the most complicated machine human 

beings have ever created (Schewe & Brennan, 2008). The lack of ability to massively 

store electricity leads to the requirement that the supply and demand must be balanced all 

the time. Thus, making accurate load forecasts is of great importance to power systems 

planning and operations (Hong, 2014).  

Based on different forecasting horizons, the load forecasting can be categorized 

into four classes: very short term load forecasting (VSTLF), short term load forecasting 

(STLF), medium term load forecasting (MTLF), and long term load forecasting (LTLF) 

(Hong, 2010). The cut-off points are 1 day, 2 weeks and 3 years, respectively (Hong and 

Shahidehpour, 2015).  

Over the past five decades, load forecasting has been extensively studied in the 

literature (Hong, 2014; Weron, 2006). Some of them focused on STLF (Hippert, 

Pedreira, & Souza, 2001; Hong, 2010), while others were on LTLF (Hong & 

Shahidehpour, 2015; Willis, 2002;)  

Due to extensive use of electricity-powered equipment and appliances, human 

activities and weather patterns are the main driving factors of electricity demand (Hong, 

2014). More specifically, part of the electricity consumption is used to keep the 

environment meeting people’s comfort level, which is primarily determined by 

temperature and humidity. While temperature (dry bulb temperature) is the most deep-
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rooted weather variable in the load forecasting literature, other weather variables, such as 

humidity, have not been formally studied as much as temperature.  

The objective of this thesis is to investigate methods to add relative humidity 

information to temperature base linear regression models through a case study from 

North Carolina Electric Membership Corporation (NCEMC). First, the relationship 

between electricity demand and relative humidity will be explored through exploratory 

data analysis. Then, how to include humidity variables in the linear regression load 

forecasting models to improve their load forecasts will be investigated. The expected 

outcome is a linear regression benchmark model that includes both temperature and 

relative humidity variables. This would be an extension and continuation of the 

benchmarking effort taken in Hong (2010), where the author proposed a popular 

benchmark model (a.k.a. Tao’s Vanilla Benchmark Model).   

The structure of this thesis is as follows: Chapter 2 reviews the relevant literature; 

Chapter 3 presents the theoretical background and methodology used in this thesis; 

Chapter 4 introduces the case study, including the exploratory data analysis and the 

model development process; Chapter 5 presents the case study results and proposes the 

recommended addition of relative humidity variables; Chapter 6 concludes this thesis 

with the discussion of possible future research directions. 
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CHAPTER 2: LITERATURE REVIEW 
 
 

2.1 Recent Research in Load Forecasting 

Numerous techniques have been used for load forecasting. Most of them belong 

to two categories: statistical techniques and artificial intelligence (AI) techniques. 

TABLE 1 is a summary of the representative techniques that have been used in load 

forecasting models together with the corresponding references. 

 

TABLE 1: References of methods used in load forecasting 

Category Methods References 

Statistical 

techniques 

Time series models (Hagan & Behr, 1987);  
(Weron, 2006) 

Linear regression models (Papalexopoulos & Hesterberg, 1990); 
(Hong, 2010) 

Semi-parametric additive models (S. Fan & Hyndman, 2012); 
(Goude, Nedellec, & Kong, 2014) 

AI 

techniques 

Artificial Neural Networks 
(ANN) 

(Khotanzad, Afkhami-Rohani, & 
Maratukulam, 1998); 
(Hippert et al., 2001); 

Fuzzy logic and fuzzy regression (Ranaweera, Hubele, & Karady, 1996);  
(K.-B. Song, Baek, Hong, & Jang, 
2005);  
(Hong & Wang, 2014) 

Support vector machine (SVM) (Chen, Chang, & Lin, 2004);  
(S. Fan, Chen, & Lee, 2008) 

 
 
 
In the last decade, the research in load forecasting has gone beyond trials of 

various techniques. In STLF at aggregated level, Hong (2010) proposed a systematic 
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method for variable selection. In hierarchical load forecasting, Fan, Methaprayoon, and 

Lee (2009) proposed a multiregion load forecasting method. The IEEE Working Group 

on Energy Forecasting organized the Global Energy Forecasting Competition 2012 

(Hong, Pinson, & Fan, 2014) with one of the tracks on hierarchical electric load 

forecasting. In LTLF, Xie, Hong, and Stroud (2015) proposed a long term retail energy 

forecasting solution with consideration of customer attrition.  

Comparing with conventional point (or single-valued) load forecasting, 

probabilistic load forecasting provides more information about the uncertainty of the 

future. Hyndman and Fan (2010) proposed a density forecasting method which provides 

probabilistic distributions for annual and weekly peak load forecast. This method has 

been deployed at Australia Energy Market in 2007. Hong, Wilson, and Xie (2014) 

proposed a long term probabilistic load forecasting and normalization method, which has 

been deployed in many utilities worldwide. Hong and Fan (2015) offered a tutorial 

review on probabilistic load forecasting.  

Since this thesis is devoted to the investigation of humidity in load forecasting, 

the usage of weather variables in the coming sections will be reviewed. Section 2.2 is 

dedicated to temperature variables. Section 2.3 covers other weather variables. Section 

2.4 provides a deep-dive into the temperature and humidity variables.  

2.2 Temperature Variables 

Various weather variables and weather related indices have been used in load 

forecasting. Temperature is the most popular one. In summer, load increases as 

temperature increases, in response to cooling needs. In winter, load increases as 



5 
 
temperature decreases to meet heating needs. This relationship between load and 

temperature results in a “hockey stick” shape as shown in FIGURE 1. 

