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il
ABSTRACT
SAEED KHOSHNEVIS. The effect of structure in shagions of DNA on
measurements on short-oligonucleotide microarraylan Torrent PGM sequencing
platforms. (Under the direction of DR. JENNIFER WHR)

Single-stranded DNA in solution has been studiebibphysicists for many
years, as complex structures, both stable and dgn&mm under normal experimental
conditions. Stable intra-strand formations affectyenatic technical processes such as
PCR and biological processes such as gene regulétithe research described here we
examined the effect of such structures on two lighughput genomic assay platforms
and whether we could predict the influence of theféects to improve the interpretation
of genomic sequencing results.

Helical structures in DNA can be composed of intBoas across strands or
within a strand. Exclusion of the agueous solveavigdes an entropic advantage to more
compact structures. Our first experiments werestesthether internal helical regions in
one of the two binding partners in a microarrayegkpent would influence the stability
of the complex. Our results are novel and shownfroolecular simulations and
hybridization experiments, that stable secondancsires on the boundary, when not
impinging on the ability of targets to access thabps, stabilize the probe-target
hybridization.

High-throughput sequencing (HTS) platforms usesagplates short single-
stranded DNA fragments. We tested the influendemiplate secondary structure on the
fidelity of reads generated using the lon TorreGtMPplatform. It can clearly be seen for

targets where hairpin structures are quite long lfp2that a high level of mis-calling



occurs, particularly of deletions, and that som#hete deletions are 20-30 bases long.

These deletions are not associated with homopoljmédrich are known to cause base

mis-calls on the PGM, and the effect of structurdle sequencing reaction, rather than
the PCR preparative steps, has not been previpusiyshed.

As HTS technologies bring the cost of sequencingl&Zgenomes down, a
number of unexpected observations have arisenxAmple that caught our attention is
the prevalence of far more short deletions thanldesh detected using Sanger methods.
The prevalence is particularly high in the Koreangmne. Since we showed that helical
structures could disrupt the fidelity of base calisthe lon Torrent we looked at the
context of the apparent deletions to determine dredny sequence or structure pattern
discriminated them. Starting with the genome pregitdy Kim et al (1) we selected
deletions > 2 bases long from chromosome | of eeio genome. We created 70
nucleotide fragments centered on the deletion. Mdalated the secondary structures
using OMP software and then modeled using the Rarfelrest algorithm in the WEKA
modeling package to characterize the relations é@tvthe deletions and secondary
structures in or around them. After training thed@loon chromosome | deletions we
tested it using chromosome 20 deletions. We shatvstquence information alone is not
able to predict whether a deletion will occur, wehihe addition of structural information
improves the prediction rates. Classification ratesnot yet high: additional data and a
more precise structural description are likely regktb train a robust model. We are
unable to state which of the structures affectiiro\platforms and which occur in vivo.

A comparative genomics approach using 38 genoncesitly made available for the



CAMDA 2013 competition should provide the necessafgrmation to train separate

models if the important features are differentie two cases.
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CHAPTER 1: BACKGROUND

1.1: Abstract

As nucleic acids fold their properties change sTikitaken for granted with
functional RNA molecules, but the implications &@says such as microarrays and
sequencing are seldom considered. Since such amsaiee fundamental data on which
genomics and functional genomics studies are b#isedmplications when errors are
present are large. A number of nucleic acid modgbiatforms exist that allow one to
predict the structures present under experimentaditions, but the predictions do not
take into accountdjacent larger structures, nor are they usually tested in the lab. In this
work we prepared a number of DNA constructs coirigispecific structures adjacent to
the sequence to be measured and tested their parioe on 1) long-oligonucleotide
microarrays and 2) short-read sequencers. Firtallyetermine whether the effects have
any bearing on measurements of the human genome B)odeled regions of the human
genome that are stated to contain short delettordetermine whether structural motifs
might signal those events.
1.2: Introduction

The relative stability of a DNA duplex structurepgnds primarily on the
interactionsetween nucleotides and other nucleotides and nucleotides and solvent
constituents, including hydrogen bonds between bases and betiasas and

surrounding solution molecules, and base-stackitegactions between adjacent bases.



Breslauer el al (1986) (2) published the calorimeatreasurement of entropx$) and
enthalpy AH) of all possible nearest-neighbor interaction®bIA/DNA duplexes,

which facilitated the reliable predictions of theeaall stability of any DNA duplexes (the
free energyAG)) from their primary sequence.

Factors which have a great influence on the stalof DNA duplexes can be
classified into: a) DNA sequence, its length anlelity of pairing, b)mispaired and
mismatched pairs and their position in a given duplex (3) and 3) environmental factors
such as cation concentration and pH. As expectedt of the mismatches and mispairs
are destabilizing to the duplex formation, relativestandard pairing, and those located at
the center of a duplex are more destabilizing fg&uformation than those located at the
end of a duplex. Duplex stability increases wittr@asing salt concentration up to ~1M
(4,5) and decreases with extreme values in pH (ards~> 9) (6).

Nearest-neighbor interactions serve as the foiomat thermodynamic models
of DNA secondary structure prediction in solution. To simulate the secondary structures
of a given templatehese models use parameters such as internal and terminal DNA
stacking (7), hairpins with and without loops, the presence of mismatches (8), dangling
ends (9) and mono and divalent cation concentrations along with temperature and solvent
polarity (10).

Transcriptome comparisons and genome wide association assays depend on the
accurate measurement of millions of polymorphic sites across a genome. They are
performed on microarrays and high-throughput short-read sequencers and by nature the
samples start as extremely complex solutions. The complexity arises not only from

sequence variation but also from how that variation affects structures and, in turn, on how



structures alter measurements of the sequences. Despite efforts to standardize conditions

and calibrate the responses of these platforms, the raw data remain highly variable and
success has been quite low in finding loci responsible for complex diseases and

phenotypes (11,12). This is certainly due in part to the cormigasmall contribution of
individual genes to complex phenotypes, particyldrbse that can be overwhelmed by
environmental influences. In addition, the prevajlicommon allele, common
phenotype’ model is now widely seen as mistakef, @d in its place a model in which
rare alleles converge on a common phenotype hasdrebraced (14). In either case,
phenotype is now interpreted as the outcome arfsorg disrupting a gene network,
whose component gene functions and interactionalbcandidates for causality.

Creating an accurate network model requires thatave accurate measurements of each
component gene and therefore that genomics ansctiptomics platforms deliver such
measurements. It also requires that the modelsseeapture multi-dimensional
interactions. That is, to predict the behavioraihplex systems/e need to a) study them
globally and dynamically, b) measure them as qtetitely as possible and, c) integrate
across different levels of information. These hbgen defined as the attributes of the
Systems Biology paradigm, as expressetibgnberg and colleagues (15) in the study of
cancer. Our focus has been to bring nucleic acigttsire as well as sequence into the
modeling environment, and to consider its influeonghe assays platforms as well as
biology. Briefly, since the signal strength is useda proxy for the concentration of target
in microarray studies, if structure affects thdireate in unexpected ways the outcome of
the gene level is likely to be incorrectly classifi Similarly, if structure alters the

apparent base order in sequencing studies theastigned genetic variance will be



incorrect, and correlations in the change of gearemce with phenotype will also be
incorrect.
1.3: Data Generation Platforms Geared for Systeimle®y Approaches

Unlike traditional biology, in which a small numba genes or gene products are
studied at a time, systems biology focuses on cexnipteractions within biological
systems and investigates the behavior and reldtipssicross all of the elements (usually
of one molecular type but increasingly across tygmewell) in that system (16,17). The
goal of systems biology is to uncover the inte@wtiof multiple components that lead to
emergent properties characteristic of biologicatems, develop predictive models and
eventually formulate biological ‘laws’ that pardlteose of physics.

Systems biology is a technology-driven disciplithez *-omics’ technologies, such
as genomics, transcriptomics, proteomics, and rokiahcs, are driving the acquisition
of sufficient data to feed the models that deschnitwe biological systems operate. These
high throughput technologies not only report orheglement but also allow profiling
across many conditions and time intervals, and piea®olution to single-cell levels of
discrimination (18). Results have included the tdmation of missing data in the form
of new genes and gene functions (19,20), but mopertantly have helped us to
reconstruct gene networks, which are the meanshfaracterizing the genotype to
phenotype relationships (21), and improved our tstdading of many genomic loci
involved in the pathogenesis of human diseases (22)

In such bottom-up modeling, the quality of theadiatof paramount concern: the
accuracy, coverage, sensitivity and specificityhef measurements must be rigorously

controlled since misleading and missing data chakk a great impact on our



interpretations, particularly as we characterizetifological networks (23,24).

The following experiments are designed to invegédiow structure in nucleic
acids affects the interpretation of output from m&ray and short-read sequence data,
and the extent to which apparent short deletiofsiman sequence data might be related
to specific types of structure. Two of the studeguire bench work to construct and test
hypotheses about the role of structure in signalenthe third is a computational study
correlating structure with the appearance of atstheleted region in the target.

1.4: Aims: Background and Significance
1.4.1: Aim 1: Microarrays
1.4.1.1: Background

The DNA microarray is the original example of teeabling’ high throughput
technologies; this family of platforms has beendugeidentify and quantify the mRNA
transcripts present in samples, to perform re-sagjng, to identify single-nucleotide
polymorphisms, copy number variations, and sequeagants (25-28). In the abstract, a
microarray consists of a solid surface on whichrgds of short polynucleotides, called
probes, have been anchored. The local region iohwdii of the strands are identical is
called a spot. There can be millions of ‘spotstlom array surface, each querying a
distinct genomic target sequence. The assay isecidithe sequence of the deposited
probe is associated with the location of the spod, the identity of complementary target
is inferred based on complementarity to the pr&8aenple preparation includes
purification of the intended nucleic acid, possitdé@version to a stable form,
amplification, fragmentation and labeling. A sotuttiof labeled targets is deposited on

the array surface and incubated for some timewallp targets to hybridize to



sufficiently complementary probes. Subsequent toribization the array is washed to
eliminate nonbinding and unstable duplexes. Alttodgtection methods vary, the most
common chemistry is to use a fluorescent dye atthob the target along with a laser and
detector tuned to that dye to produce photonsmage of the array is captured in which
photons emitted lead to an ‘exposure’ level in@t s is assumed that this level
correlates with the number of target molecules bidomprobes in the region, and that it
correlates in much the same way for all such p&hat is, the spot intensity is
transformed into a target concentration that iseghently used for statistical and data
mining analyses (29,30).
1.4.1.2: Microarray Interpretation Issues

Although this technology has had a great impadbiotogical and biomedical
research, with myriad published achievements iregapression analysis (12,31-34),
genome-association (35,36) , genetic linkage (378& network inference studies (39),
it has also been shown that results derived fronila studies can be highly inconsistent
(40-42). Although the issues are not unique to aamays, the high-throughput nature
and involved technical steps of the assays throavstrong relief the four sources of
experimental variance: a) sample characteristas inherent biological properties, b)
experimental design weaknesses of high-throughlatfopms, c¢) technical issues due to
assay complexity, d) physical characteristics duanate probe and target differences.

a) Biological variance: Biological differences dine result of real variances between
samples. Individual cells may simply respond défdly to different levels to the
same input, or there may be single-nucleotide pohpimisms (SNPs), copy

number variations (CNVs) (43) or different splicerhs present in transcripts (44),



that lead to differences.

b) Experimental variance: High-throughput assay®lthe inherent flaw that there
are far more measurements than samples. While éinersome designs such as a
common reference pool that can mitigate the prolileay are not always used
(45-47). Unfortunately calibration standards, wiptevided by some suppliers and
embraced by gPCR users, were never widely useldebmicroarray research
community (48).

c) Technical variance: A large number of artifaatse from sample handling and
array manufacture processes. Numerous investigakiane been conducted to
evaluate the influence of these factors, includiateh effects (49), dye effects
(50), post hybridization wash effects (51), platfespecific effects (52-55), and
how statistical approaches weight assumptions artién experimental designs
(56,57).

d) Physical variance: Probes and targets are pysiclecules with structural
properties that are affected by the assay envirabhaeir thermodynamic and
biochemical characteristics must be consideredexknown example of such
properties is the secondary structures which céast exthe probe (23,58,59).
Much less consideration has been given to thetsitraiqroperties of the targets
(60)

1.4.1.3: Current Status and Outstanding Questions
Although microarray technology has been widely ubedinterpretation of signal
intensities is not an easy task. While some sowteariance result in noise, showing

the characteristic random normal distribution, mahthe factors listed above introduce



a specific bias that must be handled individu@gst of the current studies that consider
structure explore the effect of experimental praperon probes, including melting
temperature (f), free energyAG)(61), probe secondary structure (49), and prebgth
on probe-target hybridization (41,42,43). The femdges which address the effect of
target secondary structures on hybridization sigrahsities all assume that such
structures always destabilize probe-target hybaithn (49, 50). Our own results from
molecular simulations and experimental data indi¢hat if the target has secondary
structures around the binding region in flankingusnces, these structures may stabilize
the probe-target hybridization instead. So in trst project, we tested the following
hypothesis:

1) Stable secondary structures on the boundatyubiot impinging upon, the probe-
target binding site, causes no change in the sigtalcted for a probe-target
interaction on a microarray.

1.4.1.5: Significance

From the intensity of the spot on a microarraydigmal is converted to a
concentration equivalent. Some studies use ratipsaduce a purely relative value, but
this precludes the use of meta-experiments, théooong of experiments from multiple
labs that has been touted as an added value foattier high cost of producing
microarrays (62). Any uncorrected factor that altitie apparent concentration of a
particular target but not others will bias the tesaf the experiment: since similar values
are often binned together in data mining methodsdén affect the interpretation of
many genes and pathways.

Microarrays still continue to be used in large fens (63,64), especially in



studies of human health given the current stronghasis on translational medicine
because it has a proven track record spanning tharetwo decades in the lab, its
limitations and possible pitfalls are quite wellokim, and there is general consensus on
the methods for analyzing the results . This mélaatsmethods to better understand and
correct for bias on microarrays continue to berapartant focus of research.
1.4.2: Aim 2: Sequencing
1.4.2.1: Background

The advent of automated sequencers in the 19888&d on the Sanger
sequencing concept but using specialized chemasityrobotics, enabled routine and
large-scale sequencing. The volume of data andtthgegies required to optimize sample
and data handling drove some of the first sericomformatics developments. However
the costs were prohibitive except for large teants@nsortia. The challenge to drive
costs down to $1000 for a complete human genomeaa@pted by a number of
companies, and, although not quite realized, weappeoaching the point at which
routine sequencing is affordable for biologistsmimg single labs (65,66). Current
technologies all use some variant of sequencingyloyhesis, detecting the incorporation
of each nucleotide by some change in chemistry6@57To achieve high throughput the
purified nucleic acid is transformed if necessaoydDNA if RNA is the original
substance), fragmented into small pieces thatheme modified to allow amplification
and priming of the sequencing reaction, attachddegsubstrate used by the platform,
and then sequenced in parallel while signal isectdld (67-69). Once the signal has been
collected it is processed, such that the base mraseach position can be inferred, along

with an associated quality value (70). Data analggethods center on assembling these
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short reads in the correct order and then idengfyrequencies of occurrence of subsets
of the data, followed by identifying unique featsia the sequence (65,71).
1.4.2.2: Sequence Interpretation Issues

Although the processing and detection methodelitiie same factors that affect
interpretation of microarray data must be takea attcount when analyzing sequence
data. Selection of the sample preparation techryge&tly influences the success of
subsequent data analysis methods. Accurate intatiore requires good experimental
design, in this case the proper marriage of prejoaréechnique and platform.

a) Biological variation: The number of ways in wihigamples can be prepared has
proliferated, allowing discrimination of allelicftBrences, modified bases, splice
variation, small and non-coding RNAs and others{32

b) Experimental variation: The primary factor calesed in this category is the depth
of sequencing achievable by a given platform arehuhbtry (74). Another factor
contributing to the experimental design is whetheill be necessary to use
multiple platforms in order to bridge regions ofjgsence that one platform cannot
handle with another, the most common example biagise of the GS FLX
technology to generate reads that span repeategiaa genome that the standard
lllumina and lon Torrent PGM' platforms cannot bridge (75).

c¢) Technical variation: Library preparation intr@e#s a wide range of bias, not all of
which will be discussed here. One example is thiéhatefor processing bulk
samples which requires first fragmenting the matea a uniform size. All such
methods have a certain amount of sequence biastligs3ubsequent addition of

adaptors that create amplification and sequen@agy templates are also
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inefficient and subject to bias (77). Multiplex P@Ruplification has well-known
problems (78). Since the commercial sequencindgofas do not release all of the
details of their sequencing chemistries, it isidift to state what buffer and
enzyme-related factors are present, but these dextanly been characterized in
related assays, in particular Sanger sequencing\ifi® electrophoresis separation
and fluorescent product detection (80). Similamioroarray platforms, no
calibration standards exist to allow independeuit @njective reporting of
instrument behavior independent from the produatibimternal sequences used to
calibrate signal processing software. It has besouace of frustration to the
sequence analysis community that the ‘quality s2am@duced by vendor
software are not standardized to some externafjalde metric (81). For those
platforms that produce image files at each cyclejies indicate that some part of
the image creation or data-extraction processduices variation that affects the
overall read's sensitivity and accuracy (70,82-84).

