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ABSTRACT 

 

 

JOSHUA ROBERT STOKELL. Long-term study of changes in microbiota in a Cystic 

Fibrosis patient. (Under the direction of DR. TODD R. STECK) 

 

 

Application of culture-independent techniques have revealed the presence of more 

types of bacteria than were previously thought [1-8], which led to the current description 

of Cystic Fibrosis (CF) being a polymicrobial disease [9].  We know this polymicrobial 

community changes over time [10-13] and during exacerbation events [14], and that 

interactions with non-pathogenic taxa can influence pathogen gene expression [15].  The 

polymicrobial nature of infection may explain why in vitro responses and susceptibility 

of bacteria such as Pseudomonas aeruginosa to antibiotics do not always correlate with 

in vivo outcomes [16, 17].  The ability of bacteria to adapt to the CF lung complicates 

long-term treatment strategies. Much is known about the involvement of P. aeruginosa in 

lung colonization and deterioration [18], and the genetic adaptations it undergoes over 

time [19-21].  Less is known about the adaptations that enable another CF pathogen, 

Burkholderia multivorans, to become resistant to antibiotics and persist in the lung 

environment.  We identified a B. multivorans strain that acquired resistance in vivo to an 

antibiotic and became the dominant strain within a period of four days.   

Expectorated sputum samples are the gold standard for identifying the pathogens 

present in the CF lungs.  Sputum in CF is primarily composed of free DNA from host 

immune cells and bacterial cells which is markedly different from the normal mucus that 

lines the lung epithelia.  This composition, along with the dehydrated nature of sputum, 

increases viscosity and heterogeneity of bacterial distribution.  Culture-independent 

assays which examine bacterial diversity and abundance in sputum rely on bacterial DNA 
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extracted from aliquots which may not be representative of the whole sample.   Sputum is 

typically homogenized through chemical means prior to DNA extraction but we have 

shown that adding a mechanical homogenization step significantly increases bacterial 

distribution within a sputum sample.  

Acute bacterial infections are the major cause for pulmonary exacerbations (PE) 

in Cystic Fibrosis.  PEs are connected to increased mortality and may result in a 

permanent impairment in lung function.  Attempts at developing tools to predict an 

oncoming PE have been met with limited success due to the heterogeneity of patient 

characteristics.  We analyzed bacterial DNA from 130 sputum samples collected weekly 

for three years to identify changes in bacterial diversity and abundance by combining 

frequent patient sampling, next generation sequencing, and quantitative PCR (qPCR).  

Approximately 81,000,000 sequences containing 150 taxa were identified.  Changes in 

microbial diversity and abundance did not correlate to antibiotic treatment for a PE.  A 

gradual increase in abundance of all bacteria, Pseudomonas, and Burkholderia was 

shown over the sampling period along with a gradual decline in lung function.  Ours is 

the first to demonstrate a stable microbial diversity coupled with a gradual change in 

abundance of all bacteria, Pseudomonas, and Burkholderia over a multi-year period.  

Regardless of the specific goal, it is clear that to understand CF infections requires 

knowledge of more than the dominant pathogen [22-24]. The data described in this 

dissertation demonstrate the importance of repeated, longitudinal sampling for studying 

microbial communities in human subjects [25] where some variation in microbial 

community composition can occur, even between sequential samples from a single 

clinically stable patient [26].  
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INTRODUCTION 

 

 

The chapters in this dissertation reflect how my project changed over time as well 

as demonstrate how unexpected observations lead to interesting and publishable 

tangential projects.  Except for chapter 1, each chapter in this dissertation is included as 

either a format of a published manuscript (chapters 2 & 4) or in preparation for 

submission (chapters 3, 5, & 6). 

This dissertation was written based on a culmination around a central project in 

which I studied the changes in diversity and abundance of microbiota in the lungs of a 

single Cystic Fibrosis (CF) patient as described in chapter 1.  Chapter 2 is a co-authored, 

published review on the viable but nonculturable (VBNC) state of bacteria which I co-

wrote with my advisor, Dr. Todd Steck [1].  Chapters 3 & 4 in this dissertation were 

written based on data from two projects (examining the effect of mechanical 

homogenization on sputum and in vivo acquisition of an antibiotic resistant Burkholderia 

multivorans strain) that developed from observations made during the course of our 

primary study (Chapters 5 & 6).   

Chapter 3 examines whether adding a mechanical homogenization step during 

sputum processing decreases the difference in means of bacterial counts obtained 

between sputum aliquots that are removed from the same sample.  My goal was to 

determine if the difference in abundance I measured between adjacently collected sputum 

samples (the data from which formed the basis for results presented in chapter 5) was 

likely due to factors not associated with sputum processing such as unpredictability of 

where in the lung the sputum is derived. 
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During this long-term study, the CF patient I was following acquired a 

ceftazidime-resistant strain of B. multivorans as determined by clinical culture results.  

Since I had been collecting sputum twice weekly, I recognized I would be able to 

examine previously collected samples to ascertain the time of acquisition in effort to 

determine what environmental factor, if any, may have caused the resistance to occur.  

Chapter 4 is a published manuscript which describes the methods I used to narrow the 

time frame for acquisition of resistance and the potential impact this result had on my 

overall study [2]. 

The last two chapters, 5 & 6, describe the results of my three year study of a CF 

patient.  To the best of my knowledge, no other study has examined the lung microbiota 

of a single patient with as many sputum samples and over such a long period of time.  I 

was able to show the benefits of using both quantitative PCR and Illumina sequencing to 

show the changes in abundance and diversity of bacteria over time and in response to 

antibiotics in the CF lung.   
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CHAPTER 1:  CYSTIC FIBROSIS: A POLYMICROBIAL DISEASE 

 

 

Bacterial infections are the leading cause of death in the majority of those with 

Cystic Fibrosis (CF), a disease which affects an estimated 30,000 people in the US and 

70,000 people worldwide [1].  It has been shown in CF patients that chronic infection 

with CF-related bacteria including Pseudomonas aeruginosa and Burkholderia cepacia 

complex (Bcc) is linked with an increase in mortality [2, 3].  Acute bacterial infections, 

which disturb the state of a stable, chronic infection, are the major cause for pulmonary 

exacerbations (PE)s which may develop 2-3 times per year in some CF patients [4, 5].  

The frequency of PEs has been connected to increased mortality and results in a 

permanent impairment in lung function as measured by forced expiratory volume per one 

second (FEV1) [5].  The exact cause of a PE remains unclear but is often attributed to 

factors associated with established bacteria, viral infection and environmental insult such 

as ozone [6].  Diagnosis of a PE relies heavily on the observations of a clinician through 

x-rays, spirometric parameters and physical assessments as well as patients’ subjective 

description of symptoms [7].  However, while several scoring systems and patient self-

assessment forms, such as Fuchs [4], are now being used, no method encompasses the 

vast range of characteristics, including change in sputum, increased dyspnea and 

increased cough, that aid in determining if a patient is developing a PE [8].  Lack of a 

consensus for the cause of a PE continues to be one of the main reasons a consistent, 

objective measurement does not exist.  
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The microorganisms colonizing the lungs result in chronic infections that persist 

throughout the life of a patient [9].  Within the past decade, it was assumed the CF lungs 

were colonized with few different bacteria including P. aeruginosa, Haemophilus 

influenza, Staphylococcus aureus, and members of the Bcc which are all considered CF-

related bacteria [10].  In 2004, a study by Rogers et al. used terminal restriction fragment 

length polymorphism (TRFLP) analysis to target the bacterial 16S rRNA gene to analyze 

DNA extracted from sputum of CF patients.  This method of analysis revealed a 

complexity in the CF lung that included 15 species not previously identified in the lungs.  

The study by Rogers et al. laid the foundation for redefining CF as a polymicrobial 

disease.  Since that time, additional studies and the use of pyrosequencing have described 

community profiles unique to each individual.  Interestingly, some bacteria included in 

these profiles, such as SMG, Prevotella, Veillonella, and Rothia, which are considered 

avirulent in the human host, may contribute to polymicrobial infections [11, 12].  A 2008 

study by Sibley et al. described three classes of these organisms including a bacterium 

which acts synergistically with P. aeruginosa but is avirulent on its own [13].  Veillonella 

and Rothia were isolated in a 2008 study, by Tunney et al., from patients which had 

exacerbations during the sampling period, leading the authors to believe each genus was 

potentially pathogenic in CF [12].   A 2010 study by Ulrich et al. observed clinically 

significant cell numbers of Prevotella in CF which are assumed to grow anaerobically in 

the lungs due to mucus plugs cause by colonization of P. aeruginosa [14].  The results of 

an additional 2010 study by Field et al. in which Prevotella was biochemically 

characterized, suggested that “the diversity and dynamics of this genus in CF may 

contribute to airway disease” [15].  It is still not clear what role these bacteria play in the 
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CF lung and but many suspect they contribute to the pathogenicity of existing pathogens 

such P. aeruginosa.  To understand the dynamics of the microbial community and the role 

the less common bacteria play in the disease, long-term longitudinal patient sampling 

studies must be performed [10].  Candidate bacteria for use as biologically active markers 

for exacerbation onset can then be identified by correlating the changes in their 

abundance with onset or relief of a PE. 

Methods of measuring an active PE are still disputed but are traditionally based 

on parameters defined for specific clinical trials [6].  The Cystic Fibrosis Foundation 

Clinical Practice Guidelines have widespread use in clinics and define exacerbations by 

patient symptoms including >10% reduction in predicted FEV1 value, excessive weight 

loss, increased frequency of cough and increased sputum production [7].  However, since 

the exact cause of PEs remains unclear, clinicians must rely on individualized 

observations which leave inconsistencies among the CF community with treatment and 

standardized care [4].  Due to the lack of a definition, treatment strategies vary widely 

among clinicians as well strategies for determining the severity of a PE [4].  Clinicians 

may opt to aggressively treat what might turn out to be a mild exacerbation with 

intravenous antibiotics and leave a severe PE insufficiently treated with oral antibiotics 

[4].  A center-based study measuring treatment outcomes showed that outcomes were 

improved with increased frequency of treatment which was postulated to be due to the 

increased frequency of clinic visits [16].  Frequently sampling from patients and 

assessing symptoms in this study was suggested to improve patient health.  This study 

demonstrates that temporal changes occur in the CF lung which may not immediately 

present themselves through an increase in patient symptoms but if left untreated, may 
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result in the occurrence of a PE.  Lack of continuous samples for examining changes in 

the microbial community in CF can be a limiting factor in community profiling studies 

since transient, minimally symptomatic or asymptomatic infections may cause 

unexplained results and a false perception of a stable bacterial profile [17].  While a 

single sputum sample can provide a snapshot of the community profile at any given time, 

continuous samples from multiple patients are necessary to draw conclusions on the role 

of the microbial community in disease progression [18, 19].  As a result, frequent 

sampling becomes a key point for correlating changes in factors such as bacterial 

abundance with PEs which would provide information to clinicians that may allow an 

exacerbation to be predicted.   

Some researchers believe the occurrence of a PE is due to an expansion of 

existing bacterial populations, microbe-microbe interactions, viral infections or 

environmental insult [4].  Derived from development of culture-independent methods to 

study the microbial environment, researchers discovered a highly diverse microbial 

community in the lungs leading to the disease being redefined as polymicrobial [20].  

Further examination using DNA-based techniques have allowed researchers to identify 

pathogens previously not associated with CF and provided unique information of the 

dynamics of the polymicrobial community [21].  Studies by Sibley et al. led authors to 

postulate that SMG was the cause of recurrent exacerbations when the abundance of the 

organism was found to increase in comparison to P. aeruginosa during an acute infection 

period [22].  Bacteria in CF have been associated with interspecies communication when 

a 2003 study by Duan et al. showed that an increased production of virulence factors by 

P. aeruginosa was linked to the presence of the microorganism, SMG [23].  A study by 
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Potvin et al. showed that increased production of virulence factors, such as pyocyanin by 

P. aeruginosa, is associated with acute infection periods [24].  The implications of 

observing measurable changes in bacterial populations, interspecies communication and 

virulence factors in the polymicrobial environment in CF provides researchers, as 

suggested by Rogers et al. in a 2011 review, with an opportunity to identify biomarkers to 

predict the onset of an acute infection [25]. 

