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ABSTRACT

CHINMAY SATISH AVACHAT. On the use of smoothed particle hydrodynamics to
model orthogonal machining.

(Under the direction of DR. HARISH P. CHERUKURI)

Modeling machining processes with conventional finite element methods (FEM)

is challenging due to the severe deformations that occur during machining, complex

frictional conditions that exist between the cutting tool and the workpiece, and the

possibility of self contact due to chip curling. Recently, the Smoothed Particle Hydro-

dynamics (SPH) method has emerged as a potential alternative for modeling machin-

ing processes due to its ability to handle severe deformations while avoiding mass and

energy losses encountered by traditional FEM. The method has been implemented in

several commercial finite element packages such as ABAQUS and LS-DYNA for solving

problems involving localized severe deformations.

The SPH method belongs to a class of numerical methods collectively known as

meshless or mesh-free methods. In the SPH method, the given domain is discretized

into a set of particles and the properties and field variables associated with each

particle are obtained by taking into account the particles within its neighborhood

defined by a smoothing length and a kernel function. The method employs several

parameters for controlling the particle behavior during deformations and the accuracy

of the solution depends on an optimal combination of these parameters. The three

most important parameters are, the smoothing length, particle density, and the type

of SPH formulation. In the present work, the effects of these parameters on the

chip morphology, stress distribution and cutting force in the context of orthogonal

machining of AISI 1045 steel are investigated. The LS-DYNA finite element package

along with Johnson-Cook material model is used for this purpose. Results from the

parametric study are presented and the accuracy of the solutions as compared with
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the results from conventional FEM are discussed. In addition, five different sets of

values available in the literature are considered for the Johnson-Cook material model

for AISI 1045 steel. The sensitivity of chip morphology and stress distribution on

these material parameters is discussed.
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CHAPTER 1: INTRODUCTION

1.1 Research Background

Machining is one of the most widely used processes in the component manufac-

turing industry. It is a process in which a raw material is cut into the required shape

and size by a controlled material-removal process. In order to have increased control

over the surface finish, dimensions of the product, power consumption by the machine

tool and tool life, it is important to understand the machining process.

Modeling and simulations of machining have been carried out extensively to pre-

dict the behavior of various materials under various cutting conditions such as cutting

speed, depth of cut and various tool dimensions. Two of the most commonly used

methods for machining are the finite element method (FEM) and mesh-free methods.

FEM has been the most preferred method to model machining until recently. It can

simulate large deformations, effects of high strain rate, friction, contact and various

other phenomena related to machining. The finite element based machining models

use one of the three formulations: Lagrangian, Eulerian and Arbitrary Lagrangian-

Eulerian (ALE). However, simulation of machining by FEM has disadvantages such as

distortion of elements, fracture has to be defined as well as mass loss due to element

deletion which also limits the prediction of cutting forces, residual stresses, strain and

strain-rate. In recent times, mesh-free methods, namely Smoothed Particle Hydrody-

namics (SPH) and Discrete Element Method (DEM) have been proposed to overcome

the difficulties in modeling machining. Out of the two methods, the SPH method

looks to be more promising.
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The SPH Method belongs to the class of numerical methods collectively known

as meshless or mesh-free methods. These methods have become popular due to their

ability to handle severe deformations while avoiding mass and energy losses encoun-

tered by traditional finite element methods. In the SPH method, the given domain is

discretized into a set of particles and the material properties and the field variables

are assigned to each of these particles. The method has been implemented in many

commercial finite element packages such as LS-Dyna [1] and ABAQUS [2].

1.2 Thesis Objective

The objective of this research was to model the orthogonal machining of AISI

1045 steel with the Smoothed Particle Hydrodynamics (SPH) method and to study

the suitability and reliability of the method for modeling machining. The numerical

simulations were carried out using the commercial finite element package LS-DYNA.

The geometry and boundary conditions are chosen consistent with the SPH models

considered in the published literature. The Johnson-Cook constitutive material model

is used to define the material properties. The obtained results are compared to pre-

viously obtained results from experiments as well as numerical studies. The effect of

various SPH control parameters such as the smoothing length, particle density and

type of SPH formulation and their effects on the field variables, chip morphology and

computation time are studied. Additionally, other important SPH control parameters

such as the use of artificial bulk viscosity, the scale factor for computed time-step and

their effects on the results are also discussed. Numerical simulations were also carried

out for various Johnson-Cook parameters found in the published literature for AISI

1045 steel and the effect that the variations in these parameters have on the chip

morphology and field variables is evaluated. Furthermore, the effect of varying the

machining parameters such as the depth of cut and cutting speed are also discussed.



CHAPTER 2: LITERATURE REVIEW

The SPH Method belongs to the class of numerical methods collectively known

as meshless or mesh-free methods. The SPH method has the ability to handle severe

deformations while avoiding mass and energy losses. In the recent years, there has

been an increased interest amongst many researchers to model the machining process

by the SPH method due to its many merits.

With the aim to study how the SPH method can be used to model machining,

an overview about the machining process and the previous studies that have been

conducted to model the machining process are discussed below.

Over a 100 years ago, Tresca (1878) visualized the visco-plasticity of the metal

cutting process. He gave an opinion that for the construction of the best form of tools

and for determining the most suitable depth of cut (or undeformed chip thickness),

the minute examination of the cuttings is of the greatest importance [3].

2.1 Mechanics of Chip Formation

2.1.1 Types of Cutting Operations

Generally, the three cutting operations that are used are turning, milling and

drilling [3]. In this process a single point tool is used to remove unwanted material.

The cutting tool is fed towards a rotating workpiece to create an internal or external

surface that is concentric with the axis of rotation. The lathe machine, which is one of

the oldest and most versatile machine tools is used to carry out turning operations. In

this thesis, we mainly concentrate on orthogonal cutting which is a variant of turning.
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Figure 2.1: Deformation zones during the machining process.

2.1.2 Orthogonal Cutting

The turning process is further classified into orthogonal cutting and oblique cut-

ting. This classification is based on the way the tool makes contact with the workpiece.

Orthogonal cutting relates to the case when the tool is set perpendicular to the di-

rection of relative motion of the tool and the workpiece and thus, generates a surface

that is parallel to the original plane surface of the material being cut. If the tool is

not set perpendicular to the direction of relative motion of the tool and workpiece

the this case is known as oblique cutting. Conventionally, the orthogonal and oblique

cutting processes are considered as two-dimensional and three-dimensional problems,

respectively [3].

2.1.3 Deformation in the Workpiece

During metal cutting, three deformation zones are generally observed, which are,

the Primary Deformation Zone, the Secondary Deformation Zone and the Tertiary

Deformation Zone (a.k.a the machined surface) (See Figure 2.1). The primary defor-

mation zone is formed when the material directly in front of the tool tip undergoes

heavy plastic deformation and shearing as the tool penetrates and advances through
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Figure 2.2: Continuous chip [8].

the workpiece. According to early literature [4–6] it was assumed that workpiece

shearing occurs along a fixed primary shear plane which passes through the primary

shear zone. The shear angle ϕ shown in fig, is the angle between the primary shear

plane and the cutting direction. As the chip formed at the tool tip slides against

the rake face of the tool, further deformation occurs due to friction between the two

surfaces, which results in the formation of the secondary deformation zone. Lastly,

the tertiary deformation zone is formed by the friction between the flank of the tool

and the newly machined surface.

2.1.4 Classification of Chip Formation

During orthogonal cutting, the unwanted material removed is generally classified

into four main categories [7].

Continuous Chip

Continuous chips are long ribbon-like chips, produced during the machining of

ductile and soft materials such as mild steel, copper or aluminum, see Figure 2.2.

They are generally formed at high cutting speed, low depth of cut and small feeds.
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Figure 2.3: Discontinuous chip [8].

Continuous chips are an ideal type of chip for analysis as they are relatively simple to

analyze and stable.

Discontinuous Chip

Segmented or discontinuous chips are formed during the machining of brittle ma-

terials such as cast iron or bronze, due to rupture occurring as the material cannot

undergo high plastic deformation, see Figure 2.3. They are generally formed due to

high tool-chip friction or at low cutting speeds, and also due to the large depth of cut.
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Figure 2.4: Continuous chip with built-up edge [8].

Continuous Chip with Built-up Edge

During the machining of ductile materials at low cutting speeds, when the tem-

perature at the tool-chip interface is not very high, the chip can undergo a fracture

in a plane perpendicular to the shear plane and thus, leaving behind a piece that

attaches itself to the tool face. This attached portion now acts as the cutting edge

and is known as the built-up edge (BUE), see Figure 2.4. This results in a change of

the tool geometry and create imperfections in the machined surface. The undesirable

formation of built-up edge can be corrected by the use of tools with a positive rake

angle, by increasing the cutting speed or by the use of a coolant.
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Figure 2.5: Serrated chip [8].

Serrated Chip

Thermoplastic instability which causes the formation of adiabatic shear bands or

shear localization results in the formation of Saw-toothed or serrated chips [9], see

Figure 2.5. In the primary shear zone the thermal softening occurs due to adiabatic

plastic deformation. This thermal softening overrules the adiabatic or catastrophic

shear band. This type of chip can be observed during the machining of stainless and

hardened steels and titanium alloys at high cutting speeds.

2.2 Cutting Geometry, Stresses and Forces During the Orthogonal Cutting Process

A simplified two-dimensional model of the oblique cutting process (Orthogonal

cutting) was given by Dr. Merchant in 1944 [4,10]. Assuming that the force between

the tool face and chip and also the workpiece and chip along the shear plane are equal

in the equilibrium conditions and thus, these relationships were shown based on the

force diagram (see Figure 2.6) as follows [4, 11]:

Fs = Fccosϕ− Ftsinϕ, (2.1)
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Figure 2.6: Force diagram.