d) Physical variation: As mentioned above, secondaucture is an integral
characteristic of a nucleic acid. The nature aabibty of such structures is highly
dependent on the environment. The equilibrium betwée hairpin and random
coil conformation of a nucleic acid molecule notyotkepends on the composition
and the number of residues participating in thensded loop, but also depends on
the ionic strength and the temperature of the golyB85). While microarray assay
conditions were designed to minimize such strugt@actions involving enzymes
have much less leeway, as PCR assay designerstkoomell. Some of this

structure is biologically important in the contektan intact cell such as gene
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expression regulation through protein binding tadures in untranslated regions
(UTRs) (86), and some arise only in the contexheflaboratory preparation steps.
It has been noted that different high-speed sequgmtatforms have different
characteristic errors, some of which have beeretaigd with high GC-content or
stable hairpin structures as has been shown byirDiili: in lllumina HiSeq 2000
the average sequencing depth dropped ~1X when G€rtancreased from 60%
to 70% (87). No systematic study of structure ¢ff@n sequencing fidelity has
been carried out, probably in part because of thprgetary nature of the reagents.
1.4.2.3: Current Status and Outstanding Questions
Similar to microarrays, NGS technologies are adersd transformative for
today’s biomedical research, but several studiee havealed problems with data
reliability and reproducibility among NGS platformtor example, Dohm and coworkers
found that, in the reads generated by a Solea#fopin, A to C base substitution errors
were 10 times more frequent than the C to G suibistits (82). Similar artifacts were
observed by Bravo and Irizarry who reported thathe reads generated by the Illumina
ChlIP-seq experiment, Ato T miscalls were the necostmon error (83). Finally, Oshlack
and Wakefield used the Aggregated Tag Counts tqakento identify differentially
expressed genes in datasets generated by a nuftbier@nt platforms and found that
the ability to correctly call differential expresaiis strongly associated with the length of
the transcript (84) and not simply the number gkten a specific region. There is little
published work exploring what template-related destaffect read accuracy; the current
push is to increase read length for sequencessbteto the methodology. Since some

of the structure-related issues were addresseshftier generations of sequencers it may
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be possible to adapt those methods to the newoptas thereby recovering usable
sequence. So in this project, we tested the foligwiypothesis:
2) Stable secondary affects the fidelity of reaghtigh on an available short-read

high-throughput platform, the lon Torrent Persc@ahome Machine (PGM)
1.4.2.4: Significance

Developers of biomedical applications are embiabigh-speed sequencing
platforms at an unprecedented rate, with conse@sathat can be immediate
(determining what drug to prescribe) and long-tédevelopment of new druggable
targets) (88). Knowing what features lead to patéictypes of errors will help both those
choosing the method for generating data and asatigsteloping methods for best
analyzing the data to partition their selectionsectly.
1.4.3: Aim 3: Computational Study of Deleted Hunseguences
1.4.3.1: Background

There are publicly available datasets from eadh®imajor NGS platforms on
reference genomes, particularly the HapMap sangslgsally shared across
international institutions to produce human vaoatestimates (89). The outcomes of
these profiling experiments are described in suargéigles describing differences such as
where errors accumulate and what types of err@snast commonly seen. An error that
caught our attention was the reported prevalenshaoft deletions in the human genome
(90,91). Ahn et al. 2009 examined 342,965 indetsZ8bp) which they reported in the
Korean individual genome (SJK) against doSNP asgl thund that only 247 indels
(0.1%) were validated and 113,287 (33.0%) non-a&did and the remaining 229,431

(66.9%) indels were not found in dbSNP. They alsmgared SJK indels (< 4bp) with
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those of Han Chinese (YH), HuRef (Venter), Watsorg Yoruba and reported that
between SJK and YH genomes only 7.8% of the ingigdsthe same genomic positions,
size and type, between SJK and Venter genomgslOr?% of the indels had the same
genomic positions, size and type, between SJK aatdd genomes only 2% of the
indels had the same genomic positions, size are] gipd between SJK and Yoruba
genomes only 49.4% of the indels had the same gerositions, size and type.

Since preliminary data in our lab from the sequmnof constructs with strong
hairpins resulted in apparent short deletions (bhglied data), this seemed a promising
direction to pursue: did some fraction of the appadeletions lie in highly structured
regions that might have lead to sequencing erBysomparing randomly selected
sequences that match the reference genome asiagraet and using regions apparently
subject to deletions relative to the reference genas our test set, the goal is to identify
sequence/structural features that distinguishe¢ke 8ecause chemistries differ, the
sensitivity of the different platforms to structuray well vary. Identifying signatures
difficult for particular platforms to accuratelyqumuce will allow researchers to correctly
pair the method and the target. Although not cavanehis dissertation research, the
long-term goal of the lab is to identify conditioms the lon Torrent PG sequencer
that allow accurate sequencing through highly stmecl templates.
1.4.3.2: Interpretation Issues

It is well recognized the sequencing errors cradtarrier to correct correlation of
genotype and phenotype in association studiesagb@mption is that these errors result
from mis-incorporation of nucleotides presumablgiag from either slippage of short

repeat regions or inability of the platform to ntain a signal difference in
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homopolymeric regions (92,93). While slippage ipe&t regions could create the
appearance of a short deletion many of the regiongining ostensible deletions do not
contain simple sequence repeats or homopolymegions. Kim et al. 2009 examined
the genome of a Korean individual known as AK1 esqabrted 170,202 indels, from
which just 60 indels were confirmed using the Sarsgguencing assay. The presence of
such a very large number of not validated indelg naise one to consider whether all of
these reported indels are truly present or whetbere of them resulted from the assays'
conditions.
1.4.3.3: Current Status and Outstanding Questions

Many large sequencing projects have been cartdedrmohuman samples using
the various high-throughput short-read platformsfddtunately most of the data is not
available even in the Short-Read Archive, so onstmely on summary statistics and
previous analyses. We successfully identified aogept that made the raw data available
and used it as the basis for a structural modelgsgssment and then we used the random
forest algorithm implemented in the machine-leagrenvironment (WEKA) to identify
relevant features. In this project, we tested thiewing hypothesis:

3) The sequence context of short deletions hasrnotsral context that discriminates
them from similar sequences that are successfetjyenced.

1.4.3.4: Significance

If it is true that structure plays a significaate in the accuracy with which a
particular platform reads out a target, then wetwapredict those regions of the human
genome with characteristics making them prone peamental errors. Even where

deletions are of biological rather than technicadio a structural context may correlate
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to an important regulatory phenotype.

In summary, the effect of structure within thelpgebinding interface of
heteroduplex formation is accepted, but the efiéetdjacent structures has not been
reported. A significant change in binding stabiliguld alter the interpretation of many
microarray experimental results. Similarly, thesetfof structure within the sequencing
template of HTS platforms could lead to a numbédwypés of read errors, and if long
deletions are one such error the outcome is likebinterpretation of genome or
transcript structure. Finally, in a HTS experim#at reports on a very high frequency of
deletion changes in a genome, we investigated whetlstructural component might

predict the appearance of the deletion.



CHAPTER 2: THE EFFECT OF TARGET STRUCTURE ON MICRRRAY
HYBRIDIZATION
2.1: Overview
Studies that investigate the effects of secondtaicture(s) on the rate and

efficiency of the probe-target duplex formationraitroarray platforms can be divided
into two groups. One group focuses (94-98) on HeMormation of secondary structure
leads to a reduction of hybridization sensitivibdaspecificity. For example Mehlmann
and Liu have shown that for perfectly complementanbe-target sequences, the
presence of stable monomer structures at hybridizaguilibrium significantly
decreases the rate and efficiency of duplex fownaflhis is expected since it decreases
the concentration of one of the reactants. Thecei$easignal that is too low, a false
negative in analysis terms. The other group of studies (99-101) has shownthea
formation of secondary structure sometimes leadméxpectedly high hybridization
signals, such as that published by Trapp (201®hich non-complementary target-probe
sequences formed stable heterodimers with an mitbuiged loop. A special class of
structures called G-quadruplexes are also knovendate duplex signal higher than the
concentration of reactant would predict (101). Thlisough the effect of structure can
vary, it is widely acknowledged that the presenicgtructure in either probe or target can
lead tosignals that do not accurately reflect concentration, and structure must be
considered in order to accurately analyze andpné¢microarray data.

In most microarray experiments the question askédw well the probe
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hybridization discriminates between a perfect mateth mismatches of varying degree
(102,103). Sequence extending beyond the dupleanreg considered irrelevant, except
so far as it affects diffusion rates (104) or cotepdor the probe binding region, as
indicated above. Indeed, solution thermodynamioretates that only the N+ 1 base
will affect the hybrid formation barring the existee of a competing structure (9).

Testing of structured templates is complicated pgogparation challenges. A
common source of known and highly structured sece®ims the ribosomal RNA gene
family, which has extensive experimental eviderroenfcross-linking and other types of
assays that report on the major folded forms. Afigolifragments of 16S rDNA have
been used to test probe responses on microaresidis consistently show less signal
than the added concentration would have predi@d)l Reducing targets to a size that
eliminates the possibility that internal bindingncde stableunder hybridization
conditions has been recommended (105), but under randomisggaiotocols this is also
likely to disrupt the probe-target binding siteaatairly high frequency, which will also
cause a decrease in signal compared to the inpgeotration. Very long targets diffuse
slowly in hybridization solutions, and it has beshown that the rate of reaching
equilibrium is considerably slower than many hylzdion protocols permit (96),
althoughthose experiments did not consider secondary structure as a factor. None of
these studies considered the effect of hairpinteéntarget adjacent to the heteroduplex
region on binding stability. The competing modeds dutcomes when such structure is
present include: the folded structure createscstendrance to a probe-target interaction
leading to a diminished signal; the overall thergrainic effect of total entropy from the

exclusion of solvent will lead to a more stable pbew and possibly an enhanced signal



19

relative to length matched probe-target pairs.
2.2: Methods - Computational
2.2.1: Target Construction to Test ComputationadiRtions

To investigate the effects of boundary sequencdb@stability of probe-target
duplexes, we selected two 33mer probes (SNP_A-8U/35NP_A-8477444) from the
Affymetrix SNP6.0 Array which are annotated to chosome Y (human genome
reference build version 36.3). They are among tbbgs having the highest fraction of
partial alignment with sequences along chromosonwhith means that stabilized
partial hybrids could have a significant effect on interpreting the data.

Since full-length complements bind 100%, we couwtuse them to investigate
the significance oftabilizing boundary structuregherefore we identified 603554 and
624697 partial alignments for SNP_A-8475541, an®P SA8477444 probes along
chromosome Y using the SeqNFind™ platform withftiewing input parameters open
gap=-3, extending gap=3 and word size of 6, withgbal of identifying those with
significant but not complete binding so that diffieces could be observed.

To construct extended targets we used the complesnoé the partial alignments
obtained from the alignment tool as probe-targetlinig cores and designed a nested set
of sequences around them, such that increasinghlginges rise to structure on either
side. The probe-target binding may be longer ortshthan 33nt in length: a longer
partial match simply extends over more bases, aeshases only a subset of the total
primer length. Each set includes 10 nested targbts smallest target in each set
complements the core probe binding sequence aneit&ning members of the set are

longer by 1, 5, 10, 15, 20, 25, 30, 35, and 45euntdales to both sides of the core,
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designated by the core label ‘+N’, as sown in Fegli In the following pages we refer to
these as target-sets.

2.2.2: Molecular Simulations
We used the Oligonucleotide Modeling Platform (OBIE™) (106), with
parameters matching Affymetrix SNP6.0 array hylzation conditions (see Table 1), to

model all of the optimal and suboptimal heterodueuctures (targets and selected

probes).
First Set Second Se Third
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+5 Target +5 Target +5 Target
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45 DD ey 0 — A5 —— 0 — 500 —— G —-45bp
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Generate complement of all the targets to get ready for OMP simulation |

FIGURE 1: Schematic of the target-set design pddghlighted in the red box are
examples of 3 types of alignments of one probegie® on chromosome Y. The farthest
left shows complete and perfect complementarigy,stihcond shows an internal gap in
complementarity and the third is an example whieeeet are several internal gaps.

Because gap lengths and the extent of complemmnvariy, target length does not
correlate directly with probe length.

2.2.3:AG Cutoff Calculation

A novel method was used to estimate the boundagliion for stable binding of

the AGreterodimer €Xplained below (R code indicated in supplemeatsesponds to Figure
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4).

To calculate\G cutoff for each probe, we used all optim@heterogimesobtained
from OMP (603554 and 624697 optin&@bneterodimefor SNP_A-8475541and SNP_A-
8477444 probes) and calculated The Probability DeRsinction (PDF) of
MaxAGheterodime}- AGheterodimer, Where maxGreterodime} reflects the value reported for
the less stable conformation, ak@reterogimerreflects any other conformation returned by
the modeling software. The Chi-square statistiesi wvas used to identify the critical
value of this distribution for am = 0.05 and degree of freedom (df) = 1. Then, wmdb
the maximum\ GpeterodimeffOM the probability density function which had fts
corresponding value on the x-axes a value equal ¢peater than this critical value. We
then considered all any duplex structures WiBheterogimel€Ss than this critical value to
be stable, meaning that is it predicted to retummeasurement higher than baseline on our
microarray platform, and hence potentially usefuldur study.

2.2.4: Target-Set Selection Criteria

Several measures are used to predict probe-tairg#ing, includingAGheterodimer
the total number of H-bonds, a minimum nucleatemgth and the OMP-calculated
percent bound (PB). All of these values were caleal for each member of each target
set, as described below.

From the work of others we know that continuousdynplementary heterodimer
structures havingG < -10 kcal/mol persist through the wash steps undermonly used
conditions (107), although a variety of factors camdulate this cut-off, as discussed by
Xia et al (108) Targets useful for comparison thesjuire changes inG resulting in

structures at least that stable, so this represe@tselection criterion. That is, we
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retained in our target sets only members with ptediincreased stability beyond that
threshold as the length increases.

The Tm and percent bound (PB) value reported eypiNASoft OMP application
have been reported in some of the literature (11@),t be a reliable indicator for the
amount of duplex formed. Given the sensitivitythed microarray scanning platform, a
10 % change in percent bound is readily measuoediesrequired that difference when
selecting targets to compare. That is, we retameuchbers in target-sets that were
predicted to havaPB> 10% when the length changed, excluding the boft6% and
top 90% signal saturation.

2.2.5: Examine the Effects of the Target Length 8adondary Structures on Probe-
Target Hybridization

To investigate whether structures that surround @on’t occlude) the probe-
target binding site may stabilize the heterodimeesjnvestigated the result of following
three experiments:

1) We gradually increased the target length (symuoadty centered on the probe
binding site) from 1 to 45nt and counted all theehadimer structures which
satisfied our target-set selection criteria A&)eterodime< -10kcal/mol and b) the
predicted target-percent bound increased at |€86) And then plotted the result.
Note: For each duplex, we obtained 1 optimal asdi8optimal structures
therefore the\GpeerodimetiSed in this part of analysis, was the weightedaye of
the optimal and suboptimAGheterodimers @nd the target-percent bound was the
summation of optimal and suboptimal heterodiméxgjet-percent bounds.

2) Since increasing the target length may generatere stable probe-target binding
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site, for the second experiment, we gradually iaseel the target from 1 to 45nt
and counted all the heterodimer structures whidlonty satisfied a)\Gyeterodime<
-10kcal/mol and b) the predicted target-percentdancreased at least 10%, but
also c) keep the same base complementarily bettheemo strands and then
plotted the result.

3) After applying base complementarily filter, thember of heterodimer structures
reached a maximum at extensions of 15 and 20mtrédres 858 T and 850_T and
then began to decline. To show that even thoughntimber of heterodimer
structures decreased, their stability continueiddcease , we compared thé&
distribution of +45 with +15 targets for probe 838nd +45 with +20 targets for
probe 850 _T. To do this comparison we subtractedhtimber of heterodimer
structures of length +45 from those at length +i& 620 for probe 858 T
and850 T consecutively and then we plottedN@edistributions for all
heterodimers containing from 4 to 12 complemenbases.

2.3: Methods - Experimental
2.3.1: Target and Probe Design

In this part of our study the goal was to experitaly validate the results
obtained from the computational modeling describleave, which indicated that the
presence of a boundary structure stabilizes rékiaer destabilizes the probe-targets
interactions.

From the set of possible target sets we selecpeadr8 for experimental testing.
Each pair includes one target that is the samehemrgslightly longer than the 35nt probe

(40-50nt) and one that is considerably longer (130nt) and includes hairpin structures
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in the regions adjacent to the probe binding §itéeria are described in more detalil
below.
Common criteria, applied to all 3 pairs include:

1) All probe-target binding site complementarity isp@nfect (non-continuous) so all
binding will fall below 100%, allowing competitivéifferences to be observed.

2) Factors contributing to duplex stability include ttotal number of H-bonds, a
‘minimum nucleation length’ of consecutive H-bontte&e AG of the duplex and
the percent bound (PB). Figure 2 shows the paing;winclude:

a) Target set 1571-150 and 1571-50, which focusetth® number of H-bonds
and the presence of a ‘minimum nucleation length’.

b) Target set 857-150 and 857-50, which focusetherotalAG of the
duplex.

c) Target set 643-130 and 643-40, which focusethemuplexAG and the
percent bound.

3) A design constraint was that the heterodimer pomibeach structure (the probe-
target interface that forms a duplex) was preditbeloe more stable than any
adjacent structure in the target or any alterndtladed monomeric structure of the
probe or target, or possible homodimers.

4) Note on experimental methods: because it has hepoged that aqueous
hybridization wash conditions remove properly boumaterial we used the
isopropanol conditions described by Pozhitkov antll (2006), although their
more recent publications indicate that this exéneanay not have been required

(51).
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Specific criteria used in selecting the secondtaird target pairs include:
1) Under the hybridization conditions shown in Ealb] each member of the pair has

same nucleotides complementary between the prabenremtargets (see Figure 2).

TABLE 1: Hybridization conditions used in the OMikhsilation

Assay Temp 45C
Monovalent 0.056M
DMSO 0.96%
TMAC 3.68M
PH 6.6
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Target Set 1

Hetercdomer Structure of longer target
(1571-150) with intended probe (5072-50)

Heterodomer Structure of shorter target
(15671-50) with intended probe (Bro1259-50)

Heterodomer Structure of longer target

Heterodomer Structure of shorter target
{657-50) with intended probe (5071-50)

{657-150) with intended probe (5071-50)

':I_'..;j

Target Set 3

Heterodomer Structure of longer target

Heterodomer Structure of shorter target

(643-130) with intended probe (Bro857-50)

WY = 4

= E i
.. |~
&

(643-40) with intended probe (Bro857-50)

FIGURE 2: Optimal duplex structures of the thrageg&pairs which were selected for
testing. As shown, each pair consists of a long&dQnt) and shorter (~45nt) target. In
the figures the red oval indicates the hybridizasde. The pattern of complementary
bases in the duplex is the same for both membgraics 2 and 3.

