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ABSTRACT 
 
 

SAEED KHOSHNEVIS. The effect of structure in short regions of DNA on 
measurements on short-oligonucleotide microarray and Ion Torrent PGM sequencing 

platforms. (Under the direction of DR. JENNIFER WELLER) 
 
 

Single-stranded DNA in solution has been studied by biophysicists for many 

years, as complex structures, both stable and dynamic, form under normal experimental 

conditions. Stable intra-strand formations affect enzymatic technical processes such as 

PCR and biological processes such as gene regulation. In the research described here we 

examined the effect of such structures on two high-throughput genomic assay platforms 

and whether we could predict the influence of those effects to improve the interpretation 

of genomic sequencing results. 

Helical structures in DNA can be composed of interactions across strands or 

within a strand. Exclusion of the aqueous solvent provides an entropic advantage to more 

compact structures. Our first experiments were tested whether internal helical regions in 

one of the two binding partners in a microarray experiment would influence the stability 

of the complex. Our results are novel and show, from molecular simulations and 

hybridization experiments, that stable secondary structures on the boundary, when not 

impinging on the ability of targets to access the probes, stabilize the probe-target 

hybridization. 

High-throughput sequencing (HTS) platforms use as templates short single-

stranded DNA fragments. We tested the influence of template secondary structure on the 

fidelity of reads generated using the Ion Torrent PGM platform. It can clearly be seen for 

targets where hairpin structures are quite long (~20bp) that a high level of mis-calling 
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occurs, particularly of deletions, and that some of these deletions are 20-30 bases long. 

These deletions are not associated with homopolymers, which are known to cause base 

mis-calls on the PGM, and the effect of structure on the sequencing reaction, rather than 

the PCR preparative steps, has not been previously published. 

As HTS technologies bring the cost of sequencing whole genomes down, a 

number of unexpected observations have arisen. An example that caught our attention is 

the prevalence of far more short deletions than had been detected using Sanger methods. 

The prevalence is particularly high in the Korean genome. Since we showed that helical 

structures could disrupt the fidelity of base calls on the Ion Torrent we looked at the 

context of the apparent deletions to determine whether any sequence or structure pattern 

discriminated them. Starting with the genome provided by Kim et al (1) we selected 

deletions  > 2 bases long from chromosome I of a Korean genome. We created 70 

nucleotide fragments centered on the deletion. We simulated the secondary structures 

using OMP software and then modeled using the Random Forest algorithm in the WEKA 

modeling package to characterize the relations between the deletions and secondary 

structures in or around them. After training the model on chromosome I deletions we 

tested it using chromosome 20 deletions. We show that sequence information alone is not 

able to predict whether a deletion will occur, while the addition of structural information 

improves the prediction rates. Classification rates are not yet high: additional data and a 

more precise structural description are likely needed to train a robust model. We are 

unable to state which of the structures affect in vitro platforms and which occur in vivo. 

A comparative genomics approach using 38 genomes recently made available for the 
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CAMDA 2013 competition should provide the necessary information to train separate 

models if the important features are different in the two cases. 
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CHAPTER 1: BACKGROUND 
 
 
1.1: Abstract 

 As nucleic acids fold their properties change. This is taken for granted with 

functional RNA molecules, but the implications for assays such as microarrays and 

sequencing are seldom considered. Since such assays are the fundamental data on which 

genomics and functional genomics studies are based, the implications when errors are 

present are large. A number of nucleic acid modeling platforms exist that allow one to 

predict the structures present under experimental conditions, but the predictions do not 

take into account adjacent larger structures, nor are they usually tested in the lab. In this 

work we prepared a number of DNA constructs containing specific structures adjacent to 

the sequence to be measured and tested their performance on 1) long-oligonucleotide 

microarrays and 2) short-read sequencers. Finally, to determine whether the effects have 

any bearing on measurements of the human genome 3) we modeled regions of the human 

genome that are stated to contain short deletions, to determine whether structural motifs 

might signal those events.  

1.2: Introduction 

 The relative stability of a DNA duplex structure depends primarily on the 

interactions between nucleotides and other nucleotides and nucleotides and solvent 

constituents, including hydrogen bonds between bases and between bases and 

surrounding solution molecules, and base-stacking interactions between adjacent bases. 
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Breslauer el al (1986) (2) published the calorimetric measurement of entropy (∆S) and 

enthalpy (∆H) of all possible nearest-neighbor interactions of DNA/DNA duplexes, 

which facilitated the reliable predictions of the overall stability of any DNA duplexes (the 

free energy (∆G)) from their primary sequence.  

 Factors which have a great influence on the stability of DNA duplexes can be 

classified into: a) DNA sequence, its length and fidelity of pairing, b) mispaired and 

mismatched pairs and their position in a given duplex (3) and 3) environmental factors 

such as cation concentration and pH. As expected, most of the mismatches and mispairs 

are destabilizing to the duplex formation, relative to standard pairing, and those located at 

the center of a duplex are more destabilizing to duplex formation than those located at the 

end of a duplex. Duplex stability increases with increasing salt concentration up to ~1M 

(4,5) and decreases with extreme values in pH (~< 5 and ~> 9) (6). 

 Nearest-neighbor interactions serve as the foundation of thermodynamic models 

of DNA secondary structure prediction in solution. To simulate the secondary structures 

of a given template, these models use parameters such as internal and terminal DNA 

stacking (7), hairpins with and without loops, the presence of mismatches (8), dangling 

ends (9) and mono and divalent cation concentrations along with temperature and solvent 

polarity (10). 

 Transcriptome comparisons and genome wide association assays depend on the 

accurate measurement of millions of polymorphic sites across a genome. They are 

performed on microarrays and high-throughput short-read sequencers and by nature the 

samples start as extremely complex solutions. The complexity arises not only from 

sequence variation but also from how that variation affects structures and, in turn, on how 
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structures alter measurements of the sequences. Despite efforts to standardize conditions 

and calibrate the responses of these platforms, the raw data remain highly variable and 

success has been quite low in finding loci responsible for complex diseases and 

phenotypes (11,12). This is certainly due in part to the commonly small contribution of 

individual genes to complex phenotypes, particularly those that can be overwhelmed by 

environmental influences. In addition, the prevailing ‘common allele, common 

phenotype’ model is now widely seen as mistaken (13), and in its place a model in which 

rare alleles converge on a common phenotype has been embraced (14). In either case, 

phenotype is now interpreted as the outcome arising from disrupting a gene network, 

whose component gene functions and interactions are all candidates for causality. 

Creating an accurate network model requires that we have accurate measurements of each 

component gene and therefore that genomics and transcriptomics platforms deliver such 

measurements. It also requires that the models we use capture multi-dimensional 

interactions. That is, to predict the behavior of complex systems we need to a) study them 

globally and dynamically, b) measure them as quantitatively as possible and, c) integrate 

across different levels of information. These have been defined as the attributes of the 

Systems Biology paradigm, as expressed by Hornberg and colleagues (15) in the study of 

cancer. Our focus has been to bring nucleic acid structure as well as sequence into the 

modeling environment, and to consider its influence on the assays platforms as well as 

biology. Briefly, since the signal strength is used as a proxy for the concentration of target 

in microarray studies, if structure affects that estimate in unexpected ways the outcome of 

the gene level is likely to be incorrectly classified. Similarly, if structure alters the 

apparent base order in sequencing studies then the assigned genetic variance will be 
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incorrect, and correlations in the change of gene variance with phenotype will also be 

incorrect.  

1.3: Data Generation Platforms Geared for Systems Biology Approaches 

 Unlike traditional biology, in which a small number of genes or gene products are 

studied at a time, systems biology focuses on complex interactions within biological 

systems and investigates the behavior and relationships across all of the elements (usually 

of one molecular type but increasingly across types as well) in that system (16,17). The 

goal of systems biology is to uncover the interactions of multiple components that lead to 

emergent properties characteristic of biological systems, develop predictive models and 

eventually formulate biological ‘laws’ that parallel those of physics.  

 Systems biology is a technology-driven discipline: the ‘-omics’ technologies, such 

as genomics, transcriptomics, proteomics, and metabolomics, are driving the acquisition 

of sufficient data to feed the models that describe how biological systems operate. These 

high throughput technologies not only report on each element but also allow profiling 

across many conditions and time intervals, and permit resolution to single-cell levels of 

discrimination (18). Results have included the identification of missing data in the form 

of new genes and gene functions (19,20), but more importantly have helped us to 

reconstruct gene networks, which are the means for characterizing the genotype to 

phenotype relationships (21), and improved our understanding of many genomic loci 

involved in the pathogenesis of human diseases (22). 

 In such bottom-up modeling, the quality of the data is of paramount concern: the 

accuracy, coverage, sensitivity and specificity of the measurements must be rigorously 

controlled since misleading and missing data could have a great impact on our 
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interpretations, particularly as we characterize the biological networks (23,24). 

 The following experiments are designed to investigate how structure in nucleic 

acids affects the interpretation of output from microarray and short-read sequence data, 

and the extent to which apparent short deletions in human sequence data might be related 

to specific types of structure. Two of the studies require bench work to construct and test 

hypotheses about the role of structure in signal while the third is a computational study 

correlating structure with the appearance of a short deleted region in the target. 

1.4: Aims: Background and Significance 

1.4.1: Aim 1: Microarrays 

1.4.1.1: Background 

 The DNA microarray is the original example of the ‘enabling’ high throughput 

technologies; this family of platforms has been used to identify and quantify the mRNA 

transcripts present in samples, to perform re-sequencing, to identify single-nucleotide 

polymorphisms, copy number variations, and sequence variants (25-28). In the abstract, a 

microarray consists of a solid surface on which strands of short polynucleotides, called 

probes, have been anchored. The local region in which all of the strands are identical is 

called a spot. There can be millions of ‘spots’ on the array surface, each querying a 

distinct genomic target sequence. The assay is indirect: the sequence of the deposited 

probe is associated with the location of the spot, and the identity of complementary target 

is inferred based on complementarity to the probe. Sample preparation includes 

purification of the intended nucleic acid, possible conversion to a stable form, 

amplification, fragmentation and labeling. A solution of labeled targets is deposited on 

the array surface and incubated for some time, allowing targets to hybridize to 
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sufficiently complementary probes. Subsequent to hybridization the array is washed to 

eliminate nonbinding and unstable duplexes. Although detection methods vary, the most 

common chemistry is to use a fluorescent dye attached to the target along with a laser and 

detector tuned to that dye to produce photons. An image of the array is captured in which 

photons emitted lead to an ‘exposure’ level in a spot, it is assumed that this level 

correlates with the number of target molecules bound to probes in the region, and that it 

correlates in much the same way for all such pairs. That is, the spot intensity is 

transformed into a target concentration that is subsequently used for statistical and data 

mining analyses (29,30). 

1.4.1.2: Microarray Interpretation Issues 

 Although this technology has had a great impact on biological and biomedical 

research, with myriad published achievements in gene expression analysis (12,31-34), 

genome-association (35,36) , genetic linkage (37,38), and network inference studies (39), 

it has also been shown that results derived from similar studies can be highly inconsistent 

(40-42). Although the issues are not unique to microarrays, the high-throughput nature 

and involved technical steps of the assays throw into strong relief the four sources of 

experimental variance: a) sample characteristics from inherent biological properties, b) 

experimental design weaknesses of high-throughput platforms, c) technical issues due to 

assay complexity, d) physical characteristics due to innate probe and target differences.  

a) Biological variance: Biological differences are the result of real variances between 

samples. Individual cells may simply respond differently to different levels to the 

same input, or there may be single-nucleotide polymorphisms (SNPs), copy 

number variations (CNVs) (43) or different splice forms present in transcripts (44), 
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that lead to differences. 

b) Experimental variance: High-throughput assays have the inherent flaw that there 

are far more measurements than samples. While there are some designs such as a 

common reference pool that can mitigate the problem they are not always used 

(45-47). Unfortunately calibration standards, while provided by some suppliers and 

embraced by qPCR users, were never widely used by the microarray research 

community (48). 

c) Technical variance: A large number of artifacts arise from sample handling and 

array manufacture processes. Numerous investigations have been conducted to 

evaluate the influence of these factors, including batch effects (49), dye effects 

(50), post hybridization wash effects (51), platform-specific effects (52-55), and 

how statistical approaches weight assumptions inherent in experimental designs 

(56,57).  

d) Physical variance: Probes and targets are physical molecules with structural 

properties that are affected by the assay environment - their thermodynamic and 

biochemical characteristics must be considered. A well-known example of such 

properties is the secondary structures which can exist in the probe (23,58,59). 

Much less consideration has been given to the structural properties of the targets 

(60)  

1.4.1.3: Current Status and Outstanding Questions 

Although microarray technology has been widely used the interpretation of signal 

intensities is not an easy task. While some sources of variance result in noise, showing 

the characteristic random normal distribution, many of the factors listed above introduce 
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a specific bias that must be handled individually. Most of the current studies that consider 

structure explore the effect of experimental properties on probes, including melting 

temperature (Tm), free energy (∆G)(61), probe secondary structure (49), and probe length 

on probe-target hybridization (41,42,43). The few studies which address the effect of 

target secondary structures on hybridization signal intensities all assume that such 

structures always destabilize probe-target hybridization (49, 50). Our own results from 

molecular simulations and experimental data indicate that if the target has secondary 

structures around the binding region in flanking sequences, these structures may stabilize 

the probe-target hybridization instead. So in the first project, we tested the following 

hypothesis: 

1) Stable secondary structures on the boundary of, but not impinging upon, the probe-

target binding site, causes no change in the signal detected for a probe-target 

interaction on a microarray. 

1.4.1.5: Significance 

 From the intensity of the spot on a microarray the signal is converted to a 

concentration equivalent. Some studies use ratios to produce a purely relative value, but 

this precludes the use of meta-experiments, the combining of experiments from multiple 

labs that has been touted as an added value for the rather high cost of producing 

microarrays (62). Any uncorrected factor that alters the apparent concentration of a 

particular target but not others will bias the results of the experiment: since similar values 

are often binned together in data mining methods this can affect the interpretation of 

many genes and pathways.  

 Microarrays still continue to be used in large numbers (63,64), especially in 
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studies of human health given the current strong emphasis on translational medicine 

because it has a proven track record spanning more than two decades in the lab, its 

limitations and possible pitfalls are quite well known, and there is general consensus on 

the methods for analyzing the results . This means that methods to better understand and 

correct for bias on microarrays continue to be an important focus of research.  

1.4.2: Aim 2: Sequencing  

1.4.2.1: Background  

 The advent of automated sequencers in the 1990’s, based on the Sanger 

sequencing concept but using specialized chemistry and robotics, enabled routine and 

large-scale sequencing. The volume of data and the strategies required to optimize sample 

and data handling drove some of the first serious bioinformatics developments.  However 

the costs were prohibitive except for large teams and consortia. The challenge to drive 

costs down to $1000 for a complete human genome was accepted by a number of 

companies, and, although not quite realized, we are approaching the point at which 

routine sequencing is affordable for biologists running single labs (65,66). Current 

technologies all use some variant of sequencing-by-synthesis, detecting the incorporation 

of each nucleotide by some change in chemistry (65,66). To achieve high throughput the 

purified nucleic acid is transformed if necessary (to cDNA if RNA is the original 

substance), fragmented into small pieces that are then modified to allow amplification 

and priming of the sequencing reaction, attached to the substrate used by the platform, 

and then sequenced in parallel while signal is collected (67-69). Once the signal has been 

collected it is processed, such that the base present at each position can be inferred, along 

with an associated quality value (70). Data analysis methods center on assembling these 
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short reads in the correct order and then identifying frequencies of occurrence of subsets 

of the data, followed by identifying unique features of the sequence (65,71).  

1.4.2.2: Sequence Interpretation Issues 

 Although the processing and detection methods differ, the same factors that affect 

interpretation of microarray data must be taken into account when analyzing sequence 

data. Selection of the sample preparation technique greatly influences the success of 

subsequent data analysis methods. Accurate interpretation requires good experimental 

design, in this case the proper marriage of preparation technique and platform.   

a) Biological variation: The number of ways in which samples can be prepared has 

proliferated, allowing discrimination of allelic differences, modified bases, splice 

variation, small and non-coding RNAs and others (72,73).  

b) Experimental variation: The primary factor considered in this category is the depth 

of sequencing achievable by a given platform and chemistry (74). Another factor 

contributing to the experimental design is whether it will be necessary to use 

multiple platforms in order to bridge regions of sequence that one platform cannot 

handle with another, the most common example being the use of the GS FLXTM 

technology to generate reads that span repeat regions of a genome that the standard 

Illumina and Ion Torrent PGMTM platforms cannot bridge (75).  

c) Technical variation: Library preparation introduces a wide range of bias, not all of 

which will be discussed here. One example is the method for processing bulk 

samples which requires first fragmenting the material to a uniform size. All such 

methods have a certain amount of sequence bias (76); the subsequent addition of 

adaptors that create amplification and sequencing-ready templates are also 
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inefficient and subject to bias (77). Multiplex PCR amplification has well-known 

problems (78). Since the commercial sequencing platforms do not release all of the 

details of their sequencing chemistries, it is difficult to state what buffer and 

enzyme-related factors are present, but these have certainly been characterized in 

related assays, in particular Sanger sequencing (79) with electrophoresis separation 

and fluorescent product detection (80). Similar to microarray platforms, no 

calibration standards exist to allow independent and objective reporting of 

instrument behavior independent from the production of internal sequences used to 

calibrate signal processing software. It has been a source of frustration to the 

sequence analysis community that the ‘quality scores’ produced by vendor 

software are not standardized to some external, verifiable metric (81). For those 

platforms that produce image files at each cycle, studies indicate that some part of 

the image creation or data-extraction process introduces variation that affects the 

overall read's sensitivity and accuracy (70,82-84). 

d) Physical variation: As mentioned above, secondary structure is an integral 

characteristic of a nucleic acid. The nature and stability of such structures is highly 

dependent on the environment. The equilibrium between the hairpin and random 

coil conformation of a nucleic acid molecule not only depends on the composition 

and the number of residues participating in the stem and loop, but also depends on 

the ionic strength and the temperature of the solution (85). While microarray assay 

conditions were designed to minimize such structure, reactions involving enzymes 

have much less leeway, as PCR assay designers know too well. Some of this 

structure is biologically important in the context of an intact cell such as gene 
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expression regulation through protein binding to structures in untranslated regions 

(UTRs) (86), and some arise only in the context of the laboratory preparation steps. 

