
REVISITING THE MEMORY HIERARCHY IN THE MANY-CORE ERA:
COMPUTATION IS CHEAP, BANDWIDTH IS EVERYTHING

by

Yamuna Rajasekhar

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Electrical Engineering

Charlotte

2014

Approved by:

Dr. Ronald R. Sass

Dr. James M. Conrad

Dr. Bharat Joshi

Dr. Jing Yang

ii

c© 2014

Yamuna Rajasekhar

ALL RIGHTS RESERVED

iii

ABSTRACT

YAMUNA RAJASEKHAR. Revisiting the memory hierarchy in the many-core era:
Computation is cheap, bandwidth is everything.
(Under the direction of DR. RONALD R. SASS)

Integrated Circuits (ICs) for logic (computation) have dramatically increased in

both capacity and speed since their introduction in 1958. However, memory technol-

ogy has had only modest improvements in speed. Moreover, to increase capacity and

lower the cost per bit, main memory is implemented as a separate, external IC. Thus,

relative to logic speeds, memory latency is increasing and physical constraints on ex-

ternal pins limits memory bandwidth. The traditional on-chip cache hierarchy has

evolved with the sole goal hiding external memory latency for a single-core, sequen-

tial processor; essentially giving the illusion of lower latency. Unfortunately, it does

so at the expense of IC resources (transistors), energy, power, and memory band-

width. As the world quickly moves toward multi/many-core architectures, current

cache architectures are not aligned with and in fact, are hostile to future priorities.

This dissertation questions the allocation of on-chip resources for logic ICs and

proposes a novel memory architecture that (a) actively manages the movement of

on-chip and off-chip data, (b) creates a flatter memory hierarchy, and (c) emphasizes

efficient bandwidth utilization over latency. The results demonstrate that, when

combined with a suitable programming environment, the proposed memory subsystem

enables a larger fraction of chip resources to be dedicated to computation. This yields

a higher degree of parallelism and ultimately reduces the time-to-completion of an

application independent of how fast individual tasks execute.

iv

ACKNOWLEDGMENTS

In my way of pursuing this doctoral degree, many people have supported and en-

couraged me in many different ways to make my endeavor a success. I feel extremely

blessed to have been surrounded by adept professors, a fantastic family, and amazing

friends and colleagues who have stood by me through it all. I would like to thank:

First and foremost, my parents, Rajee and Rajasekhar, who are the reason of

every iota of success that I have achieved in my life. My super mom always kept me

on track and invented countless ways to motivate me when I was down. My incredible

dad is my biggest pillar of strength and I know I can count on him for anything, at

any time. Thank you, ma and pa, for being stellar role models and I am lucky that

you were my first teachers.

My marvelous brother, Raman, who always has a way of making things alright

for me. You keep me grounded, but yet are often the wind beneath my wings.

My brilliant advisor, Dr. Ron Sass, for his guidance, encouragement and the

wealth of knowledge he has imparted to me. My life as a graduate student was

truly enriched because I had him as my advisor. My committee members, Dr. Jim

Conrad, Dr. Bharat Joshi, and Dr. Jing Yang for their time, support, guidance and

most importantly patience. My friends and colleagues at the RCS lab for all their

help and support, especially Will and Robin.

My extraordinary husband, Sandeep, who is my best friend, the yang to my yin,

my superhero. He has showered me with unconditional love and unwavering support

through this long journey. His unparalleled patience, and his capacity to endure is

what keeps us going. I really could not have done this without you.

v

TABLE OF CONTENTS

LIST OF TABLES vii

LIST OF FIGURES viii

CHAPTER 1: INTRODUCTION 1

1.1 Thesis Statement 9

1.2 Metrics 10

CHAPTER 2: BACKGROUND 16

2.1 Platform FPGAs 16

2.2 Types of Memory Devices 17

2.2.1 Static Random Access Memory (SRAM) 17

2.2.2 Dynamic Random Access Memory (DRAM) 19

2.2.3 Block Random Access Memory (BRAM) 19

2.3 Data Structures 20

2.3.1 Binary Tree 20

2.3.2 B-tree 21

2.4 B-tree-Based Memory Subsystem 23

2.5 Related Work 24

CHAPTER 3: DESIGN AND IMPLEMENTATION 27

3.1 Theoretical Formulation 27

3.1.1 Stochastic Model 27

3.1.2 Green/White Architecture 31

3.2 Proof of Concept Implementation 33

3.2.1 DMAC Controller 33

3.2.2 Binary Tree Structure 35

3.3 Final Implementation 38

3.3.1 Name-to-Key Converter 40

vi

3.3.2 B-tree Cache System 42

3.3.3 Active Memory Management Engine (AMME) 48

CHAPTER 4: EVALUATION 52

4.1 Name-to-Key Converter Results 52

4.1.1 Datasets 53

4.1.2 Performance 55

4.1.3 Size and Collisions Study 56

4.1.4 Analysis of Using Hashes for Named DMA 61

4.1.5 Name-to-Key Converter Resource Utilization 65

4.2 Low-level Parameter Study of the B-tree Hardware Structure 65

4.2.1 Resource Utilization for the B-tree Structure 66

4.2.2 Depth and Order of the B-tree 69

4.2.3 Latencies of Operations in Isolation 69

4.2.4 Access Times 73

4.3 AMME Results 74

4.3.1 Time to Completion 75

4.3.2 Energy Expended 76

CHAPTER 5: CONCLUSION 78

REFERENCES 81

vii

LIST OF TABLES

TABLE 2.1: Theoretical time complexity of binary trees in Asymptotic Notation 21

TABLE 2.2: Theoretical time complexity of B-trees in Asymptotic notation 22

TABLE 3.1: Fields in one metadata entry of the B-tree table 49

TABLE 4.1: Dataset statistics of Amazon fine foods reviews 54

TABLE 4.2: Collisions observed with variable hash sizes 57

TABLE 4.3: Collisions observed with untraditional hash sizes 58

TABLE 4.4: Confidence interval study for 16-bit hash results 59

TABLE 4.5: Resource utilization of the Name-to-Key Converter 65

TABLE 4.6: ML605 development board overview 66

TABLE 4.7: On-Chip resource utilization of the B-tree structure 67

TABLE 4.8: Clock cycles for each operation: B-tree version 2 70

TABLE 4.9: Clock cycles for each operation: AMME with Order 4 B-tree 71

TABLE 4.10: Clock cycles for each operation: AMME with Order 8 B-tree 71

TABLE 4.11: Clock cycles for each operation: AMME with Order 12 B-tree 72

TABLE 4.12: Access times for order 4, order 8, and order 12 B-tree 73

TABLE 4.13: Access times for order 4, order 8, and order 12 B-tree with splits 74

TABLE 4.14: Time to perform READ/WRITE considering 4KB blocks of data 76

TABLE 4.15: Time to perform an Epoch or Delete 76

TABLE 4.16: Energy per access for memory technology 77

viii

LIST OF FIGURES

FIGURE 1.1: Memory latency compared to (processor) clock frequency 2

FIGURE 1.2: Timeline of Memory devices invented over the past few decades 3

FIGURE 1.3: Single-core chip with memory 4

FIGURE 1.4: Comparison of transistor density and power loss density 5

FIGURE 1.5: Multi-core chips with shared memory 6

FIGURE 2.1: High level view of FPGA device 18

FIGURE 2.2: Xilinx Virtex 6 ML-604 developer board 18

FIGURE 2.3: Examples of nodes and keys in an Order 4 B-tree 23

FIGURE 2.4: B-tree with a linked list 24

FIGURE 3.1: Birth-Death process 30

FIGURE 3.2: Abstract theoretical model 32

FIGURE 3.3: Block diagram of the DMAC 34

FIGURE 3.4: Example tree and corresponding table in the BRAM 36

FIGURE 3.5: Binary tree state machine for Allocate and Find 37

FIGURE 3.6: Binary tree state machine for Delete 37

FIGURE 3.7: High level block diagram of the Memory Subsystem 39

FIGURE 3.8: Block diagram of the Name-to-Key Converter core 41

FIGURE 3.9: Logical view of the B-tree table 44

FIGURE 3.10: Active Memory Management Engine block diagram 50

FIGURE 4.1: Example review on Amazon website 55

FIGURE 4.2: Scalability for 16-bit hashes 64

FIGURE 4.3: Scalability for all hash sizes 64

FIGURE 4.4: BRAM resource utilization for the Xilinx ML605 68

FIGURE 4.5: BRAM resource utilization for the Xilinx ZC706 69

FIGURE 4.6: B-tree characteristics: Order and Depth 70

ix

FIGURE 4.7: Latencies of the operations of the B-tree 72

CHAPTER 1: INTRODUCTION

Over the history of computer architecture, Moore’s law1 [1] has been fundamental

in defining and predicting computer hardware. Arguably, this has mainly been pos-

sible due to the Dennard scaling2 theory [2], which implies that power density will

remain constant. That is, the decrease in transistor size enables engineers to lower

the voltage and, in turn, achieve a higher clock frequency without affecting the func-

tionality. However, recent changes in computer architecture have used Moore’s Law

to improve performance by shifting resources from improving single core performance

to implementing ensembles of parallel cores [3]. With this enormous shift in the con-

ventional trend, Pollack’s rule3 [4], became significant. This has led to the successful

investigation of multiple cores on a single chip operating at a lower speed and power

but working together in parallel. Pollack’s rule also predicts that microarchitecture

advances will lead to a two-fold increase in the performance, while maintaining the

same power consumption. This, in turn has greatly improved the performance of

various subsystems in multi-core architectures.

It has been a different story for memory devices. Figure 1.2 shows an abbreviated

history of computer memory. Starting with solid state memory, roughly at the end

of the 1960s, memory performance has evolved steadily. In contrast to logic ICs, the

number of transistors per chip continues to increase and networking speeds continue

to improve, off-chip memory subsystems are not improving, and have in fact remained

1Moore’s law states that the number of transistors in a dense integrated circuit doubles approx-
imately every eighteen months.

2Dennard Scaling states that as transistors get smaller, their power density remains constant, so
the power use is directly proportional to the area and both voltage and current scale downward.

3Pollack’s rule states that performance increase due to microarchitecture advances is roughly
proportional to the square root of the increase in complexity.

2

 0.001

 0.01

 0.1

 1

 10

 100

1
9
8
3

1
9
8
5

1
9
8
7

1
9
8
9

1
9
9
1

1
9
9
3

1
9
9
5

1
9
9
7

1
9
9
9

2
0
0
1

2
0
0
3

2
0
0
5

2
0
0
7

2
0
0
9

2
0
1
1

2
0
1
3

2
0
1
5

N
a
n
o
S

e
c
o
n
d
s

Matrix

Memory_Access_time
CPU_Cycle_time

Multicore_Effective_Cycle_time

Figure 1.1: Memory latency compared to (processor) clock frequency

stagnant through the progression of single-core to multi-core architectures. Latencies

to off-chip have remained virtually flat in the past three decades, as illustrated in

Figure 1.1. Moreover, it is highly likely that the long-term trend in memory latency

will continue for the next decade.

Prior to the multi/many-core era, caches were developed to address this issue,

providing the processor the illusion of low latency. The classic single core–memory

relationship, shown in Figure 1.3, uses a complicated cache hierarchy to hide latency

to off-chip memory.

When measured in terms of system clock cycles, memory latency has grown dra-

matically and it is expected to approach 1,000 clock cycles to access off-chip DRAM

in the next several decades [5]. This so called “Memory Wall” was recognized in the

mid-1990s [6] but the extensive use of caches and cache hierarchies has allowed chip

architects to mitigate the latency issue for single core microprocessors. This approach

has come with a high cost. It requires a substantial amount of resources (from 60% to

90% of the transistors on a chip) [7]. It also consumes a significant amount of energy

to operate due to leakage current and unnecessary data movement [8]. Additionally,

3

1834

Read Only Memory

(punch cards)

Charles Babbage 1932

Drum Memory

Gustav Tauschek

1939

Prototype memory

using neon lamps

Helmut Schreyer

1942

Memory with

capacitors mounted on two

revolving drums

Atanasoff-Berry Computer

1947

Magnetic Drum memory

An Wang/ Kenneth Olsen

Jay Forrester/ Fredrick Viehe

1952

Ultrasonic memory

EDVAC computer

ENIAC computer 1966

8K of memory

HP2116A real-time

computer

Intel sells chip

with 2000 bits of

memory

1968

Dynamic Random Access Memory

One transistor DRAM cell

Robert Dennard

1970/1971

1103 Chip

1KB DRAM memory chip

1101 Chip

256-bit progammable memory

1701 Chip

256-byte erasable

read-only memory (EROM)
1978

Intel 2816

EEPROM

SIMM

Wang Laboratories

1983

1969

3101 Schottky TTL

Bipolar 64-bit SRAM

1024-bit read-only

memory (ROM)

1993

Synchronous DRAM

Samsung KM48SL2000

Flash Memory

Fujio Masuoka

1994

1996

DDR SDRAM

Double Data Rate SDRAM

JEDEC Standard

RDRAM

Direct Rambus DRAM

1999

2003

DDR2 SDRAM

XDR DRAM

Extreme DRAM

DDR3 SDRAM

2007

2014

DDR4 SDRAM

?

2025
2018

DDR5 SDRAM

Figure 1.2: Timeline of Memory devices invented over the past few decades

4

Memory

Channel

Figure 1.3: Single-core chip with memory

maximizing performance by increasing cache locality in the hierarchy for a specific

application requires an enormous programming effort – to the point that humans

typically achieve a tiny fraction of the theoretical performance [9]. Moreover, tra-

ditional cache hierarchies exchange memory bandwidth to improve memory latency.

This is acceptable for sequential processing but is extremely inappropriate for the

bandwidth-starved [10] highly parallel architectures found in field-programmable ar-

chitectures. The negative impact of this technology has been documented and caused

some to propose redesigning the standard OS/memory/network interface [10].

Up until 2007, the trend in computing was always to use the fastest core. The

main reason for this is that Moore’s law continues and has enabled conventional

multi-processor scaling because of Dennard scaling. In 2007, the industry broke this

trend of single core with the advent of multi-core chips that increased the parallelism

but each core was slower than the contemporary single-core processor [11]. There

are two main reasons for the end of conventional CPU scaling. The first reason is

5

Figure 1.4: Comparison of transistor density and power loss density over decades of
microprocessors

that simply adding additional cores does not guarantee better performance [12]. The

increase in the thermal density and power consumption of multi-core chips constrains

the clock speed which then affects performance. Thus, power has also become a first-

class design parameter. Figure 1.4 shows a comparison of the increase in transistor

integration density per die and the power loss density in those chips. The transistor

density grows exponentially as predicted by Moore’s law, but the power loss density

also increases exponentially on a logarithmic scale [13].

In an era of million LUT FPGAs devices, it is possible to imagine single chip,

parallel architectures with thousands of computational cores. However, the number

of I/O pins available to interface to off-chip memory remains extremely limited. Fig-

ure 1.5 illustrates this by showing multiple parallel cores and four channels to memory.

The main solution to this was to use caches. This approach however, has a several

disadvantages.

One of the most important disadvantages is the energy expended in data move-

ment. With the use of conventional caches, the physical locality of the memory during

6

Figure 1.5: Multi-core chips with shared memory

a cache miss can result in a large amount of energy spent in moving the data. Also,

the type of conventional cache (set-associative, direct-mapped etc.) entails extra cir-

cuitry to support the caching algorithms, without offering any “real” advantages.

