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ABSTRACT 

 

 

CHRISTOPHER MICHAEL CILIP.  Noninvasive laser vasectomy. (Under the direction 

of DR. NATHANIEL FRIED) 

 

 

 Development of a noninvasive vasectomy technique may eliminate male fear of 

complications (incision, bleeding, infection, and scrotal pain) and result in a more 

popular procedure.  These studies build off previous studies that report the ability to 

thermally target tissue substructures with near infrared laser radiation while maintaining a 

healthy superficial layer of tissue through active surface cooling.  Initial studies showed 

the ability to increase the working depth compared to that of common dermatological 

procedures and the translation into an ex vivo canine model targeting the vas deferens in a 

noninvasive laser vasectomy.  Laser and cooling parameter optimization was required to 

determine the best possible wavelength for a safe transition to an in vivo canine model.  

Optical clearing agents were investigated as a mechanism to decrease tissue scattering 

during in vivo procedures to increase optical penetration depth and reduce the overall 

power required.  Optical and thermal computer models were developed to determine the 

efficacy for a successful transition into a human model.  Common clinical imaging 

modalities (ultrasound, high frequency ultrasound, and optical coherence tomography) 

were tested as possible candidates for real-time imaging feedback to determine surgical 

success.  Finally, a noninvasive laser vasectomy prototype clamp incorporating laser, 

cooling, and control in a single package was designed and tested in vivo.  Occlusion of 

the canine vas deferens able to withstand physiological burst pressures measured post-

operative was shown during acute and chronic studies.  This procedure is ready for 

azoospermia and recanalization studies in a clinical setting.  
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CHAPTER 1: INTRODUCTION 

 

 

Active cooling methods are currently used in dermatology to preserve the skin 

surface during cosmetic laser procedures, including skin resurfacing, hair removal, and 

treatment of vascular birthmarks.  These technologies include both contact cooling (e.g. 

cold water, sapphire window) and non-contact cooling (e.g. cold air, cryogen spray) [1, 

2].  In dermatology, the tissue structures of interest for laser therapy are usually 

superficial, requiring preservation of only a thin layer of tissue (e.g. epidermis and 

papillary dermis), measuring approximately 200-400 µm. 

 The ability to spare the tissue surface to a depth on the order of a few millimeters 

during laser therapy could result in the development of noninvasive laser procedures 

beyond cosmetic surgery.  Our laboratory has previously demonstrated the creation of 

deep subsurface thermal lesions in a variety of tissues using both non-contact and contact 

cooling techniques [3-5], with the long-range goal of developing a noninvasive form of 

male sterilization. 

Surgical sterilization is currently the most common method of contraception 

among married couples in the United States [6].  Male sterilization (vasectomy) has a 

higher success rate, lower morbidity and mortality rate, is less expensive, and easier to 

perform than female sterilization (tubal ligation) [6-8].  Despite these advantages, 

however, female sterilization is more commonly performed.  Fear of complications 

related to surgery is cited as the primary reason for a couple choosing tubal ligation 
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instead of vasectomy [6, 7, 9].  In the U.S., for example, there are approximately 500,000 

vasectomies and 1 million tubal ligations performed each year [10].  Worldwide, 

approximately 40 million men have had a vasectomy [11].  While there have been no 

reported cases of vasectomy-related deaths in the U.S., there are 10-20 deaths each year 

due to tubal ligation [12, 13].  Worldwide, these numbers are even greater [13].  

Complication rates of vasectomy range from 1-6% and include sterilization failure, 

hematoma, infection, sperm granuloma, and epididymitis [14-16].  However, several 

studies have reported much higher rates of infection (12-38%) which may be due 

primarily to the experience of the physician performing the procedure [10]. 

 During vasectomy, the vas deferens is separated from the spermatic cord vessels 

and manipulated to a superficial position under the scrotal skin.  A needle is used to inject 

local anesthesia around the vas, producing a vasal nerve block.  Then 1-cm-long incisions 

are made through the vas sheath until the vas is exposed (Figure 1).  The vas is delivered 

and the deferential artery, veins, and nerves are dissected free of the vas and spared 

(Figure 2).  A 1-cm-long vas segment is then removed and the ends of the vas are 

occluded using thermal cautery, followed by the placement of hemoclips [10]. 

 

    
 Figure1. Skin incision made to expose the vas. Figure 2. Vas is delivered and occluded. 

 

Images reproduced from: Center for Male Reproductive Medicine and Microsurgery, 

Weill Medical College of Cornell University. 
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1.1 Minimally Invasive Sterilization Techniques 

 Complications with conventional surgical vasectomy and efforts to enhance the 

popularity of vasectomy have motivated the search for a less invasive vasectomy 

technique.  In recent years, the “no-scalpel” vasectomy technique has been developed to 

minimize complications associated with incision during the procedure [17].  This method 

eliminates the use of the scalpel, results in fewer hematomas and infections, and leaves a 

smaller wound than conventional methods [10].  The success of this method is proven by 

a complete reversal in the ratio of male to female sterilizations, now 3 to 1, in the 

Szechuan province of China [9].  However, despite the name “no-scalpel-vasectomy”, 

this procedure still requires a puncture through the skin and does not completely 

eliminate the possibility of bleeding, infection, and scrotal pain. 

 A percutaneous approach to vasectomy has also been performed in over 500,000 

men using chemical ablation with cyanoacrylate and phenol [18-20].  A needle is placed 

into the lumen of the vas using a series of tests involving dye injections for confirmation.  

Although pharmocologic tests of the cyanoacylate-phenol mixture have demonstrated no 

toxicity, these chemicals are not approved for use in the U.S.  Another concern with this 

method is the great skill involved with gaining percutaneous access to the 300-µm-

diameter lumen of the vas deferens.  

 Thermal methods of vas occlusion have also been studied for producing more 

reliable permanent vas occlusion.  Some of these studies have suggested that thermal 

destruction of the vas luminal integrity provides more successful prevention of vas 

recanalization than does suture ligation during wound healing, with failure rates 

decreasing from 1-6% to 0.24% [14, 21].  As a result, it is now common for physicians to 
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cauterize the cut ends of the vas as an alternative to ligation.   There is also evidence that 

more uniform thermal necrosis of the vas lumen with hot wire rather than superficial 

lumen destruction using electrocautery provides more successful results [22].  These 

studies used thermal techniques in either a minimally invasive surgical or percutaneous 

approach to vasectomy [14, 22, 23]. 

 Although conventional vasectomy is a simple, inexpensive procedure with 

minimal morbidity, there are several reasons for exploring a noninvasive approach to 

male sterilization. An incision-less method of male sterilization would eliminate surgery 

and the associated risks of infection, bleeding, and scrotal pain.  This may lead to greater 

acceptance of vasectomy by men, reducing the morbidity, mortality, and cost associated 

with tubal ligation. 

1.2 Theory of Laser Tissue and Cooling Interactions 

 There is a large matrix of laser and cooling parameters which needs to be 

optimized to maximize the layer of surface tissue preserved during noninvasive laser 

coagulation of subsurface tissue structures.   

1.2.1 Laser Parameters 

1.2.1.1 Wavelength 

 Previous studies have used wavelengths in which the laser radiation is selectively 

absorbed by the target, termed “selective photothermolysis” [4].  For example, in the 

treatment of port-wine stains, a pulsed dye laser is used because the orange laser light (= 

585 nm) is preferentially absorbed by the targeted blood vessel, reducing the probability 

of skin damage.  This laser wavelength is adequate if the targeted blood vessels are 

located relatively close to the skin surface in the papillary dermis.  However, if it is 
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desired to target tissue structures 1-2 mm below the tissue surface or deeper (e.g. below 

the dermis), as proposed here, then a laser wavelength should be chosen which provides 

optimal penetration of the light in tissue.  In the near-infrared spectrum, there is an 

“optical window” from approximately 800-1300 nm, which provides the deepest 

penetration of light in tissue (Figure 3).  Absorption by major tissue chromophores (e.g. 

melanin, hemoglobin, collagen, water) is low in the near-IR spectrum.  There are at least 

three high-power laser sources in this spectrum range which could potentially be used for 

our application: the Nd:YAG laser (= 1064 nm), used in our preliminary studies, and 

diode lasers ( = 808 nm and 980 nm).  These lasers provide deep penetration of light in 

tissue and are commercially available at high laser powers necessary for tissue 

coagulation.  A comparison of these three laser sources will be conducted in chapter 4 to 

determine if there is a significant difference in thermal lesion depth and size produced 

with these three laser sources. 
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Figure 3. Absorption curves for protein, collagen, hemoglobin, melanin, and water. 

 

 

1.2.1.2 Spot Size 

 In the near-infrared wavelength range, scattering of radiation dominates absorption.  

Scattering of photons within the tissue can result in a significant decrease in penetration 

depth of the radiation and cause a temperature gradient with tissue depth.  By using a large 

diameter laser beam a larger ratio of area to circumference is created.  This reduction in 

peripheral scattering compared to beam area allows the radiation to penetrate deeper into the 

tissue;  thus, the temperature distribution is more uniform, and laser coagulation of deeper 

tissue structures can be achieved, as has been demonstrated in previous studies (Figure 4) 

[24-27].  A large laser spot also provides treatment of a larger tissue volume in a single 

application.   
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1.2.1.3 Pulse Duration 

 Delivering laser radiation in a pulsed mode limits heat diffusion during the laser 

pulse, thus preventing undesirable heating of adjacent tissue structures.  For our application, 

pulsed delivery will prevent significant heat from diffusing to the surface of the tissue which 

would otherwise counteract the benefits of surface cooling, and reduces the probability of 

thermal buildup at the surface itself from direct absorption of the laser radiation [28, 29]. 

1.2.1.4 Irradiation Time 

 The laser power and total irradiation time will be studied to determine the optimal 

combination of laser parameters necessary to produce a subsurface thermal lesion. Multiple 

pulses of laser radiation will be applied to the tissue, allowing subsurface tissue temperatures 

to rise above the threshold for thermal coagulation, resulting in cumulative thermal damage 

at the subsurface target site [30]. 
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Figure 4. Distribution of light in tissue for flat collimated laser beams with diameters of 

(a) 200 µm, (b) 1 mm, and (c) 4 mm. The same laser irradiance (1 W/cm
2
) is used for all 

three laser spot diameters. Note, however, that as the laser spot size is increased the 

penetration depth of the laser radiation also increases.  For example, the 0.1 W/cm
2
 

irradiance line in the tissue is located at depths of 0.4 mm, 1.0 mm, and 1.3 mm for the 

spot sizes used in diagrams a, b, and c, respectively. The distribution of the laser radiation 

is also more uniform for larger laser spot diameters [25]. 
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1.2.2 Cooling Parameters 

1.2.2.1 Pulse Duration 

 For non-contact cryogen cooling of the tissue surface, the pulse duration is critical to 

providing effective cooling of the tissue surface.  Short pulse lengths will not effectively 

counteract the absorption of laser radiation and consequent heating of the tissue surface, thus 

resulting in thermal damage at the tissue surface.  Long pulse lengths will cause excessive 

cooling of the tissue surface, resulting in ice formation that may absorb incoming laser 

radiation and possibly cause frost damage to the tissue surface.  

1.2.2.2 Pulse Repetition Rate / Duty Cycle 

 The pulse repetition rate will have a similar effect as the cryogen pulse duration, with 

low repetition rates resulting in thermal damage at the tissue surface, and higher repetition 

rates resulting in ice formation and buildup on the surface.  The goal of applied cooling is to 

cool the tissue surface as rapidly as possible to prevent thermal damage and limit the 

operation time, without causing such adverse effects. 

1.2.2.3 Spot Size / Working Distance 

 The cooling area or spot size may play an important role in determining the optimal 

matrix of cooling parameters.  During preliminary studies, we used a relatively large cryogen 

spot diameter of 2 cm, with the 3-mm-diameter laser beam concentric within the cryogen 

spot.  However, there may be concerns with the cryogen spray diverging and becoming less 

dense in the air during application, thus possibly becoming less effective in cooling the tissue 

surface.  



 

 

CHAPTER 2: NONINVASIVE LASER COAGULATION OF DEEP SUBSURFACE 

TISSUE STRUCTURES 

 

 

2.1 Introduction 

 The objective of this ex vivo tissue study was to optimize a laser probe design and 

laser and cooling parameters to provide rapid creation of a subsurface thermal lesion 

while maximizing the thickness of preserved tissue at the surface of the tissue sample.  

The ability to create subsurface lesions will lead to further studies on clinically viable 

applications using this technique, primarily, noninvasive laser vasectomy. 

2.2 Materials and Methods 

2.2.1 Tissue Preparation 

 Porcine liver tissue was used as a model because the thermal lesions can be easily 

quantified by analysis of the gross tissue immediately after completion of the study.  The 

livers were sectioned into 50 x 50 x 15 mm (L x W x D) samples and then used either 

fresh or frozen for future studies.  The porcine liver samples were immersed in a saline 

bath, placed on a controlled heating plate, and maintained at a physiological temperature 

of 37 
o
C with monitoring by embedded micro-thermocouples. 
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2.2.2 Laser Parameters 

 A 50-Watt Ytterbium fiber laser with a wavelength of 1075 nm was used for the 

experiments.  This near-infrared laser wavelength was chosen to provide the deepest 

optical penetration depth (approximately 2-3 mm) of the laser radiation in soft tissues.  

The laser radiation was coupled into a custom-made laser probe using a 100-mm-FL lens 

and a 400-µm-core fiber optic patch-cord.  The laser probe was assembled using lens 

tubes with a 12.7-mm-ID, housing the optics, including a lens for collimating the laser 

radiation and a mirror for 90
o
delivery.  The average laser power and spot diameter at the 

tissue surface measured 12.5 W and 6.4 mm (1/e
2
), respectively.  Laser power output was 

calibrated using a power meter.  The Gaussian laser beam was measured by using an 

infrared beam analyzer and by performing a razor blade scan.  The transmission rate for 

laser power through the probe measured approximately 73%. 

2.2.3 Cooling System 

 The cooling element of the laser probe consisted of a compact 210 W 

thermoelectric recirculating chiller.  A solution consisting of 25% ethylene alcohol and 

75% water by volume was used as a coolant and allowed the chiller to operate at a 

temperature of - 5 
o
C.  The coolant flowed at a rate of 8.5 ml/sec through the flow cell 

with a cooling power of approximately 38 W at - 5 
o
C.  The custom-built flow cell 

consisted of aluminum housing with a sapphire plate mounted at the surface (Figure 5). 
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Figure 5. Laser probe. The black stem consists of a series of lens tubes housing the 

optics. The aluminum housing is a custom made flow-cell with a sapphire window. 

 

 

 The coolant flowed through a circular channel around the circumference of the 

flow cell, while an 8-mm-diameter aperture in the center of the flow cell provided an 

optical window for transmission of the laser radiation through the sapphire plate.  The 

sapphire plate served as a transparent window for transmission of the laser radiation, 

while also acting as a thermally conductive material for cooling the tissue surface.  The 

experimental setup is shown in Figure 6 and the laser/cooling parameters are summarized 

in Table 1. 

 

 
Figure 6. Experimental setup (Noninvasive substructure coagulation). 
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Table 1. Optimal Laser and Cooling Parameters 

Laser Parameters Cooling Parameters 

Average Power at Surface (W) 12.5 Cooling Power at 20 
o
C (W) 210 

Spot Diameter (mm) 6.4 Cooling Power at - 5 
o
C (W) 8 

Irradiance (W/cm
2
): 39 Chiller Temperature (

o
C) -5 

Pulse Duration (ms) 50 Sapphire Window Temperature (
o
C) -1 

Pulse Repetition Rate (Hz) 10 Tissue Surface Temperature (
o
C) 13 

Duty Cycle 1:1 Temperature 1.5mm Below Surface (
o
C) 28 

Total Number of Laser Pulses 300 Pre-ablation Cooling Time (s) 15 

Laser Irradiation Time (s) 30   

Total Treatment Time (s) 45   

 

 

2.2.4 Statistical Analysis 

 After creating the thermal lesion in the liver tissue, both gross and histologic 

examination was used to measure the lesion characteristics in the liver.  Lesion 

dimensions and the thickness of the preserved surface tissue layer were measured in the 

samples, with the mean + standard deviation (S.D.) recorded (Table 2). 

2.3 Results 

 Temperature measurements were conducted using insulated micro-thermocouples 

interfaced to a personal computer with automated acquisition of temperature vs. time 

data.  The thermocouples were inserted at 0 and 1.5 mm below the tissue surface using 

16-G syringe needles, which were removed from the tissue prior to the experiments. 

Temperature measurements were recorded during the pre-ablation cooling phase at a 

sampling rate of 1 s (Figure 7). 