2.3.2: Target Construction

Targets were assembled using overlapping oligewmticles (111,112) which were

designed to span the entire length of each taftet.3’ overlaps were 15-35 nucleotides

in length (Figure3). Target assembly and ampliftcatvas performed in three steps:
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annealing, extension, and full-length PCR. Anneplias carried out in a volume of 30
ul, with 0.2 uM of each oligonucleotide in a bufé@mtaining 1.5 mM MgGland 1X HF
buffer (Phusion high-fidelity buffer from Promegafter mixing, the solution was
heated to 95°C for 5 minutes, followed by gradwalling to 37°C (60 minutes in a
100ml beaker of water heated to 95°C). To eachtisrawas added 200 uM (final) of
each dNTP and 0.4U of Phusion polymerase, follolyethcubation for 60 minutes at 37
°C. The full-length construct was then amplifiednfrthe mixture of products using
primers to the ends alone. These primers werefraddiuch that the final targets had a
Cy3 label on the 5' side of the strands that hykeitb the probes and a biotin on 5' side
of the complementary strand. Biotin-streptavidinding of the complementary strand
was performed to remove the complementary stranplevent competitive binding of
this strand to target when hybridized to the miom@a This PCR reaction was carried out
in a 100 ul reaction containing 10 pl of re-amplifiand gel-purified full-length target,
200 pM of each dNTP, 0.4 U of Phusion polymeraszpu®/ of terminal primers, 1.5

mM MgCl, and 1X HF buffer. PCR cycling was: 95° C for 3 rfollowed by 30 cycles

at 95° C for 30 s, 58 °C for 30 s and 72 °C fos,38nd terminated by 3 min extension at
72°C. Correct modification was verified by analygbng of each target on 8%

polyacrylamide gels (Figure 4).
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FIGURE 3: Schematic representation of steps irighglate assembly process.
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FIGURE 4: Gel picture of three cy3 labeled doulttarsded targets. This gel stained
with syber-gold and NEB 25bp step ladder was usdti@size standard.
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2.3.3: Purification of Single-Stranded Targets

Labeled double-stranded targets were ethanol ptatgd. After resuspension the
desired 5’-Cy3 probe-complementary strands weiatsd using Dynabeads® M-270
Streptavidin (from Invitrogen) to remove the bickaieled strand. Cy3-labeled single-
stranded targets were assessed for length ang pyrénalyzing them on 8%
polyacrylamide gels and visualizing them usingThean ReLoaded scanner (Figure 5),
following the manufacturers gel visualization piaib

As highlighted by blue oval in Figure 5, small pontof double stranded targets
remained in the final isolated single strandedtsmhg which must be considered in

assessing the final concentration of our singkensted targets.

1-180
|'|I-|

57150
3-13C

G43-130
57150

F
54

Single Stranded Double Stranded
Tarzets Tarzets

Double Stranded
Targets

FIGURE 5: Gel image of single and double strandeget visualized using Tecan
ReLoaded scanner. Blue oval highlighted doublengtd target which remained in the
isolated single stranded solutions.
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2.3.4: Single-Stranded Targets: Concentration daticun

To measure the concentration of our Cy3 —labeleglesstranded targets, we first
built a standard curve following these steps:

a) A Cy3 labeled oligonucleotide (100uM) was 5-fe&tially diluted to create a
calibration set (Table 2).

b) Each dilution was measured with a NanoDrop ND&§pectrophotometer to
acquire RFU values, with three-fold replication.

c) The standard curve was created by plotting tleaw concentrations on the x-axis
and measured RFUs associated to each concentoatithre y-axis.

The RFU values of the targets were measured slsenyanoDrop ND-3000
spectrophotometer. We note that there is likelyasmall amount of double-stranded
target (visible on the acrylamide gels — see Fig)nemained in the isolated single
stranded targets, because the Dynabead purificstisgnis not completely efficient.

To determine the fraction of each RFU value tledbibged to the single stranded
targets we ran each target solution on an 8% pofiauide gel. Lanes were cut out and
imaged in the Tecan Reloaded scanner for the @ytakiBand intensities were
measured for the single and double stranded tarfgets which we calculated the
portion of RFU values which belonged to each, & the fraction of signal belonging
to the single-stranded target available to binthéoprobes on the microarray Finally, we
used the RFU values of the single stranded tatgetgerpolate our targets'
concentrations using the standard curve. The exab®glbw illustrates this process in

detail.
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To calculate the concentration of single strandeget (Cy3-1571-150), we
measured: a) The total RFU value, which was 445215) The proportion of intensities
of the single to double stranded bands was 4.5(€i§) therefore, by solving 4.5X+X =
4452 equation, we found that the RFU values ast®stta the single stranded target was
3642.5. Using the standard curve (built using dafeable 2), we found the
concentration of single stranded target was ~ 43(qfijure 6).

To make the hybridization buffer (60 pl), 14.6qgfikarget was used. That is,
target was diluted 60 / 14.6 = 4.1 folds, thereforehe above target the final

concentration was 430 nM /4.1 =~ 104.6 nM

Single Stranded | —. TO00

Target 6000

Double Stranded | —. 5000

Target

J000 -
542 B

3000

RFU Values

i
1000

(1]
. 300
1] 200 400 GO0 a00
Concentration (nM)

FIGURE 6: This figure illustrates the process dtuakating the target concentration.

TABLE 2: Concentration series and associated RHUegaused to build standard curve.

Concentration (nM) RFU Values
50 370
100 730
200 1500
400 3100
800 6050
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2.3.5: Array Design Specifications

The microarray slides were printed in-house ugib@ pm quill pins on the
BioRad Calligrapher according to the supplier'dnmstions. Probe concentration was 5
1M, slides were SuperChip Epoxy Slides (Erie Sdierthrough VWR).

As Figure 7 indicates, the array contains 4 romg 4 columns. The first row
contains 4 spots of buffer, the second row contéiggots of 5 uM Intended probes
(against which targets were designed). The thivdgontains 4 spots of 5 uM unlabeled
probes which were used as negative control to rmake our targets did not hybridize to
the sentinel probes, and the fourth row contaipd/5'sentinel’ probes, which contain a
Cy3 label and were used to identify the positiothef spots on the slide and to verify that

the attachment chemistry was successful. Each stid&ins two such arrays.

* + ¢ » | Buffer

& & & @ | Intended Probe (5uM)

* + @ » | UnlLabeled Sentinel Probe (S}
* & #» » |=> Sentinel Probe (5uM)

* * » & - Buffer

# & & & )" ntended Probe (5uM)

* * & # | |nlabeled Sentinel Probe (SuM)
* ¢ & @& |- Sentinel Probe (i)

FIGURE 7: Slide layout.

2.3.6: Array Hybridization
Slides were placed in an HS 4800 Pro Hybridiza8tation (Tecan, Mannedorf,
Switzerland), then they were blocked with Blocldiugion (Arraylt, Sunnyvale, CA) for

30 minutes. Next, 60uL of hybridization solutiomtaining 44.16 pL of 5M TMAC
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(final concentration 3.68 M), 0.617 uL of 100% f@mide (final percentage 0.96%),
0.672 pL of 5 M sodium chloride (final concentrati®.56M), and 14.6 pL target (50-
100nM) was added to each array (two arrays pee)sliides were incubated for 18 hours
at 45 C. During this period they were subjectethexhanical agitation at medium
intensity (1.1 minutes agitation with 3.5 minutesdk). After hybridization, slides were
washed with 99% isopropanol for 2 minutes (113) treeh they were dried and scanned
using Tecan ReLoaded scanner.

2.3.7: Image Acquisition and Data Analysis

Slides were scanned with the following paramed#irgys: 532nm laser, a 575nm
filter, Hs Autofocus, small pinhole, 6pum resolutiamd a 160 PMT gain in the LS
Reloaded Scanner (Tecan, Mannedorf, Switzerland).

Images were saved in the Tagged Image File fo(ifiaand then analyzed using
ImaGene software (Biodiscovery, Inc, Proteigenént9darcel, France) with the
parameters for segmentation option and set to deedgon growing. Each spot’s
intensity was transformed by subtracting the bamligd intensities from the respective
raw intensities, and then plotted. Figure 8 shomes example of images of the array

associated to each target set before and afterdmduion.
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Images of Spots for Longer Target in Each Set Images of Spots for Shorter Target in Each Set
Before Hybridization After Hybnidization Before Hybridization After Hybridization

1571-150 1571-50

« - o Joid e« e e e se @ e o
FIGURE 8: One example of scanned images beforatiadhybridization for longer
and shorter target in each target set.

2.4: Results
2.4.1: Computational Predictions of the Construdtachets

Table 3 indicates the number of locations whideed probes were aligned
(from Affymetrix SNP 6) on chromosome Y using thmith-Waterman algorithm as
implemented on the SegNFind™ platform. For eaclh@ras described in the Methods

section, these aligned locations were used to gémarseries of potential targets.

TABLE 3: Probes and number of aligned positionshenspecified chromosome
Probe Name Length Chromosome Number of aligneditota

SNP_A-8475541 33 Y 604487
SNP_A-8477444 33 Y 633188




35

Note: for simplicity of notation, throughout thisidy we labeled probe SNP_A-8475541
as T-850 and probe SNP_A-8477444 as T-858.
2.4.2: Results oAG Cutoff Calculation

To estimate a cutoff value faiGheterodimer, We USed alAGheterodimerdSsociated to
optimal heterodimer structures and applied the otketlescribed above to determine the
cut off values foAGyeterogimer(Figure 9). As Figure 8 shows, the cutneterodimer

values for the stable duplex structures were areliidkcal/mol.

delta_g Cuttoff for probe 850_T delta_g Cuttoff for probe 858_T

0.08
\

0.04
|

Distribution Density
0.04
|

0oz
1

0.02
|

0.00
|
0.00
|

deffaG
FIGURE 9:AGheterodimercut off values. aAGpeterogimercut Off values for probe 858 T
hybridized to the targets generated based on ctsome Y. bAGheherodimecut Off values
for probe 850 _T hybridized to the targets generbtestd on chromosome Y

2.4.3: Predicting the Effects of the Target Lengtkd Secondary Structures on Probe-
Target Hybridization
2.4.3.1: First Experiment

The results of this experiment are summarizedguarié 10. As the results
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indicate, increasing the target length increasedhtmber of duplex structures which
satisfied our criteriaAGneterodime< -10kcal/mol and the predicted target-percent bound
increased at least 10%). For example, when thdHesfgargets associated with 858 T
increased just by 1nt from each side, 13561 hdterer structures which did not meet
our criteria would satisfy them now, but when taedth of targets for this probe
increased by 45nt , a total of 169,036 heterodstraictures which previously did not
meet our criteria would satisfy them now.

Interpretation of this result is not simple be@uwss target lengths get longer they
may provide additional probe binding sites. Thushad to filter the results to look only
at those sequences that preserved the pateen of base complementarily between the

two strands. That is why, we conducted the secapdrenent.
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FIGURE 10: A summary of the effect of increasingdth on heterodimer stability, where
the core duplex complementarity is retained. Inttpepanel the y-axis has the actual
number of structures while in the bottom panelyaxis shows the percent increase over
baseline instead. In both panels the x-axis indgcthe increment in target length. The
value in the table below shows the actual numbetraottures compared to the base
targets (in panel A) and the percent increaseamtimber of structures compared to the
base targets (in panel B).
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2.4.3.2: Second Experiment

The results of this experiment are summarizedgunré 11. As we expected, by
adding a new filter to only look for those heterodr structures that preserved the same
base complementarily between the two strands, dh&er of heterodimer structures
which met our criteria was significantly reducedr Example, when the length of targets
associated to 858 T increased by 45nt from bo#ssiasing this filter resulted in only
15,530 heterodimer structures meeting our criteviale in the absence of this filter
169,036 heterodimer structures would meet ourrcaite

Comparing the results summarized in Figure 10 widse from Figure 11
showed: Within each target-set, there was a limesease in the number of stable
structures, but when the binding position was igstl the number reached a maximum
at extensions of 15 and 20nt for probes 858 T &@d 8 consecutively, and then began
to decrease again.

By using the base complementarity restriction (Fegll), we filtered those target
structures that occlude the probe binding siteabse increasing target length without
constraining the sequence produced internal strestinat blocked the probe binding
site. Thus the fraction of stable duplexes usimgstime bases to form a heterodimer

decreased.
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FIGURE 11: These panels summarize the effect w@riilg to retain the same probe-
binding core from the base heterodimer acros®afidr targets. In the top panel the x-
axis has the actual number of structures whil&élottom panel the x-axis shows the
percent increase over baseline instead. In batklpdhe y-axis indicates the increment
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base targets.



2.4.3.3: Third Experiment

Results summarized in Figure 12 indicated althahgmumber of alternate

heterodimer structures for both probes began toedse after some point, the stability of

the remaining structures continued to increase.
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FIGURE 12: In panel (A) for probe T-850, we binrtedether duplex structures with the
sameAG. Within a bin, we then subtracted the numberetérodimer structures of length
base +45 from those of length base +20 and thatepltheAG distributions for all
heterodimers which had 5, 6, 11, and 12consecuatwgplementary bases. In panel (B)
for probe T-858, we carried out the same processlthis case the lengths were base
+45 and base +15.
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2.4.4: Results of Hybridization
For targets of each set we ran two hybridizatigpeeiments. The targets’

concentrations used for each of these experimeatsidicated in Table 4.

TABLE 4: The final target concentrations used inteaxperiment.

Target Experiment # Final Concentration (nM)
1571-150 1 ~104.6
1571-50 1 100
1571-150 2 ~120
1571-50 2 150
857-150 1 ~89
857-50 1 ~100
857-150 2 ~125
857-50 2 ~150
643-130 1 ~60
643-40 1 50
643-130 2 ~95
643-40 2 100

TABLE 5: List of the all predicted Gheterodimer NUMber of H-bonds,
Percent bound (PB), and minimum nucleation lengtredch heterodimer
structure under the hybridization conditions (Table

Thermodynamic Values for Heterodimer Structures

Targets Probes MG H-bonds |PB MN
15671-150 5072 -26.75 36 99 Isetof6nt
157150 Bro123 -15.53 22 95 2setsof 7nt
B57-150 5071 -30.68 19 99.73 2 sets of 5nt
B57-50 5071 -16.07 19 98.77 2sets of 5nt
643-130 Brods? -13.19 19 0 1setofbnt
64340 Brogs7? -7.36 19 0 1setof 6 nt

2.4.4.1: Results of Hybridization for Target S€.571-150 and 1571-50)

OMP predicted the information summarized in Taéhlshowing a) at equilibrium



43

both targets in this set bound >=95 %, b) minimwml@ation length is longer for the
short target ( 2 sets of 7nt) in comparison with lttimg target (1 set of 6nt), and c) the
number of H-bonds involved in the heterodimer striteeis greater for the longer target
(36 versus 22). However the results of both hyhation experiments (Figure 13, 14)
show a hybridization signal was only detected herlbnger target (1571-150); therefore,
the percent bond and minimum nucleation lengtha&ook be a driving force for this
hybridization, because if they were, hybridizatsagnal must be detected for the shorter
target instead.

We believe the number of H-bonds involved in fargithe heterodimer structure

was the dominant factor stabilizing this hybridiaat
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Results of the first and second hybridization ekpents for the target 1571-150:
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FIGURE 13: This figure summarizes the results ai twbridization experiments for
target 1571-150 and contains 1) plots of spotsites before and after hybridization,
2) the intensity values for each spot located tade at the bottom of each graph, and 3)
spot quality flags which are located in a tabléhatbottom right corner of each graph. In
the spot quality table, flag 0 means the spot hgmoa quality, flag 2 means empty spots
and flag 3 means poor quality spots.
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Results of the first and second hybridization ekpents for the target 1571-50:
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FIGURE 14: This figure summarizes the result of twbridization experiments for
target 1571-50 and contains 1) plots of spot intiexssbefore and after hybridization, 2)
the intensity values for each spot located in &tabthe bottom of each graph, and 3)
spot quality flags which are located in a tabléhatbottom right corner of each graph. In
the spot quality table, flag 0 means the spot hgmoa quality, flag 2 means empty spots
and flag 3 means poor quality spots.
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2.4.4.2: Results of Hybridization for Target Se{&7-150 and 857-50)

The results of the first and second hybridizatinpegziments, which are
summarized in Figures 15 and16, indicated thatiti#ation signal was only detected
for the longer target (857-150) in this set. ¥ thumber of H-bonds, PB or minimum
nucleation length, or a combination of these fagtarere driving stable hybridization,
the hybridization signal should be detected fohbot neither, because both duplexes
have the same number of H-bonds (19 nt), very ammplercent bound levels (~98%),
and identical base complementary between the t@ads. Therefore in this case there
must be another factor(s) which stabilizes thisriaybation.

Examining the optimal heterodimer structures assed to the members of this
set (Figure 1) shows that the heterodimer struatitbe longer target had some
secondary structures adjacent to the probe-tamgéing interface while the heterodimer
structure associated to the shorter target didhawoe such structures. We believe these
surrounding structures stabilized the duplex forimgdthe longer target by exclusion of
solvent (entropy-driven) but it is also possiblattftonce formed, it diffused away more

slowly, shortening the time to re-form the complex.
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Results of the first and second hybridization ekpents for the target 857-150:

30000

%‘- 25000
£ 20000
= 15000
s 10000
5000 -
e Spots
1 2 3 4 1[2[3]4
g Sentine] {50721} 3IREDZ.A 35717.1 345805 37825.18 alololo
i Uinfabeded Sentingd (5072} 2955.56 341173 3247.84 235154 Flags=|0 000
i |itended (5071} 137024 135885 12447 137214 o000
£0009
jmm h‘“"-h..._
f—'
= 3 o
b 30000
E 20000
10000 §
ts
y —F@ po
2 ! 112(3]4
g 5 ritine] [SO72L) 38351.53 47E58.14 4§823.32 36273.44 03310
el Unilabeled sentingl {5072) 366.58 3650.43 112 48 a7o.2e Flags|2|2)2 |2
||| === intended [so71} 1270.22 8451 48 1BS0.EE 1012.32 G300

30000

-'E 25000
c 20000
£t 15008
= 10000
5008
Spots
. F ? g ! 1121374
g 5 2ritined {50721 40184 88 3756L.62 38514.55 38414.43 alololo
il Uinilgbeled Sentinel {5072} 50785 773.53 55513 BOS.54 Flggs 00)0[0
g |ritended (5071} 440,26 480,08 436,62 35222 0000
50000
45000
20000 e — —
25000 : _'.L.-l-""'-—_
= 30000
" 25000
= 20000
E 15008
10000 = =
5000 = Spots
: , o ! o 1[2]3]4
—p— 5 entinE] [S072L) 4DE24.03 37313.64 34455, 77 43788.78 ﬂ Q100
il Urizbeled Sentinel [5072) 21538 31624 B32E3 255,51 Flags|2|2|2|2
e [tnded |50TL) B247.03 ES05.79 E7S0.14 203044 00|00

FIGURE 15: This figure summarizes the results ai twbridization experiments for
target 857-150 and contains 1) plots of spot intiessbefore and after hybridization, 2)
the intensity values for each spot located in &tabthe bottom of each graph, and 3)
spot quality flags which are located in a tabléhatbottom right corner of each graph. In
the spot quality table, flag 0 means the spot loasl gjuality, flag 2 means empty spots
and flag 3 means poor quality spots.
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Results of the first and second hybridization ekpents for the target 857-50:
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FIGURE 16: This figure summarizes the result of twbridization experiments for
target 857-50 and contains 1) plots of spot intesssbefore and after hybridization, 2)
the intensity values for each spot located in &tabthe bottom of each graph, and 3)
spot quality flags which are located in a tabléhatbottom right corner of each graph. In
the spot quality table, flag 0 means the spot loasl gjuality, flag 2 means empty spots
and flag 3 means poor quality spots.
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2.4.4.3: Results of Hybridization for Target Se{@13-130 and 643-40)

The result of the first and second hybridizatiopezxments, which are
summarized in Figures 17 and 18, indicated thatitiation signal was only detected
for the longer target (643-130) in this set. ¥ thumber of H-bonds, PB or minimum
nucleation length, or a combination of these fagtarere driving stable hybridization,
then the hybridization signal should be detectedth, or neither, of them, because
both duplexes have the same number of H-bondstf19ary close to the same percent
bound (~0%), and identical base complementary betweetwo strands. Therefore,
there must be another factor(s) that is stabilizimg hybridization.