The energy burned is the same, and so is the unit of transfer (cache line). Another

disadvantage with conventional caches is that the atomic unit of transfer is only a

cache line which is typically 64 bytes or 128 bytes. This means that every time there

is a request for data the probability of having to fetch a new cache line is higher and

thus more energy is spent.

Although the energy spent and the atomic transfer size are disadvantages, memory

bandwidth is a more significant issue in modern parallel system. For highly parallel

architectures with many independent cores competing for the same bandwidth to

off-chip memory, the traditional cache hierarchy approach is ineffective at reducing

latency and wasteful in terms of potential bandwidth; this is an untenable trade-off

for bandwidth starved parallel architectures. The use of caches definitely squanders

bandwidth in favor of the illusion of lower latency. It devalues memory bandwidth in

favor of statistically improving the memory latency observed by the processor. For a

single core microprocessor, every cache hit is a success. However, for a memory-bound

7

many core microprocessor, the goal is to fully utilize the off-chip memory bandwidth.

As the cache hit rate increases, it leaves a reactive cache hierarchy guessing how to

best use the available bandwidth, which sometimes results in doing nothing. Every

unused cycle to off-chip memory is lost and cannot be recovered in the future. For

these architectures, performance is often memory bound rather than compute-bound.

It is expected that future multi-core chips will exhibit characteristics that further

exacerbate these issues. For example, there will be many more cores per chip than

memory channels per chip, which increases the demand per channel. Likewise, it is

unlikely that the chip will consist of a uniform set of cores. Rather, the chip will

consist of some ratio of small, slow, energy-efficient cores for parallel processing and

large, fast cores for sequential portions of the application [14].

There are emerging new technologies like phase change memory, 3D stacked mem-

ory and nanotubes. However, they have some shortcomings. Firstly, these new tech-

nologies are very expensive. Also, such technology is more target-specific and does

not have much flexibility to be ported on different platforms with minimal effort. In

addition to this, phase change memory has higher access latencies, and incurs higher

power costs than conventional DRAM.

As mentioned, custom, fixed-function ICs have dealt with this growing inequity

by introducing ever larger and ever deeper, reactive memory hierarchies. These con-

ventional data caches are relatively simple and operate “in the moment” with no

proactive, long term strategy. This is perfectly acceptable for single-core processors

where temporal and spatial locality is high. But for multi-core processors, this ap-

proach will be ineffective. To address these limitations in the memory subsystem

design, this work proposes an alternative architecture that introduces a new outlook

on memory.

This dissertation introduces a proactive memory architecture that does not require

specialized hardware and can be tightly integrated not only with the CPU but also

8

with the network. This memory subsystem, when combined with an appropriate com-

putational model, is designed to efficiently utilize the available memory bandwidth

while hiding memory latency in highly parallel systems. The grand vision consists of

a memory subsystem that includes the overlap of communication and computation,

anticipates future communication, and reorders outstanding communication requests

to keep memory channels fully engaged and utilized in the most efficient ways. The

memory architecture also has the capability of handling variable-sized memory blocks

that are larger than a cache line and hence can hold more data than a cache line,

thus reducing the probability of going off chip to fetch data. The memory subsystem

is called the Active Memory Management Engine (AMME).

To accomplish this, three main elements are needed: an abstraction that separates

the computational load from the memory subsystem via a set of banks of scratch-

pad memories per computational core, an interconnection network, and the proactive

memory management subsystem. This imposes a few constraints on the computa-

tional load. First, it assumes that the application has a large degree of parallelism

and that many independent tasks are available. These tasks are assumed to be rel-

atively short, atomic sequences — small bits of imperative programs or finite state

machines that deterministically progress from a start state to end state. The second

assumption is that a computational core has the ability to be oversubscribed. That

is, a core can queue multiple units of work and process them in the order that the

memory subsystem provides them. Often, the second constraint can be addressed

with MUXed banks of scratchpad memory per core.

Given these assumptions, the system level view becomes a stochastic process with

computational cores providing a demand on the memory subsystem that can be repre-

sented by a random variable (an arrival rate) and the memory subsystem responding

based on a random variable (a completion rate). In such a circumstance, the overall

goal of the system is to balance computation against the physical limitations of off-

9

chip memory bandwidth to create a queue of enough outstanding requests that the

memory subsystem can intelligently order the transactions. This concept is known as

Little’s Law [15], which is expressed as

N = λ×W

where N is the number of outstanding requests, λ is the arrival rate, and W is the wait

time. In this case, λ, the arrival rate is the number of tasks created per second and W

is how big the tasks are. Both can be manipulated by a suitable run-time system so

that N does seizes (in theory) the on-chip resources. Hence, an artificial stationary

process is created that allows the system to approach 100% bandwidth utilization

as the on-chip resources increase. Combined with the latency-hiding technique in-

troduced previously, this approach has the potential of dramatically improving the

overall throughput of highly parallel applications on many-core architectures.

1.1 Thesis Statement

Many successful reconfigurable computing designs use streaming I/O to move data

from source to sink through a network of computational kernels. In some applications

the source or sink might be an instrument or storage (volatile or non-volatile memory).

However, there are far fewer successful designs that include a large number of parallel

cores, concurrently making random accesses to main memory. This is because every

core observes the full cost of memory latency and, if the unit of work is too small, the

tasks sequentialize on the single channel to main memory, i.e. they become memory-

bound. The design presented in this dissertation aims to address the latter class of

applications. Thus, the hypothesis is:

The use of an active memory subsystem with a flat hierarchy that is optimized for

bandwidth, will support a larger degree of parallelism and ultimately reduce the time

to completion for future many-core architectures.

10

To answer this question, we briefly present key concepts of the new architecture

AMME, that are crucial to proving this hypothesis.

• Flatter memory architecture: The idea with this architecture is to move away

from traditional cache hierarchies by developing a flatter hardware data-structure

(B-tree) based memory architecture and local scratchpad memories per core.

• Programmer specified locality: Global byte-addressable global address space is

a bottleneck for a multi-core system. Using named memory segments fair well

in multi-core/many core systems. This research introduces a named memory

segment scheme (SHA-like) instead of traditional global address space.

• Active memory system: Another disadvantage to existing caches is their ten-

dency to be “passive”. In this work, we develop an active system that can keep

track of memory segments that do not have data associated with them yet.

Furthermore, this active memory system also has the capability of promoting

core-to-core communication without going off-chip.

• Localized restart: This feature enables adding a policy to enable checkpointing.

This architecture uses an epoch mechanism to enable the localized restart of

processor cores. This is also useful when individual processors need to recover

from failures and go to a known state.

The implementation of these features is explained in more detail in Chapter 3.

In this work we propose to include these design features to answer a set of questions

through a systematic design analysis that includes the use of the new memory archi-

tecture in concert with traditional parallel applications that are memory bound and

a new programming model called PyDac [16].

1.2 Metrics

The architecture described in this dissertation takes a new approach to memory

that enables increasing bandwidth utilization and lowering memory latency while

11

maintaining parallelism. We define a set of metrics that will help determine the

impact of an active memory system.

Resource Utilization

Traditional caches utilize majority of the on-chip resources leaving behind a tiny

fraction for the compute cores of the chip. Even with the high utilization of

the on-chip resources, the deep hierarchy does not always facilitate faster access

times. The AMME presents a B-tree based memory system with a flatter hier-

archy. In addition to this, the resource utilization is measured for the hardware

data structure. By exploiting the flexibility of this architecture, it is expected

that the resource utilization will be much less that a conventional memory sub-

system. Around 70% to 80% resources on chip are used for a conventional

memory subsystem with caches. The idea is to curb the resource utilization to

around 30% to 40% of the on-chip resources.

Access times

Since the implementation consists of a B-tree based hardware data structure, the

access time to a node an important metric. Theoretically, the search (access)

time for a B-tree lookup is O(logn) [17]. Different sizes and data sets are

implemented to test the B-tree structure in hardware and the access times in

hardware are analyzed to see if a comparable lookup time is achieved. With the

analysis of the first two metrics, we can answer the following question.

Named Memory Segments

This work introduces programmer specified locality through named memory

segments. If there is no locality, then counter that with the amount of paral-

lelism that can be supported. Using this scheme of named memory segments

enables the processor cores to concentrate on the task of computation without

12

having to keep track of the memory and thereby reducing overhead. In tradi-

tional byte-addressable memory, any interaction with memory for two (or more)

processors includes an inferior mailbox system where the processors have to con-

tend for the memory segment. With the introduction of write-once-read-only

named memory segments, this issue is eliminated. Additionally, this architec-

ture also structurally eliminates two of the three data hazards (Write After Read

and Write After Write) [18]. This architecture enables large data transfers and

offers explicit synchronization. And the naming scheme forces the locality to

come from the programmer as opposed to conventional caches that reactively

guess the locality and many times pay the penalty of unnecessary data move-

ment. Naming schemes similar to this are mostly seen in imperative functional

programming languages. One such example is Linda [19]. The biggest flaw in

Linda was that since it is implemented as a software structure, it is not scalable.

Bandwidth Utilization

We conjecture that the full utilization of bandwidth to the memory device is

increasingly more important than lowering the latency of memory systems. The

B-tree based memory architecture proposed in this document will have multiple

channels to the memory. With any memory subsystem we have a theoretical

maximum bandwidth that utilizes the bandwidth toward useful computations.

The memory subsystem presented in this document is an active memory subsys-

tem. It is active because of its ability to begin transactions even before the data

has arrived. That is, if a core is requesting a particular data by its name, and

another core is currently in the process of computing the data corresponding to

it, the memory subsystem keeps track of the name until the data arrives and

then services the requesting core. This is explained in further detail in Chap-

ter 3. The memory subsystem is also active in that it can make decisions of

when to move data off-chip and how much data is to be moved off-chip. Even-

13

tually, we would also like to include the ability to reorder transactions within

the queue of the memory subsystem based on the current demand. This can

increase the effective bandwidth in terms of having the cores communicate with

each other without going to off chip memory. Thus, the effective bandwidth

also helps in determining the degree of parallelism that can be supported and

also shorten the completion time. This metric will be calculated using real work

load data from the green cores and also load generators with certain assump-

tions about the network. The goal is to analyze if we can prevent the queue

from approaching infinity but keep the load at an “ideal” amount so as to avoid

any core in the system to be idle and waiting for data.

Data Movement

Another major improvement over traditional caches would be for the AMME

to curb unnecessary data movement. One of the biggest concerns with using

the traditional memory architecture is that at any given time there is data that

is being moved although that particular data may not be used. This leads to

wastage of bandwidth. A traditional cache has a fixed cache line size that is

always fetched. The core requesting the data may just need a fraction of the

data that is being moved. Another angle to this metric is energy. A lot of energy

required to move this data that is not efficiently used. In the new architecture

proposed in this document, the memory subsystem can handle variable sized

requests. This enables us to work efficiently and save more energy.

Average degree of parallelism (DOP)

For highly parallel systems, it has already been established that memory is

the bottleneck to the system achieving peak performance. The focus of this

dissertation is to dwell into the ability of a system to keep the parallel hardware

operational at all times. Thus, we take into account the average degree of

14

parallelism. The proposed architecture works actively to manage the requests

coming in to increase the number of cores that are simultaneously operational

and reduce processor core stalls. As opposed to a reactive memory system, the

proposed architecture keeps track of requests that do not have data associated

with them and issues a response when the data arrives. The average load on the

processor cores will also dictate the average DOP achieved. Another factor to

take into account is the number of memory channels. By increasing the number

of green cores in the system and the number of memory channels the DOP can

be computed.

Time to Completion

The goal of any many core system (as with the system presented in this thesis) is

ultimately to reduce the time to completion for the task at hand. Although, it is

intended in this dissertation to demonstrate a reduced time to completion, there

are several outside factors that contribute to this metric. The Green/White

architecture and the programming model (PyDac [16]) and the network [20]

are being built be colleagues in the RCS Laboratory. The aim of this thesis

is to use real workloads from [16] and also use a simulator to test the memory

architecture. In the ideal case, all the green cores on chip will be active that will

maximize the throughput leading to minimizing the time to completion. The

issue of latency is addressed in the green cores instead of the memory subsystem

by keeping the green cores oversubscribed.

The remainder of this dissertation is as follows. Chapter 2 presents the necessary

background information the reader should be familiar with in order to understand

the research presented, and covers related work. Chapter 3 covers the details and

specifics of the design and implementation of this research. Chapter 3 lists all the

implementations that led to the final design and structure of the AMME. Additionally,

15

a stochastic model is presented that supports the motivation of this research. The next

chapter of this dissertation is Chapter 4 which presents the evaluation and validation

of this research. Lastly, in conclusion, a brief summary of this research and the overall

impact of this work is discussed in Chapter 5. Also included in Chapter 5 is a brief

section that presents possible areas for future research on this topic.

CHAPTER 2: BACKGROUND

This chapter provides a summary of the components and tools commonly used

within computer architecture and reconfigurable computing. For readers who are

familiar with these components it is advised to proceed onto Section 2.5; otherwise,

it is recommended to review this material prior to continuing on with the remainder

of the dissertation.

The next section provides an outline of Field-Programmable Gate Arrays. For

a detailed overview of FPGAs, refer [21]. This will provide a better perspective of

the components that can be found on modern FPGAs and are used in many of the

designs discussed hereafter. For those more familiar with FPGAs reading this section

may not be necessary, but it does provide a good overview and review for the less

initiated. Section 2.2 briefly describes the types of memory devices. Jacob at al [22]

provides an exhaustive description of the different types of memory devices and their

working. Section 2.3 describes the basics of a B-tree data structure and the nuances

of the structure used by this research. For further details on data structures, refer

Cormen et al [23]. The chapter concludes with a related work section that describes

the prominent research in this area.

2.1 Platform FPGAs

Platform FPGAs are Integrated Circuits whose functionality can be configured in

the field. In other words, its functionality can be determined after it has been soldered

into a product. They are System-On-Chip (SOC) solutions; they are completely con-

tained within the FPGA[24]. An FPGA may be slower than an Application Specific

Integrated Circuit (ASIC) but it is re-programmable, which is one of the most sig-

nificant differences between the two. FPGAs consists of arrays of Configurable Logic

17

Blocks (CLB), I/O Blocks, routing networks and special purpose blocks. A high-level

view of an FPGA can be seen in Figure 2.1. FPGAs contain hard IP and soft IP. Hard

IP consist of components that are embedded into the FPGA fabric like CMOS tran-

sistors and soft IP which are flip flops or Look Up Tables (LUTs) that can be added

or removed from the design. FPGA design is very flexible and thus is increasingly

becoming popular in general purpose computing. FPGAs contain processors, on-chip

memory, buses, bridges and networking and are thus capable of hosting entire sys-

tems. User application specific intellectual property can be designed and connected

to the FPGA. Some available cores can be found in [25]. The study of such comput-

ing systems that incorporate user-programmable switches to determine functionality

or architecture is called Reconfigurable Computing. The components that typically

compose a SOC Platform FPGA and the tools that are used to synthesize designs

on FPGAs are comprehensively explained in [21]. Figure 2.2 shows a Xilinx ML-605

developer board [26].