 

 

FIGURE 1: A typical scatter plot between hourly load and temperature in North Carolina 
(2011) 
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There are many ways to represent the aforementioned relationship in load 

forecasting models, such as piecewise linear regression models and second order 

polynomials. TABLE 2 below shows several functional forms that have been used in load 

forecasting models together with the corresponding references.  

 

TABLE 2: Functional forms to represent the relationship between load and temperature  

Functional Forms References 

Piecewise linear regression models (S. Fan et al., 2008);  
(S. Fan et al., 2009) 

Second order polynomials (Abou-Hussien, Kandlil, Tantawy, & 
Farghal, 1981);  
(Y.-H. Song & Wang, 2003) 

Third order polynomials (Hagan & Behr, 1987);  
(Hong, 2010) 

 
 

Furthermore, there are many other ways to include temperature information, such 

as current hour temperature, previous hour temperature, and maximum (or minimum) 

temperature. TABLE 3 summarizes several popular temperature variables that have been 

used in load forecasting models together with the corresponding references.  
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TABLE 3: Temperature variables in load forecasting 

Temperature Forms References 

Current hour temperature (S. Fan et al., 2009);  
(Hong, 2010) 

Previous hour temperature (S. Fan et al., 2009);  
(Hong, 2010) 

Daily maximum/minimum temperature (Park, El-Sharkawi, Marks, Atlas, & 
Damborg, 1991);  
(Papalexopoulos, Hao, & Peng, 1994); 
(Kiartzis, Bakirtzis, & Petridis, 1995)  

Average temperature during a defined 
past time period 

(Douglas, Breipohl, Lee, & Adapa, 1998); 
(Hong, Liu, & Wang, 2015) 

Cooling/heating degree days 

(CDD/HDD) 

(Papalexopoulos et al., 1994); 
(Hor, Watson, & Majithia, 2005) 

Dew point temperature, wet bulb 
temperature 

(Saifur Rahman, 1990); 
(Saini, 2008); 
(Raza & Khosravi, 2015) 

 
 

2.3 Other Weather Variables 

Other weather variables and indices have also been used by the researchers and 

practitioners, such as relative humidity, wind speed, heat index (HI) or temperature-

humidity index (THI), and wind chill index (WCI). TABLE 4 lists a few frequently used 

ones in load forecasting models together with the corresponding references.  
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TABLE 4: Weather variables and indices in load forecasting 

Weather variables or weather indices References 

Relative humidity (Saifur Rahman, 1990); 
(J. Y. Fan & Mcdonald, 1994);  
(Mirasgedis et al., 2006) 

Wind speed (J. Y. Fan & Mcdonald, 1994);  
(McSharry, Bouwman, & Bloemhof, 
2005); 
(PJM, 2015) 

HI/ THI (Saifur Rahman, 1990);  
(S. Rahman & Hazim, 1996) 

WCI (S. Rahman & Hazim, 1996); 
(PJM, 2015) 

 
 

Both HI and WCI can be interpreted as adjusted temperatures. National Oceanic 

and Atmospheric Administration (NOAA) National Weather Service (NWS) uses HI to 

represent the human-perceived equivalent temperature in warm weather (Rothfusz, 1990; 

Steadman, 1979). The HI equation is as follows. It includes both temperature and relative 

humidity variables. 

𝐻𝐻𝐻𝐻 = −42.379 + 2.04901523 × 𝑇𝑇 + 10.14333127 × 𝑅𝑅𝐻𝐻 − 0.22475541 × 𝑇𝑇 × 𝑅𝑅𝐻𝐻 −

6.83783 × 10−3 × 𝑇𝑇2 − 5.481717 × 10−2 × 𝑅𝑅𝐻𝐻2 + 1.22874 × 10−3 × 𝑇𝑇2 × 𝑅𝑅𝐻𝐻 +

8.5282 × 10−4 × 𝑇𝑇 × 𝑅𝑅𝐻𝐻2 − 1.99 × 10−6 × 𝑇𝑇2 × 𝑅𝑅𝐻𝐻2           (1) 

where 𝑇𝑇 stands for temperature, 𝑅𝑅𝐻𝐻 stands for relative humidity. The pre-defined 

coefficients calculated based on multiple regression analysis. There will be some further 

adjustments when relative humidity is low but temperature is high or when relative 

humidity is high but temperature is low.  

During the cold weather, when wind increases heat loss, people feel colder 

(Bluestein, 2015). The WCI by NOAA NWS measures the human-perceived equivalent 
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temperature in cold weather. Both temperature and wind speed are accounted in its 

calculation.  

2.4 More about Temperature and Relative Humidity 

Recall that electricity demand is mainly driven by people’s comfortable level. 

Human beings may feel comfortable when temperature is high and relative humidity is 

low, or when temperature is low and relative humidity is high. Because of the combined 

impact of relative humidity and temperature on human comfort level, it is reasonable to 

consider both of them in load forecasting. 

Relative humidity appeared in a few load forecasting papers. Saifur Rahman 

(1990) considered the effect of relative humidity for late spring, summer and early 

autumn in load forecasting. THI is used to replace temperature in his model when the 

forecasted day was in April to September and the temperature was between 76°F and 

91°F. Hor et al. (2005) found that including relative humidity in the model can improve 

monthly load forecast accuracy during the summer months in UK.  

Nevertheless, the load forecasting literature on relative humidity represents only a 

small fraction of what has been done on temperature. Since relative humidity has not yet 

received the attention it deserves in the load forecasting area, I would like to start a 

formal and systematic investigation on it in this thesis.  
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CHAPTER 3: THEORETICAL BACKGROUND AND METHODOLOGY 
 
 
3.1 Theoretical Background 

3.1.1 Linear Regression Models in Load Forecasting 

Linear regression is one of the most widely deployed load forecasting methods. 