Ns = Fcsinϕ+ Ftcosϕ, (2.2)

Fp = Fcsinα + Ftcosα, (2.3)

Np = Fccosα− Ftsinα. (2.4)

Here, ϕ is the shear angle, α is the rake angle of the tool, Fc is the cutting force, Ft is

the thrust force, Fs is the shear force, Ns is the normal force on the shear plane, Fp is

the shear force on the tool rake face and Np is the normal force on the tool rake face.

To find the coefficient of friction on the tool face (µ), the components of the forces

on the tool rake face are used as,
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µ =
Fp
Np

=
Fcsinα + Ftcosα

Fccosα− Ftsinα
,

µ =
Ft + Fctanα

Fc − Fttanα
. (2.5)

To predict the stresses on the rake face and shear plane during orthogonal cutting, the

card model or shear model proves to be simple and useful. The distribution of normal

and shear forces on the tool rake face and shear plane are assumed to be uniform.

Thus, the shear stress on the shear plane τs is found to be [11],

τs =
Normal Force on shear plane

Area of shear plane
,

τs =
Fccosϕ− Ftsinϕ

[ w.f
sinϕ

]
(2.6)

where, w is the depth of cut and f is the uncut chip thickness and is equal to the feed

rate.

Now, σs i.e., the normal stress on the shear plane is calculated as,

σs =
Normal force on shear plane

Area of shear plane
,

σs =
Fcsinϕ+ Ftcosϕ

[ w.f
sinϕ

]
. (2.7)

In the same way, τf i.e., the shear stress on the rake face due to chip contact is

calculated as,

τf =
Fcsinα +Nscosα

[w.l]
(2.8)

and, σf i.e., the normal stress on the rake face is calculated as,
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σf =
Fccosα−Nssinα

[w.l]
. (2.9)

2.3 Previous Research in Modeling Orthogonal Cutting

Even though orthogonal machining is rarely used in practice, the method proves

to be simple and important in scientific numerical studies. Finite element modeling

of orthogonal machining began in the early 90’s.

There are three vital parameters that are to be defined in an FEA model as they

play an important role in the simulation. These are:

• Constitutive model: Defines the behavior of the material during cutting.

• Chip separation/fracture criteria: Controls the formation of the chip.

• Contact model: Governs the interaction of the tool-workpiece and tool-chip

interface.

Klamecki and Kim [12], used a 3-D orthogonal machining model to study the

effects of change in deformation state across the shear zone. They considered two

cases which included one that assumed isothermal material deformation an another

which took into effect the heat generation from deformation. Their results show varied

magnitude, but constant equivalent strain contours with the two cases. The research

showed that the dissipation of plastic energy with changes in stress states can cause

large differences in deformation behavior. The actual transition in stress states was

described by the variation of temperature found across the extreme plane strain and

plane stress states. The fact that the work material in the plane strain region may be

strain hardened and the material in the plane stress region may be thermally softened

is because of the temperature variation in the shear zone.

Carrol, T. John and Strenkowski [13] at the Lawrence Livermore laboratory, pro-

duced two models of orthogonal machining using finite element analysis. In their
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first model, they used the NIKE2D, which was an updated version of the large scale

deformation Lagrangian code, to predict the cutting forces during the machining of

Aluminum 2024-T361 by a single point diamond tool. In their second model, they

modeled the workpiece as a rigid-viscoplastic material which had an Eulerian flow

field close to the tool-workpiece interface. The chip separation/fracture criteria were

based on the total effective strain for the Lagrangian formulation, where the workpiece

was modeled as an elastic-plastic material. In order to neglect the thermal effects,

the simulations were run at lower cutting speeds. The rake angles were in the range

of -20◦ to 30◦. The results faired well when compared with the experimental and

analytical results published previously.

Shin, Chandrasekar and Yang [14] were able to produce a continuous chip with

strain rate and temperature effects during the finite element simulation of orthogonal

machining. The workpiece was modeled as a 1020 Carbon Steel and was simulated

with the plane strain condition and a chip separation/damage criteria relative to the

distance between the nodal point at the junction of the two elements ahead of the

cutting tool and the tool tip. In order to improve the efficiency and accuracy of the

computations a global and local mesh refining technique was used. The feed force and

cutting force from simulated results agreed with the experimental results with respect

to magnitude. This simulation also had the ability to show temperature distributions

in addition to the stresses and strains at various points during the machining process.

Komvopoulos and Penderecki [15] developed a plane strain quasi static finite ele-

ment simulation of orthogonal machining. The study was conducted with a ceramic

coated tool on an AISI 4340 workpiece considering elastic-perfectly plastic and elastic-

plastic with isotropic hardening. The model accounted for tool tip contact sliding

friction, crater wear and built-up edge formation at the tool tip. Thinning of the

primary shear zone was observed with the formation of a secondary shear zone due

to the increased coefficient of friction. Distortion of the stress field at the interface,
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a thinner chip and higher magnitude of cutting forces was observed with the simula-

tions of the tool with a crater. When a friction coefficient of 0.5 and an elastic-plastic

material model with isotropic hardening was used, the simulated results agreed with

the experimental results.

Zhang and Bagchi [16] used a 2 node link element to define the separation criteria

and simulated the chip formation during orthogonal machining. The tool was made of

OHFC copper and the workpiece of 70/30 brass having a true stress-strain curve rang-

ing from 0 to 3. The chip-tool contact was defined by a sticking and sliding friction

model where the shear strength of the workpiece material was used for the sticking

region and a constant friction model was employed in the sliding region. The results

consisting of simulations using tools with different rake angles had up to 80% agree-

ment with the experimental results which was good considering the approximations

and assumptions. When a high cutting speed of 150-230 m/s was used the predicted

cutting forces were very close to the experimental values.

Marusich and Ortiz [17] by accounting for the role of friction and thermal soften-

ing developed a successful finite element model on the machining of AISI 4340 steel.

To simulate the formation of a discontinuous chip a new separation/fracture crite-

ria based on void growth and coalescence in addition to the numerical methods for

propagating and nucleating the crack through the deformed chip in a ductile mate-

rial was developed. Other important aspects considered include thermal conductance,

rate dependent plasticity, fracture and mechanical hardening with continuous meshing

and remeshing. The simulations were successful in reproducing physical phenomena

such as, increase of temperature distribution and cutting forces with increased feed,

decrease of cutting force with an increase in tool rake angles and also had similar

chip morphologies to that of experimental observations. The authors also stated that

the results produced by the analytical method gave an approximate estimate as it

does not consider the effects of thermal softening and thus concluded that their FEA
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results gave a more accurate prediction.

A study to understand the different chip separation criteria used in the finite

element machining models was carried out by Huang and Black [18]. There were four

chip separation criteria consisting of one which was based on the distance between

the tool tip and the node just ahead of the tool tip, a second which was based on

the maximum shear stress in the element just ahead of the tool tip, a third which

considered the distance as well as stress and lastly, a fourth based on the average

maximum shear stress in the shear plane. It was concluded that during the steady

state machining the choice of chip separation criteria did not influence neither the

stress-strain distributions, nor the chip formation. Also, it was observed that none of

the chip separation criteria accurately predict an initial stage of chip formation and

thus, to learn about the initial stages of chip formation and also the steady state, a

fusion of geometrical and physical criteria is to be developed. If only the steady state

in machining is to be studied, then a geometrical criterion is sufficient.

Deshayes et al. [19] presented an experimental study of chip formation with val-

idation using finite element simulations using ABAQUS and ADVANTEDGE, and also de-

veloped a classification of serrated chip morphology. This was achieved using the

”fragmentation diagram which represents valid ranges for feed and depth of cut for

a given combination of tool and workpiece material” [19, 20]. The authors concluded

that with appropriate material models (Johnson-Cook) serrated chip formation can be

simulated. Experimental observations show crack formation in the damaged region.

Further work is needed to fully capture all parameters.

Buckkremer, Klocke and Lung [21] presented an analytical model of the equivalent

plastic strain fields on free surface of chips and the effect of various parameters such

as depth of cut, feed, cutting angle etc. on the equivalent strain fields. They used

the visco-plastic material behavior described by a modified version of constitutive

equations by Bai and Wierzbicki (BW model) [22]. They incorporated the influences
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of stress triaxiality and Lode angle on the flow stress and final fracture strain. The

authors concluded that chip breakage is a major machinability criterion in automated

manufacturing. Chip breakage initiates after the equivalent strain on the chip free

surface exceeds a limit. Knowledge of how the process conditions and thus, the chip

geometry affects strain, is limited. A model of equivalent strain on the chip free surface

considering chip geometry was proposed.

Agrawal and Joshi [23] developed an analytical model for the prediction of residual

stresses in machining, considering the stress distribution in various cutting regions

and also validated simulation results with the experimental data. From this study,

the authors showed the influence of cutting tool edge radius, cutting speed, depth of

cut and temperature on the residual stresses. A comparison was made with previous

literature (S-J and Hybrid model [23]). The authors concluded that the residual

stresses are tensile on the machined surface and compressive beneath the machined

surface.

Arrazola et al. [24] conducted a new set of face turning experiments on a pre-

cipitation hardened IN718 nickel-based alloy, in order to compare the experimental

results with the forces and stresses predicted from 3-D finite element simulations. At

the same cutting conditions and residual stress profiles were measured by using the

X-ray diffraction technique and utilized in comparison of machining induced stress

profiles obtained from 3-D FE simulations. They used the Deform-3D FE software

with Johnson-Cook model which was modified to include flow softening. The authors

concluded that these simulations provide closer results to the experimental results and

also discussed the effects of various cutting parameters on the residual stresses.