Examining the optimal heterodimer structures assed with the members of this
set (Figure 1), it can be seen that the heterodsatnecture of the longer target had some
secondary structures adjacent to the probe-tamgding interface while the heterodimer
structure associated to the shorter one did nat.N&% believe these surrounding
structures stabilized the duplex formed by the &rtgrget by exclusion of solvent
(entropy-driven) but it is also possible that, ofax@ned, it diffused away more slowly,

shortening the time to re-form the complex.
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Results of the first and second hybridization expents for the target 643-130:
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FIGURE 17: This figure summarizes the result of twbridization experiments for
target 643-130 and contains 1) plots of spot intessafter hybridization, 2) the intensity

values for each spot located in a table at theobotif each graph, and 3) spot quality
flags which are located in a table at the bottaghtrcorner of each graph. In the spot

guality table, flag 0 means the spot has good tyéllhg 2 means empty spots and flag 3

means poor quality spots.
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Results of the first and second hybridization ekpents for the target 643-40:
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FIGURE 18: This figure summarizes the result of twbridization experiments for

target 643-130 and contains 1) plots of spot intessafter hybridization, 2) the intensity

values for each spot located in a table at theobotif each graph, and 3) spot quality
flags which are located in a table at the bottaghtrcorner of each graph. In the spot

guality table, flag 0 means the spot has good tyéllhg 2 means empty spots and flag 3

means poor quality spots.
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2.5: Discussion

In these experiments we first modeled and theigded experimental targets that
had partial but measureable binding to the probesye could discriminate the effect of
secondary structure and investigate whether secpstiaictures stabilize or de-stabilize
the binding of targets to probes when they arecadjato the probe-target binding
interface. This is important to hybridization teologies in which the target is of variable
length (the result of random shearing) or longemtlthe probe complement for other
reasons (as are most amplicons).

To investigate this matter, we 1) designed sesmaés of nested sets of
sequences around the common heteroduplex formgigrr@and modeled them, 2)
designed 3 target pairs to have differing degrésgcondary structure external to the
probe-binding region and performed microarray hjizetion experiments on them.

Our results from molecular simulations indicatiedttstable secondary structures
on the boundary, when not impinging on the aboityargets to access the probes,
stabilized the probe-target hybridization. The hsssummarized in Figure 11 show that
for ~ 5% of those structures which h&@heterogimervalue equal to -10 kcal/mol, an
increase in the target length from 33 to 70b wipidserved the same probe-target base
complementarity, resulted in a more negative oVAGheterogimer- 1N fact we modeled
beyond 70nt length, but the number of heterodirtrectires which satisfied the above
conditions decreased to the small number, althdoigthose structures the stability of the
product increased. This is summarized in Figure 12.

Our results from the experimental data, in paléicthe hybridization results

obtained from second and third target sets (tagist 643 and 857) confirm the
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prediction that as a target gets longer and tlysesece allows the formation of secondary
structure in the regions adjacent to the targeb@tunding site, duplex formation is
stabilized relative to a target having the samdeduforming pattern but no such adjacent
structures. This has implications for the analg$isicroarray data when partially
matching targets with lengths longer than the duple in the mixture. While a perfect
match will dominate and, barring significant intakstructure, is likely to yield a
reasonably accurate measurement, when no such tborpes in place, imperfectly
matched targets can bind quite stably.

The results of experimental data for all thregeasets show that a hybridization
signal was only detected for the longer targetaicheset. To investigate what factor(s)
was the driving force for this hybridization, wevieaexamined all the features (the total
number of H-bonds, a minimum nucleation lengthaisecutive H-bonds, thes of the
duplex and the percent bound) considered in ougdesd found out: a) number of H-
bonds and , minimum nucleation length, and perbeahd were not this driving force,
because both targets in set 2 and 3 (857 and @4@)the same H-bonds, a minimum
nucleation length, and percent bound (Table 5)thadesults (Figure 15,16, 17, and 18)
shown that hybridization signal was only detedtedhe longer target in each set,

b) theAG of the duplex could be this driving force, be@aiiss consistently lower in the
longer target in compare with the shorter targetanoh set.

Comparing the duplex structures (Figure 2) andnloelynamic parameters
associated with such complexes (Table 5) showgiliah both a short and long target in
that preserved the same base complementary bethe@nobe and target, the longer

target gave considerably more signal, which is Besbunted for by the folding of



adjacent regions and exclusion of solvent, sine& of the heteroduplex regions

remained unchanged.
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CHAPTER 3: THE EFFECT OF STRUCTURE ON SEQUENCEINGELITY ON
THE ION TORRENT PGM
3.1: Overview

While it is accepted that high GC- regions magetfthe ability of a DNA
polymerase to process, so that highly structuregplates are difficult to copy faithfully
in PCR reactions (114-117) and may be difficulséguence in Sanger sequencing
reactions (118), there has been little attentiad fmathe relationship between structural
features of templates and measurement errors imthrgughput sequencing (HTS)
platforms. On the other hand, considerable attarttas been given to the problems
created by the various chemistries: the homopolynaslem on the 454 and lon Torrent
platforms are well documented (119,120) as is gpaeent sensitivity of the Illumina
chemistry to high AT regions (78,121,122).

To test the hypothesis that structure affectditedity of read-through on the
short-read high-throughput sequencing platformunlab, the lon Torrent Personal
Genome Machine (PGM), we have used 10 synthetistnaets, which were initially
designed for microarray studies, to investigateettfects of structures (hairpins) at or
around probe-target binding sites on probe-targletidization.

In our design, we considered the following threpegts of the hairpin structures
in the templates: 1) the lengths, 2) the frequeany, 3) the location of each relative to
the sequencing adaptor. The length and numbeaigdihs was considered because

biophysical studies showed that the transition feofalded to coiled structure (opening
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of hairpin structures) depends on both the sizetlamdiumber of the hairpins (123,124).
The location of the hairpin was included becauseR6M software returns no data if
there are 8 or fewer bases past the key sequeaso(fal communication, lon Torrent
training course). Thus a very stable hairpin rigihtthe boundary with the adaptor might
appear to return no sequence when in fact a smalber of bases had been read. We
placed some structures near that boundary in doderestigate the interference of the
adjacent hairpin structure on primer-target bindbngolymerase attachment to the
duplex region.

Each construct contained first, a core 50mer sagaerived from the sequence
of a Brucella gene) elongated from one or bothssiileadding oligonucleotides in a self-
complementary segment that can self-hybridize ¢atera range of stable secondary
structures (Figure 19), and second, sequencing@dapeeded for the platform - for
some targets both template orientations were atdateee if this changed the outcome of
sequencing.

Since the PGM creates amplified copies of onestawg each bead of a chip, this
platform yields the sequences of individual inpuil@cules rather than the bulk sequence
property characterized by the Sanger sequenciriggeitelectrophoresis methods. The
sequence derived from these beads was assembheftiisiAbySS (125) software
package with a Chastity filter option ‘on’. The Ghy filter (126,127) is a base call
quality control filter which is defined by the ratof the highest of the four (base type)

intensities divided by the sum of the two highesemsities.
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3.2: Type of Sequencing Errors

Sequence quality has a direct impact on the use$sland biological relevance of
the data (128), any excessive errors may havefisigni effect on our interpretation of
the results. The primary source of these errordeainom sequencing, assembly or the
alignment processes.

Several variables account for the sequence realdygu-or example DNA
extraction and library preparation may yield chirmsequences. Sequencing errors at the
reagent flow level may cause loss of base resalufibere are a range of potential
sequencing errors that can be introduced in theolapmeparation steps, such as the PCR
amplification bias observed in lllumina data (7®plyclonal errors observed in SOLID
data (129), or homopolymer sequencing errors oleservPGM reads (130). Library
preparation can limit sequencing coverage thatwallithe full length of template
molecules to be inferred. This last factor is intpot because lack of base coverage
uniformity may cause variation in a poorly coveredion to be mis-called or even
omitted. PGM coverage is known to be biased agaewtiences with very low (< 20%)
or high (> 80%) GC rich regions (131).

Another source of error may arise during readrabbe The accuracy of
assembly mostly depends on the software and issypeters (132). To reduce the
computational effort required to assemble milliohseads (133), most of the assemblers
for next-generation sequencing break the readssimtaler sequences called k-mers (k
defines the size of the sequence to be matchedhandinks k-mers sharing k-1
nucleotides to build a de Bruijn graph. The valtighe parameter k has significant

influence on the quality of the assembly (132).
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Another source of error may arise during readnatignt (134). Alignment to a
known genomic scaffold is one the fundamental aislstep undertaken once the DNA
sequence has been produced. It is often prefetabknovo assemblies due to the
increased speed and reduced memory requiremeiitednbut likede novo assemblies
the accuracy of alignments varies considerably aigipg on the software and the
parameters chosen (135).

In this project, since we were in the positiorknbwing the correct outcome, we
optimized the parameters of thenovo assembler and alignment tool in order to
maximize our ability to achieve individual targetonstruction. Aligning the resulting
assemblies to their known targets allowed us testigate 1) whether there was any
association between the secondary structures amsketiuence coverage, 2) the effects of
k-mer size on contig assemblies, and 3) the effattsontig assembly of using a low-
guality filter in addition to the Chastity filter.

3.3: Material and Methods
3.3.1: Reagent Acquisition

Oligonucleotides were obtained from Operon (alLBRyrade, integrity
validation was carried out using polyacrylamidesyj@ind PCR reagents were obtained
from New England BioLabs.

3.3.2: Overview

To carry out this study, we followed these stepsComputational modeling of
the targets' s structures under lon-Torrent seqagronditions, 2) Construction of
target templates and sequencing libraries, 3) Matibn of target templates by

performing Sanger sequencing, 4) Preprocessin@aalysis of the results.
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1) Target Modeling Under lon Torrent Platform Cdrats:

We used the Oligonucleotide Modeling Platfothsoftware (Visual OMP v7,
DNA Software) to model ten constructs used in nacray study under the physical
conditions prevailing on the lon Torrent platforas, follows: temperature at 42 - 45 °C,
[Na']=~40mM, [Mg"]=6.3mM, ph= 7.5. Figure 19 depicts the most stableondary
structures for each target under the sequencingitoms.

Based on the results obtained from OMP modelinglassified the targets into
the following groups, also shown in Figure 19. Breup 1 templates contain structures
with either very small hairpins (3 to 6bp) or witdops that interrupt the hairpin. Group 2
templates had a longer hairpin (~11bp). Group 3targontained one or two very long
hairpin structures (~20bp). Group 4 targets had & gmall hairpins in close proximity to
each other (separated by 5 to 10 nucleotides)nidjerity of the structures within each
group had the hairpin occurring at approximatedyitiiddle of the sequence.

Note: The modeling parameters reflected the segugmeaction conditions,
which are quite distinct from most microarray hgmation conditions, and the duplex
region in this sequencing experiment is at one em@re the sequencing primer binds,

and is contiguous, again in distinction to the wacray hybridization experiments.
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FIGURE 19: Predicted secondary structures of ajjets under conditions present during
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lon Torrent PGM sequencing. Images were generaied) Wisual OMP.

3.3.3: Sequencing Library Construction

Targets were constructed using overlapping oligteatides which were designed
to span the entire length of each target with @gerlof 15-35 nucleotides at the 3’ ends
(Figure 20). This assembly was performed in thtepss annealing, extension, and full-
length PCR. Annealing was carried out in a volurh&ul, using 0.2 uM of each
oligonucleotide in a buffer containing 1.5 mM Mg@hd 1X HF buffer (Phusion high-
fidelity buffer, Promega Corp.). After mixing, tlselution was heated to 95°C for 5
minutes, followed by gradual cooling (60 minutesvater 150ml of initially 100°C) to
37°C. Each reaction was continued by adding 2000t #ach dNTP and 0.4U of Phusion
polymerase (Promega), followed by incubation fon@Qutes at 37 °C. After all
components were added the full-length constructamaglified using primers to the ends
alone. This was done in a 50 ul reaction contaibipg of assembled target, 200 uM of
each dNTP, 0.4 U of Phusion polymerase, 0.2 pMwhinus primers, 1.5 mM Mggcl
and 1X HF buffer. PCR cycling was: 95° C for 3 rfallowed by 30 cycles at 95° C for

30 s, 58 °C for 30 s and 72 °C for 30 s, and teatathby 3 min extension at 72 °C.
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FIGURE 20: Schematic representation of steps indhmplate assembly process.
3.3.4: Template Modification for the lon-TorrenaBbrm

The validated templates were next modified touwtable for sequencing on the
lon-Torrent by performing standard PCR with fuspimers. PCR was carried out in a
50 ul reaction containing 5 ul of assembled targ@® uM of each dNTP, 0.4 U of
Phusion polymerase, 1.5 mM MgC1X HF buffer and 0.2 uM of the Life Technologies-
specified forward and reverse fusion primers ferGM (ordered from Operon MWG).
At the time the reactions were perform, the 5’ oegof one adaptor was biotinylated
(adaptor A) while the other primer was not (adaptby. That the expected, correct
modification had occurred was verified by analyzimgy of each target on 8%
polyacrylamide gels (Figure 21).

Due to the lon-Torrent read length limitation (~1i#kes at the time of this
study), and the length and location of secondaunciires on some of our targets, a
bidirectional sequencing approach was performe® fout of 10 targets, while for the

other four targets sequencing was carried out faiy one orientation. That is, in total
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we created 16 (6 * 2 + 4 = 16) distinct, structuaeaplicons if the orientation is
considered distinct. Targets were prepared foremgjng according to the lon Template
314 kit User Protocol (Life Technologies, lon Commity resources for PGM Users).
Since no protocols were available for performinggukend sequencing on the
lon-Torrent platform at the time of this study, ereated amplicon libraries for both
strands for those targets requiring bidirectiomgjuencing. Because these are not truly
“paired-end” targets, in the analyses we refehtmt as paired-targets, to emphasize that
the pairs do not originate from the same ISP. Rerather four targets, we produced
amplicon libraries for one strand only and in thalgsis we refer to each as a single-

target.
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FIGURE 21: Gel picture of 16 lon Torrent targetsathhave adaptor A (30 nt) on the 5'
side and adaptor P1 (30 nt) on the 3'side.

3.3.5: Template Verification

Sanger sequencing on an ABI 3130 Genetic Analyzarperformed to verify that
PCR errors had not corrupted the majority of opuirsequences. The lengths of all
targets were first assessed by analyzing 5ng df assembled target on 8%

polyacrylamide gels. Templates of the expectedttengre purified using Ampure XB
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beads (Agencourt) according the suppliers protauad, then sequenced using standard
Sanger Big Dye (v3) sequencing reactions on an3B0 sequencer using the suppliers
protocol (Life Technologies/ABI).
3.3.6: lon Torrent Run

We obtained the same concentration of our tempkatel combined them to
prepare the concentration needed for emulsion RCeb(ding to the manual), then we
followed the instructions for the emulsion PCR aeduencing according to the manuals
for kit version 1. After the sequencing run finidheve used the fastq outputs for our
analysis.
3.3.7: Preprocessing and Analysis of the Results
3.3.7.1: Classification and Alignment of lon Torréteads

The first stage of analysis followed a 3-step radtfoutlined in Figure 22)
comprising classification, pairwise alignment andltiple alignment. Based on the
known target signature (that is, we have uniques Keyeach target) the reads associated
to each amplicon were separated into individualgso Within each separated group,
pairwise global alignment, using the Biopython Esdeuite (136) with a gap penalty of
50 and gap extension penalty of 0.5 was carriedAsu& last step, in the multiple
alignment process (from a python script, availablthe supplementary materials for this
chapter), gap(s) were introduced as needed to amaise¢quence concordance in the set
in the following manner: when a gap in the tardginanent pattern was found the gap
was introduced to all target and read alignmertepasg except the read associated to the

target which had a gap in that position. FigurellB3trates this process in detail.
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FIGURE 22: Schematic representation of the stepalfgning the reads to the original

template.
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Alignment pattern of targetl after pairwise alignment with readl
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FIGURE 23: lllustration of step 3 of the procesdahhwas used to align reads to the

associated target.
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3.3.7.2:De Novo Assembly

Since in this experiment, prior to sequencingkwew the sequences of our
targets, we used this fact to investigate whetbeosdary structures on the sequencing
reads affect the quality of assembled sequencemvEstigate this we performeld
novo assembly on the reads associated to each tamjebampared the result of assembly
with the known sequences. Prior to assembly, agoy#eript were used to remove the
adapter sequences after which AbySS 1.3.0 (137 used to assemble the contigs

Based on a Technical Note by lllumina, the onlgldy filter that definitely
improves an overall assembly on their platformhies €hastity filter (126). To investigate
this matter for the lon-Torrent platform, two asé&dies were performed in parallel using
the filters provided in the Abyss assembly tooltha first assembly the Chastity and
‘end-trimming of low-quality base calls’ filters weeused, and in the second assembly
just the Chastity filter was used. The low-quatriynming filter, which trims bases from
the ends of reads, was set to a cut-off value doR@all assemblies. Comparison of the
results of these two assemblies is discussed iR#sealts section titled ‘Results be
Novo Assembly’.