Independent variables (weather, calendar variables, etc.) are fed to the models to predict 

the dependent variable (load). The equation of a multiple linear regression with p 

independent variables 𝑋𝑋1, …𝑋𝑋𝑝𝑝 is (Kutner, Nachtsheim, Neter, & Li, 2004): 

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖1 + 𝛽𝛽2𝑋𝑋𝑖𝑖2 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑖𝑖,𝑝𝑝 + 𝜀𝜀𝑖𝑖    (2) 

The prediction is made based on parameter estimated (𝛽𝛽0 𝑡𝑡𝑡𝑡 𝛽𝛽𝑝𝑝) from the 

historical data. A linear model can include both main effects (independent variables and 

their polynomials) and cross effects (interactions between the independent variables). 

Hong (2010) proposed a linear regression based approach to STLF, where the linear 

models can be augmented for VSTLF, MTLF and LTLF. Hong’s methodology has been 

used by many utilities (Hong, Wilson, et al., 2014). In this thesis, investigation based on 

linear models as the continuation of the work done in (Hong, 2010) are conducted.  

3.1.2 Benchmark Process 

Benchmarking is an essential component of load forecasting. It helps to set the 

standard of modeling process, evaluate the improvement of new models, and make 

comparison within or between utilities. Hong (2010) pointed out that a good benchmark 

model should be simple, widely applicable, reproducible, and accurate. The 
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characteristics of linear regression make it an ideal technique for creating a benchmark 

model. Following these criteria, Hong (2010) proposed a multiple linear regression 

benchmark model with temperature variables for STLF (a.k.a. Tao’s Vanilla Benchmark 

Model): 

𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 + 𝛽𝛽2𝑀𝑀𝑡𝑡 + 𝛽𝛽3𝑊𝑊𝑡𝑡 + 𝛽𝛽4𝐻𝐻𝑡𝑡 + 𝛽𝛽5𝑊𝑊𝑡𝑡𝐻𝐻𝑡𝑡 + 𝑓𝑓(𝑇𝑇𝑡𝑡)          (3) 

where, 𝑦𝑦�𝑡𝑡  is the forecasted load, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 stands for a linear trend, 𝑀𝑀𝑡𝑡,𝑊𝑊𝑡𝑡 , and 𝐻𝐻𝑡𝑡 are class 

variables month, weekday, and hour, 𝑇𝑇𝑡𝑡 is current hour temperature, 𝛽𝛽𝑖𝑖 are the 

coefficients estimated using historical data, and  

𝑓𝑓(𝑇𝑇𝑡𝑡) = 𝛼𝛼1𝑇𝑇𝑡𝑡 + 𝛼𝛼2𝑇𝑇𝑡𝑡2 + 𝛼𝛼3𝑇𝑇𝑡𝑡3 + 𝛼𝛼4𝑇𝑇𝑡𝑡𝑀𝑀𝑡𝑡 + 𝛼𝛼5𝑇𝑇𝑡𝑡2𝑀𝑀𝑡𝑡 + 𝛼𝛼6𝑇𝑇𝑡𝑡3𝑀𝑀𝑡𝑡 + 𝛼𝛼7𝑇𝑇𝑡𝑡𝐻𝐻𝑡𝑡 + 𝛼𝛼8𝑇𝑇𝑡𝑡2𝐻𝐻𝑡𝑡 +

𝛼𝛼9𝑇𝑇𝑡𝑡3𝐻𝐻𝑡𝑡                            (4) 

The above model was used as the benchmark model in the Global Energy 

Forecasting Competition 2012 (Hong, Pinson, et al., 2014). Among over 100 teams in the 

load forecasting track of the competition, this model finally ranked top 25%. This thesis 

focuses on improving this model by adding relative humidity variables. 

3.2 Methodology 

3.2.1 Error Measure 

In this thesis, the Mean Absolute Percentage Error (MAPE) is used for model 

evaluation. It is one of the most popular error statistics in business forecasting including 

load forecasting. The definition of the MAPE is as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100%
𝑛𝑛

∑ �𝐴𝐴𝑡𝑡−𝐹𝐹𝑡𝑡
𝐴𝐴𝑡𝑡

�𝑛𝑛
𝑡𝑡=1                 (5) 

where At stands for actual value (observation). Ft stands for forecasted value. The MAPE 

measures the size of the prediction’s error in percentage terms compared with the 

observation. The smaller the MAPE value is, the more accurate the model is.  
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This thesis focuses on the model accuracy evalutaion, which the utilities are most 

interested in. Other aspects such as autocorrelation of the residuals, multicollinearity of 

the dependent variables are not tested.   

3.2.2 Cross Validation 

The data is split into training data and validation data when building and selecting 

models. To overcome the potential overfitting issues, cross-validation is used (Arlot & 

Celisse, 2010). The basic idea of cross validation is to split the data into several pieces 

and use some pieces of data to predict the others. The simple average performance of all 

the combinations is then used for model validation.  

There are several popular cross validation methods, such as Leave-one-out 

(LOO), Leave-p-out (LPO), and V-fold cross-validation (VFCV). For a dataset having N 

data points, LOO stands for using (N-1) data points as training data for parameter 

estimation, and the one left data point as validation data for variable selection. Because 

every data point has to be used as validation data, the process above will be repeated a 

total of N times. The average performance of these N combinations are used for model 

validation.  