It has been noted that different high-speed sequencing platforms have different 

characteristic errors, some of which have been correlated with high GC-content or 

stable hairpin structures as has been shown by Dr Lin Liu:  in Illumina HiSeq 2000 

the average sequencing depth dropped ~1X when GC content increased from 60% 

to 70% (87). No systematic study of structure effects on sequencing fidelity has 

been carried out, probably in part because of the proprietary nature of the reagents.  

1.4.2.3: Current Status and Outstanding Questions 

 Similar to microarrays, NGS technologies are considered transformative for 

today’s biomedical research, but several studies have revealed problems with data 

reliability and reproducibility among NGS platforms. For example, Dohm and coworkers 

found that,  in the reads generated by a Solexa  platform, A to C base substitution errors 

were 10 times more frequent than the C to G substitutions (82). Similar artifacts were 

observed by Bravo and Irizarry who reported that, in the reads generated by the Illumina 

ChIP-seq experiment, A to T miscalls were the most common error (83). Finally, Oshlack 

and Wakefield used the Aggregated Tag Counts technique  to identify differentially 

expressed genes in datasets generated by a number of different platforms and found that 

the ability to correctly call differential expression is strongly associated with the length of 

the transcript (84) and not simply the number of tags in a specific region. There is little 

published work exploring what template-related factors affect read accuracy; the current 

push is to increase read length for sequences accessible to the methodology. Since some 

of the structure-related issues were addressed for earlier generations of sequencers it may 
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be possible to adapt those methods to the new platforms, thereby recovering usable 

sequence. So in this project, we tested the following hypothesis: 

2) Stable secondary affects the fidelity of read-through on an available short-read 

high-throughput platform, the Ion Torrent Personal Genome Machine (PGM) 

1.4.2.4: Significance 

 Developers of biomedical applications are embracing high-speed sequencing 

platforms at an unprecedented rate, with consequences that can be immediate 

(determining what drug to prescribe) and long-term (development of new druggable 

targets) (88). Knowing what features lead to particular types of errors will help both those 

choosing the method for generating data and analysts developing methods for best 

analyzing the data to partition their selections correctly.  

1.4.3: Aim 3: Computational Study of Deleted Human Sequences  

1.4.3.1: Background 

 There are publicly available datasets from each of the major NGS platforms on 

reference genomes, particularly the HapMap samples originally shared across 

international institutions to produce human variation estimates (89). The outcomes of 

these profiling experiments are described in survey articles describing differences such as 

where errors accumulate and what types of errors are most commonly seen. An error that 

caught our attention was the reported prevalence of short deletions in the human genome 

(90,91). Ahn et al. 2009 examined 342,965 indels (<= 20bp) which they reported in the 

Korean individual genome (SJK) against dbSNP and they found that only 247 indels  

(0.1%) were validated and 113,287 (33.0%) non-validated and the remaining 229,431 

(66.9%) indels were not found in dbSNP. They also compared SJK indels (< 4bp) with 
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those of Han Chinese (YH), HuRef (Venter), Watson, and Yoruba and reported that 

between SJK and YH genomes only 7.8% of the indels had the same genomic positions, 

size and type,  between SJK and Venter  genomes only 10.2% of the indels had the same 

genomic positions, size and type, between SJK and Watson genomes only 2% of the 

indels had the same genomic positions, size and type, and between SJK and Yoruba 

genomes only 49.4% of the indels had the same genomic positions, size and type. 

 Since preliminary data in our lab from the sequencing of constructs with strong 

hairpins resulted in apparent short deletions (unpublished data), this seemed a promising 

direction to pursue: did some fraction of the apparent deletions lie in highly structured 

regions that might have lead to sequencing errors. By comparing randomly selected 

sequences that match the reference genome as a training set and using regions apparently 

subject to deletions relative to the reference genome as our test set, the goal is to identify 

sequence/structural features that distinguish the sets. Because chemistries differ, the 

sensitivity of the different platforms to structure may well vary.  Identifying signatures 

difficult for particular platforms to accurately produce will allow researchers to correctly 

pair the method and the target. Although not covered in this dissertation research, the 

long-term goal of the lab is to identify conditions on the Ion Torrent PGMTM sequencer 

that allow accurate sequencing through highly structured templates.  

1.4.3.2: Interpretation Issues 

 It is well recognized the sequencing errors create a barrier to correct correlation of 

genotype and phenotype in association studies. The assumption is that these errors result 

from mis-incorporation of nucleotides presumably arising from either slippage of short 

repeat regions or inability of the platform to maintain a signal difference in 
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homopolymeric regions (92,93). While slippage in repeat regions could create the 

appearance of a short deletion many of the regions containing ostensible deletions do not 

contain simple sequence repeats or homopolymeric regions. Kim et al. 2009 examined 

the genome of a Korean individual known as AK1 and reported 170,202 indels, from 

which just 60 indels were confirmed using the Sanger sequencing assay. The presence of 

such a very large number of not validated indels may cause one to consider whether all of 

these reported indels are truly present or whether some of them resulted from the assays' 

conditions. 

1.4.3.3: Current Status and Outstanding Questions 

 Many large sequencing projects have been carried out on human samples using 

the various high-throughput short-read platforms. Unfortunately most of the data is not 

available even in the Short-Read Archive, so one must rely on summary statistics and 

previous analyses. We successfully identified one project that made the raw data available 

and used it as the basis for a structural modeling assessment and then we used the random 

forest algorithm implemented in the machine-learning environment (WEKA) to identify 

relevant features. In this project, we tested the following hypothesis: 

3) The sequence context of short deletions has no structural context that discriminates 

them from similar sequences that are successfully sequenced. 

1.4.3.4: Significance 

 If it is true that structure plays a significant role in the accuracy with which a 

particular platform reads out a target, then we want to predict those regions of the human 

genome with characteristics making them prone to experimental errors. Even where 

deletions are of biological rather than technical origin a structural context may correlate 
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to an important regulatory phenotype.  

 In summary, the effect of structure within the probe-binding interface of 

heteroduplex formation is accepted, but the effect of adjacent structures has not been 

reported. A significant change in binding stability would alter the interpretation of many 

microarray experimental results. Similarly, the effect of structure within the sequencing 

template of HTS platforms could lead to a number of types of read errors, and if long 

deletions are one such error the outcome is likely misinterpretation of genome or 

transcript structure. Finally, in a HTS experiment that reports on a very high frequency of 

deletion changes in a genome, we investigated whether a structural component might 

predict the appearance of the deletion. 



 

CHAPTER 2: THE EFFECT OF TARGET STRUCTURE ON MICROARRAY 
HYBRIDIZATION 

 
 
2.1: Overview 

 Studies that investigate the effects of secondary structure(s) on the rate and 

efficiency of the probe-target duplex formation on microarray platforms can be divided 

into two groups. One group focuses (94-98) on how the formation of secondary structure 

leads to a reduction of hybridization sensitivity and specificity. For example Mehlmann 

and Liu have shown that for perfectly complementary probe-target sequences, the 

presence of stable monomer structures at hybridization equilibrium significantly 

decreases the rate and efficiency of duplex formation. This is expected since it decreases 

the concentration of one of the reactants. The effect is a signal that is too low, a false 

negative in analysis terms. The other group of studies (99-101) has shown that the 

formation of  secondary structure sometimes leads to unexpectedly high hybridization 

signals, such as that published by Trapp (2011) in which non-complementary target-probe 

sequences formed stable heterodimers with an internal bulged loop. A special class of 

structures called G-quadruplexes are also known to create duplex signal higher than the 

concentration of reactant would predict (101). Thus although the effect of structure can 

vary, it is widely acknowledged that the presence of structure in either probe or target can 

lead to signals that do not accurately reflect concentration, and structure must be 

considered in order to accurately analyze and interpret microarray data.

 In most microarray experiments the question asked is how well the probe 
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hybridization discriminates between a perfect match and mismatches of varying degree 

(102,103). Sequence extending beyond the duplex region is considered irrelevant, except 

so far as it affects diffusion rates (104) or competes for the probe binding region, as 

indicated above. Indeed, solution thermodynamic theory states that only the N+ 1 base 

will affect the hybrid formation barring the existence of a competing structure (9). 

 Testing of structured templates is complicated by preparation challenges. A 

common source of known and highly structured sequences is the ribosomal RNA gene 

family, which has extensive experimental evidence from cross-linking and other types of 

assays that report on the major folded forms. Amplified fragments of 16S rDNA have 

been used to test probe responses on microarrays, results consistently show less signal 

than the added concentration would have predicted (94). Reducing targets to a size that 

eliminates the possibility that internal binding can be stable under hybridization 

conditions has been recommended (105), but under random shearing protocols this is also 

likely to disrupt the probe-target binding site at a fairly high frequency, which will also 

cause a decrease in signal compared to the input concentration. Very long targets diffuse 

slowly in hybridization solutions, and it has been shown that the rate of reaching 

equilibrium is considerably slower than many hybridization protocols permit (96), 

although those experiments did not consider secondary structure as a factor. None of 

these studies considered the effect of hairpins in the target adjacent to the heteroduplex 

region on binding stability. The competing models for outcomes when such structure is 

present include: the folded structure creates steric hindrance to a probe-target interaction 

leading to a diminished signal; the overall thermodynamic effect of total entropy from the 

exclusion of solvent will lead to a more stable complex and possibly an enhanced signal 
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relative to length matched probe-target pairs. 

2.2: Methods - Computational 

2.2.1: Target Construction to Test Computational Predictions 

To investigate the effects of boundary sequences on the stability of probe-target 

duplexes, we selected two 33mer probes (SNP_A-8475541, SNP_A-8477444) from the 

Affymetrix SNP6.0 Array which are annotated to chromosome Y (human genome 

reference build version 36.3). They are among the probes having the highest fraction of 

partial alignment with sequences along chromosome Y, which means that stabilized 

partial hybrids could have a significant effect on interpreting the data.   

Since full-length complements bind 100%, we could not use them to investigate 

the significance of stabilizing boundary structures, therefore we identified 603554 and 

624697 partial alignments for SNP_A-8475541, and SNP_A-8477444 probes along 

chromosome Y using the SeqNFind™ platform with the following input parameters open 

gap=-3, extending gap=3 and word size of 6, with the goal of identifying those with 

significant but not complete binding so that differences could be observed.  

 To construct extended targets we used the complements of the partial alignments 

obtained from the alignment tool as probe-target binding cores and designed a nested set 

of sequences around them, such that increasing length gives rise to structure on either 

side. The probe-target binding may be longer or shorter than 33nt in length: a longer 

partial match simply extends over more bases, a shorter uses only a subset of the total 

primer length.  Each set includes 10 nested targets. The smallest target in each set 

complements the core probe binding sequence and the remaining members of the set are 

longer by 1, 5, 10, 15, 20, 25, 30, 35, and 45 nucleotides to both sides of the core, 
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designated by the core label ‘+N’ , as sown in Figure 1. In the following pages we refer to 

these as target-sets. 

2.2.2: Molecular Simulations 

 We used the Oligonucleotide Modeling Platform (OMP DE™) (106), with  
 
parameters matching Affymetrix SNP6.0 array hybridization conditions (see Table 1), to  
 
model all of the optimal and suboptimal heteroduplex structures (targets and selected  
 
probes). 
 
 
 
 
 

 
FIGURE 1: Schematic of the target-set design process. Highlighted in the red box are 
examples of 3 types of alignments of one probe to 3 sites on chromosome Y. The farthest 
left shows complete and perfect complementarity, the second shows an internal gap in 
complementarity and the third is an example where there are several internal gaps. 
Because gap lengths and the extent of complementarity vary, target length does not 
correlate directly with probe length. 

 
 
 
2.2.3: ∆G Cutoff Calculation 
 
 A novel method was used to estimate the boundary condition for stable binding of 

the ∆Gheterodimer, explained below (R code indicated in supplements corresponds to Figure 

Third Second Set  First Set  
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4). 

 To calculate ∆G cutoff for each probe, we used all optimal ∆Gheterodimer obtained 

from OMP (603554 and 624697 optimal ∆Gheterodimer for SNP_A-8475541and SNP_A-

8477444 probes) and calculated The Probability Density Function (PDF) of 

max(∆Gheterodimer)- ∆Gheterodimer  , where max(∆Gheterodimer) reflects the value reported for 

the less stable conformation, and ∆Gheterodimer  reflects any other conformation returned by 

the modeling software. The Chi-square statistical test was used to identify the critical 

value of this distribution for an α = 0.05 and degree of freedom (df) = 1. Then, we found 

the maximum ∆Gheterodimer from the probability density function which had for its 

corresponding value on the x-axes a value equal to or greater than this critical value.  We 

then considered all any duplex structures with ∆Gheterodimer less than this critical value to 

be stable, meaning that is it predicted to return a measurement higher than baseline on our 

microarray platform, and hence potentially useful for our study.  

2.2.4: Target-Set Selection Criteria 

 Several measures are used to predict probe-target binding, including ∆Gheterodimer, 

the total number of H-bonds, a minimum nucleation length and the OMP-calculated 

percent bound (PB). All of these values were calculated for each member of each target 

set, as described below.  

 From the work of others we know that continuously complementary heterodimer 

structures having ∆G ≤ -10 kcal/mol persist through the wash steps under commonly used 

conditions (107), although a variety of factors can modulate this cut-off, as discussed by 

Xia et al (108) Targets useful for comparison then require changes in ∆G  resulting in 

structures at least that stable, so this represents one selection criterion. That is, we 
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retained in our target sets only members with predicted increased stability beyond that 

threshold as the length increases.  

 The Tm and percent bound (PB) value reported by the DNASoft OMP application 

have been reported in some of the literature (109,110) to be a reliable indicator for the 

amount of duplex formed.  Given the sensitivity of the microarray scanning platform, a 

10 % change in percent bound is readily measured, so we required that difference when 

selecting targets to compare. That is, we retained members in target-sets that were 

predicted to have ∆PB ≥ 10% when the length changed, excluding the bottom 10% and 

top 90% signal saturation. 

2.2.5: Examine the Effects of the Target Length and Secondary Structures on Probe-

Target Hybridization 

 To investigate whether structures that surround (and don’t occlude) the probe-

target binding site may stabilize the heterodimers, we investigated the result of following 

three experiments: 

1) We gradually increased the target length (symmetrically centered on the probe 

binding site) from 1 to 45nt and counted all the heterodimer structures which 

satisfied our target-set selection criteria ( a) ∆Gheterodimer ≤ -10kcal/mol and  b) the 

predicted target-percent bound increased at least 10%) and then plotted the result.  

Note: For each duplex, we obtained 1 optimal and 9 sub-optimal structures 

therefore the ∆Gheterodimer used in this part of analysis, was the weighted-average of 

the optimal and suboptimal ∆Gheterodimers , and the  target-percent bound was the 

summation of optimal and suboptimal heterodimers'  target-percent bounds.  

2) Since increasing the target length may generate a more stable probe-target binding 
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site, for the second experiment, we gradually increased the target from 1 to 45nt 

and counted all the heterodimer structures which not only satisfied a) ∆Gheterodimer ≤ 

-10kcal/mol and b) the predicted target-percent bound increased at least 10%, but 

also c) keep the same base complementarily between the two strands and then 

plotted the result. 

3) After applying base complementarily filter, the number of heterodimer structures 

reached a maximum at extensions of 15 and 20nt for probes 858_T and 850_T and 

then began to decline. To show that even though, the number of heterodimer 

structures decreased, their stability continued to increase , we compared the ∆G 

distribution of +45 with +15 targets for probe 858_T and  +45 with +20 targets for 

probe 850_T. To do this comparison we subtracted the number of heterodimer 

structures of length +45 from those at length +15 and +20 for probe 858_T 

and850_T consecutively and then we plotted the ∆G distributions for all 

heterodimers containing from 4 to 12 complementary bases. 

