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ABSTRACT

ASMAA GETAN. Intermittency for Branching random walks with heavy tails.
(Under the direction of DR. BORIS VAINBERG)

Branching Markov process models populations in which each individual in gener-

ation n produces some random number of individuals in the next generation, n + 1,

according to a certain probability distribution.

Branching processes play important role in the study of the evolution of various

population plants, where members of the population may die or produce offspring

independently of the rest. They can be used to model reproduction of bacteria where

each bacteria generates several offspring with some probability in a single time unit.

And they can be used to model other systems with similar dynamics, e.g., the spread

of surnames in genealogy or the propagation of neutrons in a nuclear reactor.

In our dissertation, we consider a long time behavior for a model of branching

random walk problem of a population of particles on the d- dimensional lattice Zd.

In this model, the number of particles increases exponentially by duplicating, with

a constant rate of birth, (each particle can split into two particles), and the particles

spread everywhere by jumping to not necessary a neighbor place, (it could be a

faraway distance), under probability of jumps that is described to be, a heavy tailed

probability. Branching or jumping of each particle occurs independently of the other

particles.

Under these two conditions, (constant rate of birth and heavy tailed probability of

jumps), the front of propagation (where local growth occurs) has been found to be
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moving exponentially fast.

A well developed non-uniformity concept called intermittency, is used to investigate

the uniformity of the distribution of the particles, on, inside and outside of the front.

A random field is called intermittent, if it is distributed very non-uniformly, where

huge values can appear with a very small probability. For instance, the magnetic field

of the sun is highly intermittent, as almost all of its energy is concentrated in black

spots which covers only small parts of the surface of the sun.

In our work, we found that particles on, and outside the front exhibit intermittent

behavior. We proved that, the same is true for some region inside the front. Despite

that the front of propagation itself moves exponentially fast, the front of intermittency

moves with a small power rate, |x| > tγ, inside the first front. In the area between

those two fronts, the particles are concentrated in very sparse spots with clustered

density. This means that, the zone of non-intermittency extends with that rate too.

This rate has been found exactly.



v

ACKNOWLEDGMENTS

I would like to I would like to express my deepest thanks and gratitude to my

advisor Dr. Boris Vainberg for supervising me with his wide knowledge and guidance.

I appreciate his persistent help and encouragement from the initial classes I took with

him until I finished my dissertation.

I am grateful to Dr. Stanislav Molchanov, the professor who inspired me to move

forward and from whom I learned a lot.

I am so thankful to Dr. Joel Avrin, the former graduate coordinator in the Math

department who made the process easier for me to join this PhD program.

I would like to thank all the members in my dissertation committee for accepting

to serve on it, Dr. Yuri Godin, Dr. Heather Coffy and Dr. Stanislav Molchanov.

Many thanks to all of my professors who always pushed me to be better, and to

all the staff at UNCC.

I would like to thank my beloved family, my husband Layth, my daughter Huda

and my sons, Ahmed, Zaid and Ibrahim. They were always patient, supportive, proud

and encouraging throughout my studies.



vi

TABLE OF CONTENTS

LIST OF FIGURES ix

LIST OF TABLES x

CHAPTER 1: INTRODUCTION 1

1.1. A General Summary 1

1.2. Description of the Main Problem 1

1.3. Previous Studies 3

1.4. KPP Problem on Rd 3

1.5. KPP Problem on the Lattice Zd 5

1.6. The Difference Between KPP Model and Our Model 5

1.7. The First and Second Moments in Our Model (m1 and m2) 6

1.7.1. The First Moment m1 6

1.7.2. The Second Moment m2 7

1.8. Front of Propagation 7

1.9. Intermittency 8

1.10. Our Goal 9

CHAPTER 2: THE FIRST AND SECOND MOMENTS 10

2.1. Derivation of the Equation for m1 10

2.2. Integral Representations of p And m1 11

2.3. Derivation of the Equation for m2 14

2.4. Integral Representation of m2 14

2.5. Starting From the Origin 15



vii

CHAPTER 3: ASYMPTOTIC BEHAVIOR OF THE FIRST MOMENT 17

3.1. Asymptotic Behavior of â(σ) at 0 17
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CHAPTER 1: INTRODUCTION

1.1 A General Summary

We consider a population of particles on a d-dimensional lattice Zd, where each

particle sits in its place for a while before it either jumps randomly to another place,

or it splits in the same place into two particles. After that, each of those particles (the

original particle after it jumps to the new place, the original particle after producing

offspring particle or the offspring itself ) starts again either to jump to another new

place or to split into two particles. This process is continued forever, under the condi-

tion that each particle jumps and splits independently of the others. For this process,

we impose another two conditions. First, we consider constant rate branching, which

means that the number of particles is exponentially increasing in time. And second,

we assume that the particles can jump not only to neighbor points but also for dis-

tant points, with not necessarily small probability. The limit structure of the particle

population inside the propagating front (where global or local growth occur) will be

investigated. This structure is described in terms of intermittency.

1.2 Description of the Main Problem

Let us provide a little more detailed description of our branching random walk

model.

We assume that each particle in this population, at any position x ∈ Zd, at a given
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time t, stays at this point a randomly exponentially distributed period of time which

is ∆t, with a parameter 1, before it either splits into two particles in the same place,

or it jumps with a probability a(z), to a new position x + z ∈ Zd. In addition, if ν

is a constant that represents the rate of particle splitting, then at any time interval

(t, t + ∆t), this particle which is located at any point x ∈ Zd, may splits with the

rate ν∆t, into two particles located at the same point x. The process of splitting or

jumping of any particle is independent of any other particle. Later on, each of those

particles (parental one and the offspring) evolve independently of each other by the

same law as the initial particle.

Obviously, the probability of the jump a(z), satisfies the two conditions that,

a(z) ≥ 0 and
∑

z∈zd a(z) = 1. Here we will assume that the distribution of the

jump is symmetric, which means that, a(z) = a(−z) for all z ∈ Zd.

In our work, a main assumption is included in our model. We assume that the

probability for any particle to make a long jump is not necessarily small. Thus we

are assuming the following behavior of a(z) at infinity:

a(z) =
a0(ż)

|z|d+α
(1 + o(1)), |z| → ∞, ż =

z

|z|
, (1)

with

a0(ż) > δ > 0, 0 < α < 2.

Such a probability distribution is called heavy tailed. Under this heavy tailed

probability assumption, the second moments
∑
z2a(z) are not defined when α < 2.

They would exist only when α > 2. .
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In the case when the particle jumps without being split, the initial particle would

perform the symmetric d−dimensional random walk X(t) with the generator

(Lf)(x) =
∑
z∈Zd

[f(x+ z)− f(x)] a(z), (2)

which is a bounded operator on the space l2(Zd).

The symmetry of the jumps (namely a(z) = a(−z)), implies that L = L∗ is self-

adjoined operator in l2(Zd).

1.3 Previous Studies

The mathematical study of branching processes goes back to the work of Galton

and Watson [22] who were interested in the probabilities of long-term survival of fam-

ily names. Later similar mathematical models were used to describe the evolution of

a variety of biological populations, in genetics [11, 12, 13, 14], and in the study of

certain chemical and nuclear reactions [20, 15]. The branching processes (in particu-

lar, branching diffusions) play important role in the study of the evolution of various

populations such as bacteria, cancer cells, carriers of a particular gene, etc., where

each member of the population may die or produce offspring independently of the

rest.

1.4 KPP Problem on Rd

The original classical model in branching diffusion processes belongs to Kolmogorov,

Petrovski and Piskunov. It was published in their famous paper in 1937, see [16].

Their model is called the KPP model. This model was applied to biological prob-
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lems and underlines processes in the case of Brownian motion in Rd. This diffusion

process can be described by Poisson kernel p(t, x, y), namely the probability density

to find particles at the point x ∈ Rd at a time t when the starting point at t = 0 is

y ∈ Rd. It is given by

p(t, x, y) =
1

(4πt)
d
2

e
−

(x− y)2

4t . (3)

The generating operator in KPP model is the pure Laplacian ∆ψ in the Euclidean

space Rd, and the governing equation of this model is the heat equation

∂p

∂t
= ∆p (4)

p(0, x, y) = δ(x− y) on Rd.