Attempts at developing tools to predict an oncoming PE have met with limited 

success due to the heterogeneity of patient characteristics and inadequate consensus 

among researchers on what a PE constitutes [26].  Additionally, patient symptoms are 

generally present only after an acute infection period has been established, inhibiting the 

chance of early intervention [25].  Biomarkers as measures for onset of a PE in CF would 

need to be sensitive to biological activity as well as the effect of treatment [27].  In a 

2007 study by Mayer-Hamblett et al., the authors described a negative correlation 

between FEV1 values and sputum inflammatory markers such as free elastase, IL-8, 

neutrophil counts and percent neutrophils [27].  This study and other similar studies 

suggest that host-derived biomarkers from the inflammatory immune response are 

sensitive to the occurrence of an exacerbation [27-29].  However, the key issue with 

using inflammatory immune response is that the establishment of an acute infection must 

be in place in order to achieve a measureable change in the host-derived marker present 

in the lungs.  Microbiological methods examining bacteria-derived biomarkers would 

have a distinct advantage in predicting onset of a PE because if bacteria are involved in 

eliciting a PE, bacterial population changes should occur prior to an elevation of patient 

signs and symptoms [25].  A direct reflection of the changes in the microbial community 
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dynamics could be measured from sputum samples and be used to identify factors 

involved in onset of an acute infection.  Data generated in our lab from 454-FLX 

pyrosequencing of bacteria in sputum show that taxa richness decreases with treatment 

(Figure. 1) and suggest some bacteria are eliminated or reduced in number beyond the 

limit of detection.  A 2005 study by van Ewijk et al. described reports of new bacterial 

colonization occurring during the viral season which correlated with an increased 

frequency of exacerbations [30].  Evidence from the 2005 study along with our data 

suggests that colonization of new bacteria or expansion of existing bacterial populations 

above the limit of detection correlates with occurrence of an exacerbation.  Biomarkers 

which provide the most information include those which are most likely to trigger a PE 

such as an increase in richness caused by either acquisition of new bacterial species or 

expansion of existing bacterial populations, increases in virulence gene expression and 

changes in community structure initiated by interspecies communication.  Measuring a 

change in any of these factors that coincide with an PE could indicate a valuable measure 

for clinicians to use in diagnosis.  A 2011 review by Rogers et al. on bacterial biomarkers 

suggests that the future of disease management in CF will rely on predicting 

exacerbations and that the biological benefit of early detection will reduce both the 

duration and severity of a PE and increase the longevity of the patient [25]. 
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Figure 1.1:  Change in taxa richness over time and in response to antibiotics.  Taxa 

richness decreases in response to acute antibiotic therapy used to treat a PE.  PEs were 

defined by use of TMP-SMZ and ciprofloxacin. The PCR products for 454-tagged 

sequencing, from DNA extracted from sputum (see Chapter 4: Methods), were 

prepared with primers and thermalcycling parameters described in Fierer et al.[31]  

The 454 Life Sciences primer B with a “TC” linker and bacterial 27F primer (5’-

GCCTTGCCAGCCCGCTCAGTCAGAGTTTGATCCTGGCTCAG-3’) and 454 Life 

Sciences primer A with a “CA” linker, 12 mer barcode and bacterial primer 338R (5’-

GCCTCCCTCGCGCCATCAGNNNNNNNNNNNNCATGCTGCCTCCCGTAGGA

GT-3’), where the N’s represent barcodes used to identify each sample, [32] were used 

to target the V1-V2 variable regions of the 16S rRNA gene [33].  PCRs were set up 

with Platinum Taq DNA polymerase (Invitrogen) according to the included protocol 

with 100ng of bacterial genomic DNA as a template.  Each reaction was quantified by 

PicoGreen on a NanoDrop ND-3300 fluorospectrometer.  Samples were pooled in 

equimolar amounts and concentrated in a vacuum centrifuge before being submitted 

the Environmental Genomics Core Facility at the University of South Carolina for 

454-FLX sequencing. 
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CHAPTER 2: VIABLE BUT NON-CULTURABLE BACTERIA 

 

 

1.  Introduction 

Bacteria have two types of population-level responses when exposed to harsh 

environments: undergo massive die-offs with surviving cells serving as the source for 

regrowth upon improved environmental conditions, or adjust cellular physiology to adapt 

to the harsh condition.  Such adaptive mechanisms require the organism to carry 

additional genes.  The existence of recognized bacterial responses, such as the stress and 

starvation responses, indicates that the increased energy cost to maintain these genes is 

sometimes offset by an increase in evolutionary fitness.  One well-studied long-term 

survival mechanism is formation of endospores, a mechanism generally limited to gram-

positive bacteria.  This led to the question of whether there is a mechanism by which non-

spore forming bacteria can withstand harsh environments for long periods of time.  One 

possible adaptive mechanism was first described in 1981 when Escherichia coli and 

Vibrio cholerae were found to enter a dormant-like state in response to starvation [1].  

Two years later, the term “viable but nonculturable” (VBNC or VNC) was used to 

describe this condition. 

The VBNC state is empirically defined as one in which cells are viable yet they 

do not undergo sufficient division to give rise to visible growth on nonselective growth 

medium (i.e. medium lacking any selective or stress agents and containing nutrients that 

normally support growth of the strain).  Since that time, over 70, mostly gram-negative, 
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bacterial species have been documented to have the ability to become VBNC [2].  The 

VBNC response differs from other bacterial responses such as cell stress, cell starvation, 

cell-wall deficient-bacteria, and persister cell formation in that only VBNC cells do not 

grow in or on nonselective growth medium, and cells can remain VBNC for long periods 

of time, up to multiple years; hence VBNC is not a transient response.  These 

characteristics explain why the viable but nonculturable state is thought to be a long-term 

survival mechanism initiated in response to one or a combination of environmental 

stresses [3].  Starvation is the most common stress reported to induce bacteria to enter the 

VBNC state, either independently or in combination with other stresses; additional 

VBNC-inducing conditions reported include: UV light, intense visible light, high or low 

temperatures, changes in osmolarity or aeration, toxic forms of oxygen or biocidal agents 

such as copper, as well as unknown biological factors [4].  The percentages of cells in a 

culture that become VBNC vary in response to the specific environmental condition.  

That there is a wide range of seemingly unrelated environmental conditions that induce 

the VBNC state suggests a parallel with the better-characterized stress response.  

Studying living cells that do not readily grow leads to controversy.  Criticisms of 

early VBNC studies, especially of reports on the ability of VBNC cells to regain the 

ability to grow, have improved the quality of subsequent research [5-7].  Attempts to 

address these criticisms have led to a general, but not universal, acceptance of the VBNC 

condition even though the molecular mechanism behind VBNC remains uncharacterized 

[8, 9].  However, improved techniques that rapidly detect VBNC cells have led to a better 

understanding of their role in the environment [10, 11]. 
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2.  Identifying Cells as Being VBNC 

The concentration of VBNC cells in a pure culture is determined by subtracting 

the concentration of viable cells from the concentration of culturable cells.  Getting an 

accurate colony forming unit (CFU) count is dependent upon knowing which growth 

medium to use.  This is straightforward when examining a pure culture of a characterized 

bacterial species, but is more difficult when examining an environmental sample 

containing multiple bacterial species.  Analyzing samples on multiple types of growth 

media would allow detection of a wider range of species but would also lead to an 

overestimation of the CFU concentration if a given species could grow on more than one 

growth medium.  The presence of uncharacterized bacterial species that do not grow on 

any of the media used to enumerate CFUs would lead to an underestimation of CFU 

concentration. As a result, there is no accurate estimate of the percentage of 

environmental microbes that are VBNC.  

There are multiple methods to enumerate viable cell concentration, by necessity 

all are growth independent assays, and while microscopic based assays are still used, 

polymerase chain reaction (PCR)-based assays and flow cytometry analyses are recently 

developed accurate screens for viable cells [10, 11].  The original assay used to document 

the VBNC condition, the Kogure assay [12], incubates cells for approximately eight 

hours in medium containing low levels of yeast extract and a cell division inhibitor.  

After staining, cells are examined microscopically; all elongated cells are scored as being 

viable.  That cells are able to elongate in this medium was taken as evidence for the cells 

retaining the potential to undergo cell division.  Presumably, if the inhibitor was absent, 
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the cells would divide.  This interpretation has led to speculation that VBNC cells may 

actually be able to undergo limited growth.  Other viability assays that are indirect 

indicators of metabolic activity examine cell membrane potential, plasmolytic response to 

osmotic stress, or cell membrane integrity.  The most commonly used commercial 

bacterial viability kit (LIVE/DEAD BacLight Bacterial Viability Kit; Molecule Probes 

Inc., Eugene OR) equates cell membrane integrity with viability.  Two fluorescent 

nucleic acid-binding dyes are used to examine membrane integrity.  A green fluorescing 

dye, SYTO 9, readily moves across the cell membrane; a red fluorescing dye, propidium 

iodide, does not.  Because propidium iodide has a higher affinity for nucleic acids than 

does SYTO 9, green fluorescing cells are those with an intact membrane (i.e. viable), 

whereas red-fluorescing cells are those whose membrane integrity is compromised (i.e. 

dead).  Figure 1 shows the result from such an assay.  Multiple studies have compared 

viability assays; some find the examined assays yield similar results, others find 

significant differences between the various viability values [13].  There is no consistent 

explanation for these differences, when observed, as there is no consensus on which 

viability assay is the most accurate.  Some researchers perform more than one type of 

viability assay to increase the accuracy of results. 

Common to growth-independent viability assays is that a recently dead cell could 

yield a false positive result.  This is possible because cellular processes may not cease 

and the integrity of cell membranes may not be lost immediately upon death.  How one 

defines when a bacterial cell is dead is a topic beyond the scope of this dissertation [see 

14].  What is relevant, however, is that the means to distinguish between a VBNC cell 

and a recently dead cell is based on one defining characteristic of a VBNC cell – the 
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ability to remain VBNC for extended periods of time.  Confidence in identifying a cell as 

being VBNC increases by performing a viability assay on a sample after a period of time 

that exceeds the expected longevity of the target molecule in a dead cell.  One report 

using the LIVE/DEAD kit established the intervening assay time by killing cells with UV 

irradiation, then determining the time until cell membranes became compromised to the 

point of allowing uptake of propidium iodide [15]. 

A recent variation is to combine the LIVE/DEAD assay with flow cytometry [10].  

VBNC cells which may be harmful and undetected in food or water sources can be 

rapidly identified, even on large samples, using this FCM-based approach.  Methods 

using reverse-transcription quantitative PCR (RT-qPCR) to target mRNA transcripts of 

housekeeping genes have also been developed [16].  Assessing viability using PCR based 

assays is difficult due to the possible amplification of DNA from dead cells, which can be 

avoided by addition of ethidium monoazide (EMA) or propidium monoazide (PMA) 

prior to DNA extraction [17]. 

Determining VBNC forms of a specific bacterial species in a sample containing 

multiple bacterial species requires having a means of identifying the target species.  One 

such method uses taxa-specific RT-qPCR primers.  Liu et al. [16] targeted the rpoS gene, 

which retains expression in VBNC Escherichia coli O157:H7 cells, to identify clinical 

and bovine isolates of as few as 23 VBNC cells of only E. coli O157:H7 in a river water 

sample containing other food-borne pathogens including Yersinia enterolitica, 

Salmonella typhi, and Listeria monocytogenes.  

No growth-independent viability assay is definitive; all are indirect indicators of 

viability and subject to alternative interpretation.  Only when a cell regains the ability to 
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grow, termed resuscitation, can it definitively be concluded that the cell was previously 

VBNC. 

3.  Resuscitation 

If the VBNC state is a long-term survival strategy, then it must be reversible. 

Initially, resuscitation was commonly reported by subjecting a VBNC culture that 

contained no detectable culturable cells to an environmental change, such as a 

temperature upshift, and subsequently observing CFUs.  Even from these early studies it 

was clear that simply reversing the VBNC inducing condition would often not lead to 

resuscitation.  More recent resuscitation studies have benefited from the criticism leveled 

at these early studies [18].  Details on current controversies within the VBNC field of 

study are discussed in a following section; those concerning resuscitation are discussed 

here.  

The main problem with reports of resuscitation is that it cannot be stated with 

certainty that there were no culturable cell forms present in the culture prior to 

resuscitation (knowing there are no culturable cells present would require attempting to 

culture the entire microcosm, thus ending the experiment).  That is, the physiological 

status of every bacterium in a population under study cannot be determined through 

sampling methods.  It is possible that a microcosm could contain a few culturable cells, 

which, by chance, were not included in a sample to be examined for CFUs.  Regrowth of 

a few undetected culturable cells has been ruled out based on the kinetics of regaining 

culturable cells.  However, it was reported that dispersal of clumps of culturable cells 

could occur in response to VBNC inducing conditions and give the appearance of there 
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being at most only a few culturable cells in a microcosm [19].  Dispersal of these clumps 

could give the appearance of resuscitation. 

The most definitive method to document resuscitation has been to perform a 

dilution study (e.g., MPN assay) in which a sample is diluted into multiple tubes to a 

degree that statistically eliminates the possibility of any undetected culturable cells (even 

if clumped) being present.  Observing growth can then be attributed to resuscitation.  

3.1  Current Model to Explain Lack of Growth 

Although no universal resuscitation conditions have been reported, resuscitation is 

more likely to occur when cells are placed in a medium containing low nutrients, perhaps 

combined with an environment stress (the nature of which may be based upon the 

particular VBNC inducing stress), prior to exposure to a rich medium [20].  This 

observation led to the current strategy for resuscitation and the hypothesis to explain why 

VBNC cells would not grow when placed on standard rich medium normally used to 

propagate bacteria [2].  

VBNC cells can be assumed to have low metabolism.  To maintain viability and 

be able to reinitiate growth if environmental conditions change, some cellular process 

(e.g., DNA repair and protein replacement) need to occur.  However, due to decreased 

metabolism, the level of some protective proteins will drop, which will limit the ability of 

VBNC bacteria to adapt to a new environment.  Placing VBNC cells in a nutrient-rich 

medium at optimal growth temperatures can result in be a burst in production of 

superoxide and free radicals.  If not removed, these byproducts of metabolism could kill, 

or prevent growth in the cells.  The requirement for an initial incubation period in a poor 

nutrient medium, supplementation of the medium with peroxide inhibitors, or in a living 
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host reflects a need to for optimum conditions to undergo a slow growth transition phase 

as a part of resuscitation. 

3.2  Comparison to Other Growth Regulation Systems 

Bacteria have several growth regulation systems such as contact-dependent 

inhibition (CDI), toxin-antitoxin modules, and persister cell formation which are induced 

as a result of various types of environmental stress and which allow cells to survive 

deleterious environments [21].  One function of CDI appears to be as a protective system 

to inhibit growth of neighboring bacterial cells, especially in biofilms containing high 

numbers of bacteria [22].  CDI relies on outer membrane proteins contacting receptor 

proteins on other cells to reduce metabolic activity by reducing proton gradient, ATP 

formation, and cell/growth/division of target cells.  Persister cells are slow-growing or 

dormant cells which, due to the lack of active targets required for killing, makes them 

highly multi-drug tolerant.  This resistance is not genetically programmed as removal of 

antibiotics and growth of the persister cells will give rise to a microbial population 

exhibiting the same sensitivity profile as the original population [23].  In Cystic Fibrosis 

(CF), persister Pseudomonas aeruginosa cells are believed to be a survival mechanism 

against exposure to a multitude of antibiotics given as treatment to CF patients [24].  

While no mechanism is known for persister cell formation, several genes are identified as 

inducing the phenotype including toxin-antitoxin gene pairs, such as hipBA and tisAB.  

hipA7 mutants show a 1000-fold increase in persister cell formation [24]. 

Identification of genes or changes in gene expression patterns in a phenotype can 

be used to propose mechanisms explaining a physiological response as well as to 

determine how similar related bacterial physiological responses are.  Currently, no 
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specific mechanism has been identified which allows a bacterium to enter the VBNC 

state.  There is little data on genes or changes in gene expression in cells entering or 

exiting the VBNC state, which helps explain why acceptance of the VBNC state is not 

universal. 

4.  Source of Controversy 

The VBNC condition continues to be controversial.  The areas of controversy 

include: terminology, definitions of bacterial physiological states and viability, validity of 

viability assays, distinguishing resuscitation from growth of undetected culturable cells, 

and distinguishing VBNC from other bacterial responses.  It is clear that the term viable 

but nonculturable does not accurately describe living bacteria that, while they may not be 

growing, have the ability to grow (albeit under different and perhaps not yet discovered 

conditions).  

