
EMPIRICAL METHODS IN AN OPEN DOMAIN QUESTION ANSWERING SYSTEM

by

Sean Tate Gallagher

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Computer Science

Charlotte

2015

Approved by:

Dr. Wlodek Zadrozny

Dr. Bojan Cukic

Dr. Zbigniew Ras



c©2015
Sean Gallagher

ALL RIGHTS RESERVED



iii

ABSTRACT

SEAN GALLAGHER. Empirical methods in an open domain question answering system.
(Under the direction of Dr. W LODEK W. ZADROŻNY)

Answering questions effectively involves a complex interconnected set of linguistic

and statistical analysis tools, which can be difficult to investigate and evaluate on their own.

To evaluate any one of them, I developed two composable, recursive linguistic annotation

pipelines and many segments associated therewith in order to facilitate the generation,

transformation, analysis and ranking of answers to open domain English questions. The

resulting pipeline is to the author’s knowledge the first open-source analog to the Watson

system, and has reached 41% precision in the first rank when answering trivia questions

from Jeopardy!.



iv

TABLE OF CONTENTS

INTRODUCTION 1

ANNOTATION PIPELINES 3

2.1 Linear Pipeline 3

2.2 Recursive Pipeline 3

THEMES OF ANALYSIS 9

3.1 Source Acquisition 9

3.2 Indexing 9

3.3 Generation 11

3.4 Merging 11

3.5 Transformation 12

3.6 Evidence Gathering 12

3.6.1 Lexical Types 12

3.7 Scoring 13

INFORMATION RETRIEVAL 15

4.1 Performance 15

CONFIDENCE SCORING 17

5.1 Representation 17

5.2 Algorithm and Parameter Tuning 19

SHORT SEGMENTS 20

6.1 Entropy 20

6.2 Length 20

6.3 Anagrams 20

6.4 Redirects 20

ENGINEERING 22

COMPARISON 25

TEAMS AND ACKNOWLEDGMENTS 26

REFERENCES 27

APPENDIX: FEATURE ANALYSIS 29



1

INTRODUCTION

In order to evaluate natural language processing methods for question answering,

I developed a novel recursive linguistic analysis system targeting open domain English

questions. The question answering system we built on it generated and ranked answers for

Jeopardy! questions, and in 41% of cases, the correct answer was the first guess, which is

the highest ranked answer, and what we refer to as precision in the first rank.

An application such as this, built in the style of the DeepQA system from IBM,

functions generally as the following steps, each of which can be implemented multiple times

and run together:

• Generate answers for a question

• Aggregate answers with similar meaning into a single answer

• Find evidence, usually passages, supporting the hypothesis that a specific answer is

correct for a question

• Score and rank the answers in the context of the question and each answer’s evidence

Thus, any analog to Watson will necessarily consist of multiple parts, generating,

merging, and describing aspects of the text. This yields large networks of dependent an-

notations and a “soup” of many analysis approaches. Hence, this one application reads as

a collection of small parts, and it may be easier to refer occasionally to Figures 1, 2 and 3

for a sense of what effect a module may have on the whole. Finally, in the appendix, data

is available to show that a system with any one of the features described will not perform

well, but a system with all of them performs noticeably better.

The purpose of the system is to answer natural language questions, without rely-

ing on a predetermined knowledge base, and without unnecessarily restricting the domain

beyond what the corpora would allow. Since comparing it to Watson is a priority, the

performance of the apparatus is evaluated by its responses to Jeopardy! questions. While

necessarily more conservative, the overall architecture and purpose of the system is the

same as Watson and the intent of this system is to be as near an analog as possible to the



2

original system featured on Jeopardy!, for better scientific inquiry into its processes, and to

serve as a testbed for question answering research. To the knowledge of the authors, this

implementation is the first one freely available to the public.

Evaluation by trivia is responsible for some quirks which can be found in the re-

sulting system. For example, one might not otherwise expect an anagram of a word in the

question to be the correct answer. Also, few questions written by the developers mention

the lexical type of the answer but this is almost universally the case for Jeopardy!. Also,

numerical answers are much less common in Jeopardy! as compared to TREC. While such

quirks did change the nature of the problem to some extent, it also allowed us to use a

much larger answered question set against which to measure the system. In practice, be-

tween consecutive runs on one thousand randomly selected questions there was typically

a one percent change in accuracy, which indicated that at least that many samples were

necessary to measure the changes most modules would have on the system.



3

ANNOTATION PIPELINES

Much of the system is developed on the concept of an annotation-transformation

pipeline, which is used to extract structured features from the text, either by adding these

features as tags or by modifying the original text to match it. The apparatus for connecting

these feature generating annotators is quite general in practice, but the exact setup of the

pipeline can be complex. Such is why the interactions between the components is rigid and

limited, to avoid making the system more complex than necessary.

2.1 Linear Pipeline

The pipeline featured in the Watson computer was replete with features and was

comprised of a collection of linear pipelines connected by expansion and reduction units at

specific segments. The design of the pipeline architecture, named UIMA for Unstructured

Information Management Architecture, placed weight on fluid interaction between compo-

nents written in different languages, and also played a role in sharding these components in

a distributed system so as to reduce the time to answer a single question.

The question answering system discussed here is named Watsonsim and as such was

originally intended to follow the Watson layout exactly. However, the modularity of UIMA

brought with it an excess of boilerplate code and features not useful on a small scale. It

is reasonably easy to guarantee the modules will all be written in the same language and

run on the same virtual machine simultaneously. It is also less of a priority to minimize

answering latency, which required fairly fine grained parallelism, as compared to maximizing

question throughput using very coarse grained and easier to maintain parallelism.