2.2 Types of Memory Devices

Memory is a crucial part of all embedded and reconfigurable computing systems

today. In the case of small systems with not much need for storage, the designer uses

small memory devices with fast accessibility. In this case, cost becomes a secondary

issue. But larger systems will include different memory devices that have different

access speeds, volatility and cost. The different memories presented in this chap-

ter are Static Random Access Memory (SRAM), Dynamic Random Access Memory

(DRAM), Block Random Access Memory (BRAM) that is found on FPGA devices.

For additional details and to learn about other memory technology like disk storage

(SATA) refer [22].

2.2.1 Static Random Access Memory (SRAM)

Although SRAM exhibits fast access times, it is expensive. Thus, it is used most

commonly as RAM on-chip or cache memory in micro-controllers. It uses bistable

18

Switch

MatrixMatrix

Switch

Logic Block

LUT

Logic Cell

FF
LUT

Logic Cell

FF

..
.

..
.

Logic Block

Logic Block

LUT

Logic Cell

FF
LUT

Logic Cell

FF

..
.

..
.

Logic Block

LUT

Logic Cell

FF
LUT

Logic Cell

FF

..
.

..
.

LUT

Logic Cell

FF
LUT

Logic Cell

FF

..
.

..
.

Figure 2.1: High level view of FPGA device

Figure 2.2: Xilinx Virtex 6 ML-604 developer board

19

latching circuitry to store bits of information.

2.2.2 Dynamic Random Access Memory (DRAM)

DRAM on the other hand, is less expensive and has slower access times and is

most commonly used as main memory for personal computers. DRAM is made up

of capacitors with an integrated circuit. Each bit of data is stored in the capacitor.

Since capacitors leak charge, the information has a tendency to fade and need to be

periodically recharged. Thus, it is called dynamic RAM. The circuit of a DRAM is less

complex than the SRAM; it consists of only one transistor and a capacitor per bit of

data stored, as opposed to SRAM that contains four to six transistors per bit of data.

Synchronous DRAM is more popular as the DRAM is synchronized with the output

bus. Also, the data storage is divided into various banks that allow a higher data

access rate than asynchronous DRAM. The use of several banks facilitates several

concurrent memory accesses. The interfaces have evolved over the years from SDR

(Single Data Rate) DRAM, DDR (Double Data Rate) DRAM, DDR2 and DDR3

SDRAM. Although these interfaces show increased latencies, the minimum read or

write transfer is 8 consecutive words in DDR3 SDRAM.

2.2.3 Block Random Access Memory (BRAM)

BRAMs are blocks of Random Access memory found in FPGA devices. The

configuration and the number of BRAMs depends on the size of the FPGA device.

Each block RAMs can be addressed through two ports but can also be configured

as a single-port RAM. In addition, they are synchronous which means the outputs

are registered. Many designs require the use of some amount of on-chip memory.

Using logic cells it is possible to build variable sized memory elements; however, as

the amount of memory needed increases, these resources are quickly consumed. The

solution, to provide a fixed amount of on-chip memory embedded into the FPGA

fabric called Block RAM (BRAM). The amount of memory depends on the device;

for example, the Xilinx Virtex 5 XC5VFX130T (on the ML-510 development board)

20

contains 298 36 Kb BRAMs, for a total storage capacity of 10,728 Kb. Local on-

chip storage such as RAMs and ROMs or buffers can be constructed from BRAMs.

BRAMs can be combined together to form larger (both in terms of data width and

depth) BRAMs. BRAMs are also dual-ported, allowing for independent reads and

writes from each port, including independent clocks. This is especially useful as a

simple clock crossing device, allowing one component to produce (write) data at a

different frequency as another component consuming (reading) the data.

2.3 Data Structures

A factor in large and complex systems is the storage of metadata that has to be

accessed often and quickly. An effective method to store and retrieve the system’s

metadata would result in faster lookup times as compared to conventional memory

controllers. This led to the investigation of data structures implemented in hardware

to hold system metadata. Several factors have to be taken into consideration while

implementing a data structure in hardware. Highly complex data structures that

would be ideal in software, may not fare well in hardware because of the cost. This

led us to first investigate the simplest data structure, a binary tree.

2.3.1 Binary Tree

A binary tree is a data structure in which each node can have upto 2 children.

Nodes that have children are known as parents and the children are termed as left

child and right child. The main node that serves as a starting point is called the root

node. The search time of a binary tree is O(n). The binary tree structure does not

have the inherent capability to balance itself. This calls for additional administration

to intermittently balance the binary tree.

Previously, a memory system using an ordered binary tree structure was imple-

mented in hardware called the Dynamic Memory Allocation Controller [27]. The

results definitely proved that it was feasible to implement a data structure in hard-

ware but several issues rendered this structure not optimal for use in hardware. The

21

Table 2.1: Theoretical time complexity of binary trees in Asymptotic Notation

Operation Average Worst Case

Space O(n) O(n)
Search O(logn) O(n)
Insert O(logn) O(n)
Delete O(logn) O(n)

main issue with the binary tree structure was that a bad data pattern could lead to

the tree growing in just one direction which would then become a glorified linked list.

Also, the complexity of balancing the binary tree in hardware led to increased look

up times, which proved to be unfavorable.

2.3.2 B-tree

A B-tree is a multi-way tree in which each node can hold multiple elements called

keys. With more than just one key in a node, there can exist multiple children

(branches) thereby containing the height of the tree. The B-tree is sorted by the key.

There is other information that ties in with each key the B-trees. This is referred to as

a metadata entry and is explained in detail in Section 2.4. The order of the B-tree (o)

dictates the number of keys per node. For a B-tree with order o, the number of keys

each node can have is o− 1. When there are more than o− 1 keys, the existing node

is split to accommodate the new key. A B-tree, like a binary tree, grows downwards

but facilitates re-balancing by splitting a node and adding it to its parent. Compared

to the binary tree structure, the B-tree has several advantages. It can support more

than just two children per node, which leads to reduced access times. Also the

possibility of a bad data pattern leading to a linked list is reduced as the B-tree has

a way of balancing out the data within a main branch. Additionally, B-trees are very

popular in the field of Computer Science to keep account of data in an organized

formant while allowing manipulations like searches, sequential accesses, insertions

and deletions. They are commonly used in databases and filesystems because they

are optimized to handle large datasets. Thus, the ideal next step to our investigation

22

Table 2.2: Theoretical time complexity of B-trees in Asymptotic notation

Operation Average Worst Case

Space O(n) O(n)
Search O(logn) O(logn)
Insert O(logn) O(logn)
Delete O(logn) O(logn)

was to implement a B-tree structure in hardware.

In this document, a variation of a B-tree structure implemented in hardware is

presented. Knuth [28] defined B-trees in a particular way, but there are some discrep-

ancies on the working and internal naming of the B-tree structure. This work assumes

a B-tree that is derived from the original definition of the B-tree data structure with

a few modifications to enable the effective use of the B-tree structure. To eliminate

any confusion, and for the purpose of this dissertation, a set of assumptions that help

define the structure of the B-tree are presented as follows:

• A B-tree of order (m) contains (m) keys in each node.

• The B-tree is sorted by the key.

• Every node can have at most m children.

• Every key in each node has useful metadata information including pointers that

point to the location of the memory segment in hardware.

• All internal nodes are the same, including the leaf nodes.

• The root node functions exactly like all the other nodes.

An illustrated example of a B-tree indicating the nodes and keys is as shown in

Figure 2.3.

23

10 20 30

B-tree Node

key : ___

left : ___

right : ___

parent : ___

seg id : ___

length : ___

delete : ___

pending: ___

name : ___

2 4 6 12 15 17 19 21 27 32 35 41 53

Metadata Entry

Figure 2.3: Example showing the relationship between nodes and keys in an order 4
B-tree

2.4 B-tree-Based Memory Subsystem

The plan is to use the B-tree structure to store the metadata, with node pointers

to memory locations. The linked list serves as an LRU tracker, by keeping track of the

least recently used data segments. A high-level illustration is as shown in Figure 2.4

The details of this implementation with a memory controller is explained in more

detail in Chapter 3. However, some important definitions are presented here.

Order of a B-tree is defined as the number of children each node can have. If a node

has k number of keys, the order of the B-tree will be k + 1.

Node of a B-tree is unit that can hold more than one key (as defined by the order)

thus enabling the possibility of having multiple children.

Metadata Entry is all the information about a memory segment. There can exist

multiple metadata entries per B-tree node.

Memory Segment is a sequence of bytes of data. This is stored in memory. This

can be on-chip or off-chip memory.

24

B-tree with LRU tracker

2974612181613 15

Linked-List

HEAD

TAIL

6

2 4 7 9 12 18

13 15 16

Figure 2.4: B-tree with a linked list

Segment Identifier is the direct location of the memory segment in the memory.

Key is the hashed name of a memory segment.

Name is the human-readable name of a memory segment.

Size is the size of the memory segment.

2.5 Related Work

The papers described in this section cannot be directly compared to this work but

have an interesting approach to memory subsystems and share the same motivations

as this dissertation. There are also papers that implement a data structure on an

FPGA like [29], [30] and [31].

There is a plethora of research that has been conducted on caches and cache hi-

erarchies. Most of this work focuses on how to mitigate latency issues at the expense

of bandwidth with a very small percentage of papers focus on bandwidth. Smith [32]

provides a comprehensive survey on the fundamentals of caches and their issues while

also outlining the importance of memory bandwidth. Jacob et al [33] present a model

that offers a solution to derive the optimal size of each level in the cache hierarchy.

25

Jacob’s book [22], describes caches, DRAM, and disks in detail. Chow [34] and Agar-

wal [35] show that analytical modeling can be used to determine optimum capacity of

a cache memory and close to accurate performance figures for caches. Smith [36] also

presents how the cache line (block) size of a cache affects CPU performance. Den-

ning [37] introduces the concept of “balancing” the memory and processor demands

against equipments and present a working set model for memory management which

is the smallest collection of information required to be present in memory in order to

ensure efficient execution of a program.

The Fresh Breeze project [38] presents a parallel programming model for a multi-

core chip. The memory model of this project uses data objects as trees of fixed-sized

memory chunks. The model uses global shared address space and write-once, read-

only format. Although this model is also tree based, the main difference is that they

implement the trees in software. Also, they work with fixed-sized memory chunks as

opposed to the memory subsystem, AMME, described in this dissertation that can

work with variable sized data chunks.

Liao, Zhu and Bhuyan [39] describe memory stalls as a major source of overheads

in high speed network architectures. The authors identify page data structures to

be a main factor in these memory stalls. Also, stated is that existing platform opti-

mizations like Direct Cache Access are insufficient for network processing bottlenecks.

They present a new server I/O architecture that shifts the DMA management to an

on-chip network engine. Although the solution presented in this paper is focused on

networking bottlenecks the motivation emphasizes the argument made in this disser-

tation. Saidi et al [40] show that the performance of systems is no longer dictated

just by processor cores but in fact, the memory system, core interactions and I/O

interactions play an important role in defining the overall performance.

Burger, Goodman, and Kägi [41] make a case for improving memory bandwidth

over latency. The main point of this paper is that with the use of increased latency-

26

tolerance techniques, memory bandwidth will the impediment to performance. In

other words, bandwidth constraints will lead to higher latencies. The authors state

that metrics such as average memory access time will not address the issue of memory

stalls that are a result of insufficient memory bandwidth. The metrics they use include

the rate at which external memory can supply operands and on-chip memory reuse.

They also define a new metric, traffic inefficiency, that is the ratio of traffic generated

by a cache and managed memory.

LEAP scratchpads [42] is a project by Adler et al that presents a new scratchpad

architecture for reconfigurable logic that has the ability to dynamically allocate and

manage multiple memory arrays that are independent in a large backing store. The

use of LEAP scratchpads enables the automatic partitioning of on-chip memory. An-

other similar project is the CoRAM (Connected RAM) [43] that serves as a bridge

between distributed computation kernels and memory interfaces. The CoRAM ar-

chitecture provides a virtualized memory environment that can simplify application

development and improve portability and scalability.

Lastly, with many new emerging memory technologies on the horizon, Kim [44]

reviews PCM, STT-MRAM and RRAM and talks about their potential of becoming

transformational memory technology. Swanson and Caulfield [45] talk about Non

Volatile Memory (NVM) like Flash and Phase-Change Memory and the necessity to

refactor, reduce and recycle to maximize performance with minimal disruption to the

rest of the system.

CHAPTER 3: DESIGN AND IMPLEMENTATION

In the initial part of this chapter, an abstract model of the envisioned reconfig-

urable system is described, the stochastic parameters that can be used describe the

behavior of our memory subsystem are defined, and the theory of operation presented.

In the latter part of this chapter, the actual implementation of the design is presented.

3.1 Theoretical Formulation

With a high load on the memory subsystem, Little’s law can be used to determine

the specifics of the memory subsystem. The goal of the memory subsystem is to

reduce the number of outstanding requests by servicing the requests at a faster rate

thus reducing the wait time for each request. In such a system, all the factors are

codependent. The number of scratchpads in the system can be used to determine

the optimal the number of channels needed from the interconnect to the memory

subsystem. This would dictate the load on the memory subsystem. In order to

design and implement a system that would meet this criteria, it was essential to the

feasibility of this idea. Toward that, Section3.1.1 presents a stochastic model that

uses Little’s law to study the possible advantages for designing such a system.

Additionally, the Green/White Architecture described in Chapter 2, is presented

briefly in Section 3.1.2 as an abstract model from the point of view of the memory

subsystem.

3.1.1 Stochastic Model

In this section, a stochastic view of the overall system is presented in tune with

the memory subsystem. Some of the observations made here will be highlighted in

Chapter 4 but first we define some common variables from queuing theory.

λ is defined as the average arrival rate of requests to the memory subsystem. For a

28

stationary process, λ can also be called the average completion rate of a task.

n is the average number of outstanding requests in the system waiting to be serviced.

This defines the load on the memory subsystem. These requests are stored in a

FIFO as explained in Section 3.3.

t is defined as the average wait time for a request in the system. t can be represented

as shown in Equation 3.1. The memory latency can be calculated depending

on the type of memory channel the request uses. Ideally, the different memory

channels can be Block RAM, SRAM, DRAM and SATA. The average wait time

is the time the memory subsystem takes to service the request.

t = tmemory latency × tavg wait time (3.1)

C is the total number of compute cores in the system.

B is the number of scratchpad memories per compute core. At a minimum, this num-

ber must be 2×C to facilitate the overlap of loading one bank with computation

from the other.

ρ is the Utilization Factor. It is the expected arrival rate per mean service time, also

called traffic intensity [46] or occupancy.

ρ =
λ

µ
(3.2)

As explained in Chapter 1, Little’s law is crucial to the theoretical model and the

computation of the variables in the memory subsystem. Little’s law is stated as:

n = λ× t (3.3)

29

i.e. the average number of outstanding requests in the system can be determined

by the average arrival rate of the requests and the average wait time. Assuming we

have C number of cores in the system, each with B banks of scratchpad memory. The

total number of compute cores in the system and the number of banks of scratchpads

can be used to calculate the maximum number of outstanding requests the system

can have as shown in Equation 3.4.

C ×B = max(n) (3.4)

The service rate of each request µ can be determined by the wait time t. As

explained in Equation 3.1, the time is given by the memory latency and the wait

time to be serviced. We are currently working on a system with multiple links to

the memory subsystem to enable concurrent accesses. The wait time in the memory

subsystem is largely determined by the depth d of the data structure i.e. the number

of objects in the data structure (in this case a B-tree). The service rate is as shown

in Equation 3.5.

