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ABSTRACT

RAKSHIT BHANSALI. Self-propelling robotic hydrofoil arrays: mechanics,
efficiency, and optimization. (Under the direction of DR. SCOTT DAVID KELLY)

Mathematical models for the self-propulsion of articulated bodies in fluids at low

Reynolds number can be interpreted geometrically in terms of connections in principal

bundles. Visualization of the local curvature of a connection in this context can serve

as a tool for motion planning. We use laboratory data from physical experiments to

estimate the local curvatures of connections for two planar robotic systems — one

canonical, one novel — propelling themselves through fluids at Reynolds numbers

of order one. In each case, the estimated curvature agrees with that predicted by a

trusted theoretical model, validating our approach as a new strategy for extracting

curvature estimates from physical data when theoretical model are unavailable.

For one of the two robotic systems in question, we also employ reinforcement learn-

ing to identify piecewise constant control inputs that optimize unidirectional trans-

lation. Our results show that optimal locomotion over long time scales is achieved

through cyclic actuation that exploits curvature according to the geometric theory

— and that exploits the nontrivial topology of the manifold of internal robot shapes

— while optimal locomotion over short times scales requires adaptation for different

initial conditions.

We also investigate the self-propulsion of pitching hydrofoils at higher Reynolds

numbers through physical experiments with freely swimming two- and four-hydrofoil

arrays, resembling simplified fish schools, in a pool of water. These experiments

highlight the influence of hydrodynamic coupling among individual foils on the overall

speed and efficiency of such arrays. We modulate this coupling by varying the spacing

among foils and by varying the manner in which individual foils pitch as functions

of time, recording both swimming speed and power consumption to identify optimal
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cooperative pitching patterns.
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CHAPTER 1: INTRODUCTION

We marvel at the sight of the lightning fast sprint of a cheetah, the impulsive

agility of a marlin, the harmonic undulation of a snake and the impressive leap of a

grasshopper. All these animals select gaits based on speed, terrain, maneuvers and

energy efficiency.

The study of animal locomotion was limited before the 19th century. It was not

until the invention of motion-picture projection [3] by Eadweard Muybridge that this

field caught traction. Sir James Gray, one of the early pioneers in the study of animal

locomotion, used this technique of motion-picture projection to notice the similarities

in undulatory body motion of swimming eels and fishes [4]. A few years later, Hoyt et

al. [5] discovered that the natural gait of any living organism for any given speed is the

one that expends the least energy by validating physical measurements obtained from

trained horses. Edward M. Purcell [6] came up with the idea of gait-based motion of

an imaginary three-link swimmer at low Reynolds number flows by prescribing cyclic

gaits in the shape space.

One of the earliest geometric approaches to locomotion was that of Shapere and

Wilczek [7], who studied the problem of swimming at low Reynolds number in terms

of gauge theory. They advanced terms like geometric phase and holonomy, which

are lately being discussed in robotic motion planning literature, to understand the

motion of paramecia. Leading pioneers in the field of geometric mechanics like Murray

and Sastry [8] demonstrated the use of sinusoidal gaits for a broad class of two-input

systems. Influenced by their work, Kelly [9] showed that in viscous flow regimes, where

the inertial effects are nullified by the flow drag, the propulsion of self-deforming solid

bodies can be modeled in terms of a connection on a principal fiber bundle.
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A well known fact in the field of fluid-solid interactions is that self-deforming solid

bodies in close proximity to one another in a fluid medium can influence each other’s

dynamics. This phenomenon is commonly seen in group formations among bird and

fish species where the energy harvested from the vortices in the unsteady wake of each

individual’s neighbor can be used by the individual to help overcome collective drag.

Although there exist assumptive theories to the problem of wake vortex shedding,

posing this in terms of a geometric mechanics problem still remains abstruse. The

dynamics of vortex generation in fish schools plays a critical role in energy sharing.

It is observed that the flapping motion of a fish creates a trail of rotating vortices

similar to the arrangement of a von Kármán street but opposite in the direction of

rotation. Neighboring fishes can extract energy of each other’s wakes by timing their

motions to generate counter-rotating vortices that pair-up with the vortices from

the neighbor’s wake and generate thrust. This phenomenon of vortex interactions is

widely described in [10], [11], [12], [13]. The interaction of vortices is heavily reliant

on the geometric arrangement of oscillating bodies in the flow. Weihs [14], in 1973,

suggested diamond shaped patterns as the optimal arrangement of fishes in a school

with the aim of maximizing energy harvesting, given the assumption that the fluid in

which they swim is inviscid. Triantafyllou et al. [13] demonstrated the importance of

free-wake vorticity in deciding the frequency and form of swimming motion which is

beneficial for energy extraction. Researchers like Zhang and Eldredge [15] proposed a

high fidelity numerical model called VVPM(Viscous Vortex Particle Method) to solve

for the Navier-Stokes equations of the unsteady two-dimensional flow with multiple

undulating fish bodies. They claim that the thrust augmentation for a system of two

fishes placed laterally with respect to one another were found to be quite monotonic

for spacings greater than one bodylength and upto four bodylengths. Kelly et al. [16]

demonstrated the effects of hydrodynamic coupling on the propulsive efficiency of an

array of three oscillating hydrofoils and made the claim that oppositely-polarized vor-
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tices from a pack of adjacent swimmers, when sufficiently close, collide and superpose

to cancel one another and increase array efficiency locally. They also highlight the

importance of near-field wake interactions to determine propulsive efficiency of the

array. Boschitsch et al. [17], Dewey et al. [18] experimentally studied the behavior

of vortex shedding with in-line and side-by-side arrangement of oscillating hydro-

foils respectively. They made observations about the performance of these systems

based on thrust and efficiency and highlight the importance of vortex interactions for

performance augmentation.

1.1 Motivation

During the course of this thesis, we focus our attention towards three problems

- First, we extract the local curvature of articulated bodies self-propelling in low

Reynolds number flows using fundamentals from geometric mechanics. Second, we

seek non-cyclic gaits that maximize uni-directional displacement for the former us-

ing reinforcement learning. Finally, we identify the optimal placement of hydro-

foils/paddles that maximize the effect of energy harvesting through shared medium

by comparing thrust and propulsive efficiency for various arrangements of hydrofoils

at high Reynolds number flows.

In low Reynolds number flows (Re in the order of one), if the body moves in a time-

periodic way, then the net change in position and orientation over one period can be

thought of as the geometric phase associated with a closed path in the manifold of

body shapes [1]. We propose a procedure that will allow us to estimate the geometric

phase by executing cyclic shape changes that enclose curvature when embedded on

the manifold of shapes/shape space. We experimentally perform these cyclic shape

changes and center them at different locations in the manifold of shapes and record the

net displacement/change in orientation after the shape change. The shape change may

be done over 1 cycle or n cycles to amplify the net motion. The displacement/change

in orientation may be regarded as the group element or holonomy for that loop.
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As experiments are performed in all the locations in the discretized shape space, we

attach the corresponding holonomy to each location and visually predict the curvature

for motion planning.

Although cyclic gaits are well studied analytically to extract the geometric phase,

we look for possibilities of finding gaits that can maximize the uni-directional motion

of the body using reinforcement learning. “Reinforcement learning is learning what

to do? how to map situations to actions? so as to maximize a numerical reward

signal” [19]. The crucial part of this technique is framing the problem of learning

from interaction with the environment by solving the dynamics of the system and

reaching a pre-defined goal. The use of RL is widely publicized in automatic control,

computer science, artificial intelligence, et cetera.