2.2 Recursive Pipeline

In the end, the solution developed for this system was a very simple linked list

of text transformation segments combined with a network of functional annotators. As

such, segments which modified the original text were separated from those which merely

annotated it, allowing for parallelization and caching without extensive locking.

The annotation pipeline in Watsonsim differs from the answer transformation pipeline

in that it can apply to text of any type, not only answers, and that it creates results separate



4

Figure 1: Linear pipeline model[1], as used in Watson [2][3]

Modules are shaded according to degree of completeness in Watsonsim, where darker
shades indicate more complete. Arrows indicate the passage of a Common Analysis

System (CAS) object, which is a collection of serialized annotations. Boxes, representing
modules, may be realized by multiple implementations. For example, primary search is

implemented five times in Watsonsim. Lines indicate some form of shared data other than
a CAS. Notice that parts of the Watson pipeline could be selectively enabled and disabled

at runtime. This feature (in pure white) was never implemented in Watsonsim, because
recursion solved this issue in our case.



5

from the original answer rather than transforming the original. In practice, this pipeline is

used for parsing, tokenization of a few varieties, for extracting lexical types, and any such

things as do not change in the context of a question or another answer.

The sequence diagram of annotations in Figure 2 shows three levels of nested an-

notation. At any point, any annotation may call one another, even in a loop. Calls to

the same annotators will be cached and reused to conserve time, and since caches follow

the text rather than the annotator, the annotations are deleted (or at the least pended for

garbage collection) promptly when the text is deleted.

Caching annotations leads to several interesting consequences. Firstly, reentrant

functions cannot be cached until at least one of the functions returns successfully, so there

are exceptions where an annotator can be called multiple times. Furthermore, on account

of some flexibility in the Java specification on lambda expressions[4], it is necessary to

create static aliases of annotators in order to guarantee caching. Otherwise, it is a compiler

optimization, because the annotators might be reinstantiated in every call, leading to poor

cache performance. Thus, our system uses only idempotent annotators so that performance

may be lost but correctness will not. In return for this limitation, requesting annotations

is a lazy process; no pipelines need be designed beforehand, and time is not wasted on

unneeded or precomputed annotations.

Furthermore, because we use generic types and pass annotators instead of the de-

sired annotation, as is done in UIMA[5], we reduce the number of new types in the program,

and eliminate some wrapper types altogether. Hence, aliases included, functional annota-

tions significantly reduce boilerplate code necessary to begin development by reducing the

annotator to a single function with no mutable state.

Recursive transformations used a different abstraction, since their modifications

were generally not idempotent, and would generate new or modified answers in the process,

which prevents them from being trivially composable. To overcome this, transformers were

chained as a linked list, and were directed so as to know only the previous components

in the chain. By doing this, we retained the ability to freely reorganize the transformer

stack without modifying its components, and to allow cycles, aggregration and expansion;

in payment for this freedom we can only exchange questions and lists of answers between



6

Figure 2: Watsonsim annotation sequence
In this diagram, we show three layers of recursion in our novel annotation process as a

compressed sequence diagram. Notice that annotators can call each other or themselves,
and can set or retrieve cached results using Phrase. As such, many annotation calls are

prevented, but without having to predefine a pipeline.



7

Figure 3: Recursive Watsonsim pipeline
In the novel recursive approach we developed, and now depict above, modules (in green)

are connected by calls (arrows), and in the case of the transformation pipelines, are
arranged in call stacks. Passage scores are called at the discretion of their corresponding
answer scorers, usually answer scorers call passage scorers on all the passages in parallel
and then perform aggregations on the result. Notice that transformers are aware of each
previous step in the pipeline so they can ‘pull’ collections of answers through any earlier
stage as necessary. Transformers could also easily implement their own transformation

stacks, forming transformation trees.

transformers. We also have a fair amount of parameter and return value passing, as can be

seen by comparing the density of the networks in Figures 1 and 3; this allows us to be much

more specific about what can or cannot be changed by each stage. Transforms, which take

questions and answers but return answers, can effect only answers. Passage scorers effect

nothing; they merely return numeric values. Answer scorers can aggregate passage scores

to modify answers, or they can make changes of their own.

As can be seen in Figure 3, recursive transformations account for only two stages

of the question answering process. Annotations are not included in this process because

they can and are called anywhere. Only search and scoring occupy special placement in the

process, and this is on account of parallelization: searches have very high latency compared

to most transformations, so maintaining parallelism is of greater importance than flexibility.

Similarly, scoring involves sufficiently many independent modules as to be worthwhile to

operate in parallel.

Recursive annotation was most useful for steps involving evidence gathering, where

background information on a topic was retrieved; when new information directed much

evidence toward an answer not already considered as a candidate, that new answer would be



8

pushed back in the pipeline for examination and then included along with all the candidate

answers that were considered up to that point. Most transforms were performed before

scoring but transforms after scoring still served several purposes. They involved saving

experiment run data and generating statistics, final confidence scoring using answer scores

as features, and while it was not used as such, in principle such transforms could be used to

convert the answer into a different format. For example, they could transform answers into

JSON in the case of a web frontend, or phrased as an answer if it played an actual game of

Jeopardy!.



9

THEMES OF ANALYSIS

Later sections describe lines of inquiry followed during the course of the experiment,

but several aspects of these investigations are held in common. For example, entropy

methods, keyword search, and semantic analysis will all require some form of preprocessing.

