
HARDWARE DESIGN OF MESSAGE PASSING ARCHITECTURE ON
HETEROGENEOUS SYSTEM

by

Shanyuan Gao

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Electrical Engineering

Charlotte

2013

Approved by:

Dr. Ronald R. Sass

Dr. James M. Conrad

Dr. Jiang Xie

Dr. Stanislav Molchanov



ii

c© 2013

Shanyuan Gao

ALL RIGHTS RESERVED



iii

ABSTRACT

SHANYUAN GAO. Hardware design of message passing architecture on
heterogeneous system.

(Under the direction of DR. RONALD R. SASS)

Heterogeneous multi/many-core chips are commonly used in today’s top tier

supercomputers. Similar heterogeneous processing elements — or, computation ac-

celerators — are commonly found in FPGA systems. Within both multi/many-core

chips and FPGA systems, the on-chip network plays a critical role by connecting these

processing elements together. However, The common use of the on-chip network is

for point-to-point communication between on-chip components and the memory in-

terface. As the system scales up with more nodes, traditional programming methods,

such as MPI, cannot effectively use the on-chip network and the off-chip network,

therefore could make communication the performance bottleneck.

This research proposes a MPI-like Message Passing Engine (MPE) as part of the

on-chip network, providing point-to-point and collective communication primitives

in hardware. On one hand, the MPE improves the communication performance by

offloading the communication workload from the general processing elements. On the

other hand, the MPE provides direct interface to the heterogeneous processing ele-

ments which can eliminate the data path going around the OS and libraries. Detailed

experimental results have shown that the MPE can significantly reduce the com-

munication time and improve the overall performance, especially for heterogeneous

computing systems because of the tight coupling with the network. Additionally, a

hybrid “MPI+X” computing system is tested and it shows MPE can effectively of-

fload the communications and let the processing elements play their strengths on the

computation.



iv

ACKNOWLEDGMENTS

No words can express my appreciation to my advisor, Dr. Ron Sass. Your wisdom

and character have persistently nurtured and guided me through all the joys and

difficulties during this journey, and continually so.

I am grateful to my committee, Professor James Conrad, Professor Jiang Xie, and

Professor Stanislav Molchanov. Your advices have challenged me in every aspect and

perfected this work.

I would like to thank the RCS lab (Andy, Will, Robin, Bin, Scott, Yamuna, Rahul,

Ashwin, Shweta, and countless others). Our untiring discussions have inspired me to

explore new directions. Your help has contributed to many parts of this work.

I would like to thank my mother and my father for their full-hearted support.

Rong, thank you for your love. Without you, nothing of this matters.



v

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS xi

CHAPTER 1: INTRODUCTION 1

1.1 High-Performance Computing 1

1.2 Interconnect and Communication 2

1.3 Motivation 4

1.4 Thesis Question 7

CHAPTER 2: BACKGROUND 11

2.1 Field Programmable Gate Array 11

2.2 Computational Science 12

2.3 Top500 Supercomputers 12

2.4 Message-Passing 13

2.5 Benchmarks 15

2.6 Amdahl’s Law 17

2.7 Communication Model 17

CHAPTER 3: RELATED WORK 19

3.1 MPI Related Research 19

3.1.1 Point-to-point Communication 19

3.1.2 Collective Communication 19

3.1.3 Hardware Optimization 21

3.2 On-chip Message-Passing 23

3.2.1 Raw 23

3.2.2 Intel Terascale Computing 24

3.2.3 RAMP 24



vi

3.2.4 Reconfigurable Computing Cluster 25

CHAPTER 4: DESIGN 26

4.1 Design Infrastructure 26

4.1.1 Off-chip Network 26

4.1.2 On-chip Network 27

4.1.3 Network Interface 28

4.1.4 Base System 28

4.1.5 Miscellaneous IP Cores 30

4.2 Stage 1: Hardware Message-Passing Engine 30

4.2.1 Point-to-point Communication 30

4.2.2 Collective Communication 31

4.3 Stage 2: Heterogeneous System 35

4.3.1 Parallel FFT Operation 38

4.3.2 Parallel Matrix-Vector Multiplication 41

CHAPTER 5: EVALUATION AND ANALYSIS 45

5.1 Evaluation Infrastructure 45

5.2 Testing Methodology 45

5.3 Stage 1 Experiment 46

5.3.1 Barrier Performance Result 46

5.3.2 Broadcast Performance Result 48

5.3.3 Reduce Performance Result 52

5.3.4 Allreduce Performance Result 54

5.3.5 Summary 55

5.4 Communication Model 57

5.4.1 Linear Fitting for Barrier 57

5.4.2 Latency Model 58

5.5 Stage 2 Experiment 63



vii

5.5.1 Parallel Fast Fourier Transformation 65

5.5.2 Parallel Matrix-Vector Multiplication 68

5.5.3 Hybrid Computing System 71

5.6 Validation 72

CHAPTER 6: CONCLUSION 75

REFERENCES 77



viii

LIST OF TABLES

TABLE 1.1: Top500 HPC trend 3

TABLE 5.1: Broadcast measurement vs. simulation 59

TABLE 5.2: Reduce measurement vs. simulation 63

TABLE 5.3: Bandwidth measurement vs. simulation 64

TABLE 5.4: Resource utilization of hardware MPE 73

TABLE 5.5: Performance improvement of hardware MPE 73

TABLE 5.6: Performance improvement of MPE on heterogeneous systems 74



ix

LIST OF FIGURES

FIGURE 1.1: Configuration of heterogeneous HPC system 4

FIGURE 1.2: Communication of future heterogeneous HPC system 5

FIGURE 1.3: Proportion of collective operation in synthetic benchmark 6

FIGURE 1.4: Traditional operation flow 8

FIGURE 1.5: Operation flow of hardware message-passing 8

FIGURE 2.1: Diagram of barrier operation 14

FIGURE 2.2: Diagram of broadcast operation 15

FIGURE 2.3: Diagram of reduce operation 15

FIGURE 2.4: Amdahl’s Law, performance gain of parallelism 18

FIGURE 4.1: Direct connected off-chip network with the router 27

FIGURE 4.2: 4-ary 3-cube torus network 27

FIGURE 4.3: On-chip components connected around the crossbar switch 28

FIGURE 4.4: Signal interface of LocalLink 28

FIGURE 4.5: Hardware base system with the on-chip router 29

FIGURE 4.6: FSM of barrier operation 32

FIGURE 4.7: FSM of broadcast operation 33

FIGURE 4.8: FSM of reduce operation 34

FIGURE 4.9: Topologies of hardware collective communication 34

FIGURE 4.10: Block diagram of MPE in heterogeneous system 36

FIGURE 4.11: Typical programming method for parallel heterogeneous system 37

FIGURE 4.12: FFT Decimation-In-Time 39

FIGURE 4.13: FFT Decimation-In-Frequency 39

FIGURE 4.14: Block diagram of FFT Core 41

FIGURE 4.15: Block diagram of FFT IO 42

FIGURE 4.16: Block diagram of vector-vector multiplication 43



x

FIGURE 4.17: Hybrid of hardware thread and software thread 44

FIGURE 5.1: MPE barrier using different topologies 47

FIGURE 5.2: Software barrier 47

FIGURE 5.3: Bandwidth of different broadcast topologies 49

FIGURE 5.4: Bandwidth of software broadcast 49

FIGURE 5.5: Latency of different broadcast topologies 51

FIGURE 5.6: Latency of software broadcast 51

FIGURE 5.7: Bandwidth of different reduce topologies 53

FIGURE 5.8: Bandwidth of software reduce 53

FIGURE 5.9: Latency of different reduce topologies 54

FIGURE 5.10: Latency of software reduce 55

FIGURE 5.11: Execution time of different allreduce topologies 56

FIGURE 5.12: Latency of software allreduce 56

FIGURE 5.13: Mathematic fitting for MPE barrier 58

FIGURE 5.14: Time chart of broadcast operation 59

FIGURE 5.15: Latency simulation of broadcast 60

FIGURE 5.16: Time chart of reduce operation 61

FIGURE 5.17: Latency simulation of reduce 62

FIGURE 5.18: Max bandwidth simulation of broadcast and reduce 64

FIGURE 5.19: Communication impact on software FFT 65

FIGURE 5.20: Comparison of communication with software FFT 66

FIGURE 5.21: Communication impact on hardware FFT 67

FIGURE 5.22: Comparison of communication with hardware FFT 67

FIGURE 5.23: Communication impact on software MACC computation 68

FIGURE 5.24: Communication impact on accelerated MACC computation 69

FIGURE 5.25: Hardware MACC and MPE 70

FIGURE 5.26: Communication impact on hybrid computing system 72



xi

LIST OF ABBREVIATIONS

CPU Central Processing Unit

COTS Commodity Off The Shelf

IC Integrated Circuit

PCB Printed Circuit Board

IP Intellectual Property

FPU Floating Point Unit

FPGA Field Programmable Gate Array

Flops Floating point operations per second

FIFO First In, First Out

PetaFlops 1015 Flops

TeraFlops 1012 Flops

GigaFlops 109 Flops

MPI Message-Passing Interface

PE Processing Element

SOC System on Chip

PLB Processor Local Bus

MPMC Multiport Memory Controllor

PC Personal Computer

UART Universal Asynchronous Receiver/Transmitter

P2P Point-to-point



CHAPTER 1: INTRODUCTION

Frequency scaling has played a major role in pushing the computer industry for-

ward. Nevertheless, due to the memory wall, the instruction-level parallelism (ILP)

wall, and the power wall [1, 2], conventional frequency scaling has shown diminish-

ing returns in performance in past few years. As a result, academia and industry

research has shifted the focus towards the multi/many-core era. New single-chip ar-

chitectures have been designed and manufactured to explore and exploit parallelism

rather than single-thread performance. To make use of the massive amount of cores

— or, processing elements (PEs) — the on-chip and off-chip interconnect becomes the

critical component of these new architectures. Presently, these multi/many-core pro-

cessors follow traditional multi-chip symmetric multiprocessor (SMP) designs, which

are integrated onto a single chip. Consequently, interconnect designs mainly provide

point-to-point communication and are mostly used for the general shared-memory

processor model. This is sufficient for desktop personal computers; however, in large

scale systems with many heterogeneous PEs, this could lead to seriously inefficient

communication and make the general-purpose processor the bottleneck of the systems.

1.1 High-Performance Computing

High-Performance Computing (HPC) focuses on computing methodologies that

solve complex computational problems in the shortest possible time. High-performance

computers, often called supercomputers, are machines built to fulfill these computing

needs. Frequency scaling, while pushing the PC industry forward, also benefitted

the HPC world in the form of commodity off-the-shelf (COTS) clusters, also known

as Beowulf style clusters [3]. These clusters achieved great success by integrating

low cost commodity components, and therefore became the mainstream of HPC ma-



2

chines in the commercial market. Traditionally, HPCs were built in a homogeneous

fashion, in which uniformly distributed general-purpose processors were used. In re-

cent years, researchers built heterogeneous HPC system that incorporated not only

general-purpose PEs, such as the Dual-core and Quad-core processors from Intel and

AMD [4, 5], but also some modern multi/many-core computing accelerators, such

as General Purpose computation on Graphics Processing Units (i.e. GPGPUs) from

Nvidia and Cell Broadband Engine (Cell B.E.) from a Sony Toshiba IBM partnership

[6, 7]. The newly built machines achieved PetaFlops computing milestone in June

2008 [8]. Up until now, more HPC systems are using heterogeneous components, and

the trend is heating up. However, as more heterogeneous components are used in

these ever-larger HPC systems, the communication hierarchy between these PEs be-

comes more complex, which could possibly slow down the progress towards the next

HPC target — Exascale Computing [9].

1.2 Interconnect and Communication

The term interconnect can be used in different ways. From the PC point of view,

the interconnect connects the discrete chip-sets together, for example, the processor

ICs, memory, video card, and other peripherals. A bus is the common term for an

interconnect that shares physical connections. The peripherals connected to the bus

are often categorized as masters and slaves. Because sharing mechanism could cause

contention, in some systems, multiple buses can be used.

With the emergence of multicore and System on-Chip, multiple components can

be pushed into one single silicon device. Traditional system interconnects, such as

buses, are apparently inadequate because the growing number of on-chip components

would compete for the sharing resources. On-chip networks, proposed for modern

multicore architecture, can take advantage of the hardware that has very short sig-

naling and is tightly coupled with the on-chip components, thereby providing efficient

communication between the on-chip components. The common use of the on-chip net-



3

Table 1.1: Top500 HPC trend

TOP500 list Sys 2011 Sys 2012 Perf. 2011 Perf. 2012
Infiniband: 41.8% 44.8% 38.7% 32.5%
Gigabit Ethernet: 44.8% 37.8% 19.3% 12.6%
Custom Interconnect: N/A N/A 24.1% 36.8%

work is point-to-point communication, such as Intel QPI [10, 11] and HyperTransport

[12, 13].

In the HPC world, the interconnect has another definition. These interconnects ei-

ther directly or indirectly connect the distributed systems together. Each distributed

system has its own OS and libraries, which handle the communication between each

system. The Beowulf style cluster [3, 14] uses many cost-effective COTS components,

has made Fast Ethernet and Gigabit Ethernet popular in HPC systems. There are

some less popular interconnects as well: Some obsolete HPC systems use proprietary

interconnect, such as Connection Machine [15], iWarp [16], and IBM SP-2 [17]. Nowa-

days, most commercial interconnects are standardized, such as Quadrics [18], Myrinet

[19] and InfiniBand [20, 21].

In recent Top500 lists there is an interesting observation about the interconnect

family. In Table 1.1, it shows that from 2011 to 2012, Gigabit Ethernet lost system

shares while Infiniband increased its system shares. From performance point of view,

both Gigabit Ethernet and InfiniBand lost shares against custom network. Another

interesting observation is that the top machines on Top500 list all possess custom or

proprietary interconnects. Although the performance gap can be due to many reasons

— such as processor types, number of processors, or operating systems — one obvious

reason is the use of different interconnect.

As the HPC world is shifting to use modern multicore processors, the intercon-

nect hierarchy in the heterogeneous HPC system is becoming very complex. As

illustrated in Figure 1.1, one PCB board could host multiple sockets of general pro-



4

CPU Socket

CPU

Core

CPU

Core

CPU

Core

CPU

Core

GPU Socket

S S

S S

S

S

S

S

Custom Compute Array

Custom

Compute

Core

Custom

Compute

Core

Custom

Compute

Core

Custom

Compute

Core

Communication

Group 4
GPU Socket

S S

S S

S

S

S

S

Custom Compute Array

Custom

Compute

Core

Custom

Compute

Core

Custom

Compute

Core

Custom

Compute

Core

Communication

Group 1

CPU Socket

CPU

Core

CPU

Core

CPU

Core

CPU

Core

Custom Compute Array

Custom

Compute

Core

Custom

Compute

Core

Custom

Compute

Core

Custom

Compute

Core

Communication

Group 5

Communication

Group 3

CPU Socket

CPU

Core

CPU

Core

CPU

Core

CPU

Core

Communication

Group 2

Communication

Group 0

Chassis -- PCB

Figure 1.1: Configuration of heterogeneous HPC system

cessors (CPUs), several heterogeneous processors (i.e. GPGPUs), and some custom

computing accelerator chips. (To be general, processing elements (PEs) is used to

represent CPU cores, GPU cores, or any other hardware accelerator cores in the fol-

lowing text unless otherwise mentioned.) Within each chip, PEs are connected via a

certain type of on-chip network. Off-chip networks are used to connect these pack-

aged ICs and PCB boards together. When communications occur, a single chip can

possibly participate in multiple communication groups. Figure 1.2 shows the rack

view of PEs involved in communications; the number denotes which communication

group the core is involved in. One communication could use PEs across the entire

HPC system, such as the PEs on different silicon devices or on different PCB boards.

Because of different physical locations, the communication time between PEs could

be non-deterministic.



5

Chassis -- PCB

12

4

4

5

5

00

1

10

51

4

30 0

0

4

Chassis -- PCB

05

0

2

2 4

1 2

24

3

0

2

5 32

33 2

30

Chassis -- PCB

44

1

0

0 2

0

31

1

4 4

4 2

5

2

45

1

Chassis -- PCB

1

1

4

2

0 4

5

1

10

1 5

0

31 5

5 1

1

Rack

Chassis -- PCB

12

05

1 4

402 0

2 4

5

4 5

4

5 3

4 54

11

4

Chassis -- PCB

5 4

3332

0

2

1 150

1

14

2 1

3

Chassis -- PCB

2

5 13 5

44

1 5

2

2

00

4 5

53 1

Chassis -- PCB

5 4

15

41

3

2

3

1

2

3 3

1

4 2

5

03

2

Rack

Chassis -- PCB

4 5

1 1

0

5

5

1

5

1

0 41

4 0

4

44

4

Chassis -- PCB

3

0

3

4

3

2

2

45 03

11

5

Chassis -- PCB

5 4

5

1 0

1

53

4

2

23

45

1

0

Chassis -- PCB

3

2 2

53

25

0

3

31

02

4

0

0

Rack

Chassis -- PCB

33

13

55

4

3

3

1

4

2

4 2

1

3

0

2

Chassis -- PCB

4

2

5

0

0

0

45

3

4

5

4

3

5

2

0

5

Chassis -- PCB

3

31

0

2

0

5

3

5 3

0

0

5 2

32

Chassis -- PCB

55

0

1

0

0

4

4 2

0

5 4

5

1

2 4

25

0

Rack

Figure 1.2: Communication of future heterogeneous HPC system

1.3 Motivation

With the massive amount of PEs working in parallel, it will generate large volume

of communication for coordinating and exchanging data. Depending on the hierar-

chical position, the communication time between the PEs will vary in a dispersed

range. To find out how the large volume of communication is affecting the overall

performance on the real HPC system, a preliminary test has been performed on a

commercial multicore HPC cluster. The Python cluster, located at UNC Charlotte,

consists of 384 computing cores, with both Gigabit Ethernet and QDR InfiniBand

interconnect [22]. Using standard Message-Passing Interface (MPI) OpenMPI 1.4.3

[23] with VampirTrace [24], a synthetic benchmark was written to test collective com-

munications against a simple calculation. By keeping the total problem size constant

and varying the number of computation units (tasks), we are able to profile the time

each subroutine occupies the whole benchmark. The ratio of communication and

computation is reported in Figure 1.3.



