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ABSTRACT

ANDREY KUZHUGET. Global convergence and quasi reversibility for coefficient
inverse problems. (Under the direction of DR. MICHAEL KLIBANOV)

An inverse problem of the determination of an initial condition in a hyperbolic

equation from the lateral Cauchy data is considered. This problem has applications

to the thermoacoustic tomography, as well as to linearized coefficient inverse problems

of acoustics and electromagnetics. A new version of the quasi-reversibility method is

described. This version requires a new Lipschitz stability estimate, which is obtained

via the Carleman estimate. Numerical results are presented.

A new globally convergent numerical method is developed for a 1-D and 2-D

coefficient inverse problem for a hyperbolic partial differential equation (PDE). The

back reflected data are used. A version of the quasi-reversibility method is proposed.

A global convergence theorem is proven via a Carleman estimate. The results of

numerical experiments are presented.
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CHAPTER 1: INTRODUCTION

1.1 Quasi Reversibility Method and Thermoacoustic Computed Tomography

The Quasi Reversibility Method (QRM) was introduced in the book [20] as an

approach for the numerical solution of ill-posed boundary value problems for partial

differential equations. The QRM amounts to the minimization of the Tikhonov

functional for an Ill-Posed boundary value problem for a Partial Differential Equation

(PDE). In such a problem usually one has both Dirichlet and Neumann boundary

conditions at a part of the boundary and no conditions at the rest of the boundary.

This works for the case of a second order elliptic PDE. In the time dependent case

(i.e. parabolic and hyperbolic cases) Dirichlet and Neumann boundary conditions

can be assigned at a part of the lateral boundary of the time cylinder and no initial

conditions would be given. As a result of the QRM one obtains a weak solution

of a fourth order PDE. To practically get this solution we use the Finite Difference

Method. Convergence of the QRM is proved via Carleman estimates. It should be

pointed out that while the QRM was extensively used in above references for solving

linear problems, it was not used before for solving nonlinear problems, such as, e.g.

Coefficient Inverse Problems. So, our works in chapters 3, 4 are the first ones in

this direction. QRM consists in replacing the ill-posed second order problem with

a well-posed fourth order problem, and was previously applied to ill-posed Cauchy

problems for elliptic [2,3,10,20], parabolic [9,20] and hyperbolic [13] equations as well

as coefficient inverse problems [8,12]. In chapter 2 we present a new version of QRM

applied to ill-posed Cauchy problem for a hyperbolic equation, which has application

in acoustics, electromagnetics and thermoacoustic tomography.
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Many practical problems are concerned with determining the strength and location

of sources of disturbances in a medium, when only boundary measurements are

available. Examples include medical imaging, seismic observations, geodynamics,

or tracing electromagnetic pulses. If the sources can be temporally localized, this

problem is equivalent to the determination of the initial conditions in a wave equation.

One such application is the medical imaging method of Thermoacoustic Computed

Tomography (TCT), where electromagnetic radiation induces a pressure wave in a

sample, which is proportional to the varying energy absorption by different types of

tissue. From time dependent measurements, one wishes to calculate the absorption

coefficient and from this, the tissue distribution (e.g., healthy and cancerous tissue). If

it would be possible to completely characterize a final state, then the time reversibility

of the wave equation can be employed to calculate the wave field backwards in time

to the moment of interest. However, in practical applications, it is usually either not

possible to measure a wave field in a complete region, or dissipative terms break the

time invariance of the equation. In both cases, the problem is then the reconstruction

of initial conditions from boundary measurements only. The problem is known to

be ill-posed in general, but under certain conditions observability estimates can be

proved, which warrant a unique and stable solution. An additional difficulty appears

when the wave propagates in a medium with spatially varying wave speed, as for

instance in bone and soft tissue or water. In this case, the wave propagation will no

longer happen along straight lines, a fact which increases the difficulties in proving

the stability estimates as well as in computing the numerical solution. Previous works

on the numerical determination of the initial condition in a hyperbolic equation from

lateral Cauchy data were [7] and [13], which only applied to constant coefficients

in the principal part of the operator. The variable coefficient case was considered

in [14], but no numerical studies were done. For numerical approaches to TCT in a

homogeneous medium, see e.g. [5], [47], [7] and [4].
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1.2 The Coefficient Inverse Problem in 1D

In chapter 3 a new globally convergent numerical method for a one-dimensional

Coefficient Inverse Problem (CIP) for a hyperbolic PDE is presented. We modify

here the idea of [27] for our case (also, see follow up publications [28, 29, 31]). This

CIP has applications in acoustics and electromagnetics. More specifically, we consider

here an application to the problem of imaging of antipersonnel plastic land mines. It

is well known that plastic land mines are hard to detect by ground penetrating radars

because they do not have a significant metal component in them. So, our idea is to

image the spatial distribution of the relative dielectric constant in them. A similar

idea was carried out in [39] by the globally convergent numerical method of the first

generation, the so-called convexification algorithm [14]. However, [27] represents the

second generation of such methods.

The 1-D problem is considered here only as a preliminary step before applying

similar ideas to 2-D and 3-D cases. In other words, the goal of the chapter 3 is

to develop a methodology for our future studies of 2-D and 3-D problems. Similar

1-D CIPs were studied numerically quite extensively in the past, see, e.g. [36] and

references cited there. Those publications were working either in time or in frequency

domain. The latter is generated by the Fourier transform of the time domain equation.

Since our ultimate goal is to work in several dimensions, then following [27], we work

in the “pseudo frequency” domain generated by the Laplace transform of the 1-D

hyperbolic equation. In our definition “global convergence” entails: (1) a rigorous

convergence analysis that does not depend on the quality of an initial guess for

the solution, and (2) numerical simulations confirming the advertised convergence

property.

The main difficulties in numerical studies of CIPs are linked to the fact that

CIPs are both nonlinear and ill-posed. A conventional way to numerically solve a

CIP is via the minimization of a least squares objective functional. However, it is well
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known that the phenomenon of multiple local minima and ravines of these functionals

represents the major obstacle in this approach. This phenomenon naturally causes

local convergence of resulting numerical methods. Following [27], the method of the

current work is not using those functionals and relies on a structure of the underlying

differential operator instead. First, we reduce the CIP to a boundary value problem

for a nonlinear integral differential equation. The numerical solution of this equation

is the main difficulty here. The major difference between both our method and the one

of [27] is the approach to the solution of the latter equation. While [27] approximates

the solution of this equation via the solution of a series of Dirichlet boundary value

problems for elliptic PDEs, we use over-determined boundary conditions for these

problems, thus, solving them via the Quasi-Reversibility Method (QRM) [14, 20].

The QRM is well suitable to handle over-determined boundary conditions for PDEs

[8, 10, 14, 20, 35]. As to CIPs, in the past QRM was used for numerical solutions of

1-D CIPs for parabolic equations via locally convergent numerical methods [8,33,37].

However, it was not used for the global convergence.

The reason why we use over-determined boundary conditions is twofold. First,

our numerical experience has shown that we cannot get good results without this

over-determination. This is because, the one-dimensional case is less informative

compared with 2-D and 3-D cases of [27–29, 31]. Second, we want to work only

with the back-reflected data in our future 2-D and 3-D cases, and in this case one

has Dirichlet and Neumann boundary conditions at the back reflected side. We prove

a global convergence theorem for our method. Instead of the Schauder theorem,

which was used for this purpose in [27–29, 31], we use Carleman estimate. Since

Carleman estimates enable to obtain upper bounds for corresponding constants, we

obtain explicit estimates for all constants involved in the convergence analysis. At

the same time obtaining an estimate for a certain constant in the Schauder theorem

is a quite complicated problem, which was not addressed in [27–29,31].
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1.3 The Coefficient Inverse Problem in 2D

In chapter 4 we extend the recently developed globally convergent numerical

method of [27, 31, 40, 41] for a hyperbolic CIP for the case of backscattering data.

Note that only the case of the data given at the entire boundary was considered

[27, 31, 40, 41]. Just as before, we work with a CIP with the data resulting from

a single measurement, i.e. either a single position of the point source or a single

direction of the initializing plane wave. Since we have both Dirichlet and Neumann

boundary conditions on the backscattering part of the boundary of the domain of

interest, we use the Quasi-Reversibility Method (QRM) [20], which was not a part

of [27, 31, 40, 41]. We refer to, e.g. [2–4, 14, 35] for some recent publications on the

QRM.

The main new analytical result here is the proof of the global convergence theorem

in the case when the QRM is used. To do so, we first obtain an analog of a priori

upper estimate of the QRM solution using a Carleman estimate. Next, the global

convergence result is established. Applications of our CIP are in imaging of dielectric

constants of explosives, since their dielectric constants are much higher than those of

regular materials, see http://www.clippercontrols.com/info/. The target application

of this publication is in imaging of plastic land mines. We also mention an important

application of CIPs with backscattering data to geophysics.

An independent verification of the technique of [27] was carried out in [44]

for the case of experimental data. Computations were conducted for blind data

only. Comparison of computed refractive indices of dielectric abnormalities with a

posteriori measured ones has revealed an excellent accuracy of computational results.

Because of this accuracy, it was concluded in [44] that the technique of [27, 31] “is

completely validated now”, regardless on a certain approximation, which is a part of

that technique. This conclusion justifies the same approximation of the chapter 4.

In our opinion, some approximation like this one are inevitable for such challenging



6

problems as CIPs are. Indeed, CIPs are both nonlinear and ill-posed.

That approximation is due to the truncation of certain Volterra-like integrals at

a high value s > 1 of the parameter s > 0 of the Laplace transform of the original

hyperbolic PDE. We call s pseudo frequency. This truncation is similar with the

truncation of high frequencies. As an analogy, we point out that such truncations

are routinely done in engineering without any proofs of convergence, and still those

things usually work quite well in practice. The meaning of this approximation was

discussed in detail in subsection 3.3 of [44] and in subsection 6.3 of [31], where a new

mathematical model was proposed. In particular, it was shown in these references

that this model has the same nature as the truncation of divergent asymptotic series

in the classical Real Analysis.

We use a two-stage numerical procedure here, the framework of which was developed

in [31, 40, 41]. Indeed, because of the above approximation, the global convergence

theorem only guarantees that the resulting solution is sufficiently close to the correct

one. However, it does not guarantee that this solution can be made infinitely close to

the correct one, because the truncation pseudo frequency s cannot be made infinitely

large in practical computations. On the other hand, the availability of a good first

approximation for the correct solution is the key component of any locally convergent

algorithm. Therefore, our procedure works as follows. On the first stage the globally

convergent numerical method provides a good first approximation for the solution.

On the second stage this approximation is refined via a locally convergent modified

gradient method, which uses the solution of the first stage as its starting point.

More precisely, our numerical experience shows that the first stage provides

good locations of mine-like targets. The subsequent application of the second stage,

which is a modified gradient method in our case, provides accurate values of the

unknown coefficient within those targets. At the same time, it is worthy to note that

the modified gradient method being applied without the first stage results in quite
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inaccurate images (not shown here), even if the background value of the unknown

coefficient is taken as the starting point, see subsection 8.4 of [44] for a similar

observation.



CHAPTER 2: QUASI REVERSIBILITY METHOD FOR A HYPERBOLIC PDE

2.1 Problem Formulation

In this chapter we propose a new version of the QRM for the inverse problem of

the determination of an initial condition in a hyperbolic equation from the lateral

Cauchy data. We discuss applications of this inverse problem to thermoacoustic

tomography, as well as to linearized coefficient inverse problems of acoustics and

electromagnetics. Using the Carleman estimate, we prove convergence of our version

of the QRM. We also present numerical results. In particular, we show that this

version of the QRM enables one to image δ− like functions, i.e., narrow high peaks.

Let Ω ⊂ Rn be a convex domain with a piecewise smooth boundary ∂Ω and

2R be the diameter of Ω, 2R = maxx,y∈Ω |x− y| . Let T = const. > R. Denote

QT = Ω× (0, T ) . Consider the elliptic operator L(x, t) of the form

L(x, t)u = ∆u+
n∑
j=1

bj (x, t)uj + b0 (x, t)ut + c (x, t)u,

where uj := ∂xju. We assume that all coefficients of the operator L belong to C
(
QT

)
.

Let the function u ∈ H2 (QT ) be a solution of the hyperbolic equation in the cylinder

QT ,

utt = L(x, t)u+ F (x, t) in QT , (2.1)

F ∈ L2 (QT ) with initial conditions

u (x, 0) = ϕ (x) , ut (x, 0) = ψ (x) , ϕ ∈ H1 (Ω) , ψ ∈ L2 (Ω) . (2.2)
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We consider the following

Inverse Problem 1. Let one of functions ϕ or ψ be known and another one be

unknown. Determine that unknown function assuming that the following functions

f and g are given

u |ST= f (x, t) ,
∂u

∂ν
|ST= g (x, t) , ST = ∂Ω× (0, T ) , (2.3)

where ν is the unit outward normal vector at ∂Ω.We call the problem of the determination

of the function ϕ the “ϕ−problem” and the problem of the determination of the

function ψ the “ψ−problem”.

In principle, in the case T > 2R one should not assume that one of functions ϕ

or ψ is known. This is because for T > 2R the following Lipschitz stability estimate

takes place (see [4, 11,12] and Theorem 2.4.1 in [14])

‖u‖H1(QT ) ≤ C
(
‖f‖H1(ST ) + ‖g‖L2(ST ) + ‖F‖L2(QT )

)
. (2.4)

Here and below C denotes different positive constants depending only on Ω, T and

C
(
QT

)
norms of coefficients of the operator L. However, since numerical studies

for the case of the finite domain were conducted in previous publications [4, 13],

we are interested here in solving the Inverse Problem 1 in an unbounded domain,

which was not done before. This leads us to the case T > R. Namely, we want to

solve an analogue of the Inverse Problem 1 in a quadrant, assuming that the lateral

Cauchy data are given only on parts of two coordinate axis. We are motivated by the

publication [15], where the Lipschitz stability was proven for an analogue of Inverse

Problem 1 for the case of either a quadrant in R2 or a an octant in R3, assuming that

one of initial conditions (2.2) is zero, and the second one has a finite support.

We now specify conditions of our numerical study. Suppose that equation (2.1)

is homogeneous with F (x, t) ≡ 0 and it is satisfied in D3
T = R2 × (0, T ) . Consider
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the quadrant QU = {x1, x2 > 0} . And also consider the square SQ ⊂ QU,

SQ (a) = {0 < x1, x2 < a} .

Suppose that

ϕ(x) = ψ (x) = 0 outside of SQ (a) . (2.5)

Then the energy estimate implies that

u (x, t) = 0, ∀ (x, t) ∈ {x | x ∈ QU, dist (x, SQ (a)) > T} × (0, T ) . (2.6)

Denote

Γ1T = {x1 ∈ (0, a+ T ) , x2 = 0} × (0, T ) ,

Γ2T = {x2 ∈ (0, a+ T ) , x1 = 0} × (0, T ) ,

Γ3T = {x1 = a+ T, x2 ∈ (0, a+ T )} × (0, T ) ,

Γ4T = {x2 = a+ T, x1 ∈ (0, a+ T )} × (0, T ) ,

see Figure 2.1. Then by (2.6)

u =
∂u

∂ν
= 0 on Γ3T ∪ Γ4T . (2.7)

Hence, we focus our numerical study on

Inverse Problem 2. Let equation (2.1) be satisfied in D3
T with initial conditions

(2.2) satisfying (2.4). In this case Ω := SQ (a+ T ) .Suppose that one of these initial

conditions is zero. Determine the second initial condition, assuming that functions f

and g are known, where

u |Γ1T∪Γ2T
= f (x, t) ,

∂u

∂ν
|Γ1T∪Γ2T

= g (x, t) . (2.8)
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Figure 2.1: Geometry for the Inverse problem 2.

Suppose for a moment that only the function f (x, t) is given. Then one can solve

the boundary value problem for equation (2.1) with F ≡ 0 outside of the square

SQ (a+ T ) with the following initial and boundary data

u (x, 0) = ut (x, 0) = 0, x ∈ R2�SQ(a+ T ),

u |Γ1T∪Γ2T
= f (x, t) , u |Γ3T∪Γ4T

= 0.

This gives one in a stable way the normal derivative g (x, t) on Γ1T ∪ Γ2T . Thus, we

arrive at Inverse Problem 2. It was proven in [15] that if

T >
a
√

2

2−
√

2
(2.9)

and one of functions ϕ or ψ equals zero, then the following Lipschitz stability estimate

is valid

‖u‖H1(GT ) ≤ C
(
‖f‖H1(ΓT ) + ‖g‖L2(ΓT )

)
, (2.10)



12

where ΓT = Γ1T ∪ Γ2T and ‖f‖H1(ΓT ) = ‖f‖H1(Γ1T ) + ‖f‖H1(Γ2T ) . The estimate (2.10)

implies a similar estimate for the unknown initial condition [15]. The knowledge of

the fact that one of initial conditions was zero was used in [15] for either odd or even

extension with respect to t of the function u(x, t) in {t < 0} , depending on which

of initial conditions was assumed to be unknown. The proof of [15] is based on the

Carleman estimate. The method of Carleman estimates was first applied in [12] to

obtain the Lipschitz stability for the hyperbolic problem with the lateral Cauchy

data, also see [11] and Theorem 2.4.1 in [14]. Prior to [12] the Lipschitz stability

for the hyperbolic problem with the lateral Cauchy data was obtained in [21] by

the method of multipliers, but only for the case when lower order terms in (2.1) are

absent. The use of the Carleman estimate enables one to incorporate lower order

terms and also to extend to the case of hyperbolic inequalities. Recently the method

of [11, 12, 14] was extended to hyperbolic equations with the non-constant principal

part, see, e.g. [23–25]. The method of multipliers was recently extended to the case

of non-zero lower order terms in Theorem 3.5 of the book [6].

The problems considered above were previously studied and solved numerically

in [4, 7, 13, 16]. The work [7] was the first one, where the problem of thermoacoustic

tomography was formulated and solved numerically as Inverse Problem 1, i.e., as the

hyperbolic Cauchy problem with the lateral data. The QRM for the latter problem

was used in [4]. The QRM was first proposed in the book [20] for a variety of ill-posed

boundary value problems. Its convergence rates were established in [10, 12] for the

cases of Laplace and hyperbolic equations respectively and in section 2.5 of [14] for

elliptic, parabolic and hyperbolic equations. In particular, it was shown in [14] that

one can work with weak H2 solutions of QRM instead of strong H4 solutions of the

original book [20]. Also, see [2, 3] for the recent results for the QRM for the elliptic

case and [8] for the application of the QRM to linearized coefficient inverse problems

for parabolic equations. The main tool of works [4,8,10,12,14] is the tool of Carleman
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estimates.

There are three main differences between the current chapter and the previous

works on the QRM for hyperbolic equations. First, we take into account boundary

conditions via including them in the Tikhonov regularizing functional Jε. Unlike

this, boundary conditions were made zero in [4] via subtracting off a corresponding

function, and they were treated via integration by parts in [13]. Second, we incorporate

in Jε a penalizing term, which reflects our knowledge of one of initial conditions. We

show numerically that without this term we cannot image well maximal values of the

unknown initial condition inside of narrow peaks. On the other hand, since cancerous

tumors can be modeled as narrow peaks, it is interesting to image those peaks in the

application to thermoacoustic tomography considered below. These first two ideas

for Jε are taken from [16]. Mainly because of the second difference we cannot apply

previously derived convergence results and thus, need to prove convergence of our

new version of the QRM. In particular, we need to prove a new Lipschitz stability

estimate (Theorem 2.1). Finally, the third difference is that while H2 finite elements

were used in [4, 13], we use finite differences now. Note that while smooth slowly

varying functions were reconstructed numerically in [4,13], our numerical experiments

reconstruct both those functions and δ−like functions. δ−like functions were also

reconstructed in [16] for the Inverse Problem 2. However, the numerical technique

of [16] is different from one of the current chapter. The method of [7,16] is based on the

representation of the function u(x, t) via truncated Fourier series and minimization

of the resulting residual least squares functional.

2.2 Applications

In this section we discuss two applications of above inverse problems
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2.2.1 Thermoacoustic tomography

Inverse Problems 1 and 2 arise in thermoacoustic tomography, which is described

in [4,17,26]. In this case the target is subjected to a short electromagnetic impulse.

The electromagnetic energy is absorbed. As a result, temperature is increased and

the target is expanded. This causes a pressure wave, which is measured as a change in

the acoustic field at the boundary of the sample. Assuming that the absorption of the

electromagnetic energy is spatially varying inside the sample, the resulting wave field

is carrying the signature of the inhomogeneity. On the other hand, cancerous regions

absorb more than surroundings. This leads to applications in medical imaging. Hence,

the problem is to calculate the absorption coefficient α(x) of the sample using time

dependent measurements at its boundary. Let β be the thermal expansion coefficient,

cp be the specific capacity of the medium and I0 be the power of the source. Usually

β, cp and I0 are known. Also, assume that the speed of sound in the medium is

constant and equals 1. Let u(x, t) be the pressure wave. It was shown in e.g., [4] that

utt = ∆u, (x, t) ∈ R3 × (0, T ) , (2.11)

u (x, 0) = α(x)I0
β

cp
, ut (x, 0) = 0. (2.12)

Suppose that we measure the function u(x, t) at the boundary of the domain Ω and

α(x) = 0 outside of Ω. Then those measurements give us the boundary value problem

for equation (2.11) outside of Ω with zero initial conditions. Solving this problem,

we uniquely determine the normal derivative of the function u(x, t) at ∂Ω. Thus, we

arrive at the ϕ− problem.

A different approach to the problem of thermoacoustic tomography is currently

actively developed in a number of publications. In this approach the solution of the

problem (2.11), (2.12) is presented via the Poisson-Kirchhoff formula, which leads to

the problem of integral geometry of recovering a function via its integrals over certain
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spheres, whose centers run over a surface and radii vary. Then uniqueness theorems

are proven for this case and inversion formulas are derived, see, e,g., [1, 5, 17, 18].

In particular, works [1, 17] include the case of a variable speed and [17, 18] include

numerical examples. A survey of these developments can be found in [17]. Also, see

§1 of Chapter 6 of the book [19] for an example of the ill-posedness of this integral

geometry problem for the case when centers of spheres run over a plane in R3.

2.2.2 Linearized inverse acoustic and electromagnetic problems

There is also another application, in which Inverse Problems 1 and 2 can be

considered as linearized inverse acoustic and inverse electromagnetic problems. The

idea of this subsection is motivated by §1 of Chapter 7 of [19] and §3 of Chapter 2

of [22]. We present this application now without discussing delicate details about

the validity of the linearization. In this setting the point source is running along a

surface and time dependent measurements of back-reflected data are performed at

the positions of the source. In [12] the Newton-Kantorovich method was presented

for the case when the source position is fixed and the time dependent measurements

are performed at a surface.

Let the function α (x) ∈ C (R3) be strictly positive, α (x) ≥ const. > 0. Consider

the Cauchy problem for the hyperbolic equation

α (x)wtt = ∆xw + 4πδ (x− x0, t) , (x, t) ∈ R3 × (0, T ) , (2.13)

w (x, x0, 0) = wt (x, x0, 0) = 0, (2.14)

where x0 ∈ R3 is the source position. It is well known that in acoustics α (x) =

c−2 (x) , where c (x) is the speed of sound in the medium, and in some situations

of the electromagnetics α (x) = (µε) (x) , where µ and ε are respectively magnetic

permeability and electric permittivity of the medium. We pose the following

Inverse Problem 3. Suppose that the function α (x) = 1 outside of the domain
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Ω and it is unknown inside of this domain. Determine this function for x ∈ Ω,

assuming that the following function p (x0, t) is known

w (x0, x0, t) |x0∈∂Ω= p (x0, t) . (2.15)

The full Inverse Problem 3 is difficult to address because of its nonlinearity.

Hence, we consider now a linearized problem. Similarly with §3 of Chapter 2 of [22],

suppose that the function α (x) can be represented in the form

α (x) = 1− ξa (x) ,

where ξ ∈ (0, 1) is a small parameter. Hence, the term ξa (x) is a small perturbation of

1. We assume that this perturbation is unknown, i.e., the function a (x) is unknown.

Again, similarly with [22], we can formally set at ξ → 0

w (x, x0, t) = w0 (x, x0, t) + ξw1 (x, x0, t) +O
(
ξ2
)
, (2.16)

where functions w0 and w1 are independent on ξ. This setting was rigorously justified

in §3 of Chapter 2 of [22] for the case of the telegraph equation

wtt = ∆w + (a0 (x) + ξa1 (x))w. (2.17)

It was also justified in §1 of Chapter 7 of [19] for equation (2.17) without the

introduction of the parameter ξ, which is actually introduced here for convenience

only. Indeed, instead, one can assume that α (x) = 1− a (x) , where |a (x)| << 1.

Substituting (2.17) in (2.13) and (2.15) and dropping the term with O (ξ2) , we

obtain that functions w0 and w1 are solutions of the following Cauchy problems

w0tt = ∆xw0 + 4πδ (x− x0, t) , (x, t) ∈ R3 × (0, T ) , (2.18)
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w0 (x, x0, 0) = w0t (x, x0, 0) = 0, (2.19)

w1tt = ∆xw1 + a (x)w0tt (x, x0, t) , (x, t) ∈ R3 × (0, T ) , (2.20)

w0 (x, x0, 0) = wt (x, x0, 0) = 0. (2.21)

Consider the function h (x, x0, t) ,

h (x, x0, t) =

t∫
0

dτ

τ∫
0

w1 (x, x0, s) ds.