µ ∝ log d (3.5)

We are approaching this model stochastically by the application of the birth-death

process. We also are assuming 10,000 tasks. This can be represented as shown in

Figure 3.1. The arrival rate λ and the completion or service rate µ are random

variables in the process. The main goal of this model is to ensure the full utilization

of memory bandwidth across all channels to the memory. We have a programming

model that can define the granularity of the system, thus the arrival rate can be

dynamically tuned by the run-time system.

Suppose Pn is the steady-state probability of the number of outstanding requests

in the system, we can say that

30

P0 P1 P99 P
999

P
10,000 P20,000 P100,000

Figure 3.1: Birth-Death process

Pn =
λ

µ

n

P0 (3.6)

where P0 is the probability that the system has no requests and the queue is zero.

If the system is in this state then there is wasted bandwidth which is not ideal. Using

ρ and solving for the M/M/1 queue, we can derive,

P0 = 1− ρ (3.7)

We also want the Utilization Factor to always be less than one which means that

the arrival rate should always be less than the service rate. If ρ is one, the system

approaches a state of chaos as the queue would continue to grow and when λ = µ,

the memory subsystem will be unable to handle the load and reduce the queue as the

service rate will not be faster than the arrival rate. Thus, if we are in state P0 for a

memory channel, that means that we are not actively engaging the channel. We have

exhausted the mathematical approach to solve this model and it is required that we

work on the implementation in order to advance this abstract model.

Thus, the high level or system level view becomes a stochastic process with com-

putational cores providing a statistical demand on the memory subsystem that can

be represented by a random variable (an arrival rate) and the memory subsystem

responding based on a random variable (a service rate). In such a circumstance, the

overall goal of the system is to balance computation against the physical limitations

of off-chip memory bandwidth to create a queue of enough outstanding requests that

the memory subsystem can intelligently order the transactions. From a formal point

of view, it is Little’s law [15],

31

N = λ×W

where N is the number of outstanding requests, λ is the arrival rate, and W is

the wait time. In our case, λ (the computational load) can be manipulated so that

N does not exceed the on-chip resources. Hence, we create an artificial stationary

process that, as the on-chip resources increase, allows us to approach 100% bandwidth

utilization. Combined with the latency-hiding technique introduced in the previous

paragraph, this approach has the potential of dramatically improving the overall

throughput of highly parallel applications on many-core architectures.

To realize the abstract model of computation presented in this section and utilize

the stochastic characteristics, a key operation in the memory subsystem is ability

dereference memory segment names. This operation takes a name and identifies the

location of the memory segment. In the grand scheme, the segment might exist on

chip, in DRAM, or even on a solid state drive.

3.1.2 Green/White Architecture

An high-level view of the Green/White architecture design is illustrated in Fig-

ure 3.2. As previously mentioned, this architecture consists of several cores, each

with some amount of local memory (or scratchpad). There are two types of cores in

the system — Green core and White core. The cores are differentiated based on how

they are used. The White core is a modern, highly optimized processor core with a

traditional cache hierarchy and intended for sequential parts of the application. The

Green cores, which are the cores that use the novel memory subsystem proposed here,

provide the parallelism. As such, they are either application-specific accelerators or

processor cores that favor small size over speed (to increase the maximum degree of

parallelism). In a new programming model and run-time system, described in [47],

the White core is responsible for generating tasks that are sent to the Green cores for

computation, assigning more than one task per core. Based on the tasks assigned, a

32

Memory

Channel to

Off Chip

Memory

Channel to

Off Chip

Computational Load

(processors,

accelerators,

etc.)

Banks of

scratchpad

Channels to Memory

(various speeds,

capacity,

volatility)

Fully connected

Crossbar
Active Memory

Subsystem

Channel to

Off Chip

D
R
A
M

S
A
T
A

WC local

memory

Figure 3.2: Abstract theoretical model

Green core will request the code and data by name for all of its tasks simultaneously.

Once the memory subsystem has delivered all of the required data for a task to run,

the task runs to completion and informs the memory subsystem that a new, named

memory segment is available. The central idea is that that memory subsystem can

be moving data to the scratchpad memories and from the scratchpad memories con-

current with tasks running on the Green cores. When a task completes, the selected

scratchpad is changed and the core is reset. Note that under this scheme, there is no

global address space, only named memory segments. These memory segments are lo-

cally read/write-able in an imperative style but once a task completes and the output

shared with the memory subsystem, it is read-only. Communication and synchro-

nization between the cores is handled by references to named segments. Names are

ASCII strings that have been hashed to a fixed-width, binary digest, i.e. SHA-like.

This model does not allow for conventional synchronization primitives such as

33

semaphores and it imposes a functional style of programming at the highest level

([47] describes the two-level programming model in detail). However, it does allow

for state machines and imperative style programming at the task level and the or-

ganization overcomes several very difficult architectural challenges for extreme scale

systems; one of which is the Memory Wall. Finally, as the illustration shows, there

could be multiple channels to memory with different speed, capacity, and volatility

characteristics.

3.2 Proof of Concept Implementation

The first implementation toward building a Memory subsystem for the system

described in Section 3.1.2 was the implementation a core called the Dynamic Memory

Allocation Controller (DMAC)[27]. This core consists of a binary tree data structure

in hardware. The main aim with this implementation was to study the feasibility of

implementing a data structure in hardware.

The DMAC consists of two specialized cores — malloc core and free core. The

malloc core allocates blocks of memory from the DRAM and the free core deallocates

the memory. A top-level DMAC controller core manages both the cores and hands

off information from one to the other. The DMAC also consists of a Native Port

Interface (NPI) that talks to the main memory. For the purpose of this paper, the

DMAC is tested by using it as a slave on the system bus, but the end goal is to

interface it to the local link network. Figure 3.3 shows the high level block diagram

of the DMAC unit.

3.2.1 DMAC Controller

The DMAC controller is the central aspect of the DMAC core. It handles the

incoming requests for data and issues the appropriate commands to the malloc and

free cores.

The operands that serve as input to the DMAC are command, size, dram addr,

and data. Command encodes malloc and free requests. Size is the size of the memory

34

Figure 3.3: Block diagram of the DMAC

35

requested in bytes. And dram addr is used to point to the block of memory to be

deallocated.

When a user issues a malloc command, the DMAC controller first looks in the

free tree to find a chunk of memory that matches the requested size. The DMAC

controller issues a delete command to the free core, if the size if found in the free tree, it

returns a DRAM address to the DMAC controller. The DMAC controller then passes

along this DRAM address to the malloc core and issues an allocate command. The

DMAC controller keeps track of the latest available memory address of the DRAM

in a register called sbrk. In the event that the size is not found in the free tree, the

DMAC controller issues an allocate command to the malloc core and gives it the

address from the sbrk register.

Similarly, when a user issues a free command, the DMAC controller issues a delete

command to the malloc core which returns the DRAM address of the block that is

freed, and the DMAC controller then hands that block to the free core with an allocate

command. This way, the whole structure can be thought of as two lists — an allocated

list and a free list of the memory.

3.2.2 Binary Tree Structure

The malloc and free cores are implemented as binary tree structures in hardware.

The binary tree for the malloc core is implemented to sort by the DRAM address

and the tree for the free core is implemented to sort by size. Each core has a list

of allocated or free memory addresses stored in a table in a single port BRAM. The

table in the BRAM consists of the following fields — size of the block, parent, left,

right. Figure 3.4 gives an example of how the tree structure is stored in memory. This

example is of a tree stored in the free core, hence it is sorted by size. Additionally,

the DRAM address is also stored in the BRAM table.

The state diagram for the binary tree structures can be seen in Figure 3.5. When

the malloc core receives an allocate command, it adds the node into the BRAM. If

36

Node: 0

Size: 8 kB

Node: 2

Size: 4 kB

Node: 1

Size: 12 kB

Node: 3

Size: 2 kB

Node: 4

Size: 6 kB

Node: 5

Size: 18 kB

[Root]

BRAM address Size Parent Left Right

0 8 0 2 1
1 12 0 0 5
2 4 0 3 4
3 2 2 0 0
4 6 2 0 0
5 18 1 0 0
...

...
...

...
...

Figure 3.4: Example tree and corresponding table in the BRAM

the entered node is the root (the first node to be entered), the core waits for another

command. The root node is loaded into a register (root register) to prevent the cost

of fetching the root from the BRAM for every cycle. After the root node, for every

allocate, the malloc core adds the new node into the BRAM, reads the previous node

from the BRAM, updates the left or right field of the parent node (according to the

size or dram addr), and also updates the parent field of the new node that is entered

into the BRAM. As mentioned before, the tree for the malloc core is sorted by the

address of the DRAM (dram addr). The set-up for the free tree is similar but the

free tree is sorted by size of the memory block.

The malloc and free cores are set up to perform a search for a particular memory

block. In the case that the core receives a find request, it requires an additional

operand. This additional operand can be either the size of the memory block or the

DRAM address of the first location of the memory block. To find a node, first the

root register is checked to see if the node being searched is the root. If it is the root,

37

IDLE

UPDATE TREE ADD NODE

READ NODE

FIND NODE

 Check command

[allocate, find,

 delete]

Add node into

 BRAMCheck if node

 is a match

 Update node,

parent, children

Read node from

 BRAM

"allocate"

if node
 is root

 if node
 is not root

"find"

node
found

read return
 for update

 if
 wrong
 node

update
done

if node
is not root

 read
 return
 for
 find

Figure 3.5: State Machine for the Allocate and Find Functionality of the Binary
Tree Structure

IDLE

UPDATE
PARENT

GET DELETE
 NODE

DELETE INIT

READ NODE

 Check command

[allocate, find,

 delete]

Read node from

 BRAM

"delete"

get node to
 delete

delete
 node
 found

delete
 done

UPDATE
 LEFT

~Get node to delete

~Keep track of

 current node

~Check the number

 of children

~Get the parent

UPDATE
RIGHT

 get
 child

 parent
node

get
parent

if right
 child or
two children

if left
child

if two children

Figure 3.6: State Machine for the Delete Functionality of the Binary Tree Structure

38

it is handed over to the DMAC controller immediately. If not, the core traverses the

tree to find the node requested. Once the node is found it is given to the DMAC

controller.

When a delete command is issued to the malloc core, the start address of the block

to be freed is given as an operand. The core first gets the node to be deleted from the

BRAM. The delete function is complicated because the core has to update the child

(left or right) node and the parent node. If the node to be deleted has two children,

both the left node and the right node have to be updated in addition to the parent

node. Figure 3.6 shows the flow of events when a delete is issued. Lastly, whenever

a delete results in a “hole” in the table, the last entry of the table is swapped with

the hole. Thus all the free nodes are at the bottom of the table and all the allocated

nodes are at the top. This helps prevent fragmentation.

The previous implementation, definitely proved that it was feasible to implement a

data structure in hardware but several issues rendered the Binary Tree data structure

not optimal for use in hardware. The main issue with the binary tree structure was

that a bad data pattern could lead to the tree growing in just one direction which

would then become a glorified linked list. In addition to this, the complexity of

balancing the binary tree in hardware led to increased look up times, which proved

to be unfavorable. A desirable feature for the data structure would be to have less

overhead of balancing, and hence the chief implementation of this dissertation consists

of a self balancing B-tree data structure. The conceptual details of the working of the

data structure itself, is presented in Chapter 2. The next section presents the chief

implementation of the memory subsystem with a B-tree data structure.

3.3 Final Implementation

The Memory Subsystem hardware consists of a master controller, B-tree modules,

and a BRAM pool for data. The aim is for this hardware to serve as an active memory

controller, which not only services the requests that are coming in, but can also keep

39

Interconnection Network

DRAM

Read/Write

Request

Read/Write

Reply

SATA

Figure 3.7: High level block diagram of the Memory Subsystem

track of pending requests. A unique feature of the Memory Subsystem is that it can

work on variable sized memory chunks. Another feature is that it works on name

based memory chunks that make it easy for the processor. Figure 3.7 shows a high

level block diagram of the Memory Subsystem.

There are two versions of the implementation of this system in hardware. The

first implementation was a B-tree Cache System and was modified to form the sec-

ond version of the implementation Active Memory Management Engine (AMME).

The core implementation of the B-tree data structure in hardware remains the same,

but the second version has optimizations and better features. The next section de-

scribes both the implementations in detail, and explains the reasons for the differing

implementations.

40

3.3.1 Name-to-Key Converter

The first piece of the implementation is the Name-to-Key converter, or the SHA-3

hashing core. This core is briefly explained in this section. Additional details can be

found in [48]. The Name-to-Key Converter core uses human-readable, variable length

names to identify the memory segments. However, this complicates the hardware

which is far more efficient if the look-up key is a fixed number of bits. One of the

features of this algorithm is that maintains its distribution property for different sized

outputs. To use this in our experiments we created a Name-to-Key Converter core

that accepts as input an ASCII name in human-readable form and produces a binary,

fixed-width key as output. The key is suitable for tracking the memory segment

within the memory subsystem. Figure 3.8 shows a high level block diagram of the

Named-DMA core.

One hash characteristic to note is that a name does not always map to a unique

key (i.e., it is not an injection). This means that we cannot recover the name for a

key and there is the potential that two names might map to the same key (called

collision when the hash is used in a data structure). In both cases, we address this

with the small run-time system but the goal is keep this a rare event.

Creators of the Keccak hash function provide three open source implementations

for FPGAs and ASICs coded in VHDL [49]. They state that there is a trade-off

between area and speed given the symmetry and simplicity of its round function.

Therefore, two implementations cover the two ends of the spectrum, a high speed

core and a low area one. The third is a mid-range core. The one used for this work

is the high speed core for its ability to be used in a standalone fashion [49].

The core is made up of three main parts; the round function, the state and the

I/O buffer. The I/O buffer decouples the core from the bus used on a typical SoC,

as we will see in our implementation. During the absorbing stage, the computation

works simultaneously as input is fed to the buffer. The throughput is limited by the

41

Hash Function

SHA-3 Core

Wrapper

Function

MicroBlaze

(with Standalone

Application)

 D

 R

 A

 M

I/O Buffer
 State

Register

Figure 3.8: Block diagram of the Name-to-Key Converter core

42

width of the bus, which is typically 32 or 64-bit. For this implementation, 64-bit

words are used as a default.

A customized wrapper served as an interface between the core’s top level and the

software controlled registers defined. Due to the 64-bit wide lanes in the internal

permutation, the core is set up to input and output data over a 64-bit bus. Since

the programmable soft processor MicroBlaze offers 32-bit word read and writes, two

registers were written successively and concatenated in the top level of the hardware

description files. After the second register with the upper half of the word is written,

the I/O buffer feeding the core absorbs the first 64-bits of input for one clock cycle.

Similarly, once the result is ready, the output is pushed into two registers to be read

by the software application.

3.3.2 B-tree Cache System

The initial implementation of the B-tree memory engine consists of three main

components: a B-tree table (BRAM table), a compare-sort module and a controller.

This B-tree structure is used to hold the metadata of the system and is implemented

in on-chip memory.

