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ABSTRACT

AIDAN NICHOLAI ALAR. Development of Bridge Management Tools for
Predicting Bridge Replacement Projects. (Under the direction of DR. MATTHEW

J. WHELAN)

One of the responsibilities of the NCDOT is the prioritization of highway bridge

replacement projects throughout the North Carolina transportation system. The Pri-

ority Rating Index (PRI) is a multi-criteria formula that is currently used to provide

a score based on condition and functional data in the Bridge Management System

(BMS) for each of the highway bridges in North Carolina to aid in ranking the prior-

ity of potential replacement projects. The PRI comprehensively utilizes many of the

performance measures considered to be important by the NCDOT Structures Man-

agement Unit, the group responsible for maintaining North Carolinas highway bridge

network. However, anecdotal evidence from Structures Management Unit person-

nel, supported by an analysis of PRI score distributions among bridges selected and

not selected for replacement, suggests that the PRI is a poor indicator of whether a

bridge will actually be scheduled for replacement. In addition, the PRI double counts

some performance measures, uses nonlinear and case-based formulas that do not pro-

duce a transparent link between measures and priority, and neglects some important

maintenance related considerations that influence priority for replacement. There-

fore, the purpose of this study is to develop an objective decision-support tool for

prioritizing bridge replacement candidates that accounts for the multiple goals and

preferences of the Structures Management Unit. Critical criteria and performance

measures are proposed through a review of BMS improvements from other states as
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well as discussions with the Structures Management Unit. Additionally, new per-

formance measures are introduced to incorporate historical maintenance burden and

current maintenance needs. The trade-off preferences of the Structure Management

Unit for each of the performance measures are modeled with value functions through a

developed Excel VBA macro. Data driven prioritization formulas are created through

statistical regression of binary logistic and constrained linear least squares models us-

ing the statewide bridge inventory to result in utility functions that provide a priority

score for each of the replacement projects. The statistical models provide insight on

the performance measures that have been statistically linked to bridge replacement

projects as well as their relative importance. Analysis of the predictive accuracy for

binary classification of projects, distributions of prioritization scores, and odds ratios

computed from the predicted prioritization scores are used to compare the perfor-

mance of the models and arrive at a recommended best model. Risk attitudes are

incorporated with logistic regression and constrained linear least squares, resulting in

a utility function that provides a priority score for each of the replacement projects.

The results of this study seek to provide transparent, defensible ratings for bridge

replacement projects that can be used in future budget planning and can be adjusted

if the goals of the NCDOT change.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

According to the latest ASCE report card, the current state of infrastructure,

including as bridges, dams, and roads, in the U.S. is D+. North Carolina’s infras-

tructure has an overall grade of C [ASCE, 2016]. North Carolina Department of

Transportation (NCDOT) is responsible for maintaining the second largest state-

maintained road network in the United States with highway assets value of $575 bil-

lion [NCDOT, 2016]. The highway assets consist of culverts, pavement, and bridges

among other transportation structures. There are approximately 13,500 bridges in

North Carolina with an estimated asset value of $60 billion. The Bridge Maintenance

Improvement Plan (BMIP), the funding program for bridge replacement and reha-

bilitation projects has a funding need of $250 million per year [NCDOT, 2016]. The

NCDOT goal for 2030 is to reduce the number of structurally deficient (SD) bridges,

or bridges that are in relatively “poor condition,” to 10% or less.

An important responsibility of NCDOT is to ensure that the transportation net-

work of North Carolina safely and effectively meets the needs of the traveling public.

Planning for preservation, maintenance, and replacement projects of bridges falls

under the responsibilities of the Structures Management Unit (SMU) of NCDOT.

Specifically, the SMU is responsible for prioritizing bridge replacement projects for
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all of North Carolina. The tool that the SMU engineers use to assist with this process

is a scoring index called the Priority Replacement Index (PRI). The PRI takes into

account multiple National Bridge Inventory (NBI) performance measures that are

collected by NCDOT, such as inspection condition ratings, usage of statistics like the

Average Daily Traffic (ADT), and potential vulnerabilities such as scour criticality,

in order to assess the operational condition of a bridge and, ultimately, providing a

score that indicates how well a bridge would be a candidate for replacement. The

SMU bridge engineers have found that the PRI scores have not consistently provided

prioritization scores that align with the bridges that the bridge engineers choose for

replacement. An initial analysis of the PRI index has revealed, among other issues:

double-counting of performance ratings, poor spread in the distribution of scores,

and an observation that the calculation of the PRI is difficult to follow due to multi-

ple sub-calculations that are specific to each performance measure. Ideally, a bridge

replacement prioritization index should accurately reflect the preferences of the deci-

sion makers and follow a clear calculation methodology for transforming performance

measure ratings to an overall priority score, neither of which are provided by the

current prioritization index. Therefore, the objective of this thesis is investigate and

develop an improved bridge replacement prioritization index that has the following

characteristics:

• Transparent – Clear method of how a performance measure is converted into a

overall replacement prioritization score.

• Data-Driven – Utilization of the NCDOT Bridge Management System (BMS)
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databases as well as the use of maintenance records.

• Normalized – Reduction of clustering of prioritization scores of bridges to allow

bridges to be ranked effectively.

• Accurate – Results that reflect the engineers preferences in regards to bridge

replacement selections.

• Comprehensive – Contains all significant performance measures that drive the

decisions of bridge engineers for bridge selection.

One method to address the issue of developing clear and objective bridge project

prioritization indices is through the use of value and utility functions within decision

analysis. A value function a mathematical model that reflects a decision makers pref-

erences and provides a conversion of performance measure ratings into a normalized

value [Patidar et al., 2007]. The value function for each of the performance mea-

sures are then combined into a single function, called a multi-criteria utility function.

This approach has been adopted in other bridge management systems (BMS) of other

states including Indiana, California, and Virgina where multi-criteria utility functions

have been developed and implemented to determine the criticality of bridges condi-

tions [Sinha et al., 2009, Johnson, 2008, Moruza et al., 2016]. Additionally, the Na-

tional Cooperative Highway Research Program (NCHRP) has published a report dis-

cussing guidelines for developing multi-objective BMS optimization strategies, which

recommends the use of value and utility functions for quantifying decision-maker

trade-offs for changes of performance measures [Patidar et al., 2007].
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Development of performance criteria and measures for a new bridge replacement

priority index for North Carolina was completed as part of an earlier effort [Lane, 2016].

However the development of value functions for these measures as well as the weight-

ing and aggregation of these performance measures into a single prioritization formula

has not yet been addressed. Additionally, while new performance measures to incor-

porate the impact of maintenance burden and maintenance needs have been proposed,

the optimal approach for calculating the value functions for these performance mea-

sures to produce the best correlation with replacement priority has not yet been

investigated.

1.2 Anticipated Contribution of the Research Effort

The main objective of this thesis is the development of a data-driven statistical

tool to assist NCDOT bridge engineers in identifying and ranking the priority of

bridge replacement projects throughout North Carolina. This thesis explores the

current prioritization index and identifies shortcomings to be addressed in the revised

prioritization method. Following guidance obtained through literature review, an

improved model for prioritization of replacement projects is developed using utility

theory and statistical regressions. Specifically, value functions are developed to model

the preference structure of NCDOT engineers for each performance measure using

readily available data collected in the NCDOT Bridge Management System (BMS).

This data, which is derived from multiple sources, is cleaned, organized, and compiled

into a single common database via an Excel VBA macro. Individual maintenance

actions are defined and classified based on the effect of the action on prolonging the
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life of a bridge. Different functional forms of value functions, including linear models

and empirical cumulative distribution (ECDF) models, are introduced and evaluated

through the statistical analysis. Multiple-criterion utility functions are developed

using both constrained linear least squares and binary logistic regression models. The

models are then compared relative to each other and the existing PRI scores based

on their predictive accuracy, distribution of scores, and classification odds ratios.

1.3 Organization of Thesis

The outline of this thesis is as follows:

• Chapter 2 presents a discussion of the current prioritization index used by the

NCDOT, Priority Replacement Index (PRI), as well as identifies shortcomings

of PRI in terms of ranking bridge replacement projects. Also, a literature re-

view of the different prioritization techniques developed for bridge management

systems (BMS) across of different state DOTs is presented. Furthermore, stud-

ies involving probabilistic methods for determining priority for replacement of

critical sections of municipal sewer pipe networks based on historical data is

reviewed.

• Chapter 3 introduces performance measures and criteria that were developed

by concurrent research [Lane, 2016], as well as detailing the development of

new maintenance burden and maintenance needs performance measures to in-

corporate historical maintenance actions and quantifying the severity of bridge

conditions the element level, respectively. A description of the Excel macro

that automates the process of database development and creation of the value
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functions for the performance measures is provided along with the models for

the actual value functions used in this studies.

• Chapter 4 discusses the development of a matrix of statistical models for pre-

dicting bridge replacements to evaluate the best functional forms of value func-

tions, maintenance cost performance measures, and the statistical model used

to create the utility function. Background on binary logistic regression and

constrained linear least squares (CLLS) regression methods is provided. The

developed statistical models are presented alongside discussion of the relative

importance of individual performance measures found to be statistically signif-

icant in each model.

• Chapter 5 provides a discussion and analysis of the matrix of statistical mod-

els from the previous chapter, starting with optimal threshold development to

measure model effectiveness based on predictive accuracy and priority score

distribution.

• Chapter 6 summarizes conclusions of the research effort and provides recom-

mendations for future work in this area.



CHAPTER 2: LITERATURE REVIEW

2.1 Current Prioritization Index Utilized by NCDOT

The current system used by NCDOT for prioritization of bridge replacement projects

is called the Priority Replacement Index (PRI). The PRI is a ranking system devel-

oped by the NCDOT and uses a combination of two previously used prioritization

formulas, the Federal Highway Administration (FHWA) Sufficiency Rating and De-

ficiency Points, in conjunction with additional bridge infrastructure measures. The

performance measures that are used for calculating the PRI are nationally utilized

metrics that are indexed in the National Bridge Inventory (NBI) [Weseman, 1995].

The NCDOT maintains a database of the NBI measures as well as other bridge records

offering data from recent inspections and maintenance in a commercial BMS called

AgileAssets. This system integrates multiple databases maintained for North Carolina

transportation structures, including bridges, culverts, and traffic signal structures, to

provide a means of projecting future maintenance, repair, and replacement needs to

optimize decision making for infrastructure investments. The performance measures

for the current instance in time that are referenced by the PRI are stored in the

Network Master database within the AgileAssets BMS.

The current PRI is computed on a 120 point scale, where the higher the amount

of points a bridge is assigned on the scale, the more likely that the given bridge
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is a good candidate for replacement. Ideally, the PRI ranking is supposed to serve

as an objective and actionable method for clearly distinguishing bridges requiring

replacement rather than repair or rehabilitation and sorting the projects in order of

priority. While there are no fixed thresholds used to identify replacement candidates,

a general guideline has been suggested to separate the PRI scale into three ranges

for replacement. Under this guideline, bridges with a PRI score from zero up to 30

are considered “poor candidates” for replacements, bridges with a score of 30 up to

50 are considered “good” candidates, and bridges with a score of 50 or higher are

considered “very good” candidates for replacement. The PRI equation is

PRI = .45(Deficiency Points) + .45(100− Sufficiency Rating)

+ 1.25[28−Deck Condition− Superstructure Condition

− 2(Substructure Condition)] + 10(Temporary Shoring) (2.1)

Deficiency Points is a collection of performance measures developed through prior

NCDOT-sponsored research that represent the level of inadequacy of a bridge in terms

of expected functionality and is computed on a 100 point scale [Johnston and Zia, 1984].

Deficiency Points is an index designed to quantify the likelihood and urgency for

a bridge replacement with higher point totals being associated with greater prior-

ity. There are four main performance criteria that are addressed in the Deficiency

Points calculation: single vehicle load capacity, vertical roadway under/over clear-

ances, estimated remaining life, and clear deck width. The performance criteria in
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the Deficiency Points calculation focus heavily on vehicle to bridge posting weight

ratios, functionality appraisal ratings, geometry, Average Daily Traffic (ADT), and

estimated remaining life.

The Sufficiency Rating is a federal rating that was previously used to determine

eligibility for federal funding to repair or replace each bridge [Weseman, 1995]. It is

an overall rating of structural adequacy, functionality, and essentiality of use and is

computed on a 100 point scale. Since this rating evaluates sufficiency rather than

deficiency, bridges with lower sufficiency ratings are often considered to be more suit-

able candidates for replacement. The sufficiency rating is based on four performance

criteria: structural adequacy and safety, serviceability and functional obsolescence,

essentiality for public use, and special reductions. The performance criteria are calcu-

lated through a number of both linear and nonlinear equations that utilize 19 different

performance measures sourced from the NBI data. Further information on the suffi-

ciency rating can be found in the NBI Recording and Coding Guide [Weseman, 1995].

The remaining components of the PRI are general condition ratings (deck, su-

perstructure, and substructure) and an additional binary assignment of points that

are incorporated if the structure has been provided with temporary shoring. The

condition ratings are overall ratings of the three principal components of the bridge

assigned by a bridge inspector using a 0 to 9 scale. Along with the additional points

assigned to bridges with temporary shoring, the additional points provided to the

PRI by these condition ratings are designed to provide greater priority for replace-

ment to structures in an advanced state of deterioration with potentially significant

reductions in load carrying capacity.
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NCDOT bridge engineers believe that the PRI does a poor job of indicating which

bridges should be replaced based on anecdotal evidence obtained through current and

prior practice. Early in this study, an analysis was performed to investigate if the

PRI is in fact a poor indicator for bridge replacement projects by evaluating the PRI

scores of bridges that have been selected for replacement relative to the remaining

bridges in the state inventory that are not scheduled to be replaced. This was based

on bridge data sourced from the 2016 Network Master database along with a list

of all bridges either currently being replaced or scheduled for replacement that was

provided by the NCDOT. This analysis consisted of records for 13,826 bridges of which

1,249 or 9.03% were currently scheduled for replacement. The distributions of PRI

scores among bridges selected for replacement and those not selected for replacement

were used to evaluate the performance of the PRI as a means of classifying bridge

replacement projects and to postulate reasons for shortcomings in the performance

of the index.

The histograms of PRI scores for bridges that are selected for replacement and

those not currently selected for replacement are shown in Figure 2.1 and Figure 2.2,

respectively. On average, bridges selected for replacement do tend to have higher PRI

scores than those not selected for replacement, however a closer examination of the

data reveals issues within the index. First, the histograms reveal that bridges selected

for replacement exhibit a bimodal distribution of scores that has mean and median

values in the lower half of the index range and a spread that encompasses a large

portion of the index range. Ideally, a prioritization index should clearly distinguish

replacement projects from all other bridges with a distribution that is skewed toward
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the higher end of the index range. To illustrate, the dashed red lines in Figures 2.2

and 2.1 delineate the ideal distribution shapes.

Figure 2.1: Histogram of PRI Scores for Bridges Selected for Replacement

Figure 2.2: Histogram of PRI Scores for Bridges Not Selected for Replacement

An analysis of the PRI score at the extents of the distributions reveals that only two

of the bridges within the ten highest PRI scores are currently selected for replacement,



12

as shown in Figure 2.3. This analysis also reveals that the PRI does not utilize the

full 120 point range when implemented in practice and that the majority of bridges

are clustered at PRI scores below 30. While this would be acceptable if this skew was

simply the result of proper classification of bridges not requiring replacement (which

is the majority of bridges in the state) as low PRI structures, a comparative analysis

of the number of bridges within the recommended ranges for qualitative classification

of projects (Table 2.1) reveals classification issues. As evidenced by this table, there

are more bridges that are not currently selected for replacement than those selected

for replacement in both of the PRI ranges associated with “Very Good” and “Good”

candidates. Collectively, this analysis supports the conclusion developed by NCDOT

engineers that the PRI is an imperfect index for classification and prioritization of

bridge replacement projects with numerous shortcomings.

Figure 2.3: Classification of Bridges with the Ten Highest PRI Values Currently in
the State Inventory
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Table 2.1: Comparison of the Number of Currently Selected and Not Selected
Bridge Replacement Projects by PRI Range

Replacement PRI Selected Not
Candidacy Range Selected

Very Good PRI≥ 50 537 588
Good 30≤ PRI < 50 409 1023
Poor PRI < 30 303 10966

2.1.1 Reasons for the Shortcomings in the PRI

One suspected reason for the apparent shortcomings in the PRI is that it was

developed as an ad-hoc index collecting several prior indices that were not originally

designed to be used together. As a result, the PRI suffers from significant double-

counting of performance measures and does not present a clearly transparent view of

how performance measures are individually weighted in computing the priority score.

A count of the number of uses of each of the performance measures and the maximum

potential contribution to the PRI by each measure was performed to illustrate these

issues in the current index. Out of the 21 performance measures that are used for

calculating the current PRI, seven suffer from either double, triple, or quadruple

counting, as shown in Table 2.2.

An analysis of the maximum potential number of points that each performance

measure can contribute to the PRI is presented in Figure 2.4 which is adapted from

research from Lane (2016). Since several equations in the PRI are either conditional

or nonlinear, the actual contribution of each measure to the index is dependent on

the individual bridge characteristics (which may be viewed as another shortcoming of
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Table 2.2: Double Counted NBI Performance Measures in the PRI

NBI Item Performance Measure Count

29 ADT Over 4
19 Detour Length 3
51 Clear Deck Width 2
53 Vertical Clearance Over 2
58 Deck Condition 2
60 Substructure Rating 2
59 Superstructure Rating 2

the index). The analysis reveals that the ADT carried by the bridge has the largest

potential impact on the PRI score by affecting as many as 72.62 points, while the

Defense Highway Designation has the smallest potential effect with only a maximum

effect on 1.76 points. Overall, this analysis indicates that the PRI score is dominated

by the ADT and general condition ratings, while a large number of the 21 performance

measures have relatively little impact on the PRI score.

In addition to double counting of performance measures, another potential rea-

son for the shortcomings of the PRI is that it incorporates general condition ratings

rather than element-level inspection data. General condition ratings aggregate the

inspector ratings to form a single condition rating for each primary component of

the bridge, but do not offer the same granularity of information on the location and

extent of structural deterioration that element-level ratings do. Inspection and rat-

ing of bridges at the element-level has been mandated by the FHWA as part of the

MAP-21 legislation [MAP-21, 2012]. A report on the improvements to bridge inspec-

tions nationally showed that the NBI served as the main reporting system but did

not include condition ratings that are granular enough for maintenance prioritization
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Figure 2.4: Maximum Point Effect of Performance Measures in the PRI

[Sobanjo and Thompson, 2016]. The PRI only has three condition ratings that ad-

dress the overall state of large parts of a bridge and do not give inspectors the ability to

record the localized deterioration across the elements of the structure and substructure

of a bridge. Initially, the AASHTO Commonly Recognized Bridge Elements (CoRe)

guidance was introduced as a system for element-level condition rating. In 2013, the

AASHTO Manual for Bridge Element Inspection (MBEI) was released to provide a
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national standard for element inspection and recording [Farrar and Newton, 2014].

Since 2014, NCDOT bridge inspectors have recorded element-level health ratings

for each bridge to stay compliant with the FHWA inspection and recording require-

ments. Furthermore, using the element-level health ratings, a list of inspector recom-

mended maintenance needs is developed for each structure. These tasks range from

insignificant actions, such as removing deck debris and maintaining handrails, to ma-

jor rehabilitation, such as replacing timber piles and repairing modular bridge joints.