2.3: Methods - Experimental 

2.3.1: Target and Probe Design 

 In this part of our study the goal was to experimentally validate the results 

obtained from the computational modeling described above, which indicated that the 

presence of a boundary structure stabilizes rather than destabilizes the probe-targets 

interactions. 

 From the set of possible target sets we selected 3 pairs for experimental testing.  

Each pair includes one target that is the same length or slightly longer than the 35nt probe 

(40-50nt) and one that is considerably longer (130-150nt) and includes hairpin structures 
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in the regions adjacent to the probe binding site. Criteria are described in more detail 

below.  

Common criteria, applied to all 3 pairs include:  

1) All probe-target binding site complementarity is imperfect (non-continuous) so all 

binding will fall below 100%, allowing competitive differences to be observed.    

2) Factors contributing to duplex stability include the total number of H-bonds, a 

‘minimum nucleation length’ of consecutive H-bonds, the ∆G of the duplex and 

the percent bound (PB). Figure 2 shows the pairs, which include:  

a) Target set 1571-150 and 1571-50, which focused on the number of H-bonds 

and the presence of a ‘minimum nucleation length’. 

b) Target set 857-150 and 857-50, which focused on the total ∆G of the 

duplex.  

c) Target set 643-130 and 643-40, which focused on the duplex ∆G and the  

percent bound.  

3) A design constraint was that the heterodimer portion of each structure (the probe-

target interface that forms a duplex) was predicted to be more stable than any 

adjacent structure in the target or any alternative folded monomeric structure of the 

probe or target, or possible homodimers. 

4) Note on experimental methods: because it has been proposed that aqueous 

hybridization wash conditions remove properly bound material we used the 

isopropanol conditions described by Pozhitkov and Noble (2006), although their 

more recent publications indicate that this extra care may not have been required 

(51).  
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Specific criteria used in selecting the second and third target pairs include: 

1) Under the hybridization conditions shown in Table 1, each member of the pair has  

same nucleotides complementary between the probe and two targets (see Figure 2).  

 
 
TABLE 1: Hybridization conditions used in the OMP simulation 

Assay Temp 45C 
Monovalent 0.056M 

DMSO 0.96% 
TMAC 3.68M 

PH 6.6 
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FIGURE 2: Optimal duplex structures of the three target-pairs which were selected for 
testing. As shown, each pair consists of a longer (~140nt) and shorter (~45nt) target. In 
the figures the red oval indicates the hybridization site. The pattern of complementary 
bases in the duplex is the same for both members of pairs 2 and 3.  
 
 
 
2.3.2: Target Construction 

 Targets were assembled using overlapping oligonucleotides (111,112) which were 

designed to span the entire length of each target. The 3’ overlaps were 15-35 nucleotides 

in length (Figure3). Target assembly and amplification was performed in three steps: 
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annealing, extension, and full-length PCR. Annealing was carried out in a volume of 30 

µl, with 0.2 µM of each oligonucleotide in a buffer containing 1.5 mM MgCl2 and 1X HF 

buffer (Phusion high-fidelity buffer from Promega).  After mixing, the solution was 

heated to 95°C for 5 minutes, followed by gradual cooling to 37°C (60 minutes in a 

100ml beaker of water heated to 95°C). To each reaction was added 200 µM (final) of 

each dNTP and 0.4U of Phusion polymerase, followed by incubation for 60 minutes at 37 

ºC. The full-length construct was then amplified from the mixture of products using 

primers to the ends alone.  These primers were modified such that the final targets had a 

Cy3 label on the 5' side of the strands that hybridize to the probes and a biotin on 5' side 

of the complementary strand. Biotin-streptavidin binding of the complementary strand 

was performed to remove the complementary strand, to prevent competitive binding of 

this strand to target when hybridized to the microarray. This PCR reaction was carried out 

in a 100 µl reaction containing 10 µl of re-amplified and gel-purified full-length target, 

200 µM of each dNTP, 0.4 U of Phusion polymerase, 0.2 µM of terminal primers, 1.5 

mM MgCl2 and 1X HF buffer. PCR cycling was: 95º C for 3 min followed by 30 cycles 

at 95º C for 30 s, 58 ºC for 30 s and 72 ºC for 30 s, and terminated by 3 min extension at 

72ºC. Correct modification was verified by analyzing 5ng of each target on 8%  

polyacrylamide gels (Figure 4). 
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FIGURE 3: Schematic representation of steps in the template assembly process. 
 
 
 

 
FIGURE 4: Gel picture of three cy3 labeled double stranded targets. This gel stained  
with syber-gold and NEB 25bp step ladder was used as the size standard.  
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Extension   

Full-Length PCR   

Extension   

Assembled Target   
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2.3.3: Purification of Single-Stranded Targets 

Labeled double-stranded targets were ethanol precipitated. After resuspension the 

desired 5’-Cy3 probe-complementary strands were isolated using Dynabeads® M-270 

Streptavidin (from Invitrogen) to remove the biotin-labeled strand. Cy3-labeled single-

stranded targets were assessed for length and purity by analyzing them on 8% 

polyacrylamide gels and visualizing them using the Tecan ReLoaded scanner (Figure 5), 

following the manufacturers gel visualization protocol. 

As highlighted by blue oval in Figure 5, small portion of double stranded targets  
 

remained in the final isolated single stranded solutions which must be considered in  
 
assessing the final concentration of our single stranded targets. 

 
 
 

 
FIGURE 5: Gel image of single and double stranded target visualized using Tecan 
ReLoaded scanner. Blue oval highlighted double stranded target which remained in the 
isolated single stranded solutions. 
 
 



30 

2.3.4: Single-Stranded Targets: Concentration Calculation 

 To measure the concentration of our Cy3 –labeled single stranded targets, we first 

built a standard curve following these steps: 

a) A Cy3 labeled oligonucleotide (100uM) was 5-fold serially diluted to create a 

calibration set (Table 2).  

b) Each dilution was measured with a NanoDrop ND-3000 spectrophotometer to 

acquire RFU values, with three-fold replication. 

c) The standard curve was created by plotting the known concentrations on the x-axis 

and measured RFUs associated to each concentration on the y-axis.  

 The RFU values of the targets were measured using the NanoDrop ND-3000 

spectrophotometer. We note that there is likely still a small amount of double-stranded 

target (visible on the acrylamide gels – see Figure 5) remained in the isolated single 

stranded targets, because the Dynabead purification step is not completely efficient.  

 To determine the fraction of each RFU value that belonged to the single stranded 

targets we ran each target solution on an 8% polyacrylamide gel. Lanes were cut out and 

imaged in the Tecan Reloaded scanner for the Cy3 signal. Band intensities were 

measured for the single and double stranded targets, from which we calculated the 

portion of RFU values which belonged to each, and then the fraction of signal belonging 

to the single-stranded target available to bind to the probes on the microarray Finally, we 

used the RFU values of the single stranded targets to interpolate our targets' 

concentrations using the standard curve. The example below illustrates this process in 

detail. 
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 To calculate the concentration of single stranded target (Cy3-1571-150), we 

measured:  a) The total RFU value, which was 4452 f.u., b) The proportion of intensities 

of the single to double stranded bands was 4.5 (Figure 6) therefore, by solving 4.5X+X = 

4452 equation, we found that the RFU values associated to the single stranded target was 

3642.5. Using the standard curve (built using data in Table 2), we found the 

concentration of single stranded target was ~ 430 nM (Figure 6).  

 To make the hybridization buffer (60 µl), 14.6 µl of target was used. That is,  
 
target was diluted 60 / 14.6 = 4.1 folds, therefore for the above target the final  
 
concentration was 430 nM / 4.1 = ~ 104.6 nM  
 
 
 

 
FIGURE 6: This figure illustrates the process of calculating the target concentration. 
 
 
 
TABLE 2: Concentration series and associated RFU values used to build standard curve. 

Concentration (nM) RFU Values 
50 370 
100 730 
200 1500 
400 3100 
800 6050 
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2.3.5: Array Design Specifications 

 The microarray slides were printed in-house using 110 µm quill pins on the 

BioRad Calligrapher according to the supplier’s instructions. Probe concentration was 5 

µM, slides were SuperChip Epoxy Slides (Erie Scientific through VWR). 

 As Figure 7 indicates, the array contains 4 rows and 4 columns. The first row  

contains 4 spots of buffer, the second row contains 4 spots of 5 µM Intended probes  

(against which targets were designed). The third row contains 4 spots of 5 µM unlabeled  

probes which were used as negative control to make sure our targets did not hybridize to  

the sentinel probes, and the fourth row contains 5 µM ‘sentinel’ probes, which contain a  

Cy3 label and were used to identify the position of the spots on the slide and to verify that  

the attachment chemistry was successful. Each slide contains two such arrays. 
 
 
 

 

FIGURE 7: Slide layout. 
 
 
 
2.3.6: Array Hybridization 

 Slides were placed in an HS 4800 Pro Hybridization Station (Tecan, Mannedorf, 

Switzerland), then they were blocked with BlockIt solution (ArrayIt, Sunnyvale, CA) for 

30 minutes. Next, 60µL of hybridization solution containing 44.16 µL of 5M TMAC 
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(final concentration 3.68 M), 0.617 µL of 100% formamide (final percentage 0.96%), 

0.672 µL of 5 M sodium chloride (final concentration 0.56M), and 14.6 µL target (50-

100nM) was added to each array (two arrays per slide). Sides were incubated for 18 hours 

at 45 C. During this period they were subjected to mechanical agitation at medium 

intensity (1.1 minutes agitation with 3.5 minutes break). After hybridization, slides were 

washed with 99% isopropanol for 2 minutes (113) and then they were dried and scanned 

using Tecan ReLoaded scanner. 

2.3.7: Image Acquisition and Data Analysis 

 Slides were scanned with the following parameter settings: 532nm laser, a 575nm 

filter, Hs Autofocus, small pinhole, 6µm resolution, and a 160 PMT gain in the LS 

Reloaded Scanner (Tecan, Mannedorf, Switzerland).  

 Images were saved in the Tagged Image File format (tif) and then analyzed using 

ImaGene software (Biodiscovery, Inc, Proteigene, Saint Marcel, France) with the 

parameters for segmentation option and set to seeded region growing. Each spot’s 

intensity was transformed by subtracting the background intensities from the respective 

raw intensities, and then plotted. Figure 8 shows one example of images of the array 

associated to each target set before and after hybridization. 
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FIGURE 8: One example of scanned images before and after hybridization for longer 
and shorter target in each target set. 

 
 
 
2.4: Results 

2.4.1: Computational Predictions of the Constructed Targets 

 Table 3 indicates the number of locations which selected probes were aligned  
 
(from Affymetrix SNP 6) on chromosome Y using the Smith-Waterman algorithm as  
 
implemented on the SeqNFind™ platform. For each probe, as described in the Methods  
 
section, these aligned locations were used to generate a series of potential targets. 
 
 
 
TABLE 3: Probes and number of aligned positions on the specified chromosome 

Probe Name Length Chromosome Number of aligned locations 

SNP_A-8475541 33 Y 604487 
SNP_A-8477444 33 Y 633188 
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Note: for simplicity of notation, throughout this study we labeled probe SNP_A-8475541 

as T-850 and probe SNP_A-8477444 as T-858. 

2.4.2: Results of ∆G Cutoff Calculation 

 To estimate a cutoff value for ∆Gheterodimer. , we used all ∆Gheterodimer associated to  
 
optimal heterodimer structures and applied the method described above to determine the  
 
cut off values for ∆Gheterodimer. (Figure 9). As Figure 8 shows, the cutoff ∆Gheterodimer  
 
values for the stable duplex structures were around -10 kcal/mol. 
 
 
 
 

 
FIGURE 9: ∆Gheterodimer cut off values. a) ∆Gheterodimer cut off values for probe 858_T 
hybridized to the targets generated based on chromosome Y.  b) ∆Gheherodimer cut off values 
for probe 850_T hybridized to the targets generated based on chromosome Y 
 
 
 
2.4.3: Predicting the Effects of the Target Length and Secondary Structures on Probe-

Target Hybridization 

2.4.3.1: First Experiment 

 The results of this experiment are summarized in Figure 10. As the results 
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indicate, increasing the target length increased the number of duplex structures which 

satisfied our criteria (∆Gheterodimer ≤ -10kcal/mol and the predicted target-percent bound 

increased at least 10%). For example, when the length of targets associated with 858_T 

increased  just by 1nt from each side, 13561 heterodimer structures which did not meet 

our criteria would satisfy them now, but when the length of targets for this probe 

increased by 45nt , a total of 169,036 heterodimer structures which previously did not 

meet our criteria would satisfy them now. 

 Interpretation of this result is not simple because, as target lengths get longer they 

may provide additional probe binding sites. Thus we had to filter the results to look only 

at those sequences that preserved the same pattern of base complementarily between the 

two strands. That is why, we conducted the second experiment.  
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FIGURE 10: A summary of the effect of increasing length on heterodimer stability, where 
the core duplex complementarity is retained. In the top panel the y-axis has the actual 
number of structures while in the bottom panel the y-axis shows the percent increase over 
baseline instead.  In both panels the x-axis indicates the increment in target length. The 
value in the table below shows the actual number of structures compared to the base 
targets (in panel A) and the percent increase in the number of structures compared to the 
base targets (in panel B). 
 
 

(A) 

(B) 
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2.4.3.2: Second Experiment 

 The results of this experiment are summarized in Figure 11. As we expected, by 

adding a new filter to only look for those heterodimer structures that preserved the same 

base complementarily between the two strands, the number of heterodimer structures 

which met our criteria was significantly reduced. For example, when the length of targets 

associated to 858_T increased by 45nt from both sides, using this filter resulted in only 

15,530 heterodimer structures meeting our criteria, while in the absence of this filter 

169,036 heterodimer structures would meet our criteria. 

 Comparing the results summarized in Figure 10 with those from Figure 11 

showed:  Within each target-set, there was a linear increase in the number of stable 

structures, but when the binding position was restricted the number reached a maximum 

at extensions of 15 and 20nt for probes 858_T and 850_T consecutively, and then began 

to decrease again.  

 By using the base complementarity restriction (Figure 11), we filtered those target 

structures that occlude the probe binding site, because increasing target length without 

constraining the sequence produced internal structures that blocked the probe binding 

site. Thus the fraction of stable duplexes using the same bases to form a heterodimer 

decreased. 
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FIGURE 11: These panels summarize the effect of filtering to retain the same probe-
binding core from the base heterodimer across all longer targets.  In the top panel the x-
axis has the actual number of structures while in the bottom panel the x-axis shows the 
percent increase over baseline instead.  In both panels the y-axis indicates the increment 
in target length. The value in the table below shows the actual number of structures (in 
panel A) and percent increase in the number of structures (in panel B) for each of the 
base targets. 

 
 

(A) 

(B) 
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2.4.3.3: Third Experiment 

Results summarized in Figure 12 indicated although the number of alternate  
 

heterodimer structures for both probes began to decrease after some point, the stability of  
 
the remaining structures continued to increase.  
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FIGURE 12: In panel (A) for probe T-850, we binned together duplex structures with the 
same ∆G. Within a bin, we then subtracted the number of heterodimer structures of length 
base +45 from those of length base +20 and then plotted the ∆G distributions for all 
heterodimers which had 5, 6, 11, and 12consecutive complementary bases. In panel (B) 
for probe T-858, we carried out the same process but in this case the lengths were base 
+45 and base +15. 
 
 
 
 
 



42 

2.4.4: Results of Hybridization 

 For targets of each set we ran two hybridization experiments.  The targets’  
 
concentrations used for each of these experiments are indicated in Table 4. 
 
 
 
TABLE 4: The final target concentrations used in each experiment. 
Target Experiment  # Final Concentration (nM) 
1571-150 1 ~104.6 
1571-50 1 100 
1571-150 2 ~120 
1571-50 2 150 
  
857-150 1 ~89 
857-50 1 ~100 
857-150 2 ~125 
857-50 2 ~150 
  
643-130 1 ~60 
643-40 1 50 
643-130 2 ~95 
643-40 2 100 

 
 
 
TABLE 5: List of the all predicted ∆Gheterodimer, number of H-bonds,  
Percent bound (PB), and minimum nucleation length for each heterodimer  
structure under the hybridization conditions (Table 1). 

 
 
 
 
2.4.4.1: Results of Hybridization for Target Set 1 (1571-150 and 1571-50) 

 OMP predicted the information summarized in Table 5, showing a) at equilibrium 
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both targets in this set bound >=95 %, b) minimum nucleation length is longer for the 

short target ( 2 sets of 7nt) in comparison with the long target (1 set of 6nt), and c) the 

number of H-bonds involved in the heterodimer structure is greater for the longer target 

(36 versus 22). However the results of both hybridization experiments (Figure 13, 14) 

show a hybridization signal was only detected for the longer target (1571-150); therefore, 

the percent bond and minimum nucleation length could not be a driving force for this 

hybridization, because if they were, hybridization signal must be detected for the shorter 

target instead.  