Even retrieval of keyword search, which can often be reduced to a method call, is also a

matter of some discussion since nearly most engines have tunable hyperparameters.

3.1 Source Acquisition

Our most significant corpora were the Wikimedia projects. The earliest incarnation

of this software, Demo 1, included only a terse four megabyte snippet of Wikipedia and

source acquisition consisted of reading lines in sequence. Later incarnations included several

tens of thousands of articles, parsed with many errors using a few regular expressions. Later

the full text of Wikipedia was loaded into a relational database and regular expressions were

applied to incrementally remove irrelevant data. So many expressions were run that it was

a time savings to develop a small regular expression extension for the benefit of faster

evaluation.1 Subsequent updates were completed with the WikiExtractor module from

Tanl[6], which generated sufficiently clean and much more easily reproduced results.

Answered Jeopardy! questions were also necessary for the project, and were easily

scraped from the J! Archive with the blessing of the administrator. Over one hundred

thousand answered questions were available for querying.

3.2 Indexing

In many text analysis steps, it is either necessary or beneficial to find the units of

information that can either be used as answers, such as in the case of the lexical type tables;

or used as evidence to support answers, as in the case of keyword and document-topic model

indices, or used to evaluate the degree to which evidence supports an answer, as in the case

of word vector and entropy tables.

After several systems showed a pattern of iterating through the full corpus as a pre-

processing step, an indexing pipeline was developed to complete multiple indexes in each

1Available at https://github.com/SeanTater/sqlite3-reutil



10

Figure 4: Corpora ingested in Watsonsim for candidate answer generation
Notice that some corpora are a great deal larger than others, and that many data sources
in Watsonsim are not used directly for candidate generation, such as word embeddings or

type annotations.

pass. In this way, keyword indexes with Lucene[7], search indexes with Indri[8], corpus-wide

semantic dependency frequency tables with CoreNLP[9], phrase-lexical type tables, lemma-

tized and unlemmatized unigram and bigram frequency tables were generated. Document-

topic model tables[10][11] and word vector tables[12] were generated with Gensim[13] in

a separate process, as were the triplestore indices and keyword indices for DBPedia[14]

entries.

There are some engineering concerns regarding indexing in practice. Indexes oper-

ating on term-document matrices, such as online Latent Semantic Indexing[10] and online

Latent Dirchlet Allocation[11], can be both expensive to create and slow to transfer, which

makes sharing the models awkward.



11

3.3 Generation

Once an index has been built, and a question has been supplied, modules are run

to generate the initial candidate answers for a question. In the case of information retrieval

modules such as Lucene and Index, this involves constructing and executing a query, and

developing answers from the titles of the most relevant passages. In the case of an anagram

solver, this involves creating likely anagrams from the question words. External searches

are also implemented, to contact search engines with far larger indexes and hence higher

recall.

3.4 Merging

Since multiple engines provide candidate answers for each question, and since docu-

ments in the collections are not guaranteed to have unique titles, very often multiple sources

provide evidence for a single candidate answer. However, candidates with similar or iden-

tical semantics often have different surface representations. (In particular, longer answers

and proper nouns often have typographical errors.) The evidence for the candidate answers

should only be merged if the answers can be shown to have the same meaning. A number

of methods exist, and the same techniques as were used in initial searches can be useful for

determining the semantic similarity of answers. Examples include string matching; keyword

matching; edit distances; weighted keyword similarity, such as by TF-IDF or by shared en-

tropy; topical similarity such as by cosines of LSA[10] or LDA[11] vectors; or by contextual

similarity with GloVe[15] or Word2Vec[12].

Deciding whether to merge two candidates is only half of the problem. When dis-

played to the user as the final answer, only one canonical representation of the candidate

can be shown. But it is not always clear which representation of the candidates semantic

to show. Each representation may be misspelled (Kerrmit), too specific (leptodactylidae)

or too general (frog). Further, each score has its own weakness. Keyword matching is

typically very pessimistic about relatedness, especially for single word answers which share

no keywords. Edit distances may merge candidate answers, again often single words, which

vary by one character but are otherwise unrelated.

In truth, the system implementation has only scratched the surface of the merging



12

problem. For example, when multiple approaches yield different responses, the appara-

tus relies on heuristics where statistical analysis and large labeled corpora may be more

accurate.

3.5 Transformation

Answers can be subsets of the originally suggested text for a number of reasons, and

they can also be filtered on grounds of accuracy or to avoid including testing data. Also,

some answers can be created from the answers themselves or from the passages that support

them.

Filter Example

Remove extraneous attribution Leptodactylus- Wikipedia, the free encyclopedia

Remove lists List of Amphibians

Remove URLs https://en.wikipedia.org/wiki/Leptodactylus

Remove non-Latin text :-)

Remove testing data J! Archive - Show #7124, aired 2015-07-30

Remove long answers You have the right to remain silent. Anything you say ...

Select associated lexical types “Marilyn Monroe ... was an American actress”

Select named entities from passages “With second husband Joe DiMaggio”

3.6 Evidence Gathering

Evidence gathering generally consists of searches based on the candidate text of an answer,

and while the queries differ in that they contain a transformed answer in the query, the methods

of search are otherwise unaffected and may consist of keyword searches, bayesian models, topic or

context similarities.

3.6.1 Lexical Types

Most answers have a lexical type. Determining such types, as well as their equivalance classes, is a

matter of much debate. The lexical type of any item is commonly given in the leading sentence of

a Wikipedia article, which with low likelihood may match the surface form posed in the question.