Similarly, LPO corresponds to using (N-p) data points as training data, and the p 

left data points as validation data. There are �𝑁𝑁𝑝𝑝� possible validation datasets. Thus, the 

parameter estimation and variable selection process needs to be repeated �𝑁𝑁𝑝𝑝�  times. 

When the sample size N is very large, the computational time is long using these two 

methods.  

On the other hand, VFCV is performed by dividing the data into V subsets of 

approximately equal size (N/V), and use (V-1) subsets as training data, the one left subset 
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as validation data. There are V possible validation datasets. Thus, the parameter 

estimation and variable selection process will be repeated only V times. Obviously, 

VFCV has higher computational efficiency compared with the other two methods. Thus, 

VFCV is used in this case study. 

3.2.3 Out-of-Sample Test 

 Out-of-sample test is used in this thesis to test model accuracy (Tashman, 2000). 

Calibration windows of four lengths (1-day, 1-week, 2-week, or 1-year) are tested within 

a rolling scheme. For example, 1-day ahead ex post forecast of year 2012 is compared 

using the previous two years (2010-2011) data for parameter estimation. The moving 

window is two years of data. Each time, the calibration window is moved forward one 

day at a time. Model parameters are re-estimated every day in 2012. By doing so, the 

model stability over time for various forecasting horizons can be evaluated. 
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CHAPTER 4: CASE STUDY 
 
 
4.1 Overview 

 NCEMC is one of the largest generation and transmission cooperatives in United 

States. It supports 26 cooperatives to provide service to more than 950,000 customers in 

North Carolina. Its service area covers 93 of North Carolina’s 100 counties.  

The data used in the case study is 4 years of hourly load from NCEMC from 2009 

to 2012. The weather data is hourly temperature and relative humidity from 27 weather 

stations in North Carolina for the same four years. The weather data and NCEMC total 

load data are clean data. The service areas of NCEMC and locations of 27 weather 

stations are shown in FIGURE 2. The colored areas are the service areas, and the black 

stars are the locations of the weather stations. Note that one of the stations (KORF) is 

located in the State of Virginia.  

The simple averages of temperature and relative humidity at the 27 weather 

stations are calculated and used to represent the weather conditions near the NCEMC 

service territory. To avoid distraction from the scope of this research,  the advanced 

weather station selection methodology proposed by Hong, Wang, and White (2015) is not 

adopted. Nevertheless, it is believed that weather station selection with humidity input is 

a promising future research direction of this work. 
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4.2 Exploratory Data Analysis 

FIGURE 3 shows the time series plot of hourly load from 2009 to 2012. The first 

three years of data (2009-2011) are used for parameter estimation (a.k.a., training) and 

variable selection (a.k.a., validation). The fourth year data (2012) is used as the hold-out 

sample for accuracy confirmation (a.k.a., test). The typical seasonal patterns of the load 

profile can be found in this time series plot. For instance, the load level of winter and 

summer is higher than that of spring and fall. In NCEMC, the summer peaks are usually 

higher than winter peaks. During some extremely cold years, however, the annual peak 

load may occur in the winter.  

FIGURE 4 shows the time series plot of relative humidity for the same location 

during the same period as in FIGURE 3. During the winter months, relative humidity 

varies within a wider range from 20% to 100%. The variation in the summer months is 

relatively narrower, mostly from 50% to 100%. This is largely due to the fact that higher 

temperatures in the summer turn more water into water vapor in the air.  
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  FIGURE 5 shows the scatter plot of hourly load and relative humidity in 2011. 

The correlation coefficient between the two is -0.25. Similarly, the trend line suggests 

load and relative humidity are negatively related to each other. On the other hand, it is 

well known that electricity demand has seasonal, monthly, weekly, and diurnal cycles 

(Hong, 2010). These are caused by diverse human activity patterns during different time 

periods. In summer, for instance, energy is needed for cooling, in the winter for heating. 

Besides, people tend to have different energy consumption patterns at weekdays 

compared to weekends. In addition, the demand is higher during the daytime when 

people are awake than during the nighttime when people are asleep. Therefore, group 

analysis by calendar variables is performed to further investigate the relationship between 

load and relative humidity. 
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FIGURE 5: Load and relative humidity scatter plot (2011) 
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FIGURE 6 shows the scatter plots of load and relative humidity by month in 

2011. Trend lines are also added to demonstrate the relationship between the two by 

month. The correlation coefficients between load and relative humidity by month in 2011 

are given in TABLE 5. It is observed that the correlation in June to September is stronger 

than that in other months as highlight with bold in TABLE 5. During these four months, 

load tends to decrease when relative humidity increases. In the other eight months, the 

relationship between the two is weak (February, March, April, and May) or uncorrelated 

(January, October, November and December).  

 

TABLE 5: Correlation coefficient between load and relative humidity by month in 2011 

Month 
Correlation 
Coefficient  

1 -0.01 
2 0.30 
3 0.27 
4 -0.27 
5 -0.59 
6 -0.78 
7 -0.79 
8 -0.76 
9 -0.71 

10 -0.15 
11 -0.04 
12 0.11 
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FIGURE 6: Load and relative humidity scatter plots by month (2011) 
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Recall that the human comfort level is determined by both humidity and 

temperature. The scatter plots by month indicate that the influence of relative humidity on 

load is stronger during warmer months (June, July, August and September). In this case 

study, June, July, August and September is named as summer months. FIGURE 7 shows 

the scatter plots of load and relative humidity in the summer of 2011, which present a 

sharper pattern than the one in FIGURE 5. The correlation coefficient between the two 

variables are -0.76 in summer. Overall, load decreases as relative humidity increases over 

the summer.   

