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ABSTRACT

HANSHANG LI. Participant Selection and Task Assignment in Mobile Crowd
Sensing. (Under the direction of DR. YU WANG)

With the rapid increasing of smart mobile devices and the advances of sensing

technologies, mobile crowd sensing (MCS) becomes a new popular sensing paradigm,

which enables a variety of large-scale sensing applications. One of the key challenges

of large-scale mobile crowd sensing systems is how to effectively select appropriate

participants from a huge user pool to perform various sensing tasks while satisfying

certain constraints. This becomes more complex when the sensing tasks are dynamic

(coming in real time) and heterogeneous (having different temporal and spatial re-

quirements).

In this work, we consider multiple participant recruitment problems in MCS. We

firstly consider a dynamic participant recruitment problem with heterogeneous sens-

ing tasks, which aims to minimize the sensing cost while maintaining certain level of

probabilistic coverage. Both offline and online algorithms are proposed to solve the

challenging problem. Then we introduce a new MCS architecture, which leverages

the cached sensing data to fulfill partial sensing tasks in order to reduce the size of

selected participant set. A newly designed participant selection with caching is pre-

sented. We further investigate the feasibility of collecting data packets from mobile

devices through device-to-device communications by carefully selecting the subset of

relaying devices. We formulate the problem as an optimization problem and propose

a simple solution to solve it in a large-scale mobile environment. While online learn-
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ing techniques can be used to learn the participants capability, the diverse expertise

of each individual makes a single capability metric is not sufficient. To address the

multi-expertise of participants, we introduce a new self-learning architecture, which

leverages the historical performing records of participants to learn the different ca-

pabilities (both sensing probability and time delay) of participants. Formulating the

participant selection problem as a combinational multi-armed bandit problem, we

present an online participant selection algorithm with both performance guarantee

and bounded regret. Finally, we introduce the cumulative participant selection prob-

lem with switch costs and propose a corresponding online learning method. For each

of the work above, extensive simulations with real-world mobile datasets are con-

ducted for the evaluations of the proposed methods. Our simulation results confirm

the effeteness of them.



v

ACKNOWLEDGMENTS

First and foremost, I would like to express the deepest appreciation to my advisor,

Dr. Yu Wang for his selfless support and valuable guidance of my study and related

research for years. He continually and convincingly conveyed a spirit of adventure

in regard to research and scholarship. This dissertation can not be done without his

guidance and persistent help.

Second, I am grateful to the service of all of those in dissertation committee. Each

of the members of my Dissertation Committee has provided me extensive personal

and professional guidance and taught me a great deal about both scientific research

and life in general. In addition, I want to thank my team members in Wireless

Networking and Sensing (WiNS) Lab for their excellent cooperation and unending

inspiration.

I would also like to thank my parents and my wife Huifang for their wise counsel

and sympathetic ear. Finally, I would like to thank all my friends for their company

and support.



vi

TABLE OF CONTENTS

LIST OF FIGURES xi

LIST OF TABLES xv

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: BACKGROUNDS RELEVANT TO PROPOSED WORK 5