In the case that KPP model splitting with constant rate ν, the expectation density

to find particles at x is denoted by m1. This function satisfies the equation

∂m1

∂t
= ∆m1 + νm1 (5)

m1(0, x, y) = δ(x− y) on Rd.

In this case we have

m1(t, x, y) = p(t, x, y)eνt. (6)

In this model, it can be easily found that the front (where m1 ≈ 1) is growing

linearly in time, since equations (3) and (6) with m1 ≈ 1 imply that
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−|x− y|
2

4t
+ νt ≈ 0. (7)

So by starting from the origin y = 0, the front is the region defined by

|x| ≈ 2
√
νt.

The regions where
m2

m2
1

→∞ are considered in our thesis. These regions are called

the regions of intermittent behavior. Here m1 and m2 are called the first moment and

the second moment respectively.

For KPP model on Rd, Koralov and Molchanov in ([18]) studied different levels

of intermittency. They are the regions where,
mj

mj
1

→∞ as t→∞ and mj is the jth

moment in this model.

1.5 KPP Problem on the Lattice Zd

In the direct analog of KPP model on the lattice, the right hand side of the heat

equation (4) will be replaced by the Laplacian operator, which is defined on lattice

Zd and given by

(∆ψ)(z) =
1

2d

∑
|e|=1

[ψ(z + e)− ψ(z)]. (8)

This operator is somewhat simpler than (4) since ψ is defined on the lattice instead

of Rd. On the other hand it is much more difficult to handle since it is not spherically

symmetric.

1.6 The Difference Between KPP Model and Our Model

1- The most important difference between our problem and the KPP problem

is related to the fact that the generating operator in our model, given in (2), allows
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particles to jump not only in neighbor points, but also to make long jumps on the

lattice Zd with relatively not small probability. Any particle x after it splits, can

jump to the point x + z with a probability a(z). The point x + z can be found as

faraway from x as we please. Note that in the KPP model, the probability to find a

particle at the time t = 1, with a distance d from the parent particle is exponentially

small, it is of order e−d
2/4.

2- The front propagates linearly in KPP model, while in our model, the front will

be proved to be propagated exponentially fast, due to the assumption of a long jump

probability.

1.7 The First and Second Moments in Our Model (m1 and m2)

1.7.1 The First Moment m1

Let n(t, x, y) be the random variable of the number of particles at a point x ∈ Zd,

at the time t ≥ 0, under the condition that n(0, x, y) = δ(x − y), which means that

the process starts at the initial time t = 0, with a single particle located at the point

y ∈ Zd.

For each arbitrary constant rate of splitting, ν > 0, let m1 = m1(t, x, y) =

E(n(t, x, y)), be the expected value of n(t, x, y). It is called the first moment of

the random variable n(t, x, y). Let p = p(t, x, y) be the expected value of the random

variable n(t, x, y) in the case when ν = 0. Then m1 and p satisfy the relations (9)
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and (10) given below respectively:

∂m1

∂t
(t, x, y) = Lm1(t, x, y) + ν m1(t, x, y) , t ≥ 0 ; (9)

m1(0, x, y) = δ(x− y).

∂p

∂t
(t, x, y) = Lp(t, x, y) , t ≥ 0 ; (10)

p(0, x, y) = δ(x− y).

It is clear that if p(t, x, y) is a fundamental solution of (10), then

m1(t, x, y) = p(t, x, y)eνt is a fundamental solution of (9).

1.7.2 The Second Moment m2

The second moment m2(t, x, y) of the random variable n(t, x, y) is defined by

m2(t, x, y) = E(n2(t, x, y)). It satisfies the following differential equation

∂m2

∂t
(t, x, y) = (L+ ν)m2(t, x, y) + 2ν m2

1(t, x, y) (11)

m2(0, x, y) = δ(x− y).

The Derivations of (9), (10) and (11) will be given in the next chapter.

1.8 Front of Propagation

The concept of front of propagation is essential in our work. The region in Zd

which separates the large and small values of m1(t, x, y) is called the front. In our

work we define the front as the boundary of the set where m1 < 1.
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1.9 Intermittency

The notion of intermittency (or intermittent random fields), is popular in natural

sciences, (astrophysics, biology, etc). From the qualitative point of view, intermittent

random fields are distinguished by the formation of sparse spatial structures such

as high peaks, clumps, patches, etc., giving the main contribution to the process in

the medium. For instance, the magnetic field of the Sun is highly intermittent as

almost all its energy is concentrated in the black spots, which cover only a very small

part of the surface of the Sun. Many bio-populations also exhibit strong clumping

(clustering). A random variable is called intermittent if it is distributed very non-

uniformly. It means that huge values can appear with a very small probability.

Intermittency is a well developed non-uniformity concept. For physicists, the mag-

netic field of the Sun is intermittent since, say, 99% of its magnetic energy is concen-

trated on less than 1% of the surface. For mathematicians, 0.1, 0.01 or 10−6 are not

necessarily small numbers, and a limiting process must be considered instead.

The definition of intermittency based on the progressive growth of the statistical

moments was proposed in the review [24], a more formal presentation can be found

in [5]. In the simplest form, a field n(t, x), x ∈ Zd, is intermittent as t → ∞ on a

non-decreasing family of sets, ω(t), if

lim
t→∞

En2(t, x)

(En(t, x))2
=∞

uniformly in x ∈ ω(t).

Let us provide an example to illustrate the meaning of intermittency. Consider a
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random variable X with expectation equal to one.

Let this random variable takes the values αn , 1 ≤ n ≤ 100, with probabilities pn,∑
pn = 1. Then m1 = E(X) =

∑
αnpn, and m2 = E(X2) =

∑
α2
npn.

Let α1 =
c

ε
, and p1 = ε, for 0 < c < 1 and ε is a very small number. Let αn ≈ 1− c

for all n > 1 with
∑100

2 pn = 1− ε. Then it is clear that m1 ≈ 1 and
m2

m2
1

≈ c2/ε→∞

as ε → 0. Thus X is an intermittent random variable, as one can see that X is

distributed non-uniformly with large values α1 =
c

ε
having a small probability.

1.10 Our Goal

In this thesis, we consider the random variable n(t, x, 0), which is the number of

particles at a point x ∈ Zd at the time t when the process started from a single

particle located at the origin 0.

We will discuss the intermittency of n(t, x, 0) on and inside the propagating front.

Our first goal is to find the asymptotic of m1(t, x), as t, x → ∞, in order to find

the front of propagation of the particles in our problem.

The second goal is to study if intermittent regions exist inside of that front, and

to find in this case the boundary between the intermittent and the non-intermittent

regions.

In fact we will show that the front of propagation grows exponentially in time, and

our random variable exhibits intermittent behavior on and outside of it.

For the region inside the front, we are going to prove that the intermittent behavior

occurs when |x| > tγ, with a specific values of γ > 0 that will be found exactly.

The estimation of p(t, x) given in [1] will play an important role in our study.



CHAPTER 2: THE FIRST AND SECOND MOMENTS

2.1 Derivation of the Equation for m1

In order to derive the equations (9) that governs m1(t, x, y), we need to evaluate

m1(t+ ∆t, x, y).

For this reason, the time interval (0, t+ ∆t) can be split up in the backward form

into two successive intervals which are (0,∆t) and (∆t, t+ ∆t), of the lengths ∆t and

t respectively. Then m1(t+ ∆t, x, y) can be represented in the form

m1(t+ ∆t, x, y) ∼
∑
z∈Zd

a(z)∆t m1(t, x, y + z) + 2ν ∆t m1(t, x, y) (12)

+ (1−∆t− ν ∆t) m1(t, x, y).

The terms on the right hand side of the relation (12) can be explained as follows:

The first term is the probability for the particle to jump from the point y to the

point y+ z during the time ∆t, which is a(z)∆t, multiplied by the expectation of the

number of particles at the point x when the walk starts at a single point y + z ∈ Zd,

which is m1(t, x, y + z). The second term is the probability ν∆t of branching during

the time ∆t, multiplied by the expected value of the number of particles at x that are

descendant of both the original and the new born particle at y, which is 2m1(t, x, y).

The last term is the expectation of the number of particles at the point x under the

condition that the initial particle stays at y without splitting and without jumping
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during the time interval ∆t.

We subtract m1(t, x, y) from both sides of the equation (12) above.