2.4 Smoothed Particle Hydronamics (SPH): A New Technique for Modeling
Machining

Heinstein and Segalman [25] at the Sandia National Laboratories, developed one

of the first orthogonal metal cutting simulations based on the method of smoothed
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particle hydrodynamics (SPH). The study provided a new alternative to the traditional

finite element techniques that are conventionally used. The authors concluded that

the SPH technique proves to be more promising in simulating the large deformations

that happen near the tool, without the loss of stability and accuracy which is the case

with finite element models.

Limido et al. [26] developed a high speed machining cutting model with the SPH

method in LS-DYNA Code. The aim of this study was to demonstrate the merits of the

SPH method such as natural chip/workpiece separation, and also compared the result

with experimental results. The authors also concluded that the SPH model was able

to predict shear and continuous localized chip during each step of its formation and

also predicts cutting forces with grated accuracy. A suggestion was made regarding

the need to develop a 3D SPH model simulating oblique cutting.

Villumsen and Fauerholdt [27] also used the LS-DYNA finite element code to develop

an SPH model for metal cutting. Their study provided certain critical techniques by

which an SPH model can be built with the LS-DYNA software. They carried out a

sensitivity analysis to demonstrate the effects of no of particles, mass scaling and

time scaling. Moreover, they also conducted an analysis on the friction between the

workpiece and tool and their effects on the cutting forces. Finally, they compared

the obtained results with experimental data and concluded that the predicted cutting

forces were more realistic and the simulated chip formation is more realistic. Further-

more, they expressed an interest in developing an SPH milling model to predict the

cutting forces during the milling process.

Espinosa et al. [28] developed an orthogonal cutting, oblique cutting and milling

model based on the SPH method with LS-DYNA finite element code. A comparison was

made with Arbitrary Lagrangian-Eulerian (ALE) finite element models. The authors

also provided some important specificities of the SPH model implementation such as

the introduction of artificial viscosity, use of renormalized SPH formulation and gave
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an incite on the numerical instabilities like tensile instability and zero energy modes.

The conclusions from this study were in tune with the previous studies on SPH.

Madaj and Ṕı̌ska [29] used the ANSYS LS-DYNA solver to simulate orthogonal cut-

ting on A2024-T351 Aluminum Alloy and compared the results with experimental and

FEM simulation results. They conducted studies which demonstrated the influence of

Johnson-Cook parameters, SPH density and cutting speeds (200-800 m/min). They

mentioned the use of the minimum strain to failure to be set for good correlation

with the experimental results. They stressed on the need of further investigation the

different material model parameters and other material models to prove the usability

of the SPH method.

Storchak et al. [30] developed an SPH orthogonal cutting model for AISI 1045

steel. They showed that only two SPH solver parameters had a significant effect on

the machining variables which were, the initial particle density and time-step increase

coefficient.

Xi et al. [31] developed both 2D and 3D models to simulate machining on Ti6Al4V

alloy. The aim was to investigate chip formation and cutting forces. They simulated

two sets of parameters under four different initial workpiece temperatures also con-

ducted experiments for the same. The influence of initial workpiece temperature on

the cutting forces and chip formation was studied. The results found were in agree-

ment with the experimentally obtained data.



CHAPTER 3: METHODS AVAILABLE FOR MODELING MACHINING

The most important reasons for the need to model machining is firstly, to con-

duct the operation in an efficient manner and obtain a desired quality of the finished

component, and secondly, to develop suitable designs of machine tools by studying

the loads during the process. The performance of a finished component is directly

linked to the efficiency and effectiveness of the machining operation that has been

carried out on it. The process of machining can be understood by the knowledge

of cutting process and the movement of the machine-tool. Structural dynamics has

been successfully used in understanding the movement of the machine-tool, but the

cutting process is much more complex and so, many techniques have been and are

being developed to model this phenomenon [32].

Apart from the experimental techniques, there have been various analytical meth-

ods to model the machining process. Early methods tried to explain the process

in simple terms, by various assumptions, approximations and graphical representa-

tions [4–6]. Consecutive methods, consider the complex and nonlinear aspects of the

cutting process such as thermal softening, shear bands, the secondary shear zone,

etc [33]. As the considerations and calculations became complex, suitable techniques

like finite element methods were employed. The various techniques to model the

machining process have been briefly explained below.

3.1 Analytical Method

Even though many researchers are working to develop appropriate analytical meth-

ods to model the machining process, it is considered as a predecessor of numerical

methods. They provide the basis for the concepts of finite element methods. Impor-
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tant literature on the mechanics of the machining process include theories on the shear

zone models, slip line theories, plasticity [3, 33]. Some of these theories are described

below.

3.1.1 Shear Plane Model

According to this model the chip formation takes place by shearing taking place

along a shear plane, which is inclined at an angle ϕ with the horizontal. It is also

assumed that the chip remains in contact with the tool and is straight. The flow

stress of the material is equal to the shear stress along the shear plane. The forces

between the tool-chip interface are considered to be in equilibrium. This is shown in

the Merchant’s force diagram, see figure 2.6.

Figure 3.1: Slip line field model by Lee and Shaffer [35].

3.1.2 Slip-Line Field Models

In this approach the plastic deformation can be modeled in the plane strain without

the consideration of elasticity (by quasi-static loading), by considering the workpiece

as a rigid-plastic material. Elasticity is not included and the loading has to be quasi-

static [34]. The slip-line is defined as a line that is curved and tangential to the
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maximum shear stress of the material.It was first developed by Lee and Shaffer [35]

The slip-line field is a set of slip-lines in the plastic region if the workpiece during

deformation. This theory defines the relationship between the unyielded and yielded

region of the material (See Figure 3.1). The generalized solution is given below [33]:

The shear angle is calculated as,

ϕ+ ρ− γ =
π

4
(3.1)

and therefore,

2ϕsp + ρ− γ ≈ π

2
− ψsp (3.2)

where, ϕsp is the specific shear angle and ψsp is the angle of inclination of the tangent

to the plastic zone outer boundary.

3.1.3 Shear Zone Model

This model considers that the deformation takes place along a shear band and

strain hardening effects are taken into consideration. The friction along the chip-tool

interface is not considered to be constant. The most noted work on this model was

done by Oxley [36]. It was deduced that the shear zone width was approximately

one-tenth that of the length. From the variations in velocity the strain rates can be

derived and can be calculated along with the strain (by integrating the strain-rate with

respect to time) at each point in the primary deformation zone. This methodology is

a reused to find the strains and strain-rates in the secondary deformation zone. The

shear zone model proves to be an upgrade over the earlier models.

3.2 Numerical Methods

The limitations of the analytical methods and the complexity of the physics of the

machining process encouraged researchers to develop numerical methods as a modeling

technique. Finite element methods have proved to be successful in improving the

accuracy of the machining models. The various types of numerical techniques to build
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machining models with FEA are described below.

3.3 Types of Formulations Numerical Models

The machining process which typically involves large deformations and high strain-

rates are modeled with the finite element methods using three commonly used formu-

lations i.e., the Lagrangian formulation, the Eulerian formulation and the Arbitrary

Lagrangian-Eulerian (ALE) formulation, with the addition of a fourth technique i.e.,

the Smoothed Particle Hydrodynamics (SPH) formulation, that has been of recent

interest.

Figure 3.2: A Lagrangian mesh [37].

3.3.1 Lagrangian Formulation

In this formulation the finite element mesh is attached to the material. This is

one of the earliest formulations used to model the machining process. During the

machining process simulations, the mesh deforms with the material. As the mesh

deforms, it undergoes high distortion thus, leading to numerical instability. To govern

when the plastic deformation would take place, we define a chip formation criterion in

the Lagrangian analysis. The advantages of the this method are that the computation

time is faster and the chip geometry need not be predefined as it forms due to the
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evolution of the physical deformation process [11, 38, 39]. A representation of the

Lagrangian mesh has been shown in Figure 3.2.

Figure 3.3: An Eulerian mesh [37].

3.3.2 Eulerian Formulation

In this formulation the mesh remains in place and the material moves through it

during deformation. This is generally done in two steps in which the material deforms

with a Lagrangian formulation and then the deformation is mapped on the constant

Eulerian mesh. The merits of this formulation are that there are no errors due to mesh

distortions that can affect the magnitude of strains predicted in the simulation. Also,

there is no need to provide a separation/fracture criteria as the material properties

governs the deformation. Fewer elements are required when this formulation is used.

The above advantages lead to a lower computation time and the continuous flow of

the material is also well predicted. The limitations of this formulation include the

inability to simulate free surfaces and discontinuous chips as the mesh is fixed. Figure

3.3 shows an Eulerian mesh. The Eulerian formulation is not preferred to simulate

solid mechanics problems such as the machining process, compared to the Lagrangian

formulation [11,38,39].
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Figure 3.4: An Arbitrary Lagrangian-Eulerian (ALE) machining simulation [38].

3.3.3 Arbitrary Lagrangian-Eulerian (ALE) Formulation

The most preferred finite element formulation that is used to model large deforma-

tion problems like the machining process, utilizes the best of both the Lagrangian as

well as the Eulerian formulations. It is known as the Arbitrary Lagrangian-Eulerian

(ALE) formulation. Remeshing is used in this formulation to reduce the element

distortion and obtain a smooth mesh, but this feature comes at the cost of higher

computation time. This formulation proves to be more accurate in predicting con-

tact, chip formation, strain, strain-rate, temperature and cutting forces. An example

of the ALE mesh used model the machining process has been shown in Figure 3.4.



24

Figure 3.5: SPH simulation of a projectile impact on a turbine blade [40].