Since the target sequences are known, for eagéttark-mer that maximized the
correct target reconstruction was determined. F@ipaired-targets, contig assemblies for
each strand were conducted separately, then thkingscontigs were combined and the
final sequence was aligned to the known targettf®single-target products clearly

only the single-direction contig was available ligrawith the known target.
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3.4: Results
3.4.1: Alignment of the Reads to Designated Target

Sequencing on an lon Torrent PGM 314 chip produ&j032 reads. Table 6
shows the distribution of these sequences acressghargets. After applying the
described alignment methods, we detected substitsitinsertions, deletions, and
sequence matches in every position for all assettisgads and generated the graphs of

incident rate of matches and deletions.

TABLE 6: Distribution of lon-Torrent sequencing dssacross the 16 targets

Target Name Number of Reads
129a-50 19,972
129b-50 17,636

1981a-109 1,952
1981b-109 2,268
1981a-129 1,387
1981b-129 7,525
1981a-137 1,105
1981b-137 787
857a-150 4,662
857b-150 1,056
857a-50 1,791
857b-50 10,802
1571-150 20,810
1571-50 34,529
1981-89 2,434
1981-99 3,768
Not Found 29,548
Total 162,032

Figure 24 illustrates one example of an incidate graph for a member of our
structure types Group 2 and Group 4 (1981a-129-8%D respectively). In each graph,

x-axes indicate the target position (target lengtig y-axes indicate the number of reads
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which have deletions or matches at every posifitie. target sequence is given along the
bottom part of the graph. Secondary structure jpositare highlighted in dark gray and
regions are demarcated by vertical red dashed liffeshorizontal red dashed line
indicates the threshold imposed to eliminate na@seh position in a given target must be
observed in at least 50 reads to be included istinemary. The graphs for all targets

were generated and are available in Appendix.
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FIGURE 24: Graphs A, and B illustrate the deleton sequence match distributions,
respectively, for targets 1981a_ 129, and 857a_Iiibhnare representatives of groups 2
and group 4. The structure contributing to deletimnshown in the relevant part of the
deletion graph.
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3.4.2:De Novo Assembly

To investigate whether the structures had anyeffie the sequencing process, we
used ABYSS to assemble the contigs, choosing paeasrthat maximized each target's
correct reconstruction. Figure 25 illustrates tegeanbly results generated by ABySS for
the 1981 129, and 1981 99 templates respectivedygitaphs for all targets can be
found in Appendix I1). In this example the Chasfitter was used and the k-mer size was
set to 58. For the first target (A) which is a pditarget, contigs were generated using
reads associated with both strands, while for goesd target (B), which is a single-

target, the reads from the single available str@ek used to generate all contigs.
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FIGURE 25: A, B, and C represent target 1981 189, 850a, and 1981_99
respectively. Each sub-figure has two parts: 1pdehgenerated by Visual OMP
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software which illustrates the type and locatios@fondary structures, and 2) the
multiple sequence alignment (MSA) representatiothefcontigs and original target
sequences. To maximize the use of figure spacenitidle part of each MSA (bases 31
to 90 for target A and base 27 to 70 for targehB lbases 24 to 68 for target C) was
shifted up. In each MSA representation the x-axikdates the target length and the y-
axis shows the template label. In each MSA, segeehighlighted in light blue identify
the original sequence, dark green indicates thigighehl contig sequences, light green
indicates the gaps, white indicates parts of th#igsequences which are not matched
with target sequence and orange indicates gamslunted into original target as the
result of the MSA process because a de novo appmwas taken. Since, during
alignment, gaps were introduced into the origieaiplate sequences, the maximum
length indicated on the x-axis may be longer tlnnactual length of the original
template; therefore, to find the counterpart amtavben a structural model and MSA,
gaps must be included.

3.5: Discussion

The results presented above clearly demonstratettare is a strong association
between sites of indels (although deletions wesepked far more often than insertions,
which are not shown here) and the location of seagnstructures on the target. As
hairpin structures get longer, as shown for tar§@&l-129 (Figure 24a), or the distance
between hairpins decreases, as shown in targei 8® [Figure 24b), the sequencing
reaction is subject to more mistakes, both as ereased rate of indels and as mis-
incorporation errors (data not shown). These indatsbe as small as a 1-nt deletion or
insertion events, or as relatively long (20 basesare) gaps in the assembled contigs
(see Figure 25). The first type of error (smalldéls) are compensated for during the
assembly process, in which the fully assembledigsmbver almost the entire length of
the known targets, but contigs containing largetitiens and deletions result in a large
divergence from the known target. As shown in FegRb, generated contigs for target
1981-129 (Figure 25a) are completely missing inrdggon between bases 31 to 80

(highlighted by light green area) while there i¢yamne contig (0_115 546) generated for
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target 1981-99 (Figure 24C) that almost covergetgngth of the target; the majority of
the contigs have errors between bases 28 to 74p&@uson with the folded structures of
these two targets suggests a strong associatise®etmissing sequence information
and the presence of hairpin structures. This isrstrprising result since there is a large
body of evidence showing that during DNA replicateecondary structures may cause
DNA polymerase fork-pausing which as a result @eat high-frequency site for indels
(again, mostly deletions) (138).

To illustrate the importance of this phenomenamsider the processes of a
typical RNA-Seq experiment. First isolated RNA via# converted to short cDNA
fragments which are used as templates for a giv@8 Bequencing technology. After
sequencing is conducted, reads are typically mappadeference genome, transcript
library or exon-exon junction library to identifypwel gene models, or refine existing
gene models, or determine the gene expressionflewvelread count statistics. If, as
indicated by our results, some of the sequencimplates (fragmented cDNAS) have
structures similar to those illustrated in Figuda2the sequencing reads may have
missed a big portion of the actual sequence, tlydestling to a result that is incorrectly
identified as a novel gene or a novel splicingasatti Hairpin structures are particularly
common in untranslated regions (UTRs) and otharleggry sequences, where they have
a functional role, exacerbating the interpretatssues.

Another important message we obtained from ourlt®ss related to the size of
the k-mer chosen forde novo assembly. In all of the assemblers' algorithmsclvare
based on de Bruijn graphs (139), reads are decadpos smaller sub-reads of length

k, called k-mers. Our assembly results show theatehgth of the k-mers affects the
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assembly results. If the selected k-mer sizerigéo than many of the reads that should
map to a target, the short reads would be dropped the assembly process and the
resulting contigs will lose that part of the sequeen

The mechanism leading to an apparent deletion wtranture is present has not
been demonstrated, but we can suggest severabpitissi. For targets that contain a
long hairpin structure, when the polymerase reatiestructure, the resulting pause
may lead to release of the polymerase from the DiNthe polymerase falls off the
target, the duplex may partially melt and the patyase may re-bind further back,
introducing repeats (which we observed, data noivel or bind to a region that is
apparently primed by the hairpin, placing it muahtlier down the linear sequence (as
shown above). Depending on the position of thectiire and length of the target, many
short reads may result. If the product just praogadi hairpin has many short reads, and
the selected k-mer size is longer than those rebdshort reads would be dropped from
the assembly process and the resulting contigdagd that part of the sequence. If the
region contains repeated elements and the selkatezt size is smaller than those reads,
then the short reads would be used in construthiegontigs with insertions close to the
hairpins. To overcome these problems for contigemblies where strong structure is
expected, we suggest the use of multiple k-mergyhtiag the contigs according to the
number of k-mers used to construct them. Previludies have also showed that using
multiple k-mers clearly improved the quality @& novo assembly of a transcriptome
(140-142) although no rationale was given. Figlesliows an example of constructing
contigs using multiple sequence alignment and plelk -mers, from target 1981 99.

For these assemblies, k-mer sizes of 50, 55, anwaeb® used successively (Table 6). As
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expected, and shown in the Figure 26 , with k-ne¥ssof 50 and 55 more contigs were
generated, some of which do cover the structurgidmgbases 19 to 69), but with a k-
mer length of 58 the number of contigs decreaggrfgiantly while the length of
repeated sequence leading in to the structurednmegcreased.

We can conclude from the results that as the imagtpuctures get longer and
more condensed: 1) the distribution of deletionsobges more prominent, and the
deletions mostly appear in the assembled contigsegtositions covered by the
structures, 2) full reconstruction of the origisalguence may not be completely
obtainable byle novo assembly approaches, and 3) adding a low qudtiy in addition

to the Chastity filter will not improve the overalbntig assemblies.
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FIGURE 26: sub-figures A, B, and D contain: a) aBAMof target 1981 99 with contigs
generated by using ABySS; k was set to 50, 5558nd successive iterations. To
maximize the use of figure space, the middle petach MSA (bases 28 to 71 for target
A and base 24 to 67 for target B and bases 26 ford@rget D) was shifted up. In each
MSA x-axes indicates the target length and thegsamdicates the contig names. In each
MSA, sequences highlighted in light blue indicates original target sequence, dark
green indicates the individual contig sequenceght breen indicates the gaps, white
indicates parts of the contig sequences which arenatched with target sequence and
orange indicates gaps introduced into originalgbes the result of MSA . Since, during
alignment, gaps were introduced into target seqegetite max. length indicated on the x-
axes may be longer than the actual length of ttyetatherefore, to find the counterpart
area between structural model and MSA, gaps mustdheded.



CHAPTER 4: STUCTURE PATTERNS CHARACTERISTIC OF SHORELETIONS

4.1: Overview

Small insertions and deletions (INDELs) have béisnovered in all human
genomes that have been sequenced (90,91), butdbaiion and extent depends on the
sequencing platforms employed, the analysis appesa@nd validation methods. A
recent comparison of 5 sets of genome sequenciag generated by different
sequencing platforms (Figure 27) (143), indicakes there is a surprising level of
variation in the form of INDELSs (limited to evends4bp) compared to SNP levels. We
guestioned this rate of INDEL variation, in parsbd on our experience with the
behavior of highly structured targets in microaraayg the lon Torrent PGM platforms, in
which stem-loop structures (internal folding ofglarstranded DNA) produced high
levels of apparent deletions. Mechanistically as fbeen showm vivo that formation of
stem-loop hairpins interferes with DNA replicatioapair, and translation (144,145). Tri-
nucleotide repeats have been studied specificalthey are the basis of several genetic
diseases and a number of forensic identificatiststeSuch sequences have been shown
to fold into a stem-loop hairpin when part ifvitro assays (146) as well asvivo
(147). Because polymerase slippage on such sequshosald lead to repeats appearing
more frequently than is observed, a repair mechamias sought. Recent studies
(148,149) have revealed that human cells possBsfahairpin repair mechanism

which can efficiently remove DNA hairpins contaigif0 or 25 repeats, thus limiting
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rapid changes, which is especially important inikgdegions where such changes are
likely to be deleterious.

Since in the sequencing process, regardless gildtierms, these editing systems
are not present to prevent folding of DNA stranids hypothesize that some of these
reported deletions are related to the secondangtsties that form under the conditions

of the assays, and cause relatively high leveskipls or other types of errors.

1,344 177

723,691

lllumina /MACQ

830,934
SJK

FIGURE 27: Comparison of INDEL (< 4b) and SNP freqcy across different
genomes.

In this study, our interest was to look for enmant of structural motifs in or
around deleted segments that are independent setheence itself. Although there could
be anin vivo effect, we modeled using conditions that prevathie sequencing platform
rather than within cells, since this process masfictly affects results. In the absence of a
specific mechanism relating structural features tteletion event, and because structural
features are cardinal in nature, we used randoesfanodeling, a structured machine

learning approach, to identify relevant features.
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4.2: Characteristic of the Dataset Used in Thigi§tu

To investigate this hypothesis, we used the geaseguence dataset created by
Kim et al (1), one of those reported to have a Imgidence of short deletions. We
obtained the sequence reads and INDEL calls frenstipplemental material provided
by the authors. The original study design useddhewing set of steps in obtaining the
data elements to analyze:

1) Genomic DNA samples were obtained from an anaugmhealthy Korean adult
male known as AK1.

2) Paired-end and singleton reads were generated the lllumina GA and GAll
Instruments with standard protocols. Reformulaledvage reagent was used to
generate sequence reads of up to 2 X 106, mucleiddhgn ordinary read length at
the time of publication, which was (2 X 36). Longeads were used to identify
INDELSs up to 29 bases in length.

3) High-quality reads were aligned to human refeeegenome build 36.3 using the
GSNAP alignment tool and allowing up to 5% mismath

4) SNPs and INDELs were identified using the AlpHi¥software system.

5) For validation, 6 Putative SNPs, indels and deletions were validaya@rgets
Sanger sequenced using ABI 3730x| DNA analyzerAsBidBigDye Terminator
cycle sequencing. The final data set included @b sall deletions, of which
3603 (length>=3b) map to chromosome 1 (homo sapi€@ishe 67 selected
variants, all were confirmed by Sanger sequendihgse variants were distributed

over all 23 chromosomes.
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4.3: Materials and Methods
4.3.1: Part I: Investigation into the Presence Stractural-Dependent Pattern That
Predicts the Presence of a Short Deletion, BaseteoBase Content and Helical
Regions in the Neighborhood of the Deletion Sites.
4.3.1.1: Fragment Set Construction

To investigate our hypothesis, we carried outftfiewing steps to construct
fragments surrounding the regions of interest amgirhulate their secondary structures:

1) Assemble human chromosome one using contigstezgbon NCBI map viewer for
build 36.3.

2) Construct 70 base length fragments, centerinth@meleted segment, using the
physical locations of all deletions greater >=3laatides, as reported in the Kim
et al. paper for chromosome 1 (3603). The sequeasegenerated using an
lllumina instrument and recommended library kitbjeh at the time of
publication produced 36-base read lengths. Theoasitilsed modified conditions
to generate longer reads, averaging 106 baseslathevas obtained from the
Short Read Archive (SRA), using identification nuieniXXX. Given sequence
read lengths between 36 and 106 nucleotides, wkthseaverage of these two
numbers (~70) to construct the fragments.

To calculate the fragment boundaries, we sutadaithe length of each
short deletion from 70 (total fragment length) aindded the result by 2. The
deletion was centered and the upstream and dowanstoeundaries were
determined based on the calculated value. For ebeamhe length of a given

deletion is 12, we build our 70 bases fragmentdncatenating the 29 ((70-
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12)/2=29) upstream bases to the start of the deleégion (12 bases) and the 29
downstream bases (29+12+29=70) to the end of tle¢iale region. Throughout
this study, these fragments are called true del€i®EL) fragments.

3) Add lllumina sequencing adaptors to each sidevefy fragment.

Note: In the OMP" modeling software (from DNA Software) these TDEL
fragments were designated as ‘probe’ sequencek thlei sequencing primer was
designated as the ‘target’ sequence. The presdreceuwface (the flow-cell) and a
double-stranded segment of template (the boundeseing primer) can both
change the predicted folding of the target.

4) Model the optimal heterodimer structures oéllhe fragments using the
developers edition of Oligonucleotide Modeling Rian (OMP DE™) (150),
under the conditions reported in Table 4 (sequgncamnditions). OMP uses
nearest-neighbor model with empirical data to aeiee a set of thermodynamic
parameters for all optimal (heteroduplex structuvbgh are energetically most
likely to appear) and sub-optimal (heteroduplexdtires which are less
energetically favorable) heteroduplex structurestkis study, we selected just the
optimal structures.

Note: We used sequencing adaptors and primeur@&2g) to model
fragments but since in this study we were invesiigathe effect of secondary
structures and assay conditions on skips or oyfpestof error in reads, we used
only part of the structure which formed as a restifblding fragment to itself and
not the part which was in duplex form.

5) Assign a code to the type of structure a basev@ved in which include:
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hydrogen bonded hairpins (H), loops (L), bulges ()none of the above (F
=free) (Figure 28).
These are standard structure representations {dt) crystallographic

coordinates are not available.

/—{ Sequencing Primer

5,acacTCTTTECCTACRCGAEGCTCTTECGETCT
80000000800 0000800800000008008008
. TGTGAGARAGGGATGTGCTGCGAGARGGCTAGH

\—( Sequencing Adaptor

FIGURE 28: This is the heteroduplex structure geteel for one of‘the probe-target
used in this study. Four different structure typlestified by OMP are marked as free,
loop, bulge, and hairpin. The red oval indicatesltdtation of deletion in this fragment.

TABLE 7: Conditions used for OMP modeling

Temperature 28 °C
Monovalent concentration [N ~40mM
Divalent concentration 6.3mM
PH 7.5

4.3.1.2: Control Fragment Set Construction

For each deleted segment we identified up to 1@@Lences containing the
deleted region in different sequence contextsalapresent elsewhere on chromosome 1
that were successfully sequenced and then perfotineeshme structural identification
process which was carried out for TDEL fragmentse @ctual number found ranged
from (1 to 1001) and we did not do an exhaustieae(past 1001). The process

included these steps:
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1) Construct a 70 base fragment centering on thezetkcore.
Note: Throughout this study, these fragments ateccdlon deletion (NDEL)
fragments.

2) Model the formation of the secondary structwsisg the same conditions and

software.

3) Assign a code to the type of structure a basev@ved in (described above).
4.3.1.3: Investigate the Likelihood That the DalleBgment on TDEL Fragments Had a
Structure Typical of the NDEL Group

To determine the likelihood that structure is assed with a deletion event, we
stratified the TDEL fragments into 8 groups (TaB)éased on the involvement of their
deletion cores in hairpin structure and used Fislexact test. For member of each
group, we calculated two fractions: a/b and c/d.

For each group, ais 1, b is the total number@EL fragments, c is the number
of NDEL fragments which satisfied the same condgias the related TDEL fragments,
and d is the total number of NDEL fragments in tr@up. For example. in Group one,
defined as fragments having a hairpin structuremgth 0-10 (Table 8) there are 1788
TDEL fragments. If for a given TDEL fragment in stgroup, we examined all NDELs
(for the total found, up to 1001 sequences) andddbhat the deletion segment is
involved in structure in between 0 and 10 base2®6rof the 1001 reference fragments
then the two fractions passed to Fisher’'s exatiwesld be 1/1788 (a/b) and 200/1001
(c/d). The Fisher’s test used the above fractionsegjuation below to calculate the

probability and p-value
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TABLE 8: The percentage of deletion segments iaigpin structure and the number of
instances for each group.