Using that
∑
a(z) = 1, we divide by ∆t, and pass to the limit as ∆t → 0. This

implies the following equation

∂m1

∂t
(t, x, y) =

∑
z∈Zd

[m1(t, x, y + z)−m1(t, x, y)]a(z) + ν m1(t, x, y), t ≥ 0 (13)

such that

m1(0, x, y) = δ(x− y). (14)

By using the definition of (Lf)(x) given in (2) in the equation (13) above, the deriva-

tion of the equations (9) is complete.

The solution of (13) gives the integral representation of m1(t, x, y). The details are

given in the section 2.2 below.

Note that the term
∑

z∈zdm1(t, x, y + z)a(z) in (13) can be considered as a convo-

lution in y of the two functions a(y) and m1(t, x, y).

2.2 Integral Representations of p And m1

The integral representations of p and m1 are obtained by solving the equation (13)

together with the initial condition (14) for the two cases , when ν = 0 and when

ν 6= 0 respectively.

One can easily show that m1 and p depend not on x and y but on their difference,

i.e., m1(t, x, y) = m1(t, x− y, 0) and p(t, x, y) = p(t, x− y, 0).

Thus we can drop the argument y in both m1(t, x, y) and p(t, x, y).

In this case p(t, x) denotes the solution of (13) with ν = 0 and y = 0, and m1(t, x)
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denotes the solution of (13) with ν 6= 0 and y = 0.

For the case when ν = 0, we find p(t, x) as follows:

Consider p(t, x) and a(x) as Fourier coefficients (defined at an integer points x ∈ Zd)

of the two functions p̂(t, σ) and â(σ) respectively, with σ ∈ [−π, π]d. In this case

p̂(t, σ) =
∑
x∈Zd

p(t, x)e−i(σ,x) and â(σ) =
∑
x∈Zd

a(x)e−i(σ,x) . (15)

We use that
∑

x∈zd a(x) = 1, and pass to the Fourier series in (13), we get

∂p̂

∂t
(t, σ) =

∑
x∈Zd

∂p

∂t
(t, x)e−i(σ,x)

=
∑
x∈Zd

[
∑
z∈Zd

p(t, x− z)a(z)]e−i(σ,x) −
∑
x∈Zd

p(t, x)e−i(σ,x)

=
∑
z∈Zd

[
∑
x∈Zd

p(t, x− z)e−i(σ,(x−z))]a(z)e−i(σ,z) − p̂(t, σ),

i.e., p̂(t, σ) is the solution of the following ordinary differential equation

∂p̂

∂t
(t, σ) = p̂(t, σ)[â(σ)− 1] (16)

with the condition that, p̂(0, σ) = 1.

This condition is true since we have p(0, x) = δ(x).

It is clear that the solution of the problem (16) above is:

p̂(t, σ) = e[â(σ)−1]t.



13

The Fourier coefficients p(t, x) of the function p̂(t, σ) are given by

p(t, x) =
1

(2π)d

∫
[−π,π]d

p̂(t, σ)ei(σ,x)dσ

Thus

p(x, t) =
1

(2π)d

∫
[−π,π]d

e[â(σ)−1]t+i(σ,x)dσ. (17)

The equation (17) gives the integral representation of the function p(t, x).

For the case when ν 6= 0, then by passing to the Fourier series in (13) we obtain

the following ordinary differential equation and initial condition

∂m̂1

∂t
(t, σ) = [â(σ)− 1] m̂1(t, σ) + ν m̂1(t, σ)

m̂1(0, σ) = 1.

The solution of this problem is

m̂1(t, σ) = e[â(σ)−1+ν]t = eνte[â(σ)−1]t.

Hence the integral representation of m1(t, x), is given by

m1(t, x) =
1

(2π)d

∫
[−π,π]d

eνte[â(σ)−1]t+i(σ,x)dσ, (18)

It is clear that

m1(t, x) = eνtp(t, x).
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2.3 Derivation of the Equation for m2

For the derivation of equation (11) that is satisfied by m2, we consider again m2(t+

∆t, x, y) on the time interval (0, t + ∆t). We split this interval in the backward way

into two successive intervals (0,∆t) and (∆t, t + ∆t). Then m2(t + ∆t, x, y) can be

represented on those two intervals in the following form

m2(t+ ∆t, x, y) ∼
∑
z∈Zd

a(z)∆t m2(t, x, y + z) + ν ∆t E(n1 + n2)
2

+ (1−∆t− ν ∆t) m2(t, x, y). (19)

Here the terms on the right hand side of (19) are similar to the terms on the right

hand side of (12). In this case, n1 = n1(t, x, y) is the number of particles at x that

are descendant of the original particle, and n2 = n2(t, x, y) is the number of particles

at x that are descendant of the new born particle.

In (19) we use the fact that

E(n1 + n2)
2 = E(n1)

2 + E(n2)
2 + 2E(n1)E(n2) = 2m2(t, x, y) + 2m2

1(t, x, y).

We subtract m2(t, x, y) from both sides of (19), divide by ∆t, and pass in both

sides to the limit as ∆t → 0. After doing all these steps, the derivation of (11) is

obtained.

2.4 Integral Representation of m2

The solution of (11) gives the integral representation of m2. This solution can be

found by using the following Duhamel formula:



15

m2(t, x, y) = m1(t, x, y) +

∫ t

0

u(t− s, x, y) ds. (20)

This formula is used under the condition that u(t, x) is the solution of the following

problem:

∂u

∂t
(t, x, y) = (L+ ν)u , t > s (21)

such that

u(s, x, y) = 2ν m2
1(s, x, y).

Now since m1(t, x, y) is a fundamental solution of the problem (9) above, the solu-

tion of (21) on the lattice will be given by

u(t, x, y) = 2ν
∑
z∈Zd

m1(t, x− z, y) m2
1(s, z, y). (22)

Hence the substitution of (22) in the equation (20) implies the solution of (11).

Thus the integral representation of m2(t, x, y) is the following

m2(t, x, y) = m1(t, x, y) + 2ν

∫ t

0

ds
∑
z∈Zd

m1(t− s, x− z, y) m2
1(s, z, y). (23)

2.5 Starting From the Origin

Finally we note that the first and second moments m1 and m2 depend only on the

difference x− y, (but not on x and y separately) . Thus we can replace y in (20) and

(22) by y = 0, and consider the two functions m1 = m1(t, x) and m2 = m2(t, x) as the
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first and second moments respectively of the random variable n(t, x) of the number

of particles at each point x ∈ Zd under the condition that the process starts with one

particle located at the origin.

Now we can consider the main equation for m1(t, x), p(t, x) and m2(t, x) to be the

following:

m1(t, x) is the solution of the equation

∂m1

∂t
(t, x) = (L+ ν) m1(t, x), t ≥ 0, (24)

such that

m1(0, x) = δ(x).

Function p(t, x) coincides with m1 when ν = 0. It is the solution of the equation

∂p

∂t
(t, x) = Lp(t, x), t ≥ 0, (25)

such that

p(0, x) = δ(x).

Also from (23), the main integral representation equation for m2(t, x) has the form

m2(t, x) = m1(t, x) + 2ν

∫ t

0

ds
∑
z∈Zd

m1(t− s, x− z) m2
1(s, z). (26)



CHAPTER 3: ASYMPTOTIC BEHAVIOR OF THE FIRST MOMENT

3.1 Asymptotic Behavior of â(σ) at 0

For â(σ) defined in (15), the following Lemma 1 has been proved in [1]. It provides

the asymptotic behavior of â(σ) at 0. Namely, we assume that:

a(z) =
d+ε∑
j=0

aj(ż)

|z|d+α+j
+O(

1

|z|2d+α+1+ε
), |z| → ∞, α ∈ (0, 2), (27)

where

aj ∈ Cd+1−j+ε(Sd−1), a0(ż) > δ > 0

and ε = 1 if α = 1, ε = 0 otherwise.