Ideally, a bridge with low maintenance needs should be considered a candidate for

repair or rehabilitation instead of replacement. NCDOT has recently introduced the

storage of new element-level condition rating data in their BMS as well as integrated

the database of Inspector Recommended Maintenance Needs required to correct low

element condition ratings for each structure. In this database, the element-level con-

dition ratings for each structure are associated with specific maintenance actions for

repair of each element and aggregated into total counts. Furthermore, based on the

condition rating of the elements, the corrective actions and counts are designated as

either priority maintenance needs or recommended maintenance needs. Collectively

this information allows for more detailed accounting of the type and number of ele-

ments requiring corrective action than the general condition ratings do and, further,

provides a means for estimating the total cost of repairs.

A third shortcoming of the current PRI is that it does not consider the effects of

maintenance history on the decision to prioritize replacement of a structure. Main-

tenance history is defined in this study as the maintenance actions that have been

completed on each bridge and their associated costs. Maintenance history is likely to
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influence prioritization of bridge replacements in two ways. First, if the condition and

rate of deterioration of a bridge has caused NCDOT to repeatedly perform mainte-

nance year after year on the structure to maintain an acceptable level of service, then

it is more likely to be a candidate for replacement. Such bridges present a mainte-

nance burden that requires above average use of state resources and the cost-benefit

ratio for such burdensome maintenance is unlikely to be a better economic decision

than replacement. In contrast, bridges that have recently received major investments

in either rehabilitation or preservation are less likely to be priority candidates for

replacement, as returns on these investments in terms of increased service life are ex-

pected. For a period of approximately ten years, NCDOT engineers have maintained

a digital record of the number of maintenance actions performed on each bridge as

well as the cost of each action. There are 12,299 bridges in North Carolina with

recorded maintenance history that occurred within the past ten years. The average

number of actions per bridge is 4.78 actions over ten years with a standard deviation

of 4.51 actions. Overall, there are 58,832 recorded actions that were performed in the

past ten years at an average of 5,454 actions per year. However, this maintenance

history is neither explicitly incorporated in the PRI or implicitly captured by any of

the performance measures currently incorporated in the index.

The goal of a bridge prioritization index is to determine a preference order of

candidate bridge replacement projects to facilitate data-driven project selection. The

preference order ranks bridge replacement projects that have a higher priority than

other project selections with a specific point value. This value should reflect both the

current condition of the bridge as well as other criteria and considerations that the
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engineers and decision-makers use when actually selecting and prioritizing structures

for replacement. When there are many criteria that have diverse or conflicting goals,

one of the important factors is determining the trade-off in value between one selection

candidate relative to another. In the following section, a literature review is presented

to summarize recent studies that outline methods of ranking structures based on

performance measures.

2.2 NCHRP 590 Overview

The National Cooperation for Highway Research Program (NCHRP) Report 590

set forth guidelines for state DOT bridge managers to incorporate multiple perfor-

mance criteria for decision making related to bridge improvement projects . In ad-

dition to the current practice of choosing improvements with a focus on long term

economic budgeting, the guidelines provide methods to include the effects of other

criteria that are valuable for decision making. For each of the criteria, performance

measures were identified to allow for a quantitative comparison of alternative bridge

improvement projects. The criteria and performance measures were quantified and

combined using value and utility theory, allowing preferences and risk attitudes of

the decision maker to be objectively integrated when ranking improvement projects

[Patidar et al., 2007].

Combining different performance measures presents some challenges, since the lev-

els of each measure do not have a common scale. For example, NBI infrastructure

condition ratings have an integer scale from 0 to 9, while the Health Index is on a 0

to 100 scale. Furthermore, the relative contributions, or weighting, of the individual
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performance measures to the combined index needs to reflect both preference and

risk. The NCHRP 590 Report used utility theory in order to convert all performance

measures to a common scale in a way that can be clearly understood and changed in

the future as the needs of the bridge agency change. Utility theory provides a method

of capturing and representing the preferences of decision makers in terms of trade-offs

and how those preferences are affected by risk attitudes [Patidar et al., 2007]. The

effects of bridge improvement project candidates on the criteria are calculated with a

utility function, which is a mathematical representation of the preference structure.

The process that was used to develop utility functions in the NCHRP 590 Report

consisted of three main steps: weighting, scaling, and amalgamation. The weighting

step consisted of developing relative weights for the criteria and performance mea-

sures by using the results of a practitioner survey. The scaling step involved the

development of single-criterion utility functions that represent the practitioner pref-

erence structure for individual performance measures. The final step, amalgamation,

is the combination of the single-criterion utility functions into a single utility function

that provides a single prioritization score for a bridge improvement project.

The five criteria and 12 performance measures that are considered in the NCHRP

590 illustrative decision model are summarized in Table 2.3. Each of the criteria

are associated with a set of performance measures to provide a way of quantifying

how each bridge project candidate contributes to the criteria. For example, there

are three performance measures that are associated with the Preservation of Bridge

Condition criterion, which are NBI Ratings, Health Index, and Sufficiency Rating.

Each of the performance measures have different levels of importance to the decision
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maker and are assigned corresponding values, called relative weights, to quantify the

importance preference of the decision maker. The Health Index with a value of 0.507

will have a larger impact for the Preservation of Bridge Condition criteria than either

the sufficiency rating (0.222) or NBI ratings (0.271). Likewise, each of the individual

criterion are assigned relative weight values to reflect their contribution to the overall

index. For example, the Preservation of Bridge Condition criterion with a relative

weight of 0.360 will impact the overall value of a bridge improvement project more

significantly than User Cost Minimization with a weight of 0.110. These relative

weights were determined using practitioner surveys.

Table 2.3: Criteria, Performance Measures, and Relative Weights Developed for
the NCHRP Report 590 BMS Framework.

Criteria Performance Measures
Preservation of Bridge Condition NBI Ratings (0.271)
(0.360) Health Index (0.507)

Sufficiency Rating (0.222)
Traffic Safety Enhancement Geometric Rating (0.570)
(0.205) Inventory Rating (0.430)
Protection from Extreme Events Scour Vulnerability Rating (0.385)
(0.150) Fatigue/Fracture Criticality Rating (0.265)

Earthquake Vulnerability Rating (0.205)
Other Disaster Vulnerability Rating (0.145)

Agency Cost Minimization Initial Cost (N/A)
(0.175) Life-Cycle Agency Cost (N/A)
User Cost Minimization Life-Cycle User Cost (1)
(0.110)

The development of single-criterion utility functions in the scaling step first involves

the creation of single-criterion value functions. A single-criterion value function pro-

vides a real number scalar representation of preference, known as value, of a decision

maker for all levels of the criterion [Patidar et al., 2007]. A single-criterion value
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function was developed for each performance measure, with the exception of the cost

related measures, such as life-cycle agency cost. For initial costs, life-cycle agency

cost, and life-cycle user costs, a net present value analysis was performed. An exam-

ple of a value function is shown in Figure 2.5, where the value to the bridge manager

is shown for any level of the deck condition rating performance measure.

Figure 2.5: Example of a Single-Criteria Value Function, adapted from Patidar,
2007.

A single-criterion utility function takes the value function and adjusts the form

based on the risk preferences of the decision maker. In utility theory, when the stakes

are increased, the value of an alternative changes accordingly [Skinner, 2009]. For a

risk averse or conservative decision maker, the value of a very risky alternative will be

reduced. Utility theory allows an estimation of the value affected by risk, or utility,

using a method called certain equivalence. Certain equivalence is a measure of value

that a decision maker would place on the certainty of a potential outcome. The value

difference between the expected value and the certain equivalence is known as the
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risk premium and is shown in Figure 2.6.

Figure 2.6: Relationship Between Certain Equivalent and Expected Value, adapted
from Skinner, 2009.

In the NCHRP 590 Report, three types of risk attitudes were assessed for each

of the performance measures: risk seeking, risk neutral, and risk averse. These risk

attitudes can be modeled, respectively, by

u(z) ∼ −e−cv(z), c > 0 (2.2)

u(z) ∼ v(z) (2.3)

u(z) ∼ ecv(z), c > 0 (2.4)

where u(z) is a single-criterion utility function, v(z) is a single-criterion value function,

z represents the level of a given performance measure, and c is a constant used to

model the effect of risk on the utility. The effects of the different types of risk attitudes
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on the value of the decision are depicted in Figure 2.7. In the NCHRP 590 study,

the type of risk for each performance measure was determined using the average of

certainty equivalents from the gamble method portion of the practitioner surveys.

Similar to the individual value functions, the single-criterion utility function is scaled

from a range of lowest utility (0) to highest utility (100).

Figure 2.7: Effects of Risk on Value Based on Risk Attitudes, adapted from Skinner,
2009.

As an example, the single-criterion utility function and corresponding single-criterion

value function for deck condition rating are shown in Figure 2.8. This performance

measure was found to have an average certainty equivalent that correlated with the

risk averse form, which is evident in the figure as all utility values are lower than the

expected values. In the NCHRP 590 Report, the risk averse form of single-criterion

utility functions was simplified as a linear function. The remainder of single-criterion
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utility functions were found to be risk neutral and thus modeled the same as the

single-criterion value function.

Figure 2.8: Example of a Single-Criterion Value and Utility Function, adapted from
Patidar, 2007.

The final step, amalgamation involves the combination of the single criterion utility

functions into a single, multi-criteria utility function. Scaling constants, which were

derived from the practitioner survey, were used to determine the functional form

used to create the utility function. Most commonly, multi-criteria utility functions

are developed using either a multiplicative form

ku(z1, z2, ....., zp) + 1 =

p∏
i=1

[kkiu(zi) + 1] (2.5)

or an additive form of

u(z1, z2, ......, zp) =
i=1∑
p

k1ui(zi) (2.6)

where k, ki are relative weighting scaling constants and ui(zi) is a single criterion

utility function. NCHRP 590 used the multiplicative utility form to develop their
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multi-criteria utility functions. Since the multi-criteria utility function aggregates

all of the performance measures and criteria into a single score, it can represent the

importance of a bridge improvement action based on the performance measures. With

such an approach, projects can be directly compared under the assumption that if

u(z′) > u(z′′) (2.7)

the bridge improvement candidate with the set of performance measures z′ is prefer-

able to another bridge improvement candidate with the set of performance measures

z′′.

2.2.1 Indiana

The Indiana Bridge Management System (IBMS) prioritizes bridge improvement

actions using disutility change [Sinha et al., 2009]. Disutility represents the level of

undesirability of the condition of a bridge based on the preferences of the bridge

manager. A disutility function is the inverse of a utility function, where criteria

with poorer levels are given a higher value. This results in bridges with the most

need for improvement having the highest value. An important distinction in the

approach used in this study relative to the NCHRP 590 report is that the disutility

change used to develop the ranking value, is the difference in disutility value of the

bridge with improvement and without improvement. The disutility change is based on

“delta values” calculated in the Decision Tree (DTREE) module of the IBMS. Delta

values are the projected increase of condition ratings and other performance measures

expected to be caused by an improvement action. The performance measures, criteria
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and relative weights for this study were based on previous survey results obtained from

an expert panel of bridge managers [Saito and Sinha, 1989] and are summarized in

Table 2.4.

Table 2.4: Criteria, Performance Measures, and Relative Weights Developed for
the IBMS Ranking Module (Adapted from Sinha et al. 2009.)

Criteria Performance Measures
Economic Efficiency (10 Points) Agency Cost (50%)

User Cost (50%)
Bridge Condition Preservation (50 Points) Structure Condition (40%)

Remaining Service Life (40%)
Wearing Surface (20%)

Bridge Safety Disutility (30 Points) Clear Deck Width (30%)
Vertical Clearance Over (10%)
Horizontal Clearance Under (10%)
Vertical Clearance Under (10%)
Inventory Rating (40%)

Community Impact Disutility (10 Points) Detour Length (100%)

The intent of the prioritization process was to improve economic efficiency, preserve

bridge condition states, improve bridge traffic safety, and reduce community impact.

The measure of economic efficiency was based on bridge life-cycle agency and user

costs, which are calculated in the Life Cycle Cost (LCCOST) module of the IBMS.

Preservation of bridge condition refers to maintaining the structural integrity and

physical condition of a bridge and was measured by the minimum structure condition

rating, remaining service life, and wearing surface. Bridge traffic safety describes

the spatial adequacy and geometric design of a bridge and was based on the ratio of

current levels to desirable levels for clear deck width, vertical clearance over, vertical

clearance under, and horizontal clearance. The desirability levels for each measure

are calculated in the DTREE module. The community impact criterion reflects the
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safety risk to commuters that use the bridge as well as the increase in delivery costs for

nearby businesses and is measured by detour length. Specifically, the detour disutility

function for the With Improvement scenario is calculated with

UDLB = 100− 100 ∗ (g1 −DL)n

g1
1

(2.8)

where UDLB is the disutility value without improvement; g1 is the minimum detour

length required for a disutility of 100; DL is the detour length, and n is a constant.

The detour utility for the Without Improvement scenario is

UDLA =
(dl − dy) ∗ UDLB

dl
(2.9)

where UDLA is disutility value with improvement, dl is the design life of the bridge,

and dy is the number of years until replacement.

The disutility functions developed for each of the performance measures are repro-

duced in Figure 2.9. There are three main forms that the disutility functions take:

linear, concave, and convex. These variations of the functional shape allow the model

to reflect the risk attitudes of the panel of bridge experts (risk seeking, risk neutral,

or risk averse). These standard shapes of disutility functions are shown in Figure

2.10. The inflection point at value 2 is the break point where disutility of a bridge is

reduced and the second inflection point at 9 is the break point where the bridge is in

perfect condition.

The disutility for an individual criterion, Uz, was calculated from the disutility
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Figure 2.9: IBMS Performance Measure Disutility Functions, adapted from Sinha
et al., 2009.

functions of associated performance measures with the following equation

Uz =
i=1∑
p

WiUi (2.10)
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Figure 2.10: IBMS Disutility Standard Shapes, adapted from Sinha et al., 2009

where Ui is the disutility for an individual performance measure i and p is the number

of performance measures associated with the criterion. Additionally, the composite

disutility function U has the same additive functional form

U =
z=1∑
p∗

WzUz (2.11)

where p∗ is the number of performance criteria.

2.2.2 California

The California Department of Transportation (Caltrans) combines benefit-cost ra-

tios and utility functions to prioritize preservation projects among the 13,000 bridges

in the California transportation system [Johnson, 2008]. One of the main benefits of

using utility functions noted by the author is that it allows a clear way of combining

criteria with different scales since the utility for each criteria are evaluated on a com-

mon scale from 0 to 1. Additionally, utility functions allow risk-associated criteria
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that were not previously included in previous project prioritization, such as scour

potential and seismic risk, to be included. In this study, the utility benefit-cost ratio

was calculated as

Project Utility B/C Ratio = Ut(TEV )/Project Cost (2.12)

where Ut is the net project utility and TEV is the total element value of a bridge.

The TEV is a quantitative method to describe the value of the bridge structure and

allows the utility to be scaled by the size a bridge [Shepard and Johnson, 2001].

The utility functions developed in this study were based on five criteria: rehabili-

tation and replacement needs, scour needs, bridge rail upgrade needs, seismic retrofit

needs, and mobility needs. The associated measures and relative weights for these

measures that were developed in the study are shown in Table 2.5. In contrast to

the prior studies, the performance measures do not have explicit relative weights.

Instead, the utility functions were developed only for the criteria and not for each

individual performance measure.

Table 2.5: Goals and Performance Measures Developed for the NCHRP Report 590
BMS Framework

Utility Component Key Parameters
Rehabilitation and Replacement BHI, ADT, Repair Urgency (U),
Needs (25 Points) and DL
Scour (20 Points) NBI SC, ADT, and DL
Bridge Rail Upgrade Needs Caltrans seismic priority (Sv),
(10 Points) ADT, and DL
Seismic Retrofit Needs Caltrans rail upgrade score (RS)
(25 Points)
Mobility Needs (20 Points) Pontis improvement benefit (P)
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The utility function for each of the criterion were developed with the logit form

Xi =
1

1 + e−Ci
(2.13)

where Xi is the utility function for each criteria and Ci is a function of the significant

decision parameters for each component. The C functions were calculated in a pre-

vious iteration of the Caltrans BMS to calculate the value of each criteria. The net

utility, or multi-criteria utility function, for a project is calculated using the additive

functional form

Ut =
∑

αiβiXi (2.14)

where Ut is the utility, Xi is the ith single-criterion utility function, αi is a binary

variable indicating whether representing the single-criterion utility function applied

to a given structure, and βi is the relative weight of a given single-criterion utility

function.

2.2.3 Virginia

The Virginia DOT (VDOT) ranks all state-maintained transportation structures

by transportation network importance using a cumulative score called the Importance

Factor (IF) score in order to assist in the decision process of determining structure

should have priority for maintenance, replacement, and rehabilitation expenditures

[Moruza et al., 2016]. The IF score consists of nine explanatory variables, five of

which are modeled using index value functions and the remaining four are binary

variables that indicate if a structure is part of a defined highway system. These

explanatory variables in the IF score are shown in Figure 2.6. The relative weights
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for each of the explanatory variables were determined using input from both the

expert panel opinions as well as regression analysis. A process called backcalculated

nonstandardized normalized coefficients (BNN) was applied to create the final relative

weights in a manner that utilized both the results from the practitioner surveys and

the statistical regression. An additive form of the multi-criteria utility function was

used to combine the explanatory variable values into a single value.

Table 2.6: VDOT IF Score Explanatory Variables and Performance Measures

Variable Name Associated Performance Measures
A ADT/LN ADT, Number of Lanes
B ADTT/LN ADTT, Number of Lanes
C AGR(ADT) FADT, ADT, YFADT, YADT
D Bypass Impact Detour Length, ADT
E Access Impact Bypass Impact, POI, PROX
F Base Highway BHN
G Strategic Highways STRAHNET
H Surface Transportation STAA

Action Agreement
I Virginia Highway System VSYS

Unlike most bridge prioritization formulas, the IF score does not have explanatory

variables that use physical condition inventory items, such as geometric ratings or

structural condition scores (substructure, superstructure, and deck). Instead, the IF

score uses inventory items that measure the current and future use of a structure,

bypass impact, access imact, and association with designated highway networks. The

current use of a structure is measured by ADT per lane (ADT/LN) and ADTT

per lane (ADTT/LN) of the structure. The inclusion of lane data allows a mea-

sure of usage relative to the capacity of a structure. The Annualized Growth Rate,

AGR(ADT ), is a measure of the estimated increase of usage for a structure each year
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and is calculated with the equation.

AGR(ADT ) =
[FADT
ADT

]1/(Y FADT−Y ADT+1)

− 1 (2.15)

where :

FADT = Future Average Daily Traffic;

Y ADT = Year of Average Daily Traffic;

Y FADT = Year of Future Average Daily Traffic;

This formula was used instead of FADT since the base year and future year to calculate

FADT for each structure is not consistent among transportation structures. Bypass

Impact is the combined effect of ADT and detour length if a structure was closed. The

Access Impact variable represents the importance of a transportation structure based

on the number of critical facilities, also referred to as Points of Interest (POI), in

close proximity to the transportation structure. Schools, police and fire departments,

and hospitals are examples of POIs. Information about critical facility locations were

derived from the VDOT Geographic Information System (GIS) department. POIs

within a three mile radius of a transportation structure were considered for the Access

Impact calculation, where POIs closer to a transportation structure were assigned a

higher value. The remainder of explanatory variables are binary indicators that show

if a structure is a component of a designated highway network as defined by VDOT.