3.3.2.1 B-tree Memory Table

The first step toward setting up the structure in hardware was to implement a

table in memory will serve as the B-tree. The B-tree memory table is a table residing

in the BRAM contains the following fields — key, parent address, left address, right

address, segment identifier (the base address of the data block in memory) and a

couple of fields for checking validity and adjacency. Although the B-tree is stored as

a table in hardware, in order to achieve the working of a B-tree, it is essential to keep

track of the children (branches) and the parent. The size of the key is configurable for

this data structure. For the purpose of storing the parent and left/right (branches)

the BRAM address of the key which is the parent or left/right branch is captured.

The node pointer field functions in two ways. This field is a 130 bits of which 4 bits

43

function as control bits (data control) that decide the content of the other 128 bits.

The data control bits can be set to be either local, BRAM pool or remote. These are

the bits that dictate if the data will be stored on chip in BRAMs or off chip in the

DRAM. If the actual data is four payload data words or less, the control bits can set

to local and the payload data words are stored in the B-tree table itself. If the control

bits are set to remote, the base address of the DRAM where the data will be stored

is captured and the size of the data block is also stored.

3.3.2.2 B-tree Table Addressing

Each entry of the B-tree memory table stores the information for one key. Since

each node of the B-tree contains no more than four keys, to perform any operation,

at the very least, four keys will be required. Hence, the atomic unit of transfer

between the controller and the B-tree memory table is a node (that will contain four

keys). Thus for each added node, even if there exist empty keys, four contiguous

memory locations are reserved. This saves the overhead of fetching the locations one

by one. Any operation that warrants reading from the B-tree table, uses an address

offset calculation to ensure reading one complete node as opposed to four contiguous

locations that are part of separate nodes. For any given address, the corresponding

read address is calculated by the formula:

read addr = addr − mod
(addr − 1)

(n− 1)
(3.8)

where read addr is the address that the data is read from and always points to

the base address of a node and n is the order of the B-tree. The logical view of the

tree and how the nodes are stored in the B-tree table is as shown in Figure 3.9.

3.3.2.3 B-tree Controller

The B-tree controller unit is the top-level hardware that performs all the op-

erations and manages the B-tree table. Keeping in mind the working of a B-tree,

multiple consequent splits could result in a intermittent change of the root. The B-

44

6

2 4 7 9

6
0

1

2

3

4

5

6

7

8

9

10

11

12

2
4

7
9

2 4 7 9

2 7 9

2 9

2

compare & sort

compare & sort

compare & sort

node FULL: split

0

1

2

3

4

5

6

7

8

9

10

11

12

2
4
7
9

BRAM tableB-tree
Add key value: 2

Add key value: 9

Add key value: 7

Add key value: 4

Add key value: 6

root

root

root

root

root

root

root

Figure 3.9: An example of a B-tree and the logical view of the nodes stored in the
B-tree table

45

tree controller comprises of a root register that keeps track of the current root of the

B-tree. The B-tree controller also has four key registers to hold the four keys of the

current node in operation. Another feature incorporated into this design is that the

controller retains the latest node that is fetched in a register on-chip. This results

in faster look-ups of any keys near a recently referenced key. Every time a request

comes in, this register is checked for a match before proceeding to the B-tree.

As in any conventional cache, the B-tree controller receives Read and Write com-

mands. These commands are then interpreted by the B-tree controller as B-tree

operations and processed accordingly. The B-tree operations include add, find, split,

update, and traverse, . These commands are explained in detail below:

Add: On receiving a Write command, the B-tree controller adds the particular key

to the B-tree table. In doing so, the B-tree controller first performs an add

operation. Starting at the root, the new key is compared to the existing keys

and added to the B-tree accordingly. If it is the first key to be added, it becomes

the root and the root register is updated to reflect this key. If a root exists, the

key is inserted at an appropriate empty slot in the tree.

Split: While performing an add operation, if the new key is to be inserted at a node

that already contains four keys, a split is executed. A split can result in multiple

splits, until the B-tree controller finds an appropriate empty slot to insert the

new key.

Update: An add or a spilt operation warrants updating of parent/children addresses.

A simple add operation would result in updating the parent to reflect the newly

added node as its child. A split would result in a more complicated update

operation, where the parent and the children have to be updated.

Traverse and Validate: An operation that walks the tree uses these operations. The

traverse operation walks the tree, while the validate operation performs checks

46

for parent/children.

Find On receiving a Read command, the B-tree controller issues a find to retrieve

the requested key from the B-tree. This command typically traverses the tree

looking for the said key. When the key is found, it retrieves the data packet

associated with the key and passes it on the smart memory subsystem.

Delete or Mark for Delete The actual delete operation is performed on a higher

level with epochs. On receiving a delete, the B-tree controller marks the key

corresponding to the memory chunk to be invalid. Once the key has been

marked for delete, that particular key is not considered while traversing the B-

tree. It should be noted here that while the mark for delete operation renders

the key to be invalid, it does not change the structure of the B-tree. Changing

the structure of the B-tree is a very expensive operation and takes place on a

split operation, and when an epoch is issued.

3.3.2.4 Compare-Sort Module

The keys in each B-tree node require to be sorted in order to achieve precise

placement of the children. The input to this module is a node. This module then

uses comparators to compare the keys and returns the node with the keys sorted in

ascending order. Several operations of the B-tree require comparing and sorting the

keys. The compare-sort module eases this operation, by making it a two-step, feed-in

read-out process.

3.3.2.5 Master Controller

The master controller is the main pivot that controls the entire system. As shown

in Figure 3.7, the master has control of two B-tree modules — the BULK B-tree mod-

ule and the WAIT B-tree module. While the basic hardware of the B-tree modules is

the same, the main difference is that the WAIT module is used to store any request

that comes in that does not have any data associated with it yet. Also, since there

47

will never exist data associated with the requests in the WAIT B-tree, the B-tree

table does not contain a field to store node pointers. Instead it makes a note of the

core that is initiating this request.

For any write request that comes in, the master first checks in the WAIT tree if

there has been a request for this data. If there has been a request, the master first

services this request by sending the data associated with the request to the core as

stored in the WAIT B-tree. Also, in the WAIT B-tree, this entry is now marked for

delete. Additionally, this data is written into the BULK B-tree so any other read

requests for this particular data chunk can be serviced accordingly.

The master controller stores the base addresses of the data blocks stored in the

BRAMs in the BULK tree. Each request has a payload length associated with it.

This controller keeps the BRAM pool in check and allocates and frees BRAMs from

the BRAM pool. To ensure that the BRAMs are written to properly, the master

controller uses a sbrk register. This register is the hardware equivalent of the memory

management system call in Unix. Every time a new data chunk is stored in the BRAM

pool, this register increments by the number of bytes equal to the payload length.

Thus, this register always points to the latest available location in the BRAM pool.

Additionally, there is a FIFO to queue multiple requests that are pending.

While the implementation of this design was functional, there were a few draw-

backs that could be overcome. The B-tree Cache System, as the name suggests, has

the ability to perform caching. As mentioned previously, the data control bits are

set to local, the payload data words are stored in the B-tree itself. When there is a

request for this data, the B-tree traversals lead to the data itself reducing the need

to perform additional lookups. While this is a favorable feature, this technique of

storing the payload data words within the B-tree can be very restricting in terms

of the size of the payload. As described in Chapter 1, a desirable feature for the

memory subsystem is to have the ability to be active. But this B-tree Cache System

48

behaves like a reactive cache, which led to the second version of the implementation,

that is described in the next section. The implementation of the B-tree table address-

ing is also improved in the second version of the system. Furthermore, the WAIT

and BULK tree are combined into one structure, decreasing the hardware footprint

and making it more perceptive. The algorithm for this implementation is shown in

Algorithm 1.

Algorithm 1 Master controller operation

if WRITE REQUEST then
find key in B-tree
if found then

Add data to the found key in the B-tree
reply to the core that previously requested that data segment

else
Add key to the B-tree (with the data)

end if
end if

if READ REQUEST then
find in B-tree
if found then

reply with data
else

Add key to the B-tree
Set the pending flag corresponding to the key

end if
end if

3.3.3 Active Memory Management Engine (AMME)

Many features of the B-tree Cache System were retained in the implementation of

the AMME, with a few modifications. In this section, the modifications are described,

with the assumption that the other features are maintained.

The block diagram of the AMME is shown in Figure 3.10. As seen in the block

diagram, the B-tree module in isolation, is mostly the same.

49

Table 3.1: Fields in one metadata entry of the B-tree table

Field Name Description

Key Value SHA-3 Hashed Digest that is a unique identifier for
the memory hunk

Parent Address The B-tree table address of where the parent of the
key resides

Left Address The B-tree table address of where the left child of the
key resides

Right Address The B-tree table address of where the right child of
the key resides

Adjacent Key Indicates if a valid adjacent key is present
Size Size of the payload
Pending Request Indicates if the key has pending data and which core

has previously requested the data
Payload Pointer Contains information of where the payload data re-

sides (which memory) and the base address for the
payload

Valid Indicates if the key is a valid key
Delete Indicates if the key is marked for delete
B-tree Table Address The B-tree table address for this particular key

3.3.3.1 Metadata Entry Fields

The modifications in the overall hardware of the system warranted some additional

fields to the B-tree table. Table 3.1 shows all the fields in one metadata entry of the

BRAM table with a brief description.

3.3.3.2 New B-tree table Addressing

One big change to the B-tree module (not depicted in the figure) is the addressing

scheme. In the previous implementation, each BRAM entry held one key of the B-

tree. The AMME has a wider BRAM table that can hold one node, i.e. all the keys

contained in one node. This not only makes it easier for the B-tree Controller but

it also enables faster access times. While previously it took four times the BRAM

latency to fetch an entire node, it now takes just one lookup to fetch an entire node.

50

DRAM

Figure 3.10: High level block diagram of the Active Memory Management Engine
(AMME)

3.3.3.3 Epoch Controller

Another addition to the AMME is the epoch controller. This hardware facilitates

the delete operation of the B-tree. When an epoch is issued, the Epoch Controller

reads the B-tree table and actually deletes the metadata entries that were marked for

delete. The Epoch Controller also conveys the deleted payload pointers to the Master

Controller thus enabling their use in the current epoch.

3.3.3.4 AMME On-Chip Memory Pool

Previously, the data was stored inside the B-tree table. To eliminate the restriction

of the payload size, an On-Chip Memory (BRAM) pool was introduced. While the

B-tree module is used to store the metadata of the system, there is an additional

resource on-chip to store the payload data. As the name suggests, it is a pool of

multiple BRAMs that hold the data. The master controller reads from and writes to

the On-chip Memory pool. The size of the BRAM pool is decided based on amount

of resources available on-chip. This memory is used when all the scratchpads of a

particular green core are full and the payload data needs to be moved out of the

51

scratchpads to allow for newly computed data to be stored.

3.3.3.5 Channel to Green Core Scratch pads

The last modification that was made for the AMME was the addition of channels

to the green core scratchpad memories. This makes it possible for the AMME to

directly perform DMA on a memory segment residing in one green core’s scratchpad

to another green core’s scratchpad. The Master Controller of the AMME has the

base addresses of all the scratchpads of the green cores along with information on

which scratchpad belongs to which green core. This feature enables a faster service

rate for payload requests that are from a green core and the requested payload data

resides in another green core’s scratchpad.

CHAPTER 4: EVALUATION

The evaluation methodology of this research is split into different sets of experi-

ments. The first set of experiments are centered around the Name-to-Key converter

presented in Chapter 3. The second set of experiments include a detailed analysis of

the B-tree hardware structure and supporting hardware. Next, the AMME unit is

evaluated and the a set of experiments help examine the degree of parallelism enabled

by the proposed memory subsystem and effective bandwidth achieved. Finally, an

analytical study of energy expended by the memory subsystem is presented1. Each set

of experiments and these will lead to inferences that attempt to prove the hypothesis

presented in Chapter 1.

4.1 Name-to-Key Converter Results

For this investigation, all experiments were conducted on a Xilinx ML-605 devel-

opment board with a Virtex-6 (XC6VLX240T) FPGA. Version 14.5 of the ISE/EDK

tools were used to create and synthesize the design.

A base system running at a clock frequency of 100 MHz was built incorporating a

MicroBlaze processor connected by an AXI bus to the SHA-3 peripheral core. 128 MB

of DDR3 SDRAM memory was included in the base system to store large datasets

of input for hashing. An RS-232 core operating at a baud rate of 9600 bps provides

the ability to read the output of the SHA-3 core in a terminal via UART (Universal

Asynchronous Receiver Transmitter). Additionally, axi timer, a core that counts

clock ticks, was included in the design to measure latency and throughput. XMD

was used to download the bitstream onto the FPGA and the elf file to be run on the

1Although the intention was to integrate a non-volatile memory like phase change memory (Un-
fortunately, the RCS lab has not procured the funding to buy the infrastructure yet).

53

MicroBlaze. A text-based modem control and terminal emulation program, Minicom,

was set up as a remote serial console and used to read out the hashes and write the

output to a file so results can be analyzed later.

The hardware base system was tested for correctness by hashing the test vectors

provided with the design and comparing the output of the simulation to those hashed

on the hardware itself. The test vectors provided contain thousands of inputs and are

in hexadecimal format. Inputs are 1024 bits long (16 64-bit words), whereas outputs

are 256 bits (4 64-bit words).

After verifying the functionality of the SHA-3 core on hardware, the system was

expanded to allow more robust experiments. The core was required to hash human-

readable input of variable length. Hence, an algorithm was devised for that purpose.

Additional details of the algorithm are published in [48].

Given that the size of the hash is a constraint (the size of the B-tree based memory

subsystem [50] would be impractical otherwise) the output is truncated to different

acceptable lengths when collecting data. Data with hashes of size 64, 32, and 16 bits

were collected for a broad range study detailed later. Further precision experiments

looked at median non-traditional lengths such as 20, 24, and 28 to optimize for lower

area footprint.

4.1.1 Datasets

• Absolute paths to filenames on the RCS lab main server: The absolute paths

to over 1,000,000,000 file names and directories were collected from a server,

ensuring uniqueness. Hence, the data is not random, and is representative of

real data where certain character patterns tend to repeat themselves. Random

selections of different fixed sizes were taken from the main data collected for

controlled experimentation into the effects of the number of names as it grows.

The sizes chosen were 100,000, 50,000, 25,000 and 10,000 names. While large

datasets were considered to study the scalability of our scheme, 10,000 in-fight

54

Table 4.1: Dataset statistics of Amazon fine foods reviews

Number of reviews 568,454
Number of users 256,059
Number of products 74,258
Users with > 50 reviews 260
Median number of words per review 56
Timespan Oct 1999 - Oct 2012

transactions is a more realistic number to target. The reason for this is explained

in Chapter 1.

• Amazon Fine Foods Reviews: The data set here is from the Stanford Network

Analysis Platform (SNAP) [51] which is a general purpose network analysis and

graph mining library. This library has a collection of about 50 large network

datasets that include social networks, web graphs, road networks and more.

The data set we propose to use is the Amazon Fine Foods reviews data set.

This data set contains upto 500,000 reviews and the data spans a period of

more than 10 years. The statistics of the dataset are as shown in Table 4.1.

These reviews were made by real buyers of fine foods on Amazon’s website.

Besides being much larger in both, number of inputs and the input (message)

size, the reviews offer a much larger degree of variability than absolute paths.

The dataset cited contains 568,454 reviews, made by 256,059 users for 74,258

products. The median amount of words per review is 56, some constituting long

paragraphs of product description. The format of the reviews is as shown in

Figure 4.1

The system had to be tweaked at the software level to absorb this size of message

to hash. Preliminary tests conducted with 10,000 reviews showed no collisions

at the 32-bit hash size. Again, this further supports our previous conclusions.