 We believe the number of H-bonds involved in forming the heterodimer structure 

was the dominant factor stabilizing this hybridization. 
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Results of the first and second hybridization experiments for the target 1571-150: 
 
 

 
FIGURE 13: This figure summarizes the results of two hybridization experiments for 
target 1571-150 and contains 1) plots of spots intensities before and after hybridization, 
2) the intensity values for each spot located in a table at the bottom of each graph, and 3) 
spot quality flags which are located in a table at the bottom right corner of each graph. In 
the spot quality table, flag 0 means the spot has a good quality, flag 2 means empty spots 
and flag 3 means poor quality spots. 
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Results of the first and second hybridization experiments for the target 1571-50: 
 
 

 
FIGURE 14: This figure summarizes the result of two hybridization experiments for 
target 1571-50 and contains 1) plots of spot intensities before and after hybridization, 2) 
the intensity values for each spot located in a table at the bottom of each graph, and 3) 
spot quality flags which are located in a table at the bottom right corner of each graph. In 
the spot quality table, flag 0 means the spot has a good quality, flag 2 means empty spots 
and flag 3 means poor quality spots. 
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2.4.4.2: Results of Hybridization for Target Set 2: (857-150 and 857-50) 

 The results of the first and second hybridization experiments, which are 

summarized in Figures 15 and16, indicated that hybridization signal was only detected 

for the longer target (857-150) in this set.  If the number of H-bonds, PB or minimum 

nucleation length, or a combination of these factors, were driving stable hybridization, 

the hybridization signal should be detected for both, or neither,  because both duplexes 

have the same number of H-bonds (19 nt), very similar  percent bound levels (~98%), 

and identical base complementary between the two strands. Therefore in this case there 

must be another factor(s) which stabilizes this hybridization. 

 Examining the optimal heterodimer structures associated to the members of this 

set (Figure 1) shows that the heterodimer structure of the longer target had some 

secondary structures adjacent to the probe-target binding interface while the heterodimer 

structure associated to the shorter target did not have such structures. We believe these 

surrounding structures stabilized the duplex formed by the longer target by exclusion of 

solvent (entropy-driven) but it is also possible that, once formed, it diffused away more 

slowly, shortening the time to re-form the complex. 
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Results of the first and second hybridization experiments for the target 857-150: 
 
 

 
FIGURE 15: This figure summarizes the results of two hybridization experiments for 
target 857-150 and contains 1) plots of spot intensities before and after hybridization, 2) 
the intensity values for each spot located in a table at the bottom of each graph, and 3) 
spot quality flags which are located in a table at the bottom right corner of each graph. In 
the spot quality table, flag 0 means the spot has good quality, flag 2 means empty spots 
and flag 3 means poor quality spots. 
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Results of the first and second hybridization experiments for the target 857-50: 
 
 

 
FIGURE 16: This figure summarizes the result of two hybridization experiments for 
target 857-50 and contains 1) plots of spot intensities before and after hybridization, 2) 
the intensity values for each spot located in a table at the bottom of each graph, and 3) 
spot quality flags which are located in a table at the bottom right corner of each graph. In 
the spot quality table, flag 0 means the spot has good quality, flag 2 means empty spots 
and flag 3 means poor quality spots. 
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2.4.4.3: Results of Hybridization for Target Set 3: (643-130 and 643-40) 

 The result of the first and second hybridization experiments, which are 

summarized in Figures 17 and 18, indicated that hybridization signal was only detected 

for the longer target (643-130) in this set.  If the number of H-bonds, PB or minimum 

nucleation length, or a combination of these factors, were driving stable hybridization, 

then the hybridization signal should be detected for both, or neither, of them, because 

both duplexes have the same number of H-bonds (19 nt), very close to the same  percent 

bound (~0%), and identical base complementary between the two strands. Therefore, 

there must be another factor(s) that is stabilizing this hybridization. 

 Examining the optimal heterodimer structures associated with the members of this 

set (Figure 1), it can be seen that the heterodimer structure of the longer target had some 

secondary structures adjacent to the probe-target binding interface while the heterodimer 

structure associated to the shorter one did not have. We believe these surrounding 

structures stabilized the duplex formed by the longer target  by exclusion of solvent 

(entropy-driven) but it is also possible that, once formed, it diffused away more slowly, 

shortening the time to re-form the complex. 
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Results of the first and second hybridization experiments for the target 643-130: 
 
 
 

 
FIGURE 17: This figure summarizes the result of two hybridization experiments for 
target 643-130 and contains 1) plots of spot intensities after hybridization, 2) the intensity 
values for each spot located in a table at the bottom of each graph, and 3) spot quality 
flags which are located in a table at the bottom right corner of each graph. In the spot 
quality table, flag 0 means the spot has good quality, flag 2 means empty spots and flag 3 
means poor quality spots. 
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Results of the first and second hybridization experiments for the target 643-40: 
 
 
 

 

FIGURE 18: This figure summarizes the result of two hybridization experiments for 
target 643-130 and contains 1) plots of spot intensities after hybridization, 2) the intensity 
values for each spot located in a table at the bottom of each graph, and 3) spot quality 
flags which are located in a table at the bottom right corner of each graph. In the spot 
quality table, flag 0 means the spot has good quality, flag 2 means empty spots and flag 3 
means poor quality spots. 
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2.5: Discussion 

 In these experiments we first modeled and then designed experimental targets that 

had partial but measureable binding to the probes, so we could discriminate the effect of 

secondary structure and investigate whether secondary structures stabilize or de-stabilize 

the binding of targets to probes when they are adjacent to the probe-target binding 

interface. This is important to hybridization technologies in which the target is of variable 

length (the result of random shearing) or longer than the probe complement for other 

reasons (as are most amplicons). 

 To investigate this matter, we 1) designed several series of nested sets of 

sequences around the common heteroduplex forming region and modeled them, 2) 

designed 3 target pairs to have differing degrees of secondary structure external to the 

probe-binding region and performed microarray hybridization experiments on them.  

 Our results from molecular simulations indicated that stable secondary structures 

on the boundary, when not impinging on the ability of targets to access the probes, 

stabilized the probe-target hybridization. The results summarized in Figure 11 show that 

for ~ 5% of those structures which had ∆Gheterodimer value equal to -10 kcal/mol, an 

increase in the target length from 33 to 70b which preserved the same probe-target base 

complementarity, resulted in a more negative overall ∆Gheterodimer . In fact we modeled 

beyond 70nt length, but the number of heterodimer structures which satisfied the above 

conditions decreased to the small number, although for those structures the stability of the 

product increased. This is summarized in Figure 12.  

 Our results from the experimental data, in particular the hybridization results 

obtained from second and third target sets (target sets 643 and 857) confirm the 
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prediction that as a target gets longer and this sequence allows the formation of secondary 

structure in the regions adjacent to the target-probe binding site, duplex formation is 

stabilized relative to a target having the same duplex forming pattern but no such adjacent 

structures. This has implications for the analysis of microarray data when partially 

matching targets with lengths longer than the duplex are in the mixture. While a perfect 

match will dominate and, barring significant internal structure, is likely to yield a 

reasonably accurate measurement, when no such competition is in place, imperfectly 

matched targets can bind quite stably. 

 The results of experimental data for all three target sets show that a hybridization 

signal was only detected for the longer target in each set. To investigate what factor(s) 

was the driving force for this hybridization, we have examined all the features (the total 

number of H-bonds, a minimum nucleation length of consecutive H-bonds, the ∆G of the 

duplex and the percent bound) considered in our design and found out: a) number of H-

bonds and , minimum nucleation length, and percent bound were not this driving force, 

because both targets in set 2 and 3 (857 and 643) have the same H-bonds, a minimum 

nucleation length, and percent bound (Table 5) and the results (Figure 15,16, 17, and 18) 

shown that  hybridization signal was only detected for the longer target in each set,  

b) the ∆G of the duplex could be this driving force, because it is consistently lower in the 

longer target in compare with the shorter target in each set. 

 Comparing the duplex structures (Figure 2) and thermodynamic parameters 

associated with such complexes (Table 5) shows that given both a short and long target in 

that preserved the same base complementary between the probe and target, the longer 

target gave considerably more signal, which is best accounted for by the folding of 
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adjacent regions and exclusion of solvent, since the ∆G of the heteroduplex regions 

remained unchanged.  



 

CHAPTER 3: THE EFFECT OF STRUCTURE ON SEQUENCEING FIDELITY ON 
THE ION TORRENT PGM 

 
 
3.1: Overview 

 While it is accepted that high GC- regions may affect the ability of a DNA 

polymerase to process, so that highly structured templates are difficult to copy faithfully 

in PCR reactions (114-117) and may be difficult to sequence in Sanger sequencing 

reactions (118), there has been little attention paid to the relationship between structural 

features of templates and measurement errors in high throughput sequencing (HTS) 

platforms. On the other hand, considerable attention has been given to the problems 

created by the various chemistries: the homopolymer problem on the 454 and Ion Torrent 

platforms are well documented (119,120) as is the apparent sensitivity of the Illumina 

chemistry to high AT regions (78,121,122).  

 To test the hypothesis that structure affects the fidelity of read-through on the 

short-read high-throughput sequencing platform in our lab, the Ion Torrent Personal 

Genome Machine (PGM), we have used 10 synthetic constructs, which were initially 

designed for microarray studies, to investigate the effects of structures (hairpins) at or 

around probe-target binding sites on probe-target hybridization. 

 In our design, we considered the following three aspects of the hairpin structures 

in the templates: 1) the lengths, 2) the frequency, and 3) the location of each relative to 

the sequencing adaptor.  The length and number of hairpins was considered because 

biophysical studies showed that the transition from a folded to coiled structure (opening 
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of hairpin structures) depends on both the size and the number of the hairpins (123,124). 

The location of the hairpin was included because the PGM software returns no data if 

there are 8 or fewer bases past the key sequence (personal communication, Ion Torrent 

training course). Thus a very stable hairpin right on the boundary with the adaptor might 

appear to return no sequence when in fact a small number of bases had been read. We 

placed some structures near that boundary in order to investigate the interference of the 

adjacent hairpin structure on primer-target binding or polymerase attachment to the 

duplex region.  

 Each construct contained first, a core 50mer segment (derived from the sequence 

of a Brucella gene) elongated from one or both sides by adding oligonucleotides in a self-

complementary segment that can self-hybridize to create a range of stable secondary 

structures (Figure 19), and second, sequencing adaptors needed for the platform - for 

some targets both template orientations were created to see if this changed the outcome of 

sequencing. 

 Since the PGM creates amplified copies of one target on each bead of a chip, this 

platform yields the sequences of individual input molecules rather than the bulk sequence 

property characterized by the Sanger sequencing with gel electrophoresis methods. The 

sequence derived from these beads was assembled using the AbySS (125) software 

package with a Chastity filter option ‘on’. The Chastity filter (126,127) is a base call 

quality control filter which is defined by the ratio of the highest of the four (base type) 

intensities divided by the sum of the two highest intensities. 
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3.2: Type of Sequencing Errors 

 Sequence quality has a direct impact on the usefulness and biological relevance of 

the data (128), any excessive errors may have significant effect on our interpretation of 

the results. The primary source of these errors can be from sequencing, assembly or the 

alignment processes. 

 Several variables account for the sequence read quality. For example DNA 

extraction and library preparation may yield chimeric sequences. Sequencing errors at the 

reagent flow level may cause loss of base resolution. There are a range of potential 

sequencing errors that can be introduced in the sample preparation steps, such as the PCR 

amplification bias observed in Illumina data (78),  polyclonal errors observed in SOLiD 

data (129), or homopolymer sequencing errors observed in PGM reads (130). Library 

preparation can limit sequencing coverage that allows the full length of template 

molecules to be inferred. This last factor is important because lack of base coverage 

uniformity may cause variation in a poorly covered region to be mis-called or even 

omitted. PGM coverage is known to be biased against sequences with very low (< 20%) 

or high (> 80%) GC rich regions (131). 

 Another source of error may arise during read assembly. The accuracy of 

assembly mostly depends on the software and its parameters (132). To reduce the 

computational effort required to assemble millions of reads (133), most of the assemblers 

for next-generation sequencing break the reads into smaller sequences called k-mers (k 

defines the size of the sequence to be matched) and then links k-mers sharing k-1 

nucleotides to build a de Bruijn graph. The value of the parameter k has significant 

influence on the quality of the assembly (132).  
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 Another source of error may arise during read alignment (134). Alignment to a 

known genomic scaffold is one the fundamental analysis step undertaken once the DNA 

sequence has been produced. It is often preferable to de novo assemblies due to the 

increased speed and reduced memory requirements entailed, but like de novo assemblies 

the accuracy of alignments varies considerably depending on the software and the 

parameters chosen (135). 

 In this project, since we were in the position of knowing the correct outcome, we 

optimized the parameters of the de novo assembler and alignment tool in order to 

maximize our ability to achieve individual target reconstruction. Aligning the resulting 

assemblies to their known targets allowed us to investigate 1) whether there was any 

association between the secondary structures and the sequence coverage, 2) the effects of 

k-mer size on contig assemblies, and 3) the effects on contig assembly of using a low-

quality filter in addition to the Chastity filter. 

 3.3: Material and Methods 

3.3.1: Reagent Acquisition 

 Oligonucleotides were obtained from Operon (all HPLC grade, integrity 

validation was carried out using polyacrylamide gels) and PCR reagents were obtained 

from New England BioLabs.  

3.3.2: Overview 

 To carry out this study, we followed these steps:  1) Computational modeling of 

the targets' s structures under Ion-Torrent sequencing conditions, 2) Construction of 

target templates and sequencing libraries, 3) Verification of  target templates by 

performing Sanger sequencing,  4) Preprocessing and analysis of the results. 
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1) Target Modeling Under Ion Torrent Platform Conditions: 

 We used the Oligonucleotide Modeling PlatformTM software (Visual OMP v7, 

DNA Software) to model ten constructs used in microarray study under the physical 

conditions prevailing on the Ion Torrent platform, as follows: temperature at 42 - 45 ºC, 

[Na+]=~40mM, [Mg++]=6.3mM, ph= 7.5. Figure 19 depicts the most stable secondary 

structures for each target under the sequencing conditions. 

 Based on the results obtained from OMP modeling we classified the targets into 

the following groups, also shown in Figure 19. The Group 1 templates contain structures 

with either very small hairpins (3 to 6bp) or with loops that interrupt the hairpin. Group 2 

templates had a longer hairpin (~11bp). Group 3 targets contained one or two very long 

hairpin structures (~20bp). Group 4 targets had 5 or 6 small hairpins in close proximity to 

each other (separated by 5 to 10 nucleotides). The majority of the structures within each 

group had the hairpin occurring at approximately the middle of the sequence.  

 Note: The modeling parameters reflected the sequencing reaction conditions,  

which are quite distinct from most microarray hybridization conditions, and the duplex  

region in this sequencing experiment is at one end, where the sequencing primer binds,  

and is contiguous, again in distinction to the microarray hybridization experiments. 
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Groups Target Name Visual OMP Images 

1 1981-137 

 
1 129-50 

 
1 1571-50 

 
1 857-50 

 
1 1571-150 

 
2 1981-89 

 
2 1981-109 

 
3 1981-99 

 
3 1981-129 

 
4 857-150 

 
FIGURE 19: Predicted secondary structures of all targets under conditions present during 
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Ion Torrent PGM sequencing. Images were generated using Visual OMP. 
 
 
 
3.3.3: Sequencing Library Construction 

 Targets were constructed using overlapping oligonucleotides which were designed 

to span the entire length of each target with overlaps of 15-35 nucleotides at the 3’ ends 

(Figure 20). This assembly was performed in three steps, annealing, extension, and full-

length PCR. Annealing was carried out in a volume of 30 µl, using 0.2 µM of each 

oligonucleotide in a buffer containing 1.5 mM MgCl2 and 1X HF buffer (Phusion high-

fidelity buffer, Promega Corp.).  After mixing, the solution was heated to 95°C for 5 

minutes, followed by gradual cooling (60 minutes in water 150ml of initially 100°C) to 

37°C. Each reaction was continued by adding 200 µM of each dNTP and 0.4U of Phusion 

polymerase (Promega), followed by incubation for 60 minutes at 37 ºC. After all 

components were added the full-length construct was amplified using primers to the ends 

alone. This was done in a 50 µl reaction containing 5 µl of assembled target, 200 µM of 

each dNTP, 0.4 U of Phusion polymerase, 0.2 µM of terminus primers, 1.5 mM Mgcl2 

and 1X HF buffer. PCR cycling was: 95º C for 3 min followed by 30 cycles at 95º C for 

30 s, 58 ºC for 30 s and 72 ºC for 30 s, and terminated by 3 min extension at 72 ºC. 
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FIGURE 20: Schematic representation of steps in the template assembly process. 
3.3.4: Template Modification for the Ion-Torrent Platform 

 The validated templates were next modified to be suitable for sequencing on the 

Ion-Torrent by performing standard PCR with fusion primers. PCR was carried out in a 

50 µl reaction containing 5 µl of assembled target, 200 µM of each dNTP, 0.4 U of 

Phusion polymerase, 1.5 mM MgCl2, 1X HF buffer and 0.2 µM of the Life Technologies-

specified forward and reverse fusion primers for the PGM (ordered from Operon MWG). 