6

0 50 100 150 200 250 300 350
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Barrier operation

Number of tasks (one task/core)

%
 c

om
m

un
ic

at
io

n 
of

 o
ve

ra
ll 

tim
e

(a) Barrier

0 50 100 150 200 250 300 350
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Broadcast operation

Number of tasks (one core/task)
%

 c
om

m
un

ic
at

io
n 

of
 o

ve
ra

ll 
tim

e

(b) Broadcast

0 50 100 150 200 250 300 350
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Reduce operation

Number of tasks (one core/task)

%
 c

om
m

un
ic

at
io

n 
of

 o
ve

ra
ll 

tim
e

(c) Reduce

Figure 1.3: Proportion of collective operation in synthetic benchmark



7

It can be observed in Figure 1.3 that as the number of tasks grows, the proportion

of communication time increases while the proportion of computation time decreases.

This occurs for two reasons:

• First, increasing the number of tasks, n, requires more communication (i.e. a

large n means more tasks have to coordinate).

• Second, the computation time decreases because an increasing n divides a fixed-

size problem into smaller tasks (W/n).

(Note that the synthetic benchmark may not describe the behavior of all real

applications. Often, the user will increase the problem size as the system scales up.

However, the synthetic test does highlight the trend that increasing number of tasks

would make communication the bottleneck in the whole system.)

To solve this communication bottleneck, many research efforts have been put into

optimizing MPI in traditional homogeneous systems. As will be seen in Chapter 3,

the software nature of MPI has limited the performance improvement. The standard

MPI communication needs to pass multiple software protocol stacks, which intro-

duces overhead, as shown in Figure 1.4 (a). In the heterogeneous HPC system, the

communication bottleneck becomes worse because not all the PEs are able to host a

full-fledged OS. The communication between these PEs is still handled by the host

CPU. Although the communication load can be small, when the number of PEs is

large, the volume of communication will increase, therefore saturate the CPU and

create the bottleneck, as shown in Figure 1.4 (b).

With the abundant transistor resources, we conjecture that moving some MPI op-

erations into hardware can avoid the traditional protocol stacks, which leaves a small

amount of interactions with the OS and the host CPU, as shown in Figure 1.5 (a).

Moving message-passing function can also apply to heterogeneous systems. With

the direct messaging function in hardware, these heterogeneous PEs can talk to the

network, without overloading the general processor, as shown in Figure 1.5 (b).



8

User Space

Kernel Space

Hardware 

Fabric

Physical 

Connection

User 

Application

MPI 

Library

CPU/OS

(protocol)

Network

(a) homogeneous

User 

Application

CPU/OS

Network

On-chip Switch

(protocol)

(b) heterogeneous

Custom

Computing
GPU 

Accelerator

Library

Figure 1.4: Traditional operation flow

User Space

Kernel Space

Hardware 

Fabric

Physical 

Connection

User 

Application

CPU/OS

Hardware 

MPI

Network

On-chip Switch

(protocol)

(a) homogeneous

User 

Application

CPU/OS

Network

Hardware

Messaging

Passing

On-chip Switch

(protocol)

(b) heterogeneous

Custom

Computing
GPU 

Accelerator

Library Library

Figure 1.5: Operation flow of hardware message-passing



9

1.4 Thesis Question

Future VLSI technology will have millions of heterogeneous PEs assembled into

one single HPC system. When working together, these PEs could produce a large

volume of communication for coordinating and exchanging data. In order to provide

communication for these PEs, a complex hierarchical interconnect should be used,

which would exhibit diverse communication time between PEs in different hierarchical

levels. Traditionally, communications between the PEs are handled in software, such

as OS or libraries. As the volume of communication increases, the software can

become the bottleneck because of the software overhead.

While the VLSI technology enables multi/many-core heterogeneous PEs on chip,

it also provides silicon resources to build the on-chip network, which can be used to

handle communications directly in hardware. The streaming and parallel nature of

hardware on-chip network would provide short signaling and tight coupling between

the PEs. Nowadays, on-chip networks are commonly used for point-to-point com-

munications between 4 or 8 cores; however, it is not practical for hundreds of cores

because point-to-point communication requests would sequentially line up, thereby

become the bottleneck even in hardware. Facing the future massive amount of on-chip

and off-chip PEs and the complex interconnect hierarchy, the question arises: Can

hardware be used to provide a unified view of the heterogeneous system and provide

message-passing function to the chip as well as to the cluster?

To answer this question, a custom hardware communication engine will be de-

signed and tested against the traditional software communication method. With

different sets of experiments, the thesis question can be answered in following as-

pects:

• Is the hardware communication engine practical and feasible? If the communi-

cation function can be implemented in hardware and function as the traditional

software communication, it is a practical design. If the hardware communica-



10

tion engine consumes reasonable amount of hardware resources — on par with

a general processor — the hardware communication engine is feasible.

• Can the hardware communication engine improve the overall performance? By

comparing different experimental configurations, we can quantitatively study

the advantages and the limitations of the hardware communication engine.

• Is the hardware communication engine scalable when the system grows? Mea-

suring the detailed communication cost and the software overhead, a model

can be established to predict the performance beyond the test infrastructure.

Comparing with the software communication, if the hardware communication

engine shows similar or slower growth trend of the scalability, it is recognized

as scalable.

• Can the hardware communication engine be used in the heterogeneous system?

A heterogeneous computing environment will be designed. Hardware computing

accelerators would interact with the hardware communication engine directly

without involving the central processor. The implementation would prove the

applicability.

• In the heterogeneous system, can hardware communication engine bring perfor-

mance gain? Tests will be designed to measure the communication time of the

hardware communication engine or the software communication.



CHAPTER 2: BACKGROUND

This chapter provides background knowledge for the proposed research — covering

FPGA, computational science, Top500 supercomputers, Message-Passing Interface,

benchmarks, and communication model. Technical and research related work can be

found in in Chapter 3.

2.1 Field Programmable Gate Array

Field Programmable Gate Array (FPGA) is a reconfigurable IC on which the

hardware fabric can be modified and programmed after manufactured. To program

an FPGA, Hardware Description Language (HDL) is commonly used to describe

the hardware wiring in register-transfer level. Using tools from the vendor or from

the third party, an HDL design is translated and implemented as a device specific

bitstream, which can be used to program the device. Intellectual Properties (IPs)

are design blocks which are modularized and can be inserted into the design with

small or no configurations. There are two types of IP: One is called soft IP, which

normally contains logic design only. This type of IP is portable and requires FPGA

tools to translate into fabrics. The other type of IP is called diffused IP, sometimes

known as hard IP. This type of IP is a set of device specific circuits which are already

implemented in the device, such as on-chip memory blocks, high-speed transceivers,

and processor cores. To make use of the diffused IP, the designer needs to instantiate

the IP and connect IO signals in the design, and the tools would wire the signals and

activate the IP.

Because of the reconfigurability, FPGA is often used to quickly prototype and

validate the hardware design. The hardware characteristics of FPGA has also made it

a nature fit to execute some complicated operations in hardware. Furthermore, FPGA



12

is capable of processing operations in parallel. Therefore, FPGA is often used as co-

processor in some applications, which sometimes can achieve orders of magnitude

performance improvement compared to traditional general processor system [25, 26].

Further details of how FPGA works and how it is implemented can be referred to

[27].

2.2 Computational Science

The advancement of science and technology has made the scale of research, design,

and decision systems large and complex. The traditional theoretic and experimental

approaches to solve these problems become less efficient and sometimes can barely

meet the requirement. Computational science, an emerging approach based on the

development of modern computing technology, opened the door to some new scientific

and engineering areas, such as bioinformatics, computational fluid dynamics, financial

modeling, etc.

Computational science problem, built upon certain mathematical models and nu-

merical algorithms, normally requires huge amount of computation. Generally speak-

ing, the computation is not possible to be accomplished by a single workstation in the

required time. The straightforward answer to solve the computational science problem

is to use supercomputers, which generally consist of many computation units comput-

ing in parallel. By breaking the big problem into smaller pieces and distributing the

pieces to the computation units, the users can exploit the parallelism of computation

and solve the computational problem efficiently.

2.3 Top500 Supercomputers

Started from 1993, the Top500 has been ranking the world’s fastest computers

biannually. Back in the June 1993, because building a supercomputer required strong

financial support, only big companies such as CRAY, Thinking Machines, Fujitsu,

and HP were the major players in the industry. At that time, each company has

its own processor design and proprietary architecture. The number of the processors



13

were small: 20% of the machines on the list had single processor, and nearly half of

the machines on list had less or equal than four processors.

As technology advanced, powerful processors were designed and the architecture

of these supercomputers were changed. In June 2000, more than 80% of the machines

on the list had 33 to 256 processors. Scalar processors ruled the market. Cluster ar-

chitecture started to dominate the market. Specifically, Beowulf Cluster — featuring

off-the-shelf hardware components, open source software, and Ethernet connection

— were very cost-effective to provide HPC power to the budget-limiting users. From

June 2000 to June 2003, the ratio of cluster architecture in Top500 list grew from

6.4% to 29.8%

Cluster architecture continued to dominate the market in the past few years

(> 80%). In the latest Top500 list, June 2011, 4k to 16k processors were the typical

number of processors in a machine. Roadrunner [8], the first machine reached PetaS-

cale in June 2008, was outperformed by Jaguar [28] with 1.7 PetaFlops in November

2009. Tianhe-1A [29], surpassed Jaguar with 2.566 PetaFlops after 12 months. How-

ever, K [30], challenged Tianhe-1A with 8.162 PetaFlops in June 2011, after another

6 months it reached 10.51 PetaFlops [31]. 4-core, 6-core general processors were used

in most of the machines. Modern processors, such as GPGPUs and Cell B.E. became

popular in the list.

2.4 Message-Passing

Along with the development of the hardware, as mentioned in section 2.3, there

are several programming model for the HPC systems. However, Message-Passing

has been practically the de facto standard for programming HPC machines. The

Message-Passing standard specifies the programming model for moving data explicitly

between the tasks. Message-Passing Interface (MPI), is the library specification for

implementing the standard. There are several MPI implementations maintained by

different research groups, such as MPICH and OpenMPI [32, 23].



14

task 0

t1

task 1

task 2

task 3

task 0

t2

task 1

task 2

task 3

Figure 2.1: Diagram of barrier operation

Two types of communication primitives are widely used in MPI applications. One

is point-to-point operation, which involves communication between exact two tasks.

The other type is called collective communication, which involves communication

among a group of tasks. Though there are some variants of point-to-point opera-

tions, the functions are essentially the same — passing data from one task to the

other. Collective communications, on the contrary, perform various duties — includ-

ing synchronization, exchanging data, or performing computations.

Among all the collective communication primitives, barrier operation is a rel-

atively simple but important operation; it is widely used in MPI as well as other

programming models. The function of barrier is to synchronize multiple parallel

tasks, and it is critical to maintain correct ordering of parallel operations in some

algorithms. The semantics of barrier is to block all tasks when they enter the op-

eration and wait until every task has reached the barrier. At that point, all tasks are

allowed to proceed. Shown in Figure 2.1, at t1, task 1 reaches barrier, but it needs

to wait for tasks. At t2, all tasks reach the barrier and are released thereafter.

Broadcast is another frequently used collective primitive. Literally, broadcast

distributes the data from the source task to all the other tasks in the communication.

As shown in Figure 2.2, before the broadcast, tasks own different data. After the

operation, all the recipient tasks own the same data as the source task.



15

task 0

task 1

task 2

task 3

A B C D

0 1 0 1

2 0 1 1

1 1 1 1

A B C D

A B C D

A B C D

A B C D

broadcast

task 0

task 1

task 2

task 3

Figure 2.2: Diagram of broadcast operation

task 0

task 1

task 2

task 3

7 1 6 4

4 6 4 1

2 8 1 5

1 9 9 2

7 9 9 5

reduce

(max)

task 0

Figure 2.3: Diagram of reduce operation

Another collective communication is reduce, which performs commutative com-

putation (such as ADD or MAX) on data passed to the operation. Reduce provides

functions to reduce the dimension of input data by 1. For example, if a set of parallel

tasks compute max value of each row in a 2-D matrix, then reduce operation will

fulfill the job and return the result as a 1-D vector in the root task. In Figure 2.3,

before the reduce, tasks each has a column of the input data. After the operation,

task 0 (the root) has the result, max value of each row.

2.5 Benchmarks

Benchmarks are used to measure the performance of the HPC system. Some

benchmarks are specifically designed for certain aspect of the system, such as the

floating point operation rate, the IO bandwidth, or the communication latency. Some

benchmarks are extracted from scientific applications, emulating the real operations

in the HPC system, and measuring the overall performance.



16

High Performance Linpack Benchmark (HPL) is the standard benchmark used for

measuring the performance and ranking the TOP500 HPC systems. The algorithm

embedded in HPL is a double precision (64-bit, IEEE-754) dense linear system LU

solver. MPI is utilized by HPL to distribute the data, synchronize the tasks and

collect the result. By properly setting up the system parameters (problem size, row

partition, column partition, etc.), HPL can test the accuracy of the result and measure

the performance of the system in FLOPS (floating point operations per second).

The NAS Parallel Benchmark (NPB) is a set of benchmarks developed by NASA.

Since NPB is derived from computational fluid dynamics (CFD) applications, it is

widely recognized and used to help evaluate the performance of HPCs. The NPB

consists of five kernels and three pseudo-applications, each one has several “classes”,

targeting at different problem size on different HPCs [33, 34].

• EP: An “embarrassingly parallel” kernel. It provides an estimate of the upper

achievable limits for floating point performance, i.e., the performance without

significant interprocessor communication.

• MG: A simplified multigrid kernel. It requires highly structured long distance

communication and tests both short and long distance data communication.

• CG: A conjugate gradient method is used to compute an approximation to the

smallest eigenvalue of a large sparse symmetric positive definite matrix. This

kernel is typical of unstructured grid computations in that it tests irregular long

distance communication employing unstructured matrix vector multiplication.

• FT: A 3-D partial differential equation solution using FFTs. This kernel per-

forms the essence of many spectral codes. It is a rigorous test of long distance

communication performance.

• IS: A large integer sort. This kernel performs a sorting operation that is impor-

tant in ”particle method” codes. It tests both integer computation speed and

communication performance.



17

• BT: Solution of multiple, independent systems of nondiagonally-dominant, block

tridiagonal equations with a (5 x 5) block size.

• SP: Solution of multiple, independent systems of nondiagonally-dominant, scalar

pentadiagonal equations.

• LU: Regular-sparse, block (5 x 5) lower and upper triangular system solution.

2.6 Amdahl’s Law

Beyond the benchmarks, characterizing and modeling the parallelism and com-

munication is another active research area. In the HPC world, one of the most

well-known and classic theory is called Amdahl’s Law [35], which characterized the

speedup of parallelizing an application program:

Speedup = 1
(1−F )+ F

N

Here F (0 < F < 1) denotes the fraction of the program which can be parallelized,

N represents the number of computing unit. Assuming the parallel computing units

can achieve N times speedup on the parallel portion, the formula suggests that the

maximum performance is limited by the sequential (non-parallel) part of the appli-

cation. The speedup of using different F is illustrated in Figure 2.4.

2.7 Communication Model

David Culler et al. proposed LogP model [36], which models the communication

of modern and future massive parallel processor system. The model is based on four

parameters listed below:

L: an upper bound on the latency, or delay, incurred in communicating a message

containing a word (or small number of words) from its source module to its target

module.

o: the overhead, defined as the length of time that a processor is engaged in the

transmission or reception of each message; during this time, the processor cannot

perform other operations.



18

0 20 40 60 80 100
1

2

3

4

5

6

7

8

9

10

Number of parallel processing unit

S
p
e
e
d
u
p

F=0.9

F=0.8

F=0.7

F=0.6

F=0.5

Figure 2.4: Amdahl’s Law, performance gain of parallelism

g: the gap, defined as the minimum time interval between consecutive message

transmissions or consecutive message receptions at a processor. The reciprocal of g

corresponds to the available per-processor communication bandwidth.

P : the number of processor/memory modules. We assume unit time for local

operations and call it a cycle.



CHAPTER 3: RELATED WORK

3.1 MPI Related Research

Because MPI is the standard interface to program supercomputers, there are

countless HPC related research of MPI. Following the specification, users can write

applications in MPI and run the applications using different parallel machines. When

running the program, the users are free to specify what algorithm to choose and

which hardware interconnect to use. These flexible features let the users focus on the

functionality of their applications, while let researchers focus on optimizing MPI.

