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ABSTRACT

WALID SHALABY. Creating New Concept-based Representations for Superior
Text Analysis and Retrieval. (Under the direction of DR. WLODEK ZADROZNY)

Text analytics represent a set of scalable techniques that mine unstructured and

semi-structured textual resources in order to extract useful knowledge for performing

a task at hand. For example, document clustering and classification, entity extraction,

text summarization, semantic search, and others. How to adequately represent the

input text in a machine-interpretable representation that captures its syntactic and

semantic structures is still an open research problem.

In this thesis, we identify and address the limitations of existing text representa-

tion models. The challenges relate to three major categories: efficiency, effectiveness,

and usability of the text representation. We propose new concept-based represen-

tations leveraging distributed representations and existing knowledge bases in order

to address those challenges. Existing models such as the Bag-of-Words (BoW) and

the bag of n-grams suffer from many drawbacks such as: 1) sparsity and the curse of

dimensionality impacting their space and computational efficiency, and 2) vocabulary

mismatch and lack of word order impacting their effectiveness. Distributional seman-

tics models which represent words as numerical vectors are more efficient but unin-

terpretable. Explicit concept space models which represent text as Bag-of-Concepts

(BoC) are easy to understand and interact with but sparse and suffer from concept

mismatch.

Our objective in this thesis is to improve the analysis and retrieval of textual data
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especially technical texts (e.g., patents, scientific literature...etc) using the proposed

concept-based representations. We show through empirical evaluation that: 1) signif-

icant performance improvements can be achieved using our representations with both

long technical text (patents) and short text (search queries), 2) our concept-based rep-

resentations greatly facilitate interactive and visual analysis of technical text, and 3)

the proposed conceptual representations are generic and applicable to many academic

benchmark datasets where we achieve superior state-of-the-art performance.

First, we present a simple and efficient knowledge-based technique for reducing

the dimensionality of the bag of n-grams model. Using our unsupervised technique

on a benchmark dataset for patent classification, we achieve 13-fold reduction in the

number of bigram features and 1.7% increase in classification accuracy over the BoW

baseline.

Second, we address the challenge of short text representation, especially search

queries which lack context, order, and syntax (e.g., ”software engineer google”,”google

software engineer”). We propose a novel and effective representation to create an

ensemble of contextual, knowledge-based, and lexical features for the given short text.

We report the performance of this ensemble representation on entity type recognition

of search queries in the recruitment domain. The results show superior performance

of our approach over traditional BoW and word embedding models where we achieve

97% micro-averaged F1 score.

Third, we present Mined Semantic Analysis (MSA), a novel concept-based represen-

tation model which utilizes unsupervised data mining techniques in order to discover

concept-concept associations. These associations are used subsequently to enrich the



v

BoC representation of the given text. Quantitative evaluation of MSA on bench-

mark datasets for measuring text semantic similarity shows its superior performance.

Additionally, we demonstrate the usability of MSA representations by implementing

a Web-based semantic-driven visual and interactive framework for innovation and

patent analytics.

Fourth, we propose a neural-based model to learn distributed representations (em-

beddings) of concepts and entities from their mentions in encyclopedic knowledge

bases (e.g., Wikipedia). There are many advantages of this model over sparse rep-

resentations (i.e., BoW and BoC). First, it is space and computationally efficient.

Second, it is more effective as it helps to overcome the concept mismatch problem;

here concepts are matched by comparing their embeddings rather than traditional

string matching. Third, it is expressive and interpretable. To enhance the learned

concept embeddings, we further extend this model by combining the textual knowl-

edge of Wikipedia with the knowledge from Microsoft knowledge graph (Probase). We

empirically evaluate the efficacy of the learned representations on benchmark datasets

for measuring entity semantic relatedness, analogical reasoning, concept categoriza-

tion, argument type identification for semantic parsing, and dataless classification

where we achieve state-of-the-art performance.

Finally, we address the problem of usability of the text representation. We propose

a novel interactive framework for patent retrieval; a domain specific text retrieval task.

The proposed framework leverages distributed representations of concepts and entities

extracted from the patents text. We also propose a simple and practical interactive

relevance feedback mechanism where the user is asked to annotate relevant/irrelevant
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results from the top n hits. We then use this feedback for query reformulation and

term weighting where weights are assigned based on how good each term is at dis-

criminating the relevant vs. irrelevant candidates. First, we demonstrate the efficacy

of the distributed representations on the CLEF-IP 2010 dataset where we achieve

significant improvement of 4.6% in recall over the keyword search baseline. Second,

we simulate interactivity to demonstrate the efficacy of the proposed interactive term

weighting scheme. Simulation results show that we can achieve extra 1.9% to 11.6%

improvement in mean average precision from one interaction iteration outperforming

previous semantic and interactive patent retrieval methods.
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CHAPTER 1: INTRODUCTION

Text analytics have emerged recently as a subfield of natural language processing

(NLP) to address practical and business problems that involve large and complex

collections of textual data. Text analytics represent a set of scalable techniques that

mine unstructured and semi-structured textual resources in order to extract useful

knowledge, which can be used, directly or indirectly, for performing the task at hand.

For example, document clustering and classification, entity extraction, text summa-

rization, semantic search, and others.

One of the major research themes in NLP is concerned with developing represen-

tation models of textual data. The main objective of such models is to transform

the input text into a machine-interpretable representation. For long texts (e.g., news

posts, scientific articles...etc), language models are utilized in order to capture both

the syntactic and semantic regularities in textual structures (words, phrases, and

document). For short texts (e.g., search queries, tweets...etc), knowledge bases (KBs)

are utilized in order to enrich the short contextless text with contextual features and

real-world knowledge required to ”understand” it.
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Table 1: Evaluating semantic similarity between two highly similar text snippets
using various representation models. The BoW (A) is the least successful, while
the concept space representation (C) and distributed representations (B and D) are
relatively better at capturing the semantic similarities.

Snippet#1 Snippet#2

No Model

Chronic obstructive pul-
monary disease is an in-
curable, progressive lung
disease that primarily af-
fects smokers and causes
shortness of breath and
difficulty breathing

Emphysema is a disease
largely associated with
smoking and strikes about 2
million Americans each year

Sim

A. BoW

chronic obstruct pulmonari
diseas incur progress lung

primarili affect smoker caus
short breath difficulti

emphysema diseas larg associ
smoke strike million american
year

0.09

B. Word2Vec 0.88

C. BoC 0.81

D.
Continuous
BoC

0.91

? Emphysema is a different name to Chronic obstructive pulmonary disease.



3

1.1 Text Representation Models

1.1.1 Bag-of-Words (BoW)

The BoW model (aka the unigram model) is the simplest language model. It is

a one-hot1 representation under which textual structures are represented as a vector

of lexical tokens with frequencies disregarding their order, syntactic structures, and

semantics. As we can notice in Table 1-A, the BoW representation is vulnerable to

the vocabulary mismatch problem, where semantically similar texts would have very

low similarity score if they use different vocabulary.

One possible solution to some linguistic limitations of the BoW representation is

to utilize the bag of n-grams representation where the BoW vector is extended to

include tokens of arbitrary length n (e.g., bigrams if n=2, trigrams if n=3, and so

on). This representation though, partially, captures some linguistic patterns (e.g.,

word order and local compositionality), it suffers from two major drawbacks. First,

the curse of dimensionality where the number of possible n-gram sequences grows

exponentially with n. Second, sparsity where only a small number of dimensions in

the vector will have non-zero frequencies for a target textual structure. These two

problems add extra space and computational complexities for applications utilizing

such high dimensional and sparse representation vectors. In addition, similar to the

BoW, the bag of n-gram representation still suffers from the vocabulary mismatch

problem as it uses one-hot vectors.

1The one-hot encoding represents each word as a binary vector whose size is equal to the vocab-
ulary size. All the entries are set to 0 except the entry representing the word is set to 1. The BoW
representation of a document, is the sum of all the one-hot vectors of the document’s words.
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1.1.2 Distributional Semantics

Several other representation paradigms have evolved over decades of research in

NLP in order to overcome some of the inherent linguistic and computational limita-

tions of the n-gram model. One of the most prominent research areas in language

understanding is distributional semantics. These models are inspired by the distribu-

tional hypothesis [75] which emphasizes the idea that similar words tend to appear in

similar contexts and thus have similar contextual distributions. Therefore the mean-

ing of words can be determined by analyzing the statistical patterns of word usage in

various contexts over large textual corpora.

Distributional semantics methods are either corpus-based or lexicon-based depend-

ing on the resource from which world knowledge is acquired and used to represent

the input text as ”meaning” vectors. Corpus-based methods utilize large textual cor-

pora to analyze local word contexts creating co-occurrence statistics between words.

Then these statistics are used to generate implicit representations as low dimensional

real-valued vectors of words (aka embeddings, distributed, continuous or dense vec-

tors). Examples of these methods include LSA [105], LDA [16], and more recently

neural-based embeddings such as Word2Vec [138] and Glove [154]. On the other

hand, lexicon-based methods utilize explicit word relations found in human-built dic-

tionaries such as Wordnet [49] and Wiktionary2 in order to determine word meanings

[22, 218, 155]. The promise of such methods is that: syntactic and semantic features

of words would be encoded in the produced vectors.

2https://www.wiktionary.org
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Table 1-B shows how word embeddings from the Word2Vec model3 could overcome

the vocabulary mismatch problem. As we can notice, by averaging the word vectors

of each text snippet and comparing the resulting average vectors, we obtain a more

representative similarity score of 0.88 compared to the BoW score of 0.09. It is worth

mentioning that, less relevant words to the meaning of the given text (e.g., primarily,

largely, million, year...etc) would still contribute to the average vectors, and thus

might add noise to the final representation of the given text.

1.1.3 Text Conceptualization

Another active line of research is concerned with explicit semantic representations

of texts as bag-of-concepts through text conceptualization. Such methods focus on the

global contexts of terms (i.e., documents in which they appeared), or their properties

in existing KBs in order to figure out their meanings. Text conceptualization is mo-

tivated by the fact that humans understand languages through multi-step cognitive

processes which involve building rich models of the world and making multilevel gen-

eralizations from the input text [209]. One way of automating such generalizations is

through text conceptualization. Either by extracting basic level concepts and entities

from the input text using concept KBs [96, 184], or mapping the whole input into

a concept space that captures its semantics as in ESA [56] and MSA (described in

Chapter 4).

3Word embeddings were obtained by training Word2Vec on Wikipedia. And we use 500 dimen-
sional word vectors.
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1.1.4 Knowledge-based Conceptualization

One major category of conceptualization methods utilizes semi-structured KBs such

as Wikipedia in order to construct the concept space which is defined by all Wikipedia

article titles. Such models have proven efficacy for semantic analysis of textual data

especially short texts where contextual information is missing or insufficient. For

example, measuring semantic similarity/relatedness [56], dataless classification [31,

181, 182, 110], search and relevancy ranking [45], event detection and coreference

resolution [153].

Another category of conceptualization methods utilizes more structured concept

KBs such as Microsoft Knowledge Graph (aka. Probase4) [212]. Probase is a proba-

bilistic KB of millions concepts and their relationships (basically is-a). It was created

by mining billions of Web pages and search logs of Microsoft’s Bing5 repository using

syntactic patterns. The concept KB was then used for text conceptualization to sup-

port text understanding tasks such as clustering of Twitter messages and News titles

[183, 184], search query understanding [210], short text segmentation [210, 86], and

measuring term similarity [96, 109].

Table 1-C shows the Bag-of-Concepts (BoC) representation of both text snippets

using MSA6 (described in Chapter 4). As we can notice, the main focus of snippet#1

is on the disease and its impact on breathing, which is pretty well reflected in the

top concepts. On the other hand, snippet#2 is focused on the disease and smoking

4https://concept.research.microsoft.com
5https://www.bing.com/
6MSA uses Wikipedia as the concept space repository, and we create 500 dimensional BoC vectors

for each snippet.
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which is captured at the top concepts as well. The arrows in Table 1-C, indicate the

position each concept in one BoC appeared on the other BoC. Out of 500, we found

109 common concepts between the two BoC vectors, but they appear at different

ranks. The final similarity score is relatively representative (>0.80). However, it is

less than the Word2Vec model score. One reason for that is the sparseness of the BoC

where each dimension represents a concept and thus the similarity depends on exact

matching between corresponding dimensions. This prevent the scoring function from

matching different but similar concepts. For example, ”Tobacco smoking” appeared

on one side but not the other so its contribution to the similarity is zero though it has

high similarity to ”Smoking” on the other side. The BoC has an upper hand when

it comes to understandability and expressiveness of its dimensions (concepts). The

dimensions of word vectors on the other hand are not readable.

1.1.5 Implicit vs. Explicit Representations

As pointed out by Wang and Wang [209], implicit representations are dense and

thus more computationally efficient. However, these representations are just a bunch

of real-valued numbers, and therefore not human friendly. Besides, representations of

rare and new words are either poor or missing. Explicit representations, on the other

hand, can be easily understood by humans and thus easier to interact with. However,

the concept space is usually very huge, resulting in very large model. Besides, the

BoC suffers from data sparsity causing distant representations for vectors containing

concepts with similar meanings in the concept space.

As we will show in Chapters 6 and Chapter 7, we can overcome the concept mis-
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Figure 1: Example parse trees for ”John hit the ball”.

match problem by learning distributed representations of concepts (concept embed-

dings). By learning such embeddings, it would be easy to compare pairs of concepts

using their embeddings rather than string matching. Table 1-D shows how the same

sparse BoC vectors in row C could be better matched by first performing weighted

average the individual concept vectors to get corresponding continuous BoC vector

(CBoC), and then comparing the average dense vectors to get a more representative

similarity score of 0.91 between the two snippets. Under such CBoC representation,

we make sure that: 1) each concept in the BoC would proportionally contribute to

the final meaning of the given text according to its importance7, and 2) each concept

would proportionally contribute to the overall similarity score even if it appears in

one BoC but not the other (e.g., ”Tobacco smoking”).

1.1.6 Brittleness of Syntactic/Semantic Parsing

Natural Language Understanding is an AI complete problem. Building a computer

program that fully understands the text requires modeling and reasoning about vari-

ous types of world and commonsense knowledge which appeared to be very challenging

task.

7We will describe different concept weighting functions in Chapter 4. Typically, importance is
proportional to the concept rank in the BoC.
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Figure 2: Distribution of Claim-1 length in 4000 patents related to sustainability
(from Rajshekhar et al. [161]).

Current methods to language understanding are limited to simple and/or restricted

tasks. And they try to approximate human-like behavior when it comes to text un-

derstanding. For example, syntactic parsing appears to be an enabler to language

understanding by helping us to understand who did what to whom. Consider the

parse trees of ”John hit the ball” in Figure 1. It is easy having these parse trees to

answer questions like Who hit the ball?, What John hit?...etc. by following the tokens

part-of-speech in the constituency tree (left8), or the branches of the dependency

parse tree (right9). However, syntactic and dependency parsing become brittle when

dealing with very long or very short sentences.

Regarding long text, Rajshekhar et al. [161] highlighted that, ”The average sentence

length in the Wall Street Journal corpus is 19.3 words, ranging from 3 to 20 [189]. And

most natural language parsers are trained on similar corpora. In contrast, when we

look at the US patent corpus, we can find that average patent claims length is longer.

8https://commons.wikimedia.org/wiki/File:Parse tree 1.jpg
9https://commons.wikimedia.org/wiki/File:Parse2.jpg
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For example, on a sample of about 4000 patent related to resilience and sustainability,

the average length of Claim 1 is 147.3 words, ranging from 7 to 1449, with a standard

deviation of 91 words, as depicted in Figure 2. Note that 93% of the claims in this

series are longer than 50 words. We get similar results looking at a week of granted

patents (5200 patents from 2015) where we get the average Claim 1 length to be close

to 190 words. Prior research in this area shows how parsing accuracy decreases with

the length of the sentence. For example, McDonald and Nivre [136] shows a parsing

accuracy drop of 10 points or more per 40 words. This means that an analysis of

the structure for an average Claim 1 is likely to be wrong. An analysis of parsing of

sentences up to the length of 156 by Boullier and Sagot [19] entertain a possibility

that ”(full) parsing of long sentences would be intractable”.”

Brittleness of syntactic parsing appears with short texts as well especially search

queries where syntactic compositionality does not exist most often (e.g., no word

order, no function words, no context...etc). For example, it is quite common with

general purpose search engines that users may use same words in different order to

express the same information need (e.g., software engineer google and google software

engineer). Under these circumstances, the need for concept-based and entity-based

knowledge bases appears to be inevitable in order to enrich our knowledge about

search query entities.

1.2 Thesis Focus

In this thesis, we focus on semantic representations of textual content with special

attention to concept-based representation models. We study the characteristics of
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these models in an attempt to understand and identify the limitations and challenges

associated with them. Understanding such challenges allows us to further propose

adequate and novel solutions to unleash the powers of such models for superior text

mining and retrieval performance. In this section we present these challenges, the

research questions to be addressed, and the hypotheses to be tested throughout the

thesis.

1.2.1 Research Questions

The semantic representation challenges addressed in this thesis relate to three major

categories: efficiency of the representation, effectiveness of the representation, and

usability of the representation.

1. Efficiency of the representation: It refers to the space and computational

complexities to process text under specific representation. Here we address:

• What are the characteristics that make the text representation model

more/less computationally efficient?

• How does the dimensionality of the representation impact its performance

and computational efficiency?

• Can relevant dimensions (features) be acquired from existing KBs, and

what is cost/benefit of this approach with respect to the performance and

efficiency?

• What are the computational challenges of existing concept-based represen-

tations?
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• How can we utilize existing KBs and representation learning to improve the

computational efficiency of the sparse high-dimensional bag-of-concepts

models?

2. Effectiveness of the representation: It refers to the quality of results when

processing text under specific representation. Here we address:

• What is the relation between the dimensionality of the concept-based rep-

resentation and its performance, and how can we quantify such relation?

• How does sparsity affect the performance of the concept-based representa-

tion?

• Can we use existing KBs to increase the effectiveness of existing concept-

based representations? For example, augmenting the bag-of-concepts vec-

tor with more related concepts without supervision.

• How can we exploit existing KBs and distributed representations to more

effectively represent and understand both technical text (e.g. patents) and

short text (e.g., search queries)?

• Which is more effective, distributed or discrete concept vectors?

3. Usability of the representation: It refers to the ability to visualize, under-

stand, and interact with the specific representation. Here we address:

• How can we combine the efficiency of the distributed representations with

the interpretability of the concept-based representations?
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• What visual and interactive techniques can be employed to give non-

experts easy and effective ways to work with the concept-based repre-

sentations?

• How can we evaluate the effectiveness of such interactive frameworks in

real-life applications using user-centered methods (e.g., semantic search

using concept-based representations and interactive query reformulation)?

1.2.2 Hypotheses

We test several hypotheses in this thesis in order to answer all the aforementioned

research questions.

H1. Existing KBs contain rich and huge amount of both general and domain specific

knowledge. It is hypothesized that concepts and entities in such KBs along

with their relationships could be used to enrich the semantic representation of

textual structures (e.g. technical text) and subsequently improve the retrieval

performance of such structures.

For example, the multiword concepts capture local compositionality and there-

fore could be used as relevant low cost n-gram features to enrich the bag-of-

words representation. In addition, text conceptualization through mapping into

the concept space or identifying basic level concepts could be a prototype for

the human cognitive process of generalization, and thus help better capture the

basic ideas and characteristics of the input text. Consider for example the below

definition:
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”Chronic obstructive pulmonary disease is an incurable, progressive lung

disease that primarily affects tobacco smokers and causes shortness of

breath and difficulty breathing.”

And let’s assume we perform text conceptualization using Wikipedia as the

underlying source of concepts. Here we can easily get all the bold multiword

expressions corresponding to Wikipedia articles (concepts). As we can notice:

1) these concepts are capturing relevant information about the definition, and

2) we can easily obtain up to 4-gram expressions with just intersecting the

our vocabulary with all Wikipedia titles. If we want to obtain such relevant

features with the bag of n-grams, we will have to also include some irrelevant

and noisy features such as the underlined multiword expressions. Moreover, the

vector size will be much larger leading to unnecessary space and computational

complexities when processing such vector.

H2. Distributed representations are fixed length vectors (typically few hundreds).

Therefore they are more space and computationally efficient than the sparse

high dimensional bag-of-concepts representations. The bag-of-concepts, on the

other hand, is more expressive and easy to interact with. It is hypothesized that

we can combine the benefits of both worlds as follows: First, we learn robust

distributed representations of concepts which are the basic building blocks of the

bag-of-concepts. Second, we use these dense concept vectors to generate fully

continuous bag-of-concepts. Finally, we employ the original bag-of-concepts as

the presentation layer, and the continuous bag-of-concepts as the computation
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Table 2: Keywords representing Motorcycle category and a sample from the 20-
newsgroups dataset. Top 5 concepts for each are generated using ESA. Using ex-
act match similarity scoring (ESA) result in 0.0 score as no common concepts exist.
Dense BoC gives higher and more representative similarity score of 0.69.

Category (Motorcycle)
(keywords + top 5 concepts)

Sample (Motorcycle)
(text + top 5 concepts)

ESA Dense
BoC

”bike motorcycle yamaha” ”is it possible to do a wheelie on a mo-
torcycle with shaft drive as the owner of
a v sabre shaftie i can answer from per-
sonal experience aieeeeeeeeeeeeee chuck
smythe dod 0 re shaft drives and wheel-
ies”

0.0 0.69

- Outline of motorcycles and motor-
cycling,
- Yamaha YZ450F,
- Yamaha Motor Company,
- Motorcycle,
- 2002 Grand Prix motorcycle rac-
ing...

- Evel Knievel,
- Wankel engine,
- History of BMW motorcycles,
- Traxxas,
- Gas turbine,

layer. In this way we can combine computational efficiency of distributed rep-

resentations with expressiveness and usability of conceptual representations in

one two-sided concept-based representation.

H3. Current explicit concept representation models use exact string matching in

order to measure the similarity between pairs of bag-of-concepts. This requires

creating a sparse vector with a few hundred concepts in the first place hoping

to have sufficient number of common concepts between the given pair. Creating

such vectors is typically costly (e.g., in case of ESA [56], it requires searching an

index of millions of articles and retrieving the top n hundreds). Dense bag-of-

concepts vectors allow us to match concepts using their embeddings and hence it

guarantees non-zero similarity score between different but related concepts. It

is hypothesized that using such vectors will allow us to operate more efficiently

and effectively with less number of dimensions in the vector space. Therefore,
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we can reduce the cost of creating the bag-of-concepts as we will retrieve less

concepts rather than few hundreds. In addition, presenting less number of

concepts to users will reduce the cognitive load required to interact with them,

thus improving the usability.

Consider the example in Table 2. As we can notice, if the bag-of-concepts

pair has no overlapping concepts. Therefore, the exact match similarity scoring

gives 0.0 similarity. With dense bag-of-concepts, we can overcome this mismatch

problem as similar concepts will have similar embeddings and hence we get a

higher and more representative similarity score of 0.69.

1.3 Thesis Structure

The remainder of this thesis is organized as follows:

In Chapter 2 we focus on the increasing the efficiency of the representation through

dimensionality reduction especially technical text representation. We report a low-

cost approach using knowledge-based concepts for reducing the dimensionality of the

bag of n-grams model, while maintaining competitive performance. We evaluate the

performance of the knowledge-based model on patent classification and show its low

computational and space costs, and its effectiveness on that task.

In Chapter 3 we focus on the increasing the effectiveness of the representation espe-

cially short text representation. We introduce our work on short text understanding

leveraging existing KBs and distributed representations to create an ensemble which

captures contextual, knowledge-based, and lexical features of the given short text.

We report the performance of this ensemble representation on entity type recognition
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of search queries and show its superior performance over traditional bag-of-words and

word embedding models.

In Chapter 4 we focus on the increasing the effectiveness and usability of the bag-

of-concepts. We describe a novel concept space representation model which we name

Mined Semantic Analysis (MSA). MSA employs encyclopedic KBs and data mining

techniques in order to learn concept-concept associations. Thereafter, these associ-

ations are used to enhance the expressiveness of the bag-of-concepts representation.

We report the performance of MSA on measuring the semantic relatedness of words

and sentences and show its effectiveness over other concept-based and vector-based

representation models.

In Chapter 5 we present a case study on implementing a concept-based visual and

interactive framework powered by MSA for innovations and patents analytics. We

demonstrate applying the acquired knowledge from MSA representations to support

many cognition and knowledge-based use cases for innovation analysis including tech-

nology exploration and landscaping, competitive analysis, prior art search and others.

In Chapter 6 and Chapter 7, we focus on increasing the efficiency and effective-

ness of the interpretable bag-of-concepts models. We present our work on learning

concept embeddings utilizing neural networks and large-scale KBs. We also propose

an efficient low cost mechanism for bag-of-concept densification using the learned

embeddings. Through empirical results, we demonstrate the effectiveness of these

embeddings in various tasks including: 1) measuring entity semantic relatedness and

ranking, 2) concept categorization, 3) dataless text classification using continuous

BoC vectors, and 4) analogical reasoning. Additionally, we present a case study to
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extrinsically evaluate the learned embeddings on unsupervised argument type identi-

fication for neural semantic parsing where we achieve competitive performance with

the ability to better generalize to rare and out of vocabulary concept and entity

mentions.

In Chapter 8 and Chapter 9, we focus on increasing the effectiveness and usability

of the representation especially technical text representation. We address a very

challenging text retrieval task; patent prior art search. We start with a literature

review on patent retrieval in Chapter 8. Then, we introduce a novel interactive

framework for patent retrieval leveraging: 1) distributed representations of concepts

and entities extracted from the patents text, and 2) a simple practical relevance

feedback interaction mechanism. We show the efficacy of the proposed framework

through empirical evaluation on a benchmark dataset for patent search where we

outperform previous semantic and interactive patent retrieval methods.

Chapter 10 concludes the thesis, and highlights our contributions and future work.



CHAPTER 2: KNOWLEDGE BASED DIMENSIONALITY REDUCTION FOR
PATENT CLASSIFICATION

In this chapter we focus on the increasing the efficiency of the representation es-

pecially technical text. We address the curse of dimensionality problem associated

with the bag of n-grams representation. We propose a novel and simple technique for

dimensionality reduction using concept mentions in freely available online Knowledge

Bases (KBs) to improve technical text retrieval. The complexity of this method is

linearly proportional to the size of the full feature set, making it applicable efficiently

to huge and complex datasets. We demonstrate the effectiveness of our approach on

patent data, the largest free technical text. We report empirical results on classifi-

cation of the CLEF-IP 2010 dataset using bigram features supported by mentions

in encyclopedic KBs (Wikipedia), lexical KBs (Wiktionary), and statistical lexicons

(GoogleBooks10). Using our unsupervised method, we achieve 13-fold reduction in

the number of bigrams features and 1.7% increase in classification accuracy over the

bag-of-words baseline. Though this accuracy score is not the best reported on this

dataset, it demonstrates that concept-based representations have a potential for in-

creasing technical text retrieval performance. In addition, these results give concrete

evidence that massive reduction in dimensionality and accuracy improvements could

be achieved using our approach alleviating the tradeoff between the representation ef-

10http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
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ficiency and effectiveness. The results also validate our hypothesis that KB concepts

could be used as relevant low cost n-gram features to increase the effectiveness of

the bag-of-words representation without greatly degrade its space and computational

efficiency.

2.1 Background and Related Work

When it comes to text mining, space and computational complexities arise as most

applications involve high dimensional and sparse feature vectors. These complexities

even increase when extending the Bag-of-Words (BoW) model commonly used for

document representation to include (in addition to words/unigrams) linguistic phrases

such as bigrams and trigrams. Despite this additional complexity, these features

proved their significance in different text mining tasks especially text classification

[190, 43]. Therefore, a tradeoff between representation efficiency (in terms of of space

and computation) and effectiveness (in terms of accuracy) that needs to be resolved.

For text classification, many dimensionality reduction techniques were used to re-

solve this tradeoff [104, 215, 16, 215]. These techniques aim to reduce the number

of features (thus increasing efficiency) while keeping most of the variance in the data

(thus maximizing accuracy).

Simple approaches like Term Frequency (TF), Document Frequency (DF), Cate-

gory Frequency Document Frequency (CF-DF), and Term Frequency Inverse Docu-

ment Frequency (TF-IDF) work by first assigning a relevancy score based on feature

counts in the text corpus, and then pruning all those features whose score is under

specific threshold. Other supervised approaches inspired by information theory like
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Information Gain (IG), Mutual Information (MI)11, and Chi-square (χ2) statistic12

work similarly [134]. Another set of approaches like Principal Components Analysis

(PCA) and Independent Component Analysis (ICA) are unsupervised. They work

by finding a reduced set of dimensions on which to project the data such that most

variation of the data is maintained, and then use them to create new low dimensional

feature vectors for the given task. We can notice two main disadvantages of these

transformation methods: 1) they are computationally costly, and 2) the generated

features set cannot be interpreted easily by humans.

Automated patent classification represents a concrete example of the curse of di-

mensionality problem associated with large text documents. Patent data represent the

largest technical text corpus that is freely available. Therefore, the need for effective

dimensionality reduction techniques becomes inevitable for this task. As highlighted

by Benzineb and Guyot [15], automated patent classification gets its importance from:

1) the continuous rise in the number of patents applications every year, 2) the need to

maintain consistent patent classification as new categories and subcategories emerge,

and 3) to serve patent prior art search.

Patent classification assigns a code to each patent document according to a prede-

fined classification scheme. This classification code reflects the technical features of

the patent. Here we focus on the International Patent Classification (IPC) scheme

where the classification hierarchy is defined as a tree structure [15]. The Section level

11MI measures how much information the existence/absence of the feature contributes to predict-
ing the class correctly [134]. IG works similarly

12The χ2 statistic tests the independence of two events. In feature selection, one event corresponds
to the class and the other corresponds to the feature. Dependence implies the feature is relevant in
predicting the class [134].
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is the top one and below come descendant levels; Classes, then Sub-Classes, then

Groups, and finally Sub-groups.

2.1.1 Dimensionality Reduction

Text classification using the BoW representation involves high dimensional feature

spaces. As many classification techniques are computationally sensitive to the size

of feature vectors, different feature reduction approaches were used to alleviate this

problem. Lam and Lee [104] provided a comparative study of four feature selection

methods for text classification; namely: document frequency, category frequency doc-

ument frequency, term frequency inverse document frequency, and Principal Compo-

nents Analysis (PCA). They found that PCA was the most effective method. Another

study by Yang and Pedersen [215] indicated high correlation between document fre-

quency, Information Gain (IG), and chi-square (χ2) scores though better results were

achieved using IG and χ2 when applied to the Reuters corpus13 classification task.

Other data transformation and compression methods were proposed to find low

dimensional spaces that best represent textual data. Blei et al. [16] proposed Latent

Dirichlet Allocation (LDA) which represents each document as a set of topics with

probabilities. LDA with the Reuters dataset achieved a huge vocabulary reduction

with almost the same accuracy compared to the BoW representation. Transformation

methods like PCA and LDA, though effective, are computationally more costly than

our approach. Both PCA and LDA take polynomial time in the number of input

features [185], while our approach is linearly proportional to the size of the full feature

13http://www.daviddlewis.com/resources/testcollections/reuters21578/



23

set, making it more efficient and scalable to huge datasets.

2.1.2 Knowledge Bases in Dimensionality Reduction

The use of knowledge bases for dimensionality reduction was not reported before.

A closely related work by Gabrilovich and Markovitch [55] is the use of Wikipedia

articles for feature generation to enhance text categorization. In this work, each

document BoW is extended to include relevant concepts from Wikipedia articles. It’s

worth noting that this approach aims mainly to expand the corpus vocabulary and

thus increasing the dimensionality of the feature space, therefore, it requires applying

a feature selection technique afterwards to eliminate the irrelevant features.

Wikipedia articles were used extensively for different text mining tasks like co-

reference resolution [164], news visualization [58], and text classification [202, 181].

In the IBM Watson system [34], Wikipedia article titles were used for candidate

answer generation and for data preparation to create title oriented textual resources.

2.1.3 Patent Classification

The use of statistical phrases as features for text classification has been analyzed in

[190, 29, 14], and for patent classification in [43, 66]. Tan et al. [190] explored adding

bigrams to the set of unigram features to enhance classification accuracy. To avoid

high dimensionality, reduction techniques such as information gain, term frequency,

and document frequency was used to keep the most relevant bigrams. The results

indicated significant improvements of accuracy using this approach. Caropreso et al.

[29] noted that, although methods such as document frequency, information gain, and

chi-square assigned higher scores to bigrams than unigrams, bigrams were not effective
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for classifying the Reuters dataset . Bekkerman and Allan [14] justified these contra-

dicting results by hypothesizing that the effectiveness of a small number of ”good”

bigrams is nullified by a huge number of ”junk” bigrams. This hypothesis coincides

with our objective to develop a robust reduction technique that discriminates ”good”

vs. ”junk” bigrams and hence keeps only ”good” ones. In the context of patent

classification, D’hondt et al. [43] reported significant improvement in accuracy when

using bigrams along with unigrams. Nevertheless, their approach expanded the initial

unigrams vocabulary (∼58 thousand terms) by 20-fold when adding bigrams (∼1.1

million terms). This indeed represents an example of the tradeoff between high di-

mensionality and classification improvements associated with statistical phrases used

as classification features.

2.2 Methodology

We propose a novel and simple approach for dimensionality reduction by utilizing

freely available Knowledge Bases (KBs) as resources of relevant n-gram features,

especially bigrams. Free online KBs represent sources of different types of knowledge

including technical expressions definitions and references in the form of concepts and

entities.

As patents language is highly technical and open domain, we utilize three knowledge

sources; namely: Wikipedia article titles, Wiktionary article titles, and GoogleBooks

bigrams. Our hypothesis is that: relevancy of bigrams extracted from patent doc-

uments can be supported by mentions in knowledge sources, therefore, only those

bigrams that are referenced in target knowledge source should be kept and all others
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Figure 3: Architecture of our knowledge-based dimensionality reduction system.

pruned.

Figure 3 shows how we obtain the reduced feature set given a collection of docu-

ments. First, we generate unigram features. Seconds, we generate bigram features

and intersect them with mentions in the three knowledge sources (Wikipedia, Wik-

tionary, and GoogleBooks). Finally, we combine both the unigrams and the filtered

bigrams to obtain the reduced set of features.

2.3 Dataset and Preprocessing

We used the CLEF-IP 2010 patents collection14; it contains approximately 2.6

million documents corresponding to 1.3 million individual patents. The documents are

in XML format, and they may contain text in different languages including English,

German, and French. In our experiments we used approximately 0.5 million English

patent abstracts.

We started parsing the XML documents considering only ones that end with

14http://www.ir-facility.org/collection/
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Table 3: A summary of CLEF-IP 2010 dataset statistics after preprocessing.

All Samples Training Samples Test Samples

# of docs
514,365
(100%)

411,484
(80%)

102,872
(20%)

# of labels 121 121 121
max. labels/doc 12 12 11
min. labels/doc 1 1 1
avg. labels/doc 1.6 1.6 1.6
# of unigrams 65,623 58,661 30,774
# of bigrams 1,261,884 1,073,805 377,338

Figure 4: Frequencies of the training/test samples over the 121 class labels. The long
tail distribution makes classification of unpopular classes, which have small number
of samples, more challenging. For example classes B04 and C06..