Lemma 1. If (27) holds, then

â(σ) = 1−
d∑
j=0

bj(σ̇)|σ|α+j + f(σ), σ ∈ T d = [−π, π]d, f(0) = 0, (28)

where bj ∈ Cd+[α]+1(Sd−1) and function f , being extended periodically on Rd, be-

longs to Cd+[α]+1(Rd). Moreover, the homogeneous function b0(σ̇)|σ|α in Rd is the

Fourier transform of the homogeneous (of order −d−α) distribution that is equal to

a0(ẋ)|x|−d−α when 0 6= x ∈ Rd, and

b0(σ̇) = −Γ(−α) cos
απ

2

∫
Sd−1

a0(ẋ)|(ẋ, σ̇)|αdSẋ > 0, (29)

where Γ is the gamma-function.
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Remarks

1) Note that f can not be omitted, since a change in the values of a(z) at several

points does not perturb its asymptotic behavior at infinity, but changes â(σ) by an

analytic function.

2) The next two properties of â(σ) follow immediately from the properties of a0(ẋ):

â(−σ) = â(σ) and − 1 < â(σ) < 1, when 0 6= σ ∈ T d. (30)

The second property in (30) follows from (15) and the relation
∑

x∈Zd a(x) = 1, under

the condition that, for each σ ∈ T d, σ 6= 0, there is a point z ∈ Zd, where e−i(z,σ) 6= 1

and a(z) 6= 0. Such points z exist due to (27).

3.2 Asymptotic Behavior of m1(t, x)

The asymptotic behavior of m1(t, x) = eνtp(t, x) is a direct result of the uniform

asymptotics of the function p(t, x) given in the following theorem which is one of the

main results of [1].

Theorem 2. Let the conditions (28)-(30) hold.

Then, the the following asymptotis holds for p(t, x)

(i) p(t, x) =
1

td/α
S(

x

t1/α
)(1 + o(1)), when x ∈ Zd, |x|+ t→∞. (31)

Here, S(y) =
1

(2π)d
∫
Rd
ei(σ,y)−b0(σ̇)|σ|

α
dσ > 0, is the stable density S = Sα,a0(y), which

depends on α ∈ (0, 2), and coefficient a0, is defined in (27).
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(ii) If
|x|
t1/α
→∞, |x| ≥ 1, then the previous statement can be specified as follows:

p(t, x) =
a0(ẋ)

td/α
(
t1/α

|x|
)d+α(1 + o(1)) =

a0(ẋ)t

|x|d+α
(1 + o(1)). (32)

In the next section, a simplified version of this theorem will be proved. For this

reason, we need to prove the following lemma:

Lemma 3. Function p(t, x) given in (17), is strictly positive for all x ∈ Zd, t > 0.

Proof. Denote by an(x) the convolutions of n copies of a(x):

an(x) := a(x) ∗ a(x) ∗ ... ∗ a(x), (33)

where a(x) ∗ b(x) =
∑

z∈Zd a(x− z) ∗ b(z).

We multiply both sides of (33) by e(−iσx), then we take the summation for all

x ∈ Zd. This implies that ân(σ) = [â(σ)]n. Further, since â(0) = 1, the second

property in (30) implies that, |â(σ)| ≤ 1, and therefore, |ân(σ)| ≤ 1. This allows us

to write p(t, x) as follows:

p(t, x) =
1

(2π)d

∫
[−π,π]d

e[â(σ)−1]t+i(σ,x)dσ

=
e−t

(2π)d

∫
[−π,π]d

[1 +
∞∑
n=1

[â(σ)]n

n!
tn] ei(σ,x)dσ.

Thus

p(t, x) = e−t[δ(x) +
∞∑
n=1

an(x)

n!
tn]. (34)

Since a(x) ≥ 0, all the convolutions an(x) are non-negative. Hence (34) will imply
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the statement of the lemma if we show that a2(x) is strictly positive for all x ∈ Zd.

We have:

a2(x) =
∑
z∈Zd

a(x− z)a(z). (35)

Here a(.) ≥ 0, and from (27) it follows that the terms in (35) are positive for each

fixed x if z is large enough. Thus a2(x) > 0 , and the proof of the lemma is completed.

3.3 Simplified Version Theorem of the Asymptotics of p(t,x)

As a consequence of the results above, the following theorem 4 has been proved, it

can be considered as a simplified version of Theorem 2. First we need to introduce

the notion of the equivalency between two functions.

Definition 1. Functions a and b are called equivalent, and it will be denoted by

a ∼ b, if two constants c1 and c2 exist, such that c1b < a < c2b.

Theorem 4. Let the condition given in (1) be hold.

For arbitrary a2 ≥ a1 > 0, the following relations hold

(i) |p(t, x)| ∼ t

|x|d+α
when |x| > a1t

1
α . (36)

(ii) |p(t, x)| ∼ t−
d
α when 0 6= |x| ≤ a2t

1
α , t > ε > 0. (37)

(iii) |p(t, x)| ∼ C when x = 0 and t < 1, C 6= 0 is a constant. (38)

Proof. The last statement is obvious since the boundedness of p(t, x) follows

immediately from (17).

In order to prove the first two statements, we need to split the lattice into three
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regions, U1 = U1(t), U2 = U2(t), and U3 = U3(t). Where U1 is the region defined by

the inequality |x| > At
1
α with A so large that the remainder term in (32) is less than

1/2. If needed we increase the value of A to be sure that it is not smaller than the

constant a2 chosen in (37).

Note that |x| > At(
1
α
) implies that x 6= 0. Thus, |x| ≥ 1 in U1 since x is a point on

the lattice.

From (32) it follows that:

| p(t, x)− a0(ẋ)t

|x|d+α
| < 1

2

a0(ẋ)t

|x|d+α
, for all x ∈ U1.

and therefore,

1

2

a0(ẋ)t

|x|d+α
< p(t, x) <

3

2

a0(ẋ)t

|x|d+α
, for all x ∈ U1.

Since a0(ẋ) is continuous and does not vanish on the unite sphere |ẋ| = 1, it follows

that:

|p(t, x)| ∼ t

|x|d+α
when |x| > At

1
α . (39)

This justifies (36) for a1 = A, but not for any arbitrary a1.

Now one can find a large enough constant B, such that the remainder term in (31)

is less than 1/2, (i.e. , |o(1)| < 1/2), whenever |x|+ t > B.

Let U2 be defined by the inequalities |x| ≤ At
1
α and |x|+ t ≥ B , with the same A

used in the previous step.

Since
|x|
t

1
α

≤ A is bounded in U2, and function S(y) is positive and continuous, it

follows that S(
|x|
t

1
α

) in (31) has upper and lower positive bounds in U2. Thus (31)
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implies that p(t, x) ∼ 1

t
d
α

on the region U2.

Now consider the region U3 defined as follows

U3 = {|x| ≤ At
1
α , ε < |x|+ t ≤ B}\{(t, x) : x = 0, t ≤ 1}.

We take into account that region U3 is bounded with t ≥ ε > 0. Since p(t, x) > 0

for t > 0, (see Lemma 3), and p is continuous on U3, it follows that p has lower and

upper bounds on U3, i.e., there are two constants C1 and C2 such that

0 < C1 < p(t, x) < C2 on U3.

Similar estimates are valid for the function
1

t
d
α

.

Thus, p(t, x) ∼ 1

t
d
α

on U2

⋃
U3, and the second statement of the theorem is proved

with a2 = A. Therefore it is valid for arbitrary a2, since A was chosen to be such

that A ≥ a2.

To complete the proof of the theorem, it remains to show that the equivalency

relation (39) can be extended to the region At
1
α ≥ |x| > a1t

1
α . Thus the proof of

the theorem will be completed as soon as the following lemma is proved.

Lemma 5. In the intermediate region ε < a1t
1
α < |x| ≤ At

1
α , the following relations

hold

p(t, x) ∼ 1

t
d
α

∼ t

|x|d+α
.

Proof. Relation (37) holds in the region a1t
1
α < |x| ≤ At

1
α , described in the

lemma. So it is enough to show that
1

t
d
α

∼ t

|x|d+α
in this region.

The ratio of the latter two functions is equal to
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1

t
d
α

t
|x|d+α

=
|x|d+α

t1+
d
α

=
|x|d+α

t
d+α
α

= (
|x|
t

1
α

)d+α.

This ratio is bounded from below by ad+α1 and bounded from above by Ad+α. Hence

the proofs of Lemma 5 and Theorem 4 are complete.

Lemma 5 allows us to use any of the equivalency results (36) or (37) for p(t, x) on

the region where t
d
α < |x| < At

1
α .

We also can combine the estimates (37) and (38) in the region |x| ≤ t
1
α by the

following form, given in the next lemma, with no need to mention that t ≥ 1.