2.1. Participant Selection and Task Assignment 5

2.2. Data Collection 6

2.3. Learning Based Selection 7

CHAPTER 3: DYNAMIC PARTICIPANT RECRUITMENT FOR HET-
EROGENEOUS SENSING TASKS IN MOBILE CROWD SENSING

9

3.1. Introduction 9

3.2. System Model and Problem Statement 10

3.2.1. System Model 10

3.2.2. Participant Recruitment Problem 11

3.3. Participant Recruitment Algorithms 15

3.3.1. Estimation of Call Probability and Coverage Ratio 15

3.3.2. Offline Algorithms 17

3.3.3. Online Algorithms 18

3.4. Simulations 20

3.4.1. D4D Dataset and Simulation Configuration 22

3.4.2. Performance of Offline Algorithms 25

3.4.3. Performance of Online Algorithms 28

3.4.4. Offline vs Online Algotihms 29



vii

3.5. Summary 30

CHAPTER 4: ENHANCING PARTICIPANT SELECTION VIA
CACHING IN MOBILE CROWD SENSING

32

4.1. Introduction 32

4.2. System Model and Participant Selection 33

4.2.1. System Model and Assumptions 33

4.2.2. Participant Selection Problem 38

4.3. Participant Selection with Caching 40

4.3.1. Estimation of Coverage Ratio 40

4.3.2. Prediction of Future Tasks 42

4.3.3. Participant Selection Algorithm 43

4.3.4. Caching Operation and Strategies 44

4.4. Simulations 46

4.4.1. D4D Dataset and Sensing Task Generation 46

4.4.2. Tested Algorithms and Scenarios 48

4.4.3. Performance under Scenario A 50

4.4.4. Performance under Scenario B 52

4.4.5. Performance with Different Caching Strategies 53

4.4.6. Performance with Different Caching Sizes 54

4.5. Summary 55

CHAPTER 5: DATA COLLECTION THROUGH DEVICE-TO-
DEVICE COMMUNICATIONS IN MOBILE CROWD SENSING

57

5.1. Introduction 57



viii

5.2. System Model and Problem Statement 60

5.2.1. System Model 60

5.2.2. Relay Selection Problems 61

5.2.3. Joint Sensing and Relay Selection Problems 63

5.3. Relay Selection for D2D Collection 64

5.3.1. Estimation of Delivery Probability via Space-Time
Graphs

65

5.3.2. Relay Selection Algorithm 67

5.4. Joint Sensing and Relay Selection 69

5.4.1. Estimation of Sensing & Delivery Probability 69

5.4.2. Sensing and Relay Selection Algorithm 70

5.5. Experiments over D4D Dataset 70

5.5.1. Experiment Settings 71

5.5.2. Experiments on D2D Data Collection 72

5.5.3. Experiments on Joint Sensing and D2D Relay 74

5.6. Summary 76

CHAPTER 6: MULTI-EXPERTISE AWARE PARTICIPANT SELEC-
TION IN MOBILE CROWD SENSING VIA ONLINE LEARNING

78

6.1. Introduction 78

6.2. System Models and Problem Statement 81

6.2.1. Crowdsensing Model and Assumptions 81

6.2.2. Estimation of Participant’s Capability 85

6.2.3. Participant Selection Problem 86



ix

6.3. Participant Selection via Online Learning 89

6.3.1. Online Algorithm 89

6.3.2. Approximation over Optimal Selection 92

6.3.3. Regret Analysis 94

6.3.4. Handling Cold Start 96

6.4. Simulation Results 97

6.4.1. Simulation Configuration 98

6.4.2. Performance Results 99

6.5. Summary 103

CHAPTER 7: CUMULATIVE PARTICIPANT SELECTION WITH
SWITCH COSTS IN LARGE-SCALE MOBILE CROWD SENSING

105

7.1. Introduction 105

7.2. System Model 108

7.2.1. MCS Model and Assumptions 108

7.2.2. Model Capability of Mobile Participants 112

7.3. Cumulative Participant Selection 115

7.3.1. Problem Formulation 115

7.3.2. Regret Analysis 117

7.3.3. Online Learning Algorithm 118

7.4. Cumulative Participant Selection with Switch Costs 122

7.4.1. Problem Formulation 123

7.4.2. Regret Analysis 124

7.4.3. Online Learning Algorithm 124



x

7.5. Evaluations 126

7.5.1. Datasets and Simulation Configuration 127

7.5.2. Performance of Different Selection Algorithms 129

7.5.3. Performance of Proposed Algorithm over Different
Settings

130

7.6. Summary 132

CHAPTER 8: CONCLUSION 133

REFERENCES 135



xi

LIST OF FIGURES

FIGURE 1: The framework of dynamic participant recruitment for MCS. 11

FIGURE 2: An example with 3 users (u1, u2, and u3), 2 locations (l1 and
l2), and 3 tasks (with various temporal and spacial coverage marked
as blue, red and green rectangles). (a) call probability matrix of each
user; (b) coverage ratio of any two users over these three tasks. The
colored numbers at corners of tasks are the overall coverage ratios.

12

FIGURE 3: Three cases of estimation of C(i, j, t) for user ui and task sj. 17

FIGURE 4: An example of user selection for two tasks (in red and blue).
Shaded cell represents some level of coverage at this cell, while black
cell represents full coverage of it. The colored numbers at corners of
two tasks are the overall coverage ratios of those tasks.

18

FIGURE 5: Locations of cellular towers near Abidjan used as sensing
locations in our MCS simulations.

24

FIGURE 6: Results of offline algorithms when n = 300 and m = 60 to
100.

25

FIGURE 7: Results of offline algorithms when m = 80 and n = 100 to
500.

26

FIGURE 8: Results of offline algorithms with n = 300 or m = 80, where
Offline-Random and Offline-Call are forced to select the same num-
ber of participants with Offline-Coverage.

27

FIGURE 9: Results of online algorithms when n = 300 and m = 60 to
100.

28

FIGURE 10: Results of online algorithms when m = 80 and n = 100 to
500.

28

FIGURE 11: Results of offline/online algorithms when m = 80 and n =
300 with various values of γ.

30

FIGURE 12: The architecture of MCS system with caching. 34

FIGURE 13: Locations of cellular towers in Abidjan used as sensing
locations.

47



xii

FIGURE 14: Results under Scenario A, when λ = 200, γ = 0.6 and
n = 100 to 500.

50

FIGURE 15: Results under Scenario A, when n = 300, γ = 0.6 and
λ = 100 to 300.

50

FIGURE 16: Results under Scenario A, when n = 300, λ = 200 and
γ = 0.4 to 0.6.

51

FIGURE 17: Results in Scenario B when λ = 200, γ = 0.6 and n = 100
to 500.

52

FIGURE 18: Results in Scenario B when n = 300, γ = 0.6 and λ = 100
to 300.

52

FIGURE 19: Results in Scenario B when n = 300, λ = 200 and γ = 0.4
to 0.6.

53

FIGURE 20: Results of different caching strategies when λ = 200, γ = 0.5
and n = 100 to 500.

54

FIGURE 21: Results of different caching strategies when n = 300, γ = 0.5
and λ = 100 to 300.

54

FIGURE 22: Results of different caching strategies when n = 300, λ
= 200, γ = 0.4 to 0.6 and D = 500.

55

FIGURE 23: Results of different caching size when n = 300, λ = 200,
γ = 0.5 and D = 300 to 700.

55

FIGURE 24: Example of data delivery via multi-hop D2D
communications.

62

FIGURE 25: Space time graph: the corresponding space-time graph G of
Fig. 24, where a space-time path from the source s to the sink d is
highlighted.

66

FIGURE 26: Results for K relay problem where K = 10, 15 or 20. 73

FIGURE 27: Results for minimum relay problem where γ = 0.6, 0.75 or
0.9.

73

FIGURE 28: Results for K sensing & relay problem with a single sensing
task where K = 10, 15 or 20.

74



xiii

FIGURE 29: Results for minimum sensing & relay problem with a single
sensing task where γ = 0.6, 0.75 or 0.9.

74

FIGURE 30: Results for K sensing & relay problem with 5 sensing tasks
where K = 10, 15 or 20.

75

FIGURE 31: Results for minimum sensing & relay problem with 5 sensing
tasks where γ = 0.6, 0.75 or 0.9.

76

FIGURE 32: Results for K sensing & relay problem (K = 10) and min-
imum sensing & relay problem where the number of sensing tasks
o = 1, 5 or 10.

77

FIGURE 33: The framework of the proposed online learning for partici-
pant selection in MCS.

80

FIGURE 34: Cumulative tower coverage (visiting frequency) along the
distance between a participant (her geometric center) and a tower
for 5 towers in D4D dataset.

96

FIGURE 35: Results of our proposed algorithm compared with Random
and optimal solution when m = 500 and n = 50 to 250.

98

FIGURE 36: Results of our proposed method for different n or B. 100

FIGURE 37: Results against Expertise-Aware when deadline = 24. 101

FIGURE 38: Results against Expertise-Aware when deadline = 16 101

FIGURE 39: Results against Expertise-Aware when deadline = 8 102

FIGURE 40: (a) Results considering cold start; (b) Results for different
sensing tasks (at different towers).

102

FIGURE 41: The framework of the proposed online learning for partici-
pant selection in MCS.

109

FIGURE 42: The frames allocation in Algorithm 12 when N = 4. 126

FIGURE 43: Locations of sensing targets: (a) cellular towers in Abidjan
in D4D and (b) random GPS locations in SFC.

127

FIGURE 44: Results of different algorithms in D4D ((a)-(e)) and SFC
((f)-(j)) when M = 300, N = 150 and n = 5 to 25.