”A1.xml” or ”A2.xml” which correspond to patents applications published with/without

prior art search report respectively. We considered only documents where abstract

text was provided in English and description text was not missing. All experiments

used the patent abstract text as the main source of features. Due to some inconsis-

tencies in the data, there were abstract tags attributed as English while the text itself
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Figure 5: Frequencies of the training/test samples over the number of labels per
sample. Almost all samples have at most 4 labels and less than 1% have > 4 labels

was not in English, for this reason, we used a language detection tool 15 to exclude

non-English abstracts.

As shown in Table 3, overall XML filtration resulted in 514,356 English abstracts

which were subsequently divided randomly into two subsets: 1) a training set of

411,484 abstracts representing 80% of the data, and 2) a testing set of 102,872 abstracts

representing 20% of the data. We considered only the codes on class level (1 letter

section symbol + 2 digits class code e.g., ”H01”) which resulted in a total of 121

labels with an average of 1.6 labels per patent document.

Frequencies of the training/testing samples over the 121 labels are shown in Figure

4, the long tail distribution of unpopular labels makes the classification task more

challenging. Distribution of training and testing samples over different numbers of

15https://github.com/saffsd/langid.py/
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Table 4: Knowledge sources concept counts and reduction percentages after intersect-
ing with training samples bigrams. We demonstrate using bigrams only.

Bigrams Source # of Bigrams % of Reduction
Training Set 1,073,805 0%
Wikipedia ∩ Training 41,397 96.14%
Wiktionary ∩ Training 8,764 99.18%
GoogleBooks ∩ Training 54,579 94.92%
(Wikipedia ∪ Wiktionary) ∩ Training 43,456 95.95%
(Wikipedia ∪ GoogleBooks) ∩ Training 81,583 92.40%
(Wiktionary ∪ GoogleBooks) ∩ Training 59,826 94.43%
All ∩ Training 83,393 92.23%

labels is shown in Figure 5; almost all samples have at most 4 labels, and less than

1% of them have > 4 labels.

For preprocessing we followed most preprocessing steps in D’hondt et al. [43]. We

converted all abstract texts into lower case, removed all claims and figures references,

removed all list references, and removed digits and punctuations characters. We then

lemmatized all text tokens. Finally, we ran a simple tokenizer to produce all texts

unigrams and bigrams pruning all those whose document frequency < 2 and term

frequency < 3. Overall the unigrams and bigrams counts are shown in Table 3.

For experiments we collected bigrams from each knowledge source and intersected

them with the whole collection of bigrams keeping only bigrams that are mentioned

in both the corpus and the knowledge source. For Wikipedia (version 2014-09-03)

and Wiktionary (version 2014-09-08), we used all titles of two words, and for Google-

Books (version 2012-07-01) we repeated same procedure using 2-grams books titles.

Thereafter, all bigrams were lemmatized and intersected with lemmatized bigrams

from the training set samples. Table 4 shows bigrams counts and reduction percent-

ages of each source as well as all sources combined. As we can notice, our approach
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resulted in massive reduction in dimensionality of the training set bigrams features.

Even when combining all bigrams from all sources, approximately 13-fold reduction

in dimensionality was achieved resulting in immense reduction of the representation

space complexity and thus increasing its computational efficiency. On the other hand,

our approach is linearly proportional to the number of bigrams in the training set,

hence very efficient for huge feature spaces.

2.4 Experimental Setup

The main goal of the experiments is to investigate the impact of massive dimen-

sionality reduction guided by concepts from KBs on classification accuracy. For this

reason, experiments were not tuned toward achieving the best classification perfor-

mance, but rather to investigate relative gains in accuracy when using KBs concepts

(basically bigrams) compared to using the whole set of bigrams. For experiments, we

used the scikit-learn machine learning library [152], and TF-IDF for feature vector

representation. Classification was then performed using linear SVM classifier which

learns a linear support vector classifier. It is implemented using libLinear16 and scales

very well to problems with millions of instances and features. As our task is multi-

class and multi-label classification, we used One-vs-Rest scheme where a classifier is

built for each class label. Promotion scheme is then followed to determine label(s)

of each sample by selecting label(s) with highest membership probabilities. Because

linear SVM implementation doesn’t support class probabilities, we used the sigmoid

function to convert the linear SVM decision function output (z) into a probability (p)

16http://www.csie.ntu.edu.tw/ cjlin/liblinear/
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Table 5: Classification results of CLEF-IP 2010 dataset. ”Uni” are unigrams, ”Bi”
are bigrams, ”All KB Bi” are bigrams from the three knowledge sources.

No Features Source P R F1
1 Uni 72.50 66.67 69.46
2 Uni ∪ All Bi 75.98 69.59 72.64
3 Uni ∪ Wikipedia Bi 73.68 68.13 70.80
4 Uni ∪ Wiktionary Bi 72.98 67.21 69.98
5 Uni ∪ GoogleBooks 73.46 68.16 70.71
6 Uni ∪ Wikipedia Bi ∪ Wiktionary Bi 73.67 68.18 70.82
7 Uni ∪ Wikipedia Bi ∪ GoogleBooks Bi 73.92 68.59 71.15
8 Uni ∪ Wiktionary Bi ∪ GoogleBooks Bi 73.59 68.30 70.84
9 Uni ∪ All KB Bi 73.94 68.63 71.19

as follows:

p =
1

(1 + e−z)
(1)

After trying different values, we chose a threshold of 0.45 for class membership where

each sample is assigned to label(s) above the threshold with a maximum of 4 labels per

sample. We also configured the classifier to assign a minimum of one label per sample

even if its probability is under the threshold. We report classification accuracy by

measuring Precision (P ), Recall (R), and F1 measure micro-averaged on document

level. For F1 calculation we used the weighted average of P and R as follows:

F1 =
2PR

P +R
(2)

2.5 Results

Table 5 shows classification results of 9 experiments conducted using unigrams,

bigrams, and combinations of both unigrams and bigrams from the three knowledge

sources. These experiments were intended to measure the relative improvement in

accuracy vs. previously reported dimensionality reduction in Table 4. Compared to
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Figure 6: Dimensionality vs. accuracy tradeoff. ”%F1 improvement” is the measure
of relative gain in accuracy with different bigrams combinations considering all bi-
grams ”All Bi” are giving F1 gain of 100% . % of reduction is the measure of relative
gain in dimensionality reduction considering ”All Bi” are giving reduction gain of 0%.
(Wikipedia ”W”, Wiktionary ”K”, GoogleBooks ”G”)

the unigrams F1 value as a baseline; bigrams, which represent as much as ∼18-fold

unigrams size, achieved the best improvement (3.18% - 2nd row) which is very close

to 3.5% improvement achieved by D’hondt et al. [43].

On the other hand, bigrams from different knowledge sources improved the F1 score

(with different degrees) when added to unigrams indicating their relevancy. Among

the three sources, Wikipedia bigrams which is less in size than the unigrams achieved

the best F1 improvement (1.34% - 3rd row), while Wiktionary bigrams which is less

than one-sixth of unigrams size achieved the least improvement (0.52% - 4th row).

In addition, looking at the F1 improvement for bigrams combinations from dif-

ferent knowledge sources, combining bigrams from Wikipedia and GoogleBooks was

better than all other two-source combinations (1.69% - 7th row). Best improvement
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was achieved using bigrams combined from all three sources (1.73% - 9th row). These

results indicate that classification accuracy could be controlled by varying source and

size of the bigrams features. As shown in Figure 6, the more aggressively dimen-

sionality is reduced, the less improvement in F1 could be achieved. In all cases,

our approach improved accuracy with different degrees indicating its relevancy and

effectiveness.

2.6 Conclusion

In this chapter we introduced a novel approach for dimensionality reduction using

free-access, readily available knowledge sources such as Wikipedia, Wiktionary, and

GoogleBooks. Unlike the bag of n-grams document representation which introduces

very high dimensional feature vectors when adding high order n-grams (e.g, bigrams

and trigrams), our approach achieved massive reduction in the number of bigrams

features (92%-99%) and thus reducing the representation space and computational

complexity enormously, especially with big datasets.

Three interesting properties distinguish our approach from other commonly used

feature selection techniques: 1) unlike transformation methods like PCA and LDA,

our technique computational complexity is linearly proportional to the size of the full

feature set, making it scalable to huge and sparse feature spaces, 2) unlike statistical

and information theoretic methods like information gain, mutual information, and chi-

square our technique is unsupervised hence doesn’t require class labels to determine

feature relevancy, and 3) the set of selected features are obtained from the original

feature space and hence easily interpretable by humans.
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Through experiments, we also introduced a comparative study on the impact of

our approach on classification accuracy when using the whole set of bigrams vs. bi-

grams promoted by the knowledge sources. The results in Figure 6 indicate that

there is a tradeoff between representation efficiency (dimensionality reduction) and

representation effectiveness (classification performance). Thus, learning with the full

set of bigrams gave the best results. Nevertheless, our approach gives concrete evi-

dence that, over the unigrams baseline, significant improvement of accuracy is still

achievable (1.73%) with massive dimensionality reduction (92.23%).

The results lead us to conclude that we still face the tradeoff between efficiency and

effectiveness. We think this tradeoff can be eliminated by more careful preparation

of the knowledge-based features; for example, adding selected verb-object pairs from

Wikipedia articles text, and extracting skip-bigrams from titles rather than bigrams

only. The question of what is the smallest subset of features for n dimensional fea-

ture space that gives the best result is still open and requires a brute-force search

(inspecting the 2n-1 possible subsets in the worst case).



CHAPTER 3: ENTITY TYPE RECOGNITION USING AN ENSEMBLE OF
DISTRIBUTIONAL SEMANTIC MODELS TO ENHANCE QUERY

UNDERSTANDING

In this chapter we focus on the increasing the effectiveness of the representation es-

pecially short text (e.g., search queries). Understanding short texts such as tweets and

search queries is challenging because these text structures has no or limited context,

are noisy, and are often ambiguous. Traditional Bag-of-Words (BoW) representation

fails to overcome these limitations. For example, the two queries object oriented de-

veloper and java programmer, though have no common words, are highly related and

should have similar conceptual representations. To address these issues, we present an

ensemble approach for categorizing search query entities in the recruitment domain.

Understanding the types of entities expressed in a search query (Company, Skill,

Job Title, School, etc.) enables more intelligent information retrieval based upon

those entities compared to a traditional keyword-based search. Our approach com-

bines clues from different sources of varying complexity in order to collect real-world

knowledge about query entities. We employ distributional semantics representations

of query entities through two models: 1) contextual vectors generated from concept-

based corpora (Wikipedia), and 2) word embeddings generated from millions of job

postings using Word2Vec. Additionally, our approach utilizes both entity linguistic

properties obtained from WordNet and ontological properties extracted from DBpe-
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dia. We evaluate our approach on a dataset created at CareerBuilder17; one of the

largest job boards in the US. The dataset contains entities extracted from millions of

job seekers/recruiters search queries, job postings, and resume documents. After con-

structing the representations ensemble of search entities, we use supervised machine

learning to infer search entity types. Empirical results show that our approach out-

performs the state-of-the-art Word2Vec model trained on Wikipedia. Moreover, we

achieve micro-averaged F1 score of 97% using the proposed representations ensemble.

3.1 Motivation

Entity Recognition is an information extraction task which refers to identifying

regions of text corresponding to entities. A related sub-task is the Entity Type

Recognition (ETR) which refers to categorizing these entities into a predefined set

of types [95]. The focus of the majority of ETR research has been on Named Entity

Recognition (NER), which typically limits entity types to Person, Location, and Or-

ganization [146, 143, 177, 221]. Most techniques used in ETR rely on a mix of local

information about the context of the entity and external knowledge usually gained

through learning on training data. ETR in search queries is considered extremely

important; a Microsoft’s study reported that 71% of queries submitted to their Bing

search engine contain named entities somewhere, while 20−30% consist only of named

entities [216]. Recognizing the type of entities in queries enables a search engine to

understand the intent of users, which subsequently leads to more accurate results

being returned. ETR in search queries is very challenging, however, due to the lack

17http://www.careerbuilder.com/



36

of textual context surrounding the query. Search queries are usually made of just

a few words, which is typically not enough context to independently and accurately

recognize the types of the entities within a search query. Our research in this chapter

is specifically targeted at the problem of ETR within the job search and recruitment

domain. Unfortunately, none of the published ETR datasets fully resemble the entity

categories within the job search and recruitment domain. Some of the specific entity

categories within this domain include Company, Job Title, School, and Skill, which all

aren’t found explicitly within existing ETR datasets. As a result, we can’t leverage

any existing gazetteers for these entity types.

We introduce a novel system for ETR in search queries which has been applied

successfully within the job search and recruitment domain. The proposed system

utilizes features collected from Wikipedia, DBpedia18, WordNet [49], and a corpus of

more than 60 million job postings provided by CareerBuilder.

We evaluated this system using a dataset provided by CareerBuilder which contains

more than 177K labeled entities. The results demonstrate that our system achieves

a 97% micro-averaged F1 score over all the categories. Because if its high accuracy,

CareerBuilder integrated this system into its semantic search engine [6, 7, 100], which

improved the quality of search results for tens of millions of job seekers every month.

The system is used within the search engine in two ways: 1) offline, to classify a

list of pre-recognized entities extracted from popular queries found in CareerBuilder’s

search logs, and 2) online, to dynamically classify the search entities within new,

previously unseen queries as part of CareerBuilder’s semantic query parser.

18http://wiki.dbpedia.org/
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The main contributions of our approach are:

1. We introduce a novel approach for generating distributional semantics vectors

of named entities in search queries using Wikipedia as an intermediate corpus.

2. Our approach is simple and efficient. It outperforms state-of-the-art techniques

for distributed representations such as Word2Vec.

3. We evaluate our method on the largest labeled entity type dataset within the

recruitment domain achieving a 97% micro-averaged F1 score.

4. We demonstrate increase in overall system accuracy through an ensemble of

features leveraging distributional semantics representations, entity ontologies,

and entity linguistic properties.

3.2 Related Work

Both ETR and NER have experienced a surge in the research community in recent

years [197, 163, 28, 145, 165, 142, 39]. David et al. [146] and Mansouri et al. [135] pre-

sented comprehensive reviews about different approaches for NER including several

representations that leverage dictionaries, corpora, and various classification methods.

Guo et al. [65] presented a formulation for both NER and ETR in search queries

using a probabilistic approach and latent dirichlet allocation. They represented query

terms as words in documents and modeled the entity type classes as topics. They

proposed using a weakly supervised learning algorithm to learn the topics, while

impressive, their approach was limited to recognizing only one entity per query. Our

approach, instead, can accurately identify multiple entities per search query and
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recognize their types.

Other approaches which utilize knowledge bases to link named entities in text with

corresponding entities in the knowledge bases were presented in [69, 70, 95, 102, 111].

Wikipedia has been used extensively as a knowledge base for ETR. Many researchers

have utilized Wikipedia-based features such as wikilinks, article titles and categories,

and graph representations of the inner links between Wikipedia pages.

Kazama and Torisawa [95] proposed a methodology which relies on having a Wikipedia

page whose title is similar to the given entity. After looking up that page, if any, they

extracted the category of that entity from the first line in that page. In our case, we

couldn’t find a Wikipedia page for most of the popular queries we have, for example,

java developer has no corresponding page in Wikipedia. Our methodology can handle

such cases by looking in Wikipedia content not titles for the occurrences of that entity

and using the context as a representation in order to recognize the entity type.

Richman and Schone proposed a novel system for multilingual NER [166] . They

utilized wikilinks to identify words and phrases that might be entities within text.

Once they recognize the entities, they use category links or interlinks to map those

entities with English phrases or categories.

Using Wikipedia concepts as a representation space for query’s intent was intro-

duced by Hu et al. [83]. In this paper each intent domain is represented as a set of

Wikipedia articles and categories, then each query intent is predicted by mapping the

query into the Wikipedia representation space.

The system introduced by Nothman et al. [147] transforms links to Wikipedia ar-

ticles into named entity annotations by classifying the target articles into the classic
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named entity types Person, Location, and Organization.

Utilizing Wikipedia infobox for ETR was presented by Mohamed and Oussalah

[144]. The proposed model classifies entities by matching entity attributes extracted

from the relevant article infobox with core entity attributes built from Wikipedia

infobox templates.

The system introduced by Gattani et al. [59] converted Wikipedia into a structured

knowledge base (KB). In this work, the authors converted Wikipedia graph structure

into a taxonomy. This was done by finding a single main lineage, called the primary

lineage, for each concept. This KB is used later to extract, link, and classify entities

mentioned in a Twitter stream.

We consider Laclav́ık et al. [103] as the most related work to ours. In this work,

the authors proposed a system that utilizes Wikipedia as an intermediate corpus to

categorize search queries. The system works through two phases; in the first phase, a

query is mapped to its relevant Wikipedia pages by searching an index of Wikipedia

articles. In the second phase, concepts representing retrieved Wikipedia pages are

mapped into categories. Though we also utilize a Wikipedia search index to retrieve

articles related to query entities, our approach utilizes totally different features and

entity representation to infer the entity type.

3.3 Methodology

In this section we detail our methodology for recognizing search query entity types.

Our approach employs two distributional semantics representations of search enti-

ties. Moreover, we use ontological as well as linguistic properties of search entities
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to improve the overall system performance. The ultimate goal of our system is to

categorize a given search entity into one of four concept classes: Company, Job Title,

Skill, and School.

3.3.1 System Overview

Prior to performing ETR, it is necessary that we first perform entity recognition on

incoming search queries so that we know the entities for which we are trying to identify

an entity type. The methodology for recognizing known entities and performing

entity extraction from queries is described in AlJadda et al. [5]. First, data mining

on historical search query logs combined with collaborative filtering are performed

to determine which queries are used commonly together across many users. Then

a semantic knowledge base containing the entities and related entities found from

within the mined search logs is built and used for entity recognition.

For entities not found in the semantic knowledge base, a language model is cre-

ated of unigrams, bigrams, and trigrams across a corpus of millions of job posting

documents. Leveraging Bayes algorithm, it is possible to dynamically calculate prob-

abilities as to whether any combination of keywords entered into a search query

constitute a single phrase or multiple phrases. Based upon the combination of the

semantic knowledge base, the Bayes-based phrase identifier, and the query parser, it

is possible to successfully identify the correct query parsing including the constituent

named entities with accuracy greater than 92%.

After recognizing candidate entities in the user’s query, the next stage needed to

truly interpret the user’s intent correctly is categorizing each of these entities to our
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Figure 7: User’s query is passed to the query parser and phrase identifier, which per-
form entity resolution leveraging a semantic-knowledge-based and a language-model-
based probabilistic parsing. The entities are then enriched using an ensemble of
representation models based upon external knowledge base (Wikipedia), a domain-
specific corpus (job postings), ontological features (DBpedia), and lexical features
(WordNet).

predefined types. If a user searches for ”google software engineer java”, it is critical to

understand that the user is looking for a job at ”Google” (Company) as a ”software

engineer” (Job Title) programming in ”Java” (Skill). Without this knowledge of

entity types, we will not be able to fully represent the information need of our users

within the search system. The following sections will describe our methodology for

performing ETR on our identified entities.

3.3.2 The Entity Type Recognition Process

The proposed system combines features from different sources in order to make

accurate entity type predictions for a given search entity. This ensemble of features

represents our domain-specific knowledge as well as real-world knowledge about the
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search entity. We call these features clues. Figure 7 shows the system design for how

a user’s query is parsed, as well as how the system employs these clues to accurately

perform ETR.

The first clue models real-world contextual information about the query entity

by searching for that entity inside Wikipedia using a customized search index. The

second clue models domain-specific knowledge by building synonyms vector for search

entities using the Word2Vec model [138] trained on millions of job postings from

CareerBuilder.

Two other clues, using DBpedia and WordNet, are collected to increase the accuracy

and coverage over the Company and Job Title categories specifically. After collecting

all the clues for every known query entity, we combine these features and use them to

train an entity classifier on labeled entity samples. The classifier can then be used to

categorize new search entities, thus improving our understanding of the query intent

for future searches.

3.3.3 Constructing Contextual Vectors

The purpose of this phase is to enrich the contextless search entities with contex-

tual information. In order to do so we map each entity into a distributional semantics

vector representation. The vector dimensions represent entity contexts in an inter-

mediate corpus. We use Wikipedia as the source for these contextual vectors for all

of the search entities which are represented.

As query entities need to be categorized in an online fashion, context vectors are

required to be constructed as efficiently as possible. Therefore, we build an inverted
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Table 6: Example search entities (left) along with their context vectors (right).

Company
CareerBuilder <...market, operate, website, acquired, employment, companies, establishments, ceo...>

Job Title
Nurse Assistant <...journalist, worker, secretary, members, politicians, living, people, youth, office...>

Skill
Adobe Photoshop <...editor, graphics, developed, image, file, software, application, version, program...>

School
UNC Charlotte <...university, north, carolina, college, student, organization, professor, school...>

index of all Wikipedia articles as a preprocessing step. We build the index using

Apache Lucene19, an open-source indexing and search engine. For each article we

index the title, content, length, and categories. We exclude all disambiguation, list of,

and redirect pages.

As shown in Equation 3, given an entity ej we construct its context vector Xej by

first searching for that entity in the search index. Then, from the top n search hits,

we retrieve all content words Wi that occur in the same context of ej within a specific

window size in each search hit i. We also retrieve category words Ci of search hits

and add them to Xej .

Xej =<w1, w2, ..., c1, c2, ...> : w∈Wi, c∈Ci, i=[1..n] (3)

These context vectors represent available real-world knowledge about the given

entity. Table 6 shows example search entities along with their context vectors. We

can notice that contextual words are very representative for the type of the given

entity. Moreover, words from search hits categories augment context words and thus

enrich the contextual representation of each entity.

19https://lucene.apache.org/
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Table 7: Example search entities (left) along with their synonyms vectors (right).

Company
CareerBuilder <...us, software, recruiter, digital...>

Job Title
Nurse Assistant <...licensed, registered, nurse, rn, lpn, office, coordinator, lvn, midwife...>

Skill
Adobe Photoshop <...dreamweaver, flash, acrobat, macromedia, illustrator, pagemaker...>

School
UNC Charlotte <...raleigh, durham, morrisville, hospital, concord, morrisville, durham...>

3.3.4 Constructing Synonyms Vectors

The purpose of this phase is to enrich the search entities with domain-specific

knowledge. CareerBuilder has millions of job openings that are posted or modified

on daily basis. These postings contain many representative features relevant to the

recruitment domain. For example, a typical job posting might contain a job title,

job description, required skills, salary information, company information, required

experience and education, location...etc.

In order to make use of this information, we use the job postings as an intermediate

corpus to train a Word2Vec model [138]. For a given search entity ej, we generate its

synonyms vector Sej from words that have closest vectors in the trained Word2Vec

model based on the cosine similarity.

The distributional semantics vectors generated in this phase represent domain-

specific knowledge about a given entity. Table 7 shows the same search entities as

in Table 6 along with their corresponding synonyms vectors. We can notice that the

Company and School entity vectors are somewhat poor and unrepresentative. This is

because many job postings are missing company information or sometimes company

name is only provided without any context. The same problem arises for school

information. On the other hand, the synonyms vectors of Job Title and Skill entities
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are very rich and representative. This observation motivated us to combine features

for search entities from both contextual and synonyms vectors in a combined vector

space.

3.3.5 Entity Ontological Features

Another representative feature is extracted from DBpedia by linking search hits

(representing Wikipedia concepts) to their corresponding entries in the DBpedia on-

tology. We use the type property to determine whether the retrieved concept type is

one of our targeted categories, specifically Company.

After searching for a given entity ej in the Wikipedia index, we retrieve the top n

search hits (concepts). Then, we check whether the title of any of these concepts is

the same as ej. If any, we check whether the type of this concept in DBpedia ontology

is Company and subsequently add a new binary feature indicating that finding.

Given that companies are already found explicitly in DBPedia, why don’t we just

use the DBpedia type feature exclusively for categorizing into the Company entity

type? There are five reasons we instead choose to combine multiple feature types:

1. DBpedia ontology suffers from low coverage where many companies in Wikipedia

don’t have a type of Company in DBpedia (e.g., Boonton Iron Works20, Sales-

forceIQ21).

2. DBpedia provides categories for the canonical form of the company name only.

If an entity is searched for using a surface form, the DBpedia lookup will fail.

In contrast, Wikipedia will generally contain surface forms in the same context

20https://en.wikipedia.org/wiki/Boonton Iron Works
21https://en.wikipedia.org/wiki/SalesforceIQ
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as the canonical form (e.g., International Turnkey Systems Group vs. ITS

Group22)

3. As DBpedia covers only Wikipedia concepts, it fails to catch companies that do

not have a Wikipedia page. Alternatively, these companies will be correctly cat-

egorized using their contextual vectors if mentioned in a representative context

within Wikipedia (e.g., Nutonian).

4. Some companies have a type of Organization instead of Company in DBpedia.

Unfortunately, entities belonging to one of our other entity types (School) can

also be categorized as Organization in DBpedia (e.g., Athens College). This

means that we cannot reliably categorize concepts with the type of Organization

as Company.

5. Finally, there is a time lag between DBpedia and Wikipedia. So, DBpedia does

not contain the most recent snapshot of Wikipedia concepts in its ontology.

3.3.6 Entity Linguistic Features

We utilize the lexical properties of search entities to determine whether they belong

to one of the target categories, specifically Job Title. The motivation behind this

approach is the fact that almost all Job Title entities contain an agent noun (e.g.,

director, developer, nurse, manager...etc). To determine whether an entity might

represent a Job Title, we search its words inside the WordNet dictionary where all

agent nouns are under the <noun.person> lexical file. Upon finding any, we add a

new binary feature indicating that finding.

22https://en.wikipedia.org/wiki/International Turnkey Systems Group
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While it might be tempting to rely exclusively on the agent noun feature from the

WordNet lexicon for categorizing Job Title entities, two challenges prevent this:

1. Depending solely on the WordNet lexicon for categorizing Job Title entities

would pose limitations on the ETR system for non-English job boards.

2. Not all Job Title entities have an agent noun (e.g., staff, faculty).

3.3.7 Building the Prediction Model

To build the ETR model, we use supervised machine learning on a very large labeled

set of search entities obtained from CareerBuilder’s search logs. For each discovered

search entity ej, we generate:

1. A contextual vector (Xej) using the Wikipedia index.

2. A synonyms vector (Sej) using the Word2Vec model.

3. An ontological type (ontej) if the entity refers to a DBpedia concept. This is a

binary feature which is true if DBpedia type is company.

4. A lexical type (lexej). This is a binary feature which is true if one of the entity

terms has a <noun.person> type in WordNet, i.e., it is an agent noun.

To combine all those features, we follow a simple yet effective approach. First we

use the vector space model to generate an entity-word matrix using the both Xej

and Sej . The generated vectors represent semantically-related words to the identified

query entities, so it is straightforward to then map each entity as a document of
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Table 8: Distribution of entities over categories in our dataset

Category Number of instances
Company 42,934
Job Title 3,608
School 106,153
Skill 25,093

words contained in the entity’s contextual and synonyms vectors. Rows in the entity-

word matrix represent entities and columns represent corresponding related words.

Secondly, we transform this matrix using term frequency-inverse document frequency

(tf-idf ) weights. Thirdly, we append ontej and lexej as two additional binary columns

to the tf-idf entity-word matrix. Finally, we train an entity type classifier on the

produced matrix to generate the ETR model.

3.4 Experiments and Results

In this section we present our empirical results. We start by describing the dataset

used in experiments and then detail different models developed for ETR along with

their results.

3.4.1 Dataset

We built our ETR models using the largest labeled entity dataset owned by Career-

Builder. The dataset contains more than 177K labeled entities distributed over four

categories as shown in Table 8. These entities were obtained from CareerBuilder’s

search logs, job postings, and resumes, and were manually reviewed by annotators

working at CareerBuilder.
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3.4.2 Experimental Setup

We conducted several experiments in order to evaluate the performance of the ETR

system with different models. We started by evaluating models built from a single

feature source, i.e., contextual vectors or entity synonyms vectors. Then we evaluated

a model built using an ensemble of both of these vectors. Finally, we evaluated a

model which combines both vectors plus the entity’s ontological and lexical features

(i.e., ontej and lexej respectively).

To assess the effectiveness of our approach, we built two baseline models. The first

one is the Bag-of-Words (BoW) model which depends solely on words that appear

in search entities as features without any contextual enrichment. The second model

(wikiw) is a distributional semantics model built by training Word2Vec on Wikipedia.

After Word2Vec produces the word vectors, word synonyms vectors of search entities

are generated as described in Section 3.3.4. We then generate a tf-idf entity-word

matrix from these vectors as described in Section 3.3.7.

We built the Wikipedia search index using the English Wikipedia dump of March

201523. The total uncompressed XML dump size was about 52GB representing about

7 million articles. We extracted the articles using a modified version of the Wikipedia

Extractor24. Our version25 extracts articles as plain text, discarding references to

images and tables. We discarded the References and External Links sections (if any).

We pruned all articles which are not under the main namespace, and excluded all

disambiguation, list of, and redirect pages as well. Eventually, our index contained

23https://dumps.wikimedia.org/enwiki/20150304/
24http://medialab.di.unipi.it/wiki/Wikipedia Extractor
25https://github.com/walid-shalaby/wikiextractor
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about 4 million documents.

While searching the Wikipedia index, we search both content and title fields. For

efficiency, we limit retrieved results to the top 3 hits which have a minimum length

of 100 bytes.

To build the word embedding vectors, we trained Word2Vec on more than 60

million job postings from CareerBuilder. We used Apache Spark’s scalable machine

learning library (MLlib26) which has an implementation of Word2Vec in Scala. We

configured the parameters of the Word2Vec model as follows: minimum word count

= 50, number of iterations (epoch)=1, vector size = 300, and number of partitions

= 5000. The model took about 32 hours to fit on one of CareerBuilder’s Hadoop

clusters with 69 data nodes, each having a 2.6 GHz AMD Opteron Processor with 12

to 32 cores and 32GB to 128GB RAM.

Finally, we evaluate all the ETR models using a Support Vector Machine (SVM)

classifier with linear kernel, leveraging the scikit-learn library [152]. Because entity

instance frequencies over categories is a bit skewed and to avoid overfitting, we config-

ured the classifier to use a different regularization value for each category relative to

category frequencies. For each model we report Precision (P), Recall (R), and their

harmonic mean (F1 ) scores. Results are calculated using 10-fold cross-validation

over the labeled entities dataset. And folds were randomly generated using stratified

sampling.

26https://spark.apache.org/mllib/
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Table 9: Performance of the contextual vectors ETR model (wikix) on labeled entities
compared to baseline models using 10-fold cross-validation. BoW is the Bag-of-Words
model, and wikiw is Word2Vec trained on Wikipedia.

Category Company Job Title School Skill
Metric P R F1 P R F1 P R F1 P R F1
BoW 91.46 79.72 85.19 84.92 90.08 87.42 99.07 94.23 96.59 66.07 91.04 76.57
wikiw 88.92 92.23 90.54 85.85 93.82 89.66 98.92 96.42 97.66 87.36 88.15 87.75
wikix 95.41 96.55 95.98 86.27 88.30 87.28 98.93 98.11 98.52 91.99 92.42 92.21

3.4.3 Results

Table 9 shows the results obtained from the baseline models compared to the

contextual vectors model using 10-fold cross-validation on the labeled entities dataset.

The first baseline model is the BoW. This model gives relatively lower F1 scores

on all categories as shown in Table 9. Due to the absence of contextual information,

this model fails to generalize well with unseen entities, as they contain terms that are

not in the model’s feature space. This is very clear with categories that have high

naming variations (i.e., Company and Skill). BoW performs relatively well on Job

Title as it has limited naming variations. It also performs very well on School entities

as they have common naming conventions (e.g., university, school, institute...etc).

The second baseline model is wikiw which is built by training Word2Vec on Wikipedia.

This model utilizes contextual features inferred from word distributions, hence it per-

forms better than BoW on all categories. As shown in Table 9, the wikiw F1 score

is higher than BoW by more than 5% on Company, 2% on Job Title, 1% on School,

and 11% on Skill. Those results indicate the viability of distributional semantics

representations for ETR of search entities.

The third model is wikix which is built using contextual vectors generated by

searching the Wikipedia index. It retrieves search entity contexts and category in-
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formation from search hits and then utilizes them as learning features. As shown in

Table 9, this novel approach outperforms both BoW and wikiw models substantially

on Company and Skill. It also performs slightly better on School. These results indi-

cate the effectiveness of the wikix model in recognizing these categories accurately.

It is important to mention that, though both the wikix and wikiw models use

Wikipedia as an intermediate corpus to learn word representations, the wikix repre-

sentations are more successful for the ETR task. Compared with the wikiw model,

the F1 scores of the wikix model increased on the Company class by 5%, on the

School class by 1%, and on the Skill class by 5%.

The Job Title category is the only example where the wikiw model performed

better (by 2%) than the wikix model. A closer look at the scores reveals that, the

wikix model is more accurate than the wikiw model as it has a higher P score. The

wikiw model, however, has better coverage as it has a higher R score. Considering

the small size of the Job Title category (∼3,600 entities), that difference in recall

cannot be considered substantial.

The results in Table 9 prove empirically that, for ETR of search entities, our

novel approach for modeling real-world knowledge using contextual representations

outperforms Word2Vec, the state-of-the-art for distributional semantics representa-

tions, even though both use the same intermediate corpus (Wikipedia). Moreover,

our method is much simpler and more efficient than Word2Vec as it doesn’t require

optimizing an objective function for learning word embeddings.

In order to increase the overall system performance, we built four ETR models that

combine features from different sources as described in Section 3.3.7. We first built
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Table 10: Performance of different ETR models on the labeled entity dataset using
ensemble of features.

Category Company Job Title School Skill
Metric P R F1 P R F1 P R F1 P R F1
wikix 95.41 96.55 95.98 86.27 88.30 87.28 98.93 98.11 98.52 91.99 92.42 92.21
wikix, jobw 95.64 96.73 96.18 88.32 91.99 90.12 99.16 98.20 98.68 92.45 93.17 92.81
wikix, jobw, ont 96.38 96.72 96.55 87.94 92.13 89.98 99.14 98.25 98.69 92.33 93.95 93.13
wikix, jobw, lex 95.67 96.68 96.17 88.34 92.82 90.53 99.16 98.21 98.68 92.49 93.14 92.81
wikix, jobw, lex, ont 96.41 96.72 96.56 88.35 92.91 90.57 99.15 98.23 98.69 92.31 93.99 93.14

jobw which models domain-specific knowledge of search entities. The jobw model is

built by training Word2Vec on the textual content of millions of job postings.

As shown in Table 10, we combined both the contextual vectors (wikix) and the

synonyms vectors (jobw) and built an ensemble of the two models (wikix,jobw). The

ensemble improved the results over wikix across all categories. the largest improve-

ment was on Job Title, which saw a 3% improvement in F1 score. More importantly,

this ensemble outperforms the wikiw and BoW models on all categories.