3.1.1 Point-to-point Communication

Point-to-point communications, such as send and receive, are the fundamen-

tal operations in MPI. The MPI specification defined several varieties of send and

receive primitives, each one with different handshaking protocols and different buffer-

ing options. The varieties have different performance, meanwhile provide the pro-

grammers the freedom to choose the best point-to-point operation based on their

needs. Some research has been done to optimize the point-to-point operations. In

[37, 38], the researchers leveraged RDMA to develop a set of customized protocols

to maximize the performance of point-to-point communication. The TMD-MPI [39]

implemented MPI Send and MPI Recv in FPGA.

3.1.2 Collective Communication

Compared to point-to-point operation, collective communication, which involves

multiple tasks, has received a lot more research attention, ever since the advent of

parallel computing. An interesting profiling research done in [40], studied the behavior

of real MPI applications running on state-of-the-art clusters. The statistical results

showed that more than 40% of the execution time of all MPI calls are spent on MPI



20

Allreduce and MPI Reduce. To alleviate the heavy load on these two primitives,

the author proposed several reduce algorithms optimized for different vector size and

number of processes in [41]. By experimenting different parameters on the target

machine, a 3−−100× speedup of reduce operation could be achieved.

The work in [42] presented several barrier algorithms. With respect to algo-

rithms, one conventional approach is to create a head (or root) node which receives

all the barrier messages and distributes the clear messages. Specifically, Central

Counter [43] is one algorithm where a counter is kept on one node to track the num-

ber of nodes that have reached their barrier. When the counter equals the size of

the network, the clear barrier message is issued. The basic implementation of MPI

Barrier used within OpenMPI utilizes point-to-point communications to pass barrier

messages to and from each node and the head node, which is called Sequential Tree

in [44]. Other Tree based barriers such as Combining tree [45, 46] can differ based on

the internal tree structure and the decision making process to achieve parallelism in

message transmission. Alternatively, Butterfly barrier [47] and Recursive Doubling

[48] utilize pairwise message exchange to implement the barrier instead of using a

head node to issue the clear barrier decision.

In [49], the authors comprehensively summarized the design and implementa-

tion of collective communication on several distributed-memory architectures, which

covered the research in the past 30 years. This paper not only summarized the algo-

rithms used to implement the collective communication instances, but also analyzed

these algorithms using mathematic models. Based on the commonly used algorithms,

Minimum-spanning tree algorithms (MST), Bidirectional exchange algorithms (BDE),

and Bucket algorithm, the authors proposed several hybrid algorithms focusing on

different message size and architectures. The test results on a Myrinet connected

Xeon cluster showed that the hybrid algorithms achieved performance improvement

in most situations compared to common implementation of MPI such as MPICH.



21

The work in [44] summarized the general algorithms for collective communication.

By experimenting the algorithms with different parameters (message size, communi-

cator size, user application, etc.), a static tuned collective communication library

was obtained. The results were reported to improve the performance by 35% to 650%

when compared to native MPI implementation. However, in most cases, the static op-

timization is tuned for a particular architecture or a specific application. The static

optimization requires an extensive test of all the combinations of the parameters,

which is not possible when the system scale is large. So mathematical models were

used to predict the performance of the algorithms. In [50], the author used Hock-

ney, LogP/LogGP, and PlogP models to analyze the performance of the collective

algorithms. Compared to the static tuned library, the prediction of the mathemati-

cal models can achieve a near-optimal solution. In [51], quadtree encoding method

was used to build run-time decision tree, based on statistical learning. This research

showed feasible approach to optimize collective communication in run-time.

3.1.3 Hardware Optimization

Although there is a large body of work related to changing the software optimiza-

tion (switching the algorithm depending on the size and number tasks participating

in the operation), some of the optimization can be applied in hardware as well.

Several algorithms were proposed in [52] for “global combination”, which is now

MPI Allreduce on a 2-D mesh interconnect with wormhole routing. This paper

proved that it is possible and efficient to execute global operations on 2-D mesh

interconnect. However, to achieve best performance over the full range of data size,

different algorithms should be adopted for different scenarios.

In [53, 54], IBM implemented dedicated networks for Blue Gene/L and Blue

Gene/P. The nodes in the system are interconnected via three networks: 3D torus,

collective tree network, and global interrupt. The torus network is the main network

for point-to-point communication. The collective tree network is capable of providing



22

low latency and high bandwidth for fan-in and fan-out operations (broadcast and

reduce). The global interrupt provides configurable OR wires to perform hardware-

based synchronization. Beyond BG/L, BG/P features DMA to offload messaging

work from processors and achieve better communication and computation overlap.

In [55], the researchers explored hardware feature on the Infiniband adapter,

ConnectX-2 from Mellanox Technologies. The hardware offloading feature, called

CORE-Direct, can offload a series of send, receive and reduction tasks to the adapter.

The researchers generalized the collective communication into several primitives and

designed these primitives using the hardware feature. The test result showed the

designed MPI Barrier (from the primitives) achieved almost perfect overlap of com-

putation and communication and some performance improvement of Recv-Replicate

primitive.

The PERCS high-speed interconnect developed by IBM [56] features a Hub chip

that integrated into the compute node. The Hub chip is used to connect local Power7

chips and interconnect with other compute node. In the Hub chip, there is a Col-

lective Acceleration Unit (CAU) designed to speed up the collective communication,

specifically the barrier, multicast, and reduction. The large-scale PERCS in-

stallation, Blue Waters is being constructed at NCSA, and it is expected to deliver

sustained Petascale performance over a wide range of applications.

Cray Inc. designed Seastar Interconnect [57] and Gemini Interconnect [58] to

support high-performance distributed system. The Portals network interface [59, 60]

designed by Sandia National Lab can leverage the hardware DMA on the NIC to

bypass the OS and offload the send and receive operations.

As part of the Adaptable Computing Cluster project, [61] implemented MPI

Reduce in the FPGA fabric of a Network Interface Card. This has the advantage

of using a commodity off-the-shelf interconnect (Gigabit Ethernet, in this case) in a

commodity cluster. These ideas were further explored in [62]. Voltaire has recently



23

announced support for collective communications inside of their InfiniBand switch;

however, no peer-reviewed report is available yet to characterize the advantages.

The OSU group studied several collective communication primitives [63, 64, 65,

66, 67] on Myrinet. The research has shown that NIC-based collective operations

is able to reduce the host processor involvement, avoid bus traffic and increase the

tolerance to process skew and OS effects.

In the work of [68], the authors described an implementation of collective commu-

nication with a combination of shared and remote memory access (RMA) protocols.

The proposed approaches were tested on IBM SP with LAPI support for RMA,

achieved performance improvements in all test configuration.

3.2 On-chip Message-Passing

While the previous section describes many research focusing on the standard MPI

implementation and optimization, the message-passing concept is not limited to the

software. Some research and developments of on-chip architecture are implementing

similar message-passing mechanism.

3.2.1 Raw

The Raw Architecture Workstation (Raw) is a tiled multicore architecture that

explores the fine-grain parallelism between many replicated processing elements [69].

The key feature of Raw is that the hardware architecture is exposed to the program-

mers, so the compilers or application designers are required to choose the correct tile

and program the routing between the tiles.

The prototype of Raw processor is a 4 × 4 tile structure. The processor core in

each tile is a 8 stage MIPS processor along with local memory and the cache. The

on-chip network between the tiles consists of a static network and a dynamic network.

The static network is used for passing operands and data streams within or between

the tiles. While the dynamic network provides DMA or message passing. Relatively

speaking, The dynamic network has lower performance than the static network. Some



24

researchers utilized the Raw processor in their application and achieved considerable

performance gain [70].

3.2.2 Intel Terascale Computing

As the leading manufacturer in the industry, Intel has several research and exper-

imental projects shooting at the future generation processor and computer systems.

Based on current trend of multicore, Intel has envisioned the future processor to

have 100s cores on a single chip. More importantly, the visioned architecture would

rely heavily on the on-chip network, advanced power management technologies and

support for “message-passing”.

One prototype project implemented 80 simple cores on a single chip [71]. Each

core has a message passing router that is connected as a 2D mesh network that allow

message-passing communication. Another 48-core architecture “Single-chip Cloud

Computer” is built as an experimental processor that resembles a cluster of computers

[72]. Besides the components that are common in x86 system, the designers build

SRAMs with each computation tile, called message passing buffer (MPB), which is

able to provide fast communication between cores via messages.

3.2.3 RAMP

RAMP is the acronym for “Research Accelerator for Multiple Processors”, which

is a group of research projects originated from UC Berkeley [73]. The goal of RAMP

project is to utilize the FPGA as a hardware instrument to prototype, simulate fu-

ture computer system, programming languages and other tools. Several prototype

machines were built for different research purposes.

The RAMP-Red is a multiprocessor system with hardware support for transac-

tional memory. On the development board, multiple processors are connected to

a shared memory via a switch. Custom cache is designed to support transactional

memory. This design is 100 times faster than the software simulation [74].

The RAMP-Blue is a manycore message-passing architecture. 1008 Microblaze



25

cores are connected with a custom network. The designers choose uClinux as the OS.

With UPC framework and GASNet to support message-passing, the system is able

to run NAS Parral Benchmark [75].

3.2.4 Reconfigurable Computing Cluster

The Reconfigurable Computing Cluster (RCC) project is investigating the feasi-

bility of cost-effective Petascale clusters of FPGAs [76]. A prototype machine is built

with 64 Xilinx ML-410 development board.

The network design is the critical component within the RCC project. The initial

design includes a custom high-speed network card, which utilizes the RocketIO and

Aurora cores from Xilinx [77]. The custom network, AIREN (Architecture Indepen-

dent REconfigurable Network), aggregate both the single FPGA network-on-chip and

multiple-FPGA networks. The bit rate of this high-speed network is measured 3.2

Gb/s per channel. There are 8 channels on each network card, so different topolo-

gies can be built around the hardware. For the researchers’ test, the network can be

arranged in Torus structure or a Ring network. DMA engine can be built into the

network to fulfill the point-to-point communication. For each transfer, the latency

between the neighbor nodes is 0.8µs. With this custom high-speed network, the re-

searchers can have multiple hardware accelerators executing in parallel, obtaining

linear speedup, from 5.0× to 20.92× [78].



CHAPTER 4: DESIGN

Given the fact that communication frequency and data size will rise with the

increasing number of PEs and growing size of the problem, the processor hosting

the OS can be overloaded by the heavy communication, and therefore become the

bottleneck of the system. In order to solve this bottleneck, the proposed solution

is to design a dedicated Message-Passing Engine (MPE) in hardware to handle the

communications, especially collective communications. The design is split into two

stages. Stage 1 will focus on using hardware to implement the message-passing func-

tion and offload some software MPI operations in a homogeneous system. In stage 2,

the design integrates the MPE in the heterogeneous system, in which the hardware

MPE will provide communication for different types of processing elements in the

system.

4.1 Design Infrastructure

Spirit Cluster, described in Section 3.2.4, is used as the design infrastructure to

implement and evaluate the proposed work. Spirit is a cluster of 64 ML-410 FPGA

development boards. Each development board has a Xilinx Virtex 4 FX60 FPGA. A

high-speed network card has been designed to route 8 high-speed transceiver ports

off the board.

4.1.1 Off-chip Network

With the designed custom high-speed network card [77], the development boards

can be arranged as a directly connected network, in which each node (FPGA) has

a local router with a unique network ID. To route the packets between indirectly

connected nodes, it requires the router on the intermediate node to route the packets

through. The example shown in Figure 4.1 is a connection of 8 independent systems



27

Figure 4.1: Direct connected off-chip network with the router

Figure 4.2: 4-ary 3-cube torus network

via the local router. Figure 4.2 shows a 4-ary 3-cube Torus network, which is the

current implementation on Spirit. On each node, 6 out of 8 ports are used. Each port

is connected to neighbor nodes in X+, X-, Y+, Y-, Z+, and Z- directions. Different

routing algorithms can be applied to the off-chip network, such as dimensional routing

and adaptive routing [79].

4.1.2 On-chip Network

The on-chip network is designed to provide communications between local compo-

nents. At the same time, it allows on-chip components communicate with the off-chip

network. Several on-chip interconnect methods can be used, such as ring, mesh, or



28

Figure 4.3: On-chip components connected around the crossbar switch

SOF_N
EOF_N

SRC_RDY_N
DST_RDY_N

DATA

SOF_N
EOF_N
SRC_RDY_N
DST_RDY_N

DATA

Sender Receiver

Figure 4.4: Signal interface of LocalLink

star. In previous work, a 16-port crossbar switch and routing module have been

implemented, this proposed design will leverage the router and connect the on-chip

components around the router, as shown in Figure 4.3.

4.1.3 Network Interface

The network interface is designed to provide a unified view to handle communica-

tion between different hierarchical components. As shown in Figure 4.4, a standard

network interface — LocalLink from Xilinx [80] — is used in this design. The simple

signal interface of LocalLink provides an efficient handshaking mechanism for com-

munications, especially for streams of data. Other network interfacing protocol can

be used as well.

4.1.4 Base System

The base system provides a platform for both Stage 1 and Stage 2 designs. In

order to support a message passing environment, a traditional processor-bus-memory



29

Processor

Interrupt

Controller

P
L
B

IIC

On-chip

Router Custom

high-speed

network

LL_TEMAC

Ethernet
Ethernet

Hardware MP

Engine

DMA

Engine

DDR2

Memory
UART

Figure 4.5: Hardware base system with the on-chip router

architecture is adopted. Using Spirit cluster as the infrastructure, the base system

is built within the platform FPGA. Note that the low frequency embedded processor

within the platform FPGA is obviously not suitable for HPC. Embedded processor is

used because there is no discrete processor on the development board. However, the

idea of using FPGAs to offload message-passing operations can be applied to general

discrete processor systems or modern heterogeneous systems as well.

Within the FPGA, Xilinx has already provided two diffused embedded PowerPC

processors. Using Xilinx tools, the Microblaze processor, a soft IP from Xilinx can

also be used. The PowerPC has a higher executing frequency, whereas the Microblaze

is more configurable and can be easily expanded to multiple cores on a single chip.

Shown in Figure 4.5, the system bus is Processor Local Bus (PLB). The peripherals,

including DDR2 memory, UART, interrupt controller, IIC, and LL TEMAC Ethernet,

are connected to the PLB. The on-chip router provides the connections for both on-

chip components and off-chip system. The router also has a bus connection, which is

used for setting control registers and the network ID.



30

4.1.5 Miscellaneous IP Cores

In order to test the functionality and measure the performance of the MPE, some

supplementary hardware IPs are needed. One of the IP is called the source/sink core,

which shares the same communication interface as the MPE. The source/sink core can

be used as a test core connected to the on-chip router. Controlled by the processor,

they can behave like any processor or hardware accelerator sending and receiving the

data stream. With the source/sink core, we can test the function correctness of the

MPE in the simulation or in hardware.

Another type of the IP is called the monitor core. This hardware was mentioned

in [81]. In this proposed work, the monitor core is a collection of hardware counters

that count the clock cycles of various operations. With the monitor core, accurate

measurement can be obtained.

4.2 Stage 1: Hardware Message-Passing Engine

In Stage 1, the design is to implement the communication functions in hardware.

The hardware MPE is acting like a co-processor offloading software operations from

the CPU. All the ML-410 development boards are presenting the same hardware

configuration.

4.2.1 Point-to-point Communication

Point-to-point communication is the basic operation, which semantically transfers

one chunk of data from the sender to the receiver. In standard specification, the

variants of software send and receive incorporates different buffering options, which

is not necessary in hardware. To implement the point-to-point communication in

hardware, while eliminating the involvement of the processors as much as possible, a

hardware DMA engine is connected to the router, as shown in Figure 4.5. When a

send request is requested, the processor passes the address and the length of the data

to the DMA. The DMA will fetch the data directly from the DDR2 memory, assemble

the packet and push the packet directly into the custom high-speed network. When



31

the data packet arrives at the receiver, the DMA engine will trigger a interrupt to

notify the processor.

Similar to the software implementation, some collective communications can be

easily setup using just send and receive, for example, broadcast, scatter, and

gather.

4.2.2 Collective Communication

After studying the typical implementations of MPI collective primitives, clearly

the most time consuming portion of MPI collective communications is the sequen-

tial sending and receiving of messages. Some optimizations are able to explore the

parallelism within the algorithms, so that some tasks can work in parallel based on

certain topologies, as mentioned in chapter 3. However, software overhead such as OS

protocol stacks, ISRs, and interfacing with the network are still sequentially executed

on general processors, which occupies the processor and limit the computation capa-

bility. To handle collective communications in the hardware, the MPE is designed

to connect to the on-chip router. Inside the MPE, three typical operations barrier,

broadcast, reduce are implemented.

4.2.2.1 Barrier Function

The hardware MPE implements barrier function, shown in Figure 4.6, with

the goal to move barrier synchronization responsibilities from OS and libraries into

hardware. When a barrier request is initiated, the processor asserts one bit in the

hardware and wait for the barrier clear interrupt from the hardware MPE. The

barrier message is assembled, sent and received completely in hardware. When all

the tasks reach the barrier, the hardware send out interrupt signals to the processor.