However, more experiments should be done for larger input datasets and for

varying sizes, due to the high variability in the input. Absolute paths contain

55

Figure 4.1: Example review on Amazon website

many repeatable prefixes such as forward slashes, as well as having almost

identical portions in the path.

One setback observed from this test is the significantly slower performance due

to the larger message length. The end goal is for the SHA-3 system to be

implemented with the Green-White architecture, and such delays will not arise.

A number of post-processing scripts were written in order to extract useful infor-

mation for the hashed digests. These scripts helped evaluate the number of collisions,

time to first collision and the mean time between collisions. A detailed description of

these scripts can be found in [48].

4.1.2 Performance

To assess the performance of the Name-to-Key Converter, the latency and through-

put were measured by using the standard Xilinx axi timer. The methodology used

was straightforward. To measure latency, the timer is started right before the input

is fed to the core. As soon as the core is ready to produce the output, the timer is

stopped. The latency is the value that results from subtracting the first time stamp

from the second, and is in clock ticks. Hence, the latency is the time between when the

input is received and when the output is produced, from the processor’s point of view.

56

The number of ticks recorded between the two events were 1139 clock ticks. At 10

ns per clock cycle, the latency is 11390 ns, or 0.01139 µs. Throughput was measured

by feeding the core a known amount of names and measuring the wall clock time.

Experimentally, the throughput was calculated to be approximately 38.65 Mbits/s at

a 100 MHz clock rate.

As expected, the largest percentage of the time taken to compute hashes is spent

in the processor. Read and write functions constitute the largest overhead, typically

in the range of 30 clock cycles or more.

4.1.3 Size and Collisions Study

4.1.3.1 Broad Range Collisions Study

To study the effects of the size of the dataset on collisions at varying output

lengths, a broad range experiment is conducted for datasets of 100,000, 50,000, 25,000

and 10,000 names. Three traditionally used sizes for the hash output are considered;

64, 32 and 16 bits. Hence, this experiment was run for each dataset (100,000, 50,000,

25,000 and 10,000), at different hash sizes (64, 32 and 16).

Collisions are counted by first hashing the entire set of names using the Name-to-

Key Converter Core. After collecting the hashed output in a file (one hash per line),

post-processing of the data can be done using a bash script. The script first sorts the

hashes alphabetically, then uses the uniq command to count the duplicate lines and

print the number of duplicates it found. It then sorts the lines in decreasing order,

therefore providing data such as the total number of collisions, and the number of

names that mapped to each individual hash. Hence, collisions can be observed closely

to monitor for any possible trends or unexpected spikes in collisions at a certain point.

For 64-bit hashes, no collisions were observed at any dataset size. Only two colli-

sions were reported when a 32-bit output was used to hash 100,000 names. However,

no collisions were found when hashing the smaller datasets. The number of duplicate

hashes for 16-bit hashes was high at approximately 30% for the dataset with 100,000

57

names, and around 7% for 10,000 names. While this is in line with expectations, it is

important to validate the theoretical assumptions through an implementation on an

FPGA. These results are presented in 4.2.

Table 4.2: Collisions observed with variable hash sizes

Dataset Size Hash Size (in bits) Number of Collisions

100,000 64 0
32 2
16 29,468

50,000 64 0
32 0
16 11,772

25,000 64 0
32 0
16 3,762

10,000 64 0
32 0
16 730

In terms of the AMME memory subsystem, the number of memory names in each

set would represent the number of concurrent memory transactions (either pending

or complete) in an epoch (between delete cycles). While the largest dataset used to

conduct this experiment included 100,000 names, this is about 10× the number of in-

flight memory transactions that was estimated to be needed in a future Exascale chip.

These results suggest that a large hash size (64 bits) would not cause collisions, even

as the number of memory transactions continues to scale beyond the 10,000 target.

Furthermore, a hash size half as large (32 bits) would have relatively few collisions

that the run-time system would be required to clean up. The number of collisions is

too high for a practical system when the hash is 16 bits, even for 10,000 names. For

that reason, it is deemed as an unacceptable size.

4.1.3.2 Hash Size Optimization Study

Initially. the AMME was based on the assumption that there would be 4096 in-

flight transactions and a hash size of 16 bits [50]. The memory subsystem consumed

58

roughly 11% of the chip resources. Given that caches typically occupy a much larger

percentage of the chip’s resources (up to 90% in some cases), this was considered a

reasonable result.

However, the results presented in 4.2 suggest that this is not scalable to future,

more highly-parallel designs. 16-bit hashes did not prove to be a viable option, even

for the immediate target of 10,000 transactions. To get a better picture of how many

bits a hash should be, a second experiment was conducted to hone in on the optimal

hash size. The experiment was conducted similarly to the previous one. However,

non-traditional bit widths such as 20, 24, and 28 were taken into consideration. The

requirement is that the number of collisions remain low enough to be manageable,

while keeping the total resource utilization on the chip reasonable.

Table 4.3 shows these results in detail.

Table 4.3: Collisions observed with untraditional hash sizes

Dataset Size Hash Size (in bits) Number of Collisions

100,000 28 16
24 291
20 4,565

50,000 28 5
24 70
20 1,200

25,000 28 0
24 14
20 279

10,000 28 0
24 14
20 279

10,000 28 0
24 5
20 54

For a sample of 10,000 and 25,000 names, 28-bit hashes appear to have no col-

lisions, suggesting that this may be the optimal size for the target. Moreover, even

with 50,000 memory transactions per epoch, only five collisions occurred. Considering

59

that the run-time system would include a mechanism to resolve collisions, this low

likelihood of their occurrence is reasonable.

A discussion of the cost-benefit analysis of choosing between 32 and 28-bit hashes

presents itself here. While the results of this experiment suggest that 28 bits per

hash provides enough security against collisions for the foreseeable future, one might

ask if the additional area resources saved by opting the smaller hash is worth it

when compared to that of the slightly larger 32-bit hash. A choice can be made here,

depending on the resources available and how dire the need to decrease the utilization

of the memory subsystem is. If the benefit is not substantial or required, then choosing

hashes of 32 bits would be one way to over-engineer the memory subsystem for less

collisions as designs continue to scale upwards.

4.1.3.3 Confidence Interval Study

A confidence interval is used in statistics to determine the reliability of an estimate.

While the results presented in the aforementioned experiments are not estimates,

but actual data produced by the hardware implementation, it remains necessary to

determine whether the results are consistently repeatable.

For this purpose, five random seeds of each dataset size (100,000, 50,000 and

10,000) were collected for repeating the broad range experiment at hash sizes of 64,

32 and 16 bits. This means that the experiment was conducted 5 times, with a

different set of names on each run. The results of the tests run for 16-bit hashes are

presented in Table 4.4.

Table 4.4: Confidence interval study for 16-bit hash results

Dataset Size Number of Collisions
1 2 3 4 5 σ

100,000 29,587 29,531 29,540 29,548 29,575 23.8
50,000 11,666 11,751 11,702 11,780 11,728 39.3
10,000 693 705 740 692 741 24.5

Since no collisions are ever observed for 64-bit hashes, the standard deviation

60

of the 5 runs is 0. The standard deviation is also 0 for the experiments on 32-

bit hashes at 10,000 and 50,000 names, but 0.836 at 100,000 names (where some

negligible variation occurs). For the 16-bit hashes, the standard deviation is 24.5,

39.3, and 23.8 for 10,000, 50,000, and 100,000 names, respectively. The results show

very similar numbers of collisions, as shown by the negligible standard deviation (with

respect to the size of the datasets), proving that the number of collisions to expect is

independent of the data, and the Name-to Key Converter should behave predictably

with different sets of names.

4.1.3.4 Collisions and Keys

If the SHA-3 hashing function is to be used in a larger memory subsystem, it

may be useful to know how many names can be hashed before the first collision. An

experiment that analyzes the data to produce that metric provides an estimate for

future consideration. This is called the Time to First Collision in this thesis. At 64-

bit hashes, no collisions were reported. However, at 32-bit hashes, the first collision

found with the dataset studied occurred after 71, 303 hashes. In other words, the two

collisions witnessed take place well into the dataset name space. If the AMME is to

target 10,000 transactions, designers can count on a safety margin given collisions do

not occur early on for some reason. 16-bit hashes, on the other hand, offer no cushion.

A first collision occurred after just 140 names. This further proves that 16-bits are

not enough for producing reasonably unique memory segment names, and should not

be used.

Another metric that can be of interest, is the Mean Time Between Collisions

(MTBC). The idea of this metric is borrowed from the fault tolerance metric, Mean

Time Between Failures, or MTBF. Since collisions are considered failures in this con-

text, it is useful to know how often these failures occur. This is especially important

when designing a system that deals with collisions, in that it provides an idea of

how frequently that routine would be required to run, which may affect how long (in

61

cycles). However, the MTBC is not a measure of time, but a measure of how many

hashes (in-flight transactions) occur between collisions, on average.

As stated, experiments done with 64-bit hashes showed no collisions. However,

the MTBC for 32-bit hashes is 49, 883.5. For 16-bit hashes, the MTBC is about half,

25, 820.5. These results strongly suggest that the SHA-3 hashing function distributes

the hash values evenly across the available range.

4.1.4 Analysis of Using Hashes for Named DMA

Two aspects of these results are analyzed. In 4.1.4.1, the observed collisions are

compared to the theoretical model that predicts hash collisions in a perfect hash

function. In 4.1.4.2, the scalability of this approach is addressed by looking at how

fast the number of collisions grow with increasing memory transactions.

4.1.4.1 Probability of a Hash Collision

An underlying assumption of hash functions is that the same input always pro-

duces the same hash, and if the function is a good one, a different hash is generated

when given different inputs. However, collisions are unavoidable. Whenever a large

set of names is mapped to a relatively small amount of bits, duplicates will inevitably

occur. This is in line with the pigeonhole principle. Collisions are not always unde-

sirable. When used in applications where fingerprint of DNA data is hashed, hash

functions are designed to maximize the probability of collisions for distinct but similar

data. In digital signatures and security applications, it is important that collisions

do not occur, even under collision attacks.

Since this thesis studies the collisions of the SHA-3 hashing function in its use to

generate named memory segments, it is important to see how the results compare to

the probability of collisions from a mathematical point of view.

One way to look at this question is as follows: Given k randomly generated values

(representing the number of hashes), where each value is a non-negative integer less

than N, what is the probability that at least two of them are equal?

62

To answer the aforementioned question, it is best to find the probability that all

values are unique, and subtract that value from 1.

Given N possible hashes, (N = 2n), where n is the number of bits that constitute

the hash, assume a single value is mapped. Consequently, there are now N − 1

remaining values that are different from the first. Hence, the probability of generating

another unique value is N−1
N

. Subsequently, there are N−2 remaining values that are

different than the first two. Since each hash is an independent event, the probabilities

can be multiplied to find the statistic for all N. In general, the probability of randomly

generating k hashes that are all unique is:

N − 1

N
× N − 2

N
...
N − (k − 2)

N
× N − (k − 1)

N

As this can be tedious to compute for large values of k, a safe approximation

derived by using the Taylor expansion [52] of ex is:

e
(−k)(k−1)

2N

Therefore, to calculate the probability of a collision, one can use:

1− e
(−k)(k−1)

2N

Based on the above equation, the probability of at least one collision taking place

can be calculated and compared to how the SHA-3 function performs in practice.

This is a theoretical value. Hash functions do not work perfectly. Moreover, other

factors can play a role in the number of collisions such as the nature of the data and

how it maps with that specific hashing function.

For 64-bit hashes, the probability that a collision occurs at datasets as large as

100, 000 is virtually nil. For 32-bit hashes, that probability at 100, 000 names is 0.687,

but only 0.011 for 10, 000 names. As expected, collisions are a sure thing at 16-bit

63

hashes for all datasets. This is in line with the results reported in the collision studies

previously mentioned.

4.1.4.2 Scalability

To draw conclusions from this data, the growth rate of the number of collisions for

a 16-bit hash can be observed as the number of names increases. This is illustrated in

the log-log graph shown in Figure 4.2. While 16-bit hashes are too small to provide

enough variability for the number of named memory segments being targeted, we can

see that the scalability is predictable. In future technologies, the size of resources

will continue to increase exponentially, allowing the realization of more and more

parallel cores. As the number of cores increases, so does the number of in-flight

transactions. The graph shows that the rate of collisions should increase linearly

as more transactions are present for future systems, indicating that the results will

continue to be relevant as memory subsystems expand.

Moreover, while the AMME grows exponentially, so does the size of the resources

on future chips. When viewed this way, the percentage of resource utilization remains

constant. This is not true of conventional, reactive caches that have consumed an

ever more larger percentage of total resources as the gap between single processor

cores and memory latency has increased.

Similar conclusions can be drawn by plotting the data from the SHA-3 core for all

the considered hash sizes. Since no collisions were recorded for 64-bit hashes, that data

is not included in the graph of 4.3. Collisions begin occurring well before the targeted

10, 000 transactions with 24-bit hashes. The 28-bit hashes offer reasonable security (a

collision management system can reasonably cope with the rate of collisions), however,

an engineering decision must be taken in regards to the value of the saved resources

when opting for 28-bit hashes instead of 32-bit ones. Given that the hardware to

correct for duplicate mapping would require a certain amount of resources itself, it

may be a wiser choice to select 32-bit hashes to utilize a broader address space.

64

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 512 1024 2048 4096 8192 16384 32768 65536 131072

N
u
m

b
e
r

o
f

C
o
lli

si
o
n
s

Number of Inputs

Collisions with a 16-bit hash output

Collisions

Figure 4.2: Scalability for 16-bit hashes

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 512 1024 2048 4096 8192 16384 32768 65536 131072

N
u
m

b
e
r

o
f

C
o
lli

si
o
n
s

Number of Inputs

Collisions with varying length hash output

16-bits
20-bits
24-bits
28-bits
32-bits

Figure 4.3: Scalability for all hash sizes

65

Table 4.5: Resource utilization of the Name-to-Key Converter

Number of Slice Registers: 8,239 of 301,440 2%
Number of Slice LUTs: 11,953 of 150,720 7%
Number of Slice LUTS used in Logic: 7,784 out of 150,720 7%
Number of RAMB36E1/FIFO36E1s: 14 out of 416 3%

4.1.5 Name-to-Key Converter Resource Utilization

The design of the B-tree table in the AMME is such that the increase in the

key size has a minimal effect on the resource utilization of the chip. The resource

utilization of the AMME with different key sizes can be observed in Table 4.5

Since the input to the core was pre-loaded into the on-board DDR3 SDRAM,

utilizing a portion of its 128MB large memory space, a significant portion of BRAMs

were saved. From the utilization report after placement, it can be concluded that

the core itself requires a relatively small percentage of the resources on the FPGA.

Additionally, the Virtex-6 is four year old hardware. More recent FPGAs contain

double the resources, meaning the footprint of the Name-to-Key Converter would be

increasingly less significant. Therefore, it is completely reasonable to use inside the

larger memory subsystem design being explored.

The data and analysis from this group of experiments determine that the imple-

mentation of Named DMA using SHA-3 facilitates the functioning of the AMME, and

shows that the Named DMA scheme implemented is a scalable solution that will sup-

port future large many-core systems. Additionally, this investigation addresses that

scalability problem with named memory segments in software (like LINDA [19]) is

overcome by the use of hardware.