To further increase system accuracy on Company class, we incorporated the DBpe-

dia ontological type of search entity (ont) with the contextual and synonyms vectors

as described in Section 3.3.5. This ensemble (wikix,jobw,ont), as shown in Table 10,

increased F1 score on Company by ∼0.4%.

The third ensemble is (wikix,jobw,lex). It aims at increasing system accuracy on

Job Title class by incorporating entity’s lexical features (lex) as described in Section

3.3.6. As shown in Table 10, the F1 score on Job Title increased by ∼0.6% when

incorporating this feature.

Finally, we combined all features generating an ensemble of contextual vectors,

synonyms vectors, ontological features, and linguistics features (wikix, jobw, lex, ont).

As shown in Table 10, this model produced the best F1 scores on all categories among

all the aforementioned models.
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3.5 Conclusion

In this chapter we focused on improving the effectiveness of the representation of

short texts, specifically search queries. We presented an effective approach for entity

type recognition (ETR) of search query entities in the job search and recruitment

domain using concept knowledge bases along with concepts lexical and ontological

properties.

The proposed novel ensemble of features enriches short query entities representation

with real-world and domain-specific knowledge. The ensemble entity representation

contains features representing: 1) contextual information in Wikipedia, 2) embedding

information in millions of job postings, 3) class type in DBpedia for Company entities,

and 4) linguistic properties in WordNet for Job Title entities. This approach coin-

cides directly with our overall aim employing concept KBs, concept properties, and

distributed representations in order to enhance the representation and subsequently

performance of text analysis systems.

Our approach is novel and distinct from other ETR approaches. To our knowledge,

generating distributional semantics vectors of query entities using contextual infor-

mation from Wikipedia as a search index was not reported before in the literature.

Evaluation results on a dataset of more than 177K search entities were very promis-

ing. The results showed that our Wikipedia-based model outperforms the state-of-

the-art Word2Vec model trained on Wikipedia on three out of four target entity

categories. Moreover, our ensemble representation could achieve 97% micro-averaged

F1 score on the four entity types outperforming the Word2Vec baseline by 6% on
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Company, 1% on Job Title, 1% on School, and 5% on Skill.

In terms of performance, our system takes 30ms per entity type request, making it

efficient and appropriate for serving online search queries.

Our system has been integrated within CareerBuilder’s semantic search engine,

which improved the quality of search results for tens of millions of job seekers every

month.



CHAPTER 4: MINED SEMANTIC ANALYSIS

In this chapter we focus on increasing the effectiveness of concept-based semantic

representation models (aka explicit concept space or bag-of-concepts models). These

models have proven efficacy for text representation in many natural language and

text mining applications. The idea is to embed textual structures into a semantic

space of concepts which captures the main ideas, objects, and the characteristics of

these structures. We start by surveying existing techniques for bag-of-concepts rep-

resentations and their applications along with some of their limitations. Then we

introduce Mined Semantic Analysis (MSA); our novel bag-of-concepts model which

aim to enhance the expressiveness of the concept-based representations through uti-

lizing unsupervised data mining techniques in order to discover concept-concept as-

sociations. These associations are then used to enrich the bag-of-concepts with more

related concepts.

We demonstrate the efficacy of MSA on two tasks: 1) measuring lexical semantic

relatedness, and 2) short text similarity. Empirical results show superior performance

of MSA over other bag-of-concepts and distributed representations on the two tasks.

4.1 Text Conceptualization

Vector-based semantic representation models are used to represent textual struc-

tures (words, phrases, and documents) as multidimensional vectors. Typically, these
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Figure 8: The general architecture of Wikipedia-based concept space representation
models. The concept space is defined by all Wikipedia article titles. The concept
vector is created from the top n hits of searching a Wikipedia inverted index with the
given text.

models utilize textual corpora and/or Knowledge Bases (KBs) in order to extract and

model real-world knowledge. Once acquired, any given text structure is represented

as a real-valued vector in the semantic space. The goal is thus to accurately place se-

mantically similar structures close to each other in that semantic space, while placing

dissimilar structures far apart.

Explicit concept space models are one of these vector-based representations which

are motivated by the idea that, high level cognitive tasks such learning and reason-

ing are supported by the knowledge we acquire from concepts [184]. Therefore, such

models utilize concept vectors (aka Bag-of-Concepts (BoC)) as the underlying seman-

tic representation of a given text through a process called conceptualization, which

is mapping the text into relevant concepts capturing its main ideas, objects, events,

and their characteristics. The concept space typically includes concepts obtained from

concept-rich KBs such as Wikipedia, Probase [212], and others. Once the concept vec-

tors are generated, similarity between two concept vectors can be computed using a
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suitable similarity measure such as cosine. Figure 8 shows the general architecture of

the vector-based concept space models utilizing Wikipedia as the source of concepts.

The BoC vector is a multidimensional sparse vector whose dimensionality is the

same as the number of concepts in the employed KB (typically millions). Formally,

given a text snippet T = {t1, t2, ..., tn} of n terms where n ≥ 1, and a concept space

C = {c1, c2, ..., cN} of size N . The BoC vector v = {w1, w2, ..., wN} ∈ RN of T is a

vector of weights of each concept where each weight wi of concept ci is calculated as

in equation 4:

wi =
n∑
j=1

f(ci, tj), 1 ≤ i ≤ N (4)

Here f(c, t) is a scoring function which indicates the degree of association between

term t and concept c. For example, Gabrilovich and Markovitch [56] proposed Explicit

Semantic Analysis (ESA) which uses Wikipedia articles as concepts and the tf-idf

score of the terms in these article as the association score. Another scoring function

might be the co-occurrence count or Pearson correlation score between t and c.

Typically, the cosine similarity measure is used compute the similarity between a

pair of BoC vectors u and v. Because the concept vectors are very sparse and for

space efficiency, we can rewrite each vector as a vector of tuples (ci, wi). Suppose that

u={(cn1 , u1), . . . , (cn|u| , u|u|)} and v={(cm1 , v1), . . . , (cm|v| , v|v|)}, where ui and vj are

the corresponding weights of concepts cni
and cmj

respectively. And ni, mj are the

indices of these concepts in the concept space C such that 1≤ni,mj≤N . Then, the
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In this paper we describe
our work on cognitive assis-
tance (Cog) technology in the
innovation analytics do-
main. We propose a framework
for innovation analytics and
management using Mined
Semantic Analysis (MSA).
Our goal is to build a seman-
tic driven visual interactive
analytics engine that provides
insights on innovation data
using conceptual knowledge de-
rived from huge unstructured
textual knowledge corpora
(e.g., Wikipedia). Throughout
the paper we demonstrate a case
study utilizing our framework for
providing computational assists
on competitive intelligence
by automatically defining the
innovation portfolio of an
organization, and using that
information to identify other key
players with similar portfolios
which could be candidates for
acquisition

Figure 9: The concept graph representation of the abstract section of Shalaby and
Zadrozny [178] (text on the left). Light blue nodes are explicit concepts and red nodes
are associated concepts.
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similarity score can be written as in equation 5:

Simcos(u,v) =

∑|u|
i=1

∑|v|
j=1 1(ni=mj)uivj√∑|u|
i=1 u

2
i

√∑|v|
j=1 v

2
j

(5)

where 1 is the indicator function which returns 1 if ni=mj and 0 otherwise.

Expressiveness is one of the big advantages of explicit concept representations com-

pared to implicit and distributed representations. As the representation is composed

of a vector of concepts, it can be easily understood by humans and thus easier to

interact with. Figure 9 shows the concept vector generated using MSA (described in

section 4.2) from the abstract text of Shalaby and Zadrozny [178]. It is important to

mention that, the explicit concepts (blue nodes) are ranked top-down according to

their relevance to the seed text. The implicit concepts (red nodes) of each explicit

concept are also ranked top-down according to their relevance to the explicit concept

based on the strength of the association between them.

As we can see, the representation captures four main semantically related concepts

of the given text (blue nodes) including: Text mining, Big data, Strategic management,

and Innovation. As we will show in section 4.2, MSA could enrich these four basic

concepts with more related concepts (red nodes). These implicit concepts serve as

a powerful mechanism for concept expansion. They augment the knowledge required

to capture key ideas expressed in the seed text in multiple ways offering hyper-

nymy/abstraction (Strategic Management and Management), hyponymy/specificity

(Text mining and Text classification), synonymy (Innovation and Invention), and

relatedness/associativity (Big data and Internet of Things).
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4.1.1 Text Conceptualization Methods

Humans understand languages through multi-step cognitive processes which in-

volves building rich models of the world and making multi-level generalizations from

the input text [209]. One way of automating such generalizations is through text

conceptualization. Either by extracting basic level concepts from the input text using

concept KBs [96, 184], or mapping the whole input into a concept space that captures

its semantics [56, 77, 23].

As mentioned in Section 1.1.4, text conceptualization comes in two flavors. One line

of conceptualization research uses semi-structured KBs such as Wikipedia in order to

construct the concept space which is defined by all Wikipedia article titles. Another

research direction uses more structured concept KBs such as Microsoft Knowledge

Graph (Probase))27 [212] which consists of millions concepts and their relationships

(basically an is-a hierarchy).

4.1.2 Vector-based Concept Space Models

A closely related method to our proposed Mined Semantic Analysis (MSA) method

is Explicit Semantic Analysis (ESA) [56]. ESA constructs the concept space of a term

by searching an inverted index of term-concept co-occurrences. ESA is mostly the

traditional vector space model applied to Wikipedia articles. ESA is effective in

retrieving concepts which explicitly mention the target search terms in their content.

However, it fails to identify other implicit concepts which do not contain the search

terms. MSA bridges this gap by mining for concept-concept associations and thus

27https://concept.research.microsoft.com
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Figure 10: MSA generates the concept vector of a given text structure through: 1)
explicit concept retrieval from the inverted index (top); and 2) concept expansion
from the concept-concept associations repository (bottom).

augmenting the concept space identified by ESA with more relevant concepts.

Salient Semantic Analysis (SSA) was proposed by Hassan and Mihalcea [77]. It

uses Wikipedia concepts to build semantic profiles of words. SSA is more conservative

than ESA as it defines word meaning by its immediate context and therefore might

yield concepts of higher relevancy. However, it is still limited to surface semantic

analysis because it, like ESA, utilizes only direct associations between words and

concepts and fails to capture other implicit concepts not directly co-occurring with

corpus words in the same context.

In order to discover indirect relationships between concepts, Radinsky et al. [160]

proposed Temporal Semantic Analysis (TSA) which works by extending ESA’s con-

cept space to include temporal usage patterns of discovered concepts. These temporal

patterns are collected from a corpus of temporally-ordered articles (e.g., newspaper
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Table 11: The concept representation of ”Computational Linguistics”

Explicit Concepts Implicit Concepts

Parse tree Universal Networking Language
Temporal annotation Translation memory
Morphological dictionary Systemic functional linguistics
Textalytics Semantic relatedness
Bracketing Quantitative linguistics
Lemmatization Natural language processing
Indigenous Tweets Internet linguistics
Statistical semantics Grammar induction
Treebank Dialog systems
Light verb Computational semiotics

archive). Both MSA and TSA share a common goal; they try to complement the con-

cept space with information that uncovers implicit concept associations. However,

they follow totally different methodologies for achieving that goal. TSA exploits tem-

poral dynamics of concept usage, while MSA exploits mining the semantic space of

each concept as expressed in its associations with other concepts.

4.2 Mined Semantic Analysis

We call our approach Mined Semantic Analysis (MSA) as it utilizes unsupervised

data mining techniques in order to discover the concept space of textual structures.

The motivation behind our approach is to mitigate a notable gap in previous concept

space models which are limited to direct associations between words and concepts.

Therefore those models lack the ability to transfer the association relation to other

implicit concepts which contribute to the meaning of these words.

Figure 10 shows MSA’s architecture. In a nutshell, MSA generates the concept

vector of a given text by utilizing two repositories created offline: 1) a search index

of Wikipedia articles, and 2) a concept-concept associations repository created by
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mining the ”See also” link graph of Wikipedia. First, the explicit concept vector is

constructed by retrieving concepts (titles of articles) explicitly mentioning the given

text. Second, implicit concepts associated with each of the explicit concepts are

retrieved from the associations repository and used to augment the concept vector.

To demonstrate our approach, we provide an example of exploring the concept

representation of ”Computational Linguistics” (Table 11). Column 1 shows the ex-

plicit concepts retrieved by searching Wikipedia28. Column 2 shows the same explicit

concepts in column 1 enriched by the implicit concepts from the associations repos-

itory. As we can notice, those implicit concepts augment the explicit concept space

by more related concepts which contribute to understanding ”Computational Lin-

guistics”. It is worth mentioning that not all implicit concepts are equally relevant,

therefore we also propose an automated mechanism for ranking those concepts in a

way that reflects their relatedness to the original search term.

4.2.1 The Search Index

MSA starts constructing the concept vector of term(s) by searching for an initial

set of candidate explicit concepts. For this purpose, we build a search index of a

concept-rich corpus such as Wikipedia where each article represents a concept. This

is similar to the idea of the inverted index introduced in ESA [56]. We build the index

using Apache Solr 29, an open-source indexing and search engine. For each article we

index the title, content, length, number of outgoing links, and the ”See also” section.

During search we use some parameters to tune the search space. Specifically, we

28We search Wikipedia using a term-concept inverted index and limit the search space to articles
with min. length of 2k and max. title length of 3 words.

29http://lucene.apache.org/solr/
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define the following parameters to provide more control over search:

1. Article Length (L): Minimum length of the Wikipedia article in characters

excluding sections like ”References”, ”See also”, ”Categories”, ...etc.

2. Outdegree (O): Minimum number of outgoing links per article.

3. Title Length (τ): This threshold is used prune all articles that have long

titles. It represents the maximum number of words in the title. E.g, if τ=3,

then all articles with more than three words in title will be excluded from the

initial candidate concepts.

4. Number of Concepts (M): Maximum number of concepts (articles) to re-

trieve as initial candidate concepts.

4.2.2 Association Rules Mining

In order to discover the implicit concepts, we employ the Apriori algorithm for asso-

ciation rule learning [2] to learn implicit relations between concepts using Wikipedia’s

”See also” link graph.

Formally, given a set of concepts C = {c1, c2, ..., cN} of size N (i.e., all Wikipedia

articles). We build a dictionary of transactions T = {t1, t2, t3, ..., tM} of size M such

that M ≤ N . Each transaction t ∈ T contains a subset of concepts in C. t is

constructed from each article in Wikipedia that contains at least one entry in its ”See

also” section. For example, if an article representing concept c1 with entries in its ”See

also” section referring to concepts {c2, c3, ..., cn}, a transaction t= {c1, c2, c3, ..., cn}

will be added to T. A set of rules R is then created by mining T. Each rule r ∈ R is
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defined as in equation 6:

r(s, f) = {(X ⇒ Y ) : X, Y ⊆C and X∩Y =∅} (6)

Both X and Y are subsets of concepts in C. X are called the antecedents of r and Y

are called the consequences. Rule r is parameterized by two parameters: 1) support

(s) which indicates how many times both X and Y co-occur in T, and 2) confidence

(f ) which is s divided by number of times X appeared in T.

After learning R, we end up having concept(s)-concept(s) associations. Using such

rules, we can determine the strength of those associations based on s and f.

As the number of rules grows exponentially with the number of concepts, we define

the following parameters to provide more fine grained control on participating rules

during explicit concept expansion:

1. Consequences Size (|Y |): Number of concepts in rule consequences.

2. Support Count (σ): It defines the minimum number of times antecedent

concept(s) should appear in T.

3. Minimum Rule Support (ε): It defines the minimum strength of the associ-

ation between rule concepts. For example, if ε=2, then all rules whose support

s >= 2 will be considered during concept expansion.

4. Minimum Confidence (υ): It defines the minimum strength of the associa-

tion between rule concepts compared to other rules with same antecedents. For

example, if υ=0.5, then all rules whose confidence f >= 0.5 will be considered
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during concept expansion. In other words, consequent concept(s) must have

appeared in at least 50% of the times antecedent concept(s) appeared in T.

4.2.3 Constructing the Concept Vector

Given a set of concepts C of size N, MSA constructs the bag-of-concepts vector

Ct of term(s) t through two phases: Search and Expansion. In the search phase, t

is represented as a search query and is searched for in the Wikipedia search index.

This returns a weighted set of articles that best matches t based on the vector space

model. We call the set of concepts representing those articles Cs and is represented

as in equation 7:

Cs = {(ci, wi) : ci ∈ C and i <= N}

subject to : |title(ci)| <= τ, length(ci) >= L,Oci <= O, |Cs| <= M

(7)

Note that we search all articles whose content length, title length, and outdegree meet

the thresholds L, τ , O respectively. The weight of ci is denoted by wi and represents

the match score between t and ci as returned by the search engine.

In the expansion phase, we first prune all the search concepts whose support count

is below the threshold σ. We then use learned association rules to expand each

remaining concept c in Cs by looking for its associated set of concepts in R. Formally,

the expansion set of concepts Cp is obtained as in equation 8:

Cp =
⋃

c∈Cs,c′∈C

{(c′, w′) : ∃r(s, f)=c⇒c′}

subject to : |c′| = |Y |, s >= ε, f >= υ

(8)

Note that we add all the concepts that are implied by c where this implication meets
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the support and confidence thresholds (ε, υ) respectively. The weight of c′ is denoted

by w′. Two weighting mechanisms can be employed here: 1) inheritance; where c′

will has the same weight as its antecedent c, and 2) proportional; where c′ will have

prorated weight w′ = f ∗ w based on the confidence f of c⇒c′.

Finally, all the concepts from search and expansion phases are merged to construct

the concept vector Ct of term(s) t. We use the disjoint union of Cs and Cp to keep

track of all the weights assigned to each concept as in equation 9:

Ct = Cs t Cp (9)

4.2.4 Concept Weighting

Any concept c ∈ Ct should have appeared in Cs at most once, however c might

have appeared in Cp multiple times with different weights. Suppose that {w1, ..., wn}

denotes all the weights c has in Ct where n < |Cp|+ 1, then we can calculate the final

weight w by aggregating all the weights as in equation 10:

w =
n∑
i=1

wi (10)

Or we can take the maximum weight as in equation 11:

w = max
i
wi 1≤ i≤n (11)

The rationale behind weight aggregation (equation 10) is to ensure that popular

concepts which appear repeatedly in the expansion list will have higher weights than

those which are less popular. As this scheme might favor popular concepts even if

they appear in the tail of Cs and/or Cp, we propose selecting only the maximum
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weight (equation 11) to ensure that top relevant concepts in both Cs and Cp still

have the chance to maintain their high weights.

4.2.5 Relatedness Scoring

We apply the cosine similarity measure in order to calculate the relatedness score

(Relcos(t1, t2)) between a pair of concept vectors u and v of terms t1 and t2 as in

equation 5.

Similar to Hassan and Mihalcea [77], we include a normalization factor λ as the

cosine measure gives low scores for highly related terms due to the sparsity of their

concept vectors. Other approaches for dealing with vector sparsity will be explored

in Chapter 6. Using λ, the final relatedness score will be adjusted as in equation 12:

Rel(t1, t2) =


1 Relcos(t1, t2) ≥ λ

Relcos(t1,t2)
λ

Relcos(t1, t2) < λ

(12)

4.3 Experiments on Semantic Similarity and Relatedness

Measuring the semantic similarity/relatedness between text structures (words, phrases,

and documents) has been the standard evaluation task for almost all proposed se-

mantic representation models. Although semantic similarity and relatedness are

often used interchangeably in the literature, they do not represent the same task

[22]. Evaluating genuine similarity is, and should be, concerned with measuring the

similarity or resemblance in meanings and hence focuses on the synonymy relations

(e.g., smart,intelligent). Relatedness, on the other hand, is more general and covers

broader scope as it focuses on other relations such as antonymy (old,new), hypernymy
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(red,color), and other functional associations (money,bank).

Semantic relatedness has many applications in natural language processing and

information retrieval for addressing problems such as word sense disambiguation,

paraphrasing, text categorization, semantic search, and others.

Semantic relatedness methods often develop a mapping model which represents

each linguistic term as a vector derived from its contextual information in a large cor-

pus of text or knowledge base [12, 199, 77, 56, 105]. After constructing such semantic

vectors, relatedness is calculated using an appropriate vector similarity measure (e.g.,

cosine similarity).

Before applying MSA to the task of information retrieval of technical text, we

evaluate the efficacy of MSA concept vectors on two text analysis tasks: 1) measuring

lexical semantic relatedness between pairs of words, and 2) evaluating short text

similarity between pairs of short text snippets. These tasks test the agreement of the

induced representation with the human judgments on commonsense concepts.

4.3.1 Lexical Semantic Relatedness

4.3.1.1 Datasets

We evaluate MSA’s performance on benchmark datasets for measuring lexical se-

mantic relatedness. Each dataset is a collection of word pairs along with human

judged similarity/relatedness score for each pair.

RG30: A similarity dataset created by Rubenstein and Goodenough [171]. It contains

65 noun pairs. Similarity judgments of each pair were conducted by 51 subjects.

30https://github.com/mfaruqui/eval-word-vectors/tree/master/data/word-sim
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Judgments range from 0 (very unrelated) to 4 (very related). Pilehvar and Navigli

[155] reported the highest performance on this dataset by creating a semantic network

from Wiktionary.

MC 30: A similarity dataset created by Miller and Charles [141]. It contains 30 noun

pairs taken from RG dataset. Similarity judgments were done by 38 subjects at the

same scale as RG. Camacho-Collados et al. [23] reports the highest performance on

MC by integrating knowledge from Wikipedia and Wordnet.

WS 30: A relatedness dataset of 353 word pairs created by Finkelstein et al. [50].

Relatedness score for each pair ranges from 0 (totally unrelated) to 10 (very related).

Annotators were not instructed to differentiate between similarity and relatedness.

Halawi et al. [67] reports the highest performance on WS using a supervised model

combined with constraints of known related words.

WSS & WSR30: Agirre et al. [1] manually split WS dataset into two subsets to

separate between similar words (WSS of 203 pairs), and related words (WSR of 252

pairs). Baroni et al. [12] reports the highest performance on both datasets using the

popular neural embeddings model Word2Vec [138].

MEN 31: A relatedness dataset created by Bruni et al. [21]. We use the test subset

of this dataset which contains 1000 pairs. Relatedness scores range from 0 (totally

unrelated) to 50 (totally related). Baroni et al. [12] reports the highest performance

on this collection using Word2Vec.

31http://clic.cimec.unitn.it/ elia.bruni/MEN.html
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4.3.1.2 Experimental Setup

We followed experimental setup similar to Baroni et al. [12]. Basically, we im-

plemented two sets of experiments. First, we perform a grid search over MSA’s

parameter space to obtain the maximum performing combination of parameters on

each dataset. Second, we evaluate MSA in a more realistic settings where we use one

of the datasets as a development set for tuning MSA’s parameters and then use the

tuned parameters to evaluate MSA’s performance on the other datasets. Some pa-

rameters are fixed with all datasets; namely we set consequences size |Y |=1, support

count σ=1, and minimum confidence υ=0.0.

We built the search index using Wikipedia dump of August 201632. The total

uncompressed XML dump size was about 52GB representing about 7 million articles.

We extracted the articles plain text discarding images and tables. We also discard

References and External links sections (if any). We pruned both articles not under

the main namespace and pruned all redirect pages as well. Eventually, our index

contained about 4.8 million documents in total.

4.3.1.3 Evaluation

We report the results by measuring the correlation between MSA’s computed re-

latedness scores and the gold standard provided by human judgments. As in previous

studies, we report both Pearson correlation (r) [81] and Spearman rank-order corre-

lation (ρ) [222].

We compare our results with those obtained from three types of semantic repre-

32http://dumps.wikimedia.org/backup-index.html
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Table 12: MSA’s Pearson (r) scores on benchmark datasets vs. other techniques
for measuring lexical semantic similarity. (?) from Hassan and Mihalcea [77], (.)
from Baroni et al. [12] predict vectors, (�) from Camacho-Collados et al. [23]. Best
performance (bold), second best (underlined)

MC RG WSS WSR WS
LSA? 0.73 0.64 – – 0.56
ESA� 0.74 0.72 0.45 – 0.49?

SSAs
? 0.87 0.85 – – 0.62

SSAc
? 0.88 0.86 – – 0.59

ADW� 0.79 0.91 0.72 – –
NASARI� 0.91 0.91 0.74 – –
Word2Vec. 0.82 0.84 0.76 0.65 0.68
MSA 0.91 0.87 0.77 0.66 0.69

sentation models. First, statistical co-occurrence models such as LSA [105], CW and

BOW [1], and ADW [155]. Second, neural network models like Collobert and Weston

(CW) vectors [35], Word2Vec [12], and GloVe [154]. Third, explicit semantics models

like ESA [56], SSA [77], and NASARI [23].

4.3.1.4 Results

We report MSA’s correlation scores compared to other models in Tables 12, 13,

and 14. Some models do not report their correlation scores on all datasets, so we

leave them blank. MSA (last row) represents scores obtained by using WS as a

development set for tuning MSA’s parameters and evaluating performance on the

other datasets using the tuned parameters. The parameter values obtained by tuning

on WS were: article length L= 5k, outdegree O= 1, number of concepts M = 800,

title length τ=2, 3 for Cs, Cp respectively, and finally minimum rule support ε=1.

Table 12 shows MSA’s Pearson correlation (r) on five benchmark datasets compared

to prior work. For Word2Vec, we obtained Baroni et al. [12] predict vectors33 and used

33Using http://clic.cimec.unitn.it/composes/semantic-vectors.html
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Table 13: MSA’s Spearman (ρ) scores on benchmark datasets vs. other techniques
for measuring lexical semantic similarity. (?) from Hassan and Mihalcea [77], (‡)
from Hassan and Mihalcea [77], Pilehvar and Navigli [155], (Υ) from Agirre et al. [1],
(§) using pairwise similarities from Camacho-Collados et al. [23], (�) from Pilehvar
and Navigli [155], (Ψ) from Pennington et al. [154], (.) from Baroni et al. [12]. Best
performance (bold), second best (underlined)

MC RG WSS WSR WS
LSA? 0.66 0.61 – – 0.58
ESA‡ 0.70 0.75 0.53 – 0.75
SSAs

? 0.81 0.83 – – 0.63
SSAc

? 0.84 0.83 – – 0.60
CWΥ – 0.89 0.77 0.46 0.60
BOWΥ – 0.81 0.70 0.62 0.65
NASARI§ 0.80 0.78 0.73 – –
ADW� 0.9034 0.92 0.75 – –
GloVeΨ 0.84 0.83 – – 0.76
Word2Vec. 0.8233 0.84 0.76 0.64 0.71
MSA 0.87 0.86 0.77 0.71 0.73

them to calculate Pearson correlation scores. It is clear that, in absolute numbers,

MSA consistently gives the highest correlation scores on all datasets compared to

other methods except on RG where NASARI and ADW [23] performed better.

The best performance, in terms of Pearson correlation, obtained by performing grid

search over MSA’s parameter space was 0.97 on MC, 0.90 on RG, 0.78 on WSS, 0.67

on WSR, and 0.69 on WS.

Table 13 shows MSA’s Spearman correlation scores compared to prior models on

same datasets as in Table 12. As we can see, MSA gives highest scores on WSS

and WSR datasets. It comes second on MC, third on RG and WS. We can notice

that MSA’s concept enrichments participated in performance gains compared to other

explicit concept space models such as ESA and SSA. In addition, MSA consistently

34Pairwise similarity scores obtained by contacting authors of Pilehvar and Navigli [155]
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Table 14: MSA’s Spearman scores on MEN dataset vs. other techniques. (?) from
Hill et al. [80], (.) from Baroni et al. [12]. Best performance (bold), second best
(underlined).

MEN
Skip-gram? 0.44
CW? 0.60
Glove? 0.71
Word2Vec. 0.79
MSA 0.75

outperformed the popular Word2Vec model on all datasets.

The best performance, in terms of Spearman correlation, obtained by performing

grid search of MSA’s parameter space was 0.95 on MC, 0.91 on RG, 0.78 on WSS,

0.72 on WSR, and 0.73 on WS.

Table 14 shows MSA’s Spearman correlation score vs. other models on MEN

dataset. As we can see, MSA comes second after Word2Vec giving higher correlation

than skip-gram, CW, and GloVe. The results on this dataset prove that MSA is a

very advantageous method for evaluating lexical semantic relatedness compared to

the popular neural learning models. On another hand, MSA’s Pearson correlation

score on MEN dataset was 0.73.

We can notice from the results in Tables 12 and Table 13 that measuring semantic

relatedness is more difficult than measuring semantic similarity. This is clear from

the drop in correlation scores of the relatedness only dataset (WSR) compared to the

similarity only datasets (MC, RG, WSS ). This pattern is common among MSA and

all the other techniques which report on these datasets.
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4.3.2 Short Text Similarity

4.3.2.1 Dataset

We evaluate MSA’s performance for scoring pairwise short text similarity on Lee50

dataset35 [108]. The dataset contains 50 short documents collected from the Aus-

tralian Broadcasting Corporation’s news mail service. On average each document

has about 81 words. Human annotators were asked to score the semantic similarity

of each document to all other documents in the collection. As in previous work, we

averaged all human similarity ratings for the same document pair to obtain single

score for each pair. This resulted in 1225 unique scored pairs.

4.3.2.2 Experimental Setup

We followed experimental setup similar to Song and Roth [181, 182] for fair com-

parison. Specifically we created Wikipedia index using August 2016 dump32. We

indexed all articles whose length is at least 500 words (L = 500) and has at least

30 outgoing links (O = 30) using the code base of dataless text classification36. As

previously we set consequences size |Y |=1 and minimum confidence υ=0.0. We also

set support count σ=5 and relax title length τ .

4.3.2.3 Evaluation

We report the both Pearson (r) and Spearman (ρ) correlations between MSA’s

similarity scores and human judgments using a concept vector of size 500 (M=500) as

in Song and Roth [182]. We compare our results to ESA’s results using Song and Roth

35http://faculty.sites.uci.edu/mdlee/similarity-data/
36http://cogcomp.cs.illinois.edu/page/software view/DatalessHC
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Table 15: MSA’s Spearman (ρ) and Pearson (r) scores on Lee50 dataset vs. other
techniques. (?) from [77].

LSA? SSA? ESA36 MSA
Spearman(ρ) 0.46 0.49 0.61 0.62
Pearson(r) 0.70 0.68 0.73 0.75

[180] implementation. We also compare our results to other semantic representation

models such as LSA and SSA.

(a) (b)

(c) (d)

Figure 11: MSA’s correlation scores on Lee50 dataset. (a) Pearson (r) correlation
when varying support count, (b) Spearman (ρ) correlation when varying support
count, (c) Pearson (r) correlation when varying vector size count, and (d) Spearman
(ρ) correlation when varying vector size.

4.3.2.4 Results

As we can see in Table 15, MSA outperforms prior models on Lee50 dataset. ESA

comes second after MSA which shows the potential of concept space augmentation

using implicitly associated concepts discovered through MSA’s concept-concept asso-
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ciation learning.

We performed another experiment in order to assess the impact of parameter tuning

on the reported results in Table 15. Figure 11-a and 11-b show MSA’s Pearson (r)

and Spearman (ρ) correlation scores when varying the support count parameter (σ)

within the 1 to 10 range in steps of 1. As we can see MSA’s r correlation scores are

consistently higher than ESA. In addition, ρ correlation scores of MSA are higher than

ESA score for all σ values between 3 and 10. Figure 11-c and 11-d show MSA’s r and

ρ correlation scores compared to ESA when varying the vector size parameter (M)

within the 500 to 1000 range in steps of 100. As we can see both r and ρ correlation

scores of MSA are consistently higher than ESA.

Two other observations we can notice from Figure 11-c and 11-d. First, both

r and ρ scores of MSA and ESA tend to decrease as we increase the vector size.

We believe this is because more irrelevant concepts are added to the concept vector

causing divergence from a ”better” to a ”worse” representation of the given document.

Second, and more importantly, MSA’s r and ρ correlation scores are higher than SSA

and LSA over all values of σ and M for both r and ρ correlations. This experiment

reflects that MSA’s semantic representations are largely robust against parameters

tuning.

4.4 A Study on Statistical Significance

Through the results section, we kept away from naming state-of-the-art method.

That was due two facts. First, the differences between reported correlation scores were

small. Second, the size of the datasets was not that large to accommodate for such
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Table 16: Steiger’s Z significance test on the differences between Spearman correla-
tions (ρ) using 1-tailed test and 0.05 statistical significance. (.) using Baroni et al.
[12] predict vectors, (?) using Camacho-Collados et al. [23] pairwise similarity scores,
(�) using Pilehvar and Navigli [155] pairwise similarity scores.

MC RG WSS WSR WS MEN
ρ p-value ρ p-value ρ p-value ρ p-value ρ p-value ρ p-value

MSAt

Word2Vect. 0.84 0.168 0.78 0.297 0.79 0.357 0.70 0.019 0.72 0.218 0.78 0.001
NASARI? 0.73 0.138 0.77 0.030 0.70 0.109 – – – – – –
ADW� 0.78 0.258 0.78 0.019 0.67 0.271 – – – – – –

ADW�

Word2Vect. 0.80 0.058 0.81 0.003 0.68 0.5 – – – – – –
NASARI? 0.82 0.025 0.80 0.0 0.76 0.256 – – – – – –

Word2Vect.

NASARI? 0.75 0.387 0.71 0.105 0.66 0.192 – – – – – –

small differences. These two facts raise a question about the statistical significance

of improvement reported by some method A compared to another well performing

method B.

We hypothesize that the best method is not necessarily the one that gives the

highest correlation score. In other words, being state-of-the-art does not require

giving the highest correlation, rather giving a relatively high score that makes the

difference with any other higher score statistically insignificant.

To test our hypothesis, we decided to perform statistical significance tests on the top

reported correlations. Initially we targeted Word2Vec, GloVe, ADW, and NASARI

besides MSA. We contacted several authors and some of them thankfully provided us

with pairwise relatedness scores on the corresponding benchmark datasets. We also

utilized the publicly available semantic vectors of some models like Baroni et al. [12]

predict vectors.

To measure statistical significance, we performed Steiger’s Z significance test [188].

The purpose of this test is to evaluate whether the difference between two dependent
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correlations obtained from the same sample is statistically significant or not, i.e.,

whether the two correlations are statistically equivalent.

Steiger’s Z test requires to calculate the correlation between the two correlations.

We applied the tests on Spearman correlations (ρ) as it is more commonly used than

Pearson (r) correlation. We conducted the tests using correlation scores of MSA’s

tuned model on WS dataset, Word2Vec, ADW, and NSASRI.

Table 16, shows the results using 1-tailed test with significance level 0.0537. For

each dataset, we report method-method Spearman correlation (ρ) calculated using

reported scores in Table 13 and Table 14. We report p-value of the test as well.

On MC dataset, the difference between MSA score and all other methods was

statistically insignificant. Only ADW score was statistically significant compared to

NSASARI. This implies that MSA can be considered statistically a top performer on

MC dataset.