14 

 

 

 
Figure 7. Temperature profile during pre-ablation tissue cooling. The temperature at the 

surface decreases at a much lower rate after about 15 s, while temperature 1.5 mm below 

surface continues to decrease, lowering the overall temperature differential. 

 

 

 The temperature at the tissue surface initially decreased rapidly upon sapphire 

contact cooling, and then bottomed out after about 15 s, with only a smaller decrease in 

temperature afterwards, at the expense of increased treatment time.  Also, longer cooling 

times continued to decrease the subsurface tissue temperature near the targeted lesion 

site, an undesirable effect.  Hence, an optimal pre-ablation cooling time of 15 s was 

chosen for the laser studies. 

 A wide range of laser and cooling parameters were tested.  The optimal treatment 

parameters are listed in Table 1, based on a set of 10 tissue samples.  Gross and histologic 

examination was used to quantify thermal lesion dimensions (Figure 8).  Liver lesions 

measured 5.8 mm in diameter, while preserving the tissue surface to a depth of 1.5 mm 

(Table 2).  The layer of preserved tissue observed was a function of the cooling 

parameters used.  The lesion depth was determined in part by the 1/e optical penetration 

depth at the laser wavelength of 1075 nm for liver tissue, which is approximately 2-3 

mm, and the thermal diffusion in the tissue during the quasi-CW application of the laser 
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radiation.  The lesion width is directly proportional to the laser spot diameter chosen, 6.4 

mm (1/e
2
), but also in part a function of thermal diffusion in the tissue. 

 

  
 (a) (b) 
Figure 8. Gross and histology images of liver lesion: (a) Gross image showing thermal 

coagulation (in white) of subsurface liver tissue, while tissue surface is preserved to a 

depth of 1.5 mm (Scale bar = 1 mm increments); (b) H&E-stained histologic cross-

section showing native liver tissue that has a dense granular appearance to a depth of 1.5 

mm, in comparison with thermally coagulated subsurface liver tissue that has a less dense 

appearance (Scale bar = 100 µm increments). 

 

 

Table 2. Lesion Dimensions 
 

 

 

 

 

2.4 Discussion 

 Active cooling methods in dermatology have focused on the preservation of a 

superficial layer of skin during cosmetic laser procedures to reduce erythema and pain 

during the procedure.  Typically, only 200-400 µm of skin is preserved during cosmetic 

laser procedures since the targeted subsurface tissue structures are usually superficial.  

This study has demonstrated that more aggressive cooling of the tissue surface in 

combination with deeper laser heating of the subsurface tissues may preserve the tissue 

surface to a greater depth, while also targeting deeper subsurface tissue structures for 

Native

Tissue

Coagulated

Tissue

Preserved Surface Tissue Layer (mm) 1.5 + 0.2 

Lesion Width (mm) 5.8 + 0.6 

Lesion Depth (mm) 5.8 + 1.0 

Lesion Area (mm
2
) 28.3 + 5.4 
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thermal therapy applications.  A 1.5-mm-thick tissue layer at the surface of the liver was 

preserved, while thermal lesions of approximately 5.8-mm-diameter were created.  This 

result is significantly greater than the 400-µm layer of tissue preserved in liver samples 

previously reported by other research groups [31].  It should be emphasized that while the 

results of these preliminary ex vivo tissue studies appear promising, in vivo animal studies 

will be necessary to more accurately determine the effects of tissue hydration and blood 

perfusion on the size and depth of the thermal lesions. 

 The ability to target deep subsurface anatomical structures using combined 

laser/cooling techniques may potentially result in new applications of lasers for 

completely noninvasive procedures in urology and other surgical fields.  Previous reports 

have shown that thermal ablation techniques can potentially be used for applications in 

noninvasive male sterilization, treatment of female stress urinary incontinence, and 

testicular ablation.  For example, experimental procedures using therapeutic focused 

ultrasound have been used to noninvasively thermally coagulate the vas deferens in the 

male reproductive tract, while preserving the overlying scrotal skin layer which measures 

only about 1 mm thick [32, 33].  In female urology, radiofrequency ablation is being used 

to thermally remodel the bladder muscles in a minimally invasive method for treatment 

of female urinary stress incontinence without thermal damage to the vaginal mucosa [34, 

35].  Therapeutic ultrasound has also been used to noninvasively target and destroy small 

testicular tumors [36]. 

 In all of these applications, a noninvasive method which preserves the tissue 

surface from thermal damage while targeting tissue structures a few millimeters below 

the surface may be beneficial.  However, noninvasive application of radiofrequency 
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energy is limited due to its shallow penetration depth in tissue.  Therapeutic focused 

ultrasound may also be limited by the relatively slow creation of thermal lesions.  This 

study describes an alternative laser-based method for rapid noninvasive creation of deep 

thermal lesions in tissue. 

2.5 Conclusions 

 Deep subsurface thermal lesions were created in tissue using a laser and contact 

cooling probe.  These preliminary results suggest that noninvasive procedures targeting 

anatomic structures within a few millimeters of the tissue surface are feasible.   

  



 

 

CHAPTER 3: NONINVASIVE LASER COAGULATION OF THE CANINE VAS 

DEFERENS, EX VIVO 

 

 

3.1 Introduction 

 By successfully creating deep subsurface thermal lesions while sparing the skin 

surface our laboratory is able to pursue clinical applications using this energy based 

technique as a way to replace or compliment other techniques.  Our laboratory previously 

reported the use of therapeutic focused ultrasound for noninvasive vasectomy in a canine 

model [32, 33].  An ultrasound clip was used to noninvasively grasp the vas deferens 

through the scrotal skin and deliver ultrasound energy to thermally occlude the vas.  The 

ultrasound transducer was mounted on a plastic clip with an ultrasound focus that 

coincided with the vas once it was grasped within the clip‟s jaws.  Cold water was flowed 

through a balloon on the front side of the clip to cool the scrotal skin during sonication.  

Ultrasound heating of the vas deferens produced thermal coagulation, necrosis, and 

scarring of the vas, with the resulting occlusion leading to sterilization.  Unfortunately, 

complications included inconsistent vas occlusion and scrotal skin burns. 

 Recent studies showing successful creation of deep subsurface thermal lesions 

while sparring the surface of the skin using near infrared laser radiation [3-5] present a 

viable alternative to ultrasound vas occlusion.  A laser-based approach offers several 

advantages over ultrasound.  First, unlike ultrasound, the laser energy can be delivered to 

the tissue in a non-contact mode without the need for a coupling medium.  This allows a 

conventional no-scalpel vasectomy approach to be taken for separating and isolating the 
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vas under the skin prior to vasectomy.  It also preserves the urologist‟s field-of-view so 

he can directly visually monitor the skin surface during subsurface heating of the vas and 

prevent the formation of scrotal skin burns.  Second, it is possible to create circular 

lesions that match the geometry of the vas tube, while focused ultrasound typically 

creates acorn-shaped lesions with a higher depth-to-with ratio, more likely to damage 

tissue structures immediately surrounding the vas. 

3.2 Materials and Methods 

3.2.1 Tissue Studies 

 Scrotal skin and vas tissue was harvested from male dogs immediately after 

sacrifice for unrelated experiments.  The tissue was used in an ex vivo vasectomy model.  

The tissue was partially submerged in a temperature-controlled saline bath, placed on a 

hotplate, and maintained at approximately 37 
o
C.  A 4.0-mm-inner diameter vasectomy 

clamp was then used to tightly grasp the vas and surrounding scrotal skin.  Table 3 

provides a comparison between the normal thickness of the tissue layers and the 

thicknesses after compression between the vasectomy clamp, as measured using both 

standard calipers and an optical coherence tomography system. 

 

Table 3. Canine Tissue Dimensions (mm) 

 

 

 

  

Normal scrotal skin thickness 1.8 

Compressed scrotal skin thickness 1.0 

Uncompressed vas wall thickness 0.55 

Total vas thickness 1.3 

Vas lumen 0.2 
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3.2.2 Laser and Cooling Parameters 

 A 50-W CW Ytterbium fiber laser emitted radiation with a wavelength of 1075 

nm that was focused with a 300-mm-FL lens into a 400-µm silica fiber optic patchcord.  

A function generator was used to modulate the fiber laser, producing an average output 

power of 11.7 W, 1-s pulse duration, 0.5 Hz pulse rate, and 3-mm-diameter spot at the 

scrotal skin surface.  Average power is defined as the total power seen by the tissue over 

the course of the procedure. 

 A dynamic cooling device was used to deliver the cryogen to the tissue surface 

through a solenoid valve.  The solenoid valve was externally triggered with a 50-ms-long 

pulse from a function generator, and an oscilloscope was used to view the pulse 

characteristics.  A total of 2 cryogen pulses were used to pre-cool the tissue surface prior 

to irradiation.  During irradiation, the cryogen spray was delivered intermittently between 

laser pulses with a pulse duration of 60 ms, pulse repetition rate of 0.333 Hz, and a 2-cm-

diameter spot size concentric with the laser spot.  A summary of the treatment parameters 

is provided in Table 4, and diagrams of the experimental setup are shown in Figure 9.   

 

Table 4. Summary of Laser and Cooling Parameters 

Laser Parameters Cooling Parameters 

Wavelength (nm) 1075 Pulse Duration (ms) 60 

Average Power (W) 11.7 Pulse Repetition Rate (Hz) 0.33 

Pulse Duration (s) 1.0 Spot Diameter (mm) 20 

Pulse Repetition Rate (Hz) 0.5 Number of Pre-Cooling Pulses 2 

Duty Cycle 1:1 Total Number of Pulses 23 

1/e
2
 Spot Diameter (mm) 3.0 Total Treatment Time (s) 66 
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 (b) 

 

 

 

 

 

 (a) (c) 

Figure 9. Experimental setup (Noninvasive laser vasectomy showing burst pressure 

setup). (a) Experimental setup for laser vasectomy; (b) Image of alignment of laser beam 

and cryogen spray on the surface of the scrotal skin and clamped vas; (c) Experimental 

setup for vas burst pressure measurements.   

 

 

3.2.3 Tissue Temperature Measurements 

 Temperature measurements were conducted during the pre-ablation cooling phase 

using insulated micro-thermocouples interfaced to a personal computer with automated 

acquisition of temperature vs. time data.  The thermocouples were placed at the skin 

surface and inside the vas lumen at approximately 1.5 mm below the skin surface. 

Temperature measurements were recorded during the pre-ablation cooling phase at a 

sampling rate of 1 s. 
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3.2.4 Burst Pressure Measurements 

 Vas burst pressure measurements were performed to quantify the degree of 

closure of the thermally coagulated vas.  The ports of a 3-way stopcock were connected 

to a 50 mL syringe, pressure transducer, and hypodermic needle.  The syringe was filled 

with water which was also distributed throughout the entire system.  The vas was 

attached to a 27-G (406-µm-OD) hypodermic needle and clamped with hemostats.  A 

pressure analyzer unit was calibrated to zero setting.  Saline from the syringe was then 

slowly pumped into the vas tube, resulting in a pressure reading that elevated over a 20 s 

time period until the vas burst open and the pressure dropped precipitously. 

3.2.5 Statistical Analysis 

 A total of 20 vas were thermally coagulated with 10 vas processed for histologic 

measurements and 10 vas used for burst pressure measurements.  The mean + standard 

deviation (S.D.) was calculated for each parameter measured. 

3.3 Results 

3.3.1 Thermal Coagulation of the Vas 

 Thermal coagulation and occlusion of the vas was achieved in all samples with 

one exception.  If the 3-mm-diameter laser beam was not correctly centered within the 4-

mm-ID ring of the vasectomy clamp, skin burns were observed from absorption and 

scattering of the laser radiation off of the steel clamp, and the vas was incompletely 

coagulated.  Gross measurements and histologic analysis were both used to assess the 

thermal lesion dimensions on the vas.  Gross analysis was more accurate due to the 

difficulty in achieving precise longitudinal histologic sections through the vas lumen. Vas 

lesion dimensions measured 2.0 + 0.3 mm diameter by 3.0 + 0.9 mm length, without any 



23 

 

 

visual evidence of skin damage (Table 5).  Analysis of histologic cross-sections and 

longitudinal sections of the vas demonstrated complete closure of the vas lumen (Figure 

10).  The targeted area of the vas consistently demonstrated significant blanching, 

hardening, and shrinkage, all characteristic indicators of thermally coagulated tissue.    

 

Table 5. Dimensions of Thermal Lesions in the Canine Vas 

 

 

 

 

 

         
 (a) (b) (c) 

Figure 10. Gross and histology images of coagulated vas deferens. H&E-stained 

histological cross-section and (b) longitudinal section of vas after laser coagulation, 

demonstrating complete vas occlusion. (c) Gross image of the thermally coagulated 

region of the vas lesion (ruler bar = 1 mm increments).  

 

 

3.3.2 Tissue Temperature Measurements 

 Figure 11 shows temperature versus time data for the scrotal skin surface and vas 

during the pre-ablation cooling phase of the study, with the first 0.33 Hz pulse of cooling 

occurring at 4 seconds.  The scrotal skin surface cools down to approximately 20 
o
C, 

while the vas remains at 35 
o
C.  This separation in temperatures provides a therapeutic 

Native Vas Width (mm) 2.8 + 0.3 

Coagulated Vas Diameter (mm) 2.0 + 0.3 

Reduction in Vas Diameter (%) 30 + 8 

Vas Lesion Length (mm) 3.0 + 0.9 

Coagulated Vas 
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window in which to heat and coagulate the vas without causing thermal damage to the 

scrotal skin surface. 

 

 
Figure 11. Temperature vs. time graph for scrotal skin surface (solid line) and vas (dotted 

line) during pre-ablation cooling phase. The scrotal skin surface cools down to 

approximately 20
o
C, while the vas remains at 35 

o
C. This separation in temperatures 

provides a therapeutic window in which to heat and coagulate the vas without causing 

thermal damage to the skin surface. 

 

 

3.3.3 Burst Pressure Measurements 

 The resting intravasal pressure (IVP) of the vas is approximately 5 + 1 mm Hg 

and the IVP during ejaculation reaches 136 + 29 mm Hg [37].  The bursting pressure of 

the coagulated vas samples averaged 295 + 72 mm Hg, significantly above the resting 

and ejaculation pressures that the vas physiologically experiences.    

3.4 Discussion 

 This preliminary study explores the application of lasers for noninvasive thermal 

coagulation and occlusion of the vas in an ex vivo canine model.  A compact, Ytterbium 

fiber laser with a wavelength of 1075 nm was chosen to provide deep penetration of the 

laser energy through the skin to the targeted vas deferens.  Cryogen spray cooling of the 

tissue surface prevented scrotal skin burns during the procedure.  Both the laser radiation 
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and cryogen spray were delivered in a non-contact mode to the tissue.  This approach 

allowed a conventional no-scalpel vasectomy method to be applied for separating and 

isolating the vas under the scrotal skin prior to vasectomy, using a standard vasectomy 

clamp.  This procedure also preserved the surgical field-of-view, potentially allowing the 

urologist to visually monitor the skin surface during subsurface heating of the vas and 

prevent the formation of scrotal skin burns. 

 Several indicators were used to confirm thermal occlusion of the vas, including 

gross and histologic analysis of the vas and burst pressure measurements.  Thermal 

lesions in the vas measured approximately 2 mm diameter by 3 mm length, without any 

evidence of scrotal skin burns.  Burst pressures for the coagulated vas measured about 

300 mm Hg, over twice as high as the approximately 140 mm Hg that the vas experiences 

during ejaculation.   

3.5 Conclusions 

 Noninvasive laser coagulation and occlusion of the vas deferens is possible in a 

canine tissue model, ex vivo.  Gross and histologic measurements as well as burst 

pressure measurements confirm that the vas can be consistently thermally occluded in a 

noninvasive manner without evidence of thermal damage to the scrotal skin surface.  This 

technique can easily be integrated into the no-scalpel vasectomy technique currently in 

clinical practice.  Chronic in vivo animal studies will first be necessary to optimize the 

laser/cooling treatment parameters and confirm long-term vas occlusion with absence of 

sperm in the ejaculate. 

  



 

 

CHAPTER 4: NEAR-INFRARED WAVELENGTHS FOR NONINVASIVE LASER 

VASECTOMY 

 

 

4.1 Introduction 

 We  have reported successful targeting, thermal occlusion, and scarring of the vas 

in an ex vivo canine model [38].  However, the therapeutic window for treatment is 

relatively narrow.  This study determines the dependence of vas thermal coagulation on 

laser wavelength for development of a noninvasive laser vasectomy procedure.  Three 

commonly available near-infrared laser wavelengths were studied, including, 808, 980, 

and 1075 nm. 