Documenting the VBNC condition is based upon the validity of viability assays 

and the interpretation of data from resuscitation experiments [8].  Although the use of 

dilution studies has diminished criticism of some resuscitation reports, true resuscitation 

has been recorded in only a subset of VBNC reports.  Hence, viability assays remain the 

main tool to document the presence of VBNC cells.  Through observing individual cells 

(e.g., viability assays) or populations of cells (e.g., enumerating CFUs), insight as to the 

physiological status of individual cells is inferred.  One cannot determine through simple 

observation whether a specific bacterial cell is alive or dead; one can only determine if a 

cell was alive or dead based on whether that cell undergoes subsequent growth.  The 

problem is that with a bacterial condition such as VBNC a lack of growth is a necessary 

prerequisite to describe the condition.  



 

17 

 

 

A related criticism focuses on the validity of culturability assays.  It is possible for 

a cell to undergo a change that inhibits growth in media that normally support growth 

(part of the definition of VBNC), yet would not be considered to be VBNC.  For 

example, in one study, the concentration of culturable cells gradually decreased to 

undetectable levels in Vibrio vulnificus over multiple weeks when placed in sterile sea 

water.  Warming the VBNC culture to room temperature in the absence of nutrients 

resulted in the appearance of CFUs, suggesting resuscitation had occurred.  When this 

study was reproduced by another research group, addition of catalase or sodium pyruvate 

during the initial gradual CFU decline period resulted in up to 1000-fold higher CFU 

counts [25].  These authors concluded that there was a subpopulation of cells which were 

not VBNC, but were in a hydrogen peroxide-sensitive state, and speculated that the 

previously reported resuscitation was instead growth of hydrogen peroxide-sensitive 

cells.  A study by Kong et al. [26] demonstrated that “low temperature inhibits oxyR-

mediated catalase activity” in VBNC cells, indicating that the non-culturability is not due 

to a distinct hydrogen-peroxide-sensitive state.  These studies highlight the difficulty in 

studying a bacterial phenotype (lack of growth) that can arise from various physiological 

responses, only some of which are characterized.  At a broader level, these studies also 

highlight the difficulty in inferring molecular mechanisms using data obtained from 

experiments designed to observe phenomena for which there are always alternative 

interpretations.  

Molecular studies of the VBNC condition have documented differences between 

VBNC and other bacterial responses.  Changes in peptidoglycan composition have been 

observed in VBNC E. coli, [27] and Enterococcus faecalis [28].  Both species have an 
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increase in total cross-linking and a change in penicillin binding proteins.  Changes to the 

cell wall in VBNC cells may explain increased resistance to antibiotics; Lleo et al. [28] 

found that the peptidoglycan in E. faecalis lack the pentapeptide target for vancomycin 

which was theorized to be due to peptidoglycan turnover rather than de novo synthesis.  

These chemical modifications to the peptide are different from those observed with UV-

killed, starved, or exponentially growing cells.  Proteomic analysis has also been applied 

to the study of VBNC E. faecalis.  VBNC cells were found to generate a protein profile 

that was different from starved and exponentially growing bacteria [29].  Another protein 

involved in the VBNC state is the cytoskeletal protein MreB which is fragmented as cells 

are exposed to stress condition.  Reports of VBNC V. parahemolyticus becoming smaller 

in size and more spherical in shape as a response to stress conditions further suggest 

MreB as a structural component [30].  These studies confirm that the VBNC state is 

distinct, and that changes to the cell wall and protein profile may be indicative of the 

VBNC state.  

4.1  VBNC Associated Genes 

Definitive proof of the VBNC condition will likely come only when the 

corresponding genes and gene products are identified.  Although no gene has yet been 

identified that is specific for the VBNC state, multiple genes involved in the VBNC 

condition have been identified [18].  rpoS is reported to be involved in the maintenance 

of E. coli in the VBNC state [31].  That rpoS continues to be expressed in VBNC cells 

has led to it being targeted in cell viability assays as a way to identify which species in a 

mixed population are VBNC.  Down-regulation of katG gene expression, encoding a 

periplasmic catalase in V. vulnificus, while in the VBNC state [32] may explain why 
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VBNC cells are sensitive to hydrogen peroxide.  The one gene product proposed to be 

involved in resuscitation is Rpf (resuscitation promoting factor) [33].   This muralytic 

enzyme is thought to be necessary for cell wall expansion when cells resume growth from 

nutrient-poor conditions or resuscitation of VBNC cells. 

Microarray analysis has been applied to identify genes that are expressed while in 

the VBNC state in V. parahaemolyticus, V. vulnificus, and V. cholerae [34].  Advances in 

high-throughput sequencing analysis such as RNA-sequencing should allow for more 

accurate comparisons of transcriptomic profiles between VBNC and other cell responses.  

Experimental analysis using RNA-sequencing or RT-qPCR would be useful in not only 

identifying candidate genes for VBNC but also for determining the role and effect of 

VBNC cells in the environment [35]. 

5.  Role of VBNC Cells in the Environment 

The lack of information on the prevalence of VBNC bacteria in the environment, 

the biological activities VBNC cells can engage in, and the ability to resuscitate makes it 

difficult to estimate the impact of the VBNC condition on environmental microbial 

processes even though VBNC cells of targeted species have been identified in 

environmental samples.  That only a fraction (0.1-10%) of bacteria observed 

microscopically to be present in an environmental sample are able to be cultured suggests 

most of these uncultured cells are not dead.  Therefore, 90+% of environmental microbes 

represent either uncharacterized bacterial species that do not grow on media commonly 

used in environmental microbiology, or characterized species that are VBNC.  Care must 

be taken to not confuse VBNC cells with dormant or injured bacteria (cells that are not 

growing, but would if provided nutrients) as the VBNC state is considered to be a 
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separate, genetically controlled adaptive physiological response, and specific stimuli, 

separate from nutrients, may be required before growth is reinitiated.  This distinction 

removes from consideration in this review literature concerning the role of dormant cells 

in the environmental processes, such as in bioremediation.  Most studies on the 

importance of VBNC cells have focused on their role in disease. 

VBNC bacteria have been reported to retain a number of pathogenic features.  E. 

coli continued to produce enterotoxin after entry into the VBNC state when incubated in 

rabbit intestinal loops [36], and VBNC uropathogenic E. coli cells were found in the 

bladder of mice after antibiotic resolution of a urinary tract infection [37].  VBNC E. coli 

O157:H7 was shown to retain stable expression of stx1 and stx2 genes, necessary for 

production of Shiga-toxin, and remain toxic to VERO cells [38].  The food safety risk of 

VBNC cells was demonstrated when Dinu and Bach recorded a constant level of Shiga-

toxin, produced by VBNC E. coli O157:H7, for up to 3 days on the surface of lettuce 

[39].  Shigella dysenteriae retained several virulence factors when associated with human 

cells [36].  VBNC Campylobacter jejuni were able to infect rats [36, 40].  Aeromonas 

hydrophila retained virulence in goldfish, although at a decreased level when compared 

to cultured bacteria [41].  VBNC V. vulnificus were reported to be virulent in mice [42], 

and VBNC V. cholerae resulted in clinical cholera symptoms in human volunteers [43]. 

On a more global level, the appearance of cholera outbreaks has been suggested to 

correspond to resuscitation of marine reservoirs of VBNC V. cholera [44].  The ability of 

VBNC forms of Salmonella enterica to retain pathogenicity was suggested to explain an 

infectious outbreak in Japan in 1999; a hypothesis that was subsequently supported by in 

vivo mouse studies [45].  A recent study was the first to describe stress-induced entry of 
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an enterohemorrhagic (EHEC)/enteroaggregative E. coli (EAEC) hybrid strain into a 

VBNC state which was linked to an outbreak of hemolytic uremic syndrome and bloody 

diarrhea in northwestern Germany [46].  Resuscitation of nonculturable enteric bacteria 

was recently demonstrated by Senoh et al. [47] when co-cultured with select eukaryotic 

cells including HT-29, Caco-2, T-84, HeLa, Intestine 407 and CHO cells.  In addition to 

retaining virulence, VBNC cells may also have increase resistance to antibiotics.  VBNC 

Enterococci cells have been shown to retain increased vancomycin resistance, and 

antibiotics were not able to eliminate VBNC Helicobacter pylori cells from infected cats. 

If VBNC cells are shown to be involved in disease etiology, then strategies to both 

identify and treat VBNC cells will need to be developed.  

Although lesser studied, multiple plant pathogenic bacteria have been shown to 

have the ability to become VBNC, including Agrobacterium tumefaciens, Erwinia 

carotovora, Pseudomonas syringae, Ralstonia solanacearum, and Xanthomonas 

campestris.  For R. solanacearum, evidence has been presented supporting the following 

steps in how VBNC is involved in the disease/life cycle [48].  In the cycle, infecting 

bacteria enter the VBNC stage as the plant undergoes necrosis, the VBNC form falls to 

the soil where they remain until resuscitated in response to encountering a host plant root 

system.  Consistent with this model is a recent study by Santander et al. [49] which 

demonstrated that VBNC Erwinia amylovora were able to regrow only in planta.  The 

ability of pathogens to become VBNC can explain the persistent nature of both animal 

and plant diseases, and why disease outbreaks can reoccur on fields, or in patients, treated 

with biocidal agents. 
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VBNC cells appear to be ubiquitous in the environment; they have been reported 

to be found in surface water bodies, bulk soil, the rhizosphere, the phyllosphere, and even 

as a normal constituent in the human and mice urinary tract [15].  In addition to having a 

possible role in disease etiology, the VBNC condition may also impact other 

environmental phenomenon.  A recent study on the “rhizobial competition problem” 

suggested that indigenous populations of bacteria co-inhabiting legume root nodules may 

be able to induce the VBNC state in rhizobia through triggering host production of 

salicylic acid which can create reactive oxygen species [50].   Two VBNC-related 

questions related to release of a genetically modified organism (GMO) are: 1) will  

GMOs become VBNC and potentially escape ready detection and monitoring strategies, 

and 2) do VBNC forms of indigenous microbes in the field explain why it is difficult to 

form stable populations of released GMOs in the environment.   

6.  Summary 

Until recently, microbiologists have studied bacteria under controlled conditions, 

and usually when grown in an excess of nutrients.  This contrasts with the natural 

environment for bacteria in which there are limited nutrients, changing environmental 

conditions, and exposure to deleterious agents.  Bacteria studied under more natural 

conditions have revealed the existence of multiple physiological responses.  One of these 

responses is called “viable but nonculturable.”  

The VBNC condition is difficult to study because it is defined as viable bacteria 

that do not readily grow.  Empirically defining a non-growing cell as being alive based on 

growth-independent viability assays is problematic.  So while there are numerous reports 

of multiple bacterial species entering into the VBNC state in response to changes in a 
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variety of environmental conditions, not all of these species have been reported to 

resuscitate.  The history of the VBNC field may correspond to that of discovery of 

endospores – documentation of endospores as being alive was met with skepticism until 

the conditions that allowed them to grow, and the genes involved in this response, were 

discovered.  While VBNC resuscitation conditions have been reported, few genes have 

been proposed to be involved in the response.  

That there is a long-term dormant-like survival strategy available to non-

sporulating bacteria is not surprising.  TA systems and persister cell formation have also 

been reported as a strategy pathogens and non-pathogens in response to environmental 

stress conditions.  While the exact role of these growth-regulations systems is not fully 

understood, microarray and RT-qPCR have been useful in detection of these pathogens, 

which may also retain virulence in a VBNC state, in food and water sources.  What 

remains unresolved is the genetics and biochemical mechanism of this physiological 

response.  Future research should benefit from techniques advancements in 

transcriptomics/RNA sequencing and proteomics.  However, only when genes involved 

in the VBNC response are discovered will the VBNC condition be universally accepted. 
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Figure 2.1.  Escherichia coli cells viewed via epifluorescent microscopy after staining 

with the LIVE/DEAD Bacterial Viability Kit.  Panel A – exponentially growing culture; 

Panel B – cells placed in boiling water bath for 1 min.  Green fluorescing cells have an 

intact cell membrane and are tentatively identified as being viable; red fluorescing cells 

lack an intact cell membrane and are scored as dead.  Each cell is approximately 2 

microns in length. 
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CHAPTER 3:  MECHANICAL HOMOGENIZATION DECREASES 

VARIABILITY BETWEEN SPUTUM SAMPLES 

 

 

1.  Introduction 

Sputum samples are regularly used in studies to represent the microbial 

environment found in the Cystic Fibrosis (CF) lung.  Expectorated sputum is often 

provided by the patient and then stored away in a lab freezer at -80ºC.  Since sputum is 

known to be thick and difficult to process, the viscosity is reduced through chemical 

means prior to use in an assay.  The primary chemical method includes mixing a ratio of 

sputum to dithiothreitol (DTT) commonly known as Sputasol, Sputolysin
®
, or Cleland’s 

reagent [1].  Although it has been shown that this method is useful for reducing sputum 

viscosity, it is not clear if this method effectively homogenizes the sputum allowing for 

an evenly distributed bacterial composition throughout the entire sample.  

Aliquots of 130 sputum samples, obtained in our lab over a three-year period, 

were used to assay the change in total bacterial load over time and with antibiotic therapy 

through qPCR (see Chapter 5).  For sputum processing, each sample was mixed with a 

DTT solution for liquefaction.  To further reduce sputum viscosity and ensure complete 

homogenization prior to obtaining an aliquot, we subjected each sample to a high 

performance disperser for one minute at 12,000 rpm.  From the samples collected, we 

observed over a 2300-fold variation between the highest and lowest bacterial load in 

sputum.  An average fold change of 7.2 was observed between sequential samples with 

the maximum difference being a 172-fold change for samples collected four days apart.  
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We suspected that a factor contributing to the variation in total bacterial load between 

samples may be the heterogeneity of sputum resulting in an uneven distribution of 

bacteria [2].  Due to the highly viscous nature of sputum, an aliquot may not be 

representative of the sample.  Examination of whether aliquots serve adequately as the 

whole sputum sample has not been performed in detail. 