127



xiv

FIGURE 45: Cumulative utility among different candidate pools. 131

FIGURE 46: Cumulative utility among different locations. 131



xv

LIST OF TABLES

TABLE 1: Parameters used in simulation for PRP 24

TABLE 2: Simulation parameters 48



CHAPTER 1: INTRODUCTION

The widespread availability of smart phones equipped with built-in sensors has en-

abled a new sensing paradigm, mobile crowd sensing (MCS), where tremendous data

can be obtained by the large group of selected mobile participants over a wide geo-

graphical region [33]. Compared with traditional static sensor networks, MCS lever-

ages existing sensing and communication infrastructures without additional costs;

provides unprecedented spatio-temporal coverage, especially for observing unpre-

dictable events; and integrates human intelligence into the sensing and data pro-

cessing. These advantages has enabled a broad range of MCS applications, such

as public safety [10, 6] , traffic planning [12, 14], localization [40, 41], environment

monitoring [16, 17], and urban dynamic mining[8, 9].

While large-scale mobile crowd sensing system takes the advantage of huge num-

ber participants to enable massive mobile data sensing within urban environments,

it also brings many new challenges in the system design. One of the key challenges is

participant selection problem, how to effectively select appropriate participants from

a huge user pool to perform various sensing tasks while satisfying certain constraints.

On one hand, more selected participants in MCS can lead to better coverage of sens-

ing tasks over both temporal and spacial domains. On the other hand, the overall

sensing cost needs to be minimized, since performing sensing task is not free (costs

energy of the smart phone). This cost could be as simply as the number of selected
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participants when the cost per participant is fixed. Therefore, careful design of par-

ticipant selection scheme becomes crucial, especially in large-scale MCS system, for

the overall performance of crowd sensing and its associated cost.

Recently, there are several studies [18, 19, 20, 21, 22, 23] beginning to address

this important issue in MCS. Most of these methods formulate the participant selec-

tion problem as an optimization problem with certain constraints, and play tradeoffs

among sensing cost, task coverage, energy efficiency, user privacy, and incentive. How-

ever, some of the methods (such as [22, 23]) only consider the spacial tasks (requiring

the coverage of a set of static interested points in spacial domain) and ignore the pos-

sibility of temporal requirements of sensing tasks. Some of the other methods (such as

[18, 19, 20, 21]) do consider both temporal and spacial coverage requirements but they

assume that the sensing tasks are static (generated before the starting of MCS and no

further tasks can come after MCS starts). In reality MCS sensing tasks are heteroge-

neous, they can have different temporal and spacial requirements and various sensing

periods. More importantly, the sensing tasks could arrive at any time. Therefore,

new dynamic participant selection methods are needed for such MSC system with

heterogenous sensing tasks.

In our first work, we formulate a new dynamic participant recruitment problem with

heterogeneous sensing tasks in a large-scale piggyback MCS system. In a piggyback

MCS system[18, 19], the collected sensing data returns to the system by leveraging

smartphone usage opportunities to save energy consumption. Therefore, we only focus

on the participant recruitment part. We show that finding the minimum participants

to achieve certain level of coverage of all tasks is a very challenging problem (actually
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a NP-hard problem). We then carefully design three greedy algorithms (one offline

and two online) to tackle the dynamic participant recruitment problem. Our results

show the proposed methods can achieve stable task coverages while use less number of

participants against other simple solutions. We believe that this study is the first on

dynamic participant recruitment with heterogeneous sensing tasks in MCS systems.

In our second work, we introduce a data storage component into the MCS system

(as shown in Figure 1) such that the sensing data can be cached to fulfill future

incoming tasks. Caching mechanism has been widely used in many networking sys-

tems [35, 36, 37]. However, we believe that this is the first study of MCS with

caching. With the newly introduced caching mechanism in MCS, the participant

selection problem become more complex but with great potential to performance im-

provements. We then carefully design the new participant selection algorithms and

corresponding caching strategies for such a system.

In our third work, we focus on the data collection phase of mobile data sensing

by carefully selecting a few mobile participants as relay nodes to help with data

propagation via D2D relays. By doing so, we limit the search space and make our

algorithm more efficient. In addition, since we use multiple space-time paths for data

collection from the source (in [50] only one space-time path is selected for one source),

our method can achieve better delivery ratio too. We also consider the joint problem

where the selected participants perform both sensing and data collection.

In our last two works, we formulate and investigate a dynamic participant selec-

tion problem (PSP) and cumulative participant selection problems (with or without

switch costs) respectively in this work. In our MCS model, the selection mechanism
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selects the participants for heterogeneous sensing tasks on both spatial and temporal

domain. The selected participant has unknown probability to perform the assigned

sensing tasks. After performing sensing tasks, the participant may utilize different

ways to upload collected sensing data, such as WiFi, Device-to-Device (D2D) or cel-

lular networks. Different uploading methods may lead different delay time, which is

still unknown by the selection mechanism. Having the historical records of partici-

pant performing tasks, we propose online learning algorithms to solve the participant

problem by leveraging combinational multi-armed bandit (MAB) concepts.

With the completed works introduced above, we also discuss our future work in this

dissertation. We will mainly focus on online learning mechanisms which could enhance

the participant selection and task assignment in mobile crowd sensing systems.

In summary, in this dissertation we study on the participant selection and task

assignment in mobile crowd sensing. The rest of this dissertation is organized as

follows. We first introduce the backgrounds and related works of this problem in

Chapter 2. Then we present the works mentioned above in three sections respectively.

Finally, Chapter 8 concludes this paper and presents the future works and the time-

line.



CHAPTER 2: BACKGROUNDS RELEVANT TO PROPOSED WORK

2.1 Participant Selection and Task Assignment

With the wide adaptation of mobile crowd sensing applications[7, 33], task coverage

and participant selection in MCS system has drawn many attentions from researchers

in recent three years. First, there are several system and experimental studies on

either experimental study on MCS coverage [26] or general framework of participant

recruitment[27, 28]. For example, Chon et al. [26] has preformed a systematic study

of the coverage and scaling properties of place-centric urban crowd sensing and shows

promising results that MCS can provide relatively high coverage levels especially given

area with large size. Then, there are also many theoretical studies on various task

assignment and participant selection problems, playing tradeoffs among sensing cost,

task coverage, energy efficiency[21, 29, 57], user privacy[23], and incentive[30, 31, 32,

31]. In most cases, task assignment is equivalent to participant selection. In this

section, we only focus on reviewing those who are directly related to our work.