On RG dataset, MSA gave significant improvement over NASARI. ADW score

was significantly better than Word2Vec, NASARI, and MSA. Overall, ADW can be

considered the best on RG dataset followed by MSA and Word2Vec (their ρ scores

are 0.92, 0.86, and 0.84 respectively).

On WSS, though MSA achieved the highest score (ρ=0.77), no significant im-

provement was proved. Therefore, the differences between the four methods can be

considered statistically insignificant.

On WSR, WS, and MEN datasets, we could obtain pairwise relatedness scores of

37Using 2-tailed test rather than 1-tailed test would double all the p-value scores in Table 16,
subsequently increasing the confidence in the Null hypothesis which supports our argument that the
differences are not statistically significant.
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Word2Vec only. The significance test results indicated that, the improvement of MSA

over Word2Vec on WS was statistically insignificant (their ρ scores are 0.77 and 0.76

respectively). On the other hand, MSA was statistically better than Word2Vec on

WSR dataset (their ρ scores are 0.71 and 0.64 respectively), while Word2Vec was

statistically better than MSA on MEN dataset (their ρ scores are 0.79 and 0.75

respectively).

This comparative study is one of the main contributions of this thesis. To our

knowledge, this is the first study that addresses evaluating the statistical significance

of results across various semantic relatedness methods. Additionally, this study posi-

tions MSA as a state-of-the-art method for measuring semantic relatedness compared

to other explicit concept-based representation methods such as ESA and SSA. It also

shows that MSA is very competitive to other neural-based representations such as

Word2Vec and GloVe.

4.5 Conclusion

In this chapter, we presented MSA, a novel approach for semantic analysis which

employs data mining techniques to create conceptual vector representations of text.

MSA is motivated by inability of prior concept space models to capture implicit

relations between concepts. To this end, MSA mines for implicit concept-concept

associations through Wikipedia’s ”See also” link graph.

Intuitively, ”See also” links represent related concepts that might complement the

conceptual knowledge about a given concept. Furthermore, it is common in most

online encyclopedic portals to have a ”See also” or ”Related Entries” sections opening
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the door for more conceptual knowledge augmentation using these resources in the

future.

Through empirical results, we demonstrated MSA’s effectiveness to measure lexical

semantic relatedness on benchmark datasets. In absolute numbers, MSA could con-

sistently produce higher Pearson correlation scores than other explicit concept space

models (ESA, SSA) on all data sets. Additionally, MSA could produce higher scores

than ADW and NASARI on four out of five datasets. On another hand, MSA scores

were higher than predictive models built using neural networks (e.g., Word2Vec).

Regarding Spearman correlation, MSA produced the highest scores on two datasets

(WSS and WSR). Results on other datasets were very competitive in absolute num-

bers. Specifically, MSA gave higher Spearman correlations than Glove and Word2Vec

on both MC and RG datasets. Additionally, MSA gave higher correlation on MEN

dataset than neural-based representations including skip-gram, CW, and Glove.

The results show MSA competitiveness compared to state-of-the-art methods. More

importantly, our method produced significantly higher correlation scores than previ-

ous explicit semantics methods (ESA and SSA). The good performance demonstrates

the potential of MSA for augmenting the explicit concept space by other semantically

related concepts which contribute to understanding the given text.

In this chapter, we introduced the first comparative study which evaluates the sta-

tistical significance of results from across top performing semantic relatedness meth-

ods. We used Steiger’s Z significance test to evaluate whether reported correlations

from two different methods are statistically equivalent even if they are numerically

different. We believe this study will help the research community to better evalu-
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ate and position state-of-the-art techniques at different application areas. The study

proved that, statistically, MSA results are either better than or equivalent to state-of-

the-art methods on all datasets except RG where ADW was better, and MEN where

Word2Vec was better.

MSA is a general purpose semantic representation approach which builds explicit

conceptual representations of textual data. We argue that the expressiveness and

interpretability of MSA representation make it easier for humans to manipulate and

interact with. These two advantages favors MSA over the popular Word2Vec represen-

tation. As we will show in Chapter 5, MSA could be used in many text understanding

applications which require interactivity and visualization of the underlying represen-

tation such as interactive semantic search, concept tracking, technology landscape

analysis.

MSA is an efficient technique because it employs an inverted search index to re-

trieve semantically related concepts to a given text. Additionally, mining for concept-

concept association rules is done offline making it scalable to huge amounts of data.

The approach presented in this chapter serves directly our overall goal exploiting

KBs in order to increase the effectiveness and expressiveness of semantic representa-

tions of text structures. We showed through empirical results that the concept-based

representation of MSA is more effective (in terms of performance) than other seman-

tic representation models such as ESA, SSA, and LSA on benchmark datasets for

measuring word and short text semantic associations.



CHAPTER 5: INNOVATION ANALYTICS USING MINED SEMANTIC
ANALYSIS

In this chapter, we introduce our first steps toward building a semantic-driven

interactive and visual framework powered by Mined Semantic Analysis (MSA). We

analyze the applicability of such framework to innovations and patents38 analytics.

Our framework provides cognitive assistance to its users through a Web-based visual

and interactive interface. We demonstrate applying the acquired knowledge from

MSA representations to support many cognition and knowledge-based use cases for

innovation analysis including technology exploration and landscaping, competitive

analysis, prior art search and others.

The work presented in this chapter relates to our goal improving non-expert users’

usability of the semantic representations through visualization and interactivity.

5.1 Background and Motivation

Patents and innovations represent proxies for economic, technological, and even

social activities. Therefore, patent analysis has received considerable attention in

the literature39 [48, 220, 37, 131, 118, 98]. Typical innovation management use cases

include:

1. Technology exploration in order to capture new and trendy technologies in a

specific domain and subsequently using them to create ideas for new innovative

38We use innovations and patents interchangeably throughout the chapter
39http://users.cis.fiu.edu/ lzhan015/patmining.html



85

services.

2. Technology landscape analysis in order to assess the density of patent filings

of specific technology and subsequently direct R&D activities accordingly.

3. Competitive analysis and benchmarking in order to identify strengths and

differences of corporate’s own patent portfolio compared to other key players

working on related technologies.

4. Patent ranking and scoring in order to quantify the strength of the claims

of an existing or a new patent.

5. Prior art search in order to retrieve patent documents and other scientific

publications relevant to a new patent application.

All those innovation management activities require tremendous level of domain ex-

pertise which, even if available, must be integrated with highly sophisticated and

intelligent analytics that provide cognitive and interactive assistance to the users.

Due its technical nature, patent language tends to be highly sophisticated with com-

plex vocabulary, legal jargon, and domain specific terminology. Most research in au-

tomated patent analysis is inspired by either content-based (e.g., term co-occurrence)

or metadata-based (e.g., bibliographic data) methods.

We, alternatively, embrace semantic-driven analysis of innovation data. Our hy-

pothesis is that, by subtle incorporation of external conceptual knowledge, we could

bridge the linguistic and domain expertise gaps and provide non-expert users cog-

nitive assistance that would not be achievable by using the limited content-based
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Figure 12: Top: Concept graph of Cognitive Analytics; explicit concepts are light
blue nodes, and implicit concepts are red nodes. Bottom: ThemeRiver plot showing
patenting evolution of Cognitive Analytics and related technologies in its concept
graph.

approaches.

To this end, we propose a Web-based semantic framework for innovation analytics

to demonstrate typical use cases which map to real-world cognitive tasks that practi-

tioners deal with today. We employ MSA, our novel semantic representation approach

which employs data mining techniques. As we showed in Chapter 4, MSA, given an

input text, constructs a conceptual knowledge graph whose nodes are encyclopedic

concepts and links are quantified associations between those concepts. MSA builds

that knowledge graph offline by mining for concept-concept associations in a target

encyclopedic textual corpus (e.g., Wikipedia) using association rules mining [3]. Once
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constructed, this rich concept graph can be used for several tasks like semantic search,

concept expansion, measuring semantic relatedness, word sense disambiguation, re-

solving vocabulary mismatch, and others.

5.2 Case Study

In this section we demonstrate various patent analytics scenarios using our semantic-

driven visual framework powered by MSA.

5.2.1 Technology Exploration and Landscape Analysis

Consider ”Cognitive Analytics” as an example technology. Figure 12 (top) shows

the concept graph of ”Cognitive Analytics” by retrieving the top 10 most semantically

related concepts using MSA (node size reflects association strength). We can clearly

notice that: 1) those concepts are very associated with ”Cognitive Analytics” as well

as with one another, and 2) they cover a wide spectrum of the technological and

conceptual landscape.

All patent data are indexed into our framework; consequently, we could facilitate

landscape analysis of ”Cognitive Analytics” related technologies by showing patenting

and innovation progression as the ThemeRiver shown in Figure 12 (bottom). Each

stream represents a patent class where stream width is proportional to the number

of granted patents per class over 20 years between 1993 and 2013. Streams allow

practitioners to capture patenting trends that would otherwise require investigating

huge number of patent documents in an iterative and time consuming manner. Those

trends include:

• Patents were limited to two classes until 2005; ”(382) image analysis” (light
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green), and ”(514) drug bio-affecting and body treating compositions” (dark

brown).

• By 2010, the granted patents expanded to cover various patent classes; e.g.,

”(706) data processing: artificial intelligence” (dark gray) and ”(705) data pro-

cessing financial business practice management...” (pink).

• A new application domain of”Cognitive Analytics” and related technologies

emerged in 2013; ”(706) data processing: speech signal processing, linguistics,

language translation...” (purple).

Our framework encourages human-in-the-loop processing by providing users with

interactive visualizations that support their cognitive tasks. For example, users can

easily interact with the visualizations provided in Figure 12 by controlling the concept

association strength, pruning possibly irrelevant concepts, and zooming in each stream

to navigate through individual patents under that stream.

5.2.2 Competitive Intelligence

Another application of our semantic-driven framework in the innovations analytics

domain is competitive intelligence. This use case explains how MSA can be applied

to: 1) define the intellectual property portfolio of an organization, and 2) identify

other key players with similar portfolios which could be candidates for acquisition.

As pointed earlier, working with patents language poses many challenges. The

vocabulary mismatch problem is one of the prominent problems in computational

linguistics generally and patents analysis specifically. To evince their work novelty,

patent authors deliberately use different vocabulary to refer to the same concepts.
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Table 17: Bank of America’s sample patent titles.

No Publication # Title
1 US 8745155 Network storage device collector
2 US 8719160 Processing payment items
3 US 8600882 Prepaid card budgeting
4 US 8444051 Self-Service machine problem code
5 US 8301530 Automatic savings program
6 US 8136148 reusable authentication experience tool
7 US 8005728 Currency ordering by denomination
8 US 7982604 tamper-indicating monetary package
9 US 8635159 Self-service terminal limited access personal identification number
10 US 8634322 Apparatus and methods for adaptive network throttling

Figure 13: Concept graph of Bank of America (BofA)’s 100 patent titles. Light blue
nodes are explicit concepts and red nodes are implicit ones.

Resolving similarity and relatedness between technical concepts is very important

in many innovation analysis applications such as concept expansion and tracking,

monitoring technology evolution, technology to industry mappings, and others.
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To define the portfolio of an organization, we built a big index of all US granted

patents40 between 1976 and Oct. 2014. We used Apache Solr to build and search the

index. The total index size was about 200GB comprising around 4.7 million docu-

ments. For each patent, we indexed its title, abstract, description, claims, assignee,

and publication date.

The competitive intelligence scenario starts with a seed organization and ends

with potential key players with similar portfolios. In the process, target organiza-

tion’s portfolio is defined in terms of technological and technical concepts expressed

explicitly or implicitly in the organization’s patents.

We exemplify by considering Bank of America41 (BofA) as a target organization.

By searching our patents index, we found approximately 790 patents whose assignee

is BofA. Portfolio identification is a multi-step process that uses representative de-

scription of the patents; e.g. their titles, abstracts, descriptions, and/or claims. We

extract titles of 100 patents at random (see Table 17 for sample titles) as a represen-

tative description of BofA’s innovations. Then, we pass all titles as a single snippet

to MSA to discover the corresponding concept representation.

Figure 13 shows MSA’s top 20 relevant concepts which represent BofA’s portfolio

using titles from Table 17. As we can notice, those concepts are semantically related

to the titles in Table 17.

The final step in our competitive analysis scenario is to identify key players with

similar portfolios to BofA. To do this step, we take the top ranked concepts and com-

40https://data.uspto.gov/uspto.html
41https://www.bankofamerica.com/
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Table 18: Witricity ’s sample patent titles.

No Publication # Title
1 US 8106539 Wireless energy transfer for refrigerator application
2 US 8618696 Wireless energy transfer systems
3 US 8497601 Wireless energy transfer converters
4 US 8569914 Wireless energy transfer using object positioning for improved k
5 US D709855 Clock radio phone charger
6 US D705745 Printed resonator coil
7 US 8471410 Wireless energy transfer over distance using field shaping to im-

prove the coupling factor
8 US D692010 Wireless power source
9 US 8729737 Wireless energy transfer using repeater resonators
10 US 8805530 Power generation for implantable devices

Figure 14: Concept graph of Witricity ’s 10 patent titles. Light blue nodes are explicit
concepts and red nodes are implicit ones.

bine them to construct a search query against the patents index. We limit the search

to patent claims as they define in technical terms the scope of protection sought by

the inventor. Among the top ranked key players in the competitors list were com-
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panies like ActivIdentity42 which is specialized in identity assurance, SecureEnvoy43

which is specialized in authentication and verification, and IBM.

To validate the robustness of our semantic framework, we repeated the same com-

petitive analysis experiment on Witricity44, which is specialized in wireless energy

transfer using resonant magnetic coupling. Table 18 shows titles of 10 Witricity’s

patents. Figure 14 shows the top 20 relevant concepts representing Witricity ’s port-

folio using those titles. We validated the relevance of the retrieved concepts to the

wireless energy industry based on feedback from a domain expert. To close the loop,

we retrieved similar key players to Witricity and the list included Qualcomm45, Pow-

ermat46, and Mojo Mobility47 which all provide wireless charging solutions.

5.3 Conclusion

In this chapter, we presented a semantic, visual, and interactive framework for

innovation analytics powered by MSA. The framework supports various cognition

and knowledge intensive tasks of patent analysis and thus maximizes the potential for

user exploration. Specifically, we demonstrated a case study using MSA’s semantic-

driven framework for technology landscape analysis and competitive intelligence. This

work goes in harmony with our overall objective to increase the usability of the

semantic representation allowing users to better explore, analyze, and get insights

from unstructured texts.

42http://portal.actividentity.com/
43https://www.securenvoy.com/
44http://witricity.com/
45https://www.qualcomm.com/
46http://www.powermat.com/
47http://www.mojomobility.com/home



CHAPTER 6: LEARNING CONCEPT AND ENTITY EMBEDDINGS

In this Chapter we focus on increasing the effectiveness and efficiency of the in-

terpretable explicit concept space representations including MSA. As we highlighted

earlier, explicit concept space models have proven efficacy for text representation in

many natural language and text mining applications. The idea is to embed textual

structures into a semantic space of concepts which captures the main ideas, objects,

and the characteristics of these structures. The so called Bag-of-Concepts (BoC) rep-

resentation suffers from data sparsity causing low similarity scores between similar

texts due to low concept overlap. To address this problem, we propose two neural

embedding models to learn continuous48 concept vectors. Once they are learned,

we propose an efficient vector aggregation method to generate fully continuous BoC

representations. We evaluate our concept embedding models on three tasks: 1) mea-

suring entity semantic relatedness and ranking where we achieve 1.6% improvement

in correlation scores, 2) dataless concept categorization where we achieve state-of-the-

art performance and reduce the categorization error rate by more than 5% compared

to five prior word and entity embedding models, and 3) dataless document classifi-

cation where our models outperform the sparse BoC representations. In addition,

by exploiting our efficient linear time vector aggregation method, we achieve better

48We use the terms continuous, dense, distributed vectors interchangeably to refer to real-valued
vectors.
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accuracy scores with much less concept dimensions compared to previous BoC densifi-

cation methods which operate in polynomial time and require hundreds of dimensions

in the BoC representation.

Table 19: Top 3 concepts generated using ESA [56] for two 20-newsgroups categories
(Hockey and Guns) along with top 3 concepts of sample instances. Using exact
match similarity scoring (as in ESA) result in low scores between similar instance
and category concept vectors. When using concept embeddings (our models), we
obtain relatively higher and more representative similarities.

Category Top 3 Concepts Instance Top 3 Concepts ESA CCX CRX

Hockey
- Detroit Red Wings,
- History of the Detroit
Red Wings,
- History of the NHL on
United States television

Instance (53798)
- History of the Detroit
Red Wings,
- Detroit Red Wings,
- Pittsburgh Penguins

0.73 0.95 0.95

Instance (54551)
- Paul Kariya,
- Boston Bruins,
- Bobby Orr

0.0 0.84 0.80

Guns
- Waco siege,
- Overview of gun laws by
nation,
- Gun violence in the
United States

Instance (54387)
- Overview of gun laws by
nation,
- Waco siege,
- Gun politics in the
United States

0.71 0.94 0.93

Instance (54477)
- Concealed carry in the
United States,
- Overview of gun laws by
nation,
- Gun laws in California

0.33 0.80 0.75

6.1 Background & Motivation

As mentioned in Chapter 4, explicit concept space models utilize concept vectors

(aka Bag-of-Concepts (BoC)) as the underlying semantic representation of a given text

through a process called conceptualization, which is mapping the text into relevant

concepts capturing its main ideas, objects, and their characteristics.

Similar to the traditional Bag-of-Words (BoW) representation, the BoC vector is
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a multidimensional sparse vector whose dimensionality is the same as the number of

concepts in the employed Knowledge Base (KB) (typically millions). Consequently,

it suffers from data sparsity causing low similarity scores between similar texts due to

low concept overlap. Moreover, the BoC vector is generated from the top n concepts

which have relatively high association scores with the input terms (typically few

hundreds). Thus each text snippet is mapped to a very sparse vector of millions

of dimensions having only few hundreds nonzero values leading to the BoC sparsity

problem [153].

Having such sparse representation and using exact match similarity scoring mea-

sure, we can expect that two very similar text snippets might have zero similarity

score if they map to different but very related set of concepts [182]. We demonstrate

this fact in Table 19 (ESA column).

In this Chapter we utilize neural-based representations to overcome the BoC spar-

sity problem. The basic idea is to map each concept to a fixed size continuous vector.

These vectors can then be used to compute concept-concept similarity and thus over-

come the concept mismatch problem.

Our work is also motivated by the success of recent neural-based methods for learn-

ing word embeddings in capturing both syntactic and semantic regularities using sim-

ple vector arithmetic [138, 139, 154]. For example, inferring analogical relationships

between words: vec(king)-vec(man)+vec(woman)=vec(queen). This indicates that

the learned vectors encode meaningful multi-clustering for each word.

However, word vectors suffer from significant limitations. First, each word is as-

sumed to have a single meaning regardless of its context and thus is represented by a
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single vector in the semantic space (e.g., charlotte (city) vs. charlotte (given name)).

Second, the space contains vectors of single words only. Vectors of multiword expres-

sions (MWEs) are typically obtained by averaging the vectors of individual words.

This often produces inaccurate representations especially if the meaning of the MWE

is different from the composition of meanings of its individual words (e.g., vec(north

carolina) vs. vec(north)+vec(carolina). Additionally, mentions that are used to refer

to the same concept would have different embeddings (e.g., u.s., america, usa), and

the model might not be able to place those individual vectors in the same sub-cluster,

especially the rare surface forms.

We propose two neural embedding models in order to learn continuous concept

vectors based on the skip-gram model [139]. Our first model is the Concept Raw

Context model (CRX) which utilizes raw concept mentions in a large scale textual

KB to jointly learn embeddings of both words and concepts. Our second model is

the Concept-Concept Context model (CCX) which learns the embeddings of concepts

from their conceptual contexts (i.e., contexts containing surrounding concepts only).

After learning the concept vectors, we propose an efficient BoC aggregation method.

We perform weighted average of the individual concept vectors to generate fully con-

tinuous BoC representations (CBoC). This aggregation method allows measuring the

similarity between pairs of BoC in linear time which is more efficient than previous

methods that require quadratic or at least log-linear time if optimized (see Equation

5). Our embedding models produce more representative similarity scores for BoC

containing different but semantically similar concepts as shown in Table 19 (columns

2-3).
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We evaluate our embedding models on three tasks:

1. An intrinsic task of measuring entity semantic relatedness and ranking where

we achieve 1.6% improvement in correlation scores.

2. Dataless concept categorization where we achieve state-of-the-art performance

and reduce the categorization error rate by more than 5% compared to five prior

word and entity embedding models.

3. An extrinsic task of dataless document classification. Experimental results show

that we can achieve better accuracy using our efficient BoC densification method

compared to the original sparse BoC representation with much less concept

dimensions.

The contributions of our approach are fourfold: First, we propose two low cost con-

cept embedding models which learn concept representations from concept mentions

in free-text corpora. Our models require few hours rather than days to train. Second,

we show through empirical results the efficacy of the learned concept embeddings

in measuring entity semantic relatedness and concept categorization. Our models

achieve state-of-the-art performance on two concept categorization datasets. Third,

we propose simple and efficient vector aggregation method to obtain fully dense BoC

in linear time. Fourth, we demonstrate through experiments on dataless document

classification that we can obtain better accuracy using the dense BoC representation

with much less dimensions (few in most cases), reducing the computational cost of

generating the BoC vector significantly.
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6.2 Related Work

6.2.1 Text Conceptualization

We highlighted in Chapter 4 the value of text conceptualization as a way of

automating the generalizations humans perform while figuring out text meanings.

Broadly speaking, conceptualization methods are either vector-based or knowledge-

based. Vector-based methods utilize semi-structured KBs such as Wikipedia in or-

der to construct the concept space which is defined by all Wikipedia article titles.

Knowledge-based methods use more structured concept KBs such as Microsoft Knowl-

edge Graph (aka Probase49) [212] which is a probabilistic KB of millions concepts and

their relationships. Probase uses syntactic patterns in order to mine for concepts

and relationships. Despite its effectiveness, the dependency of Probase on syntactic

patterns can be a limitation especially for languages other than English. In addition,

we expect augmenting and maintaining these syntactic patterns to be costly and la-

bor intensive. We argue that concept embeddings allow simpler and more efficient

representations, simply because similarity scoring between individual or vectors of

concepts can be performed using vector arithmetic. While the Probase hierarchy al-

lows only symbolic matching, which still suffers from data sparsity. On another hand,

we spotted some cases where Probase probabilities were atypical50. This is due to

learning concept categories from a limited set of syntactic patterns which does not

cover all concept mention patterns. Concept embeddings relax this requirement by

exploiting all concept mentions in order to learn the embedding vector and therefore

49https://concept.research.microsoft.com
50p(Arabic coffee | Beverage) = 0
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might be utilized to curate such atypical Probase assertions.

6.2.2 Concept/Entity Embeddings

Neural embedding models have been proposed to learn distributed representations

of concepts/entities51. Song and Roth [182] proposed using the popular Word2Vec

model [138] to obtain the embeddings of each concept by averaging the vectors of the

concept’s individual words. For example, the embeddings of Microsoft Office would

be obtained by averaging the embeddings of Microsoft and Office obtained from the

Word2Vec model. Clearly, this method disregards the fact that the semantics of

multiword concepts is different from the semantics of their individual words.

More robust concept and entity embeddings can be learned from the general knowl-

edge about the concept in encyclopedic KB (e.g., its article) and/or from the structure

of a hyperlinked KB (e.g., its link graph). Such concept embedding models were pro-

posed by Hu et al. [85], Li et al. [110], and Yamada et al. [214] who all utilize the

skip-gram learning technique [139], but differ in how they define the context of the

target concept.

Li et al. [110] extended the embedding model proposed by Hu et al. [85] by jointly

learning entity and category embeddings from contexts defined by all other entities in

the target entity article as well as its category hierarchy in Wikipedia. This method

has the advantage of learning embeddings of both entities and categories jointly.

However, defining the entity contexts as pairs of the target entity and all other entities

appearing in its corresponding article might introduce noisy contexts, especially for

51In this chapter, we use the terms ”concept” and ”entity” interchangeably.
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long articles. For example, the Wikipedia article for ”United States” contains links

to ”Kindergarten”, ”First grade”, and ”Secondary school” under the ”Education”

section.

Yamada et al. [214] proposed a method based on the skip-gram model to jointly

learn embeddings of words and entities using contexts generated from surrounding

words of the target entity or word. The authors also proposed incorporating Wikipedia

link graph by generating contexts from all entities with outgoing link to the target

entity to better model entity-entity relatedness.

Our models also learn word and concept embeddings jointly. Mapping both words

and concepts into the same semantic space allows us to easily measure word-word,

word-concept, and concept-concept semantic similarities. In addition, our CRX model

(described in Section 6.3.2) extends the context of each word/concept by including

nearby concept mentions and not only nearby words. Therefore, we better model

the local contextual information of concepts and words in Wikipedia, treated as a

textual KB. During training, we generate word-word, word-concept, concept-word,

and concept-concept contexts (cf. Equation 15). In Yamada et al. [214] model,

concept-concept contexts are generated from Wikipedia link graph not from their raw

mentions in Wikipedia text. In the CCX model, we define concept contexts by all

surrounding concepts within a window of fixed size.

Generating contexts from raw text mentions makes our models not restricted to hy-

perlinked encyclopedic textual corpora only. This facilitates exploiting other free-text

corpora with annotated concept mentions (e.g., news stories, scientific publications,

medical guidelines...etc). Moreover, our proposed models are computationally less
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Figure 15: Densification of the bag-of-concepts using weighted average of the learned
concept embeddings. The concept space is defined by all Wikipedia article titles. The
concept vector is created from the top n hits of searching a Wikipedia inverted index
with the given text.

costly than Hu et al. [85] and Yamada et al. [214] models as they require few hours

rather than days to train on similar computing resources.

6.2.3 Bag-of-Concepts Densification

Densification of the Bag-of-Concepts (BoC) is the process of converting the sparse

BoC into a continuous BoC (CBoC) (aka dense BoC) in order to overcome the BoC

sparsity problem. The process requires first mapping each concept into a continuous

vector using representation learning. Song and Roth [182] proposed three different

mechanisms for aligning the concepts at different indices given a sparse BoC pair

(u,v) in order to increase their similarity score.

The many-to-many mechanism works by averaging all pairwise similarities. The

many-to-one mechanism works by aligning each concept in u with the most similar

concept in v (i.e., its best match). Clearly, the complexity of these two mechanisms is

quadratic. The third mechanism is the one-to-one. It utilizes the Hungarian method

in order to find an optimal alignment on a one-to-one basis [151]. This mechanism per-
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formed the best on the task of dataless document classification and was also utilized

by Li et al. [110]. However, the Hungarian method is a combinatorial optimization

algorithm whose complexity is polynomial. Our proposed densification mechanism is

more efficient than these three mechanisms as its complexity is linear with respect

to the number of nonzero elements in the BoC. Additionally, it is simpler as it does

not require tuning a cutoff threshold for the minimum similarity between two aligned

concepts as in previous work. Figure 15 shows a schematic diagram of our efficient

densification mechanism applied to a BoC generated from a Wikipedia inverted index.

We simply perform weighted average of the individual concept vectors in the obtained

BoC.

6.3 Learning Concept Embeddings

A main objective of learning concept embeddings is to overcome the inherent prob-

lem of data sparsity associated with the BoC representation. Here we try to learn

continuous concept vectors by building upon the skip-gram embedding model [139].

6.3.1 Skip-gram

In the conventional skip-gram model, a set of contexts are generated by sliding

a context window of predefined size over sentences of a given text corpus. Vector

representation of a target word is learned with the objective to maximize the ability

of predicting surrounding words of that target word.

Formally, given a training corpus of V words w1, w2, ..., wV . The skip-gram model
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aims to maximize the average log probability:

1

V

V∑
i=1

∑
−s≤j≤s,j 6=0

log p(wi+j|wi) (13)

where s is the context window size, wi is the target word, and wi+j is a surrounding

context word. The softmax function is used to estimate the probability p(wO|wI) as

follows:

p(wO|wI) =
exp(vᵀ

wO
uwI

)∑W
w=1 exp(vᵀ

wuwI
)

(14)

where uwI
and vwO

are the input and output vectors respectively and W is the

vocabulary size. Mikolov et al. [139] proposed hierarchical softmax and negative

sampling as efficient alternatives to approximate the softmax function which becomes

computationally intractable when W becomes huge.

Our approach genuinely learns distributed concept representations by generating

concept contexts from mentions of those concepts in large encyclopedic text KBs

such as Wikipedia. Utilizing such annotated KBs eliminates the need to manually

annotate concept mentions and thus comes at no cost.

6.3.2 Concept Raw Context Model (CRX)

In this model, we jointly learn the embeddings of both words and concepts. First, all

concept mentions are identified in the given corpus. Second, contexts are generated

for both words and concepts from other surrounding words and other surrounding

concepts as well. After generating all the contexts, we use the skip-gram model

to jointly learn the embeddings of words and concepts. Formally, given a training

corpus of V words w1, w2, ..., wV , we iterate over the corpus identifying words and
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concept mentions and thus generating a sequence of T tokens t1, t2, ...tT where T < V

(as multiword concepts will be counted as one token). Afterwards we train the a

skip-gram model aiming to maximize:

1

T

T∑
i=1

∑
−s≤j≤s,j 6=0

log p(ti+j|ti) (15)

where as in the conventional skip-gram model, s is the context window size. In this

model, ti is the target token which would be either a word or a concept mention, and

ti+j is a surrounding context word or concept mention.

This model is different from Yamada et al. [214]’s anchor context model in three

aspects: 1) while generating target concept contexts, we utilize not only surrounding

words but also other surrounding concepts, 2) our model aims to maximize p(ti+j|ti)

where t could be a word or a concept, while Yamada et al. [214] model maximizes

p(wi+j|ei) where ei is the target concept/entity (see Yamada et al. [214] Eq. 6), and

3) in case ti is a concept, our model captures all the contexts in which it appeared,

while Yamada et al. [214] model generates for each entity one context of s previous

and s next words. We hypothesize that considering both concepts and individual

words in the optimization function generates more robust embeddings.

6.3.3 Concept-Concept Context Model (CCX)

Inspired by the distributional hypothesis [75], in this model, we hypothesize that:

”similar concepts tend to appear in similar conceptual contexts”. In order to test this

hypothesis, we propose learning concept embeddings by training a skip-gram model on

contexts generated solely from concept mentions. As in the CRX model, we start by
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identifying all concept mentions in the given corpus. Then, contexts of target concept

are generated from surrounding concepts only. Formally, given a training corpus of

V words w1, w2, ..., wV . We iterate over the corpus identifying concept mentions and

thus generating a sequence of C concept tokens c1, c2, ...cC where C < V . Afterwards

we train the skip-gram model aiming to maximize:

1

C

C∑
i=1

∑
−s≤j≤s,j 6=0

log p(ci+j|ci) (16)

where s is the context window size, ci is the target concept, and ci+j is a surrounding

concept mention within s mentions.

This model is different from Li et al. [110] and Hu et al. [85] as they define the

context of a target concept by all the other concepts which have an outgoing link from

the concept’s corresponding article in Wikipedia. Clearly, some of these concepts

might be irrelevant especially for very long articles which cite hundreds of other

concepts. Our CCX model, alternatively, learns concept semantics from surrounding

concepts and not only from those that are cited in its article. We also extend the

context window beyond pairs of concepts allowing more influence to other nearby

concepts.

6.3.4 CRX vs. CCX

One of the advantages of the CCX model over the CRX model is its computational

efficiency during learning. On the other hand, the CCX model vocabulary is limited

to the corpus concepts (all Wikipedia articles in our case), while the CRX model

vocabulary is defined by all unique concepts+words in Wikipedia.
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Table 20: Example three sentences along with sample contexts generated from CRX
and CCX. Contexts are generated with a context window of length 3.

Sentence CRX Contexts CCX Contexts

Larry Page is the
co-founder of Google which is

headquartered in Menlo Park CA

<Larry Page, co-founder>
<co-founder, Google>
<Google, headquartered>
<headquartered, Menlo Park CA>

<Larry Page, Google>
<Larry Page, Menlo Park CA>
<Google, Menlo Park CA>

Bill Gates is the
co-founder of Microsoft which is
headquartered in Redmond WA

<Bill Gates, co-founder>
<co-founder, Microsoft>
<Microsoft, headquartered>
<headquartered, Redmond WA>

<Bill Gates, Microsoft>
<Bill Gates, Redmond WA>
<Microsoft, Redmond WA>

Google is headquartered in
Menlo Park CA and was
co-founded by Larry Page

<Google, headquartered>
<headquartered, Menlo Park CA>
<Menlo Park CA, co-founded>
<co-founded, Larry Page>

<Google, Menlo Park CA>
<Google, Larry Page>
<Menlo Park CA, Larry Page>

Another distinct property of the CCX model is its emphasis on concept-concept

relatedness rather than similarity (as we will detail more in the experiments section).

The CCX model by looking only at surrounding concept mentions while learning, is

able to generate contexts containing more diverse but related concepts. One the other

hand, the CRX model which jointly learns the embeddings of words and concepts puts

more emphasis on similarity by leveraging the full contextual information of words

and concepts while learning.

To better illustrate this difference, consider a sample of the contexts generated from

CRX and CCX in Table 20 using a sliding window of length 3. As we can notice,

the CRX contexts of ”Google” and ”Microsoft” are somewhat similar containing

words like ”headquartered” and ”co-founder”. This causes the model to learn similar

vectors for these two concepts. On the other hand, the CCX contexts of ”Google”

and ”Microsoft” do not share any similarities52, rather we can see that ”Google” has

similar contexts to ”Larry Page” as both has ”Menlo Park CA” in their contexts,

causing the model to learn similar embeddings for these two related concepts.

52This is an illustrative example and doesn’t imply the two concepts will have totally dissimilar
vectors.
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6.3.5 Training

We utilize a recent Wikipedia dump of August 201632, which has about 7 million

articles. We extract articles plain text discarding images and tables. We also discard

”References” and ”External links” sections (if any). We pruned both articles not

under the main namespace and pruned all redirect pages as well. Eventually, our

corpus contained about 5 million articles in total.

We preprocess each article replacing all its references to other Wikipedia articles

with the their corresponding page IDs. In case any of the references is a title of

a redirect page, we use the page ID of the original page to ensure that all concept

mentions are normalized.

Following Mikolov et al. [139], we utilize negative sampling to approximate the soft-

max function by replacing every log p(wO|wI) term in the softmax function (Equation

14) with:

log σ(vᵀ
wO

uwI
) +

k∑
s=1

Ews∼Pn(w)[log σ(−vᵀ
ws

uwI
)] (17)

where k is the number of negative samples drawn for each word and σ(x) is the sigmoid

function ( 1
1+e−x ). In the case of the CRX model wI and wO would be replaced with

ti and ti+j respectively. And in the case of the CCX model wI and wO would be

replaced with ci and ci+j respectively.

For both the CRX & CCX models with use a context window of size 9 and a vector

of 500 dimensions. We train the skip-gram model for 10 iterations using 12-core

machine with 64GB of RAM. The CRX model took ∼15 hours to train for a total of

∼12.7 million tokens. The CCX model took ∼1.5 hours to train for a total of ∼4.5
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million concepts.