Lemma 6. The relation, |p(t, x)| ∼ 1

(t+ 1)
d
α

, holds in the region where |x| ≤ a2t
1
α .

3.4 Finding the Front

Recall that the front of propagation is the region where, m1(t, x) ∼ 1 as t→∞.

The following theorem states that, the front propagates exponentially in time.

Theorem 7. The front of propagation is located in the region where,

|x| = (a0(ẋ)t)
1

d+α e
νt
d+α (1 + o(1)) , t→∞.

Proof. There is no front in the region where |x| ≤ t
1
α . This follows from (37)

since in this region, we have

m1(t, x) = p(t, x) eνt ∼ 1

t
d
α

eνt →∞. (40)

From (40), it is clear that m1(t, x) is unbounded and grows exponentially as t→∞.
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Now consider the region |x| > t
1
α , as t→∞.

From (18) and (32), we have:

m1(t, x) = p(t, x)eνt =
a0(ẋ)t

|x|d+α
eνt(1 + o(1)). (41)

The statement of the theorem follows immediately from here.



CHAPTER 4: INTERMITTENCY

4.1 Intermittency On and Outside the Front:

Recall that our goal is to investigate the intermittent regions in the domain of our

problem. They are the regions in which

m2(t, x)

m2
1(t, x)

→∞, as t→∞.

For this reason, we will estimate
m2

m2
1

separately, on, inside and outside of the front

of propagation (see Theorem 7 for the definition of the front).

In the following theorem, we will prove that
m2(t, x)

m2
1(t, x)

→ ∞, as t → ∞ in the

regions on and outside the front. For the regions inside the front, the intermittency

will be discussed in much details in the sections that follow this section.

Theorem 8.
m2(t, x)

m2
1(t, x)

→ ∞ on and outside of the front, where |x| ≥ t
1

d+α e
νt
d+α , as

t→∞.

Proof. For the proof we are going to directly estimate
m2(t, x)

m2
1(t, x)

in the region given

above.

Since always m1(t, x) ≥ 0, the equality (26) implies that

m2(t, x) >

∫ t

0

∑
z∈Z

m1(t− s, x− z) m2
1(s, z) ds. (42)

We need to find an estimation for the integral on the right hand side of (42). For
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this reason, we use that m1(s, z) = p(s, z).eνs, and replace m1(t−s, x−z) and m1(s, z)

by their corresponding formulas from (36) and (37).

For estimating this integral, we divide the set {(s, z) : s > 0, z ∈ Zd} into several

sub-regions by the following two parbloids, each of them in R1 × Zd, namely:

|z| = s
1
α and |x− z| = (t− s)

1
α .

It is clear that this division depends on the values of t and x.

We will need to estimate m2(t, x) in each of those sub-regions. In fact it is enough

to find a small sub-region, ω, in R1×Zd, where the expression in the right hand side

of (42) restricted to ω is unbounded as t→∞, because in this case, the contribution

to the right side of (42) from the other parts of R1 × Zd will only increase the low

bound to the value of m2(t, x).

Let us consider the small sub-region, ω : z = 0, t− 1 ≤ s ≤ t. It is located inside

the region |z| ≤ s
1
α . In this case (42) implies that

m2(t, x) >

∫ t

0

∑
z∈Z

m1(t− s, x− z)m2
1(s, z)ds ≥

∫ t

t−1
m1(t− s, x− 0) m2

1(s, 0)ds.

(43)

Function m1(t− s, x− 0) in (43), can be estimated from below using (36) as follows:

since we have

m1(t− s, x− z) ≥ C(t− s)
|x− z|α+d

eν(t−s) as
|x− z|

(t− s) 1
α

→∞ .

So when, z = 0, t− 1 ≤ s ≤ t, then

m1(t− s, x− 0) ≥ C(t− s)
|x|d+α

eν(t−s) as
|x|

(t− s) 1
α

→∞ .
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Also, m1(s, 0) in (43), can be estimated from below using (37) by

m1(s, 0) ≥ C

s
d
α

eνs.

Hence m2(t, x) in (43) is estimated by the following

m2(t, x) ≥ C

∫ t

t−1

(t− s)
|x|d+α

eν(t−s)
1

s
2d
α

e2νs ds. (44)

For further estimation of m2(t, x) in (44) , we can use that

eν(t−s). e2νs = eν(t+s) ≥ ce2νt since s ≥ t− 1 and
1

s
2d
α

>
1

t
2d
α

(as we have s < t) .

We use that
∫ t
t−1 (t− s)ds = 1/2. Hence (44) can be read as follows

m2(t, x) ≥ Ce2νt

|x|d+α
.

1

t
2d
α

. (45)

So if x is located on the front (see Theorem 7, where |x| ∼ t
1

d+α e
νt
d+α , t is large,

and |x| is exponentially large) or outside of it, then (41) and (45), together with the

relation m1 < C, imply that

m2(t, x)

m2
1(t, x)

|
|x|≥t

1
d+α e

νt
d+α
≥ Ceνt

t1+2d/α
→∞.

In the above result,
m2

m2
1

is unbounded since it has an exponential growth as t→∞.

Hence the theorem is proved.

In fact, in Theorem 9, given in the next section, we will show that intermittency

takes place inside the front for some extent of the form |x| = tγ.
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4.2 Intermittency Inside the Front

Now we consider the region where |x| >> t
1
α but still inside the front, i.e., we

consider the region where,

t
1
α < |x| < t

1
d+α e

vt
d+α .

The following theorem is essential in our work. In this theorem we are going

to prove that, there are intermittent regions inside the front to the extent where

|x| > tγ+ε, such that γ =
2α + d

α(α + d)
. In other word x = tγ is the boundary between

the intermittent and the non-intermittent regions inside the front.

Theorem 9. Let the heavy tail condition (1) holds. Then

1) The ratio
m2(t, x)

m2
1(t, x)

is uniformly bounded in each ball |x| < Btγ, such that

γ = 2α+d
α(α+d)

, i.e., the random variable n is non-intermittent in this ball.

2) For each domain Ωε(t) = {x : |x| > tγ+ε}, ε > 0, we have
m2(t, x)

m2
1(t, x)

→ ∞

uniformly in x ∈ Ωε(t), as t→∞, i.e., n is intermittent in Ωε(t).

Proof: The proof of the first part of this theorem will be given in the following

sections of this chapter starting from the next one.

The proof of the second part is given here.

From the estimation of m1(t, x) given in (41), when t→∞, we have:

m2
1(t, x) ≤ ct2

|x|2(d+α)
e2νt. (46)

We will consider the contribution to the lower bound of m2(t, x) given in (42) from

the region where, t − 1 < s < t , |z| ≤ t
1
α/2 (this region is clear in Figure 1 when
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d=1).

We replace m1(t − s, x − z) and m1(s, z) in (42) by their estimates given in (36)

and (37) respectively. Then

m2(t, x) ≥ C

∫ t

t−1

∑
|z|≤

t
1
α

2
, z∈Zd

(t− s)
|x− z|d+α

eν(t−s)
1

s
2d
α

e2νs ds. (47)

We are going to estimate the right hand side of (47) from below as follows:

Since |x| ≥ tγ+ε, and since |z| ≤ t
1
α

2
<
tγ+ε

2
<
|x|
2

, these imply that |x− z| < |x|
2

.

Hence we can replace
1

|x− z|
in (47) by

C1

|x|
. We also use that

1

s
2d
α

≥ 1

t
2d
α

since

t− 1 ≤ s ≤ t .

Hence, (47) can be read as follows:

m2(t, x) ≥ ceνt

t
2d
α

∫ t

t−1
(t− s) eνs ds

∑
|z|≤

t
1
α

2
, z∈Zd

1

|x|α+d
. (48)

The Summation in (48) is taken over all the integer points z in the ball

|z| ≤ t
1
α/2. The number of these points has an order of O(t

1
α )d, as t→∞. Hence

this summation can be replaced by t
d
α .

After performing the integration with respect to s in (48), m2(t, x) is estimated for

x ∈ Ωε(t) as t→∞, by

m2(t, x) ≥ ce2νt

t
d
α

1

|x|d+α
, (49)

Hence if |x| > tγ, for any γ ≥ 0, then from (49) and (46), we have
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m2(t, x)

m2
1(t, x)

≥ C|x|(d+α)

t2+d/α
=
C|x|(d+α)

t
2α+d
α

= C(
|x|

t
2α+d
α(α+d)

)d+α = C(
|x|
tγ

)d+α.