Finally, we consider multiple hydrofoil systems (akin the systems considered for

low Reynolds number flow) at high Reynolds number flow. For the purpose of this

thesis, we refer to systems in Reynolds number in the order of 104 as high Reynolds

number flow systems. We pose this as an optimization problem with the aim of

maximizing the propulsive efficiency of the multiple hydrofoil system. We perform

experiments with a light reconfigurable robotic setup and deploy it in a free swimming

laboratory environment with no background flow. We analyze the data from these

experiments and look for pairwise synchronized arrangements that result in efficient

system performance. Additionally, to evoke the idea of using intermittent gaits over

commonly analyzed sinusoids, we make experimental thrust comparisons between the

symmetric and asymmetric gaits and comment on its merits and demerits.



CHAPTER 2: SYSTEMS IN LOW REYNOLDS NUMBER FLOW

In the context of Stokes flow (Re«1), Scallop’s theorem states that for a system

to propel, it must do so in a way that is not invariant upon time-reversal. This is

contradictory to the systems analyzed here where the model we will derive assumes

that the locomotion through shape change1 is driftless [1].

We assume our systems to be planar and define external dimensional spaces on the

SE(2) special Euclidean group which we refer to as a matrix Lie group G. Coordi-

nates on the principal bundle’s fiber manifold parameterize the body’s position and

orientation relative to a stationary frame of reference as shown in Figure 2.1. The

coordinates on the bundle’s base manifoldM or the manifold of shape changes param-

eterize the body’s shape. The collection of all possible configurations of the system

corresponds to a manifold called the configuration manifold Q and the relationship is

shown in Equation 2.1.

Q = M ×G (2.1)

If the body moves in a time-periodic way, then the net change in position and

orientation over one period can be thought of as the geometric phase associated with

a closed path in the manifold of body shapes. In the limit as such a path becomes

small — that is, if the cyclic change in the body’s shape represents only a small

perturbation from a nominal shape — then the associated geometric phase can be

approximated by exponentiating the integral of a g-valued two-form called the local

curvature over the area enclosed by the path [1].
1A shape change is defined as a change in the internal configuration of the system
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Figure 2.1: Configuration Manifold

The relationship between shape change and propulsion is time-invariant, and re-

versibility prevents any net displacement or change in orientation from a cyclic de-

formation that doesn’t enclose area in the manifold of shape variables [1].

The first system considered is a variation of the canonical Purcell three-link swim-

mer as shown in Figure 2.2.

2.1 Purcell swimmer

The Purcell swimmer [6], a hypothetical animal with three links — the side links

act as a rudders and the middle link as the body — has been extensively studied both

analytically and experimentally in literature. The principal bundle for this system

looks like

Q = T2 × SE(2), (2.2)

where T2 is the base manifold comprising of the shape variables φ and ψ, and SE(2)

represents the special Euclidean structure group over the base manifold.

We model the local curvature of this self-propelling by analytically reproducing

the results from [20] using slender-body theory [21] under the simplifying assumption

that the hydrodynamics of each link are decoupled from the hydrodynamics of the

others.
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Figure 2.2: Three-link swimmer. Left : Model geometry. Right : Body velocity [1].

Figure 2.2 depicts the Purcell three-link swimmer where the outer links each have

length 2l while the middle link has length 2L, with L > l. The joint angles φ and ψ

are defined as shown.

According to slender-body theory, for low Reynolds number flows, the longitudinal

and lateral forces on each link and the moment about the center of each link are given

by

Fi,x = k li ξi,x, Fi,y = 2k li ξi,y, Mi =
2

3
k l3i ξi,θ, (2.3)

respectively, where ξi = [ξi,x, ξi,y, ξi,θ]
T is the body velocity of the ith link, l1 = l3 = l,

l2 = L, and k is a constant. The frame of reference is attached to the center of the

middle link, aligning the longitudinal direction with the side-links.
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The body velocities are given by

ξ1 =


cos(φ)ξx − sin(φ)ξy + L sin(φ)ξθ

sin(φ)ξx + cos(φ)ξy − (l + L cos(φ))ξθ + lφ̇

ξθ − φ̇

 ,
ξ2 = ξ,

ξ3 =


cos(ψ)ξx + sin(ψ)ξy + L sin(ψ)ξθ

− sin(ψ)ξx + cos(ψ)ξy + (l + L cos(ψ))ξθ + lψ̇

ξθ + ψ̇

 .

Summing forces and moments about the body-fixed frame, we obtain the generalized

force vector

F =


Fx

Fy

M

 =


cos(φ) sin(φ) 0

− sin(φ) cos(φ) 0

L sin(φ) −L cos(φ)− l 1



F1,x

F1,y

M1



+


F2,x

F2,y

M2

+


cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

L sin(ψ) L cos(ψ) + l 1



F3,x

F3,y

M3

 .

We can rewrite this in the form

F = ω(s)

ξ
ṡ

 , (2.4)

where s = [φ, ψ]T represents the shape variables and ω(s) is a 3× 5 matrix. Further-

more, we can write

ω(s) =

[
ω1 ω2

]
,
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where ω1 and ω2 are 3× 3 and 3× 2 matrices respectively.

In an isolated system, the forces and moments must sum to zero[1]; hence we obtain

a connection from the requirement that

F =


0

0

0

 =

[
ω1 ω2

]ξ
ṡ

 ,

which can be rearranged into the form

ξ = −ω−11 ω2ṡ, (2.5)

which has the form of the kinematic reconstruction equation,

ξ = −A(s)ṡ. (2.6)

Thus, the local connection is given by A(s) = ω−11 ω2, which shows how the shape

velocity vectors translate into body velocities.

The local connection A(s) geometrically encompasses everything we need to know

about the system. We approximate for the holonomy (h) — defined as the displace-

ment along the fiber due to a closed loop trajectory (C) in the shape variables —

by

h ≈ exp

(
−
∫
interior of C

DA

)
, (2.7)

where DA is a two-form such that

DA(u, v) = dA(u, v)− [A(u), A(u)], (2.8)
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with [· , ·] being the Lie bracket, u and v are the two shape velocity vectors, and dA is

the exterior derivative of A, considering A to be a Lie algebra valued one-form. This

DA is depicted in Figure 2.3 as functions of φ and ψ, also known as curvature plots.

Knowing what the curvature plot of a system looks like on the manifold of body

shapes, one can facilitate a visual approach to motion planning based on the qualita-

tive notion that a path enclosing greater curvature will be a path that produces greater

displacement and/or reorientation. It is known that positive (counter-clockwise)

closed loops in shape space enclosing positive curvature will generate negative lo-

comotion in their corresponding components, and those enclosing negative curvature

will generate positive locomotion with respect to the frame of reference. The response

is inverted if the direction of the closed loops are inverted. This locomotion or dis-

placement along the fiber, after executing a closed-loop trajectory, is also known as

the holonomy, h.

2.2 Four-paddle swimmer

The second system we consider, depicted in Figure 2.4, consists of four paddles with

hinges placed at the corners of a square of side
√

2L. The length of each paddle is 2l.

The paddles are numbered 1 through 4 starting with the top right one and continuing

in a counterclockwise direction. The orientations of the paddles are determined by

the shape variables φ and ψ as indicated in the figure. Paddles 1 and 3 (in red)

move in unison as parameterized by φ; paddles 2 and 4 (in blue) move in a mirrored

way as parameterized by ψ. The frame of reference is attached to the center of the

square, aligning the longitudinal direction with the diagonal between paddles 1 and

3. A body frame is considered to be attached at the center of each paddle, with its

longitudinal direction aligned with the paddle and the positive direction going away

from the hinge[1].
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Figure 2.3: Curvature plots corresponding to the three components of se(2) for the
canonical three-link swimmer.
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Figure 2.4: Four-paddle swimmer. Left : Model geometry. Right : Body velocity [1].