4.2 Methods 

4.2.1 Laser Parameters 

 Three near-infrared lasers were compared for this study:  a CW, 30 W, 808 nm 

diode laser (Model # P30-808-6OEM, Apollo Instruments, Irvine, CA); a CW, 60 W, 980 

nm diode laser (Model #60980 Optiwave 980, Edwards Lifesciences, Irvine, CA); and a 

50 W, 1075 nm, Ytterbium fiber laser (Model #YLR-50-1075, IPG Photonics, Oxford, 

CA), shown in Figure 12.  Each laser delivered an average power of 9.2 W, 500-ms pulse 

duration, pulse rate of 1.0-Hz, and 3.2-mm diameter laser spot to the tissue, through a 

400-µm silica fiber optic patch-cord, for a total treatment time of 60 s.   
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 (a) (b) (c) 

Figure 12. Images of the three tabletop, near-infrared lasers used in this study, (a) 808 

nm, (b) 980 nm, (c) 1075 nm. 

 

 

4.2.2 Cryogen Cooling System 

 A dynamic cooling device (DCD, Candela Laser Corporation, Wayland, MA) was 

used to deliver the cryogen (halocarbon 134a, 1,1,1,2-tetrafluoroethane, boiling point =  - 

26 
o
C) to the tissue surface through a solenoid valve.  The solenoid valve was externally 

triggered using a function generator and an oscilloscope to view the pulse characteristics.  

Two cryogen pulses were applied to pre-cool the skin surface prior to irradiation.  During 

irradiation, the cryogen spray was delivered intermittently between laser pulses with 

pulse duration of 60 ms, pulse rate of 0.333 Hz, and a 1-cm-diameter spot concentric with 

the laser spot.  Table 6 summarizes the treatment parameters used in this study.  

 

Table 6. Summary of treatment parameters 

Laser Parameters Cooling Parameters 

Wavelength (nm): 
808, 980, 

1075 
Pulse Duration (ms): 60 

Average Power (W): 9.2 Pulse Rate (Hz): 0.33 

Pulse Duration (ms): 500 Spot Diameter (mm): 10 

Pulse Rate (Hz): 1.0 Cooling Time (s): 60 

Spot Diameter (mm): 3.2   

Irradiation Time (s): 60   
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4.2.3 Burst Press Measurements 

 Vas burst pressure measurements were performed to quantify the degree of 

closure of the thermally coagulated vas in a manner identical to that previously reported 

in chapter 3 (Figure 13). 

 

 
Figure 13. Photograph of experimental setup for measuring vas burst pressures, 

consisting of a pressure transducer, pressure analyzer unit, and syringe pump.  

 

 

4.2.4 Statistical Analysis 

 Multiple vas tissue samples were used for each laser data set.  Burst pressure 

measurements were conducted, and the mean + standard deviation (S.D.) was calculated 

for each parameter measured. 

4.3 Results 

 Several indicators were used to determine successful noninvasive thermal 

coagulation of the vas, including vas burst pressure measurements, gross observation of 
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vas coagulation, and monitoring of the scrotal skin surface for evidence of burns.  Table 7 

summarizes the vas burst pressure results and probability of skin burns.  The 808 nm 

laser wavelength produced thermal occlusion of the vas without frequent skin burns.  

However, the burst pressures were not significantly greater than normal ejaculation 

pressures typically experienced by the vas [37].  The 980 nm laser wavelength produced 

very weak vas burst pressures and always resulted in skin burns.  Only the 1075 nm laser 

wavelength was able to produce vas burst pressures significantly greater than typical vas 

ejaculation pressures, without the formation of scrotal skin burns.  

 

Table 7.Burst pressure and skin burn results for the three near-IR lasers 

Wavelength (nm) 
Burst Pressure 

(mmHg) 

Scrotal Skin 

Burns 
N 

808 141 ± 61 1/12 (8%) 12 

980 89 ± 58 8/8 (100%) 8 

1075 288 ± 28 0/9 (0%) 9 

Ejaculation (control) 

[9] 
136 ± 29   

 

 

 Representative images of the canine vas deferens, after noninvasive laser 

coagulation was performed, ex vivo, are shown in Figure 14.  Typical indicators of vas 

thermal coagulation and occlusion, including blanching and shrinkage of the vas in the 

area of treatment, are clearly observed for the 808 and 1075 nm wavelengths.  However, 

no visual evidence of thermal coagulation of the vas for the 980 nm can be observed. 
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 (a) (b) (c) 

Figure 14. Representative images of the canine vas deferens taken immediately after 

noninvasive thermal coagulation of the vas, ex vivo, using (a) 808, (b) 980, and (c) 1075 

nm lasers. Evidence of thermal coagulation of the vas, such as tissue blanching and 

shrinkage was observed after irradiation with 808 and 1075 nm lasers, but not with the 

980 nm laser. 

 

 

 Representative images of the scrotal skin surface, after the procedure, are shown 

in Figure 15.  Temporary compression marks in the skin caused by the vasectomy ring 

clamp were observed during all of the procedures but typically disappeared soon after the 

procedure.  For the 808 and 1075 lasers, the treatment area did not show any signs of 

thermal coagulation that could lead to scrotal skin burns during a procedure, in vivo.  For 

the 980 nm wavelength, however, thermal coagulation of the scrotal skin surface was 

always observed after each procedure. 
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no coagulation
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 (a) (b) (c) 

Figure 15. Representative images of the canine scrotal skin surface taken immediately 

after noninvasive thermal coagulation of the canine vas deferens, ex vivo, using (a) 808, 

(b) 980, and (c) 1075 nm lasers. The vasectomy ring clamp compression marks typically 

disappear soon after the procedure. Thermal coagulation that may lead to severe scrotal 

skin burns during a procedure, in vivo, was consistently observed for the 980 nm laser 

wavelength.  

 

4.4 Discussion 

 In summary, the 808 nm laser wavelength produced thermal occlusion of the vas 

without skin burns.  However, the vas burst pressures were not strong enough to 

withstand typical vas ejaculation pressures.  The 980 nm laser wavelength produced very 

weak vas burst pressures while creating severe scrotal skin burns.  The 1075 nm laser 

wavelength was able to produce vas burst pressures significantly greater than typical vas 

ejaculation pressures without formation of skin burns. 

 In order to interpret these results, the optical penetration depth of these three laser 

wavelengths in skin needs to be compared.  Figure 16a plots the optical penetration depth 

in human skin for the wavelength range of 400 - 2000 nm [39].  Although the canine 

model is the most commonly accepted large animal model for surgical vasectomy 

research studies, there is a significant difference in the optical properties of canine and 

human skin.  Nevertheless, the trends between the two models should be similar.  The 

graph shows a roughly similar optical penetration depth for 808 and 980 nm, of about 2.3 

clamp marks

clamp marks

skin burn
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mm, and a near optimal penetration depth for 1075 nm, of about 3.5 mm.  The peak 

penetration depth in human skin occurs at a wavelength of 1090 nm, close to the 1075 nm 

wavelength used in this study [39].  This observation may explain the superior results for 

vas bursting pressures achieved at 1075 nm and the absence of skin burns.   

 However, the data in Figure 16a does not predict the large difference in results 

between the 808 and 980 nm wavelengths that were observed in this experimental study.  

In order to understand why the 980 nm wavelength produced severe skin burns, while the 

808 and 1075 nm wavelengths did not, the role of water absorption during our procedure 

needs to be discussed as well.  In Figure 16b, the water absorption coefficient is plotted 

as a function of wavelength in the range from 800 - 1100 nm [40].  While water 

absorption is relatively low at 808 and 1075 nm, there is a water absorption peak near 

980 nm.  This graph explains why severe skin burns are observed and form at the scrotal 

skin surface during 980 nm laser irradiation of the scrotal skin.  Residual water layers 

present on the skin surface from the cryogen spray cooling during the procedure strongly 

absorb the 980 nm laser radiation, resulting in a much higher temperature rise on the skin 

surface than for the 808 and 1075 nm wavelengths.   
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 (a) (b) 

Figure 16. (a) Optical penetration depth of light into human skin over the wavelength 

range of 400 - 2000 nm [39]; (b) Water absorption coefficients in the near-infrared range 

of 800 - 1100 nm [40]. 

 

 

4.5 Conclusions 

 The 1075 nm laser wavelength was the only near-IR wavelength studied that 

consistently resulted in thermal coagulation and occlusion of the canine vas deferens 

without the formation of scrotal skin burns in a canine vasectomy tissue model, ex vivo.  

  

0

0.01

0.02

0.03

0.04

0.05

800 850 900 950 1000 1050 1100

A
b

s
o

rp
ti

o
n

 C
o

e
ff

ic
ie

n
t 

(1
/m

m
)

Wavelength (nm)

1075 nm 
 

980 nm 
808 nm 1075 nm 980 nm 808 nm 



 

 

CHAPTER 5: NONINVASIVE LASER COAGULATION OF THE CANINE VAS 

DEFERENS, IN VIVO 

 

 

5.1 Introduction 

 We have developed a novel noninvasive vasectomy technique utilizing near-

infrared laser irradiation in conjunction with cryogen spray cooling of the scrotal skin 

surface for successful thermal coagulation and occlusion of the vas deferens while 

minimizing scrotal skin injury in an ex vivo model [38].  Previous studies report that 

laser, cooling and wavelength parameters have been optimized in an ex vivo model and 

can now be tested in an in vivo model.  In this study, we report our initial in vivo 

experience of noninvasive laser vasectomy in a canine model. 

5.2 Materials and Methods 

5.2.1 Animal Studies 

 All procedures were conducted at Johns Hopkins Hospital (Baltimore, MD) under 

an animal protocol approved by the Johns Hopkins Animal Review Committee.  

Noninvasive thermal occlusion of the vas was performed bilaterally in a total of 8 dogs (n 

= 16 vasa).  The study was divided into two groups.  In Group 1, the vas tissue from four 

dogs (n = 8 vasa) was harvested immediately after the procedure to provide acute data at 

Day 0.  In Group 2, another four dogs were allowed to recover for 21 days post-

operatively in a short-term chronic study before the vas tissue was harvested.  The 

animals were monitored on a daily basis for any signs of distress.  All of the dogs used 
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for this study were neutered after either Day 0 or Day 21 of the procedure and then 

adopted out to caring homes. 

5.2.2 Laser Parameters 

 A 50-W, CW Ytterbium fiber laser (Model TLR1075-50, IPG Photonics, Oxford, 

MA) emitted radiation at a wavelength of 1075 nm which was then focused with a 300-

mm-FL lens into a 400-µm fiber optic patch-cord.  A lens at the end of the patch-cord 

delivered a collimated laser beam to the tissue.  A function generator was used to 

electronically modulate the fiber laser for pulsed delivery of the laser radiation, 

producing an average output power of 11.2 W, 500-ms pulse duration, 0.5 Hz pulse rate, 

and 3-mm-diameter spot at the scrotal skin surface (Figure 17). 

5.2.3 Cooling Parameters 

 A dynamic cooling device (DCD, Candela Laser Corporation, Wayland, MA) was 

used to deliver the cryogen (halocarbon 134a, 1,1,1,2-tetrafluoroethane, boiling point =  - 

26 
o
C) to the tissue surface through a solenoid valve.  The solenoid valve was externally 

triggered using a function generator and an oscilloscope was used to view the pulse 

characteristics.  Three cryogen pulses were applied to pre-cool the skin surface prior to 

laser irradiation.  During irradiation, the cryogen spray was delivered intermittently 

between laser pulses with 60-ms pulse duration, pulse rate of 0.333 Hz, and a 2-cm-

diameter spot concentric with the laser spot. 

5.2.4 Indicators of Vas Occlusion 

 Vas burst pressure measurements were performed in a manner identical to that 

previously reported in chapter 3.  
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Figure 17. Image of the experimental setup. A standard no-scalpel vasectomy ring clamp 

is used to isolate the vas within the scrotal fold. A flexible fiber optic patch-cord with 

integrated lens delivers a 3-mm-diameter collimated laser beam to the skin surface. A 

solenoid valve delivers the cryogen coolant to the skin surface co-linear with the laser 

spot. A Plexiglas spacer maintains the working distance for the laser and cryogen spots. 

 

 

5.3 Results 

 Thermal coagulation and occlusion of the vas was achieved in 15/16 vasa (94%).  

One vas was not present due to an anatomical defect.  In 14/15 of the vasa (93%), burst 

pressures recorded were above typical ejaculation pressures.  The coagulated vas bursting 

pressure averaged 283 + 34 mmHg at Day 0 and 260 + 77 mmHg at Day 21, significantly 

higher than reported vas ejaculation pressures of 136 + 29 mmHg [15] (Table 8).  Two of 

the lowest burst pressures were observed in Dog #7, where our urologists recorded 

having difficulty isolating the vasa.  These low burst pressures may have been due to 

poor alignment of the vas with the laser, and only partial vas occlusion. 
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Table 8.  Acute and chronic burst pressure measurements of coagulated canine vas. 

Dog # Vas Pressure (mmHg)
 

Control (Ejaculation Pressure) 136 + 29 

Acute (Day 0)  

1 Left 305 

 Right 203 

2 Left 305 

 Right 305 

3 Left 305 

 Right 232 

4 Left 305 

 Right 275 

Average 283 ± 34 

Chronic (Day 21)  

5 Left 305 

 Right 305 

6 Left No Vas 

 Right 305 

7 Left 216 

 Right 103 

8 Left 283 

 Right 305 

Average 260 ± 77 

 

 

 At Day 0, the excised vas exhibited the characteristic indicators of thermal 

coagulation (blanching, hardening, and shrinkage of vas) with the full-thickness lesion 

extending 3 mm along the vas (Figure 18a).  After 21 days, the vasa exhibited full-

thickness scarring with the scar also extending 3 mm along the vas. (Figure 18b).  The 3-

mm-length of the coagulated and scarred vasa corresponded to the 3-mm-diameter laser 

spot used in the study.  The only significant complication of the procedure was the 

presence of small scrotal skin burns.  The burns coincided with where the laser beam 

overlapped the metal tips of the vas clamp.  Both mechanical compression of the scrotal 

skin and small pin point burns were observed.  These burns healed rapidly over the 21-

day recovery period (Figure 19). 
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 (a) (b) 

Figure 18. Representative images of canine vas deferens at a) Day 0 and b) Day 21; 

demonstrating successful thermal occlusion and scarring of the vas. The thermal lesion 

and scar tissue is full-thickness and 3 mm long, matching the 3 mm diameter laser spot 

used in the study. 

 

 

     
 (a) (b) (c) 

Figure 19. Photographs of scrotal skin at Days 0 (a), 12 (b), and 21 (c), showing 

development of minor scrotal skin burns. At Day 0, a small area of reddening is seen, 

corresponding to both laser heating and mechanical compression of the scrotal skin from 

the vas clamp. The larger area corresponds to a superficial freeze burn from the cryogen 

spray. By Day 21, the skin has completely healed.  

 

 

5.4 Discussion 

 This study explores the application of near-IR laser radiation in conjunction with 

cryogen spray cooling for noninvasive thermal coagulation and occlusion of the canine 

vas, in vivo.  Near-IR laser radiation with a wavelength of 1075 nm was chosen because it 

provides the deepest and most uniform penetration of the laser energy through the skin to 

the targeted vas deferens.  Simultaneous application of cryogen spray cooling 

preferentially cooled the skin surface, preventing the development of serious scrotal skin 

burns during the procedure. 

Thermal

Lesion
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 Several indicators were used to confirm thermal occlusion of the vas, including 

gross and histologic analysis of the vas and burst pressure measurements.  Full thickness 

thermal lesions and scarring of the vas measuring about 3 mm in length, were achieved 

without any evidence of scrotal skin burns.  Burst pressures for the coagulated vas 

measured about 300 mm Hg, over twice as high as the vas experiences during normal 

ejaculation [37]. 

 The 93% success rate for vas occlusion is promising, considering that the canine 

model is a more difficult model than the human for vasectomy in several respects.  First, 

the canine vas is more difficult to isolate than the human vas.  Second, canine scrotal skin 

is thicker than human scrotal skin, making it not only more difficult for the laser radiation 

to penetrate the skin and reach the vas, but also resulting in a higher probability of skin 

burns.  Finally, canine scrotal skin contains more hair which needs to be removed without 

skin irritation, so the hair follicles do not serve as absorption and burn sites for the laser 

radiation. 

 Although minor skin burns were observed during the procedure, our laboratory 

has since taken several steps to reduce this complication.  First, the standard vasectomy 

clamp has been coated with an FEP Teflon material which is optically transparent in the 

near-infrared and thermally insulating, thus providing a buffer between the scrotal skin 

and vas clamp during the procedure.  A cryogen mask has also been introduced to 

minimize skin irritation and reddening from splattering of the cryogen spray on the skin 

surface.  Finally, removal of the canine scrotal skin hair with chemical depilators (e.g. 