3.3.4 Smoothed Particle Hydrodynamics (SPH)

The SPH Method belongs to the class of numerical methods collectively known

as meshless or mesh-free methods. These methods have become popular due to their

ability to handle severe deformations while avoiding mass and energy losses encoun-

tered by traditional finite element methods. In the SPH method, the given domain is

discretized into a set of particles and the material properties and the field variables

are assigned to each of these particles. The method has been implemented in many

commercial finite element packages such as LS-Dyna [1] and ABAQUS [2]. In the recent

years, there has been an increased interest amongst many researchers to model the

machining process by the SPH method due to its many merits. As this formulation is

based on the Lagrangian system, it is capable of capturing the history of the material

such as damage, without diffusion errors due to advection, that are seen with the

Eulerian formulation.

Lucy [41], Gingold and Monaghan [42] developed the Smoothed Particle Hydro-

dynamics (SPH) method to simulate problems related to astrophysics. The most

important merit of their work was that the SPH method did not require a mesh to
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compute the derivatives. Subsequently, Monaghan [44], Benz [45] and Belytschko

et al [43] reviewed the initial developments of the SPH method. Furthermore, The

SPH method with solid mechanics was implemented in 2D and 3D by researchers like

Libersky and Petschek [46,47], and were then merged with conventional finite element

codes [48, 49].

The basic SPH formulation contained many pitfalls such as tensile instability, lower

accuracy, lower consistency, artificial viscosity and zero energy modes. In the recent

past some, but not all shortcomings have been resolved by [50,51]. An application of

the SPH formulation to simulate a projectile impact on a turbine blade is shown in

Figure 3.5. The basics of the SPH formulation from [50] has been provided below.

3.4 The Smoothed Particle Hydrodynamics (SPH) Formulation

3.4.1 Basic Formulation

The Smoothed Particle Hydrodynamics (SPH) formulation uses a kernel interpo-

lation function instead of a finite element mesh, to compute the state variables at any

point in the system. An example of this, is the value of the continuous function f(x)

at any x, which is approximated by an integral of the product of a kernel (Weight)

function and the function itself. It is given by W (x—x′, h) as,

〈f(x)〉 =

∫
W (x—x′, h)f(x′). (3.3)

Here, the kernel approximation is denoted by 〈〉, h is the smoothing length that defines

the size of the kernel support and x′ is the updated independent variable.

The kernel function is zero everywhere except a finite set of points included in the

range of smoothing length 2h as,

W (x—x′, h) = 0 for |x—x′| >= 2h. (3.4)

Once normalized we have,
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Figure 3.6: A set of neighboring particles [50].

∫
W (x—x′, h)dx′ = 1. (3.5)

The following formulations by Lucy [41], make sure that when h tends to zero, the

kernel function converts into the Dirac delta function as,

lim
h→0

W (x—x′, h) = δ(x—x′, h) (3.6)

and so,
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lim
h→0
〈f(x)〉 = f(x). (3.7)

If f(x) is known only at N discrete points, the integral of equation 3.3 is approximated

using a summation as,

〈f(x)〉 =
N∑
j=1

mj

ρj
f(xj)W (x—xj, h) (3.8)

and so,

〈f(xi)〉 =
N∑
j=1

mj

ρj
f(xj)W (xi—xj, h) (3.9)

where, mj

ρj
is the volume of the particle j. Thus the basic SPH method is given by

equation 3.8. We see from equation 3.9 that at any particle i, the value of a variable

is computed by the contributions from the neighboring particles j where, the kernel

function is non zero (see Figure 3.6).

3.4.2 Conservation Equations

Now, the conservation equations in the Lagrangian system are given as,

dρ

dt
= −ρ∂Vα

∂xα
(3.10)

and

dVα
dt

=
1

ρ

∂σαβ
∂xβ

(3.11)

or

dVα
dt

=
∂

∂xβ

(
σαβ
ρ

)
+
σαβ
ρ2

∂ρ

∂xβ
(3.12)

and

dE

dt
=
σαβ
ρ

∂Vα
∂xβ

(3.13)
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or

dE

dt
=
σαβ
ρ2

∂(ρVα)

∂xβ
− σαβVα

ρ2
∂ρ

∂xβ
(3.14)

where, Vα = dXα
dt

and the components are denoted by α and β. The equations 3.12

and 3.14 were proposed by [44]. The SPH form of the conservation equations can be

derived by the kernel interpolation as,

〈
dρ

dt

〉
= −

∫
Wρ′

∂V ′α
∂x′α

dX ′, (3.15)

〈
dVα
dt

〉
=

∫
W

∂

∂X ′β

(
σ′αβ
ρ′

)
dx′ +

∫
W
σ′αβ
ρ′2

∂ρ′

∂x′β
dx′, (3.16)

and 〈
dE

dt

〉
=

∫
W
σ′αβ
ρ′2

∂ (ρ′V ′α)

∂x′β
dx′ +

∫
W
σ′αβV

′
α

ρ′2
∂ρ′

∂x′β
dx′. (3.17)

These are of the form,

∫
Wf(x′)

∂g(x′)

∂x′
dx′. (3.18)

From the Taylor series expansion about x′ = x we get,

∫
Wf(x′)

∂g(x′)

∂x′
dx′ =

∫ [
f(x)

∂g(x)

∂x
+ (x− x′) d

dx

(
f(x)

∂g(x)

∂x

)
+ ...

]
Wdx′.

(3.19)

The parts with odd powers of x − x′ get canceled as w is an even function. We now

neglect second and higher order terms, keeping the consistency with the order of the

method as,

∫
Wf(x′)

∂g(x′)

∂x′
dx′ =

(
f(x′)

∂g(x′)

∂x′
dx′
)
x′=x

. (3.20)
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We now substitute the approximation
〈
∂g(x)
∂x

〉
in place of ∂g(x)

∂x
and get,

(
f(x′)

∂g(x′)

∂x′

)
x′=x

= f(x)

∫
W
∂g(x′)

∂x′
dx′. (3.21)

The last relations from equations 3.15, 3.16 and 3.17 are used to get,

〈
dρ

dt

〉
= −ρ

∫
W
∂V ′α
∂x′α

dx′, (3.22)

〈
dVα
dt

〉
=

∫
W

∂

∂x′β

(
σ′αβ
ρ′

)
dx′ +

σαβ
ρ2

∫
W

∂ρ′

∂x′β
dx′ (3.23)

and 〈
dE

dt

〉
=
σαβ
ρ2

∫
W
∂ (ρ′V ′α)

∂x′β
dx′ − σαβVα

ρ2

∫
W

∂ρ′

∂x′β
dx′. (3.24)

The spatial derivatives of kernel approximation are,

〈
∂f(x)

∂xα

〉
=

∫
W
∂f(x′)

∂x′α
dx′. (3.25)

We now integrate by parts to get,

〈
∂f(x)

∂xα

〉
= Wf(x)−

∫
f(x)

∂W

∂x′α
dx′. (3.26)

We can rewrite the first term of the above equation as,

Wf(x) =

∫
∂ (Wf(x′))

∂x′
dx′. (3.27)

By using the Green’s theorem we get,

∫
∂ (Wf(x′))

∂x′
dx′ =

∫
S

Wf(x′)nidS. (3.28)

The above obtained surface integral is zero if the limits of integration are greater
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than the compact support of W or if a zero value is assumed by the field variable at

the free surface of the body. Modification to account for the boundary conditions are

required if none of these criteria are satisfied.

It is to be noted that the derivatives of the kernel are substituted in place of the

spatial derivatives of the field variables in equations 3.22, 3.23 and 3.24.

∫
W
∂f(x′)

∂x′α
dx′ = −

∫
f(x)

∂W

∂x′α
dx′ (3.29)

therefore,

〈
dρ

dt

〉
= ρ

∫
V ′α
∂W

∂x′α
dx′, (3.30)

〈
dVα
dt

〉
= −

∫
σ′αβ
ρ′

∂W

∂x′β
dx′ − σαβ

ρ2

∫
ρ′
∂W

∂x′β
dx′ (3.31)

and 〈
dE

dt

〉
= −σαβ

ρ2

∫
ρ′V ′α

∂W

∂x′β
dx′ +

σαβVα
ρ2

∫
ρ′
∂W

∂x′β
dx′. (3.32)

The last step is to transform the continuous volume integrals to sum over discrete

interpolated points. Thus, the most conventional form of the SPH discretized con-

servation equations are obtained after some rearrangements to improve consistency

as,

dρ

dt
= ρi

N∑
j=1

mj

ρj
(
V j
β − V

i
β

) ∂W ij

∂xiβ
, (3.33)

dV i
α

dt
= −

N∑
j=1

mj

(
σjαβ
ρ2j
−
σiαβ
ρ2i

)
∂W ij

∂xiβ
(3.34)

and

dEi

dt
= −

σiαβ
ρ2i

N∑
j=1

mj
(
V j
α − V i

α

) ∂W ij

∂xiβ
. (3.35)
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Here, W ij = W (xi − xj, h).

3.4.3 Choice of Kernel Function

Now we define the kernel function to finish the discretization. A large number of

function types are available in the literature from polynomial to Gaussian, but the

most conventional kernel used is the cubic B-spline proposed by Monaghan [44].

W (v, h) =
C

hD
×



(
1− 3

2
v2 + 3

4
v3
)

v < 1,

1
4
(2− v)3 1 ≤ v ≤ 2,

0 Otherwise.

(3.36)

where, v = |x−x′|
h

, D is the number of spatial dimensions, C is the scale factor that is

responsible to confirm that the consistency conditions 2 and 3 are met, and depends

on the D. Therefore, we have,

C =



2
3

D = 1,

10
7π

D = 2,

1
π

D = 3.

(3.37)

3.4.4 Variable Smoothing Length

Benz [45] suggested the use of a variable smoothing length in order to eliminate

some of the demerits of constant smoothing length such as, less interaction of particles

due to large deformation cause errors and higher interaction in compression and thus

increase in computation time. Thus, the proposed change in h is given by,
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h = ho

(
ρo
ρ

) 1
n

(3.38)

where, ρ◦ is the density, h◦ is the initial smoothing length and n is the number of spatial

dimensions. Also, an alternative mass conservation dependent variable h equation is,

dh

dt
=

1

n
h div(v) (3.39)

where, the divergence of velocity is denoted by div(v).