4.2 Low-level Parameter Study of the B-tree Hardware Structure

This first group of experiments focuses mainly on the hardware data structure.

The main goal of this effort was to implement a B-tree data structure in hardware

and run it on an FPGA. As explained in Chapter 1 for large many-core systems, there

will be a large number of in-flight messages. Hence, the look-up times of the B-tree

66

Table 4.6: ML605 development board overview

Memory Technology Capacity Number of 4KB blocks Latency Bandwidth

BRAM 1849 KB 462 3 cc 13.7 GB/s
DDR3 SODIMM 512 MB 125,000 40 cc 6.4 GB/s

will be critical to the feasibility of the AMME. To do this, we study the number of

in-flight messages to estimate the parallelism that AMME will enable.

• Experimental Setup: The experimental infrastructure for this investigation, was

a Xilinx ML-605 development board and a Xilinx ZC706 evaluation board.

The ML-605 development board has a Virtex-6 XC6VLX240T FPGA and the

ZC706 evaluation board has a Zynq-7000 XC7Z045 All Programmable (AP)

SoC. Xilinx Embedded Development Kit (EDK) Version 14.5 was used to create

and synthesize the design.

• Dataset: For this experiment, the data set is a complete list of files on the

Reconfigurable Computing Systems Lab main server. The AMME presented in

Chapter 3, handles data that is pre-processed by implementing hashing using a

Name-to-Converter core. Thus, the list of filenames were run through the Name-

to-Converter core and digests were generated that were used by the AMME.

4.2.1 Resource Utilization for the B-tree Structure

The aim of this investigation is to measure and study of size of the B-tree structure

in hardware. Additionally, optimum sizes of the B-tree structure are explored. The

resource utilization was observed across two platforms. We started with a size of 4096

and increased the size of the B-tree to observe the chip utilization for larger B-tree

structures in the order of 10,000 keys as shown in Table 4.7. Figure 4.4 shows the

on-chip resource utilization for B-tree sizes of 1024, 2048, 4096, 8192, 10000, 16384

on the ML605 developer board.

67

Table 4.7: On-Chip resource utilization of the B-tree structure

Key Size Number of keys BRAMs
used

Percentage
Utilization
ML605

Percentage
Utilization
ZC706

16 4096 13 3% 2.3%

8192 28 6.7% 5.1%
10000 57 13.7% 10.4%
16384 114 27.4% 20.9%
20000 114 27.4% 20.9%

24 4096 14 3.3% 2.5%

8192 31 7.5% 5.7%
10000 61 14.7% 11.2%
16384 122 29.3% 22.3%
20000 122 29.3% 22.3%

28 4096 15 3.6% 2.7%

8192 32 7.7% 5.9%
10000 63 15.1% 11.5%
16384 126 30.2% 23.1%
20000 126 30.2% 23.1%

32 4096 15 3.6% 2.7%

8192 33 7.9% 6%
10000 65 15.6% 11.9%
16384 130 31.2% 23.8%
20000 130 31.2% 23.8%

64 4096 19 4.5% 3.5%

8192 42 10% 7.7%
10000 81 19.4% 14.8%
16384 162 38.9% 29.7%
20000 162 38.9% 29.7%

68

 0

 5

 10

 15

 20

 25

1
6

2
4

2
8

3
2

6
4

B
R

A
M

 U
ti
liz

a
ti
o
n

Key Size

4096 8192 10000

Figure 4.4: BRAM resource utilization for the Xilinx ML605

Figure 4.5 shows the on-chip resource utilization for B-tree sizes of 1024, 2048,

4096, 8192, 10000, 16384 on the ZC706 Evaluation board.

As observed from figures 4.4 and 4.5, the hardware B-tree structure was configured

for different sizes and orders to observe resource utilization. Two main results are

observed in this experiment. The first one is that the trend of resource utilization of

the AMME is maintained on a different, bigger FPGA. This is important as it shows

the capability of the AMME to maintian low resource utilization on a newer platform.

This enables us to increase the size of the B-tree and support more keys in the system.

Another key result observed here, is that on an ML605 board, the AMME utilizes less

than 20% of the total resources on chip. On the ZC706 evaluation board, the AMME

utilizes less than 15% of the total resources on chip. This is a huge advantage over

existing memory subsystem that consume anywhere between 60% to 90% of the total

on-chip resources. This shows that implementing the AMME can free up close to 80%

of the on-chip resources which can then be used for computation. This shows that

the AMME will support a higher degree of parallelism in a large many-core system.

69

 0

 5

 10

 15

 20

 25

 30

1
6

2
4

2
8

3
2

6
4

B
R

A
M

 U
ti
liz

a
ti
o
n

Key Size

4096 8192 10000

Figure 4.5: BRAM resource utilization for the Xilinx ZC706

4.2.2 Depth and Order of the B-tree

Size is an important constraint to consider while designing a structure that holds

the metadata of a system. As with any tree data structure, we analyze B-tree charac-

teristics (the depth and the order of the tree) to observe how the resource utilization

and the access times were affected. The orders chosen were 4 (each B-tree node has

four keys), 8 (each node has seven keys), and, 12 (each node has eleven keys). The

order of the tree changes the depth for a given number of nodes. Figure 4.6 shows

the change in the depth of the tree with regard to the other of the tree.

4.2.3 Latencies of Operations in Isolation

While the operations of a memory controller are always READ and WRITE, the

AMME consists of internal operations that are more in tune with the working of a

B-tree. Broadly, they are add, find, update, traverse, mark for delete, split. These

operations are explained in detail in Chapter 3.

70

 0

 1

 2

 3

 4

 5

 6

 7

 8

4096

8192

10000

16384

D
e
p
th

 o
f
th

e
 B

-t
re

e
 (

in
 l
e
v
e
ls

)

Number of nodes

Order_4 Order_8 Order_12

Figure 4.6: B-tree characteristics: Order and Depth

Table 4.8: Clock cycles for each operation: B-tree version 2

Operation Cycles per level

ADD 6
FIND 2

TRAVERSE 8× d
VALIDATE 4 + d

SPLIT 30× d
MARK FOR DELETE 4 + d

71

Table 4.9: Clock cycles for each operation: AMME with Order 4 B-tree

Operation Cycles per level

ADD 2
FIND 2

TRAVERSE 6× d
VALIDATE 1 + d

SPLIT 23× d
MARK FOR DELETE 1 + d

Table 4.10: Clock cycles for each operation: AMME with Order 8 B-tree

Operation Cycles per level

ADD 3
FIND 2

TRAVERSE 4× d
VALIDATE 1 + d

SPLIT 22× d
MARK FOR DELETE 1 + d

4.2.3.1 B-tree Cache System Latencies

Table 4.8 shows the time (in clock cycles) for the basic operations. The depth of

the tree, d, is an important factor to these results. The Traverse operation is directly

proportional to the depth of the tree, specifically, 8×d. The Validate operation takes

4 clock cycles and additionally adds one clock cycle per unit increase in depth. This

does not apply to the Add and Find operations as the traversal points the controller

to the right place, after which only the new key needs to be added, or in the case of

Find, returned. The split operation is the most expensive, especially if it results in

multiple splits. The time measured for a split is 30 clock cycles.

4.2.3.2 AMME Latencies

In the newer version of the system, the BRAMs were widened enough to hold an

entire node of the B-tree as opposed to just one key. This greatly helped reduce the

look up times for the B-tree. This can be observed in Tables 4.9, 4.10 and 4.11.

Figure 4.7 shows the latencies of the operations in isolation. The latencies for

72

Table 4.11: Clock cycles for each operation: AMME with Order 12 B-tree

Operation Cycles per level

ADD 3
FIND 2

TRAVERSE 4× d
VALIDATE 1 + d

SPLIT 19× d
MARK FOR DELETE 1 + d

 0

 5

 10

 15

 20

 25

A
D
D

FIN
D

TR
A
V
E
R
S
E

V
A
LID

A
TE

S
P
LIT

M
A
R
K
_FO

R
_D

E
L

C
lo

c
k
 c

y
c
le

s

Operations of the B-tree

Order_4 Order_8 Order_12

Figure 4.7: Latencies of the operations of the B-tree

73

Table 4.12: Access times for order 4, order 8, and order 12 B-tree

Case Number of nodes Order 4 Order 8 Order 12

Best Case 4096 50 ns 43.20 ns 43.20 ns
8192 50 ns 43.20 ns 43.20 ns
10000 50 ns 43.20 ns 43.20 ns
16384 50 ns 43.20 ns 43.20 ns

Worst Case 4096 190 ns 92.34 ns 92.34 ns
8192 190 ns 129.42 ns 92.34 ns
10000 190 ns 129.42 ns 92.34 ns
16384 225.4 ns 129.42 ns 92.34 ns

the split operation are the highest. But the way a B-tree works, we can accurately

predict the largest number of splits that can occur, given a particular set of nodes.

This maintains a degree of predictability that is very useful when scaling this design.

4.2.4 Access Times

Theoretically, the search time for a B-tree is O(logn), where n is the total number

of nodes in the B-tree. In this investigation, this is compared with the actual measured

access times for the B-tree hardware data structure. This was then used to emulate

accesses to the memory. The average access time was observed for a tree of depth n,

and recorded. The best case and worst case access times for different orders and sizes

of the B-tree are shown in Table 4.13.

Thus the absolute best case access time is 43.2 ns for a key that residing in the

first level on the order 8 or 13 B-tree, and the absolute worst case access time was

225.4 ns, for a B-tree with 16,384 nodes. The worst case time was when the B-tree

was fully populated and the key is fetched from the leaf layer.

Another measurement in this experiment was the worst case time to add a node

to the B-tree. This is measured when the tree is populated in such a way that adding

a node will result in multiple splits all the way to the root of the tree.

The main observation from these experiments is that the hardware B-tree data

structure maintains the trends observed in the theoretical calculations. This brings

74

Table 4.13: Access times for order 4, order 8, and order 12 B-tree with splits

Case Number of nodes Order 4 Order 8 Order 12

Best Case 4096 170 ns 170 ns 150 ns
8192 170 ns 170 ns 150 ns
10000 170 ns 170 ns 150 ns
16384 170 ns 170 ns 150 ns

Worst Case 4096 770 ns 440 ns 390 ns
8192 770 ns 575 ns 390 ns
10000 770 ns 575 ns 390 ns
16384 920 ns 575 ns 390 ns

a measure of predictability to the hardware data structure that is much needed for

memory subsystems in larger many-core systems.

The data collected from this group of experiments determine that the implemen-

tation of the hardware data structure is feasible and that the measured access times of

the data structure are comparable to theoretical observations. This is a crucial result

of this research. Additionally, this set of experiments also show the use of a named

DMA model for the memory subsystem. The next subsection presents a detailed

analysis on the different aspects of the AMME as a whole.

4.3 AMME Results

The next goal of this research is to test the B-tree architecture with different

memories like Block RAM and DDR3 SDRAM. Similar to most of the systems being

developed today, the objective of the AMME is also to try to implement an enormous

amount of on-chip bandwidth. But the real test is to impose a hierarchy on the

system thereby introducing architecture bottlenecks.

The system presented and explained in Chapter 3 has been implemented on a

Xilinx ML-605 development board with a Virtex-6 (XC6VLX240T) FPGA. Version

14.5 of the ISE/EDK tools were used to create and synthesize the design. The test

infrastructure consists of a MicroBlaze core on the ML605 FPGA board will run

processes that randomly request data from the AMME. The load generated on the

75

AMME is synthetic, but the data itself (hashed digests) is derived from the Amazon

reviews dataset. The Amazon reviews dataset are be hashed to create 28-bit keys

for the B-tree and the content of the reviews will the data to be stored in the on-

chip and off-chip memories. The capacity of memory required to prevent thrashing is

observed. The AMME has multiple channels to the memory (link to on-chip BRAM,

link to off-chip DDR3). The main aim of this investigation was to observe that all the

memory channels were exercised efficiently and to measure the time to completion of

higher level commands in the system. This phase of validation also provides a better

understanding on how to proportion many-core chips in a way that will improve

memory performance without being detrimental to processor performance.

4.3.1 Time to Completion

The access times measured in Section 4.2.4 are exclusively for the operations of the

B-tree. Another metric that was measured was the average time to perform a READ

operation and a WRITE operation. This was done at a higher level than the previous

experiment. The AMME was configured to have an order 8 B-tree with a total size

of 10,000 keys. The hashed key size is 28, and is derived from the Amazon reviews

dataset. A stream of WRITE and READ requests were injected into the system

and the total time to perform these operations were observed. In this investigation,

we measure the time to completion for the AMME for a READ command, WRITE

command and the time to completion for a Delete (performing an epoch). Also, for

the purpose of this experiment, the payload is 4KB blocks of data, in order to emulate

the Green/White Architecture requirements. A modified synthetic load generator was

used to initiate data transfer.

4.3.1.1 Average Time for READ and WRITE Operations

Since in the context of this dissertation, the AMME has two channels to differ-

ent memories that vary in latency (as dictated by the available hardware), the best

case time and the worst case time to perform these operations were measured. The

76

Table 4.14: Time to perform READ/WRITE considering 4KB blocks of data

Case Operation Size of the Order 8 B-tree Time

Best Case READ 10000 2.0352 µS
WRITE 10000 2.162 µS

Worst Case READ 10000 12.3614 µS
WRITE 10000 12.807 µS

Table 4.15: Time to perform an Epoch or Delete

Size of the B-tree Time

4096 370.94 µS
8192 740.48 µS
10000 903.91 µS

measured are times shown in Table 4.14.

It is observed that these times are indeed very small and thus reasonable. When

compared to a system with a regular memory controller, this result is favorable.

4.3.1.2 Average Time for an Epoch

The epoch controller of the AMME was tested to perform a DELETE operation.

Table 4.15 shows the time taken to perform delete on different B-tree sizes.

The time to perform an epoch for a B-tree with 10,000 keys was observed to be

around 904 µS which is very small. Unfortunately, there is no direct point of reference

at this point, although it is clear that this number is favorable.

4.3.2 Energy Expended

The amount of energy spent in moving data is directly proportional to the distance

moved. This is an increasing concern in large many-core systems. This experiment

is an analytical study from existing numbers. Measuring the energy expended is out

of the scope of this dissertation. Many authoritative sources record the specific cost

of data movement from different memories in terms of energy [45], [22]. The energy

cost described by Jacob et al can be seen in Table 4.16.

Using the B-tree mechanism explained in Chapter 3, the AMME ensures two

77

Table 4.16: Energy per access for memory technology

Technology Energy per Access

On-chip cache 1 nJ
Off-chip cache 10–100 nJ
DRAM 1–100 nJ (per device)
Disk 100–100 mJ

things: only the required data is moved; and unless absolutely necessary the data is

never moved more than once. The channels to the green core scratchpads from the

AMME enable direct DMA to and from the scratchpads, thus moving the data only

when required. This shows that the AMME can support explicit data movement and

thus reduce the energy expended by moving only necessary data.