Better matching can be conducted, once again, with semantic analysis. But at some point the

referent may either not be found or may be difficult to construct given the existing information.

In most cases, but particularly with organisms, types form a neatly directed acyclic graph

with readily understood outlines by human authors, such as the following:



13

Referrer Syntactic Referent Semantic Referent

Leptodactylus leptodactylid frogs Leptodactylidae (1)

Leptodactylidae family of frogs Frog (2)

Frogs group of short-bodied, tailless amphibians Amphibian (2)

Amphibians ectothermic, tetrapod vertebrates of the class Amphibia Vertebrate

Vertebrates species of animals (3) Animal

Animals multicellular, eukaryotic organisms Organism

Organism contiguous living system System

System set of interacting or interdependent component parts (2) Part

Part does not exist (4) -

The existance of such structures, however, does not imply that the system can immediately

make use of such constructions, for several reasons.

1. The term Leptodactylidae is a top result for a keyword search on leptodactylid frogs, but

is not precisely the form given in the statement, thus incurring many searches for uncertain

referents. This type hunt is done using the recursive nature of the Watsonsim search pipeline.

2. “Family”, “set”, “group”, “kind”, “type”, and “class” function as generics from which con-

straints can be inferred. As a matter of simple syllogism:

(Leptodactylus ∈ Leptodactylidae) ∧ (x ∈ Leptodactylidae =⇒ x ∈ Frogs)

=⇒ Leptodactylus ∈ Frogs

Curiously, the surface forms are regular enough that it often suffices simply to choose the last

noun of the generic lexical type’s surface form as the type of its contained elements, which is

what has been implemented in Watsonsim.

3. In many cases, such as the definition of animals, types contain many important constraints,

such as “multicellular,” “eukaryotic,” and “of the kingdom Animalia.” To be logically com-

plete, any system which is to make the greatest usage of this available data should also at

some point be able to infer that Leptodactylus is therefore multicellular.

4. Lexical type searches end implicitly when the referent is not found. Furthermore, it may

already be of very limited use to know that Leptodactylus is a ‘Part.’

3.7 Scoring

There are three types of scorers, two of which may run in parallel. Scores computed from

candidate answers render a facet or quality of the source text as a scalar value. For example, the



14

length of the answer in characters, or in words, or perhaps the information entropy of an answer

modeled as unigrams. Evidence scores, rather than measuring the text by itself, give a scalar value

in the context of the candidate answer. Examples may include the number of unigrams shared

between the answer and the evidence.

Confidence scoring does not involve processing any text. Rather, it concatenates the answer

and evidence scores generated in the previous steps and models the likelihood of an answer being

correct given the measurements made.



15

INFORMATION RETRIEVAL

Two retrieval engines were used in the project: Lucene, which is an efficient Java imple-

mentation of a TF-IDF scored boolean query processing system operating on stemmed, stopword-

removed bag of words models; and Indri, which is a research C++ implementation of a Bayesian

language model of latent variables of documents given their terms as a bag of words. One can easily

examine in the final scoring logistic regression coefficient figure

4.1 Performance

With the exception of the anagram module, all candidate answer generation eventually

involves information retrieval on the main corpus, and answers that pass the first stages of merging

and transformation will incur searches of their own, for supporting evidence retrieval. While filtering

and merging prunes around a third to half of the candidate answers (varying widely), this still creates

a ‘n+1’ query pattern, which is typically the performance bottleneck for the entire system.

After some profiling, we found that (1) our queries have a subjectively high number of

terms, at 13.93 terms per query on average; that (2) all long term storage media were idle during

the experiments, so the problem is not optimizing disk access, and that (3) over half of the time of

Figure 5: Tradeoff between information retrieval query time versus system accuracy
The system gains approximately ten percent in both rank-one and rank-three precision
when queries have the opportunity to include documents which do not contain all the

required keywords, should they not all be available. However, this greatly increases the
number of documents to be considered and hence causes nearly a five-fold slowdown of the

system.



16

execution was spent in boolean scoring functions.

So to alleviate this bottleneck to a degree, we examined whether it makes sense in the

context of question answering to use boolean AND instead of boolean OR. This would improve

search performance since AND queries yield intersections of document sets which dwindle with

increasing query length, but document sets in OR queries grow rather than shrink in the same

circumstance. Furthermore, since we have subjectively long queries, we expect the trend as queries

grow longer to be representative of our performance.

It is clear that the AND approach will have fewer results, although it was not clear whether

the restriction that all non-stopword terms must be held in common was so strict as to eliminate

correct answers and pertinent evidence as well. To test this, we examined both configurations in

each of Indri (using the band directive) and Lucene (using the MUST clause type). The results had a

significant negative impact on the recall of the system and was hence reverted.



17

CONFIDENCE SCORING

Confidence scoring is among the last steps of the question answering setup, where the nu-

merous features discovered by answer and passage scoring modules are merged into a single measure

of confidence in each candidate answer. Confidence scoring plays a major role in the effectiveness of

the system, and making it work effectively is important for overall accuracy.

5.1 Representation

Representation plays an important role in defining a good machine learning solution, and

in this case defining a good representation hinges on defining the learned and output data formats

more specifically and making distinctions about precisely what the system inputs and outputs.

• Question level training data consists of example questions and one correct answer with the

(debatable) understanding that all other answers are wrong. Question level data is from J!

Archive.

• Answer level input data consists of many human-developed features calculated about answers

generated by the system, for a particular question. The target variable, answer correctness, is

determined by a test against the question level correct answer. Answer level data is normalized

to a mean of 0 and standard deviation of 1 when aggregrated by question, as part of optimizing

SVM accuracy[16], as mentioned later.