3.4.5 Neighbour Search

Figure 3.7: Neighbor search by the bucket sort method [50].

One of the important parts of the SPH simulation is the task of neighbor particle

search. It is a time consuming and computationally heavy task and therefore, it has
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to be performed in an efficient manner and so, a direct search method would prove

to be futile. An efficient method is the bucket sort method. The particle are sorted

according to a temporary mesh that is of size 2h (See Figure 3.7). Following this, for

a particular particle, the neighbor particles in the same box and adjoining boxes are

searched. This results in the results from the a reduction of computation time from

N2 (for direct search method) to N logN (in case of the bucket sort method), N being

the total number of particles.

3.5 Pitfalls of the SPH Method

While modeling solid mechanics problems such as the machining process, the SPH

formulation generally shows three problems namely,

1. Consistency

2. Tensile Instability

3. Zero-Energy Modes

3.5.1 Consistency

Deficiency of kernel support beyond length 2h of domain boundaries, results in the

inconsistency of the continuous SPH method. If particles are irregularly distributed,

then the method looses 0th order accuracy over the whole domain. Therefore, the

particles have to be defined as equally spaced as possible to maintain accuracy. Some

of the corrective measures developed by various researchers to increase the order of

consistency of the SPH method, have been discussed in [50].

3.5.2 Tensile Instability

Swegle et al [52] and Balsare [53] separately conducted a von Neumann stability

analysis of the SPH method and found that it suffered from tensile instability. Tensile

instability shows traits of fracture which is shown as a cluster of particles. This is

actually a results from effective stress due to artificial negative modulus produced
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from the correlation between the kernel interpolation and constitutive relation. The

partial differential equations are changed due to this. From the stability analysis, it

was found that the criteria for stability is W ′′σ > 0, where σ is the stress and W ′′

is the second derivative of W . This instability can also occur in compression, but

is generally seen with tension as the minimum of the derivative is located at 2/3rd

the length of h, in the stability regime of the commonly used cubic B-spline kernel

function. Some of the corrective measures suggested by various researchers to decrease

the effect of tensile instability in the SPH method, have been discussed in [50].

3.5.3 Zero-Energy Modes

The Zero-Energy modes are similar to deformation modes featuring periodic nodal

displacements producing zero strain energy. These types of features can be seen even

with finite element and finite difference schemes. The cause of these modes is nodal

under integration in which the derivatives of the field variables are calculated at the

same point. The modes can be easily excited by quick, impulsive loading and are not

resisted. Perhaps, the origins of these modes can be found in the fundamental SPH

kernel function, which is an interpolation of a group of finite data on which sinusoidal

waves can be fit, given the high enough magnitude of the order interpolation. Some

of the corrective measures suggested by various researchers to decrease the effect of

tensile instability in the SPH method, have been discussed in [50].



CHAPTER 4: SPH MACHINING MODEL WITH LS-DYNA

In the present work, the Smoothed Particle Hydrodynamics (SPH) technique has

been used to model the orthogonal machining process on AISI 1045 steel. The pre-

processor LS-PREPOST of the commercial nonlinear finite element software LS-DYNA

was used to build the SPH model as shown in the Figure 4.1.

Figure 4.1: SPH model of orthogonal machining of a AISI 1045 steel workpiece with
a carbide tool.

4.1 Geometry

The geometry (taken from [30]) of the workpiece was a rectangle of length 3.6

mm and width 0.3 mm. The workpiece was modeled with SPH particles defined

by defining a rectangle of dimension 3.6 mm × 0.3 mm and providing a density of

7800 Kg/m3 and particle spacing of 10 µm (see Figure 4.2). A total of 24300 SPH

particles were produced. Each particle is provided with a mass based on the defined

particle density. The particles are constrained in the Z direction to be consistent

Table 4.1: Material properties for Tungsten-carbide tool

Density Kg/m3 15000

Young’s Modulus (GPa) 800

Poisson’s Ratio 0.2
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Figure 4.2: SPH model geometry.

with the assumptions in the orthogonal machining process which assumes plain strain

conditions. Additionally, the nodes of on the bottom layer and the left side layer of

the workpiece are constrained in the X and Y direction, which is a fixed boundary

condition. The tool was modeled as a 3D rigid body of width 0.04 mm and with

the material properties of tungsten-carbide, which are shown in Table 4.1. The tool

was sketched using the design software SolidWorks and meshed in the finite element

preprocessor HyperMesh. As the tool is modeled to be a rigid body, the mesh need

not be fine. The tool was meshed with 8 node fully integrated S/R solid elements.

The tool was constrained such that it can move only in the X direction. The tool

was given a tool-tip radius of 20 µm and a rake and clearance angle of 8◦ and 10◦

respectively. The length of cut for the simulation was 3.5 mm and the total time

for the simulation was 0.1 ms. A constant depth of cut of 0.1 mm was considered.

The analysis with LS-DYNA was performed as an SPH-Solid structural only analysis

because, SPH-Solid coupled structural-thermal analysis have not yet been found to

provide reliable results. An artificially high cutting speed ( 20 times higher) of 35

m/sec was used [28] to reduce the numerical instabilities discussed in the previous

chapter.
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4.2 Constitutive Model & Material Properties

The AISI 1045 steel workpiece was modeled with the Johnson-Cook plasticity

model [54] and the various parameters were obtained from Jaspers [55]. In this model

the flow stress is expressed as a function of yield stress, strain hardening, strain rate

and temperature. The Johnson-Cook plasticity model is given by equation 4.1.

σflow =
(
A+Bεnpl

) [
+ C log

(
ε̇pl
ε̇o

)][
−

(
θ − θo

θmelt − θo

)m]
(4.1)

where, σflow is the flow stress, A is the material yield stress, B is the strength

Table 4.2: Material properties for AISI 1045 Steel

A (MPa) 553

B (MPa) 600.8

n 0.234

C 0.013

m 1

Room temperature, θo
◦C 27

Melting temperature, θmelt
◦C 1460

Reference strain rate, ε̇o s−1 1

Density Kg/m3 7800

Shear modulus (GPa) 76.923

Bulk modulus (GPa) 166.67

Young’s modulus (GPa) 200

Poisson’s ratio 0.3

Specific heat (J/KgK) 432.6
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coefficient, εpl is the effective plastic strain, n is the strain-hardening exponent, C is

the strain rate constant, θ is the current temperature, θo is the room temperature,

θmelt is the melting temperature and m is the thermal softening exponent. Large

deformations occurring during the orthogonal machining process are easily handled

by the SPH formulation. The fracture/separation of the chip from the workpiece is

handled by the SPH formulation in a more natural way than conventional Lagrangian

finite element models. Therefore, no additional fracture/separation criterion needs

to be defined. The above Johnson-Cook plasticity model parameters can directly be

input to LS-DYNA with the *MAT JOHNSON COOK material card in a tabular form. The

material parameters used in this study have been specified in Table 4.2.

4.3 Contact

The contact between the tool and workpiece was defined by the AUTOMATIC-

NODES-TO-SURFACE card with the tool being the master and workpiece being the

slave. The penalty type contact algorithm is used which monitors and avoids the

intrusion of slave nodes into the master surface. During contact the coefficient of

friction µ is given by,

µ = µD + (µS − µD)e−DC|vrel| (4.2)

where, µS and µD are the coefficients of static and dynamic friction respectively, DC is

the exponential decay coefficient, which governs the transition between the static and

dynamic friction conditions, and vrel is the relative velocity between the tool (master)

and the workpiece (slave). In this model µS = 0.5 and µD = 0.3 and DC = 0.1. The

bucket sorts and constraints were further defined in the *CONTROL CONTACT card.

4.4 SPH Control Parameters

There are several parameters which are used to control an SPH simulation, some

generic to the formulation and some related to the finite element package used. In
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the present work, LS-DYNA is used to simulate the orthogonal machining process

with the SPH method. *CONTROL BULK VISCOSITY, *CONTROL SPH and

*SECTION SPH cards with the scale factor for computed time-step can be speci-

fied to control the simulation. In the conventional finite element method, the bulk

viscosity is introduced to maintain stability of the solution when shocks or oscilla-

tions occur. For the conservation of momentum the SPH method also relies on the

use of artificial viscosity. In LS-DYNA the bulk viscosity is defined by the *CON-

TROL BULK VISCOSITY card with two parameters, Q1 and Q2 [1]. By default

the values of Q1 and Q2 are 1.5 and 0.06 respectively, but from various literature, it

has been found that a value of 1.5 for Q1 and 0.5—1 for Q2 is used for SPH simula-

tions [28, 56]. The type of SPH formulation, initial number of neighboring particles

and the number of time-steps after which the particles are to be sorted can be defined

in the *CONTROL SPH card. A variable smoothing length is used by LS-DYNA to

eliminate errors due to tension instability and also to reduce computation time [1,50],

with the initial smoothing length being ho, which is taken as the maximum of the

minimum distance between all the particles in the domain. The variable smoothing

length is controlled by constants which are defined in the *SECTION SPH card.

4.5 Equation of State

The equation of state term is used to define the hydrodynamic pressure-volume

relations of the SPH domain. In the present work, the linear polynomial type of

equation of state has been used. The pressure is given by,

P = Co + C1µ+ C2µ
2 + C3µ

3 + (C4 + C5µ+ C6µ
2)E (4.3)

where, E is the internal energy, µ = ρ
ρo
−1, and ρ

ρo
is the ratio between current density

and reference density. Terms C2µ
2 and C6µ

2 are zero if µ < 0 [1]. Here, only the C1

term is used and all other terms are set to zero. The C1 term is equal to the bulk
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modulus of the workpiece material, i.e., of AISI 1045 steel which is given in Table

4.2.