Groups % of Deletion segment in hairpin structure TDEL instances
1 0to 10 1788
2 11 to 20 198
3 21t0 30 223
4 31to 40 274
5 41t0 50 259
6 51 to 60 173
7 61to 70 192
8 71to0 80 211
9 >=81 285

4.3.2: Part II: Train Predictive Models Using tharldom Forest Algorithm Implemented
in the Machine-Learning Environment WEKA.

There are a large number of machine-learning dhgos to select from in
WEKA. All of them are well tested and widely acasght Our choice was guided by the
work of Hooghe and colleagues (152) who wereilogpkor similar sequence/structure
features that predict transcription factor bindsitgs. The authors provide guidelines for
determining whether the random forest method ig@propriate choice, supporting our
selection of it for these experiments..
4.3.2.1: Data Preparation for WEKA

To use WEKA, data must be in a single flat filenfat, where each data point is
described by a fixed number of attributes, of wittod last attribute is usually the class

characteristic we desire to predict (in this cabetiver a segment is deleted or not).
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4.3.2.2: Experiment 2-1: The Complete Deleted Freaxgnand Control Set

In this experiment, we wanted to test whether adctrain a model that
correctly classifies TDEL sequences given the cetepdlata set. To perform this
experiment we followed these steps:

1) We selected 1794 significant sequences amorigeallDEL pool which have
p-value <= 0.01 based on the result of the Fiskstrdbtained from the previous
section.

2) From the NDEL pool we randomly selected 5 cqoesling sequences. We note
that the total NDEL pool for individual TDEL fragmts varies: one TDEL
fragment had (#NDEL<10), four TDEL fragments had{#NDEL< 100), 50
TDEL fragments had (10<#NDEL<100) and the remairiida§4 TDEL fragments
all had (#NDEL> 1001) fragments.

3) We generated two data matrices:

The extended data matrix, shown in Table 9, cosattia following information
a) At each position, the nucleotide present.
b) At each position the type of structure predicted
c) A structural encoding of the sequence that istdd in the TDEL group (the
sequence is also present in the NDEL group, ofsgjumdependent of the
location in the fragment.
In Table 9 (a truncated version is shown belowg,add-numbered columns
contain the nucleotide identity at the given logat{using the 5’ to 3' numbering
convention for representing a single stranded muel&d), and even-numbered

columns label the type of structure in which thatleotide is predicted to
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participate, with categories that include hydrogends (H), loops (L), bulges (B),
or (F) none of the above. The complete table iresuti42 data columns and the

class attribute column (whether or not a deleti@s wbserved for this fragment).

TABLE 9: Sample of dataset using in WEKA generdiaded on the extended format.

id 1| 2| 3| 4| 5 6/ 7 .. 13% 136 137 138 hairpin bulgeoplo free| deletion
TP-1 |A|F|C|H|A|H|A A H T B 5 1 1 1 Yes
INA | T|F|A|F| G| F| C G F A F E 3 D No
IN2 | G|H|G|H|T|H| T A F G F 6 q @ No
IN3|A|F|G|F| G| F| G A F G F ¢ ( D D  No
N4 |A|F|G|F| G| F| C G F T F 4 D L D No
TIN5 | T|F|C|F|T|F| T G F A F 3 ( D No

In the second data matrix (Table 10), we generatexre condensed structural
encoding as follows:

1) Each sequence was segmented into neighborhdedstiguous nucleotides
that are in the same type of structure; the nurobsuch nucleotides per
segment was counted. An average base content Veatated. That is, as
shown in Table 10, each fragment is described &tyiag that includes:

a) The number of bases involved in a specific stimecand the structure
label.

b) The proportion (fraction relative to the lengtithe segment) of AT of
the segment. Because Illumina sequencing chenisskiyown to be less
accurate in AT-rich regions (78,121,153), we warttetetain some

composition information without retaining the comlg sequence string.
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TABLE 10: Examples of condensed structure encotbngeveral fragments.
The pound sign (#) indicates a number countinghti@eotides in a given
segment and the fraction of AT.
Segments Composition

1 #FHATHHAEBHATHFHATHHABHATHLAAT
2 HFAATHHHBHATHFHATHHABHATHLAAT
3 HFAATHHHBHATHFHATHHABHATHLAAT
4 #HABH#ATHFHATHHAEBHATHF#ATHHABHATHLAAT
5 H#HABHATHFHATHHEBH#ATHFHAT

2) Full structure and AT proportion encoding thedyades a nucleotide-by-
nucleotide description of the structure and thetioa of AT present at 5-
nucleotide intervals, aligned to the TDEL fragments

a) Since this set is calibrated to structure intB&L fragments, some
corresponding TN fragments (the abbreviation of MRiSed in the
table) do not contain some structures, indicated By

b) Since the deletions are centered but of diffeleamgths we did not label

the start and stop positions of the deleted segnent

TABLE 11: Sample of dataset using in WEKA generdiaded on the condensed format.

| - Bl | a =
ID L2343 6| T |89 |10)1012(15(14 -: E E E _E E E E :E
TPL |2 [F |1 |AT)3 |H (1 [B |1 |JAT|3 |L |0 [AT F AT |3 1 |Yes
TML|0 [F (0 JAT|O [E (0 |B |0 [AT(0 |L |0 [AT|...|6 [F |03 |ATI[5 [3 [0 [0 [MNe
TM2|% [F |1 |AT)2 |H [0 [B |1 JAT|4 |L |1 [AT o |F |0 [AT |8 [0 |0 Mo
TWN3|0 [F |0 |AT|L |H [0 (B |0 JAT|O |L [0 |AT|... |10 |F |08 |AT |6 |0 (0 |0 |Ne
THA0 [F |0 |AT0 [HE [0 [B |0 JAT(O |L [0 |AT|... |4 |F AT |4 |0 |1 |0 [MNo
THN30 [F |0 |AT|O i |0 |B |0 [AT|0 |L |0 [AT|... |13 |F (0.7 [AT L LV L




To clarify how these descriptions were determinedl farmatted, several

examples are given in Figure 29.
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First Format U sing Sequence b

|GFAFGFTH GHCHAHGHTHGBGBGBABTBGHAH GH CHTLGLALGHCHTHCHGHCHTHGH GHAHGFCFCHTHTHGHAHCH

|CHTHCLALAL CLTLGHGHGHCBTHCHAHAHGHCFAFAFTFCFCFTFCFCFCFAFCFCFTF | [5H 0B 0L 2F | | es |

Second Format Using Sequence a:

|OFOAT OH 0B OAT OF OAT OH OB OAT OL OAT | |5F 1AT 7H 0B 0.71AT OF OH OB OAT 6L 1AT |

|UF OAT 7H OB 0.86AT 14F O.71AT 4H 0B 1AT 5L 1AT | |4H OB 1AT 5F 0.6AT 3H 0B 0.33AT OF OAT OH OB OAT 3L O.67AT

| 3H OB 0.33AT 3F 1AT OH 0B 0AT OF 0AT | [oH 0B oL 6F] | ves |

Second Format Using Sequence b:

|0F OAT OH OB OAT OF OAT OH OB OAT OL OAT | |3F 0.33AT 10H 5B 0.47AT OF OAT OH 0B OAT 3L 0.67AT

|0F DAT 10H OB 0.3AT 2F OAT 8H OB 0.9AT SL 0.6AT | |8H 1B 0.38AT 14F 0.43AT OH OB 0AT OF OAT OH OB 0AT OL OAT

|OH OB DAT OF OAT OH 0B OAT OF 0AT | [5H 0B oL 2F | [ ves |

Second Format Using Seguence c:
|UF OAT OH OB OAT OF OAT 4H OB 0.25AT 3L D.6TAT | |UF OAT 4H OB 0.25AT B8F 0.73AT 6H OB 0.83AT 4L 0.5AT

|DF OAT BH OB 0.83AT 1F 1AT 4H OB 0.25AT 7L O_14AT ||4H 0B 0.25AT 2F 0.5AT 4H 0B 0.5AT OF DAT OH OB OAT 5L 0.6AT

|4H 0B 0 5AT 4F 0 5AT oH 0B 0AT OF 0AT | [6H 0B 1L 1F] [ ves |

FIGURE 29: Three structures (a, b and c) and tlesipective data matrices in two

formats described above. The extended formatawstior the shortest fragment (b) as
the first example. Red blocks contain nucleotides their structure assignment, blue
blocks contain the structural composition of thieetkl core ,green blocks show class
attributes. The condensed format is shown for @athe three structures (a, b, and c). A
red block indicates segments including 1)the nunobepnsecutive bases involved in a
given structure followed by 2) the AT-compositioneach structure, blue blocks contain
the structural composition of the deleted core gneen blocks show the class attribute.

Structures are denoted as described in the text.
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4) We used a Random Forest classification algorithilWEKA, with parameters
maxDepth: 0 (for unlimited), numFeatures: all atites, numTrees: 124, seed: 1
and cross-validation fold: 10, to predict the outpiuthe last column.
4.3.2.3: Experiment 2-2: Structurally Stratifiedl&en/Control Groups

As shown in the Results section (see Table 14)vere unable to train a model
that successfully predicted the class attributeg@nce or absence of a deletion) with
high precision or sensitivity. Since it appeareat some structural motifs might be more
significant than others we stratified the data Bitsubsets (summarized in Figure 30) as
follows:

1) Using the deleted region as the reference pdimdgcate whether there is a hairpin
structure within, to the right or to the left oktdeleted segment (or any
combination of these). Presence and absence aledads ‘0’ and ‘1’
respectively, and the order is left, right, cenBm.each fragment has a 3-numeral
code of zeros and ones, and fragments are sottedrnoups that share that label,
which is also used as the group label for simpglidior example, in Group 001
there are no structure regions on the right artcbfehe deleted segment (hence
‘00’) and there is a hairpin structure that encossea the center of the TDEL
fragment (thus the final ‘1"). Figure 30 gives #astrative example for each of the
8 groups.

Note: Group 000 is a special case having no stthletures, which is not useful

for this study. We have 142 TDEL fragments in tirisup.
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FIGURE 30: OMP predicted structures for 7 examplguences and their labels. In
all of the sub- figures the deletion in the fragtiermarked by a red oval and
structures to the left and right of the deletiograent, where present, are marked by
blue ovals. In group 001 there is at least onecsire which encompasses the
deletion segment. In group 111 there are structorédse left, right and in deletion
segment. In group 101, there is structure to thele also in deletion segment. In
group 011, there is structure to the right and dkdetion segment. In group 110 there
is structure to the left and right of deletion segitnbut the deletion segment is free of
structure. In group 100 there is structure to #fedf the deletion segment and the
deletion segment itself is free of structure. laugr 010, there is structure to the right
of the deletion segment but the deletion segmeinéésof structure.

2) We generated the same two types of data matocesach group that are
described above. Briefly, for each TDEL sequences&lected 5 NDEL sequences

at random from the corresponding NDEL pool, but ribe/pool includes not just
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the same deleted core but belongs to the samdustaligroup. Taking Group 110
as an example, for each TDEL we have selected 5IN€@§uences from the
portion of its NDEL pool that includes the sameaistaral elements (a hairpin to
the right and left but not including the deletedreent). Summaries of the number
of fragments in each pool are given in the Results.

3) We used the matrices as input to the RandonsFolassification algorithm, with
the following parameter values: maxDepth: O (folimaited), numFeatures: all
attributes, numTrees: 124, seed: 1 and cross-vadéold: 10. The class attribute
was: (Deletion: Yes or No). Classification was peried using:

a) Both sequence and structure features.
b) Just structure features.
c) Just sequence features.

4) We compared the classifications results obtafrad both formats in terms of
True Positive (TP), False Negative (FN), True NegafTN), False Positive (FP),
and receiver-operator curve (ROC)

4.3.2.4: Experiment 2-3: Balancing Group Sizes

Upon stratification, the distribution of structureighborhoods that include that
sequence deleted in our targeted fragments caighly lskewed. Recall that the exact
deleted sequence is used to identify sequencehighwhe same nucleotides were
successfully sequenced, the goal being to samiplga number of contexts for those
nucleotides. Imposing a common structure filtetlmnavailable pool of NDELSs results
in very different sizes of the sets of non-delaiférence fragments for some of the

deletion-containing sequences, varying from 5-2€fusnces in 80% of the groups. This
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is shown in Figure 31. For large sets, selectiNPEL sequences per tree may not
sample the distribution sufficiently, while for yesmall sets there may not be a large
enough group to train on. We used several stratg¢gisee how important this effect may
be. Because inspection of the two sets of restiliseostratification experiment (see
Results) showed that the more condensed formateddbetter classification outcomes
than the full sequence + structure encoding fornaa,proceeded using just this format
in the following experiments.

1) For each group we have iteratively generatedsgds using random selection of 5
NDELs for each TDEL sequence, with replacementaheteration, over 40
iterations.

2) We used the Random Forest classification algorivith default settings (detailed
above) to classify TDEL form NDEL sequences.

3) For each group, we averaged the results of@hteias to generate the output,
which includes scores for the following: true post false positive, true negative,
false negative, true positive precision, true nigggtrecision and receiver-operator

curve (ROC) rates.
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FIGURE 31: Distributions of negative pools for theven structure groups. In all groups,
except 110, the size of negative pools for >=80%DEL sequences is between 5 — 200
fragments (indicated by a red bar to indicate ispatity in different groups).

4.3.2.5: Experiment 2-4: Stability of the Structure

As shown in the Results, the classification penfance of our models remained
poor. We know that local structures vary in stépiland we did not use a cut-off to
declare that a structure actually exists undectmalitions present in a sequencing
reaction: that is, a hairpin containing 2 bases measliscriminated from a hairpin with 6
bases. We know from designing PCR primers thatrpefgses are well able to melt less
stable hairpins, and a rule of thumb in PCR pridesign, whose reaction conditions are

similar to those in sequencing, is to avoid printaeg can form a hairpin in which more
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than 6 bases can form hairpins are avoided. Intt@ésereates sufficient noise to
confound our models, we tested whether a ‘staHiligr’ should be used, we carried out
the following steps:

1) Re-stratify the 7 structural neighborhood grotmpereate a set of ‘stability bins’
for hairpin structures. The bins were selecteddalarice the size of each sub-group
against the number in the base group (0-5 sideg@iha) as much as we could.

Table 12 shows the resulting numbers once thisabiparhas been
performed, and also shows the stability of theugsowe created: For example,
group 001, which has only one structure at théeremhere the core deleted
sequence is, was divided into 4 sub-groups congbosdairpins with 1 - 5bp, 6 -
10bp, 11 - 15bp, and 16 — 30bp.

2) For each TDEL sequence we selected 5 NDEL segsdnom the appropriate
sub-group, randomly with replacement, over 10 ttens.

3) The Random Forest classification algorithm wiéfiault parameters (described

above) was employed to classify sequences.
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TABLE 12: This table indicates how we separatechaaoup to sub-groups.

o (@] (@] (@]

Sou.|Rog| & |2, So.|Rox |8 |5

Leg |20 2 G Q Log 2o 2 )

Slg2s 825 | &8 |58 S|g82s (€25 (|82 |55
O|EBL | EG=| EB |+ £ O | EB0 |cG= |[EC |%.E

001 0 0 1-6 | 48 110 1-3 1-3 0 45
001 0 0 6-10 | 48 110 3-4 1-3 0 45
001 0 0 10-16 | 64 110 | 4-30 1-3 0 58
001 0 0 16-35| 53 110 1-3 3-4 0 48
111 | 1-30 1-4 1-5 48 110 3-4 3-4 0 31
111 | 1-30 1-4 5-35| 54 110 | 4-30 3-4 0 64
111 | 1-30 4-30 1-5 31 110 1-3 4-6 0 53
111 | 1-30 4-30 5-35| 27 110 3-4 4-6 0 34
101 | 1-3 0 1-8 | 26 110 | 4-30 4-6 0 56
101 | 34 0 1-8 | 29 110 1-3 6-30 0 34
101 | 4-30 0 1-8 | 39 110 3-4 6-30 0 29
101 | 1-3 0 8-35 | 32 110 | 4-30 6-30 0 39
101 | 34 0 8-35 | 31 100 | 1-3 0 0 43
101 | 4-30 0 8-35 | 43 100 | 3-4 0 0 41
011 0 1-3 1-7 38 100 | 4-6 0 0 48
011 0 35 1-7 32 100 | 6-30 0 0 29
011 0 5-30 1-7 27 010 0 1-3 0 54
011 0 1-3 7-35| 29 010 0 3-4 0 45
011 0 35 7-35| 43 010 0 4-6 0 47
011 0 5-30 7-35| 27 010 0 6-30 0 38

4.3.2.6: Experiment 2-5: Weighting the TDEL and NDEools

We originally selected a very large number of coiftagments (1000 times more
in almost all cases). However the structure stecation process resulted in uneven
distribution of those controls across the differgrtups and may have introduced bias,
since we do not know if our groups are appropridgean alternative approach, we have
pooled the NDEL sequences and weighted their douttans to account for the
difference in the number of samples.

To generate a data matrix for each sub-group wewel these steps:
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1) For each TDEL sequence, we sampled the entirélNiwol in the dataset.
For example; for Group 001 that has deletions 6friicleotides (Table 12), we
had 48 TDEL sequences and 1418 NDEL sequences.thi@uata matrix will be
for 1466 fragments (48+1418=1466).
2) Weight each instance by its relative contributio the structure sub-group.
a) Each TDEL fragment has the same weight, assigaddover the total number
of TDEL sequences in that graup
b) Each NDEL fragment in a sub-group carries thmesaeight, assigned as the
fraction of instances in the structural sub-grouprdhe total number of
NDELSs. In each sub-group, the weight for all NDHistances associated to a
given TDEL instance is the same and calculatediadidg the size of NDEL
pool by the summation of the sizes of all NDEL poiol that sub-group. Figure
32 illustrates our method for weighting TDEL and EIDinstances for sub-

group 001.
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Group Core Size # Of TDEL TDEL Weight
001 1-8 48 1/48 =0.021
.-ﬂ;..
1 N
# Of NDEL 1001 430 20 8234
[ [ [ [
Core Size 230 120 3 320
1-6 ¥ (230,12053200 =675
| I
/ " W W
NDEL Weicht 230/675=0.341 120/675= 0.18 5/675= 0.007 320/675= 0.47

Figure 32: Schematic of our method for weightingf®EL and NDEL instances for
sub-group 001.