• Passage level input data consists of human-developed features calculated about the passages

generated for a single candidate answer. There is no target variable on passage level data,

and such data is simply aggregated using mean, median, max and min, where the aggregates

are concatenated into the answer level input data at the point passage level data becomes

available.

• System output data consists of a set of answers and their respective confidences, ranked by

confidence in descending order.

Ranking alone is not sufficient in this case on the account that confidence is expected as part

of the output stream. (Confidence is included so that in principle one could refrain from answering

questions whose best candidate answers are uncertain.) Furthermore, in order to represent the

resulting confidences as probabilities of each answer, the answer level output is processed using the

softmax function aggregating across each question.



18

Figure 6: Per-question rank-1 recall over SVM (C, γ) parameter space on 10,000 randomly
selected answers
Notice the archipelago of local maxima in the lower right of the diagram. Only two of the

463 ‘islands’ have maximal accuracy. This instability makes finding optimal settings
inconvenient. (Generating fields like these on the full set takes over two months.) The

reason for this instability is uncertain and the subject of further research.



19

5.2 Algorithm and Parameter Tuning

Most statistical classification algorithms require some parameter tuning, but some have more

complicated parameter spaces than others. This is particularly represented in the case of SVM, where

we sampled the (C, γ) parameter space at log(10)/10 intervals covering 12 orders of magnitude in

each dimension. For each sample, we trained a probability-output SVM model using 5-fold cross

validation on a 66% subsample of a 10,000 answer subsample of feature-annotated candidate answers

from a previous run of WatsonSim. (The probability-output SVM was implemented in sklearn[17],

which uses libSVM[18] as a backend.) When we measured these models using 5-fold cross validation

for probability outputs, against the independent answer ranking task, accurate models form an

archipelago of sorts across the (C, γ) parameter space, with two global maxima and 463 local maxima,

ranging across three orders of magnitude of γ, and six orders of magnitude for C. Compare this to

the graph shown in Hsu at al[16], which shows around half a dozen local optima.

In practice, this means that finding a global maximum on the independent answer ranking

is a very time-consuming task. Even for a ten percent subsample of a single run, representing only

100,000 answers, or around 1000 questions, one spends over four processor days to compute one

(C, γ) pair of 14,400 (as in the previous experiment). Typical development may incur more than

one feature change in a day, so keeping the parameters optimal is impractical. Nonetheless, peak

SVM accuracies could routinely surpass those of any other measured model, and were responsible for

the peak measured test accuracy of 41% precision in the top rank for randomly selected Jeopardy!

trivia.



20

SHORT SEGMENTS

Many of the features necessary for an effective question answering system are actually quite

simple and a great deal of their effectiveness is only appreciated in the context of the other modules.

Some of the more notable subsystems that follow this pattern are entropy-based scores, length-

based scores, anagram candidate answer generation, and relatedness measurement using Wikipedia

redirects.

6.1 Entropy

As previously mentioned in the themes of analysis, we found while observing generated

candidate answers that many highly ranking answers were either too common or too rare. (Where

in the previous example ”leptodactylus” is too rare, but ”frog” is too common.) In order to inform the

learning phase of the distinction between these answers, we generated a table of information entropy

for each term in Wikipedia, and score each candidate answer by the total bits of information on

a unigram model of the sentence. In logistic regression, this was found to have a slight negative

coefficient, but the best model for this feature should be non-linear on the grounds that both high

and low extremes are indicators of poor answer quality.

6.2 Length

In the entire system, the simplest feature generated for a candidate answer is its length in

unicode codepoints. As can be seen in Appendix A, longer answers are associated with incorrect

responses, though a system using logistic regression without this feature would not be far less

accurate

6.3 Anagrams

Most primary answer generation modules are based on information retrieval, but one module

is not: the anagram generation module. It simply suggests the set of words in a common spell-

checking dictionary which are anagrams with either a single word in the question, or with a set of

words in quotes. As one might expect, whitespace and nonalphabetic characters, and case are all

ignored when matching anagrams.

6.4 Redirects

While extracting articles from Wikipedia, the extraction and indexing modules also make

records of all redirects, organized by the titles of the source and target, all intra-wiki links by source,

target, link name, and count, as well as all semantic dependency parse relations by source, target

and count. The latter two returned far too many results to be used for suggestions of synonymous

candidate answers, but redirects, while more sparse, gave synonyms with less noise. Unfortunately,



21

even when redirect-generated candidate answers were tagged and then recorded by a feature (a

scorer), redirects were found to be more of a hindrance than a help to accurate question answering.

Figure 7: Effect of redirects on answering precision[19]
Redirects were found to have an overall negative effect on rank-one and rank-three

precision. They introduced very much noise, and when tagged as redirects they did little
harm but were not often scored favorably even when they were correct.



22

ENGINEERING

There are a number of supporting modules in the question answering framework which

were surprisingly necessary for developing of the system but were not directly related to answering

questions.

Web frontend

The system can take a while to setup, so we developed an online interface for the application,

where users can interactively see the processing steps, resulting answers, and the sources the

system reviewed.

Centralized statistics collection

The framework runs on many platforms and in multiple locations, so tests were run on the

contributor’s laptops, in the shared lab, and can in principle run anywhere. To account for

Figure 8: Interactive question answering using a web application
At the time of this publication the system is available publicly online. The system also

gives a great deal of information about the process both while it is being computed, and
in an aggregated, detailed format when complete.