Pournajaf et al. [22] also study task assignment in MCS aiming to assign moving

participants with uncertain trajectories to static sensing tasks. The optimization goal

is to minimize the coverage cost while maximize or maintain certain-level coverage (in

term of the number of selected participants per target). The coverage cost is based on

the distance between the participant and the task location. An adaptive framework is
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also proposed to refine the trajectories and perform local task refinement at selected

participants. However, no detailed task assignment algorithms are proposed. Then,

the same authors also apply similar idea to perform spatial task assignment with

cloaked locations to protect the users’ privacy in [23], and propose a two-stage task

assignment method. However, both these works only consider static spatial tasks (i.e.

location-based tasks) which ignore the temporal requirements of sensing tasks and do

no allow dynamic tasks.

2.2 Data Collection

Recently, with the advances in mobile opportunistic networks or delay tolerant

networks [62, 59, 60, 61] and D2D offloading [45, 46, 47], D2D data collection for

mobile sensing becomes a new trend. Wang et al. [49] first consider leveraging

the delay-tolerant mechanisms by offloading the data to Bluetooth/WiFi gateways

or data-plan users. Their objective is to reduce the energy consumption and data

cost of data-plan users. Karaliopoulos et al. [50] consider a joint user recruitment

problem for both sensing and data collection, which is very similar to the one we

study since the data collection is also done via D2D communications. However, the

selection of users is formulated as a minimum cost set cover problem and single greedy

heuristics are proposed to solve it. Since the solution space over all space-time paths

is huge, their method may not be suitable for large-scale data collection. In this work,

instead we carefully selects a few mobile participants as relay nodes to help with data

propagation via D2D relays. By doing so, we limit the search space and make our

algorithm more efficient. In addition, by leveraging multiple space-time paths for
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data collection, our method can achieve better delivery ratio too.

2.3 Learning Based Selection

There are a few studies begin to focus on learning the participant capability for

different sensing tasks so that better participant selection can be achieved [71, 72, 73].

For example, Han et al. [71] first adopt an online learning approach to acquire the

statistical information about the sensing values from participants throughout the

selection process. In their model, the quality of sensing data acquired by the par-

ticipants are uncertain as random variables and MCS selection aims to maximize its

expected total sensing revenue under a limited budget. They proved the proposed

method has a asymptotically optimal regret bound. However, they only considers the

homogeneous sensing tasks, which limits their applications in many cases. Liu and

Liu [72] focus on the online labeling problem in which the true label is unknown. Since

the labeling outcome cannot be directly verified, it can only be estimated against the

crowd probabilistically. They proposed an online algorithm using majority voting rule

to differentiate high and low quality labelers over time and proved that their method

has a bounded regret under mild assumptions on the collective quality of the crowd.

However, it only considers homogeneous sensing tasks with one-dimension metric.

Zhang et al. [73] also consider expertise-aware task allocation and truth analysis

in MCS where user expertise is estimated via a general online learning framework.

In their methods, the participant expertise is learned based on semantic analysis.

Though it considers heterogeneous tasks in a semantic manner, it may not be easily

adopt to the sensing tasks with diverse temporal and spatial requirements. In addi-
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tion, none of these learning methods consider either the process of data collection or

the possible switch cost. In stead, in this work, we aim to provide new self-learning

method for participant selection mechanism to handle heterogeneous sensing tasks,

diverse data collection methods, and possible additional participant switch cost.



CHAPTER 3: DYNAMIC PARTICIPANT RECRUITMENT FOR
HETEROGENEOUS SENSING TASKS IN MOBILE CROWD SENSING

3.1 Introduction

In this work, we formulate a new dynamic participant recruitment problem with

heterogeneous sensing tasks in a large-scale piggyback MCS system. In a piggyback

MCS system[18, 19], the collected sensing data returns to the system by leveraging

smartphone usage opportunities to save energy consumption. Therefore, we only focus

on the participant recruitment part. We show that finding the minimum participants

to achieve certain level of coverage of all tasks is a very challenging problem (actually a

NP-hard problem). We then carefully design three greedy algorithms (one offline and

two online) to tackle the dynamic participant recruitment problem. Note that since

we cannot foreknow when and where a participant will place a phone call during

the real crowding sensing period, our proposed methods are based on data driven

solution which leverages knowledge obtained via historical call and location traces.

We conduct extensive simulations over a real-life mobile dataset (D4D data set[24])

to evaluate the proposed algorithms in different MCS settings. Our results show

the proposed methods can achieve stable task coverages while use less number of

participants against other simple solutions. We believe that this study is the first on

dynamic participant recruitment with heterogeneous sensing tasks in MCS systems.
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3.2 System Model and Problem Statement

3.2.1 System Model

The mobile crowd sensing system includes the following components: a huge num-

ber of mobile participants who are willing to perform sensing tasks assigned to them, a

set of crowd sensing applications who are continuously generating crowd sensing tasks

and looking for sensing data from assigned participants, and the proposed participant

recruitment component which dynamically decides particular participants for each

sensing task. Figure 1 illustrates the overall framework. In this work, we assume that

the task assignment can be sent to each selected participant via cellular service at any

time, while the sensing data collected by selected participants will be piggybacked to

the mobile crowd sensing system as in [18, 19]. Therefore, we will only focus on the

participant selection process.

We assume there are n participant candidates (smartphone users who are registered

for participating sensing tasks), denoted as U = {u1, · · · , un}, and o sensing locations,

denoted by L = {l1, · · · , lo}. Each user ui has his own mobility pattern over temporal

and spacial domain, which can be described as a predication probability p(ui, lj, t),

that is the probability of user ui to place a phone call (or sensing data) at location lj

at time slot t within the whole sensing cycle T (e.g., one or two weeks). For example,

Figure 2(a) show three call probability matrices p(ui, lj, t) for three users.

A set of m heterogeneous crowd sensing tasks S = {s1, · · · , sm} generated from the

crowd sensing applications. Each of the sensing task sk can arrive at the system at

any time from 1 to T , and we assume that t0(sk) is the time slot sk arrives, and tasks
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Figure 1: The framework of dynamic participant recruitment for MCS.

in S are ordered by t0(sk). Each task specifies a set of targets for data collection,

which includes a location l, a starting time ts, and an ending time te of each target.

For each target, the task aims to find a participant to sense the data at location l

between time ts and te. In other word, for piggyback crowd sensing if a selected user

makes a call at l within the time of [ts, te], we consider that this target is covered or

accomplished. To simplify, here we assume that each task only has one single target

and the duration of the task (also called life time of the task) is bounded by a fixed

value τ (say one day), i.e., te−ts ≤ τ . Notice that our proposed methods can be easily

extended to handle where sensing tasks with multiple targets. Let ts(sk), te(sk), and

l(sk) represent the time and location requirements of task sk. Figure 2(b) shows three

tasks with various lengths in different colors. Then we are ready to formally define

the participant recruitment problem.