Nair) and a razor blade has been replaced by a depilating gel. 
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 Finally, it should be noted that near-IR laser radiation in conjunction with cryogen 

spray cooling may have several advantages over other technologies being explored for 

noninvasive vasectomy, such as high-frequency ultrasound (HIFU) [32, 33].  First, our 

success rate for targeting, thermal coagulation, and occlusion of the vas without skin 

burns approaches 100%, which has not been achieved previously in a noninvasive 

manner.  Second, the scrotal skin burn complications observed in this study appear minor 

in scope compared with those observed using HIFU.  Third, unlike HIFU, laser radiation 

and cryogen spray can be delivered in a non-contact mode, allowing the urologist to 

monitor the skin surface during the procedure.  Fourth, noninvasive laser vasectomy 

utilizes a vas ring clamp for isolation of the vas, and can therefore easily be integrated 

into the no-scalpel clinical procedure currently used. 

 Despite initial success with development of noninvasive laser vasectomy, 

additional steps are needed to address the rare occurrence of skin burns such as 

implementing an optical clearing agent to reduce optical scattering.  Additionally, long-

term azoospermia and recanalization studies in a canine model need to be performed as 

definitive indicators of success for permanent male sterilization. 

5.5 Conclusions 

 Noninvasive laser thermal coagulation and occlusion of the vas deferens was 

achieved in a canine animal model, in vivo, with a 93% success rate.  Burst pressure 

measurements and gross observation of the vas were used as short-term indicators of 

success.  Minor scrotal skin burns were observed, but healed rapidly over the 21-day 

recovery period.  However, further chronic in vivo animal studies will be necessary to 

optimize the laser/cooling treatment parameters and confirm long-term vas occlusion 
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with absence of sperm in the ejaculate, before clinical application.  The use of more 

advanced techniques such as optically clearing the skin could also help eliminate scrotal 

skin burns. 

  



 

 

CHAPTER 6: USE OF AN OPTICAL CLEARING AGENT DURING NONINVASIVE 

LASER VASECTOMY 

 

 

6.1 Introduction 

Optical clearing agents (OCA) have been explored over the past decade with great 

interest by numerous investigators for reducing light scattering in skin and increasing the 

optical transmission through skin for both therapeutic and diagnostic light-based 

procedures [41-54].  Although the mechanism of optical skin clearing is still being 

studied, the basic affect is understood.  OCA‟s typically have higher indices of refraction 

(n) than the skin components.  For example, glycerol has an n=1.47.  Common skin 

constituents, collagen (n=1.42), stratum corneum (n=1.55), and water (n=1.33) have 

different n values.  As the water content in the skin is reduced due to diffusion driven by 

the osmotic stress induced by the OCA, skin constituents with higher n‟s become more 

closely packed and form a homogenous medium.  As the OCA diffuses into the tissue, it 

further matches the tissue matrix, leading to a significant reduction in light scattering, and 

a corresponding increase in optical transmission [48]. 

 Common OCA‟s include Dimethyl Sulfoxide (DMSO), glycerol, glucose, and 

other sugar compounds.  In this study, we used a DMSO/glycerol mixture, taking 

advantage of the excellent transport properties of DMSO while minimizing its 

concentration due to toxicity concerns, and relying on glycerol for optical clearing of the 

scrotal skin. 
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 The Madajet, a device marketed for noninvasive delivery of local anesthesia 

through the scrotal skin during conventional no-scalpel vasectomy, was used in this study 

for delivery of the OCA.  The device provides a less invasive means of temporarily 

breaching the stratum corneum than previously reported mechanical and optical methods 

(e.g. needle injection, tape stripping, sandpaper, micro-needle rollers, flashlamp 

irradiation of carbon dots, and laser perforation) [46-48, 52].  The Madajet also allows 

delivery of much smaller quantities of OCA (0.4 ml) than our preliminary studies with 

conventional syringe needle injection (4 ml).  This is significant because it allows use of 

an order of magnitude less volume of DMSO, thus reducing the potential risks of tissue 

toxicity. 

 The purpose of this study is to explore the use of an optical clearing agent (OCA) 

to increase the transparency of the scrotal skin, thus reducing the laser power necessary 

for successful thermal coagulation of the canine vas deferens and completely eliminating 

the formation of minor scrotal skin burns, observed during previous studies. 

6.2 Methods 

6.2.1 Optical Clearing Agent (OCA) 

 A 1:3 ratio of dimethyl sulfoxide (DMSO) and glycerol was used as an OCA in 

both ex vivo and in vivo tissue.  DMSO was chosen because of its transport properties in 

tissue.  However, the concentration of DMSO was minimized due to concerns about its 

toxicity.  Glycerol was chosen because it is biocompatible and has been shown to 

increase skin transparency.  The OCA was delivered to the skin using a pneumatic jet 

device (Madajet, AMI, Flushing, NY) normally used for noninvasive delivery of 

anesthesia during the conventional no-scalpel vasectomy procedure.  A total of four sites 
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on the skin surface were treated with the OCA, corresponding to a diamond configuration 

immediately bordering the targeted vas area.  Each of the four sites received 0.1 ml of the 

OCA in the same 1:3 DMSO/glycerol ratio, resulting in a total of 0.4 ml delivered to the 

skin per a vas.  The skin was then allowed to sit for 30 min, providing sufficient time for 

the OCA to diffuse into the treatment site and increase the transparency of the scrotal 

skin. The treatment site was not directly treated with the Madajet, so as to avoid 

unnecessary tissue swelling which may otherwise interfere with the delivery path of the 

laser radiation to the underlying vas. 

6.2.2 Ex Vivo Tissue Studies 

 Scrotal skin and vas tissue was harvested from male dogs immediately after 

sacrifice for unrelated experiments.  The tissue was then partially submerged in a 

temperature-controlled saline bath, placed on a hotplate, and maintained at approximately 

37 
o
C.  A standard 4.0-mm-ID vasectomy clamp (VE-1, AMI), custom coated with FEP 

Teflon tubing for thermal insulation, was then used to tightly grasp the vas and 

surrounding scrotal skin.  These studies provided a strong basis for choosing the proper in 

vivo parameters 

6.2.3 In Vivo Animal Studies 

 All procedures were conducted under an animal protocol approved by the Johns 

Hopkins Animal Review Committee.  Noninvasive thermal occlusion of the vas was 

performed bilaterally in a total of 5 dogs (n = 10 vasa).  The study was divided into two 

groups.  In Group 1, noninvasive laser vasectomy was performed at an average power of 

9.2 W and cryogen cooling rate of 0.25 Hz without application of an OCA.  In Group 2, 

noninvasive laser vasectomy was also performed but at an average power of 7.0 W and 
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cryogen cooling rate of 0.20 Hz with application of an OCA.  These parameters were 

chosen based on the success of previous ex vivo tissue studies.  Figure 20 shows the 

experimental setup for the in vivo canine studies.  For both groups, after completion of 

the procedure, the vas tissue was harvested, and burst pressure measurements were 

performed.  All of the dogs used for this study were neutered immediately after the 

procedure and then adopted out to caring homes. 

 

 
Figure 20. Experimental setup for noninvasive laser vasectomy in dogs, in vivo. 

 

 

6.2.4 Laser Parameters 

 A 50-W Ytterbium fiber laser (TLR1075-50, IPG Photonics, Oxford, MA) 

emitted radiation with a wavelength of 1075 nm which was then focused with a 300-mm-

FL lens into a 400-µm fiber optic patch-cord.  A lens at the end of the fiber patch-cord 

provided a collimated laser beam to the tissue surface.  A function generator was used to 

electronically modulate the fiber laser for operation in pulsed mode, producing an 

average output power of 7.0-11.7 W, 500-ms pulse duration, 0.5 Hz pulse rate, and 3-

mm-diameter spot at the scrotal skin surface. 
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6.2.5 Cooling Parameters 

 A dynamic cooling device (DCD, Candela Laser Corp., Wayland, MA) was used 

to deliver the cryogen (halocarbon 134a, 1,1,1,2-tetrafluoroethane, BP = - 26 
o
C) to the 

tissue surface through a solenoid valve.  Three cryogen pulses were applied to pre-cool 

the skin surface prior to laser irradiation.  During laser irradiation, the cryogen spray was 

delivered with a 60-ms pulse duration, pulse rate of 0.20-0.33 Hz, and a 2-cm-diameter 

spot concentric with the laser spot.  A cryogen mask was used to thermally insulate 

adjacent skin from the cryogen spray and avoid superficial freeze burns observed during 

previous studies. 

6.2.6 Indicators of Vas Occlusion 

 Vas burst pressure measurements were performed to quantify closure of the 

thermally coagulated vas.  A 3-way stopcock was connected to a 50 mL syringe, pressure 

transducer, and hypodermic needle.  The syringe was filled with saline which was also 

distributed throughout the system.  The vas was attached to a 27-G hypodermic needle 

and clamped with hemostats.  Saline was then slowly pumped into the vas lumen using a 

syringe pump at a rate of 0.01 ml/s, resulting in an elevated pressure, as measured by a 

pressure analyzer unit, until the vas burst open. 
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6.3 Results 

6.3.1 Transmission Studies 

 Transmission studies performed in canine scrotal skin samples, ex vivo, by 

placing a power detector at the position of the vas and recording the transmitted power of 

a low power beam, demonstrated that application of the OCA for 30 min improved skin 

transparency by 26 + 5 %, as shown in Figure 21.  These values were used to calculate 

the laser power necessary for the noninvasive laser vasectomy studies.  Although optical 

transmission continued to increase beyond 30 min, these studies were not extended 

beyond 30 min because of concern that longer surgical preparation times would not be 

suitable for vasectomy, which is already a brief clinical procedure. 

 

 
Figure 21. Optical transmission studies performed in canine scrotal skin, ex vivo, after 

application of an optical clearing agent using the Madajet. Percent increase (n=4 samples) 

in optical transmission is plotted as a function of time.  Measurements were taken every 

minute immediately behind 1 mm of scrotal skin, in the vicinity of where the vas rests. 

 

 

6.3.2 Noninvasive Laser Vasectomy Studies 

 Burst pressure results as a function of the laser/cooling parameters for both the ex 

vivo and in vivo noninvasive laser vasectomy procedures performed in this study, as well 

as in previous studies [38, 55], are compared in Table 9.  The average power necessary 

for successful noninvasive laser vasectomy was reduced from 9.2 W without OCA (BP = 
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291 + 31 mmHg) to 7.0 W with OCA (BP = 292 + 19 mmHg).  Control studies without 

OCA at 7.0 W failed to coagulate the vas with burst pressures (82 + 28 mmHg) 

significantly below typical ejaculation pressures (136 + 29 mmHg) [37].  These lower 

power settings also eliminated the formation of minor scrotal skin burns previously 

observed using higher average powers to the tissue. 

 

Table 9.Comparison of burst pressure results for ex vivo and in vivo noninvasive laser 

vasectomy studies performed with and without an optical clearing agent (OCA).  

Study Laser Power 

(W) 

Cooling Rate 

(Hz) 

Burst Pressure 

(mmHg) 

N 

Control Ejaculation Pressure [37]  136 + 29  

Ex Vivo [38] 11.7 0.33 295 + 72 10 

In Vivo [55] 11.2 0.33 283 + 34 8 

Ex Vivo 9.2 0.25 296 + 18 5 

In Vivo 9.2 0.25 291 + 31 5 

Ex Vivo 7.0 0.20 82 + 28 5 

Ex Vivo w/ OCA 7.0 0.20 298 + 15 5 

In Vivo w/ OCA 7.0 0.20 292 + 19 5 

 

 

 Images of the canine vas and scrotal skin immediately after the in vivo 

noninvasive laser vasectomy procedure are shown in Figure 22a.  Thermally coagulated 

sections of the canine vas demonstrated characteristic signatures of blanching and 

shrinkage along an approximately 3 mm long segment, corresponding to the laser spot 

diameter (Figure 22a and 22c).  Grossly, thermal effects were similar when the vas was 

coagulated using 9.2 W, 0.25 Hz w/o OCA or when 7.0 W, 0.20 Hz, and OCA were used 

(Figures 22a and c, respectively).  Figures 22b and 22d show the scrotal skin surface in 

the region of the procedure both with and without the use of OCA, respectively.  In 

Figure 22b, the blanched area corresponds to where the optical clearing agent was 

applied, and the two compression marks correspond to where the vas ring clamp was 

closed down on the scrotal fold (7.0 W, 0.20 Hz, w/ OCA).  In comparison to Figure 22d 
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(which shows the scrotal skin surface after the procedure at 9.2 W and 0.25 Hz without 

OCA), the scrotal skin after use of OCA (represented in Figure 22b) appeared to have 

more acute tissue trauma.  This was, in part, due to the need to leave the vas ring clamp 

on the skin for a prolonged period of time as the OCA needed 30 min to diffuse into the 

skin.  This complication may be eliminated in a human model, where the vas is much 

easier to grasp and the OCA timing and vas surgical preparation can more easily be 

coordinated. 
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 (a) (b) 

 

 
 (c) (d) 

Figure 22. Gross analysis of the vas and scrotal skin conducted immediately after the 

noninvasive laser vasectomy procedure on dogs, in vivo.  (a) Thermally coagulated 

section of the canine vas (dotted circle) demonstrating characteristic signatures of 

blanching and shrinkage along an approximately 3 mm long segment corresponding to 

the laser spot diameter (7.0 W, 0.20 Hz, w/ OCA). (b)Scrotal skin surface in the region of 

the procedure (dotted circle).The swollen area corresponds to where the optical clearing 

agent was applied. (c)Thermally coagulated section of the canine vas (dotted circle) 

demonstrating characteristic signatures of blanching and shrinkage along an 

approximately 3 mm long segment corresponding to the laser spot diameter (9.2 W, 0.25 

Hz, w/o OCA).(d)Scrotal skin surface after procedure without OCA (9.2 W, 0.25 Hz, w/o 

OCA). 

 

 

6.4 Discussion 

 Higher laser power is associated with increased local tissue trauma.  Indeed, in 

this study, by recalibrating our laser, we were able to decrease the power setting (from 

11.2 W to 9.2 W) with equivalent or superior occlusive results to our previous studies 

while minimizing skin injury [55].  In addition, this study demonstrates that it is possible 
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to decrease the average power even further to 7 W if the procedure is combined with 

noninvasive delivery of an optical clearing agent to the scrotal skin, which increases skin 

transparency.  Using this technique, the vas was consistently thermally coagulated and 

occluded as indicated by the high vas burst pressure measurements, and indicators of 

minor scrotal skin burns observed during previous procedures were also completely 

eliminated. 

 Although the noninvasive aspect of our laser vasectomy procedure remains the 

primary attraction of this technique, cost is an important factor as well.   It should be 

noted that the cost of surgical lasers usually scales with output power.  Thus, any 

approach that results in a net reduction in laser power for noninvasive vasectomy may 

directly translate into a less expensive procedure.  This is important because the current, 

conventional no-scalpel vasectomy procedure is already a short, inexpensive procedure. 

6.5 Conclusions 

 Application of an optical clearing agent reduced the average power necessary for 

successful noninvasive laser coagulation of the vas deferens by approximately 25%.  This 

technique may result in the use of a less expensive laser system and eliminate the 

formation of scrotal skin burns during the procedure.  



 

 

CHAPTER 7: OPTICAL AND THERMAL SIMULATIONS OF HUMAN VAS 

DURING LASER VASECTOMY 

 

 

7.1 Introduction 

 Although the canine is the most commonly accepted large animal model for 

surgical vasectomy research studies, there is a significant difference in the optical and 

thermal properties of canine and human skin.  The objective of the study is to map the 

thermal and light transport properties in human tissue so a more simple clinical transition 

can be made.  Since the matrix of laser and cooling parameters is too large to completely 

explore in experiments, computer simulations are used to predict the optimal set of laser 

and cooling parameters for a successful noninvasive laser vasectomy procedure.  In this 

study, results from a Monte Carlo model of light transport in tissue are used as the input 

for a heat transfer model to map temperatures in the human scrotal skin and vas during 

noninvasive laser vasectomy.   

7.2 Methods 

7.2.1 Monte Carlo Model of Light Transport in Tissue 

 A previously reported Monte Carlo (MC) program was adapted for these studies 

[56].  This program was used to model photon transport through tissue layers having 

plane parallel geometry.  This assumption is generally an acceptable condition since the 

geometry of the tissue in the vicinity of the infinitely thin “pencil” photon beam used by 

the MC program can be treated as planar even though it may be slightly curved, such as 

in our application.  We can compensate for the overall curvature of the tissue, which is 
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small at the interaction site, by assuming that the interaction site is a series of planar 

cylinders corresponding to the tissue layers.  Even though we cannot model photon 

propagation around the curvature of the tissue, the attenuation of the beam at the depth of 

the vas deferens is such that the energy distribution will be minimally affected by the 

curvature. 