The configuration manifold for this system is

Q = T2 × SE(2), (2.9)

which is the same as that for the three-link swimmer, but the local connection is

different. The procedure to compute for the local connection is given in section 2.1.

A difference with the previous system is that li = l for i = 1, . . . , 4.
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The body velocities for the paddles are

ξ1 =


cos(φ)ξx + sin(φ)ξy + L sin(φ)ξθ

− sin(φ)ξx + cos(φ)ξy + (l + L cos(φ))ξθ + lφ̇

ξθ + φ̇

 ,

ξ2 =


− sin(ψ)ξx + cos(ψ)ξy + L sin(ψ)ξθ

− cos(ψ)ξx − sin(ψ)ξy + (l + L cos(ψ))ξθ + lψ̇

ξθ + ψ̇

 ,

ξ3 =


− cos(φ)ξx − sin(φ)ξy + L sin(φ)ξθ

sin(φ)ξx − cos(φ)ξy + (l + L cos(φ))ξθ + lφ̇

ξθ + φ̇

 ,

ξ4 =


− sin(ψ)ξx − cos(ψ)ξy − L sin(ψ)ξθ

cos(ψ)ξx − sin(ψ)ξy + (l + L cos(ψ))ξθ − lψ̇

ξθ − ψ̇

 .
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We can write the generalized force vector relative to the body-fixed frame as


Fx

Fy

M

 =


cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

L sin(φ) L cos(φ) + l 1



F1,x

F1,y

M1



+


− sin(ψ) − cos(ψ) 0

cos(ψ) − sin(ψ) 0

L sin(ψ) L cos(ψ) + l 1



F2,x

F2,y

M2



+


− cos(φ) sin(φ) 0

− sin(φ) − cos(φ) 0

L sin(φ) L cos(φ) + l 1



F3,x

F3,y

M3



+


− sin(ψ) cos(ψ) 0

− cos(ψ) − sin(φ) 0

−L sin(ψ) L cos(ψ) + l 1



F4,x

F4,y

M4

 .

Writing this equation in the form of Equation (2.4) and equating the generalized

force to zero, we obtain an equation that looks like the kinematic reconstruction

equation (2.6) and thus acquire the local connection A(s) for this system. Figure 2.5

shows the local curvature for this system as function of φ and ψ.

We estimate the system’s net displacement and rotation over time by the equation

ġ = −gA(s, ṡ), (2.10)

where g is an element of the matrix Lie Group G and can be identified as a matrix
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Figure 2.5: Curvature plots corresponding to the three components of se(2) for the
four-paddle swimmer.
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of the form

g =


cos(θ) −sin(θ) x

sin(θ) cos(θ) y

0 0 1

 ∈ SE(2)

and A(s, ṡ) represents the natural pairing of ṡ, thought of as a tangent vector on

the shape manifold, with the local connection A(s) on this manifold. The matrix

multiplication of the matrices, g and A(s, ṡ), is called the left action of g on A(s, ṡ)

and this action preserves the fibers in G[1].

The essential physical feature of this relationship is that ġ is linearly dependent on

the time derivative of the body shapes ṡ. Using this relationship, we obtain the first

order differential equations of motion for the system which can be numerically solved

to obtain the net displacement and/or orientation.

The right panel of Figure 2.6 shows the trajectory taken by the system when

subjected to cyclic changes in shape, φ =
π

4
cos(t) and φ =

π

4
sin(t). This cyclic

shape change shown in the right panel of Figure 2.6 encloses circular area in the shape

manifold and due to the counter-clockwise motion, results in positive displacement

for negative curvature enclosed in DAy. The right panels of Figures 2.7 and 2.8 show

the optimized loop placement for discernible net motion in x and θ respectively. Note

that consequently there is some motion in y and θ as a result of some net curvature

enclosed in DAy and DAθ.

2.3 Experimental setup and procedure

The Purcell three-link system and the four-paddle system for low Reynolds flow

have similar construction with slight changes. Both systems are based on a reconfig-

urable platform comprising a square frame with four Pololu micro gear motors with

encoders. On each motor, a paddle or link is attached to its shaft, depending on the

desired configuration. The paddles were 3D printed using a PLA filament. For the
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Figure 2.6: Left : Trajectories in the SE(2) coordinates Right : Cyclic loop placement
on the curvature contours for discernible net motion in y; given φ =

π

4
cos(t) and

ψ =
π

4
sin(t).
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Figure 2.7: Left : Trajectories in the SE(2) coordinates Right : Cyclic loop placement
on the curvature contours for discernible net motion in x; given φ =

π

4
cos(t)− π

4
and

ψ =
π

4
sin(t).
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Figure 2.8: Left : Trajectories in the SE(2) coordinates Right : Cyclic loop placement
on the curvature contours for discernible net motion in θ; given φ =

π

4
cos(t) and

ψ =
π

4
sin(t)− π

2
.
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three-link swimmer, an extra passive link is added along the diagonal of the frame to

act as the middle link and the other diagonal links are detached. The square frame

is suspended from a horizontal beam of balsa wood with supports on the ends. Each

support consists of a pink styrofoam tower shown in Figure 2.9.

Figure 2.9: Swimmer and test bed schematic.

Mounted on the beam is an Arduino Mega microcontroller. The controller is

equipped with an XBee for serial wireless communication with a PC. The electronics

are powered by an on-board 6V 2200mAh NiMH battery pack which rests below the

Arduino board. A PID control algorithm is employed to track and control the posi-

tion of the micro gear motor shafts which is in turn connected to the paddles using

aluminum hubs[1].

The swimmer is deployed in a bath of light corn syrup which has a viscosity rating of

2000 cSt, depicted in yellow in Figure 2.9. The styrofoam supports rests atop a setup
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that is designed to behave like an air hockey like table. The interior of the air table

is pressurized using an air blower. The surface of the air table has small orifices that

allow the pressurized air to escape causing the styrofoam rafts to hover. The bottom

layer of the styrofoam towers have greater surface area to provide greater amount of

levitation. This helps the swimmer to avoid any friction between the setup and the

air table and ensures that the interaction is only between fluid and the paddles as

seen in Figure 2.10.

Figure 2.10: Four-paddle swimmer in fluid atop air table.

A Pi camera with a Raspberry Pi 2.0 is mounted directly above the test appara-

tus. Four stationary markers are positioned at the edges of the air table on seperate

styrofoam towers. These are treated as the fixed reference markers for the motion

tracking analysis. Two markers are placed on the wooden slat that act as the track-

ables. We use MATLAB’s image processing toolbox to obtain the coordinates of the

trackables by applying a projective transformation on the image frames with the aid

of the reference markers.

Figure 2.11 depicts the physical version of the swimmers. We select a family of
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Figure 2.11: Experimental three-link swimmer and four-paddle swimmer.

square trajectories that prescribe motion to the robotic setup and tile the manifold

of shapes changes. Each trajectory is centered around a shape corresponding to a

different point (φ, ψ) in the shape manifold. We discretize the shape manifold in steps

of π/8 radians and limit the shape inputs to a maximum sweep of π/4 radians during
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each run. Each tile covers an area equivalent to one-fourth of the shape manifold.

Overlapping of tiles helps in approximating the surface of the holonomy over the

shape manifold. For the three-link swimmer, the search grid ranges from −π/2 to

π/2 radians because of physical considerations in the placement of the paddles. For

the four-paddle swimmer, the search grid ranges from −π to π radians[1].