Analyzing and processing sputum through chemical homogenization (CH) using a 

DTT solution is the standard practice for molecular detection assays [3].  While adding 

DTT prior to aliquoting is preferred, sputum is often homogenized after an aliquot has 

been removed [4, 5].  Mechanical homogenization (MH) may also be performed in 

addition to using DTT but the efficacy of this method as an additional processing step has 

not been evaluated.   

In this experiment, we compared aliquots of sputum to determine if non-

homogenized sputum results in aliquots that are not representative and if the process of 

homogenization evenly distributes the bacterial composition.  All sputum samples in this 

study were treated with a DTT solution.  Total bacterial abundance was compared 

between DTT-treated samples and those additionally subjected to MH using a high-

performance dispersing instrument.  The abundance of Burkholderia multivorans, which 

was present in the sputum samples, was also measured.  Since B. multivorans was shown 

to be of lower in abundance in the sputum samples obtained for the three-year study, we 

suspected the distribution of this bacterium would be less uniform in sputum than the 

distribution of all bacteria.  If so, the effect of MH on decreasing the variability of B. 

multivorans abundance between aliquots would likely be greater than for all bacteria.   
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We also used a descriptive statistic to determine if the mechanical disruption of sputum 

using a high-performance disperser would have an effect on bacterial abundance. 

2.  Methods 

2.1  Samples 

Nine expectorated sputum samples were obtained from a CF patient (IRB 

Protocol Approval # 11-12-36).  The patient was clinically stable as judged by a treating 

physician at the time of collection.  Samples were collected each morning by the patient 

expectorating sputum into a 15 mL Falcon tube, placed on ice during transport to the lab 

and immediately processed.  Sputum color was noted to determine if a relationship might 

exist between the color and heterogeneity of the sample. 

2.2  Chemical Homogenization (CH) 

Each sputum sample was mixed with a 1:3 ratio of sputum to a 0.1% dithiothreitol 

solution, vigorously vortexed, and then incubated at 37°C for one hour.  Samples were 

divided into two equal portions.  The first portion (A) was divided into six 400µL 

aliquots, with four aliquots used for MH and two without further homogenization.  The 

second portion (B) was divided into six 400µL aliquots with each being subjected to MH. 

2.3  Mechanical Homogenization 

Two aliquots from portion A of each sputum sample were subjected to MH for 

two minutes using a high-performance dispersing instrument (IKA ULTRA-TURRAX
® 

T-25 digital, Staufen /Germany) set to 12,000 rpm.  The metal shaft of the disperser was 

disinfected between each aliquot using a combination of steps which included placing the 

shaft in five percent of a bleach solution and 70% ethanol for at least 30 seconds.  The 
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shaft was then rinsed thoroughly with deionized, distilled water.  All aliquots were 

weighed and then stored on ice until DNA extraction. 

2.4  DNA Extraction 

DNA was extracted from each sputum aliquot using the IT 1-2-3 VIBE Sample 

Purification Kit (Biofire Diagnostics, Inc, Salt Lake City, Utah) and its concentration 

determined using a NanoDrop 2000 spectrophotometer (Thermo Scientific, Wilmington, 

DE).  All extracted DNA was immediately stored at -20ºC until its use for quantitative 

polymerase chain reaction (qPCR). 

2.5  Quantitative PCR 

The qPCR mixture contained 10 µL Perfecta SYBR Green FastMix Reagent Low 

ROX (Quanta Biosciences, Gaithersburg, MD), .5 µL of 100 pmole/µL of each primer, 5 

µL of DNA, and 4 µL of nuclease-free water to a final volume of 20 µL.  Universal 

primers [11] were used to target a 16S rDNA fragment of 466bp and measure the 

abundance of all bacteria in the sample.  Burkholderia-specific primers [12] were used to 

target B. multivorans and generate a fragment of 333bp.  qPCR was performed using the 

ABI 7500 Fast Real-Time PCR System (Applied Biosystems, Carlsbad, CA) with an 

initial step of 10 min at 95°C, then 40 cycles of 15 sec at 95°C and 1 min at 60°C.  

Melting curves were determined following the qPCR by 1 cycle of 15 sec at 95°C, 1 min 

at 60°C, 30 sec at 95°C and 15 sec at 60°C.  Standard curves were created for each 

primer pair using 10-fold dilutions of amplicons generated using an Escherichia coli 

strain as the DNA template for the 16S rDNA primers and B. multivorans for the 

Burkholderia-specific primers.  DNA copy number per gram of sputum was calculated 

for each sample based on a standard curve with a 1x10
5
 fold linear range in CT values. 
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2.6  Statistical Analyses 

 To determine if the aliquots from each portion (A, B) were representative of the 

total, a two-way between subject analysis of variance (ANOVA) for each group was 

performed.  Individual sputum samples were divided into two equal portions based on 

their weight (in grams), “A” and “B”.  Portion A was used to determine the effect of MH 

on the difference of the means of abundance by comparing homogenized and non-

homogenized aliquots.  Portion B was used to determine if the effect of MH reduces the 

difference in abundance between aliquots from the same portion.  We paired the samples 

based on each portion and the aliquot designation (Table 1).  Aliquots were designated by 

the sample number and homogenization status (CH or CH+MH) as two independent 

variables of the log10 total bacterial abundance or log10 Burkholderia abundance. Using a 

two-way between subject ANOVA in R programming language with the following model 

to compare the abundance of all bacteria and of B. multivorans as a function of the nine 

samples using the CH and CH+MH aliquots as the interaction term: 

               

If we hypothesize that B0 = no difference in the means, the full equation becomes: 

     (      )    (       )     (               )     

A meta-analysis was used to summarize the effect of MH on the total and 

Burkholderia abundance of each sample.  The Hedges’ d effect size (δ) measure was used 

by treating each sputum sample independent of one another [6].  Each portion was treated 

as a separate group within each sputum sample and the number of aliquots within each 

group as the sample size. 
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3.  Results 

To determine if an aliquot of sputum is representative of the whole sample, we 

compared CH and CH+MH aliquots from nine sputum samples collected from a CF 

patient.  Each sputum sample was divided in half (portion A and B) and each half into six 

equal aliquots.  Four of the six aliquots from portion A were subjected to MH.  Each of 

the aliquots from portion B were subjected to MH, with the first two aliquots paired with 

the CH aliquots from portion A and the other remaining four aliquots paired with the 

CH+MH aliquots from portion A. 

 Our two-way ANOVA model showed a significant difference in the means of 

total bacterial abundance (p =.04) and abundance of B. multivorans (p =.05) between the 

CH and CH+MH aliquots in portion A (Figure 1A and 1C).  Using the same model for 

the aliquots in portion B, we found no significant difference in the means of total 

bacterial abundance (p = 0.76) and abundance of B. multivorans (p = 0.99) between the 

two CH+MH aliquots paired with the two CH aliquots from portion A and the four 

CH+MH aliquots paired with the four CH+MH aliquots in portion A (Figure 1B and 1D).   

We examined the effect of MH on bacterial abundance by using the Hedges’ d 

effect size analysis of total bacterial and B. multivorans abundance as shown by Rogers et 

al. [6].  The mean log10 copy number for all bacteria and B. multivorans in the CH 

aliquots was 9.74 and 6.88 with a range of 8.75 to 10.34 and 5.85 to 8.71, respectively.  

Similarly, the mean log10 copy number for all bacteria and B. multivorans in the CH+MH 

aliquots was 9.77 and 6.96 with a range of 8.81 to 10.23 and 5.90 to 8.31, respectively.  

Jacob Cohen provides a guideline, if necessary, for interpreting the effect size by stating 

that an δ of 0.20 is a small effect, an δ of 0.50 is a medium effect, and an δ of ≥0.80 is a 
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large effect [7].  Table 1 shows the effect size on total bacterial abundance and B. 

multivorans for each of the nine sputum samples.  Since the effect size was quite variable 

from one sample to the next, we calculated the overall effect size for total bacterial and B. 

multivorans abundance using a method similar to Rogers et al., in which the overall effect 

size (E) is weighted by the variance of each sample (V).  We then calculated the standard 

error of the mean for the combined samples (s.e.m.E.) [6]: 

   
∑

 
  
   

 
   

∑
 
  

 
   

 

         

√
 

∑
 
  

 
   

√ 
 

The overall effect size for total bacterial and B. multivorans abundance was -0.25 and -

0.37 standard deviations from the mean, respectively. 

4.  Discussion 

 The method of processing sputum from CF patients varies from one study to the 

next [4, 8, 9].  DTT has been recommended for use as an agent to liquefy sputum since 

1955 [10].  Additional liquefaction steps, such as MH, may be included but these are not 

routinely performed.  Most labs will only use a small aliquot of the sputum and store the 

remainder at -80°C until further use.   

A recent survey was performed in our lab that measured total bacterial abundance 

in multiple aliquots of sputum samples collected from a single CF patient in order to 

determine if standard sputum sampling methods contribute to variations in bacterial 

abundance.  Many factors may contribute to sample-to-sample variation in bacterial 
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abundance such as sample viscosity, sample heterogeneity, and location in the lungs from 

which the sputum was expectorated.  While the location in the lungs is indeterminable 

using expectorated sputum, ensuring consistency in aliquots from processed sputum is 

important since there is a possibility that individual aliquots used for later analyses may 

provide different results from DNA-based assays. 

4.1  Aliquot Size and Storage Temperature May Affect Intrasample Variability 

In this study, we immediately processed the sputum samples collected from the 

CF patient to ensure no other factors such as storage time and temperature would affect 

its characteristics or composition.  For example, intrasample variability may be masked 

by the growth of the dominant bacterium in samples that remain too long at room 

temperature (see Nelson et al.) [3].  The ratio of aliquot volume to overall sputum+DTT 

volume may also affect the variability of the bacterial concentration between aliquots by 

diluting the sputum and potentially separating further the small areas of sputum which 

may consist of higher bacterial density.  The aliquot size may vary according the amount 

of sputum obtained, amount needed for the DNA-based analysis, and the volume of DTT 

added.  The results obtained here are based on our use of 400uL aliquots according to the 

manufacturer’s recommendation for the DNA extraction kit. 

4.2  Intrasample Variability is Reduced with Mechanical Homogenization 

DTT is used in most sputum processing protocols, therefore; we removed it as a 

variable factor in our analysis by adding it to all samples.  Although DTT is effective for 

liquefying sputum, some sputum samples with high viscosity remain difficult to pipette 

even after DTT treatment.  With the high-speed disperser, the viscosity of the sputum is 

reduced which makes the sputum easier to aliquot through standard pipetting methods.   
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 The volumes of majority of the sputum samples collected in this study were 

approximately one milliliter.  Protocols for DNA extraction, such as the VIBE 1-2-3 

Sample Purification Kit used in this study, usually require a portion of sputum smaller 

than that which may be expectorated from an adult with CF.  As a result, only a small 

fraction of the sputum is used for analysis with the remainder placed in cold storage.  

Without processing the whole sputum sample with homogenization prior to obtaining an 

aliquot, there is a chance that any fraction of the sputum may not represent the whole 

sample due to the heterogeneity of bacterial distribution.   

By treating the aliquots as a group within the independent sputum samples, we 

found that MH significantly reduces variability in total bacterial abundance and B. 

multivorans abundance.  The two-way ANOVA, which compared the variability between 

the MH and non-MH aliquots, revealed a dramatic decrease in means of bacterial 

abundance between the CH and CH+MH aliquots (all bacteria, p = 0.04; B. multivorans, 

p = 0.05) in portion A and the difference in means between the CH+MH and CH+MH 

aliquots (all bacteria, p = 0.76; B. multivorans, p = 0.99) in portion B (Figure 1).  These 

results indicate that using the high performance disperser increased the distribution of 

bacteria in the sputum. 

4.3  The Effect of MH on Bacterial Abundance 

Hedges’ d effect size provides a measure for determining the number of standard 

deviations between the means of two groups.  For our purposes we used effect size to 

determine the impact MH had on the total bacterial and B. multivorans abundance 

between groups of MH and non-MH aliquots.  Through this measure, we can confirm that 
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mechanical homogenization does or does not have an impact on bacterial abundance 

which would generate a variable in downstream analysis.   

We observed effect size variability between the sputum samples which did not 

reveal any discernible pattern (Figure 2).  Based on Cohen’s guidelines (see Results), we 

would conclude that MH had a large effect (>0.80) on some sputum samples and a small 

effect (<0.20) on others.  However, Cohen cautions the use of these guidelines as a 

universal tool since the context of effect size can vary based on the experiment.  Visually, 

we observed little difference between the MH and non-MH aliquots which indicates MH 

likely has little effect on abundance.  Our observations were confirmed when we 

calculated the overall effect size of MH on total bacterial abundance and B. multivorans 

abundance (Figure 3).  The standard error of the mean for each measure was greater than 

the overall size indicating that MH has no effect on abundance. 

5.  Conclusion 

 Mechanical disruption is not a new method for processing sputum [11].  However, 

the impact of mechanical means on decreasing the innate heterogeneity of highly viscous 

sputum has not, to the best of our knowledge, been reported.  We recognize that the 

physical properties of our sputum samples are not reported here which is due to the lack 

of a consistent measure for the those properties, such as color, which might differentiate 

between sputum with high or low viscosity.  And although we did not measure viscosity 

of our sputum samples, we did note that none of the samples could be pipetted until after 

the addition of DTT.   