At the time the reactions were perform, the 5’ region of one adaptor was biotinylated 

(adaptor A) while the other primer was not (adaptor P1). That the expected, correct 

modification had occurred was verified by analyzing 5ng of each target on 8% 

polyacrylamide gels (Figure 21). 

 Due to the Ion-Torrent read length limitation (~100 bases at the time of this 

study), and the length and location of secondary structures on some of our targets, a 

bidirectional sequencing approach was performed for 6 out of 10 targets, while for the 

other four targets sequencing was carried out from only one orientation. That is, in total 

Annealing  

Extension   

Full-Length PCR   

Extension   

Assembled Target   
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we created 16 (6 * 2 + 4 = 16) distinct, structured amplicons if the orientation is 

considered distinct. Targets were prepared for sequencing according to the Ion Template 

314 kit User Protocol (Life Technologies, Ion Community resources for PGM Users). 

Since no protocols were available for performing paired-end sequencing on the 

Ion-Torrent platform at the time of this study, we created amplicon libraries for both 

strands for those targets requiring bidirectional sequencing. Because these are not truly 

“paired-end” targets, in the analyses we refer to them as paired-targets, to emphasize that 

the pairs do not originate from the same ISP. For the other four targets, we produced 

amplicon libraries for one strand only and in the analysis we refer to each as a single-

target. 

 
 

 

 

 

 

 

 
FIGURE 21: Gel picture of 16 Ion Torrent targets which have adaptor A (30 nt) on the 5' 
side and adaptor P1 (30 nt) on the 3'side. 
 
 
 
3.3.5: Template Verification 

 Sanger sequencing on an ABI 3130 Genetic Analyzer was performed to verify that 

PCR errors had not corrupted the majority of our input sequences. The lengths of all 

targets were first assessed by analyzing 5ng of each assembled target on 8% 

polyacrylamide gels. Templates of the expected length were purified using Ampure XPTM 

100 
125 150 
175 200 
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beads (Agencourt) according the suppliers protocol, and then sequenced using standard 

Sanger Big Dye (v3) sequencing reactions on an ABI 3130 sequencer using the suppliers 

protocol (Life Technologies/ABI). 

3.3.6: Ion Torrent Run 

 We obtained the same concentration of our templates and combined them to 

prepare the concentration needed for emulsion PCR (according to the manual), then we 

followed the instructions for the emulsion PCR and sequencing according to the manuals 

for kit version 1. After the sequencing run finished, we used the fastq outputs for our 

analysis. 

3.3.7: Preprocessing and Analysis of the Results 

3.3.7.1: Classification and Alignment of Ion Torrent Reads 

 The first stage of analysis followed a 3-step method (outlined in Figure 22) 

comprising classification, pairwise alignment and multiple alignment. Based on the 

known target signature (that is, we have unique keys for each target) the reads associated 

to each amplicon were separated into individual groups. Within each separated group, 

pairwise global alignment, using the Biopython Emboss suite (136) with a gap penalty of 

50 and gap extension penalty of 0.5 was carried out. As a last step, in the multiple 

alignment process (from a python script, available in the supplementary materials for this 

chapter), gap(s) were introduced as needed to maintain sequence concordance in the set 

in the following manner: when a gap in the target alignment pattern was found the gap 

was introduced to all target and read alignment patterns except the read associated to the  

target which had a gap in that position. Figure 23 illustrates this process in detail. 
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FIGURE 22: Schematic representation of the steps for aligning the reads to the original 
template. 
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FIGURE 23: Illustration of step 3 of the process which was used to align reads to the 
associated target. 
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3.3.7.2: De Novo Assembly  

 Since in this experiment, prior to sequencing, we knew the sequences of our 

targets, we used this fact to investigate whether secondary structures on the sequencing 

reads affect the quality of assembled sequences. To investigate this we performed de 

novo assembly on the reads associated to each target and compared the result of assembly 

with the known sequences. Prior to assembly, a python script were used to remove the 

adapter sequences after which AbySS 1.3.0 (137) was used to assemble the contigs 

 Based on a Technical Note by Illumina, the only quality filter that definitely 

improves an overall assembly on their platform is the Chastity filter (126). To investigate 

this matter for the Ion-Torrent platform, two assemblies were performed in parallel using 

the filters provided in the Abyss assembly tool, in the first assembly the Chastity and 

‘end-trimming of low-quality base calls’ filters were used, and in the second assembly 

just the Chastity filter was used. The low-quality trimming filter, which trims bases from 

the ends of reads, was set to a cut-off value of 20 for all assemblies. Comparison of the 

results of these two assemblies is discussed in the Results section titled ‘Results of De 

Novo Assembly’. 

 Since the target sequences are known, for each target a k-mer that maximized the 

correct target reconstruction was determined. For the paired-targets, contig assemblies for 

each strand were conducted separately, then the resulting contigs were combined and the 

final sequence was aligned to the known target. For the single-target products clearly 

only the single-direction contig was available to align with the known target. 
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3.4: Results 

3.4.1: Alignment of the Reads to Designated Target 

 Sequencing on an Ion Torrent PGM 314 chip produced 162,032 reads. Table 6 

shows the distribution of these sequences across the 16 targets. After applying the 

described alignment methods, we detected substitutions, insertions, deletions, and 

sequence matches in every position for all associated reads and generated the graphs of  

incident rate of matches and deletions.  
 
 
 
TABLE 6: Distribution of Ion-Torrent sequencing reads across the 16 targets 

Target Name Number of Reads 
129a-50 19,972 
129b-50 17,636 

1981a-109 1,952 
1981b-109 2,268 
1981a-129 1,387 
1981b-129 7,525 
1981a-137 1,105 
1981b-137 787 
857a-150 4,662 
857b-150 1,056 
857a-50 1,791 
857b-50 10,802 
1571-150 20,810 
1571-50 34,529 
1981-89 2,434 
1981-99 3,768 

Not Found 29,548 
Total 162,032 

 
 
 
 Figure 24 illustrates one example of an incident rate graph for a member of our 

structure types Group 2 and Group 4 (1981a-129, 857a-150 respectively). In each graph, 

x-axes indicate the target position (target length) and y-axes indicate the number of reads 
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which have deletions or matches at every position. The target sequence is given along the 

bottom part of the graph. Secondary structure positions are highlighted in dark gray and 

regions are demarcated by vertical red dashed lines. The horizontal red dashed line 

indicates the threshold imposed to eliminate noise: each position in a given target must be 

observed in at least 50 reads to be included in the summary. The graphs for all targets 

were generated and are available in Appendix. 
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FIGURE 24: Graphs A, and B illustrate the deletion and sequence match distributions, 
respectively, for targets 1981a_129, and 857a_150 which are representatives of groups 2 
and group 4. The structure contributing to deletions is shown in the relevant part of the 
deletion graph.  
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3.4.2: De Novo Assembly 

 To investigate whether the structures had any effect on the sequencing process, we 

used ABySS to assemble the contigs, choosing parameters that maximized each target's 

correct reconstruction. Figure 25 illustrates the assembly results generated by ABySS for 

the 1981_129, and 1981_99 templates respectively (the graphs for all targets can be 

found in Appendix II). In this example the Chastity filter was used and the k-mer size was 

set to 58. For the first target (A) which is a paired-target, contigs were generated using 

reads associated with both strands, while for the second target (B), which is a single- 

target, the reads from the single available strand were used to generate all contigs. 
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FIGURE 25: A, B, and C represent target 1981_129, 857_150a, and 1981_99 
respectively. Each sub-figure has two parts: 1) a model generated by Visual OMP 

(B) 
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software which illustrates the type and location of secondary structures, and 2) the 
multiple sequence alignment (MSA) representation of the contigs and original target 
sequences. To maximize the use of figure space, the middle part of each MSA (bases 31 
to 90 for target A and base 27 to 70 for target B and bases 24 to 68 for target C) was 
shifted up. In each MSA representation the x-axis indicates the target length and the y-
axis shows the template label. In each MSA, sequences highlighted in light blue identify 
the original sequence, dark green indicates the individual contig sequences,  light green 
indicates the gaps, white indicates parts of the contig sequences which are not matched 
with target sequence and orange indicates gaps introduced into original target as the 
result of the MSA process because a de novo approach was taken. Since, during 
alignment, gaps were introduced into the original template sequences, the maximum 
length indicated on the x-axis may be longer than the actual length of the original 
template; therefore, to find the counterpart area between a structural model and MSA, 
gaps must be included. 

 
 
 
3.5: Discussion 

 The results presented above clearly demonstrate that there is a strong association 

between sites of indels (although deletions were observed far more often than insertions, 

which are not shown here) and the location of secondary structures on the target. As 

hairpin structures get longer, as shown for targets 1981-129 (Figure 24a), or the distance 

between hairpins decreases, as shown in target 857-150 (Figure 24b), the sequencing 

reaction is subject to more mistakes, both as an increased rate of indels and as mis-

incorporation errors (data not shown). These indels can be as small as a 1-nt deletion or 

insertion events, or as relatively long (20 bases or more) gaps in the assembled contigs 

(see Figure 25). The first type of error (small indels) are compensated for during the 

assembly process, in which the fully assembled contigs cover almost the entire length of 

the known targets, but contigs containing large insertions and deletions result in a large 

divergence from the known target.  As shown in Figure 25, generated contigs for target 

1981-129 (Figure 25a) are completely missing in the region between bases 31 to 80 

(highlighted by light green area) while there is only one contig (0_115_546) generated for 
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target 1981-99 (Figure 24C) that almost covers entire length of the target; the majority of 

the contigs have errors between bases 28 to 74. Comparison with the folded structures of 

these two targets suggests a strong association between missing sequence information 

and the presence of hairpin structures. This is not a surprising result since there is a large 

body of evidence showing that during DNA replication secondary structures may cause 

DNA polymerase fork-pausing which as a result creates a high-frequency site for indels 

(again, mostly deletions) (138). 

 To illustrate the importance of this phenomenon, consider the processes of a 

typical RNA-Seq experiment. First isolated RNA will be converted to short cDNA 

fragments which are used as templates for a given NGS sequencing technology. After 

sequencing is conducted, reads are typically mapped to a reference genome, transcript 

library or exon-exon junction library to identify novel gene models, or refine existing 

gene models, or determine the gene expression level from read count statistics. If, as 

indicated by our results, some of the sequencing templates (fragmented cDNAs) have 

structures similar to those illustrated in Figure 24a, the sequencing reads may have 

missed a big portion of the actual sequence, thereby leading to a result that is incorrectly 

identified as a novel gene or a novel splicing variant. Hairpin structures are particularly 

common in untranslated regions (UTRs) and other regulatory sequences, where they have 

a functional role, exacerbating the interpretation issues.  

 Another important message we obtained from our results is related to the size of 

the k-mer chosen for a de novo assembly. In all of the assemblers' algorithms, which are 

based on de Bruijn graphs (139), reads are decomposed into smaller sub-reads of length 

k, called k-mers. Our assembly results show that the length of the k-mers affects the 
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assembly results.  If the selected k-mer size is longer than many of the reads that should 

map to a target, the short reads would be dropped from the assembly process and the 

resulting contigs will lose that part of the sequence.  

 The mechanism leading to an apparent deletion when structure is present has not 

been demonstrated, but we can suggest several possibilities. For targets that contain a 

long hairpin structure, when the polymerase reaches the structure, the resulting pause 

may lead to release of the polymerase from the DNA. If the polymerase falls off the 

target, the duplex may partially melt and the polymerase may re-bind further back, 

introducing repeats (which we observed, data not shown) or bind to a region that is 

apparently primed by the hairpin, placing it much further down the linear sequence (as 

shown above). Depending on the position of the structure and length of the target, many 

short reads may result. If the product just preceding a hairpin has many short reads, and 

the selected k-mer size is longer than those reads, the short reads would be dropped from 

the assembly process and the resulting contigs will lose that part of the sequence. If the 

region contains repeated elements and the selected k-mer size is smaller than those reads, 

then the short reads would be used in constructing the contigs with insertions close to the 

hairpins. To overcome these problems for contigs assemblies where strong structure is 

expected, we suggest the use of multiple k-mers, weighting the contigs according to the 

number of k-mers used to construct them. Previous studies have also showed that using 

multiple k-mers clearly improved the quality of de novo assembly of a transcriptome 

(140-142) although no rationale was given. Figure 19 shows an example of constructing 

contigs using multiple sequence alignment and multiple k -mers, from target 1981_99. 

For these assemblies, k-mer sizes of 50, 55, and 58 were used successively (Table 6). As 
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expected, and shown in the Figure 26 , with k-mer sizes of 50 and 55 more contigs were 

generated, some of which do cover the structured region (bases 19 to 69), but with a k-

mer length of 58 the number of contigs decreased significantly while the length of 

repeated sequence leading in to the structured region increased. 

 We can conclude from the results that as the hairpin structures get longer and 

more condensed: 1) the distribution of deletions becomes more prominent, and the 

deletions mostly appear in the assembled contigs at the positions covered by the 

structures, 2) full reconstruction of the original sequence may not be completely 

obtainable by de novo assembly approaches, and 3) adding a low quality filter in addition  

to the Chastity filter will not improve the overall contig assemblies. 
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FIGURE 26: sub-figures A, B, and D contain: a) an MSA of target 1981_99 with contigs 
generated by using ABySS;  k was set to 50, 55, and 58 in successive iterations. To 
maximize the use of figure space, the middle part of each MSA (bases 28 to 71 for target 
A and base 24 to 67 for target B and bases 26 to 90 for target D) was shifted up. In each 
MSA x-axes indicates the target length and the y-axes indicates the contig names. In each 
MSA, sequences highlighted in light blue indicates the original target sequence, dark 
green indicates the individual contig sequences,  light green indicates the gaps, white 
indicates parts of the contig sequences which are not matched with target sequence and 
orange indicates gaps introduced into original target as the result of MSA . Since, during 
alignment, gaps were introduced into target sequences the max. length indicated on the x-
axes may be longer than the actual length of the target; therefore, to find the counterpart 
area between structural model and MSA, gaps must be included. 
 
 
 
 



 

CHAPTER 4: STUCTURE PATTERNS CHARACTERISTIC OF SHORT DELETIONS 
 
 
4.1: Overview 

 Small insertions and deletions (INDELs) have been discovered in all human 

genomes that have been sequenced (90,91), but their location and extent depends on the 

sequencing platforms employed, the analysis approaches, and validation methods. A 

recent comparison of 5 sets of genome sequencing data, generated by different 

sequencing platforms (Figure 27) (143), indicates that there is a surprising level of 

variation in the form of INDELs (limited to events < 4bp) compared to SNP levels. We 

questioned this rate of INDEL variation, in part based on our experience with the 

behavior of highly structured targets in microarray and the Ion Torrent PGM platforms, in 

which stem-loop structures (internal folding of single-stranded DNA) produced high 

levels of apparent deletions. Mechanistically, it has been shown in vivo that formation of 

stem-loop hairpins interferes with DNA replication, repair, and translation (144,145). Tri-

nucleotide repeats have been studied specifically as they are the basis of several genetic 

diseases and a number of forensic identification tests. Such sequences have been shown 

to fold into a stem-loop hairpin when part of  in vitro assays (146) as well as in vivo 

(147). Because polymerase slippage on such sequences should lead to repeats appearing 

more frequently than is observed, a repair mechanism was sought. Recent studies

 (148,149) have revealed that human cells possess a DNA hairpin repair mechanism 

which can efficiently remove DNA hairpins containing 20 or 25 repeats, thus limiting 
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rapid changes, which is especially important in coding regions where such changes are 

likely to be deleterious. 

 Since in the sequencing process, regardless of the platforms, these editing systems 

are not present to prevent folding of DNA strands, we hypothesize that some of these 

reported deletions are related to the secondary structures that form under the conditions  

of the assays, and cause relatively high levels of skips or other types of errors. 
 
 
 

 

FIGURE 27: Comparison of INDEL (< 4b)  and SNP frequency across different 
genomes.  

 
 
 
 In this study, our interest was to look for enrichment of structural motifs in or 

around deleted segments that are independent of the sequence itself. Although there could 

be an in vivo effect, we modeled using conditions that prevail in the sequencing platform 

rather than within cells, since this process most directly affects results. In the absence of a 

specific mechanism relating structural features to a deletion event, and because structural 

features are cardinal in nature, we used random forest modeling, a structured machine 

learning approach, to identify relevant features. 
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4.2: Characteristic of the Dataset Used in This Study  

 To investigate this hypothesis, we used the genomic sequence dataset created by 

Kim et al (1), one of those reported to have a high incidence of short deletions. We 

obtained the sequence reads and INDEL calls from the supplemental material provided 

by the authors. The original study design used the following set of steps in obtaining the 

data elements to analyze: 

1) Genomic DNA samples were obtained from an anonymous healthy Korean adult 

male known as AK1. 

2) Paired-end and singleton reads were generated using the Illumina GA and GAII 

Instruments with standard protocols. Reformulated cleavage reagent was used to 

generate sequence reads of up to 2 X 106, much longer than ordinary read length at 

the time of publication, which was (2 X 36). Longer reads were used to identify 

INDELs up to 29 bases in length. 