3.2.2 Participant Recruitment Problem

Given the pool of candidates U and the crowd sensing tasks S, the participant

recruitment problem aims to minimize total sensing cost while still satisfying certain
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Figure 2: An example with 3 users (u1, u2, and u3), 2 locations (l1 and l2), and
3 tasks (with various temporal and spacial coverage marked as blue, red and green
rectangles). (a) call probability matrix of each user; (b) coverage ratio of any two
users over these three tasks. The colored numbers at corners of tasks are the overall
coverage ratios.

level of probabilistic coverage of the tasks. The output of the participant recruitment

is a set of selected participants to perform the tasks shown by an indicator x(i, t)

where x(i, t) = 1 if user ui is selected to participate starting from time t, otherwise

x(i, t) = 0. Here we assume that when a mobile user is selected to perform sensing

task at t, it could cover a fixed time period of τ (e.g., one day). Therefore, we restrict

the participant selection of the same user within τ as follows:

t+τ∑
t′=t

x(i, t′) ≤ 1 for any t ∈ [1, T ] and i ∈ [1, n].

Note that a single selected participant can perform the sensing task for multiple tasks

and can also be selected multiple times at different time. Then we can define the cost
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of sensing task as the summation of all selected participants:

∑
i∈[1,n]

∑
t∈[1,T ]

x(i, t).

Here the total number of selected participants reflects the total sensing cost (a fix

cost per selected participant, such as energy cost of being active for τ). Overall, we

would like to minimize the sensing cost.

On the other hand, we also care about the coverage of the sensing tasks. If a

selected user ui makes a call at location l(sj) within the time of [ts(sj), te(sj)], we

consider that this task sj is covered and accomplished. Let C(i, j, t) be the coverage

ratio of task sj by user ui who is selected starting from t. Then the coverage of task

sj is defined as follows:

min(
∑
t∈[1,T ]

∑
i∈[1,n]

C(i, j, t)x(i, t), 1) for any j ∈ [1,m].

Note here if multiple selected users cover the same task, the coverage ratio cannot

exceed 1, i.e., fully covered. For example, in Figure 2(b), if u1 and u2 are selected, the

coverage ratio of the blue task will be 1 even thought the summation of all coverage

ratio is larger than 1. Since we cannot foreknow when and where a participant will

place a phone call during the crowding sensing period T , we will estimate the C(i, j, t)

based on historical call and location traces. We can also define the overall coverage

ratio of all task as follows:

C(x(i, t)) =

∑m
j=1 min(

∑
t∈[1,T ]

∑
i∈[1,n] C(i, j, t)x(i, t), 1)

m
.

The overall coverage constraint is not a full coverage requirement, instead a prob-
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abilistic coverage requirement (i.e., total task coverage is equal to or larger than a

predefined coverage threshold γ).

Definition 1. Given the volunteering users U (with their historical call and location

traces) and the crowd sensing tasks S, the Participant Recruitment Problem is to find

participants (i.e., x(i, t)) with the objective to

min
x

∑
i∈[1,n]

∑
t∈[1,T ]

x(i, t)

s.t. C(x(i, t)) ≥ γ

t+τ∑
t′=t

x(i, t′) ≤ 1 for any t ∈ [1, T ], i ∈ [1, n]

x(i, t) = 0 or 1 for any t ∈ [1, T ], i ∈ [1, n].

Figure 2 shows an example with three users and three tasks. In Figure 2(b), the

coverage provided by any two of the three users is provided. It is obvious that choosing

u1 and u3 leads to best coverage among these three choices. When the numbers of

users and tasks are huge, solving this newly defined participant recruitment problem

(PRP) is a computationally difficult task even when C(i, j, t) is known. We can prove

that this problem is NP-hard.

Theorem 1. The Participant Recruitment Problem (PRP) is NP-hard.

Proof. This can be obtained from the reduction of the minimum set cover (MSC)

problem. Given an instance of MSC, we can construct an instance of PRP as follows.

For the set of elements in MSC, we treat them as locations in PRP. Then for each

of the subsets in MSC, we create a mobile user who can visit the locations whose
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corresponding elements are within this subset. Only one sensing task is defined as

visiting all locations. Let T = τ = 1 and γ = 1, we now have a PRP constructed

where its optimal solution provide a optimal solution of MSC. Such construction can

be done in polynomial time. Since MSC is a well-mown NP-hard problem, PRP is

also NP-hard.

3.3 Participant Recruitment Algorithms

In this section, we introduce our proposed participant recruitment algorithms for

PRP. Hereafter, we assume that the number of participant candidates are large enough

so that if all of them are selected to participant then the sensing tasks can all be

fulfilled. Such an assumption is reasonable for large-scale crowd sensing. We first

show how we estimate the call probability p(ui, lj, t) of a particular user and predict

the task coverage ratio C(i, j, t) for any task based on a data driven approach.

3.3.1 Estimation of Call Probability and Coverage Ratio

The call probability p(ui, lj, t) of a particular user ui to make a phone call at location

lj and time t is a critical and necessary knowledge for participant recruitment. Since

we cannot foreknow when and where a participant will place a phone call during the

real crowding sensing period T (e.g., one week), we have to leverage learning from

the historical call and location traces. Here, we assume that for each user we have

multiple rounds of call traces (e.g., K weeks) in the historical data, and each round

of data denoted as Di, i = 1, · · · , K . Let Xk(ui, lj, t) represent whether user ui made

one or more phone call at location lj and time t in Di (1 if it made, 0 otherwise).
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Then we simply estimate the call probability as follow,

p(ui, lj, t) =

∑K
k=1 Xk(ui, lj, t)

K
.

Note that we do not consider more complex models where location-transition process

is modeled by either Bayesian interferon or Markov model [22] or the call sequence is

followed as an inhomogeneous Poisson process [18, 19]. However, such models can be

easily integrated into our framework.

In our proposed participant recruitment algorithms, in each round the coverage

ratio C(i, j, t) of task sj by user ui starting from t is estimated so that we can have

a criteria to select individual user. Therefore, we now introduce how we estimate

C(i, j, t) from the call probability obtained from historical data. For offline algorithms,

the coverage ratio is a summation of the call probability of each time unit within the

sensing duration τ .