4.2.2.2 Broadcast Function

The function of broadcast is distributing the same chunk of the data from the

source task to other tasks. Since data movement could not perform well through

the processor-bus combination because of the slow bus transaction, the hardware



32

S0

S1 S3

S2

if received all 

children's barriers

&

hit own barrier

if not root if root

if received 

parent's clear

S4

if finished 

transmission

if finished 

transmission

if OS barrier 

goes low

S0: wait for children

S1: send barrier to parent

S2: wait for parent

S3: send clear to children

S4: barrier done

Figure 4.6: FSM of barrier operation

DMA engine used for point-to-point communication can also be used in broadcast

to speedup the data operation without involving the processor and the bus. When a

broadcast request is issued by the processor, the DMA engine fetches the data and

pass the data to the hardware MPE. The MPE assembles the messages, handles the

handshaking messages between the parent and children, send and receive data, and

notifies the processor by interrupt when the broadcast request is done.

Because broadcast primitive operates on a vector of data. A FIFO is used as the

buffer to hold the data. Because of the resource on the FPGA, the size of the FIFO is

limited, which means if the data size is larger than the FIFO size, the data is divided

into chunks and transmitted separately.

4.2.2.3 Reduce Function

Besides the similar but reverse data movement as the broadcast, the unique

feature of reduce is that it involves a commutative and associative computation

operation. The normal implementation of reduce, e.g. MPI Reduce in OpenMPI, is

that all the nodes send data to the root node. The root node receives the data in



33

RX_IDLE

RX_DATA

RX_DONE

TX_IDLE

TX_DATA

TX_LOCAL

TX_CHILDREN TX_ACC

TX_PARENT

TX_INIT

TX_DONE

send

data

request

receive

data

request

data received

request received

bcast done Interrupt

bcast request

Figure 4.7: FSM of broadcast operation

sequence and compute the result in sequence till all the data are consumed. On one

hand, the data communication is congested at the root node; on the other hand, the

computation is also serialized on the root node. So the overall performance is limited

by the performance of the ALU on the root node. Some modern processors have very

complex pipeline design to speedup the computation. But the processor embedded

in the FPGA has a low clock frequency. What makes it worse is that the embedded

processor does not have an usable hardware FPU. It usually takes tens to hundreds

of clock cycles to execute one floating-point operation in software, while just a few

cycles to execute in hardware. Therefore, in this design, a hardware computation

unit is adopted inside the reduce core.

4.2.2.4 Topology

As described in Chapter 3, the underlying communication topology — algorithms

— sometimes plays an important role affecting the performance of certain commu-

nications. Tree-based algorithms have the advantage of low algorithm complexity

and overall scalability. The proposed work will design and test some of the popular

tree-based topologies.



34

TX_IDLE

TX_DATA

TX_PARENT TX_CHILDREN

TX_INIT

send

data

request

RX_IDLE

RX_DATA

RX_DONE

receive

data

request

reduce Interrupt

reduce request

COMP_IDLE

COMP_REMOTE

COMP_LOCAL COMP_DONE

computation

done

request

received

data

received

Figure 4.8: FSM of reduce operation

N00 N01 N02 N03

N08 N09

N13N12

N07N06N05N04

N10 N11

N15N14

N00 N01 N02 N03

N07N06N05N04

N08

N12 N13

N09 N10

N14 N15

N11

(a) (b) (c)

N10

N02N01

N12

N07

N08

N03 N04

N06

N09N11

N05

N00

N13

N14

N15

1 2

3

4
1

1
1

2

2

2

2

2

3

3

3

 physical connection

N00

N01 N03 N04 N12

N02 N05 N07 N15 N08N13

N09N14 N11N06

N10

Figure 4.9: Topologies of hardware collective communication



35

Binomial tree structures utilize all the possible physical channels. Take 4-ary

2-cube as an example, shown in Figure 4.9a, each node has 4 neighbor nodes directly

connected. Theoretically, message transmissions can happen in all the channels in

parallel, which could achieve the highest topology parallelism.

Linear tree has no topology parallelism, as shown in Figure 4.9b. Every node has

only one parent and one child directly connected. Messages are relayed one node to

another from the leaves to the root. For simple collective operations, such as barrier,

this structure is inefficient because there is no parallelism; however, for broadcast

and reduce, which have multi-stage data operations, this topology creates a pipeline,

which could achieve higher bandwidth than other topologies do.

Star tree structure virtually connects the root node to all the other nodes. Phys-

ical channels are reused. Messages hop through multiple nodes to the destination via

the on-chip router. The number labeled in Figure 4.9c shows the number of hops for

each virtual connection. This topology requires only one hardware MPE in the root

node, while virtually exploring the maximum parallelism. However, when the size of

the message and number of nodes is large, the sole MPE and the number of physical

channels on the root node become the limiting factors that would cause contention

and degrade the overall performance of the system.

4.3 Stage 2: Heterogeneous System

In Stage 2, the design is concentrating on heterogeneous systems. Instead of being

the co-processor of the general processor, the hardware MPE is accessible to all the

on-chip heterogeneous PEs. Heterogeneous PEs can communicate directly through

the hardware MPE without involving the processor, as shown in Figure 4.10.

Figure 4.10 shows the common configuration of current heterogeneous systems.

The general processor is a multi/many-core chip with its on-chip network and the

connection to the main memory. The heterogeneous chip is also a multi/many-core

chip with the link to the local memory. Between these two packages, high speed



36

Main

Memory

PE PE

PE PE

On-Chip Network

Local

Memory

A A A A

A A A A

On-Chip Network

Off-Chip

Network

Message

Passing

Engine

B

A

R

R

B

C

A

S

T

D

M

A

Figure 4.10: Block diagram of MPE in heterogeneous system



37

ACPU/OS

A

ACPU/OS

CPU/OSACPU/OS

Figure 4.11: Typical programming method for parallel heterogeneous system

connections such as PCI Express are often used. In some configurations, the two

chips can be manufactured in a single package [82].

The typical programming method for parallel heterogeneous system is relying on

the OS and libraries running on the general processor. Figure 4.11 is a example of

programming 4 parallel tasks. Each task is running on a general processor with OS

and essential libraries. The initial data is distributed by the standard MPI function

calls and stored in the main memory. As each task finishes receiving the data, the OS

and the libraries assign subtasks to the heterogeneous PEs and copy the data from

main memory to the local memory associated with the heterogeneous PEs. Then the

heterogeneous PEs may start the computation. After the computation is finished,

the OS and libraries copy the data back into the main memory. At last the general

processor may process the following program.

As we can see in Figure 4.11, data are frequently transferred back and forth

between the main memory and heterogeneous PEs’ local memory. This has two

negative impacts: First, as the OS and libraries are running on the general processor,

frequent communication requests may overload the general processor. Second, the



38

communication requests need to pass multiple software stacks, these operations are

trivial but consume the clock cycles which can be used in real computation.

To address these two negative impacts, the hardware MPE can be used, as shown

shaded area in Figure 4.10. First, the hardware MPE is dedicated to communications,

it can route communications directly to heterogeneous PEs without going into the

main memory or overloading the general processor. Second, the hardware MPE pro-

cess the communication in parallel with the general processor, that gives the general

processor opportunity to process other computation.

4.3.1 Parallel FFT Operation

Fourier Transform is a transformation of one sequence of signal to another se-

quence of signal. Generally, forward transformation transforms time-domain signals

to frequency-domain signals, whereas inverse transformation transforms signals vice

versa. The commonly used Fourier Transform is Discrete Fourier Transform (DFT),

which involves heavy computations on floating-point multiplication and addition. Be-

cause of the periodical characteristics of the twiddle factor and the finite sequence,

Fast Fourier Transform (FFT) algorithm can calculate DFT using less computations

with intermediate variables reused. One well-known FFT algorithm is the Cooley–

Tukey algorithm, it recursively divides the sequence into two halves, which can be

expressed as smaller FFT. Two types of decimation strategies can be used to im-

plement FFT algorithms: Decimation-In-Time (DIT) or Decimation-In-Frequency

(DIF). As shown in Figure 4.12, the DIT algorithm requires a bit reversal sorting

operation performed on the input data, and the output data is in natural sequence.

Figure 4.13 shows that the DIF algorithm is able to take natural sequence directly as

input, and output the result in a bit reversal style.

4.3.1.1 Algorithm

In this work, a parallel FFT operation is implemented in both the software and

the hardware. With the goal to stream the natural sequence data into the hardware,



39

Figure 4.12: FFT Decimation-In-Time

Figure 4.13: FFT Decimation-In-Frequency



40

DIF algorithm is implemented. The parallel FFT DIF algorithm involves two steps:

an inter-node FFT DIF step and an intra-node FFT DIF step. The inter-node FFT

DIF requires point-to-point communication, whereas the intra-node FFT DIF does

not have communication. The parallel FFT DIF algorithm is described below:

1. Before the computation starts, twiddle factors are calculated and stored in the

memory.

2. The root node generates the original data. A scatter operation is issued and

distribute the original data to all the other nodes. The received data is used as

the local data.

3. Based on how many nodes are involved, every node calculates its remote node.

A point-to-point communication is initiated on each node, sending local data

to remote node. The received data is treated as the remote data.

4. After every node has the local data and the remote data, an inter-node FFT

DIF calculation is performed. The results are stored in the local data.

5. Check if the inter-node calculation is finished (log2(n)). If yes, the intra-node

FFT DIF will be performed on the local data. If not, loop to 3.

4.3.1.2 Implementation

Figure 4.14 shows the block diagram of the designed hardware FFT core. The

FFT core takes three complex inputs, cplex a, cplex b, and cplex t, which corre-

spondingly represent the local data, the remote data, and the twiddle factor from the

table. The cplex addsub block instantiates 2 floating-point add/sub units for the

real part and the image part of a complex number. Within the cplex mul block it

instantiates 4 floating-point multiplication units and 2 floating-point add/sub units.

The cplex sreg is a shift register designed to synchronous the table input to the

add/sub input, providing exact same clock delay as the cplex addsub. Based on

the control signal, cplex addsub adds two inputs or subtracts cplex b from cplex

a. The output of cplex addsub is feed into cplex mul and multiply with the syn-



41

cplex_addsub

cplex_mul

cplex_sreg

cplex_a

cplex_b

cplex_t

FFT_result

add_result

sub_result

addsub_ctrl

Figure 4.14: Block diagram of FFT Core

chronous table input from cplex sreg. Based on the control signal, the FFT core

outputs result either from the cplex addsub, or from the cplex mul. Figure 4.15

illustrates the upper IO level of the FFT core. Two FIFOs are used, one is used

to store the local data, and the other is used to store the remote data. The FFT

TABLE instantiates a two-port BRAM primitives to store the twiddle factor. One

port of the BRAM (BRAM PORT A) is connected to the bus, from which the PowerPC

can calculate the twiddle factors and writes into the BRAM. The other port of the

BRAM (BRAM PORT B) is connected to the FFT core. As both local data and remote

data are ready in the FIFOs, the FSM asserts read signals to both FIFOs as well

as the BRAM. When the calculated results are pipelined out of the FFT core, they

are feed back into the local FIFO. When the calculation is finished, the FSM asserts

read signal to local FIFO and assembles a transmission to the remote node. At the

same time, the FSM receives remote data and stores it in the remote FIFO. When

the inter-node FFT DIF is completed, the data in local FIFO can be dumped into

the main memory or another hardware core. In this work, due to the limitation of

the hardware resources, the intra-node computation is carried out on PowerPC.

4.3.2 Parallel Matrix-Vector Multiplication

In scientific applications, floating-point matrix calculation is widely used and it

is often considered important performance index. Benchmarks, such as HPL, use



42

LFIFO

RFIFO

LL_RX

BRAM_PORT_A
FFT_TABLE

FFT_CORE

BRAM_PORT_B

cplex_t

cplex_b

cplex_a

LL_TX

FFT_result

Figure 4.15: Block diagram of FFT IO

matrix calculation as the kernel calculation. Therefore, in this experiment, a floating

point matrix-vector multiplication is implemented, both in the FPGA fabric and the

software.

4.3.2.1 Algorithm

There are many parallel algorithms for matrix-vector multiplication. In this ex-

periment, a row-based parallel algorithm is designed as follows:

1. Root node generate matrix A and vector B.

2. Root scatter matrix A in row order to all the nodes in this operation. All the

nodes have partial matrix A.

3. Root broadcast vector B to all the nodes in this operation. All the nodes have

vector B.

4. All the nodes calculate partial result vector C using partial matrix A and vector

B.

5. Root gather partial result vector C from all the nodes and combine it into

result vector C.

6. Optional: loop



43

MUL

row A

vec B
FIFO ADD

result bank

result

Figure 4.16: Block diagram of vector-vector multiplication

4.3.2.2 Implementation

Based on the algorithm, the matrix-vector multiplication can be broken into sev-

eral vector-vector multiply-accumulate operations. Consider this multiply-accumulate

operation as a stand-alone unit, two implementations are designed: the hardware

MACC core, and the software MACC kernel.

The hardware MACC core is implemented in the FPGA fabric, utilizing DSP

slices and block RAMs. As shown in Figure 4.16, the MACC core is designed with

one FIFO, one floating-point multiplication core, and one floating-point adder core.

The computation essentially involves several data streaming operations. Vector B is

distributed from the root node and stored in the FIFO in all the MACC cores via

the broadcast operation. Partial matrix A is streamed in the MACC in row order

through the scatter operation, the FIFO synchronously pops the data and feeds the

data to the floating-point multiplication core. At the same time, the output data is

pushed back into the FIFO and ready for next row of partial matrix A. The register

bank is used to temporarily buffer the results from the pipeline delay of the adder

core. All the hardware primitives are generated using Coregen from Xilinx tools.

The software MACC kernel is simply implemented as a for-loop. On one hand,

the software MACC kernel can be used as a reference for the hardware MACC core.

On the other hand, a hybrid computing system can be implemented by utilizing the

software MACC kernel and hardware MACC core in parallel. The total workload



44

partial matrix A software

thread

hardware

thread

row 0
row 0

row 1
row 2
row 3
row 4
row 5

row 1
row 2
row 3
row 4
row 5

Figure 4.17: Hybrid of hardware thread and software thread

can be distributed to software and hardware at the same time. To leverage both the

heterogeneous hardware and software configuration, Pthreads can be used, as shown

in Figure 4.17.



CHAPTER 5: EVALUATION AND ANALYSIS

5.1 Evaluation Infrastructure

As described in Chapter 4, the hardware MPE design and testing infrastructure

are implemented on Spirit cluster. The detailed specification of Xilinx ML-410 de-

velopment board can be referenced in [83]. For reference, Python cluster, which is

mentioned in Section 1.3, is used as the commodity HPC system to run the reference

software tests.

5.2 Testing Methodology

A synthetic benchmark is written in C to measure the execution time of the

communication primitives. The processor writes to registers to set the network ID

and the communication topology before the collective communication occurs. By

measuring the time for a certain number of communication calls to complete, the

average execution time can be calculated for each node. The measurements will test

configurations of different number of nodes and vary the problem size for reduce and

broadcast.

In order to run the synthetic benchmark under Linux, custom device drivers are

required to support control between the hardware and the software. The device

drivers issue the network IDs to the MPE based on the node’s IP address. During

initialization, the application writes pre-calculated tree topology to the hardware

MPE. When reduce or broadcast function call occurs, the device drivers initiate the

memory operation from the DMA engine and waits for the completion interrupt from

hardware. To avoid overfilling the hardware FIFOs, the device drivers calculate the

length of each message, and divide long message into small messages which fit in the

FIFOs. Then the device drivers issue consecutive requests to the hardware MPE.



46

The synthetic benchmark can be ported to use the standard software MPI. As a

reference, the ported benchmark can be executed in the native Linux on FPGA, or

on the commodity HPC system, such as Python cluster.

5.3 Stage 1 Experiment

The Stage 1 experiments measure the performance (latency and bandwidth) of

the design MPE using different communication topology, specifically the Binomial

Tree, the Star Tree, and the Linear Tree. Other user-defined topology such as Binary

Tree is also tested. Because the Binary Tree does not show distinctive result, it is

not reported. Same experiments are exercised on Spirit and Python cluster using the

traditional software MPI.

5.3.1 Barrier Performance Result

Due to the nature of barrier — one task cannot hit next barrier while other

tasks are still processing current barrier — it does not involve any pipelined opera-

tion, which means the measured results illustrate the operation latency.

Figure 5.1 shows the result of MPE barrier operation. It can be seen all three

topologies show 2× increase in latency as the number of nodes doubles. Linear tree

performs worst among all three topologies. Binomial Tree and Star Tree have very

close results. The results show that increasing dimensionality of the communica-

tion topology can effectively reduce the communication latency. Reusing channels in

Star Tree topology does not cause congestion because the communication payload of

barrier is small.

Figure 5.2 illustrates the traditional software MPI barrier on Spirit cluster and

Python cluster. It can be observed that barrier shows quite a large latency on

Spirit cluster due to the slow clock rate of the processor and peripherals. With a

much advanced hardware architecture, Python cluster is able to achieve latency as

low as 12µs.



47

4 8 16 32
0

10

20

30

40

50

60

70

Number of tasks

E
xe

cu
tio

n 
tim

e 
(µ

s)

Barrier with different topologies

 

 

Binomial
Linear
Star

Figure 5.1: MPE barrier using different topologies

4 8 16 32
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 10
4

Number of tasks

E
xe

cu
tio

n 
tim

e 
(µ

s)

Barrier on SPIRIT

 

 

SPIRIT

(a) Spirit cluster

4 8 16 32
4

5

6

7

8

9

10

11

12

Number of tasks

E
xe

cu
tio

n 
tim

e 
(µ

s)

Barrier on PYTHON

 

 

PYTHON

(b) Python cluster

Figure 5.2: Software barrier



48

5.3.2 Broadcast Performance Result

Broadcast operation distributes data from the root task to all the other tasks. In

the repeating synthetic benchmark, this unidirectional communication pattern can

establish a pipelined structure — one task can start a new broadcast request, as

long as this task finishes broadcasting to all the children. At the same time, other

tasks down the line can be processing previous requests. This pipelined structure can

effectively increase the bandwidth of the communication. To measure the latency, a

hardware MPE barrier is inserted between the repeating broadcast requests. Then

the hardware barrier time is subtracted from the measured results.