3) High-quality reads were aligned to human reference genome build 36.3 using the 

GSNAP alignment tool and allowing up to 5% mismatches. 

4) SNPs and INDELs were identified using the AlpheusTM software system. 

5) For validation, 67 Putative SNPs, indels and deletions were validated by targets 

Sanger sequenced using ABI 3730xl DNA analyzer and ABI BigDye Terminator 

cycle sequencing. The final data set included 95,143 small deletions, of which 

3603 (length>=3b) map to chromosome 1 (homo sapiens). Of the 67 selected 

variants, all were confirmed by Sanger sequencing. These variants were distributed 

over all 23 chromosomes.  

 



82 

4.3: Materials and Methods 

4.3.1: Part I: Investigation into the Presence of a Structural-Dependent Pattern That 

Predicts the Presence of a Short Deletion, Based on the Base Content and Helical 

Regions in the Neighborhood of the Deletion Sites. 

4.3.1.1: Fragment Set Construction 

 To investigate our hypothesis, we carried out the following steps to construct 

fragments surrounding the regions of interest and to simulate their secondary structures: 

1) Assemble human chromosome one using contigs reported on NCBI map viewer for 

build 36.3. 

2) Construct 70 base length fragments, centering on the deleted segment, using the 

physical locations of all deletions greater >=3 nucleotides, as reported in the Kim 

et al. paper for chromosome 1 (3603). The sequence was generated using an 

Illumina instrument and recommended library kits, which at the time of 

publication produced 36-base read lengths. The authors used modified conditions 

to generate longer reads, averaging 106 bases. The data was obtained from the 

Short Read Archive (SRA), using identification number XXX. Given sequence 

read lengths between 36 and 106 nucleotides, we used the average of these two 

numbers (~70) to construct the fragments.  

   To calculate the fragment boundaries, we subtracted the length of each 

short deletion from 70 (total fragment length) and divided the result by 2. The 

deletion was centered and the upstream and downstream boundaries were 

determined based on the calculated value. For example, if the length of a given 

deletion is 12, we build our 70 bases fragment by concatenating the 29 ((70-
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12)/2=29) upstream bases to the start of the deletion region (12 bases) and the 29 

downstream bases (29+12+29=70) to the end of the deletion region. Throughout 

this study, these fragments are called true deletion (TDEL) fragments. 

3) Add Illumina sequencing adaptors to each side of every fragment. 

Note: In the OMPTM modeling software (from DNA Software) these TDEL 

fragments were designated as ‘probe’ sequences, while the sequencing primer was 

designated as the ‘target’ sequence. The presence of a surface (the flow-cell) and a 

double-stranded segment of template (the bound sequencing primer) can both 

change the predicted folding of the target.  

4) Model the optimal heterodimer structures of all of the fragments using the 

developers edition of Oligonucleotide Modeling Platform (OMP DE™) (150), 

under the conditions reported in Table 4 (sequencing conditions). OMP uses 

nearest-neighbor model with empirical data to determine a set of thermodynamic 

parameters for all optimal (heteroduplex structures which are energetically most 

likely to appear) and sub-optimal (heteroduplex structures which are less 

energetically favorable) heteroduplex structures For this study, we selected just the 

optimal structures. 

  Note: We used sequencing adaptors and primer (Figure 28) to model 

fragments but since in this study we were investigating the effect of secondary 

structures and assay conditions on skips or other types of error in reads, we used 

only part of the structure which formed as a result of folding fragment to itself and 

not the part which was in duplex form.  

5) Assign a code to the type of structure a base is involved in which include:  
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hydrogen bonded hairpins (H), loops (L), bulges (B), or none of the above (F 

=free) (Figure 28).  

These are standard structure representations (151) when crystallographic  

coordinates are not available. 
 
 
 

 
FIGURE 28: This is the heteroduplex structure generated for one of the probe-target 
used in this study. Four different structure types identified by OMP are marked as free, 
loop, bulge, and hairpin. The red oval indicates the location of deletion in this fragment. 

 
 
 
 TABLE 7: Conditions used for OMP modeling 

Temperature 28 ºC 
Monovalent  concentration [Na+] ~40mM 
Divalent concentration 6.3mM 
PH 7.5 

 
 
 
4.3.1.2: Control Fragment Set Construction 

 For each deleted segment we identified up to 1001 sequences containing the 

deleted region in different sequence contexts that are present elsewhere on chromosome 1 

that were successfully sequenced and then performed the same structural identification 

process which was carried out for TDEL fragments. The actual number found ranged 

from (1 to 1001) and we did not do an exhaustive search (past 1001). The process 

included these steps: 
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1) Construct a 70 base fragment centering on the deleted core. 

Note: Throughout this study, these fragments are called Non deletion (NDEL) 

fragments. 

2) Model the formation of the secondary structures using the same conditions and 

software. 

3) Assign a code to the type of structure a base is involved in (described above). 

4.3.1.3: Investigate the Likelihood That the Deleted Segment on TDEL Fragments Had a 

Structure Typical of the NDEL Group 

 To determine the likelihood that structure is associated with a deletion event, we 

stratified the TDEL fragments into 8 groups (Table 8) based on the involvement of their 

deletion cores in hairpin structure and used Fisher’s exact test. For member of each 

group, we calculated two fractions: a/b and c/d.  

 For each group, a is 1, b is the total number of TDEL fragments, c is the number 

of NDEL fragments which satisfied the same conditions as the related TDEL fragments, 

and d is the total number of NDEL fragments in that group. For example. in Group one, 

defined as fragments having a hairpin structure of length 0-10 (Table 8) there are 1788 

TDEL fragments. If for a given TDEL fragment in this group, we examined all NDELs 

(for the total found, up to 1001 sequences) and found that the deletion segment is 

involved in structure in between 0 and 10 bases for 200 of the 1001 reference fragments 

then the two fractions passed to Fisher’s exact test would be 1/1788 (a/b) and 200/1001 

(c/d). The Fisher’s test used the above fractions and equation below to calculate the 

probability and p-value  
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TABLE 8: The percentage of deletion segments in a hairpin structure and the number of 
instances for each group. 

Groups % of Deletion segment in hairpin structure # TDEL instances 

1 0 to 10 1788 

2 11 to 20 198 

3 21 to 30 223 

4 31 to 40 274 

5 41 to 50 259 

6 51 to 60 173 

7 61 to 70 192 

8 71 to 80 211 

9 >=81 285 
 
 
 
4.3.2: Part II: Train Predictive Models Using the Random Forest Algorithm Implemented 

in the Machine-Learning Environment WEKA. 

 There are a large number of machine-learning algorithms to select from in 

WEKA. All of them are well tested and widely accepted. Our choice was guided by the 

work of Hooghe  and colleagues  (152) who were looking for similar sequence/structure 

features that predict transcription factor binding sites. The authors provide guidelines for 

determining whether the random forest method is an appropriate choice, supporting our 

selection of it for these experiments..  

4.3.2.1: Data Preparation for WEKA 

 To use WEKA, data must be in a single flat file format, where each data point is 

described by a fixed number of attributes, of which the last attribute is usually the class 

characteristic we desire to predict (in this case whether a segment is deleted or not). 
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4.3.2.2: Experiment 2-1: The Complete Deleted Fragment and Control Set 

 In this experiment, we wanted to test whether we could train a model that 

correctly classifies TDEL sequences given the complete data set. To perform this 

experiment we followed these steps: 

1) We selected 1794 significant sequences among all the TDEL pool which have  

p-value <= 0.01 based on the result of the Fisher test obtained from the previous 

section.  

2) From the NDEL pool we randomly selected 5 corresponding sequences. We note 

that the total NDEL pool for individual TDEL fragments varies: one TDEL 

fragment had (#NDEL<10), four TDEL fragments had (10< #NDEL< 100), 50 

TDEL fragments had (10<#NDEL<100) and the remaining 1414 TDEL fragments 

all had (#NDEL≥ 1001) fragments.  

3) We generated two data matrices:  

The extended data matrix, shown in Table 9, contains the following information  

a) At each position, the nucleotide present.  

b) At each position the type of structure predicted. 

c) A structural encoding of the sequence that is deleted in the TDEL group (the 

sequence is also present in the NDEL group, of course), independent of the 

location in the fragment. 

In Table 9 (a truncated version is shown below), the odd-numbered columns 

contain the nucleotide identity at the given location (using the 5’ to 3’ numbering 

convention for representing a single stranded nucleic acid), and even-numbered 

columns label the type of structure in which that nucleotide is predicted to 
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participate, with categories that include hydrogen bonds (H), loops (L), bulges (B), 

or (F) none of the above. The complete table includes 142 data columns and the 

class attribute column (whether or not a deletion was observed for this fragment). 

 
 

TABLE 9: Sample of dataset using in WEKA generated based on the extended format.   
id 1 2 3 4 5 6 7 … 135 136 137 138 hairpin bulge loop free deletion 

TP-1 A F C H A H A … A H T B 5 1 1 1 Yes 

TN-1 T F A F G F C … G F A F 5 3 0 0 No 

TN-2 G H G H T H T … A F G F 6 0 0 1 No 

TN-3 A F G F G F G … A F G F 6 0 0 0 No 

TN-4 A F G F G F C … G F T F 4 0 1 0 No 

TN-5 T F C F T F T … G F A F 3 0 0 0 No 

 
 
 
In the second data matrix (Table 10), we generated a more condensed structural 

encoding as follows: 

1) Each sequence was segmented into neighborhoods of contiguous nucleotides 

that are in the same type of structure; the number of such nucleotides per 

segment was counted. An average base content was calculated. That is, as 

shown in Table 10, each fragment is described by a string that includes: 

a) The number of bases involved in a specific structure and the structure 

label. 

b) The proportion (fraction relative to the length of the segment) of AT of 

the segment. Because Illumina sequencing chemistry is known to be less 

accurate in AT-rich regions (78,121,153), we wanted to retain some  

composition information without retaining the complete sequence string. 
 
 
 
 



89 

TABLE 10: Examples of condensed structure encoding for several fragments. 
The pound sign (#) indicates a number counting the nucleotides in a given 
segment and the fraction of AT. 

Segments Composition 
1 #F#AT#H#B#AT#F#AT#H#B#AT#L#AT 
2 #F#AT#H#B#AT#F#AT#H#B#AT#L#AT 
3 #F#AT#H#B#AT#F#AT#H#B#AT#L#AT 
4 #H#B#AT#F#AT#H#B#AT#F#AT#H#B#AT#L#AT 
5 #H#B#AT#F#AT#H#B#AT#F#AT 

 
 
 

2) Full structure and AT proportion encoding that provides a nucleotide-by-

nucleotide description of the structure and the fraction of AT present at 5-

nucleotide intervals, aligned to the TDEL fragments.  

a) Since this set is calibrated to structure in the TDEL fragments, some 

corresponding TN fragments (the abbreviation of NDEL used in the 

table) do not contain some structures, indicated by a 0.  

b) Since the deletions are centered but of different lengths we did not label  

the start and stop positions of the deleted segments. 
 
 
 
TABLE 11: Sample of dataset using in WEKA generated based on the condensed format.  
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To clarify how these descriptions were determined and formatted, several  

examples are given in Figure 29. 
 
 
 

 
 
 
FIGURE 29: Three structures (a, b and c) and their respective data matrices in two 
formats described above.  The extended format is shown for the shortest fragment (b) as 
the first example. Red blocks contain nucleotides and their structure assignment, blue 
blocks contain the structural composition of the deleted core ,green blocks show class 
attributes. The condensed format is shown for each of the three structures (a, b, and c). A 
red block indicates segments including 1)the number of consecutive bases involved in a 
given structure followed by 2) the AT-composition of each structure, blue  blocks contain 
the structural composition of the deleted core and green blocks show the class attribute. 
Structures are denoted as described in the text.  
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4) We used a Random Forest classification algorithm in WEKA, with parameters  

maxDepth: 0 (for unlimited), numFeatures: all attributes, numTrees: 124, seed: 1 

and cross-validation fold: 10, to predict the output of the last column. 

4.3.2.3: Experiment 2-2: Structurally Stratified Deletion/Control Groups 

 As shown in the Results section (see Table 14), we were unable to train a model 

that successfully predicted the class attribute (presence or absence of a deletion) with 

high precision or sensitivity. Since it appeared that some structural motifs might be more 

significant than others we stratified the data into 8 subsets (summarized in Figure 30) as 

follows: 

1) Using the deleted region as the reference points, indicate whether there is a hairpin 

structure within, to the right or to the left of the deleted segment (or any 

combination of these). Presence and absence are labeled as ‘0’ and ‘1’ 

respectively, and the order is left, right, center. So each fragment has a 3-numeral 

code of zeros and ones, and fragments are sorted into groups that share that label, 

which is also used as the group label for simplicity. For example, in Group 001 

there are no structure regions on the right and left of the deleted segment (hence 

‘00’) and there is a hairpin structure that encompasses the center of the TDEL 

fragment (thus the final ‘1’). Figure 30 gives an illustrative example for each of the 

8 groups.  

Note: Group 000 is a special case having no stable structures, which is not useful  

for this study. We have 142 TDEL fragments in this group. 
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FIGURE 30: OMP predicted structures for 7 example sequences and their labels. In 
all of the sub- figures the deletion in the fragment is marked by a red oval and 
structures to the left and right of the deletion segment, where present, are marked by 
blue ovals. In group 001 there is at least one structure which encompasses the 
deletion segment. In group 111 there are structures to the left, right and in deletion 
segment. In group 101, there is structure to the left and also in deletion segment. In 
group 011, there is structure to the right and also deletion segment. In group 110 there 
is structure to the left and right of deletion segment but the deletion segment is free of 
structure. In group 100 there is structure to the left of the deletion segment and the 
deletion segment itself is free of structure. In group 010, there is structure to the right 
of the deletion segment but the deletion segment is free of structure. 

 
 
 

2) We generated the same two types of data matrices for each group that are 

described above. Briefly, for each TDEL sequence we selected 5 NDEL sequences 

at random from the corresponding NDEL pool, but now the pool includes not just 
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the same deleted core but belongs to the same structural group. Taking Group 110 

as an example, for each TDEL we have selected 5 NDEL sequences from the 

portion of its NDEL pool that includes the same structural elements (a hairpin to 

the right and left but not including the deleted segment).  Summaries of the number 

of fragments in each pool are given in the Results.  

3) We used the matrices as input to the Random Forest classification algorithm, with 

the following parameter values: maxDepth: 0 (for unlimited), numFeatures: all 

attributes, numTrees: 124, seed: 1 and cross-validation fold: 10. The class attribute 

was: (Deletion: Yes or No). Classification was performed using: 

a) Both sequence and structure features. 

b) Just structure features. 

c) Just sequence features. 

4) We compared the classifications results obtained from both formats in terms of 

True Positive (TP), False Negative (FN), True Negative (TN), False Positive (FP), 

and receiver-operator curve (ROC)  

4.3.2.4: Experiment 2-3: Balancing Group Sizes 

 Upon stratification, the distribution of structure neighborhoods that include that 

sequence deleted in our targeted fragments can be highly skewed. Recall that the exact 

deleted sequence is used to identify sequences in which the same nucleotides were 

successfully sequenced, the goal being to sample a large number of contexts for those 

nucleotides. Imposing a common structure filter on the available pool of NDELs results 

in very different sizes of the sets of non-deleted reference fragments for some of the 

deletion-containing sequences, varying from 5-200 sequences in 80% of the groups. This 
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is shown in Figure 31. For large sets, selecting 5 NDEL sequences per tree may not 

sample the distribution sufficiently, while for very small sets there may not be a large 

enough group to train on. We used several strategies to see how important this effect may 

be. Because inspection of the two sets of results of the stratification experiment (see 

Results) showed that the more condensed format yielded better classification outcomes 

than the full sequence + structure encoding format,  we proceeded using just this format 

in the following experiments. 

1) For each group we have iteratively generated datasets using random selection of 5 

NDELs for each TDEL sequence, with replacement at each iteration, over 40 

iterations. 

2) We used the Random Forest classification algorithm with default settings (detailed 

above) to classify TDEL form NDEL sequences. 

3) For each group, we averaged the results of the 40 trials to generate the output, 

which includes scores for the following: true positive, false positive, true negative, 

false negative, true positive precision, true negative precision and receiver-operator 

curve (ROC) rates. 
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FIGURE 31: Distributions of negative pools for the seven structure groups. In all groups, 
except 110, the size of negative pools for >=80% of TDEL sequences is between 5 – 200 
fragments (indicated by a red bar to indicate the disparity in different groups). 
 
 
 
4.3.2.5: Experiment 2-4: Stability of the Structures 

 As shown in the Results, the classification performance of our models remained 

poor. We know that local structures vary in stability, and we did not use a cut-off to 

declare that a structure actually exists under the conditions present in a sequencing 

reaction: that is, a hairpin containing 2 bases was not discriminated from a hairpin with 6 

bases. We know from designing PCR primers that polymerases are well able to melt less 

stable hairpins, and a rule of thumb in PCR primer design, whose reaction conditions are 

similar to those in sequencing, is to avoid primers that can form a hairpin in which  more 
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than 6 bases can form hairpins are avoided. In case this creates sufficient noise to 

confound our models, we tested whether a ‘stability filter’ should be used, we carried out 

the following steps: 

1) Re-stratify the 7 structural neighborhood groups to create a set of ‘stability bins’ 

for hairpin structures. The bins were selected to balance the size of each sub-group 

against the number in the base group (0-5 sided hairpins) as much as we could. 