The expression above is unbounded when |x| ≥ tγ+ε , which means that there is an

intermittency in the region Ωε, where |x| ≥ tγ+ε, with γ = 2α+d
α(d+α)

. This proves the

second part of the theorem.

Notice that for γ = 2α+d
α(d+α)

then tγ < t
1

d+α e
νt
d+α . This means that the region Ωε is

located inside the front where |x| is given as in Theorem 7.

4.3 No Intermittency in the Region |x| ≤ Btγ

For the proof of the first part of the theorem, we need to prove that, for any B > 0,

m2

m2
1

is bounded in the ball where |x| ≤ Btγ, γ = 2α+d
α(α+d)

.

Using (26) and the fact that m1 ≥ 1 inside the front,
m2

m2
1

satisfies the following

relation

m2(t, x)

m2
1(t, x)

≤ 1 +
2ν

m2
1(t, x)

∫ t

0

∑
z∈Zd

m1(t− s, x− z) m2
1(s, z) ds, |x| ≤ Btγ, t→∞.

(50)

We are going to find an estimation from above, for the right hand-side of (50). It

is as follows :

For fixed s, such that 0 ≤ s ≤ t, we split the region Zd in (50) into four regions,

separated by the two spheres which are, |z| < s
1
α and |x− z| < (t− s) 1

α .

Let P1 = P1(s), and P2 = P2(x, t− s), be two (bounded) sets of points z ∈ Zd. P1

is located inside or at the boundary of the first sphere and P2 is located inside or at

the boundary of the second sphere,i.e.,
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P1 = {z ∈ Zd : |z| ≤ s
1
α}, and P2 = {z ∈ Zd : |x− z| ≤ (t− s) 1

α}.

For i, j = 1, 2, we denote by each Di,j = Di,j(s, t, x), the set of points z ∈ Zd such

that 0 ≤ s ≤ t, x ∈ Zd and satisfy the following

D11 is the the set of points z ∈ Zd located inside or at the boundary of both spheres,

i.e., D11 = P1

⋂
P2.

D22 is the the set of points z ∈ Zd, located outside of both spheres, i.e.,

D22 = Zd \ (P1

⋃
P2).

D12 is the set of points z ∈ Zd located outside of the first sphere, but inside of the

second one or on its boundary, i.e., D12 = (Zd \ P1)
⋃
P2.

D21 is the the set of points z ∈ Zd located inside of the first sphere or on its

boundary, but outside of the second one, i.e., D21 = (Zd \ P2)
⋃
P1.

It is convenient to visualize the domains Dij by drawing the two paraboloids,

|z| < s
1
α and |x− z| < (t− s) 1

α , in the (1 + d) dimensional space R1×Zd. The graph

given above is for d = 1. Then Dij is defined by the intersection of the region inside

or outside of the corresponding paraboloid with the space s = constant.

Now under the condition that |x| ≤ Btγ, t → ∞, we are going to estimate the

contribution to the lower bound of
m2

m2
1

, given in the right hand side of (50), that is

made by integration/summation over each of the above regions Dij instead of the

integral for all Zd.

Thus

m2(t, x)

m2
1(t, x)

≤ 1 + 2ν
∑

2≥i,j≥1

Iij , (51)
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Figure 1: This graph is for d=1.

such that for i, j = 1, 2, Iij, is given as follows

Iij :=
1

m2
1(t, x)

∫ t

0

∑
z∈Zd⊂Dij

m1(t− s, x− z) . m2
1(s, z) ds. (52)

In the following sections, we are going to estimate the upper bound of the right

hand side of (52), for each Iij , i, j = 1, 2. We will prove that they are bounded as

t→∞.

4.4 Contribution to
m2

m2
1

From the Region D12

Let us start with the region D12, and discuss two cases: first when 2t
1
α < |x| ≤ βtγ,

and second when |x| ≤ 2t
1
α . Note that, from the definition of the region D12, we have

|z| > s
1
α and |x− z| ≤ (t− s) 1

α , so the two balls P1 and P2, are separated in the first

case (when 0 ≤ s ≤ t) (see figure 1), and they may intersect each other in the second

case.
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4.4.1 Case 1 : Region D12 When 2t
1
α < |x| ≤ Btγ

In this case, since |x| > 2t
1
α , estimate (36) implies that

m2
1(t, x) ∼ t2

|x|2(d+α)
e2tv.

In D12, because we have |z| > s
1
α and |x− z| ≤ (t− s) 1

α , estimate (36) and Lemma

6 imply that

m1(s, z) ∼
s

|z|(d+α)
esν , and m1(t− s, x− z) ∼ 1

(t− s+ 1)
1
α

e(t−s)ν .

Hence for I12, defined in (52), we have

I12 <
C|x|2(d+α)

t2e2tν

∫ t

0

∑
z∈D12

s2eν(t+s)

(t− s+ 1)
d
α |z|2(d+α)

ds, 2t
1
α < |x| ≤ βtγ. (53)

For the estimation of the right hand side of (53), we can replace z by x. This is

true because, in this region we have, |x| > 2t
1
α , hence, |x− z| ≤ (t− s) 1

α ≤ t
1
α ≤ 1

2
|x|.

This implies that |z| ≥ 1

2
|x| in D12, and accordingly,

1

|z|2(d+α)
≤ C

|x|2(d+α)
.

The summation in (53), is applied to the z-independent terms and therefore the

summation sign can be replaced by the factor, K, that estimates the number of terms

in this sum from above. This factor K can be estimated by the volume of the ball

P2 that results from the second paraboloid |x− z| ≤ (t− s) 1
α (when s is fixed). It is

clear that

K ≤ C[(t− s)
1
α + 1]d ∼ C[(t− s)

d
α + 1].

Thus

I12 <
C

t2e2νt

∫ t

0

[(t− s) dα + 1] s2

(t− s+ 1)
d
α

eν(t+s)ds.
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By using that,
[(t− s) dα + 1]

(t− s+ 1)
d
α

≤ 1, we have

I21 <
C1

t2eνt

∫ t

0

s2eνsds. (54)

After performing the integral above, it is clear that the right side of (54), is bounded

when t→∞.

Thus we have proved that, I12 is bounded in the first case when, 2t
1
α < |x| ≤ Btγ, as

t→∞.

4.4.2 Case 2 : Region D12, When |x| ≤ 2t
1
α

In case |x| ≤ 2t
1
α , due to (37), then, |m2

1(t, x)| ∼ 1

t
2d
α

e2tν , for t ≥ 1 .

Further, due to (36) and Lemma 4, relation (52) implies that

I12 <
Ct

2d
α

e2νt

∫ t

0

∑
z∈D12

s2 eν(t+s)

[(t− s+ 1)
d
α ] |z|2(d+α)

ds, |x| ≤ 2t
1
α , t→∞. (55)

For the estimation of the right hand side of (55), we split the integral above so that

∫ t

0

=

∫ t/2

0

+

∫ t

t/2

.

For estimating the integral
∫ t/2
0

, we replace |z|2(d+α) by 1 since by the definition of

D12 we have |z| ≥ 1 on the lattice.

Similar to the previous case, the summation along z can be replaced by the factor

K ≤ C[(t− s) dα + 1].

Hence

Ct
2d
α

e2νt

∫ t/2

0

[(t− s) dα + 1] s2 eν(t+s)

(t− s+ 1)
d
α

ds ≤ Ct
2d
α

evt

∫ t/2

0

s2eνs ds ≤ C <∞. (56)
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The right hand side of (56) is bounded since it decays exponentially as t→∞.

Now consider the case when the integral in (55) is
∫ t
t/2

. In this case we can replace

|z| by (t/2)
1
α . The reason for that is, t/2 < s < t implies that |z| ≥ s

1
α ≥ (t/2)

1
α .

After that, we replace the summation in z by the factor K ≤ C[(t−s) dα +1] as before.

This leads to the following estimate,

Ct
2d
α

e2νtt
2(d+α)
α

∫ t

t/2

s2 eν(t+s) ds ≤ C <∞ , t→∞ . (57)

After implementing the integral, the expression (57) above is bounded as t→∞.