 One million photons were used in the MC program to achieve a sufficiently 

thorough distribution of photons in the tissue.  The simulations were run on an Intel based 

personal computer with an Intel® Core™2 Duo P8600 processor and 4 gigabytes of 

RAM.  Each run of 1 million photons took approximately 100 seconds.  A previously 

reported convolution program was used to fit the results to an actual laser beam of known 

power, profile, and beam size [57].  In our study, these results were convolved for a 

Gaussian laser beam of 3.0-mm-diameter for average laser powers of 5-9 W. 

 The overall dimensions of the tissue model, and the dimensions of the individual 

tissue layers (Figure 23), were chosen to match known thicknesses for human scrotal skin 

and vas deferens [58].  The final tissue model incorporated a skin layer which curved 

back on itself and enclosed the vas deferens in an effort to simulate the clinical procedure 

used to clamp and isolate the vas deferens with a vasectomy ring clamp.  The total tissue 

dimensions modeled measured 4.44 mm depth and 4.50 mm in the radial direction.  The 

MC model was divided into 50 equally spaced bins in radial direction, 100 bins in z-

direction, and 30 bins in theta direction.  Since the model was axisymmetric about the z-

axis, this was considered to be a 2D model and the angular direction could be neglected. 

The overall spatial resolution of the MC model was 44 µm in z-direction and 90 µm in 

radial direction. 
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 (a) (b) 

Figure 23. (a) Geometry of tissue layers used for Monte Carlo and heat transfer 

simulations. The epidermis and dermis layers of the skin appear both above and below 

the vas in an effort to incorporate the folded tissue into a planar model when it is placed 

inside a conventional vasectomy ring clamp, as shown in (b). 

 

 

 The optical properties (absorption, scattering, anisotropy) of the skin layers 

(epidermis and dermis) were compiled from the literature [39, 59, 60].  The optical 

properties of the vas wall were modeled as similar to muscle tissue as a good 

approximation[61].  The vas lumen was modeled as water [40].  The index of refraction 

(n) for all tissue layers except epidermis and lumen was set to n=1.37.  The epidermis 

was set to n=1.42, based on previous reports [59].  The anisotropy factor, g, was set to 0.9 

for all tissue layers [62] except the vas lumen.  Table 10 summarizes the values for 

optical properties of the human tissue layers used in the MC model. 
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Table 10.Optical properties of human tissues at 1064 nm. 

 Scattering 

(cm
-1

) 

Absorption 

(cm
-1

) 

Anisotropy 

Factor 

Index of 

Refraction 

Layer Thickness 

(cm)  

Epidermis 300 0.200 0.9 1.42 0.007 

Dermis 188 0.490 0.9 1.37 0.100 

Vas Wall 60 0.500 0.9 1.37 0.100 

Vas Lumen 0.0001 0.128 0.0 1.327 0.030 

 

 

 The effect of application of an optical clearing agent (OCA) to the human skin on 

transmission was also incorporated into the MC model.  Our laboratory has previously 

reported successful application of an OCA (Glycerol/Dimethyl Sulfoxide) during 

preclinical studies, resulting in a 25% increase in optical transmission in skin during 

noninvasive laser coagulation of the canine vas [63].  Recently, other research groups 

developing the latest generation of OCA‟s (e.g. PEG400/Thiazone and PEG400/DMSO) 

have demonstrated much greater than 50% increase in optical transmission in skin [64, 

65].  Based on these previous reports, three cases were considered:  (1) a 25% increase in 

transmission produced by a reduction in scattering, (2) a 25% increase in transmission 

produced by a reduction in both absorption and scattering, and (3) a 50% increase in 

transmission produced by a reduction in both absorption and scattering.  Table 11 

summarizes the new optical property values of skin for these three cases. 

 

Table 11.Optical properties of human skin at 1064 nm after application of an OCA. 

 Scattering (cm
-1

) Absorption (cm
-1

) Index of Refraction 

Case 1:  25% increase in transmission by reduction of scattering only 

Epidermis 170 0.20 1.42 

Dermis 105 0.49 1.37 

Case 2:  25% increase in transmission by reduction of absorption and scattering 

Epidermis 200 0.15 1.42 

Dermis 125 0.30 1.40 

Case 3:  50% increase in transmission by reduction of absorption and scattering 

Epidermis 135 0.10 1.42 

Dermis 75 0.20 1.40 
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7.2.2 Heat Transfer Model 

 Tissue temperatures were calculated using ANSYS Version 11.0 (UP20070125), 

which is a general purpose commercial finite element package used to solve thermal 

problems.  The heat transfer model was matched to the MC model dimensions, and the 

mesh set to equally spaced areas of 44 x 90 µm.  Four-node axisymmetric elements were 

used in the mesh.  Each layer of tissue was represented in the mesh and given thermal 

properties consistent with human tissue, with the values compiled from several sources 

[66-68].  Table 12 summarizes the values for the thermal properties of the human tissue 

layers used in the heat transfer model. 

 

Table 12.Thermal properties of human tissues. 

 Specific Heat 

[J/kgK] 

Thermal Conductivity  

[W/mK] 

Density 

[kg/m
3
] 

Epidermis 3590 0.240 1070 

Dermis 3300 0.450 1070 

Vas Wall 3639 0.568 1050 

Vas Lumen 4178 0.580 994.1 

 

 

 To simulate laser pulses, the absorption data output from the convolved MC 

model was converted to the input of the heat transfer model since the absorption data 

represents how much energy is present in each bin due to the laser.  No data manipulation 

was necessary other than converting the spatial heat source from J/cm
3
 to J/m

3
 and 

converting the data structure from a 1D linear array to a 2D matrix where each matrix 

element corresponded to a mesh element. 

 A cryogen spray cooling system, using 1,1,1,2 tetrafluoroethane (R-134a), was 

used to minimize surface tissue damage in previous experiments [69, 70].  This was 

modeled in the simulation with a convective heat transfer coefficient of 2400 W/m
2
K and 
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a bulk temperature of -26 °C present on the skin surface and penetrating the skin up to 

100 µm, corresponding to previous reports [71].  Convective heat transfer occurred on the 

surfaces of the model that were exposed to air.  The convective film coefficient of air was 

set to 40 W/m
2
 and room temperature was set to 20 °C [72].  The initial temperature of 

the model was set at normal scrotal skin temperature of 33 °C. 

 The laser simulations were conducted using a laser pulse duration of 500 ms and a 

laser pulse repetition rate of 1 Hz.  Cryogen spray cooling simulations were conducted 

with pulse durations of 60-100 ms (plus 300 ms of time necessary for the cryogen to 

completely evaporate, as previously reported [71]) and pulse repetition rates of 0.5 - 1.0 

Hz.  The entire simulation was conducted for a total of 60 s and the final temperatures for 

each element were reported in a color map contour graph.  Temperature vs. time data was 

also obtained for each node in the mesh.  A summary of the laser and cooling parameters 

is provided in Table 13.   

 

Table 13.Laser and cooling parameters used in this study. 

 Laser Parameters Cooling Parameters 

Wavelength (nm): 1064 Pulse Duration (ms): 60 - 100 

Average Power (W): 5 - 9 Pulse Rate (Hz): 0.5 - 1.0 

Pulse Duration (ms): 500 Spot Diameter (mm): 10 

Pulse Rate (Hz): 1.0 Cooling Time (s): 60 

Spot Diameter (mm): 3.0 Boiling Point (°C): -26 

Irradiation Time (s): 60 Convection (W/m
2
k) 2400 

 

 

7.3 Results 

 A Monte Carlo 2D color plot of both photon absorption and energy flux contour 

lines for the optimal set of laser and cooling parameters used in this study (Wavelength = 

1064 nm, Average power = 6 W, Laser spot diameter = 3 mm, Optical clearing = 50%) is 

shown in Figure 24.  This plot only shows the right half of the tissue (assuming 
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symmetry) with a laser beam radius of 1.5 mm incident on the bottom of the tissue.  In 

this simulation, the vas deferens absorbed ~ 25% of the total number of photons, while 

the epidermis and dermis layers of the skin absorbed ~ 11% of the total number of 

photons.  As the laser energy travels through the tissue it is absorbed more heavily in the 

vas walls due to the higher absorption coefficient of the tissue.  The difference in the 

optical properties effectively changes the energy profile as it travels through the tissue, 

and this causes the apparent discontinuities in absorption across tissue layers observed in 

Figure 24a, while the radiant exposure (flux) plotted in Figure 24b remains continuous. 
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(a) 

 

 
(b) 

Figure 24. Representative map of photon (a) absorption and (b) energy flux in the tissue 

for the Monte Carlo model of light transport, for the optimal laser parameters 

(Wavelength = 1064 nm, Power = 6 W, Laser spot = 3 mm, Optical clearing = 50%). 

 

 

 A 2D thermal map with temperature contour lines is shown in Figure 25 for the 

optimal set of laser parameters listed above and the optimal cooling parameters (Cryogen 

pulse duration = 60 ms, Cryogen pulse rate = 1 Hz), near the end of the procedure (t = 60 

s).  The red temperature region corresponds to thermal coagulation temperatures of ~ 60 

°C through the entire vas wall and lumen, while the other color regions (blue, green, and 

yellow) correspond to safe tissue temperatures below ~ 52 °C.  The orange region 
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represents a borderline area in which tissue coagulation is possible.  This may be of 

concern, since the orange region in the dermis above the vas wall (corresponding to the 

bottom of the scrotal fold) is relatively large.  This presents the possibility that although 

the skin surface is preserved during the procedure, scrotal skin burns have the potential to 

occur on the underside of the scrotal fold. 

 

 
Figure 25. Map of tissue temperatures observed for heat transfer model. The laser beam is 

incident on skin surface from the bottom, and the temperature map only shows right half 

of laser beam and tissue due to symmetry. This map was taken near the end of the 

procedure (t = 60 s), for optimal treatment parameters (Wavelength = 1064 nm, Power = 

6 W, Laser pulse duration = 500 ms, Laser pulse repetition rate = 1 Hz, Laser spot = 3 

mm. Cryogen pulse duration = 60 ms, Cryogen pulse rate = 1 Hz). 

 

 

 Temperature versus time data for epidermis, dermis, and vas, taken along the 

central axis of the thermal map (from Figure 25) is plotted in Figure 26.  Temperatures 

above 52 °C are reached in the vas after 20 s, leading to thermal coagulation and 

occlusion of the vas, while the epidermis and dermis layers of the skin remain safely 

below 52 °C for the entire procedure, thus preventing the formation of scrotal skin burns.  
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The cyclical nature of the epidermis and dermis temperatures matches that of the cryogen 

cooling pulse rate of 1 Hz.  The initial temperature of the epidermis (- 50 °C) is caused by 

the first cryogen cooling pulse, which causes the skin to cool further before the laser 

starts heating the tissue.  This effect has been previously reported, in which the cryogen 

spray cools considerably when traveling to the skin surface [71], due to the high 

convective film coefficient of the coolant. 

 

 
Figure 26. Temperature versus time data for the epidermis, dermis, and vas, taken along 

the central axis of the thermal plot in Figure 23, is shown. Temperatures above 52 °C are 

reached in the vas after about 20 s leading to thermal coagulation and occlusion of the 

vas, while the epidermis and dermis layers of the skin remain safely below 52 °C for the 

entire procedure, thus preventing the formation of scrotal skin burns. 

 

 

 In the simulations where the optical properties of the vas deferens are varied we 

observe a slight difference in the absorption distribution.  When the optical absorption 

and scattering are set to +20% of the assumed value we see that the vas layers absorb 

almost 29% of the total energy.  In this case we expect, and do see, an increase in the 

temperature of the vas and immediate surrounding tissues by a maximum of 5 °C.  When 

the optical properties of the vas are estimated at -20% of the assumed value we see that 
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the vas layers absorb only 21% of the total energy, and this corresponds to a temperature 

decrease in the vas layers and immediate surrounding tissue by approximately 7 °C. 

7.4 Discussion 

 The availability of a rapid, cost-effective, straightforward, and noninvasive 

technique for male sterilization is likely to improve the popularity of vasectomy.  We 

have reported successful targeting, thermal occlusion, and scarring of the vas while 

minimizing scrotal skin injury in both ex vivo and in vivo canine models [38, 63].  

However, there is a significant difference in the optical and thermal parameters between 

canine and human skin.  It is necessary to use computer simulations of Monte Carlo light 

transport in tissue and heat transfer simulations to simplify the large matrix of laser and 

cooling parameters involved in the procedure and provide some predictions on the 

optimal set of treatment parameters for noninvasive laser vasectomy in humans. 

 Previous studies have shown that for time scales on the order of tens of seconds, a 

critical temperature above approximately 52 °C is necessary to achieve thermal 

coagulation of skin [73].  This study demonstrates that it should be possible to achieve 

the temperatures necessary in the human vas deferens for thermal coagulation and 

occlusion of the vas, while preventing adverse side-effects, such as the formation of 

burns in the epidermal and dermal layers of the scrotal skin, by keeping these tissue 

layers at safe temperatures below 52 °C.  The results of the thermal map also show that it 

is possible to obtain uniform heating and thermal coagulation across the vas walls and 

lumen, while preserving the epidermis and dermis to a depth of approximately 1 mm.  It 

should be noted that preservation of such a large skin thickness is not unprecedented, and 
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that similar results have been previously reported for experiments using both canine and 

porcine skin models [3, 4, 56, 63]. 

 The results of this study also demonstrate the importance of the application of 

optical clearing agents (OCA) to the scrotal skin prior to the procedure.  Application of 

an OCA is critical to the success of the procedure because human skin has significantly 

higher absorption and scattering properties than animal skin, leading to a decrease in 

optical transmission.  The OCA reverses this trend by reducing absorption and scattering 

in the human skin, resulting in higher optical transmission and less probability of skin 

burns.  The results of this study indicate that at least a 50% increase in transmission is 

needed from the OCA for a successful procedure. 

 The results of these MC and heat transfer models provide valuable insight into the 

effect of individual laser and cooling parameters on tissue temperatures.  Considering the 

large matrix of treatment parameters, such information is vital for helping to predict the 

optimal set of treatment parameters for transitioning from preclinical to clinical studies.  

However, as with any computer model, there are several assumptions and limitations of 

the models used in this study that need to be mentioned:  this model did not incorporate 

the curvature of the scrotal skin fold within the vasectomy clamp, but instead, for 

simplicity, a planar geometry was used;  changes in the optical properties of the tissue 

layers due to compression and thermal coagulation were not included in the MC model;  

and the effect of blood perfusion in the tissues was not incorporated into the heat transfer 

model. 
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7.5 Conclusions 

 Monte Carlo and heat transfer simulations indicate that it is possible to 

noninvasively thermally coagulate the human vas without adverse effects (e.g. scrotal 

skin burns) if an optical clearing agent is applied to the skin prior to the procedure. 

  



 

 

CHAPTER 8: ULTRASOUND IMAGING OF THE CANINE VAS DEFERENS 

 

 

8.1 Introduction 

 During conventional vasectomy the damage to the vas is visually confirmed by 

the performing surgeon. However, our noninvasive laser vasectomy technique, by 

definition, does not provide the urologist with any tissue to confirm successful closure of 

the vas.  A diagnostic method that can noninvasively and quantitatively confirm 

successful vas closure is necessary to confirm consistent and reproducible results.  The 

current no scalpel vasectomy method has very high success rates so the noninvasive 

vasectomy must meet or exceed these high standards.  High-frequency diagnostic 

ultrasound has recently been used to measure the anatomy of the normal vas deferens 

[58]. In this study, ultrasound is introduced as a noninvasive diagnostic method for 

confirming successful thermal occlusion and scarring of the canine vas after noninvasive 

laser vasectomy.  This study also builds upon previous acute studies, by demonstrating, 

for the first time, successful noninvasive laser coagulation and occlusion of the canine 

vas in a short-term, in vivo model without any adverse complications such as scrotal skin 

burns.  This was primarily due to a first iteration of a modified vasectomy prototype ring 

clamp that was used to manually isolate the vas beneath the scrotal skin surface for co-

location with the cryogen and laser spots (Figure 27). 
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Figure 27. First iteration of the noninvasive vasectomy prototype clamp, using standard 

NSV clamp. 

 

 

8.2 Methods 

8.2.1 Animal Studies 

 All procedures were conducted under an animal protocol approved by the Johns 

Hopkins Animal Review Committee. Noninvasive thermal occlusion of the vas was 

performed bilaterally in a total of nine dogs. Vas were harvested and used for burst 

pressure measurements at Day 0 (3 dogs) and Day 28 (6 dogs). The animals were 

monitored on a daily basis for signs of distress during the study and then neutered and 

adopted out to caring homes at the completion of the study. 