 Mechanical disruption of the sputum had little effect on bacterial abundance as 

measured by qPCR but had a dramatic effect on decreasing the difference in mean 
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abundance between aliquots taken from the same sputum sample.  Other methods of MH 

were not measured here, such as mixing through pipetting, but we show that the use of a 

high performance disperser is an effective method for homogenizing sputum without 

having an impact on bacterial abundance.  Adding MH as an additional sputum 

processing step prior to obtaining an aliquot will ensure consistency in downstream 

analysis of any further aliquots obtained from the remainder of sputum that is typically 

stored in cold storage until further use. 
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Table 3.1.  Effect of mechanical homogenization on the abundance 

of all bacteria and B. multivorans in nine sputum samples 

  

Total bacterial 

abundance 

B. multivorans 

abundance 

Sample 

Number δ V s.e.m.δ δ V s.e.m.δ 

A -0.24 0.61 0.32 -0.22 0.61 0.32 

B 0.25 0.61 0.32 -0.16 0.61 0.32 

C -1.32 0.60 0.32 -0.92 0.60 0.32 

D 0.52 0.61 0.32 0.80 0.62 0.32 

E -2.04 0.60 0.32 -1.27 0.60 0.32 

F -1.00 0.62 0.32 -0.83 0.62 0.32 

G 0.33 0.62 0.34 -1.50 0.63 0.34 

H 1.44 0.60 0.32 1.80 0.61 0.32 

I -0.20 0.61 0.32 -1.03 0.61 0.32 
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Figure 3.1.  Effect of MH on variation of total bacterial and B. multivorans abundance 

between aliquots of nine sputum samples.  Comparison of non-MH aliquots to MH 

aliquots showed significant variation (all bacteria, p = 0.04 (A); B. multivorans, p = 0.05 

(C)).  Comparison of MH aliquots to MH aliquots within the same sputum sample 

showed no significant difference in variation (all bacteria, p = 0.76 (B); B. multivorans, p 

= 0.99 (D))   
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Figure 3.2.  The effect of mechanical homogenization on the total bacterial abundance 

(A) and B. multivorans (B).  The abundance is measured by qPCR for paired samples 

that have been homogenized (MH) or non-homogenized (no MH).  The columns 

represent the effect size of mechanical homogenization on abundance.  The error bars 

are determined by the s.e.m. of the effect size (δ).  Any error bars which cross zero 

indicate no effect. 
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Figure 3.3.  The overall effect of mechanical homogenization on the abundance of 

bacteria and B. multivorans in sputum. The abundance is measured by qPCR for paired 

samples, MH and non-MH.  The columns represent the effect size of mechanical 

homogenization on abundance.  The error bars are determined by the s.e.m. of the overall 

effect size (δ).  Any error bars which cross zero indicate no effect. 
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CHAPTER 4: RAPID EMERGENCE OF A CEFTAZIDIME-RESISTANT Burkholderia 

multivorans IN A CYSTIC FIBROSIS PATIENT 

 

 

1.  Introduction 

 

Burkholderia cepacia complex (Bcc) bacteria pose a serious health threat to 

Cystic Fibrosis (CF) patients due to the innate resistance to multiple antibiotics and 

ability to adapt to adverse environmental conditions through multiple mechanisms [1, 2].  

Bcc bacteria infect approximately 2.5% of CF patients in the US and B. cenocepacia, B. 

cepacia and B. multivorans have been associated with a form of septicemia known as 

“cepacia syndrome” [3, 4].  While studies have described the adaptive responses of 

Pseudomonas aeruginosa, equivalent studies that examine the adaption of Bcc species in 

the CF lung are lacking [5].  Here we document in vivo the emergence of a resistant strain 

of B. multivorans during in-hospital antibiotic treatment for a pulmonary exacerbation 

(PE) and the decreased response to subsequent antibiotic treatment.  

2. Methods 

2.1 Patient and Sample Collection 

A 30-year-old male diagnosed with CF at two weeks of age was hospitalized on 

January 4, 2010 for a course of intravenous antibiotics due to an acute worsening of signs 

and symptoms consistent with a PE.  Approximately four weeks later, the patient was 

readmitted to the hospital with symptoms of a PE.  Sputum culture results from the 

second admission revealed the presence of ceftazidime-resistant B. multivorans. 
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Expectorated sputum samples were obtained from the CF patient twice weekly for 

a period of almost three years (IRB Protocol Approval # 11-12-36).  Samples were 

collected each morning by the patient, placed on ice during transport to the lab, and then 

stored at -80°C.  Single colonies of B. multivorans were obtained from sputum enriched 

in Burkholderia cepacia selective broth (BCSB) at 37°C for 48 hours by spreading 

diluents onto Burkholderia cepacia selective agar (BCSA) plates [6].  A single colony 

from the BCSA plate was used to inoculate 2mL of LB broth and incubated 48 hours at 

37°C to be used for antibiotic susceptibility testing. 

2.2 B. multivorans Ceftazidime-Resistance Determination 

Ceftazidime-resistant colonies were identified by transferring single colonies from 

BCSA onto LB agar with and without 15 µg/mL ceftazidime (MIC determined using a 

standard macrodilution tube method [7]) and scoring for growth after 48 hours at 37°C.  

Ceftazidime-resistance was measured in isolates from sputum samples spanning a 26-

month period beginning March 2009, two months following hospitalization for PE 

treatment in January 2010 and ending May 2011, 18 months after hospitalization.  

Percent resistance was measured by replica plating approximately 200-400 colonies 

isolated from each of 13 sputum samples onto LB +/- 15 µg/mL ceftazidime, and scoring 

for growth following incubation at 37°C for 48 hours. 

2.3 Sample Processing 

Each sputum sample was mixed with a 1:3 ratio of sputum to a 0.1% dithiothreitol 

solution and incubated at 37°C for 1 hour followed by mechanical homogenization for 1 

minute using a micro blender.  Propidium monoazide (Biotium, Hayward, CA) was then 

added to a final concentration of 50 µmol/mL, and DNA-cross linking was induced using 
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a 400-watt halogen light source [8].  DNA was extracted using the IT 1-2-3 VIBE Sample 

Purification Kit (Idaho Technologies, Salt Lake City, UT). 

2.4 qPCR Methods 

qPCR using Perfecta SYBR Green FastMix Reagent Low ROX (Quanta 

Biosciences, Gaithersburg, MD) was performed using the ABI 7500 Fast Real-Time PCR 

System (Applied Biosystems, Carlsbad, CA) with a detailed protocol described in [9].  

Universal primers [10] targeting a 16S rDNA fragment of 466bp were used to measure 

total bacterial abundance.  Bcc-specific primers [11] targeting members of the 

Burkholderia cepacia complex generated a fragment of 333bp.  Standard curves were 

created using 10-fold dilutions of amplicons generated using B. multivorans DNA as a 

template.   

2.5 MLST Analysis 

 Multilocus sequence typing (MLST) was performed in silico to determine 

the relatedness of isolates examined during the study period.  Concatenated sequences of 

B. multivorans DNA collected as part of a whole-genome Illumina sequencing analysis, 

performed by Dr. Raad Gharaibeh in collaboration with Dr. Anthony Fodor and not 

included in this dissertation, were used to determine the sequence identity of the seven 

housekeeping genes used to differentiate strains according to Baldwin et al. [12].  

ClustalW was used to align the sequence of each MLST locus and determine the 

similarity of alleles between isolates [13].  To obtain an allelic profile and clonal complex 

designation, PubMLST was used to align each locus to the Burkholderia cepacia 

complex database.  These will be available at the Burkholderia cepacia complex database 

(http://pubmlst.org/bcc/).  Both PubMLST and NCBI BLAST were used to align the recA 
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gene and a DNA sequence spanning the V1-V3 region of the 16S rRNA gene, 

respectively, to verify the species identity [14]. 

3. Results 

In vivo acquisition of ceftazidime-resistant B. multivorans was detected by 

examining changes in the percentage of resistant colonies.  In the four sputum samples 

collected before January 14, 2010, no ceftazidime-resistant B. multivorans colonies were 

detected.  In the January 14, 2010 sample, 78% of colonies were resistant.  This 

percentage ranged from 69% to 97% in six of the subsequent eight samples collected over 

a 26-month period (Figure 1).  A decrease in the percentage of resistant colonies to 1% 

and 7% in two sputum samples collected five months after the resistant strain of B. 

multivorans was first detected did not correlate with administration of antibiotics or 

patient health.  To determine if the percent resistance was connected to changes in total 

bacterial abundance, qPCR was used to measure abundance of all bacteria and B. 

multivorans from all sputum samples.  The results (Figure 1) indicate there was a 

correlation between abundance of B. multivorans and percent resistance but not for total 

bacterial counts.   

The change in abundance resulting from antibiotic treatment was compared for 

three exacerbations that occurred prior to the detection of ceftazidime resistance (32 

samples) with four subsequent exacerbations (34 samples).  There was a statistically 

significant (Student’s t-test) decrease in abundance caused by non-ceftazidime antibiotics 

for the first three exacerbations but not for the four post-acquisition exacerbations (Figure 

2).  
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Appearance of ceftazidime-resistant Bcc could occur due to acquisition of a new 

Bcc strain or selection of an existing Bcc strain.  To determine if the ceftazidime-resistant 

and -sensitive strains are clonal, the sequences of five of the seven genes used for MLST 

analysis were compared and found to be 100% identical for 12 isolates (Table 1).  The 

only exception was gyrB which was 96% identical for the AS130A, AS130B, and AS131 

isolates due to a partial lack of sequence coverage in the first 41 nucleotides.  The trpB 

locus for each isolate was not usable for alignment due to multiple N’s within the 

sequence generated during assembly (data not shown).  An exact allele match was found 

for six loci when compared to the PubMLST database while the trpB locus showed a near 

match to two different alleles (Table 1).  All isolates shared 100% identity in six alleles 

with each allele corresponding to a B. multivorans isolate in the PubMLST database.  

BLAST showed a sequence similarity of 99% in the V1-V3 region of the 16S rRNA gene 

when compared to the B. multivorans ATCC 17616 reference strain and exact match of 

the recA gene to B. multivorans in the PubMLST database was found for all isolates, 

confirming their identity as B. multivorans (Table 1). 

In vitro testing of four ceftazidime-sensitive and four ceftazidime-resistant 

isolates for resistance to two other antibiotics commonly used to treat B. multivorans 

infections, trimethoprim/sulfamethoxazole (TMP-SMZ) and minocycline, showed no 

significant difference and was consistent with the result of clinical susceptibility tests 

performed during the sampling period (data not shown).  No other beta-lactam, such as 

meropenem, was tested since B. multivorans was shown to be consistently resistant to 

this carbapenem in clinical analyses of isolates from sputum samples collected prior to 
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and during the study period; indicating the acquisition of ceftazidime resistance occurred 

independent of treatment with any other antibiotic.  

4. Discussion 

Here we document a dramatic in vivo change in the resistance profile of B. 

multivorans, a major CF pathogen. Clinical analysis of B. multivorans showed a change 

in the susceptibility profile from sensitive to intermediate ceftazidime resistance in a 

period of one month (data not shown).  We were able to narrow that window to a period 

of four days, suggesting that administration of the antibiotic caused the increase in in vivo 

resistance.  The increase in percent resistance occurred without a change in the total B. 

multivorans abundance.  Although phenotypic variability has been shown to exist within 

multiple isolates from the same patient in a given sputum sample [15], repeated testing of 

every isolate collected during the 26-month period for antibiotic susceptibility and MIC 

indicates the phenotype is stable.  While the lower percentage of resistant isolates shown 

in Figure 1 cannot be explained at this time, the stability of antibiotic resistance profile 

for each isolate from every time point indicates this observation reflects a change in the 

population profile (ratio of ceftazidime-resistant/sensitive) and not a chance observation.  

A transient decrease in percentage of B. multivorans that were ceftazidime-resistant 

(Figure 1) may reflect normal changes that occur in the microbial community, though this 

model would differ from the current consensus on the stability of the lung microbiome 

[16].  Alternatively, this phenomenon may have occurred due to an unidentified 

environmental change.  And although spatial heterogeneity of microbial communities has 

been observed in ex-plant and post mortem CF lungs, we attempted to resolve some of 
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this potential variability by using identical methods for obtaining each sputum sample 

[17]. 

Bcc are intrinsically resistant to multiple antibiotics including β-lactams, 

aminoglycosides, and fluoroquinolones [18].  Acquisition of resistance to one of the few 

antibiotics known to be effective against Bcc such as ceftazidime is suggested to arise 

from antibiotic stress, however, the exact mechanism has yet to be elucidated [2, 19].  

Our observation of no recognizable pattern of resistance to TMP-SMZ or minocycline 

associated with the ceftazidime-resistant B. multivorans strain suggests resistance is not 

due to a typical multi-drug resistant mechanism as seen in previous Bcc studies [20].  A 

statistically significant decrease in abundance of B. multivorans, but not of total bacteria, 

caused by non-ceftazidime antibiotics for the first three exacerbations (Figure 2) suggests 

that acquisition of resistance affected the response of B. multivorans to treatment with 

more than ceftazidime and a measurable change in the phenotype.   

Documentation of the acquisition of a change in phenotype in a given strain 

requires confirming the identity of the isolates and that those collected over time are 

clonal.  We were able to identify each isolate to the species level by aligning the V1-V3 

region of the 16S rRNA gene to a B. multivorans reference genome and the recA locus to 

the PubMLST database.  Each MLST locus, included recA, matched an allele that only 

corresponded to a B. multivorans isolate in the PubMLST database.  The comparison of 

MLST loci along with the 99% similarity of the 16S rRNA gene sequence of the isolates 

to the B. multivorans ATCC 17616 reference genome indicates all of the isolates are of 

the same species.  We characterized the allelic profile of six genes used for MLST 

analysis in each of the sequential isolates collected during the 26-month period and found 
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a near match to three sequence types (ST), including 198, 417, and 659.  A near match 

for clonal complex 198 was identified, based on the ST for each isolate, suggesting all 

isolates are clonal.  Through MLST analysis, we were able to determine that ceftazidime 

resistance is likely due to in vivo acquisition of resistance.  

We have shown that acquisition of antibiotic resistance can lead to decreased 

reduction in the abundance of B. multivorans during subsequent antibiotic treatment for 

exacerbations.  While there is low expectation of eradicating pathogens in CF due to 

complex issues surrounding treatment of persistent bacterial infections, identifying the 

emergence of resistant strains impacts treatment options.   
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Figure 4.1.  Total bacterial abundance, Burkholderia-specific abundance, and percent 

of ceftazidime-resistant B. multivorans colonies measured from sputum samples.  