C(i, j, t) = min(

te(sj)∑
t′=t

p(ui, l(sj), t
′), 1). (1)

In addition, for proposed online algorithms, we also need to estimate the possible

coverage C(i, j, t) of the remaining active task sj from a selected or potential user ui.

C(i, j, t) =


1 a call in [ts(sj), t]

min(
∑te(sj)

t′=t p(ui, l(sj), t
′), 1) no call yet

(2)

Note that if a selected user ui already made a call between ts(sj) and current time t

as shown in Figure 3(a), task sj has been covered by u1 so C(i, j, t) = 1. Otherwise,

without any call so far, ui’s contribution to task sj is calculated for the remaining

time of this task (as shared areas shown in Figure 3(b) and (c)).
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Figure 3: Three cases of estimation of C(i, j, t) for user ui and task sj.

3.3.2 Offline Algorithms

Now we are ready to describe our basic offline greedy algorithm. Here we assume

that the algorithm knows the whole set of task S for the whole sensing period T .

Then in each round we add one participant into the selected pool by greedily selecting

the one with largest increasing of total coverage ratio. For example, there are two

candidate users u1 and u2 (with call probability shown in Figure 4(a) and (b)) and

two tasks (with current coverage from previous selected users shown in Figure 4(c)).

The offline algorithm will estimate the coverage ratio if select one of the users (as

shown in Figure 4(d) and (c)) and pick the one with larger coverage (i.e., u1 in this

example). Algorithm 1 gives the detail of the agorithm. The time complexity of this

algorithm is O(n2mT 2) since at most nT improvements are tested at each round, each

improvement involves at most m tasks, and there are at most nT rounds.

Notice that we can also replace Line 4 of the greedy algorithm with other criteria,

such as the most active user with maximal calls or even pure random choice. We test

those offline methods in the simulation section too.
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Algorithm 1 Offline Participant Recruitment Algorithm

Input: participant pool U , task set S, and call probability p(ui, lj, t) for each user in
U .

Output: x(i, t).
1: x(i, t) = 0 for all i and t
2: while C(x(i, t)) < γ do
3: for all ui ∈ U and t ∈ [1, T ] and x(i, t) = 0 do
4: Calculate the improvement of C(x(i, t)) by adding ui at time t, i.e., x(i, t) = 1

(Here, the coverage ratio is calculated based on Equation (1))
5: end for
6: Select the user ui at time t who leads to the largest coverage improvement, and

set x(i, t) = 1
7: end while
8: return x(i, t)

2
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Figure 4: An example of user selection for two tasks (in red and blue). Shaded cell
represents some level of coverage at this cell, while black cell represents full coverage
of it. The colored numbers at corners of two tasks are the overall coverage ratios of
those tasks.

3.3.3 Online Algorithms

In our offline algorithm, the coverage estimation is based on knowledge learned

from historical data. However, whether a user make a call at the real sensing period

is a random event and the prediction could be wrong. Thus, the actual coverage ratio

could be much less than our estimation. One possible enhancement is to add more
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Algorithm 2 Online Participant Recruitment Algorithm with Whole Task Set S

Input: participant pool U , task set S, and call probability p(ui, lj, t) for each user in
U .

Output: x(i, t).
1: x(i, t) = 0 for all i and t
2: for t′ = 1 to T do
3: while C(x(i, t)) < γ do
4: for all ui ∈ U and t ∈ [t′, T ] and x(i, t) = 0 do
5: Calculate the improvement of C(x(i, t)) by adding ui at time t, i.e., x(i, t) =

1 (Here, the coverage ratio is calculated based on Equation (2))
6: end for
7: Select the user ui at time t who leads to the largest coverage improvement,

and set x(i, t) = 1
8: end while
9: end for
10: return x(i, t)

participants whenever the estimated sensing coverage is lower than the required ratio.

Notice that when time goes by, the coverage ratio of a user to a task may change (as

shown in Equation (2), depending on the current time and the remaining duration

of the task or whether a call already being made). Therefore, at each time step,

our online algorithm will check whether the task has been fulfilled by the current

participants. If not, it will greedily selects the new participant who can maximize the

coverage improvement (by considering the dynamic of coverage ratio). The details of

this algorithm is described in Algorithm 2. The time complexity of this algorithm is

O(n2mT 3). Clearly, this online algorithm needs more selected participants since it

adds more participants when the tasking ending time is near and such a task is still

not fulfilled.

So far, we always assume that the participant recruitment algorithm knows the

whole set of sensing task S beforehand. However, in reality, the tasks are arriving at

any moment and the algorithm may not know what kind of tasks will arrive in the
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future. Therefore, we also provide a real online algorithm to handle such more practice

scenario. See Algorithm 3 for detail. Here, at current time slot t, the algorithm will

consider the current task set St which includes both previous started tasks and new

tasks arrived at t. If the coverage ratio based on current selection does not reach

the requirement, more participants will be selected in the same greedy fashion. Once

again the coverage ratio is calculated based on on Equation (2) and only for tasks in

St. Notice that even there is no new arriving task, the algorithm may still add more

participants if the coverage of current tasks is not good enough. The time complexity

of this algorithm for time t is O(nm) since at most n users are selected at t and each

user at most contributes to m tasks. It seems that this algorithm may not achieve

the same level of coverage as Algorithm 2 since the decisions made here are without

the knowledge of future incoming tasks. However, our simulation results show the

opposite. This is due to that the pure online algorithm has to add enough participants

to fulfill the coverage of current task set, which leads to more selected participants

and also better coverage.

3.4 Simulations

In this section, we conduct extensive simulations over a real-life mobile data (D4D

data set[24]) to exam the effectiveness of our proposed greedy algorithms under dif-

ferent participant recruitmen scenarios (e.g., online or offline). For the greedy criteria

in both offline and online algorithms, we also implement a call activity based and a

random one for the comparison with our proposed coverage-based solution. Thus, the

following three greedy criteria are tested during the participant recruitment.
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Algorithm 3 Online Participant Recruitment Algorithm with Current Task Set at
Time t

Input: participant pool U , all previous selection x(i, t′) for t′ < t, current task set
St (including all tasks starting at or before t), and call probability p(ui, lj, t) for
each user in U .

Output: current selection x(i, t).
1: Copy all previous selection to x(i, t)
2: while C(x(i, t)) < γ based on St do
3: for all ui ∈ U and x(i, t) = 0 do
4: Calculate the improvement of C(x(i, t)) by adding ui now at t, i.e., x(i, t) = 1

(Here, the coverage ratio is calculated based on Equation (2) and St)
5: end for
6: Select the user ui who leads to the largest coverage improvement, and set

x(i, t) = 1
7: end while
8: return x(i, t)

• Random: In each round, a random user is selected as the next participant of the

MCS.