The preference structure for each of the explanatory variables, except for the high-
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way network indicators, are modeled with value functions. In the context of the IF

score, the value functions are referred to as index value functions. Each index value

function uses raw data from the VDOT bridge inventory, however there were a variety

of methods that were implemented to develop the final forms of the index value func-

tions. The index value functions representing the preference structure of ADT/LN

and ADTT/LN were developed using empirical cumulative value functions (ECDF)

and simplified using a step function. The index value function for AGR(ADT ) was

created with an ECDF step function of the values developed with Equation 2.15. The

Bypass Impact index value function was developed as the sum of the ECDFs for ADT

and Bypass Detour Length (BYP). The Access Impact index is calculated using the

BYP index value and proximity index value function with the equation

Ek = v(BY P )× Σj[nj × v(PROX)] (2.16)

where : Ek = Index Value for Access Impact;

v(BY P ) = Index Value of Bypass Impact;

n = Count of key locations;

j = Distance interval a key location is in;

v(PROX) = Distance from transportation structure to key location

To provide an example of the index value functions, the ADT/LN index value

function is shown in Figure 2.11. An index value of 1 was assigned to structures with
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an ADT/LN of 8500 and higher since these structures represented about 10% of the

overall structure population. A similar method was applied for structures with an

ADT/LN of 23 or lower. The index value function is not the actual ECDF, but a

trendline that approximates the ECDF.

Figure 2.11: VDOT Index Value Function for ADT/LN

The relative weights for the explanatory variables were developed using BNN co-

efficients that reflect the intended and actual impacts of each variable. The intended

relative weights were developed by the VDOT expert panel, while the actual relative

weights were developed using linear regression analysis. Development of BNN coeffi-

cients, which is a method of adjusting actual impacts of a model to better reflect the

desired impact, was applied to better align the performance of the model with the

intentions of the expert panel using the equation

β∗i = βi × (SXi
÷ SY ) (2.17)
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where :

β∗i is the standardized coefficient for standardized index values of variable i

βi is the nonstandardized coefficient for nonstandardized index

values of variable i

Xi is the set of nonstandardized index values for variable i

Y is the IF score

S is the standard deviation statistic

The relative weights developed by the expert panel, linear regression, and BNN coef-

ficients are shown in Table 2.7.

Table 2.7: Relative Weights Developed for VDOT IF Score Based on Different
Methods

Variable Name Panel Regression BNN
A ADT/LN 0.20 0.345 0.147
B ADTT/LN 0.10 0.161 0.079
C AGR(ADT) 0.15 0.199 0.143
D Bypass Impact 0.25 0.281 0.282
E Access Impact 0.10 0.054 0.233
F Base Highway 0.05 0.129 0.024
G Strategic Highways 0.05 0.099 0.032
H Surface Transportation 0.05 0.108 0.029

Authorization Act Network
I Virginia Highway System 0.05 0.102 0.031

The IF score of a transportation structure was developed using the additive multi-

criteria utility function

IF Score =
∑

βiXi (2.18)
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where Xi is the ith index value and βi is the BNN relative weight of a given index

value. The calculation of the IF score for each of the VDOT structures was automated

by an Excel VBA macro.

2.3 Other Examples of Structural Project Prioritization

Multi-criteria utility theory is implemented in other asset management prioritiza-

tion practices, with significant prior work related to municipal sewer systems. The

rising costs of emergency sewer pipe section repairs associated with the previous

practice of random pipe section structural inspections motivated studies aimed at

developing probabilistic models to predict if a pipe section is in a deficient state

[Ariaratnam et al., 2001, Davies et al., 2001, Salman and Salem, 2012]. This way, in-

spection planning can be focused on potentially critical locations and in turn reduce

the number of emergency repairs.

One of the promising methods identified in studies for developing an accurate prob-

abilistic model is binary logistic regression, which allows the use of multiple predictor

variables to estimate the probability of an event occurring. Pipe section data found

in typical sewer system historical database records, including age, material, diam-

eter, and waste type, were typically used as predictor variables. The event, or re-

sponse variable, was typically either identified as the pipe section structural condition

[Ariaratnam et al., 2001] or severity of potential failure modes [Davies et al., 2001].

The response variables had to be converted to binary response variables in order to

meet the requirements of the binary logistic regression method. To accomplish this,

one study simplified a pipe section structural deterioration integer scale of 1-5 to sec-
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tions with a level of 5 would be assigned a binary rating of 1 and sections with any

other condition level would be assigned a binary rating of 0 [Ariaratnam et al., 2001].

A similar simplification was applied in the study that used failure mode ratings

[Davies et al., 2001].

The logit function used in the logistic regression can be utilized to calculate the

estimated probability of an event occurring, f(z) [Ariaratnam et al., 2001]. Through

this approach, the estimated probability is

f(z) =
1

1 + e−z
(2.19)

where z is defined as

z = β0 +
k∑
i=i

βiXi (2.20)

where β0 is a constant, Xi is the ith predictor variable and βi is the regression coeffi-

cient associated with Xi.

The remaining processes for creating the final regression model involve simplifica-

tion and validation. First, the model was iteratively simplified based on the premise

of reducing the number of insignificant predictor variables and improving the overall

model based on Akaike Information Criterion (AIC) values, a process that is adopted

in this thesis and will be discussed in a later chapter. One of the methods to validate

the probabilistic models in these studies was to calculate the sensitivity, specificity,

and predicted value of a positive result of a model (PV+) [Salman and Salem, 2012].

These statistical measures allow for the comparison between observed events and

events predicted by the model. Each of these tests provides a percentage score that
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can be used to compare the predictive accuracy of different predictive models. In

the Salman and Salem (2012) study, two types of logistic regression models were de-

veloped and the model with the best percentage scores among the three statistical

measures discussed here was considered to be the best model. Additionally, 80% of

the overall dataset, the calibration set, was used to develop the logistic model and

the remaining 20% of the overall dataset, the validation set, was tested with the lo-

gistic model to determine if results between the two groups would be similar. This

grouping test can be used to determine if the logistic model over-fits the dataset used

to develop the original model, or if it is expected to perform well on other datasets.

Each of the validation methods are based on post-test terminology, which are re-

ferred to as: true positive (TP), true negative (TN), false positive (FP), and false

negative (FN) [Glasser, 2008]. A true positive is when an event is observed and a

model also predicted that the event would occur. A true negative is when an event

does not occur and the model correctly predicted that the event would not occur.

A false positive is when an occurrence of an event was not observed, but the model

incorrectly predicted that the event would occur. Likewise, a false negative is when

an occurrence of an event was observed, but the model predicted that the event would

not occur. These statistics can be assembled into a table, called a confusion matrix.

An example of the format of a confusion matrix is shown in Table 2.8, where a value of

0 represents an event not occurring, while a value of 1 represents an event occurring.

Sensitivity, specificity, and the predicted value of a positive result are computed

from the values in the confusion matrix. Sensitivity is the percentage of correctly
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Table 2.8: Example of a Confusion Matrix, adapted from Salman and Salem, 2012

Observed Predicted Condition
Condition 0 1

0 TN FP
1 FN TP

predicted event occurrences among the total instances of actual occurrences and is

determined as

TP

TP + FN
(2.21)

Specificity is the percentage of correctly predicted event non-occurrences among the

total instances of actual non-occurrences and is determined as

TN

TN + FP
(2.22)

The predicted value of a positive result (PV+) is the percentage of correctly predicted

event occurrences among all predicted event occurrences and is determined as

TP

TP + FP
(2.23)

For all of these statistical measures, a greater percentage score reflects stronger pre-

dictive accuracy of the statistical model. However, by examining statistical measures,

such as sensitivity and specificity, individually, one may examine how well the binary

logistic model performs for the event occurrence and non-occurrence separately. To

illustrate the process of comparing predictive models, take for example the confusion

matrix developed for logistic binary regression model for predicting the deterioration

states of pipe sections in Table 2.9.
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Table 2.9: Confusion Matrix for a Binary Logistic Regression Model for Predicting
Critical Pipe Sections, adapted from Salman and Salem 2012

Observed Predicted Correct
Condition Condition Prediction (%)

0 1
0 4,683 1,187 79.8
1 1,612 1,616 50.1

Sensitivity of the binary logistic model is

1616

1616 + 1612
= 50.1% (2.24)

while the specificity is

4, 683

4, 683 + 1, 187
= 79.8% (2.25)

and PV+ is

1, 616

1, 616 + 1, 187
= 57.7% (2.26)

The results of the binary logistic regression predictive accuracy tests were compared

with test results of the multinomial logistic regression model, and the predictive

accuracy for the binary regression were higher in two of the three tests (specificity

and PV+). Therefore it was concluded that binary regression was a better model

than multinomial regression for predicting sewer pipe conditions.



CHAPTER 3: PERFORMANCE CRITERIA AND MEASURES AND
DEVELOPMENT OF VALUE FUNCTIONS

3.1 Introduction

This chapter presents the proposed performance measures and criteria that will be

tested for significance for bridge replacement prioritization as well as the methodology

for developing performance measure value functions. Specifically, this chapter will

include descriptions of each criterion and associated performance measures, the use

of bridge maintenance records as performance measures, performance measure data

sources, details on value function development, and computed value functions for

each performance measure. The performance measure value functions in this chapter

are later used for developing bridge replacement prediction models in a subsequent

chapter.

3.2 Proposed Performance Criteria and Measures

As a part of a larger overall research effort, Lane (2016) investigated infrastructure

goals reflected in recent federal and state legislation and proposed a set of perfor-

mance criteria and performance measures for prioritizing bridge replacement projects

in North Carolina. A tree diagram detailing all of the performance criteria and asso-

ciated measures considered in this study is shown in Figure ??. The six performance

criteria are: Infrastructure Condition, Vulnerability, Mobility, Functionality, Main-

tenance Needs, and Maintenance Burden. In general, each of the proposed criteria
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are merely overarching goals that are assessed by performance measures based on

standard NBI measures, with the exception of the performance measures under the

Maintenance Needs and Maintenance Burden that are based on bridge maintenance

cost records. The relationship between criteria and performance measures for the

proposed approach is similar to the relationship found in the IBMS, where instead of

having four goals assessed by one to five performance measures, there are six criteria

that are assessed with a similar range of performance measures [Sinha et al., 2009].

Each of performance measures for Infrastructure Condition, Vulnerability, Mobility,

and Functionality will be described in this section, while the maintenance-based cri-

teria and measures will be discussed separately in the following section due to the

uniqueness of these measures and the data sources to compute them.

The Infrastructure Condition criterion is computed using the deck, superstructure,

and substructure condition ratings, which are based on the general structural condi-

tions of a bridge. These condition ratings are developed during biennial inspection

and are rated on a scale of 0-9. The condition descriptions associated with each rat-

ing are prescribed by the NBI recording and coding guide [Weseman, 1995] and are

reproduced in Table 3.1.

The Vulnerability criterion is based on bridge structural failure risk related to

fracture and scour criticality. Fracture critical vulnerability is a binary indicator

of the presence of a non-redundant tensile component of a bridge for which failure

would result in collapse of the bridge. These components are known as fracture-

critical members (FCMs) [Weseman, 1995]. The scour vulnerability rating indicates

the risk of structural failure at bridge piers due to potential hydraulic erosion events.
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Table 3.1: Infrastructure Condition Ratings and Descriptions, adapted from Wese-
man, 1995

Code Description Comments

N Not Applicable None

9 Excellent None

8 Very Good No problems noted.

7 Good Some minor problems.

6 Satisfactory Structural elements show some minor deterioration.

5 Fair All primary structural elements are sound but may
have minor section loss, cracking, spalling or scour.

4 Poor Advanced section loss, deterioration, spalling or scour.

3 Serious Loss of section, deterioration, spalling or scour have
seriously affected primary structural components.
Local failures are possible. Fatigue cracks in
steel or shear cracks in concrete may be present.

2 Critical Advanced deterioration of primary structural
elements. Fatigue cracks in steel or shear cracks
in concrete may be present or scour may
have removed substructure support. Unless
closely monitoredit may be necessary to close
the bridge until corrective action is taken.

1 Imminent Failure Major deterioration or section loss present
in critical structural components or obvious
vertical or horizontal movement affecting
structure stability. Bridge is closed to
traffic but corrective action may
put back in light service.

0 Failed Out of service - beyond corrective action.
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The scour vulnerability rating scale is prescribed by the NBI recording and coding

guide [Weseman, 1995] and ranges from 0 to 9, where a higher rating represents a

lower structural risk due to scour (Table 3.2). Additionally, a bridge can be assigned

a non-numerical rating to either indicate that the bridge is not over water (N) or over

an unknown foundation or tidal water and has not been not evaluated for scour (U

or T). In order to use scour ratings for regression and prediction, the non-numerical

ratings were converted into numerical values and values were adjusted to better reflect

severity of scour potential. In this reassignment of ratings, bridges not evaluated for

scour were assigned to carry a higher potential vulnerability to scour than bridges

that have been determined to be stable for scour conditions and bridges not subject

to scour. The adjusted scour critical codes are summarized in Table 3.3.

The Mobility criterion is intended to reflect the usage of a bridge as well as the po-

tential impact of closure on the community. Mobility is measured by: Detour Length,

Average Daily Traffic (ADT), Volume of Average Daily Truck Traffic (ADTT), Sys-

tem Classification, and Bridge Posting. Detour Length reflects the additional distance

a vehicle must travel in the event that the bridge is closed for repair or replacement.

The ADT is the volume of all vehicles that are estimated to cross a bridge on a typical

day. ADTT is a percentage of ADT that is estimated to be freight vehicles. System

Classification indicates the type of route a bridge is on, which is either a secondary,

primary, or interstate route. Lastly, the Bridge Posting rating indicates the vehicle to

maximum bridge weight capacity relative to the maximum posting given by the state.

This rating is based on a scale of 0-5 determined by the ratio of the bridge posting

to the maximum state legal posting and is reproduced from the NBI Recording and
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Table 3.2: NBI Scour Critical Ratings and Descriptions, adapted from Weseman
1995

Code Description

N Bridge not over waterway.

U Bridge with “unknown” foundation that has not been evaluated for
scour. Since risk cannot be determined, flag for monitoring during
flood events and, if appropriate, closure.

T Bridge over “tidal” waters that has not been evaluated for scour,
but considered low risk. Bridge will be monitored with regular
inspection cycle and with appropriate underwater inspections.

9 Bridge foundations (including piles) on dry land well above flood
water elevations.

8 Bridge foundations determined to be stable for assessed or
calculated scour conditions; calculated scour is above top of footing.

7 Countermeasures have been installed to correct a previously
existing problem with scour. Bridge is no longer scour critical.

6 Scour calculation/evaluation has not been made.

5 Bridge foundations determined to be stable for calculated scour
conditions; scour within limits of footing or piles.

4 Bridge foundation determined to be stable for calculated scour
conditions; field review indicates action is required to protect
exposed foundations from effects of additional erosion and corrosion.

3 Bridge is scour critical; bridge foundations determined
to be unstable for calculated scour conditions

2 Bridge is scour critical; field review indicates that extensive
scour has occurred at bridge foundations. Immediate
action is required to provide scour countermeasures.

1 Bridge is scour critical; field review indicates that failure
of piers/abutments is imminent. Bridge is closed to traffic.

0 Bridge is scour critical. Bridge has failed and is closed to traffic.
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Table 3.3: Proposed Scour Codes and Descriptions

New Code (NBI code) Description

7 (N) Bridge not over waterway.
6 (9,8,5) Bridge foundations stable for calculated

scour conditions.
5 (U, T, 6) Bridge not evaluated for scour.
4 (4) Same as NBI description
3 (3) ”
2 (2) ”
1 (1) ”
0 (0) ”

Coding Guide in Table 3.4.

Table 3.4: Definitions for Bridge Posting Scores

Score Relationship of Operating Rating to Maximum Legal Load

5 Equal to or above legal loads
4 0.1 - 9.9% below
3 10.0 - 19.9% below
2 20.0 - 29.9% below
1 30 - 39.9% below
0 > 39.9% below

The Functionality criterion is an indicator of the adequacy of the geometric design

for vehicles and is assessed with: deck geometry rating, vertical underclearance rating,

and horizontal clearance rating. Inadequate geometric design can lead to traffic safety

and mobility issues causing a bridge to be functionally obsolete for modern use and

design standards.

3.3 Newly Introduced Performance Measures

To address specific shortcomings of the PRI discussed in the prior chapter, Mainte-

nance Needs and Maintenance Burden criteria have been introdued with performance

measures derived from maintenance records that are maintained by the NCDOT.
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These records, in the Maintenance Management System (MMS), use a list of over

200 standard maintenance actions, each of which includes a description of the action,

the affected bridge element, unit cost, and number of units of a maintenance action.

The maintenance record data set that is used for this study includes records from

the past ten years to quantify the extent of Maintenance Burden historically associ-

ated with each structure. The most current set of bridge inspection records, which

includes proposed future maintenance actions identified by bridge inspectors, is used

to quantify the extent of Maintenance Needs for each structure. An advantage of

utilizing maintenance record data is that element bridge health can be determined

since maintenance actions include which elements need attention and the severity of

deterioration of the bridge elements can be determined since the unit cost and num-

ber of units (elements) are included with the records. An assumption used for each

of the criteria is that the higher the cost is for a given maintenance action, the more

critical that the maintenance action is for the prioritization of bridge replacements.

The remainder of this section will discuss the details of the individual criteria and

the associated performance measures.

The main difference between Maintenance Burden and Maintenance Needs is the

timing of when an action is applied to the bridge. Maintenance Burden is a measure

of the amount of resources that have already been invested recently in the structure

to maintain an operational state and is therefore computed using records of the main-

tenance actions that have been applied during the past ten years relative to the most

current bridge inspection report. Maintenance Needs is meant to assess the current

structural condition of a bridge in terms of identified cost of maintenance actions that
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would need to be done in the future to restore bridge element to adequate condition

states. As an illustration, Figure 3.2 shows the relationship between Maintenance

Needs and Maintenance Burden data.

Figure 3.2: Relationship Between Maintenance Burden and Maintenance Needs In
Terms of Yearly Maintenance Expenditures

The Maintenance Needs performace measures rely on element-level maintenance

actions identified by inspectors in order to keep the conditions of the bridge at ac-

ceptable levels in the future and are measured by the cost of priority maintenance

needs and cost of recommended maintenance needs. These performance measures are

developed using the Inspector Recommended Maintenance Needs database (IRMN),

which is based on element-level condition ratings. Each of the maintenance actions
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proposed for a bridge are classified at one of three priority levels: critical, priority,

and recommended. Critical maintenance needs are required to be addressed immedi-

ately, so they are not reflected in the IRMN and are not appropriate for prioritization

of bridge replacement projects. Priority needs are the next level of urgent need for

a maintenance action, while recommended needs represents actions with even less

urgency but are still required in order to restore or maintain bridge element condition

ratings at acceptable targets. Through use of the aggregated quantities of individual

maintenance needs and their estimated unit costs, the total cost of priority and rec-

ommended needs for each structure can be computed to reflect the total scale and

urgency of all current maintenance needs.