DNA isolated from sputum samples as described in the methods, was subjected to 

qPCR using Burkholderia cepacia complex-specific 16S rDNA primers (9).  The 

abundance values, expressed as copy number, represent the averages of the three 

replicates.  The dates of the study period are given.  During the 2-week 

hospitalization, the patient was treated with 300(mg) inhaled tobramycin twice per 

day, 750(mg) of oral ciprofloxacin twice per day, 2(g) intravenous injection of 

ceftazidime three times per day, 100(mg) oral minocycline once per day, and 

500(mg) oral azithromycin for two days while in the hospital and then sent home to 

continue intravenous treatment for 10 additional days.  After 18 days, ciprofloxacin 

and minocycline were discontinued following the relief of symptoms. 
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Figure 4.2. Effect of antibiotics on abundance of B. multivorans in sputum samples 

before and after treatment.  Antibiotics given prior to the acquisition of the ceftazidime-

resistant strain (A) caused a significant decrease (P = .01 by Student’s t-test) in 

abundance during treatment for an exacerbation (three exacerbations spanning the 

following dates: 3/13/09-4/09/09; 6/23/09-6/26/09; 11/05/09-11/30/09).  Antibiotics 

given to treat an exacerbation that occurred after the acquisition of the ceftazidime-

resistant strain (B) showed no significant change (P = .63 by Student’s t-test) in 

abundance during treatment for an exacerbation (four exacerbations spanning the 

following dates: 1/04/10-1/22/10; 4/12/10-4/18/10; 7/09/10-7/25/10; 3/03/11-3/16/11). 
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CHAPTER 5:  ANALYSIS OF CHANGES IN DIVERSITY AND ABUNDANCE OF 

THE MICROBIAL COMMUNITY IN A CYSTIC FIBROSIS PATIENT OVER A 

MULTI-YEAR PERIOD 

 

 

1.  Introduction 

 

Chronic airway infections are the leading cause of death in the majority of those 

with Cystic Fibrosis (CF) [1].  Acute bacterial infections are the major cause for 

pulmonary exacerbations (PE) [2, 3].  The frequency of PEs has been connected to 

mortality and may result in permanent lung function impairment [2].  Early intervention 

could reduce the length and severity of a PE; however, attempts at developing tools to 

predict a PE have been met with limited success [4, 5]. 

DNA-based techniques developed in the past 15 years have shown a diverse 

community of microbes exists in the CF airways leading to reclassification of infections 

in CF as polymicrobial [6].  These culture-independent studies have caused a paradigm 

shift away from treating CF lung infections as being caused by a single-agent towards a 

focus on multiple species.  If bacteria are involved in eliciting a PE, then bacterial 

population changes could be used as an early indicator of a PE [5].  Identifying such 

changes to the microbial community that precede PE onset requires continuous samples 

from multiple patients since a single sputum sample can only provide a snapshot of the 

community profile at any given time [7, 8]. 

Combining T-RFLP and weekly sampling of 12 patients over a 12-month period, 

Daniels et al. were able to show that mean taxa richness decreases in response to 
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antibiotic treatment using sputum samples obtained up to four weeks bracketing the start 

of treatment for a PE [9].  Daniels et al. used quantitative PCR (qPCR) and the same set 

of patients and samples in another study and showed that bacterial density does not 

change in one to three weeks prior to the onset of a PE [8].  Data from the Cystic Fibrosis 

Foundation Patient Registry shows the changes in the percent of dominant pathogens that 

occur as an individual with CF becomes an adult [3].  While Staphylococcus aureus and 

Haemophilus influenza dominate in early childhood, their abundance slowly decreases as 

their prevalence is replaced by Pseudomonas aeruginosa.  Little change in the abundance 

of the dominant pathogens appears to occur even with the use of antibiotics which 

indicates that once established the primary pathogens remain dominant in the lungs.  Our 

long-term study was designed to determine if changes in bacterial diversity and 

abundance prior to the onset of antibiotic treatment or a PE could be observed within the 

preceding week and if next generation sequencing could reveal population changes 

undetected in previous studies.   

We hypothesized that quantitative analysis of bacterial DNA in sputum samples 

would reveal changes in abundance of all bacteria, Pseudomonas spp. and members of 

the Burkholderia cepacia complex (Bcc), including an increase within 30 priors to a PE, 

a decrease during antibiotic treatment, and increase to baseline within 30 days after a PE.  

We also hypothesized that sequencing the bacterial DNA in frequently collected sputum 

samples would reveal taxa which contribute to onset of a PE by identifying changes in 

their relative abundance prior to, during treatment of, and after the PE. 

We used Illumina sequencing and qPCR to examine changes in the microbial 

community diversity and abundance of all bacteria, Pseudomonas, and Bcc in sputum 
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samples collected from a 30-year old CF patient at least once a week over a three year 

period that included nine PEs.  Our study is the first to demonstrate a stable microbial 

diversity coupled with a gradual change in abundance of all bacteria, Pseudomonas, and 

Bcc during a long-term sampling period.  Monitoring these changes to individual taxa as 

well as total bacteria allowed us to determine how different pathogens change over time 

and respond to antibiotic therapy 

2.  Methods and Materials 

2.1 Patient Characteristics  

The 30-yr-old adult male subject, diagnosed with CF at two weeks of age, 

voluntarily participated in this study.  His treatment regimen during the study included 

oral enzymes for CF-related malabsorption, along with various antibiotics (Table S1) for 

PEs.  The subject has a heterozygous deltaF508/unknown CFTR genotype and no other 

CF-associated complications.  The FEV1 (forced expiratory volume in one second) 

values measured during clinic appointments over the course of the study were 

consistently <30% which is indicative of advanced stage lung disease. 

2.2 Samples 

Expectorated sputum samples were obtained with from our CF patient twice 

weekly for a period of almost three years (IRB Protocol Approval # 11-12-36).   Samples 

were collected each morning by the patient expectorating sputum into a 15 mL Falcon 

tube, placed on ice during transport to the lab and then stored at -80°C until use.  Samples 

were chosen for analysis based on the day of collection nearest a PE. 
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2.3 Sputum Homogenization, Viable Cell Selection, and DNA Extraction 

Each sputum sample was mixed with a 1:3 ratio of sputum to a 0.1% dithiothreitol 

solution and incubated at 37°C for one hour followed by mechanical homogenization for 

one minute at 7,000 rpm using a high-performance disperser (IKA ULTRA-TURRAX
®

 

T-25 digital, Staufen /Germany).  Propidium monoazide (Biotium, Hayward, CA) was 

then added to a final concentration of 50 µmol/mL, and DNA-cross linking was induced 

using a 400-watt halogen light source [10].  DNA was extracted using the IT 1-2-3 VIBE 

Sample Purification Kit (Idaho Technologies, Salt Lake City, UT) and its concentration 

determined using a NanoDrop 2000 spectrophotometer (Thermo Scientific, Wilmington, 

DE).  All extracted DNA was immediately stored at -20ºC until its use for quantitative 

polymerase chain reaction (qPCR). 

2.4  Abundance of All Bacteria, Pseudomonas, and Burkholderia in Sputum 

The qPCR mixture contained 10 µL Perfecta SYBR Green FastMix Reagent Low 

ROX (Quanta Biosciences, Gaithersburg, MD), .5 µL of 100 pmole/µL of each primer, 5 

µL of DNA, and 4 µL of nuclease-free water to a final volume of 20 µL.  Universal 

primers [11] were used to target a 16S rDNA fragment of 466bp and measure the 

abundance of all bacteria in the sample.  Bcc-specific primers [12] and Pseudomonas-

specific primers [13] were used to target each genus and generate a fragment of 333bp 

and 93 bp, respectively.  qPCR was performed using the ABI 7500 Fast Real-Time PCR 

System (Applied Biosystems, Carlsbad, CA) with an initial step of 10 min at 95°C, then 

40 cycles of 15 sec at 95°C and 1 min at 60°C.  Melting curves were determined 

following the qPCR by 1 cycle of 15 sec at 95°C, 1 min at 60°C, 30 sec at 95°C and 15 

sec at 60°C.  Standard curves were created for each primer pair using 10-fold dilutions of 
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amplicons generated using an E. coli strain as the DNA template for the 16S rDNA 

primers, Pseudomonas aeruginosa for the Pseudomonas-specific primers, and 

Burkholderia multivorans for the Bcc-specific primers.  DNA copy number per gram of 

sputum was calculated for each sample based on a standard curve with a 1x10
5
 fold linear 

range in CT values. 

2.5 Illumina Sequencing Library Preparation 

 Samples were prepared for 16S rRNA gene Illumina sequencing targeting the V6 

hypervariable region with a two-stage PCR strategy.  Samples were PCR amplified in the 

first stage using primers that included barcodes in both the forward and reverse 

oligonucleotides for sample identification in a multiplex fashion.  A secondary stage of 

PCR utilized a set of primers that overlapped the 5’ ends of the first set of primers, and 

added bases complementary to the Illumina flow cell adapters for sequencing (Table S2). 

Thermalcycling conditions were as follows: An initial denaturation step at 94°C for 3 

minutes was followed by a touchdown protocol beginning at 94°C for 45 seconds; 61°C 

for 45 seconds with 1°C drop each cycle for a total of 5 cycles; an additional 15 cycles at 

51°C for 45 seconds; 72°C for 45 seconds and a final elongation at 72°C for 2 minutes.  

Fifteen μl of the first PCR products were utilized in the second stage of PCR.   The 

second PCR consisted of one denaturation step of 94°C for 3 min; 15 cycles at 94°C for 

45 seconds; 65°C for 45 seconds; 72°C for 45 seconds and a final extension step at 72°C 

for 2 minutes. 

PCR fragments were visualized on a gel, quantitated on a NanoDrop ND-3300 

(Thermo Scientific, Wilmington, DE) using PicoGreen
®

 to determine the concentration of 

dsDNA and pooled in equimolar amounts for sequencing. 
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2.6  Sequence Mapping/Assembly 

Illumina HiSeq2000 technology was used to sequence the 112 samples for this 

study.  Raw paired-end sequences were processed as described previously [14] except 

that we required a minimum of 70 continuous matching nucleotides across the length of 

the ungapped alignment to produce each merged sequence.  A total of 85,048,458 

sequences with an average length of ~ 75 bases met our merging and extending criteria 

and those were fed into the program AbundantOTU+ v.0.93b 

(http://omics.informatics.indiana.edu/AbundantOTU/otu+.php) with the “-abundantonly” 

option.  AbundantOTU+ clustered those sequences into 182 Operational Taxonomic 

Units (OTUs), incorporating 84,721,799 (99.62%) of all the merged sequences.  The 

sequences that were not incorporated into an OTU were excluded from further analyses.  

For the purpose of detecting chimeric OTUs, we used UCHIME 

(http://www.drive5.com/uchime/) in conjunction with the Gold reference database; 

UCHIME did not report any chimeras in the 182 OTUs.  

Taxonomic classification was achieved by first aligning the OTU sequences to the 

Silva database (release 108, http://www.arb-silva.de/) using BLASTn v. 2.2.26+ with an 

expectation value of e
-5

.  Then, the standalone version of the RDP classifier [15] v. 2.5 

was used to classify the full-length Silva sequences with the best BLASTn match to the 

OTU sequence requiring an RDP confidence score ≥ 80%.  This was done to compensate 

for the short read length of the generated OTUs.  Raw counts for each OTU were 

normalized and log transformed according to the following equation: 
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and Principle Co-ordinate Analysis (PCoA) was done through mothur v.1.25.0 using 

Bray-Curtis dissimilarity matrix generated from the log normalized counts. 

3.  Results 

3.1  Bacterial Abundance Measures 

Quantitative PCR was used to measure the abundance of all bacteria and two 

targeted bacteria in the sputum samples.  The total bacterial abundance was measured in 

each sample using universal primers and SYBR green chemistry to target the sequence 

spanning the V3-V4 region of the 16S rRNA gene.  From the 130 samples we examined 

over the three year period, we found no pattern of short-term changes prior to or after the 

occurrence of an exacerbation.  Using a linear regression model, a positive relationship (p 

< .001) was found between time and the abundance all bacteria, Pseudomonas and Bcc 

(Figure 1) which coincides with our visual observation of the data that the abundance of 

bacteria increases over time.   

We used statistical modeling to test our hypothesis that a change in abundance 

occurs during antibiotic treatment for PE.  Using the R programming language, we 

factored each category of samples into four levels according to the treatment status at the 

time of collection, samples collected ≤ 30 days prior to antibiotic treatment for a PE were 

categorized as “Before Treatment”, samples collected during antibiotic treatment for a PE 

were categorized as “Treatment”, samples collected ≤ 30 days after antibiotic treatment 
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for a PE were categorized as “Recovery”, and all other samples were categorized as 

“Stable”.   

We observed a reduction in the abundance of all bacteria, which was not 

significant, when samples collected during “Treatment” (p = 0.0522) were compared to 

those samples collected during the “Stable” category.  An increase in the abundance of all 

bacteria was observed when the “Stable” samples were compared to the “Before 

Treatment” (0.1781) and “Recovery” (p = 0.2125) samples (Figure 1A).  A significant 

decrease in the abundance of Pseudomonas was measured when samples collected during 

“Treatment” were compared to those collected during the “Stable” (p = 0.00020), “Before 

Treatment” (p = 0.00163), and “Recovery” (p = 0.00279) periods (Figure 1B).  When 

compared to “Stable”, the abundance of Bcc showed a significant increase in samples 

collected “Before Treatment” (p = 0.00598) and during “Recovery” (p = 0.00101) 

(Figure 1C).  Little difference was seen in the abundance of Bcc in samples collected 

during “Treatment” (p = 0.30715) when compared to samples collected during the 

“Stable” category (Figure 1C).  

To compare the change in abundance of the primary pathogens over time, we 

compared the abundance of Pseudomonas and Bcc to the abundance of all bacteria in the 

sputum samples.  We observed a greater increase in abundance of Bcc as the abundance 

of all bacteria increased when compared to the change in abundance of Pseudomonas 

(Figure 2).     

3.2  Bacterial Diversity Measures 

 We analyzed the diversity and richness of the microbial community across 72 of 

the sputum samples that were collected.  We classified the sequencing reads to the genus 
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level with at least 80% RDP classification confidence.  Out of the more than 84 million 

sequences, Pseudomonas, a typical CF pathogen, was the dominant genus representing 

greater than 90% of all sequences.  Two other typical CF pathogens, Burkholderia and 

Streptococcus, were similar in abundance and made up approximately 6% of all 

sequences.  The remaining sequences were mostly non-typical CF-associated bacteria 

[16] and classified as either Veillonella, Rothia, Fructobacillus, each of which consisted 

of ≥2% of all sequences, or other less prevalent genera, consisting of <1% of all 

sequences.   

 The microbial profiles of the individual sputum samples showed little variability 

across the study period (Figure 3).  No pattern of change in relative abundance of the top 

nine most abundant genera was observed surrounding the occurrence of a PE.  

Pseudomonas was the most abundant genus and showed little change in relative 

abundance in the majority of the sputum samples.  An increase in relative abundance of 

Burkholderia, Streptococcus, or Rothia was observed only those samples in which the 

relative abundance of Pseudomonas showed a short-term decrease (Figure 3A).  The 

lesser abundant genera also varied little over time (Figure 3B). 