6.3.6 Creating Continuous Bag-of-Concepts (CBoC)

As we mentioned in the related work section, the current mechanisms for BoC

densification are inefficient as their complexity is at least quadratic with respect to

the number of nonzero elements in the BoC vector. Here, we propose simple and

efficient vector aggregation method to obtain fully continuous BoC vectors (CBoC) in

linear time. Our mechanism works by performing a weighted average of the individual

concept vectors in a given BoC. This operation has two advantages. First, it scales

linearly with the number of nonzero dimensions in the BoC vector. Secondly, it

produces a fully dense BoC vector of fixed size representing the semantics of the

original concepts and considering their weights. Formally, given a sparse BoC vector

s={(c1, w1), . . . , (c|s|, w|s|)}, where wi is weight of concept ci. We can obtain the dense

representation of s as in equation 18:

sdense =

∑|s|
i=1wi.uci∑|s|
i=1wi

(18)

where uci is the vector of concept ci. Once we have this dense BoC vector, we can

apply the cosine measure to compute the similarity between a pair of dense BoC

vectors.

As we can notice, this weighted average is done once for any given BoC vector.

Other mechanisms that rely on concept alignment [182], require realignment every

time a pair of BoC vectors are compared. Our approach improves the efficiency

especially in the context of dataless document classification with large number of
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classes. Using our densification mechanism, we apply the weighted average for the

BoC of each category and for each instance document once.

Interestingly, our densification mechanism allows us to densify the sparse BoC

vector using only the top few dimensions. As we will show in the experiments (Section

6.5.3), we can get near-best results using these few dimensions compared to densifying

with all the dimensions in the original sparse vector. This property reduces the cost

of obtaining a BoC vector with a few hundred dimensions in the first place.

6.4 Text Conceptualization Applications

Concept-based representations have many applications in computational linguis-

tics, information retrieval, and knowledge modeling. Such representations are able to

capture the semantics of a given text by either identifying concept mentions in that

text, transforming the text into a concept space, or both [209]. Thereafter, many cog-

nitive tasks that require huge background and real-world knowledge are facilitated

by leveraging the conceptual representations. We describe some of these tasks in this

section, and provide empirical evaluation of our our concept embedding models on

such tasks in the next section.

6.4.1 Concept/Entity Relatedness

Entity relatedness has been recently used to model entity coherence in many named

entity linking and disambiguation systems [211, 142, 82, 30, 87, 85, 214]. In entity

search, Hu et al. [85] utilized entity relatedness score to rank candidate entities based

on their relatedness to the search query entities. Also, entity embeddings have proved

more efficient and effective for measuring entity relatedness over traditional related-
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ness measures which uses link analysis. Formally, given a entity pair (ei, ej), their

relatedness score is evaluated as rel(ei, ej) = Sim(uei ,uej), where Sim is a similarity

function (e.g., cosine), and ue is the embeddings of entity e.

6.4.2 Concept Learning

Concept learning is a cognitive process which involves classifying a given con-

cept/entity to one or more candidate categories (e.g., milk as beverage, dairy prod-

uct, liquid...etc). This process is also known as concept categorization53 [110]. Au-

tomated concept learning gains its importance in many knowledge modeling tasks

such as knowledge base construction (discovering new concepts), completion (infer-

ring new relationships between concepts), and curation (removing noisy or assessing

weak relationships). Similar to Li et al. [110], we assign a given concept to a tar-

get category using Rocchio classification [169], where the centroid of each category

is set to the category’s corresponding embedding vector. Formally, given a set of

n candidate concept categories G = {g1, ..., gn}, a sample concept c, an embedding

function f , and a similarity function Sim, then c is assigned to category g∗ such that

g∗ = arg maxi Sim(f(gi), f(c)). Here, the embedding function f would always map

the given concept to its vector.

6.4.3 Dataless Classification

Chang et al. [31] proposed dataless document classification as a learning protocol

to perform text categorization without the need for labeled data to train a classifier.

Given only label names and few descriptive keywords of each label, classification is

53In this chapter, we use concept learning and concept categorization interchangeably
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Algorithm 1: Classification + Bootstrapping
Input: U={(l1,ul1 ), ..., (ln,uln )}: labels + embeddings

D={(d1,vd1 ), ..., (dm,vdm )}: instances + embeddings
N: number of bootstrap instances

Result: L={..., (di, lj), ...}: label assignment for each instance
1 repeat
2 candidates← {l1 : φ, ..., ln : φ}
3 foreach (d,vd) ∈ D do
4 dmax sim = 0
5 dmax label = null
6 foreach (l,ul) ∈ U do
7 siml = Sim(vd,ul)
8 if siml > dmax sim then
9 dmax sim = siml

10 dmax lebel = l

11 end

12 end
13 add (d, dmax sim) to candidates[l]

14 end
15 foreach (l, candidatesl) ∈ candidates.items do
16 repeat
17 scoremax = 0
18 dmax = null
19 foreach (d, scored) ∈ candidatesl do
20 if scored > scoremax then
21 scoremax = scored
22 dmax = d . most similar instance so far

23 end

24 end
25 add (dmax, l) to L . assign class label
26 ul ← ul + vd . bootstrap label embedding
27 remove d from candidatesl
28 remove d from D

29 until N highest scored instances added

30 end

31 until D = φ . no more instances to classify

performed on the fly by mapping each label into a BoC representation using ESA [56].

Likewise, each data instance is mapped into the same BoC semantic space and as-

signed to the most similar label using a proper similarity measure such as cosine. For-

mally, given a set of n labels L = {l1, ..., ln}, a text document d, a BoC mapping model

f , and a similarity function Sim. First we conceptualize each li and the document d

by applying f on them, which will produce sparse BoC vectors sli and sd respectively.

Then we densify the vectors as in equation 18 producing sdenseli and sdensed respec-

tively. Finally d is assigned to label l∗ such that l∗ = arg maxi Sim(sdenseli , sdensed).
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6.4.4 Bootstrapping

In the context of dataless classification, Chang et al. [31] and Song and Roth [181]

used bootstrapping in order to improve the classification performance without the

need for labeled data. The basic idea is to start from target labels as the initial train-

ing samples, train a classifier, and iteratively add to the training data those samples

which the classifier is most confident until no more samples to be classified. The

results of dataless classification with bootstrapping were competitive to supervised

classification with many training examples.

We extend the use of bootstrapping to the concept learning task as well. In concept

learning we start with the vectors of target category concepts as a prototype view

upon which categorization decisions are made (e.g., vec(bird), vec(mammal)...etc).

We leverage bootstrapping by iteratively updating this prototype view with the vec-

tors of concept instances we are most confident. For example, if ”deer” is closest to

”mammal” than any other instance in the dataset, then we update the definition of

”mammal” by performing vec(mammal)+=vec(deer), and repeat the same operation

for other categories as well. This way, we adapt the initial prototype view to better

match the specifics of the given data. Although bootstrapping is a time consuming

process, we argue that, using dense vectors for representing concepts makes bootstrap-

ping more appealing. As updating the category vector with an instance vector could

be performed through optimized vector arithmetic which is available in most modern

machines. Algorithm 1 presents the pseudocode for performing dataless classification

and concept categorization with bootstrapping. In our implementation, we bootstrap
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the category vector with vectors of the most similar N instances at a time. Another

implementation option might be defining a threshold and bootstrapping using vectors

of N instances if their similarity score exceed that threshold. In the experiments, we

set N=1.

6.5 Experiments

6.5.1 Entity Semantic Relatedness

We evaluate the ”goodness” of our concept embeddings on measuring entity se-

mantic relatedness as an intrinsic evaluation.

6.5.1.1 Dataset

We use the KORE dataset created by Hoffart et al. [82]. It consists of 21 main

entities from four domains: IT companies, Hollywood celebrities, video games, and

television series. For each of these entities, 20 other candidate entities were selected

and manually ranked based on their relatedness score based on human judgements.

As in previous studies, we report the Spearman rank-order correlation (ρ) [222] which

assesses how the automated ranking of candidate entities based on their relatedness

score matches the ranking we obtain from human judgements.

6.5.1.2 Compared Systems

We compare our models with four previous methods:

1. KORE [82] which measure entity relatedness by firstly representing entities

as sets of weighted keyphrases and then computing relatedness using differ-

ent measures such as keyphrase vector cosine similarity and keyphrase overlap
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Table 21: Evaluation of concept embeddings for measuring entity semantic relatedness
using Spearman rank-order correlation (ρ). Overall, the CCX model gives the best
results outperforming all other models. It comes 1st on 3 categories (bold), and 2nd

on the other two (underlined).

Method IT Companies Celebrities TV Series Video Games Chuck Norris All

WLM 0.721 0.667 0.628 0.431 0.571 0.610

CombIC 0.644 0.690 0.643 0.532 0.558 0.624

ExRel 0.727 0.643 0.633 0.519 0.477 0.630

KORE 0.759 0.715 0.599 0.760 0.498 0.698

CRX 0.644 0.592 0.511 0.641 0.495 0.586

CCX 0.788 0.694 0.696 0.708 0.573 0.714

relatedness.

2. WLM introduced by Witten and Milne [211] who proposed a Wikipedia Link-

based Measure (WLM) as a simple mechanism for modeling the semantic relat-

edness between Wikipedia entities. The authors utilized Wikipedia link struc-

ture under the assumption that related entities would have similar incoming

links.

3. Exclusivity-based Relatedness (ExRel) introduced by Hulpus et al. [88]

who proposed this measure under the assumption that not all instances of a

given relation type should be equally weighted. Specifically, the authors hy-

pothesized that the relatedness score between two concepts should be higher if

each of them is related through the same relation type to fewer other concepts

in the employed KB link graph.

4. Combined Information Content (CombIC) introduced by Schuhmacher

and Ponzetto [175] who compute the relatedness score using a graph edit dis-

tance measure on the DBpedia KB.
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Table 22: Top-3 rated entities from CRX & CCX models on sample entities from the 4
domains compared to the ground truth. We can notice high agreement between CCX
model ranks and the ground truth ranks (in brackets). The CRX model top rated
entities has lower ranks in ground truth causing relatively low correlation scores.

Entity CRX CCX Ground Truth

Google
Yahoo! (9)
Apple Inc. (12)
Bing (search engine) (7)

Larry Page (1)

Sergey Brin (2)

Yahoo! (9)

Larry Page
Sergey Brin
Google Maps

Leonardo
DiCaprio

Kate Winslet (4)
Steven Spielberg (9)
Tobey Maguire (7)

Tobey Maguire (7)
Kate Winslet (4)
Titanic (1997 film) (2)

Inception (film)
Titanic (1997 film)
Frank Abagnale

Mad Men
The Sopranos (15)
Matthew Weiner (1)
Jon Hamm (2)

Matthew Weiner (1)
Jon Hamm (2)
Todd London (4)

Matthew Weiner
Jon Hamm
Alan Taylor (director)

Guitar Hero
(video game)

Frequency (video game) (10)
Rock Band (video game) (6)
Harmonix Music Systems (1)

Harmonix Music Systems (1)

WaveGroup Sound (3)

RedOctane (1)

Harmonix Music Systems
RedOctane
WaveGroup Sound

6.5.1.3 Results

Table 21 shows the Spearman (ρ) correlation scores of the CRX and CCX model

compared to previous models. As we can notice the CCX model achieves the best

overall performance on the five domains combined exceeding its successor KORE by

1.6%. The CRX model on the other hand came last on this task.

In order to better understand these results, we looked at rankings of individual

entities from each domain to see how they compare to the ground truth. Table 22

shows the top-3 rated entities from each model on sample entities from the four

domains. As we can notice, the ground truth assigns high rank to related rather

than similar entities. For example, relatedness of ”Google” to ”Larry Page” is ranked

1st, while to ”Yahoo!” is ranked 9th, and to ”Apple Inc.” is ranked 12th. As the

CCX model emphasizes semantic relatedness over similarity, it has high overlap in

the top-3 entities with the ground truth (underlined entities). On the other hand,

the CRX model predictions are actually meaningful when it comes to functional
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and topical similarity. As we can notice, it assigns high ranks of ”Google” to other

companies (”Yahoo!”, ”Apple Inc.”), of ”Leonardo DiCaprio” to other celebrities

(”Tobey Maguire”), and ”Mad Men” to other TV series (”The Sopranos”), and of

”Guitar Hero” to other video games (”Frequency”, ”Rock Band”). However, all these

highly ranked entities by CRX have relatively low rankings in the ground truth (given

in brackets). This caused the correlation score to be much lower than what we

obtained from the CCX model.

The results indicate that, the CCX model could be more appropriate in applications

where relatedness and topical diversity are more desired than topical and functional

coherence where the CRX model would be more appealing.

6.5.2 Concept Categorization

This task can be viewed as both intrinsic and extrinsic. It is intrinsic because

a good embedding model would generate clusters of concepts belonging to the same

category, and optimally place the category vector at the center of its instances vectors.

On another hand, it is extrinsic as the embedding model could be used to generate a

concept KB of is-a relationships with confidence scores, similar to Probase [212]. The

model could even be used to curate and/or assert the facts in Probase.

6.5.2.1 Datasets

As in Li et al. [110], we utilize two benchmark datasets: 1) Battig test [11], which

contains 83 single word concepts (e.g., cat, tuna, spoon...etc) belonging to 10 cate-

gories (e.g., mammal, fish, kitchenware...etc), and 2) DOTA which was created by Li

et al. [110] from Wikipedia article titles (entities) and category names (categories).
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DOTA contains 300 single-word concepts (DOTA-single) (e.g., coffee, football, se-

mantics...etc), and (150) multiword concepts (DOTA-mult) (e.g., masala chai, table

tennis, noun phrase...etc). Both belong to 15 categories (e.g., beverage, sport, linguis-

tics...etc). Performance is measured in terms of the ability of the system to assign

concept instances to their correct categories.

6.5.2.2 Compared Systems

We compare our model to various word, entity, and category embedding methods

including:

1. Word embeddings: Collobert et al. [36] model (WESenna) trained on Wikipedia.

Here vectors of multiword concepts are obtained by averaging their individual

word vectors.

2. MWEs embeddings: Mikolov et al. [139] model (WEMikolov) trained on

Wikipedia. This model jointly learns single and multiword embeddings where

MWEs are identified using corpus statistics.

3. Entity-category embeddings: which include Bordes et al. [17] embedding

model (TransE). This model utilizes relational data between entities in a KB as

triplets in the form (entity,relation,entity) to generate representations of both

entities and relationships. Li et al. [110] implemented three variants of this

model (TransE1, TransE2, TransE3) to generate representations for entities and

categories jointly. Two other models introduced by Li et al. [110] are CE and

HCE. CE generates embeddings for concepts and categories using category in-

formation of Wikipedia articles. HCE extends CE by incorporating Wikipedia’s
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Table 23: Accuracy of concept categorization. The CRX model with bootstrapping
gives the best results outperforming all other models.

Dataset/Instances Battig DOTA-single DOTA-mult DOTA-all

Method (83) (300) (150) (450)
WESenna 0.44 0.52 0.32 0.45

WEMikolov 0.74 0.72 0.67 0.72

TransE1 0.66 0.72 0.69 0.71

TransE2 0.75 0.80 0.77 0.79

TransE3 0.46 0.55 0.52 0.54

CE 0.79 0.89 0.85 0.88

HCE 0.87 0.93 0.91 0.92

CCX 0.72 0.90 0.80 0.87

+boostrap 0.81 0.91 0.85 0.87

CRX 0.83 0.91 0.88 0.90

+bootstrap 0.89 0.98 0.95 0.97

category hierarchy while training the model to generate concept and category

vectors.

6.5.2.3 Results

We report the accuracy scores of concept categorization54 in Table 23. Accuracy is

calculated by dividing the number of correctly classified concepts by the total num-

ber of concepts in the given dataset. Scores of all other methods are obtained from

Li et al. [110]. As we can see in Table 23, the CRX model comes second after the

HCE on all datasets. While the CCX model performance is much less than CRX.

With bootstrapping, the CCX model performance improves on both datasets. CRX

with bootstrapping outperforms all other models by significant percentages. These

results show that learning concept embeddings from concept mentions is actually dif-

ferent from training the skip-gram model on phrases or multiword expressions. This

54From a multi-class classification perspective, the accuracy scores would be equivalent to the
clustering purity score as reported in Li et al. [110].
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is clear from the significant performance gains we get from the CRX and CCX models

compared to WEMikolov which was trained using skip-gram on phrases. Additionally,

the results demonstrate the efficacy of our models which simply learn concept em-

beddings from concept mentions in free-text corpus compared to the more complex

models which require category or relational information such as TransE, CE, and

HCE.

6.5.3 Dataless Classification

In this experiment, we evaluate the effectiveness of our concept embedding models

on the dataless document classification task as an extrinsic evaluation. We demon-

strate through empirical results the efficiency and effectiveness of our proposed BoC

densification scheme which helps obtaining better classification results compared to

the original sparse BoC representation.

6.5.3.1 Dataset

We use the 20-newsgroups dataset (20NG) [106] which is commonly used for bench-

marking text classification algorithms. The dataset contains 20 categories each has

∼1000 news posts. We obtained the BoC representations using ESA from Song and

Roth [181] who utilized a Wikipedia index containing pages with 100+ words and 5+

outgoing links to create ESA mappings of 500 dimensions for both the categories and

news posts of the 20NG. We designed two types of classification tasks: 1) fine-grained

classification involving closely related classes such as Hockey vs. Baseball, Autos vs.

Motorcycles, and Guns vs. Mideast vs. Misc, and 2) coarse-grained classification

involving top-level categories such as Sport vs. Politics and Sport vs. Religion. The



120

Table 24: The 20NG dataset category mappings.

Top-level Low-level
Sport Hockey, Baseball, Autos, Motorcycles
Politics Guns, Mideast, Misc
Religion Christian, Atheism, Misc

Table 25: Evaluation results of dataless document classification of fine-grained classes
measured in micro-averaged F1 along with # of dimensions (concepts) in the BoC at
which corresponding performance is achieved.

Method Hockey x Baseball Autos x Motorcycles Guns x Mideast x Misc

ESA 94.60 @425 72.70 @325 70.00 @500

CCX (equal) 94.60 @20 - - 70.33 @60

CRX (equal) 94.60 @60 73.10 @4 70.00 @7

WEmax 86.85 @65 76.15 @375 72.20 @300

WEhung 95.20 @325 73.75 @300 71.70 @275

CCX (best) 95.10 @125 69.70 @7 72.47 @250

+bootstrap 95.90 @450 74.25 @12 77.43 @5

CRX (best) 95.65 @425 79.20 @14 73.40 @70
+bootstrap 95.90 @350 73.25 @12 77.03 @10

top-level categories are created by combining instances of the fine-grained categories

which are shown in Table 24.

6.5.3.2 Compared Systems

We compare our models to three previous methods:

1. ESA which computes the cosine similarity between target labels and instance

documents using the sparse BoC vectors.

2. WEmax & WEhung which were proposed by Song and Roth [182] for BoC den-

sification using embeddings obtained from Word2Vec. As the authors reported,

we fix the minimum similarity threshold to 0.85. WEmax finds the best match

for each concept, while WEhung utilizes the Hungarian algorithm to find the
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best concept-concept alignment on one-to-one basis. Both mechanisms have

polynomial degree time complexity.

6.5.3.3 Results

Table 25 presents the results of fine-grained dataless classification measured in

micro-averaged F1. As we can notice, ESA achieves its peak performance with a few

hundred dimensions of the sparse BoC vector. Using our densification mechanism

(equation 18), both the CRX & CCX models achieve equal performance to ESA at

many fewer dimensions. Densification using the CRX model embeddings gives the

best F1 scores on the three tasks. Interestingly, the CRX model improves the F1

score by ∼7% using only 14 concepts on Autos vs. Motorcycles, and by ∼3% using 70

concepts on Guns vs. Mideast vs. Misc. The CCX model, still performs better than

ESA on 2 out of the 3 tasks. Both WEmax and WEhung improve the performance over

ESA but not as our CRX model.

When we applied bootstrapping, the performance of the CCX model improved

slightly on Hockey vs. Baseball, but significantly (∼5%) on the other two tasks

achieving best performance on the third task with just 5 concepts. Bootstrapping

with the CRX model has a similar effect to the CCX model except for Autos vs.

Motorcycles where performance degraded significantly. To better understand this

behavior, we analyzed the results as bootstrapping progresses at 14 concepts like CRX

(best). We noticed that, at the very early iterations of Algorithm 1, many instances

belonging to Autos were closer to Motorcycles with similarity scores between 0.90-

0.95. And when using those instances to bootstrap Motorcycles, they caused topic
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Autos vs. Motors Guns vs. Mideast vs. Misc

Hockey vs. Baseball

Figure 16: micro-averaged F1 scores of fine-grained classes when varying the # of
concepts (dimensions) in the BoC from 1 to 500.

drift moving Motorcycles ’s centroid toward Autos, and eventually causing relatively

lower accuracy scores.

In order to better illustrate the robustness of our densification mechanism when

varying the number of BoC dimensions, we measured F1 scores of each task as a

function of the number of BoC dimensions used for densification. As we see in Figure

16, with one concept we can achieve high F1 scores compared to ESA which achieves

zero or very low score. Moreover, near-peak performance is achievable with the top 50

or less dimensions. We can also notice that, as we increase the number of dimensions,

both WEmax and WEhung densification methods have the same undesired monotonic

pattern like ESA. Actually, the imposed threshold by these methods does not allow

for full dense representation of the BoC vector and therefore at low dimensions we still

see low overall F1 score. Our proposed densification mechanism besides its low cost,
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Table 26: Evaluation results of dataless document classification of coarse-grained
classes measured in micro-averaged F1 along with # of dimensions (concepts) at
which corresponding performance is achieved.

Method Sport x Politics Sport x Religion

ESA 90.63 @425 94.39 @450

CCX (equal) 92.04 @2 95.11 @6

CRX (equal) 90.99 @2 94.81 @5

WEmax 91.89 @425 93.99 @425

WEhung 90.89 @275 94.16 @450

CCX (best) 92.89 @4 95.86 @60
+bootstrap 93.20 @10 95.13 @225

CRX (best) 93.12 @13 95.91 @95
+bootstrap 92.96 @13 95.53 @70

Sport vs. Politics Sport vs. Religion

Figure 17: micro-averaged F1 scores of coarse-grained classes when varying the # of
concepts (dimensions) in the BoC from 1 to 500.

produces fully densified representations allowing good similarities at low dimensions.

Results of coarse-grained classification are presented in Table 26. Classification at

the top level is easier than the fine-grained level. Nevertheless, as with fine-grained

classification, ESA still peaks with a few hundred dimensions of the sparse BoC

vector. Both the CRX & CCX models achieve equal performance to ESA at very

few dimensions (≤6). Densification using the CRX model embeddings still performs

the best on both tasks. Interestingly, the CCX model gives very close F1 scores to

the CRX model at less dimensions (@4 with Sport vs. Politics, and @60 with Sport
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vs. Religion) indicating its competitive advantage when training computational cost

is a decisive criteria. The CCX model, still performs better than ESA, WEmax, and

WEhung on both tasks.

Bootstrapping did not improve the results on this task significantly (if any). As we

can notice in Table 26, the accuracy without bootstrapping is already high indicating

that the initial prototype vector (centroid) of each class is representative enough of

the instances to be classified.

Figure 17 shows F1 scores of coarse-grained classification when varying the # of

BoC dimensions used for densification. The same pattern of achieving near-peak per-

formance at very few dimensions recur with the CRX & CCX models. ESA using the

sparse BoC vectors achieves low F1 up until few hundred dimensions are considered.

Even with the costly WEmax and WEhung densifications, performance sometimes de-

creases.

6.6 Discussion & Conclusion

In this chapter we proposed two models for learning neural embeddings of explicit

concepts based on the skip-gram model. Explicit concepts are lexical expressions

(single or multiwords) that denote an idea, event, or an object and typically have a

set of properties associated with it. In the models presented here, our concept space

is the set of all Wikipedia article titles. We proposed learning concept representations

from concept mentions/references in Wikipedia making our models applicable to other

open domain and domain specific free-text corpora by firstly wikifying55 the text and

55Wikification is the process of identifying mentions of concepts and entities in a given free-text
and linking them to Wikipedia
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Table 27: Top-5 related concepts from CRX & CCX models for sample target con-
cepts.

Concept Concept Raw Context Concept-Concept Context
(CRX) (CCX)

YouTube

Vevo
Facebook
SoundCloud
Vimeo
Viral video

Viral video
Vimeo
Vevo
Video blog
Dailymotion

Harvard University

Yale University
Princeton University
Brown University
Columbia University
Boston University

Harvard Kennedy School
Cambridge, Massachusetts
Harvard College
Radcliffe College
Harvard Society of Fellows

Black hole

Neutron star
Accretion disk
Primordial black hole
Supermassive black hole
Event horizon

Event horizon
Neutron star
Gravitational singularity
Wormhole
Hawking radiation

X-Men:
Days of Future Past

X-Men: Apocalypse
X-Men: First Class
Deadpool (film)
Avengers: Age of Ultron
X-Men: The Last Stand

X-Men: Apocalypse
The Wolverine (film)
X-Men: First Class
John Paesano
William Stryker

then learning from concept mentions.

It is clear from the presented results that, the CRX model outperforms the CCX

model on tasks that require topical coherence among the concepts vectors (e.g. con-

cept categorization), while the CCX model is advantageous in tasks that require

topical relatedness (e.g., measuring entity relatedness). To better show this differ-

ence qualitatively, we present a qualitative analysis of both models in Table 27 (target

concepts are similar to those reported by Hu et al. [85]).

As we can notice, the CRX model tends to emphasize concept topical and categor-

ical similarity, while the CCX model tends to more emphasize concept relatedness.

For example, the top-5 concepts closest to ”Harvard University” using CRX are all

universities. While, the CCX model top-5 concepts include, besides educational in-
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stitutions, location (”Cambridge, Massachusetts”) and an affiliated group (”Harvard

Society of Fellows”). The same pattern can be noticed with the ”X-Men” movie

where we get similar genre movies with CRX. While we get related characters such

as ”William Stryker”56 with CCX.

Based on these observations, we claim that the CCX model would be beneficial

in situations where diversity is more desired than topical coherence. This claim is

also supported by the results we obtained on the concept categorization and dataless

densification tasks. On concept categorization, the performance gap between CRX

and CCX was large with almost all datasets. On dataless classification, the perfor-

mance gap was large with documents belonging topics with nuance differences (i.e.,

Autos vs. Motorcycles), but with other classes which have clear distinctions, the

CCX performance was very competitive to CRX (e.g., Hockey vs Baseball).

In this chapter, we also proposed an efficient and effective mechanism for BoC

densification which outperformed the previously proposed densification schemes on

dataless document classification. Unlike these previous densification mechanisms,

our method scales linearly with the number of the BoC dimensions. In addition, we

demonstrated through the results how this efficient mechanism allows generating high

quality dense BoC from few concepts alleviating the need of obtaining hundreds of

concepts when generating the BoC in the first place.

Our learning method does not require training on a hierarchical concept category

graph and is not tightly coupled to linked knowledge bases. Rather, we learn concept

representations using mentions in free-text corpora with annotated concept mentions

56https://en.wikipedia.org/wiki/William Stryker
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which even if not available could be obtained through state-of-the-art entity linking

systems.

Finally, the work presented in this chapter serves two of our objectives: 1) it

demonstrates utilizing textual knowledge bases to learn robust concept embeddings

and hence increasing the effectiveness of the BoC representation to better capture

semantic similarities between textual structures, and 2) it demonstrates utilizing the

learned distributed concept vectors to increase the efficiency of the semantic repre-

sentations in terms of space and computational complexities.



CHAPTER 7: LEVERAGING LARGE SCALE KNOWLEDGE BASES FOR
LEARNING CONCEPT AND ENTITY REPRESENTATIONS

Text representation using neural word embeddings has proven efficacy in many nat-

ural language processing applications. As we showed in Chapter 6, we can adapt the

traditional word embedding models to learn vectors of multiword expressions (con-

cepts/entities57) from their mentions in textual knowledge bases (e.g., Wikipedia). In

this chapter, we propose a novel approach for learning concept vectors by integrat-

ing the knowledge from two large scale knowledge bases (Wikipedia, and Probase).

We adapt the skip-gram model to seamlessly learn from the Wikipedia text and the

Probase concept graph. We evaluate our concept embedding models intrinsically on

two tasks: 1) analogical reasoning where we achieve a state-of-the-art performance of

91% on semantic analogies, 2) concept categorization on the two benchmark datasets

used in Chapter 6, where we achieve a new state-of-the-art performance reaching cat-

egorization accuracy of 100% on one and 98% on the other. Additionally, we present

a case study to extrinsically evaluate our model on unsupervised argument type iden-

tification for neural semantic parsing. We demonstrate the competitive accuracy of

our unsupervised method and its ability to better generalize to out of vocabulary

entity mentions compared to the tedious and error prone methods which depend on

gazetteers and regular expressions.

57In this chapter, we use the terms ”concept” and ”entity” interchangeably.
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7.1 Introduction

As we mentioned in Chapter 4, vector-based semantic representation models are

used to represent textual structures (words, phrases, and documents) as multidimen-

sional vectors. Typically, These models utilize textual corpora and/or Knowledge

Bases (KBs) in order to extract and model real-world knowledge. Once acquired, any

given text structure is represented as a real-valued vector in the semantic space. The

goal is thus to accurately place semantically similar structures close to each other in

that semantic space, while placing dissimilar structures far apart.

Neural-based word embeddings stand out among these vector-based semantic rep-

resentations as efficient and effective techniques which have succeeded in capturing

both syntactic and semantic regularities using simple vector arithmetic [138, 139, 154].

Recently, a lot of research interest goes beyond word embeddings by focusing on learn-

ing distributed representations of concepts58 and entities. Such models utilize text

KBs (e.g., Wikipedia) or a triple-based KBs (e.g., DBpedia and Freebase) in order

to learn entity vectors. Broadly speaking, existing methods can be divided into two

categories. First, methods that learn embeddings of KB concepts only [85, 110, 167].

Second, methods that jointly learn embeddings of words and concepts in the same

semantic space [26, 214, 24].

In this Chapter, we extend our concept embeddings models introduced in Chapter

6 introducing an effective approach for jointly learning word and concept vectors from

two large scale KBs of different modalities; a text KB (Wikipedia) and a graph-based

58concepts are lexical expressions (single or multiwords) that denote an idea, event, or an object
and typically have a set of properties.
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Figure 18: Integrating knowledge from Wikipedia text (left) and Probase concept
graph (right). Local concept-concept, concept-word, and word-word contexts are
generated from both KBs and used for training the skip-gram model.

concept KB (Microsoft concept graph59 (aka Probase)). We adapt skip-gram, the pop-

ular local context window method [139], to integrate the knowledge from both KBs.

As shown in Figure 18, three key properties differentiate our approach from existing

methods. First, we generate word and concept contexts from their raw mentions in

the Wikipedia text. This makes our model extensible to other text corpora with an-

notated concept mentions. Second, we model Probase as a weighted undirected knowl-

edge graph exploiting the co-occurrence counts between pairs of concepts. This allows

us to generate more concept-concept contexts during training, and subsequently learn

better concept vectors for rare and infrequent concepts in Wikipedia. Third, to our

knowledge, this work is the first to combine knowledge from two KBs of different

59https://concept.research.microsoft.com
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modalities (Wikipedia and Probase) into a unified representation.

We evaluate the generated concept vectors intrinsically on two tasks: 1) analogical

reasoning where we achieve a state-of-the-art accuracy of 91% on semantic analogies,

2) concept categorization on the two benchmark datasets used in Chapter 6, where we

achieve 100% accuracy on one dataset and 98% accuracy on the other. We also present

a case study to analyze the impact of using our concept vectors for unsupervised

argument type identification with semantic parsing as an end-to-end task. The results

show competitive performance of our unsupervised method compared to the tedious

and error prone argument type identification methods which depend on gazetteers

and regular expressions. The analysis also shows superior generalization performance

with utterances containing out of vocabulary (OOV) mentions.

We make our concept vectors and source code publicly available60 for the research

community for further experimentation and replication.

7.2 Learning Concept Embeddings

We learn continuous vectors of words and entities by building upon the skip-gram

model [139] introduced in Section 6.3.1.

7.2.1 Learning from the Text

We use the exact learning approach proposed for the Concept Raw Context model

(CRX) introduced in Section 6.3.2. We jointly learn the embeddings of both words

and concepts using concept mentions. As described earlier, given a training corpus

of V words w1, w2, ..., wV . We iterate over the corpus identifying words and concept

60https://sites.google.com/site/conceptembeddings/
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mentions and thus generating a sequence of T tokens t1, t2, ...tT where T < V (as

multiword concepts will be counted as one token). Afterwards we train the a skip-

gram model aiming to maximize:

Lt =
1

T

T∑
i=1

∑
−s≤j≤s,j 6=0

log p(ti+j|ti) (19)

where s is the context window size. Here, ti is the target token which would be either

a word or a concept mention, and ti+j is a surrounding context word or concept

mention.

7.2.2 Learning from the Concept Graph

We employ Microsoft concept graph (Probase), a large scale probabilistic KB of

millions of concepts and their relationships (an is-a hierarchy). Probase was created

by mining billions of Web pages and search logs of Microsoft’s Bing61 repository using

syntactic patterns.

Probase is a different modality than Wikipedia because the knowledge is organized

as a graph whose nodes are concepts and edges represent weighted is-a relationship

between pairs of concepts. Formally, we model Probase as a 4-tuple graph G =

(C,E,TC ,TE) such that:

• C is a set of vertices representing concepts.

• E is a set of edges (arcs) connecting pairs of concepts.

• TC is a finite set of tuples representing global statistics of each concept (i.e. its

total occurrence count).

61https://www.bing.com/
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• TE is a finite set of tuples representing co-statistics of each edge connecting

pairs of concepts (i.e. their co-occurrence count).

Under this representation, location information about concepts is missing. There-

fore the context of each concept can be defined by the set of its neighbors in the

graph. Formally, the skip-gram optimization function would be maximizing:

Lp =
1

|C|

|C|∑
i=1

∑
(ci,cj)∈E

log p(cj|ci) (20)

thus Probase provides another source of conceptual knowledge to generate more

concept-concept contexts and subsequently learn better concept representations.

7.2.3 Data and Model Training

We use the same Wikipedia dump of August 2016 used for training the CRX model.

For Probase, we use its data repository62 which contains ∼5 million unique concepts,

∼12 million unique instances, and ∼85 million is-a relationships. We follow a simple,

exact string matching between Wikipedia article titles and Probase concept names,

in order to align the concepts in both KBs and generate the final concepts set.

We call our model Concept Multimodal Embeddings (CME). During training, we

jointly train our model to maximize L = Lt + Lp which as mentioned before is

estimated using the softmax function (Equation 14) and implemented using negative

sampling (Equation 17). For training, we use the same parameters used with CRX;

a context window of size 9. We set the vector size to 500 dimensions and train the

model for 10 iterations.