Now (56) and (57) imply that, I12 is bounded in the second case when |x| ≤ 2t
1
α .

The two estimates of I12, obtained in the previous two cases, prove that I12, given

in (55), is bounded in the region D12, under the condition that |x| < tγ.

4.5 Contribution to
m2

m2
1

From the Region D11 (Inside of Both Paraboloids)

In this region we will estimate I11, given in (52) under the assumption that

|x| ≤ 2t
1
α .

The reason for that is due to the definition of D11, given in section 4.3.

Since in D11 we have

|z| < s
1
α and |x− z| < (t− s) 1

α .

The two balls P1 and P2, defined in Section 4.3, do not intersect each other when

|x| > 2t
1
α . Hence the region D11 exists only when |x| ≤ 2t

1
α .

For I11, given in (52), we use that, m2
1(t, x) ∼ C

t
2d
α

e2νt for t → ∞, and replace

m1(t − s, x − z) and m1(t, x) by their corresponding formulas in D11 using (37) and
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lemma 6.

Now the following inequality is obtained

I11 <
Ct

2d
α

e2νt

∫ t

0

∑
z∈D11

1

(t− s+ 1)
d
α (s+ 1)

2d
α

eν(t+s) ds, as t→∞. (58)

The estimation of the right hand side of (58), can be done as follows:

The summation,
∑

z∈D11
, can be replaced by the factor K which has been defined

in subsection 4.4.1. And by the same reason, we use that

∑
z∈D11

≤ C[(t− s)
d
α + 1].

After that, we use in (58) the fact that
C[(t− s) dα + 1]

(t− s+ 1)
d
α

< C1.

Hence, the following relation is true:

I11 <
Ct

2d
α

eνt

∫ t

0

eνs

(s+ 1)
2d
α

ds, as t→∞. (59)

For further estimation of I11 in (59), the integral in the right hand side is split so

that ∫ t

0

=

∫ t/2

0

+

∫ t

t/2

.

When the integral is
∫ t/2
0

, we drop the bottom of the integrand in (59) since

(s+ 1)
2d
α > 1. Hence

Ct
2d
α

eνt

∫ t/2

0

eνs ds ≤ Ct
2d
α

eνt
[eνt/2 − eν ]. (60)

The right side of (60) is bounded, as it decays exponentially when t→∞.
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For the second integral
∫ t
t/2

, we drop 1 from the bottom of the integrand of (59),

and make the substitution s = tτ , hence

∫ t

t/2

eνs

s
2d
α

ds =

∫ 1

1/2

eνtτ

(tτ)
2d
α

tdτ =

∫ 1

1/2

eνtτ

t
2d
α
−1τ

2d
α

dτ (61)

The integral in the right hand side of (61) can be estimated by using the Laplace

method, as t→∞. It is less than,
1

t
2d
α
−1

eνt

tν
.

Hence,

Ct
2d
α

eνt

∫ t

t/2

eνs

s
2d
α

ds <
Ct

2d
α

eνt
1

t
2d
α
−1

eνt

tν
. (62)

It is clear that the right hand side of (62) is bounded by a constant as t→∞.

The boundedness of both (60) and (62), prove that, (59) is bounded as t→∞.

Hence I11 is bounded in D11.

4.6 Contribution to
m2

m2
1

From Region D22 (Outside of Both Paraboloids)

From the definition of the region D22, we have |z| > s
1
α and |x− z| > (t− s) 1

α .

Then due to (36), we can replace the factors under the summation in (52) by

m1(s, z) ∼
seνs

|z|d+α
and m1(t− s, x− z) ∼ (t− s)eν(t−s)

|x− z|d+α
.

For this region, we will consider the two cases, first when 1
2
t1/α ≤ |x| ≤ Btγ, and

second when |x| < 1
2
t1/α. These two cases will be given in following two subsections.

4.6.1 Case 1: Region D22 When 1
2
t1/α ≤ |x| ≤ Btγ

In this case, from (36), we have m2
1(t, x) ∼ t2

|x|2(d+α)
e2tv.

Hence I22, defined in (52) satisfies the following relation
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I22 <
C|x|2(d+α)

t2e2νt

∫ t

0

∑
z∈D22

(t− s)s2

|x− z|d+α|z|2(d+α)
eν(t+s) ds. (63)

For an estimation of the right hand side of (63), we divide the region D22 into two

sub-regions, namely,

D
(1)
22 = D22 ∩ {z : |z| > x

2
} and D

(2)
22 = D22 ∩ {z : |z| ≤ x

2
} .

Let I1 and I2 be the right-hand side of (63), with D22 is replaced by D
(1)
22 and D

(2)
22

respectively. It is clear that I22 ≤ I1 + I2.

In order to find an estimation for I1 from above, we use in (63) the following:

|x− z| is strictly greater than (t− s) 1
α on the lattice in D22. This implies that,

|x− z| ≥ 1, for all z ∈ D22.

Now since we have,
∑

z∈D22

1

|x− z|d+α
<

∑
z∈Zd\{x}

1

|x− z|d+α
, and the later series

converges and does not depend on x. This implies that,∑
z∈D22

1

|x− z|d+α
is bounded by a constant.

We also use that
1

|z|2(d+α)
<

1

(|x|/2)2(d+α)
. This is true since |z| > |x|/2. Because

those two reasons, the following relation is true

∑
z∈D(1)

22

1

|x− z|d+α|z|2(d+α)
≤ (

2

|x|
)2(d+α)

∑
z:|x−z|≥1

1

|x− z|d+α
≤ C

|x|2(d+α)
. (64)

Using (64) in (63), we find that

I1 ≤
c

t2eνt

∫ t

0

(t− s)s2eνs ds. (65)

For further estimation from above of I1, given in (65), as t→∞, in the case when

1
2
t1/α ≤ |x| ≤ Btγ, we use the following Lemma, which is a consequence of the
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Laplace method, see ([10]). This Lemma will be used to show that I1 is bounded

from above as t→∞.

Lemma 10. The asymptotics of the integral I =
∫ 1

0
(1− s)αg(s) eφ(s)t ds, for α > −1,

when φ(s) has a maximum at s = 1 and φ
′
(1) 6= 0, is

I = Co
g(1)

[φ′(1)]α+1
.
eφ(1)t

tα+1
(1 + o(1)), t→∞. (66)

In order to use the lemma 10 above, we change the variable s in (65) by, s = τt.

This implies that

I1 ≤
Ct2

eνt

∫ 1

0

(1− τ)τ 2eντt dτ . (67)

Using Lemma 10, the integral in (67) is estimated by
eνt

ν2t2
as t → ∞. Hence it is

easy to see that, I1 is bounded from above by a constant when t→∞ .

Now let us estimate I2.

The inequality |z| ≤ |x|
2

, implies that |x− z| ≥ |x|
2

. Hence
1

|x− z|(d+α)
≤ ( 2

|x|)
(d+α)

.

From here and (63), it follows that, for 1
2
t1/α ≤ |x| ≤ Btγ, t→∞, we have

I2 ≤
C|x|(d+α)

t2eνt

∫ t

0

(t− s)s2 eνs (
∑
z∈D(2)

22

1

|z|2(d+α)
) ds. (68)

Since we have, |z| > s
1
α in D22, and |z| ≥ 1 on the lattice when z 6= 0. This implies

that the summation in (68) does not exceed
C

(1 + s)
2α+d
α

.

Thus

I2 ≤
C|x|d+α

t2etv

∫ t

0

(t− s)s2

(1 + s)
2α+d
α

eνs ds. (69)

In (69), we can also use that
|x|(d+α)

t2
< C1t

d/α. This is due to reason that |x| ≤ Btγ,
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with γ = 2α+d
α(α+d)

). Hence, for 1
2
t1/α ≤ |x| ≤ Btγ, t→∞, we have

I2 ≤
Ctd/α

etν

∫ t

0

(t− s) s2

(1 + s)
2α+d
α

eνs ds, (70)

For further estimation of I2, given in (70), we split the integral above as follows:

∫ t

0

=

∫ t/2

0

+

∫ t

t/2

.