Maintenance Burden performance measures assess the costs of completed main-

tenance actions on a bridge to determine if previous expenditures indicate that the

replacement would alleviate burdensome and potentially costly maintenance actions

that have been ineffective or only partially effective in prolonging the service life of

the structure. The Maintenance Burden criterion consists of two measures: total cost

of maintenance actions performed on the bridge and total cost of reoccurring main-

tenance actions performed on the bridge. Reoccurring maintenance actions are in-

stances when the same type of maintenance was performed at separate times over the

ten year period, which may better reflect the burden presented to divisions than single

instance maintenance actions. These two measures are further divided by action clas-

sifications: burdensome repairs and maintenance, major rehabilitation investments,

and preservation treatments. Each of the maintenance actions were classified into

these categories in order to distinguish actions that could increase the likelihood of
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bridge replacement (burdensome repairs and maintenance), and actions that are done

that could lead to prolonged use of a bridge (major rehabilitation investments and

preservation actions). The assumption made is that bridges that have received ma-

jor rehabilitation or preservation treatments are less likely to be suitable candidates

for replacement since the state has likely not yet received the service life benefits of

these investments. In contrast, bridges that have required significant maintenance for

repairs that do not significantly improve the overall condition of the bridge are more

suitable for replacement, particularly if the maintenance has been performed year af-

ter year. In addition to these classifications, there are some maintenance actions that

have no effect on the decision to replace a bridge, such as removal of graffiti or beaver

control, and such actions were identified in a separate category to be removed from

all subsequent analysis. The action classifications were determined by individually

classifying actions using engineering judgment. Maintenance Burden classifications

were created by the research team using a survey and group discussion. The mainte-

nance action classification survey queried the opinions of the research team members

about the perceived classification of each action. There were 244 unique actions in

the Maintenance Burden Database. The survey results from each of the researchers

were compared and actions that that were classified as two or three different types

were collected and discussed individually in a group meeting. During this meeting,

each researcher discussed why he or she chose a certain classification. At the end of

the discussion, the group decided what the action classifications were together. Ex-

amples of maintenance actions for each classification are shown in Table 3.5. These

classifications were then reviewed by NCDOT personnel in an interim project meeting



53

and deemed to be appropriate for the purposes of this research. Only maintenance

actions that were performed within the last ten years were included in the analysis.

Table 3.5: Maintenance Action Classification Definitions and Examples

Classification Maintenance Action Examples

Burdensome Repairs Pothole Patching; Maintenance of
and Maintenance Cracks and Joints in Pavement
(Actions that increase Repair Concrete Wings and Walls
the likelihood of
bridge replacement.)

Major Rehabilitation Replacement of Bridge Expansion Joints
Investments Replacement of Timber Bridge Flooring
(Actions that significantly Replacement of Steel Columns and Piles
prolong the service life Replacement of Superstructure
of a bridge)

Preservation Cleaning and Painting of Structural Steel
(Actions that prolong Deck Washing
the service life Maintain Drainage System
of a bridge) Hot Mix Asphalt Overlay

As previously mentioned, reoccurring maintenance actions are expected to be more

strongly correlated with preference to replace bridges due to the burden and costs as-

sociated with routinely performing the same actions on the same structure to keep it

operational. Therefore, actions that have been reoccurring over the years for a given

bridge were analyzed using a PivotTable in Excel. This was done by organizing the

rows of the Maintenance Burden database first by structure ID and then by the total

cost for each of the maintenance burden actions by year. If the action repeats for a

subsequent year, then the action is considered to be a reoccurring action. Addition-

ally, the maintenance classifications are applied to each of the reoccurring actions,
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and the output of reoccurring burdensome repairs and maintenance, insignificant ac-

tions, major rehabilitation, and preservation are computed and are indexed back to

the main bridge database using the unique structure ID.

One aspect of this research effort is to determine the most statistically significant

form that the Maintenance Needs and Maintenance Burden performance measures

should be quantified. Specifically, either the total costs could be used to reflect the

total scale of the need and emphasize larger or more costly bridges in the prioritiza-

tion, or the costs could be normalized by the structure size. For this second approach,

the total Maintenance Needs and Maintenance Burden costs were divided by the es-

timated replacement cost of the structure, which is a value already estimated by

NCDOT using the deck area and the route type. In this way, the Maintenance Needs

and Maintenance Burden performance measure scores are proportional to a fraction

of the replacement cost.

3.4 Performance Measure Data Sources

The raw data used to develop a centralized database for statistical analysis are: the

Network Master, the 2016 NBI, Inspector Recommended Maintenance Needs database

(IRMN), and the Maintenance Management System (MMS) history database. The

Network Master is a web-accessible database in the AgileAssets Asset Management

System used by NCDOT that contains design, functional, geographic, and inventory

data as well as other bridge information collected by the state. The Network Master

provides a snapshot of the entire state inventory of structures at the current instant

in time and, unlike historical databases, is routinely updated with new inspection



55

data. The Network Master contains most of the NBI items necessary to compute the

proposed set of performance measures, with the exception of a few that needed to

be sourced directly from the corresponding annual NBI file submitted to the Federal

Highway Administration. Specifically, ADTT, fracture criticality, and bridge posting

data was extracted for each bridge from this source. The IRMN contains information

about maintenance actions recommended by bridge inspectors in order to preserve or

improve the condition of a bridge component or overall condition of the bridge. This

data source contains a list of “treatments” for each bridge with an associated priority

classification, quantity, and unit cost for each treatment. There are two levels of

priority, which are “priority” and “recommended”. These classifications were assigned

by the inspectors based on element-condition ratings originally recorded in NCDOT

Wearable Inspection and Grading Information Network System (WIGINS) used on

site bridge inspectors. The MMS history database contains records of maintenance

actions performed for each structure with the associated description, start and ending

dates, amount, and cost. The data sources and their use for calculating the individual

associated performance measures are summarized in Table 3.6. For the purposes of

this study, all of the databases were sourced concurrently in July of 2016.

3.5 VBA Design

A program was created in order to automate the process of assembling the separate

databases, filtering the data, computing the performance measures, and, ultimately

creating value functions for each performance measure. Additionally, the program

was developed to index the value function data to individual bridge structures so that
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Table 3.6: Data Sources and Associated Performance Measures

Source Performance Measure NBI Item #

Network Master Deck Condition 58
Superstructure Condition 59
Substructure Condition 60
Scour Critical Bridge 113
Detour Length 19
ADT 29
Bridge System NA
Deck Geometry Appraisal 68
Underclearance Appraisal 69

NBI ADTT 109
Fracture Critical 92
(Critical Feature Inspection)
Bridge Posting 70

IRMN Database Priority Maintenance Total NA
Recommended Maintenance Total NA

MMS History Major Rehab Total NA
Preservation Total NA
Burdensome Repairs NA
and Maintenance Total
Reoccurring Major Rehab NA
Reoccurring Preservation NA
Reoccurring Burdensome Repairs NA
and Maintenance

prioritization scores can be computed for every bridge. The program was created using

Microsoft Excel VBA macro routine and the source code is provided in Appendix A.

This section discusses the different components of the VBA script in more detail. The

overall VBA process employed by the VBA program is shown in Figure 3.3.

The VBA Import Data script allows the data sources to be used for value function

creation to be specified by allowing the user to import selected files. In this process,
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Figure 3.3: VBA Program Details

the database files are all imported as individual Excel worksheets. This script is

mainly an automation of the copy and paste operations used to append data in of a

worksheet from one workbook to another. However, this script imports all databases

into one workbook based on the structure ID as a unique field allowing for association

of data to specific structures.

The Preprocessing Data script performs filtering, transformations, and other oper-

ations on the source data necessary for it to be used for the creation of value functions.

The specific actions taken for each data source will be discussed. On the Network

Master data, filtering was applied to extract only the data related only to bridges,

as this database includes other transportation structures such as road signs and traf-

fic lights. Preprocessing of the NBI database involved conversions of text strings to

numbers and migration of the processed and filtered data to the common database.

The Maintenance Needs database was transformed by separately summarizing the
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total priority action costs and total recommended action cost for each bridge. This

was accomplished using a Pivot Table, which is a data summarization tool within the

Microsoft Excel application. For the MMS history database used for the Maintenance

Burden performance measures, the bridge identification numbers were converted to

structure IDs, as the BMS and MMS systems use different identifiers for each struc-

ture. Then the date of each maintenance action was determined using the end dates

of the actions, or if not available, the start date. Maintenance actions that were

performed earlier than ten years before the most current bridge inspection were as-

sumed to no longer be significant toward the predicting the prioritization of bridge

replacement projects and, therefore, all instances of these actions were removed from

the database. Records with incorrect structure IDs, completion years, and negative

costs were treated as anomalies and were also were removed from the database by

the macro. Automated analysis steps were programmed into the macro to summa-

rize the historical maintenance action costs for each bridge by the different types of

maintenance categories as previously defined. This calculation of burdensome repair

costs, major rehabilitation costs, and preservation action costs for single instance and

reoccurring actions was also completed with the use of PivotTables.

The preprocessing data script results in a common database using the indexing

feature, VLOOKUP, in Microsoft Excel to associate data from each preprocessed

source using the structure ID. The data from the common database was then operated

on by the Value Function Development script. This script performs the operations

necessary to develop a data-driven value function specific to the snapshot of the bridge

inventory created by the sourced database files. The specifics of these calculations are
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discussed in detail in the following section. Lastly, the VBA was developed to leverage

the created value functions to convert all of the raw performance measures for each

structure over to values associated with either linear or ECDF derived value functions.

This conversion was performed using the VLOOKUP command to find the value from

each value function associated with the set of specific raw performance measures for

each bridge. The structure-specific value scores for each of the performance measures

were used for the statistical analysis and prediction model development.

3.6 Value Function Development

The preferences structure of NCDOT bridge engineers for each performance mea-

sure were modeled using value functions. There are different modeling methods as

well as perspectives of observing the measures that could potentially be used, there-

fore all logical models were developed in order to be tested for statistical significance

when estimating the probability of bridge replacement through regression later in the

study. This section will introduce the background of the value function development

used for this study.

Each of the performance measure value functions were alternatively modeled as a

linear function as well as an empirical cumulative distribution function (ECDF) to

determine which function structure was more significant for estimating the probability

of replacement candidacy. A value function can be modeled as a linear function if

the value trade-off ratio, which is represented by the slope of the function, is the

same for all performance measure values. Since the ECDF-derived value function is

an empirically derived probability distribution, its use should also result in a more
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uniform distribution of scores than a linear scales, which may address issues with

clustering of scores observed in the current PRI. As an example, the distribution of

ADT ECDF-derived value function values and linear value function values are shown

in Figure 3.4. ECDFs were used with VDOT index value functions, developed using

the 10th percentiles of the distribution a trend line [Moruza et al., 2016]. ECDFs were

also used in the NCDOT Prioritization 4.0, as shown in Figure 3.5, which is a reason

why this format was pursued as a means to ensure consistency with an approach that

NCDOT engineers are familiar with and incorporate in other prioritization systems.

Both the linear and ECDF forms of the value functions were designed to range in

scale from 0 to 100.

The linear value functions were developed with the equation

V = (Individual Bridge Performance Measure Value− A)× 100

B − A
(3.1)

where A and B is the minimum and maximum bridge performance measure values

observed across the entire bridge population. This equation shifts the performance

measure scale to an origin of zero and scales the magnitude of the performance mea-

sure scale to 100. The form of the value function shown in equation 3.1 assumes that

the performance measures are proportional with the associated priority for replace-

ment. While this may be the case for some performance measures, such as ADT and

detour length, other measures, such as condition and appraisal ratings, are expected

to be inversely proportional with the associated priority for replacement. For these
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Figure 3.4: Distribution of ADT ECDF-Derived Value Function Values and Linear
Value Function Values

measures, the linear forms of the value functions were developed as

V = (Individual Bridge Performance Measure Value−B)× 100

A−B
(3.2)

The ECDF-derived value functions were developed using the equation

V =
n∑
i=0

100× i
n− 1

(3.3)

where n is the full population of performance measure scores and i is the iteration in

the series or if the performance measure ratings are expected to be inversely propor-
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Figure 3.5: Example of Scaling of Values from NCDOT Prioritization 4.0

tional to the associated priority of replacement is

V = 100−
n∑
i=0

(
100i

n− 1
) (3.4)

The ECDF values averaged by the performance measure ratings then were normalized

to a 0 to 100 scale.

For an example of the development of an ECDF-derived value function, consider

the bridge posting performance measure . First, the empirical cumulative distribution

using Equation 3.3 was computed for bridge posting ratings 0 to 5, as shown in Figure

3.6(a). Second, the average value for each bridge posting rating is calculated and

shown in Figure 3.6(b). Using the average value allows a single value to be associated

to each posting rating. Note that the averaging of results in a value function does

not utilize the full range of values, with a maximum of 92.28 and minimum of 35.57.

To compensate for this effect, the final step is the normalization of the function by

scaling values to a range of 0 to 100, as shown in Figure 3.6(c).



63

The assumed proportionality associated with each performance measure is summa-

rized in Table 3.7. As an example of the development of the value functions from the

individual performance measures, consider the substructure condition rating. The

substructure condition rating provides a value from 0 to 9 as shown in Figure 3.7 (a)

the corresponding linear scale value functions for this performance measure is shown,

Figure 3.7 (b), which reflects the inverted proportionality to assume that lower rat-

ings correlate with increased odds of selection for bridge replacement. Additionally,

the linear value function scales the performance measure to a range of 0 to 100. The

ECDF derived form of the value function for substructure condition rating is shown

in Figure 3.7 (c) along with the underlying ECDF upon which the rolling average was

computed. Note that the size of the steps on the ECDF reflect the relative number

of bridges, so this value function indicates that a significant portion of the bridge

population has a substructure rating of 5, 6, or 7. Bridges within the population that

have a lower rating receive larger and nearly equal scores since there are relatively

few of them and bridges with higher substructure condition scores receive very low

scores for prioritization. Linear and ECDF derived value functions for the infrastruc-

ture condition performance measures are provided in Figure 3.8, for the vulnerability

performance measures in Figure 3.9, for mobility performance measures in Figure

3.10, and for the functionality performance measures in Figure 3.11. The linear and

ECDF derived value functions for the Maintenance Needs and Maintenance Burden

performance measures computed with total cost are presented in Figures 3.12, 3.13,

and 3.14. Likewise, the linear and ECDF derived value function for the Maintenance

Needs and Maintenance Burden performance measures computed as a fraction of the
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estimate replacement cost are presented in Figures 3.15, 3.16, 3.17.

Table 3.7: Assumed Proportionality for Bridge Replacement Priority

Replacement Probability
Performance Measure Proportionality
ADT Proportional
ADTT Proportional
Bridge System Proportional
Burdensome Repairs and Maintenance Total Proportional
Detour Length Proportional
Fracture Critical Proportional
Priority Maintenance Total Proportional
Recommended Maintenance Total Proportional
Reocc. Burdensome Repairs and Maint. Proportional
Truck Volume/Capacity Proportional
Bridge Posting Inversely Proportional
Deck Condition Inversely Proportional
Deck Geometry Appraisal Inversely Proportional
Major Rehab Total Inversely Proportional
Preservation Total Inversely Proportional
Reoccurring Major Rehab Inversely Proportional
Reoccurring Preservation Inversely Proportional
Scour Critical Bridge Inversely Proportional
Substructure Condition Inversely Proportional
Superstructure Condition Inversely Proportional
Underclearance Appraisal Inversely Proportional
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Figure 3.6: Graphical Illustration of the Development of Value Functions Based
on the Empirical Cumulative Distribution: (a) the ECDF for bridge posting values,
(b) the average value for each bridge posting value (c) the normalized ECDF-derived
value function
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Figure 3.7: Substructure condition rating as (a) raw unscaled rating system, (b) a
linear value function and (c) an ECDF-based value function
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Figure 3.8: Linear and ECDF Value Functions for Infrastructure Condition
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Figure 3.9: Linear and ECDF Value Functions for Vulnerability
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Figure 3.10: Linear and ECDF Value Functions for Mobility
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Figure 3.11: Linear and ECDF Value Functions for Functionality
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Figure 3.12: Linear and ECDF Value Functions for Maintenance Needs
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Figure 3.13: Linear and ECDF Value Functions for Maintenance Burden
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Figure 3.14: Linear and ECDF Value Functions for Reoccurring Maintenance Bur-
den
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Figure 3.15: Linear and ECDF Value Functions for Maintenance Needs to Replace-
ment Cost Ratio
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Figure 3.16: Linear and ECDF Value Functions for Maintenance Burden to Re-
placement Cost Ratio
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Figure 3.17: Linear and ECDF Value Functions for Reoccurring Maintenance Bur-
den to Replacement Cost Ratio



CHAPTER 4: DEVELOPMENT OF STATISTICAL MODELS FOR
PREDICTING BRIDGE REPLACEMENTS

This chapter includes the discussion of data-driven methodologies to develop statis-

tical models for predicting the likelihood that a bridge will be selected for replacement.

The development of the binary response variable indicating selection of a bridge for

replacement by NCDOT engineers is discussed to compliment the development of the

predictor variables in the prior chapter. Then, a matrix of different statistical models

that will be tested with varying functional forms of value functions and statistical

analysis methods will be introduced to examine the best approach for data-driven

development of the prioritization index. To support the development of this matrix,

background information on constrained linear least squares regression and binary lo-

gistic regression will be provided. Statistical models developed from the approaches

outlined in this chapter will be analyzed and compared in the subsequent chapter.

4.1 Development of the List of Bridges Selected for Replacement

In order to propose a revised prioritization index based on historical selection of

bridge replacement projects through statistical analysis, the set of computed per-

formance measure value functions were applied to the database of bridge records

developed in the previous chapter. The set of computed value function values for the

state inventory serves as the predictor variables for all subsequent statistical regres-

sions performed. The next component necessary for developing the statistical model
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is the response variable. For this study, the response variable event is the binary clas-

sification of whether or not a bridge has been selected for replacement by NCDOT

engineers. NCDOT does not maintain a singular list that contains all of the bridges

selected for replacement, but instead has two data sources called the Baseline Plan

(BMIP) and a list of Active Bridge Projects (ABP). The BMIP contains a list of

bridges that have been identified for future replacement, whereas the ABP contains

all bridge projects that were occurring at the time that the study was performed. It

was assumed that all bridge replacement projects were within these two lists. The

BMIP records contain structure identification numbers, thus requiring few indexing

procedures to build the response variable from this list of future projects. However,

the ABP records did not include the structure identification numbers or sufficiently

detailed descriptions of the scope of work, which requires additional preprocessing

and verification of this list.

The ABP records contained three identifiers, which were the project contract num-

ber, Transportation Improvement Program (TIP) number, and WBS element number.

The ABP records included all active bridge projects, so contracts that involve reha-

bilitation or repair actions were included in the list as well as bridge replacement

projects, since the prioritization index is intended to rank only bridge replacement

projects. The first step in the preprocessing of the list was to isolate only the re-

placement projects. Instead of checking each of the records individually, keywords

that indicated that a bridge replacement was associated with a project contract were

searched for in the contract description and location columns of each record to filter

only the bridge projects associated with replacements. If an ABP record contained
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a keyword, the associated project contract documents were then manually searched

for on the NCDOT Connect bidding and letting document database. The associ-

ated project contract documents were then manually reviewed to both confirm that

the project was a replacement project and to identify the corresponding structure

number. This manual review of contract documents was also effective in identifying

instances where more than one bridge was replaced under the same contract.

Additional checks for both data sources include: duplicate checks; bridge structure

checks; and a check of infrastructure condition ratings. An assumption was made

that if none of the infrastructure condition ratings were lower than 7, then the data

listed in the Network Master contained performance measure data was based on the

newly replaced bridge and not the bridge that was being replaced. In these few

instances, the associated response variable was assigned to indicate that the bridge is

no longer selected for replacement. The filtering rules applied for both the BMIP and

ABP databases are summarized in Table 4.1. In total, 258 active bridge replacement

projects were identified from the ABP list. An additional 991 bridge replacement

projects were identified from the BMIP database, resulting in a total 1249 bridges

identified as bridges selected for replacement. This represents 9.028% of the 13,834

total number of bridge records assembled in the database.