 No pattern of bacterial diversity was observed over time or surrounding the 

occurrence of a PE (Figure 4B).  Shannon diversity ranged from 0.068 to 2.44 with no 

significant difference measured in samples collected during any one of the treatment 

status categories.  A decrease in bacterial richness was observed and found to be 

significantly correlated with time (p < .01).  The decrease in richness was highly 

significant when samples collected during “Treatment” (p = 0.0001) were compared to 

those samples collected during the “Stable” category.  A significant decrease in bacterial 
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richness was measured when the “Stable” samples were compared to the “Recovery” 

(0.036053) samples with only a moderate decrease in richness in the “Before Treatment” 

(p = 0.136562) samples (Figure 4A). 

4.  Discussion 

In this study of a single CF patient, we collected sputum samples twice weekly 

over a three year period.  Our patient experienced nine PEs which required antibiotic 

intervention.  Each PE was diagnosed by a CF specialty pulmonologist at an adult CF 

clinic.  The focus of our analysis was on sputum samples collected before, during, and 

after treatment for a PE.  For comparison, we also included samples collected during 

periods of stability, the time during which no antibiotics were taken within 30 days 

before or after of the occurrence of a PE.   

Our goal was to determine if examining the changes in abundance may allow for 

prediction of an oncoming PE.  While other studies have examined the use of biomarkers 

to aid in prediction of a PE and the progression of lung disease in CF [5, 17], our study 

was based upon the assumption that a PE is caused by a detectable shift in the bacterial 

community within 30 days preceding the PE.  Testing this assumption required a 

longitudinal study to reveal the relationship between disease progression, occurrence of a 

PE, and the change in diversity or abundance in the microbial community [18].  We 

hypothesized that if a bacteria-derived biomarker can be identified, antibiotic treatment 

can be initiated early in the course of a PE and reduce the symptoms which would 

otherwise cause permanent damage to the lungs and permanent loss of lung function. 

Cross-sectional studies have demonstrated the diversity of the microbiota in the lungs of 

CF patients, but the time of collection between samples, which can be more than three 
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months, does not reveal potential short-term changes which may cause a PE [19].  

Frequent patient sampling, or collecting multiple samples in a single month, becomes 

necessary since the length of time between changes in the bacterial factors associated 

with PE onset is unknown [20].  For this reason, we analyzed 130 sputum samples from a 

single patient over the three year period.   

4.1  Change in Bacterial Abundance Over Time 

No short-term changes in the absolute abundance of total bacteria, Pseudomonas, 

or Bcc occurred which would suggest a change in any of these factors initiated a PE.  

This finding is consistent with that of Stressman et al. who found no evidence of changes 

in bacterial density in sputum samples obtained 21, 14, and 7 days prior to the occurrence 

of a PE [9].  However, due to our extended sampling period, we were able to examine 

multiple samples spanning nine PEs and sample collected fewer than 7 days prior to a PE.  

Using this sampling frequency, we were able to capture multiple samples per PE and 

group them into categories relative to the occurrence of a PE.  Although no change could 

be used to predict onset of a PE, our strategy revealed moderate changes that occur in 

absolute abundance of all bacteria before, during, and after a PE.  Using the samples 

collected during the “Stable” period as a baseline for absolute abundance, total bacterial 

numbers increased prior to a PE, decreased during treatment, and then quickly recovered 

within 30 days following a PE.  While we observed no statistically significant change in 

total bacterial abundance for any of the treatment categories, we did observe significant 

changes relative to the occurrence of a PE for Pseudomonas and Bcc.  For Pseudomonas, 

the abundance seen during the “Treatment” period was significantly lower than the 

abundance in any of the other treatment status categories.  This decrease indicates 
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antibiotic treatment is having an effect on reducing the bacterial load of Pseudomonas but 

does not indicate the effect on bacteria other than Pseudomonas.  However, this effect 

may be due to the increased efficacy of antibiotics given to target the most abundant 

pathogen, Pseudomonas, and potentially decreased efficacy against other bacteria present 

in the samples.  For example, the other most abundant pathogen measured in our samples, 

Bcc, showed a significant increase in abundance before and after a PE when compared to 

“Stable” and little difference in abundance during “Treatment”.  Based on the lack of a 

significant decrease in abundance of Bcc in samples collected during “Treatment” 

compared to “Stable”, antibiotic treatment appears to have less of an effect on this 

bacterium which may be due to increased antibiotic resistance (see Chapter 4) or other 

unidentified factors. 

The percent of Pseudomonas in each of the sputum samples using qPCR could 

not be determined.  In some samples, we unexpectedly observed a higher copy number of 

Pseudomonas than the copy number using primers to target the 16S gene.  We speculate 

there may be a difference in the efficiency of these two reactions due to a difference in 

amplicon size or to stochastic effects generated by primers targeting different regions of 

genomic DNA.  For the purpose of our study, we could use both data sets since separate 

standards were generated for each primer set using the same genomic DNA for each 

reaction.   

4.2  Change in Bacterial Diversity and Richness Over Time 

A barcoded strategy for Illumina sequencing was used to determine the change in 

bacterial diversity and bacterial richness in a subset of the sputum samples collected 

during our study.  Next generation sequencing has previously shown that little change in 
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diversity occurs over time in sputum samples collected from CF patients.  A decade-long 

bacterial diversity study by Zhao et al. examined the diversity in sputum samples 

collected from six CF patients, three with moderate lung disease and three with advanced 

lung disease.  Similar to our results, they detected no change in diversity between 

samples collected during periods of stability and periods before and after antibiotic 

treatment [18].  The authors did detect a significant decrease in diversity during antibiotic 

treatment which was not observed in samples collected from our patient.  Similar to their 

conclusions and based on a lack of significant change in diversity between samples 

collected during our defined treatment categories; we determined that changes in 

diversity are unlikely to be involved in the occurrence of a PE. 

  Our observation of changes in bacterial richness over time and during treatment 

indicates that specific bacteria may be involved in initiating a PE (Table 1).  Compared to 

“Stable”, we observed a decreased richness in the samples collected prior to and after 

antibiotic treatment.  A further decrease in richness, which was significant, was seen 

during antibiotic treatment.  We were not surprised to see a decrease in richness during 

treatment since other studies have reported the same results from serially collected 

sputum samples [20].  A study by Daniels et al. suggested an inverse relationship 

between the mean relative abundance of Pseudomonas and bacterial richness during 

antibiotic treatment.  Our qPCR results did not reflect that inverse relationship since we 

showed a significant decrease in both the absolute abundance of Pseudomonas and 

bacterial richness.  This result along with the qPCR result above that indicates antibiotics 

are having an effect on Pseudomonas and an effect on the less abundant taxa, but to what 

degree is unknown.  Antibiotics have been previously shown to have a greater effect on 



 

64 

 

 

other CF-associated bacteria than on Pseudomonas, which is likely attributed to the 

phenotypic diversity and increased antibiotic tolerance of Pseudomonas strains from the 

chronic CF infections [21]. 

Observing stability in the relative abundance of the bacterial community has been 

shown before with sputum samples collected over time from CF patients [22].  Similar to 

diversity in our samples, we detected little change in relative abundance over time.  Our 

findings on diversity and relative abundance in a CF patient are similar to those seen by 

Goddard et al. in lung explants from CF subjects undergoing lung transplantation [22].  In 

the Goddard study, the lungs were dominated by few CF-associated pathogens including 

P. aeruginosa, B. cepacia, and Achromobacter xylosoxidans.  That study also examined 

throat and sputum samples from patients collected just prior to transplantation and found 

a high discordance between the throat and lung explant samples.  And while the sputum 

samples that were obtained did identify the dominant pathogen identified in the lung 

explant; a mixture of other, non-typical pathogens were also identified.  These results and 

the results from a 2012 study by Fodor et al. using mouthwash samples, suggest normal 

oral flora may contaminate sputum samples to a degree in which their detection may be 

misinterpreted as part of the low abundant microbiota in the CF lung [23].  While we 

recognize the potential influence the oral microbiota may have on the changes in 

diversity, relative abundance, and richness in our sputum samples, the degree to which 

they are affected has not been fully determined.  However, we must note that sputum is 

an accepted method for pulmonary sampling [24].  

Ours is the first study to examine the diversity and abundance of bacteria in 

frequently collected sputum samples from a single CF patient over a multi-year period.  
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While we recognize the statistical limitations of using a single patient, we were able to 

identify changes over time which have yet to be documented in other quantitative and 

metagenomic studies of the CF lung microbiota.   Our use of genus-specific primers 

along with qPCR to target both Pseudomonas and Bcc in sputum revealed a significant, 

positive relationship over time.  Clinical measurements of lung function over this time 

period did not indicate a rapid decline in lung function.  Perhaps the use of antibiotics, 

which had a significant effect on reducing the bacterial load of Pseudomonas, helped to 

maintain a relatively stable health condition.  Interestingly, the abundance of 

Pseudomonas appeared to “level off” during the second half of our sampling period thus 

reaching a virtual threshold of abundance.  The use of antibiotics, however, did not 

appear to affect the persistent increase in Bcc which may also be driving the onset of a 

PE.  Because of the seemingly rapid changes in abundance between samples, we may not 

have observed this long-term change had we not chosen to collect sputum samples twice-

weekly from the same patient.  Based on the qPCR results alone, we can speculate that 

given enough time, Bcc might become the dominant pathogen, especially if the recovery 

of Bcc after antibiotic treatment is more rapid than that of Pseudomonas.   
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Figure 5.1.  Variation in 

abundance of (A) all 

bacteria, (B) Pseudomonas, 

and (C) Bcc in sputum 

samples collected over a 35-

month period during which 

nine exacerbations occurred.  

Treatment was considered to 

be during or within 48 hours 

of termination of antibiotics 

given to treat an 

exacerbation.  Time points 

are plotted as  “Before 

Treatment” (≤ 30 days before 

an exacerbation);  

“Treatment” (samples 

collected during and within 

48 hours of termination of 

treatment);  “Recovery” (≤ 

30 days after an 

exacerbation); and  

“Stable” (> 30 days prior to 

or after an exacerbation).  

Universal primers targeting 

the 16S rRNA gene, 

Pseudomonas-specific 

primers, and Burkholderia-

specific primers were used to 

measure abundance which is 

expressed as log10 DNA copy 

number per gram of sputum 

(y-axis) over the collection 

period (x-axis). 
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Figure 5.2.  Comparison of the absolute abundance of primary pathogens,  

 Pseudomonas and  Bcc, to the abundance all bacteria.  The abundance of both, 

Pseudomonas and Bcc, have a highly significant relationship (p < .0001) with an increase 

in the abundance of all bacteria. 
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Figure 5.3.  Relative abundance of taxa classified to the genus level.  The top nine most 

abundant genera are shown (  Pseudomonas,  Burkholderia,  Streptococcus,  Rothia, 

 Veillonella,  Fructobacillus,  uncultured bacterium,  Haemophilus, and  

Prevotella).  The relative abundances of all other genera, each representing <1% of the 

community, are grouped in the “  Other” category.  The colored bars represent the 

proportion of (unlogged (A), log10 (B)) reads mapped to each genus. 
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Figure 5.4. The change in bacterial richness (A) and bacterial diversity (B) from 72 

sputum samples are shown over time.  Time points are plotted as  “Before Treatment” 

(≤ 30 days before an exacerbation);  “Treatment” (samples collected during and within 

48 hours of termination of treatment);  “Recovery” (≤ 30 days after an exacerbation); 

and  “Stable” (> 30 days prior to or after an exacerbation) 
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Table 5.1

List of taxa classified to the genus level which significantly decreased or increased in relative abundance over time.  

Genus Adjusted 

p-value
1

Original 

p-value

Slope Intercept Correlation 

coefficient

Percent of total 

sequences

Enhydrobacter 1.15E-07 7.68E-10 0.000877 -0.0998 0.44 0.024%

uncultured bacterium 1.22E-04 4.08E-06 -0.000660 1.1392 0.30 0.151%

Moryella 1.22E-04 2.05E-06 -0.000823 0.4934 0.31 0.043%

uncultured bacterium 1.22E-04 4.08E-06 -0.000660 1.1392 0.30 0.018%

uncultured bacterium 1.22E-04 4.08E-06 -0.000660 1.1392 0.30 0.006%

Fructobacillus 4.59E-04 1.83E-05 -0.000781 1.4114 0.26 0.233%

Oribacterium 1.07E-03 1.00E-04 0.000747 -0.0073 0.22 0.038%

Bacillus 1.07E-03 8.76E-05 -0.000509 0.8137 0.23 0.034%

Bacillus 1.07E-03 8.76E-05 -0.000509 0.8137 0.23 0.011%

Bacillus 1.07E-03 8.76E-05 -0.000509 0.8137 0.23 0.004%

Bacillus 1.07E-03 8.76E-05 -0.000509 0.8137 0.23 0.003%

Capnocytophaga 3.43E-03 3.43E-04 -0.000270 0.2092 0.23 0.004%

Deinococcus 2.45E-02 2.78E-03 -0.000275 0.2639 0.19 0.007%

Haemophilus 2.68E-02 3.22E-03 -0.000601 0.4822 0.21 0.131%

Escherichia-Shigella 4.50E-02 6.00E-03 -0.000230 0.3404 0.14 0.023%

uncultured Intrasporangiaceae bacterium 5.90E-02 8.26E-03 -0.000367 0.6620 0.12 0.047%
1  Adjusted to a normal distribution using the Benjamini-hochberg method
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Table 5.2. Antibiotic schedule for each PE 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Antibiotic 

Category
Antibiotic

Ciprofloxacin

Bactrim

Minocycline

I.V. Ceftazidime

Exacerbation 8 9

Sampling Period

3 4 5 6 7

Oral

1 2
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Table 5.3. Illumina primer sequences     