• Call: In each round, the user with highest call activity is selected as the next

participant.

• Coverage: In each round, the user with largest coverage improvement is selected

as the next participant.

In total, we implement seven participant recruitment algorithms: Offline-Coverage

(Algorithm 1), Offline-Call, Offline-Random, Online-Coverage (Algorithm 3), Online-

Call, Online-Random, and Online-Coverage-TSK (Algorithm 2) and compare their

performance. Notice that Online-Coverage-TSK is the online algorithm with full

knowledge of the tasks (including future tasks).

In all experiments, we compare each algorithm using the following two measurement

metrics.
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• Number of selected participants: the number of selected participants1 generated

by the algorithm for the whole task set over the sensing period.

• Number of fulfilled tasks: the number of sensing tasks which are successfully

performed by selected participants from the algorithm during the sensing period.

All results reported here are the average from multiple runs over different periods

from the D4D data set.

3.4.1 D4D Dataset and Simulation Configuration

To simulate the large scale mobile crowd sensing (especially for mobile phone sens-

ing), we use a real life wireless tracing data from the cellular operator Orange for the

Data for Development (D4D) challenge [25]. The reason we pick the D4D dataset

is that it is the only mobile networking tracing dataset available to us which has a

large-scale and diverse set of mobile users. The released D4D datasets [24] are based

on anonymized Call Detail Records (CDR) of phone calls and SMS exchanges between

50, 000 Orange mobile users in Ivory Coast between December 1, 2011 and April 28,

2012 (150 days and about 20 weeks). Most of the call records are generated between

6:00am to 11:00pm within each single day. We use the dataset of individual trajecto-

ries with high spatial resolution (SET2 in D4D datasets), which contains 10 groups

of the access records of antenna (cellular tower) of each mobile user. Each group of

records are collected over a two-week period. The time ranges of these 10 groups of

records are sequential and add up equal to the whole duration of D4D data collection

period. But unfortunately, in each group of records, the user IDs were renumbered

1Note that a single user can be selected for multiple sensing periods (each of them lasts τ , e.g.
x(i, t1) = 1 and x(i, t2) = 1) and that is counted as multiple participants.
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and anonymized, which makes impossible to merge them together. Thus, all of our

MCS experiments are preformed within a one week period (i.e., T is one week). We

treat one hour as the smallest time unit, T = 7 × 24. We perform simulations over

five different weeks. We use the sequences of visited cellular towers of all users within

these weeks to generate the call probability of each mobile user and location (i.e.,

cellular tower). We assume that the mobile users with the same user IDs are same

users in all of these weekly call records.

For the D4D dataset, there are already huge number of users and encounters even

within a two week period. For example, for the first two-week period, there are 46, 254

active mobile users, 1, 097 cellular towers, and 6, 787, 594 encounters between users

in total. Therefore, in our simulation, we only choose subsets of users as candidate

participants and subsets of cellular towers as locations in MCS. For each sensing task

si, we randomly pick its location l(si), starting time ts(si) and ending time te(si). For

location l(si), it is randomly chosen from 20 cellular towers with highest call records.

Most of these towers are located in the region of Abidjan, the economic and former

official capital of Ivory Coast and the largest city in the nation. Figure 5 shows

the locations of these towers on the map of Abidjan. For starting time ts(si), it is

randomly chosen from 1 to T . Then ending time te(si) is randomly chosen from ts(si)

to ts(si) + 24. In other words, the duration of sensing period of a task is limited to

one day. For candidate participants, we randomly choose them from the mobile users

with the highest number of times of visiting the above towers. All parameters used

in the simulations are shown in Table 1.

In all simulations, we randomly generate MCS tasks and apply different participant
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Figure 5: Locations of cellular towers near Abidjan used as sensing locations in our
MCS simulations.

Table 1: Parameters used in simulation for PRP

Parameter Value or Range
Unit of time 1 hour
Task life time te(si)− ts(si) 1 to 24 hours
Number of locations (towers) o 20
Number of tasks m 60, 70, 80, 90, 100
Number of candidate participants n 100, 200, 300, 400, 500
Length of whole sensing cycle T one week = 7× 24 hours
Total simulation period Dec 5 2011 to Jan 8 2012
Coverage threshold γ 0.3, 0.4, 0.5, 0.6, 0.7

recruitment algorithms to select participants for all tasks. The selected participant

will sensing data around the location where he make calls during the assigned time

interval (24 hours from the starting time). Based on the real traces, we evaluate how

many tasks can be fulfilled with the selected participants. Here, a task is completed

if and only if there is at least one call made in the period of the lifetime of the task

within the target location from the selected participants. Since the prediction of

making a call is based on historical data, it is not possible to guarantee full coverage

of all tasks or even the required portion of all tasks.
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Figure 6: Results of offline algorithms when n = 300 and m = 60 to 100.

3.4.2 Performance of Offline Algorithms

In the first set of simulations, we compare the performance among different greedy

algorithms in the offline setting, in which the full task set S is known and the partic-

ipant selection is performed offline without further updates. Here, we fix the number

of candidate participant at 300, and vary the number of tasks from 60 to 100. Here-

after, the default γ = 0.5. Figure 6 shows the performance comparison of three offline

algorithms.

Figure 6(a) shows the number of fulfilled tasks by each algorithm. Clearly, since

the selection is based on historical data, the real coverage ratio cannot reach the

expected level. However, for Offline-Coverage and Offline-Call have a clear pattern:

the number of fulfilled tasks increases with the number of tasks. This reasonable

since the coverage threshold is fixed. Offline-Random does not have this pattern.

Figure 6(b) shows the number of selected participants. Obviously, the number of se-

lected participants increases with the number of the tasks, i.e., more tasks need more

participants. Compared with the three methods, Offline-Random uses the largest

number of participants while Offline-Coverage has the minimum number of partic-
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Figure 7: Results of offline algorithms when m = 80 and n = 100 to 500.

ipants. The differences among these three methods are significant (Offline-Random

or Offline-Call use 3 or 8 times more participants than Offline-Coverage does). This

confirms the nice performance of our proposed offline algorithm. Interestedly, the

number of participants of Offline-Coverage is always less than 20 no matter how

many tasks we have. This shows the stability of the proposed method.