62https://concept.research.microsoft.com/Home/Download
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7.3 Evaluation

7.3.1 Analogical Reasoning

Mikolov et al. [140] introduced this intrinsic evaluation scheme to assess the ca-

pacity of the embedding model to learn a vector space with meaningful substructure.

Typically, analogies take the form ”a to b is same as c to ?” where a, b, and c are

elements of the vocabulary V . Using vector arithmetic, this can be answered by iden-

tifying d such that d = arg max Sim(vec(d), vec(b)−vec(a)+vec(c)), ∀d ∈ V \{a, b, c}

where Sim is a similarity function63. A good performance on this task indicates the

model’s ability to learn semantic and syntactic patterns as linear relationships be-

tween vectors in the embedding space [154].

7.3.1.1 Dataset

We use the word analogies dataset [138]. The dataset contains 19,544 questions di-

vided into semantic analogies (8,869), and syntactic analogies (10,675). The semantic

analogies are questions about country capitals, state cities, country currencies...etc.

For example, ”cairo to egypt is same as paris to france”. The syntactic analogies are

questions about verb tenses, opposites, and adjective forms. For example, ”big to

biggest is same as great to greatest”. In order to use the concept vectors, we first

identify the corresponding entity of each analogy word and use its vector. If the word

has no corresponding entity or corresponds to a disambiguation page under Wikipedia

we use its word vector instead.

63Cosine similarity or dot product if vectors are normalized.
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Table 28: Evaluation results on the analogical reasoning task, given as percent accu-
racy. Our CME model gives the best result on semantic analogies and higher overall
accuracy than all other models. Best performance (bold), second best (underlined).

Dataset/Questions Semantic Syntactic All

Method (8,869) (10,675) (19,544)
Word2Vecsg 58 61 59.5

Word2Vecsg b 78.1 62.8 69.8

Glove 80.8 61.5 70.3

MPME 71.6 54.6 63.1

CME 91.4 61.7 75.2

7.3.1.2 Compared Systems

We compare our model to various word and entity embedding methods including:

1. Word embeddings: a) Word2Vecsg, word embedding model trained on Wikipedia

using skip-gram [138], b) Word2Vecsg b, a baseline model we created by training

the skip-gram model on the same Wikipedia dump we used for our CME model,

and c) GloVe, word embedding model trained on Wikipedia [154].

2. Entity mention embeddings: MPME is a recent model proposed by Cao

et al. [26]. The model jointly learn embeddings of words and entity mentions

by training the skip-gram on Wikipedia and utilizing anchor texts to generate

multi-prototype entity mention embeddings.

7.3.1.3 Results

We report the accuracy scores of analogical reasoning in Table 28. As we see, our

CME model outperforms all other models by significant percentages on the semantic

analogies. The closest performing model (Glove) is ∼10% less accurate. Performance

on syntactic analogies is still very competitive to Word2Vecsg b and GloVe. Overall,
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our model is ∼5% better than the closest performing model.

7.3.1.4 Error Analysis

Local context window models like ours generally perform better on semantic analo-

gies than syntactic ones. This indicates that syntactic regularities in most textual

corpora are more difficult to capture than semantic regularities. A possible reason

could be the more morphological variations of verbs and adjectives than nouns. Our

model training is even more biased toward capturing semantic relationships between

concepts by incorporating knowledge from Probase concept graph. This bias caused

our model to produce more semantic predictions on the syntactic analogies than the

Word2Vecsg b baseline, returning a semantically related word to the answer. For in-

stance, our model predicted ”fast” rather than ”slows” 9 times compared to 2 times

by Word2Vecsg b. And ”large” rather than ”smaller” 14 times compared to 1 time by

Word2Vecsg b, Another set of errors were predicting the correct word but with wrong

ending especially ”ing”. For instance, ”implementing” rather than ”implements” 27

times compared to 19 time by Word2Vecsg b. We argue that, despite this bias, our

CME model still produces very competitive performance compared to other models

on syntactic analogies. And more importantly, emphasizing the semantic relatedness

between concepts during training contributes to the significant accuracy gains on the

semantic analogies.

7.3.2 Concept Categorization

We evaluate the CME model on the concept categorization task described in Sec-

tions 6.4.2 and 6.5.2. As described earlier, we assign a given concept to a target
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Table 29: Evaluation results on the concept categorization task, given as percent
accuracy. Our CME model with bootstrapping gives the best results outperforming
all other models and baselines. Best performance (bold), second best (underlined).

Dataset/Instances Battig DOTA-single DOTA-mult DOTA-all

Method (83) (300) (150) (450)
WESenna 44 52 32 45

WEMikolov 74 72 67 72

TransE1 66 72 69 71

TransE2 75 80 77 79

TransE3 46 55 52 54

CE 79 89 85 88

HCE 87 93 91 92

WEb 77 93 86 91

+bootstrap 88 97 86 90
CME 94 91 88 90

+bootstrap 100 99 95 98

category using Rocchio classification, where the centroid of each category is set to

the category’s corresponding embedding vector. We also apply the bootstrapping

algorithm (Section 6.4.4) to further boost the categorization accuracy without the

need for labeled data. All experiments are performed on the same datasets described

in Section 6.5.2.1. We also create a baseline model (WEb) by training the skip-gram

model on the same Wikipedia dump we used for our CME model.

7.3.2.1 Results

We report the accuracy scores of concept categorization in Table 29. Accuracy

is calculated by dividing the number of correctly classified concepts by the total

number of concepts in the given dataset. Scores of all other methods except WEb

are obtained from Li et al. [110]. As we can see in Table 29, our CME+bootstrap

model outperforms all other models by significant percentages. And even achieves
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100% accuracy on the Battig dataset. With single word concepts, CME achieves the

best performance on Battig and competitive performance on DOTA-single. When it

comes to multiword concepts, our CME model comes second after HCE.

7.3.2.2 Analysis

Is bootstrapping a magic bullet?. A first look at the results of CME+bootstrap

vs. CME might indicate that if bootstrapping is applied to HCE or WEb which per-

form better than CME on some datasets, their performance would still be superior.

However, the results of WEb+bootstrap show that the margin of performance gains of

bootstrapping is not necessarily proportional to the performance of the model without

bootstrapping. For example, WEb+bootstrap performs worse than CMEb+bootstrap

on DOTA-single though WEb was initially better than CME. This means that boot-

strapping other better performing models such as HCE might not be as beneficial as it

is to CME. The bottom line here that: the model should learn a semantic space with

optimal substructures which clusters instances of the same category together and keep

them far from instances of other categories. This is clearly the case with our CME

model which ends up having (near -)optimal category vectors with bootstrapping.

7.3.3 Argument Type Identification: A Case Study

In this section, we present a case study to analyze the impact of using our concept

vectors for unsupervised argument type identification with semantic parsing as an

end-to-end task. In a nutshell, semantic parsing is concerned with mapping natural

language utterances into executable logical forms [208]. The logical form is subse-

quently executed on a knowledge base to answer the user question. Table 30 shows
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Table 30: Example utterances and their corresponding logical forms from the geog-
raphy and flights domains. Left, utterances before and after argument type identi-
fication. Right, logical forms before and after argument type identification. City is
mapped to ci, Airport to api, and River to ri.

No Utterance Logical form
1 where is new orleans ( lambda $0 e ( loc:t new orleans la:ci $0 ) )

where is ci0 ( lambda $0 e ( loc:t ci0 $0 ) )

2 what states border the mississippi river
( lambda $0 e ( and ( state:t $0 )
( next to:t $0 mississippi river:r ) ) )

how many states border ri0 ( count $0 ( and ( state:t $0 ) ( next to:t $0 ri0 ) ) )

3
list flights from philadelphia to san francisco
via dallas

( lambda $0 e ( and ( flight $0 )
( from $0 philadelphia:ci ) ( to $0 san francisco:ci )
( stop $0 dallas:ci ) ) )

list flight from ci0 to ci1 via ci2
( lambda $0 e ( and ( flight $0 ) ( from $0 ci0 )
( to $0 ci1 ) ( stop $0 ci2 ) ) )

4 flights from jfk or la guardia to cleveland
( lambda $0 e ( and ( flight $0 ) ( or ( from $0 jfk:ap )
( from $0 lga:ap ) ) ( to $0 cleveland:ci ) ) )

flight from ap0 or ap1 to ci0
( lambda $0 e ( and ( flight $0 ) ( or ( from $0 ap0 )
( from $0 ap1 ) ) ( to $0 ci0 ) ) )

some example utterances and their corresponding logical forms from the geography

and flights domains.

7.3.3.1 Argument Identification

As we can notice from the examples in Table 30, user utterances usually contain

mentions of entities of various types (e.g., city, state, and airport names). These

mentions are typically parsed as arguments in the resulting logical form. Some of

these mentions could be rare or even missing in the training data. As noted by

Dong and Lapata [44], this problem reduces the model’s capacity to learn reliable

parameters for such mentions.

One possible solution is to preprocess the training data replacing all entity mentions

with their type names (e.g., san francisco to city, california to state...etc). This step

allows the model to see more identical input-output patterns during training and thus

better learn the parameters of such patterns. The model would also generalize better

to out of vocabulary mentions because the same preprocessing could be done at test
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time.

Dong and Lapata [44] proposed using gazetteers and regular expressions for ar-

gument identification. The authors also demonstrated increased accuracy when em-

ploying such approach. However, using regular expressions is error prone, as the

same utterance could be paraphrased in many different ways. In addition, gazetteers

usually have low recall and will not cover many surface forms of the same entity

mention.

Our approach embraces argument type identification in a totally unsupervised fash-

ion. The idea is to build upon the promising performance we achieved in concept cat-

egorization and apply the same scheme to map entity mentions to their corresponding

type names. Our unsupervised argument type identification is a four step process:

1) we predefine target entity types and retrieve their corresponding vectors from our

CME model, 2) we identify entity mentions in user utterances (e.g., mississippi river),

3) we lookup the mention vector in our CME model, and 4) we compute the similarity

between the mention vector and each of the predefined target entity types and choose

the most similar type if it exceeds a predefined threshold. This scheme is efficient and

doesn’t require any manually crafted rules or heuristics. The only needed parameter

is the similarity threshold which we fix to 0.5 during experiments.

Note that, standard off-the-shelf entity recognition systems could help in identifying

the entity mentions but not their type names. In domains like flights, we are interested

in non standard types such as airports and airlines. It is also important to distinguish

between city, state, and country mentions in the geography domain and not classifying

all instances of these categories as the standard location type.
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Table 31: Evaluation results of semantic parsing before and after argument type
identification, given as percent accuracy. Using CME to identify argument types
resulted in improved accuracy on both datasets.

Dataset GEO ATIS

w/o Identification 68.6 73.2

w/ Identification 77.1 83.7

7.3.3.2 Datasets

We analyze our unsupervised scheme on two datasets64 : 1) GEO which contains

a total of 880 utterances about U.S. geography [219]. The dataset is split into 680

training instances and 200 test instances. Here we target identifying five entity types:

city, state, river, mountain, and country, and 2) ATIS which contains 5,410 utterances

about flight bookings split into 4,480 training instances, 480 development instances,

and 450 test instances. Here we target identifying six entity types: city, state, airline,

airport, day name, and month.

7.3.3.3 Model & Training

We assess the performance of argument type identification by training Dong and

Lapata [44] neural semantic parsing model65. The model utilizes sequence-to-sequence

learning with neural attention (see [44] for more details). We use the Seq2Seq variant

of the model and do not perform any parameter tuning as our purpose is to analyze

the performance before and after argument type identification not to get a state-of-

the-art performance on these datasets.

64We obtained the raw dataset files by contacting the authors of Dong and Lapata [44]
65https://github.com/donglixp/lang2logic
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7.3.3.4 Results

We report parsing accuracy in Table 31. Accuracy is defined as the proportion

of the input utterances whose logical form is identical to the gold standard. As

we can see, our argument type identification scheme resulted in significant accuracy

improvements of ∼10% on both datasets.

7.3.3.5 Error Analysis

Training the Seq2Seq semantic parsing model on preprocessed data is clearly benefi-

cial and motivating as the results in Table 31 show. Without argument identification,

the model is prone to the out of vocabulary problem. For example, on GEO we

spotted 24 test instances with entities not mentioned in the training data (e.g., new

jersey, chattahoochee river). The same on ATIS with 23 instances. Another source

of errors was due to rare mentions. For example, ”portland” appeared once in GEO

training data.

Although our scheme demonstrated good ability to capture most entity mentions

and map them to their correct type names. There was some subtle failure cases. For

example, in ”what length is the mississippi”, our scheme mapped ”mississippi” to the

state, while it was mapped to the river in the gold standard logical form. Another

example was mapping ”new york” to the city in ”what is the density of the new york”,

while it was mapped to the state in the gold standard.

Overall, the results show competitive performance of our unsupervised method

compared to the tedious and error prone argument type identification methods. The

analysis also shows superior generalization performance using unsupervised argument
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identification with utterances containing out of vocabulary and rare mentions.

7.4 Conclusion & Discussion

Concepts are lexical expressions (single or multiwords) that denote an idea, event,

or an object and typically have a set of properties associated with it. In this chapter

we introduced a neural-based approach for learning embeddings of explicit concepts

based on the skip-gram model. Our approach learns concept representations from

mentions in free text corpora with annotated concept mentions which even if not

available could be obtained through state-of-the-art entity linking systems. We also

proposed an effective and seamless adaption to the skip-gram learning scheme in order

to learn concept vectors from two large scale knowledge bases of different modalities

(Wikipedia, and Probase).

We presented thorough evaluation of the learned concept embeddings intrinsically

and extrinsically. Our performance on the analogical reasoning produced a new state-

of-the-art performance of 91% on semantic analogies.

Empirical results on two datasets for performing concept categorization show su-

perior performance of our approach over other word and entity embedding models.

We also presented a case study to analyze the feasibility of using the learned vectors

for argument type identification with neural semantic parsing. The analysis shows

significant performance gains using our unsupervised argument type identification

scheme and better handling of out of vocabulary entity mentions.

To our knowledge, this work is the first to combine knowledge from both Wikipedia

and Probase into a unified representation. Our concept space is all Wikipedia article
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titles (∼5 million). We use Probase as another source of conceptual knowledge to gen-

erate more concept-concept contexts and subsequently learn better concept vectors.

In this spirit, we first filter Probase graph keeping only edges whose both vertices are

Wikipedia concepts. Using string matching, ∼1 million unique Probase concepts were

mapped to Wikipedia articles. Note that, we still use the contexts generated from

the 5 million Wikipedia concepts and add to them those contexts obtained from the

filtered Probase graph. Out of the ∼12.7 million vectors in our model, we have ∼5

million concept vectors and ∼7.7 million word vectors.

One important future improvement is to better match entities from both Wikipedia

and Probase. For example, using string edits to increase recall or graph matching

techniques to increase precision. Despite using the string matching, the performance

of our method is superior compared to other methods utilizing Wikipedia only. It

is expected that string matching might produce incorrect mappings. However, it

is important to mention that our string matching exploits the redirect pages titles

as well as the canonical titles of Wikipedia articles which increases the recall. For

example, in Probase, nyc, city of new york, new york city are all matched with same

Wikipedia article New York City.

Our initial qualitative analysis shows that it is common to match single-sense

Wikipedia concepts (ss-Wiki) with multi-sense Probase concepts (ms-Pro) (e.g., Tiger

and Rose). However, in many of these cases, the ms-Pro is dominated by the ss-Wiki.

For example, Wikipedia’s page for Tiger describes the animal. In Probase, Tiger is-

a Animal and Tiger is-a Big cat has more co-occurrences (917 & 315 respectively)

compared to Tiger is-a Dance (1 co-occurrence). Same for Rose which is described
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in Wikipedia as flowering plant. In Probase, Rose is-a Flower has (906) and Rose is-a

Plant has (487) co-occurrences compared to Rose is-a Garden (10) and Rose is-a Odor

(5) co-occurrences. We believe this would help generating more consistent contexts

from Wikipedia and Probase. On the other hand, such multiple sense concepts in

Probase could be used for tasks like sense disambiguation and multi-prototype em-

beddings along the lines of Camacho-Collados et al. [24], Iacobacci et al. [89], and

Mancini et al. [132].

One important aspect of our CME model is its ability to better model the long tail

entities with few mentions. Existing approaches that utilize Wikipedia’s link graph

treat Wikipedia as unweighted directed KB graph. During training, a context is gen-

erated for entities e1 and e2 if e1 has incoming/outgoing link from/to e2. This mech-

anism poorly models rare/infrequent Wikipedia concepts which have few incoming

links (i.e. few mentions). We, alternatively, exploit Probase link structure modeling

it as a weighted undirected KB graph. We also utilize the co-occurrence counts be-

tween pairs of concepts (see Figure 18). Therefore, we generate more concept-concept

contexts resulting in better representations of the long-tail concepts. Consider for

example Nightstand which has in Wikipedia 17 incoming links. In Probase, Night-

stand is-a Furniture, is-a Casegoods, and is-a Bedroom furniture with co-occurrences

47, 47, and 32 respectively. This is a 100+ more contexts than we can generate from

Wikipedia. Even for frequent Wikipedia concepts, our model by exploiting the co-

occurrence counts will reinforce concept-concept relatedness from the many contexts

obtained from Probase.

The work presented in this Chapter goes in harmony with the main theme of this
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thesis, thus incorporating conceptual knowledge with the semantic representation in

order to increase its effectiveness. As we demonstrated through empirical results,

our concept-based embedding space gives superior performance over other pure word

or pure entity embedding techniques. It also outperforms other embedding models

which learn representations of words and entities from textual knowledge only.



CHAPTER 8: PATENT RETRIEVAL: A LITERATURE REVIEW

In this and the next Chapters, we focus on a very challenging text retrieval task;

patent prior art search. We start with a literature review on patent retrieval in this

Chapter. Then, we introduce a novel interactive framework for patent retrieval lever-

aging distributed representations in Chapter 9. We demonstrate through empirical

results that superior patent retrieval performance can be achieved with interactive

relevance feedback facilitated by our proposed concept-based representations.

8.1 Introduction

With the ever increasing number of filed patent applications every year, the need

for effective and efficient systems for managing such tremendous amounts of data

becomes inevitably important. Patent Retrieval (PR) is considered is the pillar of

almost all patent analysis tasks. PR is a subfield of Information Retrieval (IR) which

is concerned with developing techniques and methods that effectively and efficiently

retrieve relevant patent documents in response to a given search request. In this Chap-

ter we present a comprehensive review on PR methods and approaches. It is clear

that, recent successes and maturity in IR applications such as Web search cannot be

transferred directly to PR without deliberate domain adaptation and customization.

Furthermore, state-of-the-art performance in automatic PR is still around average.

These observations motivates the need for interactive search tools which provide cog-
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nitive assistance to patent professionals with minimal effort. These tools must also

be developed in hand with patent professionals considering their practices and ex-

pectations. We additionally touch on related tasks to PR such as patent valuation,

litigation, licensing, and highlight potential opportunities and open directions for

computational scientists in these domains.

Patents represent proxies for economic, technological, and even social activities.

The Intellectual Property (IP) system motivates the disclosure of novel technologies

and ideas by granting inventors exclusive monopoly rights on the economic value of

their inventions. Patents, therefore, have a major impact on enterprises market value

[157]. With the continuous rise in the number of filed patent applications every year,

the need for effective and efficient systems for managing such tremendous amounts of

data becomes inevitably important.

Typical patent analysis tasks include: 1) technology exploration in order to capture

new and trendy technologies in a specific domain, and subsequently using them to

create new innovative services, 2) technology landscape analysis in order to assess the

density of patent filings of specific technology, and subsequently direct R&D activities

accordingly, 3) competitive analysis and benchmarking in order to identify strengths

and differences of corporate’s own patent portfolio compared to other key players

working on related technologies, 4) patent ranking and scoring in order to quantify

the strength of the claims of an existing or a new patent, and 5) prior art search

in order to retrieve patent documents and other scientific publications relevant to a

new patent application. All those patent-related activities require tremendous level of

domain expertise which, even if available, must be integrated with highly sophisticated
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and intelligent analytics that provide cognitive and interactive assistance to the users.

Patent Retrieval (PR) is the pillar of almost all patent analysis tasks. PR is a

subfield of Information Retrieval (IR) which is concerned with developing techniques

and methods that effectively and efficiently retrieve relevant patent documents in

response to a given search request. Although the field of IR has received huge advances

from decades of research and development, research in PR is relatively newer and

more challenging. On the one hand, patents are multi-page, multi-modal, multi-

language, semi-structured, and metadata rich documents. On the other hand, patent

queries can be a complete multi-page patent application. These unique features make

traditional IR methods used for Web or ad hoc search inappropriate or at least of

limited applicability in PR.

Moreover, patent data is multi-modal and heterogeneous. As indicated by Lupu

et al. [118], analyzing such data is a challenging task for many reasons; patent docu-

ments are lengthy with highly complex and domain specific terminology. To establish

their work novelty, inventors tend to use jargon and complex vocabulary to refer to

the same concepts. They also use vague and abstract terms in order to broaden the

scope of their patent protection making the problem of patent analysis linguistically

challenging.

PR starts with a search request (query) which often represents a patent applica-

tion under novelty examination. Therefore, several methods for query reformulation

(QRE) have been proposed in order to select, remove, or expand terms in the original

query for improved retrieval. QRE methods are either keyword-based, semantic-

based, or interactive. Keyword-based methods work by searching for exact matches
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between search query terms and the target corpus, and thus fail to retrieve relevant

documents which use different vocabulary but have similar meaning to original query.

In order to alleviate the vocabulary mismatch problem, semantic-based methods try

to search by meaning through expanding queries and/or target corpus with similar

or related terms and thus bridging the vocabulary gap. Because neither methods

proved acceptable performance, few interactive methods were proposed to allow users

to interactively control QRE with reasonable effort.

This review aims to provide researchers with an illustrative and critical overview

of recent trends, challenges, and opportunities in PR. The rest of this Chapter is

organized as follows. Section 8.2 presents some preliminaries and background about

patents data. Section 8.3 provides an overview of evaluation tracks and data collec-

tions for PR benchmarking. An illustration of PR tasks is presented in Section 8.4

Section 8.5 presents a comprehensive review on PR methods and approaches. Section

8.6 lightly touches on related tasks such as patent quality assessment, litigation, and

licensing. Finally, concluding remarks are presented in Section 8.7

8.2 Preliminaries

8.2.1 Patent Documents and Kind Codes

Patent documents are mostly textual. They are highly structured with typical

elements (sections) including title, abstract, description (aka background of the inven-

tion), and claims. The description section articulate in details the technical specifi-

cation of the invention and its possible embodiments. The claims section is the most

significant one as it describes the scope of protection sought by the inventor and hence
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Table 32: Patent kind codes of major patent offices

Type USPTO (US) EPO (EP) WIPO (WO)

A1 application application w/ search report

A2 republished application application w/o search report

A3 - search report

A4 - supplementary search report publication of amended claims

A9 modified application

B1 granted patent w/o A1 granted patent (publication) -

B2 granted patent w/ A1 amended B1 -

encodes the real value of the patent. Patent documents are lengthy with highly com-

plex and domain specific terminology. They also contain multiple data types (e.g.,

text, images, flowcharts, formulae...etc) with a rich set of metadata and bibliographic

information (e.g., classification codes, citations, inventors, assignee, filing/publication

dates, addresses, examiners...etc).

Typically, each patent has a set of pertaining documents which published through-

out its life-cycle. All documents are identified by an alphanumeric name with a

common naming convention. Names start with two letters identifying the issuing

patent office (e.g., US and EP), then the patent number as sequence of digits, and

finally a suffix indicating the document’s kind code. The kind code identifies the stage

in the patent life-cycle at which the document is published. Table 32 shows a brief

description of kind codes used at major patent offices including the US Patent and

Trademark Office66 (USPTO), the European Patent Office67 (EPO), and the World

Intellectual Property Organization68(WIPO).

66http://www.uspto.gov/
67http://www.epo.org/
68http://www.wipo.int/portal/en/index.html
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8.2.2 Patent Classification

Patent offices organize patents by assigning classification codes to each of them

based on the technical features of the invention. The patent classification system is a

hierarchical one. Common classification systems include the International Patent

Classification (IPC), the US Patent Classification (USPC), and the Cooperative

Patent Classification (CPC).

8.2.3 Patent Families

A patent family is patent documents that refer to the same invention and are pub-

lished by different patent offices around the world [159], usually in different languages

depending on the issuing patent office. Patent families could be exploited to expand

the prior art list of topic patents as they disclose the same invention.

8.3 Data & Evaluation Tracks

This section presents an overview of evaluation tracks organized for patent data

analysis along with available data collections with focus on tasks pertaining to PR.

8.3.1 CLEF-IP Collections

The Conference and Labs of the Evaluation Forum69 (CLEF) is an European series

of workshops which started in 2001 to foster research in Cross Language Information

Retrieval (CLIR). The Intellectual Property (IP) track (CLEF-IP) which ran between

(2009-2013) was organized to: 1) foster research in patent data analysis, and 2) pro-

vide large and clean test collections of multi-language patent documents, specifically

69http://www.clef-initiative.eu/
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in the three main European languages (English, French, and German). Research

labs have the opportunity to test their methods on multiple shared tasks such as PR,

patent classification, image-based PR, image classification, flowchart recognition, and

structure recognition [170, 156, 157, 158, 159].

The CLEF-IP data collection are patent documents extracted from the EPO data.

It is provided through the Information Research Facility70 (IRF) and hosted by

Marec71. Patent documents are provided in XML format and have common Doc-

ument Type Definition (DTD) schema. The collection was constructed according to

the proposed methodology by Graf and Azzopardi [63] and is divided into two pools:

1. The corpus pool: documents selected from this pool are provided for partic-

ipating labs as training or lookup instances depending on the task.

2. The topics pool: documents selected from this pool are called topics and they

represent testing or evaluation instances depending on the task. For example,

in prior art search, the topic might be a patent application document for which

it is required to retrieve prior art.

The XML documents consist of the main textual sections such as bibliographic data,

abstract, description, and claims. Each section is written in one or more languages

(English, French, and/or German) and is denoted by a language code. At least the

claims of granted patents (B1 documents) are written in the three languages because

it is EPO requirement once a patent application is granted.

70http://www.ir-facility.org/
71http://www.ir-facility.org/prototypes/marec
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CLEF-IP 2009 Collection: this dataset was designed for the prior art search

task [170]. The corpus pool contains documents published between (1985-2000) (∼2m

documents pertaining to ∼1m unique patents). The topics pool contains documents

published between (2001-2006) (∼0.7m documents pertaining to ∼0.5m individual

patents). Topics are sets of documents from the topics pool with sizes ranging from

500 to 10,000 topics. Topics were assembled from granted patent documents including

abstract, description, and claims sections. Citation information from the bibliographic

data section was excluded.

A major pitfall in this dataset is its topics, which were chosen from granted patent

documents (B1 documents). Initially, the creators of the dataset were motivated by

having topics from granted patent documents which have claims in three languages.

This was thought to provide a kind of parallel corpus suitable for CLIR. The problem

of using such documents is simple, it contradicts the practice of IP search professionals

who start with the patent application document not the granted one.

CLEF-IP 2010 Collection: this dataset was created for the prior art search and

patent classification tasks [156]. The corpus pool of this dataset contains documents

with publication date before 2002 (∼2.6m documents pertaining to ∼1.9m unique

patents). The topics pool contains documents published between (2002-2009) (∼0.8m

documents pertaining to ∼0.6m unique patents). Topics for the prior art task are

two sets of documents from the topics pool; a small set of 500 topics and a larger set

of 2000 topics. Unlike the CLEF-IP 2009 dataset, topics are assembled from patent

application documents rather than granted patent documents.

CLEF-IP 2011 Collection: This dataset was created as a test collection for four
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tasks: prior art search, patent classification, image-based prior art search, and image

classification [157]. The topics and corpus pools were the same as in CLEF-IP 2010

dataset. For the prior art task, 3973 topics were provided as a separate archive of

patent application documents.

CLEF-IP 2012 Collection: this dataset was created as a test collection for

three tasks: passage retrieval starting from claims, chemical structure recognition,

and flowchart recognition [158]. The topics and corpus pools were the same as in

CLEF-IP 2010 dataset. The passage retrieval task is designed differently from pre-

vious CLEF-IP prior art search collections. The purpose for this tasks is to retrieve

both documents and passages relevant to a set of claims. Topics for the passage

retrieval task were extracted from patent applications published after 2001. Rele-

vance judgments were the highly relevant citations only (i.e., marked X or Y) in the

examiners’ search reports (A4 documents) of chosen topic patents.

CLEF-IP 2013 Collection: this dataset was created as a test collection for two

tasks: 1) passage retrieval from claims, and 2) structure recognition from patent im-

ages [159]. The topics and corpus pools were the same as in CLEF-IP 2010 dataset.

Similar to CLEF-IP 2012, the CLM task is designed to retrieve both documents

and passages relevant to a set of claims. Topics for the passage retrieval task were

extracted from patent applications published after 2002. Overall, the topics set con-

tained 148 topics extracted from 69 patent applications.
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8.3.2 NTCIR Collections

The Japanese National Institute of Informatics Testbeds and Community for Infor-

mation access Research project72 (NTCIR) started in 1997 to support research in IR

and other areas, focusing on CLIR. NTCIR has been organizing a series of workshops

providing test collections to researchers for evaluating their methodologies on multi-

ple CLIR tasks [148]. Between NTCIR-3 and NTCIR-11 (2002-2013), there has been

dedicated tasks for patent data analysis including patent retrieval [90], classification,

mining, and translation.

NTCIR-3: the PR task in NTCIR-3 targeted the ”technology survey” problem.

The dataset for this task includes: 1) full text of Japanese patent applications between

(1998-1999), 2) abstract of Japanese patent applications between (1995-1999) along

with their respective English translations, and 3) 30 search topics where each topic

includes a related newspaper article. The task is to retrieve patents relevant to news

articles. Both cross-genre experiments in which patents were retrieved by a newspaper

clip as well as ordinary ad hoc retrieval of patents by topics were conducted [90].

NTCIR-4: two PR tasks were organized in NTCIR-4 [52]: 1) patent map gener-

ation, and 2) invalidity search. The dataset for the PR tasks includes: 1) unexam-

ined Japanese patent applications published between (1993-1997) along with English

translations of the abstract, and 2) 34 search topics where each topic is a claim of a

rejected patent application which was invalidated because of existing prior art. Rele-

vance judgments were individual patents that can invalidate a topic claim by its own

72http://research.nii.ac.jp/ntcir
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or in conjunction with other patents. Relevant passages to the invalidated claim were

also annotated and added to the relevance judgments.

NTCIR-5: two PR tasks were organized in NTCIR-5 [53]: 1) document retrieval

(invalidity search), and 2) patent passage retrieval. The dataset for the invalidity

search task includes: 1) unexamined Japanese patent applications published between

(1993-2002) along with English translations of the abstract, and 2) 1200 search topics

where each topic is a claim of an invalidated patent application. Relevance judgments

were generated in a manner similar to the one used in NTCIR-4 invalidity search task.

NTCIR-6: two PR tasks were organized in NTCIR-6 [54]: 1) Japanese retrieval

(invalidity search), and 2) English retrieval. The dataset for the Japanese retrieval

task is the same one used in NTCIR-5 but more topics were used (1685 topics). The

English retrieval task was focusing on finding all the citations cited by the applicant

and the examiner. The dataset for this tasks includes: 1) granted patents from the

USPTO between (1993-2000), and 2) 3221 search topics where each topic is a granted

patent published between (2000-2001).

8.3.3 TREC-CHEM Collections

The TREC-CHEM track was organized to motivate large scale research on chemical

datasets, especially chemical patent retrieval [116].

TREC-CHEM 2009: this collection was created as a test collection for two tasks

[116]: 1) technology survey, and 2) prior art search. 18 topics were provided for the

technology survey task where relevance judgments were obtained from experts and

chemistry graduate students. For the prior art search, 1,000 patents were provided
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as test topics where relevance judgments were collected from the citations of topic

patents as well as their family members. The search corpus contains ∼1.2m chemical

patents filed until 2007 at EPO, USPTO, and WIPO. It also contains 59K scientific

articles.

TREC-CHEM 2010: this collection was created for the same two tasks as in

TREC-CHEM 2009 [117]. 30 topics were provided for the technology survey task. The

search corpus contains ∼1.3m chemical patents and 177K scientific articles. Relevance

judgments were created the same way as in TREC-CHEM 2009.

TREC-CHEM 2011: this collection was created for the same two tasks as in

previous TREC-CHEM tracks besides a new chemical image recognition task. The

technology survey task topics were biomedical and pharmaceutical patents [119].

8.3.4 Other Sources

Other IP data sources are detailed by Schwartz and Sichelman [176]. These in-

clude full patent texts as well as bibliographic information from major patent of-

fices such as the USPTO, EPO, and WIPO. Bibliographic information for patents

published from 1976 to 2006 is provided through the National Bureau of Economic

Research73 (NBER) and subsequently cleaned and extended to include patents until

201374. Patent prosecution histories are available through the Patent Application In-

formation Retrieval75 (PAIR). Patent assignments, filings, classifications, and petition

decisions are also provided through the USPTO bulk downloads previously hosted by

73https://sites.google.com/site/patentdataproject/
74http://rosencrantz.berkeley.edu/batchsql/
75http://portal.uspto.gov/pair/PublicPair
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Google76 and now by the USPTO77.

8.4 Patent Retrieval Tasks

The goal of PR is to retrieve relevant patent documents to a given search request

(query). This request can take different forms such as a sequence of keywords, a

memo, or a complete text document (e.g. a patent application). The purpose of this

task is manifold, for example:

• Retrieve related patents to a given patent application in order to gather related

work, or invalidate one or more of its claims.

• Explore patent filing activity under specific technology.

• Explore the competitive landscape of a given company by looking at other

companies filing patents similar to the given company patents.

Because of these multiple objectives, various PR tasks were proposed to fulfill each

objective, and multiple datasets were provided depending on the given task.

Prior-art search is the main theme of the CLEF-IP and NTCIR tracks. The impor-

tance of this task stems from the requirement by all patent offices that filed patents

must constitute novel, non-obvious, and non-abstract ideas. Therefore, an important

activity through the patent life-cycle is to thoroughly ensure that no earlier published

patent or material describing the prescribed ideas exist. The task can be defined as

follows:

Problem: given a patent application X, retrieve all related documents to X.

76https://www.google.com/googlebooks/uspto-patents.html
77https://www.uspto.gov/learning-and-resources/bulk-data-products
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Table 33: Scenarios of patent prior art search

Search Task Who When Purpose Output

Related Work
inventor/

prosecutor
pre-grant all related work applicant’s disclosure

Patentability
prosecutor/

examiner

pre-grant/

examination
novelty breaking work grant/modify/reject

Infringement
owner/

investor
post-grant

relevant claims/

infringing products
sue/license/clearance

Freedom to Operate investor post-grant
relevant claims/

related work
clearance

Invalidity
competitor/

defendant
post-grant novelty breaking work

re-examine/

inter-parts review/

post-grant review

Technology Survey
technology

analyst
pre/post-grant all published patents survey report

Prior art search is a total recall task, therefore it demonstrates several challenges.