Integrating (2.20) with respect to t twice and using (2.19) and (2.21), we obtain

htt = ∆xh+ a (x)w0 (x, x0, t) , (x, t) ∈ R3 × (0, T ) , (2.22)

h (x, x0, 0) = ht (x, x0, 0) = 0, (2.23)

It follows from (2.18), (2.22), (2.23) and the formula (7.13) of §1 of Chapter 7 of [19]

that the function h (x, x0, t) is

h (x, x0, t) =
1

2π
(
t2 − |x− x0|2

) ∫
S(x,x0,t)

|y − x0|2 a (y) dωy, (2.24)

where dωy = sin θdϕdθ, (ϕ, θ) ∈ [0, 2π] × [0, π] are angles in the spherical coordinate

system with the center at {x0} and S (x, x0, t) is the following ellipsoid with foci at

{x} and {x0}

S (x, x0, t) =
{
y ∈ R3 : |x− y|+ |x0 − y| = t

}
.

Setting in (2.24) x0 := x and denoting v (x, t) = h (x, x, t) , we obtain that the

function v is the spherical Radon transform of the function a,

v (x, t) =
1

4π

∫
|x−y|=t/2

a (y) dωy. (2.25)
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On the other hand, (2.25) implies that the function ṽ (x, t) = v (x, 2t)·t is the solution

of the following Cauchy problem

ṽtt = ∆ṽ, (x, t) ∈ R3 × (0, 2T ) . (2.26)

ṽ |t=0= 0, ṽt |t=0= a (x) . (2.27)

Also, using the above linearization one can “translate” the data p (x0, t) in (2.15) for

the Inverse Problem 3 in the following function p̃ (x, t)

ṽ |ST= p̃ (x, t) , t ∈ (0, 2T ) . (2.28)

Since the function a (x) = 0 outside of the domain Ω, then solving the initial boundary

value problem (2.26)-(2.28) for (x, t) ∈ (R3�Ω) × (0, T ) , we obtain the normal

derivative q (x, t) ,

∂ṽ

∂ν
|ST= q (x, t) , t ∈ (0, 2T ) (2.29)

In conclusion, we have reduced the linearized Inverse Problem 3 to the ψ−problem,

which consists in the recovery of the function a (x) from conditions (2.26)-(2.29). A

similar derivation is valid for a similar inverse problem for the telegraph equation

(2.17) at a0 ≡ 0, see [19, 22].

2.3 The Method

We consider Inverse Problem 1, because it is more general than Inverse Problem

2. Denote Mu = utt − Lu. To solve the Inverse Problem 1 numerically, consider the

Tikhonov regularizing functional

Jε (u) = ‖Mu− F‖2
L2(QT ) + ε ‖u‖2

H2(QT )

+
∥∥Dβu |ST −Dβf

∥∥2

L2(ST )
+ ‖uν |ST −g‖

2
L2(ST ) (2.30)
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+χϕ ‖ut(x, 0)− ψ‖2
L2(Ω) + χψ ‖u(x, 0)− ϕ‖2

H1(Ω) ,∀u ∈ H
2 (Qt) .

Here ε > 0 is the regularization parameter,

uν |ST :=
∂u

∂ν
|ST

and Dβ, |β| ≤ 1 is the operator of (x, t) derivatives with, where x-derivatives are

those, which are taken in directions orthogonal to the normal vector. Also,

χψ =

 1 for the ψ − problem

0 for the ϕ− problem

 , χϕ =

 1 for the ϕ− problem

0 for the ψ − problem

 .

Hence, χϕχψ = 0, χϕ + χψ = 1. In previous works on the QRM terms in the second

line of (2.30) were absent because of subtracting off boundary conditions from the

original function u. Terms in the third line of (2.30) were absent also, and they are

incorporated now to emphasize the knowledge of one of initial conditions.

To find the minimizer of Jε (u) , we set the Fréchet derivative of this functional

to zero and obtain for all v ∈ H2 (QT )

∫
QT

MuMvdxdt+

∫
ST

(
DβvDβu+ vu

)
|ST dS +

∫
ST

(vνuν) |ST dS

+χψ

∫
Ω

[∇u∇v + uv] (x, 0) dx+ χϕ

∫
Ω

ut(x, 0)vt(x, 0)dx+ ε [u, v] (2.31)

=

∫
QT

FMvdxdt+

∫
ST

∑
|β|≤1

(
Dβv |ST

)
DβfdS + +

∫
ST

(vν |ST ) · gdS

+χψ

∫
Ω

[∇ϕ∇v (x, 0) + ϕv (x, 0)] dx+ χϕ

∫
Ω

ψvt(x, 0)dx.

Riesz theorem and (2.31) imply

Lemma 2.1. For any vector function (F, f, g) ∈ L2 (QT ) ×H1 (ST ) × L2 (ST ) there
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exists unique solution uε ∈ H2 (QT ) of the problem (2.31) and

‖uε‖H2(QT ) ≤
C√
ε

(
‖F‖L2(QT ) + ‖f‖H1(ST ) + ‖g‖L2(ST ) + χψ ‖ϕ‖H1(Ω) + χϕ ‖ψ‖L2(Ω)

)
.

Setting in (2.31) v := u, we obtain that the unique minimizer of the functional

Jε (u) satisfies the following estimate

‖Mu‖2
L2(QT ) + χψ ‖u(x, 0)‖2

H1(Ω) + χϕ ‖ut(x, 0)‖2
L2(Ω)

+ ‖u |ST ‖
2
H1(ST ) + ‖uν |ST ‖

2
L2(ST ) (2.32)

≤ ‖F‖2
L2(QT ) + ‖f‖2

H1(ST ) + ‖g‖2
L2(ST ) + χψ ‖ϕ‖2

H1(Ω) + χϕ ‖ψ‖2
H1(Ω) .

To prove convergence of our method, we need to derive from (2.32) the Lipschitz

stability estimate for the function u in the H1 (QT )-norm. This in turn requires

a modification of the proofs of [4, 11, 12, 14]. We specifically refer to the proofs of

Theorem 2.4.1 in [14] and Theorem 4.4 in [4]. The main difference with previous

proofs is that now either ‖u(x, 0)‖2
H1(Ω) or ‖ut(x, 0)‖2

L2(Ω) can be estimated via the

right hand side of (2.32), which was not done before. This is because terms in the

third line of (2.30) were not included in the Tikhonov functional for QRM. So, if

χψ = 0, then χϕ = 1 and we estimate ‖u(x, 0)‖2
L2(Ω) in the ϕ−problem. If, however,

χψ = 1, then χϕ = 0 and we estimate ‖ut(x, 0)‖2
L2(Ω) in the ψ problem. It is because

of the incorporation of these terms that we can assume that T > R, as it is required

in Inverse Problem 2 (see (2.9)), instead of T > 2R of previous works. The required

modification is done in the next section.

2.4 Lipschitz Stability Estimate

Theorem 2.1. Let Ω ⊂ Rn be a convex bounded domain with the piecewise smooth

boundary and let T > R. Suppose that the function u ∈ H2 (QT ) satisfies the
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inequality

‖Mu‖L2(QT ) + χψ ‖u(x, 0)‖H1(Ω) + χϕ ‖ut(x, 0)‖L2(Ω) (2.33)

+ ‖u |ST ‖H1(ST ) + ‖uν |ST ‖L2(ST ) ≤ K,

where K = const. > 0. Then

‖u‖H1(QT ) + χϕ ‖u (x, 0)‖H1(Ω) + χψ ‖ut (x, 0)‖L2(Ω) ≤ CK. (2.34)

Proof. Choose a pair of points x′,y′ ∈ ∂Ω such that |x′ − y′| = 2R. Put the

origin at the point (x+ y) /2. Choose a constant η ∈ (0, 1). Consider the function

p (x, t) ,

p (x, t) = |x|2 − ηt2.

Consider the Carleman Weight Function (CWF) C(x, t),

C(x, t) = exp (2λp (x, t)) ,

where λ > 1 is a parameter. For any positive number b denote

Gb = {(x, t) | p (x, t) > b, x ∈ Ω, t > 0} . Choose a sufficiently small number c ∈

(0, R2) . Since T > R, then in Gc

t2 <
R2 − c
η

< T 2, ∀η ∈ (η0, 1) ,

where η0 = η0 (T,R) ∈ (0, 1) . Hence, Gc ⊂ QT . Choose δ ∈ (0, c) so small that

Gc+4δ 6= ∅. Note that

Gc+4δ ⊂ Gc+3δ ⊂ Gc+2δ ⊂ Gc+δ ⊂ Gc. (2.35)
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Denote M0u = utt −∆u. The following pointwise Carleman estimate takes place

(M0u)2 C2 ≥ Cλ
(
|∇x,tu|2 + λ2u2

)
C+∇·U+Vt in Gc,∀u ∈ C2

(
Gc

)
,∀λ > λ0, (2.36)

where

|U |+ |V | ≤ Cλ
(
|∇x,tu|2 + λ2u2

)
C in Gc (2.37)

and λ0 (Gc, η) > 1 is sufficiently large. In addition, the function V is estimated as

|V | ≤ Cλ3t
(
|∇x,tu|2 + u2

)
C + Cλ3 |ut| (|∇u|+ |u|) C in Gc. (2.38)

This Carleman estimate was proven in Theorem 2.2.4 of [14]. It was derived earlier

in §4 of Chapter 4 of [19].

Consider the cut-off function ρ (x, t) ∈ C2
(
Gc

)
such that

ρ (x, t) =


1 in Gc+2δ

0 in Gc�Gc+δ

between 0 and 1 otherwise

 . (2.39)

The existence of such functions is well known. For an arbitrary function u ∈ C2
(
Gc

)
denote v = v(u) := ρu. Using (2.36)-(2.38), we obtain

∫
Gc

(M0v)2 Cdxdt ≥ Cλ

∫
Gc

(
|∇x,tv|2 + λ2v2

)
Cdxdt

−Cλ3

∫
Ω

[|ut| (|∇u|+ |u|)] (x, 0) exp
(
2λ |x|2

)
dx− Cλ

∫
ST

[(
Dβu

)2
+ λ2u2

ν

]
CdS.

Because by (2.35) Gc+2δ ⊂ Gc, then (2.39) implies that the last inequality can be
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rewritten as ∫
Gc

(M0v)2 Cdxdt ≥ Cλ

∫
Gc+2δ

(
|∇x,tu|2 + λ2u2

)
Cdxdt (2.40)

−Cλ3

∫
Ω

[|ut| (|∇u|+ |u|)] (x, 0) exp
(
2λ |x|2

)
dx− Cλ

∫
ST

[(
Dβu

)2
+ u2

ν

]
CdS.

By (2.39) the left hand side of (2.40) can be estimated from the above as

∫
Gc

(M0v)2 Cdxdt ≤
∫

Gc+2δ

(M0u)2 Cdxdt+ C

∫
Gc�Gc+2δ

(
|∇x,tu|2 + u2

)
Cdxdt

≤
∫

Gc+2δ

(M0u)2 Cdxdt+ Cλ3 ‖u‖2
H1(QT ) exp [2λ (c+ 2δ)]

≤
∫

Gc+2δ

(Mu)2 Cdxdt+ C

∫
Gc+2δ

(
|∇x,tu|2 + u2

)
Cdxdt+ C ‖u‖H1(QT ) exp [2λ (c+ 2δ)] .

Substituting this in (2.40), recalling that λ is sufficiently large and using (2.35), we

obtain ∫
Gc+2δ

(Mu)2 Cdxdt+ λ3 ‖u‖2
H1(QT ) exp [2λ (c+ 2δ)]

+λ

∫
ST

[(
Dβu

)2
+ λ2u2

ν

]
CdS + λ3

∫
Ω

[|ut| (|∇u|+ |u|)] (x, 0) exp
(
2λ |x|2

)
dx

≥ Cλ

∫
Gc+2δ

(
|∇x,tu|2 + λ2u2

)
Cdxdt ≥ Cλ3 exp [2λ (c+ 3δ)]

∫
Gc+3δ

(
|∇x,tu|2 + u2

)
dxdt.

Letm = maxGc p(x, t).Dividing the last inequality by Cλ3 exp [2λ (c+ 3δ)] , we obtain

∫
Gc+3δ

(
|∇x,tu|2 + u2

)
dxdt ≤

Ce2λm
(
‖Mu‖2

L2(QT ) + ‖u |ST ‖
2
H1(ST ) + ‖uν |ST ‖

2
L2(ST )

)
+ C ‖u‖2

H1(QT ) e
−2λδ (2.41)
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+Ce2λm

∫
Ω

[|ut| (|∇u|+ |u|)] (x, 0) dx.

The last term of (2.41) was not present in previous publications, and we will

analyze it now. Consider the ϕ−problem first. That is, consider the case χϕ =

1, χψ = 0. Let γ > 0 be a small number which we will choose later. We estimate the

last term of (2.41) as

Ce2λm

∫
Ω

[|ut| (|∇u|+ |u|)] (x, 0) dx

≤ Cγ

∫
Ω

(
|∇u|2 + u2

)
(x, 0) dx+

Ce4λm

γ

∫
Ω

u2
t (x, 0) dx (2.42)

≤ Cγ ‖u (x, 0)‖2
H1(Ω) +

Ce4λm

γ
K2.

We have used (2.33) to estimate the last term in the second line of (2.42). Consider

now the ψ−problem. Then similarly with (2.42)

Ce2λm

∫
Ω

[|ut| (|∇u|+ |u|)] (x, 0) dx ≤ Cγ ‖ut (x, 0)‖2
L2(Ω) +

Ce4λm

γ
K2. (2.43)

Consider now the set

F1 (c, δ) = Gc+3δ ∩ {t ∈ (0, δ)} .

Then {
(x, t) : |x| >

√
c+ 3δ + ηδ2, x ∈ Ω, t ∈ (0, δ)

}
⊂ F1 (c, δ) . (2.44)

Then (2.41), (2.42) and (2.43) imply that

∫
F1(c,δ)

(
|∇x,tu|2 + u2

)
dxdt ≤ Ce4λm

γ
K2 + C ‖u‖2

H1(QT ) e
−2λδ

+Ce2λm
(
‖u |ST ‖

2
H1(ST ) + ‖uν |ST ‖

2
L2(ST )

)
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+χϕCγ ‖u (x, 0)‖2
H1(Ω) + χψCγ ‖ut (x, 0)‖2

L2(Ω) .

Hence, by (2.33)

∫
F1(c,δ)

(
|∇x,tu|2 + u2

)
dxdt ≤ Ce4λm

γ
K2 + C ‖u‖2

H1(QT ) e
−2λδ (2.45)

+χϕCγ ‖u (x, 0)‖2
H1(Ω) + χψCγ ‖ut (x, 0)‖2

L2(Ω) .

Choose numbers c and δ so small that 3
√
c+ 3δ + ηδ2 < R. Hence, we can choose

x0 ∈ Ω such that |x0| = 3
√
c+ 3δ + ηδ2. Next, we “shift” the function p (x, t) to the

point x0, thus considering the function

p (x− x0, t) = |x− x0|2 − ηt2.

For b > 0 let Gb (x0) = {(x, t) | p (x− x0, t) > b, x ∈ Ω, t > 0} . Similarly with the

above denote

F2 (c, δ) = Gc+3δ (x0) ∩ {t ∈ (0, δ)} .

Then

{
(x, t) : |x− x0| >

√
c+ 3δ + ηδ2, x ∈ Ω, t ∈ (0, δ)

}
⊂ F2 (c, δ) . (2.46)

Consider an arbitrary point x such that x ∈
{
|x| < 2

√
c+ 3δ + ηδ2

}
. Then

|x0 − x| ≥ |x0| − |x| ≥ 3
√
c+ 3δ + ηδ2 − 2

√
c+ 3δ + ηδ2 =

√
c+ 3δ + ηδ2.

Hence, by (2.46)

{
(x, t) : |x| < 2

√
c+ 3δ + ηδ2, t ∈ (0, δ)

}
⊂ F2 (c, δ) .
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Combining this with (2.44), we see that

Ω× (0, δ) = Qδ ⊂ F1 (c, δ) ∪ F2 (c, δ) . (2.47)

Using function p (x− x0, t) instead of p (x, t) , we obtain similarly with (2.45)

∫
F2(c,δ)

(
|∇x,tu|2 + u2

)
dxdt ≤ Ce4λm

γ
K2 + C ‖u‖2

H1(QT ) e
−2λδ

+χϕCγ ‖u (x, 0)‖2
H1(Ω) + χψCγ ‖ut (x, 0)‖2

L2(Ω) .

Combining this with (2.45) and (2.47), we obtain

‖u‖H1(Qδ)
≤ Ce4λm

γ
K2 + C ‖u‖2

H1(QT ) e
−2λδ

+χϕCγ ‖u (x, 0)‖2
H1(Ω) + χψCγ ‖ut (x, 0)‖2

L2(Ω) .

Hence, there exists a number t∗ ∈ (0, δ) such that

∫
Ω

(
|∇x,tu|2 + u2

)
(x, t∗) dx ≤ Ce4λm

δγ
K2 +

C

δ
‖u‖2

H1(QT ) e
−2λδ

+
1

δ

[
χϕCγ ‖u (x, 0)‖2

H1(Ω) + χψCγ ‖ut (x, 0)‖2
L2(Ω)

]
.

This inequality combined with (2.33) and the standard energy estimates implies that

‖u‖2
H1(QT ) + χϕ ‖u (x, 0)‖2

H1(Ω) + χψ ‖ut (x, 0)‖2
L2(Ω) ≤ C ‖u‖2

H1(QT ) e
−2λδ

+
Ce4λm

γ
K2 + χϕCγ ‖u (x, 0)‖2

H1(Ω) + χψCγ ‖ut (x, 0)‖2
L2(Ω) . (2.48)
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Note that δ is independent on λ. Choose sufficiently large λ0 such that

1− Ce−2λ0δ >
1

2

and set λ := λ0. Choose γ so small that Cγ < 1/2. Then we obtain (2.34) from (2.48).

�

2.5 Convergence

Theorem 2.1 enables us to prove convergence of our method. Following the

Tikhonov concept for ill-posed problems [19], we first introduce an “ideal” exact

solution of either ϕ or ψ problem without an error in the data. Next, we assume

the existence of the error in the boundary data f and g and prove that our solution

tends to the exact one as the level of error in the data tends to zero. We consider

the more general Inverse Problem 1. Let f ∗ ∈ H1 (ST ) and g∗ ∈ L2 (ST ) be the exact

boundary data (2.3), F ∗ ∈ L2 (QT ) be the exact right hand side of equation (2.1) and

ϕ∗ and ψ∗ be exact initial conditions. We assume that there exists an exact function

u∗ ∈ H2 (QT ) satisfying

u∗tt = L(x, t)u∗ + F ∗ (x, t) in QT , (2.49)

with initial conditions

u∗ (x, 0) = ϕ∗ (x) , u∗t (x, 0) = ψ∗ (x) , ϕ∗ ∈ H1 (Ω) , ψ∗ ∈ L2 (Ω) , (2.50)

u∗ |ST= f ∗ (x, t) ,
∂u∗

∂ν
|ST= g∗ (x, t) , (2.51)

where ϕ∗ and ψ∗ are exact initial conditions. We assume that the real boundary data

in (2.3) have an error, so as the given initial condition. In other words, we assume



28

that

‖f − f ∗‖H1(ST ) + ‖g − g∗‖L2(ST ) + ‖F − F ∗‖L2(QT ) (2.52)

+χψ ‖ϕ− ϕ∗‖H1(Ω) + χϕ ‖ψ − ψ∗‖L2(Ω) ≤ δ,

where δ > 0 is a small number. The following convergence theorem holds

Theorem 2.2. Suppose that T > R. Let uεδ ∈ H2 (QT ) be the solution of the QRM

problem (2.31), which is guaranteed by Lemma 2.1. Let conditions (2.49)-(2.52) be

satisfied. Then the following estimate is valid

‖u− u∗‖H1(QT ) + χϕ ‖ϕ− ϕ∗‖H1(Ω) + χψ ‖ψ − ψ∗‖L2(Ω) ≤ C
(
δ +
√
ε
)
.

Proof. Since the functional J0 (u) with the exact data (2.50), (2.51) achieves

its minimal zero value at u := u∗, then the function u∗ satisfies equation (2.31) with

ε = 0 and with the exact data (2.50), (2.51). Subtracting that equation for u∗ from

equation (2.31) for u := uεδ, denoting w = uεδ − u∗, setting in resulting equation

v := w and using (2.52), we obtain similarly with (2.32)

∫
QT

(Mw)2 dxdt+ χψ ‖w(x, 0)‖2
H1(Ω) + χϕ ‖wt(x, 0)‖2

L2(Ω)

+ ‖w |ST ‖
2
H1(ST ) + ‖wν |ST ‖

2
L2(ST ) ≤ 4δ2 + ε.

The rest of the proof follows immediately from Theorem 2.1. �

2.6 Numerical Implementation

In our numerical study we have considered the Inverse Problem 2. To generate

the data for the inverse problem, we have solved the Cauchy problem

utt = ∆u, (x, t) ∈ R2 × (0, T ) , (2.53)
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u(x, 0) = ϕ (x) , ut(x, 0) = ψ (x) . (2.54)

In our numerical experiments ψ (x) ≡ 0 for the ϕ−problem, and ϕ (x) ≡ 0 for the

ψ−problem. Because of (2.5) and the finite speed of propagation, we use in our

solution of the forward problem zero Dirichlet boundary condition at the boundary of

the rectangle (−T, a+ T )× (−T, a+ T ) (Figure 1). Hence, we solve initial boundary

value problem inside of this rectangle for equation (2.53) with initial conditions (2.54)

at zero Dirichlet boundary condition. In all our calculations we took a = 1. In Tests

2.1, 2.2 and 2.5, which are concerned with the Inverse Problem 2, we took T = 3.

Hence, condition (2.9) is satisfied. Tests 2.3 and 2.4 are concerned with the Inverse

Problem 1 and we have taken different values of T in these tests. The square SQ(a)

is SQ(a) = SQ(1) = (0, 1)× (0, 1) , the domain Ω in tests 2.1, 2.2 and 2.5 is

Ω := (0, 4)× (0, 4) (2.55)

and in all tests

ϕ (x) = ψ (x) = 0 for x /∈ SQ(1). (2.56)

We have solved the Cauchy problem (2.53), (2.54) via finite differences using the

uniform grid. We set

u(tk, x1n, x2m) ≈ ukmn, k = 0, ..., Nt, n = 0, ..., Nx,m = 0, ..., Ny,

tk = kht, x1n = nhx1 , x2m = mhx2 ,

step sizes hx1 = hx2 = 0.1, ht = 1/15 and Nx = Ny = 10, Nt = 45. This solution has

generated the boundary data (2.8). Next, we have introduced noise in these data as

fn
(
xi, tj

)
= f

(
xi, tj

)
(1 + γN (tj)) , gn

(
xi, tj

)
= g

(
xi, tj

)
(1 + γN (tj)) , (2.57)
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where (xi, tj) is the grid point at the boundary. Here N ∈ (−1, 1) is a pseudo random

variable, which is given by function Math.random() in Java and γ ∈ [0.05, 0.5] is the

noise level. We have chosen the grid points the same as ones in the finite difference

scheme we have solved the problem (2.53), (2.54). The presence of the random noise in

the date prevents us from committing “inverse crime”. In (2.57) points xi ∈ Γ1T∪Γ2T .

As to Γ3T ∪ Γ4T , we simply set f = g = 0 on this part of the boundary, because of

(2.7).

To find the minimizer of the functional Jε, we have also used finite differences.

We have used in (2.30) the finite difference approximations for Mu = utt − ∆u

and uν |ST and have minimized the resulting functional J̃ε with respect to the

vector {ukmn} , which approximates values of the function u at grid points. Here

J̃ε means the functional Jε, which is expressed via the finite differences. The norms

‖ux1(x, 0)‖L2(Ω) , ‖ux2(x, 0)‖L2(Ω) in ‖u(x, 0)‖H1(Ω) in the ψ−problem were calculated

via finite differences. As to the term
∥∥Dβu |ST −Dβf

∥∥2

L2(ST )
in (2.30), we have used

only β = 0, thus ending up with ‖u |ST −f‖
2
L2(ST ) (in the discrete sense). Note that

since β = 0, our numerical results seem to be stronger than Theorem 2.1 predicts.

The integrals were calculated as

∫
ΩT

(utt −∆u)2dv ≈ hthx2hx1

h4
t

Nt−1∑
k=1

Ny−1∑
m=1

Nx−1∑
n=1

M2
kmn,

where

Mkmn = (uk+1,mn − 2ukmn + uk−1,mn)− λy(uk,m+1,n − 2ukmn + uk,m−1,n)

− λx (ukm,n+1 − 2ukmn + ukm,n−1)

= (uk+1,mn + uk−1,mn)− λy(uk,m+1,n + uk,m−1,n)− λx(ukm,n+1 + ukm,n−1)− λtukmn,
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where

λx =
h2
t

h2
x1

, λy =
h2
t

h2
x2

, λt = 2(1− λx − λy).

Also,
T∫

0

a+T∫
0

(u(t, x2, x
∗
1)− f(t, x2))2dx2dt ≈ hthx2

Nt∑
k=0

Nx2∑
m=0

H2
km,

where

Hkm = ukmn∗ − hkm,

where n∗ in the layer number (value of x∗1) at which the grid function fkm is given.

To minimize the functional J̃ε, we have used the conjugate gradient method.

Derivatives with respect to variables ukmn where calculated in closed forms, using the

following formula

∂ukmn
∂ukmn

= δkkδmmδnn,

where δkk is the Kronecker symbol. This formula can be conveniently used to obtain

closed form expressions for derivatives

∂J̃ε (u)

∂ukmn
.