  Sequencing primer Barcode Amplification primer 

Forward       

1 ACACTCTTTCCCTACACGACGCTCTTCCGATCT ATAGCG  CAACGCGARGAACCTTACC 

2 ACACTCTTTCCCTACACGACGCTCTTCCGATCT AGGGT  CAACGCGARGAACCTTACC 

3 ACACTCTTTCCCTACACGACGCTCTTCCGATCT TTCAT  CAACGCGARGAACCTTACC 

4 ACACTCTTTCCCTACACGACGCTCTTCCGATCT GATCGT  CAACGCGARGAACCTTACC 

5 ACACTCTTTCCCTACACGACGCTCTTCCGATCT GCCCGT  CAACGCGARGAACCTTACC 

6 ACACTCTTTCCCTACACGACGCTCTTCCGATCT CTGTC  CAACGCGARGAACCTTACC 

7 ACACTCTTTCCCTACACGACGCTCTTCCGATCT CACGT  CAACGCGARGAACCTTACC 

8 ACACTCTTTCCCTACACGACGCTCTTCCGATCT CGTACG  CAACGCGARGAACCTTACC 

9 ACACTCTTTCCCTACACGACGCTCTTCCGATCT GGAC  CAACGCGARGAACCTTACC 

10 ACACTCTTTCCCTACACGACGCTCTTCCGATCT TAGA  CAACGCGARGAACCTTACC 

11 ACACTCTTTCCCTACACGACGCTCTTCCGATCT TCAT  CAACGCGARGAACCTTACC 

12 ACACTCTTTCCCTACACGACGCTCTTCCGATCT ACTT  CAACGCGARGAACCTTACC 

Reverse       

1 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT ATAGCG  ACAACACGAGCTGACGAC 

2 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT AGGGT  ACAACACGAGCTGACGAC 

3 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT TTCAT  ACAACACGAGCTGACGAC 

4 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT GATCGT  ACAACACGAGCTGACGAC 

5 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT GCCCGT  ACAACACGAGCTGACGAC 

6 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT CTGTC  ACAACACGAGCTGACGAC 

7 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT CACGT  ACAACACGAGCTGACGAC 

8 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT CGTACG  ACAACACGAGCTGACGAC 

9 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT GGAC  ACAACACGAGCTGACGAC 

10 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT TAGA  ACAACACGAGCTGACGAC 

11 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT TCAT  ACAACACGAGCTGACGAC 

12 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT ACTT  ACAACACGAGCTGACGAC 
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CHAPTER 6: ILLUMINA SEQUENCING ANALYSIS IS ENHANCED WITH 

QUANTITATIVE PCR WHEN EXAMINING CHANGES IN ABUNDANCE OVER 

TIME OF BACTERIA IN A CYSTIC FIBROSIS PATIENT 

 

 

1.  Introduction 

DNA-based analyses of microbial communities from environmental samples have 

expanded our knowledge of the known number of bacteria in the environment.  High-

throughput sequencing (HTS) is a tool that is now used to examine microbial 

communities from various environment samples such as those associated with the Human 

Microbiome Project (HMP).  This technology has also been used to examine bacterial 

infections associated with chronic diseases such as Cystic Fibrosis (CF).  Bacterial 

infections in CF were once thought to be limited to few bacterial species but with the 

development of DNA-based sequencing analyses, an increasing number of taxa have 

been shown to inhabit the lungs and contribute to the progression of lung disease.   

While metagenomic studies of mixed microbial communities have revealed taxa 

not previously associated with a particular environment [1], they are limited in 

quantifying relationships between organisms.  As stated by Faust et al., “Since microbial 

counts are not known and measurements depend on sampling and sequencing depth, an 

increase in one relative abundance must be accompanied by a compositional decrease in 

another…” [2].  In Cystic Fibrosis, this limitation is more pronounced due to the typical 

dominance of one or two pathogens, which in adults with CF, is often Pseudomonas 

aeruginosa.  Also, since PCR is often performed during library prep for HTS platforms 
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such as 454-FLX pyrosequencing and Illumina, the amount of DNA input is at best semi-

quantitative and may be saturated towards the PCR reaction endpoint by the dominant 

organism [3, 4]. 

A quantitative analysis such as quantitative PCR (qPCR) can be performed to 

obtain absolute abundance measurements of these microbial communities.  qPCR is a 

real-time quantitative assay which can be used to target one or more organisms in the 

microbial environment.  Universal primers, targeting the 16S rRNA gene, have been 

previously used to determine the bacterial load in sputum samples [5].  Genus-specific 

primers can also be used to measure the abundance of a particular bacterium such as P. 

aeruginosa in the lungs of CF patients [5, 6].   

The focus of many recent studies examining the microbial environment in CF has 

included using HTS to identify the organisms present and qPCR to quantify the total 

bacterial load [7-9].  These studies examine sputum samples collected from patients at 

various time points which provide a snapshot of microbial community composition and 

abundance.  Few studies have used these methods in parallel to monitor the changes in 

the microbial community over time or in response to antibiotics.  Using the same patient 

cohort, Stressman et al. and Daniels et al. used qPCR and T-RFLP to examine changes in 

the absolute abundance, relative abundance, and richness of both, all bacteria and of P. 

aeruginosa prior to an exacerbation [5, 6].  A significant increase the relative abundance 

of P. aeruginosa along with a significant decrease in taxa richness was observed during 

treatment when compared to the no treatment time periods [6].  However, no significant 

change in absolute abundance was observed prior to or after antibiotic treatment.   A 

decade-long study of six individuals, with varying stages of lung disease, by Zhao et al, 
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used pyrosequencing and qPCR to show that while diversity decreases in CF over time, 

the total bacterial abundance remains stable [7].  Each of these studies provides an 

example of the advantage of using quantitative and sequencing analysis to characterize 

changes in the microbial community in CF.   

Our study followed a single, adult CF patient over three years while collecting 

sputum samples twice weekly.  The aim of our study was to examine long-term changes 

in the microbial community over time and in response to antibiotics used to treat 

pulmonary exacerbations, which are periods of acute illness marked by an increase in 

signs or symptoms of the disease.  As part of the study, we used genus-specific primers 

and qPCR to measure the absolute abundance of P. aeruginosa and Burkholderia 

multivorans.  We also used a bar-coded Illumina sequencing strategy to examine the 

changes in relative abundance of P. aeruginosa and B. multivorans.  Using both methods 

on the same set of samples, we were able to compare the computational analysis of 

sequencing data used to generate the relative abundance of each taxa with the absolute 

quantification generated through qPCR.  We found no correlation between relative 

abundance and absolute abundance of P. aeruginosa or B. multivorans.  We did, 

however, see a difference in the output from each method which would lead to a 

possibility of two logical conclusions: 1. the abundance of the primary pathogens do not 

change over time or in response to antibiotics 2. the abundance of both of the primary 

pathogens increase gradually over time and decrease significantly in abundance in 

response to antibiotic use.  Here, we highlight the differences in conclusions that may be 

drawn from each method separately and the characteristics of complex microbial 

communities that suggest when it is important to use both methods. 
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2. Methods (the same methods used here were used in Chapter 5) 

3.  Results 

3.1  Sequencing 

From the DNA sequencing data, we examined the changes in relative of 

abundance of the primary pathogens, classified as Pseudomonas and Burkholderia, for 

each of the PE categories above.  No pattern of change was measured over time, with the 

occurrence of a PE, or in response to antibiotic treatment for Pseudomonas (Figure 1A) 

or Burkholderia (Figure 1B).  The difference in relative abundance of Pseudomonas was 

not significant at any one point with a range of 2.99 to 6.67 log10 sequences.  We 

observed similar results for the difference in relative abundance of Burkholderia which 

had a range of 0 to 5.57 log10 sequences. 

3.2  qPCR 

A significant decrease in the abundance of Pseudomonas was measured when we 

compared the samples collected during “Treatment” to those collected during the 

“Stable” (p = 0.00020), “Before Treatment” (p = 0.00163), and “Recovery” (p = 0.00279) 

periods (Figure 2A).   

When compared to “Stable”, the abundance of Burkholderia showed a significant 

increase in samples collected “Before Treatment” (p = 0.00598) and during “Recovery” 

(p = 0.00101) (Figure 2B).  Little difference was seen in the abundance of Burkholderia 

in samples collected during “Treatment” (p = 0.30715) when compared to samples 

collected during the “Stable” category (Figure 2B). 
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3.3  Sequencing and qPCR 

Using a linear regression model, we compared the relative abundance from 

Illumina sequencing and the absolute abundance from qPCR within each time point for 

both Pseudomonas and Burkholderia (Figure 3).  No significant relationship was 

observed for Pseudomonas within any of the time periods.  For Burkholderia, we 

observed a significant relationship in those time points collected during the “Recovery” 

and “Treatment” time periods.  

4.  Discussion 

Examining the effect of antibiotics and changes in time of bacteria in the lungs of 

CF patients is challenging due to the nature of the polymicrobial environment [10].  

Classifying bacteria from sputum using culture-dependent methods may lead to 

misidentification of bacteria such as anaerobes which have specific growth requirements 

[11].  DNA-based tools such as sequencing and qPCR have shown to be useful in both 

identifying the presence of different bacterial species and determining their abundance 

[12, 13].  Various studies have used these methods to examine spatial distribution of 

bacteria in the CF lung [14], identify changes in bacterial abundance and richness prior to 

a PE [5, 6], compare bacteria in expectorated sputum to samples of the CF lung from 

transplant patients as well as mouthwash samples [9, 15], and to characterize the changes 

in the microbial community over long-term sampling periods [7].  Each of these studies 

has used both sequencing analysis and quantitative analysis to some degree to 

characterize bacteria in the CF lung.  The limitations of each of these techniques have 

also been demonstrated within each study. 



 

78 

 

 

The study performed here combined Illumina sequencing and qPCR from 

frequently-collected sputum samples from a single CF patient.  The aim was to determine 

if the conclusions from either technique alone might change when performing both 

techniques on the same sample set.  Our method is different from previous studies 

mentioned above in that we collected samples twice weekly over a long-term period.  To 

our knowledge, no other study has combined both techniques along with our frequency of 

sampling to examine the changes in the microbiota in the CF lung over time and in 

response to antibiotic treatment for a PE. 

From our sequencing data, we observed no pattern of short-term changes or long-

term changes over time for those sequences which were identified as Pseudomonas or 

Burkholderia.  We observed the same lack of changes for both taxa in response to 

antibiotics.  This observation was surprising since our patient eventually recovered from 

a PE after treatment after being prescribed antibiotics which were either Pseudomonas-

specific or Burkholderia-specific.  Contrary to our results, Daniels et al., observed a 

significant increase in the relative abundance of Pseudomonas during antibiotic treatment 

in their patient population [6].  The authors attributed this change to a decrease in the 

non-pseudomonal species with, due the nature of sequencing analysis, increases the 

relative abundance of Pseudomonas.   

Using qPCR analysis we observed a gradual increase in absolute abundance of 

each genus over time.  This observation was not shown in our sequencing data where 

each genus appeared to remain stable over time.  With qPCR, we were also able to 

measure a significant decrease in absolute abundance in response to antibiotics.  Again, 

we were unable to make this same observation with the sequencing data.  Perhaps not 
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surprisingly, qPCR provided more insight into the short term and long-term changes of 

these individual taxa.  The regression analysis between the sequencing and qPCR data did 

not change our view of the data since no significant correlation could be measured that 

would explain the changes taking place in the microbial community.   

HTS sequencing analyses are informative of the changes or potential long-term 

effects of antibiotics but are limited to measuring changes in relative abundance of 

bacteria within the environment [16].  HTS, such as the Illumina platform, of microbial 

communities typically relies on PCR amplification of a target gene.  As a result, the 

enumeration of taxa within a sample is co-dependent on the number of reads obtained 

from sequencing and the PCR amplification which is not set to a quantitative endpoint.  

Both computational effects and biological effects can limit the output of information from 

sequencing.  Computational effects may include the necessary method of normalizing 

sequencing data between samples [17].  Biological effects include the saturation in the 

later stages of PCR especially if a dominant organism is present in the sample [4].  This 

effect makes identifying changes in the rare taxa challenging to due to the potential for 

rare taxa to be overshadowed by “saturation” of the sample from the dominant taxa.  The 

phenomenon described here is not limited to CF.  We would expect that any complex 

microbial sample that contains predominant taxa might generate sequencing saturation 

effects which could be addressed via qPCR. 

Although the issue of quantification using sequencing data is not new, this study 

demonstrates the current limitation of using sequencing alone to quantify changes in 

abundance of an individual taxa within the microbial community in Cystic Fibrosis.  

Computational methods are currently being developed to overcome the challenges of 



 

80 

 

 

quantitative analysis of taxa from sequencing data [2].   Here, we’ve demonstrated that 

metagenomic data gathered from HTS methods would benefit from the use of absolute 

quantification methods such as qPCR to provide a more descriptive analysis of changes 

in a diverse microbial environment. 
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Figure 6.1. Relative abundance of the proportion of reads from Pseudomonas (A) and 

Burkholderia (B) from 72 sputum samples.  Time points are plotted as  “Before 

Treatment” (≤ 30 days before an exacerbation);  “Treatment” (samples collected during 

and within 48 hours of termination of treatment);  “Recovery” (≤ 30 days after an 

exacerbation); and  “Stable” (> 30 days prior to or after an exacerbation) 
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Figure 6.2.  Variation in abundance of (A) P. aeruginosa and (B) B. 

multivorans in sputum samples collected over a 35-month period during 

which nine exacerbations occurred.  Treatment was considered to be during or 

within 48 hours of termination of antibiotics given to treat an exacerbation.  

Time points are plotted as  “Before Treatment” (≤ 30 days before an 

exacerbation);  “Treatment” (samples collected during and within 48 hours 

of termination of treatment);  “Recovery” (≤ 30 days after an exacerbation); 

and  “Stable” (> 30 days prior to or after an exacerbation).  Pseudomonas-

specific primers and Burkholderia-specific primers were used to measure 

abundance which is expressed as log10 DNA copy number per gram of sputum 

(y-axis) over the collection period (x-axis). 



 

83 

 

 

B

 

A

 

Figure 6.3: Comparison of the number of the log10 sequences from Illumina (y-axis) to 

the log10 copy number from qPCR (x-axis) for Pseudomonas (A) and Burkholderia (B).  

A significant relationship was found for the time points within the “Recovery” (p = .041) 

and “Treatment” (p = .024) categories in Burkholderia based on a regression analysis for 

each treatment status. No other significant relationships were observed. Time points are 

plotted as  “Before Treatment” (≤ 30 days before an exacerbation);  “Treatment” 

(samples collected during and within 48 hours of termination of treatment);  

“Recovery” (≤ 30 days after an exacerbation); and  “Stable” (> 30 days prior to or after 

an exacerbation) 
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