8.2.2 Laser Parameters 

 A 50-W, CW Ytterbium fiber laser (Model TLR1075-50, IPG Photonics, Oxford, 

MA) emitted radiation at a wavelength of 1075 nm which was then focused with a 300-

mm-FL lens into a 400-µm fiber optic patch-cord.  A lens at the end of the patch-cord 

delivered a collimated laser beam to the tissue.  A function generator was used to 

electronically modulate the fiber laser for pulsed delivery of the laser radiation, 
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producing an average output power varied between 6-9W, 500-ms pulse duration, 1 Hz 

pulse rate, and 3-mm-diameter spot at the scrotal skin surface. 

8.2.3 Cooling Parameters 

 A dynamic cooling device (DCD, Candela Laser Corporation, Wayland, MA) was 

used to deliver the cryogen (halocarbon 134a, 1,1,1,2-tetrafluoroethane, boiling point =  - 

26 
o
C) to the tissue surface through a solenoid valve.  The solenoid valve was externally 

triggered using a function generator and an oscilloscope was used to view the pulse 

characteristics.  Three cryogen pulses were applied to pre-cool the skin surface prior to 

laser irradiation.  During irradiation, the cryogen spray was delivered intermittently 

between laser pulses with a 60-ms pulse duration, pulse rate of 0.2 Hz, and a 2-cm-

diameter spot concentric with the laser spot. 

8.2.4 Ultrasound Imaging 

 A clinical ultrasound console (SSD-Alpha 7, Aloka, Wallingford, CT) with 13.2 

MHz high-frequency linear array transducer (UST-5411, Aloka) was used to image the 

native vas at Day 0, the thermally coagulated vas at Day0, and the scarred vas at Day 28. 

This transducer provided an axial image resolution of approximately 200 µm and an 

imaging depth of 2 cm. Simultaneous application of Doppler US at a frequency of 6.15 

MHz helped to distinguish between the vas and spermatic cord. A standard US gel was 

applied to the canine scrotum and the vas was identified using Doppler imaging to locate 

the spermatic cord and nerve bundle.  Doppler US was also used to indicate whether there 

was normal blood flow through the testicular artery after the procedure and confirm the 

absence of collateral thermal damage to proximal tissue structures. 
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8.3 Results 

8.3.1 Noninvasive Laser Vasectomy 

 Day 0 burst pressures (291 ± 31 mmHg) for the thermally coagulated vas did not 

differ significantly from Day 28 burst pressures (297 ± 26 mmHg) for the scarred vas. 

However, both of these vas burst pressures were significantly higher than burst pressures 

that the canine vas typically experiences during ejaculation(136 ± 29 mmHg) [37], thus 

demonstrating strong vas occlusion.  High-frequency ultrasound images of the vas were 

taken at Day 0 before and after the procedure to confirm successful thermal coagulation 

of the vas, and again at Day 28 to identify the scarred region of the vas (Figure 28).  

These images showed an increased, hyperechoic signal and a disruption of the vas 

structure in the laser-treated region. The sonographic length of the coagulated vas at Day 

0 measured 4.1 ± 0.7 mm, and the length of the scarred vas measured 3.7 ± 0.5 mm. 

These measurements roughly correspond to the 3-mm-diameter laser spot used, with a 

slightly larger increase in coagulated vas length due to both light scattering and thermal 

diffusion that occurs in the tissue during the procedure. 
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 (a) (b) (c) 

Figure 28. (a) Un-occluded vas prior to noninvasive laser vasectomy. (b) Occluded vas 

after noninvasive laser vasectomy. (c) 28 day trials show the scarring noticed on the vas 

may appear in high frequency ultrasound imaging.  

 

 

 The thermally coagulated and scarred vas were excised for examination to verify 

the ultrasound images (Figure 29). 

 

 
 (a) (b) 

Figure 29. Representative images of the excised canine vas: (a) At Day 0 immediately 

after the procedure, showing the thermally coagulated zone; and (b) at Day 28, showing 

the scarred region of the vas. 
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 The thermally coagulated vas segment was identified by several indicators 

including blanching and shrinkage of the vas wall.  The scarred vas, although less 

distinct, also showed discoloration and shrinkage in the treated area.  Both the thermally 

coagulated and scarred vas segments tended to bulge, indicative of blockage at the 

treatment site, during burst pressure studies.  While our previous noninvasive laser 

vasectomy studies have noted the formation of minor scrotal skin burns with the use of 

higher laser powers [55], there was no evidence of skin burns in this study. Figure 30 

shows the scrotal skin surface at Day 0 before and after the procedure and at Day 28. 

Only temporary skin irritation and reddening was observed due to the blunt trauma of the 

vasectomy ring clamp tips on the skin. Such trauma caused by the vas ring clamp is 

normal for the conventional vasectomy technique as well. This irritation disappeared 

approximately 15 minutes after the clamp was removed and the procedure completed. 

One dog experienced some melena and diarrhea, unrelated to the laser procedure, which 

was successfully treated with medication. Otherwise, the dogs were monitored on a daily 

basis and showed no visual signs of skin damage, or discomfort with the treatment site in 

the scrotal region. 
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 (a) (b) (c) 

Figure 30. Representative images of the canine scrotal skin surface: (a) At Day 0 before 

the procedure; (b) at Day 0 immediately after the procedure; and (c) At Day 28 at the 

completion of the study. Note that much of the skin irritation observed immediately after 

the procedure is due to the vasectomy ring clamp used to isolate the vas underneath the 

skin. This irritation is temporary and disappears soon after the procedure. 

 

 

 The average bursting pressure for the ten dogs compared well with previous 

studies that were performed.  Acute burst pressures (291 ± 31 mmHg) for the thermally 

coagulated vas did not differ significantly from chronic burst pressures (297 ± 26 mmHg) 

for the scarred vas.  However, both acute and chronic vas burst pressures were 

significantly higher than burst pressures that the canine vas typically experiences during 

ejaculation (136 ± 29 mmHg) [37], demonstrating strong and lasting vas occlusion. 

8.4 Discussion 

 During previous studies, we have reported successful laser thermal occlusion and 

scarring of the vas while minimizing scrotal skin injury in ex vivo and in vivo canine 

models [38, 55, 63].  The results of this study demonstrate that the canine vas becomes 

scarred and remains occluded, confirmed by the burst pressure measurements, in a short-

term study.  High-frequency ultrasound served as a useful noninvasive diagnostic tool for 

qualitatively confirming successful thermal occlusion and scarring of the vas, indicated 

by a hyperechoic signal and disrupted vas structure in the laser treated region.  It may be 

possible to further improve the ultrasound resolution (at the expense of shallower 
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imaging depth) by using a higher frequency ultrasound transducer than the 13.3 MHz 

transducer used in this study. However, this transducer was chosen initially because it is 

the highest frequency transducer used with a standard clinical ultrasound system 

commonly available to physicians.  While the use of burst pressure measurements is not 

the definitive indicator of a successful vasectomy, it does provide a reliable quantitative 

source of feedback to determine the degree of vas closure with comparison to typical vas 

ejaculation pressures. Our results show that the vas burst pressures after both thermal 

coagulation at Day 0 and scarring at Day 28 were over twice that of previously reported 

canine vas ejaculation pressures, thus demonstrating a robust, short-term closure of the 

vas in this canine model. However, once the noninvasive laser vasectomy system and 

treatment parameters have been fully optimized, it will be necessary to perform more 

definitive and longer-term chronic canine studies. These studies will include examining 

recanalization and azoospermia rates, with comparison of surgical vasectomy and 

noninvasive laser vasectomy, prior to clinical studies.  It should also be noted that our 

100% success rate for thermal occlusion and scarring of the vas, with no adverse 

complications, is promising, considering that the canine model is a more difficult model 

than the human for vasectomy as previously reported in chapter 5.  Finally, although this 

was not intended to be a cost comparison study, it is worth considering some of the costs 

involved with noninvasive laser vasectomy versus conventional surgical vasectomy. It is 

well known that the cost of a conventional surgical vasectomy is relatively low 

(approximately $500–1,000 per procedure). For noninvasive laser vasectomy, there are 

significant capital costs associated with the purchase of the laser and cryogen systems, 

although it should be noted that laser rentals are a viable and popular option for laser 
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surgical procedures.  The ultrasound system, if used in a clinical setting, is portable and 

readily available for shared use, and therefore may not add significant cost to the 

procedure. The cost of the cryogen spray used for cooling the scrotal skin during the 

procedure was calculated to be almost negligible (adding less than $2 per procedure). 

Additionally, some supplies currently used during surgical vasectomy (e.g., surgical tray, 

clips, sutures, etc.) would not be needed for noninvasive laser vasectomy. It is also 

possible that a patient would be willing to pay a slightly higher fee associated with a 

noninvasive vasectomy compared to surgical vasectomy. 

 The results of this study further demonstrate that the canine vas becomes scarred 

and remains occluded, confirmed by the burst pressure measurements, in a short-term 

chronic study.  High-frequency ultrasound served as a useful noninvasive diagnostic tool 

for confirming successful targeting, thermal occlusion, and scarring of the vas, indicated 

by a hyperechoic signal and disrupted vas structure in the laser treated region. 

 It may be possible to further improve the ultrasound resolution (at the expense of 

shallower imaging depth) by using a higher frequency ultrasound transducer than the 13.3 

MHz transducer used in this study.  However, this transducer was chosen because it is the 

highest frequency transducer used with a standard clinical ultrasound system commonly 

available to physicians, and as such, does not introduce more costly specialized 

ultrasound equipment for use in an inexpensive vasectomy procedure. 

8.5 Conclusions 

 Ultrasound may be used as a diagnostic tool to assist in determining successful 

laser thermal coagulation and scarring of the vas during noninvasive laser vasectomy. 

 



 

 

CHAPTER 9: OCT AND HIGH FREQUENCY US IMAGING OF THE CANINE VAS 

DEFERENS 

 

 

9.1 Introduction 

 Optical coherence tomography (OCT) and high-frequency diagnostic ultrasound 

(HFUS) have recently been used to measure the anatomy of the normal human vas 

deferens [58, 74].  Our laboratory has also used US (with a 13 MHz probe) for imaging 

the canine vas before and after laser thermal coagulation [75].  This study aims to 

improve on these previous studies by using a higher frequency (20 MHz) probe capable 

of improved resolution and to compare HFUS with another high resolution imaging 

modality, optical coherence tomography (OCT), for imaging the canine vas before and 

after laser thermal coagulation.  Both imaging modalities are safe, compact, and 

inexpensive, and are therefore evaluated as possible choices for potential use in laser 

vasectomy during this pre-clinical study.  However, each imaging modality serves a 

slightly different purpose:  US provides deep imaging with intermediate scale resolution 

while OCT provides high resolution but is limited in its superficial imaging depth.  

Additionally, a modified vasectomy ring clamp was used to manually isolate the vas 

beneath the scrotal skin surface for co-location with the cryogen and laser spots (Figure 

31). 
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9.2 Methods 

9.2.1 Animal Studies 

 All procedures were conducted under an animal protocol approved by the Johns 

Hopkins Animal Review Committee.  Noninvasive thermal occlusion of the vas was 

performed bilaterally in a total of 6 dogs (n = 12 vasa).  After completion of the 

procedure, all vasa were harvested and processed for histology with H&E staining.  The 

animals were neutered, monitored for a few days during recovery, and then adopted out 

to caring homes. 

9.2.2 Laser Parameters 

 A compact, tabletop, 50-Watt Ytterbium fiber laser (Model TLR1075-50, IPG 

Photonics, Oxford, MA) emitted near-infrared radiation with a wavelength of 1075 nm 

which was focused with a lens into a 400-m-core fiber optic patch-cord (Thorlabs, 

Newton, NJ).  Another lens at the end of the patch-cord delivered a collimated laser beam 

to the tissue surface.  The laser was externally triggered by a function generator (DS345, 

Stanford Research Systems, Sunnyvale, CA) to operate in long-pulse mode, with an 

average incident power of 9.0 W, 500-ms pulse duration, 1 Hz pulse rate, and 3-mm-

diameter (1/e
2
) spot at the scrotal skin surface.  

9.2.3 Cooling Parameters 

 A Dynamic Cooling Device (DCD, Candela Laser Corporation, Wayland, MA) 

was used to deliver cryogen (1,1,1,2-tetrafluoroethane, boiling point = - 26 
o
C) to the 

scrotal skin surface through a solenoid valve to prevent overheating and formation of skin 

burns during the procedure.  Three cryogen pulses were applied to pre-cool the skin prior 

to laser irradiation over a period of eight seconds.  For all of the procedures, laser 
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irradiation was performed for a period of 60 seconds for each vas.  Cryogen spray was 

delivered intermittently between laser pulses with a 60-ms pulse duration, pulse rate of 

0.25 Hz, and a 2-cm-diameter spot concentric with the laser spot.  A cryogen mask was 

used to thermally insulate surrounding scrotal skin from cryogen spray to avoid 

superficial freeze burns.  Details of the experimental setup have been previously reported 

[63].  A modified, 4-mm-OD, vasectomy ring clamp was used to manually isolate the vas 

beneath the scrotal skin surface for co-location with the cryogen and laser spots (Figure 

31).  It should be noted that although a modified vasectomy ring clamp design was used 

for these procedures, the base of the clamp (hemostat) is essentially the same as the 

instrument currently used during a standard no scalpel vasectomy procedure. 
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Figure 31. A conventional no scalpel vasectomy ring clamp was used to isolate the vas 

deferens beneath the scrotal skin surface, and then a detachable customized clamp 

extension was used to safely co-locate both the cryogen spray spot and laser spot on the 

tissue surface inside the ring. 

 

 

9.2.4 OCT Parameters 

 A compact, tabletop, inexpensive, FDA-approved, endoscopic, optical coherence 

tomography system (Niris II, Imalux, Cleveland, OH) with a handheld 8-Fr (2.7-mm-OD) 

probe was used (Figure 32a).  The OCT system acquired real-time images at 8 

frames/swith ~11 m axial resolution and ~25 m lateral resolution in tissue with a 

lateral scan length of 2 mm and an imaging depth of 1.6 mm.  The OCT system was used 

for superficial imaging of the canine vas once it was compressed inside the vas ring 

clamp, immediately before and after laser irradiation.  This approach to OCT imaging of 

the vas is entirely feasible during a clinical procedure. 

Laser energy is delivered 

through a fiber optic into 

a collimating lens.

Cryogen spray is positioned

to overflow target area.

Custom detachable clamp 

extension  provides alignment 

during procedure.

Isolated vas illuminated with guide beam; 

skin is protected by a cryogen skin guard.

Standard no scalpel

vasectomy ring clamp.
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9.2.5 High Frequency Ultrasound Parameters  

 A compact, tabletop, inexpensive, FDA-approved high frequency ultrasound 

system (Episcan-I-200, Longport International, Silchester, United Kingdom) with 20-

MHz linear scanning transducer was used for comparison with OCT (Figure 32b).  This 

transducer provided a scan length of 15 mm, an axial image resolution of ~100 µm, and 

an imaging depth of ~1 cm.  The HFUS transducer was used to provide deeper imaging 

of the canine vas when it was held manually within a scrotal fold immediately before and 

after application of the vas ring clamp. 

 Several indicators were used to determine successful laser thermal coagulation 

and occlusion of the canine vas, including OCT, HFUS, gross analysis, and histology. 

 
             (a)      (b) 

Figure 32. (a)  Photograph of the optical coherence tomography system and probe used in 

these studies; (b)  Photograph of the high-frequency ultrasound system and probe used in 

these studies. 
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9.3 Results 

9.3.1 OCT Results 

 Longitudinal and cross-sectional OCT images of the vas were taken, in vivo, 

before and after the procedure to confirm successful thermal coagulation of the vas 

(Figure 33abc).  OCT images of the excised vas were also taken, ex vivo, immediately 

after the procedure for comparison (Figure 33def).  The native vas appeared with a dark, 

fluid-filled lumen (absent of reflected signal intensity), while the thermal lesion was 

represented by a lighter region (indicative of enhanced reflected signal intensity).  This is 

consistent with a significant increase in the scattering coefficient of soft tissue once it has 

been thermally denatured.  It should also be noted that since the thermal lesion length 

along the vas (3.58 + 0.36 mm) was longer than the OCT lateral scanning distance of 2 

mm, it was impossible to capture the entire lesion in a single image.  Furthermore, the vas 

was not a straight tube, but rather traveled in and out of the OCT (and US) image plane. 
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 (a) (b) 

   
 (c) (d) 

   
 (e) (f) 

Figure 33. (a,b) Longitudinal and cross-sectional OCT images of the native canine vas 

acquired prior to the procedure. (c) Longitudinal OCT image of the thermally coagulated 

canine vas acquired while the vas and scrotal skin were compressed inside the vas ring 

clamp after the procedure. (d) Longitudinal OCT image of the thermally coagulated 

canine vas acquired ex vivo after the vas tissue was harvested; (e,f) Longitudinal and 

cross-sectional OCT images of the native canine vas acquired ex vivo after the tissue was 

harvested. All OCT images measure 1.6 x 1.6 mm (depth x width). 