23

Table 1

Experiment Top 3 Accuracy

1 0.368497109827

2 0.367981283422

3 0.274732620321

4 0.367981283422

5 0.367981283422

6 0.367981283422

7 0.367981283422

8 0.367981283422

9 0.367981283422

10 0.367981283422

11 0.367981283422

12 0.367981283422

13 0.367981283422

14 0.367981283422

15 0.367981283422

16 0.590558766859

17 0.590558766859

18 0.590558766859

19 0.590558766859

20 0.590558766859

21 0.590558766859

22 0.590558766859

23 0.590558766859

24 0.590558766859

25 0.590558766859

26 0.590558766859

27 0.590558766859

28 0.590558766859

29 0.590558766859

30 0.590558766859

31 0.590558766859

32 0.590558766859

33 0.590558766859

34 0.590558766859

35 0.590558766859

36 0.590558766859

37 0.446902654867

38 0

39 0.590558766859

40 0.590558766859

41 0.590558766859

42 0.590558766859

43 0.338150289017

44 0.368497109827

45 0.368497109827

46 0.368497109827

47 0.338150289017

48 0.338150289017

49 0.338150289017

50 0.338150289017

51 0.338150289017

52 0.338150289017

53 0.338150289017

54 0.338150289017

55 0.338150289017

56 0.338150289017

57 0.338150289017

58 0.338150289017

59 0

60 0.338150289017

61 0.338150289017

62 0.338150289017

63 0.338150289017

64 0.33606557377

65 0.338150289017

66 0.407147628591

67 0.272727272727

68 0.188679245283

69 0.263392857143

70 0.574468085106

71 0

72 0

73 0

74 0.384615384615

75 0.5

76 0.627906976744

77 0

78 0.627906976744

79 0.2

80 0.235294117647

81 0.263157894737

82 0.333333333333

83 0.263157894737

0%

20%

40%

60%

80%

100%

Experiment ID

0 1500 3000 4500 6000

Recall by Rank 3

�1

Figure 9: Precision at rank three, over time
Dots represent single experiments, and the line represents a 50-experiment moving

average. Notice that the size of each experiment increased by three orders of magnitude
over time, which decreased the between-experiment variance. Experiments are run on

random subsets of the full Jeopardy! dataset, where testing and training data are chosen
separately without replacement.

this decentralization we developed a small web application for users to pool their caches (to

save unnecessary queries) and to report the results of their experiments.

Parallel Execution

Some aspects of the framework are designed to run in parallel, in order to improve overall

question throughput in the case of large batched experiments. Firstly, any number of ques-

tions can be answered simultaneously by using separate pipelines. This is reasonably efficient

because most of the memory a pipeline consumes is shared, immutable, and hence thread-

safe. Multiple computers can also share the same database. The user chooses the database

framework at runtime and that choice determines what configurations are safe to run. The

laboratory uses SQLite over a shared network file system, which is fast but not robust against

simultaneous writes, so it is shared read-only in a master-slave fashion.

Experiment Scale

The data sources involved in the project to date are not by any means “big data”; the largest

data source was Wikipedia, which can be easily stored on a common laptop. However, we

have taken care that our solutions would be reasonably scalable, avoiding using algorithms

with complexity quadratic or worse as a function of corpus size. The only exception to such

issue is topic modeling based search, which can be approximated through the use of predictive

models instead of counting and matrix factorization.

That said, there is still certain impetus to mention straightforwardly the scale of the project

as it stands. It involved running over 5600 experiments on an 40-core university cluster;

it answered over one million questions; it generated over 44 million candidate answers; and

examined just under one billion supporting passages for those answers. In addition, 145

thousand lines of code were added and removed by 17 contributors in 776 commits across two



24

years.



25

COMPARISON

Watson as it existed in Jeopardy! was an extensive QA system of many modules. One

such module allowed the machine to choose whether or not to answer a question according to the

confidence the machine has calculated for the top response. The typical measure of IBM Watson’s

performance was hence precision at 70% confidence. Watsonsim does not have this feature and

instead tries to give some answer to every question even if the confidence is low, because for the

purposes of this research there is no benefit in withholding a low-confidence answer; no bets are being

made. As such, precision at rank 1 in measurements of Watsonsim are comparable to precision at

100% answering rate in Watson. In such a task, Watson gave a baseline of around 15 percent

precision in 2007, with the new DeepQA pipeline beginning at 30% precision in December 2007 and

improving as high as 68% precision in April 2010[2]. Watsonsim lies in the middle, with around 41%

precision at a forced guess.

About a year after Watsonsim started, another very active question answering project based

on UIMA began, YodaQA. Its objective is to answer TREC questions and it has achieved approxi-

mately 32.6% precision at rank one[20]. The differing datasets mean the resulting accuracies are not

direcly comparable, but when the DeepQA system was adapted for TREC after it ran on Jeopardy!,

it achieved similar results for both sets [2].

A technical report in 2014 covered the state of this project much earlier in it’s development[21].

Many changes have been made since the report and hence are first documented here. These include,

but are not limited to the following:

• Recursive pipeline

• Cached functional annotations

• Dense vector corpus search

• DBPedia based type recognition

• MLP, SVM, and Random Forest scoring

models

• Candidate answer filters

• Web frontend

• Parsing based type recognition

• Anagram candidate answer generator

• Automated parallel training, test, and in-

dex execution

• Length and entropy scorers

• Fast parsing-based scorers

• Many experimental results, such as SVM

parameter spaces and feature analysis.