Let a be the vector of unknowns of the functional J̃ε. We start our iterative

process from a := a0 = 0. It is well known in the field of ill-posed problems that the

number of iterations can often be taken as a regularization parameter, and it depends,

of course on the range of parameters of a problem one considers. We have found that

the optimal number of iterations for our range of parameters is 300. Thus, in all

numerical examples below 300 iterations of the conjugate gradient method were used,

thus ending up with a300. Figure 2.2 displays typical dependencies of the functional

J̃ε (ak) and the norm of its gradient on the iteration number k.
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(b) g = ‖∇Jε‖2

Figure 2.2: Typical dependence of the functional J and g on number of iterations.

2.7 Numerical Results

In this section we present results of some numerical experiments. We have always

used ε = 10−6. Larger values of ε such as 10−5 brought lower quality results. In our

numerical experiments we have imaged both smooth slowly varying functions and

the finite difference analogue of the δ− function. Let (x1k, x2r) ∈ Ω be a fixed grid

point. To obtain the finite difference analogue of δ (x1 − x1k, x2 − x2r), we consider

the following grid points (x1n, x2m) and we model the function δ (x1n − x1k, x2m − x2r)

as

δ (x1n − x1k, x2m − x2r) =
3

4hx2hx1

δnkδmr,

where the multiplier at δnkδmr is chosen such that the volume of the pyramid based

on (x1k−1, x2r−1) , (x1k−1, x2r+1) , (x1k+1, x2r+1) , (x1k+1, x2r−1) equals to 1. Hence, the

support of the function δ (x1n − x1k, x2m − x2r) is limited only to the point (x1n, x2m).

We have observed that having equal coefficient at all terms of the functional J̃ε in

(2.30) does not lead to good reconstruction results. This is because not all the terms

of (2.30) provide an equal impact in this functional. For example, for the ϕ−problem



33

X

0

1

2

3

4

Y

0

1

2

3

4

Z

-0.5

0

0.5

X Y

Z

Figure 2.3: Exact (red) and calculated (black) functions ϕ in (2.58) without balancing
coefficients with 5% noise in boundary data.
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Figure 2.4: Exact (red) and calculated (black) functions ϕ in (2.58) with balancing
coefficients with 5% noise in boundary data.
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with no noise in the data for the function

ϕ (x) =

 sin(2πx1) sin(2πx2), x ∈ SQ (1)

0 otherwise

 (2.58)

we first got the result displayed in Figure 2.3. One can observe that the error at

the boundary is significant. And indeed, the values of two terms in (2.30) after 300

iterations were for this case

∫
ΩT

(utt −∆u)2dxdt ≈ 10−3, ‖u− f‖L2(ST ) ≈ 10−2.

Hence, the impact of the boundary term in (2.30) is 10 greater than the impact of the

‖Mu‖2
L2(QT ) . To minimize the error at the boundary, we took the balancing coefficient

1000 at 1000·‖u−f‖L2(ST ) instead of 1·‖u−f‖L2(ST ). The other balancing coefficients

equal to 1. The quality of the resulting image was improved, see Figure 2.4. Thus, in

all our tests with the ϕ−problem we have taken the same balancing coefficients. In

the case of the ψ−problem we have taken 100 · χψ ‖u(x, 0)− ϕ‖2
H1(Ω) and the other

balancing coefficients equal to 1.

Note that Theorems 2.1 and 2.2 remain the same, including their proofs, if

balancing coefficients are introduced.

Test 2.1 The ϕ−problem. Here ψ (x) ≡ 0 and the function ϕ (x) to be reconstructed

is one in (2.58). In Figures 2.5 and 2.6 represent resulting images with 25% and 50%

noise respectively. Next, we test our method for the case when the term with χϕ is

absent in the functional Jε (u) in (2.30). Regardless on the small amount of noise in

the data, both maximal (1) and minimal (−1) values of the imaged function were

missed by about 22% in this case, whereas they were not missed in the previous

cases with 25% and 50% noise when the term with χϕ was not absent in (2.30). To

see this, we display on Figure 2.7 the 1-dimensional cross-sections by the straight
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Figure 2.5: Test 2.1. Exact (red) and calculated (black) functions ϕ in (2.58) with
25% noise in the boundary data.

line {x1 = 0.5} of the correct function (2.58), the imaged function with 50% noise

of Figure 2.6 and the imaged function with the absent term with χϕ and 5% noise.

One can observe that the maximal value of the calculated function is 0.7, while the

maximal absolute value of the correct function is 0.9, so as the one of Figure 2.6.

Here we have 0.9 instead of 1 only because the points with the absolute value of 1

are not the grid points. This emphasizes the importance of the incorporation of the

term with χϕ. We have observed the same for the ψ− problem (images not shown).

Test 2.2. The ψ−problem. In this case ϕ (x) ≡ 0 and the function ψ (x) to be

reconstructed is

ψ (x) =

 sin(π
2

(x1 − 0.5) sin(π
2

(x2 − 0.5)), x ∈ SQ (1)

0 otherwise.

 . (2.59)

Figures 2.8, 2.9 and 2.10display resulting images of the function (7.2) with 5%, 25%

and 50% of the noise level in the data respectively.
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Figure 2.6: Test 2.1. Exact (red) and calculated (black) functions ϕ in (2.58) with
50% noise in the boundary data.

Test 2.3. The ϕ−problem in SQ(1) for T ∈ (0.5diamSQ (1) , diamSQ (1)) ,

where diamSQ (1) =
√

2 is the diameter of the square SQ (1). We have decided to

see what kind of results can be obtained if the boundary Cauchy data are given on the

entire boundary of the square SQ (1) in the case when T ∈ (0.5diamSQ (1) , diamSQ (1)) .

We are especially interested in the question about the influence of terms with χϕ and

χψ. We have used

T = 0.75 < diamSQ (1) =
√

2, Nx = Ny = 20, Nt = 3.

and have reconstructed the function (2.58). Figure 2.11 displays the resulting image

with 25% noise in the case when the term χϕ is present in (2.30). This quality of

the reconstruction is good for such a high noise level. Figure 2.12 displays the 1-

dimensional cross-section of the image by the straight line {x1 = 0.5}, as well as the

1-dimensional cross-section of the image for the case when the term with χϕ is not

present in (2.30) and 25% noise in the data is in. One can observe that the minimal
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Figure 2.7: Test 2.1. Cross sections of exact (red) and calculated (black, blue)
functions ϕ with 5%, 50% noise, ”no integral” means χϕ=0. One can see that the
maximal value of the case χϕ=0 is 0.7/(−0.7). The maximal value of the exact function
is 0.9 < 1 only because of the grid step size.
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Figure 2.8: Test 2.2. Exact (red) and calculated (black) functions ψ in (2.59) with
5% noise in the boundary data.
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Figure 2.9: Test 2.2. Exact (red) and calculated (black) functions ψ in (2.59) with
25% noise in the boundary data.
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Figure 2.10: Test 2.2. Exact (red) and calculated (black) functions ψ in (2.59) with
50% noise in the boundary data.

value of (−0.9) is not achieved in the case when the term with χϕ is not present. The

calculated minimal value is (−0.7) in this case.

Test 2.4. The ϕ−problem in SQ(1) for T > diamSQ (1). We now test our

method for the case when the boundary Cauchy data are given at the entire boundary

of the rectangle SQ (1) and T > diamSQ (1). We take

T = 2, Nx = Ny = 20, Nt = 60.

The function (2.58) was reconstructed. Figure 2.13 displays the resulting image with

25% noise and Figure 2.14 displays the 1-dimensional cross-section of the image by

the straight line {x1 = 0.5}, as well as the 1-dimensional cross-section of the image

for the case when the term with χϕ is not present in (2.30) (with 25% noise). One can

observe that both images are very close to the correct one. This points towards the

fact, which follows from the theory of above cited publications and also from Theorem

2.1: the presence of terms with χϕ and χψ is important only when T ∈ (R, 2R) and
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Figure 2.11: Test 2.3. Exact (red) and calculated (black) solutions of the problem
ϕ− in SQ(1) with 25% noise in the boundary data for T = 0.75.
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Figure 2.12: Test 2.3. Cross sections of exact (red) and calculated (black, blue)
functions ϕ with 25% noise in the boundary data for T = 0.75, ”no integral” means
χϕ = 0. The maximal value of the exact function is 0.9 < 1 only because of the grid
step size.
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Figure 2.13: Test 2.4. Exact (red) and calculated (black) solutions of the ϕ− problem
in SQ(1) with 25% noise in the boundary data for T = 2.

it is unimportant for T > 2R.

Test 2.5. The ϕ−problem with two δ−functions. We now again consider the

Inverse Problem 2 with the domain Ω as in (2.55) and with ψ(x) ≡ 0. The data for

the forward problem were simulated for the case

ϕ (x1, x2) = δ (x1 − 0.4, x2 − 0.4) + δ (x1 − 0.7, x2 − 0.7) (2.60)

with the above described finite difference analogue of the δ− function. Figure 2.15
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Figure 2.14: Test 2.4. Cross sections of exact (red) and calculated (black, blue)
functions ϕ with 25% noise in the boundary data for T = 2, ”no integral” means
χϕ = 0. The maximal value of the exact function is 0.9 < 1 only because of the grid
step size.
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Figure 2.15: Test 2.5. Exact (red) and calculated (black) function ϕ with 50% noise in
the boundary data. The function χϕ in (2.30) is present. Scatter plot mode. Squares
show heights. Correct heights are achieved.
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Figure 2.16: Test 2.5. Exact (red) and calculated (black) function ϕ with 5% noise
in the boundary data and χϕ = 0. Scatter plot mode. Squares show heights. Correct
heights are not achieved.
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displays the resulting image of the function (2.60) for the case of 50% of the noise in

the boundary data, scatter plot mode was used, squares show exact height. Figure

2.16, on the other hand, shows the image when the term with χϕ is absent in (2.30)

and only 5% noise in the data is present. One can see that the correct height is not

reached on Figure 2.16, unlike Figure 2.15. This again shows the importance of the

introduction of terms in the third line of (2.30).

Very similar results (not shown) were obtained for the ψ−problem with exactly

the same δ− functions as ones in (2.60).

2.8 Conclusions

We have considered the inverse problems of the determination of one of initial

condition in a hyperbolic equation using the lateral Cauchy data. We have presented

applications of these problems to the thermoacoustic tomography, as well as to

linearized inverse acoustic and inverse electromagnetic problems. The problems we

consider are very close ones with the Cauchy problems for hyperbolic equations with

the lateral data, and we have actually solved the latter numerically in Tests 2.3 and

2.4. We have focused on the inverse problem in an infinite domain (octant), whereas

only finite domains were considered in previous numerical studies. Nevertheless, we

are able to reduce our inverse problem to one in a finite domain due to the finite

speed of propagation of waves. Since one initial condition is known, we were able to

decrease the observation time T by twofold. We have shown numerically that it is

important to know one of initial conditions if T < diameter (Ω) , as it is required by

stability and uniqueness results. However, if T > diameter (Ω) , then both the theory

and our numerical result of Test 2.4 show that one does not need to know the initial

condition.

We have proposed a new version of the Quasi-Reversibility method. The main

new element of this version is the inclusion of the terms characterizing a priori

knowledge of one of initial conditions. Two other new elements are incorporation
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of boundary terms in the Tikhonov functional instead of subtracting off boundary

conditions and the use of finite differences instead of finite elements in the inverse

solver. To prove convergence of this new version, we have modified the technique of

previous works, which is based on Carleman estimates. A comprehensive numerical

study of the proposed numerical method was conducted. This study has demonstrated

robustness of our technique with respect up to 50% random noise in the data, similarly

with previous publications [4, 13, 16]. This study has also demonstrated that this

method is capable to image sharp peaks, which is important for the application to

thermoacoustic tomography, for example.



CHAPTER 3: GLOBALLY CONVERGENT NUMERICAL METHOD FOR A
HYPERBOLIC COEFFICIENT INVERSE PROBLEM IN THE 1D CASE

3.1 Statements of Forward and Inverse Problems

As the forward problem, we consider the Cauchy problem for a hyperbolic PDE

c (x)utt = uxx in R× (0,∞) , (3.1)

u (x, 0) = 0, ut (x, 0) = δ
(
x− x0

)
, (3.2)

where x0 < 0. Equation (3.1) governs, e.g., propagation of acoustic and electromagnetic

waves. In the acoustical case 1/
√
c (x) is the sound speed. In the 2-D case of EM

waves propagation in a non-magnetic medium the coefficient c (x) is c (x) = (µε) (x) ,

where µ and ε are respectively the magnetic permeability and the electric permittivity

of the medium, see [32] for the derivation of (3.1) from Maxwell’s equations in the

2-D case. We assume that the function c (x) satisfies the following conditions

c (x) ≥ 1, c (x) = 1 for x ∈ R�[0, 1], (3.3)

c (x) ∈ C1 (R) . (3.4)

Consider the Laplace transform of the functions u,

w(x, s) =

∞∫
0

u(x, t)e−stdt, for s ≥ s = const. > 0, (3.5)

where s is a certain number. In principle, it is sufficient to choose s such that the

integral (3.3) would converge, although we choose s experimentally in our numerical
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studies. We call the parameter s pseudo frequency. Equation for the function w is

wxx − s2c (x)w = −δ
(
x− x0

)
,∀s ≥ s, (3.6)

lim
|x|→∞

w(x, s) = 0,∀s ≥ s. (3.7)

Lemma 3.1. Assume that conditions (3.3) and (3.4) hold and let x0 < 0. Let the

function w(x, s) ∈ C2 (R3� {|x− x0| < ε}) , ∀ε > 0 be the solution of the problem

(3.6), (3.7). Then the following asymptotic behavior of the function w is valid for

x 6= x0, k = 0, 1; j = 0, 1, 2

Dj
xD

k
sw(x, s) = Dj

xD
k
s

(2s)−1 exp

−s
∣∣∣∣∣∣
x∫

x0

√
c(ξ)dξ

∣∣∣∣∣∣
[1 +O

(
1

s

)] , s→∞.

(3.8)

Proof. Introduce a new variable y = y(x) and new functions P, a,

y = y(x) =

x∫
x0

√
c(ξ)dξ + x0,

P (y, t) = u(x(y), t)c−1/4(y),

a(y) = c1/4(y)((c−1/4(y))′′ − 2(c−1/4(y)))′.

Then P (y, t) is the solution of the following Cauchy problem

Ptt(y, t)− Pyy(y, t) = −a(y)P (y, t),

P (y, 0) = 0, Pt (y, 0) = δ
(
y − x0

)
.

Note that the coefficient a(y) has a finite support. Using D’Alembert formula for

the 1-D non-homogeneous wave equation and using the fundamental solution of this

equation, one can represent the function P as the solution of a Volterra-like integral
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equation, thus coming up with the following properties

P (y, t)|0<t<|y−y0| ≡ 0, P (y, t) =
1

2
+ P1(y, t),

where the function P1 is such that P1 ∈ C2 (t ≥ |y − x0|) , P1(y, |y−x0|) = 0. Consider

the Laplace transform of the functions P ,

A(y, s) =

∞∫
0

P (y, t)e−stdt, for s ≥ s = const. > 0.

Then

A(y, s) =

∞∫
0

P (y, t)e−stdt =

∞∫
|y−x0|

(
1

2
+ P1(y, t))e−stdt =

1

2s
exp

(
−s
∣∣y − x0

∣∣)+
1

s2
exp

(
−s
∣∣y − x0

∣∣)P1t(y, |y− x0|)− 1

s2

∞∫
|y−x0|

e−stP1tt(y, t)dt

=
exp (−s |y − x0|)

2s

[
1 +O

(
1

s

)]
, s→∞.

Since w(x, s) = A(y (x) , s), then we obtain (3.8). �

Inverse Problem. Suppose that the coefficient c (x) in equation (3.6) satisfies

conditions (3.3), (3.4) and is unknown in the interval (0, 1). Determine the function

c (x) for x ∈ (0, 1), assuming that the following functions ϕ0 (s) , ϕ1 (s) are known for

a single source position x0 < 0

w (0, s) = ϕ0 (s) , wx (0, s) = ϕ1 (s) ,∀s ∈ [s, s] , (3.9)

where s > s is a number, which should be chosen experimentally in numerical studies.

We note that in experiments usually only the function ϕ0 (s) can be made available

as the Laplace transform (3.5) of u(0, t). However, since the coefficient c (x) = 1 is
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known for x < 0, then solving the forward problem (3.6), (3.7) for x ∈ (−∞, 0) with

the boundary condition w (0, s) = ϕ0 (s), one can uniquely determine the function

w(x, s) for x < 0, thus coming up with the function wx (0, s) = ϕ1 (s) .

3.2 Layer Stripping with Respect to the Pseudo Frequency

By the maximum principle w(x, s) > 0. Hence, we can consider the function

ṽ = lnw/s2. Then (3.6) leads to

ṽxx + s2ṽ2
x = c (x) , x ∈ (0, 1), (3.10)

ṽ (0, s) = ϕ2 (s) , ṽx (0, s) = ϕ3 (s) , ∀s ∈ [s, s] , (3.11)

where ϕ2 = lnϕ0/s
2, ϕ3 = ϕ1/ (s2ϕ0) . The term δ (x− x0) is not present in (3.10)

because x0 /∈ (0, 1). We now eliminate c (x) from equation (3.10) via the differentiation

with respect to s, since ∂sc (x) = 0. Introduce a new function q (x, s) = ∂sṽ (x, s) .

Lemma 3.1 implies that

Dj
x(ṽ) = O

(
1

s

)
, Dj

x(q) = O

(
1

s2

)
, s→∞; j = 0, 1, 2, (3.12)

ṽ (x, s) = −
∞∫
s

q (x, τ) dτ. (3.13)

We truncate the integral in (3.13) as

ṽ (x, s) = −
s∫
s

q (x, τ) dτ + V (x) , (3.14)

where s > s0 is a large parameter which should be chosen in numerical experiments

and V (x) = ṽ (x, s). We call the function V (x) in (3.14) the “tail”. It is important

that the tail function is unknown. On the other hand, by (3.12) the tail is small

for the large values of s. However, the numerical experience of [27–29,31] shows that
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it would be better to somehow approximate the tail function via updating it in an

iterative procedure. Since the tail function V (x) is unknown, the follow up equation

(3.15) contains two unknowns: q and V . Nevertheless, we can approximate both

these functions, because we treat them differently. Indeed, while we approximate the

function q via inner iterations, we approximate the function V via outer iterations,

see section 3.3 and also [27–29,31] for this issue.

Thus, we obtain from (3.14)-(3.16) the following (approximate) nonlinear integral

differential equation

qxx − 2s2qx

s∫
s

qx (x, τ) dτ + 2s

 s∫
s

qx (x, τ) dτ

2

(3.15)

+2s2qxV
′ − 4sV ′

s∫
s

qx (x, τ) dτ + 2s (V ′)
2

= 0.

In addition, (3.11), (3.12) and (3.15) imply that the following Dirichlet and Neumann

boundary conditions ψ0, ψ1 are given for the function q

q (0, s) = ψ0 (s) , qx (0, s) = ψ1 (s) , ∀s ∈ [s, s] , (3.16)

where ψ0 (s) = ϕ′2 (s) , ψ1 (s) = ϕ′3 (s) . We now find the Neumann boundary condition

for the function q at x = 1. By (3.3), (3.6) and (3.7) w (x, s) = C (s) e−sx for x ≥ 1.

Hence,

qx(1, s) = s−2. (3.17)

If integrals would be absent in (3.15) and also the tail function would be known,

then the problem (3.17), (3.16) would be trivial Cauchy problem for the linear ODE.

However, the presence of integrals implies the nonlinearity, which is the main difficulty

here. Furthermore, solving the problem (3.15), (3.16) as the Cauchy problem would

lead to the instability with respect to x because of the nonlinearity. Indeed, the
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classic existence theorem for the Cauchy problem for a nonlinear ODE guarantees

existence only in a small x-interval. In addition, this approach would not give us a

lot of information for our target 2-D and 3-D problems. Thus, below we focus on the

following question: How to solve numerically the problem (3.17), (3.18), (3.19)?

We approximate the function q (x, s) as a piecewise constant function with respect

to the pseudo frequency s. That is, we assume that there exists a partition s = sN <

sN−1 < ... < s1 < s0 = s of the interval [s, s] with the sufficiently small grid step

size h = si−1 − si such that q (x, s) = qn (x) for s ∈ (sn, sn−1] . We approximate the

boundary condition (3.16), (3.17) as a piecewise constant function,

qn (0) = ψ0,n, q
′
n (0) = ψ1,n, q

′
n (1) = s−2

n , (3.18)

where ψ0,n and ψ1,n are averages of functions ψ0 and ψ1 over the interval (sn, sn−1) .

Rewrite (3.15) for s ∈ (sn, sn−1] using this piecewise constant approximation. Then

multiply the resulting approximate equation by the s-dependent Carleman Weight

Function (CWF) of the form

Cn,λ (s) = exp [−λ |s− sn−1|] , s ∈ (sn, sn−1] (3.19)

and integrate with respect to s ∈ (sn, sn−1] . We obtain the following approximate

equation for the function qn (x)

q′′n − A1,n

(
h
n−1∑
j=1

q′j − V ′
)
q′n = Bn (q′n)

2 − A2,nh
2

(
n−1∑
j=1

q′j (x)

)2

(3.20)

+2A2,nV
′

(
h
n−1∑
j=1

q′j

)
− A2,n (V ′)

2
, n = 1, ..., N,

where A1,n = A1,n (λ, h) , A2,n = A2,n (λ, h) , Bn = Bn (λ, h) are certain parameters
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depending on λ and h, see details in [27]. An important point is that

|Bn (λ, h)| ≤ 8s2λ−1, for λh, s ≥ 1. (3.21)

Therefore by taking λ >> 1, we mitigate the influence of the nonlinear term with

(q′n)2 in (3.19) and this is why the CWF was introduced.

The idea is to approximately solve the sequence of boundary value problems

(3.18), (3.20) sequentially starting from q1. Since boundary conditions (3.18) are

over-determined ones, it seems natural to somehow apply a version of the QRM

here, because it is designed to solve boundary value problems with over-determined

boundary conditions. In fact, we will iterate with respect to the nonlinear term in

(3.20) because of (3.21). Hence, on each iterative step we will solve a linear problem

derived from (3.18), (3.20) and the QRM will find the “least squares” solution of the

latter. The reason why, in addition to functions qn, we can also approximate the tail

function V is that V is approximated from outer iterations, which means that we

treat functions qn and V differently.

Remark 3.1. Our attempts to use in (3.18) only one boundary condition at x = 0

and the second one at x = 1 did not produce good quality images, unlike the 2-D and

3-D cases of complete data collection [27–29,31]. Both types of the boundary condition

at x = 1 were tried, Dirichlet and Neumann, and neither produced good results. We

conjecture that this is because the 1-D case is less informative than multidimensional

cases, basically because the wave cannot get around an abnormality. Thus, we use

in our computations over-determined boundary data (3.18) and also add one more

piece of data sometimes, namely, qn (1) . In computations the above integrals with the

CWF, which generate parameters A1,n, A2,n, Bn, should be calculated in closed forms.

This is because the function Cn,λ (s) changes rapidly for large λ, which means that the

integration step size should be taken too small. In principle, one can decrease the step
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size h in the s-direction instead of using the CWF. However, the introduction of the

CWF provides more flexibility for the choice of parameters for computations, since

parameters h and λ are independent, as long as λh ≥ 1. In addition, taking h too

small would increase the computational time, because one would need to compute too

many functions qn then.

3.3 The Algorithm

Our algorithm reconstructs iterative approximations cn,k (x) ∈ C [0, 1] of the

function c (x) . On the other hand, to iterate with respect to tails, we need to solve

the forward problem (3.6), (3.7) in R on each iterative step. To do this, we need to

extend each function cn,k (x) outside of the interval (0, 1). A numerical procedure of

this extension is described on (3.84). Thus we assume below that cn,k (x) ∈ C (R)

and cn,k (x) = 1 for x ∈ R� (0, 1). In addition, in the course of our algorithm we use

cut-offs to ensure that cn,k (x) ≥ 1 in (0, 1) .

3.3.1 Iterative Process

We now describe the algorithm step-by-step. Each step requires an approximate

solution of an analog of the boundary value problem (3.18), (3.20). This is done via

the QRM, which is described in subsection 3.3.2.

Step 11. Choose an initial tail function V1,1 (x) ∈ C2 [0, 1]. Choose a large

parameter λ >> 1. To compute the first approximation q1,1 for the function q1 with

this tail, use the QRM of subsection 3.3.2 to find an approximate solution of the

following over-determined boundary value problem in (0, 1)

q′′1,1 + A1,1V
′

1,1q
′
1,1 = −A2,1

(
V ′1,1
)2
,

q1,1(0) = ψ0,1, q
′
1,1(0) = ψ1,1, q

′
1,1(1) = s−2

1 . (3.22)

We obtain the function q1,1 ∈ C2 [0, 1] . Reconstruct an approximation c̃1,1 (x) ∈

C [0, 1] for the unknown coefficient c (x) using the function q1,1 (x) and formulas (3.10),
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(3.14), where in (3.14) V (x) := V1,1 (x, s) and in (3.10) s := s1. Next, construct the

function c1,1 (x) ∈ C [0, 1] via applying the cut-off as

c1,1 (x) = max (c̃1,1 (x) , 1) , x ∈ [0, 1] . (3.23)

Next, we extend the function c1,1(x) = 1 for x ∈ R� (0, 1).

Step 1k, k ≥ 2. Iterate with respect to the tail. Suppose that the function

c1,k−1 ∈ C (R) is reconstructed. Solve the forward problem (3.6), (3.7), with c(x) :=

c1,k−1 (x), s = s. Let w1,k(x, s) be the solution of this forward problem. Update the

tail function as

V1,k (x) = s−2 lnw1,k(x, s) ∈ C2 [0, 1] .