5.3.2.1 Bandwidth

Figure 5.3 presents bandwidth results of MPE broadcast. The bandwidth is

calculated using the communication payload divided by the execution time (without

barrier inserted). It can be seen in all the tests that when the communication

payload is small, the payload cannot fully utilize the bandwidth. The bandwidth

gradually rises as the payload size increases. As the payload size surpass the buffer

size (4096-word), the bandwidth saturates.

Compare all three topologies, it shows Linear Tree has the highest bandwidth,

because the pipelined communication topology can have multiple broadcast requests

on the fly. As the number of nodes increases, the bandwidth does not degrade.

Star Tree has the lowest bandwidth, because it relies solely on the root node to

send the data. During one transaction, all the rest nodes wait for the data and no

communication parallelism can be achieved. Additionally, as more nodes are involved

in the communication, the bandwidth degrades even more. Binomial Tree essentially

combines the Linear Tree and the Star Tree. For communication between different

topology levels, it features a pipelined structure. For nodes within the same topology

level, it relies on the upper node to distribute the data, therefore making the upper

node the communication bottleneck.



49

8 32 128 512 2048 8192 32768
0

200

400

600

800

1000

1200

Problem size (word)

B
an

dw
id

th
 (

M
bp

s)

Bandwidth of Broadcast with different topologies (4 nodes)

 

 

Binomial
Linear
Star

(a) 4 nodes

8 32 128 512 2048 8192 32768
0

200

400

600

800

1000

1200

Problem size (word)

B
an

dw
id

th
 (

M
bp

s)

Bandwidth of Broadcast with different topologies (8 nodes)

 

 

Binomial
Linear
Star

(b) 8 nodes

8 32 128 512 2048 8192 32768
0

200

400

600

800

1000

1200

Problem size (word)

B
an

dw
id

th
 (

M
bp

s)

Bandwidth of Broadcast with different topologies (16 nodes)

 

 

Binomial
Linear
Star

(c) 16 nodes

8 32 128 512 2048 8192 32768
0

200

400

600

800

1000

1200

Problem size (word)

B
an

dw
id

th
 (

M
bp

s)

Bandwidth of Broadcast with different topologies (32 nodes)

 

 

Binomial
Linear
Star

(d) 32 nodes

Figure 5.3: Bandwidth of different broadcast topologies

8 32 128 512 2048 8192 32768
0

5

10

15

20

25

30

35

Problem size (word)

B
an

dw
id

th
 in

 lo
g 

sc
al

e 
(M

bp
s)

Bandwidth of Broadcast on SPIRIT

 

 

4 nodes
8 nodes
16 nodes
32 nodes

(a) Spirit

8 32 128 512 2048 8192 32768
0

1000

2000

3000

4000

5000

6000

7000

Problem size (word)

B
an

dw
id

th
 in

 lo
g 

sc
al

e 
(M

bp
s)

Bandwidth of Broadcast on PYTHON

 

 

4 nodes
8 nodes
16 nodes
32 nodes

(b) Python

Figure 5.4: Bandwidth of software broadcast



50

Figure 5.4 exhibits the bandwidth results of software broadcast on Spirit and

Python. Because of the 300 MHz clock rate and relatively slow Fast Ethernet (100

Mbps), Spirit shows bandwidth less than 35 Mbps. With a more advanced processor

and system interconnect, the bandwidth of broadcast operation on Python is able

to reach more than 4.0 Gbps.

5.3.2.2 Latency

Figure 5.5 shows latency results of MPE broadcast. Because FIFO of 4096-word

is used as the buffer in the hardware, these figures only report results less than 4096-

word. For problem size larger than 4096-word, data is divided into multiple 4096-word

transactions, and the result is simply the corresponding multiple of 4096-word result.

It can be observed that due to the long chain topology, Linear Tree has the largest

latency in almost all the test cases. Star Tree shows interesting results. As the number

of node is small, Star Tree performs well because of the parallelism from the topology.

However, as the number of node increases, the performance of Star Tree degrades very

fast, this is because Star Tree overly reuse the physical channels on the root node,

which causes congestion on the root node. As the number of node approaches to 32,

the performance of Star Tree is almost as bad as the Linear Tree. Binomial Tree

performs the best among all the topologies, because the parallel topology utilizes all

the physical channels and has no physical bottleneck on any node.

Figure 5.6 presents the result of the software broadcast on Spirit and Python. It

can be seen that software broadcast on Spirit costs 10× more time to finish than

the hardware MPE using Binomial Tree. With advanced architecture and fast inter-

connect, Python is able to achieve very small latency. Compare the MPE broadcast

to the software broadcast, it can be seen that for MPE broadcast can effectively

improve the latency by 1000× against Spirit. For small messages (< 256 word), MPE

broadcast can outperform Python cluster. However, due to the saturation of the

bandwidth, the latency is dominated by the size of the payload and is surpassed by



51

8 32 128 512 2048
0

500

1000

1500

Problem size (word)

E
xe

cu
tio

n 
tim

e 
(µ

s)

Latency of Broadcast with different topologies (4 nodes)

 

 

Binomial
Linear
Star

(a) 4 nodes

8 32 128 512 2048
0

500

1000

1500

Problem size (word)

E
xe

cu
tio

n 
tim

e 
(µ

s)

Latency of Broadcast with different topologies (8 nodes)

 

 

Binomial
Linear
Star

(b) 8 nodes

8 32 128 512 2048
0

500

1000

1500

Problem size (word)

E
xe

cu
tio

n 
tim

e 
(µ

s)

Latency of Broadcast with different topologies (16 nodes)

 

 

Binomial
Linear
Star

(c) 16 nodes

8 32 128 512 2048
0

500

1000

1500

Problem size (word)

E
xe

cu
tio

n 
tim

e 
(µ

s)

Latency of Broadcast with different topologies (32 nodes)

 

 

Binomial
Linear
Star

(d) 32 nodes

Figure 5.5: Latency of different broadcast topologies

8 32 128 512 2048
0

0.5

1

1.5

2

2.5

3

3.5

4x 10
4

Problem size (word)

E
xe

cu
tio

n 
tim

e 
in

 lo
g 

sc
al

e 
(µ

s)

Latency of Broadcast on SPIRIT

 

 

4 nodes
8 nodes
16 nodes
32 nodes

(a) Spirit

8 32 128 512 2048
0

10

20

30

40

50

60

70

Problem size (word)

E
xe

cu
tio

n 
tim

e 
in

 lo
g 

sc
al

e 
(µ

s)

Latency of Broadcast on PYTHON

 

 

4 nodes
8 nodes
16 nodes
32 nodes

(b) Python

Figure 5.6: Latency of software broadcast



52

Python for large payload.

5.3.3 Reduce Performance Result

Reduce operation can be considered as the reverse operation of broadcast —

every task send the local data to the parent task, along with the communication, a

commutative and associative computation is applied to the data. After the operation,

the root node has the final result. Like the broadcast, this unidirectional communi-

cation pattern can establish a pipelined structure, which can effectively increase the

bandwidth of the communication. To measure the latency, a hardware MPE barrier

is inserted between the repeating reduce requests. Then the hardware barrier time

is subtracted from the measured results.

5.3.3.1 Bandwidth

Figure 5.7 shows the bandwidth results of MPE reduce. Similar to MPE broadcast,

Linear Tree performs the best in all the test cases, because of the pipelined topology.

Star Tree only obtains a small bandwidth, because it does not have communication

parallelism. Binomial Tree performs in between the Linear Tree and the Star Tree.

Figure 5.8 shows the bandwidth results of reduce on Spirit and Python. Because

reduce operation involves a computation, as Spirit does not have a floating point unit,

all the floating point computations are processed through the library. The bandwidth

on Spirit can only reach 15 Mbps. Python is able to reach 5.0 Gbps bandwidth when

the number of nodes is small. As the number of nodes reach 32, the bandwidth falls

below 1.0 Gbps.

5.3.3.2 Latency

Figure 5.9 presents the latency results of MPE reduce. It exhibits almost identical

results as broadcast. Binomial Tree has the best performance because maximum

parallelism can be obtained from the topology, while Linear Tree does not perform

well because of the relay mechanism. Star Tree shows small latency for small scale

system (4 nodes), but shows huge latency for relatively large scale system (32 nodes),



53

8 32 128 512 2048 8192 32768
0

200

400

600

800

1000

1200

Problem size (word)

B
an

dw
id

th
 (

M
bp

s)

Bandwidth of Reduce with different topologies (4 nodes)

 

 

Binomial
Linear
Star

(a) 4 nodes

8 32 128 512 2048 8192 32768
0

200

400

600

800

1000

1200

Problem size (word)

B
an

dw
id

th
 (

M
bp

s)

Bandwidth of Reduce with different topologies (8 nodes)

 

 

Binomial
Linear
Star

(b) 8 nodes

8 32 128 512 2048 8192 32768
0

200

400

600

800

1000

1200

Problem size (word)

B
an

dw
id

th
 (

M
bp

s)

Bandwidth of Reduce with different topologies (16 nodes)

 

 

Binomial
Linear
Star

(c) 16 nodes

8 32 128 512 2048 8192 32768
0

200

400

600

800

1000

1200

Problem size (word)

B
an

dw
id

th
 (

M
bp

s)

Bandwidth of Reduce with different topologies (32 nodes)

 

 

Binomial
Linear
Star

(d) 32 nodes

Figure 5.7: Bandwidth of different reduce topologies

8 32 128 512 2048 8192 32768
0

5

10

15

Problem size (word)

B
an

dw
id

th
 in

 lo
g 

sc
al

e 
(M

bp
s)

Bandwidth of Reduce on SPIRIT

 

 

4 nodes
8 nodes
16 nodes
32 nodes

(a) Spirit

8 32 128 512 2048 8192 32768
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Problem size (word)

B
an

dw
id

th
 in

 lo
g 

sc
al

e 
(M

bp
s)

Bandwidth of Reduce on PYTHON

 

 

4 nodes
8 nodes
16 nodes
32 nodes

(b) Python

Figure 5.8: Bandwidth of software reduce



54

8 32 128 512 2048
0

500

1000

1500

Problem size (word)

E
xe

cu
tio

n 
tim

e 
(µ

s)

Latency of Reduce with different topologies (4 nodes)

 

 

Binomial
Linear
Star

(a) 4 nodes

8 32 128 512 2048
0

500

1000

1500

Problem size (word)

E
xe

cu
tio

n 
tim

e 
(µ

s)

Latency of Reduce with different topologies (8 nodes)

 

 

Binomial
Linear
Star

(b) 8 nodes

8 32 128 512 2048
0

500

1000

1500

Problem size (word)

E
xe

cu
tio

n 
tim

e 
(µ

s)

Latency of Reduce with different topologies (16 nodes)

 

 

Binomial
Linear
Star

(c) 16 nodes

8 32 128 512 2048
0

500

1000

1500

Problem size (word)

E
xe

cu
tio

n 
tim

e 
(µ

s)

Latency of Reduce with different topologies (32 nodes)

 

 

Binomial
Linear
Star

(d) 32 nodes

Figure 5.9: Latency of different reduce topologies

due to the bottleneck on the root node.

Figure 5.10 shows the measured latency result on Spirit and Python. It can be

seen that hardware MPE can improve the latency by 100× against Spirit. For small

message, MPE exhibits similar performance as Python cluster. For large payload,

due to the saturation of the bandwidth, the latency result shows linear relationship

with the payload.

5.3.4 Allreduce Performance Result

Allreduce operation can be implemented by combining reduce and broadcast —

all the tasks first execute reduce operation, after the root task has the updated result,



55

8 32 128 512 2048
0

0.5

1

1.5

2

2.5

3

3.5

4x 10
4

Problem size (word)

E
xe

cu
tio

n 
tim

e 
in

 lo
g 

sc
al

e 
(µ

s)

Latency of Reduce on SPIRIT

 

 

4 nodes
8 nodes
16 nodes
32 nodes

(a) Spirit

8 32 128 512 2048
0

20

40

60

80

100

120

140

160

180

Problem size (word)

E
xe

cu
tio

n 
tim

e 
in

 lo
g 

sc
al

e 
(µ

s)

Latency of Reduce on PYTHON

 

 

4 nodes
8 nodes
16 nodes
32 nodes

(b) Python

Figure 5.10: Latency of software reduce

it initiates broadcast operation and updates the result for all the other tasks. Since

reduce and broadcast operate in the reversed communication pattern, it breaks the

pipelined operation flow. Only latency results are presented.

Figure 5.11 lists MPE allreduce results of different topologies. Like the results

seen in Figure 5.1, because there is no pipelined operation in allreduce, the dimen-

sionality of the network becomes the only performance factor. Therefore, Binomial

Tree performs the best among all tree structures. For small messages, Star Tree

performs well, but for large messages, root node becomes the bottleneck.

Figure 5.12 shows the traditional software allreduce results of Spirit and Python.

It can be observed that MPE can improve the latency of allreduce by ≈ 50× to

≈ 350×.

5.3.5 Summary

The collected results in Stage 1 show that the hardware MPE can significantly

reduce the communication time. Among the 3 communication topologies, the Linear

Tree is able to provide the highest bandwidth for unidirectional communication, but

it costs the longest delay in every test cases. The Binomial Tree can leverage the

physical channels and provide the highest parallelism, which results in the lowest



56

8 32 128 512 2048
0

500

1000

1500

2000

2500

3000

Problem size (word)

E
xe

cu
tio

n 
tim

e 
(µ

s)

Allreduce with different topologies (4 nodes)

 

 

Binomial
Linear
Star

(a) 4 nodes

8 32 128 512 2048
0

500

1000

1500

2000

2500

3000

Problem size (word)

E
xe

cu
tio

n 
tim

e 
(µ

s)

Allreduce with different topologies (8 nodes)

 

 

Binomial
Linear
Star

(b) 8 nodes

8 32 128 512 2048
0

500

1000

1500

2000

2500

3000

Problem size (word)

E
xe

cu
tio

n 
tim

e 
(µ

s)

Allreduce with different topologies (16 nodes)

 

 

Binomial
Linear
Star

(c) 16 nodes

8 32 128 512 2048
0

500

1000

1500

2000

2500

3000

Problem size (word)

E
xe

cu
tio

n 
tim

e 
(µ

s)

Allreduce with different topologies (32 nodes)

 

 

Binomial
Linear
Star

(d) 32 nodes

Figure 5.11: Execution time of different allreduce topologies

8 32 128 512 2048
0

2

4

6

8

10

12

14x 10
4

Problem size (word)

E
xe

cu
tio

n 
tim

e 
in

 lo
g 

sc
al

e 
(µ

s)

Allreduce on SPIRIT

 

 

4 nodes
8 nodes
16 nodes
32 nodes

(a) Spirit

8 32 128 512 2048
0

50

100

150

200

250

300

350

Problem size (word)

E
xe

cu
tio

n 
tim

e 
in

 lo
g 

sc
al

e 
(µ

s)

Allreduce on PYTHON

 

 

4 nodes
8 nodes
16 nodes
32 nodes

(b) Python

Figure 5.12: Latency of software allreduce



57

latency in all the tests and moderate bandwidth. The Star Tree reuses the physical

channels and it is able to achieve good performance when both the number of nodes

and the communication payload are small.

As a reference, Python cluster is generally performing better than the hardware

MPE on Spirit. There are several reasons. The first reason is that Python has

more advanced architecture and interconnect and the Spirit is running relatively

slow processor. Though using hardware MPE can improve the raw communication

performance, all the rest software stack is running at a slow frequency. Even the

MPI Wtime() is running at a 10× slower speed. The second reason is that the com-

munication payload on Spirit is not running with cache, whereas on Python all the

communication payload is running with cache.

To leverage the hardware MPE in real applications such as HPL and NPB, a

“replacement” API of traditional MPI is used. However, since the benchmarks are

not designed to test communication, there are not frequent barrier, reduce, and

broadcast function calls. The performance improvement is not distinctive.

5.4 Communication Model

The hardware counter is inserted in all the hardware communication primitives

counting the non-idle clock cycles. The hardware counter showed very close result

as the MPI Wtime(). This is due to the “wait state” in the FSM that caused by the

asynchronism between the nodes. Equation 5.1 shows the total execution time (Ttotal)

consists of 3 portions: idle time (Tidle), hardware processing time (Trunning), and wait

time (Twait).

Ttotal = Tidle + Trunning + Twait (5.1)

5.4.1 Linear Fitting for Barrier

Figure 5.13 shows the mathematic fitting for the measured barrier data. Because

barrier does not involve any data operation, plus the FSM only introduces few



58

4 8 16 32
0

10

20

30

40

50

60

70

Number of tasks

E
xe

cu
tio

n 
tim

e 
(µ

s)

Barrier measurement and simulation

 

 

Linear measured
Linear sim
Binomial measured
Binomial sim

Figure 5.13: Mathematic fitting for MPE barrier

clock cycles Trunning, the majority time is Twait for the asynchronous nodes, which is

determined by specific systems.