Search coverage is one of the main challenges, because it is required to cover all previ-

ously published material (patent or non-patent literature) in all forms (electronic or

printed) which is infeasible. Another major challenge is the need to search through

materials written in different languages. Last but not least, traditional IR methods

perform poorly when confronted with the patent prior art search task. Mainly be-

cause the patent language is full of jargon and user defined terminology. Inventors

intentionally tend to use different vocabulary to express same or similar ideas in order

to establish the novelty of their work.

Prior art search is performed at different stages of the patent life-cycle, by different

stakeholders, for various purposes, and for limited period of time. Understanding the

real-life practices of patent professionals is critical to better satisfy their information

need [94]. In other words, the search scenario depends on when it is done, by who,
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and for what reason(s). Table 33 shows these various scenarios which are detailed

below.

Related Work Search: during the pre-grant stage, inventors and prosecutors run

related work search to retrieve all relevant work to the invention. Moreover, some

patent offices request from inventors an applicant’s disclosure document specifying

all related publications when filing a new application.

Patentability Search: during the examination stage, patent examiners perform

patentability search in order to ensure that the proposed ideas are novel, non-obvious,

and non-abstract. The output of this task would be a search report with all retrieved

relevant publications. In this report, each entry will have a special code indicating

whether it is just a related publication, or novelty breaking one. Examiners would

also specify which passages or figures in retrieved publications constitute relevancy.

Depending on the search findings, the patent office might grant, reject, or ask the

applicant to modify the patent application. Patentability search is also performed by

patent prosecutors as a sanity check. Although this task should be of equal interest to

prosecutors who file the patent application as it is to examiners, prosecutors often do

not dig deep searching for relevant publications, and delegate finding relevant prior

work to examiners in order to save costs.

Infringement Search: this task, also called product clearance search, aims to

ensure whether an existing or a proposed product is infringing any published patent

claim(s). Patent owners require that type search to find out if a third party has a

product with features which are cited by one or more claims of their patents. If so,

they might either sue or negotiate a license with that infringing party. The scope of
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the search here would include all related publications to commercial products (e.g.,

product descriptions, vouchers...etc).

Investors and R&D managers, on the other hand, require that type of search to

ensure newly proposed product(s) are not infringing a published patent claim(s) and

investment in such products would be lucrative. The scope of search in this case would

be limited to patent and copyrighted literature only. Deep understanding and correct

interpretation of patent claims is imperative for building the correct correspondence

between product features and claims in order to establish or dismiss infringement.

Freedom to Operate Search: this PR task extends beyond infringement search.

Here, investors and R&D managers not only need to make sure that proposed products

do not infringe an existing patent or copyrighted material, but also to ensure they

have the freedom to file patents on these products without worrying about previously

prior art that might invalidate such inventions. Another objective of freedom to

operate search is to make better investment decisions and R&D plans according to

existing prior art.

Invalidity Search: as patents guarantee monopoly rights to their owners on the

economic value of granted inventions, companies and other parties usually monitor

granted patents of their competitors or pertaining to their technology landscape to

ensure competitive superiority. Therefore, invalidity search is performed to find pub-

lished material that was missed by the patent office during patentability search. In-

validity search is also considered as the first line of defense when a party is confronted

with patent infringement lawsuit. Again published material might include patent or

non-patent literature such as books, news articles, academic periodicals...etc. After
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Figure 19: Taxonomy of patent retrieval methods.

finding such validity breaking material, a third party might file a post-grant (oppo-

sition) procedure depending on the patent office policies. For example, the USPTO

provides procedures such as re-examination, Inter-partes review78 (IPR), and Post-

grant review79 (PGR) in front of the Patent Trial and Appeal Board80 (PTAB).

Technology Survey: another PR task where, in a typical scenario, business man-

agers would request search professionals to prepare a survey of patent documents given

a memorandum they prepared from some source (e.g., news article) [90]. This basic

scenario is limited only to patent literature and it is assumed that patent documents

are just a collection of technical papers.

8.5 Patent Retrieval Methods

In this section, we present a comprehensive review of PR methods and approaches.

We start by presenting available test collections and evaluation metrics. Then, we

78http://www.uspto.gov/patents-application-process/appealing-patent-decisions/trials/inter-
partes-review

79http://www.uspto.gov/patents-application-process/appealing-patent-decisions/trials/post-
grant-review

80https://ptabtrials.uspto.gov
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provide a taxonomy of these approaches highlighting their characteristics and limita-

tions.

As shown in Figure 19, PR methods can be categorized depending on which piece(s)

of data from both the search queries and the search corpus are used for retrieving

relevant documents. Keyword-based methods utilize only terms from search queries

and look for exact matches in the target corpus. Pseudo Relevance Feedback methods

utilize terms from the top ranked results of running the initial query to improve the

set of relevant retrieved results. Semantic-based methods try to overcome the vocab-

ulary mismatch problem between the search terms and related patents vocabulary

by matching them based on their meanings. Metadata-based methods exploit the

language independent non-textual metadata and bibliographic information in order

to improve patent retrievability. Finally, interactive methods aim to better organize

and present search results to the users. Moreover, through interaction, users are en-

gaged in an iterative process of searching, reviewing, and refining hoping to retrieve

as many relevant results as possible.

8.5.1 Test Collections & Evaluation Measures

As we highlighted in section 8.3, several datasets were created to support evaluating

different PR techniques. In almost all of these datasets, relevant documents to search

queries were collected from the citations of topic patent documents (e.g., CLEF-IP

2009/2010/2011 collections). Because these citations represent related prior work,

they are appropriate only for the related work search task.

In other datasets such as CLEF-IP 2012/2013 collections, relevant documents were
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collected from novelty breaking citations found in examiners’ search reports, there-

fore, these datasets are appropriate for the patentability and invalidity search tasks.

Though invalidity search requires non-patent literature as well.

Standard information retrieval as well as patent retrieval specific evaluation mea-

sures are generally used to evaluate patent retrieval systems including:

1. Precision (P) and Recall (R) at top-K ranks (e.g., K={1, 5, 10, 50, 100, 1000}).

2. Mean Average Precision (MAP) [10] which generally favors early retrieval of

relevant documents with less focus on recall.

3. Normalized Discounted Cumulative Gain (nDCG) [92] which favors not only

early retrieval of relevant documents but also the respective ranking quality of

these documents.

4. Patent Retrieval Evaluation Score (PRES) [122] which was proposed specifically

for recall-oriented tasks such as PR. PRES focuses on the overall system recall

as well as user’s review effort which can be estimated from the rankings at which

relevant documents are retrieved.

8.5.2 Query Reformulation (QRE)

The most widely used techniques for patent retrieval are the Query Reformulation

(QRE) techniques. These methods aim at transforming the input query Q into Q̄ by

means of reduction or expansion of Q terms in order to improve the retrievability of

relevant documents. QRE can be performed through:
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Table 34: Keyword-based patent retrieval methods.

Method Description Dataset MAP P R PRES

Verberne and D’hondt [200] • remove stopwords, and punctuation
• use claims as BOW

clef-ip

2009
0.05 0.01 0.22 -

Magdy et al. [124] • remove stopwords, and frequent terms
• use different sections with manual weights
• perform IPC filtering
• use bigrams with tf>1

clef-ip

2009
0.12 - 0.63 -

Mahdabi et al. [130]? • use query language models on different sec-
tions

• use queries of 100 terms
• perform IPC filtering

clef-ip

2010
0.12 - 0.60 0.49

Wang and Lin [206]? • use linguistic-based concepts
• concept weighting using weighted tf-idf and

mutual information

clef-ip

2010
0.10 - 0.48 0.40

Konishi [99] • patterns to identify claim components terms
• patterns for explanation terms from descrip-

tion
• rank boosting based on IPC

ntcir-5 0.20 - - -

? indicates scores @1000

• Query Reduction (QR): where a representative subset of terms are selected

from Q and used as Q̄ terms. Position-based methods are the most commonly

used in this category where terms from specific parts or sections of the patent

document are used, or given higher matching weight than others. Another

example of query reduction is the IPC-based methods which utilize terms from

IPC definitions as a lexicon or stop-words list for Q.

• Query Expansion (QE): where representative terms other than the ones in

Q are extracted and merged with Q to form Q̄. Pseudo Relevance Feedback

(PRF) methods are the most prominent in this category where terms from top

ranked results of running Q are used to expand Q terms assuming these top

results are relevant [25]. Other semantic-based query expansion methods work

by expanding Q with terms of similar meanings such as synonyms or hyponyms.
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• Hybrid (query expansion & reduction): where irrelevant terms are re-

moved from Q and more relevant terms are appended to Q to form Q̄. Most

techniques used for query expansion are appropriate for query reduction as

well, where only terms appearing in the expansion list are kept and all others

are pruned.

8.5.2.1 Keyword-based Methods

This set of techniques retrieves relevant documents by looking for exact matches

between search query term(s) and the target data. keyword search operates under

the closed vocabulary assumption where vocabulary is derived solely from terms that

appear in the target search data. Table 34 shows some keyword-based methods along

with their performance results on benchmark datasets. Keyword-based techniques

differ in: 1) which elements of the target data are indexed, 2) which query terms are

selected/removed, 3) the relative weights of such terms, and 4) the match scoring

function.

Query Reduction (QR): the rationale behind QR approaches is intuitive as

patents are very long documents with several sections. Querying with the whole

document would be impractical and inefficient. Some query reduction methods are

position-based; they select relevant terms based on their position in the patent doc-

ument [200, 42, 205, 124, 130]. For example, [200] used only terms from the claims

section on the CLEF-IP 2009 collection. However, the results were moderate in terms

in MAP compared to other runs on the same collection.

Magdy et al. [124] experimented using text from different sections of the topic
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patent on the CLEF-IP 2009 collection. The authors used various combinations of

sections including: 1) short sections such as title, abstract, first line of the descrip-

tion, first sentence of the claims, and 2) lengthy sections such as the description and

the claims. The authors assigned different weights to each section manually. Their

best scores were achieved using a combination of all short sections and post-filtering

retrieved documents keeping only those that share the same IPC classification code

with the topic patent. The main challenge with such approach is how to assign the

respective weight of each section automatically. Moreover, IPC filtering wouldn’t be

possible when only partial patent application is available for prior art search.

Mahdabi et al. [130] proposed a position-based query reduction method which

selects relevant query terms by building two query language models using various

sections of the topic patent: 1) a variant of the weighted log-likelihood model [137] ,

and 2) a model based on the parsimonious language model [79]. Their experiments

showed that queries constructed from terms in the description section using weighted

log-likelihood give better results than other sections which agrees with the previous

results [213, 121, 18]. The main advantage of this approach is that, respective weights

of query terms are derived automatically from the query model. However, some

challenges still exist regarding tuning the model parameters such as the smoothing

parameter which was set heuristically.

Query Expansion (QE): pattern-based QRE was proposed in many studies [150,

206, 99]. Wang and Lin [206] proposed patterns in the form of syntactic rules in

order to extract query terms as weighted concepts. Konishi [99] proposed a pattern-

based query expansion method for the patent invalidity search task on the NTCIR-5
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Table 35: Pseudo relevance feedback patent retrieval methods.

Method Description Dataset MAP PRES

Bouadjenek et al. [18] • use different methods of query expansion and
reduction from the PRF set

• use Rocchio, MMR, LM

clef-ip 2010
clef-ip 2011

0.13
0.10

0.55
0.45

Magdy et al. [124] • naive PRF
• remove stop-words
• use most frequent terms

clef-ip 2009 0.05 -

Mahdabi and Crestani [126] • build regression model using relevance score,
RF similarities...etc

• use the model to estimate the effectiveness
of RF

• use top 100 RF and maximize AP

clef-ip 2010 0.16 0.56

Ganguly et al. [57] • perform query segmentation
• retain segments highly to be generated using

RF LM

clef-ip 2010 0.14 0.47

Golestan Far et al. [62] • manually annotate one relevant RF result
• add terms in the annotated result to the

query

clef-ip 2010 0.2981 -

Golestan Far et al. [62] • assume relevant RF results are known
• add terms more frequent in relevant than ir-

relevant RF to query

clef-ip 2010 0.4882 -

collection. Rather than using raw terms from topic patent’s claims which are often

abstract, the author, using pattern matching, identifies other specific terms in the

description and use them as expansion terms. First, components of the invention

are extracted from the topic claim using handcrafted patterns. Secondly, explanation

sentences describing components of the invention are extracted from the description

using handcrafted patterns. Thirdly, terms from first and second steps are used as the

new query. The results showed that this query expansion approach works better than

using terms extracted from the claims section only. The main drawback of this method

is its dependency on manually coded patterns to identify potential terms. Meanwhile,

it demonstrates the potential of using entities and their relations as retrieval features

motivating the need for deeper and more generic linguistic analysis of patent texts.

83This is a semi-supervised performance
84This is an Oracle performance
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8.5.2.2 Pseudo Relevance Feedback (PRF)

These methods are one of the prominent techniques used for QRE. PRF starts with

an initial run of the given query Q. Then, terms from top ranked results are used to

select, remove, and/or expand terms inQ, assuming that these top results are relevant.

PRF is thus advantageous as it works automatically without human intervention but

might be computationally inefficient especially with long queries. Table 35 shows

some PRF methods along with their performance results on benchmark datasets.

Despite their effectiveness and popularity, several challenges arise when it comes

to PRF-based QRE [18] such as: 1) which part(s) of the patent application should be

used as the initial query?; 2) which part(s) of the retrieved results should be used as

the source of expansion and/or reduction?; 3) what is the best length of the expansion

list in case of query expansion, or the best threshold for removing terms in case of

reduction?; 4) which pseudo-relevant results are really relevant and how many of them

should be used?; and 5) what is the best relevance scoring model for the search task

(e.g., BM25 [168], the vector space model with tf-idf weighting...etc).

Bouadjenek et al. [18] provided a thorough evaluation on the CLEF-IP 2010/2011

collections to address some of the above challenges. The authors explored the sce-

nario when only partial patent application is available for prior art search (e.g., title,

abstract, extended abstract, or description). The authors tested different query ex-

pansion and reduction general methods such as Rocchio [174] and a variant of the

Maximal Marginal Relevance (MMR) [27]. They also tested patent-specific methods

utilizing synonym sets [123], language models [57], and IPC-based lexicon [131]. Af-
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ter experimenting various sections as sources for the initial query terms as well as

expansion/reduction sources, the results showed that, the description section among

other sections is the best to use as the initial query in case of both query expansion

and reduction. query reduction was not beneficial for the long description queries

as it already contains good coverage of relevant terms. However, query reduction

on description queries was useful as it removed many of the noisy terms. Generally,

query reduction outperformed query expansion on description and extended abstract

queries which indicates that, with long queries, query reduction is effective for better

retrieval performance. The results also showed that generic query expansion meth-

ods such as Rocchio works generally better for query expansion than patent-specific

query expansion methods. Finally, the results showed that BM25 scoring works bet-

ter than the TF-IDF scoring on the long description queries for both query reduction

and expansion, while TF-IDF works better than BM25 on short and medium-length

title or abstract queries. Through this comprehensive experimental study, the authors

did not evaluate the impact of using multiple sections in combination as sources for

query expansion or reduction. More importantly, the study does not provide any

insights about the respective values of number of expansion terms or term removal

threshold and whether these values are somewhat deterministic or vary widely calling

for interactive setting.

To address the problem of poor PRF results in patent retrieval compared to tra-

ditional information retrieval, Bashir and Rauber [13] proposed a novel approach for

PRF-based query expansion which builds a model that learns to identify better PRF

results based on their similarity with the query patent over specific terms. These terms
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are learned by building a classification model that classifies whether a term would

be useful for query expansion or not according to some proximity features between

the original query terms and pseudo-relevant terms. The authors, through experi-

ments on a subset of USPTO patents, showed the ability of this model to introduce

more relevant query expansion terms and subsequently increasing the retrievability

of individual patents. However, the authors did not evaluate this model on a any of

the available test collections. Moreover, extracting similarity features and computing

similarities with PRF results during query execution is computationally expensive

and time consuming.

Along the same efforts, Mahdabi and Crestani [126] proposed a framework for

identifying effective PRF documents at runtime and then performing query expansion

using terms from these relevant documents. The authors first proposed patent-specific

features and then used them to build a regression model which calculates a relevancy

score of each PRF document. Though results on the CLEF-IP 2010 collection were

encouraging, several challenges still exist. For example, the computational complexity

of calculating the regression model features at runtime. And PRF parameters tuning

(e.g., number of PRF documents to use).

Ganguly et al. [57] proposed a PRF approach which utilizes a language model

for query reduction of long queries composed of full patent applications. The au-

thors argued that, naive application of PRF to expand query terms could add noisy

terms causing query-topic drift. Moreover, naive removal of terms that has unit term

frequency in the query could cause removal of useful terms and thus hurt retrieval

effectiveness. Instead, the authors proposed a PRF-based query reduction technique
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which generates language model similarity scores between query segments (sentences

or n-grams) and top ranked results. Segments with top scores are kept and all others

are removed. Results on the English subset of the CLEF-IP 2010 collection showed

that the proposed approach outperforms the baselines. Parameter tuning is still the

main downside of this technique. The performance of the proposed approach was

unstable compared to the baselines with different parameter values. Specifically, the

window size, the number of pseudo-relevant documents, and the fraction of terms to

retain.

Golestan Far et al. [62] provided a study on hybrid QRE which aims to automat-

ically approximate the optimal Q̄ by careful selection/expansion of relevant query

terms. To motivate the efficacy of QRE on retrieval performance, the authors first

designed an experiment where relevance judgments of a query patent Q were assumed

to be known in advance. After running Q, using PRF on top-k documents, only terms

that are more frequent in retrieved relevant documents (those from relevance judg-

ments) than irrelevant documents are kept and used as Q̄. Then, querying using Q̄

achieved a better performance than state-of-the-art on the English subset of CLEF-IP

2010 collection. To approximate Q̄ automatically, the authors proposed four different

methods hoping to identify relevant vs. irrelevant terms in Q by: 1) removing terms

with high document frequency in the top-100 retrieved documents, 2) removing infre-

quent terms in Q, 3) using frequent terms in relevant documents assuming the top-5

retrieved documents are relevant, and 4) performing query reduction on Q using IPC

definitions as stop-words. All of the four methods failed to perform better than the

keyword-based baseline. More interestingly, the authors demonstrated that, baseline
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Table 36: Semantic-based patent retrieval methods.

Method Description Dataset MAP PRES

Magdy and Jones [123] • use Wordnet synonyms and hyponyms for
query expansion

• slow processing time
• no improvement

clef-ip 2010 0.136
0.140?

0.484
0.486?

Tannebaum and Rauber [191]

Tannebaum and Rauber [192]

Tannebaum and Rauber [193]

Tannebaum and Rauber [194]

Tannebaum and Rauber [195]

Tannebaum et al. [196]

• mine query logs for synonyms, co-occurring,
and proximity terms

• no improvement
• use upon request

clef-ip 2010

0.139
0.139?

0.512
0.512?

Magdy and Jones [123] • using synonyms learned from parallel trans-
lations (EN, GE, and FR)

• improve MAP only
• use upon request

clef-ip 2010 0.144
0.140?

0.485
0.486?

? indicates baseline performance

performance can be doubled if only one relevant document was manually provided by

the user. This last observation motivates the need for interactive QRE as a simple

and effective method for patent retrieval.

8.5.2.3 Semantic-based Methods

As we mentioned before, in PR queries can vary from few terms (e.g., survey memo)

to thousands of terms (e.g., full patent application). Straightforward keyword-based

PR proved to be ineffective simply because of the vocabulary mismatch between query

terms and relevant patents content. [124] showed that, in the CLEF-IP 2009 collec-

tion, 12% of the relevant documents have no common words with the search topics.

This motivates the need for novel approaches to bridge this vocabulary mismatch gap.

Several semantic-based methods have been proposed in attempt to match queries with

relevant documents based on their meanings rather than relying on keyword matches

only. Table 36 shows some semantic-based methods along with their performance

results on benchmark datasets.
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Dictionary-based: semantic-based methods perform QRE by expanding the query

to include other terms that have similar meanings to the original query terms. The

first category of these methods are the dictionary-based techniques which use ei-

ther generic [123], technical [114], or patent-specific dictionaries [192, 193, 195, 196,

204, 128] for QRE. Generic dictionaries could be existing lexical databases such as

WordNet [49], while patent-specific dictionaries are lexical databases generated from

patent-related data such as examiner’s query logs. In either case, similar or related

terms to the original query terms are retrieved from such dictionaries and used for

query expansion.

Magdy and Jones [123] explored the use of WordNet for query expansion in PR

on the CLEF-IP 2010 collection. Overall, adding synonyms and hyponyms for nouns

and verbs in the original query increased the MAP score slightly, while decreased the

PRES score significantly. Moreover, query execution time was increased considerably.

The authors considered this a ”negative” result. As the use of WordNet was proven to

be effective in other retrieval tasks [203, 112], more experiments are needed to affirm

the authors’ conclusion. For example, investigating the impact of using synonyms only

or hyponyms only, and expanding terms belonging to specific sections or ambiguous

terms only.

Recently, more research was focused on utilizing domain-specific and technical dic-

tionaries rather than WordNet. Examiners’ query logs have been an important re-

source for building such technical thesauri. Tannebaum and Rauber [191, 192, 193,

194, 195] and Tannebaum et al. [196] introduced an analysis of the USPTO exam-

iners’ search query logs. Their analysis, though on a subset of query logs, revealed
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interesting insights about patent examiners’ search behavior which could be very use-

ful for designing effective patent retrieval systems. For example, the authors noted

that about examiners’ behavior while searching for prior art: 1) the average query

length is four terms, 2) search terms are mostly from the patent application under in-

vestigation, 3) expansion terms represent small percentage of query terms and mostly

appear in the specific patent domain terminology, 4) the majority of query terms rep-

resents subject technical features that appears in the claims section, while very little

percentage of them appears in the description section, 5) the majority of terms are

nouns, followed by verbs, then adjectives, and 6) about half of the query operators

used are ”OR”, followed by ”AND”, then proximity operators.

Tannebaum et al. built upon these insights and introduced methods to automati-

cally identify synonyms/equivalents, co-occurring terms, and proximity relations for

expanding query terms by mining examiners’ search logs. As we can notice, learning

expansion terms from query logs might be misleading because not all query sessions

succeed to identify prior art. Additionally, deeper analysis of the query logs consid-

ering other metadata such as relevant hits count might be useful in this regard. On

the other hand, it would be more useful if we can model the features of these terms,

for example, based on their location, frequency, part-of-speech...etc. From effective-

ness perspective, evaluating the generated lexical knowledge on the CLEF-IP 2010

collection did not record significant improvement [196]. Therefor, the authors recom-

mended using it in an interactive mode rather than automatic mode to semi-automate

query generation.

Corpus-based: the second category of semantic-based QRE is the corpus-based
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methods. In these methods, textual corpora are analyzed to extract semantically

related concepts to query terms which can be used for query expansion. Al-Shboul

and Myaeng [4] proposed a Wikipedia-based query expansion method which works

by first creating a summary of each Wikipedia article containing the main category,

all titles under the main category, and other categories with in/out links to the

main category. At query time, query terms and phrases are matched with page

summaries, then, phrases from matching pages are scored and selected for query

expansion under the assumption that they are semantically related. Experiments on

the subset of USPTO patents in the NTCIR-6 collection showed increase in MAP over

other query expansion techniques. However, the authors used IPC codes rather than

citations as relevance judgments to topic queries which does not reflect the typical

search practices, where it is needed to retrieve related patent documents not related

classification codes.

Another corpus-based method was proposed by Magdy and Jones [123], where

synonym sets were automatically generated from the CLEF-IP patent corpus. The

authors utilized parallel translations of patent sections in different languages to build

a word-to-word translation model and infer synonymy relation when a word in one

language is translated to multiple words in another language. These multiple words

under some probabilistic threshold could be considered synonyms. Overall results

using this method were better than PRF and Wordnet based query expansion, but

worse than the keyword-based baseline in Magdy and Jones [121]. The authors also

showed that, the performance of this method on some topics was better than the

baseline which indicates its potential. The issue they raised is how to more effec-



178

Table 37: Metadata-based patent retrieval methods.

Method Description Dataset MAP PRES

Fujii [51] • use PageRank on patents citation
graph

• use patent popularity among top re-
sults with weighted voting

ntcir-6 0.075
0.081

0.071?

-

Mahdabi and Crestani
[127]

• build query specific citation graph
from PRF results and their citations

• weight nodes using PageRank
• estimate query LM from the graph

nodes considering their PageRank
scores

clef-ip 2011 0.105

0.099?

0.481

0.450?

Mahdabi and Crestani
[129]

• using time-aware random walk on
weighted citation graph

clef-ip 2011 0.125

0.058?

0.536

? indicates baseline performance

tively apply query expansion by selecting ”good” terms [25], or predicting query

expansion performance beforehand [38, 120]. Such challenges can also be alleviated

semi-automatically by developing intelligent and usable interactive query expansion

frameworks which engage users in such decision. Finally, Krestel and Smyth [101]

applied topic modeling of search hits in order to better rank retrieved patents. The

results on a small collection of the USPTO patents showed improved MAP.

8.5.2.4 Metadata-based Methods

Patents are not only textual documents, they contain lots of non-textual meta-

data and bibliographic information as well (e.g., citations, tables, formulas, drawings,

classification...etc). Combining metadata analysis with text-based PR has shown im-

provements in performance in the literature [51, 114, 115, 46, 127]. Metadata features

are also language independent making them advantageous when used for CLIR. Ta-

ble 37 shows some metadata-based methods along with their performance results on
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benchmark datasets

Citation-based: The use of citation analysis for better retrieval is the most heavily

reported technique of metadata-based methods. Naively incorporating citations from

topic patent applications as prior art proved to be effective, eliminating the need

for deeper citation analysis [125]. However, citation extraction from patent texts is

challenging because there is no standard writing style for patent references. Lopez and

Romary [115] developed a tool for citation mining which identifies, parses, normalizes,

and consolidates patent citations. As citations might not be always available in all

scenarios (e.g., related work search, technology survey...etc), more mature techniques

are needed. Fujii [51] proposed using PageRank [20] and document popularity as an

additional scoring to re-rank query top results returned using claims-based queries.

The results of applying popularity scoring on the English subset of NTCIR-6 improved

MAP and recall over the raw text-based scoring. Incorporating PageRank, though

intuitive, poses many challenges especially because patent documents have references

to non-patent literature which would produce incomplete citation graph. Mahdabi

and Crestani [127] extended their query modeling technique in [130] by incorporating

term distributions of the PRF results as well as their citations in calculating the query

language model. The authors first construct a query-specific citation graph using

PRF results and their citations and assign a score for each of them using PageRank.

Then, a query model is estimated from term distributions of the documents in the

citation graph constrained by their respective PageRank. Finally, query expansion

is performed using the estimated query model. Experiments on the CLEF-IP 2011

collection showed improved recall performance with no change in precision, which



180

indicates the usefulness of using cited documents vocabulary for query expansion.

Best improvements were achieved using the top 30 PRF documents, 2-levels citation

graph, and 100 expansion terms. However, we can notice two main computational

challenges using this technique in real-time setting: 1) computing the PageRank of the

2-level citations graph, and 2) estimating the query model from top PRF documents

as well as documents in the citation graph.

Classification-based: these methods utilize classification information of the topic

patent and the retrieved documents to improve the performance of patent retrieval[97,

73, 74, 32, 60]. The naive use of IPC classification is to filter retrieved documents

to keep only ones that share the same IPC classification code at some level (e.g.,

same subclass) with the topic patent [124, 61]. More sophisticated use of classifi-

cation information was introduced by Verma and Varma [201] who proposed a new

representation of patent documents based on IPC classifications. The method utilizes

IPC codes assigned to the corpus patents as well as codes of their citing documents

to form an IPC class vector. First, the vector is initialized from patent’s IPC code,

then codes of citing patents are propagated over multiple iterations. The most similar

patents are retrieved using cosine similarity between IPC class vectors and re-ranked

using text-based search utilizing the top 20 tf-idf topic patent terms. Experiments

on the CLEF-IP 2011 collection showed improved recall but low MAP scores. The

instability of the patent classification system poses a real challenge when it comes

to incorporating classification metadata into PR systems. Overtime, new classes are

added to the classification hierarchy and existing classes are expanded. In order to

do reliable search based on classification codes, these changes must be accounted for
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periodically. Moreover, patents are assigned to multiple classification codes, however,

almost all previous research considered only the primary class but not secondary

classifications which might, if utilized, improve the retrieval performance.

Hybrid: these methods utilize various sources of metadata to improve PR per-

formance. Mahdabi and Crestani [129] built upon previous work in [130] and [127]

and proposed a query expansion method that utilizes time-aware random walk on

a weighted patent citations network. Citation weights are derived from various

metadata (e.g., classification codes, inventors, assignee...etc). Citations with higher

weights are considered more influential when performing query expansion. Experi-

ments on the CLEF-IP 2010/2011 collections show improved recall and MAP. Mahd-

abi and Crestani [128] proposed building a query-specific lexicon from IPC definition

pages and using it for query expansion. Unfortunately, the lexicon would be helpful

only if the query represents a complete patent document with IPC codes assigned to

it which is not always the case especially at the early stages of the patent life-cycle.

8.5.2.5 Interactive Methods

Interactive patent retrieval is inevitable. As we can notice from the above review,

effective fully automated retrieval of patent prior art is very challenging. Best meth-

ods perform around average in terms of PRES and much less in terms of MAP. Addi-

tionally, these methods require tuning a large number of parameters and thresholds

whose optimal values differ according to the given query and the specific information

need. For example, deciding which patent section to use?, which PRF results?, and

which expansion terms and their respective weights?. The answers of these questions
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are not deterministic and probably require multiple interaction cycles with the user

in order to satisfy his/her information need.

Current interactive methods in patent retrieval are more focused on better orga-

nization, integration, and utilization of structured and textual patent data than on

better retrieval performance. In other words, patent retrieval is addressed as a pro-

fessional search problem rather than prior art search problem. Fafalios and Tzitzikas

[47] presented a keyword-based interactive search framework to support patent search.

The interaction elements are presented through post-analysis of search results in the

form of facets based features like static metadata (e.g., IPC codes), textual cluster-

ing, named entity extraction, semantic enrichments, and others. The framework was

applied on patent search [172] and evaluated using user study of twelve patent ex-

aminers [173]. Evaluation responses indicated overall acceptance of the framework in

terms of usability, ease of use, efficiency, learnability. However, the authors did not

report on the effectiveness or success of the system helping patent examiners to find

prior art.

In Chapter 5, we proposed a visual interactive semantic framework for patent

analysis which features semantic-based query expansion of search queries using Mined

Semantic Analysis (MSA). As described, MSA builds an association knowledge graph

using rule mining of concept rich textual corpora (e.g., Wikipedia). After mining

the ”See Also” link graph of Wikipedia, MSA could represent a topic query as a

Bag-of-Concepts (BoC) derived from the association knowledge graph. This BoC

could then be used to expand the original query terms (cf. Figure 12 which shows an

example of the query expansion map of Cognitive Analytics, and cf. Figure 13 showing
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concept map of 10 patents of Bank of America using the abstract section). Users can

interact with the concept map by removing nodes and updating the search results.

We demonstrated the applicability of this framework to support tasks such as prior

art search, competitive intelligence, technology landscape analysis and exploration.

In Chapter 9, we introduce a controlled study evaluating the performance of concept-

based representations on benchmark patent retrieval collections.

Developing interactive methods for patent retrieval is also motivated by recent anal-

ysis which showed significant performance improvement if only one relevant document

was manually provided by the user [62]. Performance gains using Technology Assisted

Review (TAR) [64, 37] in domains like electronic discovery motivates investigating

the applicability of machine learning TAR protocols in patent retrieval.

Technology assisted review, like patent retrieval, is a total-recall task where it is

required to find all relevant documents to the search request with reasonable effort

(time and cost). It is thus a human-in-the-loop process where a human expert man-

ually annotates a subset of the documents as relevant or irrelevant. The underlying

algorithm subsequently builds a ranking model by training on such annotations and

uses this model to promote more relevant results and demote irrelevant ones as more

documents are searched and annotated. This process stops when enough results are

obtained. Typically, these algorithms utilize techniques such as continuous active

learning combined with Boolean search in order to develop and adapt the ranking

model [64].

Several questions still need to be addressed when it comes to investigating technol-

ogy assisted review protocols applicability to patent retrieval, as these protocols were
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only evaluated in ad hoc search scenarios. The complexity of patents terminology and

availability of multiple sources of metadata would, likely, demonstrate many oppor-

tunities for adaptation and modifications to the current technology assisted review

protocols.

8.6 Related Topics

Despite intense interest within the research community in patent retrieval, the

patent industry has many other challenges and open problems which are of high

interest and value to various stakeholders, such as economists, R&D managers, and

legal professionals, to name a few. In this section, we try to lightly touch on these

tasks and highlight some challenges and possible future directions.

8.6.1 Patent Quality Assessment

Assessing the technical quality and importance of inventions is very important to

patent owners because it allows them to:

• better utilize their IP management costs by automated recommendation of

patent maintenance decisions.

• better determine the novelty and originality of their patents.

• maximize licensing revenues by automatic estimation of the patent value.

Because there is no ground truth for quality measurements, performance evaluation of

quality assessment techniques is usually based on indicators such as correlation with

patent forward citations, maintenance status history, court rulings (if any), and/or

patent reexamination history (if any). Some early work scored patents using their
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metadata such as citations count, maintenance history, global prosecution efforts

[107], and even manually by patent attorneys. Automated patent quality assessment

has gained more traction in recent years though.

Citation analysis has been and still a main technique for patent valuation [198, 72,

68, 40, 207]. Wang et al. [207] proposed a probabilistic mixture approach to predict

whether a topic patent will be renewed at different renewal periods. The method

first divides the citations into two groups; technological and legal. From each group,

different features reflecting the technological richness, technological influence, legal

patent scope, and legal blocking power of each patent are combined. The authors

subsequently build a binary classifier using these probabilistic features. Evaluation

is performed by comparing the model’s predictions against the renewal decisions of a

collection of patents. While proved effectiveness, estimating patent value as a binary

outcome might not be practical especially if a patent owner needs to prioritize his

maintenance decisions of multiple patents.

Quality assessment based on the lexical features of the patent text was also explored

in the literature [93, 113, 78]. Liu et al. [113] proposed a graphical model to estimate

patent quality as a latent variable. The model utilized lexical features extracted

from the patent text such as claims n-grams age and popularity, lexical alignment

between the claims and the description, number of dependent and independent claims,

number of reported classes when filing the patent, and other features. The authors

also incorporated measurements such as forward citations count, court decisions, and

reexamination records. It is clear that court decisions are only available for small

number of patents which might not allow building a robust model.
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Jin et al. [93] modeled the patent maintenance decision as recommendation problem

where patents were represented as multimodal heterogeneous information network.

The model utilized several metadata features, lexical features such as unique words

and lengths of different sections, as well as inventor and assignee profile features.

Experimental results showed high prediction accuracy on a large number of USPTO

patents.