26

TEAMS AND ACKNOWLEDGMENTS

The author was the largest contributor to the project, accounting for 69% of commits,

and 86% of lines of code. However, over the two year project timeline, there were many other

contributors:

Contributor Nature of Contribution

Phani Rahul wrote the initial Lucene search apparatus

Jagan Vujjini defined the first CSV-based pipeline

Ken Overholt wrote a pipeline solving fill-in-the-blank questions

Adarsh Avadhani wrote the evidence retrieval stack

Walid Shalaby wrote the WEKA interface

Varsha Devadas wrote an interface to OpenNLP named entity recognition

Stephen Stanton wrote a Bing web search client

Jonathan Shuman integrated the Lucene search with UIMA

Matt Gibson ingested Wiktionary and parallelized statistics collection

Ricky Sanders developed heuristics for merging candidate answers

Yeshvant Bhavnasi wrote an acronym solver and indexed Wikipedia with Gensim LSI

Hossein Hemati generated some statistics from autogenerated logs

David Farthing maintained the semantic relation database

Wlodek Zadrozny wrote the first constituency parse scorer

Robert K.S. permitted access to J! Archive for our training and testing data



27

REFERENCES

[1] W. W. Zadrozny, S. Gallagher, W. Shalaby, and A. Avadhani, “Simulating ibm watson in
the classroom,” in Proceedings of the 46th ACM Technical Symposium on Computer Science
Education, SIGCSE ’15, (New York, NY, USA), pp. 72–77, ACM, 2015.

[2] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A. Kalyanpur, A. Lally, J. W.
Murdock, E. Nyberg, J. Prager, N. Schlaefer, and C. Welty, “Building Watson: An overview of
the DeepQA project,” AI Magazine, 2010.

[3] D. Ferrucci, “Introduction to “This is Watson”,” IBM Journal of Research and Development,
vol. 56, pp. 1:1–1:15, May-June 2012.

[4] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, The Java Language Specification.
Oracle, Java SE 8 ed., February 2015.

[5] D. Ferrucci and A. Lally, “UIMa: An architectural approach to unstructured information pro-
cessing in the corporate research environment,” Nat. Lang. Eng., vol. 10, pp. 327–348, Sept.
2004.

[6] G. Attardi, A. Cisternino, F. Formica, M. Simi, A. Tommasi, and C. Zavattari, “PIQASso: Pisa
question answering system,” in Proceedings of Text Retrieval Conference (Trec-10), pp. 599–607,
November 2001.

[7] A. Biaecki, R. Muir, and G. Ingersoll, “Apache lucene 4,” in Proceedings of the 35th Interna-
tional ACM SIGIR Conference, 2012.

[8] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft, “Indri: a language model based search
engine for complex queries,” in Proceedings of the International Conference on Inteligence Anal-
ysis, 2004.

[9] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky, “The
Stanford CoreNLP natural language processing toolkit,” in Proceedings of 52nd Annual Meeting
of the Association for Computational Linguistics: System Demonstrations, pp. 55–60, 2014.

[10] R. Rehurek, “Fast and faster: A comparison of two streamed matrix decomposition algorithms,”
CoRR, vol. abs/1102.5597, 2011.

[11] M. D. Hoffman, D. M. Blei, and F. Bach, “Online learning for latent dirichlet allocation,” NIPS,
2010.

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations
in vector space,” in In Proceedings of Workshop at ICLR, 2013.

[13] R. Řeh̊uřek and P. Sojka, “Software Framework for Topic Modelling with Large Corpora,” in
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, (Valletta,
Malta), pp. 45–50, ELRA, May 2010. http://is.muni.cz/publication/884893/en.

[14] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann,
M. Morsey, P. van Kleef, S. Auer, and C. Bizer, “Dbpedia a large-scale, multilingual knowledge
base extracted from wikipedia,” Semantic Web, vol. 6, no. 2, pp. 167–195, 2015.

[15] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors for word representation,”
in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP 2014), pp. 1532–1543, 2014.



28

[16] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A practical guide to support vector classification,”
tech. rep., 2010.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[18] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Transac-
tions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[19] S. Gallagher, “Wikipedia redirects,” tech. rep., University of North Carolina at Charlotte, 2015.

[20] P. Baudǐs, “YodaQA: A modular question answering system pipeline,” in Proceedings of the
19th International Student Conference on Electrical Engineering, POSTER 2015, CTU, 2015.

[21] S. Gallagher, W. W. Zadrozny, W. Shalaby, and A. Avadhani, “Watsonsim: Overview of a
question answering engine,” tech. rep., University of North Carolina at Charlotte, December
2014.



29

APPENDIX: FEATURE ANALYSIS

Developing good features for text requires some degree of analysis on the quality of the

results obtained from the features on a large set of texts. Non-linear models such as random forests

and support vector machines are have the best classification accuracy, but the results would be

difficult to interpret on a feature-by-feature basis so we chose to use logistic regression in scikit-learn

and take the magnitudes of the learned coefficients as indicators of the descriminative quality of a

feature.

Each feature is listed with its internal codename alongside its learned coefficient. In the

middle is displayed the overall question answering accuracy of a system trained on all features except

one (a so-called ‘knockout’) and the rightmost column shows a system trained on that feature alone.

In all cases the result of a one-feature classification was comparable to or worse in accuracy to a

system which simply guessed every answer was wrong (named ‘all 0s’) . However, many features

contributed only a tiny amount on their own and a system without them is nearly indistinguishable

from the best system developed at the point this experiment was made.