5.4.2 Latency Model

Unlike the barrier, broadcast and reduce spend quite amount of clock cycles on

processing the data, which makes Trunning the major portion of the total time. Shown

in Equation 5.2, Trunning can be further broken into two part: Tfsm and Tpayload. Tfsm

represents the time spent in the states other than “payload states”. Tpayload denotes

the time actually spent on processing the data .

Trunning = Tfsm + Tpayload (5.2)

Figure 5.14 illustrates the time chart of broadcast in a viewpoint of the commu-

nication payload. White blocks represent input operations, and dark blocks represent

output operations. The number in the block represents the source or the destination.



59

L 1

0 2

1 3

2

L

L

L

0

1

2

3

Time

(a) Linear Tree

Time

L 1

0 2

1

3

L

L

L

0

1

2

3 0

(b) Binomial Tree

L 1

0

2

1

3

2

L

L

L

0

1

2

3

Time

(c) Star Tree

Figure 5.14: Time chart of broadcast operation

Table 5.1: Broadcast measurement vs. simulation

(a) Absolute differences

Linear 4 8 16 32
8 5.87µs 6.03µs 7.99µs 13.4µs
256 5.00µs 5.12µs 6.01µs 9.99µs
1024 5.11µs 5.12µs 6.98µs 8.93µs
4096 5.53µs 5.72µs 7.41µs 7.80µs

Binomial 8 256 1024 4096
8 5.83µs 5.92µs 6.29µs 6.89µs
256 5.01µs 5.53µs 6.08µs 5.26µs
1024 5.14µs 5.00µs 7.23µs 6.92µs
4096 5.56µs 6.53µs 7.27µs 4.87µs

Star 4 8 16 32
8 6.89µs 9.29µs 10.6µs 13.9µs
256 4.60µs 4.63µs 7.06µs 8.85µs
1024 4.48µs 3.96µs 5.21µs 7.45µs
4096 4.60µs 4.64µs 6.14µs 3.12µs

(b) Relative differences

Linear 4 8 16 32
8 93.6% 89.3% 85.4% 83.5 %
256 28.0% 18.1% 12.1% 10.5 %
1024 9.08% 5.26% 3.85% 2.57 %
4096 2.63% 1.52% 1.05% 0.57 %

Binomial 4 8 16 32
8 94.7% 93.6% 92.9% 92.4 %
256 32.8% 30.1% 28.3% 22.6 %
1024 11.1% 8.90% 10.5% 8.80 %
4096 3.25% 3.08% 2.87% 1.67 %

Star 4 8 16 32
8 94.5% 92.8% 88.6% 84.0%
256 26.4% 16.7% 13.9% 9.48%
1024 8.05% 4.12% 2.90% 2.15%
4096 2.19% 1.24% 0.875% 0.230%

The letter “L” denotes the local DMA transaction. These analytic models can be

expressed in following equations:

Tbroadcast linear = (2 + n− 1)× P

Tbroadcast binomial = (2 + log2(n))× P

Tbroadcast star = (2 + n− 1)× P

(5.3)

In Equation 5.3, n represents the number of nodes and P represents the commu-

nication payload. The simulation results shown in Figure 5.15 exhibit close match

between the analytic model and the measured value.

Table 5.1 lists the differences between the measurement and the simulation. It



60

4 8 16 32
0

200

400

600

800

1000

1200

1400

Number of tasks

E
xe

cu
tio

n 
tim

e 
(µ

s)

Simulation of Broadcast using Linear Tree

 

 

8 word measured
256 word measured
1024 word measured
4096 word measured
8 word sim
256 word sim
1024 word sim
4096 word sim

(a) Linear Tree

4 8 16 32
0

50

100

150

200

250

300

Number of tasks
E

xe
cu

tio
n 

tim
e 

(µ
s)

Simulation of Broadcast using Binomial Tree

 

 

8 word measured
256 word measured
1024 word measured
4096 word measured
8 word sim
256 word sim
1024 word sim
4096 word sim

(b) Binomial Tree

4 8 16 32
0

200

400

600

800

1000

1200

1400

Number of tasks

E
xe

cu
tio

n 
tim

e 
(µ

s)

Simulation of Broadcast using Star Tree

 

 

8 word measured
256 word measured
1024 word measured
4096 word measured
8 word sim
256 word sim
1024 word sim
4096 word sim

(c) Star Tree

Figure 5.15: Latency simulation of broadcast



61

L

1

2

1

3

0

L0

1

2

3

Time

L

L

L 2

(a) Linear Tree

Time

L

1

0

13

0

L0

1

2

3 L

L

L 2

(b) Binomial Tree

L

0

0

13

0

L0

1

2

3

Time

L

L

L

2

(c) Star Tree

Figure 5.16: Time chart of reduce operation

can be observed that the absolute differences range consistently from 3µs to 14µs.

The time difference includes asynchronous wait, software overhead, and measurement

errors. For small payload size, relative difference is large, this is because the majority

of time is asynchronous wait and software overhead. For large payload size, payload

time is the major portion.

Similar to broadcast, Figure 5.16 illustrates the time chart of reduce in a view-

point of the communication payload. These analytic models can be summarized in

Equation 5.4. Note that O represents the overhead from the pipelined computation

core.

Treduce linear = (2 + n− 1)× P + (n− 1)×O

Treduce binomial = (2 + log2(n))× P + log2(n)×O

Treduce star = (2 + n− 1)× P + (n− 1)×O

(5.4)

Figure 5.17 presents the simulation result of reduce. Figure 5.17a shows close

match between the model and measured value. Both Figure 5.17b and Figure 5.17c

show increasing gap between the model and the measured value. Table 5.2 illustrates

that the growing gap is caused by the handshaking behavior between the parent and

children.

5.4.2.1 Bandwidth

The bit rate of the Aurora channel is 4.0 Gbits/s, removing the error check bits

makes the actual data rate 3.2 Gbits/s. Using the time charts in Figure 5.14 and Fig-

ure 5.16, the maximum bandwidth is calculated using the max stages Nstage dividing



62

4 8 16 32
0

200

400

600

800

1000

1200

1400

Number of tasks

E
xe

cu
tio

n 
tim

e 
(µ

s)

Simulation of Reduce using Linear Tree

 

 

8 word measured
256 word measured
1024 word measured
4096 word measured
8 word sim
256 word sim
1024 word sim
4096 word sim

(a) Linear Tree

4 8 16 32
0

50

100

150

200

250

300

Number of tasks
E

xe
cu

tio
n 

tim
e 

(µ
s)

Simulation of Reduce using Binomial Tree

 

 

8 word measured
256 word measured
1024 word measured
4096 word measured
8 word sim
256 word sim
1024 word sim
4096 word sim

(b) Binomial Tree

4 8 16 32
0

500

1000

1500

Number of tasks

E
xe

cu
tio

n 
tim

e 
(µ

s)

Simulation of Reduce using Star Tree

 

 

8 word measured
256 word measured
1024 word measured
4096 word measured
8 word sim
256 word sim
1024 word sim
4096 word sim

(c) Star Tree

Figure 5.17: Latency simulation of reduce



63

Table 5.2: Reduce measurement vs. simulation

(a) Absolute differences

Linear 4 8 16 32
8 5.90µs 6.37µs 9.60µs 15.7µs
256 5.77µs 5.68µs 8.32µs 10.1µs
1024 5.92µs 5.63µs 9.26µs 9.46µs
4096 6.29µs 6.74µs 9.08µs 9.17µs

Binomial 4 8 16 32
8 5.83µs 5.41µs 7.01µs 8.82µs
256 6.05µs 6.45µs 6.89µs 8.69µs
1024 6.30µs 5.51µs 8.61µs 10.2µs
4096 6.83µs 6.97µs 8.54µs 10.3µs

Star 4 8 16 32
8 12.3µs 25.2µs 55.7µs 138 µs
256 12.4µs 24.6µs 55.6µs 138 µs
1024 11.8µs 24.6µs 55.3µs 136 µs
4096 12.4µs 25.7µs 56.0µs 136 µs

(b) Relative differences

Linear 4 8 16 32
8 87.0% 77.6% 71.9% 67.4%
256 30.3% 19.0% 15.3% 10.2%
1024 10.3% 5.69% 4.98% 2.69%
4096 2.97% 1.79% 1.28% 0.671%

Binomial 4 8 16 32
8 90.1% 86.0% 86.2% 86.6%
256 36.4% 32.7% 30.1% 31.7%
1024 13.2% 9.64% 12.2% 12.3%
4096 3.99% 3.28% 3.35% 3.47%

Star 4 8 16 32
8 93.3% 93.2% 93.7% 94.8%
256 48.3% 50.4% 54.8% 60.7%
1024 18.5% 20.9% 23.8% 28.4%
4096 5.70% 6.51% 7.43% 9.16%

the actual data rate, shown in Equation 5.5.

B = 3.2/Nstage (5.5)

Figure 5.18 shows the simulated max bandwidth, and Table 5.3 calculates the

differences between the measurement and the simulation. It can be observed that

Star Tree has the closest match between the measurement and the simulation among

all the topologies. Linear Tree has growing gaps between the measurement and the

simulation. This is because payload operation is the dominating operation in Star

Tree, other operations are relatively constant and small to the payload. Whereas Lin-

ear Tree hides payload operations with the pipelined communication pattern, which

exposes the growing gap occupied by other operations (e.g. handshaking operation).

5.5 Stage 2 Experiment

The following experiments test the hardware MPE with custom hardware acceler-

ators. To offload the workload of the general PE, the hardware fabric can be used to

accelerate both computation and the communication. Custom parallel FFT operation

and parallel matrix-vector multiplication are tested.



64

4 8 16 32
0

200

400

600

800

1000

1200

Number of tasks

B
an

dw
id

th
 (

M
bp

s)

Broadcast bandwidth simulation

 

 

Linear sim
Linear real
Binomial sim
Binomial real
Star sim
Star real

(a) broadcast

4 8 16 32
0

200

400

600

800

1000

1200

Number of tasks

B
an

dw
id

th
 (

M
bp

s)

Reduce bandwidth simulation

 

 

Linear sim
Linear real
Binomial sim
Binomial real
Star sim
Star real

(b) reduce

Figure 5.18: Max bandwidth simulation of broadcast and reduce

Table 5.3: Bandwidth measurement vs. simulation

Broadcast 4 8 16 32
Linear 54.3 Mbps 66.7 Mbps 80.2 Mbps 132 Mbps
Binomial 52.5 Mbps 33.7 Mbps 29.7 Mbps 35.1 Mbps
Star 28.2 Mbps 8.59 Mbps 2.49 Mbps 1.31 Mbps
Reduce 4 8 16 32
Linear 65.9 Mbps 70.2 Mbps 88.3 Mbps 150 Mbps
Binomial 44.6 Mbps 36.1 Mbps 30.1 Mbps 38.8 Mbps
Star 37.9 Mbps 24.1 Mbps 14.6 Mbps 9.21 Mbps



65

128 256 512 1024 2048 4096 8192
0

5

10

15

20

25

30

35

40

FFT size

E
xe

cu
tio

n 
T

im
e 

(m
s)

Software computation and MPI

 

 

2 Node
4 Node
8 Node
16 Node
32 Node

(a) Software MPI

128 256 512 1024 2048 4096 8192
0

5

10

15

20

25

30

35

40

FFT size

E
xe

cu
tio

n 
T

im
e 

(m
s)

Software computation and MPE

 

 

2 Node
4 Node
8 Node
16 Node
32 Node

(b) Hardware MPE

Figure 5.19: Communication impact on software FFT

5.5.1 Parallel Fast Fourier Transformation

The parallel Fast Fourier Transformation (FFT) tests the inter-node stages of the

FFT DIF algorithm, including the computation as well as the communication. Four

test sets are experimented: 1. software computation and software MPI; 2. software

computation and hardware MPE; 3. hardware accelerated computation and software

MPI; 4. hardware accelerated computation and hardware MPE.

5.5.1.1 Communication Impact on Software FFT Computation

Figure 5.19 shows the impact of the hardware MPE and the software MPI on soft-

ware FFT computation. The reported results are total execution time including the

computation time and the communication time. It can be seen that hardware MPE

can effectively reduce the communication time, and improve the overall execution

time.

Figure 5.20 compares the software MPI and hardware MPE for certain problem

size. For small problem size shown in Figure 5.20a, the test using software MPI

spends the majority execution time on the communication. For large problem size

in Figure 5.20b, when the number of nodes is relatively small, both hardware and

software communication can help reduce the workload and reduce the overall time.



66

2 4 8 16 32
0

5

10

15

20

25

30

35

40

Number of Node

E
xe

cu
tio

n 
T

im
e 

(m
s)

MPE vs. MPI (FFT SW 128)

 

 

MPE
MPI

(a) size: 128

2 4 8 16 32
0

5

10

15

20

25

30

35

40

Number of Node

E
xe

cu
tio

n 
T

im
e 

(m
s)

MPE vs. MPI (FFT SW 8192)

 

 

MPE
MPI

(b) size: 8192

Figure 5.20: Comparison of communication with software FFT

However, as the number of nodes increase, software communication is actually adding

more overhead to the execution time, whereas the hardware MPE is able to keep the

trend well.

5.5.1.2 Communication Impact on Hardware FFT Computation

Figure 5.21 is using hardware FFT core to accelerate the computation. One in-

teresting observation in Figure 5.21a is that using hardware processing elements is

increasing the overall execution time. This is because the hardware accelerator re-

quires extra communication to coordinate the hardware with the existing software. By

combining the hardware MPE and hardware FFT, Figure 5.21b shows great improve-

ment in performance (> 20×) over the combination of software FFT and hardware

MPE.

Figure 5.22 illustrates the communication impact of hardware MPE and software

MPI on the hardware accelerated FFT computation. It can be observed that because

the hardware FFT computation only occupies a small amount of time on actual

computation. All the rest of the execution is spent on the software communication.



67

128 256 512 1024 2048 4096 8192
0

2

4

6

8

10

12x 10
4

FFT size

E
xe

cu
tio

n 
T

im
e 

(µ
s)

Hardware computation and MPI

 

 

2 Node
4 Node
8 Node
16 Node
32 Node

(a) Software MPI

128 256 512 1024 2048 4096 8192
0

100

200

300

400

500

600

FFT size

E
xe

cu
tio

n 
T

im
e 

(µ
s)

Hardware computation and MPE

 

 

2 Node
4 Node
8 Node
16 Node
32 Node

(b) Hardware MPE

Figure 5.21: Communication impact on hardware FFT

2 4 8 16 32
0

20

40

60

80

100

120

Number of Node

E
xe

cu
tio

n 
T

im
e 

(m
s)

MPE vs. MPI (FFT DIF 128)

 

 

MPE
MPI

(a) size: 128

2 4 8 16 32
0

20

40

60

80

100

120

Number of Node

E
xe

cu
tio

n 
T

im
e 

(m
s)

MPE vs. MPI (FFT DIF 8192)

 

 

MPE
MPI

(b) size: 8192

Figure 5.22: Comparison of communication with hardware FFT



68

1 2 4 8 16 32
0

5

10

15

20

25

Number of nodes

T
im

e 
(m

s)

Software computation (128 word)

 

 

Hardware MPE
Software MPI

(a) 128 word

1 2 4 8 16 32
0

0.5

1

1.5

2

2.5
x 10

4

Number of nodes

T
im

e 
(m

s)

Software computation (4096 word)

 

 

Hardware MPE
Software MPI

(b) 4096 word

Figure 5.23: Communication impact on software MACC computation

5.5.2 Parallel Matrix-Vector Multiplication

Similar to FFT, the parallel Matrix-Vector Multiplication have tested 4 sets of

test. Additionally, because the row-partition gives a uniform view to the problem, a

hybrid computing system using hardware and software is tested.

5.5.2.1 Communication Impact on Software MACC Kernel

Presented in Figure 5.23 are comparing the impact of the hardware MPE and the

software MPI on software computation. The reported results are total execution time

including the computation time and the communication time.

Figure 5.23 shows the classic parallel processing result for matrix size of 4096

words: As more nodes are involved, the total problem is divided into smaller pieces,

and the total execution time is reduced. Comparing the hardware MPE and software

MPI, there is no distinct difference between the hardware MPE and the software MPI.

This is because the computation on software MACC kernel occupies almost the entire

execution time (> 100 ms), which makes the communication time indistinguishable.

For small matrix size of 128 words, the result is interesting because it shows

contradicting trend compared to the large matrix size. When the number of node

is small, both the hardware MPE and the software MPI help distribute the matrix



69

1 2 4 8 16 32
0

5

10

15

20

25

Number of nodes

T
im

e 
(m

s)

Hardware computation (128 word)

 

 

Hardware MPE
Software MPI

(a) 128 word

1 2 4 8 16 32
0

20

40

60

80

100

120

140

160

180

200

Number of nodes

T
im

e 
(m

s)

Hardware computation (4096 word)

 

 

Hardware MPE
Software MPI

(b) 4096 word

Figure 5.24: Communication impact on accelerated MACC computation

and reduce the total execution time. However, as more nodes are involved, the total

execution time using software MPI increases instead of decreasing; while the total

execution time using hardware MPE keeps decreasing as expected. This is because

the growing number of the node effectively reduces the actual computation (< 25 ms)

on each node. Relatively, the increasing software communication time is dominating

the overall execution time. But the fast hardware MPE keeps helping reducing the

overall execution time.