4.2 Overview of Constrained Linear Regression

The constrained linear least squares (CLLS) method is a method for fitting a linear

equation to measured data while satisfying a given set of criteria established with ei-

ther constraint equations or bounds on the regression coefficients [Gavin, 2015]. This
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Table 4.1: Filtering Guidelines Used to Develop List of Bridges Selected For Re-
placement

Database Guidelines

ABP Must have either a TIP or WBS contract number
OR
Must have a project contract number
that matches with a project contract document
in the NCDOT Connect portal
AND
Project contract explicitly states
that the bridge will be replaced.
AND
Contract description contains the one of the words
“Structure” “Str” ”bridge” or “replacement”
AND
Does not contain the words ”Preservation”
or “Rehabilitation”

BMIP Improvement type must be “Replacement”
Let year is 2016 or later

Both Duplicate check
Condition ratings check
Bridge structure check

method minimizes the value of the following sum-of-squares-of-errors (SSE) equation

min
N∑
i=1

|Cix− di|2 where Cx ≤ d and lb < x < ub (4.1)

where N is the number of data observations included in the regression, Ci represents

the set of predictor variables for the ith data set, x represents linear regression co-

efficients, di the response variable, and lb and ub are the lower and upper bounds

that represent the constraints for the potential solutions. In the application of the

CLLS method to the bridge replacement dataset, the response variable is the binary

response variable that indicates if each bridge was found to be selected for replace-
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ment or not. Additionally, the values of lb and ub are set as 0 and 1, respectively.

This was done to ensure that all of the coefficients would be positive and reflect the

assumed proportionality of the performance measures established in Table 3.7. The

portion of the equation Cx = d represents multiple predictor variables, and can be

expanded as

C1x1 + C2x2 + ...CnXn = d (4.2)

where C1 +C2 + ...Cn are associated with each of the different performance measures

and n represents the total number of predictor variables. The left hand side of this

equation takes the same form as the additive multi-criteria utility function defined in

the NCHRP 590 Report.

CLLS was performed within Excel by developing a spreadsheet to compute the SSE

for a given set of regression coefficients and using the solver application within the

Excel Analysis ToolPak. Of the three options that were available, the GRG Nonlinear

solver was used. This solver iteratively adjust the values of the regression coefficients

until a solution that minimizes the SSE is found. The solver application allows for

bounds on the regression coefficients be established by encoding them as constraint

equations.

Since the form of the linear regression model matches that of the additive multi-

criteria utility function, the regression coefficients can be directly interpreted as rel-

ative weights. For some of the performance measures, the CLLS returned very small

relative weights that suggest that the performance measure is not significant and can

be removed from the prediction model. A threshold value of 0.0001 was used to iden-



82

tify such measures and the relative weights for each were forced to zero. Lastly, the

relative weights were scaled such that the sum of relative weight totaled one using

x̂ =
x∑
x

(4.3)

where x̂i is the scaled relative weight for performance measure i and n is the number

of performance measures included in the regression. Since the value functions were

developed on a scale of 0-100, the relative weights were scaled so that the prioritization

score from the CLLS model scales to 0-100.

4.3 Overview of Binary Logistic Regression

Logistic regression is a statistical method of determining effects of predictors on

the probability of responses [Pardoe et al., 2017]. This approach was used in several

studies aimed at developing municipal sewer inspection prioritization methods that

were discussed in the literature review. There are three types of logistic regression,

which are binary, nominal, and ordinal [Pardoe et al., 2017]. These types are based

on availability and classification of the possible responses. If there are only two

outcomes possible, a binary logistic regression is used. If there are multiple outcomes

that are possible, then a nominal logistic regression can be used. Additionally, if

there is a hierarchy among the outcomes, ordinal logistic regression is used. Since the

response variable indicating if a bridge has been selected for replacement can only

have two outcomes, binary logistic regression was chosen for this study. Also, binary

logistic regression has been found to be preferable for other infrastructure analyses

as summarized in the literature review [Salman and Salem, 2012].



83

Binary logistic regression allows for estimation of the probability, p, of a binary

event occurring x, [Pardoe et al., 2017] which can be defined as

p =
Outcome of Interest

All Possible Outcomes
(4.4)

The odds of an event occurring is the ratio probability that an event will occur,

p(event), to the probability of the event not occurring, 1− p(x) [Foltz, 2015]

Odds =
p(x)

1− p(x)
=

p

1− p
(4.5)

The relationship between odds and probability is illustrated in Figure 4.1.

Given that p(x) = p, the natural log of the odds of an event occurring is known as

the logit of p

ln(
p

1− p
) = logit(p) (4.6)

The inverse logit provides a functional form that provides an s-shaped curve [Foltz, 2015]

that represents the typical value function shape used in previous studies discussed in

Section 2.3 of the literature review. This function also restrains the probability be-

tween 0 and 1, which is necessary for a binary response variable and is shown as

logit−1(α) =
eα

1 + eα
(4.7)

Assuming that a prediction model has the shape of a logit function, the equation

ln(
p

1− p
) = β0 + β1x1 + ...βnxn (4.8)

where β0, β1...βn are regression coefficients, can be used to solve for p, which would
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Figure 4.1: Relationship of Odds and Probability

result in the estimated probability from the regression model being

p =
eβ0+β1x1+...βnxn

1 + eβ0+β1x1+...βnxn
(4.9)

Binary logistic modeling was completed using the Minitab statistical software pack-

age. The regression coefficients are calculated using the Maximum Likelihood Estima-

tion (MLE) method [Pardoe et al., 2017]. Additionally, the predictors were reduced

to the most significant performance measures using a backward stepwise elimination

of variables. This is an iterative process that begins by computing the p-values for

all potential predictor variables. For each step the predictor variable with that is

found to be the least significant, or has the greatest p-value is removed until all vari-

ables have a p-value less than the specified alpha-to-remove, α [Pardoe et al., 2017],

resulting in a final model. For this process, α=0.05. The logistic regression process

is summarized in Figure 4.2.
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Figure 4.2: Logistic Regression Overview

4.4 Development of Matrix of Statistical Models Investigated

In the previous chapter, there are two distinct functional forms of the value func-

tions that were defined, which are linear and derived from the ECDF. Additionally,

there were two approaches proposed for calculating costs within the maintenance per-

formance measures. One approach is to base the value functions on the total cost

of the maintenance category, such as recommended maintenance total cost, and the

other form is use the ratio of the total cost of a maintenance category to the re-

placement cost of the bridge. By performing separate statistical regressions using the

different combinations of the forms of the value functions and maintenance costs, the

optimal forms can be identified by assessing the goodness of fit for the various statis-

tical models. In addition to investigating the functional form of the value functions

and maintenance cost measures, the form of the statistical model used will also be

assessed. One approach will be to fit the data to a form consistent with additive
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multi-criteria utility function using constrained linear least squares regression. The

other approach will be to use binary logistic regression to predict the binary replace-

ment classification following successful use of the statistical approach in infrastructure

prioritization studies involving sewers and pipe systems that were identified in the

literature review. Therefore, in order to determine the best combination of functional

forms that will provide the best prediction models, different cases of all of the poten-

tial variants are defined in Table 4.2. These models will be evaluated and compared

in the next chapter.

Table 4.2: Summary of Statistical Regression Test Cases

Form of Form of Form of
Case Value Function Maintenance Burden Statistical Model
LTC Linear Total CLLS
ETC ECDF Total CLLS
LRC Linear Replacement Ratio CLLS
ERC ECDF Replacement Ratio CLLS
LTB Linear Total Binary Logistic Regression
ETB ECDF Total Binary Logistic Regression
LRB Linear Replacement Ratio Binary Logistic Regression
ERB ECDF Replacement Ratio Binary Logistic Regression

Key to Case Letters:
First letter, value function form: L = Linear, E = ECDF-Derived
Second letter, maintenance form: T = Total, R = Replacement Ratio
Third letter, statistical model form: C = CLLS, B = Binary Logistic Regression

4.5 Summary of Statistical Models Developed

The statistical models developed over the matrix of cases presented in Section 4.2

are introduced in this Section. The significance of individual performance measures,

as quantified by the regression coefficients, are examined across the models developed.
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4.5.1 CLLS Regression Models

The linear regression coefficients developed for each of the CLLS models are shown

in Table 4.3. Only significant performance measures with a relative weight greater

than 0.0001 are shown in this table, which consists of 9 of the original 21 proposed

performance measures. The ranking for each of the performance measures is shown

in parentheses, where a rank of one represents the most significant variable, and a

rank of two is the second most significant variable, etc. The LRC model retained the

most variables (8), while the ETC and ERC retained the least variables (6). Priority

maintenance needs, bridge posting, reoccurring burdensome maintenance, substruc-

ture condition rating, and scour criticality were shown to be significant among all

four CLLS models. Priority maintenance maintained a ranking among the top three

of all performance measures across all models. Recommended maintenance needs

and fracture criticality were found to be significant for only one model, LRC. Scour

criticality was found to be significant in each of the models, but remained in the

lower half of rankings. The set of performance measures that were not used in any of

the CLLS statistical models were: deck geometry, ADT, ADTT, interstate classifica-

tion, secondary classification, detour length, preservation maintenance burden, deck

condition rating, underclearance appraisal, major rehabilitation maintenance burden,

reoccurring major rehabilitation burden, and reoccurring preservation maintenance

burden.

Significant differences in performance measures included in the models and the

associated relative weights suggests that the form of the value function is significant
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to the performance of the statistical model. In contrast, models that use the same

functional format of the value function typically retained the same variables and

coefficient values. In other words, the maintenance cost relative to replacement cost

models were not found to have as significant effect on the regression coefficients and

performance measures included in each statistical model. All four models retained at

least three maintenance variables, with the LRC model retaining the highest amount

of four.

Table 4.3: Relative Weights for Constrained Linear Least Squares Models (Relative
Rank Shown in Parentheses)

Variable ETC ERC LTC LRC
Priority Maint. 0.172 (3) 0.139 (3) 0.254 (2) 0.260 (1)
Bridge Posting 0.358 (1) 0.371 (1) 0.128 (4) 0.120 (4)
Reoc. Burd. Maint. 0.114 (4) 0.107 (4) 0.327 (1) 0.217 (2)
Substr. Cond. 0.272 (2) 0.274 (2) 0.129 (3) 0.075 (6)
Scour Criticality 0.043 (5) 0.043 (6) 0.041 (6) 0.032 (7)
Reccomended Maint. - - - 0.199 (3)
Burdensome Maint. 0.041 (6) 0.065 (5) 0.110 (5) -
Fracture Critical - - - 0.087 (5)
Superstr. Cond. - - 0.012 (7) 0.009 (8)

4.5.2 Binary Logistic Regression Models

The p-values for each of the variables found to be significant in the set of four

models are shown in Table 4.4. P-values indicate the probability that a performance

measure is statistically significant [Pardoe et al., 2017]. Performance measures with a

p-value below a threshold value of 0.05 were used in the final binary logistic regression

models developed. In contrast to the CLLS regression models, a larger number of

performance measures were found to be statistically significant in the binary logistic

regression models, with 16 measures included in the models developed with ECDF-
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derived value functions. There were 10 performance measures that were significant in

all four models: substructure condition rating, superstructure condition rating, deck

geometry rating, ADT, ADTT, bridge posting, interstate classification, secondary

classification, scour criticality, and burdensome maintenance. Performance Measures

that were not included in any of the models are: deck condition rating, underclearance

appraisal, reoccurring major rehabilitation, reoccurring preservation maintenance,

and fracture criticality.

Table 4.4: P-Values for Logistic Regression Models

Variable ETB ERB LTB LRB
Substr. Con. 0 0 0 0
Superstr. Con. 0 0 0 0
Deck Geometry 0 0 0 0
ADT 0.018 0.018 0.002 0.004
Bridge Posting 0 0 0 0
ADTT 0.007 0.005 0 0
Interstate Class 0.008 0.008 0.006 0.006
Scour Criticality 0 0 0 0
Burdensome Maint. 0 0 0.036 0.016
Reoc. Burd. Maint. 0.007 0.008 - 0
Reccomended Maint. 0 0 - -
Major Rehab. Maint. - - - 0.001
Secondary Class 0.004 0.007 0.002 0.004
Detour Length - - 0.005 0.009
Priority Maint. 0.004 0.005 - -
Preservation Maint. 0.011 0.012 - -

The odds ratios of the performance measures developed from the regression co-

efficients of each binary logistic regression model are listed in Table 4.5. Rankings

of the odds ratios were developed by calculating the absolute difference of the odds

ratio to 1, since the higher the difference, the greater the effect a change in value of a

performance measure is predicted to have [IDRE, 2017]. The substructure condition
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was found to be the highest ranking variable for all models except the LRB model

where major rehabilitation maintenance burden was found to be the highest ranking

variable. As with the CLLS models, the models using the same functional form of the

value function had similar variable rankings and a very strong correlation amongst

their odds ratios. This further suggests that there is no significant difference between

using total maintenance costs or maintenance costs relative to replacement cost for

the maintenance-related performance measures. Typically, models with the same

functional form of value functions retain the same performance measures, except for

the instances of reoccurring burdensome maintenance and major rehabilitation be-

tween LTB and LRB. Major rehabilitation maintenance burden is also unique since

this was the highest ranking variable for LRB, but found to be insignificant among

the other three models.

Table 4.5: Odds Ratios of Binary Logistic Regression Models (Relative Rank Shown
in Parentheses)

Variable ETB ERB LTB LRB
Substr. Con. 1.044 (1) 1.044 (1) 1.062 (1) 1.063 (2)
Superstr. Con. 1.016 (2) 1.016 (2) 1.036 (3) 1.037 (4)
Deck Geometry 1.012 (3) 1.012 (3) 1.024 (4) 1.024 (6)
ADT 1.005 (8) 1.005 (8) 0.958 (2) 0.960 (3)
Bridge Posting 1.012 (4) 1.012 (4) 1.011 (7) 1.011 (9)
ADTT 1.006 (7) 1.006 (7) 1.018 (6) 1.017 (8)
Interstate Class 0.993 (5) 0.993 (5) 0.991 (8) 0.991 (11)
Scour Criticality 1.007 (6) 1.007 (6) 1.008 (9) 1.009 (10)
Burdensome Maint. 1.004 (10) 1.004 (10) 1.019 (5) 0.980 (7)
Reoc. Burd. Maint. 1.003 (12) 1.003 (12) 1 - 1.035 (5)
Reccomended Maint. 1.005 (9) 1.005 (8) 1 - 1 -
Major Rehab. Maint. 1 - 1 - 1 - 1.064 (1)
Secondary Class 1.004 (11) 1.003 (11) 1.004 (11) 1.003 (13)
Detour Length 1 - 1 - 0.994 (10) 0.994 (12)
Priority Maint. 1.003 (13) 1.003 (13) 1 - 1 -
Preservation Maint. 0.998 (14) 0.998 (14) 1 - 1 -
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The reason that odds ratios are used to quantify the impacts of the performance

measure rather than logistic regression coefficients is because the odds are directly

proportional to changes in the performance measure values. This is illustrated in the

following example. Consider a bridge with a current probability of replacement of

0.286, which corresponds to an odds of 0.400 for replacement selection. The odds

ratio for each performance measure indicates the proportional change in odds for a

unit change in value associated with the measure. However, since the raw values of

the performance measures are converted to value functions, the value functions must

be used to determine the effect of a unit change in a performance measure on the

odds of replacement. For instance, a decrease in substructure from 7 to 6 would result

in a value change of ∆x1=29.82 using the ECDF-based value function, as shown in

Figure 4.3. Assuming that the conditions of the other performance measures remain

the same, the new odds can be calculated using the odds ratio as shown

(New Odds) = (Old Odds)×(Odds Ratio∆sub
sub ) = (0.4)∗(1.0436)(29.82) = 1.428 (4.10)

In other words, this change in condition rating would increase the odds of replace-

ment by (1.0436)29.82 or 357%. This increase in odds of replacement would be the

same for any other bridge experiencing a change in substructure condition rating

from 7 to 6 regardless of the original probability or odds associated with the struc-

ture. Furthermore, consider another scenario with a similar bridge with the same

probability of replacement but with a substructure condition rating change from 5

to 4. As shown in 4.3, a lower change in value ∆X2 = 16.01 results.Such a change

is less significant on the odds, as the calculated new odds of replacement would be
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Figure 4.3: Substructure Condition Value Function with Example Odds Ratios

(0.4) ∗ (1.0436)(16.01) = 0.792 resulting in an increase of odds by only 198%.

Thus, while the change of the substructure condition rating score changed by one

point for both scenarios, the change in value from the value functions were different.

The value change in scenario 1 had a larger value change difference, resulting in

a greater increase in odds, and ultimately an increase in the probability that the

bridge will be replaced. Using logistic regression coefficients results in more difficulty

in determining the effect of a change in performance measures on the probability

and odds of replacement when ECDF based value functions are used since they are

nonlinear. When linear value functions are used, the effect of changes in performance

measures on the odds is uniform across the range of the performance measure.

The direct relationship between value changes and odds ratios can be expanded to
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Figure 4.4: ADT Value Function with Example Odds Ratios

include multiple performance measures using the general equation

(New Odds) = (Old Odds)
n∏
i=1

(Odds Ratio
∆xi
i ) (4.11)

The use of this equation is shown in the following example. If the same bridge

from before was affected with the substructure value change ∆X1 and an increase

of ADT from 1,000 to 10,000, which would result in a value change of 36.43 using

the ECDF based ADT value function as shown in Figure 4.4, the net result would

be an increase in odds of (1.0436)29.82(1.005)36.43 = 4.28 or 428.6%. Of course, since

the original odds of replacement for this hypothetical structure were low, even a large

percentage increase in odds does not necessarily mean that these changes would make

the structure a likely candidate for replacement.



94

Model summary statistics, including the R2, adjusted R2, and AIC for each of the

models, are shown in Table 4.6. The R2 statistic quantifies how well a model fits a

given set of data while the adjusted R2 measures the data fitting with inclusion of a

penalty for use of more predictor variables [Pardoe et al., 2017]. The AIC determines

the relative goodness of a model using a similar principle of measuring goodness of

fit while penalizing additional model complexity [Pardoe et al., 2017]. The ETB has

the best summary statistics of the four binary logistic regression models, although all

models exhibit similar statistics. The predictive fidelity of the statistical models will

be examined in more detail in the following chapter.

Table 4.6: Model Summarization of Logistic Regression Models

Model Deviance Deviance AIC
R-Sq R-Sq(adj)

ETB 0.3285 0.3268 5661.95
ERB 0.3282 0.3265 5665.80
LTB 0.3207 0.3194 5722.30
LRB 0.3232 0.3217 5705.52



CHAPTER 5: ASSESSMENT OF STATISTICAL MODELS

5.1 Introduction

The developed prediction models are compared for usefulness based on prediction

accuracy and distribution of prioritization scores in this chapter. Thresholds for

replacement status classification based on the model predictions are established by

optimizing the predictive values. Prediction accuracy is assessed using sensitivity,

specificity, and predictive value of a positive result. Analysis of the distribution of

prioritization scores is based on visual assessment of histogram modality and charac-

teristics, established PRI replacement candidacy thresholds, and the top ten scores

assigned to bridge in the inventory compared with observed replacement selections.

Based on the analysis of the models, recommendations for implementation are for-

mulated.

5.2 Method for Developing of Classification Threshold

All of the developed statistical models assign a score to each structure on a scale

of 0 to 100, which is assumed to reflect the priority for replacement based on the

nature of the development of the statistical models. Since the actual priority rank for

bridges in the current inventory is unknown, the predictive accuracy of the models

can only be assessed by establishing a threshold value for each model to convert the

scores developed by the statistical models to a binary classification of replacement
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status.

The model threshold value represents the minimum cut-off score that indicates if

a bridge is predicted to be selected for replacement. It is important to develop a

model that will provide the highest rate of correct predictions. Since each model

has a potential score ranging from 0 to 100, a threshold of zero would mean that all

bridges would be predicted to be replaced, while on other extreme of a threshold of

100, none of the bridges would selected for replacement. Thus, the ideal threshold

for a model would have the highest rates of both the correctly predicted bridges

selected for replacement and correctly predicted bridges not selected for replacement.