Next, solve the boundary value problem for the equation

q′′1,k + A1,1V
′

1,kq
′
1,k = Bn

(
q′1,k−1

)2 − A2,1

(
V ′1,k
)2

with the boundary conditions (3.22). We obtain the function q1,k ∈ C2 [0, 1] . Compute

a new approximation c1,k ∈ C (R) for the unknown coefficient similarly with the Step

11. Make several steps 11, 12, .., 1m1 (the number of steps is specified in our numerical

experiments). Thus, we have m1 iterations with respect to the tail. As a result, we

obtain functions q1,m1 ∈ C2 [0, 1] , c1,m1 ∈ C (R) , V1,m1 ∈ C2 [0, 1] . Next, set

q1 := q1,m1 ∈ C2 [0, 1] , c1 := c1,m1 ∈ C (R) .

Step n1. Having functions q1, ..., qn−1 ∈ C2 [0, 1] and the tail function Vn−1,mn−1 ∈

C2 [0, 1] , set qn,0 (x) := qn−1 (x) , Vn,1 (x) := Vn−1,mn−1 (x) in [0, 1] . Next, using the

QRM, find an approximate solution of solve the following boundary value problem
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(3.24) in (0, 1) for the function qn,1

q′′n,k − A1,n

(
h
n−1∑
j=1

q′j − V ′n,k

)
q′n,k = Bn

(
q′n,k−1

)2 − A2,nh
2

(
n−1∑
j=1

q′j (x)

)2

+ (3.24)

+2A2,nV
′
n,k

(
h
n−1∑
j=1

q′j (x)

)
− A2,n

(
V ′n,k

)2
,

qn,k(0) = ψ0,n, q
′
n,k(0) = ψ1,n, q

′
n,k(1) = s−2

n .

where in (3.24) the vector function (qn,k, qn,k−1, Vn,k) is replaced with (qn,1, qn,0, Vn,1) .

Hence, we obtain the function qn,1 ∈ C2 [0, 1] . Similarly with Step 11 compute a

new approximation cn,1 ∈ C (R) for the unknown coefficient c (x) using the function

qn,1 (x) , functions q1, ..., qn−1 and formulas (3.10), (3.14), where in (3.14) V (x) :=

Vn,1 (x) and in (3.10) s := sn.

Step nk, k ≥ 2. Iterate with respect to the tail. Suppose that the function

cn,k−1 ∈ C (R) is constructed. Solve the forward problem (3.6), (3.7), in which c(x) :=

cn,k−1 (x), s = s. Let wn,k(x, s) be the solution of this forward problem. Update the tail

function as Vn,k (x) = s−2 lnwn,k(x, s) ∈ C2 [0, 1] . Next, find an approximate solution

of the boundary value problem (3.24) via QRM. Reconstruct a new approximation

cn,k ∈ C (R) for the unknown coefficient similarly with the Step 11. Make several steps

n1, n2, .., nmn . Thus, we have iterated mn times with respect to the tail. As a result,

we obtain the functions qn, cn, Vn,mn , where

qn := qn,mn ∈ C2 [0, 1] , cn := cn,mn ∈ C (R) , Vn,mn (x) ∈ C2 [0, 1] .

If functions cn(x) did not yet converge, then proceed with Step (n+ 1)1 , provided

that n < N . However, if either functions cn(x) converged, or n = N, then stop.

The convergence criterion for functions cn(x), which we have established in our

computational experiments, is described in section 3.6. In principle, however, there

might be several convergence criteria, which indicates that a better one might be
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found. Thus, we do not specify such a criterion in this section.

3.3.2 The quasi-reversibility method

Let

an,k (x) = A1,n

(
h
n−1∑
j=1

q′j − V ′n,k

)

and let Hn,k be the right hand side of equation (3.23). Then the boundary value

problem (3.24) can be rewritten as

q′′n,k − an,kq′n,k = Hn,k, (3.25)

qn,k(0) = ψ0,n, q
′
n,k(0) = ψ1,n, q

′
n,k (1) = s−2

n . (3.26)

Because of the over-determination of boundary conditions in (3.26), we find a “least

squares” solution of this problem, for which the QRM is a very suitable one. In other

words we minimize the following Tikhonov functional

Jεn,k(q) = ‖q′′(x)− an,kq′(x)−Hn,k‖2
L2(0,1) + ε ‖q‖2

H3(0,1) , (3.27)

subject to boundary condition (3.26), where the small regularization parameter ε ∈

(0, 1). Let q̂ be the minimizer of this functional. Then we set qn,k (x) := q̂ (x) . We

note that the problem of local minima does not occur here because (3.27) is the

sum of square norms of two expressions, which are linear with respect to q, also see

Lemma 3.3 in section 3.4. The second term in the right hand side of (3.27) is the

Tikhonov regularization term. We use the H3 (0, 1) norm here in order to ensure that

the minimizer q̂ ∈ C2 [0, 1] . Indeed, by the embedding theorem H3 (0, 1) ⊂ C2 [0, 1].

The latter smoothness is used in turn to ensure that functions cn,k ∈ C [0, 1] , see the

previous subsection.
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3.4 Global Convergence Theorem

By the concept of Tikhonov for ill-posed problems [38], which we follow, one

should assume first that there exists an “ideal” exact solution of an ill-posed problem

with the “ideal” exact data. Next, one should assume the presence of an error

of the level ζ in the data, where ζ > 0 is a small parameter. Suppose that an

approximate solution is constructed for each sufficiently small ζ. This solution is

called a “regularized solution”, if it tends to the exact solution as ζ → 0. Denote:

‖ · ‖2 := ‖ · ‖L2(0,1), ‖ · ‖2,2 := ‖ · ‖H2(0,1), ‖ · ‖1 := ‖ · ‖C1[0,1].

3.4.1 Exact solution

First, we briefly introduce the definition of the exact solution, see details in [27].

We assume that there exists a coefficient c∗ (x) ≥ 1 satisfying conditions (3.3), (3.4),

and this function is an exact solution of our Inverse Problem with the exact data

ϕ∗0 (s) , ϕ∗1 (s) in (3.9),

ϕ∗0 (s) = w∗ (0, s) , ϕ∗1 (s) = w∗x (0, s) , ∀s ∈ [s, s] .

Here the function w∗ (x, s) ∈ C2 (R� {|x− x0| < γ}) , ∀γ > 0, ∀s ≥ s is the solution

of the forward problem (3.6), (3.7) with c (x) := c∗ (x). Let

ṽ∗ (x, s) = s−2 ln [w∗ (x, s)] , q∗ (x, s) = ∂sṽ
∗ (x, s) , V ∗ (x) = ṽ∗ (x, s) .

By (3.10)

c∗ (x) = ṽ∗xx (x, s) + s2 (ṽ∗x (x, s))2 . (3.28)

The function q∗ satisfies equation (3.15), in which the tail V (x) is replaced with

V ∗ (x) . Boundary conditions for q∗ are the same as ones in (3.16) and (3.17) where
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functions ψ0 (s) , ψ1 (s) are replaced with ψ∗0 (s) , ψ∗1 (s) , where

ψ∗0 (s) =
(
ϕ∗0s

2
)−1

∂sϕ
∗
0 − 2s−3 lnϕ∗0, ψ

∗
1 (s) =

(
ϕ∗1s

2
)−1

∂sϕ
∗
1 − 2s−3 lnϕ∗1.

Definition. We call the function q∗ (x, s) the exact solution of the problem

(3.15)-(3.17) with the exact boundary conditions ψ∗0 (s) , ψ∗1 (s).

Therefore, q∗ (x, s) ∈ H3 (0, 1) × C∞ [s, s] . We approximate functions q∗ (x, s)

and ψ∗ (x, s) via piecewise constant functions with respect to s ∈ [s, s] . Let

q∗n (x) =
1

h

sn−1∫
sn

q∗ (x, s) ds, ψ
∗
0,n =

1

h

sn−1∫
sn

ψ∗ (s) ds, ψ
∗
1,n =

1

h

sn−1∫
sn

ψ∗x (s) ds.

Hence, it is natural to assume that

max
1≤n≤N

‖q∗n‖H3(0,1) ≤ C∗, C∗ ≥ 1, (3.29)∣∣∣ψ∗0,n − ψ0,n

∣∣∣+
∣∣∣ψ∗1,n − ψ1,n

∣∣∣ ≤ C∗ (σ + h) , (3.30)

where the constant C∗ = C∗
(
‖q∗‖H3(0,1)×C1[s,s]

)
> 0 depends only on H3 (0, 1) ×

C1 [s, s] norm of the function q∗ (x, s) and σ > 0 is a small parameter characterizing

the level of the error in the data ψ0 (s) , ψ1 (s) . We use H3 (0, 1) norm rather than

C2 [0, 1] because of the quasi-reversibility, see (3.34). The parameter h can also be

considered as a part of the error in the data, since we have replaced a smooth

s-dependent function with a piecewise constant one. In addition

q∗n (0) = ψ
∗
0,n, q

∗′
n (0) = ψ

∗
1,n, q

∗′
n (1) = s−2

n . (3.31)
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The function q∗n satisfies the following analogue of equation (3.23)

q∗
′′

n − A1,n

[
h
n−1∑
j=1

q∗
′

j (x)− V ∗′
]
q∗
′

n

= Bn

(
q∗
′

n

)2

− A2,nh
2

(
n−1∑
j=1

q∗
′

j (x)

)2

(3.32)

+2A2,nV
∗′
(
h
n−1∑
j=1

q∗
′

j (x)

)
− A2,n

(
V ∗
′
)2

+ Fn (x, h, λ) ,

where the function Fn (x, h, λ) ∈ C [0, 1] and

max
λh≥1
‖Fn (x, h, λ) ‖2 ≤ C∗h. (3.33)

3.4.2 Estimates, existence and uniqueness for the quasi-reversibility

Lemma 3.2. ( [14], page 188). For any function u(x) ∈ H2(0, 1), u(0) = u′(0) = 0,

and for any µ ≥ 1 the following Carleman estimate holds

1∫
0

(u′′)2e−2µxdx ≥ 1

16

1∫
0

[µ(u′)2 + µ3u2 + 8(u′′)2]e−2µxdx.

Lemma 3.3. Let functions H ∈ L2(0, 1), a ∈ C [0, 1] , ‖a‖C[0,1] ≤ a0 = const..

Consider the problem of the minimization of the functional Jε (u) ,

Jε (u) = ‖u′′ + a(x)u′ −H(x)‖2
2 + ε ‖u‖2

H3(0,1) , (3.34)

subject to initial conditions

u(0) = u′(0) = 0, (3.35)

where ε ∈ (0, 1) is a small parameter. Then there exists unique minimizer u0 ∈

H3 (0, 1) of the functional (3.34) with conditions (3.35) and the following estimates
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hold

‖uε‖H3(0,1) ≤
C√
ε
‖H‖2 , (3.36)

‖uε‖2,2 ≤ K ‖H‖2 , (3.37)

where the positive constant C depends only on the interval (0, 1) and

K = 8eµ0 , µ0 = max
(
1, 64a2

0

)
. (3.38)

In particular, if ε = 0, then the unique minimizer u0 ∈ H2(0, 1) also exists and (3.37)

holds.

Proof. Let (, ) be the inner product in L2(0, 1) and [, ] be the inner product in

H3 (0, 1) . Denote Lu = u′′+au′. Then (3.34) implies that the function uε must satisfy

(Luε, Lv) + ε2 [uε, v] = (H,Lv) ,∀v ∈ H3 (0, 1) , v (0) = v′ (0) = 0. (3.39)

The Riesz theorem immediately implies existence and uniqueness of the function uε

as well as the estimate (3.36). To prove (3.37), set v := uε. Then the Cauchy-Schwarz

inequality and Lemma 3.2 imply that for any µ > 0

‖H‖2
2 ≥ (Lu, Lu) ≥

1∫
0

(Lu)2e−2µxdx ≥
1∫

0

(
1

2
(u′′)2 − a2

0(u′)2)e−2µxdx

≥ 1

32

1∫
0

[µ(u′)2 + µ3u2 + 8(u′′)2]e−2µxdx−
1∫

0

a2
0(u′)2e−2µxdx.

Taking in this inequality µ = µ0, we obtain (3.37). By (3.37) the scalar product

{u, v} := (Luε, Lv) is defined and generates the norm, which is equivalent with the

norm ‖•‖2,2 . Hence, the existence of the minimizer u0 for the case ε = 0 follows from

Riesz theorem. Next, estimate (3.37) for the case ε = 0 follows from the above. �
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Remark 3.2. Since boundary terms at x = 1 are not involved in the Carleman

estimate of Lemma 3.2, we do not use a boundary condition at x = 1 in our convergence

analysis. Still, we use both Dirichlet and Neumann boundary conditions at x = 1 in

numerical experiments, see section 3.6. While the Neumann boundary condition is

natural to use for a better stability, see (3.18) and (3.26), the Dirichlet boundary

condition is not desirable to employ. Nevertheless, the latter condition provides

better results, see more discussion in subsections 3.6.6, 3.6.7. Naturally, Lemma

3.3 remains the same for the case of extra boundary conditions at x = 1, so as

Theorem 3.1. Thus, (3.37) and (3.38) provide us with a specific constant K is

used in the global convergence Theorem 3.1 instead of an unspecified constant K

in the Schauder theorem, which was used in [27–29, 31]. We stress that although

an estimate for K can be obtained via simply estimating the solution of the Cauchy

problem u′′ + a(x)u′ − H(x) = 0, u (0) = u′ (0) = 0, we use a different proof via the

quasi-reversibility. The reason is twofold. First, we use the QRM in our numerical

tests due to the over-determination in boundary conditions (Remark 3.1). Second, we

wish to work out the methodology for 2D and 3D cases.

3.4.3 Global convergence theorem

Assume that

s > 1, λh ≥ 1. (3.40)

Then [27] max1≤n≤N {|A1,n|+ |A2,n|} ≤ 8s2. Introduce the constant

M∗ = M∗
(
‖q∗‖C2[0;L]×C1[s,s] , s

)
= 16C∗s2 ≥ 2C∗ max

1≤n≤N
{|A1,n|+ |A2,n|} (3.41)

In the formulation of Theorem 3.1 we provide estimates via M∗ and also use (3.41) to

obtain estimates via s. Recall that by the embedding theorem H2 (0, L) ⊂ C1 [0, L] .

In the course of the proof of Theorem 3.1 we will estimate norms of differences ‖qn,k−

q∗n‖2,2 between our approximate and exact solutions. Naturally, we will use Lemma
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3.3 then. However, there is one inconvenience in this lemma linked with the zero

Cauchy data (3.35). Thus, we assume that

ψ
∗
0,n = ψ0,n, ψ

∗
1,n = ψ1,n. (3.42)

In principle, this assumption is not necessary. Indeed, one can consider the following

functions instead qn,k, q
∗
n

qn,k = qn,k − ψ0,n − xψ1,n, q
∗
n = q∗n − ψ

∗
0,n − xψ

∗
1,n.

These functions satisfy (3.35). Equations for these functions can be obtained from the

above equations for qn,k, q
∗
n in an obvious fashion. Next, using estimates (3.30), one

can modify both the formulation and the proof of Theorem 3.1 in a straightforward

manner. We have chosen not to do so for the sake of brevity only. By the embedding

theorem H2 (0, 1) ⊂ C1 [0, 1] and with a positive constant C1 ≥ 1 the following

inequality holds ‖f‖1 ≤ C1 ‖f‖2,2 ,∀f ∈ H2 (0, 1) .

Theorem 3.1. Suppose that (3.29), (3.40) and (3.42) hold. Let the exact coefficient

c∗ (x) satisfies conditions (3.3), (3.4). For any function c ∈ C (R) such that c (x) ≥ 1,

c (x) = 1 in R�(0, 1) consider the solution wc (x, s) ∈ C2 (R� {|x− x0| < γ}) , ∀γ > 0

of the problem (3.6), (3.7). Let Vc (x) = s−2 lnwc (x, s) ∈ C2 (R� {|x− x0| < γ}) ,∀γ >

0 be the corresponding tail function. Suppose that the cut-off pseudo frequency s is

so large that for any such function c (x) the following estimate holds

‖Vc‖C2[0,1] ≤ ξ, (3.43)

where ξ ∈ (0, 1) is a sufficiently small number. Let V1,1 (x, s) ∈ C2 [0, 1] be the initial

tail function and let

‖V1,1‖C2[0,1] ≤ ξ. (3.44)
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Denote η = 2 (h+ σ + ε+ ξ) . Let in Lemma 3.3 a0 < 1 and thus K = 8e. Let N ≤ N

be the total number of functions qn calculated by the above algorithm. Suppose that

the number N = N (h) is connected with the step size h via N (h)h = β, where the

constant β > 0 is independent on h. Let β be so small that

β ≤ 1

KM∗C1

=
1

16KC∗s2C1

≤ 1

16KC∗s2 . (3.45)

In addition, let the number η and the parameter λ of the CWF satisfy the following

estimates

η ≤ η0 (K,M∗) = η0

(
‖q∗‖H3(0,1)×C1[s,s], s

)
=

1

64Ks2 , (3.46)

λ ≥ λ0 (K,M∗, η) = max

(
(M∗C∗)2

4
, 3KM∗,

1

η2

)
. (3.47)

Then for every integer n ∈
[
1, N

]
the following estimates hold

‖qn,k − q∗n‖2,2 ≤ 2KM∗
(

1√
λ

+ η

)
≤ 64C∗Ks2η, (3.48)

‖qn,k‖2,2 ≤ 2C∗, (3.49)

‖cn,k − c∗‖2 ≤ KM∗
(

1√
λ

+ η

)
≤ 32C∗s2η. (3.50)

Remark 3.3. 1. Although by (3.45) and (3.46) parameters β and η seem to be

too small, it often happens in the computational practice of inverse problems that

theoretical estimates in convergence theorems are more pessimistic than ones obtained

in numerical studies. And our computational experience shows that one can choose

reasonable values of these parameters. Still, Theorem 3.1 ensures the global convergence,

which is important for computations.

2. The convergence estimate (3.50) depends on a parameter η = 2 (h+ σ + ε+ ξ),

in which parameters h, ε, ξ, although sufficiently small of course, cannot be made too
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small in any particular computation. So, Theorem 3.1 basically tells one that one can

indeed get a good first approximation for the solution. But as soon as (3.50) holds, one

cannot guarantee that all follow up iterations would lead to a solution, which would be

closer to the exact than one on a few first ones. A logical conclusion from this is that

one should consider a two stage numerical procedure. On the first stage one would

obtain a good first guess for the solution using the above globally convergent method.

And on the second stage one would use a locally convergent numerical method, which,

however, would take the solution obtained on the first stage as the first approximation.

The point is that locally convergent numerical methods do not depend on parameters

h, ε, ξ. Still, the main input which any locally convergent numerical methods needs

is a good first guess for the solution, and this is exactly what the globally convergent

part provides. Such a two stage procedure was recently implemented in [29,31] in 2-D

and 3-D cases of the data collection at the entire boundary. However, when working

on this 1-D case, we were not prepared to use the second stage here. Hence, we have

appropriately modified the algorithm of section 3.3. The main point is that Theorem

3.1 is basically valid for this modification, see subsection 3.6.2.

3. Truncating integrals at a high pseudo frequency s is a natural thing to do,

because one routinely truncates high frequencies in physics and engineering. By

truncating integrals, we actually come up with a different, although a quite reasonable

mathematical model. One of the back bones of the theory of ill-posed problems is

that the number of iterations can be chosen as a regularization parameter, see, e.g.,

page 157 of [34]. Therefore, we have a vector
(
s,N,m1, ...,mN

)
of regularization

parameters. Setting N (h)h = β = const. > 0 is in an agreement with, e.g., Lemma

6.2 on page 156 of [34], since this lemma shows a connection between the error in the

data and the number of iterations (that lemma is proven for a different algorithm).

We assume below in this section that conditions of Theorem 3.1 hold. We obtain
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from (3.40), (3.41), (3.46) and (3.47) that

M∗C∗

2
√
λ
≤ 1,

3KM∗

λ
< 1,

1√
λ
≤ η. (3.51)

Denote

q̃n,k = qn,k − q∗n, Ṽn,k = Vn,k − V ∗, c̃n,k = cn,k − c∗.

We first prove

Lemma 3.4. Suppose that estimates (3.48), (3.49) are true for functions q1, ..., qn−1

as well as for functions qn,1, ..., qn,k (1 ≤ k ≤ mn) . Then the estimate (3.50) holds.

Proof. Introduce functions ṽn,k (x) , ṽ∗n (x) as

ṽn,k (x) = −h

(
n−1∑
j=1

qj (x) + qn,k (x)

)
+ Vn,k (x) , (3.52)

ṽ∗n (x) = −h

(
n−1∑
j=1

q∗j (x) + q∗n (x)

)
+ V ∗ (x) . (3.53)

It follows from the definition of functions q∗n (x) that ṽ∗n (x) = ṽ∗ (x, sn). By our

algorithm cn,k (x) = ṽ′′n,k (x) + s2
n

(
ṽ′n,k (x)

)2
. Subtracting (3.28) (at s := sn) from this

formula, we obtain

c̃n,k =
(
ṽ′′n,k − ṽ∗

′′

n

)
+ s2

n

(
ṽ′n,k − ṽ∗

′

n

)(
ṽ′n,k + ṽ∗

′

n

)
. (3.54)

By (3.43), (3.45), (3.48), (3.52) and (3.53)

‖ṽn,k − ṽ∗n‖2,2 ≤ 2KM∗β

(
1√
λ

+ η

)
+ η ≤ 1

8

(
1√
λ

+ η

)
+ η ≤

(
1√
λ

+ η

)
. (3.55)

(3.40), (3.41), (3.43), (3.45), (3.46), (3.49), (3.52) and (3.53) imply that ‖ṽn,k + ṽ∗n‖1 ≤

4C∗C1β + η ≤ 4C∗. Combining this with (3.46), the third inequality (3.51), (3.54)
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and (3.55), we obtain

‖c̃n,k‖2 ≤M∗
(

1√
λ

+ η

)
≤ 32C∗s2η,

which is (3.50). �

Lemma 3.5. Assume that (3.49) holds. Then the following estimate is true

∥∥∥∥∥A1,n

(
h
n−1∑
j=1

q′j − V ′n,k

)∥∥∥∥∥
C[0,1]

≤ 1

8
.

Proof follows immediately from (3.41), (3.45) and (3.46). �

Corollary 1. In conditions of Theorem 3.1 K = 8e.

This Corollary follows immediately from Lemmata 3.3 and 3.5.

Proof of Theorem 3.1 This proof basically consists in estimating norms ‖q̃n,k‖2,2

for k = 1, ...,mn from the above. Compared with proofs in [27,31], the main difficulty

here is that we have to analyze integral identities which come out of (3.39), instead

of pointwise equations. We start from‖q̃1,k‖1 . By (3.43) and (3.44)

∥∥∥Ṽ1,1

∥∥∥
1
≤ 2ξ ≤ η. (3.56)

Let L1,1q1,1 = q′′1,1+A1,1V
′

1,1q1,1. Then (3.32),(3.39) imply that for all v ∈ H3 (0, 1) , v (0) =

v′ (0) = 0

(L1,1q1,1, L1,1v) + ε [q1,1, v] =
(
−A2,1 (V ′11)

2
, L1,1v

)
, (3.57)

(L1,1q
∗
1, L1,1v) + ε [q∗1, v] =

(
B1 (q∗′1 )

2
+ A1,1Ṽ

′
1,1q

∗
1 − A2,1 (V ∗′)

2
+ F1, L1,1v

)
− (3.58)

−ε [q∗1, v] .
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Subtracting (3.58) from (3.57), we obtain

(L1,1q̃1,1, L1,1v) + ε2 [q̃1,1, v] = (3.59)(
−B1 (q∗′1 )

2 − A1,1Ṽ
′

1,1q
∗′
1 − A2,1Ṽ

′
1,1 (V ′11 + V ∗′)− F1, L1,1v

)
+ ε2 [q∗1, v] .

Estimate terms in the right hand side of (3.59). By (3.21), (3.29), (3.41) and the first

inequality (3.51)

B1 (q∗1)2 ≤ 8s2

λ
(C∗)2 ≤ 1√

λ
. (3.60)

Next, by (3.29) and (3.56) ∣∣∣A1,1Ṽ
′

1,1q
∗′
1

∣∣∣ ≤ M∗

2
η. (3.61)

Also by (3.41), (3.43), (3.44), (3.46) and (3.56)

∣∣∣A2,1Ṽ
′

1,1 (V ′11 + V ∗′)
∣∣∣ ≤ M∗

2C∗
η2 ≤ η

8
. (3.62)

Next, by (3.33) ‖F1‖2 ≤ C∗η/2. Combining this with (3.60)-(3.62), we obtain

∥∥∥−B1 (q∗′1 )
2 − A1,1Ṽ

′
1,1q

∗′
1 − A2,1Ṽ

′
1,1 (V ′11 + V ∗′)− F1

∥∥∥
2
≤ 1√

λ
+

(
M∗

2
+
C∗

2
+

1

8

)
η.

(3.63)

By (3.42) q̃1,1 (0) = q̃′1,1 (0) = 0. Setting in (3.59) v := q̃1,1, using the Cauchy-Schwarz

inequality, Lemmata 3.3, 3.5, Corollary 1, (3.29) and (3.63), we obtain

‖q̃1,1‖2,2 ≤ K

[
1√
λ

+

(
M∗

2
+

3C∗

2
+

1

8

)
η

]
≤ 2KM∗

(
1√
λ

+ η

)
. (3.64)

Since ‖q1,1‖2,2 ≤ ‖q̃1,1‖2,2 + ‖q∗1‖2,2 ≤ ‖q̃1,1‖2,2 + C∗, then (3.64), the third inequality

(3.51) and (3.46) imply that (3.49) is true for q1,1, i.e. ‖q1,1‖2,2 ≤ 2C∗. Next, Lemma

3.4 implies that (3.50) holds for ‖c1,1 − c∗‖2.