2.4 Results and discussions

The experimental local curvature is depicted in the right-hand columns of Figures

2.12 and 2.13. The shape space is discretized as a grid with a resolution of π/8

radians. Associated with each grid point is the geometric phase that corresponds

with a counterclockwise square trajectory π/2 radians by π/2 radians in area[1].

The results for the three-link Purcell swimmer are shown on the right panels of

Figure 2.12, and for the four-paddle swimmer on the right panels of Figure 2.13. In

both cases, we plot the negative of the holonomy obtained after executing 1 cycle of the

closed loop shape change. Since we mentioned that the holonomy is the exponential

map from the negative of the integral of DA, Equation (2.7), we do the inverse

operation to approximate the curvature. If the phase associated with a trajectory

that encloses a larger area corresponds to fiberwise left translation by a group element

h in the system’s configuration bundle, then the matrix logarithm of h will provide

an approximation to the product of the local curvature at the center of the trajectory

and the area enclosed by the trajectory[1].

In both the three-link swimmer and the four-paddle swimmer, it can be seen Figures

2.12 and 2.13 that the basic structures from the theoretical plots are preserved in

the experimental plot. The systematic sampling of the geometric phase associated

with relatively large square trajectories in this way is sufficient to reproduce many

qualitative features of the local curvatures for both swimmers. In the absence of

analytical models, the right-hand columns of these figures could faithfully serve as

surrogates for the left-hand columns for the purpose of selecting gaits that enclose
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Figure 2.12: Three-link swimmer plots. Left : Theoretical curvature plots corre-
sponding to the three components of se(2). Right : Components of geometric phase
(or holonomy) h obtained after performing closed-loop trajectories in the shape man-
ifold, multiplied by −1 for easy comparison with the curvature plots.
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Figure 2.13: Four-paddle swimmer plots. Left : Theoretical curvature plots corre-
sponding to the three components of se(2). Right : Components of geometric phase
(or holonomy) h obtained after performing closed-loop trajectories in the shape man-
ifold, multiplied by −1 for easy comparison with the curvature plots.
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desired combinations of positive and negative curvature[1].



CHAPTER 3: REINFORCEMENT LEARNING

Motion-planning and navigation of robots in the absence of a dynamic model can

be explored using techniques in reinforcement learning (RL). RL is a reward based

machine learning technique applied to problems in automatic control, artificial intel-

ligence, et cetera. A simple schematic of RL is shown in Figure 3.1, the agent gets

input from the environment in the form of states and performs actions to maximize

the returns in the form of rewards accumulated over a sequence of consecutive runs.

In this thesis, we apply this technique to the aforementioned systems and learn an

optimal sequence of actions/shape changes in order achieve a desired goal over an

extended period of time.

Figure 3.1: Reinforcement Learning

RL problems are formalized with MDPs or Markov Decision Processes. “Markov

decision processes (MDPs) provide a mathematical framework for modeling decision

making in situations where outcomes are partly random and partly under the control

of a decision maker” [22]. Every entity of the system that changes with an action a

applied to it is called a state s. A state-action transition is said to satisfy the Markov
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property if the current state action pair is sufficient to dictate the transition to the

next state [23].

A state sk at step k transitions to a new state sk+1 under some action ak according

to the transition function f : S × A→ S :

sk+1 = f(sk, ak), (3.1)

and associated with each transition is a scalar reward rk+1 according to the reward

function ρ : S × A→ R :

rk+1 = ρ(sk, ak). (3.2)

The controller chooses actions according to its policy h : S → A, given by

ak = h(sk). (3.3)

To seek a way to characterize the policy h, we define state-action function called

the Q-function according to Qh : S × A→ R of a policy h

Qh(s, a) = ρ(s, a) + γQh(f(s, a), h(f(s, a)), (3.4)

where γ ∈ (0, 1] is the discount factor. Equation 3.4 is called the Bellman equation[23].

The Q-function that is defined to be the optimal Q-function at any policy is given

by:

Q∗(s, a) = max
h

Qh(s, a), (3.5)
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and any policy h∗ defines the action for each state with the largest Q-value satisfies:

h∗(s) ∈ arg max
a
Q∗(s, a). (3.6)

A policy acts greedy in Q if it satisfies

h(s) ∈ arg max
a
Q(s, a). (3.7)

The optimal policy can be computed by finding Q∗ and then extracting h∗. This

policy is said to be greedy in Q∗.

The Bellman optimality equation can be defined as

Q∗(s, a) = ρ(s, a) + γmax
a′

Q∗(f(s, a), a′), (3.8)

where a′ ∈ A is the action that maximizes Q∗ at the transitioned state[23].

3.1 Q-learning

We describe the implementation of an RL technique categorized as Q-learning.

Q-learning is a classical RL technique applied to discrete systems and is classified

as a temporal difference method [23]. It can be implemented off-line as well as on-

line depending on the availability of the system dynamics. It is an iterative learning

technique that evaluates a policy after each episode1. The Q-function is initialized

as a tabular matrix with some arbitrary Q0 values. Each cell within the Q-function

corresponds to a state-action pair and updated at each time-step k based on the state

transition and reward according to:

Qk+1(s, a) = Qk(s, a) + αk(rk+1 + γmax
a′

Qk(sk+1, a
′)−Qk(sk, ak)), (3.9)

1An episode is defined as a pre-defined number of actions that the system can execute to achieve
the desired goal and is also known as a trial.
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where αk ∈ (0, 1] is the learning rate. The term multiplied by the learning rate is

called the temporal difference. The following conditions need to be met in order for

Q-learning to converge to h∗:

1. states and action spaces need to be discrete and finite,

2. as k approaches infinity, the value of α should asymptotically approach 0 to

stop the learning process and attain convergence and

3. all state-action pairs need to be visited adequately.

An α-decay constant is implemented to ensure that α approaches 0 as k increases.

To improve exploration of the state-action spaces, we apply an ε-greedy policy search

that selects actions according to:

a =


a ∈ arg maxa′Q(s, a), with probablity 1-ε

a random action in A, with probability ε

But the learning will never converge to h∗ if the algorithm takes some random

action ε amount of times for all time. This trade off is settled by having an ε-decay

constant analogous to the α-decay constant[23].

The algorithm is implemented for an infinitely large k and the convergence depends

upon the tuning of ε, α and their decay constants respectively. A pseudo-code for

Q-learning is shown in Algorithm 1

Researchers have extensively applied Q-learning on problems like the navigation of

a robot through a simple maze, playing backgammon [24], et cetera. To validate this

model and to present as an example problem, we apply this algorithm to control a

pendulum at its upright position. We define our states as the angular displacement θ

and the angular velocity θ̇, and our action is the control torque T needed to swing the

pendulum upright. Our reward function maximizes the return as the iterative state→

goal state. We treat this problem in its discrete form and apply a fine discretization to
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Algorithm 1 Off-line Q-learning algorithm
Require: Discount factor-γ, Learning rate-α, Exploration schedule-ε, α-decay rate,
ε-decay rate, reward function
Initialize: Q(s, a)⇐ 0 ∀s, a
for N number of episodes do

Prescribe: initial condition s0
for each time step k do

ak ⇐

{
ak ∈ arg maxa′Q(s, a′), with probablity 1-ε
a random action in A, with probability ε

Solve: system ODEs by applying control action ak using Runge Kutta
methods;

Measure: state sk+1 and corresponding reward rk+1.
Compute: Qk+1(sk, ak)⇐ Qk(sk, ak) + αk(rk+1 + γmaxa′ Qk(sk+1, a

′)−
Qk(sk, ak))

end for
Continue until: convergence criterion satisfied

end for
Extract Optimal Policy: h∗(a) ∈ maxaQ(s, a) ∀s, a

θ and θ̇ and specify a range for T . We let the algorithm perform the computation until

our convergence criterion is satisfied. The convergence criterion for our case is the

balancing of the pendulum in its upright position. We find convergence for a finite

number of initial conditions after 245 iterations. Figure 3.2 depicts the extracted

policy that gives information about the necessary actions that the pendulum needs

to perform to reach the goal state, given any initial conditions. Based on the policy

diagram (Figure 3.2), we can identify the best possible control route to reach the goal

state, given any initial condition.