CHAPTER 5: RESULTS & DISCUSSION

In this chapter, the results obtained from the above described SPH orthogonal

cutting model are presented with a discussion. Furthermore, the results from the

various parametric studies are presented along with a discussion. The post processing

of the various results was handled with LS-PREPOST.

At time t = 0.0245 ms.

At time t = 0.0495 ms. At time t = 0.0745 ms.

Figure 5.1: Distribution of von Mises stress (GPa) at various times during the ma-
chining operation showing the progression of chip formation.
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5.1 SPH Model for Orthogonal Machining of AISI 1045 Steel

A continuous and naturally flowing chip morphology is observed as seen from

Figure 5.1. The results from the SPH orthogonal machining model are discussed

below.

5.1.1 Von Mises Stress

The contour plots of von Mises stresses at various times during the SPH orthogonal

machining simulation are shown in Figure 5.1. Three cases are shown at time t =

0.0245, 0.0495 & 0.0745 sec. A maximum stress of 1.129 GPa is observed in the

primary shear band region. The results obtained show good agreement with results

previously obtained from numerical FEA simulation [57,58] results.

5.1.2 Effective Plastic Strain

The contour plots for effective plastic strain at various times during the SPH

orthogonal machining simulation are shown in Figure 5.2. Three cases are shown at

time t = 0.0245, 0.0495 & 0.0745 sec. It is observed that the effective plastic strain

predominantly shows values from 0.8 to 2, which causes workpiece material hardening.

Plastic strain is observed to occur in both the primary as well as secondary shear zone.
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At time t = 0.0245 ms.

At time t = 0.0495 ms. At time t = 0.0745 ms.

Figure 5.2: Contour plot of effective plastic strain at various times during the ma-
chining operation showing the progression of chip formation.

5.1.3 Cutting Force & Energy Balance

The cutting forces predicted by the SPH orthogonal machining model for AISI

1045 steel are shown in Figure 5.3. The results obtained show good agreement with

the results obtained by experimental and numerical FEA simulations [57,58,62]. The

cutting forces during the machining process are observed to have an average value of

140 N.

To validate the results obtained by the SPH orthogonal machining model, it is

important to have a balance between the total energy and external work. The energy

balance plot obtained from the simulation is shown in Figure 5.4. The external work

is observed to be approximately equivalent to the total energy of the system. The sum
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Figure 5.3: Predicted cutting force during the simulation of the orthogonal machining
process on AISI 1045 steel using the SPH method.

Figure 5.4: Energy balance during the simulation of the orthogonal machining process
on AISI 1045 steel using the SPH method.

of the kinetic energy of the moving tool and chip, and the internal energy contained

in the deformed workpiece make up the total energy. From Figure 5.4, it is observed

that the results obtained are valid.
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5.2 Influence of SPH Control Parameters

To establish the accuracy and reliability of smoothed particle hydrodynamics sim-

ulation of orthogonal machining, various parametric studies are conducted.

5.2.1 Convergence Study

The convergence study is conducted by increasing the number of SPH particles

and observing the change in the maximum von Mises stress achieved and comparing

the obtained results with experimental data [62]. All features of the model, including

the geometry, cutting conditions were kept the same and only the particle density was

increased. As seen from Figure 5.5, it is observed that the computation time increased

with the particle density while achieving solution convergence. Table 5.1 shows the

different cases that were used to perform the convergence study.

Figure 5.5: Convergence study by increasing the number of particles.
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Table 5.1: Cases for convergence study.

Minimum distance between particles Number of particles

10 µm 11252

6.667 µm 24300

5.88 µm 31252

4 µm 69377

2 µm 273752

5.2.2 Type of SPH Formulation

Recent literature shows that the default type of SPH formulation is inadequate and

inconsistent, leading to unstable results and thus, modified SPH formulations such as

the renormalization formulation show improved conservation [63]. Three such types

of SPH formulations i.e., renormalization, default and total Lagrangian formulations

are investigated.

From Figure 5.6, we see that only the renormalization SPH formulation gives a

physical result and the default and total Lagrangian SPH formulations are inadequate

to model orthogonal machining.
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SPH renormalization formulation [1].

Default SPH formulation [1].

Total Lagrangian SPH formulation [1].

Figure 5.6: Contour plot of von Mises stress (GPa) for various types of SPH formula-
tions available in LS-DYNA.
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Scale factor for computed time-step 0.1.

Scale factor for computed time-step 0.2.

Scale factor for computed time-step 0.4.

Figure 5.7: Contour plot of von Mises stress (GPa) for various values of the scale
factor for computed time-step.
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5.2.3 Variation of Scale Factor for Computed Time-Step

One of the most important parameters that has an effect on the SPH orthogonal

machining model is the scale factor for computed time-step. Effects are seen on

the chip morphology as well as the computation time [30]. It is observed that the

computation time decreases with increasing value of the scale factor for computed

time-step. There also are changes observed in the chip morphology with respect to

the chip curl radius and breaking of the chip. Figure 5.7 shows the cases with three

different values of the scale factor for computed time-step.

5.2.4 Variation of Smoothing Length

Machining is a process during which large deformations occur and thus, while

modeling the orthogonal machining process with the SPH method, the particles can

move away from each other or new boundaries can form causing less interaction, and

on the other hand, there is material being compressed just in front of the tool tip

and rake face and this increases the computation time of the simulation. To fulfill

the desire of having a uniform number of neighborhood particles, Benz [45] suggested

the use of a variable smoothing length. LS-DYNA uses a variable smoothing length [1].

The effect of the variation of parameters in the *SECTION SPH card, i.e., constants

Hmin and Hmax and constant initial smoothing length (SPHINI) on the results were

investigated. The various cases have been shown in Figure 5.8.

In the first case, it was observed that when the variability of the smoothing length

was reduced by increasing the value of Hmin and decreasing the value of Hmax, the chip

curl radius increased as the chip did not curl to contact the workpiece at t = 0.0495

mm, contrary to the case shown in Figure 5.1.

In the second case, the value of the initial smoothing length (SPHINI) is specified.

Every particle is given a unique value of the initial smoothing length, which is deter-

mined by the software unless the SPHINI parameter is specified, and is taken to be

the maximum of the minimum distance between every particle [1]. In this case the
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Case 1: The values of Hmin and Hmax have been increased and decreased respectively
to reduce the variability of the smoothing length.

Case 2: A constant smoothing length of 0.02mm is used.

Case 3: A constant smoothing length of 0.005mm is used.

Figure 5.8: Contour plot of von Mises stress (GPa) for various smoothing length
parameters.

value of parameter SPHINI was specified to be 0.02 mm, which is more than double

the value in the base case. Due to non physical interactions between constitutive

relations and kernel interpolations, tensile instability occurs which causes particles to
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cluster and become unstable to a point which can lead to solution blowup [64]. An

observation fitting to the above description is seen in this case.

In the third case, again the value of initial smoothing length (SPHINI) is specified

to be 0.05 mm, which is about half of the value in the base case. Due to such a low

smoothing length, there are less number of particle neighbors. This causes particles

to fly out of the domain. This result is observed to be non-physical.

5.2.5 Use of Artificial Bulk Viscosity

For this study, the bulk viscosity coefficients, Q1 and Q2 were changed from the

defaults and the results were compared with the case with default values. It is observed

from Figure 5.9, that the contour plot for von Mises stress is more smooth in the case

where the value of the coefficient Q2 was changed to 0.5 which is in agreement with

the findings by Espinosa et al. [28].

Default bulk viscosity coefficients i.e.,
Q1 = 1.5 and Q2 = 0.06.

Bulk viscosity coefficients changed i.e.,
Q1 = 1.5 and Q2 = 0.5 [28].

Figure 5.9: Contour plot of von Mises stress (GPa) showing a comparison between
the default and changed bulk viscosity coefficients.

5.3 Variation of Johnson-Cook Material Parameters

To investigate the effect of the constitutive model on the results, a parametric study

with different Johnson-Cook material model parameters were used from the literature.

All other parameters were kept the same. These material model parameters were

obtained by various researchers using empirical data from the Hopkinson bar tests by

considering large strain rates and adiabatic temperature rise due to plastic heating

which cause material softening. The parameters by various authors is given in Table

5.2.
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Table 5.2: Johnson-Cook parameters by various authors.

Author A (MPa) B (MPa) n C m

Jaspers [55] 553 600.8 0.234 0.013 1

Storchak [30] 910 586 0.26 0.014 1.03

Özel [59] 451.6 819.5 0.173 0.9× 10−6 1.095

Borkovec [60] 375 552 0.457 0.020 1.4

Forejt [61] 375 580 0.5 0.020 1.04

It is observed that due to the change in parameter A which is the yield stress of

the material, the maximum stresses change in the contour plots. The chip morphology

also changes with respect to chip curl radius, chip thickness and primary shear band

thickness, due to the different values of B, n, C and m. The maximum stress obtained

by using the parameters by Storchak, agrees with the results obtained in [30]. The

results showing the different cases at three different times are shown in Figures 5.10,

5.11 and 5.12.
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Jaspers [55].

Storchak [30].

Özel [59].

Borkovec [60].

Forejt [61].

Figure 5.10: Contour plot of von Mises stress (GPa) using Johnson-Cook material
parameters for AISI 1045 steel from various authors at time t = 0.0245 ms.
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Jaspers [55].

Storchak [30].

Özel [59].

Borkovec [60].

Forejt [61].

Figure 5.11: Contour plot of von Mises stress (GPa) using Johnson-Cook material
parameters for AISI 1045 steel from various authors at time t = 0.0495 ms.
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Jaspers [55]

Storchak [30].