Hu et al. [84] proposed a time-based topic model which ranks patents novelty and

influence based on whether the dominant topics in patent’s prior art (for novelty) or

forward art (for influence) are still active topics. The authors also proposed using

time decay function to address the problem of old patents having less prior art and

more forward art than newer patents and vice versa. Results showed high correlation

between assigned ranks and forward citations count.

Hido et al. [78] proposed a scoring model which assigned a patentability score

to each patent and thus can be utilized to determine whether it will be granted.

First, the authors extracted textual features such as word frequency, word age, and

syntactic complexity (e.g., number of sentences). Then, they trained a classifier using

previous patent office decisions as ground truth. Though results showed the model

effectiveness, the utilized syntactic complexity features are all extracted from the topic

patent and thus could be good predictors for the writing quality not patentability

potential.

The correlation between patent claims novelty and patent value using lexical anal-

ysis of patent text has been analyzed in previous studies [33, 76]. Hasan et al. [76]

proposed an IR-based ranking tool which analyses patent claims for originality. The
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technique first extracts key terms and phrases from the claims text using syntac-

tic patterns and then looks for usage patterns backward to determine their novelty,

and forward to determine their influence. The method considers usage patterns only

through user defined time window. It is also keyword-based and hence will fail to cap-

ture key phrases that are semantically similar and subsequently might give inaccurate

scores.

Along the efforts of using patent legal data for quality assessment, Mann and

Underweiser [133] utilized prosecution histories, court decisions, and patent textual

features to analyze patent quality. The analysis suggested that patent examination

records would be very helpful in better discriminating high from low quality patents

and possibly improve the examination process as a whole.

8.6.2 Patent Litigation

Litigation in general, and patent litigation specifically have been and still a topic of

interest to legal professionals. With the increased amounts of digitized data available

and the need for technology support in analyzing and mining these huge datasets,

litigation became of more interest to computational science researchers. Patent litiga-

tion can take many forms, the most common is patent infringement litigation where a

patent owner (plaintiff) accuses another party (defendant) of using his/her invention

without license or permission. Because litigation is very expensive, the most common

defensive action for the defendant is to establish invalidity of the plaintiff invention

by issuing a post grant proceeding such as post-grant review or inter-parts review.

Now the problem becomes a patent retrieval task, i.e. invalidity search, where one
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of the aforementioned methods can be utilized with wider scope to cover not only

patent literature but also other published material.

The task of automatically establishing patent infringement is not addressed in liter-

ature. Such task requires extensive human expertise and reasoning to build correspon-

dences between product features and patent claims. On the other hand, statistical

and visual analytics of previous court decisions have shown some degree of success in

helping lawyers to better understand possible outcomes and better plan on defense

strategies [71, 8, 149].

For example, Allison et al. [9] provided a statistical study on patent cases filed from

2008 to 2009 and decisions made between (2009-2013). The study showed that, there

is a strong correlation between court decision, and patent-specific, litigation-specific,

and industry-specific variables such as industry and technology type, inventors foreign

status, number of claims, number of forward and backward citations, and number of

defendants sued.

Rajshekhar et al. [162] studied the potential of concept-based semantic search in

patent litigation. The authors designed an experiment in order to retrieve invalidat-

ing patents to a given litigated patent using a subset of PTAB’s final decisions as

ground truth and a search corpus of ∼7m USPTO patents. The authors, based on

the experimental results and through interviews with patent practitioners, concluded

that, a one-size-fits-all semantic search approach is incapable of capturing the highly

nuanced relevance judgments made in the domain of patent litigation. Rather, the

search workflow should be modeled as a multistage information seeking process, where

users are presented with interactive elements to control the search space, and their
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feedback is incorporated iteratively in the relevance ranking of retrieved results for

enhanced performance.

Finally, There is much to be done in building predictive models for patent litigation

given the availability of prior case datasets that were not available few years ago (e.g.,

prosecution histories, court decisions, and PTAB decisions).

8.6.3 Technology Licensing

Patents represent one of the most valuable assets in today’s enterprises which, if

leveraged effectively, guarantee not only competitive superiority, but also huge licens-

ing revenues [33]. The technology licensing task is three sided. First, patent owners

would be interested in finding potential licensees with reasonable effort. Second, li-

censees would like to find relevant inventions to their businesses. Third, owners and

businesses would be interested in gauging the strategic and protection values of a

patent in order to support their pricing and offering decisions.

While there is no much research focusing on the task of automatically recommend-

ing potential licensees. The task of recommending patents to be licensed was relatively

more considered. Chen et al. [33] proposed a platform called SIMPLE which is used

at IBM to identify target patents for licensing. Given a set of topic patents, SIMPLE

uses nearest neighbor similarity to find other patents that are most similar to the

given topic set. Then, all the patents are grouped and proposed as one licensing

package to interested party. The platform was extended in Spangler et al. [186] to

allow retrieving target patents using free text search. We can notice that current

trends for identifying potential patents for licensing model the problem as a PR task.
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More elaboration on the SIMPLE platform was introduced by Spangler et al. [187]

using interactive visualization. First, portfolios of two companies are contrasted to

find content overlap between both of them using proximal search. Then, the closest

patents to the overlap area are recommended as candidates for licensing.

8.7 Concluding Remarks

In this Chapter we presented a comprehensive review of patent retrieval methods

and approaches. It is clear that, the well-performing information retrieval techniques

in areas like Web search cannot be utilized directly in PR without deliberate domain

adaptation and customization. Furthermore, state-of-the-art performance in auto-

matic patent retrieval is still low (<0.2 MAP). Several proposed techniques for query

expansion, query reduction and pseudo relevance feedback require tuning of various

parameters. Search professional practices suggest that effective prior art search re-

quires multiple iterations of searching, reviewing, and refining. On the other hand,

examiners’ query formulation practices (few keywords and Boolean search) are differ-

ent from those of automatic methods (many keywords and free-text search). These

observations motivate the need for interactive search tools which provide cognitive

assistance to search professionals with minimal effort. These tools must also be devel-

oped in hand with patent professionals considering their practices and expectations.

Unexplored patent-related data sources might be an opportunity for breakthrough

improvements over the current modest state-of-the-art in patent retrieval. For exam-

ple, utilizing reexamination records, PTAB decisions, differences between the patent

application and the granted version, examiner/applicant correspondences, and pros-
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ecution histories. All these resources are not yet fully explored in the literature of

patent retrieval.

Related tasks such as patent quality assessment, litigation, and licensing are of

less focus among computational scientists. However, they provide wide opportunities

for future exploration from computational and modeling perspectives. These tasks

require interdisciplinary and cooperative efforts from both legal professionals and the

computer science research community.



CHAPTER 9: TOWARD AN INTERACTIVE PATENT RETRIEVAL
FRAMEWORK BASED ON DISTRIBUTED REPRESENTATIONS

In Chapter 2 we addressed increasing the efficiency of technical text representation

through unsupervised concept-based dimensionality reduction. We also introduced

in Chapter 6 and Chapter 7 three neural-embedding models for generating dense

concept-based representations. These models are more efficient than the sparse rep-

resentations (e.g., bag-of-words), and also capture semantic and syntactic regularities

which are desired requirements for almost all text analysis and retrieval tasks. In this

chapter we demonstrate the effectiveness and usability of these representations for

technical text retrieval. We present a novel interactive framework for patent retrieval

leveraging distributed representations of concepts and entities extracted from the

patents text. We propose a simple and practical interactive relevance feedback mech-

anism where the user is asked to annotate relevant/irrelevant results from the top n

hits. We then utilize this feedback for query reformulation and term weighting where

weights are assigned based on how good each term is at discriminating the relevant

vs. irrelevant candidates. First, we demonstrate the efficacy of the distributed rep-

resentations on the CLEF-IP 2010 dataset where we achieve significant improvement

of 4.6% in recall over the keyword search baseline. Second, we simulate interactivity

to demonstrate the efficacy of the proposed interactive term weighting mechanism.

Simulation results show that we can achieve extra 2-12% improvement in mean av-
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erage precision from one interaction iteration outperforming previous semantic and

interactive patent retrieval methods.

9.1 Introduction

As mentioned in Chapter 8, patent retrieval is a challenging task. Patents are

lengthy metadata rich documents. And patent queries, on the other hand, can be a

complete multi-page patent application. These features make traditional information

retrieval methods used for Web or ad hoc search inappropriate or at least of lim-

ited applicability to patent retrieval. We also highlighted in Chapter 8 that neither

keyword-based or semantic-based methods has acceptable performance. Therefore,

few interactive methods were proposed to better discriminate relevant vs. irrelevant

query terms based on user feedback [62].

In this chapter, we present a novel interactive framework for patent retrieval based

on distributed representations of concepts and entities identified in patents text. Of-

fline, we jointly learn the embeddings of words, concepts, patent documents, and

patent classes in the same semantic space. We then use the learned embeddings to

generate multiple vector-based representations of the topic patent query and its prior

art candidates. Given a topic patent, we find its prior art through two steps: 1) can-

didate generation through keyword search, favoring recall, and 2) candidate reranking

through an ensemble of semantic similarities computed from the vector representa-

tions, favoring precision. Empirical evaluation of this automated retrieval scheme on

the CLEF-IP 2010 dataset shows its efficacy over keyword search where we get 4.6%

improvement in recall@100.
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Figure 20: Automated reranking of prior art candidates using multiple scoring func-
tions based on embeddings of words, concepts, patent documents, and patent classes.

In addition, we propose an effective query reformulation and term weighting mech-

anism based on interactive relevance feedback. We model term weighting as a super-

vised feature selection problem where term weights are assigned based on how good

each term is at discriminating the relevant vs. irrelevant candidates obtained from

user feedback. Our interaction mechanism is more practical and realistic than the

one proposed by Golestan Far et al. [62]. We ask the user to annotate hits in the top

n results as relevant/irrelevant, while in Golestan Far et al. [62] the user is restricted

to annotate only relevant candidates which might appear very deep in the candidates

list.

We simulate this interactive term weighting mechanism to demonstrate its effective-

ness over the best performer on the CLEF-IP 2010 competition; PATATRAS [114].

Our simulation results show that we can outperform PATATRAS performance with

only 1 annotated candidate regardless of whether it is relevant or not. It is worth

mentioning that similar results have been presented in Golestan Far et al. [62], but

with restricting the user to annotate 1 relevant candidate which again might require

the user to navigate through several candidates83.

83Golestan Far et al. [62] figure 4 shows that ∼750 of 1281 test queries have the 1st relevant
candidate among the top 10 (∼59% chance).
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9.2 Preprocessing and Offline Operations

9.2.1 The Search Index

As shown in Figure 20, automated vector-based retrieval starts by searching for an

initial set of N candidates. For this purpose, we build a search index of the target

candidate patents collection using Apache Solr. For each candidate patent, we index

its Id, title, abstract, description, claim1, claims, and IPC classification codes. During

candidate set generation, we use title, abstract, description, and claims of the topic

patent and search all candidate fields except the IPC codes. We give equal weight to

all the fields during search.

9.2.2 Text Conceptualization

By concepts/entities we mean single or multiword expressions which denote an

idea, object, or event along with its characteristics. In the context of text mining,

One flavor of text conceptualization works by extracting basic level concepts (BLC)

from the input text by identifying mentions of those concepts and mapping them to

entries in target Knowledge Base (KB). In this work, our concept space is defined by

all Wikipedia article titles. We perform conceptualization by moving sliding windows

of different sizes on the input patent text. Each window of size n will produce n-gram

tokens which are then matched to a Wikipedia concept (article title) and replaced by

unique Id.

Conceptualization has two main advantages: 1) concepts with different surface

forms would be mapped to a single unique canonical form (e.g., Solar cell, Photovoltaic

cell, PV cell), and 2) concept mentions of arbitrary length would be mapped to
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unique Ids and therefore a single vector would be learned for each concept rather

than each word of the concept expression (as described in Section 9.2.3). This is

important for concepts whose meaning is different from the compositional semantics

of its individual words (e.g., rare earth element). As shown in Figure 20, the output of

text conceptualization is the union of the Bag-of-Words (BoW) and identified concept

mentions (BLC) in the input patent text.

9.2.3 Learning Distributed Representations

Our framework adapts skip-gram [139], the popular local context window method,

to jointly learn vector representations (embeddings) of words, concepts, patent doc-

uments, and patent classes in the same semantic space. By embedding all these

structures in one space, we could measure the similarity between pairs of words,

concepts, documents, and classes and between combinations of them using a proper

similarity measure (e.g., cosine).

9.2.3.1 Word & Concept Vectors

We utilize the candidate patents collection as the input corpus. After all concept

mentions are identified using text conceptualization, We train the skip-gram model

to jointly learn the embeddings of both words and concepts using concept mentions.

We apply the exact learning approach proposed for the Concept Raw Context model

(CRX) introduced in Section 6.3.2. As described earlier, given a patent corpus of

V words w1, w2, ..., wV . We iterate over the corpus identifying words and concept

mentions and thus generating a sequence of T tokens t1, t2, ...tT where T < V (as

multiword concepts will be counted as one token). Afterwards we train the skip-gram
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aiming to maximize:

Lt =
1

T

T∑
i=1

∑
−s≤j≤s,j 6=0

log p(ti+j|ti) (21)

where s is the context window size. Here, ti is the target token which would be either

a word or a concept mention, and ti+j is a surrounding context word or concept

mention.

9.2.3.2 Patent Documents Vectors

We learn unique vectors for each patent document with the objective to maxi-

mize the ability of predicting words/concepts appearing in the document given the

patent vector. Therefore, contexts are generated as pairs of (t, pidi) where t is a term

(word/concept) appearing in a target patent document pi whose Id is pidi in the

candidates collection C. Under this representation, our training objective would be

maximizing:

Lp =
1

|C|

|C|∑
i=1

∑
t∈pi

log p(tj|pidi) (22)

9.2.3.3 Patent Class Vectors

We learn unique vectors for each patent class. Patent classes are important in

patent retrieval as they are assigned according to the patent technical features. There-

fore, they can be used for soft filtering; to limit the scope of search to few class codes

rather than searching through irrelevant technological fields. Our objective is to

maximize the ability of predicting terms appearing in all the patents that belong to a

target class given the class vector. Therefore, contexts are generated as pairs of (t, c)

where t is a term (word/concept) appearing in a given patent document p which c is
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one of its class codes CLSp. Under this representation, our training objective would

be maximizing:

Lc =
1

|C|

|C|∑
i=1

∑
t∈p

∑
c∈CLSp

log p(t|c) (23)

During training, we train the embedding model to jointly maximize L = Lt +

Lp + Lc which is estimated using the softmax function.

As the patents vocabulary is typically full of jargon and user defined concepts,

we start with the CRX vectors (described in Section 6.3.2); our pretrained concept

embeddings model which utilizes Wikipedia.

9.3 Automated Vector-based Retrieval

Figure 20 shows the process of automated retrieval our framework. At a high level,

given a topic patent, we retrieve an initial set of N candidates using keyword search

from the Solr index. Then we create a vector representation for the topic patent

and each candidate from the words and concept mentions in their corresponding text

through conceptualization. We also generate another two vectors for each candidate

through embedding lookup; one for the candidate patent document and the other for

its class. After generating all the vectors, we compute similarity scores between the

topic vector and each of the three vectors of each candidate. This will generate three

scores which are then combined with the keyword search score to obtain the overall

candidate relevancy score which is used to rank the N candidates. Below, we describe

these steps in detail.
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9.3.1 Vector Generation

In this step we generate continuous vectors for the topic patent and each of its

prior art candidates. The BLC vector (vblc) is created from the weighted sum of the

embeddings of all words and concepts in the patent text. We use the normalized term

frequency (tf ) as the initial term weight. Formally, given a patent whose text contains

set of terms T , then vblc =
∑T

i=1wi ∗ lookup(ti) where ti is a word or a concept whose

normalized tf is wi and lookup(.) retrieves the vector of its input from the learned

embedding space.

We generate two other vectors for each candidate patent. First, the PID vector

which corresponds to the vector learned for the whole patent document. It is obtained

by vpid = lookup(pid). Second, the CLS vector which corresponds to the vector of

that patent class, and is obtained by vcls = lookup(cls).

9.3.2 Candidate Scoring and Reranking

As mentioned earlier, the initial prior art candidates are obtained by keyword

search. After generating the vectors of the topic patent and its candidates, we com-

pute multiple semantic similarity scores which are then combined to produce the final

relevancy score of each candidate to the topic patent. All scores utilize the cosine

measure between pairs of vectors (u,v) as cos(u,v) = u . v
||u|| ||v|| . In all below scores,

ublc is the BLC vector of the topic patent, and v is one of the vectors of a prior art

candidate.

1. BLC Score: It is computed as sblc = cos(ublc,vblc). It captures the fine-

grained similarities between the two BLC vectors.



200

2. PID Score: It is computed as spid = cos(ublc,vpid). It captures the coarse-

grained similarities between the topic BLC vector and the whole candidate

document.

3. CLS Score: It is computed as scls = cos(ublc,vcls). It captures the similar-

ity between the topic BLC vector and the high-level technical features of the

candidate patent embedded in its class vector.

4. Ensemble Scoring: Finally, we combine the three scores with the normalized

keyword search score (skw) through weighted sum to produce the final relevancy

score of each candidate as s = α ∗ sblc + β ∗ spid + γ ∗ scls + δ ∗ skw, where

α + β + γ + δ = 1 and are tuned empirically.

9.3.3 Why Concept-based Distributed Representations?

The motivation behind using concept-based distributed representations for patent

texts stems from the nature of the patent queries which tend to be long (with several

hundreds or thousands of search terms). Therefore, we would expect repetitions of

more important concepts vs. less important ones in the query. Turning queries into

vectors allows us to focus on the important (frequent) concepts as the contribution

of their corresponding dimensions to the overall similarity would be high favoring

precision. On the other hand, less important (frequent) concepts would still contribute

to the overall similarity but with much less magnitude favoring recall. The vector

representation would also allow us to overcome the vocabulary mismatch problem as

we match dimensions rather than symbols during similarity scoring. Last but not

least, the vectors are fixed-size and thus computations would be much faster in the
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Figure 21: Interactive term weighting and scoring. Terms are weighted according to
their relevancy in discriminating relevant vs. irrelevant candidates annotated by user.

vector space.

9.4 Interactive Relevance Feedback

As we will show in the evaluation section and indicated by previous studies [62],

query reformulation (QRE) by means of expansion, removal, or reweighting of rel-

evant/irrelevant terms could significantly boost the performance of patent retrieval.

However, automated QRE fails to fully identify the significance of each term moti-

vating the need for interactive QRE. Our framework embraces interactive relevance

feedback for QRE. Inspired by Debole and Sebastiani [41], we model term weight-

ing as a supervised feature selection problem where term weights are assigned based

on how good each term is at discriminating the relevant vs. irrelevant candidates

obtained from user feedback. Figure 21 shows the process of interactive QRE.

Our interaction mechanism is similar to the technology assisted review protocol

[37]. After candidate reranking, the user is asked to annotate the top n candidates

as either relevant or irrelevant to the topic patent. We then employ the chi-square

(χ2) statistic for term weighting considering the topic patent + the annotated relevant

candidates as the +ve samples, while the annotated irrelevant ones as the -ve samples.

After that, we create a modified vblc for the topic patent considering only those terms

t in the topic patent and any of the annotated relevant candidates along with their
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chi-square weights wi such that vblc =
∑T

i=1 wi ∗ lookup(t). The modified vblc is used

to compute the ensemble scores and rerank the candidates. This process is iterated

until the user is satisfied with the results.

We argue that our proposed user interaction mechanism is more practical than

Golestan Far et al. [62]. In Golestan Far et al. [62] the user is required to annotate

the relevant results only. However, this might be impractical as in patent retrieval

it is usually expected that many relevant results appear late in the result set and

therefore the user effort would be proportional to rankings of these relevant results.

Our mechanism, alternatively, doesn’t require the user to dig deep in the candidates

list as we require the annotations of the top n candidates, therefore the user effort

is proportional to n and independent from the relevant hits rankings. On the other

hand, our proposed mechanism exploits both relevant and irrelevant hits as the user

go through the candidates list. In case of no relevant candidates in the top n, we can

still use the topic query as a relevant hit and apply chi-square weighting. In case of

no irrelevant candidates in the top n, we can fall back to our normalized tf weighting

expanding the topic patent terms with other terms from the annotated relevant ones.

9.5 Performance Evaluation

9.5.1 Experimental Setup

We evaluate our framework on the CLEF-IP 2010 benchmark dataset84 which con-

tains∼2.6 million patent documents. Similar to Golestan Far et al. [62], we considered

only 1286 queries (topic patents) which has at least one relevant document whose ti-

84http://www.ifs.tuwien.ac.at/∼clef-ip/
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Figure 22: Classification recall with different number of neighbors (k) when classifying
the CLEF-IP 2010 topic patents using the learned class codes vectors (blue) and
patent document vectors (red).

tle, abstract, description, and claims in English. During keyword search, we set the

number of initial candidates N to 1000. To make our results comparable to previous

studies [62, 114], we perform IPC filtering during keyword search; keeping only can-

didates that share at least one IPC class with the topic query. We experimentally set

α = 0.2, β = 0.4, γ = 0.125, δ = 0.275. We simulate user interactions by automati-

cally annotating the top n candidates from the vector-based reranking using the true

relevance judgments.

9.5.2 Are the Learned Vectors Meaningful?

In order to assess the quality of the learned vectors, we performed an intrinsic

evaluation using these vectors to predict the IPC classification code(s) of each of the

1286 topic patents. We performed two experiments: 1) classification using the vectors
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Table 38: Vector-based patent retrieval with interaction.

Recall@100

Keyword baseline 41.9

PATATRAS [114] 46.7

Vector-based reranking 46.7
top 1 annotated 47.3
top 5 annotated 48.1
top 10 annotated 49.3

of the IPC class codes (vcls), and 2) classification using the PID vector of each of the

topic patent candidates (vpid). In both cases, we first generate the BLC vector for

each topic patent (ublc), and then use a k -nearest neighbors (kNN) classifier to predict

the patent class(es). Each topic patent is assigned to k classes whose vectors (vcls)

are most similar to ublc (when using class vectors), or the k classes of the candidates

whose document vectors (vpid) are most similar to ublc (when using patent vectors).

Figure 22 shows classification recall scores when varying the number of neighbors (k)

between 1 and 10. As we can notice, the classification performance using the patent

vectors is generally better compared to using the class vectors. Overall, the results

are very promising, especially when k>1 (cf. Table 5 recall scores), and show that the

learned vectors encode meaningful representations of the patent documents as well as

the classification codes.

9.5.3 Retrieval Results

Table 38 shows the performance of our system compared to PATATRAS [114], a

patent retrieval system with significant preprocessing85 and sophisticated use of patent

85PATATRAS extracts some relevant patents from citations in the topic patent description using
regex. This preprocessing step contributes up to 8% of their recall.
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Table 39: MAP and PRES scores of vector-based patent retrieval compared to pre-
vious methods ordered by PRES score..

MAP PRES

Wang and Lin [206] 0.10 0.40
Mahdabi et al. [130] 0.12 0.49
Magdy and Jones [123] 0.14 0.49
Tannebaum et al. [196] 0.14 0.51
Bouadjenek et al. [18] 0.13 0.55

Vector-based reranking 0.14 0.63

Table 40: Percent improvements after the 1st interaction iteration over automatic
vector-based reranking.

Recall@5 Recall@10 Recall@50 Recall@100 MAP

Vector-based reranking 12.7 18.6 36.7 46.7 13.7

top 1 annotated +1.4 +1.0 +1.2 +0.6 +1.9
top 5 annotated +5.4 +4.2 +2.1 +1.5 +7.4
top 10 annotated +9.4 +7.6 +3.2 +2.6 +11.6

metadata. As we can see, the automated vector-based reranking achieves equal perfor-

mance to PATATRAS and improves recall by 4.6% compared to the keyword baseline

demonstrating the usefulness of the learned distributed representations. Interactive

QRE improves performance even more; we can outperform PATATRAS performance

if the user annotates the first result from automated reranking as relevant or irrele-

vant. Table 39 shows the Mean Average Precision (MAP) and Patent REtrieval Score

(PRES) of our method compared to previous keyword [130, 206], pseudo relevance

feedback [18], and semantic-based methods [123, 196]. Our vector-based reranking

gives very competitive score in terms of MAP and significantly outperforms all these

methods in terms of PRES.

Annotating more results generally improves the performance. Table 40 shows per-
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Table 41: Evaluation results of our vector-based reranking when coupled with the
interactive relevance feedback mechanism of Golestan Far et al. [62]. (r is number of
user annotated relevant candidates).

MAP Recall@100
r=1 r=3 r=1 r=3

Golestan Far et al. [62]? 28.8 36.9 47.9 54.7
Vector-based reranking + relevants 30.5 52.9 51.2 60.5
?Results from Golestan Far et al. [62] considering τ = 0

cent improvements in recall at different ranks as well as MAP scores after one inter-

action iteration. As we can notice, with minimum user interaction effort (annotating

1 result), we can achieve extra 1.9% increase in MAP score. As the user annotates

more results (5 and 10), the MAP score improves significantly (by 7.4% and 11.6%

respectively). It is worth repeating that the user will be asked to annotate only the

top n results regardless of their relevancy to the topic query.

Table 41 shows the results of our vector-based reranking compared to Golestan Far

et al. [62]. For fair comparison, we report the results considering the user annotating

relevant candidates only as in Golestan Far et al. [62]. Generally, we get more im-

provements as the user annotates more relevant hits. Our system gives much better

results in terms of both Recall and MAP scores than Golestan Far et al. [62].

To better demonstrate the significance of our interaction and term weighting mech-

anism, we performed an experiment where we simulated the user annotating the top

n candidates (n = {1,2,3,4,5,10}) from the vector-based reranking and then iterate

over the new ranked list multiple iterations (iter# = {1,2,3}). Figure 23 shows how

Recall@K {K =5,10,50,100} and MAP scores improve with increasing n and iter#.

As we can notice, significant improvement is achieved after iter#1 with diminishing
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Figure 23: MAP & Recall @ different K of simulated interactive relevance feedback
when varying the number of annotated hits n. Iter# is the number of simulated
interaction iterations.

return as we iterate. We think this is because the diversity of vocabulary in the pool

of candidate terms for chi-square weighting decreases as we iterate on the top hits

causing weights to stabilize after 1 or 2 iterations. When n is relatively large (5 or 10),
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the diversity keeps increasing and thus the magnitude of improvements is relatively

higher with more iterations. We can also notice that user effort is proportional to n

making our interaction mechanism more practical.

9.6 Conclusion

In this chapter, we presented a novel effective interactive framework for patent

retrieval. Our framework is generic and can accept non-patent queries as well. We

support human-in-the-loop through soliciting user feedback with reasonable effort.

Under the hood, we utilize chi-square statistic to learn proper term weights and sub-

sequently perform query reformulation to promote more relevant results and demote

irrelevant ones. The proposed framework efficiently computes multiple similarity

scores which capture semantic similarities at different levels (words, concepts, docu-

ments, and categories). Empirical results show superior performance of our system

compared to previous fully automated keyword, semantic, and interactive methods.



CHAPTER 10: CONCLUSION AND FUTURE DIRECTIONS

The objective of this thesis was to improve the analysis and retrieval of textual

data especially technical texts (e.g., patents, scientific literature...etc) using concept-

based representations. We showed through empirical evaluation that: 1) significant

performance improvements can be achieved using our novel concept-based represen-

tations with both long technical text (patents) and short text (search queries), 2) our

concept-based representations greatly facilitate interactive and visual analysis of tech-

nical text, and 3) the proposed conceptual representations are generic and applicable

to many academic benchmark datasets where we achieve superior state-of-the-art

performance.

First, we presented a simple and efficient knowledge-based technique for reducing

the dimensionality of the bag of n-grams model. Using our unsupervised technique,

we achieved 13-fold reduction in the number of bigram features and 1.7% increase in

classification accuracy over the bag-of-words baseline.

Second, we addressed the challenge of short text representation. We created an

ensemble of contextual, knowledge-based, and lexical features for short texts. Evalu-

ation results showed superior performance (97% micro-averaged F1 score).

Third, we presented Mined Semantic Analysis (MSA), utilizing unsupervised data

mining techniques in order to discover concept-concept associations. These associa-

tions are used subsequently to enrich the bag-of-concepts representation of the given
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text. Quantitative evaluation of MSA measuring text semantic similarity showed its

superior performance. Additionally, we demonstrated the usability of MSA by im-

plementing a Web-based semantic-driven visual and interactive framework for patent

analytics.

Fourth, we proposed a neural-based model to learn distributed representations

(embeddings) of concepts and entities from their mentions in encyclopedic knowledge

bases. The model is space and computationally efficient; it overcomes the concept

mismatch problem; it is expressive and interpretable.

Finally, we proposed a novel interactive framework for patent retrieval. Using

the distributed representations on patents prior art search, we achieved significant

improvement of 4.6% in recall. Simulation results of our proposed interaction mecha-

nism showed that we can achieve extra 1.9% to 11.6% improvement in mean average

precision from one interaction iteration, outperforming previous semantic and inter-

active patent retrieval methods.

The work done so far focused on improving the semantic representation of text

structures as a prototype to enhanced text analysis and retrieval. The presented

research in this thesis targeted three perspectives of the semantic representation:

efficiency, effectiveness, and usability. The methods and ideas proposed for each

perspective have the potential for different future work including extensions to those

methods, and evaluation of them on other related tasks and datasets. For example:

• Our work on knowledge-based dimensionality reduction (Chapter 2) opens the

doors for more ideas and hypotheses that need empirical assessment. For exam-
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ple, it was reported in Benzineb and Guyot [7] that adding unigrams features

from patent description text improves accuracy, though it introduces computa-

tional complexities due to the large number of generated features. The intuitive

aspect of our approach comes into play when answering a question of which field

or combination of fields of patent documents are more pertinent as source of

classification features (e.g., abstract, description, claims). Our approach will

be of great relevance, especially when incorporating larger lexical features (tri-

grams). We can also utilize the rich knowledge sources differently by including

all concepts with links from Wikipedia articles as candidate features which

might reduce the semantic ambiguity and the size of unigrams. Another possi-

ble extension of our work is probing the impact of leveraging other structured

knowledge bases like DBPedia86 and Freebase87 for feature selection. These

sources might allow more sophisticated linguistic and meta-features to be ex-

tracted at low cost.

• Patent classification is a challenging problem. On the one hand, the class distri-

bution is very skewed (see Figure 4). On the other hand, the patent taxonomy

changes over time where new categories and subcategories are continuously cre-

ated. These two facts motivate the need for robust classification models that

can work with no or small number of labeled examples. And this is where the

dataless classification protocol might be useful. A possible future direction is to

utilize and evaluate the proposed dense Bag-of-Concepts (BoC) representations

86http://dbpedia.org/
87https://www.freebase.com/
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for the task of automated patent classification.

• We demonstrated the effectiveness of ensemble representations for entity type

recognition of search queries (Chapter 3). Initially, we targeted the four most

important categories (Company, School, Job title, and Skill) in the recruitment

domain. One direct extension is to expand these categories to include other

important types such as location, or capture fine-grained aspects such as job

level (e.g., entry, junior, senior...etc), and skill type (e.g., social, soft, profes-

sional, language...etc). Concept-based representation of search queries using

MSA could be another feature added to the ensemble representation.

• As obtaining labeled data is typically costly and labor intensive. One possible

application of our concept embedding model is through modeling the entity type

recognition problem as a concept categorization or dataless classification prob-

lem, where entity types would represent categories and target entities would

represent unlabeled instances. Under both cases we could leverage our con-

cept embeddings model to infer entity types. For example, under the concept

categorization assumption, we would obtain entity and category embeddings

directly from the model. While, under the dataless classification assumption,

we would first generate BoC representations for entities and categories and then

use the concept embeddings model to obtain dense BoC representations. The

dataless classification assumption would be more adequate for those entities and

categories that do not have representations in our model. The concept catego-

rization assumption would more efficient as it does not require generating BoC
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vectors in the first place.

• In Chapter 9 we presented an effective concept-based distributed representation

model for patent retrieval. We showed the value of coupling this model with sim-

ple yet effective interactive relevance feedback method for term weighting. One

possible venue for future work is exploring and validating these models on other

text retrieval tasks and/or other patent benchmark datasets. Another exten-

sion is integrating the relevance feedback mechanism with the visual framework

presented in Chapter 5 and exploring the usefulness of that mechanism on other

patent analysis use cases.

• The proposed concept embedding model learns concept vectors from their men-

tions in Wikipedia (Chapter 6). A straightforward extension would be to learn

multilingual concept embeddings leveraging other Wikipedias88. The learned

embeddings could help creating multilingual concept-based KBs or curating

existing ones by applying the concept categorization protocol as described in

Section 6.4.2.

• Learning from raw concept mentions makes our approach applicable to other

open domain and domain specific free-text corpora as well. This can be accom-

plished by firstly wikifying the text and then learning from concept mentions.

For example, we can learn concept embeddings of one of the main patent classes

(e.g., Telecommunication). And utilize the learned embeddings for better anal-

ysis of patent documents (e.g., concept-based exploration and search).

88https://en.wikipedia.org/wiki/List of Wikipedias#List
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• Co-training is another application area where concept embeddings might be

useful. The idea is to use the pretrained concept and word vectors to initial-

ize the embedding layer of a Deep Neural Network (DNN) architecture, rather

than learning the embeddings from scratch. This idea has proven effectiveness

when applied to sentiment analysis [179] and political ideology detection [91].

We performed an experiment to investigate the value of using the CRX model’s

concept and word vectors (described in Section 6.3.2) to initialize the embed-

ding layer of a Recurrent Neural Network (RNN) for building a language model

[217] on the CoNLL-2003 dataset [197]. The results show that, we can achieve

3.8% improvement in perplexity compared to initializing the embedding layer

with word vectors only. This result along with the results on entity type identifi-

cation with semantic parsing (described in Section 7.3.3), demonstrate the need

for adopting entity-aware and concept-aware training of DNNs for enhanced

representations and better performance.

• Evaluating the concept embedding models introduced in Chapter 6 and Chapter

7 on other tasks such as measuring lexical and document semantic similarity.

• Incorporating semantic-role-labeling based representation with the BoC has

proven effectiveness for event detection [153]. However, generating a BoC vec-

tor of a few hundred dimensions is costly, and becomes even more costly when

generated for each unit of the semantic parse. One possible future direction it

to explore the viability of semantic and syntactic parsing with the dense BoC

representations using concept embeddings. As we demonstrated in Chapter 6,
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the cost of creating a concept vector of few dimensions would be much less

with dense BoC compared to the sparse BoC. Thereafter, similarity calcula-

tions could be through comparing the dense BoC of syntactically/semantically

identical constituents.

• Exploring DNN architectures for patent retrieval and classification is another

future direction. There has been so much work applying Convolutional Neural

Networks (CNN) to classification and categorization of short and medium length

text (e.g., tweets, movie reviews). For information retrieval, there have been

so much work on sentence modeling for article recommendation. None of these

approaches explore the applicability of such architectures with long documents

such as patents. Interestingly, our concept embeddings could act as an extra

channel in the CNN input layer besides other word-based embeddings such as

Word2Vec and Glove.
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