These values are also known as predictive values, specifically the predictive value of

a positive result (PV+) and predictive value of a negative result (PV-), respectively

[Glasser, 2008]. The equations determining PV+ and PV-, from the true positives

(TP), false positives (FP), true negatives (TN), and false negatives (FN) are

PV+ =
TP

TP + FP
(5.1)

PV- =
TN

TN + FN
(5.2)

For each model, the PV+ and PV- test scores were calculated using the model

prediction scores for every bridge in the state inventory against the list of observed

bridges selected for replacement. Bridges predicted to be replaced by each statistical

model were based on comparing the model prediction score to a variable threshold

value. The data sets for observed predicted bridges selected for replacement were

compared to compute TP, TN, FN, FP rates and the PV+ and PV- values for the
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variable threshold value. Through iterative adjustment of the threshold value to

optimize the sum of the predictive values, a model threshold value was established

for each statistical model.

5.3 Analysis of Predictive Accuracy of Models

The three tests that were used for determining the predictive accuracy for each of

the statistical models developed in the prior chapter are sensitivity, specificity, and

PV+. Recall that the equations for sensitivity and specificity are

Sens. =
TP

TP + FN
(5.3)

Spec. =
TN

TN + FP
(5.4)

in the context of the bridge replacement problem, sensitivity measures the percentage

of the time that a bridge actually selected for replacement will be classified as selected

for replacement based on the prediction score and assigned threshold value. Likewise,

specificity is the percentage of cases where a bridge not selected for replacement is

correctly predicted as not being a replacement candidate based on the prediction

score and assigned threshold value. In addition to these standard statistical tests, an

analysis of the accuracy of classification for the sets of bridges with the ten highest

scores developed from each statistical model, similar to that performed for the PRI

in Chapter 2, was performed. The values that were used for these calculations were

determined using the optimal threshold values for each model based on maximizing

the predictive values. The model that has the best average rank among the tests is

considered to be the best model in terms of predictive accuracy. The results including
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relative rankings for each test are shown in Table 5.1.

Table 5.1: Predictive Accuracy Test Scores for Each Model (Relative Ranking in
Parentheses)

Model Sens. Spec. PV+ Top 10 Avg. Rank
ERB 91.03 % (6) 75.84 % (2) 27.22 % (3) 5 (2) 3.25
LRB 89.67 % (8) 76.94 % (1) 27.85 % (1) 4 (3) 3.25
ETB 91.91 % (3) 74.41 % (5) 26.28 % (5) 6 (1) 3.50
LTB 91.91 % (3) 74.45 % (4) 26.31 % (4) 3 (4) 3.75
PRI 91.67 % (5) 75.80 % (3) 27.32 % (2) 2 (5) 3.75
ERC 94.08 % (1) 64.57 % (9) 20.86 % (9) 2 (5) 6.00
LTC 92.95 % (2) 68.61 % (8) 22.72 % (7) 1 (8) 6.25
ETC 89.91 % (7) 68.65 % (7) 22.17 % (8) 2 (5) 6.75
LRC 89.03 % (9) 71.34 % (6) 23.56 % (6) 0 (9) 7.50

The ERC model was found to have the highest sensitivity among all models and

PRI, while the LRB model was found to have the highest specificity and PV+. The

ERC model, while performing the best for sensitivity, was found to have the worst

specificity and PV+ with a significantly lower value than any of the other models

without such a significant difference for the sensitivity. Similarly, the LRB had the

second lowest sensitivity while performing the best for the other two tests. The

LRC performed the worst among all models for sensitivity. The ETB model was

found to have the most correctly classified bridges selected for replacement in the list

of the top ten prioritization scores (6), while only the LRC model had no bridges

actually selected for replacement in its ranking of the top ten. Generally, the logistic

regression models had the most bridges selected for replacement in the top ten bridges

compared to the CLLS models. Compared to the PRI, all models except for LTC

and LRC performed just as well or better for this performance test. Analysis of the

classification success across the bridges receiving the top ten scores for each of the



99

models are also shown in Figures 5.1 to 5.8. Overall, the ERB and LRB models

performed the best across all four tests based on the average test ranking, while the

LRB model would be considered the best model if based only on the number of best

scores developed across all tests. Based on the relative rankings, the models developed

with the binary logistic regression outperformed those developed using constrained

linear least squares regression. Interestingly, models with maintenance costs relative

to replacement costs outperformed those using total replacement costs for the binary

logistic regression models.

5.4 Analysis of Distribution of Prioritization Scores

An important additional consideration when determining the usefulness of an index

is the distribution of scores for the bridges across the statewide inventory. Ideally,

the distribution of scores should maximize the range of the index, distinguish replace-

ment candidates from those not considered for replacement, and avoid clustering of

assigned prioritization scores. The PRI was found to have a bimodal distribution of

scores among the observed bridges selected for replacement, meaning that the value

of the scores do not properly reflect the intended effect of ranking the bridges for

replacement. A visual analysis of the distribution of prioritization scores developed

by each of the statistical models based on the modality, skew, and range was utilized

to assess how well each model produced a desirable distribution of scores. An ideal

distribution of scores for bridges not selected for replacement would be heavily skewed

toward the lower scores since the majority of the state inventory is not in urgent need

of replacement. The scores of bridges that are selected for replacement would ideally
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Figure 5.1: Model ETC: (a) Bridges Selected For Replacement (b) Bridges Not
Selected For Replacement (c) Bridges with the Top 10 Scores
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Figure 5.2: Model ERC: (a) Bridges Selected For Replacement (b) Bridges Not
Selected For Replacement (c) Bridges with the Top 10 Scores
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Figure 5.3: Model LTC: (a) Bridges Selected For Replacement (b) Bridges Not
Selected For Replacement (c) Bridges with the Top 10 Scores
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Figure 5.4: Model LRC: (a) Bridges Selected For Replacement (b) Bridges Not
Selected For Replacement (c) Bridges with the Top 10 Scores
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Figure 5.5: Model ETB: (a) Bridges Selected For Replacement (b) Bridges Not
Selected For Replacement (c) Bridges with the Top 10 Scores
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Figure 5.6: Model ERB: (a) Bridges Selected For Replacement (b) Bridges Not
Selected For Replacement (c) Bridges with the Top 10 Scores
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Figure 5.7: Model LTB: (a) Bridges Selected For Replacement (b) Bridges Not
Selected For Replacement (c) Bridges with the Top 10 Scores
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Figure 5.8: Model LRB: (a) Bridges Selected For Replacement (b) Bridges Not
Selected For Replacement (c) Bridges with the Top 10 Scores
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be a uniform distribution across the higher range scores to provide clear separation

of priority amongst different candidates. Additionally, the combination of the two

distributions would utilize the total range of potential scores. The distribution of the

bridges selected and not selected for replacement for each of the developed statistical

models are shown in Figures 5.1 to 5.8. Each of the histograms were consistently

developed across a range of 0 to 100 with 25 uniformly sized bins each having a size

of 4 points.

Overall, three of the CLLS models (ETC, LTC, LRC) contained a slightly bimodal

distribution among the bridges selected for replacement, while the distribution for

the ERC model was found to be generally normal. The LTC and LRC models had

a clustering of prioritization scores and did not fully utilize the full range of the

index. The binary logistic regression models have generally normal distributions

for the scores assigned to bridges selected for replacement, although the scores are

mildly skewed toward lower values. The ETB model has the smoothest distribution

of scores across the bridges selected for replacement. For the bridges not selected for

replacement, the binary logistic regression models do a superior job of assigning low

scores to these bridges with only a small fraction of the bridges in the inventory not

selected for replacement receiving higher prioritization scores.

The overall PRI replacement candidacy thresholds introduced in Chapter 2, where

a score within the range of 0 to 30 is considered a poor replacement candidate, 30

to 50 range is considered a good candidate, and beyond 50 is considered a very

good candidate, were also applied to the developed statistical models to evaluate the

general distribution of scores relative to the actual classification status. Odds ratios
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were calculated for each model over each of the candidacy threshold categories to

produce a score that normalizes the classification success based on the relative number

of bridges predicted to receive a score within each category. Ideally, the odds ratio

for bridges selected for replacement should increase across the candidacy threshold

categories. These odds ratios as well as the distribution of observed bridges selected

or not selected for replacement are summarized in Tables 5.2 to 5.4. The logistic

regression models, in particular the ETB model, has the best odds ratio distribution

amongst the three thresholds. The constrained linear least squares regression models

perform especially poor, as the odds ratios for event the highest score category are

significantly below one.

5.5 Summary and Recommended Prediction Model

The statistical models developed in the previous chapter were subjected to a num-

ber of tests to analyze their relative predictive accuracy and distribution of priori-

tization scores. Overall, the logistic regression models were found to have a better

distribution of scores and improved predictive accuracy than CLLS models. Among

the predictive accuracy tests and top ten bridge score replacement classification test,

the LRB model was found to have the best ranking among the two of the four tests,

while overall, the ERB and LRB model were found to have the best average rela-

tive rankings. However, compared to the LRB model, the ERB model was found to

have more observed bridges selected for replacement among the top ten prioritization

scores, a smoother distribution of scores for the bridges selected for replacement, as

well as a more ideal odds ratio for bridges to be selected rather not selected among the
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“very good” replacement candidate range. Consequently, the recommended statisti-

cal model for the analysis performed is the ERB model, which was based on binary

logistic regression using ECDF-derived value functions and maintenance performance

measures that use maintenance costs relative to the replacement cost. It should be

noted that, due to similar performance between the ERB and LRB models, it is likely

that modest improvement may be possible by combining some performance measures

with ECDF-derived value functions with others defined using linear value functions

with total maintenance costs and binary logistic regression. Additionally, these mod-

els can be validated with future inspection and maintenance needs data. Overall,

the ERB model results in some improvements in the predictive values, but does not

provide significant difference in performance relative to the PRI in terms of accuracy

based only on binary classification using a fixed threshold. However, the ERB model

produces significant improvements in the distribution of prioritization scores. Fur-

thermore, the ERB model provides an index that avoids double counting of variables,

incorporates element-level condition ratings, reflects maintenance history, and allows

for direct interpretation of how individual performance measures contribute to the

prioritization score using odds ratios.
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Table 5.2: Distribution of Bridges Among Three Thresholds For Logistic Regression
Models

ETB
Score Not Selected Selected Grand Total Odds Ratio
[0,30) 11885 717 12602 0.060
[50,30) 560 377 937 0.673
[50,100] 140 155 295 1.107
Grand Total 12585 1249 13834

ERB
Score Not Selected Selected Grand Total Odds Ratio
[0,30) 11773 671 12444 0.057
[30,50) 614 383 997 0.624
[50,100] 198 195 393 0.985
Grand Total 12585 1249 13834

LTB
Score Not Replaced Replaced Grand Total Odds Ratio
[0,30) 11847 680 12527 0.057
[30,50) 498 358 856 0.719
[50,100] 240 211 451 0.879
Grand Total 12585 1249 13834

LRB
Score Not Replaced Replaced Grand Total Odds Ratio
[0,30) 11843 673 12516 0.057
[30,50) 495 358 853 0.723
[50,100] 247 218 465 0.883
Grand Total 12585 1249 13834
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Table 5.3: Distribution of Bridges Among Three Thresholds For CLLS Models

ERC
Score Not Selected Selected Grand Total Odds Ratio
[0,30) 8526 125 8651 0.015
[50,30) 1837 245 2082 0.133
[50,100] 2222 879 3101 0.396
Grand Total 12585 1249 13834

ETC
Score Not Selected Selected Grand Total Odds Ratio
[0,30) 8730 149 8879 0.017
[30,50) 1804 258 2062 0.143
[50,100] 2042 842 2884 0.412
Grand Total 12576 1249 13825

LTC
Score Not Selected Selected Grand Total Odds Ratio
[0,30) 3 3 0.000
[30,50) 571 58 629 0.102
[50,100] 12011 1191 13202 0.099
Grand Total 12585 1249 13834

LRC
Score Not Selected Selected Grand Total Odds Ratio
[0,30) 12570 1246 13816 0.099
[30,50) 9 3 12 0.333
[50,100] 6 6 0.000
Grand Total 12585 1249 13834

Table 5.4: Distribution of Bridges Among Three Thresholds For PRI

PRI
Score Not Selected Selected Sum Odds Ratio
[0,30) 10966 303 11269 0.028
[30,50) 1023 409 1432 0.400
[50,100] 588 537 1125 0.913
Grand Total 12577 1249 13826



CHAPTER 6: CONCLUSION

6.1 Summary of Research and Key Findings

This thesis seeks to develop a data-driven prediction tool that can be used to assist

NCDOT Structures Management Unit (SMU) engineers during the decision making

process used in prioritizing highway bridge replacement projects. A literature review

was performed to summarize current approaches for prioritizing bridge replacement

projects and developing risk-based priority indices using decision analysis and util-

ity theory. In addition, prioritization methods for other infrastructure systems that

use statistical regression to create prediction models for prioritization were reviewed.

Shortcoming in the current PRI prioritization index were identified and a new set of

performance measures and criteria were developed for an improved index based on

analysis of historical data. Additionally, performance measures were introduced to

quantify the impact of prior maintenance actions, including burdensome reoccurring

maintenance, on the prioritization of replacement. Strategies for analyzing histori-

cal maintenance data were developed and automated analysis of multiple bridge and

maintenance databases was performed by preparing a macro. New performance mea-

sures were also introduced to incorporate the element level conditions of each of the

bridges by using inspector recommended maintenance lists that indicate the severity

of an element condition and the cost associated with the maintenance action. Multi-



114

ple methods were assessed to determine how maintenance would best correlate with

the values of the bridge engineers. The performance measures were converted into

value functions using two different functional forms that describe the value trade-offs

for each of the bridges, ECDFs and linear functions. The response variable used

for statistical models, the binary indication from the list of bridges selected for re-

placement, was defined and compiled using data sources that consist of active bridge

projects and bridges planned for replacement in the future. A matrix of multiple

regression models, consisting of variations of the functional forms of value functions,

maintenance costs, and regression approaches, was developed. The statistically sig-

nificant performance measures identified within each regression models were discussed

to examine their relative importance and comparisons were made among the models

in the matrix. A threshold of the prioritization scores was defined for each of the

statistical models to produce a binary classification of bridge replacement status by

optimizing the amount of correct predictions of bridges selected and not selected for

replacement. A methodology for determining the best statistical model for predicting

bridge replacement selections based on predictive accuracy and distribution of pri-

ority replacement scores was defined, using established processes used for validating

models identified in the literature review. Ultimately, resulting in a recommended

statistical model for predicting bridge project replacements was identified that used

ECDF-based value functions, maintenance costs computed using total sums, and the

binary logistic regression models.
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6.2 Recommendations for Future Work

The following is a summary of potential improvements and recommendations for

future research:

• The statistical models developed are based on practitioner preference and risk

as reflected in historical decision making, however, no direct practitioner input

was incorporated. Surveying methods, such as those outlined in NCHRP 590

could be used to acquire such feedback. Survey data from bridge engineers

and the statistical regression results can be combined using the backcalculated

nonstandardized normal (BNN) coefficient method as discussed in the literature

review [Moruza et al., 2016].

• The significance of other performance measures not currently considered in the

models could be assessed, including, such as: distance to critical facilities, corre-

lation of individual maintenance actions and probability of bridge replacement

selection, and future ADT. These are measures that have not been identified in

the initial set of performance measures investigate by NCDOT.

• The use of mixed functional forms of value functions, such as using linear and

ECDF value functions together with the same model, to potentially improve

predictive accuracy should be explored.

• The use of value difference to prioritize maintenance actions among different

bridges similar to INDOT’s use of disutility difference between a do-nothing

approach and a list of given maintenance actions with standard disutility effects
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[Sinha et al., 2009] could also be evaluated as a potential improvement to the

methodology.

• Currently, estimated replacement costs are calculated in the BMS using a simple

formula based on the system of the route that the bridge is on and the total

deck area. The use of maintenance performance measures normalized to the

estimated replacement cost should be revisited after research is performed to

improve the replacement cost estimation models. Research on this topic is

currently being investigated [Phillips, 2017].

• The prediction model development process can be generalized to other assets,

such as culverts, sewer pipelines, dams, and other critical infrastructure sys-

tems. Additionally, the methodology could potentially be extended to include

prioritization ratings for rehabilitation and preservation projects.
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Appendix A: Excel VBA Macro Script for Performance Measure Value Function

Development

Option Explicit

Private Sub Import_Data ()

’***************************

’ Variable Type Definitions

’***************************

Dim wb1 As Workbook ’This workbook.

Dim wb2 As Workbook ’The workbook with data to be imported.

Dim FileToOpen As Variant ’Directory location with data.

Dim Sheet As Worksheet ’Sheets in wb2 to be imported.

Dim PasteStart As Range ’Location of where data will be pasted.

Dim c As Range ’Counter variable.

Dim firstAddress As String ’cell that meets find criteria.

Dim arr() As Variant

Dim aCell As Range

Dim LastRow As Long

Dim lastRowA As Long

Dim lastRowB As Long

Dim bCell As Range

Dim PNCell As Range

Dim RNCell As Range

Dim rng1 As Range

Dim i As Integer

Dim RowMatch As Integer

’""""""""""""""""""""""""""""

’ DEFINE the priority level system

’""""""""""""""""""""""""""""

Dim target As Double ’Value to index

Dim arr1 As Variant

Dim arr2 As Variant

Dim arr3 As Variant

Dim arrayCollection () As Variant

Dim arrayWorksheets () As Variant

Dim boo As Variant ’ "True" value if target isin a given array.

Dim x As Variant ’counter variable.

Dim r As Variant ’row counter variable.

Dim Col_Val As Variant ’location of first empty column.

Dim Var As Variant ’priority of a structure.

Dim repl As String ’location of column

Dim priorityLvl As String

Dim ws_Network As Worksheet ’identify worksheet.

Dim ws_BMIPbase As Worksheet

Dim ws_BMIPdyn As Worksheet

Dim ws_Needs As Worksheet

Dim ws_NeedsPivot As Worksheet

Dim ws_BaselineWithPRI As Worksheet

Set wb1 = ThisWorkbook

Set ws_Network = wb1.Sheets("bridges")

Set ws_Needs = wb1.Sheets("Needs")

Set ws_NeedsPivot = wb1.Sheets("NeedsPivot")

Set ws_BaselineWithPRI = wb1.Sheets("BaselineWithPRI")
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’ ’//******************************************************************

’ ’// Import the bridge database file to the main spreadsheet.

’ ’//******************************************************************

’Define this workbook.

’Define the pasting location.

’Clear out previous data on worksheet.

Set wb1 = Workbooks("CDMCommonDatabaseMaker.xlsm")

Set PasteStart = wb1.Sheets("Bridges").Range("A1")

With wb1

.Sheets("Bridges").Cells.Clear

.Sheets("needs").Cells.Clear

.Sheets("needsPivot").Cells.Clear

.Sheets("BaselineWithPRI").Cells.Clear

End With

’"""""""""""""""""""""""""""

’ IMPORT Structure database

’"""""""""""""""""""""""""""

’Define workbook with data to import.

’If no file is selected , end the program.

’Define the workbook to be imported and opened.

’Copy all of the data into an array.

’Increase the paste location to fit the whole array , and paste array.