Table 12 shows the resulting numbers once this operation has been  

performed, and also shows the stability of the  groups we created: For example,  

group 001,  which has only one structure at the center where the core deleted 

sequence is, was divided into 4 sub-groups comprised of hairpins with 1 - 5bp, 6 - 

10bp, 11 - 15bp, and 16 – 30bp. 

2) For each TDEL sequence we selected 5 NDEL sequences from the appropriate 

sub-group, randomly with replacement, over 10 iterations. 

3) The Random Forest classification algorithm with default parameters (described 

above) was employed to classify sequences. 
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TABLE 12: This table indicates how we separated each group to sub-groups. 
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001 0 0 1-6 48   110 1-3 1-3 0 45 

001 0 0 6-10 48   110 3-4 1-3 0 45 

001 0 0 10-16 64   110 4-30 1-3 0 58 

001 0 0 16-35 53   110 1-3 3-4 0 48 

111 1-30 1-4 1-5 48   110 3-4 3-4 0 31 

111 1-30 1-4 5-35 54   110 4-30 3-4 0 64 

111 1-30 4-30 1-5 31   110 1-3 4-6 0 53 

111 1-30 4-30 5-35 27   110 3-4 4-6 0 34 

101 1-3 0 1-8 26   110 4-30 4-6 0 56 

101 3-4 0 1-8 29   110 1-3 6-30 0 34 

101 4-30 0 1-8 39   110 3-4 6-30 0 29 

101 1-3 0 8-35 32   110 4-30 6-30 0 39 

101 3-4 0 8-35 31   100 1-3 0 0 43 

101 4-30 0 8-35 43   100 3-4 0 0 41 

011 0 1-3 1-7 38   100 4-6 0 0 48 

011 0 3-5 1-7 32   100 6-30 0 0 29 

011 0 5-30 1-7 27   010 0 1-3 0 54 

011 0 1-3 7-35 29   010 0 3-4 0 45 

011 0 3-5 7-35 43   010 0 4-6 0 47 

011 0 5-30 7-35 27   010 0 6-30 0 38 
 
 
 
4.3.2.6: Experiment 2-5: Weighting the TDEL and NDEL Pools 

 We originally selected a very large number of control fragments (1000 times more 

in almost all cases). However the structure stratification process resulted in uneven 

distribution of those controls across the different groups and may have introduced bias, 

since we do not know if our groups are appropriate. As an alternative approach, we have 

pooled the NDEL sequences and weighted their contributions to account for the 

difference in the number of samples.  

To generate a data matrix for each sub-group we followed these steps: 
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1) For each TDEL sequence, we sampled the entire NDEL pool in the dataset. 

For example; for Group 001 that has deletions of 1-6 nucleotides (Table 12), we 

had 48 TDEL sequences and 1418 NDEL sequences. Thus the data matrix will be 

for 1466 fragments (48+1418=1466). 

2) Weight each instance by its relative contribution to the structure sub-group. 

a) Each TDEL fragment has the same weight, assigned as 1 over the total number 

of TDEL sequences in that group. 

b) Each NDEL fragment in a sub-group carries the same weight, assigned as the 

fraction of instances in the structural sub-group over the total number of 

NDELs. In each sub-group, the weight for all NDEL instances associated to a 

given TDEL instance is the same and calculated by dividing the size of NDEL 

pool by the summation of the sizes of all NDEL pools in that sub-group. Figure 

32 illustrates our method for weighting TDEL and NDEL instances for sub-

group 001. 
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Figure 32: Schematic of our method for weighting all TDEL and NDEL instances for 
sub-group 001. 
 
 
 

3) We used the Random Forest classification algorithm with default parameters 

(described above) to classify fragments as TDELs or NDELs. 

4.3.3: Part III - Testing 

 After training the model on sequences showing deletions and sequences without 

those deletions found on chromosome 1, we used the model to test its ability to predict 

deletion-containing sequences found on chromosome 20. The steps are identical to those 

described for preparing the chromosome 1 datasets, briefly described below. The 

condensed format was used.  

1) Construct 70 base length fragments, centering on the deleted segment, using the 

physical locations of all deletions greater >=3 nucleotides, as reported in the Kim 

et al. paper for chromosome 20 (262). These fragments are called true deletion 

(TDEL) fragments. 
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2) For each TDEL segment we identified up to 1001 identical sequences elsewhere on 

chromosome 20 that were successfully sequenced and then performed the same 

process which was carried out for TDEL fragments. 

3) Construct WEKA data matrices, as described above, to perform following two 

experiments. 

4.3.3.1: Experiment 3-1: Testing the Model on Sequences from Chromosome 20 

 The data set contained 262 TDEL sequences and 2 randomly selected sequences 

for each from the corresponding NDEL pool. We used the model constructed for 

Experiment 2-1 to reevaluate it using this test set. 

4.3.3.2: Experiment 3-2: Testing the Model on Chromosome 20 Using Stratified Groups 

 We constructed our seven training data matrices, using the condensed format, and 

then used the corresponding models constructed in Experiment 2-2 to reevaluate the 

predictions using these test sets.  

4.4: Results 

4.4.1: Part I 

4.4.1.1: Investigate the Likelihood That the Deleted Segment on TDEL Fragments Had a 

Structure Typical of the NDEL Group 

 Out of 3603 small deletions reported for chromosome 1, 1794 of them have P-

value <= 0.01 which indicates the structures in which these deletion regions participated 

were not formed by chance. Table 13 indicates a representative portion of these results. 

The complete list of significant sequences can be found in Appendix II) 
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TABLE 13: Some representative sequences found to have significant structure 
associated with the deletions on chromosome 1. P-values were obtained using Fisher’s 
exact test.  
Target ID Deletion Sequence Deletion Length P-value 

target_chr1_novel_179479103 CGCGCGC 7 9.11E-170 

target_chr1_rs28544222_59206042 TATATATAT 9 5.70E-148 

target_chr1_novel_246849533 ATATATATA 9 6.69E-136 

target_chr1_novel_21191432 ATATATA 7 1.81E-126 

target_chr1_novel_241174531 GCGCGC 6 3.79E-85 

target_chr1_novel_64861749 GCCTGTG 7 1.40E-80 

target_chr1_novel_237210353 ATATAT 6 4.26E-58 

target_chr1_novel_177611384 ATATAT 6 4.26E-58 

target_chr1_novel_25056563 GGGGG 5 2.17E-50 

target_chr1_novel_110868684 GGGGG 5 2.17E-50 

target_chr1_novel_65367560 GGGGG 5 2.17E-50 

target_chr1_novel_244921250 GGGGG 5 2.17E-50 

target_chr1_novel_242453173 GGGGG 5 2.17E-50 

target_chr1_novel_182018970 GGGGG 5 2.17E-50 

target_chr1_novel_118894853 CATGC 5 5.60E-46 

target_chr1_novel_233779552 CTGCT 5 6.69E-45 

target_chr1_novel_156920258 AAAAAAAAAAA 11 2.20E-43 

target_chr1_rs5775307_76030123 AAAAAAAAAAA 11 2.20E-43 
 
 
 
4.4.2: Part II 

4.4.2.1: Experiment 2-1: The Complete Deleted Fragment and Control Set 

 Results are summarized in Table 14. Examination of the true positive rate, ratio of 

true positive to false negative, and ratio of true negative to false positive all indicated 

that, regardless of the formats, using all of the TDEL sequences did not allow us to train  

the classifier algorithm to predict the class with precision or sensitivity. 
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TABLE 14: This table contains the results of classification for the expanded (First) and 
condensed (Second) formats. Columns indicates true positive (TP) rate, false positive 
(FP) rate, true negative (TN) rate, false negative (TN) rate, true positive precision, area 
under the receiver-operator curve (ROC), number of true positives over false negatives, 
and number of true negatives over false positives, from left to right. 
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Extended Format 0.135 0.022 0.978 0.865 0.549 0.793 223/1429 8077/183 

Condensed Format 0.30 0.05 0.95 0.61 0.619 0.848 644/1008 7599/397 
 
 
 
4.4.2.2: Experiment 2-2: Structurally Stratified Deletion/Control Groups 

 In Tables 15, 16, and 17 below, we show the results of classification for all seven 

groups, with two formats side by side. For each group, the tables consecutively shown 

results for a) both sequence and structure data, b) just structure data, and c) just sequence 

data. 
 
 
 
TABLE 15: WEKA model accuracy results by group, using structure and sequence data. 

Results for the Extended Format 
  

Results for the Condensed Format 
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001 0.25 0.03 0.97 0.75 0.61 0.84 
  

0.52 0.04 0.96 0.48 0.71 0.89 

111 0.15 0.02 0.98 0.85 0.61 0.78 
  

0.38 0.05 0.95 0.62 0.59 0.85 

101 0.21 0.03 0.97 0.79 0.59 0.84 
  

0.38 0.05 0.95 0.62 0.6 0.87 

011 0.17 0.03 0.97 0.83 0.54 0.84 
  

0.39 0.05 0.95 0.61 0.61 0.88 

110 0.06 0.03 0.98 0.94 0.32 0.72 
  

0.23 0.05 0.95 0.77 0.47 0.79 

100 0.09 0.03 0.97 0.91 0.41 0.71 
  

0.17 0.05 0.95 0.83 0.4 0.72 

010 0.04 0.03 0.98 0.96 0.26 0.74 
  

0.27 0.05 0.95 0.73 0.52 0.82 
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TABLE 16: WEKA model accuracy results by group, using structure data. 
Results for the Extended Format   Results for the Condensed Format 
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001 0.3 0.05 0.95 0.7 0.53 0.81   0.51 0.05 0.95 0.48 0.67 0.87 

111 0.13 0.05 0.95 0.87 0.34 0.77   0.38 0.06 0.94 0.62 0.57 0.84 

101 0.24 0.05 0.95 0.76 0.49 0.81   0.41 0.06 0.94 0.59 0.58 0.84 

011 0.16 0.06 0.94 0.84 0.34 0.8   0.36 0.06 0.94 0.64 0.54 0.84 

110 0.09 0.04 0.96 0.91 0.29 0.65   0.2 0.04 0.96 0.8 0.5 0.74 

100 0.12 0.08 0.92 0.88 0.23 0.62   0.14 0.08 0.93 0.86 0.28 0.63 

010 0.12 0.09 0.91 0.88 0.21 0.62   0.3 0.07 0.93 0.7 0.45 0.72 
 
 
 
TABLE 17: WEKA model accuracy results by group using sequence data. 

Results for the Extended Format   Results for the Condensed Format 
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001 0.21 0.02 0.98 0.79 0.69 0.82   0.41 0.06 0.94 0.59 0.58 0.82 

111 0.15 0.03 0.97 0.85 0.48 0.82   0.33 0.06 0.94 0.67 0.51 0.82 

101 0.22 0.02 0.98 0.78 0.65 0.83   0.44 0.07 0.93 0.56 0.55 0.84 

011 0.14 0.03 0.97 0.86 0.52 0.83   0.34 0.07 0.93 0.66 0.49 0.85 

110 0.1 0.02 0.98 0.91 0.46 0.74   0.27 0.06 0.94 0.73 0.46 0.78 

100 0.05 0.03 0.97 0.95 0.27 0.73   0.24 0.08 0.92 0.76 0.37 0.76 

010 0.07 0.02 0.98 0.94 0.4 0.78   0.25 0.07 0.93 0.75 0.4 0.76 
 
 
 
 A number of trends can be observed in the above results. Because there are so 

many True Negatives, the True Positive and False Negative rates, along with the 

Precision, were the values we monitored most closely in assessing model strength. 

1) Comparing the classification results for a complete data set and the stratified data 

sets (Tables 14, 15) , when both sequence and structure information is included in 

the data matrix, the condensed format always improved scores for TP, FN, 

Precision and ROC.  Stratification gives similar or improved scores for those 
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metrics for Groups 001, 111, 101 and 011 (structures in which the deletion is in a 

helical region)  in both formats and worse scores for those metrics for Groups 110, 

100 and 010 (structures in which the deletion has neighboring helices) except for 

Precision in the condensed format which improves.  

2) Across these experiments comparing the results from data matrices in which the 

sequence and structure, structure alone and sequence alone, the condensed format 

(Format 2) always gave a higher TP score, lower FN, equal or higher Precision and 

higher ROC  than did the extended format (Format 1) when structural features 

were included (Tables 15 and 16). When only sequence was used to build the 

model, the TP and FN still improve with the condensed format, while for Precision 

and ROC the values are usually similar and in a few cases the extended format 

performed better (Table 17).  We note that although the information encoded in the 

sequence-only experiment did not explicitly include structure, we were implicitly 

including structural information because groups were formed on that basis. 

3) The best scores seen included a rate of 0.52 for the TP, 0.48 for FN, 0.83 for 

precision and 0.89 for the ROC, all in results for the combined sequence and 

structure data (Table 15).  Including both sequence and structure information 

improved all of the results for Groups 001, 111 and 011 and improved the 

performance with respect to the Precision and ROC for 101, 110 and 010 and 

improved the Precision for 100. The model using structure gave the best TP and 

FN for 010 while the model using sequence gave the best TP and FN for Groups 

110 and 100.  
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The models were better able to fit some groups than others. Group 001 had the best 

scores in all three data sets, with Groups 111, 101 and 011 having scores similar to 

each other but lower than for Group 001. Groups having helices adjacent to the 

deletion region (110, 100, 010) were modeled less accurately in all cases, and no 

particular model did best in all data sets for these groups. 

4.4.2.3: Experiment 2-3: Balancing Group Sizes 

 In Table 18 we summarize the average of the results obtained after performing 40 

iterations of the classification model for each group, using the data matrix containing 

both structure and sequence information and the condensed format. Comparing the results 

to those seen in Table 15, right side, we observe that for most groups and most  

metrics the values remain relatively unchanged. 
 
 
 
TABLE 18: WEKA model results on the training data for all structural groups. Each 
number in this table is the average of 40 iterations across the data matrix used to train 
the model. 
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001 0.5 0.03 0.97 0.51 0.77 0.91 108/105 1034/31 

111 0.34 0.03 0.97 0.66 0.73 0.89 53/105 769/20 

101  0.37  0.03  0.97  0.63  0.72  0.91  75/127 981/29 

011 0.39 0.03 0.97 0.61 0.72 0.91 76/120 949/29 

110 0.26 0.02 0.98 0.74 0.74 0.86  138/398  2627/49 

100 0.19 0.04 0.96 0.81 0.52 0.8 33/130 776/29 

010 0.27 0.03 0.97 0.73 0.64 0.86 50/134 889/28 
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4.4.2.4: Experiment 2-4: Stability of the Structures 

 We summarized the results of classification for all sub groups as in Table 19.In 

Table 19 we summarize the metrics obtained when helical structures are filtered for 

stability under sequencing reaction conditions.  We note that this further decreases the 

size of the training sets – this can be seen by examining the TP/FN and TN/FP columns, 

which show the actual numbers of samples in each class. The following general trends 

can be observed. 

1) Groups in which the deletion is part of a helical structure (001, 111, 101, and 011) 

show improved classification rates for the more stable structures when the 

additional level of stratification is applied.  