Assume now that estimates (3.48)-(3.50) are valid for functions q̃1,k−1, q1,k−1, k ≥
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2 and prove them for q̃1,k, q1,k. By (3.50) and (3.43)

‖V1,k‖C2[0,1] ≤ ξ,
∥∥∥Ṽ1,k

∥∥∥
C2[0,1]

≤ η. (3.65)

We obtain similarly with (3.59)

(L1,1q̃1,k, L1,1v) + ε2 [q̃1,k, v] =(3.66)(
B1q̃

′
1,k−1

(
q′1,k−1 + q∗′1

)
− A1,1Ṽ

′
1,1q

∗′
1 − A2,1Ṽ

′
1,1 (V ′11 + V ∗′)− F1, L1,1v

)
+ ε2 [q∗1, v] .

By (3.21), (3.41) and the second inequality (3.51)

∥∥B1q̃
′
1,k−1

(
q′1,k−1 + q∗′1

)∥∥
2
≤ 24C∗s2

λ
KM∗

(
1√
λ

+ η

)
(3.67)

=
3

λ
K (M∗)2

(
1√
λ

+ η

)
≤M∗

(
1√
λ

+ η

)
.

Hence, using (3.65), similarly with (3.63), (3.64), we obtain from (3.66)

‖q̃1,k‖2,2 ≤ KM∗
(

1√
λ

+ η

)
+K

(
M∗

2
+

3C∗

2
+

1

8

)
η ≤ 2KM∗

(
1√
λ

+ η

)
.

Hence, the estimate for ‖q̃1,k‖2,2 is the same as one in (3.64), which means that

estimates (3.48)-(3.50) are valid for functions q1,k, c1,k.

Assume now that estimates (3.48)-(3.50) are valid for functions qj,k, cj,k, where

j = 1, ..., n− 1; k = 1, ...,mj. We will prove now that they are also valid for functions

qn,1, cn,1. First, we obtain similarly with (3.65)

‖Vn,1‖C2[0,1] ≤ ξ,
∥∥∥Ṽn,1∥∥∥

C2[0,1]
≤ η. (3.68)

Denote

Ln,1qn,1 = q′′n,1 − A1,n

(
h

n−1∑
j=1

q′j (x)− V ′n,1

)
q̃′n,1
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Using (3.23) and (3.32), we obtain similarly with (3.59) and (3.66)

(Ln,1q̃n,1, Ln,1v) + ε2 [q̃n,1, v] =
(
Bnq̃

′
n−1

(
q′n−1 + q∗

′

n

)
− Fn, Ln,1v

)

+

((
A1,nq

∗′
n − A2,nh

n−1∑
j=1

(
q′j + q∗

′

j

)
+ 2A2,nV

′
n,1

)(
h
n−1∑
j=1

q̃′j

)
, Ln,1v

)
(3.69)

((
2A2,nh

n−1∑
j=1

q∗
′

j − A1,nq
∗′
n − A2,n

(
V ′n,1 + V ∗

′
))

Ṽ ′n,1, Ln,1v

)
+ ε2 [q∗1, v] .

We now estimate each term in the right hand side of (3.69). Using (3.33), we obtain

similarly with (3.67)

∥∥∥Bnq̃
′
n−1

(
q′n−1 + q∗

′

n

)
− Fn

∥∥∥
2
≤M∗

(
1√
λ

+ η

)
+
C∗

2
η. (3.70)

By (3.29), (3.41), (3.45), (3.46) and (3.49)

∥∥∥∥∥A1,nq
∗′
n − A2,nh

n−1∑
j=1

(
q′j + q∗

′

j

)
+ 2A2,nV

′
n,1

∥∥∥∥∥
C[0,1]

≤M∗
(

1 +
3

2
β

)
≤ 3

2
M∗. (3.71)

Next, by (3.48) ∥∥∥∥∥h
n−1∑
j=1

q̃′j

∥∥∥∥∥
2

≤ 2KM∗β

(
1√
λ

+ η

)
.

Combining this with (3.71), we obtain

∥∥∥∥∥
(
A1,nq

∗′
n − A2,nh

n−1∑
j=1

(
q′j + q∗

′

j

)
+ 2A2,nV

′
n,1

)(
h
n−1∑
j=1

q̃′j

)∥∥∥∥∥
2

≤ (3.72)

≤ 3K (M∗)2 β

(
1√
λ

+ η

)
.
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Next, since by (3.45) and (3.46) β + η/2 < 1/4, then

∥∥∥∥∥
(

2A2,nh
n−1∑
j=1

q∗
′

j − A1,nq
∗′
n − A2,n

(
V ′n,1 + V ∗

′
))

Ṽ ′n,1

∥∥∥∥∥
2

≤ (3.73)

≤
(
M∗β +

M∗

2
+
M∗

2

)
η ≤ 3

4
M∗η.

Using (3.69)-(3.73), we obtain

‖Ln,1q̃n,1‖ ≤ M∗
(

1√
λ

+ η

)
+

3C∗

2
η + 3K (M∗)2 β

(
1√
λ

+ η

)
+

3

4
M∗η

≤ M∗
(

1 +
3C∗

2M∗ + 3KM∗β

)(
1√
λ

+ η

)
≤ 2M∗

(
1√
λ

+ η

)
.

Hence, Lemmata 3.3 and 3.5 imply that (3.48) is true for ‖qn,1 − q∗n‖2,2 . Similarly with

the above we obtain that (3.49) and (3.50) are true for norms ‖qn,1‖2,2, ‖cn,1 − c∗‖2 .

The proof for the pair (n, k) , k ≥ 2 is similar. �

3.5 A Simplified 1-D Mathematical Model of Imaging of Plastic Antipersonnel Land

Mines

First, we describe a mathematical model for the Coefficient Inverse Problem of

detection and imaging of antipersonnel land mines that are buried under the ground.

This model is similar with one used in [39] in the 2-D case. Some assumptions and

simplifications have been made with our model. At the same time, we use realistic

ranges of parameters. First, we work with a one-dimensional model, which is a

simplification of course. As we have stated in Introduction section 1.2, we intend to

work with 2-D and 3-D CIPs in the future using the methodology of this chapter. So,

in these future cases our mathematical models will not use the latter simplification.

The irregularity of the ground surface has been neglected to avoid the complication

of gathering the data for the direct problem. Also, we assume that the dielectric

permittivity ε of the medium does not have a discontinuity at the ground surface
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where measurements of the back reflected electric signal are performs. Further, we

neglect the electric conductivity of the medium, which can be justified in the case

when the background is a dry sand, for example, and we work exactly with this case.

Let the ground be {x > 0} . Suppose that a polarized electric field is generated

by a pulse at the point x0 < 0 at the initial time t = 0. In other words, the electric

source {x0} is located above the ground. The following hyperbolic equation can be

derived from the Maxwell equations [32]

µε(x)utt = uxx, (x, t) ∈ R× (0,∞) , (3.74)

u (x, 0) = 0, ut (x, 0) = δ
(
x− x0

)
,

where the function u(x, t) is one component of the electric field and the parameter µ =

4π × 10−7 (Henry/m) is the magnetic permeability in the free space and ε = ε0εr(x)

is the dielectric permittivity, where ε0 ≈ 8.854 × 10−12 (Farad/m) is the dielectric

permittivity of the free space and εr(x) is the dimensionless relative dielectric permittivity

of the medium. The Laplace transform (3.5) applied to (3.74) leads to the following

analog of the problem (3.6), (3.7)

wxx − s2µε0εr(x)w = −δ
(
x− x0

)
,∀s ≥ s, (3.75)

lim
|x|→∞

w(x, s) = 0,∀s ≥ s. (3.76)

It is well known that the maximal depth of an antipersonnel land mine is about

10cm. So, we model these mines as small smooth symmetric “bumps” of the diameter

4cm and their centers should be at the maximal depth of 10cm. But the total

length of the interval on which we consider the inverse problem is 20cm=0.2m in

our calculations. To transform this interval into (0, 1) (see above), we make change of

variables in (3.75) x′ = x/0.2, x′0 = x0/0.2. Note that δ (x− x0) = δ (x′ − x′0) /0.2. We

now use the data about the value of the dielectric constant from http://www.clippercontrols.com/info/dielectric constants.html#
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1. By these data εr = 5 in dry sand and εr = 22 in trinitrotoluene (TNT). Hence, to

have the background value of the unknown coefficient equals 1, we denote in (3.75)

c (x) =
εr(x)

5
, s′ =

(
0.2
√

5µ
)
s, ŵ =

w

0.2
. (3.77)

Finally, for convenience, we keep the same notations for (x′, x′0, s
′, ŵ) := (x, x0, s, w)

as before. Then equations (3.75), (3.76) become identical with equations (3.6), (3.7),

which we now reproduce for reader’s convenience

wxx − s2c (x)w = −δ
(
x− x0

)
,∀s ≥ s, (3.78)

lim
|x|→∞

w(x, s) = 0,∀s ≥ s. (3.79)

Note that since the interval (0,20) cm is transformed now into (0, 1) and centers of

our mine-like inclusions of the thickness of 4cm are between 2 cm and 10 cm, then

we are interested to image such mine-like targets whose centers are between 0.2 and

0.5,

centers of interest in our specific application ∈ [0.2, 0.5] . (3.80)

We are interested in the identification of antipersonnel plastic mines, which is

difficult in a practical scenario since the metal component in them is not large. Hence,

we need one parameter inside the mine which can give us sufficient contrast against

the surrounding dry sand. We use the parameter c from (3.77), which is proportional

to the dielectric constant. Since

εr (TNT)

εr (dry sand)
=

22

5
≈ 4,

then in our computations the height of inclusions is about 4, i.e., inclusion/background

contrast in c (x) is about 4:1. Thus, if one can quantify the coefficient c (x) , then

points whose values are close to 4, will be those inside or close to the mine. Thus,



75

finding an approximation for this coefficient with solution of the Coefficient Inverse

Problem would provide us a useful information about a target which we would

‘suspect’ is a land mine.

3.6 Numerical Study

3.6.1 The Forward Problem

In this chapter, we work with the computationally simulated data. That is,

the data are generated by computing the forward problem (3.78), (3.79) with the

given function c(x). Then this forward problem is “forgotten” and only so generated

boundary data are used. To solve the forward problem (3.78), (3.79), we use FDM

and the sweep method. To eliminate the δ (x− x0) function from (3.78), consider

first the fundamental solution of equation (3.78) with c (x) ≡ 1, which is the value

this function attains outside of the interval of interest (0, 1) , see (3.3). This solution

is

w0(x, s) =
exp (−s|x− x0|)

2s
.

Because of (3.79), we can solve the problem (3.78), (3.79) on a finite truncated

interval with zero Dirichlet boundary conditions at its edges. We took x0 = −1 and

next we have chosen the interval x ∈ (−6, 4) . Let w̃ = w − w0. We have solved by

the sweep method the following problem

w̃xx − s2c(x)w̃ = s2(c(x)− 1)w0, (3.81)

w̃(−6, s) = w̃(4, s) = 0. (3.82)

The singularity is absent in the right hand side of (3.81) because c(x) − 1 = 0 for

x < 0 and x0 < 0. We have chosen the step size in x to be hx = 0.01. Now, we

have solved the problem (3.81), (3.82) for s ∈ [0.5, 1.22] with the grid step size in
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s direction being h = 0.01. The reason why we have chosen this s-interval as one

preferable to others is that we have found in our reconstructions that this is the

optimal frequency interval for depths of inclusions we are interested in, see Figure

3.3(c), 3.4(c). Furthermore, the sensitivity of the back reflected data at x = 0 drops

for larger s, for locations of inclusions of our applied interest, see Figure 3.3(c). Thus,

because of the poor sensitivity for larger s, s = 1.22 can be counted as that truncated

large value s introduced above.

3.6.2 The two stage algorithm

Following the second part of Remark 3.3 after Theorem 3.1, we modify in this

subsection the general algorithm described in section 3.3. We point out that because

of the application of our interest, we are mostly interested in imaging of small mine-

like inclusions rather than in imaging of slowly changing functions. The main point

is that Theorem 3.1 is still applicable even to our amended algorithm, except of the

smoothness requirement, which still can be fixed, see the next paragraph. In this

subsection we describe our numerical algorithm, which consists of two main steps.

In our numerical experiments we have taken N = N = 72, meaning that the step size

in the s-direction is h = 0.01 and the length of the s-interval on which we compute

functions qn is β = 0.72, see Theorem 3.1. In addition, the number of iterations with

respect to the tail was in our computations is m1 = m2 = ... = mN := m = 10.

To implement the QRM numerically, we partition the interval [0, 1] in 100 equals

subintervals 0 = x0 < x1 < ... < x100 = 1, xi− xi−1 = hq = 0.01, see details about the

numerical implementation of the QRM in subsection 3.6.3.

In actual computations we relax the H3 (0, 1) smoothness requirements of the

QRM imposed in subsection 4.2. Namely, in (3.27) use ε = 0 on the first stage of

computing and we use ε ∈ (0, 1) and the H2 (0, 1) norm in (3.27) on the second stage,

also see Lemma 3.3 for ε = 0. The true reason why we can relax that requirement

is that we work in a finite dimensional space when computing, and all norms are
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equivalent in such a space. The global convergence theorem 3.1 is not directly

applicable in this case for a single reason: because we can guarantee only that

functions cn,k (x) ∈ L2 (0, 1) rather than being continuous. Nevertheless, a discrete

analog of this theorem can be proven. To do this, one can apply almost straightforwardly

the idea of [10] of the proof of convergence of the discrete analog of the QRM for the

Laplace equation and, in particular the discrete Carleman estimate of this reference.

The same problem with smoothness occurs in 2-D and 3-D cases. as our preliminary

studies indicate, and it can also be handled this way. Because of space considerations,

we leave this development outside of the current publication and plan to work it out

in the future.

Remark 3.4. In our computations we have used 100 mesh points in [0, 1] . However,

when we have tried to increase this number to 200, results of the QRM worsened. Most

likely this was because the dimension of our above mentioned finite dimensional space

was becoming too large, thus making it “almost” infinitely dimensional. Note that

above mentioned discrete estimates of [10] naturally worsen when the grid step size

decreases. Hence, one would need to introduce the H3 (0, 1) smoothness requirements

of subsection 3.3.2 if decreasing the step size hq. In other words, there exists a natural

trade-off between hq and the smoothness.

Step 1. Finding the geometry. Proceed with the algorithm of section 3.3

with the truncation (3.23) and ε = 0 in (3.34). In addition to boundary conditions

(3.26) in the QRM we have also added the Dirichlet boundary condition at x = 1,

qn,k (1) = dn, (3.83)

where the number dn is known from the forward problem solution, see Remark 3.2. On

this stage we average discrete approximations cn,k for the coefficient c(x). Suppose a

discrete function cn,k (xi) is found, where xi ∈ (0, 1) are grid points. Then we compute
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another function bn,k (xi) and re-define the value cn,k (xi) as

bn,k (xi) =
1

5

i+2∑
j=i−2

cn,k (xj) , (3.84)

bn,k(x0) = bn,k(x1) = bn,k(x99) = bn,k(x100) = 1, cn,k (xi) := bn,k (xi) .

Next, we compute the discrete function cn,k (x) as in section 3.3. We repeat the

run along the interval s ∈ [0.5, 1.22] several times as follows. Suppose that on the

first s-sweep we have computed the function cN(x) := c
(1)
N (x), which corresponds to

the last s-subinterval [sN , sN−1] = [0.5, 0.49]. Hence, we have also computed the

corresponding tail function VN (x) . Then we return to the first s−interval [s1, s] =

[1.21, 1.22], set V
(2)

1,1 (x) := VN (x) and repeat the algorithm of section 4 via finding

a new function c1 (x) := c
(2)
1 (x) , next a new function c2 (x) := c

(2)
2 (x) , etc., until

new functions c
(2)
N (x) , V

(2)
N (x) are found. We repeat this sweep over the interval

s ∈ [0, 5, 1.22] r times until the stabilization occurs, i.e. until the following inequality

takes place

‖c(r)
N (x)− c(r−1)

N (x)‖L2(0,1) ≤ τ, (3.85)

where τ is a sufficiently small number of our choice. We have taken τ = 10−5

As soon as (3.85) takes place, we set c
(r)
N (x) := c

(1)
1 (x) and go to the Stage 2.

The reason why we use Stage 2 is that Stage 1 gives us only accurate locations of our

mine-like inclusions. However, the computed value of the coefficient c (x) := c(1) (x)

in them is significantly lower than the correct value, see Figure 3.1.

Step 2. Finding the contrast. Having the first approximation for the solution

from Step 1, we now proceed with Step 2. This step provides us with good values for

contrasts in our inclusions.

Step 2.1. We take the last tail function V
(r)
N (x) computed on the first step as the

starting value for the algorithm of Section 3.3. In other words, in Step 11 of section

3.3 we set V1,1 (x) := V
(r)
N (x) . Next, we proceed with a modified algorithm of section
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Figure 3.1: A typical example of images we obtain on Step 1. (a) displays the correct

coefficient. (b) shows the computed c
(r)
N (x) where (3.84) holds. In all our experiments

r = 5, i.e. stabilization on Step 1 took place after 5 s-sweeps. The location of the
mine-like target is imaged with a good accuracy. However, only 45% (1.8/4) of the
contrast is imaged. Thus, it is necessary to proceed with Step 2.

3.3. Namely, let functions q
(r)
n,k (x) ∈ H2 (0, 1) be functions q

(r)
n,k (x) computed on the

last s-sweep in step 1. Then we minimize the following functionals in the QRM, see

(3.24)-(3.27) and (3.83)

Jεn,k(qn,k) = ‖q′′n,k(x)− an,kq′n,k(x)−Hn,k‖2
L2(0,1) + ε

∥∥∥qn,k − q(r)
n,k

∥∥∥2

H2(0,1)
,(3.86)

qn,k(0) = ψ0,n, q
′
n,k(0) = ψ1,n, q

′
n,k (1) = dn, q

′
n,k (1) = s−2

n . (3.87)

This way we obtain functions q
(1)
n,k, V

(1)

N , c
(1)
n,k as described in section 3.3. However,

unlike Step 1, we do not average functions c
(1)
n,k, i.e. we do not apply the procedure

(3.83).

Step 2.n. Having functions q
(n−1)
n,k , V

(n−1)

N , c
(n−1)
n,k , repeat the sweep over the

s−interval via setting V
(n)

1,1 (x) := V
(n−1)

N and finding q
(n)
n,k via the minimization of

the functional (3.85) in which q
(r)
n,k is replaced with q

(n−1)
n,k . Again, unlike Step 1, we

do not apply the procedure (3.83) to functions c
(n)
n,k.
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Stopping criterion for Step 2. We make steps 2.1, ...2.n2, where the final

sweep number n2 is chosen in numerical experiments. So, we obtain the function

cn2
N (x) .

Since we do not average functions c
(n)
n,k, then typically the function cn2

N (x) looks

like one on Figure 3.2(a), i.e. it is non-smooth. Next, to smooth out the image,

we apply a post processing to the function cn2
N (x) . This post processing consists in

averaging over 5 points as in (3.83) and linear interpolation near the edge x = 1. This

way we obtain the final reconstruction result crec (x) . The linear interpolation “by

values at x = 0.78 and x = 1” is necessary due to the occurrence of some artifacts for

x ∈ [0.78; 1], which is shown on Figures 3.2(a), 3.2(b).

c(x) =
c(1)− c(0.78)

0.22
(x− 0.78) + c(0.78), x ∈ (0.78; 1) .

3.6.3 Parameters used in computations

To summarize our parameters used in computations, we first remind that: λ is

the parameter of the CWF in (3.19), hx is the mesh size in the forward problem

solution, hq is the mesh size in the QRM discretization, h is the mesh size in the

s-direction, m is the number of iterations with respect to the tail for each qn and

parameters τ and ε are defined in (3.84) and (3.85) respectively. It is important that

parameters, once chosen, were used in all our numerical experiments. In other words,

once chosen for one configuration, parameters were not conveniently “adjusted” to

other configurations.

Table 3.1: Parameters used in computations

x0 λ hx hq h m τ ε n2 s-interval

−1 10 0.01 0.01 0.01 10 10−5 0.05 15 [0.5, 1.22]
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Figure 3.2: (a) shows coefficients c̃j(x) calculated on n2 steps for Stage 2. (b) shows
postprocessing procedure.

3.6.4 Numerical Implementation of the Quasi Reversibility Method

We have minimized functionals (3.85) with respect to values of the discrete

function qn,k (xi) at mesh points. To do this, we have used the conjugate gradient

method. In this subsection we explain how we have calculated derivatives with respect

to qn,k (xi) analytically. For brevity we provide this explanation only for Step 1, since

Step 2 is similar. In (3.85) denote for brevity

q : = qn,k, a := an,k, H := Hn,k,

qi = q (xi) , ai = a (xi) , Hi = H (xi) , 0 < xi < 1.

By the QRM we will minimize on Step 1

J(q) = hq

Mx−1∑
i=1

(
qi+1 − 2qi + qi−1

h2
x

− aiqi −Hi

)2

= hq

Mx−1∑
i=1

J2
i ,

subject to boundary conditions

q (0) = q0, q
′ (0) = q1, q

′ (1) = q2, q (1) = q3,
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where numbers q0, q1, q2, q3 are given. Here Mx is the number of mesh points in [0, 1] ,

and in our case Mx = 100. Hence,

∂J

∂qj
= 2hq

Mx−1∑
i=1

∂Ji
∂qj

Ji. (3.88)

An important observation simplifying the calculation of the gradient is that

∂Ji
∂qj

=
δi+1,j − 2δi,j + δi−1,j

h2
x

− aiδi,j, j = 2, ...,Mx − 2, (3.89)

Formulas (3.88), (3.89) explain the calculation of the gradient of the QRM functional

J . In addition, formulas (3.10), (3.23) and (3.52) become in the discrete case

ṽn,k (xi) = −hq

(
n−1∑
j=1

qj (xi) + qn,k (xi)

)
+ Vn,k (xi) ,

cn,k (xi) = max

[
ṽn,k (xi−1)− 2ṽn,k (xi) + ṽn,k (xi+1)

h2
q

+ s2
n

(
ṽn,k (xi+1)− ṽn,k (xi)

2hq

)2

, 1

]

3.6.5 Results of the reconstruction

In this subsection we present results of our reconstructions. We have performed

numerical experiments to reconstruct c (x) as inclusions. In all our tests we have

introduced the multiplicative random noise in the boundary data, wσ, by adding

relative error to computed data wobs using the following expression

wσ (xi, sj) = wobs (xi, sj) [1 + ασ] , i = 0, 1,Mx − 1,Mx; , j = 1, .., N.

Here, α is a random number in the interval [−1; 1], and σ is the noise level. We

use σ = 0.05 of the multiplicative random noise in the observed boundary data wobs.

The starting value for the tail was chosen V1,1 (x, s) = 0, which reflects the fact that

no advanced knowledge about tails is available. Because of the application of our
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interest, we model our mine-like targets as a inclusions of the width 0.2, the height

a > 1 and with different centers x∗ ∈ [0.2, 0.5] , see section 3.5 and, in particular,

(3.80). To avoid dealing with discontinuities, we model our inclusions as continuous

functions which look as the cos function.

Test 3.1. We test our numerical method for the case a = 3 and with two centers

at x∗ = 0.2 and at x∗ = 0.4. That is, we calculate the data via the solution of the

forward problem for the function c (x) defined as

c (x) =

 1 + 3 cos(0.5π(x− x∗)/0.1), |x− x∗| < 0.1

1, otherwise
. (3.90)

As we can see, in both cases the location of the center of the imaged inclusion is

shifted to the left by about the radius of this inclusion 0.1. The error in the 4:1

inclusion/background contrast is 10% (1-3.6/4) for x∗ = 0.2 and 33% (1− 2.7/4) for

x∗ = 0.4. The 10% error can be explained by the fact that the function c (x) does not

exactly equal 4 within inclusion. As to a much larger error of 33% for x∗ = 0.4, we refer

to Figure 3.3(c) for a possible explanation. Indeed, this figure shows that at larger

distances from the left edge x = 0 the sensitivity function f (s) = w (0, s) [w0 (0, s)]−1

becomes closer to 1, i.e. the data loose their sensitivity when the target moves away

from the back reflected edge x = 0. One can see on Figure 3.3(c) that the sensitivity

of the data is much better for x∗ = 0.2 than for x∗ = 0.4 and x∗ = 0.5. This explains

a better accuracy of Figure 3.3(a).

Test 3.2. Consider now a more realistic case when the medium is a slowly

changing background with a mine-like targets embedded in it. Consider functions

h1(x), h2(x) defined by

h1(x) = cos2(0.5π(x− 0.5)/0.45),

h2(x) = 3 cos(0.5π(x− x∗)/0.1).



84

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4
exact

calculated

(a)

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4
exact

calculated

(b)

0.5 1 1.5 2 2.5 3 3.5 4

0.88

0.9

0.92

0.94

0.96

0.98

1

center - 0.2

center - 0.4

center - 0.5

(c)

Figure 3.3: Test 3.1:(a) displays exact and calculated functions (3.90) for x∗ = 0.2.
(b) displays exact and calculated functions for x∗ = 0.4. (c) displays the “sensitivity”
function f (s) = w (0, s) [w0 (0, s)]−1 for s ∈ [0.5, 4] for different centers x∗ =
0.2, 0.4, 0.5 of mine-like targets.