FileToOpen = Application.GetOpenFilename _

(Title:="Select the Bridge AgileAssets file to import", _

FileFilter :=".xls (*.xls*),")

If FileToOpen = False Then

MsgBox "No file specified", vbExclamation , "ERROR"

Exit Sub

Else

Set wb2 = Workbooks.Open(Filename := FileToOpen)

For Each Sheet In wb2.Sheets

With Sheet.UsedRange

arr = .Value

End With

Next Sheet

wb2.Close

PasteStart.Resize(UBound(arr , 1), UBound(arr , 2)).Value = arr

End If

’""""""""""""""""""""""""""""

’ IMPORT BMIP Databases

’""""""""""""""""""""""""""""

’Define the pasting location.

’Copy all of the data into an array.

’Increase the paste location to fit the whole array ,

’and paste array.

Set PasteStart = wb1.Sheets("BaselineWithPRI").Range("A1")

FileToOpen = Application.GetOpenFilename _

(Title:="Select BMIP Baseline Database file to import", _

FileFilter :=".xls (*.xls*),")

If FileToOpen = False Then

MsgBox "No file specified", vbExclamation , "ERROR"

Exit Sub

Else

Set wb2 = Workbooks.Open(Filename := FileToOpen)

For Each Sheet In wb2.Sheets

With Sheet.UsedRange

arr = .Value

End With

Next Sheet
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wb2.Close

PasteStart.Resize(UBound(arr , 1), UBound(arr , 2)).Value = arr

End If

Sheets("Bridges").Activate

’""""""""""""""""""""""""

’ FLAG Non -Criteria Structures.

’""""""""""""""""""""""""

’find the column with target data

’find last row.

’if the column is found.

With ws_Network

Set aCell = .Rows (1).Find("structure no.")

If Not aCell Is Nothing Then

LastRow = .Range(Split(.Cells(, aCell.Column).Address , _

"$")(1) & .Rows.Count).End(xlUp).Row

End If

End With

For i = 2 To LastRow

Select Case Cells(i, 8).Value

Case "0"

Case "P"

Case "C"

Case Else

Cells(i, 8).Value = "ZZ"

End Select

Next i

’"""""""""""""""""""""""""

’ SORT by structure type.

’"""""""""""""""""""""""""

Sheets("bridges").Activate

With wb1.Sheets("bridges").UsedRange

.Sort _

key1:= Cells(1, 8), _

order1 := xlAscending , _

Header :=xlYes

End With

’""""""""""""""""""""""""""

’ REMOVE the structures not within the given criteria

’""""""""""""""""""""""""""

With Sheets("bridges").Columns (8)

Set c = .Find("ZZ", LookIn := xlValues)

If c <> False Then

firstAddress = c.Address

End If

End With

Sheets("bridges").Range(firstAddress , Cells(i, 8)) _

.EntireRow.Delete

’""""""""""""""""""""""""""""""""""

’ POPULATE arrays with range data

’""""""""""""""""""""""""""""""""""

With ws_BaselineWithPRI

Set aCell = .Rows (1).Find("number")

If Not aCell Is Nothing Then
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LastRow = .Range(Split(.Cells(, aCell.Column) _

.Address , "$")(1) & .Rows.Count).End(xlUp).Row

arr1 = .Range(aCell.Offset (1), _

.Cells(LastRow , aCell.Column))

End If

End With

With ws_Network

’"""""""""""""""""""""""""""""""

’ FIND first empty column and create priority level column.

’"""""""""""""""""""""""""""""""

’Go all the way to the right then go to first col on left.

Col_Val = .Cells(1, .Columns.Count) _

.End(xlToLeft).Column

If Col_Val > 1 Then

Col_Val = Col_Val + 1

End If

.Cells(1, Col_Val).Value = "Priority Level"

’""""""""""""""""""""""""""""""""

’ FIND last row of given column header

’""""""""""""""""""""""""""""""""

’find the column with target data

’if the column is found.

’find last row.

Set aCell = .Rows (1).Find("structure no.")

If Not aCell Is Nothing Then

LastRow = .Range(Split(.Cells(, aCell.Column). _

Address , "$")(1) & .Rows.Count).End(xlUp).Row

Set bCell = .Rows (1).Find("Consider Replacement?")

End If

’""""""""""""""""""""""""""""""""

’ FLAG priority level for the bridges.

’""""""""""""""""""""""""""""""""

For x = 2 To LastRow

target = .Cells(x, aCell.Column).Value

repl = .Cells(x, bCell.Column).Value

Var = .Application.Match(target , arr1 , 0)

If IsError(Var) Then

If repl = "Yes" Then

Var = 0

Else

Var = -100

End If

End If

’""""""""""""""""""""""""""""""""

’ ASSIGN priority level

’""""""""""""""""""""""""""""""""

Select Case Var

Case Is > 0

priorityLvl = "BaselineWithPRI"

Case Is = 0

priorityLvl = "Consider"

Case Is = -100
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priorityLvl = "No Consideration"

End Select

.Cells(x, Col_Val).Value = priorityLvl

Next x

End With

’ ’//******************************************

’ ’// INSPECTOR RECOMMENDED MAINTENANCE NEEDS

’ ’//******************************************

’Define the pasting location.

’Copy all of the data into an array.

’Increase the paste location to fit the whole array ,

’and paste array.

Set PasteStart = wb1.Sheets("Needs").Range("A1")

FileToOpen = Application.GetOpenFilename _

(Title:="Select Inspector Recommended Maintenance Needs" _

& "file to import", _

FileFilter :=".xls (*.xls*),")

If FileToOpen = False Then

MsgBox "No file specified", vbExclamation , "ERROR"

Exit Sub

Else

Set wb2 = Workbooks.Open(Filename := FileToOpen)

For Each Sheet In wb2.Sheets

With Sheet.UsedRange

arr = .Value

End With

Next Sheet

wb2.Close

PasteStart.Resize(UBound(arr , 1), UBound(arr , 2)).Value = arr

End If

Dim PivotSheet As Worksheet

Dim PivotName As String

Dim nTargetCol1 As Integer

Dim nTargetCol2 As Integer

Dim LastColumn As Integer

Dim aHeaderList As Variant

Dim pivotData As Range

PivotName = "NeedsPivot"

Set PivotSheet = Sheets("NeedsPivot")

’ ’//*******************************************************************

’ ’// CREATE TOTAL COST COLUMN

’ ’//*******************************************************************

With ws_Needs

.Activate

’Define boundaries.

LastColumn = fFindLastColumn

LastRow = fFindLastRow

aHeaderList = fCreateHeaderList

’Return the column of the queried attributes.

nTargetCol1 = Application.Match("Quantity", aHeaderList , 0)

nTargetCol2 = Application.Match("Actual Unit Cost", aHeaderList , 0)

.Cells(1, LastColumn + 1) = "Total Cost"

’Return the product of quantity and actual unit cost in the last

’row.

For x = 2 To LastRow

.Cells(x, LastColumn + 1) = .Cells(x, nTargetCol1) * _

.Cells(x, nTargetCol2)

Next x
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’ ’//*******************************************************************

’ ’// DEFINE source data for pivot table.

’ ’//*******************************************************************

’Redefine the table to include the new Total Cost Column

LastColumn = LastColumn + 1

’Create a regular table with the maintenance needs data.

fCreateTable ("NeedsTable")

’Define source data for the pivot table.

ActiveWorkbook.PivotCaches.Create(SourceType :=xlDatabase , SourceData := _

"NeedsTable", Version := xlPivotTableVersion14).CreatePivotTable _

TableDestination :="NeedsPivot!R2C2", TableName :=PivotName , _

DefaultVersion := xlPivotTableVersion14

Sheets("NeedsPivot").Select

Cells(2, 2).Select

ActiveWorkbook.ShowPivotTableFieldList = True

’ ’//*******************************************************************

’ ’// DEFINE attributes to populate pivot table.

’ ’//*******************************************************************

With PivotSheet.PivotTables(PivotName).PivotFields("Structure No.")

.Orientation = xlRowField

.Position = 1

End With

With PivotSheet.PivotTables(PivotName).PivotFields("Priority Type")

.Orientation = xlColumnField

.Position = 1

End With

With PivotSheet.PivotTables(PivotName).PivotFields("Maintenance Code")

.Orientation = xlColumnField

.Position = 2

End With

PivotSheet.PivotTables(PivotName).AddDataField PivotSheet.PivotTables( _

PivotName).PivotFields("Total Cost"), "Sum of Cost", xlSum

’Format the Pivot Table

With PivotSheet.PivotTables(PivotName)

.ColumnGrand = False

.RowGrand = False

.RowAxisLayout xlTabularRow

End With

End With

’ ’//*******************************************************************

’ ’// IMPORT maintenance needs cost data to the Network Master sheet.

’ ’//*******************************************************************

’Define location for importing data.

With ws_Network

.Activate

lastRowA = fFindLastRow

Set aCell = .Rows (1).Find("structure no.")

End With

’Find locations of wanted attributes in the pivot table.

With ws_NeedsPivot

.Activate

LastRow = fFindLastRow

Set bCell = .Rows (4).Find("structure no.")

Set PNCell = .Rows (3).Find("Priority Maintenance Total")

Set RNCell = .Rows (3).Find("Recommended Maintenance Total")

LastColumn = RNCell.Column

End With
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’ ’//*******************************************************************

’ ’// MATCH attribute data to global key.

’ ’//*******************************************************************

’Define the Global Key table

Dim rGlobalKeys As Range

Dim rLocalDatabase As Range

Dim rPriStart As Range

Dim rRecStart As Range

Dim lastColumnA As Integer

’Define Search parameter ranges.

ws_Network.Activate

Set rGlobalKeys = ws_Network.Range(Cells(2, aCell.Column), _

Cells(lastRowA , aCell.Column))

ws_NeedsPivot.Activate

Set rLocalDatabase = ws_NeedsPivot.Range(Cells(bCell.Row + 1, _

bCell.Column), Cells(LastRow , LastColumn))

’Write name of column to be populated in the global database.

With ws_Network

.Activate

lastColumnA = fFindLastColumn

.Cells(1, lastColumnA + 1).Value = "Priority Maintenance Total"

.Cells(1, lastColumnA + 2).Value = "Recommended " _

& "Maintenance Total"

’Define starting points of column to populate.

Set rPriStart = .Cells(2, lastColumnA + 1)

Set rRecStart = .Cells(2, lastColumnA + 2)

Dim rPopRange As Range

’Populate columns.

Set rPopRange = Range(rPriStart , Cells(lastRowA , rPriStart.Column))

rPopRange = Application.WorksheetFunction.VLookup(rGlobalKeys , _

rLocalDatabase , 32, False)

Set rPopRange = Range(rRecStart , Cells(lastRowA , rRecStart.Column))

End With

End Sub

Function fFindLastColumn () As Integer

With ActiveSheet

fFindLastColumn = .Cells(1, .Columns.Count).End(xlToLeft).Column

End With

End Function

Function fFindLastRow () As Double

With ActiveSheet

If Application.WorksheetFunction.CountA (. Cells) <> 0 Then

fFindLastRow = .Cells.Find(what:=".", _

after :=. Range("a1"), _

lookat :=xlPart , _

LookIn :=xlFormulas , _

searchorder :=xlByRows , _

searchdirection := xlPrevious , _

MatchCase :=False).Row

Else

fFindLastRow = 1

End If

End With

End Function
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Public Function fCreateHeaderList () As Variant

’Requires nLastCol

Dim nLastCol As Integer

Dim origin As Range

nLastCol = fFindLastColumn

With ActiveSheet

Set origin = .Cells(1, 1)

fCreateHeaderList = .Range(origin , .Cells(1, nLastCol)).Value

End With

End Function

Function fCreateValueArray(sAttName As String) As Variant

’assumes data is on activesheet.

’finds attribute name in header and creates an

’array of the associated data.

Dim nLastCol As Integer

Dim nLastRow As Double

Dim rOrigin As Range

Dim aHeaderList As Variant

Dim nTargetCol As Variant

Dim rng As Range

’define parameters.

nLastCol = fFindLastColumn

nLastRow = fFindLastRow

Set rOrigin = ActiveSheet.Cells(1, 1)

’create header array.

aHeaderList = fCreateHeaderList

’Return the column of the queried attribute.

nTargetCol = Application.Match(sAttName , aHeaderList , 0)

’Create array of the attribute values.

Set rng = ActiveSheet.Range(Cells(rOrigin.Row + 1, _

nTargetCol), Cells(nLastRow , nTargetCol))

fCreateValueArray = rng.Value

End Function

Function fCreateTable(sTableName As String)

’Monday , 2/13/2017 ANA

’Creates a table with all range data on active sheet.

Dim rData As Range

With ActiveSheet

Set rData = .UsedRange

.ListObjects.Add(xlSrcRange , rData , , xlYes).Name = sTableName

End With

End Function

’"""""""""

’Part 2 of Macro

’"""""""""

Sub MaintBurden ()

Dim targetSheet As Worksheet

Dim PasteStart As Range

Dim lastCol As Long

Dim LastRow As Long

Dim sTarget As String

Dim nTargetCol As Long

Dim arr As Variant

Dim i As Long

Dim x As String
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Dim c As Range

Dim firstAddress As String

Dim sTableName As String

Dim PivotName As String

’"""""""""""""""""""""""""""

’ IMPORT Maintenance Burden Database

’"""""""""""""""""""""""""""

’Define worksheet to import data.

Set targetSheet = Sheets("MaintRaw")

With targetSheet

.Activate

.Cells.Clear

Set PasteStart = .Cells(1, 1)

End With

Call mImportFile(PasteStart)

’"""""""""""""""""""""""""""

’ CREATE a structure ID for each structure in

’ the maintenance burden raw data.

’"""""""""""""""""""""""""""

’Define parameters of used range in active sheet.

lastCol = fFindLastColumn

LastRow = fFindLastRow

sTarget = "INV_ELEM_NAME"

’Create a title for column

Cells(1, lastCol + 1) = "Structure ID"

nTargetCol = fFindCol(sTarget)

arr = Range(Cells(2, nTargetCol), Cells(LastRow , nTargetCol)).Value

’convert array strings into numbers.

’must subtract 10000 to convert from 99 county numbers to 100.

For i = LBound(arr) To UBound(arr)

x = arr(i, 1)

x = Val(Mid(x, 2, 3) & Right(x, 4)) - 10000

arr(i, 1) = x

Next i

’Paste array into empty column.

Set PasteStart = Range(Cells(2, lastCol + 1), _

Cells(LastRow , lastCol + 1))

PasteStart.Value = arr

’"""""""""""""""""""""""""""

’ CREATE year column for each structure in the maintenance burden

’ raw data sheet.

’"""""""""""""""""""""""""""

’Create a title for column

lastCol = fFindLastColumn

sTarget = "End_Date"

Cells(1, lastCol + 1) = "Year"

’Find column with target string.

nTargetCol = fFindCol(sTarget)

’Create an array of target column data.

arr = Range(Cells(2, nTargetCol), Cells(LastRow , nTargetCol)).Value
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’convert array strings into years.

For i = LBound(arr) To UBound(arr)

x = arr(i, 1)

x = Val(Mid(x, 7, 4))

arr(i, 1) = x

Next i

’Paste array into empty column.

Set PasteStart = Range(Cells(2, lastCol + 1), _

Cells(LastRow , lastCol + 1))

PasteStart.Value = arr

’"""""""""""""""""""""""""""

’ Remove maintenance actions originating before 2007

’"""""""""""""""""""""""""""

’"""""""""""""""""""""""""

’ SORT by structure type.

’"""""""""""""""""""""""""

lastCol = fFindLastColumn

’Sort column in ascending order.

With ActiveSheet.UsedRange

.Sort _

key1:= Cells(1, lastCol), _

order1 := xlDescending , _

Header :=xlYes

End With

’""""""""""""""""""""""""""

’ REMOVE the structures not within the given criteria

’""""""""""""""""""""""""""

With ActiveSheet.Columns(lastCol)

Set c = .Find (2006 , , xlValues , xlPart , xlByRows , xlNext , _

False , , False)

If c Is Nothing Then

Else

firstAddress = c.Address

ActiveSheet.Range(firstAddress , Cells(LastRow , lastCol _

)).EntireRow.Delete

End If

End With

’""""""""""""""""""""""""""

’ REMOVE potential year typos --- Check

’""""""""""""""""""""""""""

With ActiveSheet.UsedRange

’Sort column in ascending order.

.Sort _

key1:= Cells(1, lastCol), _

order1 := xlAscending , _

Header :=xlYes

End With

With ActiveSheet.Columns(lastCol)

Set c = .Find (2077 , , xlValues , xlPart , xlByRows , xlNext , False , , False)

’hard coded in year.

If c <> False Then

firstAddress = c.Address

End If

End With

ActiveSheet.Range(firstAddress , Cells(LastRow , lastCol)).EntireRow.Delete
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’""""""""""""""""""""""""""

’ REMOVE structures with strange IDs

’""""""""""""""""""""""""""

sTarget = "Structure ID"

nTargetCol = fFindCol(sTarget)

With ActiveSheet.UsedRange

’Sort column in ascending order.

.Sort _

key1:= Cells(1, nTargetCol), _

order1 := xlDescending , _

Header :=xlYes

End With

With ActiveSheet.Columns(nTargetCol)

Set c = .Find (-10000, , xlValues , xlPart , xlByRows , xlNext , False , , False)

’hard coded in strID.

If c <> False Then

firstAddress = c.Address

End If

End With

ActiveSheet.Range(firstAddress , Cells(LastRow , lastCol)).EntireRow.Delete

’""""""""""""""""""""""""""

’ REMOVE actions with negative costs.

’""""""""""""""""""""""""""

sTarget = "TOTAL_COST"

nTargetCol = fFindCol(sTarget)

With ActiveSheet.UsedRange

’Sort column in ascending order.

.Sort _

key1:= Cells(1, nTargetCol), _

order1 := xlDescending , _

Header :=xlYes

End With

With ActiveSheet.Columns(nTargetCol)

.Select

Set c = .Find("(", , xlValues , xlPart , xlByRows , _

xlNext , False , , False)

If c Is Nothing Then

Else

firstAddress = c.Address

c.Select

End If

End With

ActiveSheet.Range(firstAddress , Cells(LastRow , lastCol)) _

.EntireRow.Delete

’""""""""""""""""""""""""""

’ RE-SORT by year

’""""""""""""""""""""""""""

sTarget = "Year"

nTargetCol = fFindCol(sTarget)

With ActiveSheet.UsedRange

’Sort column in ascending order.

.Sort _
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key1:= Cells(1, nTargetCol), _

order1 := xlAscending , _

Header :=xlYes

End With

’""""""""""""""""""""""""""

’ CREATE Table

’""""""""""""""""""""""""""

Sheets("maintraw").Activate

sTableName = "MaintRawTable"

fCreateTable (sTableName)

’remove formulas for speed

’""""""""""""""""""""""""""

’ CREATE Action Classification Column

’""""""""""""""""""""""""""

lastCol = fFindLastColumn

Cells(1, lastCol + 1) = "Action Classification"

Cells(2, lastCol + 1).Formula = _

"=VLOOKUP ([@[ACTIVITY_NAME ]],ActionClassTable ,2)"

’""""""""""""""""""""""""""

’ CREATE PivotTable for Maintenance Burden Action Data

’""""""""""""""""""""""""""

PivotName = "MaintRawPivot"

Sheets("pivot").Cells.Clear

’Define source data for the pivot table.