3) We used the Random Forest classification algorivith default parameters
(described above) to classify fragments as TDELNDELS.
4.3.3: Part Il - Testing
After training the model on sequences showingtaele and sequences without
those deletions found on chromosome 1, we usechtte! to test its ability to predict
deletion-containing sequences found on chromosdimé&lie steps are identical to those
described for preparing the chromosome 1 datase¢sly described below. The
condensed format was used.
1) Construct 70 base length fragments, centerintpeeleted segment, using the
physical locations of all deletions greater >=3laatides, as reported in the Kim
et al. paper for chromosome 20 (262). These fratgrame called true deletion

(TDEL) fragments.
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2) For each TDEL segment we identified up to 1QEhtical sequences elsewhere on
chromosome 20 that were successfully sequencethangerformed the same
process which was carried out for TDEL fragments.

3) Construct WEKA data matrices, as described alioveerform following two
experiments.

4.3.3.1: Experiment 3-1: Testing the Model on Segas from Chromosome 20
The data set contained 262 TDEL sequences anid@may selected sequences
for each from the corresponding NDEL pool. We ugedmodel constructed for
Experiment 2-1 to reevaluate it using this test set
4.3.3.2: Experiment 3-2: Testing the Model on Choeome 20 Using Stratified Groups
We constructed our seven training data matriceaguhe condensed format, and
then used the corresponding models constructedperiinent 2-2 to reevaluate the
predictions using these test sets.
4.4: Results
4.4.1: Part |
4.4.1.1: Investigate the Likelihood That the DealleB=gment on TDEL Fragments Had a
Structure Typical of the NDEL Group
Out of 3603 small deletions reported for chromosdm1794 of them have P-
value <= 0.01 which indicates the structures inchitihese deletion regions participated
were not formed by chance. Table 13 indicates eesgmtative portion of these results.

The complete list of significant sequences canob@d in Appendix Il)
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TABLE 13: Some representative sequences foundue significant structure
associated with the deletions on chromosome 1liResavere obtained using Fisher’s

exact test.
Target ID Deletion Sequence Deletion Length  P-value
target_chrl _novel 179479103 CGCGCGC 7 9.11E-170
target _chrl rs28544222 59206042 TATATATAT 9 5.708B-1
target chrl _novel 246849533 ATATATATA 9 6.69E-136
target _chrl _novel 21191432 ATATATA 7 1.81E-126
target chrl _novel 241174531 GCGCGC 6 3.79E-85
target_chrl _novel 64861749 GCCTGTG 7 1.40E-80
target chrl _novel 237210353 ATATAT 6 4.26E-58
target chrl novel 177611384 ATATAT 6 4.26E-58
target_chrl _novel 25056563 GGGGG 5 2.17E-50
target chrl novel 110868684 GGGGG 5 2.17E-50
target_chrl _novel 65367560 GGGGG 5 2.17E-50
target chrl novel 244921250 GGGGG 5 2.17E-50
target_chrl novel 242453173 GGGGG 5 2.17E-50
target_chrl_novel 182018970 GGGGG 5 2.17E-50
target chrl _novel 118894853 CATGC 5 5.60E-46
target_chrl novel 233779552 CTGCT 5 6.69E-45
target chrl _novel 156920258 AAAAAAAAAAA 11 2.20E-43
target chrl rs5775307 76030123 AAAAAAAAAAA 11 2.248

4.4.2: Part |l
4.4.2.1: Experiment 2-1: The Complete Deleted Freaxgnand Control Set

Results are summarized in Table 14. Examinatidhetrue positive rate, ratio of
true positive to false negative, and ratio of tnegative to false positive all indicated
that, regardless of the formats, using all of tBEL sequences did not allow us to train

the classifier algorithm to predict the class vwatkcision or sensitivity.
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TABLE 14: This table contains the results of clasation for the expanded (First) and
condensed (Second) formats. Columns indicategtvaitive (TP) rate, false positive

(FP) rate, true negative (TN) rate, false negafiie) rate, true positive precision, area
under the receiver-operator curve (ROC), numberuef positives over false negatives,
and number of true negatives over false positifires) left to right.

[4

= = = = o) =~

S < < o B < = w

04 4 o 04 'S O T o

o o zZ zZ g @) a pd

= LL — LL o [n'd = =
ExtendedFormat | 0.135| 0.022| 0.978| 0.865| 0.549| 0.793| 223/1429| 8077/183

Condensed Format  0.30 0.05| 0.95| 0.61| 0.619| 0.848| 644/1008| 7599/397

4.4.2.2: Experiment 2-2: Structurally Stratifiedl&en/Control Groups

In Tables 15, 16, and 17 below, we show the resiltlassification for all seven
groups, with two formats side by side. For eachugrahe tables consecutively shown
results for a) both sequence and structure dajasb¥tructure data, and c) just sequence

data.

TABLE 15: WEKA model accuracy results by group,ngsstructure and sequence data.

Results for the Extended Format Results for the Condensed Format]

_ _ «| =| B 4 _ _ «| «| 5| 8

& T I IS T 7 < IS I IS T D <
5 o o o 04 o O 4 04 04 4 o @)
e a a = = o o) a a pra = o )
(O] = LL = LL o a4 = LL = LL o x
001 | 0.25| 0.03| 0.97| 0.75| 0.61| 0.84 0.52| 0.04| 0.96| 0.48| 0.71| 0.89
111 | 0.15| 0.02 0.98 0.85 0.61 O. 0.38| 0.05| 0.95| 0.62| 0.59]| 0.85
101 | 0.21| 0.03| 0.97| 0.79| 0.59| 0.84 0.38| 0.05| 0.95| 0.62| 0.6| 0.87
011 | 0.17| 0.03 097 0.83 054 0O 0.39| 0.05| 0.95| 0.61| 0.61| 0.88
110 | 0.06| 0.03| 0.98| 0.94| 0.32| 0.72 0.23| 0.05| 0.95| 0.77] 0.47| 0.79
100 | 0.09] 0.03 0.97Y 0.91 041 O. 0.17| 0.05| 0.95| 0.83| 0.4]|0.72
010 | 0.04| 0.03| 0.98| 0.96| 0.26| 0.74 0.27| 0.05| 0.95| 0.73| 0.52| 0.82
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TABLE 16: WEKA model accuracy results by group,ngsstructure data.

Results for the Extended Format Results for the Condensed Format]
.. _ _ «| =| B g _ _ «| | s8] @
Q IS IS IS IS o < IS 15| IS IS ‘B <
g x x 04 o o O x 04 04 o '© O
= o o z prd o O o o z prd o O
) = T = i o o [ T = T o 14
001| 0.3(0.05|0.95| 0.7|0.53| 0.81 0.51| 0.05| 0.95| 0.48| 0.67| 0.87

111] 0.13] 0.05]| 0.95)| 0.87| 0.34| 0.77 0.38| 0.06| 0.94] 0.62| 0.57| 0.84
101] 0.24| 0.05]| 0.95)| 0.76| 0.49]| 0.81 0.41) 0.06] 0.94| 0.59| 0.58| 0.84
011/ 0.16/ 0.06| 0.94] 0.84| 0.34| 0.8 0.36| 0.06| 0.94] 0.64| 0.54| 0.84
110] 0.09] 0.04| 0.96| 0.91| 0.29] 0.65 0.2/ 0.04,096| 08| 05]0.74
100] 0.12| 0.08]| 0.92| 0.88| 0.23] 0.62 0.14| 0.08] 0.93| 0.86| 0.28| 0.63
010] 0.12| 0.09| 0.91] 0.88] 0.21| 0.62 0.3]0.07|/ 093] 0.7]0.45]|0.72

TABLE 17: WEKA model accuracy results by group gsgsequence data.

Results for the Extended Format Results for the Condensed Format]
. _ _ “ - 5 g _ _ - . 5 g
e IS IS IS IS o < IS © IS IS @ <
3 4 04 o 04 o O 4 4 o 4 o O
= o o z prd o O o o z prd o O
) = T = i o o [ T = T o 14
001| 0.21| 0.02| 0.98| 0.79| 0.69| 0.82 0.41| 0.06| 0.94| 0.59| 0.58| 0.82

111 0.15]/ 0.03] 0.97| 0.85| 0.48| 0.82 0.33| 0.06| 0.94| 0.67| 0.51| 0.82
101] 0.22] 0.02]| 0.98| 0.78| 0.65] 0.83 0.44| 0.07] 0.93] 0.56| 0.55| 0.84
011]0.14| 0.03| 0.97| 0.86| 0.52]| 0.83 0.34| 0.07] 0.93| 0.66| 0.49| 0.85
110| 0.1/ 0.02| 0.98| 0.91| 0.46| 0.74 0.27| 0.06] 0.94| 0.73]| 0.46| 0.78
100 0.05] 0.03] 0.97| 0.95| 0.27| 0.73 0.24| 0.08] 0.92| 0.76| 0.37| 0.76
010] 0.07) 0.02{ 0.98| 0.94| 0.4]0.78 0.25]/ 0.07] 0.93| 0.75]| 0.4 0.76

A number of trends can be observed in the abosudtse Because there are so
many True Negatives, the True Positive and Falggmbiee rates, along with the
Precision, were the values we monitored most cjasedssessing model strength.

1) Comparing the classification results for a cagtgpldata set and the stratified data
sets (Tables 14, 15) , when both sequence andwteuaformation is included in
the data matrix, the condensed format always imgaacores for TP, FN,

Precision and ROC. Stratification gives similaimproved scores for those
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metrics for Groups 001, 111, 101 and 011 (strusturevhich the deletion is in a
helical region) in both formats and worse scooggtiose metrics for Groups 110,
100 and 010 (structures in which the deletion leaghboring helices) except for
Precision in the condensed format which improves.

2) Across these experiments comparing the resualts flata matrices in which the
sequence and structure, structure alone and segjate, the condensed format
(Format 2) always gave a higher TP score, lowerdeal or higher Precision and
higher ROC than did the extended format (Formattign structural features
were included (Tables 15 and 16). When only sequiaras used to build the
model, the TP and FN still improve with the condahformat, while for Precision
and ROC the values are usually similar and in adasges the extended format
performed better (Table 17). We note that althaihghinformation encoded in the
sequence-only experiment did not explicitly incliedieicture, we were implicitly
including structural information because groupsenfermed on that basis.

3) The best scores seen included a rate of 0.52éofP, 0.48 for FN, 0.83 for
precision and 0.89 for the ROC, all in resultstf@ combined sequence and
structure data (Table 15). Including both sequemzkstructure information
improved all of the results for Groups 001, 111 @adl and improved the
performance with respect to the Precision and R&@@®1, 110 and 010 and
improved the Precision for 100. The model usingditire gave the best TP and
FN for 010 while the model using sequence gavéést TP and FN for Groups

110 and 100.
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The models were better able to fit some groups tilaers. Group 001 had the best
scores in all three data sets, with Groups 111,am01011 having scores similar to
each other but lower than for Group 001. Groupsrghelices adjacent to the
deletion region (110, 100, 010) were modeled lessrately in all cases, and no
particular model did best in all data sets for ¢hgsoups.
4.4.2.3: Experiment 2-3: Balancing Group Sizes
In Table 18 we summarize the average of the esbitained after performing 40
iterations of the classification model for eachugrpusing the data matrix containing
both structure and sequence information and thdermged format. Comparing the results
to those seen in Table 15, right side, we obsdraefor most groups and most

metrics the values remain relatively unchanged.

TABLE 18: WEKA model results on the training date &ll structural groups. Each
number in this table is the average of 40 iteratiacross the data matrix used to train

the model.

- &
= = = = ke =
S © © © © ‘D < b [
= i o4 i i o O o L
e o o z z o e} o Z
] = LL = L o 04 [ =
001 | 0.5 0.03 0.97 0.51 0.77 0.91 108/105 1034/31
111 | 0.34 0.03 0.97 0.66 0.73 0.89 53/105 769/20
101 | 0.37 0.03 0.97 0.63 0.72 0.91 75/127 981/29
011 | 0.39 0.03 0.97 0.61 0.72 0.91 76/120 949/29
110 | 0.26 0.02 0.98 0.74 0.74 0.86 138/398 2627/49
100 | 0.19 0.04 0.96 0.81 0.52 0.8 33/130 776/29
010 | 0.27 0.03 0.97 0.73 0.64 0.86 50/134 889/28
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4.4.2.4: Experiment 2-4: Stability of the Structure

We summarized the results of classification fobsab groups as in Table 19.In
Table 19 we summarize the metrics obtained wheandietructures are filtered for
stability under sequencing reaction conditions. Wi that this further decreases the
size of the training sets — this can be seen bgnexag the TP/FN and TN/FP columns,
which show the actual numbers of samples in eaadsciThe following general trends
can be observed.

1) Groups in which the deletion is part of a hdlsteucture (001, 111, 101, and 011)
show improved classification rates for the mor®lstatructures when the
additional level of stratification is applied.

2) In this experiment we attempted to keep sampags of a similar size so models
would be comparable: this is why helix lengths viarthe different classes shown
in the table. In some groups increasing helix lerogirresponds to improved
classifier results - for example in Group 111 therenproved classifier rates when
a helix adjacent to a central helix exceeds a éhgth: between the TP increases
from 0.34 to 0.47 as the helices all become maielstand the FN and Precision
similarly improve in the series. For Group 001 thessifier improves up to a
point, where the helical length is 10-16bp and ttadls off slightly as the helix is

even longer.
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TABLE 19: WEKA fully stratified model results onettraining data for all helical-
stability subgroups within structural groups.
N ) OO

D

= 9 c 2 = = = = et
585|865 |55 | & | & &8 2| €| ¢

s |Ses|tes (TR R B2 | E|8 F |7

© | N & NS N

o » »n © 7

001|0 0 1-6 0.40{ 0.05 095 0.0 0.62 083 2028 228/12
001|0 0 6-10 0.40, 0.0 0.9 0.0 0.62 084 2028 226/12
0010 0 10-16 | 0.58 0.04 0.96 0.42 0.76 0/92 38/26 3Y/1
0010 0 16-35| 0.50, 0.091 0.983 050 0.64 084 2726 Z2/1
111 | 1-30 1-4 1-5 0.34 0.0% 095 0.66 0.56 0|84 16/327/2
111 | 1-30 1-4 5-35 0.3] 0.0% 095 OJf 053 0/81 16/37 /P%(
111 | 1-30 4-30 1-5 0.44 0.06 094 056 0.61 0{89 17/1341/4
111 | 1-30 4-30 5-35 0.49 0.0y 0.93 0.53 0.63 080 13/148/7

101 | 1-3 0 0-9 0.57| 0.04 0.98 043 0.70 092 18/14 11p/8
101 | 3-4 0 0-9 0.55| 0.08 0.9 045 0.67 0/89 18/15 10y/9
101 | 4-30 0 0-9 0.36/ 0.0 095 0.64 0.61 0/83 16/29 1B2/
101 | 1-3 0 9-36 0.27, 0.07 093 0.73 0.43 0/80 7/p19 120/1
101 | 3-4 0 9-36 0.300 0.0 0.95 0.0 0.61 0J/75 9/R0 118/6
101 | 4-30 0 9-36 0.53 0.07 0.93 0.47 0.69 0|88 20/17 /A3P
011 O 1-3 0-7 0.3 0.0%5 0.95 0.65 0.b8 0|83 13/2¥6/10
011 O 3-5 0-7 0.37 0.09 091 0.63 0.b7 079 12/200/99
011 O 5-30 0-7 050 0.0y 094 050 0.p1 0.89 14/1324/8
011| O 1-3 7-36 0.47 0.06 0.94 053 0.p5 0.87 14/1%15/7
011| O 3-5 7-36 0.30 0.0 0.94 O0.yO 0.1 082 13/2W2/13
011| O 5-30 7-36 0.31 0.08 0.92 0.9 048 0.82 9/1912/9
110 | 1-3 1-3 0 0.30| 0.08| 0.92 0.70 0.44 0.81 14/31 205/18
110 | 3-4 1-3 0 0.35| 0.05| 0.95 0.65 059 0.85 16/29 214/11
110 | 4-30 1-3 0 0.28 | 0.04| 0.96 0.72 0.58 0.79 16/42 278(12
110 | 1-3 3-4 0 0.29 | 0.05| 0.95 0.71 0.5b 0.80 14/34 206/12
110 | 34 3-4 0 0.27 | 0.06| 0.94 0.78 0.48 0.76 8/23 143/9
110 | 4-30 3-4 0 0.38| 0.06| 0.94 0.683 0.58 0.88 24/40 299/18
110 | 1-3 4-6 0 0.22 | 0.06| 0.94 0.78 0.43 0.B 12/41 245/15
110 | 34 4-6 0 0.3 | 0.06| 094 0.7 0.49 0.79 10/24 155/11
110 | 4-30 4-6 0 0.24| 0.05| 0.9 0.76 0.48 0.78 13/43 261/14
110 | 1-3 6-30 0 0.23| 0.05| 095 0.7Yf 05 0.411 8/26 145(8
110 | 34 6-30 0 0.16 | 0.06| 0.94 0.84 0.3f 0.64 5/24 124y8
110 | 4-30 6-30 0 0.31| 0.05| 0.95 0.69 0.5F 0.88 12/27 185/10
100| 3-4 0 0 0.3 0.06 094 0.69 051 Q.8 13(28 1BDI/
100 | 4-6 0 0 0.1 0.06 094 083 0.88 0|69 8uU0 1PRY/
100 | 6-30 0 0 0.28 0.0%5 0.95 0.Y2 0.b3 0|82 821 /738
010| O 1-3 0 0.3| 0.06 094 0./ 0.49 0)79 16/38 249/1
010| O 34 0 0.35 0.06 0.94 0.65 0.55 0|85 16/29 /14
010| O 4-6 0 029 0.06 094 0.71 0.48 0|77 14/33 /188
010| O 6-30 0 0.34 0.0Y 0.93 0.66 0.b1 0|82 13/251/1¥




108

4.4.2.5: Experiment 2-5: Weighting the TDEL and NDEools
A large improvement was seen with classifier ssevhen training fragments
were weighted by frequency within the class. T@&flesummarizes these results. Some
trends that can be observed follow.
1) For all groups, we found greater better modigsrafter adding weights.
2) The trends observed for helix stability influereonditions were preserved, as

were the relative strength to discriminate paréicstructural groups.