3.1.1 Q-learning on the four-paddle swimmer

We now focus our attention to the implementation of the Q-learning technique to

seek the maximized x-directional translation of the four-paddle swimmer with respect

to a laboratory frame of reference, given a set of initial conditions. As seen in Section

2.2, the configuration manifold for the four-paddle robot is T2×SE(2). We denote all

the variables associated with this configuration manifold (x, y, θ, φ and ψ) to be our
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Figure 3.2: Policy map of the inverted pendulum control problem.

states, and the rate of change of joint angles φ̇ and ψ̇ as our actions. We discretize

φ and ψ in steps of π
34

radians ranging from −π to π and limit the rate of change of

joint angles within [−2π, 2π] radians/sec discretized in steps of π
50

radians/sec. We

define the Q-function as four-dimensional matrix and initialize it with a scalar Q-

value for each quadruple combination of φ, ψ, φ̇ and ψ̇ and disregard the external

fiber variables(x, y and θ) as the translation mechanism for this system is independent

of these variables. These Q-values are rewarded within each episode by the reward

function which is a scaled multiple of the longitudinal distance x found by solving for

the dynamics of the system when the internal states are initialized to φ and ψ, and

φ̇ and ψ̇ are the inputs to the system. Due to the high-dimensionality nature of this
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problem, the amount of iterations needed to reach convergence is enormously larger.

We simulate the system by varying the initial orientation of the system and perform

an episode over a fixed number of control actions. In order to explore a large number

of control sequences, we apply the ε-greedy decay constant for 70% of the simulations,

after which the algorithm is made to act greedy only. To achieve convergence, we run

the simulation for 5 million episodes with each episode executing a control action at

every 0.25 secs for 20 time-steps and leaving the initial condition unchanged. Each

time-step corresponds to a control action.

The left-hand side image on Figure 3.3 displays the trajectory of the system. The

output of the algorithm shows that the first few control actions align the orientation

and internal shape of the 4-paddle swimmer in order to perform optimal translation

in the future. Due to the presence of non-holonomic constraints in the system, the

algorithm sacrifices on short-term rewards and focuses on the far-sighted goal of

moving as much as possible in the x-direction throughout the episode. It is seen that

this is clearly achieved by executing cyclic actuation. The right-hand side image on

Figure 3.3 shows that these cyclic actuations execute closed loops on the manifold of

shapes and enclose curvature according to the geometric theory. Each point in the

right hand image of Figure 3.3 constitutes a pair of piecewise constant control action

(φ̇ and ψ̇) executed on the system at each time-step.

To verify that our analysis holds true for different conditions, we vary the initial

orientation of the system without changing the objective which is to maximize the

x-translation. This is depicted in Figure 3.5 and Figure 3.4. The plots indicate that

the best way for the system to translate is by actuating repetitive control sequences

which form closed loops on the manifold of shapes and enclose curvature as shown

before.

Over shorter time scales, the optimal locomotion of the system adapts itself with

respect to the initial condition and takes long lunges so as to translate in the x-
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Figure 3.3: Motion with respect to the lab frame; θ was initialized to 0 radians. Left :
Trajectory of the system on the lab frame. Right : Cyclic loop placement over the
local curvature of the x component of se(2). Green blob indicates start and red blob
indicates the end.

Figure 3.4: Motion with respect to the lab frame; θ was initialized to π/4 radians.
Left : Trajectory of the system on the lab frame. Right : Cyclic loop placement over
the local curvature of the x component of se(2). Green blob indicates start and red
blob indicates the end.
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Figure 3.5: Motion with respect to the lab frame; θ was initialized to π/2 radians.
Left : Trajectory of the system on the lab frame. Right : Cyclic loop placement over
the local curvature of the x component of se(2). Green blob indicates start and red
blob indicates the end.

direction as shown in Figure 3.6, Figure 3.7 and Figure 3.8. As the system approaches

a state where it can no longer translate in the intended direction, the algorithm

identifies that the best control action is for the system to stay at rest as seen Figures

3.6, 3.8 and 3.7.

Until now, we have only defined the translation of the system only with reference to

an arbitrary laboratory frame. Figure 3.9 shows the translation of the system when

the objective of the system is altered to maximize the x-translation with respect to

the robot’s body frame. We assume that the body fixed frame of the robot is centered

at the centroid of the system geometry. It is observed that extracted policy indicates

that cyclic actuation maximizes the translation in every possible move which is in

agreement with the geometric theory.
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Figure 3.6: Motion with respect to the lab frame simulated over a shorter four time-
step episode; θ was initialized to 0 radians. Left : Trajectory of the system on the lab
frame. Right : Cyclic loop placement over the local curvature of the x component of
se(2). Green blob indicates start and red blob indicates the end.

Figure 3.7: Motion with respect to the lab frame simulated over a shorter four time-
step episode; θ was initialized to pi/4 radians. Left : Trajectory of the system on the
lab frame. Right : Cyclic loop placement over the local curvature of the x component
of se(2). Green blob indicates start and red blob indicates the end.
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Figure 3.8: Motion with respect to the lab frame simulated over a shorter four time-
step episode; θ was initialized to pi/2 radians. Left : Trajectory of the system on the
lab frame. Right : Cyclic loop placement over the local curvature of the x component
of se(2). Green blob indicates start and red blob indicates the end.

Figure 3.9: Motion with respect to the body frame; θ was initialized to 0 radians.
Left : Trajectory of the system on the lab frame.Right : Cyclic loop placement over
the local curvature of the x component of se(2). Green blob indicates start and red
blob indicates the end.



CHAPTER 4: SYSTEMS IN HIGH REYNOLDS FLOW

It is common knowledge that the pitching action of a hydrofoil is similar to the

flapping of a bird or the oscillating motion of a fish’s tail. The formation of non-

linear vortices in the wake of the flapping hydrofoil dominate the dynamics of flow.

When a group of hydrofoil like bodies are placed in closed proximity in the flow,

it is believed that the vortices interact hydrodynamically and the nature of these

vortex interactions is directly associated with the kinematics of oscillating bodies.

These interactions may be constructive or destructive with respect to the forward

propulsion of the hydrofoil and depend upon the placement of the hydrofoils and the

type of actuation.

Complex fluid flow solvers take into account many of these vortex effects to sim-

ulate the dynamics of the flow, but at the cost of high computational requirements

and considering many unrealistic assumptions. Researchers in this area have largely

focused on experimental data for reliable assertions for multiple-body interactions in

high Reynolds number flow regimes.

One of the aims of this thesis is to the quantify performance characteristics of a

system with multiple hydrofoils/paddles that self-propel in water via pitching. We

talk about some of these performance characteristics in this section and define some

of the terms associated -

The propulsive efficiency η, also called the Froude efficiency, is defined as the ratio

of useful power output to the power input to the system and is represented as

η =
Fxu∞
P

, (4.1)
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Figure 4.1: Cross-sectional view of the hydrofoil.

where Fx is the cycle averaged force, P is the cycle averaged input power to the

system and u∞ represents the swimming speed of the system. The thrust coefficient

is given by

CT =
Fx

1
2
ρu2∞sC

, (4.2)

and the coefficient of power is given as

CP =
P

1
2
ρu3∞sC

, (4.3)

where s is the span of the hydrofoil and ρ is the fluid density.