Özel [59].

Borkovec [60].

Forejt [61].

Figure 5.12: Contour plot of von Mises stress (GPa) using Johnson-Cook material
parameters for AISI 1045 steel from various authors at time t = 0.0745 ms.
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5.4 Variation of Depth of Cut

To investigate the effect of the depth of cut on the results, a parametric study

with different values of depth of cut was conducted. All other parameters were kept

the same. The results show no significant change except for chip morphology. The

various depth of cut cases at three different times are shown in Figures 5.13, 5.14 and

5.15.
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Depth of cut = 0.05 mm.

Depth of cut = 0.1 mm.

Depth of cut = 0.15 mm.

Depth of cut = 0.2 mm.

Figure 5.13: Contour plot of von Mises stress (GPa) for various depths of cut at time
t = 0.0245 ms.
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Depth of cut = 0.05 mm.

Depth of cut = 0.1 mm.

Depth of cut = 0.15 mm.

Depth of cut = 0.2 mm.

Figure 5.14: Contour plot of von Mises stress (GPa) for various depths of cut at time
t = 0.0495 ms.
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Depth of cut = 0.05 mm.

Depth of cut = 0.1 mm.

Depth of cut = 0.15 mm.

Depth of cut = 0.2 mm.

Figure 5.15: Contour plot of von Mises stress (GPa) for various depths of cut at time
t = 0.0745 ms.
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5.5 Variation of Cutting Speed

To investigate the effect of the cutting speed on the results, a parametric study with

different values of cutting speed was conducted. All other parameters were kept the

same. It is observed that as the cutting speed is increased, the maximum stress value

increases. There are also changes observed with the chip morphology with respect to

chip curl radius which increased with increase in cutting speed. Another important

observation was that the computation time reduces as the cutting speed is increased,

which is in agreement with the literature [26,28]. The results showing the cases with

different cutting speeds at different stages during the simulation are shown in Figures

5.16, 5.17 and 5.18
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Cutting speed of 2100 m/min with a total simulation time of 0.1 ms.

Cutting speed of 500 m/min with a total
simulation time of 0.4 ms.

Cutting speed of 1000 m/min with a total
simulation time of 0.2 ms.

Cutting speed of 1500 m/min with a total
simulation time of 0.14 ms.

Cutting speed of 5000 m/min with a total
simulation time of 0.04 ms.

Figure 5.16: Contour plot of von Mises stress (GPa) for various cutting speeds at 25%
completion of the simulation.
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Cutting speed of 2100 m/min with a total simulation time of 0.1 ms.

Cutting speed of 500 m/min with a total
simulation time of 0.4 ms.

Cutting speed of 1000 m/min with a total
simulation time of 0.2 ms.

Cutting speed of 1500 m/min with a total
simulation time of 0.14 ms.

Cutting speed of 5000 m/min with a total
simulation time of 0.04 ms.

Figure 5.17: Contour plot of von Mises stress (GPa) for various cutting speeds at 50%
completion of the simulation.
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Cutting speed of 2100 m/min with a total simulation time of 0.1 ms.

Cutting speed of 500 m/min with a total
simulation time of 0.4 ms.

Cutting speed of 1000 m/min with a total
simulation time of 0.2 ms.

Cutting speed of 1500 m/min with a total
simulation time of 0.14 ms.

Cutting speed of 5000 m/min with a total
simulation time of 0.04 ms.

Figure 5.18: Contour plot of von Mises stress (GPa) for various cutting speeds at 75%
completion of the simulation.



CHAPTER 6: CONCLUSIONS

In this study, the smoothed particle hydrodynamics (SPH) method was used

to develop an orthogonal machining model for AISI 1045 steel. The commercial

finite element package LS-DYNA was used for this purpose. The obtained results

were compared with experimental and numerical studies from the literature. The

various method for modeling machining such as the analytical methods, numerical

methods which include the Lagrangian formulation, Eulerian formulation, arbitrary

Lagrangian-Eulerian (ALE) formulation and more importantly the meshfree smoothed

particle hydrodynamics formulation were studied. Furthermore, the important aspects

of the SPH method such as the kernel function, smoothing length, particle search and

also, the pitfalls of the SPH method were studied.

Machining is a complex process to both measure and model and thus, previously

conducted research was studied. There are limitation in both experimental techniques

as well as modeling the machining process due to various minute phenomena occurring.

In spite of this, the numerical models and experimental methods keep achieving higher

coherence and accuracy by better understanding the phenomena occurring.

The results obtained from the simulation are in good agreement with experimental

and numerical data found in the literature with respect to the von Mises stress, plastic

strain and cutting force. The simulated material separation is more natural, especially

near the tool-tip. The energy balance diagram showed that the difference between

external work and total energy was very low and thus, the simulation was confirmed to

be valid. Parametric studies were performed by varying the SPH control parameters.

Particle density was increased to conduct a convergence study. The values of
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von Mises stress converged towards the experimental values. The computation time

increased as the number of particles were increased.

Simulations with various types of SPH formulation available in LS-DYNA were con-

ducted. The adequacy of the renormalization formulation was confirmed and was in

agreement with previous studies. The results obtained by using the renormalization

formulation show a more physical result.

Cases with different values of the scale factor for computed time-step were simu-

lated. The computation time decreases with increase in the value of the scale factor

for computed time-step. Changes were also observed with the chip morphology. The

results obtained had good agreement with recent studies.

The importance of using a variable smoothing length in an SPH simulation was in-

vestigated and confirmed by reducing the variability of the smoothing length and also

simulating cases with a constant smoothing length. Tension instability was observed

and resulted in the blowup of the solution when the smoothing length was approx-

imately doubled. Particles were observed to fly out of the domain when a small

smoothing length was used as there was less number of initial neighboring particles.

The use of artificial bulk viscosity was found to show a smoother contour plot for

von Mises stress. This was coherent with the findings in previous studies.

Johnson-Cook material model parameters obtained from various authors were sim-

ulated. The parameters were found to influence the chip morphology as well as field

variables such as von Mises stress values.

Cases with various depths of cut were simulated. Except the change in chip mor-

phology, no other significant changes in the results were observed.

The cutting speeds were varied from values between 100 m/min and 5000 m/min

and the results obtained showed that as the cutting speed increased, computation

time decreased. There were also changes in chip morphology observed with respect to

the chip curl radius which increased with the cutting speed.
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Finally, it can be concluded from the various studies conducted in this study that

the smoothed particle hydrodynamics (SPH) method proves to be a good alternative

to conventional finite element methods for modeling orthogonal machining of AISI

1045 steel. There are no problems related to mesh distortions due to large deforma-

tion as the SPH method shows a more natural chip-workpiece separation. The SPH

orthogonal machining model also showed the self contact that occurs between the

curling chip and the workpiece which is not seen with simulations performed using

conventional finite element methods. The next step with this capability would be to

investigate the friction taking place between this self contact.

With all the merits, there are limitations too, i.e., the physicality and the accuracy

of the SPH models are still in question. For instance, thermal contact and conductiv-

ity cannot yet be performed in LS-DYNA. A coupled structural-thermal analysis which

considers only heat generation inside the SPH workpiece material, does not give phys-

ical results as the chip keeps moving upwards and does not curl. Some parameters

used to obtain smooth and converging results have totally been obtained through trial

and error methods and do not have any physical meaning. Thus, there needs to be

further development and investigation into these gray areas. Due to particle sorting

and neighbor search the computation times increase significantly.

Provided all the shortcomings are resolved, the SPH method can prove to be a very

good alternative to the finite element method to model large deformation processes

such as machining as the merits are too attractive to overlook.



67

REFERENCES

[1] Hallquist, John O. ”LS-DYNA theory manual.” Livermore Software Technol-
ogy Corporation 3 (2006).

[2] ”ABAQUS Analysis User’s Guide,.” Dassault Systmes Simulia Corporation
(2013).

[3] Childs, Thomas. Metal machining: theory and applications. Butterworth-
Heinemann, 2000.

[4] Merchant, M. Eugene. ”Mechanics of the metal cutting process. I. Orthogonal
cutting and a type 2 chip.” Journal of applied physics 16, no. 5 (1945): 267-275.

[5] Merchant, M. Eugene. ”Mechanics of the metal cutting process. II. Plasticity
conditions in orthogonal cutting.” Journal of applied physics 16, no. 6 (1945):
318-324.

[6] Piispanen, Vin. ”Theory of formation of metal chips.” Journal of Applied
Physics 19, no. 10 (1948): 876-881.

[7] Stephenson, David A., and John S. Agapiou. Metal cutting theory and prac-
tice. Vol. 68. CRC press, 2005.

[8] Dr. Richard A. Wysk, North Carolina State University, ISE 316: Manu-
facturing Engineering I; http://www.ise.ncsu.edu/wysk/courses/ISE316/
ISE316-Course-presentation/Ch21.pptx

[9] Recht, R. F. ”Catastrophic thermoplastic shear.” Journal of Applied Mechan-
ics 31, no. 2 (1964): 189-193.

[10] Shaw, Milton Clayton. Metal cutting principles. Oxford: Clarendon press,
1984.

[11] Islam, Md Aquidul, ”Determination of the Deformation State of a Ti-6Al-4V
Alloy Subjected to Orthogonal Cutting Using Experimental and Numerical
Methods” (2012). Electronic Theses and Dissertations. Paper 191.

[12] Klamecki, B. E., and S. Kim. ”On the plane stress to plane strain transition
across the shear zone in metal cutting.” Journal of Manufacturing Science and
Engineering 110, no. 4 (1988): 322-325.

[13] Carroll III, John T., and John S. Strenkowski. ”Finite element models of or-
thogonal cutting with application to single point diamond turning.” Interna-
tional Journal of Mechanical Sciences 30, no. 12 (1988): 899-920.