Native Vas Lumen 

 

Native Vas Lumen 
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Open Vas Lumen 

Open Vas Lumen 
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9.3.2 High Frequency Ultrasound Results 

 Longitudinal and cross-sectional HFUS images of the vas were also taken, in vivo, 

before and after the procedure to confirm successful thermal coagulation of the vas 

(Figure 34).  In the native vas images, the fluid-filled lumen also appears dark (with an 

absence of reflected signal intensity), while the thermally denatured vas appears lighter 

(again indicative of increased reflected signal intensity).  Using HFUS, the average vas 

lumen diameter, vas wall thickness, and vas thermal lesion length were measured to be 

0.27 + 0.07 mm (n=6), 1.09 + 0.06 mm (n=6), and 3.58 + 0.36 mm (n=9), respectively.  

These lumen diameter and wall dimensions are within a similar range to that previously 

reported for the native human vas deferens [58].  The canine vas deferens in general is 

known to have similar dimensions to that of the human vas deferens [76].  The thermal 

lesion length is strongly correlated with the 3-mm-diameter laser spot used in these 

studies, and is also similar to measurements reported in previous studies [38, 55, 63, 75]. 
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 (a) (b) 

 

 
 (c) (d) 

Figure 34. (a,b) Longitudinal and cross-sectional US images of the native canine vas, 

acquired by manually isolating the vas within the scrotal skin fold prior to placement of 

the vas ring clamp. The vas wall and lumen can be identified. (c,d) Longitudinal and 

cross-sectional US images of the thermally coagulated canine vas acquired by manually 

isolating the vas within the scrotal skin fold after removal of the vas ring clamp. A 

thermal lesion encompassing both the vas wall and lumen is observed. 

 

 

 The thermally coagulated vas was excised for examination to verify the OCT and 

HFUS images. Figure 35 shows a representative image of the thermally coagulated vas 

segment, which can be identified by several indicators including blanching and shrinkage 

of the vas wall. 
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Figure 35. Gross image of the thermally coagulated vas segment showing significant 

blanching and shrinkage of the vas wall. 

 

9.3.3 Histology Results 

 The vas samples were then processed for histology using standard techniques.  

For each dog, serial sectioning of the vas was performed in both the longitudinal and 

cross-sectional directions (one orientation for each vas – left and right sides) through the 

entire vas sample at 100 m intervals.  Figure 36 provides representative longitudinal and 

cross-sectional histologic sections of the canine vas with open lumen sections (taken 

beyond the thermally coagulated segment) also provided for comparison. 

  

 

 

3 mm 

Thermal Lesion 
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 (c) (d) 

Figure 36. H&E-stained histologic sections of the vas: (a) Cross-section of open lumen; 

(b) Cross-section of thermally occluded lumen; (c) Longitudinal section of open lumen; 

(d) Longitudinal section of thermally occluded lumen. 
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9.4 Discussion 

 Vasectomy is a safe, simple, effective, and inexpensive surgical procedure for 

male sterilization.  Despite the low morbidity of this procedure, societal pressures, 

psychological factors such as the perception of the loss of “manhood”, and male fear of 

surgery are reasons frequently cited by couples choosing other forms of contraception.  A 

noninvasive laser vasectomy technique may eliminate many of these concerns and 

increase male acceptance of vasectomy.  While some of our earlier noninvasive laser 

vasectomy studies have noted the formation of minor scrotal skin burns with the use of 

higher laser powers [55], there was no evidence of skin burns in this study.  Only 

temporary skin irritation and reddening was observed due to the blunt trauma of the 

vasectomy ring clamp tips on the skin.  Such trauma caused by the vas ring clamp is 

normal for the conventional vasectomy technique as well.  This irritation disappeared 

approximately 15 min after the clamp was removed and the procedure completed.   

 The development of any completely noninvasive therapeutic procedure may 

benefit from the introduction of a diagnostic modality to confirm success since no tissue 

is removed for analysis during the noninvasive procedure.  OCT and HFUS are obvious 

choices for use in vas imaging during noninvasive laser vasectomy because they are both 

relatively compact, inexpensive imaging modalities that provide sufficient image 

resolution and depth to view the vas deferens, which has a lumen and wall thickness of 

~300 m and ~1 mm, respectively.  

 OCT has an order of magnitude better resolution and an order of magnitude worse 

imaging depth than HFUS.  Therefore, OCT was limited in these studies to imaging the 

vas once it was fixed and compressed beneath the scrotal skin inside the 4-mm-diameter 
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vas ring clamp.  However, while the native vas was easily visible during OCT imaging 

before the procedure, it was more difficult to identify the thermally coagulated vas 

segment after the procedure.  Only longitudinal sections were obtained, and cross-

sectional images of the thermally coagulated vas could not easily be confirmed.  It may 

be that the need to perform OCT imaging of the compressed vas and scrotal skin within 

the clamp resulted in a distorted view of the anatomy which in turn made interpretation of 

the OCT images more difficult.  HFUS imaging of the vas was more successful, with 

longitudinal and cross-sectional images of the native and thermally coagulated vas 

obtained while the vas was held manually within a scrotal fold, both before and after 

removal of the vas from the ring clamp.  

 However, it should be noted that the limited imaging depth of the HFUS system 

required manual isolation of the vas prior to measurement.  This made locating the region 

of interest during postoperative imaging of the thermal lesion more difficult and resulted 

in a slightly lower vas sample set for evaluation.  In some vas, it was also difficult to 

differentiate the lumen from the wall before the procedure and provide two distinct 

measurements for these two structures.  This may have been due to suboptimal probe 

placement, or the method of manual isolation causing excessive pressure and flattening of 

the vas.  It may be possible in future studies to design the imaging probe tip and vas 

clamp to minimize these limitations.   

 From a clinical perspective, it is also worth briefly mentioning the costs 

associated with noninvasive laser vasectomy, since surgical vasectomy is currently a low-

cost procedure (~$500-1000).  For noninvasive laser vasectomy, there are capital costs 

associated with purchase of the laser (~$20,000) and cryogen (~$5,000) systems.  The 
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compact, portable, tabletop, time-domain OCT system and probe used in this study is 

relatively inexpensive (~$40,000), in comparison to other OCT systems.  The compact, 

tabletop HFUS system and probe used in this study is also relative inexpensive 

(~$20,000) in comparison with conventional clinical US consoles.  However, a patient 

may be willing to pay a slightly higher fee for nonsurgical vasectomy. 

 Finally, more definitive and longer term chronic canine studies are currently being 

performed to examine vas recanalization and azoospermia rates, with comparison of 

surgical vasectomy and noninvasive laser vasectomy, prior to clinical studies.  Both OCT 

and HFUS may be used in these chronic studies for imaging of the scarred vas. 

9.5 Conclusions 

 High-frequency ultrasound may be used as a diagnostic tool to assist in 

determining successful laser thermal coagulation and scarring of the vas during 

noninvasive laser vasectomy.  While optical coherence tomography also shows promise, 

further improvements are necessary before this imaging modality can be reliably used for 

evaluation of the thermally coagulated vas. 

  



 

 

CHAPTER 10: CONCLUSION 

 

 

 Studies that show the efficacy of noninvasive laser vasectomy have been 

performed.  Successful ex vivo tissue studies and short term acute and chronic in vivo 

animal studies have been successfully completed.  Problems that have arisen (e.g. skin 

burns) have been eliminated by optimizing the laser and cooling treatment parameters 

during experimental studies.  Optical clearing agents, while not yet approved by the FDA, 

have also been explored, which increase the optical penetration depth of near-infrared 

laser radiation through the scrotal skin and require less energy to achieve similar results 

in noninvasive laser vasectomy.  Optical and thermal computer models, with the use of an 

optical clearing agent, have produced results predicting the successful transition from a 

pre-clinical canine model into human clinical studies.  Both optical coherence 

tomography and high-resolution ultrasound imaging modalities have also been explored 

as a method for real-time, noninvasive confirmation of successful targeting, thermal 

occlusion, and scarring of the canine vas.   Finally, a novel noninvasive vasectomy 

prototype clamp has developed to provide a robust, compact, and inexpensive component 

of the noninvasive laser vasectomy system for translation into clinical studies. 
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APPENDIX A: TECHNOLOGICAL DEVELOPMENT OF A NOVEL 

VASECTOMY CLAMP 

 

 

Introduction 

 Conventional vasectomy has a very high rate of success.  The prior research done 

has proven the success and ability to obtain long term vas occlusion. However, 

difficulties have arisen (skin burns, misalignment, freeze burns) that have resulted in 

delays and aborted procedures during our animal studies.  These difficulties must be 

addressed to maintain a high success rate, comparable with the current no-scalpel 

vasectomy (NSV) technique. Issues such as misalignment and „slipping‟ of the clamp can 

be addressed by the development of a new surgical clamping device while issues of skin 

burning and misused parameters can be addressed by limiting the number of parameters 

available through electronic pre-programming.  In this chapter, the technological 

development of noninvasive laser vasectomy is discussed.  A prototype modified NSV 

clamp is integrated with laser and cryogen delivery.  Additionally, a microelectronic 

prototype system will control the procedure while only allowing known working 

parameters to be applied. 

Methods 

Miniaturization of experimental setup 

 The current experimental setup is very bulky consisting of many separate 

individual components:  a standard no scalpel vasectomy ring clamp, cryogen tubing, 

cryogen solenoid valve, laser fiber optics, and collimating lens are necessary components 

for achieving successful occlusion of the canine vas deferens.  Additional components 

(Figure A-1) add unnecessary weight and interfere with the procedure by requiring the 
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surgeon to secure the clamp on the canine and then move the system in around the clamp.  

Integrating only the necessary parts (Figure A-2) into the clamp will allow for a 

simplified setup and help the surgeon maintain control of the device during noninvasive 

laser vasectomy. 

 

 
Figure A-1. Experimental setup; unwanted weight and limited motion arise from using 

bulky components. 
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 (a) (b) 

Figure A-2. Concept drawing with the necessary components for noninvasive laser 

vasectomy. (a) Isometric; (b) Side view. 

 

 

 Using a standard NSV clamp as the main axis of reference it is possible to achieve 

any orientation necessary for a successful procedure with only four degrees of freedom. 

Three orthogonal degrees of freedom allow the necessary components to be placed 

anywhere, spatially, in relation to the ring of the NSV clamp.  An additional fourth 

degree of freedom, roll, provides the user with the ability to correct for any rotation of the 

clamp inside the secured device.  By using a cylindrical coordinate system it is possible 

to minimize the material necessary to achieve all three orthogonal degrees of freedom 

(ρ,φ,z).  Roll is then added by allowing the stabilizing arm which controls the 𝜌 

component to rotate freely before it is locked into place with a set screw. (FigureA-3) 

Typically, surgical devices are made out of stainless steel, titanium or other alloys due to 

their oxidation properties and the ability to be autoclaved with minimal wear and tear.  

The machining capabilities available made stainless steel the only viable option and 

therefore minimizing the material used was very important due to the inherent weight of 

steel versus other softer lighter metals.  Other future options include stainless alloys and 

titanium; however, this can be addressed during future product development. 
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Figure A-3. Concept drawing of a clamp attachment with four degrees of freedom using a 

cylindrical coordinate system with integrated roll feature. 

 

 

Miniaturization of control systems 

 The functionality of the laser and cryogen system is maintained by electronic 

modulation (differential TLL signal).  The current setup consists of two signal generators 

(Stanford Research Systems) that allow full flexibility in choosing modulation parameters 

and an oscilloscope (Tektronix) which monitors the output of the entire system (Figure 

A-4 (a,b)).  The laser will emit radiation during an active high pulse while the cryogen 

requires an active low pulse less than its set spray time (60 ms) to activate.  The 

electronic modulation system should allow for some flexibility during the experimental 

phase, allowing the investigator to manipulate the parameters slightly however, the final 

iteration will be structured to allow only known working parameters. 

  

z 

𝜌 

roll 

𝜑 
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 (a) (b) 

Figure A-4. (a) Tektronix digital oscilloscope, (b) Stanford Research Systems signal 

generator. 

 

 

Results 

Development of miniaturize clamp system 

 Two iterations were done that streamlined the device into a system that includes 

two moving parts (Figure A-5, Appendix B), each secured into place with one set screw.  

A third set screw is present in the figure; however, this was added to increase the z 

direction motion without having to manufacture additional systems.  Each part was 

turned on a lathe from standard 304 stainless steel bar stock with the exception of the 

laser and cryogen holder which was created using a CNC machine.  The connecting rod 

was press fit into the laser/cryogen holder and requires no additional adhesive to prevent 

unwanted rotation.  There is a clear disconnect between the designed system and the NSV 

clamp in figure A-5; the arm of the NSV clamped had to be planed off to create a 

clamping surface.  During product development the lower junction of the system can be 

cast onto the actual NSV clamp during production, this will eliminate the junction device 

that was created to adhere to two devices. 
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Figure A-5. Concept drawing of the second iteration of the noninvasive vasectomy 

clamp, using a NSV clamp. 

 

 

Development of miniature control system 

 A Renesas prototype board was used to control multiple preset conditions for 

experimental testing (Appendix C).  The laser parameter space was limited to 1, 2, and 4 

Hz; there were additional conditions that allowed the laser to run in continuous wave 

mode for power calibration as well as be completely turned off for safety.  The cryogen 

spray was set to allow frequencies 1/5, 1/4, 1/3 and 1/2 Hz settings which corresponded 

to previous parameters that have been tested in ex vivo and in vivo experiments.  The 

miniature control system was button operated and packaged with BNC connectors 

allowing attachment of the laser and cryogen system (Figure A-6).  The LCD readout on 

the board provided feedback on the current operating conditions (Figure A-7). 
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Figure A-6. Project box housing Renesas microcontroller board with BNC connectors 

 

 
 (a) (b) 

Figure A-7. Programmed Renesas microcontroller board showing (a) steady state, (b) 

working parameter space. 
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Discussion 

 Both iterations of a novel noninvasive laser vasectomy prototype clamp were 

previously tested experimentally.  The development of a miniaturized system that was 

more robust than previous experimental systems helped control skin burning issues which 

have occurred due to misalignment of the laser/cryogen.  Additionally, adapting bulky 

signal generators that are primarily useful in laboratory conditions to a more streamlined 

automated device allows for single user operation while maintaining flexibility to change 

between known working parameters. 

Conclusion 

 This prototype is ready to undergo product development where physicians can be 

consulted to test and recommend personal changes based on their preference of 

technique.  Further miniaturization of the microcontroller board can be accomplished 

with more streamlined packages such as the AT-Tiny microcontroller.  An ergonomic 

plastic cover can be molded to fit over the metal components allowing a housing structure 

to support a small LCD screen for the option of easy viewing.  The push button controls 

on the project box can be transitioned into the handle and the BNC connectors can be 

eliminated once the device is developed to have custom connections or hardwired to the 

laser/cryogen system.  The final prototype design can be seen in Figure A-8. 
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Figure A-8. Final iteration of the noninvasive vasectomy prototype clamp. 
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APPENDIX B: SCHEMATICS OF NONINVASIVE LASER VASECTOMY 

PROTOTYPE CLAMP 

 

 

Figure B-1. Schematic of laser/cryogen holder for CNC machining. 
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Figure B-2. Schematic of base post insert for machining. 
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Figure B-3. Schematic of base post holder for machining. 
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Figure B-4. Schematic of connection rod for press fitting. 
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APPENDIX C-1: MAIN SIGNAL GENERATION PROGRAM 

 

 
*DESCRIPTION: main routine for Timer - Pulse Output Mode    

*  PURPOSE:  Outlines how to setup the M16C/62P Timer A in Pulseoutput 

mode.********************************************************************/ 

/* Include the required header files */ 

#include"qsk_bsp.h"  // include SKP board support package 

 

#define  TIME_CONFIG 0xC4   

   /*  10000100 value to load into timer mode register 

   Bit 0,1:  TMOD0,TMOD1:  TIMER MODE SELECTED 

   Bit 2:  MR0:PULSE OUTPUT    

   Bit 3,4:  MR1,MR2:GATE FUNCTION NOT SELECTED 

   Bit 5:  MR3:SET TO 0 IN TIMER MODE      

   Bit 6,7:TCK0,TCK1:F DIVIDED BY 32 SELECTED gives 1 kHz clock*/ 

#define  TIME2_CONFIG 0xCE 

#define TIMER_CONFIG 0xD6 

#define  CNTR_IPL 0x00   // TA2  priority interrupt level: interrupts not required 

char * IntToAsciiHex(char * dest_string,int min_digits,unsignedint value); 

   //CONVERT HEXIDECIMAL VALUES TO ASCII FOR LCD 

char * IntToAsciiDec(char * dest_string,int min_digits,unsignedint value); 

   //CONVERT DECIMAL VALUES TO ASCII FOR LCD 

char lcd_text[9];   

   //9 CHARACTER ARRAY VARIABLE FOR OUTPUT DISPLAY USE 

//prototypes 

void tmr_init(void);  //LOAD TIMER CLASS 

void mcu_init(void);  //LOAD CHIPSET CLASS 

void lcd_init(void);  //LOAD LCD CLASS  
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/***************************************************************************** 

Name:    main()        

Parameters: none                      

Returns:  nothing       

Description: initializes variables and LED port. Then does nothing but 

wait for TA0 interrupts.      