5.5.2.2 Communication Impact on Hardware MACC Core

Figure 5.24 exhibits the results of hardware MACC core with different communi-

cation methods.

Though running at 100 MHz, the hardware MACC core leverages the DSP slices

within the FPGA and process the data in a pipeline style. On the contrary, the

software MACC kernel runs at 300 MHz, but it lacks of the floating-point unit, and it

fetches the data through the bus. From Figure 5.24, it can be seen that the hardware

MACC core is able to improve the performance by ≈ 100× for matrix size of 4096

words, either using hardware MPE or using software MPI. For small matrix size of

128 words, it can be observed that software MPI does not improve the performance



70

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of nodes

T
im

e 
(m

s)

Hardware MACC and MPE (128 words)

 

 

1 MACC
2 MACC
4 MACC
8 MACC

(a) 128 word

1 2 4 8 16 32
0

20

40

60

80

100

120

140

160

180

200

Number of nodes

T
im

e 
(m

s)

MACC and MPE (matrix size: 4096 words)

 

 

1 MACC
2 MACC
4 MACC
8 MACC

(b) 4096 word

Figure 5.25: Hardware MACC and MPE

very much, especially for large number of nodes. Similar to the results observed in

Figure 5.23, most of the execution time is spent on the software MPI, which makes

the performance improvement not obvious. The hardware MPE scales well and the

performance improvement (≈ 20×) can be clearly observed.

Figure 5.25 presents hardware MPE with different number of MACC configura-

tions. Under close examination, it can be seen that like software MPI, the hardware

MPE also scales up as the number of node increases, but in a much slower speed

compared to the software MPI. Figure 5.25 also illustrates how the number of MACC

is affecting the computation. There is no significant performance impact of using

different number of MACC. This is due to the fact that the switch and MPE has

only one memory interface, so multiple message streams are lined up for each MACC

core on the switch. As a result, the computation time is largely determined by the

number of transactions on the switch, which is fixed number for certain matrix size.

An estimated mathematic model is summarized as Equation 5.6:



71

T = Tvector B + Tpartial A

Tvector B = Nmacc × Lrow

Tpartial A = (Lrow ×Nmacc +Omacc)×Niter

Niter = Lrow/Nnodes/Nmacc


=⇒

T =
L2
row

Nnodes

+ Lrow ×Nmacc +
Omacc × Lrow

Nnodes ×Nmacc

≥ L2
row

Nnodes

+ 2Lrow ×
√
Omacc/Nnodes

(5.6)

The equations above divide the computation time into the time for broadcast

vector B (Tvector B) and the time for processing the partial matrix A (Tpartial A). For

partial matrix A of size (Lrow/Nnodes) larger than the number of MACC (Nmacc), the

hardware MACC requires multiple iterations of computation (Niter). Because the

computations on MACC are running in a pipelined style, only one overhead from the

MACC (Omacc) is considered. From this model, it can be concluded that the execution

time is determined by the size of the matrix (O(L2
row)). This result may suggest that

scaling up the number of MACC cannot further improve the performance. However,

this result is actually due to the single memory interface. For other applications, the

hardware accelerators may scale well.

5.5.3 Hybrid Computing System

Perhaps the most interesting result of this work is the hybrid computing system.

Since matrix-vector multiplication can be broken into multiple uniform vector-vector

multiply-accumulation operations, both the hardware MACC core and the software

MACC kernel are able to independently compute their results in parallel. In this

experiment, hardware MPE is used as the communication method, 8 MACC cores

are implemented in hardware and various sizes of workload are tested on the software

MACC kernel. Two threads are generated from the Pthreads library, one is the

hardware MACC thread, and the other is the software MACC thread.



72

128 256 512 1024 2048 4096
0

10

20

30

40

50

60

70

80

90

100

Matrix size (word)

T
im

e 
(m

s)

Software MPI with hybrid computation (32 node)

 

 

0 row
1 row
2 row
4 row
8 row

(a) Software MPI

128 256 512 1024 2048 4096
0

10

20

30

40

50

60

70

80

90

100

Matrix size (word)

T
im

e 
(m

s)

Hardware MPE with hybrid computation (32 node)

 

 

0 row
1 row
2 row
4 row
8 row

(b) Hardware MPE

Figure 5.26: Communication impact on hybrid computing system

Figure 5.26a shows that the software MPI adds additional workload to the hybrid

computing system, while the hardware MPE does not. It can also be observed in Fig-

ure 5.26 that the software MACC thread actually is slowing the whole system down.

There are two major reasons for the slowing done: First, using Pthreads adds software

overhead. Second, the PowerPC used in the test has only one processor core, which

has to process the software MACC computation as well as the Pthreads overhead.

However, these two issues can be resolved in future heterogeneous multi/many-core

systems. Software threads may run on one or several separate processor cores which

have fast clock rate and better floating-point units. Thereby using hardware MPE is

more meaningful as the hybrid computing system may purely focus on the computa-

tion while the hardware MPE will facilitate the communication.

5.6 Validation

To answer the thesis question “Can hardware be used to provide a unified view of

the heterogeneous system and provide message-passing function to the chip as well

as to the cluster?”. Chapter 1 further divides the thesis question into following 5

questions. This section answers the 5 questions by summarizing the experimental

results.



73

Table 5.4: Resource utilization of hardware MPE

Used Available Percentage
Number of Slices: 1717 25280 6%
Number of Slice Flip Flops: 1283 50560 2%
Number of 4 input LUTs: 2843 50560 5%
Number of FIFO16/RAMB16s: 16 232 6%
Number of DSP48s: 4 128 3%

Table 5.5: Performance improvement of hardware MPE

MPE Software MPI on Spirit Improvement
Barrier 4 nodes 4.54 µs 4509 µs 993×
Barrier 32 nodes 24.10 µs 18755 µs 740×
Broadcast 4 nodes 169.4 µs 13900 µs 82×
Broadcast 32 nodes 291.6 µs 39440 µs 135×
Reduce 4 nodes 171 µs 16840 µs 98×
Reduce 32 nodes 298 µs 26360 µs 88×
Broadcast 4 nodes 1010 Mbps 29 Mbps 35×
Broadcast 32 nodes 934 Mbps 29.7 Mbps 31×
Reduce 4 nodes 1000 Mbps 14 Mbps 71×
Reduce 32 nodes 916 Mbps 3.86 Mbps 237×

1. Is the hardware MPE practical and feasible?

Yes, it is functioning correctly and Table 5.4 shows it occupies reasonable hard-

ware resources.

2. Can the hardware communication engine improve the overall performance?

Yes, Table 5.5 shows that hardware MPE can improve the performance by

≈ 30× to ≈ 1000×.

3. Is the hardware communication engine scalable when the system grows?

Yes, model shows it fully utilizes the bandwidth of the physical infrastructure.

With small amount of overhead, latency is dominated by the communication

payload.



74

Table 5.6: Performance improvement of MPE on heterogeneous systems

Software computation + MPE software MPI Improvement
FFT 2 nodes 17.8 ms 33.5 ms 188%
FFT 32 nodes 6.53 ms 37.1 ms 568%
MVM 2 nodes 1230 ms 1230 ms 100%
MVM 32 nodes 774 ms 811 ms 104%

Hardware computation + MPE software MPI Improvement
FFT 2 nodes 0.425 ms 11.6 ms 2729%
FFT 32 nodes 0.561 ms 117 ms 20855%
MVM 2 nodes 89.6 ms 110 ms 122%
MVM 32 nodes 7.36 ms 34.3 ms 466%

4. Can the hardware MPE be used in heterogeneous system?

Yes, the heterogeneous system tests show it can be used in heterogeneous sys-

tem, distributing data directly to heterogeneous hardware.

5. In the heterogeneous system, can hardware communication engine bring perfor-

mance gain?

Yes, Table 5.6 shows MPE can improve the performance by ≈ 200× for certain

computation.



CHAPTER 6: CONCLUSION

Heterogeneous multi/many-core chips are widely used in today’s top tier super-

computers. Within the heterogeneous chips, on-chip network often plays a major role

by connecting the processing elements together. However, as the system scales up,

traditional programming methods, such as MPI, may not effectively use the on-chip

network and therefore could make communication the performance bottleneck.

This dissertation designed a MPI-like Message Passing Engine (MPE) as part of

the on-chip network, providing point-to-point and collective communication primi-

tives in hardware. On one hand, the MPE offloads the communication workload from

the general processing elements. On the other hand, the MPE provides direct in-

terface to the heterogeneous processing elements which can eliminate the data path

going around the OS and libraries.

The proposed design has been implemented and experimented on a parallel FPGA

system. The footprint of the MPE occupies 6% of hardware resources on Virtex 4

FX60 FPGA. The experimental results have shown that the MPE can significantly

reduce the communication time and improve the overall performance. Specifically,

within 3 communication topologies, Binomial Tree, Star Tree, and Linear Tree, Bino-

mial Tree exhibits the lowest latency in all experiments. For unidirectional operations

such as broadcast and reduce, Linear Tree is able to pipeline the operation, and

thereby achieve sustained bandwidth in all experiments. In addition to the exper-

iments, theoretical studies of the communication primitives have shown the ideal

performance match the measured values well.

To investigate how the hardware MPE is integrated with the heterogeneous sys-

tem. Two heterogeneous configurations are designed and implemented in the FPGA.



76

The experimental results have shown that the hardware MPE can be tightly coupled

with the computing cores, thereby increase the total performance of the parallel com-

puting system. Additionally, a hybrid “MPI+Pthreads” computing system is tested

and it shows MPE can effectively offload the communications and let the processing

elements play their strengths on the computation.

In summary, the hardware MPE can effectively improve the communication per-

formance in parallel computing systems. The usage of hardware MPE is not limited

to FPGA, but can be applied to general multi/many-core processors. Specifically,

in future heterogeneous systems with “Big–little” configurations, the hardware MPE

can be integrated into “little” processors to assist the communication without the

support from the OS.



77

REFERENCES

[1] D. Patterson and J. Hennessy, Computer Organization and Design, Revised
Fourth Edition: The Hardware/Software Interface, ser. Morgan Kaufmann
Series in Computer Graphics. Elsevier Science, 2011. [Online]. Available:
http://books.google.com/books?id=DMxe9AI4-9gC

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick, “The landscape of parallel computing research: A
view from berkeley,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006. [Online]. Available: http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

[3] T. Sterling, D. Savarese, D. J. Becker, B. Fryxell, and K. Olson,
“Communication overhead for space science applications on the beowulf
parallel workstation,” in Proceedings of the 4th IEEE International Symposium
on High Performance Distributed Computing, ser. HPDC ’95. Washington,
DC, USA: IEEE Computer Society, 1995, pp. 23–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=822081.823047

[4] Intel. Last accessed April 11, 2013. [Online]. Available: http://www.intel.com/

[5] AMD. Last accessed April 11, 2013. [Online]. Available: http://www.amd.com/

[6] Nvidia. Last accessed April 11, 2013. [Online]. Available: http://www.nvidia.
com/

[7] IBM. Last accessed April 11, 2013. [Online]. Available: http://www.research.
ibm.com/cell/

[8] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, and
J. C. Sancho, “Entering the petaflop era: the architecture and performance
of roadrunner,” in Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, ser. SC ’08. Piscataway, NJ, USA: IEEE Press, 2008, pp. 1:1–
1:11. [Online]. Available: http://dl.acm.org/citation.cfm?id=1413370.1413372

[9] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally,
M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, S. Keckler,
D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Ster-
ling, R. S. Williams, and K. Yelick, “Exascale computing study: Technol-
ogy challenges in achieving exascale systems,” DARPA Information Process-
ing Techniques Office (IPTO) sponsored study, Tech. Rep. TR-2008-13, 2008,
http://www.exascale.org/iesp/IESP:Documents.

[10] Intel. Last accessed April 11, 2013. [Online]. Avail-
able: http://www.intel.com/content/www/us/en/io/quickpath-technology/
quickpath-technology-general.html

http://books.google.com/books?id=DMxe9AI4-9gC
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://dl.acm.org/citation.cfm?id=822081.823047
http://www.intel.com/
http://www.amd.com/
http://www.nvidia.com/
http://www.nvidia.com/
http://www.research.ibm.com/cell/
http://www.research.ibm.com/cell/
http://dl.acm.org/citation.cfm?id=1413370.1413372
http://www.exascale.org/iesp/IESP:Documents
http://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html


78

[11] D. Ziakas, A. Baum, R. A. Maddox, and R. J. Safranek, “Intel&#174; quickpath
interconnect architectural features supporting scalable system architectures,”
in Proceedings of the 2010 18th IEEE Symposium on High Performance
Interconnects, ser. HOTI ’10. Washington, DC, USA: IEEE Computer Society,
2010, pp. 1–6. [Online]. Available: http://dx.doi.org/10.1109/HOTI.2010.24

[12] AMD. Last accessed April 11, 2013. [On-
line]. Available: http://www.amd.com/us/products/technologies/
hypertransport-technology/Pages/hypertransport-technology.aspx

[13] B. Holden, D. Anderson, J. Trodden, and M. Daves, HyperTransport 3.1 Inter-
connect Technology. Mindshare Press, 2008.

[14] Last accessed April 11, 2013. [Online]. Available: http://www.beowulf.org/

[15] L. W. Tucker and G. G. Robertson, “Architecture and applications of the
connection machine,” Computer, vol. 21, pp. 26–38, August 1988. [Online].
Available: http://dx.doi.org/10.1109/2.74

[16] S. Borkar, R. Cohn, G. Cox, S. Gleason, and T. Gross, “Warp: an
integrated solution of high-speed parallel computing,” in Proceedings of the
1988 ACM/IEEE conference on Supercomputing, ser. Supercomputing ’88. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1988, pp. 330–339. [Online].
Available: http://dl.acm.org/citation.cfm?id=62972.63015

[17] T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler, and D. M. Dias, “Sp2
system architecture,” IBM Syst. J., vol. 34, pp. 152–184, April 1995. [Online].
Available: http://dl.acm.org/citation.cfm?id=209136.209139

[18] F. Petrini, E. Frachtenberg, A. Hoisie, and S. Coll, “Performance evaluation of
the quadrics interconnection network,” Cluster Computing, vol. 6, pp. 125–142,
April 2003. [Online]. Available: http://dx.doi.org/10.1023/A:1022852505633

[19] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz,
J. N. Seizovic, and W.-K. Su, “Myrinet: A gigabit-per-second local area
network,” IEEE Micro, vol. 15, pp. 29–36, February 1995. [Online]. Available:
http://dl.acm.org/citation.cfm?id=623261.623898

[20] W. Futral, InfiniBand architecture development and deployment: a strategic
guide to server I/O solutions, ser. Engineer to Engineer series. Intel Press, 2001.
[Online]. Available: http://books.google.com/books?id=qIkAAAAACAAJ

[21] InfiniBand Trade Association. Last accessed April 11, 2013. [Online]. Available:
http://www.infinibandta.org/

[22] UNC Charlotte, “University research computing,” Nov. 2011, URL:
http://www.urc.uncc.edu/urc/.

http://dx.doi.org/10.1109/HOTI.2010.24
http://www.amd.com/us/products/technologies/hypertransport-technology/Pages/hypertransport-technology.aspx
http://www.amd.com/us/products/technologies/hypertransport-technology/Pages/hypertransport-technology.aspx
http://www.beowulf.org/
http://dx.doi.org/10.1109/2.74
http://dl.acm.org/citation.cfm?id=62972.63015
http://dl.acm.org/citation.cfm?id=209136.209139
http://dx.doi.org/10.1023/A:1022852505633
http://dl.acm.org/citation.cfm?id=623261.623898
http://books.google.com/books?id=qIkAAAAACAAJ
http://www.infinibandta.org/


79

[23] Open MPI Development Team, “Open MPI: open source high-performance com-
puting,” Jun. 2010, URL: http://www.open-mpi.org/.

[24] M. S. Mller, A. Knpfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix, and W. E.
Nagel, “Developing scalable applications with vampir, vampirserver and vampir-
trace.” in PARCO’07, 2007, pp. 637–644.