And calculate the data for the function c (x) defined by

c (x) =



1 + h1(x), x ∈ (0.05; 0.095) , |x− x∗| ≥ 0.1,

1 + h2(x), |x− x∗| < 0.1,

1 + h1(x), |x− x∗| < 0.1,

1, otherwise

(3.91)

As one can see from Figure 3.4, the quality of the reconstruction of the mine-like

target is better than one in the case of the uniform background (Test 3.1), especially

for x∗ = 0.4. As to the slowly changing background, it is not reconstructed accurately.

The latter is insignificant for our specific application, since we only want to image

mine-like inclusion. An explanation of a poor quality of the reconstruction of the

slowly changing background follows from our next test (Figure 3.5(c)). One can see

on Figure 3.4(c) that the sensitivity of the data for x∗ = 0.2 and x∗ = 0.4 is better

than on Figure 3.3(c). This partially explains a better accuracy in this case.

Test 3.3. We test our numerical method for two sets of blind data. These
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Figure 3.4: Test 3.2: (a) and (b) display exact and calculated functions (3.91) for
x∗ = 0.2 and x∗ = 0.4 respectively. (c) displays the “sensitivity” function f (s) =
w (0, s) [w0 (0, s)]−1 for s ∈ [0.5, 4] for different centers x∗ = 0.2, 0.4.

data were kindly produced for us, by our request, by Professor Paul Sacks from Iowa

State University (he has kindly allowed us to reproduce results of our tests here).

He has calculated the solution of the above forward problem by a method, which is

different from ours. No noise was introduced. Next, he has given us resulting values of

qn (0) , q′n (0) , qn (1) . However, when applying our code to these data, we did not know

the answer. This answer became known to us only after we got our solution. Our

results are displayed on Figure 3.5. As one can see, in the case of a slowly changing

background, the accuracy of the reconstruction from the blind data is about the

same as in Test 3.3. However, in the case of a constant background (Figure 3.5(a))

the accuracy is even better than one of Figure 3.3(b).

Figure 3.5(c) displays two superimposed curves of the function w (0, s) for the case

of Figure 3.5(b): one for the exact coefficient c (x) and the second one for the calculated

coefficient c (x) . One can see that these two curves are practically indistinguishable.

The fundamental reason of this is the ill-posed nature of our CIP: we see an example

when a small fluctuation of the data correspond to a large deviation of the solution.
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Figure 3.5: Test 3.3: Two sets of blind data kindly produced for us by Professor Paul
Sacks. (a) shows the case a mine-like target embedded in the uniform background. (b)
displays the case of a mine-like target embedded in a slowly changing background. To
understand why we cannot image the slowly changing background along with mine-
like targets, we have superimposed on (c) two functions w (0, s) for (b): one for the
exact coefficient c(x) and the second one for the calculated coefficient c(x). There is
a very little difference between these two curves.

So, Figure 3.5(c) provides an explanation of our inability to image the slowly changing

background in the case when a mine-like inclusion is embedded in it, also see Test 3.2

for a similar observation.

3.6.6 The case of the back reflected data only

In above tests 3.1-3.3 we have assumed that both functions q(1, s), qx(1, s) are

known. While by (3.17) the function qx(1, s) = s−2 is known automatically, the

Dirichlet boundary condition q(1, s) is unknown when one works with the back

reflected data. So, we now test the case when the function q(1, s) is unknown. We have

tried to figure out an approximation for this function using Step 1 for the function

c (x) given in (3.90). Suppose that on the s-sweep number k of Step 1 we have

found the function ĉ
(k)
N (x) . Using this function, we have calculated the solution of

the forward problem (3.81), (3.82) with c := ĉ
(k)
N (x) . Next, we have calculated the
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function q(1, s) and compared it with the exact function q∗(1, s) via

εrel =
‖qcalc(1, s)− q∗(1, s)‖L2(0.5,1.22)

‖q∗(1, s)‖L2(0.5,1.22)

.

Table 3.2: Finding the optimal number of s-sweeps in Step 1 for the case of the
backreflected data only

x∗ Number of s-sweeps εrel

0.2 1 0.06
0.4 1 0.02
0.2 2 0.05
0.4 2 0.01
0.2 3 0.03
0.4 3 0.007

Table 3.6.6 provides summary of results. We have used the function qcalc(1, s)

obtained after 3 sweeps as an approximation for the correct function q∗(1, s). Next, we

performed calculations with qcalc(1, s) as described in subsections 3.6.2, 3.6.3. Figure

3.6 displays results for two values x∗ = 0.2 and x∗ = 0.4. Similar results (not shown)

were obtained for the case when the function (3.91) was reconstructed.

3.6.7 Why the function q(1, s) is likely not informative?

We now show that the function q (1, s) is likely not informative in fact. Consider

the case when c (x) = 1 + c̃ (x) , where c̃ (x) = 0 for x /∈ (0, 1) and

|c̃ (x)| << 1. (3.92)

The solution of the forward problem (3.6), (3.7) can be represented via the following

integral equation

w (x, s) =
1

2s
e−s|x−x0| − 1

2s

1∫
0

e−s|x−ξ|c̃ (ξ)w (ξ, s) dξ.
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Figure 3.6: (a) and (b) display results of the reconstruction of the function (3.90) for
the case when the function q (1, s)was found approximately via the procedure of this
subsection after 3 s-sweeps. Locations of mine-like targets are reconstructed with a
good accuracy. However, the inclusion/background contrast is reconstructed poorly,
see a discussion in next section.

Since in our case s ∈ [0.5, 1.22], then by (3.92) solution of this equation can be

represented via convergent resolvent series

w (x, s) =
1

2s
e−s|x−x0| +

∞∑
n=1

wn (x, s) ≈ 1

2s
e−s|x−x0| + w1 (x, s) ,

where

w1 (x, s) =
1

4s2

1∫
0

exp [−s (|x− ξ − x0|+ |ξ − x0|)] c̃(ξ)dξ,

which corresponds to the linearization with respect to c̃, i.e., the well known Born

approximation (note that we have not used the linearization before this subsection).

Since x0 < 0, we obtain

w1 (1, s) =
exp [−s (1− 2x0)]

4s2

1∫
0

c̃(ξ)dξ.
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In other words, in the case (3.92) the function q (1, s) contains only the information

about the integral of the function c̃(x) over (0, 1) . Clearly, there is not much information

about c̃(x) in this integral.

3.7 Discussion

We have presented a globally convergent numerical method for a 1-D CIP. This

method is a modification of the technique described in [27–29,31]. The key point of the

modification is the use of over determined boundary conditions, which weren’t used

in [27–29, 31]. The latter logically led to the application of the Quasi-Reversibility

Method [14, 20]. We consider this chapter as a prelude to our use of the QRM

for 2-D and 3-D cases. The reason of using over-determined boundary conditions

is our intention to work with the back reflected data only, since the latter is the

case of many applications. In particular, in our numerical experiments here we

have considered an application to imaging of the dielectric permittivity in inclusions

modeling antipersonnel land mines [39].

We have proven a global convergence theorem for our method. Since its proof

is based on the Carleman estimate for the operator d2/dx2 and Carleman estimates

allow to obtain specific estimates for all constants involved, then this theorem includes

a specific upper estimate for the constant K = 8e. This is an advantage over the

global convergence Theorem 6.1 of [27], since in that result an explicit estimate for a

constant involved in the classic Schauder theorem was not obtained.

The resulting convergence estimate (3.50) depends on a small parameter η.Although

(3.50) guarantees that the resulting solution is sufficiently close to the correct one, still

η cannot be made infinitely small in any practical computation. Therefore, a logical

conclusion is that in order to enhance the solution obtained by the globally convergent

part, one should subsequently use a locally convergent method which would take the

solution obtained on by the globally convergent method as a good first guess. Indeed,

a good first guess is the main ingredient which any locally convergent algorithm needs,
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and this is exactly what our technique provides. On the other hand, locally convergent

numerical methods for CIPs are independent on all components of the parameter η

except of the level of error in the data σ. This two stage scheme was carried out

in [28,29] in 2-D and in [31] in 3-D, and results were quite good (for the case of non-

over determined data). Our preliminary results for the QRM in the 2-D case indicate

that such a two stage procedure should be implemented for the QRM. However, when

working on this chapter, we were not prepared to use a locally convergent method on

the second stage. Thus, we have modified our globally convergent algorithm. Still,

the main point is that Theorem 3.1 almost works for this modified version. The part

which does not work is the lower smoothness conditions we have actually used in our

computations. The latter can be justified by the fact that we actually work in a finite

dimensional space of discrete functions, in which all norms are equivalent. In addition,

the technique of [10] of the convergence proof for the discrete version of the QRM can

be modified for our case and discrete analogs of lemmata 3.2, 3.3 can be obtained. On

the other hand, when we have tried to increase the number of mesh points in QRM,

computational results worsened. The latter can be explained by the fact that the case

of “too many” mesh points is sort of close to the continuous case, when one indeed

needs a higher smoothness prescribed by Lemma 3.3 and, subsequently, Theorem 3.1.

First, we have tried in our computations to use non-over determined boundary

conditions and thus, to solve a regular boundary value problem for the ODE for each

function qn. However, this attempt has failed to produce good quality solutions for

reasons which we cannot explain at this moment (Remark 3.1). Thus, we have used

the QRM. We have obtained rather accurate solutions of our CIP in our numerical

tests, in the case when both Dirichlet and Neumann boundary conditions for functions

qn are known at both edges of the interval (0, 1) : recall that the Neumann condition

at x = 1 is given automatically, whereas the Dirichlet boundary condition is not

given. Furthermore, we have established analytically that the latter condition likely
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does not carry a lot of information. We have tested two cases of the medium: (1)

when a mine-like target is embedded in the uniform background and (2) when this

target is embedded in a slowly changing background. Our sensitivity curves of Figures

3.3(c) and 3.4(c) at least partially explain the quality of results. Results of imaging

of these targets in the second case were more accurate. However, the slowly changing

background was imaged poorly, which is still acceptable for our application. An

explanation of the poor image of that background is linked with the ill-posed nature

of our CIP. Indeed, we have shown that the boundary data for the forward problem

solution with our computed coefficient, which actually represented the image of the

mine-like target only, are very close to the original boundary data, which included

both that target and the slowly changing background. In particular, we presented

two tests for the case of blind data.

The case when the Dirichlet boundary condition at x = 1 was unknown, was

computed with a lesser accuracy. Specifically, while locations of mine-like targets

were imaged accurately, the inclusion/background contrast was imaged poorly. Still,

we believe that an application of the above mentioned two-stage procedure should

provide a better accuracy in the contrast. In addition, the 2-D and 3-D data are

more informative, because waves can get around targets in these cases, unlike the

1-D case considered here. So, we believe that our future images with 2-D and 3-D

CIPs with the backscattering data only will have a good quality, and our preliminary

computations provide a good indication of this.



CHAPTER 4: GLOBALLY CONVERGENT NUMERICAL METHOD FOR A
HYPERBOLIC COEFFICIENT INVERSE PROBLEM IN THE 2D CASE

4.1 Statements of Forward and Inverse Problems

We work with the 2-d case only. Some properties of the solution of the forward

problem were established in the 3-d case in [40]. Their extensions to the 2-d case can

be done along the same lines, although it is space consuming. Hence, for brevity we

use these properties here, assuming that they hold for 2-d.

Denote x = (x, z) ∈ R2. As the forward problem, we consider the Cauchy problem

for a hyperbolic PDE

c (x)utt = ∆u in R2 × (0,∞) , (4.1)

u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (4.2)

Equation (4.1) governs, e.g. propagation of acoustic and electromagnetic waves.

In the acoustical case 1/
√
c (x) is the sound speed. In the 2-d case of EM waves

propagation in a non-magnetic medium the coefficient c (x) is c (x) := εr (x) , where

εr (x) is the spatially distributed dielectric constant, i.e. εr (x) = ε (x) /ε0, where ε (x)

is the spatially distributed electric permittivity of the medium and ε0 is the dielectric

permittivity of the vacuum, see [32] for the derivation of (4.1) from Maxwell’s equations

in the 2-d case. Let Ω ⊂ R2 be a convex bounded domain with the piecewise smooth

boundary ∂Ω. As it is always the case of the QRM, we need to assume a certain

over-smoothness of the solution. So, we assume that the function c (x) satisfies the
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following conditions

c (x) ≥ 1, c (x) = 1 for x ∈ R2�Ω, (4.3)

c (x) ∈ C4
(
R2
)
. (4.4)

We will work with the Laplace transform of the functions u,

w(x, s) =

∞∫
0

u(x, t)e−stdt, for s ≥ s = const. > 0, (4.5)

where s is a certain number. In our numerical studies we choose s experimentally.

We call the parameter s pseudo frequency. Equation for the function w is

∆w − s2c (x)w = −δ (x− x0) ,∀s ≥ s, (4.6)

lim
|x|→∞

w(x, s) = 0,∀s ≥ s. (4.7)

The condition (4.7) was established in [40] for sufficiently large values of s. In addition,

for these values of s [40]

w (x, s) > 0. (4.8)

In the course of the proof of the convergence theorem (section 4.5) we will work with

functions c ∈ C1 (R2) ⊂ Cγ (R2) ,∀γ ∈ (0, 1) . Below Ck+γ are Hölder spaces, where

k ≥ 0 is an integer. It follows from the classic theory of elliptic PDEs [43] that if

c ∈ Ck+γ (R2) , then w ∈ Ck+2+γ (R2� {|x− x0| < θ}) ,∀θ > 0.

In our derivations we need an asymptotic behavior of the function w(x, s) at

s→∞, which is formulated in Lemma 4.1. Although this lemma is now formulated

only for the 3-d case, we assume that it is valid in the 2-d case as well, see the

beginning of this section.

Lemma 4.1. [27]. Assume that conditions (4.3) and (4.4) are satisfied and that we
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work in R3. Let the function w(x, s) ∈ C5+γ (R3� {|x− x0| < θ}), ∀θ > 0 be the

solution of the problem (4.6), (4.7). Assume that geodesic lines, generated by the

eikonal equation corresponding to the function c (x) are regular, i.e. any two points

in R3 can be connected by a single geodesic line. Let l (x,x0) be the length of the

geodesic line connecting points x and x0. Then the following asymptotic behavior of

the function w and its derivatives takes place for |α| ≤ 2, k = 0, 1,x 6= x0

Dα
xD

k
sw(x, s) = Dα

xD
k
s

{
exp [−sl (x,x0)]

f (x,x0)

[
1 +O

(
1

s

)]}
, s→∞, (4.9)

where f (x,x0) is a certain function and f (x,x0) 6= 0 for x 6= x0.

An interesting question here is about an easily verifiable sufficient condition of

the regularity of geodesic lines. In general, such a condition is unknown, except of

the trivial case when the function c (x) is close to a constant. To our best knowledge,

the only case of such a condition in 2-d is

∆ ln c (x) ≥ 0,∀x ∈ R2,

see [45] as well as Theorem 2 in Chapter 2 of [42]. However, this condition is

not satisfied in our computational examples. So, we verify (4.9) numerically in our

computations (subsection 7.2 of [27]): this is a typical case when the computational

experience is less pessimistic than the theory. Thus, everywhere below we assume

that the asymptotic behavior (4.9) is valid.

To simplify the presentation and also because of our target application to imaging

of plastic land mines, we now specify the domain Ω ⊂ R2. Let B > 0 be a constant.
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Below

Ω = (−B,B)× (0, 2B), ∂Ω = ∪4
i=1Γi, (4.10)

Γ1 = ∂Ω ∩ {z = 0},Γ2 = ∂Ω ∩ {x = B}, (4.11)

Γ3 = ∂Ω ∩ {x = −B},Γ4 = ∂Ω ∩ {z = 2B}. (4.12)

Inverse Problem. Suppose that the coefficient c (x) in equation (4.6) satisfies

conditions (4.3), (4.4) and is unknown in the domain Ω. Determine the function c (x)

for x ∈ Ω, assuming that the following functions ϕ0 (x, s) and ϕ1 (x, s) are known

for a single source position x0 /∈ Ω

w (x, s) |Γ1 = ϕ0 (x, s) , wz (x, s) |Γ1 = ϕ1 (x, s) ,∀s ∈ [s, s] , (4.13)

where s > s is a number, which should be chosen experimentally in numerical studies.

Note that in experiments usually only the function u(x, 0, t) is measured. One

can approximately assume that the function u(x, 0, t) is known for all x ∈ R implying

that the function ϕ0 (x, s) is known for all x ∈ R and for all s ∈ [s, s] via the Laplace

transform (4.5) of u(x, 0, t). Next, since the coefficient c (x) = 1 is known for z < 0,

then solving the forward problem (4.6), (4.7) in the half plane {z < 0} with the

boundary condition w (x, 0, s) = ϕ0 (x, s), one can uniquely determine the function

w(x, s) for z < 0, thus coming up with the function wz (x, 0, s) = ϕ1 (x, s).

The question of uniqueness of this CIP is a well known long standing problem.

Currently it can be addressed positively via the method of Carleman estimates only

in the case when the δ (x− x0) in (4.2) is replaced with such a function f (x) that

f (x) 6= 0 in Ω [14]. Nevertheless, the authors believe that, because of the applied

aspect, it makes sense to develop a globally convergent method for this CIP, assuming

that uniqueness holds.
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4.2 Layer Stripping With Respect to s

By (4.8) we can consider the function v = lnw/s2. Hence, (4.6) and (4.13) lead

to

∆v + s2 |∇v|2 = c (x) , x ∈ Ω, (4.14)

v|Γ1 = ϕ2 (x, s) , vz|Γ1 = ϕ3 (x, s) , ∀s ∈ [s, s] , (4.15)

where ϕ2 = lnϕ0/s
2, ϕ3 = ϕ1/ (s2ϕ0) . The term δ (x− x0) is not present in (4.14)

because x0 /∈ Ω. We now eliminate the function c (x) from equation (4.14) via the

differentiation with respect to s, since ∂sc (x) = 0. Introduce a new function q (x, s) =

∂sv (x, s) . Lemma 4.1 implies that

Dα
x(v) = O

(
1

s

)
, Dα

x(q) = O

(
1

s2

)
, s→∞; |α| ≤ 2, (4.16)

v (x, s) = −
∞∫
s

q (x, τ) dτ. (4.17)

We truncate the integral in (4.17) as

v (x, s) ≈ −
s∫
s

q (x, τ) dτ, (4.18)

where s > s is a large parameter which should be chosen in numerical experiments.

Actually, s is one of regularization parameters of our method. In fact, we have

truncated here the function V (x, s) , which we call the tail function,

V (x, s) = −
∞∫
s

q (x, τ) dτ.
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By (4.16) ∥∥Dk
sV (x, s)

∥∥
C2(Ω) = O

(
1

sk+1

)
, k = 0, 1; s→∞. (4.19)

Although by (4.19) the tail is small for the large values of s, the numerical experience

of [27,31,40,41,44] shows one should that it would be better to somehow approximate

the tail function updating it via an iterative procedure.

Thus, still taking into account the tail, we obtain from (4.14) and (4.18) the

following nonlinear integral differential equation

∆q − 2s2∇q ·
s∫
s

∇q (x, τ) dτ + 2s

 s∫
s

∇q (x, τ) dτ

2

+ 2s2∇q∇V − 2s∇V ·
s∫
s

∇q (x, τ) dτ + 2s (∇V )2 = 0.

(4.20)

Let ψ0 (x, s) = ∂sϕ2 (x, s) , ψ1 (s) = ∂sϕ3 (x, s) . Then (4.15) implies that

q|Γ1 = ψ0 (x, s) , qz|Γ1 = ψ1 (x, s) , ∀s ∈ [s, s] . (4.21)

A slight modification of arguments of subsection 2.2 of [40] shows that, for if

s > s and s is sufficiently large, then the function w (x, s) tends to zero together with

its appropriate (x, s)−derivatives as |x| → ∞ (in both 3-d and 2-d cases), which is

slightly more general than (4.7). Hence, we have the following radiation condition

lim
B→∞

(
∂w

∂νi
+ sw

)
|Γi= 0, i = 2, 3, 4.

where νi is the outer normal vector on Γi. Since q(x, s) = ∂s (s−2 lnw) , then we

obtain from the latter the following approximate Neumann boundary condition for

the function q at Γi

∂νiq |Γi= s−2, i = 2, 3, 4. (4.22)
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So, while conditions (4.21) change with the change of the unknown coefficient c (x) ,

the condition (4.22) is generic and it is independent on c (x) . Thus, we use conditions

(4.22) only to stabilize the problem.

The presence of integrals in (4.20) implies the nonlinearity, which is the main

difficulty here. If the functions q and V are approximated well from (4.20)-(4.22)

together with their x−derivatives up to the second order, then the target unknown

coefficient c (x) is also approximated well from (4.14), where the function v is computed

from (4.18), where the function V is added. Thus, below we focus on the following

question: How to solve numerically the problem (4.20)-(4.22)?

Remark 4.1. Since the tail function V is unknown, equation (4.20) contains two

unknown functions q and V . The reason why we can approximate both of them is that

we treat them differently: while we approximate the function q via inner iterations,

the function V is approximated via outer iterations.

We approximate the function q (x, s) as a piecewise constant function with respect

to the pseudo frequency s. That is, we assume that there exists a partition s = sN <

sN−1 < ... < s1 < s0 = s of the interval [s, s] with the sufficiently small grid step

size h = si−1 − si such that q (x, s) = qn (x) for s ∈ (sn, sn−1] . We approximate the

boundary condition (4.21), (4.22) as

qn|Γ1 = ψ0,n(x), ∂zqn|Γ1 = ψ1,n(x), ∂νqn|Γi = (snsn−1)−1 , i = 2, 3, 4. (4.23)

where ψ0,n, ψ1,n and (snsn−1)−1 are averages of functions ψ0, ψ1 and s−1 over the

interval (sn, sn−1) . Rewrite (4.20) for s ∈ (sn, sn−1] using this piecewise constant

approximation. Then multiply the resulting approximate equation by the s-dependent

Carleman Weight Function (CWF) of the form

Cn,µ (s) = exp [−µ |s− sn−1|] , s ∈ (sn, sn−1] ,
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and integrate with respect to s ∈ (sn, sn−1] . We obtain the following approximate

equation in Ω for the function qn (x) , n = 1, ..., N

Ln (qn) : = ∆qn − A1n

(
h
n−1∑
j=1

∇qj −∇Vn

)
∇qn = (4.24)

= Bn (∇qn)2 − A2,nh
2

(
n−1∑
j=1

∇qj

)2

+ 2A2,n∇Vn

(
h

n−1∑
j=1

∇qj

)
− A2,n (∇Vn)2 .

We have intentionally inserted dependence of the tail function Vn from the iteration

number n here because we will approximate these functions iteratively. In (4.24)

A1,n = A1,n (µ, h) , A2,n = A2,n (µ, h) , Bn = Bn (µ, h) are certain numbers depending

on µ and h, see specific formulas in [27]. It is convenient to set in (4.24)

q0 ≡ 0. (4.25)

Since boundary value problems (4.23), (4.24) are actually generated by equation

(4.20), which contains Volterra-like s-integrals, then these problems can be solved

sequentially starting from q1. Since boundary conditions (4.23) are over-determined

ones, it is natural to apply a version of the QRM here, because the QRM finds “least

squares” solutions in the case of over-determined boundary conditions.

Remark 4.2. As to (4.24), an important point is that |Bn (µ, h)| ≤ 8s2/µ for µh ≥ 1

[27]. We have used µ = 50 in our computations. Hence, assuming that µ >> 1,we

ignore the nonlinear term in (4.24) below via setting Bn (∇qn)2 := 0. This allows us

to solve a linear problem for each qn.

4.3 The Algorithm

Our algorithm reconstructs iterative approximations cn,k (x) ∈ C1
(
Ω
)

of the

function c (x). On the other hand, to iterate with respect to the tails, we need

to solve the forward problem (4.6), (4.7) in R2 on each iterative step. To do this,
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we extend each function cn,k (x) outside of the Ω, so that the resulting function

ĉn,k (x) = 1 outside of Ω, ĉn,k (x) = cn,k (x) in a subdomain Ω′ ⊂⊂ Ω and ĉn,k ∈

C1 (R2). In addition, to ensure the ellipticity of the operator in (4.6), we need to

have ĉn,k (x) ≥ const. > 0 in R2. So, we now describe a rather standard procedure of

such an extension. Choose a function χ (x) ∈ C∞ (R2) such that

χ (x) =


1 in Ω′,

between 0 and 1 in Ω�Ω′,

0 outside of Ω.

The existence of such functions χ (x) is well known from the Real Analysis course.

Define the target extension of the function cn,k as ĉn,k (x) := (1− χ (x))+χ (x) cn,k (x) ,∀x ∈

R2. Hence, ĉn,k (x) = 1 outside of Ω and ĉn,k ∈ C1 (R2). Let Ω̃ ⊆ Ω be a subdomain

and Ω′ ⊂⊂ Ω̃. Suppose that cn,k (x) ≥ 1/2 in Ω̃. Then ĉn,k (x) ≥ 1/2 in Ω. Indeed,

ĉn,k (x)− 1/2 = (1− χ (x)) /2 + χ (x) (cn,k (x)− 1/2) ≥ 0.

4.3.1 The iterative process

We now present our algorithm. On each iterative step n we approximate both

the function qn and the tail function Vn, see Remark 4.1. Each iterative step requires

an approximate solution of the boundary value problem (4.23), (4.24). This is done

via the QRM, which is described in subsection 4.3.2. First, we choose an initial tail

function V1,1 (x) ∈ C2
(
Ω
)

and use (4.25). As to the choice of V1,1, it was taken as

V1,1 ≡ 0 in [27]. In later publications [31, 40, 41, 44] V1,1 was taken as the one, which

corresponds to the case c (x) ≡ 1, where c (x) := 1 is the value of the unknown

coefficient outside of the domain of interest Ω, see (4.3). An observation was that

while both these choices give the same result, the second choice leads to a faster

convergence and both choices satisfy conditions of the global convergence theorem.