FIGURE 8 shows the scatter plots of load and relative humidity by hour in the 

summer of 2011. It is noted that the relationship between the two variables varies at 

different hours. During nighttime hours (Hours 1 to 9), load has a tendency to be low 

when the relative humidity is high. The correlation coefficients between the two during 

these nighttime hours are larger than -0.20. These suggest weak negative correlation. 

During the daytime (Hours 10 to 24), load increases when relative humidity decreases. 

The correlation coefficients between the two are between -0.60 to -0.20. These stand for 

stronger negative correlation. Therefore, there is hourly difference on the interactions 

between load and relative humidity.  
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FIGURE 7: Load and relative humidity scatter plot in summer (2011) 
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FIGURE 8: Load and relative humidity scatter plots in summer by hour (2011) 
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FIGURE 9 shows the scatter plot of relative humidity and temperature using data 

of 2011. Their correlation coefficient is -0.19. It is also noted from the scatter plot that 

relative humidity decreases when temperature increases. FIGURE 10 provides the scatter 

plots of relative humidity and temperature by month in 2011. It is noticed that they are 

strongly related in summer months (June to September) that relative humidity decreases 

quickly when temperature increases. The correlation coefficients between the two during 

these four months are -0.83, -0.83, -0.83 and -0.68, respectively. Those of the rest months 

are mostly range from -0.54 to -0.02. As implied in the time series plot of relative 

humidity in FIGURE 4, warmer temperature increases the atmosphere’s ability to hold 

water vapor. Thus, the variation of relative humidity is narrower in summer. This results 

in a stronger relationship between temperature and relative humidity. Besides, FIGURE 1 

shows that load increases when temperature increases in summer. All these factors lead to 

load increases when relative humidity decreases in summer as shown in FIGURE 7.   

FIGURE 11 shows the scatter plot of load and HI using 2011 data. It is observed 

the strong similarity between this scatter plot and the load-temperature scatter plot shown 

in FIGURE 1. Both of them show the typical “hockey stick” shape. On the left arm, load 

increases when temperature decreases in winter because of heating. On the right arm, 

load increases when temperature increases in the summer for cooling. Evidently, the left 

arms of the “hockey stick” shape in the two figures are identical. The two arms are more 

separate in FIGURE 11 than they are in FIGURE 1. This is because HI is an adjusted 

temperature. When the dry-bulb temperature is high, the influence of relative humidity 

makes HI even higher.  
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FIGURE 9: Relative humidity and temperature scatter plot (2011) 
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FIGURE 10: Relative humidity and temperature scatter plots by month (2011) 
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FIGURE 11: Load and heat index scatter plot (2011) 
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To sum up, scatter plots of load and relative humidity by months given in 

FIGURE 6 suggest there is a relationship between load and relative humidity during June, 

July, August and September. In the rest of this thesis, these four months are defined as 

summer months. The influence of relative humidity during summer will be investigated. 

The scatter plots of load and relative humidity by hour shown in FIGURE 8 depict the 

diurnal feature of interactions between load and relative humidity. Scatter plots of load 

and temperature in FIGURE 1 and load and HI in FIGURE 11 show the similarity 

between temperature and HI with respect to influencing electricity demand.  

4.3 Model Development 

This thesis focuses on investigating the influence of relative humidity on load 

during summer months. Summer (𝑆𝑆𝑡𝑡) is defined as a dummy variable. 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡, 𝑅𝑅𝑅𝑅𝑡𝑡 × 𝑆𝑆 

denotes current hour relative humidity in summer. Similarly, 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2, which stands for 

𝑅𝑅𝑅𝑅𝑡𝑡 × 𝑅𝑅𝑅𝑅𝑡𝑡 × 𝑆𝑆, is the second order polynomial of relative humidity in summer. 

The process of model development in this case study starts with four base models 

without humidity variables. All the base models are linear regression models. The first 

base model (B1) is Tao’s Vanilla Benchmark Model as shown in Eqs. (3) and (4). The 

weather variables used in B1 are the current hour temperatures (Tt).  

The second base model B2 is an extension to B1, which adds a set of effects 

related to the average temperature of the last 24 hours 𝑇𝑇𝑎𝑎: 

𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 + 𝛽𝛽2𝑀𝑀𝑡𝑡 + 𝛽𝛽3𝑊𝑊𝑡𝑡 + 𝛽𝛽4𝑅𝑅𝑡𝑡 + 𝛽𝛽5𝑊𝑊𝑡𝑡𝑅𝑅𝑡𝑡 + 𝑓𝑓(𝑇𝑇𝑡𝑡) + 𝑓𝑓(𝑇𝑇𝑎𝑎)        (6) 

The third base model B3 is an extension to B2, which adds a set of effects related 

to the temperature of the previous hour 𝑇𝑇𝑡𝑡−1: 

 𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 + 𝛽𝛽2𝑀𝑀𝑡𝑡 + 𝛽𝛽3𝑊𝑊𝑡𝑡 + 𝛽𝛽4𝑅𝑅𝑡𝑡 + 𝛽𝛽5𝑊𝑊𝑡𝑡𝑅𝑅𝑡𝑡 + 𝑓𝑓(𝑇𝑇𝑡𝑡) + 𝑓𝑓(𝑇𝑇𝑎𝑎) + 𝑓𝑓(𝑇𝑇𝑡𝑡−1) (7)  
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Likewise, appending a set of effects related to the temperature of the previous two 

hours 𝑇𝑇𝑡𝑡−2 to B3 produces the last base model, B4:   

 𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 + 𝛽𝛽2𝑀𝑀𝑡𝑡 + 𝛽𝛽3𝑊𝑊𝑡𝑡 + 𝛽𝛽4𝑅𝑅𝑡𝑡 + 𝛽𝛽5𝑊𝑊𝑡𝑡𝑅𝑅𝑡𝑡 + 𝑓𝑓(𝑇𝑇𝑡𝑡) + 𝑓𝑓(𝑇𝑇𝑎𝑎) + 𝑓𝑓(𝑇𝑇𝑡𝑡−1) +

𝑓𝑓(𝑇𝑇𝑡𝑡−2)                  (8) 

The primary motivation of this practice is to ensure that the resulting 

recommendation of relative humidity variables can help improve the temperature base 

models with various complexities.  