In the case when the integral in (70) is
∫ t/2
0

, we replace s2 in the integrand by

t2 since s ≤ t/2, we replace (t − s) by t since (t − s) ≤ t, and we drop the term

1

(1 + s)
2α+d
α

since it is less than 1. Then

Ctd/α

eνt

∫ t/2

0

(t− s)s2

(1 + s)
2α+d
α

eνs ds <
Ct3+

d
α

eνt/2
. (71)

The right hand side of (71) is bounded, since it decays exponentially when,

1
2
t1/α ≤ |x| ≤ Btγ, and t→∞ .

Now Consider (70) when the integral is
∫ t
t/2

. In this case we drop 1 from the

denominator of the term
1

(1 + s)
2α+d
α

, and make the change of variable s = τt.

Now the right side of (70) satisfies that

Ctd/α

eνt

∫ t

t/2

(t− s)
s
d
α

eνs ds ≤ Ct2

eνt

∫ 1

1/2

(1− τ)

τ
d
α

eντt dτ . (72)

Using Lemma 10 to estimate the integral in the right hand side of (72), it is easy

to see that this side is bounded, as t→∞.

The boundedness of each of (71) and (72) implies that, I2 given in (70) is bounded
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when, |x| ≤ Btγ, with γ =
2α + d

α(α + d)
.

The boundedness of both I1 and I2 prove that, I22 is bounded in the first case when

1
2
t1/α ≤ |x| ≤ Btγ, t→∞.

4.6.2 Case 2: Region D22 When |x| < 1
2
t1/α

In this case, |m2
1(t, x)| ∼ 1

t
2d
α

e2νt for t → ∞. Hence, I22 defined in (52), satisfies

that

I22 <
Ct2d/α

e2νt

∫ t

0

∑
z∈D22

(t− s)s2

|x− z|d+α|z|2(d+α)
eν(t+s) ds. (73)

From the definition of D22, we have

|z| > s
1
α , |x− z| > (t− s)

1
α , 0 < s < t, x, z ∈ Rd. (74)

This implies that, there exists β > 0, such that, |z| ≥ β > 0, when t = 1.

Indeed, if we assume that |z| can be as small as we pleased, i.e., |z| = ε, then the

first inequality in (74) implies that, |s| < εα, and when t = 1, the second inequality

in (74) implies that |x| > 1/2. The latter inequality contradicts our assumption that

|x| < 1
2
t

1
α , t = 1.

Now we can use the homogeneity argument as follows:

Assume that s1 =
s

t1/α
, z1 =

z

t1/α
, x1 =

x

t1/α
, t1 =

t

t1/α
. Then one can easily see

that the inequalities in (74) imply that, |z1| > 1
2

for t1 = 1. Thus for an arbitrary

t > 0, we have

|z| ≥ βt1/α.
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Now replacing |z| in (73) by βt1/α, we find that

I22 ≤
Ct2d/α

e2νtt2(d+α)/α

∫ t

0

∑
z∈D22

(t− s)s2eν(t+s)ds
|x− z|d+α

, when |x| < 1

2
t1/α, t→∞.

Note that for all z ∈ D22, then |x − z| ≥ 1 on the lattice, and consequently,∑
z∈D22

1

|x− z|d+α
is a convergent series since it can be estimated from above by the

convergent series
∑
|x−z|≥1

1

|x− z|d+α
. The latter series does not depend on x. Hence

I22 ≤
C

t2eνt

∫ t

0

(t− s)s2eνs ds. (75)

By changing the variable s = τt in (75), then

I22 ≤
Ct2

eνt

∫ 1

0

(1− τ)τ 2eντt dτ . (76)

Estimating the integral in (76) by using Lemma 10, it can easily be seen that I22

is bounded when t → ∞ . Thus we have proved that I22 is bounded in the second

case when |x| < 1
2
t1/α, t→∞.

Together with the boundedness of I22 in the first case given in section 4.6.1, when

2t
1
α ≤ |x| ≤ Btγ, we have proved that I22 is bounded.

4.7 Contribution to
m2

m2
1

From the Region D21

In the region D21, we have, |z| ≤ s
1
α and |x − z| > (t − s) 1

α . We will consider the

two cases: first, when 2t
1
α < |x| ≤ βtγ and second, when |x| ≤ 2t

1
α . These two cases

has been considered in section 4.4 when we discussed the contribution to
m2

m2
1

from

the region D12. The reason is that, the two balls P1 and P2, defined in section 4.3,



43

are separated in the first case, and they may be intersect each other in the second

case.

4.7.1 Case 1: Region D21 When 2t
1
α < |x| ≤ Btγ.

From (36), it follows that m2
1(t, x) ∼ t2

|x|2(d+α)
e2νt, for t > 1.

Formula (52) implies that

I21 ≤
C|x|2(d+α)

t2e2νt

∫ t

0

∑
z∈D21

(t− s)
|x− z|d+α(s+ 1)

2d
α

eν(t+s) ds. (77)

Since, |z| ≤ s
1
α ≤ t

1
α < |x|/2, it follows that |x− z| ≥ |x|/2.

So in order to estimate the right side of (77), we replace |x− z| in (77) by |x|/2 .

After that, the summation sign,
∑

z∈D21
, in (77) can be replaced by the number of

terms in this sum which is κ1. Obviously, κ1 ≤ C(Ad1 + 1), where A1 is the radius of

the first ball P1, i.e., κ1 ≤ C[s
d
α + 1].

Then

I21 ≤
C|x|d+α

t2eνt

∫ t

0

(t− s)
(s+ 1)

d
α

eνs ds .

Since we have |x| ≤ Btγ, γ =
2α + d

α(α + d)
, we can replace |x|d+α by Btγ(d+α).

Hence

I21 ≤
Ctd/α

eνt

∫ t

0

(t− s)
(s+ 1)

d
α

eνs ds . (78)

For the estimation of (78), we split the integral in its right hand side so that:

∫ t

0

=

∫ t/2

0

+

∫ t

t/2

.

Let us denote by, I
(1)
21 and I

(2)
21 , the right hand side in (78), with the integral over [0, t]
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is replaced by the integrals over [0, t/2] and [t/2, t] respectively.

In order to estimate I
(1)
21 , we replace (t− s) by t since (t− s) ≤ t, and we drop the

term
1

(1 + s)
d
α

since it is less than 1. Then

I
(1)
21 =

Ctd/α

eνt

∫ t/2

0

(t− s)
(s+ 1)

d
α

eνs ds <
Ct

d
α
+1

eνt

∫ t/2

0

eνs ds. (79)

The right hand side of (79), decays exponentially as t→∞, so it is bounded.

In order to estimate I
(2)
21 , we drop the 1 in (s+1)

d
α , and make the change of variable,

s = τt. Then

I
(2)
21 =

Ctd/α

eνt

∫ t

t/2

(t− s)
s
d
α

eνs ds ≤ Ct2

eνt

∫ 1

1/2

(1− τ)

τ
d
α

eντt dτ . (80)

From Lemma 10, it follows that, the right hand side of (80) is bounded as t→∞.

The boundedness of both (79) and (80) prove that I21, given in (78), is bounded

in the first case when, 2t
1
α < |x| ≤ Btγ and t→∞.

4.7.2 Case 2: Region D21 When |x| ≤ 2t
1
α

For this case, we have that, m2
1(t, x) ∼ 1

t
2d
α

e2tν , as t→∞.

From (52), I21 satisfies that

I21 <
Ct

2d
α

e2νt

∫ t

0

∑
z∈D21

(t− s)
|x− z|d+α(s+ 1)

2d
α

eν(t+s) ds. (81)

For the estimation of the right side of (81), we use that
∑

z∈D21

1

|x− z|d+α
< C

for some x-independent constant C < ∞ (since |x − z| ≥ 1, see the details in the

subsection on D22).
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Thus for |x| ≤ 2t
1
α and t→∞, we have

I21 ≤
Ct

2d
α

eνt

∫ t

0

(t− s)
(s+ 1)

2d
α

eνsds ≤ C <∞. (82)

The boundedness of the right hand side of (82) can be proved exactly in the same

way that was used to prove that (78) is bounded.

Results obtained in sections 4.7.1 and 4.7.2 imply that I21 is bounded as t→∞.

Now the boundedness of all Iij, for i, j = 1, 2 has been proved. This proves that

m2

m2
1

, given in (51) is bounded when |x| ≤ Btγ, t→∞.

This completes the proof of the 2nd part of Theorem 9.
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