Figure 4.1 depicts the a planar hydrofoil, where C is the chord length, b is its

thickness and θ0 is the amplitude of the prescribed oscillation. The pitching angle is

specified by θ and the ratio of the span to chord length s/C is equal to 1. LE is the

leading edge and TE is the trailing edge of the hydrofoil. The swimming speed u∞

is analogous to free stream velocity. The pitching of the hydrofoil is about its pivot

which is connected to the actuator, and the span of the hydrofoil submerges into the

water.
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The Reynolds number is given by the equation

Re =
ρu∞C

µ
, (4.4)

where the µ is the dynamic viscosity of water (0.89 cP).

We consider two types of multi-hydrofoil configurations. The first one is the two-

hydrofoil configuration depicted in Figure 4.2. The length of each hydrofoil is C and

its oscillation is parameterized by θ with respect to its pivot. We oscillate the hydro-

foils out-of-phase with respect to one another to avoid maneuvers due to the moment

generated by thrust imbalance and to achieve maximum thrust performance [18] in

the longitudinal direction. We represent the pitching angle of the second hydrofoil

by a * superscript indicating out-of-phase pitching relationship. The oscillations of

the hydrofoils are given by θ = θ0sin(2πft) and θ∗ = θ0sin(2πft + π), where θ0 is

the amplitude, f is the frequency, and t is time. The lateral spacing between the two

hydrofoils is scaled by multiples of paddle chord length C.

Figure 4.2: Two-hydrofoil hydrodynamic swimmer schematic.

The next system considered is a four-hydrofoil quadrilateral configuration, analo-

gous to the novel system considered in Section 2.2, and is shown in Figure 4.3. This

type of arrangement can be visualized as a robotic fish school where the spacing

among hydrofoils can be varied both laterally and longitudinally and these spacings
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are scaled by multiples of hydrofoil chord length C. The oscillation prescribed to the

Front Row(FR) hydrofoils is the same as the sinusoidal pitching actuation of the two-

hydrofoil system with oscillations θ and θ∗. The oscillation prescribed to the Back

Row(BR) hydrofoils is given by α = θ0sin(2πft + φ) and α∗ = θ0sin(2πft + φ + π)

where φ is the phase difference between the FR and BR hydrofoils.

Figure 4.3: Two-hydrofoil hydrodynamic swimmer schematic. FR indicates the front
row and BR is the back row.

4.1 Experimental setup and procedure

The construction of the high Reynolds number multi-hydrofoil systems are based

on a reconfigurable exoskeleton. The exoskeleton comprises of 3’ long balsa wood slats

resting on two styrofoam supports at the ends. In addition to providing support, these

styrofoam blocks make the structure buoyant. The slats are reinforced with aluminum

channels on the flip side to avoid sagging. Depending on the type of system — two-

hydrofoil system or the four-hydrofoil system — the exoskeleton can be modified to

use one slat or two slats respectively. Commercially available reconfigurable aluminum

components are extensively used to make critical joints and attachments. The slats

have been pre-drilled to match the standard pattern of the aluminum components.
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The hydrofoil paddles were 3-D printed using PLA and attached to the servo motors

via 1/4"×3" shafts and matching couplings. The hydrofoil measures 4" in chord

length, 4" in span length and 0.11" inches in thickness. The pitching of the hydrofoils

is controlled by Hi-tech 5665MH high torque servo motors.

The electronics module consists of a Particle Photon 120 MHz micro-controller.

The controller is equipped with an XBee for serial communication with a PC. The

electronics are powered by an on-board 6V 2200mAh NiMH battery pack placed

beneath the circuit. An added feature to this circuit is the current sensor module,

which measures the current flowing into the servomotors by connecting a shunt resistor

(0.01Ω) in series and measuring the voltage across it. To eliminate white noise, we

apply a second order RC filter over the voltage measurement. The Photon stores the

voltage measurement data into an SD card at a sampling rate of 500Hz. Using the

calibration data of the current sensor, we measure the current flowing through the

servos during the pitching motion of the hydrofoils.

In order to quantify the propulsive efficiency, we consider that the drag force is

equivalent to the net thrust/cycle averaged force Fx of the system when it reaches

steady state. To measure the drag forces experienced by the swimmer, we deploy the

swimmer in a closed-loop, free-surface water channel with a test section 1m wide, 2m

long and 1m deep. We use a high precision load cell in conjunction with a MyDAQ

data acquisition device and an AD623 instrumentation amplifier to measure the drag

experienced by the swimmer. The flow in the water channel is set to different speeds

and force measurements are recorded keeping the hydrofoils fixed in the direction of

the background flow. The top image in Figure 4.4 shows the swimmer being deployed

in the water channel and rigidly mounted to the fixed aluminum beam on the surface.

The plot obtained for the drag force is then approximated to a parabolic fit shown

in the bottom image in Figure 4.4 which is used to calculate the drag force for any

swimming speed.
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Figure 4.4: Drag force measurement setup and calibration graph.

Figure 4.5 depicts the experimental test pool which is 4ft wide, 8ft long and 6"

deep. A Raspberry pi setup with a VGA camera is mounted directly above the test
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pool. Four stationary markers have been positioned at 4 distinct locations on the

periphery of the pool. These serve as reference markers for motion tracking analysis.

The exoskeleton has two brightly colored markers, seen in yellow in Figure 4.6. We

apply a projective transformation on the image frames with the aid of the reference

markers to obtain the coordinates of the markers on the exoskeleton. Figure 4.7 shows

the trajectories overlapped on the four-hydrofoil swimmer in the test pool.

4.1.1 Two-hydrofoil swimmer: experimental procedure

For the two-hydrofoil swimmer (Fig. 4.6), we deploy two servo motors on a single

slat and vary the lateral separation between them in multiples of chord length C

in the range of C, 2C and 3C. We set the frequency to f=0.5Hz and amplitude to

θ0 = π/6 radians for our experiments. As mentioned in chapter 4, the two hydrofoils

oscillate with a phase difference of π with respect to one another. The position data

is collected from the Raspberry Pi in the form of a video in addition to the power

consumption data being logged into an SD card on the on-board electronics module.

4.1.2 Four-hydrofoil swimmer: experimental procedure

The exoskeleton of the four-hydrofoil swimmer employs two slats that seat four

servo motors as shown in Figure 4.6. Each row has two servomotors with lateral

separation between motors in the same row varied in multiples of chord length C.

The longitudinal separation between the trailing edge of the front row(FR) hydrofoils

and the leading edge of the back row(BR) hydrofoils is also varied in multiples of

hydrofoil chord length C. In total, 540 experiments were performed by fixing the

pitching frequency at f = 0.5Hz and θ0 to π/6 radians and varying the following

parameters: phase differential φ (−5π/6 ≤ φ ≤ π in increments of π/6) between the

FR and BR hydrofoils, longitudinal spacings (0.5C, C and 2C) and lateral spacings

(C, 2C, 3C and 6C for both the FR and BR).
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4.2 Results and discussions

4.2.1 Variation of lateral spacing in the two-hydrofoil system

Figure 4.8 shows a plot of the translation of the two-hydrofoil swimmer system. We

find that the thrust augmentation is greater in the case of one-chord length lateral

spacing which shows a 10% increase for the this configuration. This strengthens

the notion about the effect of peristaltic pumping [15] in the space between the

two hydrofoils. We conjecture the wake dynamics with this effect in Figure 4.9.