Preliminary tests have been conducted to examine the influence of different 

relative humidity terms and cross effects associated with them. In these tests, three-fold 

cross validation is used, which split the three-year data (2009-2011) to three 

combinations as shown in TABLE 6. All of them use two-year data as training data for 

parameter estimation, and the other one-year data as validation data for variable selection. 

The simple average of the MAPEs from the three combinations is used for model 

comparison. The relative humidity related terms are added to the base models one at a 

time, and checked whether they can reduce the average MAPE by 0.01% in absolute 

value. The relative humidity variables tested are up to the third order. The temperature 

variables that interact with relative humidity variables are the current hour temperature up 

to the third order.  

 

TABLE 6: Cross validation combinations 

Combination number Training data Validation data 
Combination 1 2009, 2010 2011 
Combination 2 2009, 2011 2010 
Combination 3 2010, 2011 2009 
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In this thesis, terms that show positive influence in at least three base models are 

chosen. If a higher order term is selected, the corresponding lower order terms. At the end 

will also be included. The following candidates are selected: 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡, 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2, 𝑇𝑇𝑡𝑡 ×

𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡, 𝑇𝑇𝑡𝑡2 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡, 𝑇𝑇𝑡𝑡 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2,  𝑇𝑇𝑡𝑡2 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2, 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡 × 𝑅𝑅𝑡𝑡, 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2 × 𝑅𝑅𝑡𝑡. 

In the process of model development, the following two steps are conducted 

repeatedly for each of the four base models: 

1) Add relative humidity variables to a base model. 

For each base model, candidates mentioned above will be added in the following 

sequence, grouped based on their features: 

a. 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡, 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2; 

b. 𝑇𝑇𝑡𝑡 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡, 𝑇𝑇𝑡𝑡2 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡; 

c. 𝑇𝑇𝑡𝑡 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2,  𝑇𝑇𝑡𝑡2 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2; 

d. 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡 × 𝑅𝑅𝑡𝑡, 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2 × 𝑅𝑅𝑡𝑡. 

2) Calculate the MAPE values in a three-fold cross validation setting, and compare 

the simple average of the MAPEs from the three combinations. 
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CHAPTER 5: RESULTS AND DISCUSSION 
 
 

5.1 Cross Validation Results  

The MAPEs of the models based on the four base models are listed in TABLE 7. 

The None column corresponds to the MAPEs of the four base models. The columns after 

it are appending one set of relative humidity terms at a time until all the main and cross 

effects are included. In total, five models are compared for each base model. It is 

observed that including relative humidity terms gradually reduces the error on validation 

data (a.k.a., post-sample fit data) for all four base models. The incremental contribution 

of the two main effects 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡 and 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2 is very minor. Nevertheless, due to the 

improvement from related cross effects, these two main effects are kept in the model.  

 

TABLE 7: MAPEs(%) of the models with additional relative humidity terms 

Base 
model None 

𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡  
𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2 

𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡 
𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2 

𝑇𝑇𝑡𝑡 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡 
𝑇𝑇𝑡𝑡2 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡 

𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡 
𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2 

𝑇𝑇𝑡𝑡 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡 
𝑇𝑇𝑡𝑡2 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡 
𝑇𝑇𝑡𝑡 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2 
𝑇𝑇𝑡𝑡2 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2 

𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡 
𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2 

𝑇𝑇𝑡𝑡 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡 
𝑇𝑇𝑡𝑡2 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡 
𝑇𝑇𝑡𝑡 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2 
𝑇𝑇𝑡𝑡2 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2 
𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡 × 𝑅𝑅𝑡𝑡  
𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2 × 𝑅𝑅𝑡𝑡 

B1 5.21 5.20 5.08 5.03 4.91 
B2 4.10 4.10 4.03 3.98 3.85 
B3 3.87 3.87 3.82 3.76 3.70 
B4 3.79 3.80 3.73 3.68 3.62 
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FIGURE 12 is a summary about the MAPEs of the four temperature base models 

and those proposed with added relative humidity terms. Overall, the MAPE decreases 

from 5.21% to 4.91%, from 4.10% to 3.85%, from 3.87% to 3.70%, and from 3.79% to 

3.62% for B1, B2, B3 and B4, respectively. The improvement from adding relative 

humidity variables appears to be stable and consistent in all base models. The ex post 

forecast accuracy improvement ranges from 4.39% to 5.76%.  

 

 

FIGURE 12: MAPEs of base models and proposed with added relative humidity terms 
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dependent base models to make benchmark models including both temperature and 

humidity effects.  

The proposed model can be presented by this equation: 

𝑦𝑦𝑡𝑡 = 𝐺𝐺𝑡𝑡 + ℎ(𝑅𝑅𝑅𝑅𝑡𝑡)     (10) 

where 𝐺𝐺𝑡𝑡 represents a base model depending upon temperature variables, such as the ones 

shown in Eqs. (3), (7), (8), and (9).   