2) In this experiment we attempted to keep sample groups of a similar size so models 

would be comparable: this is why helix lengths vary in the different classes shown 

in the table. In some groups increasing helix length corresponds to improved 

classifier results - for example in Group 111 there is improved classifier rates when 

a helix adjacent to a central helix exceeds a 4bp length: between the TP increases 

from 0.34 to 0.47 as the helices all become more stable, and the FN and Precision 

similarly improve in the series. For Group 001 the classifier improves up to a 

point, where the helical length is 10-16bp and then falls off slightly as the helix is 

even longer.  
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TABLE 19: WEKA fully stratified model results on the training data for all helical-
stability subgroups within structural groups. 
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001 0 0 1-6 0.40 0.05 0.95 0.60 0.62 0.83 20/28 228/12 
001 0 0 6-10 0.40 0.05 0.95 0.60 0.62 0.84 20/28 226/12 
001 0 0 10-16 0.58 0.04 0.96 0.42 0.76 0.92 38/26 308/12 
001 0 0 16-35 0.50 0.07 0.93 0.50 0.64 0.84 27/26 202/15 

            
111 1-30 1-4 1-5 0.34 0.05 0.95 0.66 0.56 0.84 16/32 227/13 
111 1-30 1-4 5-35 0.3 0.05 0.95 0.7 0.53 0.81 16/37 250/15 
111 1-30 4-30 1-5 0.44 0.06 0.94 0.56 0.61 0.89 17/13 141/9 
111 1-30 4-30 5-35 0.47 0.07 0.93 0.53 0.63 0.80 13/14 98/7 

            
101 1-3 0 0-9 0.57 0.07 0.93 0.43 0.70 0.92 18/14 112/8 
101 3-4 0 0-9 0.55 0.08 0.92 0.45 0.67 0.89 18/15 107/9 
101 4-30 0 0-9 0.36 0.05 0.95 0.64 0.61 0.83 16/29 182/10 
101 1-3 0 9-36 0.27 0.07 0.93 0.73 0.43 0.80 7/19 120/10 
101 3-4 0 9-36 0.30 0.05 0.95 0.70 0.61 0.75 9/20 118/6 
101 4-30 0 9-36 0.53 0.07 0.93 0.47 0.69 0.88 20/17 132/9 

            
011 0 1-3 0-7 0.35 0.05 0.95 0.65 0.58 0.83 13/25 176/10 
011 0 3-5 0-7 0.37 0.09 0.91 0.63 0.57 0.79 12/20 90/9 
011 0 5-30 0-7 0.50 0.07 0.94 0.50 0.61 0.89 14/13 124/8 
011 0 1-3 7-36 0.47 0.06 0.94 0.53 0.65 0.87 14/15 115/7 
011 0 3-5 7-36 0.30 0.06 0.94 0.70 0.51 0.82 13/30 202/13 
011 0 5-30 7-36 0.31 0.08 0.92 0.69 0.48 0.82 9/19 112/9 

            
110 1-3 1-3 0 0.30 0.08 0.92 0.70 0.44 0.81 14/31 205/18 
110 3-4 1-3 0 0.35 0.05 0.95 0.65 0.59 0.85 16/29 214/11 
110 4-30 1-3 0 0.28 0.04 0.96 0.72 0.58 0.79 16/42 278/12 
110 1-3 3-4 0 0.29 0.05 0.95 0.71 0.55 0.80 14/34 206/12 
110 3-4 3-4 0 0.27 0.06 0.94 0.73 0.48 0.76 8/23 143/9 
110 4-30 3-4 0 0.38 0.06 0.94 0.63 0.58 0.88 24/40 299/18 
110 1-3 4-6 0 0.22 0.06 0.94 0.78 0.43 0.8 12/41 245/15 
110 3-4 4-6 0 0.3 0.06 0.94 0.7 0.49 0.79 10/24 155/11 
110 4-30 4-6 0 0.24 0.05 0.95 0.76 0.48 0.78 13/43 261/14 
110 1-3 6-30 0 0.23 0.05 0.95 0.77 0.5 0.71 8/26 145/8 
110 3-4 6-30 0 0.16 0.06 0.94 0.84 0.37 0.64 5/24 124/8 
110 4-30 6-30 0 0.31 0.05 0.95 0.69 0.57 0.88 12/27 185/10 

            
100 1-3 0 0 0.19 0.08 0.92 0.81 0.33 0.67 8/35 187/17 
100 3-4 0 0 0.31 0.06 0.94 0.69 0.51 0.8 13/28 193/12 
100 4-6 0 0 0.18 0.06 0.94 0.83 0.38 0.69 8/40 221/14 
100 6-30 0 0 0.28 0.05 0.95 0.72 0.53 0.82 8/21 138/7 

            
010 0 1-3 0 0.3 0.06 0.94 0.7 0.49 0.79 16/38 249/17 
010 0 3-4 0 0.35 0.06 0.94 0.65 0.55 0.85 16/29 204/13 
010 0 4-6 0 0.29 0.06 0.94 0.71 0.48 0.77 14/33 218/15 
010 0 6-30 0 0.34 0.07 0.93 0.66 0.51 0.82 13/25 171/13 
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4.4.2.5: Experiment 2-5: Weighting the TDEL and NDEL Pools 

 A large improvement was seen with classifier scores when training fragments 

were weighted by frequency within the class. Table 20 summarizes these results. Some 

trends that can be observed follow.  

1) For all groups, we found greater better model rates after adding weights. 

2) The trends observed for helix stability influence conditions were preserved, as  

were the relative strength to discriminate particular structural groups. 
 
 
 

TABLE 20: WEKA model results on the training data, with helix stability subgroups on 
the structural groups, weighted by fraction of TDELs and NDELs in total group. 
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4.4.3: Part III: Testing 

4.4.3.1: Experiment 3-1: Testing with Chromosome 20 Sequences Against the 

Unstratified Model. 

 For 262 TDELs and corresponding but randomly selected NDELs (2 per TDEL) 

the ability of the unstratified and unweighted model to classify the samples was tested.  

The results are summarized in Table 21. 
 
 
 
TABLE 21: WEKA un-stratified model for Chromosome 20 TDELs and corresponding 
NDELs. 
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110 

Overall these results show a lower TP than the training set, a higher FN, a better 

Precision and lower ROC (see Table 14).  

4.4.3.2: Experiment 3-2: Testing with Chromosome 20 Sequences Against the Stratified 

Model. 

 For the same set of TDEL and NDEL sequences derived from chromosome 20, 

the ability of the unweighted, stratified model to classify the samples was test. The results  

are summarized in Table 22. 
 
 
 
TABLE 22: WEKA structure-stratified model results for Chromosome 20 TDELs and 
corresponding NDELS, by group. 
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001 0.12 0.08 0.92 0.88 0.42 0.53 5/38 79/7 

111 0.07 0.05 0.95 0.93 0.42 0.56 5/71 144/7 

101 0.10 0.06 0.94 0.90 0.44 0.58 4/37 77/5 

011 0.11 0.14 0.29 0.86 0.89 0.46 6/47 91/15 

110 0.09 0.06 0.43 0.94 0.91 0.49 3/29 59/4 

100 0.17 0.08 0.50 0.92 0.83 0.65 1/5 11/1 

010 0.10 0.10 0.33 0.90 0.90 0.50 1/9 18/2 
 
 
 

In this case the classification of samples is considerably worse than the training 

set, except for the Precision for Groups 011 and 110.  

 The combined results suggest results suggest that the stratification model is over-

trained on the chromosome I data. We note that the model correctly classified 55 out of 

262 TDEL and 508 out of 518 NDEL sequences from the chromosome 20 test set. Data 

associated to these 55 True Positive (TP) and 207 false negative (FN) sequences (see 

Appendix III and IV) indicated: 
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1) Of the 55 fragments correctly classified, 45 belonged to Groups 110, 100 and 010 

(Appendix III), for which our training set showed the poorest performance. This 

corresponds to fragments in which the deletion core is not part of a helix but for 

which there is a helix on at least one side. 

2) All TDEL sequences for which the deleted core is composed only of thymidine 

were correctly classified. 

4.5: Discussion 

 Training the model against chromosome 1 sequences in which we encoded 

sequence and structural context both explicitly per base and in a condensed format by 

structural region lead to improved training set predictoin rates, indicating that the 

condensed format derived model eliminated some noise in the data matrix. This was true 

even when only sequence information was encoded (see Tables 14 and 17). However, the 

sequence information may be too condensed, as in the condensed version we simply 

retained the fraction of AT per region based on a known limitation of the Illumina 

technology. We used only the condensed format in the further experiments. 

 Dividing the training set into groups based on the presence of a predicted helical 

structural element, in any of 3 locations on a fragment, led to improved performance on 

the training data for each of the 7 groups. The best results were obtained in the training 

set when a helix was present only in the center of the fragment, coinciding with the 

position of the deletion. Precision ranged from 0.59 – 0.83 across the groups and the 

ROC from 0.72 – 0.89. Using only structural information did not lead to the same 

improvements in either metric (see Table 16) so clearly there is some important 
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information in the sequence context as well. Sequence information alone (see Table 17) 

did not perform as well on either metric, indicating that it lacks important information.  

 When we attempted to further categorize the model by imposing a threshold for 

helix stability under sequencing conditions there did seem to be a trend to better 

performance in some structural groups: longer helices or adjacent long-enough helices 

improve performance on the training set. However, the trade-off in separating helix 

lengths by the need to retain sample groups of similar size for comparison became 

impossible to manage. To carry out this part of the study would require a much larger 

data set. In addition, some of the fragments are subject to variant structures of similar 

stability, and it is unclear how to handle that level of complexity in this type of model. 

We did try weighting the final, fully subdivided model to compensate for the small 

sample sizes, and this improves the model performance on the training set considerably, 

across all groups (see Table 20). We were not convinced that the final model was robust, 

so we began using the chromosome 20 test data by starting with the un-stratified and the 

stratified models (Tables 21 and 22). While the un-stratified model shows improved 

precision and similar ROC to the training data, the stratified model only shows improved 

precision in 4 of the groups and the ROC has a poorer score in all of the groups. To our 

surprise, the groups best classified in the un-stratified model (and those with improved 

precision in the stratified model) are those lacking a central helix, the opposite of what 

one would predict from the performance of the model on the training data.  Some of the 

groups had very few members, and the chromosome 20 deletions were not screened first 

for statistical significance.  Additional data will be necessary to pursue the stratified 
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model, ideally from additional chromosomes and individuals. While the un-stratified 

model has reasonable performance, the stratified model is likely over-trained.  

 What is the interpretation of these deletions? While we began this study under the 

influence of a technical error we had found in our lab, in fact many of these deletions are 

likely of biological origin. The original producers of the data sets demonstrated that a 

small number of the deletions could be verified in the sample. Thus we may be 

attempting to identify two separate mechanisms that do not have the same responses, both 

of which are important. To differentiate technical deletions from true biological deletions 

we need additional information. Lacking the genomic material or a budget to re-sequence 

a genome in multiple ways, what prospect is there for obtaining such information? We 

note that one of the challenges in the CAMDA 2013 contest is to infer the presence of 

structural variants including deletions but also copy number variants and to determine 

how they can be distinguished from systematic sequencing errors, with particular 

emphasis on the Korean genome. The contest organizers have provided genome 

sequencing data from 38 individuals who are part of the Korean Personal Genome Project 

(KPGP), among them there are genomic sequencing data for two twin pairs and one 

Caucasian female individual – the reason for inclusion being detection of systematic 

sequencing errors. That is, variants that appear only in one Korean sample should not be 

present in the sample from the Caucasian female, and variants that appear in one of a pair 

of twins should be present in the other, else these variants would be characterized as 

arising from sequencing or data preprocessing errors. 

With respect to the structural features we included in the stratification scheme, it 

is possible that over-simplification of the structure has eliminated much of the signal. 
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Groups using the Random Forest strategy to identify transcription factor binding sites use 

near-crystallographic levels of resolution. There are known DNA structures not related to 

protein binding interactions that also required a high level of spatial resolution, including 

expansion of some DNA repeat sequences in the human genome, which underlie several 

human disorders (147). Most models for repeat expansion agree that expansion occurs 

through the formation of structures with B and non-B conformations (152-154). Having 

three-dimensional (spatial) information about these structures was essential in allowing 

researchers to understand the expansion mechanism. The structural information used for 

our classification was based on the OMP application, which predicts two-dimensional 

structure by modeling a thermodynamic minimum for a stable form, based on the 

calculated Gibbs Free Energy. The available structural motifs include: 1) Hairpin, 2) 

Bulge, 3) Loop, and 4) none of the above (Free) (see Figure 28) but does not include 

proximity, twist, roll and similar spatial values. By using a 3D structural prediction tool 

such as 3DNA, a given base pair can be classified across 16 parameters. Having this 

additional structural information may be required for us to improve the stratified model.   

Thus, while our simple model does have predictive value, additional data and more three-

dimensional structural information are both needed to make significant improvements.



 

CHAPTER 5: CONCLUSIONS 
 
 
5.1: Chapter 2 

5.1.1: Hypothesis 

In our first experiments we investigated whether the presence of helical structures 

adjacent to the probe-target duplex formation region affects the stability of the 

heteroduplex on the microarray surface, and thus might affect the interpretation of 

microarray results. In addition we investigated the utility of a number of biophysical 

properties and modeling methods in predicting the results that we did see. 

5.1.2: Results 

 Our results show that secondary structures adjacent to the heteroduplex region in 

a probe bound to a microarray surface stabilizes the duplex, leading to a higher signal 

than is seen when the cognate target without such structures bound. This would be 

interpreted as an increased concentration of the target in the mixture. Since most 

microarray hybridizations add randomly sheared target, whose mean length is longer than 

the probe, there is the potential for considerable mis-interpretation of results. Available 

modeling tools do not take such structures into account. We were unable to identify a 

single thermodynamic property that correctly predicts the observed effect.

There are two possible explanations for the observed effect, not necessarily acting 

independently, discussed below. 
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5.1.3: Open Questions 

1) More highly structured targets diffuse very slowly in hybridization solutions so 

they remain in proximity to the probe when they detach and thus are more likely to 

re-bind in a short amount of time. 

2) The folded structure is more entropically favored when bound to the probe, since 

more solvent is excluded, and thus it has a more favorable binding constant than a 

simple heteroduplex. It is important to remember that the binding event occurs in 

three dimensions, so the duplex may fold in complex ways. 

5.2: Chapter 3 

5.2.1: Hypothesis 

Having observed that helical structures adjacent to a heteroduplex affected the 

behavior of the microarray platform, we next tested whether such structures would affect 

the read-through fidelity of a polymerase on an HTS platform, in this case the Ion Torrent 

Personal Genome Machine (PGM). 

5.2.2: Results 

Our results demonstrate that there is a strong association between the site and 

length of a variety of base read errors and the location of secondary structures on a 

sequencing template. As a hairpin structure gets longer the sequencing reaction is subject 

to more mistakes, both as an increased rate of indels and as mis-incorporation errors. We 

controlled for a variety of known nucleotide composition sensitivities with this platform, 

such as tracts of homopolymer. The effect of structure should be considered as one 

source of sequencing errors. 
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5.2.3: Open Questions 

 We were only able to test the templates using the PGM, with validation on an ABI 

3130 capillary gel system. Structure sensitivity may vary under conditions used with 

other HTS platforms, since sequencing conditions differ. The availability of a set of 

structured test constructs to test both chemistries and algorithms in every sequencing 

platform would greatly assist in determining what types of structures are likely to cause 

significant errors, and to develop sequencing conditions and chemistries that could 

overcome particular problems, similar to what was accomplished with the Sanger 

chemistry and capillary sequencing platforms in the past. 

5.3: Chapter 4 

5.3.1: Hypothesis 

The availability of inexpensive HTS platforms has led to an explosion of available 

human genomes. The Thousand Genomes Project has been working progressively 

through a list of features, starting with single nucleotide polymorphisms and copy 

number variations. Structural variation, in the form on deletions and insertions has now 

become a focus, as evidenced by the current CAMDA 2013 competition, one of the main 

questions of which is to understand the presence of a large number of short deletions. 

These do not appear to affect the health of individuals, since none of the 38 genomes 

made available suffer from clinical symptoms of known genetic origin. Before the 

announcement of the competition we had become aware of the deletion rate, and had 

begun to study it from the perspective of secondary structure. 
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5.3.2: Results 

Fragments twice the length of the sequencing reads and centered on the deletion 

were collected from chromosome I of the first Korean genome to be made available. 

These were matched to successfully sequenced fragments in which the deleted core was 

present in a different context. We modeled the structure of all fragments and trained a 

Random Forest model to classify fragments in this training set as either likely to contain a 

deletion or not. We next tested the model against similar fragments from chromosome 20 

of the same genome, and achieved similar ROC rates between the test and training sets. 

Although the model does not classify fragments with high precision, we were able to 

show that including the context of both structural information and sequence composition 

greatly improved the performance of the model. 

5.3.3: Open Questions 

 There are three elements that should be explored in continuing this research. The 

first has to do with the resolution of our structural model. We used a simple secondary 

structure encoding, but three-dimensional relationships may be required to resolve all of 

the necessary features. This would create 16 features per sequence rather than the 4 that 

we used, and will greatly expand the time and computational resources needed to carry 

out the modeling. Secondly, as we stratified the data set according to structural families, 

the size of each family became quite small, from hundreds of examples to tens. We 

concluded that in our most stratified models we had over-trained on the available 

sequences, and the next step should be to cull all of the genome for the deletion 

fragments, with the goal of sufficiently populating all downstream sub-groups. We would 

then require data from an additional genome for the test set, and the recently released 
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CAMDA competition data makes this possible. Finally, we are not able to discriminate 

the cause of the deletions in our data set: some are clearly biological while others are 

likely to arise from technical sources. These may require separate models, but first we 

need to clearly discriminate them The CAMDA data set includes one Caucasian genome 

and two genomes from identical twins, run by the same team on the same instruments and 

chemistry, which should allow discrimination of both types of deletion. 

 Structure is an implicit property of nucleic acids in solution, and is known to 

affect both technical assays and biological activities. Data modeling and analysis methods 

should always consider both immediate and neighboring structure when seeking to 

interpret measurements that use hybridization as part of the platform. 
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APPENDIX 
 
 
 Graphs A, B, C, D, E, F, and G illustrate the deletion and sequence match 

distributions, respectively, for targets 1981_99, 1981_137, 1981_109, 1981_89, 857_50, 

129_50, and 1571_50 which are representatives of group 3, group 1, group 2, group 2, 

group 1, group 1, and group 1 respectively. The structure contributing to deletions is 

shown in the relevant part of the deletion graph. 
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