For each qn we have inner iterations with respect to tails.

Step nk, where n, k ≥ 1. Recall that by (4.25) q0 ≡ 0. Suppose that functions
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qi ∈ H5 (Ω) , i = 1, ..., n − 1 and tails V1, ..., Vn−1, Vn,k ∈ C2
(
Ω
)

are constructed. To

construct the function qn,k, we use the QRM (subsection 4.3.2) to find an approximate

solution of the following boundary value problem in Ω

∆qn,k − A1n

(
h

n−1∑
j=1

∇qj −∇Vn,k

)
∇qn,k =

−A2,nh
2

(
n−1∑
j=1

∇qj

)2

+ 2A2,n∇Vn,k ·

(
h
n−1∑
j=1

∇qj

)
− A2,n (∇Vn,k)2 , (4.26)

qn,k|Γ1 = ψ0,n(x), ∂zqn,k|Γ1 = ψ1,n(x), ∂νiqn,k|Γi = (snsn−1)−1 , i = 2, 3, 4.

Hence, we obtain the function qn,k ∈ H5 (Ω) . By the embedding theorem qn,k ∈

C3
(
Ω
)
. To reconstruct an approximation cn,k (x) for the function c (x) , we first, use

(4.18) to calculate an approximation for v (x, sn) as

vn,k (x, sn) = −hqn,k (x)− h
n−1∑
j=1

qj (x) + Vn,k (x) . (4.27)

Next, using (4.14), we set for n ≥ 1

cn,k (x) = ∆vn,k (x, sn) + s2
n |∇vn,k (x, sn)|2 ,x ∈ Ω. (4.28)

Assuming that the exact solution of our Inverse Problem c∗ ≥ 1 in R2 (see (4.3)), it

follows from Theorem 4.2 that cn,k (x) ≥ 1/2 in Ωκ ⊂ Ω, where the subdomain Ωκ

is defined in section 4.4. Next, we construct the function ĉn,k (x) as in the beginning

of this section. Hence, by (4.26)-(4.28) the function ĉn,k∈Cγ (R2) . Next, we solve the

forward problem (4.6), (4.7) with c (x) := ĉn,k (x) for s := s and obtain the function

wn,k (x, s) . Next, we set for the new tail

Vn,k+1 (x) =
lnwn,k (x, s)

s2 ∈ C2
(
Ω
)
.
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We continue these iterations with respect to tails until convergence occurs. We cannot

prove this convergence. However, we have always observed numerically that functions

qn,k, cn,k and Vn,k have stabilized at k := m for a certain m. So, assuming that they

are stabilized, we set

cn (x) := cn,m (x) , qn (x) := qn,m (x) , Vn (x) := Vn,m (x) := Vn+1,1 (x) for x ∈ Ω.

We stop iterations with respect to n at n := N .

4.3.2 The quasi-reversibility method

Let Hn,k (x) be the right hand side of equation (4.26) for n ≥ 1. Denote

an,k (x) = A1,n

(
h
n−1∑
j=1

∇qj −∇Vn,k

)
(4.29)

Then the boundary value problem (4.26) can be rewritten as

∆qn,k − an,k · ∇qn,k = Hn,k, (4.30)

qn,k|Γ1 = ψ0,n(x), ∂zqn,k|Γ1 = ψ1,n(x), ∂νiqn,k|Γi = (snsn−1)−1 , i = 2, 3, 4. (4.31)

Since we have two boundary conditions rather then one at Γ1, we find the “least

squares” solution of the problem (4.30), (4.31) via the QRM. Specifically, we minimize

the following Tikhonov functional

Jαn,k(u) = ‖∆u− an,k · ∇u−Hn,k‖2
L2(Ω) + α ‖u‖2

H5(Ω) , (4.32)

subject to boundary condition (4.31), where the small regularization parameter α ∈

(0, 1). Let u (x) be the minimizer of this functional. Then we set qn,k (x) := u (x) .

Local minima do not occur here because (4.32) is the sum of square norms of two

expressions, both of which are linear with respect to u, also see Lemmata 4.3 and
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4.4 in section 4.4. The second term in the right hand side of (4.32) is the Tikhonov

regularization term. We use the H5 (Ω)−norm here in order to ensure that the

minimizer u := qn,k ∈ C3
(
Ω
)
, which implies in turn that functions ĉn,k ∈ C1 (R2).

Remark 4.3. 1. In our computations we relax the smoothness assumptions via

considering the H2 (Ω)−norm in the second term in the right hand side of (4.32).

This is possible because in computations we actually work with finite dimensional

spaces. Specifically, we work with finite differences and do not use “overly fine” mesh,

which means that dimensions of our “computational spaces” are not exceedingly large.

In this case all norms are equivalent not only theoretically but practically as well. To

the contrary, if the mesh would be too fine, then the corresponding space would be

“almost” infinite dimensional.

2. One may pose a question on why we would not avoid the QRM via using

just one of two boundary conditions at Γ1 in (4.31), since we have the Neumann

boundary condition at ∂Ω�Γ1. However, in this case we would be unable to prove

the C3− smoothness of the function qn,k, because the boundary ∂Ω is not smooth.

In the case of the Dirichlet boundary condition only qn,k|Γ1 we would be unable to

prove smoothness even assuming that ∂Ω ∈ C∞, because of the Neumann boundary

condition at the rest of the boundary. Besides, in our convergence estimate of the

QRM in Theorem 4.1 we do not use the boundary condition (4.31) at Γ4. Finally,

since conditions ∂νiqn,k|Γi = (snsn−1)−1 are independent on the target coefficient, it

seems to be that two boundary conditions rather than one at Γ1 should provide a better

reconstruction.

4.4 Estimates for the QRM

For brevity we scale variables in such a way that in sections 4.4 and 4.5 it is

assumed that Ω = (−1/4, 1/4) × (0, 1/2). In sections 4.5 and 4.6 C = C (Ω) > 0

denotes different positive constants depending only on the domain Ω. Let λ, ν > 2 be
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two parameters. Introduce another Carleman Weight Function (CWF) K(z),

K (z) := Kλ,ν(z) = exp(λρ−ν), where ρ (z) = z +
1

4
, z > 0.

Note that ρ (z) ∈ (0, 3/4) in Ω and ρ (z) |Γ4= 3/4. Let the number κ ∈ (1/3, 1) .

Denote Ωκ = {x ∈ Ω : ρ (z) < 3κ/4} . Hence, if κ1 < κ2, then Ωκ1 ⊂⊂ Ωκ2 . Also,

Ω1 = Ω and Ω1/3 = ∅. Lemma 4.2 established the Carleman estimate for the Laplace

operator. Although such estimates are well known [14, 19], we still need to prove

this lemma, because we use a non-standard CWF and also because when integrating

the pointwise Carleman estimate over Ω, we should take into account that only one,

rather than conventional two, zero boundary condition (4.33) is given at both Γ2 and

Γ3. These were not done before.

Lemma 4.2. Fix a number ν := ν0 (Ω) > 2. Consider functions u ∈ H3 (Ω) such

that (see (4.10)-(4.12)

u |Γ1= uz |Γ1= ux |Γ2= ux |Γ3= 0. (4.33)

Then there exists a constant C = C (Ω) > 0 such that for any λ > 2 the following

Carleman estimate is valid for all these functions

∫
Ω

(∆u)2K2dxdz ≥ C

λ

∫
Ω

(
u2
xx + u2

zz + u2
xz

)
K2dxdz + Cλ

∫
Ω

[
(∇u)2 + λ2u2

]
K2dxdz

−Cλ3 ‖u‖2
H3(Ω) exp

[
2λ

(
4

3

)ν0]
.

Proof. It is convenient to assume initially that ν > 2 is an arbitrary number.
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We have

(∆u)2K2 =
(
u2
xx + u2

zz + 2uxxuzz
)
K2 =(

u2
xx + u2

zz

)
K2 + ∂x

(
2uxuzzK

2
)
− 2uxuzzxK

2 + 4λνρ−ν−1uxuzzK
2

=
(
u2
xx + u2

zz + 2u2
xz

)
K2 + ∂x

(
2uxuzzK

2
)

+ ∂z
(
−2uxuxzK

2
)

+4λνρ−ν−1 (uxuzz − uxuzx)K2.

Since

4λνρ−ν−1 (uxuzz − uxuxz)K2 ≥ −1

2

(
u2
zz + u2

xz

)
K2 − 8λ2ν2ρ−2ν−2u2

xK
2,

then we obtain that

(∆u)2K2 ≥ 1

2

(
u2
xx + u2

zz + u2
xz

)
K2 − 8λ2ν2ρ−2ν−2u2

xK
2 (4.34)

+∂x
(
2uxuzzK

2
)

+ ∂z
(
−2uxuxzK

2
)
.

Consider a new function v = u ·K. Substituting u = v ·K−1, we obtain

(∆u)2ρν+1K2 = (y1 + y2 + y3)2ρν+1 ≥ 2y2(y1 + y3)ρν+1, (4.35)

y1 = ∆v, y2 = 2λνρ−ν−1vz, y3 = (λν)2ρ−2ν−2(1− ν + 1

λν
ρν)v.

We have

2y1y2ρ
ν+1 = ∂x (4λνvzvx) + ∂z

[
2λν

(
v2
z − v2

x

)]
. (4.36)
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Next, by (4.35)

2y2y3ρ
ν+1 = 4(λν)3

(
ρ−2ν−2 − ν + 1

λν
ρ−ν−2

)
vzv

= ∂z

[
2(λν)3

(
ρ−2ν−2 − ν + 1

λν
ρ−ν−2

)
v2

]
(4.37)

+4(λν)3 (ν + 1) ρ−2ν−3

(
1− ν + 2

2λν
ρν
)
v2

≥ 2λ3ν4ρ−2ν−3v2 + ∂z

[
2(λν)3

(
ρ−2ν−2 − ν + 1

λν
ρ−ν−2

)
v2

]
.

Summing up (4.36) and (4.37), using the backwards substitution u = v ·K and using

(4.35), we obtain

(∆u)2ρν+1K2 ≥ 2λ3ν4ρ−2ν−3u2K2 + ∂xU1 + ∂zU2, (4.38)

where the following estimates are valid for functions U1 and U2

|U1| ≤ Cλν |ux|
(
|uz|+ λνρ−ν−1 |u|

)
K2, (4.39)

|U2| ≤ Cλν
(
|∇u|2 + λ2ν2ρ−2ν−2u2

)
K2.

Since we do not have the term λ (∇u)2K2 in the right hand side of (4.38),we

continue as follows:

−λνu ·∆uK2 = ∂x
(
−λνuuxK2

)
+ ∂z

(
−λνuuzK2

)
+ λν (∇u)2K2 −

−2λ2ν2ρ−ν−1uzuK
2 = λν (∇u)2K2 − 2λ3ν3ρ−2ν−2u2K2 + ∂xU3 + ∂zU4,

Hence,

−λνu∆uK2 = λν (∇u)2K2 − 2λ3ν3ρ−2ν−2u2K2 + ∂xU3 + ∂zU4, (4.40)

U3 = −λνuuxK2, |U4| ≤ C
(
λνu2

z + λ2ν2ρ−ν−1u2
)
K2.
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Add (4.40) to (4.38) and take into account (4.39) as well as the fact that

2λ3ν4ρ−2ν−3 > 4λ3ν3ρ−2ν−2

for ν > 2. Likewise, by the Cauchy inequality

−λνu ·∆uK2 ≤ λ2ν2ρ−ν−1u2K2/2 + (∆u)2ρν+1K2/2.

Fix the number ν := ν0 > 2. Then we can incorporate ν0 in C and also we can regard

that ρν0+1 < C, since ρν0+1 < 1. Hence, we obtain

(∆u)2K2 ≥ Cλ
[
(∇u)2 + λ2u2

]
K2 + ∂xU5 + ∂zU6, (4.41)

|U5| ≤ Cλ |ux| (|uz|+ λ |u|)K2, |U6| ≤ Cλ
[
|∇u|2 + λ2u2

]
K2.

Now we set in (4.34) ν := ν0, divide it by λd with a positive constant d = d (ν0)

such that 4λν2
0ρ
−2ν0−2/d ≤ C/2 and next add it to (4.41). Then we can choose a

constant obtain the following pointwise Carleman estimate for the Laplace operator

in the domain Ω

(∆u)2K2 ≥ C

λ

(
u2
xx + u2

zz + u2
xz

)
K2 + Cλ

[
(∇u)2 + λ2u2

]
K2 + ∂xU7 + ∂zU8, (4.42)

|U7| ≤ Cλ |ux| (|uzz|+ |uz|+ λ |u|)K2, |U8| ≤ Cλ
[
|uxz|2 + |∇u|2 + λ2u2

]
K2.

We now integrate (4.42) over the rectangle Ω using the Gauss-Ostrogradsky

formula. It is important that because of (4.33) and the estimate for |U7| , resulting

boundary integrals over Γ1,Γ2 and Γ3 will be zero. Finally, to obtain the estimate of

this lemma, we note that

K2

(
1

2

)
= K2 (z) |Γ4= min

Ω
K2 (z) = exp

[
2λ

(
4

3

)ν0]
.
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Thus,

∫
Γ4

λ
[
|uxz|2 + |∇u|2 + λ2u2

]
K2dx ≤ Cλ3 ‖u‖2

H3(Ω) exp

[
2λ

(
4

3

)ν0]
. �

We now establish both existence and uniqueness of the minimizer of the functional

(4.32).

Lemma 4.3. Suppose that in (4.32) Hn,k ∈ L2 (Ω) and that there exists a function

Φ ∈ H5 (Ω) satisfying boundary conditions (4.31), except of maybe at Γ4. Assume

that in (4.29) both components a
(j)
n,k, j = 1, 2 of the vector function an,k are such that

a
(j)
n,k ∈ C

(
Ω
)

and
∥∥∥a(j)

n,k

∥∥∥
C(Ω)

≤ 1. Then there exists unique minimizer uε ∈ H5 (Ω) of

the functional (4.32). Furthermore,

‖uε‖H5(Ω) ≤
C√
α

(
‖Hn,k‖L2(Ω) + ‖Φ‖H5(Ω)

)
.

Proof. We assume here that
∥∥∥a(j)

n,k

∥∥∥
C(Ω)

≤ 1 for the purpose of Theorem 4.2 only,

since actually we can impose any a priori upper estimate on these numbers. Let u

be a minimizer of Jαn,k(u) satisfying boundary conditions (4.31). Denote U = u − Φ.

The function U satisfies boundary conditions (4.33). By the variational principle

(Gn,kU,Gn,kv) + α [U, v] = (Hn,k −Gn,kΦ, Gn,kv) ,

for all functions v ∈ H5 (Ω) satisfying boundary conditions (4.33). Here

Gn,kU := ∆U − an,k · ∇U. (4.43)

Here and below (·, ·) denotes the scalar product in L2 (Ω) and [·, ·] denotes the scalar

product in H5 (Ω). The rest of the proof follows from the Riesz theorem. �

In the course of the proof of Theorem 4.2 we will need
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Lemma 4.4. Consider an arbitrary function g ∈ H5 (Ω) . Let the function u ∈ H5 (Ω)

satisfies boundary conditions (4.33) as well as the variational equality

(Gn,ku,Gn,kv) + α [u, v] = (Hn,k, Gn,kv) + α [g, v] , (4.44)

for all functions v ∈ H5 (Ω) satisfying (4.33). Then

‖u‖H5(Ω) ≤
‖Hn,k‖L2(Ω)√

α
+ ‖g‖H5(Ω) .

Proof. Set in (4.44) v := u and use the Cauchy-Schwarz inequality. �

Theorem 4.1. Consider an arbitrary function g ∈ H5 (Ω) . Let u ∈ H5 (Ω) be the

function satisfying (4.33) and (4.44). Let
∥∥∥a(j)

n,k

∥∥∥
C(Ω)

≤ 1, where a
(j)
n,k, j = 1, 2 are two

components of the vector function an,k in (4.36). Choose an arbitrary number κ such

that κ ∈ (κ, 1) . Consider the numbers b1, b2,

b1 =
1

2
(
1 + (1− κν0) (3κ)−ν0

) < 1

2
, b2 =

1

2
− b1 > 0,

where ν0 is the parameter of Lemma 4.2. Then there exists a sufficiently small

number α0 = α0 (ν0,κ,κ) ∈ (0, 1) such that for all α ∈ (0, α0) the following estimate

holds

‖u‖H2(Ωκ) ≤ C
‖Hn,k‖L2(Ω)

αb1
+ αb2 ‖g‖H5(Ω) .

Proof. Setting (4.44) v := u and using the Cauchy-Schwarz inequality, we obtain

‖Gn,ku‖2
L2(Ω) ≤ F 2 := ‖Hn,k‖2

L2(Ω) + α ‖g‖2
H5(Ω) . (4.45)

Note that K2 (0) = maxΩ K
2 (z) = exp (2λ · 4ν0) . Hence, K−2 (0) ‖K ·Gn,ku‖2

L2(Ω) ≤
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F 2. Clearly (Gn,ku)2K2 ≥ (∆u)2K2/2− C (∇u)2K2. Hence,

∫
Ω

(∆u)2K2dxdz ≤ C

∫
Ω

(∇u)2K2dxdz +K2 (0)F 2. (4.46)

Applying Lemma 4.2 to (4.46), choosing λ > 1 sufficiently large and observing that

the term with (∇u)2 in (4.46) will be absorbed for such λ, we obtain

λK2 (0)F 2 + Cλ4 ‖u‖2
H3(Ω) exp

[
2λ

(
4

3

)ν0]
≥ C

∫
Ω

(
u2
xx + u2

zz + u2
xz + |∇u|2 + u2

)
K2dxdz

≥ C

∫
Ωκ

(
u2
xx + u2

zz + u2
xz + |∇u|2 + u2

)
K2dxdz

≥ C exp

[
2λ

(
4

3κ

)ν0]
‖u‖2

H2(Ω) .

Comparing the first line with the last in this sequence of inequalities, dividing by the

exponential term in the last line, taking λ ≥ λ0 (C,κ,κ) > 1 sufficiently large and

noting that for such λ

λ4 exp

[
−2λ

(
4

3κ

)ν0]
< exp

[
−2λ

(
4

3κ

)ν0]
,

we obtain a stronger estimate,

‖u‖2
H2(Ωκ) ≤ CK2 (0)F 2 + C ‖u‖2

H3(Ω) exp

[
−2λ

(
4

3κ

)ν0
(1− κν0)

]
(4.47)

Applying Lemma 4.4 to the second term in the right hand side of (4.47), we obtain

‖u‖2
H2(Ωκ) ≤ CF 2

{
exp (2λ · 4ν0) + α−1 exp

[
−2λ

(
4

3κ

)ν0
(1− κν0)

]}
. (4.48)

Since α ∈ (0, α0) and α0 is sufficiently small, we can choose sufficiently large λ = λ (α)
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such that

exp (2λ · 4ν0) = α−1 exp

[
−2λ

(
4

3κ

)ν0
(1− κν0)

]
. (4.49)

We obtain from (4.49) that 2λ · 4ν0 = lnα−2b1 . Hence, (4.45) and (4.47)-(4.49) imply

the validity of this theorem. �

4.5 Global Convergence Theorem

We follow the concept of Tikhonov for ill-posed problems described in [46]. By

this concept, one should assume that there exists an “ideal” exact solution of an

ill-posed problem with the “ideal” exact data. Next, one should prove that the

regularized solution is close to the exact one.

4.5.1 Exact solution

First, we need to introduce the definition of the exact solution. We assume that

there exists a coefficient c∗ (x) satisfying conditions (4.3), (4.4), and this function is

the unique exact solution of our Inverse Problem with the exact data ϕ∗0 (x, s) , ϕ∗1 (x, s)

in (4.13), where ϕ∗0 (x, s) = w∗ (x, 0, s) , ϕ∗1 (x, s) = w∗z (x, 0, s) , ∀s ∈ [s, s] . Here the

function w∗ (x, s) ∈ C5+γ (R2� {|x− x0| < ε})×C2([s, s]), ∀ε > 0, ∀γ ∈ (0, 1) ,∀s ≥

s is the solution of the forward problem (4.6), (4.7) with c (x) := c∗ (x). Let

v∗ (x, s) = s−2 ln [w∗ (x, s)] , q∗ (x, s) = ∂sv
∗ (x, s) , V ∗ (x) = v∗ (x, s) .

Hence, q∗ (x, s) ∈ C5+γ (Ω)× C1 [s, s]. By (4.14)

c∗ (x) = ∆v∗ (x, s) + s2 |∇v∗ (x, s)|2 , ∀s ∈ [s, s]. (4.50)

The function q∗ satisfies equation (4.20) where V is replaced with V ∗. Boundary

conditions for q∗ are the same as ones (4.21), (4.22), where functions ψ0 (x, s) , ψ1 (x, s)
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are replaced with the exact boundary conditions ψ∗0 (x, s) , ψ∗1 (x, s) for s ∈ [s, s] ,

q∗|Γ1 = ψ∗0 (x, s) , q∗z |Γ1 = ψ∗1 (x, s) , ∂νiq
∗ |Γi= s−2, i = 2, 3, 4. (4.51)

We call the function q∗ (x, s) the exact solution of the problem (4.20)-(4.22) with the

exact boundary conditions (4.51). For n ≥ 1 let q∗n, ψ
∗
0,n and ψ

∗
1,n be averages of

functions q∗, ψ∗0 and ψ∗1 over the interval (sn, sn−1) . Hence, it is natural to assume

that

q∗0 ≡ 0, max
1≤n≤N

‖q∗n‖H5(Ω) ≤ C∗, C∗ = const. > 1, (4.52)

∥∥∥ψ∗0,n − ψ0,n

∥∥∥
H2(Γ1)

+
∥∥∥ψ∗1,n − ψ1,n

∥∥∥
H1(Γ1)

≤ C∗ (σ + h) , (4.53)

max
s∈[sn,sn−1]

‖q∗n − q∗‖H5(Ω) ≤ C∗h (4.54)

Here the constant C∗ = C∗
(
‖q∗‖H5(Ω)×C1[s,s]

)
depends only on the C5

(
Ω
)
×C1 [s, s]

norm of the function q∗ (x, s) and σ > 0 is a small parameter characterizing the level

of the error in the data ψ0 (x, s) , ψ1 (x, s) . We use the H5 (Ω) norm because of the

quasi-reversibility, see (4.32). The step size h = sn−1 − sn can also be considered as

a part of the error in the data. In addition, because of (4.51)

q∗n|Γ1 = ψ
∗
0,n(x), ∂zq

∗
n|Γ1 = ψ

∗
1,n(x), ∂νq

∗
n|Γi = (snsn−1)−1 , i = 2, 3, 4. (4.55)

The function q∗n satisfies the following analogue of equation (4.24)

∆q∗n − A1,n

(
h

n−1∑
i=1

∇q∗i (x)−∇V ∗
)
· ∇q∗n = −A2,nh

2

(
n−1∑
i=1

∇q∗i (x)

)2

+ 2A2,n∇V ∗ ·

(
h
n−1∑
i=1

∇q∗i (x)

)
− A2,n (∇V ∗)2 + Fn (x, h, µ) .

(4.56)
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Since we have dropped the nonlinear term Bn (∇qn)2 in (4.26) (Remark 4.2), we

incorporate this term in the error function Fn (x, h, µ) ∈ L2 (Ω) in (4.56). So, it is

reasonably to assume that

max
µh≥1
‖Fn (x, h, ξ, µ) ‖L2(Ω) ≤ C∗

(
h+ µ−1

)
. (4.57)

4.5.2 Global convergence theorem

Assume that

s > 1, µh ≥ 1. (4.58)

Then [27]

max
1≤n≤N

{|A1,n|+ |A2,n|} ≤ 8s2. (4.59)

We assume for brevity that

ψ
∗
0,n = ψ0,n, ψ

∗
1,n = ψ1,n. (4.60)

The proof of Theorem 4.2 for the more general case (4.53) can easily be extended

along the same lines, although it would take more space. Still, we keep the parameter

σ of (4.53) as a part of the error in the data and incorporate it in the function Fn.

Thus, we obtain instead of (4.57)

max
µh≥1
‖Fn (x, h, ξ, µ) ‖L2(Ω) ≤ C∗

(
h+ µ−1 + σ

)
. (4.61)

We also recall that by the embedding theorem H5 (Ω) ⊂ C3
(
Ω
)

and

‖f‖C3(Ω) ≤ C ‖f‖H5(Ω) ,∀f ∈ H
5 (Ω) . (4.62)

Theorem 4.2. Let the exact coefficient c∗ (x) satisfy conditions (4.3), (4.4). Suppose
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that conditions (4.51)-(4.58), (4.60) and (4.61) are satisfied. Assume that for each

n ∈ [1, N ] there exists a function Φn ∈ H5 (Ω) satisfying boundary conditions (4.31),

except of maybe at Γ4. For any function c ∈ Cγ (R2) such that c (x) ≥ 1/2, c (x) = 1

in R2�Ω consider the solution wc (x, s) ∈ C2+γ (R2� {|x− x0| < θ}) ,∀θ > 0 of the

problem (4.6), (4.7). Let Vc (x) = s−2 lnwc (x, s) ∈ C2+γ (R2� {|x− x0| < θ}) , θ > 0

be the corresponding tail function and V1,1 (x, s) ∈ C2
(
Ω
)

be the initial tail function.