ActiveWorkbook.PivotCaches.Create _

(SourceType :=xlDatabase , SourceData := _

sTableName , Version := xlPivotTableVersion14).CreatePivotTable _

TableDestination :="Pivot!R1C1", TableName :=PivotName , _

DefaultVersion := xlPivotTableVersion14

Sheets("Pivot").Activate

Cells(1, 1).Select

ActiveWorkbook.ShowPivotTableFieldList = True

With ActiveSheet.PivotTables(PivotName)

With .PivotFields("ACTIVITY_NAME")

.Orientation = xlRowField

.Position = 1

End With

With .PivotFields("TOTAL_COST")

.Orientation = xlDataField

.Position = 1

End With

With .PivotFields("AMOUNT")

.Orientation = xlDataField

.Position = 2

End With

End With

’Format the Pivot Table

With ActiveSheet.PivotTables(PivotName)

.ColumnGrand = False



131

.RowGrand = False

.RowAxisLayout xlTabularRow

.PivotFields("ACTIVITY_NAME").AutoSort _

xlDescending , "sum of total_cost"

End With

’""""""""""""""""""""""""""

’ COPY PivotTable Maintenance Burden data

’""""""""""""""""""""""""""

With Sheets("TotalCostTable")

.Cells.Clear

.Activate

Sheets("Pivot").UsedRange.Copy

.Cells(1, 1).PasteSpecial Paste:= xlPasteValues

LastRow = fFindLastRow

lastCol = fFindLastColumn

’Set Title

Cells(1, lastCol + 1) = "Average Cost Per Unit"

fCreateTable ("TotalCostTable")

Cells(2, lastCol + 1).Formula = _

"=iferror ([@[Sum of TOTAL_COST ]] / [@[Count of AMOUNT ]],0)"

End With

With Sheets("AverageCostTable")

.Cells.Clear

.Activate

Sheets("TotalCostTable").UsedRange.Copy

.Cells(1, 1).PasteSpecial Paste:= xlPasteValues

.UsedRange.Sort _

key1:= Cells(1, 4), _

order1 := xlDescending , _

Header :=xlYes

fCreateTable ("AverageCostTable")

End With

’""""""""""""""""""""""""""

’ CREATE PivotTable for Individual Bridge Burden Total Cost

’""""""""""""""""""""""""""

PivotName = "BridgeBurdenTotCostTable"

wsDest = "BridgeBurdenTotCost"

Sheets(wsDest).Cells.Clear

’Define source data for the pivot table.

ActiveWorkbook.PivotCaches.Create(SourceType :=xlDatabase , SourceData := _

sTableName , Version := xlPivotTableVersion14).CreatePivotTable _

TableDestination := wsDest & "!R1C1", TableName :=PivotName , _

DefaultVersion := xlPivotTableVersion14

Sheets("BridgeBurdenTotCost").Activate

Cells(1, 1).Select

ActiveWorkbook.ShowPivotTableFieldList = True

With ActiveSheet.PivotTables(PivotName)

With .PivotFields("Structure ID")

.Orientation = xlRowField

.Position = 1

End With

With .PivotFields("TOTAL_COST")

.Orientation = xlDataField
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.Position = 1

End With

’Include cost for each burden classification.

With .PivotFields("Action Classification")

.Orientation = xlColumnField

.Position = 1

End With

End With

’Format the Pivot Table

With ActiveSheet.PivotTables(PivotName)

.ColumnGrand = False

.RowGrand = True

.GrandTotalName = "Total Burden Cost"

.RowAxisLayout xlTabularRow

.PivotFields("structure ID").AutoSort _

xlAscending , "structure ID"

End With

’""""""""""""""""""""""""""

’ CREATE PivotTable for Individual Bridge Burden REOCCURING Cost

’""""""""""""""""""""""""""

PivotName = "BridgeBurdenReocCostTable"

wsDest = "BridgeBurdenReocCost"

Sheets(wsDest).Cells.Clear

’Define source data for the pivot table.

ActiveWorkbook.PivotCaches.Create(SourceType :=xlDatabase , SourceData := _

sTableName , Version := xlPivotTableVersion14).CreatePivotTable _

TableDestination := wsDest & "!R1C1", TableName :=PivotName , _

DefaultVersion := xlPivotTableVersion14

Sheets(wsDest).Activate

’Cells(1, 1).Select

ActiveWorkbook.ShowPivotTableFieldList = True

With ActiveSheet.PivotTables(PivotName)

With .PivotFields("Structure ID")

.Orientation = xlRowField

.Position = 1

End With

With .PivotFields("Activity_Name")

.Orientation = xlRowField

.Position = 2

End With

With .PivotFields("Activity_Name")

.Orientation = xlDataField

.Position = 1

.Name = "Count of Activity Name"

.Function = xlCount

End With

With .PivotFields("TOTAL_COST")

.Orientation = xlDataField

.Name = "Reoccuring Cost"

.Position = 2

End With

’Remove any non reoccuring actions

.PivotFields("ACTIVITY_NAME").PivotFilters.Add _

Type:= xlValueDoesNotEqual , _

DataField :=. PivotFields("Count of Activity Name"), _

Value1 :=1

.PivotFields("Structure ID").ShowDetail = False
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With .PivotFields("Action Classification")

.Orientation = xlColumnLabels

.Position = 2

End With

End With

’""""""""""""""""""""""""""

’ Extract data from the maintenance burden total cost

’ to the bridges sheet

’""""""""""""""""""""""""""

’Identify the attributes that are wanted from the local dataset.

Sheets("bridges").Activate

sTarget = "Recommended Maintenance Total"

nCol = fFindCol(sTarget) + 1

nLrow = fFindLastRow

nlcol = fFindLastColumn

Set rDel = Range(Cells(1, nCol), Cells(nLrow , nlcol))

rDel.Clear

Application.DisplayAlerts = True

Application.DisplayAlerts = False

’Define the global key for indexing as the structure ID ’s.

Set globalkey = Range(Cells(2, 7), Cells(fFindLastRow , 7))

Set destRange = Range(Cells(2, fFindLastColumn2 + 1), _

Cells(fFindLastRow , fFindLastColumn2 + 1))

Set colTitle = Cells(1, fFindLastColumn + 1)

Sheets("BridgeBurdenTotCost").Activate

Set localKey = Sheets("BridgeBurdenTotCost").UsedRange

Set indexRange = localKey.Offset(0, 1)

Sheets("bridges").Activate

’Identify the structure numbers that are in the global dataset.

’Determine if there is a match between the structure numbers

’between the global and local dataset.

’Return the local matching row number.

’Create an array to collect returned data.

’Return data from given columns and matching row number to array.

’If no match , then print "0".

’print array to spreadsheet.

For y = 2 To 6

Set colTitle = Cells(1, fFindLastColumn + 1)

destRange.Value = WorksheetFunction.VLookup(globalkey , _

localKey , y, False)

If y <> 6 Then

colTitle.Value = localKey.Cells(2, y) & " Total"

Else

colTitle.Value = localKey.Cells(2, y)

End If

destRange.Replace "#N/A", "0"

destRange.Replace "", "0"

Set destRange = destRange.Offset(0, 1)
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Next y

Sheets("BridgeBurdenReocCost").Activate

Set localKey = Sheets("BridgeBurdenReocCost").UsedRange

Sheets("bridges").Activate

For y = 6 To 11

Set colTitle = Cells(1, fFindLastColumn + 1)

colTitle.Value = "Reoccurring " & localKey.Cells(3, y)

If colTitle.Value = "Reoccurring " Then

colTitle.Value = localKey.Cells(2, y)

End If

destRange.Value = WorksheetFunction.VLookup(globalkey , _

localKey , y, False)

destRange.Replace "#N/A", "0"

destRange.Replace "", "0"

Set destRange = destRange.Offset(0, 1)

Next y

Application.DisplayAlerts = True

Debug.Print "Results: There are " & Sheets("maintRaw") _

.UsedRange.Rows.Count _

; " maintenance burden actions remaining in the raw data."

’Import the Bridge Posting , Fracture Critical ,

’and Percent ADTT from the NBI database to the common database.

Application.DisplayAlerts = False

’Define attributes to import from NBI.

Dim coll As New Collection

coll.Add "Bridge Posting"

coll.Add "Fracture Critical"

coll.Add "Percent ADTT"

’Define parameters

With Sheets("bridges")

.Activate

nLastRow = fFindLastRow

nDestCol = fFindLastColumn + 1

End With

Set localKey = Sheets("NBIval").UsedRange

’start ’y’ loop

For y = 1 To coll.Count

Set colTitle = Cells(1, nDestCol)

colTitle.Value = coll(y)

Sheets("NBIval").Activate

Z = fFindCol(coll(y))

Sheets("Bridges").Activate

With destRange

.Value = WorksheetFunction.VLookup _

(globalkey , localKey , Z, False)

.Replace "#N/A", "0"

.Replace "", "0"

End With

Set destRange = destRange.Offset(0, 1)
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nDestCol = nDestCol + 1

’End ’y’ loop

Next y

Application.DisplayAlerts = True

Sheets("Bridges").Activate

destCol = fFindLastColumn + 1

Cells(1, destCol).Value = "ADTT"

Set rDest = Range(Cells(2, destCol), Cells(fFindLastRow , destCol))

nADT = fFindCol("ADT")

nPADTT = fFindCol("Percent ADTT")

For Each cell In rDest

cell.Value = Cells(cell.Row , nADT) * Cells(cell.Row , nPADTT) / 100

Next cell

’Calculate the Truck Volume/Capacity ratio.

Sheets("Bridges").Activate

destCol = fFindLastColumn + 1

Cells(1, destCol).Value = "Truck Volume/Capacity"

Set rDest = Range(Cells(2, destCol), _

Cells(fFindLastRow , destCol))

nSpans = fFindCol("Through Lanes On")

nADTT = fFindCol("ADTT")

For Each cell In rDest

If Cells(cell.Row , nSpans).Value = 0 Then

cell.Value = 0

Else

cell.Value = Cells(cell.Row , nADTT) _

/ Cells(cell.Row , nSpans)

End If

Next cell

’ ’\\****************************************

’ ’\\ Produce the ECDFs

’ ’\\****************************************

With Sheets("ECDFtargets")

.Activate

rAttributelist = ActiveSheet.ListObjects("attributeECDFrequest") _

.ListColumns (1).DataBodyRange

End With

’Delete previous value function data.

Sheets("valuefcns").Cells.Delete

Sheets("valuePivot").Cells.Delete

For Each cell In rAttributelist

sTarget = cell

With Sheets("Bridges")

.Activate

LastRow = fFindLastRow

nTargetCol = fFindCol(sTarget)
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Set rTargetData = .Range(Cells(2, nTargetCol), _

Cells(LastRow , nTargetCol))

End With

With Sheets("Valuefcns")

.Activate

lastCol = fFindLastColumn + 1

Cells(1, lastCol).Value = sTarget

Cells(1, lastCol + 1).Value = sTarget & " Value Function"

Set rDest = .Range(Cells(2, lastCol), Cells(LastRow , lastCol))

rDest.Value = rTargetData.Value

End With

rDest.Sort key1:=Cells(2, lastCol), order1 := xlAscending , Header :=xlNo

’Remove N assuming that N does not equal 0.

lastRow2 = WorksheetFunction.CountA(rDest)

Set rDest = rDest.Offset(, 1)

’"""""""""""

’vLookUp if the attribute needs to be inverted

’"""""""""""

Sheets("ECDFtargets").Activate

’set local key as the data related to the attribute ECDF request table.

Set localKey = ActiveSheet.ListObjects("attributeECDFrequest").DataBodyRange

Sheets("bridges").Activate

sECDFopt = WorksheetFunction.VLookup(sTarget , localKey , 2, False)

Sheets("valuefcns").Activate

If sECDFopt = "Invert" Then

’Inverted ECDF loop

For i = 2 To lastRow2 + 1

Sheets("ValueFcns").Cells(i, lastCol + 1).Value = 100 - ((i - 1) / (lastRow2) *

100)

Next i

Else

’Regular ECDF loop

For i = 2 To lastRow2 + 1

Sheets("ValueFcns").Cells(i, lastCol + 1).Value = (i - 1) / (lastRow2) * 100

Next i

End If

Next cell

’’’’’’’’’’’’

’Make tables for each attribute utility function

’This is for the ValuePivot tab.

’Counter for table names

q = 0

r = -2

’ i is for the spacing of the tables

’Start ’i’ loop.

For i = 2 To fFindLastColumn Step 2

’Create Pivot table

’r is the spacing between pivot tables in "valuePivot ".

q = q + 1

r = r + 4

Sheets("ValueFcns").Activate

’identify attribute location.

’Select Range to make table

’Make table

Set rAttribute = Cells(1, i)

Set rVal = Cells(1, i + 1)

Set rUtility = Range(rAttribute , rVal)

Set rUtility = Range(rUtility , rUtility.End(xlDown))

Set rDest = Sheets("ValuePivot").Cells(1, r)
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ActiveSheet.ListObjects.Add(xlSrcRange , rUtility , , xlYes) _

.Name = "ValTable" & q

sTableSource = "ValTable" & q

sPivotName = "ValPivot" & q

Sheets("ValuePivot").Activate

ActiveWorkbook.PivotCaches.Create(SourceType :=xlDatabase , SourceData := _

sTableSource , Version :=6).CreatePivotTable TableDestination :=rDest _

, TableName := sPivotName , DefaultVersion :=6

’Adjust Settings for pivot Table

With ActiveSheet.PivotTables(sPivotName)

With .PivotFields(rAttribute.Value)

.Orientation = xlRowField

.Position = 1

End With

.AddDataField ActiveSheet.PivotTables( _

sPivotName).PivotFields( _

rVal.Value), _

"Average Utility Value", xlAverage

.ColumnGrand = False

.RowGrand = False

End With

ActiveSheet.PivotTables(sPivotName).CompactLayoutRowHeader _

= rAttribute.Value

’Calculate the Scaled Value for each value function.

LastCol1 = fFindLastColumn

Cells(2, LastCol1).Select

Range(Selection , Selection.End(xlDown)).Select

nLastRow = Selection.Count + 1

A = WorksheetFunction.Min(Range(Cells(2, LastCol1), _

Cells(nLastRow , LastCol1)))

B = WorksheetFunction.Max(Range(Cells(2, LastCol1), _

Cells(nLastRow , LastCol1)))

Cells(1, LastCol1 + 1).Value = "Scaled Value"

’Input the scaled calculation.

For u = 2 To nLastRow

Cells(u, LastCol1 + 1).Value = _

(Cells(u, LastCol1) - A) / (B - A) * 100

Next u

’End ’i’ loop

Next i

’Put attribute names in the common database.

Sheets("ecdfTargets").Activate

Sheets("ecdfTargets").Cells(2, 4).Select

Set rNames = Range(Selection , Selection.End(xlDown))

rNames.Select

Selection.Copy

Sheets("bridges").Activate

Cells(1, MaintBurdenModule.fFindLastColumn + 1).Select

Selection.PasteSpecial Paste := xlPasteValues , _
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Operation :=xlNone , SkipBlanks := _

False , transpose :=True

Application.CutCopyMode = False

’names of attributes for ECDF creation.

Sheets("ecdfTargets").Activate

Sheets("ecdfTargets").Cells(2, 1).Select

actualnames = Range(Selection , Selection.End(xlDown))

’"""""""""""

’vLookUp the value for each attribute

’"""""""""""

Sheets("bridges").Activate

nBridgeLastRow = fFindLastRow

For i = 1 To UBound(actualnames)

’define common database references.

Sheets("bridges").Activate

nTargetCol = fFindCol(actualnames(i, 1))

Set globalkey = Range(Cells(2, nTargetCol), _

Cells(nBridgeLastRow , nTargetCol))

’destRange is the first unused column.

Set destRange = Range(Cells(2, fFindLastColumn2 + 1), _

Cells(fFindLastRow , fFindLastColumn2 + 1))

’define local database for indexing.

Sheets("valuepivot").Activate

sTarget = actualnames(i, 1)

nTargetCol = fFindCol(sTarget)

Range(Cells(2, nTargetCol), Cells(2, nTargetCol + 2)).Select

Set localKey = Range(Selection , Selection.End(xlDown))

Sheets("bridges").Activate

destRange.Value = WorksheetFunction.VLookup _

(globalkey , localKey , 3, False)

Next i

End Sub

Sub mImportFile(PasteStart)

’""""""""""""""""""""""""

’ Imports a data sheet that the user chooses to given worksheet.

’""""""""""""""""""""""""

’Define workbook with data to import. Using the Agile Assets

’network master data.

’If no file is selected , end the program.

’Define the workbook to be imported and opened.

’Increase the paste location to fit the whole array , and paste array.

FileToOpen = Application.GetOpenFilename _

(Title:="Select the file to import", _

FileFilter :=".xls (*.xls*),")
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If FileToOpen = False Then

MsgBox "No file specified", vbExclamation , "ERROR"

Exit Sub

Else

Set wb2 = Workbooks.Open(Filename := FileToOpen)

arr = wb2.Sheets (1).UsedRange.Value

wb2.Close

PasteStart.Resize(UBound(arr , 1), UBound(arr , 2)).Value = arr

End If

End Sub

Function fFindLastColumn () As Integer

’""""""""""""""""""""""""

’ FINDS last column number of used range in active sheet.

’""""""""""""""""""""""""

With ActiveSheet

fFindLastColumn = .Cells(1, .Columns.Count).End(xlToLeft).Column

End With

End Function

Function fFindLastRow () As Double

’""""""""""""""""""""""""

’ FINDS last row number of used range in active sheet.

’""""""""""""""""""""""""

With ActiveSheet

If Application.WorksheetFunction.CountA (. Cells) <> 0 Then

fFindLastRow = .Cells.Find(what:=".", _

after :=. Range("a1"), _

lookat :=xlPart , _

LookIn :=xlFormulas , _

searchorder :=xlByRows , _

searchdirection := xlPrevious , _

MatchCase :=False).Row

Else

fFindLastRow = 1

End If

End With

End Function

Function fFindCol(sTarget) As Integer

’""""""""""""""""""""""""

’ FINDS column number of target string item.

’""""""""""""""""""""""""

With ActiveSheet

Set origin = .Cells(1, 1)

LastColumn = fFindLastColumn

fFindCol = .Range(origin , Cells(1, LastColumn)).Find _

(sTarget , lookat := xlWhole).Column

End With

End Function

Function fFindLastColumn2 () As Integer

’""""""""""""""""""""""""

’ FINDS last column number of used range in active sheet.

’ Looks at second column. Quick fix for final data collection

’""""""""""""""""""""""""

With ActiveSheet

fFindLastColumn2 = .Cells(2, .Columns.Count).End(xlToLeft).Column
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End With

End Function

Function fCreateTable(sTableName As String)

’Monday , 2/13/2017 ANA

’EDIT Tuesday , 3/14/2017 ANA

’Creates a table with all range data on active sheet.

’The sTableName will be the name of the table for future reference.

Dim rData As Range

With ActiveSheet

Set rData = .UsedRange

.ListObjects.Add(xlSrcRange , rData , , xlYes).Name = sTableName

End With

End Function

Sub MakeOneColumn ()

’Convert the different columns of the bridges that are currently

’being replaced into one column.

Dim vaCells As Variant

Dim vOutput () As Variant

Dim i As Long , j As Long

Dim lRow As Long

If TypeName(Selection) = "Range" Then

If Selection.Count > 1 Then

If Selection.Count <= Selection.Parent.Rows.Count Then

vaCells = Selection.Value

ReDim vOutput (1 To UBound(vaCells , 1) * _

UBound(vaCells , 2), 1 To 1)

For j = LBound(vaCells , 2) To UBound(vaCells , 2)

For i = LBound(vaCells , 1) To UBound(vaCells , 1)

If Len(vaCells(i, j)) > 0 Then

lRow = lRow + 1

vOutput(lRow , 1) = vaCells(i, j)

End If

Next i

Next j

Selection.ClearContents

Selection.Cells (1).Resize(lRow).Value = vOutput

End If

End If

End If

End Sub