[25] S. Datta, P. Beeraka, and R. Sass, “Rc-blastn: Implementation and
evaluation of the blastn scan function,” in Proceedings of the 2009 17th IEEE
Symposium on Field Programmable Custom Computing Machines, ser. FCCM
’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 88–95. [Online].
Available: http://dx.doi.org/10.1109/FCCM.2009.15

[26] R. Pottathuparambil and R. Sass, “A parallel/vectorized double-precision
exponential core to accelerate computational science applications,” in
Proceedings of the ACM/SIGDA international symposium on Field programmable
gate arrays, ser. FPGA ’09. New York, NY, USA: ACM, 2009, pp. 285–285.
[Online]. Available: http://doi.acm.org/10.1145/1508128.1508198

[27] R. Sass and A. Schmidt, Embedded Systems Design with Platform FPGAs:
Principles and Practices, ser. Morgan Kaufmann. Elsevier Science & Technology,
2010. [Online]. Available: http://books.google.com/books?id=Ki7zs-Ex2d0C

[28] B. A.S., K. R.A., K. D.B., R. J.H., and S. G.M., “Jaguar: The world’s
most powerful computer.” Cray User’s Group, 2009. [Online]. Available:
http://www.nccs.gov/wp-content/uploads/2010/01/Bland-Jaguar-Paper.pdf

[29] X.-J. Yang, X.-K. Liao, K. Lu, Q.-F. Hu, J.-Q. Song, and J.-S. Su, “The
tianhe-1a supercomputer: Its hardware and software,” Journal of Computer
Science and Technology, vol. 26, pp. 344–351, 2011, 10.1007/s02011-011-1137-8.
[Online]. Available: http://dx.doi.org/10.1007/s02011-011-1137-8

[30] M. Yokokawa, F. Shoji, A. Uno, M. Kurokawa, and T. Watanabe,
“The k computer: Japanese next-generation supercomputer development
project,” in Proceedings of the 17th IEEE/ACM international symposium
on Low-power electronics and design, ser. ISLPED ’11. Piscataway,
NJ, USA: IEEE Press, 2011, pp. 371–372. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2016802.2016889

[31] A. Yonezawa, T. Watanabe, M. Yokokawa, M. Sato, and K. Hirao, “Advanced
institute for computational science (aics): Japanese national high-performance
computing research institute and its 10-petaflops supercomputer ”k”,” in State
of the Practice Reports, ser. SC ’11. New York, NY, USA: ACM, 2011, pp.
13:1–13:8. [Online]. Available: http://doi.acm.org/10.1145/2063348.2063366

[32] Argonne National Laboratory, “MPICH2: high-performance and widely portable
MPI,” Jun. 2009, URL: http://www.mcs.anl.gov/research/projects/mpich2/.

http://dx.doi.org/10.1109/FCCM.2009.15
http://doi.acm.org/10.1145/1508128.1508198
http://books.google.com/books?id=Ki7zs-Ex2d0C
http://www.nccs.gov/wp-content/uploads/2010/01/Bland-Jaguar-Paper.pdf
http://dx.doi.org/10.1007/s02011-011-1137-8
http://dl.acm.org/citation.cfm?id=2016802.2016889
http://dl.acm.org/citation.cfm?id=2016802.2016889
http://doi.acm.org/10.1145/2063348.2063366


80

[33] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga, “The
nas parallel benchmarks — summary and preliminary results,” in Proceedings
of the 1991 ACM/IEEE conference on Supercomputing, ser. Supercomputing
’91. New York, NY, USA: ACM, 1991, pp. 158–165. [Online]. Available:
http://doi.acm.org/10.1145/125826.125925

[34] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,
R. A. Fatoohi, S. Fineberg, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga, “THE NAS PAR-
ALLEL BENCHMARKS,” NASA Ames Research Center, Moffett Field, CA,
Technical report RNR-94-007, Mar. 1994.

[35] G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proceedings of the April 18-20, 1967, spring joint
computer conference, ser. AFIPS ’67 (Spring). New York, NY, USA: ACM, 1967,
pp. 483–485. [Online]. Available: http://doi.acm.org/10.1145/1465482.1465560

[36] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken, “Logp: towards a realistic model
of parallel computation,” in Proceedings of the fourth ACM SIGPLAN
symposium on Principles and practice of parallel programming, ser. PPOPP
’93. New York, NY, USA: ACM, 1993, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/155332.155333

[37] M. Small and X. Yuan, “Maximizing mpi point-to-point communication perfor-
mance on rdma-enabled clusters with customized protocols,” in ICS ’09: Pro-
ceedings of the 23rd international conference on Supercomputing. New York,
NY, USA: ACM, 2009, pp. 306–315.

[38] A. R. Mamidala, A. Vishnu, and D. K. Panda, “Efficient shared memory and
rdma based design for mpi allgather over infiniband.” in PVM/MPI’06, 2006,
pp. 66–75.

[39] M. Saldana and P. Chow, “TMD-MPI: An MPI Implementation for Multiple
Processors Across Multiple FPGAs,” in Proc. of International Conference on
Field Programmable Logic and Applications, 2006, pp. 1–6.

[40] R. Rabenseifner, “Automatic MPI counter profiling of all users: First results
on a CRAY t3e 900-512,” in Message Passing Interface Developer’s and User’s
Conference, 1999.

[41] R. Rabenseifner, “Optimization of collective reduction operations,” in Compu-
tational Science - ICCS 2004, Springer-Verlag LNCS 3036, 2004, pp. 1–9.

http://doi.acm.org/10.1145/125826.125925
http://doi.acm.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/155332.155333


81

[42] T. Hoefler, T. Mehlan, F. Mietke, and W. Rehm, “A Survey of Barrier Algorithms
for Coarse Grained Supercomputers,” Chemnitzer Informatik Berichte, vol. 04,
no. 03, Dec. 2004.

[43] E. Freudenthal and A. Gottlieb, “Process coordination with fetch-and-
increment,” SIGARCH Comput. Archit. News, vol. 19, no. 2, pp. 260–268, 1991.

[44] S. S. Vadhiyar, G. E. Fagg, and J. Dongarra, “Automatically tuned collective
communications,” in Supercomputing ’00: Proceedings of the 2000 ACM/IEEE
conference on Supercomputing, 2000, p. 3.

[45] P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie, “Distributing hot-spot addressing in
large-scale multiprocessors,” IEEE Trans. Comput., vol. 36, no. 4, pp. 388–395,
1987.

[46] M. L. Scott and J. M. Mellor-Crummey, “Fast, contention-free combining tree
barriers for shared-memory multiprocessors,” Int. J. Parallel Program., vol. 22,
no. 4, pp. 449–481, 1994.

[47] I. Eugene D. Brooks, “The butterfly barrier,” Int. J. Parallel Program., vol. 15,
no. 4, pp. 295–307, 1986.

[48] R. e. a. Gupta, “Efficient barrier using remote memory operations on via-based
clusters,” in IEEE International Conference on Cluster Computing, 2002, p. 83.

[49] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn, “Collective
communication: theory, practice, and experience: Research articles,” Concurr.
Comput. : Pract. Exper., vol. 19, pp. 1749–1783, September 2007. [Online].
Available: http://dl.acm.org/citation.cfm?id=1285358.1285359

[50] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel, and J. J.
Dongarra, “Performance analysis of mpi collective operations,” Cluster Comput-
ing, vol. 10, no. 2, pp. 127–143, 2007.

[51] J. Pješivac-Grbović, G. Bosilca, G. E. Fagg, T. Angskun, and J. J. Dongarra,
“Mpi collective algorithm selection and quadtree encoding,” Parallel Comput.,
vol. 33, no. 9, pp. 613–623, 2007.

[52] B. L. Payne, M. Barnett, R. Littlefield, D. G. Payne, and R. V. D. Geijn, “Global
combine on mesh architectures with wormhole routing,” in Proc. of 7 th Int.
Parallel Proc. Symp, 1993.

[53] G. Almási, P. Heidelberger, C. J. Archer, X. Martorell, C. C. Erway, J. E.
Moreira, B. Steinmacher-Burow, and Y. Zheng, “Optimization of mpi collective
communication on bluegene/l systems,” in ICS ’05: Proceedings of the 19th
annual international conference on Supercomputing. New York, NY, USA: ACM,
2005, pp. 253–262.

http://dl.acm.org/citation.cfm?id=1285358.1285359


82

[54] A. Faraj, S. Kumar, B. Smih, A. Mamidala, J. Gunnels, and P. Heidelberger,
“Mpi collective communications on the blue gene/p supercomputer: algorithms
and optimizations,” in Proceedings of the 23rd international conference on
Supercomputing, ser. ICS ’09. New York, NY, USA: ACM, 2009, pp. 489–490.
[Online]. Available: http://doi.acm.org/10.1145/1542275.1542344

[55] H. Subramoni, K. Kandalla, S. Sur, and D. K. Panda, “Design and
evaluation of generalized collective communication primitives with overlap
using connectx-2 offload engine,” in Proceedings of the 2010 18th IEEE
Symposium on High Performance Interconnects, ser. HOTI ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 40–49. [Online]. Available:
http://dx.doi.org/10.1109/HOTI.2010.22

[56] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup,
T. Hoefler, J. Joyner, J. Lewis, J. Li, N. Ni, and R. Rajamony, “The
percs high-performance interconnect,” in Proceedings of the 2010 18th IEEE
Symposium on High Performance Interconnects, ser. HOTI ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 75–82. [Online]. Available:
http://dx.doi.org/10.1109/HOTI.2010.16

[57] R. Brightwell, K. T. Pedretti, K. D. Underwood, and T. Hudson,
“Seastar interconnect: Balanced bandwidth for scalable performance,”
IEEE Micro, vol. 26, pp. 41–57, May 2006. [Online]. Available: http:
//dx.doi.org/10.1109/MM.2006.65

[58] R. Alverson, D. Roweth, and L. Kaplan, “The gemini system interconnect,”
in Proceedings of the 2010 18th IEEE Symposium on High Performance
Interconnects, ser. HOTI ’10. Washington, DC, USA: IEEE Computer Society,
2010, pp. 83–87. [Online]. Available: http://dx.doi.org/10.1109/HOTI.2010.23

[59] R. Brightwell, T. Hudson, R. Riesen, and K. Underwood, “Implementation and
performance of portals 3.3 on the Cray XT3,” in IEEE International Conference
on Cluster Computing (CLUSTER’05), Sep. 2005.

[60] R. Riesen, R. Brightwell, K. Pedretti, K. Underwood, A. B. Maccabe, and
T. Hudson, “The Portals 4.0 message passing interface,” Sandia National Labo-
ratories, Technical report SAND2008-2639, Apr. 2008.

[61] K. D. Underwood, W. B. L. III, and R. Sass, “Analysis of a prototype intelligent
network interface,” Concurrency and Computation: Practice and Experience, pp.
751–777, 2003.

[62] R. Brightwell, S. P. Goudy, A. Rodrigues, and K. D. Underwood, “Implications
of application usage characteristics for collective communication offload,” Int. J.
High Perform. Comput. Netw., vol. 4, no. 3/4, pp. 104–116, 2006.

[63] D. Buntinas, D. K. Panda, and P. Sadayappan, “Fast nic-based barrier
over myrinet/gm,” in Proceedings of the 15th International Parallel &

http://doi.acm.org/10.1145/1542275.1542344
http://dx.doi.org/10.1109/HOTI.2010.22
http://dx.doi.org/10.1109/HOTI.2010.16
http://dx.doi.org/10.1109/MM.2006.65
http://dx.doi.org/10.1109/MM.2006.65
http://dx.doi.org/10.1109/HOTI.2010.23


83

Distributed Processing Symposium, ser. IPDPS ’01. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 52–. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=645609.663267

[64] W. Yu, D. K. Panda, and D. Buntinas, “Scalable, high-performance nic-based
all-to-all broadcast over myrinet/gm.” in CLUSTER’04, 2004, pp. 125–134.

[65] W. Yu, D. Buntinas, R. L. Graham, and D. K. Panda, “Efficient and scalable
barrier over quadrics and myrinet with a new nic-based collective message passing
protocol.” in IPDPS’04, 2004, pp. –1–1.

[66] W. Yu, D. Buntinas, and D. K. Panda, “High performance and reliable nic-based
multicast over myrinet/gm-2.” in ICPP’03, 2003, pp. 197–204.

[67] D. Buntinas, D. K. Panda, and P. Sadayappan, “Fast nic-based barrier over
myrinet/gm.” in IPDPS’01, 2001, pp. –1–1.

[68] D. P. Vinod Tipparaju, Jarek Nieplocha, “Fast collective operations using shared
and remote memory access protocols on clusters,” in In International Parallel
and Distributed Processing Symposium, 2003.

[69] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal,
“The raw microprocessor: A computational fabric for software circuits and
general-purpose programs,” IEEE Micro, vol. 22, pp. 25–35, March 2002.
[Online]. Available: http://dl.acm.org/citation.cfm?id=623304.624515

[70] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald,
H. Hoffmann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman,
V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal, “Evaluation of the
raw microprocessor: An exposed-wire-delay architecture for ilp and streams,”
in Proceedings of the 31st annual international symposium on Computer
architecture, ser. ISCA ’04. Washington, DC, USA: IEEE Computer Society,
2004, pp. 2–. [Online]. Available: http://dl.acm.org/citation.cfm?id=998680.
1006733

[71] T. G. Mattson, R. Van der Wijngaart, and M. Frumkin, “Programming
the intel 80-core network-on-a-chip terascale processor,” in Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, ser. SC ’08.
Piscataway, NJ, USA: IEEE Press, 2008, pp. 38:1–38:11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1413370.1413409

[72] R. F. van der Wijngaart, T. G. Mattson, and W. Haas, “Light-weight
communications on intel’s single-chip cloud computer processor,” SIGOPS
Oper. Syst. Rev., vol. 45, pp. 73–83, February 2011. [Online]. Available:
http://doi.acm.org/10.1145/1945023.1945033

http://portal.acm.org/citation.cfm?id=645609.663267
http://portal.acm.org/citation.cfm?id=645609.663267
http://dl.acm.org/citation.cfm?id=623304.624515
http://dl.acm.org/citation.cfm?id=998680.1006733
http://dl.acm.org/citation.cfm?id=998680.1006733
http://dl.acm.org/citation.cfm?id=1413370.1413409
http://doi.acm.org/10.1145/1945023.1945033


84

[73] J. Wawrzynek, M. Oskin, C. Kozyrakis, D. Chiou, D. A. Patterson, S. lien Lu,
J. C. Hoe, and K. Asanovic, “Ramp: Research accelerator for multiple proces-
sors,” in In Proceedings of Hot Chips 18, 2006.

[74] S. Wee, J. Casper, N. Njoroge, Y. Tesylar, D. Ge, C. Kozyrakis, and
K. Olukotun, “A practical fpga-based framework for novel cmp research,” in
Proceedings of the 2007 ACM/SIGDA 15th international symposium on Field
programmable gate arrays, ser. FPGA ’07. New York, NY, USA: ACM, 2007,
pp. 116–125. [Online]. Available: http://doi.acm.org/10.1145/1216919.1216936

[75] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling, and P.-Y. Droz, “Ramp blue:
A message-passing manycore system in fpgas.” in FPL’07, 2007, pp. 54–61.

[76] R. Sass, et al., “Reconfigurable computing cluster RCC project: Investigating
the feasibility of FPGA-based petascale computing,” in FCCM ’07: Proceedings
of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM’07), 2007, pp. 127–138.

[77] W. V. Kritikos, “Feasibility of serial ata cables for the physical link in high
performance computing clusters,” Master’s thesis, University of Kansas, May
2007.

[78] A. G. Schmidt, S. Datta, A. A. Mendon, and R. Sass, “Productively scaling i/o
bound streaming applications with a cluster of fpgas,” in Application Accelerators
in High-Performance Computing (SAAHPC), 2010 Symposium on, july 2010.

[79] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks. Morgan Kauf-
mann, 2002.

[80] Xilinx, “Locallink interface specification,” www.xilinx.com/products/design
resources/conn central/locallink member/sp006.pdf.

[81] B. Huang, A. Schmidt, A. Mendon, and R. Sass, “Investigating resilient high per-
formance reconfigurable computing with minimally-invasive system monitoring,”
in High-Performance Reconfigurable Computing Technology and Applications (
HPRCTA), 2010 Fourth International Workshop on, nov. 2010, pp. 1 –8.

[82] AMD, “AMD Accelerated Processing Units.”

[83] Xilinx, Inc., “ML410 embedded development platform user guide,” September
2008.

http://doi.acm.org/10.1145/1216919.1216936
www.xilinx.com/products/design_resources/conn_central/locallink_member/sp006.pdf
www.xilinx.com/products/design_resources/conn_central/locallink_member/sp006.pdf

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1: INTRODUCTION 
	1.1 High-Performance Computing
	1.2 Interconnect and Communication
	1.3 Motivation
	1.4 Thesis Question

	CHAPTER 2: BACKGROUND 
	2.1 Field Programmable Gate Array
	2.2 Computational Science
	2.3 Top500 Supercomputers
	2.4 Message-Passing
	2.5 Benchmarks
	2.6 Amdahl's Law
	2.7 Communication Model

	CHAPTER 3: RELATED WORK 
	3.1 MPI Related Research
	3.1.1 Point-to-point Communication
	3.1.2 Collective Communication
	3.1.3 Hardware Optimization

	3.2 On-chip Message-Passing
	3.2.1 Raw
	3.2.2 Intel Terascale Computing
	3.2.3 RAMP
	3.2.4 Reconfigurable Computing Cluster


	CHAPTER 4: DESIGN 
	4.1 Design Infrastructure
	4.1.1 Off-chip Network
	4.1.2 On-chip Network
	4.1.3 Network Interface
	4.1.4 Base System
	4.1.5 Miscellaneous IP Cores

	4.2 Stage 1: Hardware Message-Passing Engine
	4.2.1 Point-to-point Communication
	4.2.2 Collective Communication

	4.3 Stage 2: Heterogeneous System
	4.3.1 Parallel FFT Operation
	4.3.2 Parallel Matrix-Vector Multiplication


	CHAPTER 5: EVALUATION AND ANALYSIS 
	5.1 Evaluation Infrastructure
	5.2 Testing Methodology
	5.3 Stage 1 Experiment
	5.3.1 Barrier Performance Result
	5.3.2 Broadcast Performance Result
	5.3.3 Reduce Performance Result
	5.3.4 Allreduce Performance Result
	5.3.5 Summary

	5.4 Communication Model
	5.4.1 Linear Fitting for Barrier
	5.4.2 Latency Model

	5.5 Stage 2 Experiment
	5.5.1 Parallel Fast Fourier Transformation
	5.5.2 Parallel Matrix-Vector Multiplication
	5.5.3 Hybrid Computing System

	5.6 Validation

	CHAPTER 6: CONCLUSION 
	REFERENCES