Suppose that the cut-off pseudo frequency s is so large that the following estimates

hold

‖V ∗‖C1(Ω) ≤
ξ

2
, ‖V1,1‖C1(Ω) ≤

ξ

2
, ‖Vc‖C1(Ω) ≤

ξ

2
, (4.63)

for any such function c (x) . Here ξ ∈ (0, 1) is a sufficiently small number. Introduce

the parameter β := s − s, which is the total length of the s-interval covered in

our algorithm. Let α0 be so small that it satisfies the corresponding condition of

Theorem 4.1. Let α ∈ (0, α0) be the regularization parameter of the QRM. Assume

that numbers h, σ, ξ, β, are so small that

h+ µ−1 + σ + ξ ≤ β, (4.64)

β ≤
√
α

136s2 (C∗)2C1

, (4.65)

where the number b2 was introduced in Theorem 4.1 and the constant C1 depends

only on the domain Ω. We assume without loss of generality that C1 ∈ (1, C∗). Then

the following estimates hold for all α ∈ (0, α0) and all n ∈ [1, N ]

‖qn‖H5(Ω) ≤ 3C∗, (4.66)

‖qn − q∗n‖H2(Ωκ) ≤ 2C∗αb2 , (4.67)

‖cn − c∗‖C1(Ωκ) ≤ 2C∗αb2 , cn ≥
1

2
in Ωκ. (4.68)

Remark 4.4. 1. Because of the term s−2 in inequalities (4.65), there is a discrepancy
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between these inequalities and (4.19). This discrepancy was discussed in detail in

subsection 3.3 of [44] and in subsection 6.3 of [31], also see section 1.3. A new

mathematical model proposed in these references allows the parameter ξ in (4.63)

to become infinitely small independently on the truncation pseudo frequency s, also

see discussion in the Introduction section 1.3. We point out that this mathematical

model was verified on experimental data. Indeed, actually the derivatives ∂sVn,k

instead of functions Vn,k were used in the numerical implementation of [44], and

this implementation was done prior experimental data were actually measured, see

subsections 7.1 and 7.2 of [44]. It follows from (4.19) that one should expect that

‖∂sVn,k‖C2(Ω) << ‖Vn,k‖C2(Ω) = O (1/s) , s → ∞. Finally, we believe that, as in

any applied problem, the independent verification on blind experimental data in [44]

represents a valuable justification of this new mathematical model.

2. In our definition “global convergence” means that, given the above new mathematical

model, there is a rigorous guarantee that a good approximation for the exact solution

can be obtained, regardless on the availability of a good first guess about this solution.

Furthermore, such a global convergence analysis should be confirmed by numerical

experiments. So, Theorem 4.2, complemented by our numerical results below, satisfies

these requirements.

3. The assumption of the smallness of the parameter β = s− s is a natural one

because equations (4.26) are actually generated by equation (4.20), which contains the

nonlinearity in Volterra-like integrals. It is well known from the standard Ordinary

Differential Equations course that solutions of nonlinear integral Volterra-like equations

might have singularities on large intervals.

Proof of Theorem 4.2: Denote q̃n,k = qn,k − q∗n, Ṽn,k = Vn,k − V ∗. By (4.63)

∥∥∥Ṽn,k∥∥∥
C1(Ω)

≤ ξ. (4.69)
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This proof basically consists in estimating norms ‖q̃n,k‖Hi(Ωκ) from the above. Compared

with proofs in [27, 31], the main difficulty here is that we have to analyze integral

identities resulting from the QRM, instead of pointwise equations of [27, 31]. Hence,

we use results of Theorem 4.1 here instead of the Schauder theorem of [27]. Recall

that (·, ·) denotes the scalar product in L2 (Ω) and [·, ·] denotes the scalar product in

H5 (Ω).

Since by (4.25) and (4.54) q0 ≡ q∗0 ≡ 0, then (4.66) and (4.67) are true for n = 0.

Assume that they are true for functions qj with j ≤ n − 1, n ≥ 1. Below we will

prove them for j := n. Denote Q∗n = q∗n − Φn, Qn,k = qn,k − Φn. Below in this proof

v ∈ H5 (Ωn) is an arbitrary function satisfying (4.33). Let G∗n,k be the operator in

the left hand side of (4.56). Let H∗n,k be the right hand side of (4.56). Substituting in

(4.56) q∗n := Q∗n + Φn, multiplying both sides by the function Gn,kv, integrating over

Ω and then adding to both sides α [q∗n, v] , we obtain

(
G∗n,kQ

∗
n, Gn,kv

)
+ α [Q∗n + Φn, v] =

(
H∗n,k −Gn,kΦn, Gn,kv

)
+ α [q∗n, v] . (4.70)

It follows from the proof of Lemma 4.3 that

(Gn,kQn,k, Gn,kv) + α [Qn,k + Φn, v] = (Hn,k −Gn,kΦn, Gn,kv) . (4.71)

Subtracting (4.70) from (4.71), we obtain

(
Gn,kQn,k −G∗n,kQ∗n, Gn,kv

)
+ α [q̃n,k, v] =

(
Hn,k −H∗n,k, Gn,kv

)
− α [q∗n, v] , (4.72)

Elementary calculations show that (4.72) is equivalent with

(Gn,kq̃n,k, Gn,kv) + α [q̃n,k, v] = (Pn,k, Gn,kv)− α [q∗n, v] . (4.73)
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In addition, it follows from (4.60) that

q̃n,k |Γ1= ∂z q̃n,k |Γ1= ∂xq̃n,k |Γ2= ∂xq̃n,k |Γ3= 0. (4.74)

The function Pn,k in (4.73) is

Pn,k (x) = −A1,n

(
h
n−1∑
j=1

∇q̃j − Ṽn,k

)
∇q∗n

−A2,n

(
h
n−1∑
j=1

∇q̃j

)(
h

n−1∑
j=1

(
∇qj +∇q∗j

)
− 2∇Vn,k

)
(4.75)

+A2,n∇Ṽn,k ·

(
2h

n−1∑
j=1

∇q∗j − (∇Vn,k +∇V ∗)

)
− Fn.

It follows from (4.63)-(4.65) as well as from (4.66) for qj, j ≤ n− 1 that components

of the vector function an,k in the operator Gn,k satisfy the corresponding condition of

Theorem 4.1,
∥∥∥a(i)

n,k

∥∥∥
C(Ω)

≤ 1, i = 1, 2. Hence, Lemma 4.4 and Theorem 4.1, (4.52),

(4.73) and (4.74) imply that

‖q̃n,k‖H5(Ω) ≤
‖Pn,k‖L2(Ω)√

α
+ C∗, (4.76)

‖q̃n,k‖H2(Ωκ) ≤ C1

‖Pn,k‖L2(Ω)

αb1
+ αb2C∗. (4.77)

It follows from (4.76) and (4.77) that we now need to estimate the norm ‖Pn,k‖L2(Ω)

from the above. First, using (4.52), (4.59), (4.63), (4.64) as well as (4.66) and (4.67)

for qj, j ≤ n− 1, we obtain

∥∥∥∥∥−A1,n

(
h
n−1∑
j=1

∇q̃j − Vn,k

)
∇q∗n

∥∥∥∥∥
L2(Ω)

≤ 24s2 (C∗)2C1β. (4.78)
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Similarly we obtain

∥∥∥∥∥A2,n

(
h
n−1∑
j=1

∇q̃j

)(
h
n−1∑
j=1

(
∇qj +∇q∗j

)
− 2∇Vn,k

)∥∥∥∥∥
L2(Ω)

≤ 80s2 (C∗)2C1β. (4.79)

Likewise,

∥∥∥∥∥A2,n∇Ṽn,k ·

(
2h

n−1∑
j=1

∇q∗j − (∇Vn,k +∇V ∗)

)
− Fn

∥∥∥∥∥
L2(Ω)

≤ 32s2C∗C1β. (4.80)

Summing up (4.78)-(4.80), we obtain ‖Pn,k‖L2(Ω) ≤
[
136s2 (C∗)2C1

]
β. Hence, (4.65)

implies that

‖Pn,k‖L2(Ω) ≤
√
α. (4.81)

Hence, using (4.76), (4.77) and (4.81), we obtain

‖q̃n,k‖H5(Ω) ≤ 2C∗, ‖q̃n,k‖H2(Ωκ) ≤ 2C∗αb2 . (4.82)

The second inequality (4.82) proves (4.67). To prove (4.66), we use the first inequality

(4.82) in ‖qn,k‖H5(Ω) ≤ ‖q̃n,k‖H5(Ω) + ‖q∗n‖H5(Ω) ≤ 3C∗. As soon as (4.66) and (4.67)

are established, the proof of the first inequality (4.68) is straightforward. To do so,

one needs to subtract (4.50) from (4.28) and then use (4.62), (4.66), (4.67), (4.27)

and (4.54) in a straightforward manner. The second inequality (4.68) follows from

(4.3) and the smallness condition imposed on the number α0. �

4.6 A Simplified Mathematical Model of Imaging of Antipersonnel Plastics Land

Mines

The first main simplification of our model is that we consider the 2-D instead of

the 3-D case. Second, we ignore the air/ground interface, assuming that the governing

PDE is valid on the entire 2-D plane. The third simplification is that we consider a

plane wave instead of the point source in (4.1). This is because our current computer
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code is designed only for the plane wave. As it is always the case of sophisticated

computer codes, it takes quite an effort to re-design it for the case of a point source

and this work is currently underway. The point source was considered above only for

the convenience of analytical derivations due to Lemma 4.1.

Let the ground be {x = (x, z) : z > 0} ⊂ R2. Suppose that a polarized electric

field is generated by a plane wave, which is initialized at the point (0, z0), z0 = −0.2 <

0 at the moment of time t = 0. The following hyperbolic equation can be derived

from Maxwell equations [32]

εr(x)utt = ∆u, (x, t) ∈ R2 × (0,∞) , (4.83)

u (x, 0) = 0, ut (x, 0) = δ
(
z − z0

)
, (4.84)

where the function u(x, t) is a component of the electric field. Recall that εr (x) is the

spatially distributed dielectric constant, see the beginning of section 4.1. We assume

that the function εr (x) satisfies the same conditions (4.3), (4.4) as the function c (x) .

The Laplace transform (4.5) leads to the following analog of the problem (4.6), (4.7)

∆w − s2εr(x)w = −δ
(
z − z0

)
,∀s ≥ s, (4.85)

lim
|x|→∞

(w − w0) (x, s) = 0,∀s ≥ s, (4.86)

where w0 (z, s) = exp (−s |z − z0|) /(2s) is such a solution of equation (4.85) for the

case εr(x) ≡ 1 that lim|z|→∞w0 (z, s) = 0.

It is well known that the maximal depth of an antipersonnel land mine does

not exceed about 10 cm=0.1 m. So, we model these mines as small squares with

the 0.1 m length of sides, and their centers should be at the maximal depth of 0.1

m. We set Ω = {x = (x, z) ∈ (−0.3m, 0.3m)× (0m, 0.6m)} . Consider dimensionless

variables x′ = x/0.1, z0′ = z0/0.1. For brevity we keep the same notations both for
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these variables and the new domain Ω,

Ω = (−3, 3)× (0, 6) . (4.87)

We now use the values of the dielectric constant given at http://www.clippercontrols.com.

Hence, εr = 5 in the dry sand and εr = 22 in the trinitrotoluene (TNT). We also take

εr = 2.5 in a piece of wood submersed in the ground. Hence,

εr (TNT)

εr (dry sand)
=

22

5
≈ 4.

Since the dry sand should be considered as a background outside of our domain of

interest Ω, we introduce parameters ε′r = εr/5, s
′ = s · 0.1 ·

√
5, and again do not

change notations. Then relations (4.85) and (4.86) are valid. Hence, we now can

assume that the following values of this scaled dielectric constant

εr (dry sand) = 1, εr (TNT) = 4, εr (piece of wood) = 0.5. (4.88)

In addition, centers of small squares modeling our targets should be in the rectangle

{x = (x, z) ∈ [−2.5, 2.5]× [0.5, 1.0]} . (4.89)

The side of each of our small square should be 1, i.e. 10 cm. The interval [0.5, 1.0]

in (4.89) corresponds to depths of centers between 5 cm and 10 cm and the interval

[−2.5, 2.5] means that any such square is fully inside of Ω. Hence, an accurate image

of the location of that small square as well as of the value of the coefficient εr (x) both

inside and outside of it would provide a useful information about the possible presence

of a land mine and also might help to differentiate between mines and non-mines.
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4.7 Numerical Studies

In this chapter we work only with the computationally simulated data. The data

are generated by solving numerically equation (4.85) in the rectangle R = [−4, 4] ×

[−2, 8] . By (4.87) Ω ⊂ R. To avoid the singularity in δ (z − z0), we actually solve in

R the equation for the function w̃ = w − w0 with zero Dirichlet boundary condition

for this function, see (4.86). We solve the resulting Dirichlet boundary value problem

via the FDM with the uniform mesh size hf = 0.0675.

It is quite often the case in numerical studies, one should slightly modify the

numerical scheme given by the theory, and so we did the same. Indeed, it is well known

in computations that numerical results are usually more optimistic than analytical

ones. We have modified our above algorithm via considering the function ṽ = s−2 ·

ln (w/w0) . In other words, we have divided our solution w of the problem (4.85), (4.86)

by the initializing plane wave w0. This has resulted in an insignificant modification of

equations (4.26). We have observed in our computations that the function w/w0 at

the measurement part Γ1 ⊂ ∂Ω is poorly sensitive to the presence of abnormalities,

as long as s > 1.2, see Figure 1-b). Hence, one should expect that the modified

tail function for the function ṽ should be small for s > 1.2, which is exactly what is

required by the above theory. For this reason, we have chosen the truncation pseudo

frequency s = 1.2 and the initial tail function V1,1 ≡ 0.

4.7.1 Some details of the numerical implementation of the globally convergent method

We have generated the data for s ∈ [0.5, 1.2] with the grid step size h = 0.1 in the

s direction. Since the grid step size in the s-direction is h = 0.1 for s ∈ [0.5, 1.2] , then

β = 0.7 and N = 7. Also, we took the number of iterations with respect to the tail

m1 = m2 = ... = mN := m = 10, since we have numerically observed the stabilization

of functions qn,k, ε
(n,k)
r , Vn,k at k = 10, also, see section 4.3. In our computations

we have relaxed the smoothness assumption in the QRM via taking in (4.32) the

H2−norm instead of the H5−norm, see the first part of Remark 4.3.
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Figure 4.1: (a) The schematic diagram of our data collection. The plane wave falls
from the top and backscattering data are collected at the top side of this rectangle. (b)
The “sensitivity” function f (s) = w (0, 0, s) /w0 (0, s) , s ∈ [0.5, 1.2] for two different
centers (0, 1) and (0, 1.5) of mine-like targets, which correspond to 10 cm and 15 cm
depths respectively.

Based on the experience of some earlier works on the QRM [4, 35] for linear ill-

posed Cauchy problems, we have implemented the QRM via the FDM. Indeed, the

FDM has allowed in [35] to image sharp peaks. On the other hand, the FEM of [4]

did not let to image such peaks. So, we have written both terms under signs of norms

of (4.32) in the FDM form. Next, to minimize the functional (4.32), we have used

the conjugate gradient method. It is important that the derivatives with respect to

the values of the unknown function at grid points should be calculated explicitly.

This was done using the Kronecker symbol, see details in [35]. As soon as discrete

values ε̃
(n,k)
r were computed, we have averaged each such value at the point (xi, zj)

over nine (9) neighboring grid points, including the point (xi, zj) : to decrease the

reconstruction error. The resulting discrete function was taken as ε
(n,k)
r .

We have used the 49× 49 mesh in Ω. However, an attempt to use a finer 98× 98

mesh led to a poor quality results. Most likely this is because the dimension of our

above mentioned finite dimensional space was becoming too large, thus making it
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“almost” infinitely dimensional, which would require to use in (4.32) the H5−norm

instead of theH2−norm, see the first part of Remark 4.3. The regularization parameter

in (4.32) was taken α = 0.04.

We have made several sweeps over the interval s ∈ [0.5, 1.2] as follows. Suppose

that on the first s-sweep we have computed the discrete function ε
(1)
r (x) := ε

(N,10)
r (x),

which corresponds to the last s-subinterval [sN , sN−1] = [0.5, 0.6]. Hence, we have also

computed the corresponding discrete tail function V (1) (x) . Next, we return to the

first s−interval [s1, s] = [1.1, 1.2], set V
(2)

1,1 (x) := V (1) (x) and repeat the algorithm of

section 4.3. We kept repeating these s−sweeps p times until either the stabilization

has was observed, i.e.

‖ε(p)
r − ε(p−1)

r ‖ ≤ 10−5 (4.90)

or an “explosion” of the gradient of the functional Jαn,k on the sweep number p took

place. “Explosion” means that

‖∇Jαn,k(q
(p)
n,k)‖ ≥ 105, (4.91)

for any appropriate values of indices n, k.Here and below ‖·‖ is the discrete L2 (Ω)−norm.

The stopping criterion (4.91) corresponds well with one of backbone principles of the

theory of ill-posed problems. According to this principle, the iteration number can

serve as one of regularization parameters, see pages 156 and 157 of [34].

Suppose that either (4.90) or (4.91) takes place. Then we work with the function

ε
(p)
r . First, as it is usually done in imaging, we apply a truncation procedure. In this

procedure we truncate to unity 85% of the max
∣∣∣ε(p)
r (x)

∣∣∣, see Figure 2. If we have

several local maxima of
∣∣∣ε(p)
r (x)

∣∣∣, then we apply the truncation procedure as follows.

Let {xi}ri=1 ⊂ Ω be points where those local maxima are achieved, and values of those

maxima are respectively {ai}ri=1 . Consider certain circles {B (xi)}ri=1 ⊂ Ω with the

centers at points {xi}ri=1 and such that B (xi) ∩ B (xj) = ∅ for i 6= j. In each circle
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Figure 4.2: A typical example of the image resulting from the globally convergent
stage. The rectangle is the domain Ω. This is the image of Test 4.1 (subsection
4.7.3). (a) The correct coefficient. Inclusions are two squares with the same size
d = 1 of their sides, which corresponds to 10 cm in real dimensions. In the left square
εr = 6, in the right one εr = 4and εr = 1 everywhere else, see (4.87) and (4.88).
However, we do not assume knowledge of εr (x) in Ω. Centers of these squares are at
(x∗1, z

∗
1) = (−1.5, 0.6) and (x∗2, z

∗
2) = (1.5, 1.0). (b) The computed coefficient before

truncation. Locations of targets are judged by two local maxima. So, locations are
imaged accurately. However, the error of the computed values of the coefficient εr in
them is about 40%. (c) The image of (b) after the truncation procedure, see the text.

B (xi) set

ε̃(p)
r (x) :=

 ε
(p)
r (x) if

∣∣∣ε(p)
r (x)

∣∣∣ ≥ 0.85ai

1, otherwise.

Next, for all points x ∈ Ω� ∪ri=1 B (xi) , we set ε̃
(p)
r (x) := 1. As a result, we have

obtained the truncated function ε̃
(p)
r (x) . Finally we set εglobr (x) := ε̃

(p)
r (x) and go to

Stage 2.

4.7.2 The second stage of our two-stage numerical procedure: a modified gradient

method

Recall that this method is used on the second stage of our two-stage numerical

procedure. Since this method is secondary to us and since we want to save space,

we derive a modified gradient method only briefly here. A complete, although space
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consuming derivation, including the rigorous derivation of Frechét derivatives, can be

done using the framework developed in [40,41]. We call our technique the “modified

gradient method” because rather than following usual steps of the gradient method,

we find zero of the Fréchet derivative of the Tikhonov functional via solving an

equation with a contractual mapping operator.

Consider a wider rectangle Ω′ ⊃ Ω, where Ω′ = (−4, 4)× (0, 6) . We assume that

both Dirichlet ϕ0 and Neumann ϕ1 boundary conditions are given on a wider interval

Γ′1 = {z = 0} ∩ Ω
′
, Γ1 ⊂⊂ Γ′1, i.e. similarly with (4.13)

w̃ (x, s) |Γ′1 = ϕ̃0 (x, s) , (4.92)

w̃z (x, s) |Γ′1 = ϕ̃1 (x, s) + e−s|z0|. (4.93)

Also, we have observed in our computations that lim|x|→∞ |∇w̃ (x, s)| = 0. Hence, we

use

∂nw̃x |∂Ω′�Γ′1
= 0. (4.94)

In addition, by (4.85)

∆w̃ − s2εr(x)w̃ − s2(εr(x)− 1)w0(z, s) = 0, in Ω′. (4.95)

So, we now consider the solution of the boundary value problem (4.93)-(4.95),

keeping the same notation. We want to find such a coefficient εr (x) , which would

minimize the following Tikhonov functional

T (εr) =
1

2

b∫
a

∫
Γ′1

(w̃(x, 0, s)− ϕ̃0 (x, s))2dxds+
θ

2

∥∥εr − εglobr

∥∥2

L2(Ω)
(4.96)

+

b∫
a

∫
Ω′

λ[∆w̃ − s2εr(x)w̃ − s2(εr(x)− 1)w0(z, s)]dxds,
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where θ > 0 is the regularization parameter and λ (x, s) is the solution of the so-called

“adjoint problem”,

∆λ− s2εr(x)λ = 0, in Ω′, (4.97)

λz(x, 0, s) = w̃(x, 0, s)− ϕ0(x, s), ∂nλ|∂Ω′�Γ′1
= 0. (4.98)

If the coefficient εr(x) is such that, in addition to (4.93)-(4.95), (4.92) is true, then

T (εr) = 0, i.e. this coefficient provides the minimum value for the functional T.

Because of (4.97), the second line in (4.96) equals zero. Although boundary value

problems (4.93)-(4.95) and (4.97), (4.98) are considered in the domain Ω′ with a

non-smooth boundary, a discussion about existence of their solutions is outside of

the scope of this chapter. We have always observed existence of numerical solutions

with no singularities in our computations. Although, by the Tikhonov theory, one

should consider a stronger Hk−norm of εr − εglobr in (4.96) [46], we have found in our

computations that the simpler L2−norm is sufficient. This is likely because we have

worked computationally worked with not too many grid points. Using the framework

of [40,41], one can derive the following expression for the Fréchet derivative T ′ (εr) of

the functional T

T ′ (εr) (x) = θ
(
εr − εglobr

)
(x)−

b∫
a

s2 [λ(w̃ + w0)] (x, s) ds,x ∈ Ω.

Hence, to find a minimizer, one should solve the equation T ′ (εr) = 0. We solve it

iteratively as follows

εnr (x) = εglobr (x) +
1

θ

b∫
a

s2 [λ(w̃ + w0)] (x, s, εn−1
r )ds,x ∈ Ω, (4.99)
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where functions w̃(x, s, εn−1
r ) and λ(x, s, εn−1

r ) are solutions of problems (4.93)-(4.95)

and (4.97), (4.98) respectively with εr (x) := εn−1
r (x) . One can easily prove that one

can choose the number (b− a) /θ so small that the operator in (4.99) is contractual

mapping. We have worked with such an operator in our computations. We have

iterated in (4.99) until the stabilization has occurred, i.e. we have stopped iterations

as soon as ‖εnr −εn−1
r ‖/‖εn−1

r ‖ ≤ 10−5, where ‖·‖ is the discrete L2 (Ω) norm. Then we

set that our computed solution is εnr (x) . In our computations we took a = 0.01, b =

0.05, θ = 0.15.

4.7.3 Numerical results

In our numerical tests we have introduced the multiplicative random noise in the

boundary data using the following expression

wσ (xi, 0, sj) = w (xi, 0, sj) [1 + ςσ] , i = 0, ...,M ; , j = 1, .., N,

where w (xi, 0, sj) is the value of the computationally simulated function w at the

grid point (xi, 0) ∈ Γ′1 and at the value s := sj of the pseudo frequency, ς is a random

number in the interval [−1; 1] with the uniform distribution, and σ = 0.05 is the

noise level. Hence, the random error is presented only in Dirichlet data but not in

Neumann data.

Test 4.1. We test our numerical method for the case of two squares with the same

size d = 1 of their sides. In the left square εr = 6, in the right one εr = 4 and εr = 1

everywhere else, see (4.88). Centers of these squares are at (x∗1, z
∗
1) = (−1.5, 0.6) and

(x∗2, z
∗
2) = (1.5, 1.0). However, we do not assume a priori in our algorithm neither the

presence of these squares nor a knowledge of εr (x) at any point of the rectangle Ω.

See Figure 2 for the globally convergent stage and Figure 3 for the final result.

Test 4.2. Consider now the case of imaging of a piece of wood, see (4.88). So, now

our target is a square with the d = 1 size of its side. Inside of this square εr = 0.5 < 1
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Figure 4.3: Test 4.1. The image obtained on the globally convergent stage is displayed
on Figure 4.2(c). (a) The correct image. Centers of small squares are at (x∗1, z

∗
1) =

(−1.5, 0.6) and (x∗2, z
∗
2) = (1.5, 1.0) and values of the target coefficient are εr = 6 in

the left square, εr = 4 in the right square and εr = 1 everywhere else. (b) The imaged
coefficient εr (x) resulting of our two-stage numerical procedure. Both locations of
centers of targets and values of εr (x) at those centers are imaged accurately. We have
not used truncation on the second stage.

and εr = 1 outside. Figure 4 displays both this square and the reconstruction result.



129

-3 -2 -1 0 1 2 3

0

1

2

3

4

5

6

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55

(a)

-3 -2 -1 0 1 2 3

0

1

2

3

4

5

6

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55

(b)

Figure 4.4: Test 4.2. Imaging of a wooden-like targets: small square with the length
of its side d = 1, see (a). Inside of this small square εr = 0.5 and εr = 1 outside
of it.However, neither the presence of the small square nor the value of the unknown
coefficient εr (x) at any point of this rectangle Ω are not assumed to be known a priori
in our algorithm. (b) The image computed after the two-stage numerical procedure.
Location of the center of the small square and the value of εr = 0.5 at that center
are imaged accurately. The value εr = 1 outside of the imaged small square is also
accurately imaged.
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