**************************************************************************** */ 

 

void main (void)     //PROGRAM IS WRITTEN IN THE MAIN CLASS 

{  

 unsignedchar button1flag;  //Variable to holdLaser State 

 unsignedchar button2flag;  //Variable to holdCryogen State 

 unsignedint x, y;   //DELAY VARIABLES 

 int time_cnt;     

 pd6 = 0xFF;    

 mcu_init();   //initialize processor clock 

 lcd_init();   //initialize LCD display 

 tmr_init();   //initialize timer 

 button1flag=0;   //initialize variable to  

 button2flag=0; 

 while (1){     // square wave output is free running    

  if (p8_3 == 0 && button1flag==0)  //if laser button is pressed (active low) and  

  {     //the case is at start state (0), then  

   for (x=0; x<0x7ff; x++){  //run 1Hz signal to laser 

   _asm("NOP"); 

   for (y=0; y<0x1ff; y++)  //for loop is for switch debouncing 

   _asm("NOP");} 

   button1flag = 1;   //set the condition for next press 
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   p6_2 = 0; 

   ta1s = 0; 

   ta1 = (unsignedint) (511);  // 511 = (1024/2) if zero bit is used 

   ta1s = 1; 

   DisplayString(LCD_LINE1," L: 1Hz "); 

  } 

  if (p8_3 == 0 && button1flag == 1 ) //drives to laser case 2: 2Hz 

  { 

   for (x=0; x<0x7ff; x++){  //for loop is for switch debouncing 

   _asm("NOP"); 

   for (y=0; y<0x1ff; y++) 

   _asm("NOP");} 

   button1flag = 2; 

   p6_2 = 1; 

   ta1s = 0; 

   ta1 = (unsignedint) (255); 

   ta1s = 1; 

   DisplayString(LCD_LINE1," L: 2Hz "); 

  } 

  if (p8_3 == 0 && button1flag == 2 ) //drives to laser case 3: 4Hz 

  { 

   for (x=0; x<0x7ff; x++){  //for loop is for switch debouncing 

   _asm("NOP"); 

   for (y=0; y<0x1ff; y++) 

   _asm("NOP");} 

   button1flag = 3; 

   ta1s = 1; 

   ta1 = (unsignedint) (127); 
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   ta1s = 1; 

   DisplayString(LCD_LINE1," L: 4Hz "); 

  } 

  if (p8_3 == 0 && button1flag == 3 ) //drives to laser case 4: continous wave 

  {     //This is used for power calibration 

   for (x=0; x<0x7ff; x++){  //for loop is for switch debouncing 

   _asm("NOP"); 

   for (y=0; y<0x1ff; y++) 

   _asm("NOP");} 

   button1flag = 4; 

   ta1s = 0; 

   ta1 = (unsignedint) (1); 

   ta1s = 1; 

   DisplayString(LCD_LINE1,"trigger"); 

  } 

  if (p8_3 == 0 && button1flag == 4 ) //drives to laser case 5: OFF 

  { 

   for (x=0; x<0x7ff; x++){  //for loop is for switch debouncing 

   _asm("NOP"); 

   for (y=0; y<0x1ff; y++) 

   _asm("NOP");} 

   button1flag = 0; 

   ta1s = 0; 

   DisplayString(LCD_LINE1,"LASEROFF"); 

   for (x=0; x<0x7ff; x++){ 

   _asm("NOP"); 

   for (y=0; y<0x1ff; y++) 

   _asm("NOP");} 



113 

 

 

  } 

  if (p8_1 == 1 && button2flag == 0 )   //drives to cryogen case 1: .5Hz 

  { 

   for (x=0; x<0x7ff; x++){  //for loop is for switch debouncing 

   _asm("NOP"); 

   for (y=0; y<0x1ff; y++) 

   _asm("NOP");} 

   button2flag = 1; 

   ta2 = (unsignedint) (2047); 

   ta3 = (unsignedint) (2017); 

   ta2s = 1; 

   ta3s = 1; 

   ta2os = 1; 

   DisplayString(LCD_LINE2,"C:.5Hz"); 

   } 

  if (p8_1 == 1 && button2flag == 1 ) //drives to cryogen case 2: .33Hz 

  { 

   for (x=0; x<0x7ff; x++){  //for loop is for switch debouncing 

   _asm("NOP"); 

   for (y=0; y<0x1ff; y++) 

   _asm("NOP");} 

   button2flag = 2; 

   ta2 = (unsignedint) (3071); 

   ta3 = (unsignedint) (3041); 

   ta2s = 1; 

   ta3s = 1; 

   ta2os = 1; 

   DisplayString(LCD_LINE2,"C:.33Hz"); 
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   } 

  if (p8_1 == 1 && button2flag == 2 ) //drives to cryogen case 3: .25Hz 

  { 

   for (x=0; x<0x7ff; x++){  //for loop is for switch debouncing 

   _asm("NOP"); 

   for (y=0; y<0x1ff; y++) 

   _asm("NOP");} 

   button2flag = 3; 

   ta2 = (unsignedint) (4095); 

   ta3 = (unsignedint) (4065); 

   ta2s = 1; 

   ta3s = 1; 

   ta2os = 1; 

   DisplayString(LCD_LINE2,"C:.25Hz"); 

   } 

  if (p8_1 == 1 && button2flag == 3 ) //drives to cryogen case 4: .2Hz 

  { 

   for (x=0; x<0x7ff; x++){  //for loop is for switch debouncing 

   _asm("NOP"); 

   for (y=0; y<0x1ff; y++) 

   _asm("NOP");} 

   button2flag = 0; 

   ta2 = (unsignedint) (5119); 

   ta3 = (unsignedint) (5089); 

   ta2s = 1; 

   ta3s = 1; 

   ta2os = 1; 

   DisplayString(LCD_LINE2,"C:.2Hz");}}}  
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/***************************************************************************** 

Name:  tmr_init()    

Parameters: none                    

Returns:  nothing       

Description: Setup timer A2 setup for Pulse Output Mode (in timer mode). 

    BCLK is set to f1 (divide by 1) in the ncrt0 startup file.    

**************************************************************************** */ 

void tmr_init(void) 

{ 

 DISABLE_IRQ  

 ta1mr = TIME_CONFIG; 

 ta0mr = TIME2_CONFIG; 

 tabsr = 0x04; 

 ta3 = (unsignedint) (0); 

 ta2 = (unsignedint) (0);    

 trgsr = 0x20; 

 ta2mr = TIME_CONFIG; 

 ta3mr = TIMER_CONFIG; 

 ta2ic = CNTR_IPL; 

 ta3ic = CNTR_IPL; 

 ENABLE_IRQ     

  

} 
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/****************************************************************************** 

Name       : lcd_init 

Parameters : none 

Returns    : nothing 

Description: initializes the LCD             

******************************************************************************/ 

void lcd_init(void) 

{ 

 InitDisplay();    // Initialize LCD  

 DisplayString(LCD_LINE1," Laser ");  //System start condition 

 DisplayString(LCD_LINE2,"Cryogen"); 

     

}  
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/***************************************************************************** 

Name: IntToAsciiHex    

Returns:  A pointer to the string's NULL character in the string that was just 

  created. 

Description: This function is used to convert a passed unsigned int into a ASCII 

  string represented in Hexidecimal format. 

*****************************************************************************/ 

char * IntToAsciiHex(char * dest_string,int min_digits,unsignedint value) 

{ 

 unsignedint i, total_digits = 0; 

 char buff[4]; 

  

 for(i=0;i<4;i++) { 

  buff[i] = (char)(value & 0x0F); 

  value = value >> 4; 

  if( buff[i] <= 9) 

   buff[i] += '0'; 

  else 

   buff[i] = (char)(buff[i] - 0xA + 'A'); 

 

  if(buff[i] != '0') 

   total_digits = i+1; 

 } 

 

 if( total_digits < min_digits) 

  total_digits = min_digits; 

 

 i = total_digits; 
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 while(i) { 

  *dest_string++ = buff[i-1]; 

  i--; 

 } 

 

 *dest_string = 0; 

 

 return dest_string; 

} 
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/***************************************************************************** 

Name: IntToAsciiDec    

Returns:  A pointer to the string's NULL character in the string that was just 

  created. 

Description: This function is used to convert a passed unsigned int into a ASCII 

  string represented in base 10 decimal format. 

*****************************************************************************/ 

char * IntToAsciiDec(char * dest_string,int min_digits,unsignedint value) 

{ 

 constunsignedlong base10[] = {1,10,100,1000,10000,100000}; 

 

 unsignedint tmp; 

 unsignedint i, total_digits = 0; 

 char buff[5]; 

  

 for(i=0;i<5;i++) { 

  tmp = (int)( value % base10[i+1] ); 

  value -= tmp; 

 

  buff[i] = (char)( tmp / base10[i] ); 

  buff[i] += '0'; 

 

  if(buff[i] != '0') 

   total_digits = i+1; 

 } 

 

 if( total_digits < min_digits) 

  total_digits = min_digits; 
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 i = total_digits; 

  

 while(i) { 

  *dest_string++ = buff[i-1]; 

  i--; 

 } 

 

 *dest_string = 0; 

 

 return dest_string; 

} 
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APPENDIX C-2: CLOCK INITILIZATION 

 

 
/*-----------------------------------------------------------------------------  

FILE NAME: mcu_init.c 

----------- 

DESCRIPTION: System clock and processor mode initilization 

----------- 

DETAILS: Adapted for M16C/62P 

-----------------------------------------------------------------------------*/ 

//#include "skp_bsp.h" 

#include"sfr62p.h"  // M16C/62P special function register definitions 

/************************************************************************** 

Name       : mcu_init()    

Returns    : nothing       

Description: The starter kit startup file initializes the clock circuitto the main crystal with a divide by 1.  

This function also setsthe main clock to divide by 1 in case the SKP startup file is notused.  

***************************************************************************/ 

 

void mcu_init(void) 

{ 

 unsignedint i, j; 

 /* Change XCin and XCout to inputs and start the 32Khz crystal sub clock */ 

 pd8_7 = 0;  // setting GPIO to inputs (XCin/XCout) 

 pd8_6 = 0; 

 prc0 = 1;    // Unlock CM0 and CM1  

 cm04 = 1;   // Start the 32KHz crystal 

    /* add some time delay for 32kHz to stabilize */ 

 for (i=0; i<0x7ff; i++){ 
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 _asm("NOP"); 

 for (j=0; j<0x7ff; j++) 

 _asm("NOP"); 

 } 

 cm03 = 0;  // Set Xc clock to low drive 

 prc0 = 0;  // Lock the System Clock Control Register 

} 
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APPENDIX C-3: LCD INITIALIZATION 

 

 
/********************************************************************* 

*FILE NAME:   QSK_LCD.c   

*  DESCRIPTION:  Driver for ACM0802C LCD Module on Renesas' QSK boards. 

*  (8 characters by 2 lines)                              

*********************************************************************/ 

 

#include"qsk_bsp.h" 

 

/* Used for Renesas Logo bit mapping */ 

char logo_map[8*8] =  

{ 

 0x03,0x00,0x00,0x00,0x07,0x07,0x07,0x00,  

 0x1E,0x03,0x03,0x1E,0x18,0x0C,0x03,0x00, // R 

 0x0F,0x10,0x10,0x1F,0x10,0x10,0x0F,0x00, // E 

 0x11,0x19,0x1D,0x15,0x17,0x13,0x11,0x00, // N 

 0x0F,0x10,0x10,0x1F,0x10,0x10,0x0F,0x00, // E 

 0x0F,0x10,0x10,0x0E,0x01,0x01,0x1E,0x00, // S 

 0x04,0x0A,0x0A,0x11,0x11,0x11,0x17,0x00, // A 

 0x0F,0x10,0x10,0x0E,0x01,0x01,0x1E,0x00, // S 

}; 
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/***************************************************************************** 

Name:           InitDisplay  

Returns:         none 

Description:     Intializes the LCD display.  

*****************************************************************************/ 

void InitDisplay( void ) 

{ 

 int i; 

 

 // initial port directions 

 prc2=1;       // unprotect as Port 9 is used 

 PORT_DDR = PORT_DDR_VALUE;  

 

 EN_PIN = HIGH; 

 EN_PIN_DDR = HIGH;    // set port that controls EN as output 

 RS_PIN = HIGH; 

 RS_PIN_DDR = HIGH;    // set port that controls RS as output 

 

 EN_PIN = LOW; 

 

 LCD_write(CTRL_WR,0x33); 

 DisplayDelay(20); 

 LCD_write(CTRL_WR,0x32); 

 DisplayDelay(20); 

 LCD_write(CTRL_WR,FUNCTION_SET); /* reset sequence */ 

 LCD_write(CTRL_WR,FUNCTION_SET); 

 LCD_write(CTRL_WR,LCD_CURSOR_OFF); 

 LCD_write(CTRL_WR,LCD_CLEAR); 
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 LCD_write(CTRL_WR,LCD_HOME_L1); 

 

 // Map the Renesas logo characters into CG RAM 

 LCD_write(CTRL_WR,0x40); 

 for( i=0;i<64;i++)    

  LCD_write(DATA_WR,logo_map[i]); 

 

} 
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/***************************************************************************** 

Name:  DisplayString    

Returns:      none 

Description:     This function controls LCD writes to line 1 or 2 of the LCD. 

*****************************************************************************/ 

void DisplayString(unsignedchar position, _far constchar * string) 

{ 

 staticunsignedchar next_pos = 0xFF; 

 

 /* Set line position if needed. We don't want to if we don't need  

    to because LCD control operations take longer than LCD data 

    operations. */ 

 if( next_pos != position) 

 { 

  if(position < LCD_LINE2) 

  { 

   /* Display on Line 1 */ 

  LCD_write(CTRL_WR, (unsignedchar)(LCD_HOME_L1 + position) ); 

  } 

  else 

  { 

   /* Display on Line 2 */ 

  LCD_write(CTRL_WR, (unsignedchar)(LCD_HOME_L2 + position - LCD_LINE2) ); 

  } 

  next_pos = position;  // set position index to known value 

 } 

 

 do 
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 { 

  LCD_write(DATA_WR,*string++); 

  next_pos++;    // increment position index 

 } 

 while(*string); 

} 
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/***************************************************************************** 

Name:            LCD_write 

Returns:         none 

Description:     Writes data to display. Sends command to display.   

*****************************************************************************/ 

void LCD_write(unsignedchar data_or_ctrl, unsignedchar value) 

{ 

 

    RS_PIN = data_or_ctrl;        // RS SELECT (HIGH=DATA, LOW=CTRL 

 

 /* Write upper nibble first */ 

 DATA_PORT &= 0xF0;   // Clear lower part of port 

 DATA_PORT |= (value & 0xF0)>>4; // OR in upper nibble 

    EN_PIN = HIGH;              // EN enable chip (HIGH) 

 DisplayDelay(0);    // We only need a very little delay 

    EN_PIN = LOW;              // Latch data by dropping EN 

 DisplayDelay(0);    // We only need a very little delay 

 

 if(data_or_ctrl == CTRL_WR) 

  DisplayDelay(1);   // extra delay needed for control writes 

 

 /* Write lower nibble second */ 

 DATA_PORT &= 0xF0;   // Clear lower part of port 

 DATA_PORT |= (value & 0x0F) ;  // write to port 

    EN_PIN = HIGH; 

 DisplayDelay(0);    // We only need a very little delay 

    EN_PIN = LOW;              // Latch data by dropping EN 

 DisplayDelay(1);    // needed to put delay in between writes. 
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 if(data_or_ctrl == CTRL_WR) 

  DisplayDelay(40);  // extra delay needed for control writes 

} 
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/***************************************************************************** 

Name:   DisplayDelay  

Returns:        none  

Description:    Delay routine for LCD display.    

*****************************************************************************/ 

void DisplayDelay(unsignedlongint units){ 

 

 unsignedlongint counter = units * 0x100; 

 

 while(counter--){ 

  _asm ("NOP"); 

  _asm ("NOP"); 

  _asm ("NOP"); 

 } 

} 
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