TABLE 20: WEKA model results on the training datath helix stability subgroups on
the structural groups, weighted by fraction of TBEnd NDELSs in total group.

£z | £ E B}
S |%zz|3:%| ° ||z |2 |2 |2 |8 |E|E
8% |83 | & =

001 |0 0 §-10 0.905] 0.005] 0.995| 0.095] 0.975| 0.997[43/5 |236/1
001 |0 0 10-16 0.939] 0.005] 0.995| 0.061) 0.971| 0.997[60/4 |318/2
001 |0 0 16-35 0.898( 0.012[ 0.988( 0.102| 0.951| 0.989|48/5 |214/3
111 |1-30 1-4 1-3 0.877] 0.010] 0.990| 0.123] 0.945| 0.901[42/6 |237/3
111 [1-30 14 5-35 0.864( 0.008[ 0.992( 0.135| 0.959| 0.993 |46/7 |263/2
111 [1-30 4-30 1-3 0.834[ 0.017[ 0.983| 0.167| 0.926| 0.979|23/5 |103/2
111 [1-30 4-30 5-35 0.913[ 0.015[ 0.985[ 0.087| 0.927| 0.992(27/3 |148/2
101 |1-3 0 1-8 0.939f 0.027[ 0.974| 0.061| 0.905| 0.990|24/2 |96/3
101 |34 0 1-8 0.876( 0.020( 0.971| 0.124| 0.900| 0.987|254 |96/3
101 [4-30 0 1-8 0.823[ 0.010[ 0.991[ 0.177| 0.954| 0.98§(32/7 |170/2
101 |1-3 0 8-35 0.866) 0.020] 0.981| 0.135) 0.900| 0.984[28/4 |157/3
101 |3-4 0 B-35 0.864) 0.010] 0.990| 0.137) 0.954| 0.990[29/5 [1381
101 |4-30 0 B-35 0.88G) 0.009] 0.991| 0.114) 0.963| 0.991[38/5 |165/2
011 |0 1-3 1-7 0.850] 0.008] 0.993| 0.150) 0.959| 0.993[32/6 |1841
011 |0 3-5 1-7 0.841) 0.028| 0.974| 0.139) 0.915| 0.979|127/5 |96/3
011 |0 5-30 1-7 0.841( 0.019[ 0.981( 0.159| 0.903| 0.987|234 |129/3
011 |0 1-3 7-35 0.801( 0.021[ 0.979( 0.199| 0.904| 0.981|23/6 |119/3
011 |0 3-5 7-35 0.828[ 0.010[ 0.990[ 0.172| 0.945| 0.989|36/7 |213/2
011 |0 5-30 7-35 0.797( 0.015[ 0.985[ 0.204| 0.925| 0.98§(22/6 |118/2




109

110 |1-3 1-3 0 0.881( 0.013[ 0.987( 0.119| 0.932| 0.991 |40/5  |220/3
110 (3-4 1-3 0 0.862( 0.005( 0.995( 0.138| 0.970| 0.994/39/6 |224/1
110 [4-30 1-3 0 0.850{ 0.007( 0.994{ 0.141| 0.963| 0.002|50/8 |288/2
110 1-3 3-4 0 0.861) 0.009] 0.991| 0.139) 0.954| 0.902(41/7 |216/2
110 |34 34 0 0.855[ 0.001( 0.999( 0.145| 0.993| 0.991|27/5 |132/0
110 [4-30 34 0 0.919f 0.009 0.991( 0.081| 0.955| 0.995(59/5 |313/3
110 1-3 4-6 0 0.838( 0.011{ 0.989( 0.162| 0.939| 0.000(44/9 |257/3
110 13-4 4-6 0 0.844] 0.005] 0.995] 0.136) 0.969| 0.989(29/5 [1651
110 [4-30 4-6 0 0.873[ 0.008[ 0.992( 0.127| 0.957| 0.994|49/7 |273/2
110 1-3 4-30 0 0.788( 0.010{ 0.990( 0.212| 0.948| D.985(27/7 |150/2
110 (34 4-30 0 0.750{ 0.010{ 0.990{ 0.241| 0.941| D.981|22/7 |133/1
110 [4-30 4-30 0 0.867( 0.014{ 0.985( 0.133| 0.928| 0.992(34/5 |192/3
100 |1-3 0 0 0.877( 0.008( 0.993[ 0.123| 0.962| 0.990(38/5 |201/2
100 |3-4 0 0 0.885) 0.010] 0.991| 0.115) 0.951| 0.993(36/5 |203/2
100 |4-6 0 0 0.844( 0.001[ 0.999( 0.156| 0.993| 0.994/41/8 |235/0
100 [4-30 0 0 0.862( 0.011{ 0.990( 0.138| 0.945| 0.990(25/4 |144/2
010 |0 1-3 0 0.022( 0.005( 0.995( 0.078| 0.975| D.995(30/4 |265/1
010 |0 34 0 0.933( 0.008[ 0.992( 0.067| 0.962| 0.097(42/3  |215/2
010 |0 4-6 0 0.891) 0.004] 0.996| 0.109) 0.979| 0.990(42/5 |2321
010 10 4-30 0 0.926( 0.005[ 0.994| 0.074| 0.969| 0.995|35/3 |183/1

4.4.3: Part lll: Testing
4.4.3.1: Experiment 3-1: Testing with Chromosomes2guences Against the
Unstratified Model.

For 262 TDELs and corresponding but randomly $etebIDELS (2 per TDEL)
the ability of the unstratified and unweighted middeclassify the samples was tested.

The results are summarized in Table 21.

TABLE 21: WEKA un-stratified model for Chromosome@ ZDELs and corresponding
NDELs.

= = = = ) é

S © © S ‘B < Z w

4 04 04 04 'S O T o

o o z pd o @) a prd

[ o = o o x [ =
0.21 0.02 0.981 0.79 0.844 0.62p 55/207 508/10
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Overall these results show a lower TP than thaitrgiset, a higher FN, a better
Precision and lower ROC (see Table 14).
4.4.3.2: Experiment 3-2: Testing with ChromosomeS2guences Against the Stratified
Model.

For the same set of TDEL and NDEL sequences defreen chromosome 20,
the ability of the unweighted, stratified modeltassify the samples was test. The results

are summarized in Table 22.

TABLE 22: WEKA structure-stratified model resultx fChromosome 20 TDELs and

corresponding NDELS, by group.

g Ie IS % S g g P o0

8 o nd (0 d hd 8 @) L L

O = iy £ & & £ = £
001 0.12 0.08 0.92 0.88 0.42 0.53 5/38 7917
111 0.07 0.05 0.95 0.93 0.42 0.564 5/7]L 1447
101 0.10 0.06 0.94 0.90 0.44 0.58 4/3f 7715
011 0.11 0.14 0.29 0.86 0.89 0.44 6/4) 91/15
110 0.09 0.06 0.43 0.94 0.91 0.49 3/2P 59/4
100 0.17 0.08 0.50 0.92 0.83 0.69 1/5 111
010 0.10 0.10 0.33 0.90 0.90 0.5( 1/9 18/2

In this case the classification of samples is agrsibly worse than the training
set, except for the Precision for Groups 011 arfd 11

The combined results suggest results suggestitaatitatification model is over-
trained on the chromosome | data. We note thamtheel correctly classified 55 out of
262 TDEL and 508 out of 518 NDEL sequences fronctiremosome 20 test set. Data
associated to these 55 True Positive (TP) and &8& fiegative (FN) sequences (see

Appendix Il and V) indicated:



111

1) Of the 55 fragments correctly classified, 45obegled to Groups 110, 100 and 010
(Appendix 1l1), for which our training set showdukt poorest performance. This
corresponds to fragments in which the deletion coret part of a helix but for
which there is a helix on at least one side.

2) All TDEL sequences for which the deleted coreamposed only of thymidine
were correctly classified.

4.5: Discussion

Training the model against chromosome 1 sequanagkich we encoded
sequence and structural context both explicitlylggese and in a condensed format by
structural region lead to improved training setd®in rates, indicating that the
condensed format derived model eliminated someenpithe data matrix. This was true
even when only sequence information was encodedI{gbles 14 and 17). However, the
sequence information may be too condensed, a®icahdensed version we simply
retained the fraction of AT per region based omawn limitation of the Illlumina
technology. We used only the condensed formatearfulther experiments.

Dividing the training set into groups based onghesence of a predicted helical
structural element, in any of 3 locations on aifnagt, led to improved performance on
the training data for each of the 7 groups. Thé kessilts were obtained in the training
set when a helix was present only in the centéh@fragment, coinciding with the
position of the deletion. Precision ranged fron90-3.83 across the groups and the
ROC from 0.72 — 0.89. Using only structural infotraa did not lead to the same

improvements in either metric (see Table 16) sarbfeghere is some important
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information in the sequence context as well. Segei@mformation alone (see Table 17)
did not perform as well on either metric, indicatithat it lacks important information.
When we attempted to further categorize the mbygénposing a threshold for
helix stability under sequencing conditions therestem to be a trend to better
performance in some structural groups: longer bslar adjacent long-enough helices
improve performance on the training set. Howeves ttade-off in separating helix
lengths by the need to retain sample groups oflaimsize for comparison became
impossible to manage. To carry out this part ofdtuely would require a much larger
data set. In addition, some of the fragments aogestito variant structures of similar
stability, and it is unclear how to handle thatdleof complexity in this type of model.
We did try weighting the final, fully subdivided mel to compensate for the small
sample sizes, and this improves the model perfocman the training set considerably,
across all groups (see Table 20). We were not ooedi that the final model was robust,
so we began using the chromosome 20 test databingtwith the un-stratified and the
stratified models (Tables 21 and 22). While thestratified model shows improved
precision and similar ROC to the training data,dtratified model only shows improved
precision in 4 of the groups and the ROC has agvamore in all of the groups. To our
surprise, the groups best classified in the urtiBad model (and those with improved
precision in the stratified model) are those lagkancentral helix, the opposite of what
one would predict from the performance of the maatethe training data. Some of the
groups had very few members, and the chromosonael2fions were not screened first

for statistical significance. Additional data whilé necessary to pursue the stratified
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model, ideally from additional chromosomes andviaiials. While the un-stratified
model has reasonable performance, the stratifiedeims likely over-trained.

What is the interpretation of these deletions?|@Mive began this study under the
influence of a technical error we had found in lad, in fact many of these deletions are
likely of biological origin. The original produceds the data sets demonstrated that a
small number of the deletions could be verifiethe sample. Thus we may be
attempting to identify two separate mechanismsdbatot have the same responses, both
of which are important. To differentiate technidaletions from true biological deletions
we need additional information. Lacking the genomatterial or a budget to re-sequence
a genome in multiple ways, what prospect is therebtaining such information? We
note that one of the challenges in the CAMDA 2048test is to infer the presence of
structural variants including deletions but alspycaumber variants and to determine
how they can be distinguished from systematic secjung errors, with particular
emphasis on the Korean genome. The contest orgariage provided genome
sequencing data from 38 individuals who are pathefKorean Personal Genome Project
(KPGP), among them there are genomic sequencirgfoietivo twin pairs and one
Caucasian female individual — the reason for inolubeing detection of systematic
sequencing errors. That is, variants that appeariomne Korean sample should not be
present in the sample from the Caucasian fematkyamnants that appear in one of a pair
of twins should be present in the other, else thas@ants would be characterized as
arising from sequencing or data preprocessing frror

With respect to the structural features we incluithetthe stratification scheme, it

is possible that over-simplification of the struetinas eliminated much of the signal.
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Groups using the Random Forest strategy to idetrafyscription factor binding sites use
near-crystallographic levels of resolution. Them lenown DNA structures not related to
protein binding interactions that also requiredghhevel of spatial resolution, including
expansion of some DNA repeat sequences in the hgeraame, which underlie several
human disorders (147). Most models for repeat esiparagree that expansion occurs
through the formation of structures with B and riboenformations (152-154). Having
three-dimensional (spatial) information about thetsectures was essential in allowing
researchers to understand the expansion mechaRmnstructural information used for
our classification was based on the OMP applicatidnch predicts two-dimensional
structure by modeling a thermodynamic minimum fgtable form, based on the
calculated Gibbs Free Energy. The available strattuotifs include: 1) Hairpin, 2)
Bulge, 3) Loop, and 4) none of the above (Free B8gure 28) but does not include
proximity, twist, roll and similar spatial valueBy using a 3D structural prediction tool
such as 3DNA, a given base pair can be classitieasa 16 parameters. Having this
additional structural information may be required dis to improve the stratified model.
Thus, while our simple model does have predictae®, additional data and more three-

dimensional structural information are both neebeghake significant improvements.



CHAPTER 5: CONCLUSIONS

5.1: Chapter 2
5.1.1: Hypothesis

In our first experiments we investigated whetherphesence of helical structures
adjacent to the probe-target duplex formation negiffects the stability of the
heteroduplex on the microarray surface, and thghnaffect the interpretation of
microarray results. In addition we investigated ukiety of a number of biophysical
properties and modeling methods in predicting #seiits that we did see.
5.1.2: Results

Our results show that secondary structures adjdoghe heteroduplex region in
a probe bound to a microarray surface stabilizegltiplex, leading to a higher signal
than is seen when the cognate target without smettgres bound. This would be
interpreted as an increased concentration of tigettan the mixture. Since most
microarray hybridizations add randomly sheareddiarnghose mean length is longer than
the probe, there is the potential for consideratikeinterpretation of results. Available
modeling tools do not take such structures int@aot We were unable to identify a
single thermodynamic property that correctly pregitbe observed effect.
There are two possible explanations for the obskefiect, not necessarily acting

independently, discussed below.
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5.1.3: Open Questions

1) More highly structured targets diffuse very dipwm hybridization solutions so
they remain in proximity to the probe when theyadetand thus are more likely to
re-bind in a short amount of time.

2) The folded structure is more entropically fawbvéghen bound to the probe, since
more solvent is excluded, and thus it has a marerédle binding constant than a
simple heteroduplex. It is important to remembaet the binding event occurs in
three dimensions, so the duplex may fold in complays.

5.2: Chapter 3
5.2.1: Hypothesis

Having observed that helical structures adjaceatheteroduplex affected the
behavior of the microarray platform, we next testdkther such structures would affect
the read-through fidelity of a polymerase on an Hpl&&form, in this case the lon Torrent
Personal Genome Machine (PGM).
5.2.2: Results

Our results demonstrate that there is a strongcedgm between the site and
length of a variety of base read errors and thation of secondary structures on a
sequencing template. As a hairpin structure geigdothe sequencing reaction is subject
to more mistakes, both as an increased rate ofsirrghel as mis-incorporation errors. We
controlled for a variety of known nucleotide compios sensitivities with this platform,
such as tracts of homopolymer. The effect of stmécshould be considered as one

source of sequencing errors.
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5.2.3: Open Questions

We were only able to test the templates using BBl Pwith validation on an ABI
3130 capillary gel system. Structure sensitivityynary under conditions used with
other HTS platforms, since sequencing conditiofferdiThe availability of a set of
structured test constructs to test both chemisameksalgorithms in every sequencing
platform would greatly assist in determining whaies of structures are likely to cause
significant errors, and to develop sequencing daml and chemistries that could
overcome particular problems, similar to what wesoaplished with the Sanger
chemistry and capillary sequencing platforms inghst.
5.3: Chapter 4
5.3.1: Hypothesis

The availability of inexpensive HTS platforms hed to an explosion of available
human genomes. The Thousand Genomes Project hasvbddang progressively
through a list of features, starting with singleleotide polymorphisms and copy
number variations. Structural variation, in thenfioon deletions and insertions has now
become a focus, as evidenced by the current CAMO¥8Zompetition, one of the main
guestions of which is to understand the preseneegafge number of short deletions.
These do not appear to affect the health of indiais, since none of the 38 genomes
made available suffer from clinical symptoms of \mogenetic origin. Before the
announcement of the competition we had become av¥dhe deletion rate, and had

begun to study it from the perspective of secongamycture.
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5.3.2: Results

Fragments twice the length of the sequencing raadsentered on the deletion
were collected from chromosome | of the first Kergg@nome to be made available.
These were matched to successfully sequenced fragnmewhich the deleted core was
present in a different context. We modeled thecttine of all fragments and trained a
Random Forest model to classify fragments in tlaiging set as either likely to contain a
deletion or not. We next tested the model againsta fragments from chromosome 20
of the same genome, and achieved similar ROC battsgeen the test and training sets.
Although the model does not classify fragments witih precision, we were able to
show that including the context of both structum&rmation and sequence composition
greatly improved the performance of the model.
5.3.3: Open Questions

There are three elements that should be exploredntinuing this research. The
first has to do with the resolution of our struedumodel. We used a simple secondary
structure encoding, but three-dimensional relahgrsmay be required to resolve all of
the necessary features. This would create 16 faper sequence rather than the 4 that
we used, and will greatly expand the time and cdatmnal resources needed to carry
out the modeling. Secondly, as we stratified th@ dat according to structural families,
the size of each family became quite small, fromdrads of examples to tens. We
concluded that in our most stratified models we tnaet-trained on the available
sequences, and the next step should be to cualf el genome for the deletion
fragments, with the goal of sufficiently populatial) downstream sub-groups. We would

then require data from an additional genome fottélseset, and the recently released
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CAMDA competition data makes this possible. Finalyg are not able to discriminate
the cause of the deletions in our data set: somelaarly biological while others are
likely to arise from technical sources. These memyuire separate models, but first we
need to clearly discriminate them The CAMDA dattiseludes one Caucasian genome
and two genomes from identical twins, run by th@esaam on the same instruments and
chemistry, which should allow discrimination of bdypes of deletion.

Structure is an implicit property of nucleic acids in solution, and is known to
affect both technical assays and biological activities. Data modeling and analysis methods
should always consider both immediate and neighboring structure when seeking to

interpret measurements that use hybridization as part of the platform.
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APPENDIX

Graphs A, B, C, D, E, F, and G illustrate the tiefeand sequence match
distributions, respectively, for targets 1981 9981 137, 1981 109, 1981 89, 857 50,
129 50, and 1571 50 which are representativesooipg8, group 1, group 2, group 2,
group 1, group 1, and group 1 respectively. Thecstire contributing to deletions is

shown in the relevant part of the deletion graph.
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