ℎ(𝑅𝑅𝑅𝑅𝑡𝑡) = 𝛾𝛾1𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡 + 𝛾𝛾2𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2 + 𝛾𝛾3𝑇𝑇𝑡𝑡 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡 + 𝛾𝛾4𝑇𝑇𝑡𝑡2 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡 + 𝛾𝛾5𝑇𝑇𝑡𝑡 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2 +

𝛾𝛾6𝑇𝑇𝑡𝑡2 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2 + 𝛾𝛾7𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡 × 𝑅𝑅𝑡𝑡 + 𝛾𝛾8𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2 × 𝑅𝑅𝑡𝑡                 (11) 

Comparing Eq (11) with the NWS’ formula for HI Eq (1), it is evident that Eq 

(11) extends the HI equation by adding interactions between relative humidity and hour. 

Another key difference between the two formulae is that the parameters in the proposed 

model will be estimated based on the data set, while those in the HI formula are pre-

defined constants. In other words, the proposed modeling methodology in this thesis 

offers more flexibility than NOAA’s HI formula.  

5.3 Out-of-Sample Test Results 

An out-of-sample rolling test is used to test the forecast accuracy of the proposed 

models. Hourly data of the year 2012 has been hidden from parameter estimation or 

model selection. Here it is used as the hold-out sample to test the model performance. 

The rolling window embraces two years of data. The following four different forecasting 

horizons are tested to evaluate the models’ accuracy: one-day, one-week, two-week, and 

one-year.  
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A model including HI variables is examined to compare the proposed model with 

conventional practice. Since HI can be seen as an adjustment of the temperature, 

following the example of Eq (6), 𝑓𝑓(𝑅𝑅𝐻𝐻𝑡𝑡) is designed as: 

𝑓𝑓(𝑅𝑅𝐻𝐻𝑡𝑡) = 𝛼𝛼1𝑅𝑅𝐻𝐻𝑡𝑡 + 𝛼𝛼2𝑅𝑅𝐻𝐻𝑡𝑡2 + 𝛼𝛼3𝑅𝑅𝐻𝐻𝑡𝑡3 + 𝛼𝛼4𝑅𝑅𝐻𝐻𝑡𝑡 ×𝑀𝑀𝑡𝑡 + 𝛼𝛼5𝑅𝑅𝐻𝐻𝑡𝑡2 × 𝑀𝑀𝑡𝑡 + 𝛼𝛼6𝑅𝑅𝐻𝐻𝑡𝑡3 × 𝑀𝑀𝑡𝑡 +

𝛼𝛼7𝑅𝑅𝐻𝐻𝑡𝑡 × 𝑅𝑅𝑡𝑡 + 𝛼𝛼8𝑅𝑅𝐻𝐻𝑡𝑡2 × 𝑅𝑅𝑡𝑡 + 𝛼𝛼9𝑅𝑅𝐻𝐻𝑡𝑡3 × 𝑅𝑅𝑡𝑡      (12) 

The models tested are listed in TABLE 8. 𝐺𝐺𝑡𝑡 represents a base model as 

mentioned before. The average MAPEs of three model groups, the base models, the base 

models with the addition of HI variables, and the base model combined with the addition 

of recommended RH variables. 

 

TABLE 8: Tested model groups 

Model Group Model equation 
TM1 𝐺𝐺𝑡𝑡 
TM2 𝐺𝐺𝑡𝑡 + 𝑓𝑓(𝑅𝑅𝐻𝐻𝑡𝑡) 
TM3 𝐺𝐺𝑡𝑡 + ℎ(𝑅𝑅𝑅𝑅𝑡𝑡) 

 
 

FIGURE 13 shows the MAPEs of models tested with NCEMC total load data 

using the four base models. The most salient feature is that the proposed model can 

significantly improve forecast accuracy for all the forecasting horizons, for all the four 

base models. It is also noted that the improvement from the HI variables is around half as 

that of the proposed model for all four base models. 

As mentioned before, HI is an adjustment to the temperature. The base models 

already cover most of the information from temperature. The proposed model, on the 

other hand, is independent from temperature variables. That is a reason why its room for 
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improvement is larger. Another reason is that the proposed model offers more flexibility 

than the HI models. Overall, the models with proposed RH variables outperform the 

counterpart. The improvement to the base models ranges from 4.05% to 9.39%. 

 

 

   FIGURE 13: MAPEs of models tested with NCEMC total load 

 

It is also interesting to investigate whether the model improvement has seasonal 

difference. To do so, the average MAPEs of summer and non-summer are calculated for 

every forecasting horizon and every base model. Most of the prominent characteristics 

are persistent among different base models. The summer and non-summer MAPEs with 

the NCEMC total load data using B1 are presented in FIGURE 14. There are a number of 

remarkable attributes. First of all, forecasts in summers are better than those in non-

summers. Secondly, the proposed model can substantially improve model accuracy in 

both summer and non-summer.  
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These outcomes provide another proof that the proposed model is superior to the 

HI model. Overall, the improvement of the proposed model ranges from 9.44% to 

12.36% in relative MAPE reduction in summer. The improvement is smaller in non-

summer, from 7.32% to 8.15%. This difference is caused by the relationship between 

load and relative humidity being stronger in summer as implied in the scatter plots of 

load and relative humidity by month in FIGURE 6. 

   

FIGURE 14: Summer and non-summer MAPEs of models tested with NCEMC total load 
using B1  

 

5.4 Performance on Supply Area Level 

The service territory of NCEMC can be divided into three supply areas. 