68

[14] Shih, Albert J.M., Chandrasekar, S., Yang, Henry T.Y. Finite element simula-
tion of metal cutting process with strain-rate and temperature effects American
Society of Mechanical Engineers, Production Engineering Division (Publica-
tion) PED, 43 (1990): 11-24.

[15] Komvopoulos, K., and S. A. Erpenbeck. ”Finite element modeling of orthog-
onal metal cutting.” Journal of Manufacturing Science and Engineering 113,
no. 3 (1991): 253-267.

[16] Zhang, B., and A. Bagchi. ”Finite element simulation of chip formation and
comparison with machining experiment.” Journal of Manufacturing Science
and Engineering 116, no. 3 (1994): 289-297.

[17] Marusich, T. D., and M. Ortiz. ”A parametric finite element study of orthog-
onal high-speed machining.” In ECCOMAS conference on numerical methods
in engineering, pp. 117-131. 1996.

[18] Huang, J. M., and J. T. Black. ”An evaluation of chip separation criteria
for the FEM simulation of machining.” Journal of Manufacturing Science and
Engineering 118, no. 4 (1996): 545-554.

[19] Deshayes, Laurent, T. Mabrouki, R. Ivester, and J-F. Rigal. ”Serrated chip
morphology and comparison with Finite Element simulations.” In ASME 2004
International Mechanical Engineering Congress and Exposition, pp. 815-824.
American Society of Mechanical Engineers, 2004.

[20] Deshayes, L. ”Cutting Methodology Study, Link between Couple Workpiece
Tool and Machine Tool Workpiece System (Mthodologie d’tude de la coupe,
liaison entre Couple Outil Matire et Pice Outil Machine).” Insa de Lyon (2003).

[21] Buchkremer, S., F. Klocke, and D. Lung. ”Analytical study on the relationship
between chip geometry and equivalent strain distribution on the free surface of
chips in metal cutting.” International Journal of Mechanical Sciences (2014).

[22] Bai, Yuanli, and Tomasz Wierzbicki. ”Application of extended MohrCoulomb
criterion to ductile fracture.” International Journal of Fracture 161, no. 1
(2010): 1-20.

[23] Agrawal, Saurabh, and Suhas S. Joshi. ”Analytical modelling of residual
stresses in orthogonal machining of AISI4340 steel.” Journal of Manufacturing
Processes 15, no. 1 (2013): 167-179.

[24] Arrazola, P. J., A. Kortabarria, A. Madariaga, J. A. Esnaola, E. Fernandez, C.
Cappellini, D. Ulutan, and T. zel. ”On the machining induced residual stresses
in IN718 nickel-based alloy: Experiments and predictions with finite element
simulation.” Simulation Modelling Practice and Theory 41 (2014): 87-103.



69

[25] Heinstein, Martin, and Dan Segalman. ”Simulation of orthogonal cutting with
smooth particle hydrodynamics.” Sandia National Laboratories, California
(1997).

[26] Limido, Jrme, Christine Espinosa, Michel Salan, and Jean-Luc Lacome. ”SPH
method applied to high speed cutting modelling.” International journal of me-
chanical sciences 49, no. 7 (2007): 898-908.

[27] Villumsen, Morten F., and Torben G. Fauerholdt. ”Simulation of Metal Cut-
ting using Smooth Particle Hydrodynamics.” Tagungsberichtsband zum LS-
DYNA Anwenderforum, Bamberg 30, no. 01.10 (2008): 2008.

[28] Espinosa, C., J. L. Lacome, J. Limido, M. Salaun, C. Mabru, and R. Chiera-
gatti. ”Modeling high speed machining with the SPH method.” In 10th Inter-
national LS-DYNA Users Conference, Dearborn, Michigan. 2008.

[29] Madaj, Martin, and Miroslav Pka. ”On the SPH Orthogonal Cutting Simula-
tion of A2024-T351 Alloy.” Procedia CIRP 8 (2013): 151-156.

[30] Heisel, Uwe, Wiliam Zaloga, Dmitrii Krivoruchko, Michael Storchak, and
Liubov Goloborodko. ”Modelling of orthogonal cutting processes with the
method of smoothed particle hydrodynamics.” Production Engineering 7, no.
6 (2013): 639-645.

[31] Xi, Yao, Michael Bermingham, Gui Wang, and Matthew Dargusch. ”SPH/FE
modeling of cutting force and chip formation during thermally assisted machin-
ing of Ti6Al4V alloy.” Computational Materials Science 84 (2014): 188-197.

[32] Ehmann, K. F., S. G. Kapoor, R. E. DeVor, and I. Lazoglu. ”Machining process
modeling: a review.” Journal of Manufacturing Science and Engineering 119,
no. 4B (1997): 655-663.

[33] Markopoulos, Angelos P. Finite element method in machining processes.
Springer, 2013.

[34] University of Cambridge, ”Analysis of Deformation Processes, Slip Line Field
Theory.” (2008).

[35] Lee, E. H., and B. W. Shaffer. The theory of plasticity applied to a problem
of machining. Division of Applied Mathematics, Brown, 1949.

[36] ”The mechanics of machining: an analytical approach to assessing machinabil-
ity.” Ellis Horwood Publisher (1989): 136-182.

[37] Wikiversity, Nonlinear finite elements/Lagrangian and Eulerian de-
scriptions (2010) http://en.wikiversity.org/wiki/Nonlinear_finite_

elements/Lagrangian_and_Eulerian_descriptions



70

[38] Mariayyah, Ravishankar. Experimental and numerical studies on ductile
regime machining of silicon carbide and silicon nitride. ProQuest, 2007.

[39] Chandrasekaran, Vishnu Vardhan. ”Finite element simulation of orthogonal
metal cutting using LS Dyna.” PhD diss., Auburn University, 2011.

[40] LS-DYNA Examples; Bird Impact on Turbine — http://www.dynaexamples.

com/sph/bird

[41] Lucy, L. B. ”A Numerical Approach to the Testing of Fusion Processes.” The
Astronomical J 82 (1977): 1013-1024.

[42] Gingold, Robert A., and Joseph J. Monaghan. ”Smoothed particle hydrody-
namics: theory and application to non-spherical stars.” Monthly notices of the
royal astronomical society 181, no. 3 (1977): 375-389.

[43] Belytschko, Ted, Yury Krongauz, Daniel Organ, Mark Fleming, and Petr
Krysl. ”Meshless methods: an overview and recent developments.” Computer
methods in applied mechanics and engineering 139, no. 1 (1996): 3-47.

[44] Monaghan, Joe J. ”Why particle methods work.” SIAM Journal on Scientific
and Statistical Computing 3, no. 4 (1982): 422-433.

[45] Benz, W. ”Smooth particle hydrodynamics: a review.” In The numerical mod-
elling of nonlinear stellar pulsations, pp. 269-288. Springer Netherlands, 1990.

[46] Libersky, Larry D., and A. G. Petschek. ”Smooth particle hydrodynamics with
strength of materials.” In Advances in the free-Lagrange method including
contributions on adaptive gridding and the smooth particle hydrodynamics
method, pp. 248-257. Springer Berlin Heidelberg, 1991.

[47] Allahdadi, Firooz A., Theodore C. Carney, Jim R. Hipp, Larry D. Liber-
sky, and Albert G. Petschek. High strain Lagrangian hydrodynamics: a three
dimensional SPH code for dynamic material response. No. PL-TR-92-1054.
PHILLIPS LAB KIRTLAND AFB NM, 1993.

[48] Attaway, S. W., M. W. Heinstein, and J. W. Swegle. ”Coupling of smooth
particle hydrodynamics with the finite element method.” Nuclear engineering
and design 150, no. 2 (1994): 199-205.

[49] Johnson, Gordon R. ”Linking of Lagrangian particle methods to standard finite
element methods for high velocity impact computations.” Nuclear Engineering
and Design 150, no. 2 (1994): 265-274.

[50] Vignjevic, Rade, and James Campbell. ”Review of development of the Smooth
Particle Hydrodynamics (SPH) method.” In Predictive Modeling of Dynamic
Processes, pp. 367-396. Springer US, 2009.



71

[51] Reveles, Juan R. Development of a total Lagrangian SPH code for the simu-
lation of solids under dynamic loading. PhD Thesis. Cranfield University, UK.
http://dspace.lib.cranfield.ac.uk/handle/1826/3916

[52] Swegle, J. W., S. W. Attaway, M. W. Heinstein, F. J. Mello, and D. L. Hicks.
”An analysis of smoothed particle hydrodynamics.” NASA STI/Recon Tech-
nical Report N 95 (1994): 17439.

[53] Balsara, Dinshaw S. ”Von Neumann stability analysis of smoothed particle
hydrodynamicsSuggestions for optimal algorithms.” Journal of Computational
Physics 121, no. 2 (1995): 357-372.

[54] Johnson, Gordon R., and William H. Cook. ”Fracture characteristics of three
metals subjected to various strains, strain rates, temperatures and pressures.”
Engineering fracture mechanics 21, no. 1 (1985): 31-48.

[55] Jaspers, S. P. F. C., and J. H. Dautzenberg. ”Material behaviour in conditions
similar to metal cutting: flow stress in the primary shear zone.” Journal of
Materials Processing Technology 122, no. 2 (2002): 322-330.

[56] Liu, Gui-Rong, and Moubin B. Liu. Smoothed particle hydrodynamics: a
meshfree particle method. World Scientific, 2003.

[57] KERSHAH, TAREK. ”Prediction of cutting coefficients during orthogonal
metal cutting process using FEA approach.” (2013).

[58] Zouhar, J., and M. Piska. ”Modelling the orthogonal machining process using
cutting tools with different geometry.” MM science Journal (2008): 48-51.
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