CHAPTER 5: CONCLUSION

Steady increases in the density of Integrated Circuits (IC) has resulted in more

transistors per chip and faster transistors. Unfortunately, memory technology has

not seen similar improvements. Moreover, technology trends are likely to exacerbate

this problem. With Exascale architectures on the horizon, a lot of complications

that necessitate branching out from the norm of conventional computer architecture

research are exposed. With the ever-increasing processor clock rates, the performance

of a system is not just determined by the amount of parallelism available and achieved

by a system, but mostly by the ability of the system to keep its parallel hardware

operational. An expected bottleneck to this is memory. The growth of memory

technology has been stagnant over the past few decades which had led to little or no

improvement in memory latency times. New methodologies are required to improve

memory latency and increase memory bandwidth.

In this dissertation, a novel memory subsystem, the Active Memory Management

Engine, is presented. It uses a B-tree based mechanism with a flatter hierarchy to

effectively manage multiple channels to different types of memory. It accomplishes

this by proactively managing a large number of outstanding requests in such a way

that the channel to external memory is utilized effectively. To be successful, it imposes

a task-oriented computational model on computational cores and requires them to

multi-task in order to generate multiple, overlapping memory requests that can be

served by the memory subsystem in any order. Using Little’s Law, we propose that

such an organization will create a stochastic system at the architecture level that hides

memory latency, increases the effective bandwidth of an off-chip memory channel, and

increases the task completion rate for memory-bound systems. Additionally, a priority

79

scheme is implemented that gives the the memory subsystem the ability to re-order

the tasks to always keep the cores busy with computation. The end goal is to enable

the memory subsystem to handle a wide range of memory technologies that vary in

capacity, bandwidth, and latency.

This approach is not appropriate for all settings. In particular, many FPGA-based

designs have an enormous degree of parallelism but are not memory bound. It may be

the case that there are designs that interface to instruments, sensors and actuators,

that provide a continuous source or sink of information. In other cases there are

applications that are very computationally intensive and have a relatively small state.

Nonetheless, there is a large range of applications in the High-Performance Computing

domain (from graph algorithms to iterative algorithms) that fit the proposed model.

The design process of the AMME architecture started with the theoretical for-

mulation of a stochastic model to validate the idea of implementing this new and

unconventional architecture. Then, a proof of concept design was implemented on an

FPGA for testing the feasibility of implementing a data structure in hardware. Sev-

eral new concepts are presented in the final design of this new architecture. A wide

range of experiments were performed to evaluate this design. The B-tree mechanism

of the AMME enabled a predictable access time for memory segments. Also, the

resource utilization of the AMME was under 20% of the total resources of the hard-

ware platform. This allows more resources to be allocated for computation and thus

enables a higher degree of parallelism. A new addressing scheme was also introduced

in this dissertation that uses named memory segments instead of traditional byte ad-

dressable memory. This capability of the AMME to perform named DMA improves

the scalability of the memory subsystem. The access times measured are an order-of-

magnitude faster than conventional deep hierarchy caches or memory systems. The

AMME actively manages the data thus enabling explicit data movement.

The aim of this research is analyze the memory subsystem in a many-core envi-

80

ronment. The Green/White architecture is presented in this dissertation to provide a

context for the AMME subsystem. The overall Green/White architecture includes a

PyDac framework [16], a radical interconnection network [20] and the Active Memory

Management Engine. This dissertation proves, theoretically and empirically, that the

active memory subsystem will not be a bottleneck in a many-core architecture.

81

REFERENCES

[1] G. E. Moore et al., “Cramming more components onto integrated circuits,” 1965.

[2] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A. LeBlanc, “Design
of ion-implanted mosfet’s with very small physical dimensions,” Solid-State Cir-
cuits, IEEE Journal of, vol. 9, no. 5, pp. 256–268, 1974.

[3] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,
“Dark silicon and the end of multicore scaling,” in Computer Architecture
(ISCA), 2011 38th Annual International Symposium on. IEEE, 2011, pp. 365–
376.

[4] F. J. Pollack, “New microarchitecture challenges in the coming generations of
cmos process technologies (keynote address),” in Proceedings of the 32nd annual
ACM/IEEE international symposium on Microarchitecture. IEEE Computer
Society, 1999, p. 2.

[5] P. Kogge, et al., “Exascale computing study: Technology challenges in
achieving exascale systems,” DARPA Information Processing Techniques Office
(IPTO) sponsored study, Tech. Rep. TR-2008-13, 2008. [Online]. Available:
www.cse.nd.edu/Reports/2008TR-2008-13.pdf

[6] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications of the
obvious,” SIGARCH Comput. Archit. News, vol. 23, no. 1, pp. 20–24, Mar.
1995. [Online]. Available: http://doi.acm.org/10.1145/216585.216588

[7] C. Kozyrakis and D. Patterson, “A new direction for computer architecture re-
search,” Computer, vol. 31, no. 11, pp. 24 –32, nov 1998.

[8] D. Albonesi, “Selective cache ways: on-demand cache resource allocation,” in Mi-
croarchitecture, 1999. MICRO-32. Proceedings. 32nd Annual International Sym-
posium on, 1999, pp. 248 –259.

[9] J. R. Johnson, “Automated performance tuning,” in Proceedings of the 4th
International Workshop on Parallel and Symbolic Computation, ser. PASCO
’10. New York, NY, USA: ACM, 2010, pp. 20–21. [Online]. Available:
http://doi.acm.org/10.1145/1837210.1837215

[10] G. Liao, X. Zhu, and L. Bhuyan, “A New Server I/O Architecture for High
Speed Networks,” in High Performance Computer Architecture (HPCA), 2011
IEEE 17th International Symposium on, Jan. 2011, pp. 1–11.

[11] S. Borkar, “Thousand core chips: a technology perspective,” in Proceedings of
the 44th annual Design Automation Conference. ACM, 2007, pp. 746–749.

[12] G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proceedings of the April 18-20, 1967, spring joint

www.cse.nd.edu/Reports/2008TR-2008-13.pdf
http://doi.acm.org/10.1145/216585.216588
http://doi.acm.org/10.1145/1837210.1837215

82

computer conference, ser. AFIPS ’67 (Spring). New York, NY, USA: ACM, 1967,
pp. 483–485. [Online]. Available: http://doi.acm.org/10.1145/1465482.1465560

[13] S. Holzer, “Optimization for Enhanced Thermal Technology CAD Purposes,”
Ph.D. dissertation, Technischen Universitt Wien, Vienna, January 1976.

[14] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, pp. 33–38, Jul. 2008. [Online]. Available:
http://dx.doi.org/10.1109/MC.2008.209

[15] D. Bertsimas and D. Nakazato, “The distributional little’s law and its applica-
tions,” Operations Research, vol. 43, no. 2, pp. 298–310, 1995.

[16] B. Huang, “A distributed runtime system that bridges heterogeneous many-
core architecture with divide-and-conquer programming paradigm (in progress),”
Ph.D. dissertation, University of North Carolina, Charlotte, 2014.

[17] R. Bayer and E. McCreight, Organization and maintenance of large ordered in-
dexes. Springer, 2002.

[18] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth Edition: A
Quantitative Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2006.

[19] N. Carriero and D. Gelernter, “Linda in context,” Communications of the ACM,
vol. 32, no. 4, pp. 444–458, 1989.

[20] W. V. Kritikos, “The impact of routing on the resilience of large network on
chip systems (in progress),” Ph.D. dissertation, University of North Carolina,
Charlotte, To be published.

[21] R. Sass and A. G. Schmidt, Embedded systems design with platform FPGAs:
principles and practices. Morgan Kaufmann, 2010.

[22] B. Jacob, S. Ng, and D. Wang, Memory systems: cache, DRAM, disk. Morgan
Kaufmann, 2010.

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein et al., Introduction to
algorithms. MIT press Cambridge, 2001, vol. 2.

[24] P. Marchal, “Field-programmable gate arrays,” Commun. ACM, vol. 42, no. 4,
pp. 57–59, 1999.

[25] Xilinx, “Products and services, intellectual property,” March 2008.

[26] Xilinx, Inc., “ML605 hardware user guide,” October 2012.

http://doi.acm.org/10.1145/1465482.1465560
http://dx.doi.org/10.1109/MC.2008.209

83

[27] Y. Rajasekhar and R. Sass, “A first analysis of a dynamic memory allocation
controller (dmac) core,” in Proceedings of the 2011 Symposium on Application
Accelerators in High-Performance Computing, ser. SAAHPC ’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 64–67. [Online]. Available:
http://dx.doi.org/10.1109/SAAHPC.2011.23

[28] D. Knuth, “The art of computer programming 1: Fundamental algorithms 2:
Seminumerical algorithms 3: Sorting and searching,” 1968.

[29] J. Rice, W. Osborn, and J. Schultz, “Implementation of a spatial data structure
on a fpga,” in Advances and Innovations in Systems, Computing Sciences and
Software Engineering. Springer, 2007, pp. 207–210.

[30] V. Sklyarov, I. Skliarova, R. Oliveira, D. Mihhailov, and A. Sudnitson, “Process-
ing tree-like data structures in different computing platforms,” in Proc. Int. Conf.
on Informatics and Computer Applications-ICICA2011, 2011, pp. 112–116.

[31] M. Chrzanowska-Jeske, Z. Wang, and Y. Xu, “A regular representation for map-
ping to fine-grain, locally-connected fpgas,” in Circuits and Systems, 1997. IS-
CAS’97., Proceedings of 1997 IEEE International Symposium on, vol. 4. IEEE,
1997, pp. 2749–2752.

[32] A. J. Smith, “Cache memories,” ACM Computing Surveys (CSUR), vol. 14, no. 3,
pp. 473–530, 1982.

[33] B. L. Jacob, P. M. Chen, S. R. Silverman, and T. N. Mudge, “An analytical
model for designing memory hierarchies,” Computers, IEEE Transactions on,
vol. 45, no. 10, pp. 1180–1194, 1996.

[34] C. Chow, “Determination of cache’s capacity and its matching storage hierarchy,”
Computers, IEEE Transactions on, vol. 100, no. 2, pp. 157–164, 1976.

[35] A. Agarwal, J. Hennessy, and M. Horowitz, “An analytical cache model,” ACM
Transactions on Computer Systems (TOCS), vol. 7, no. 2, pp. 184–215, 1989.

[36] A. J. Smith, “Line (block) size choice for cpu cache memories,” Computers, IEEE
Transactions on, vol. 100, no. 9, pp. 1063–1075, 1987.

[37] P. J. Denning, “The working set model for program behavior,” Communications
of the ACM, vol. 11, no. 5, pp. 323–333, 1968.

[38] J. Dennis, G. Gao, and X. Meng, “Experiments with the fresh breeze tree-based
memory model,” Computer Science - Research and Development, vol. 26,
no. 3-4, pp. 325–337, 2011. [Online]. Available: http://dx.doi.org/10.1007/
s00450-011-0165-1

[39] G. Liao, X. Zhu, and L. Bnuyan, “A new server i/o architecture for high speed
networks,” in High Performance Computer Architecture (HPCA), 2011 IEEE
17th International Symposium on. IEEE, 2011, pp. 255–265.

http://dx.doi.org/10.1109/SAAHPC.2011.23
http://dx.doi.org/10.1007/s00450-011-0165-1
http://dx.doi.org/10.1007/s00450-011-0165-1

84

[40] A. G. Saidi, N. L. Binkert, S. K. Reinhardt, and T. Mudge, “End-to-end per-
formance forecasting: finding bottlenecks before they happen,” ACM SIGARCH
Computer Architecture News, vol. 37, no. 3, pp. 361–370, 2009.

[41] D. Burger, J. R. Goodman, and A. Kägi, Memory bandwidth limitations of future
microprocessors. ACM, 1996, vol. 24, no. 2.

[42] M. Adler, K. E. Fleming, A. Parashar, M. Pellauer, and J. Emer, “Leap scratch-
pads: automatic memory and cache management for reconfigurable logic,” in
Proceedings of the 19th ACM/SIGDA international symposium on Field pro-
grammable gate arrays. ACM, 2011, pp. 25–28.

[43] E. S. Chung, J. C. Hoe, and K. Mai, “Coram: An in-fabric memory abstraction
for fpga-based computing,” in Nineteenth ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays (FPGA), 2011.

[44] S. Kim and C. H. Lam, “Transition of memory technologies,” in VLSI Technol-
ogy, Systems, and Applications (VLSI-TSA), 2012 International Symposium on.
IEEE, 2012, pp. 1–3.

[45] S. Swanson and A. M. Caulfield, “Refactor, reduce, recycle: Restructuring the
i/o stack for the future of storage,” Computer, vol. 46, no. 8, pp. 52–59, 2013.

[46] D. Gross and C. M. Harris, Fundamentals of queuing theory, 1998.

[47] B. Huang and R. Sass, “Leveraging python in a high-level programming model
based on divide-and-conquer strategy,” in Sixth International Workshop on Par-
allel Programming Models and Systems Software for High-end Computing - Un-
der review, 2013.

[48] S. Hawayek, “Feasibility study of using named memory segments instead of byte
addressable memory in highly parallel many core systems,” Ph.D. dissertation,
University of North Carolina, Charlotte, 2014.

[49] M. P. Guido Bertoni, Joan Daemen and G. V. Assche, “The Keccak sponge
function family,” url: http://keccak.noekeon.org/files.html.

[50] Y. Rajasekhar and R. Sass, “A novel memory subsystem and computational
model for parallel reconfigurable architectures,” in Euro-Par 2013: Parallel Pro-
cessing Workshops. Springer, 2014, pp. 444–453.

[51] J. Leskovec, “Stanford large network dataset collection,” URL http://snap. stan-
ford. edu/data/index. html, 2011.

[52] M. Peyravian, A. Roginsky, and A. Kshemkalyani, “On probabilities of hash
value matches,” Computers & Security, vol. 17, no. 2, pp. 171–176, 1998.

http://keccak.noekeon.org/files.html

	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1: INTRODUCTION
	1.1 Thesis Statement
	1.2 Metrics

	CHAPTER 2: BACKGROUND
	2.1 Platform FPGAs
	2.2 Types of Memory Devices
	2.2.1 Static Random Access Memory (SRAM)
	2.2.2 Dynamic Random Access Memory (DRAM)
	2.2.3 Block Random Access Memory (BRAM)

	2.3 Data Structures
	2.3.1 Binary Tree
	2.3.2 B-tree

	2.4 B-tree-Based Memory Subsystem
	2.5 Related Work

	CHAPTER 3: DESIGN AND IMPLEMENTATION
	3.1 Theoretical Formulation
	3.1.1 Stochastic Model
	3.1.2 Green/White Architecture

	3.2 Proof of Concept Implementation
	3.2.1 DMAC Controller
	3.2.2 Binary Tree Structure

	3.3 Final Implementation
	3.3.1 Name-to-Key Converter
	3.3.2 B-tree Cache System
	3.3.3 Active Memory Management Engine (AMME)

	CHAPTER 4: EVALUATION
	4.1 Name-to-Key Converter Results
	4.1.1 Datasets
	4.1.2 Performance
	4.1.3 Size and Collisions Study
	4.1.4 Analysis of Using Hashes for Named DMA
	4.1.5 Name-to-Key Converter Resource Utilization

	4.2 Low-level Parameter Study of the B-tree Hardware Structure
	4.2.1 Resource Utilization for the B-tree Structure
	4.2.2 Depth and Order of the B-tree
	4.2.3 Latencies of Operations in Isolation
	4.2.4 Access Times

	4.3 AMME Results
	4.3.1 Time to Completion
	4.3.2 Energy Expended

	CHAPTER 5: CONCLUSION
	REFERENCES