The codenames are explained below:

Answer Length

The length of the candidate answer in Unicode codepoints.

Answer POS

Whether the candidate answer is either a noun or a noun phrase, represented as 1 or 0.

Bing Answer Present

Whether the candidate answer was originally generated by Bing, represented a 1 or 0

Bing Answer Rank

The mean rank of the answer in Bing search results, if ‘Bing Answer Present’, counted from

0, where 0 is the first result of the first page of results. If not ‘Bing Answer Present’, then

‘Bing Answer Rank’ = -1. Keep in mind that the candidate ranks and scores are arithmetic

means, and must be so because multiple candidate answers (and hence their associated search

results) can be merged.

Common Constituents Max
Common Constituents Mean
Common Constituents Median
Common Constituents Min

How many subtrees the constituency parses of both the question and the answer have in



30

Figure 10: Feature performance using logistic regression
Blue columns depict the magnitude and sign of the coefficient associated with the feature
in logistic regression, lower coefficients indicate that the presence or strength of a feature

is greater evidence toward the correctness of the candidate answer. Orange columns depict
how much of the per-answer binary accuracy of the system would be lost if the feature

were removed. Green columns depict the same measure if all other features were removed.



31

common with each other, where equality is defined as the same keyword and the same part of

speech.

Count

How many copies of the same candidate answer are present in one answer; this is not the same

as the number of times the answer has been merged only because it possible to merge two

answers which have each themselves already been merged.

Date Matches

Whether any date mentioned in the question and answer match each other, should a pair of

such dates have been found.

Entropy

The information entropy of the candidate answer, measured in bits, according to the frequency

of unigrams found in the entire source corpus. Punctuation, capitalization, and any other

unknown words are ignored and do not contribute to the entropy.

Glove Answer Question Context

The cosine similarity between the question and the answer context vectors, where the context

vectors are generated as the elementwise arithmetic mean, elementwise log-product, or ele-

mentwise geometric mean of the context vectors associated with the case-sensitive unigrams

of the question or answer, ignoring punctuation and whitespace. In the case given above, the

merging function was the arithmetic mean, and the source of context vectors was the GloVe

300 dimension Common Crawl corpus.

Indri Answer Present

Whether the candidate answer was originally generated by the Indri engine.

Indri Answer Rank

If ‘Indri Answer Present’, the mean rank of the Indri search results associated with the can-

didate answer, otherwise -1.

Indri Answer Score

If ‘Indri Answer Present’, the mean score Indri reports for the search results associated with

the candidate answer, otherwise -1.

Is Only Anagram

Whether the candidate answer was originally generated by the anagram generator and not

‘Bing Answer Present’ and not ‘Indri Answer Present’ and not ‘Lucene Answer Present’. This



32

score was introduced to prevent the introduction of many low quality answers for questions

containing terms with many anagrams.

LATCheck

Whether the lexical type of the candidate answer matches the type found in the question,

if types have been associated with both the question and answer. Cases with unassociated

questions and answers are represented as unmatched.

LATMentions

The number of distinct lexical types associated with a candidate answer

Lucene Answer Present

Whether the answer was originally generated by the Lucene engine.

Lucene Answer Rank

If ‘Lucene Answer Present’, the rank of the search result associated with this candidate answer,

otherwise -1.

Lucene Answer Score

The score assigned by Lucene to the first search result associated with this candidate answer.

Lucene Echo Max
Lucene Echo Mean
Lucene Echo Median
Lucene Echo Min

The scores associated with the Lucene passages returned from the supporting evidence retrieval

portion of the pipeline.

Lucene Rank
Lucene Score

Deleted scores replaced by ‘Lucene Echo’ variants, kept for compatibility of models.

NGram Max
NGram Mean
NGram Median
NGram Min

Count of stemmed, stopword-filtered trigrams in common between a candidate answer and

its supporting evidence. (The codename stems from its flexibility for any N, however 2 was

already provided by skip-bigrams and 4 was deemed too rare.)

Passage Count

Total supporting passages found for this candidate answer. Because passage searches are

limited at a constant value, ‘Passage Count’ is often equal to a constant multiplied by ‘Count’.

However this is not the case if a query yields very few results (as in the case of AND queries).



33

Passage Question Length Ratio Max
Passage Question Length Ratio Mean
Passage Question Length Ratio Median
Passage Question Length Ratio Min

The ratio of lengths of the passage over the question

Passage Term Match Max
Passage Term Match Mean
Passage Term Match Median
Passage Term Match Min

The number of stemmed, stopword-filtered unigrams shared between the question and passage

QAKeyword Match

The number of stemmed, stopword-filtered unigrams shared between the question and answer,

normalized to the length of the question.

QPKeyword Match Max
QPKeyword Match Mean
QPKeyword Match Median
QPKeyword Match Min

A replica of ‘Passage Term Match’ normalized to the length of the question.

Skip Bigram Max
Skip Bigram Mean
Skip Bigram Median
Skip Bigram Min

The number of shared bigrams, allowing one unmatched word between terms, where terms

are stemmed and filtered for stopwords.

Top POS

A hash of the question’s part of speech as determined by the root of its constituency parse.

Word Proximity Max
Word Proximity Mean
Word Proximity Median
Word Proximity Min

The average distance between stemmed, stopword-filtered unigram matches, when comparing

questions to passages

WP Page Views

The number of pageviews of the Wikipedia article by the same name as the candidate answer,

if such an article exists, where pageviews are averaged across 100 randomly selected hourly

logs of Wikipedia traffic since 2007.