Vortices shed during the first half of each cycle are denoted by 1. The other half

vortices are denoted by 2. The vortices shed in the wake of the swimmers in each

half cycle interact with oppositely signed vortices and pair up to create energetic

momentum jets. These momentum jets jettison energy to the flow and augment the

thrust production of the swimmer based on Newton’s third law. Also, due to the

out-of-phase relationship between the pitching action of the two hydrofoils, each foil

induces a lateral velocity that increases the effective angle of attack of the other

foil, thereby increasing bound circulation which in turn leads to thrust enhancement

in the closely spaced configuration [15]. At larger spacing arrangements, this effect

diminishes and the thrust is subtly affected by changes in vortex shedding.

Power consumption data (Figure 4.10) reveals that the cycle averaged power con-

sumption P for the one chord length spacing was 0.8 times that of the two-chord length

spacing case and 0.87 times that of the three chord length spacing. The propulsive

efficiency η was found to be the best for the one-chord length configuration with an

increase of up to 2.7 times compared with the worst performing two-chord length

configuration. This decrease in propulsive efficiency dramatizes the dominance of the

vortex interactions in the closely spaced lateral spacings and is mostly attributed to

the jet effect.
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4.2.2 Variation of lateral and longitudinal spacing in the four-hydrofoil system

The velocity data obtained for the four-hydrofoil hydrodynamic swimmer is shown

in Figure 4.11. Each dot represents the velocity of a particular configuration. For

example- a lateral configuration pair of ‘C, 2C’ represents one-chord length lateral

spacing in the front row (FR) and two-chord lengths in the back row (BR). The

separation between the trailing edge of the FR hydrofoils and the leading edge of the

BR hydrofoils is represented as the longitudinal spacings/configurations and φ is the

phase difference between the FR and the BR hydrofoil pitching motions.

The phase difference(φ) in Figure 4.11 is listed for values between −5π/6 and π in

steps of π/6 radians and wraps around owing to symmetry. It is observed from Figure

4.11 that for longitudinal configuration of half- and one-chordlendths, the system is

able to achieve greater speeds for phase differences in the vicinity of π radians.

The configurations with six chord lengths in any possible spacing combinations

are nonreactive to any meaningful vortex interactions due to the distant spacing and

serve as benchmarks for the propulsive efficiency comparisons.
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Figure 4.5: Pool test section with the Raspberry Pi mounted over it.
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Figure 4.6: Experimental two-hydrofoil and four-hydrofoil swimmers.
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Figure 4.7: Trajectory information overlayed on the four-hydrofoil swimmer.
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Figure 4.8: Comparison for different lateral spacing configurations in the two-hydrofoil
swimmer.

Figure 4.9: Creation of momentum jets in the wake of the hydrofoils. The clockwise
vortices are represented in blue and counter-clockwise in red.
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Figure 4.10: Two paddle swimmer power consumption graph.
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The velocities in the half- and one- chord length longitudinal spacings, represented

by the first two sections of dots from the right in Figure 4.11, gave the highest and

lowest velocities depending on the phase differential φ. To understand this behavior,

we make the claim that a body oscillating within the wake of a reverse von Kár-

mán vortex street of a preceding hydrofoil will experience less or more thrust benefit

depending on the phasing between the two bodies and the formation of opposite po-

larity vortex pairs that are responsible for thrust augmentation. This is analogous

to the discovery of Beal et. al. [25], where a steady flow across a bluff body results

in the entrainment of a von Kármán vortex street and when an undulating deceased

trout is placed within the wake of the vortex street, the body of the trout senses

the pressure variations of the spinning eddies and undulates in a particular fashion

such that the vortices shed by the undulation of the trout pair up with the oncoming

counter-rotating vortices to generate highly energetic momentum jets. This enables

the dead trout to extract energy and propagate against the flow and towards the bluff

body.

Figure 4.12 shows the trend in velocities for the three longitudinal spacings consid-

ered across all measured phase differences leaving out the minimal vortex interaction

pairs(6C lateral spacing in either FR or BR). It is observed that for the one-chord

length longitudinal spacing, the velocity trend decreases and reaches a minimum near

the left side of zero φ, and then increases as φ→ π radians. For the half-chord length

case, this trend is shifted to the right of zero φ depicting a minimum on the right and

then increases as φ→ π radians. Contrastingly, the two-chord length case resembles

a harmonic function, where the velocity initially is at a maximum at φ = −π, then

decreases as φ is increased and reaches a local minimum at −π/2, after which it ad-

vances upwards to reach a local maximum at zero φ. This behavior is mirrored on

the right side of zero as φ→ π. Vortices shed from the trailing edge of the FR pad-

dles interact constructively or destructively to display significant performance shifts.
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Figure 4.12: Velocity trend lines for various longitudinal configurations with respect to
the phase difference between the FR and BR. The vertical lines represent the range
of velocities for every lateral spacing pair excluding the 6C lateral configurations
pairs(minimal vortex interaction pairs) in either FR or BR.

But, in the two-chordlength longitudinal configurations, it is observed that these vor-

tices loose considerable strength before they reach the hydrofoils in the BR owing to

minimal vortex interactions.

We compare this behavior of the longitudinal two-chord length configuration with

that of the ones assumed to have minimal vortex interactions (configurations with

6C lateral spacing) shown in Figure 4.13. The trends display local maxima at φ→ 0

and φ → π for these configurations. We make the assertion that the connectivity

of the hydrofoils via the exoskeleton is responsible for this behavior. At φ=0, all

the hydrofoils move in unison, reaching the peak amplitude θ0 at the same instant.

This causes a net thrust in the system, and the system as a whole benefits from this

phasing. On the contrary, a phase difference of φ = −π/2 or φ = π/2 does not

produce the same amount net force at any particular instant due to asynchronicity.

However, a phase difference of φ = π enables the paddles to produce net thrust as

the sweep angle of the hydrofoils reaches the absolute maximum at the same instant.
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Figure 4.13: Velocity trend lines for configuration pairs assumed to have minimal
vortex interactions.

To compare the differences in propulsive efficacy η, we normalize the efficiency

with respect to a configuration that has no hydrofoils in the FR and two hydrofoils

in the BR and placed one-chord length apart laterally in order to negate the perfor-

mance benefit from the effect of peristaltic pumping [15] and to only accommodate

for vortex interaction behaviors between the front and back hydrofoils. We denote

the normalized propulsive efficiency as η∗.

The normalized efficiencies were found to be the lowest for configurations that had

hydrofoils separated laterally by two or three-chord lengths in the FR and BR. This

is evident from the dark blue dots seen in Figure 4.14 in the lateral configuration

pairs given by -‘2C, 2C’, ‘2C, 3C’, ‘3C, 2C’, ‘3C, 3C’, and for φ values enclosing zero

and its surroundings. Depending on the phase difference φ, the vortices shed by the

trailing edge of the FR hydrofoil interacts constructively or destructively with the

vortices formed at the leading edge1 of the BR hydrofoil. We have seen in Section

4.2.1 that positively signed vortices pair up with their negative counterparts to inject
1A leading edge vortex is formed due to flow separation and creates a low suction region on the

periphery of the hydrofoil during the pitching motion.
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momentum jets to increase thrust production. We consider these kind of vortex

interactions to be constructive and these contribute to thrust augmentation whereas

vortex pairs containing vortices of the same sign give rise to bigger single polarity

vortices which then advect into the wake away from the centerline, causing thrust

deterioration. These interactions are considered to be destructive.