Specifically, SA1 stands for Progress Energy, SA2 represents Duke Energy Carolinas, and 

SA3 denotes Dominion NC Power. Hence, the stability of the proposed model is also 

examined by forecasting load of these three supply areas. FIGURE 15 shows the MAPEs 

of the models tested with SA1 to SA3 load, respectively.  
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The proposed model can notably improve forecast accuracy of all the four base 

models for all the three supply areas. This is consistent with the results of NCEMC total 

load. These enhancements are considerably larger than those by adding HI terms, too. 

The contribution of the proposed model is significant. Nevertheless, those of HI model 

become marginal when the base models become more complex. The relative MAPE 

reduction of the proposed model ranges from 2.39% to 7.67%, 3.26% to 8.89%, and 

2.10% to 6.43% for SA1, SA2, and SA3, respectively.  

The HI models’ performances, on the other hand, are not very steady. They are 

not always improving the models’ accuracy, especially when the base model is 

complicated. In Figure 14b, the MAPEs of TM2 model are slightly larger than that of TM1 

model when forecasting one-week or two-week ahead SA2 load using B3 and B4 as base 

model.  

The SA3 forecasts show the narrowest gap between the HI model and the proposed 

model. This is due to the numerous outliers in the dataset. They deteriorate the overall 

model accuracy, too. In spite of the data quality issue, the proposed model still 

outperforms the HI models constantly.  
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FIGURE 15: MAPEs of models tested with (a) SA1, (b) SA2, and (c) SA3 load, 
respectively 
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FIGURE 16 shows the seasonal differences of supply areas’ load forecast. For 

consistence, only results of B1 models are provided. In all the scenarios, the proposed 

model outdoes the base model and the HI model. In FIGURE 16 a and b, it is noticed that 

the summer forecasts significantly beat the non-summer forecasts in SA1 and SA2 load. 

The improvement in summer for SA2 load forecast ranges from 12.22% to 14.26% in 

relative MAPE reduction. The improvement is smaller for SA1 load and SA3 load forecast, 

where it ranges from 5.17% to 9.07% and from 8.25% to 8.65%, respectively. On the 

other hand, the improvement in non-summer is smaller, ranges from 6.77% to 7.32%, 

5.50% to 6.16%, and 4.63% to 5.13% for the three supply areas, respectively. In SA3, the 

non-summer forecasts outperform the summer forecasts. This is probably due to the data 

quality problem mentioned in Section 5.4. In general, the proposed model improves 

forecast accuracy of the base models.  

In summary, model tests for various forecasting horizons using different base 

models prove the stability and superior performance of the proposed model. Its 

performance is stable when appended to temperature base models of various 

complexities. It is a robust model that it can improve ex post load forecast accuracy in 

24-hour ahead, one-week ahead, two-week ahead and one-year ahead settings and for all 

three supply areas and the total load of NCEMC.  
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FIGURE 16: Summer and non-summer MAPEs of models tested with supply areas’ load 
using B1  
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CHAPTER 6: CONCLUSION 
 
 

The requirement of matching supply and demand in electric power system makes 

accurate load forecasts necessity in the electric industry. Weather is one of the key 

driving factors of load forecasting since numerous electric appliances became popular. 

Various weather variables have been deployed in load forecasting. Temperature is the 

most commonly used one. Humidity has been used in some research and some utility 

forecasting models. However, humidity variables have not been well studied. When 

humidity variables are used in load forecasting models, they are usually embedded in the 

form of HI.  

This thesis investigated method to add relative humidity information to 

temperature base models through a case study from NCEMC. In order to better 

understand the influence of relative humidity on load, we performed extensive 

exploratory data analysis. Scatter plots of load and relative humidity by months suggest a 

strong relationship between the two in warmer months from June to September. 

Therefore, the period from June to September is defined as summer. The differences 

among the relationship between load and relative humidity by hour in summer are 

notable, too.  

Four base models are used for model development. The first one is Tao’s Vanilla 

Benchmark Model, a multiple linear regression model. Other base models are derived 

from it by adding lagged and average temperature variables. Adding relative humidity 
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variables to those base models can improve forecast accuracy. We propose to add eight 

effects (𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡, 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2, 𝑇𝑇𝑡𝑡 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡, 𝑇𝑇𝑡𝑡2 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡, 𝑇𝑇𝑡𝑡 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2,  𝑇𝑇𝑡𝑡2 × 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2, 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡 ×𝑅𝑅𝑡𝑡, 

𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡2 × 𝑅𝑅𝑡𝑡) to the temperature based models. The ex post forecast accuracy 

improvement ranges from 4.39% to 5.76% on validation (post-sample fit) data. 

Model test is done for four different forecasting horizons on rolling basis, one-

day, one-week, two-week, and one-year. The service areas of NECMC can be divided 

into three major supply areas. The proposed model is tested through forecasting load of 

both NECMC total load and the three supply areas. The various model test results prove 

the superiority of the proposed model to not only the base models, but also the HI model. 

The improvement on the test data (holdout sample) ranges from 4.05% to 9.39% for 

NCEMC total ex post load forecasting with the four forecasting horizons. In conclusion, 

the proposed model meets the criteria of being simple, widely applicable, reproducible, 

and accurate. It can be deployed in utilities for various forecasting horizons and at 

different hierarchies.  

Relative humidity is a factor influencing the load during warmer weather, while 

wind is important for load during cold weather load. Therefore, we recognize a few 

possible future research directions. First, we can investigate the models with both 

temperature and wind speed variables. Second, we can investigate the models with 

temperature, relative humidity and wind speed variables.  
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