The largest increase in propulsive performance was noticed in the ‘C,C’ lateral

spacing pair with one-chord length of longitudinal spacing. Although, this configura-

tion did not achieve the highest thrust(as seen on Figure 4.11) compared with other

configurations(the ‘2C,C’ lateral configuration pair with one-chord length longitudi-

nal spacing and φ = π had the highest average velocity), the power consumed by the

pitching action of the servo motors was found to be around 30% less compared to the

configurations that produced higher thrust. Boschitsch et al. [17] discussed about the

possibility of formation of a low pressure region at the leading edge of the downstream

foil being detrimental to the thrust production in the upstream foil at closely spaced

configurations which is seen here as well. This behavior supplements our belief that

the tightly spaced configuration of half-chord length longitudinal spacing and one-

chord length lateral spacing in the FR and BR represented by ‘C,C’, which is the

most tightly spaced configuration in our case, does not lead not the best propulsive

efficacy.
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4.2.3 Comparison of sinusoidal and two-mode frequency gait

It is hypothesized in literature that gaits with non-smooth motions can generate

greater propulsive benefits over smooth sinusoids. Floryan et al.[26] demonstrated the

energetic advantages of intermittent non-smooth swimming over continuous motions.

The simplest choice for selecting such an intermittent gait is by the superposition of

the multiple frequencies. We consider a gait with the superposition of two frequencies

— a first-mode frequency f and second-mode frequency 2f — and name it as the

two-mode frequency gait. Using the same physical two-hydrofoil swimmer system, we

prescribe this gait as the actuation signal for the hydrofoils where

θ = θ0sin(ωt) + λθ0sin(2ωt+ φ). (4.5)

φ is the phase difference and λ ∈ [0, 1] is the ratio of second mode amplitude to

first mode amplitude and can also be termed as the smoothing factor. This value of

λ characterizes the pitching of the hydrofoil as either intermittent or continuous. We

set the frequency f at 0.5Hz and amplitude θ0 to π/10 to avoid large flow separation.

We switch from continuous to intermittent by defining λ = 0.5 and vary the phase φ

between 0 and π.

The comparison of translation of the two-hydrofoil swimmer employing the two-

mode frequency gait and the sinusoidal gait is shown in Figure 4.16. It is seen that

for all lateral spacing arrangements that the two-mode frequency gaits generate more

thrust than the sinusoidally pitching hydrofoils. On an average, thrust enhancements

of upto 20% were noticed.

To support our findings and to compute the flow characteristics, we perform sim-

ulations using panel methods assuming inviscid, incompressible flow[2]. Figure 4.17

depicts that the wake structure for the two-mode frequency gait, with its central

sheet of vorticity sandwiched between pairs of vortex cores, looks qualitatively differ-
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Figure 4.15: Sinusoidal and the two-mode frequency actuation signals; λ=0.5.

ent than for the regular sinusoidal case which has a simpler 2S wake structure. We

conjecture that the two-mode frequency wake exhibits more jet flow than the sinu-

soidal wake, which accounts for the improved thrust performance via Newton’s third

law.
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(a) (b)

(c) (d)

Figure 4.16: Experimental comparison of sinusoidal and two-mode frequency gaits.

Figure 4.17: Wake structure predicted by the panel method solver for unsteady 2D
flow[2]. Left : Wake structure of the sinusoidal gait Right : Wake structure of the
two-mode frequency gait



CHAPTER 5: CONCLUSIONS AND FUTURE WORK

We geometrically analyzed two systems — the Purcell three-link swimmer (ex-

plained in Section 2.1) and a four-paddle system (explained in Section 2.2) — in

low Reynolds number flow. The purpose of performing this in a low Reynolds num-

ber fluid was to make the assumption that the paddles are completely decoupled

hydrodynamically and that the principal connection A can be computed for using

slender-body theory. In doing so, we have not only validated our model for locomo-

tion at low Reynolds number but have also shown that when the physics underlying

a control system justify a model based on a principal connection, a limited sampling

of the system’s responsiveness to select inputs can be used to estimate the curvature

of this connection, from which the system’s response to an arbitrary periodic input

can then be estimated in the absence of a theoretical model[1].

The analytical and experimental plots for the three-link Purcell swimmer are shown

in Figure 2.12, and for the four-paddle swimmer in Figure 2.13. The holonomy, as cal-

culated by experimental data, show identical features with the analytically computed

local curvatures considering minor irregularities which may be due to the assumptions

made in the theoretical model and uncontrollable experimental conditions.

In chapter 3, we use reinforcement learning to identify the optimal sequence of

piecewise constant control actions for the four-paddle swimmer in low Reynolds num-

ber flow. The reinforcement learning results indicate that the optimal way to achieve

translation of the four-paddle system with non-holonomic constraints over long time-

scales is to perform cyclic actuation that exploits curvature according to the geometric

theory — and that exploits the nontrivial topology of the manifold of internal robot

shapes — while optimal locomotion over short times scales requires adaptation for



62

different initial conditions.

In the context of high Reynolds number regime flow, there exists shortcomings

in the field of geometric mechanics to study the hydrodynamic interactions due to

viscous vortex shedding. We base our research to the experimental side and leave out

the model based analysis for future work.

Based on our experimental results of hydrodynamic coupling among multi-hydrofoil

systems, we propose to optimize the spatial arrangement of paddles to maximize

thrust or propulsive efficiency. The results obtained for the two hydrodynamic systems

are consistent with some of the literature, but the exactness depends upon replicating

all the conditions such as hydrofoil dimensions, Reynolds number and many others.

The literature also talks about keeping a constant Strouhal numbers1 [18], [17] for

experiments, but we do not refer to Strouhal numbers because of a major difference

being that the experiments were conducted in a free-swimming environment without

any background flow. The Strouhal number for our system keeps changing with

change in swimming speed. Our study of these systems enables us to pose this as an

optimization problem with the goal of finding the energetically efficient arrangement

of cooperatively pitching hydrofoils.

We find that the dynamics of vortex interactions are dominant when hydrofoils are

placed in close arrangements. Our experimental data predicted maximum efficiency

for the lateral spacing of one-chord length for the two-hydrofoil swimmer, and longi-

tudinal spacing of one-chord length in conjunction with the lateral spacing pair ‘C,C’

for the four-hydrofoil swimmer with an out-of-phase pitching relationship between the

front row and the back row hydrofoils. These results demonstrate the importance of

geometrical spacing and phasing in the study network synchronization of swimmers.
1Strouhal number is a dimensionless number and is defined as the ratio of the product of the

vortex shedding frequency and the characteristic chord length to the free stream velocity or swimming

speed given by St =
fC

u∞
.
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5.1 Future Work

The ground for performing analysis in low Reynolds number is that the system

can be considered driftless and there exists no hydrodynamic coupling among the

hydrofoils. We propose to come up with a geometric model underlying systems with

hydrodynamic drift which can be used to model for behavior of these systems in any

given fluid regime.

Passive bodies in the wake of preceding swimmers and actuated by stiffness springs

can increase the propulsive efficiency of the system as a whole in the context of the

high Reynolds number systems. We hope to study these systems and make useful

inferences.

We did not consider turning gaits for our system due to space constraints of our

test pool section. In the future, we hope to characterize these gaits as well.

We briefly summarize about trajectory optimization using a very simple and naive

reinforcement learning technique. More complex techniques in RL involve the appli-

cation of function approximators like artificial neural networks. It will be interesting

to deploy these algorithms in real-time on the robotic setup.

Discrete differential geometry coupled with deep reinforcement learning, a model-

free control technique for mechanical systems, may offer elegant mathematical con-

jectures that may not be well-defined by geometric mechanics alone. Exploring these

mathematical conjectures to use them as tools for motion planning and navigation

poses an interesting challenge.
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