In the next set of simulations, we fix the number of task at 80 and test with various

number of candidate participant. Figure 7 shows the result. It is clear that the num-

ber of fulfilled tasks increases with the number of candidate participants as shown in

Figure 7(a), since more candidate participants offers more possible optimized selec-

tion. This observation is consist among all methods. The coverage achieved by the

three methods are similar. However, in term of the number of selected participants,

as shown in Figure 7(b), again Offline-Coverage uses much less participants than the

other two methods to achieve the same level of coverage. In addition, with more can-

didate participants, the number of selected participants by all algorithms decreases.

This is due to that more candidate participants lead to more space to make smart

selections.
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Figure 8: Results of offline algorithms with n = 300 or m = 80, where Offline-
Random and Offline-Call are forced to select the same number of participants with
Offline-Coverage.

Via these two sets of simulations, we found that the task coverages (the num-

bers of fulfilled tasks) of the three offline methods are similar, but Offline-Random

and Offline-Call select more participants to make up their low efficiency. We also

implement another set of simulations to compare with their task coverage with the

same number of selected participants. We use the number of selected participants of

Offline-Coverage as the baseline, and force the other two methods select the same

amount of participants. The results are reported in Figure 8. Clearly, now Offline-

Coverage outperforms the other two methods in term of the number of fulfilled tasks.

More precisely, the average numbers of fulfilled tasks of Offline-Coverage, Offline-

Call, and Offline-Random are 14.24, 4.56 and 2.46 respectively for simulations with

n = 300 and various values of m (Figure 8(a)); and 15.78, 4.68 and 2.66 respectively

for simulations with m = 80 and various values of n (Figure 8(b)).

Overall, the proposed offline algorithm Offline-Coverage can achieve better per-

formance than the other two methods. However, since our offline algorithm utilizes

estimated call probability to predict the future calls, the achieved coverage ratio is
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Figure 9: Results of online algorithms when n = 300 and m = 60 to 100.
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Figure 10: Results of online algorithms when m = 80 and n = 100 to 500.

only one third of objective coverage threshold.

3.4.3 Performance of Online Algorithms

To further improve the achieved coverage ratio, we test our online algorithms under

the pure online fashion, i.e., the algorithm only knows current sensing task set and

have no knowledge of future tasks, but based on the current fulfilled status it can

select more participants to achieve the desired coverage ratio. Here, we compare the

three type greedy methods. The simulation settings are the same with those in offline

tests.

Figure 9 and Figure 10 show the results over two set of simulations where either the

number of participants or the number of task is changing. The overall conclusions are
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similar to those in offline test. First, the number of fulfilled tasks of Online-Coverage

almost always larger than those of the other two methods. More importantly, it uses

much less number of selected participants to achieve such level of coverage. Numbers

of selected participants in Online-Random and Online-Call are almost three times and

two times of that in Online-Coverage. In addition, compared with offline-methods,

online methods output more selected participants in the same task pool. This is due

to additional participants are selected at any time to fulfill the unfinished tasks. This

improves the coverage ratio but increases the number of selected participants.

3.4.4 Offline vs Online Algotihms

Last, we want to further study the difference among offline and online algorithms.

Here, we also test the online algorithm with full knowledge of future tasks (i.e. Online-

Coverage-TSK - Algorithm 2 in Section 3.3). Figure 11 shows the results of three

algorithms (Offline-Coverage, Online-Coverage, and Online-Coverage-TSK ) over the

same sets of tasks with different coverage threshold γ (from 0.3 to 0.7). Here, m = 80

and n = 300. Overall, higher coverage threshold leads to higher number of fulfilled

tasks and more selected participants. From Figure 11(a), the number of fulfilled

tasks by Online-Coverage-TSK is about 50% more than the one by Offline-Coverage,

while the one by Online-Coverage is about two times of that by Online-Coverage-

TSK. Obviously, Online-Coverage-TSK finished the most number of tasks, but it also

chooses the largest number of participants as shown in Figure 11(b). Online-Coverage

selects many times of participants than that in the other two algorithms, while Online-

Coverage-TSK chooses around 30% more participants than Offline-Coverage does.
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Figure 11: Results of offline/online algorithms when m = 80 and n = 300 with various
values of γ.

Summary: From all of the simulation results above, we could draw the following

general conclusions. Firstly, the coverage improvement is a better greedy criteria than

those based on call activity or purely random selection. Secondly, online algorithms

can achieve better coverage than offline algorithms, since they can actively select

additional participants. Finally, there is a trade off between the number of selected

participants and the coverage level of tasks. It should choose the right algorithm and

selection strategy according to particular requirements from the MCS applications.

3.5 Summary

In this work, we focus on a new dynamic recruitment problem for heterogeneous

mobile crowd sensing tasks, with a goal to minimizing the sensing cost while satis-

fying certain level of coverage. Unlike other existing works, the sensing tasks in our

proposed scenario can have different starting time and life time. Based on the predic-

tion of call probability (the probability of a user making calls at particular time and

locations), we propose several offline and online greedy algorithms to dynamically se-

lect a subset of participant to perform the tasks. Via extensive simulations conducted
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with real-life D4D dataset, we confirm the efficiency of our proposed algorithms. We

leave further improvements on call prediction as one of our future works.



CHAPTER 4: ENHANCING PARTICIPANT SELECTION VIA CACHING IN
MOBILE CROWD SENSING

4.1 Introduction

Caching mechanism has been widely used in information technology, such as Web

applications [35], P2P networks [36] and mobile computing [37]. Systems implemented

with caching mechanism usually improve various type of performances by leverage the

usage of cached data. Meanwhile, there are various caching strategies proposed and

utilized for different systems with different characteristics. In this work, we introduce

caching into MCS and carefully design the new participant selection algorithms and

corresponding caching strategies for such systems.

One of the uniquenesses of this study is that we introduce a data storage component

into the MCS system (as shown in Figure 12) such that the sensing data can be

cached to fulfill future incoming tasks. Caching mechanism has been widely used

in many networking systems [35, 36, 37]. However, we believe that this is the first

study of MCS with caching. With the newly introduced caching mechanism in MCS,

the participant selection problem become more complex but with great potential to

performance improvements. We then carefully design the new participant selection

algorithms and corresponding caching strategies for such a system. In our design,

we not only consider the knowledge obtained via historical call/location traces of

mobile users but also the distribution of possible future tasks so that we can predict
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the future incoming tasks and estimate the contribution of particular participant to

certain task set. Note that since we cannot foreknow when and where a participant

will visit a place and make a phone call during the real crowding sensing period, our

proposed online method try to estimate the coverage of current selected participants

using the historical knowledge and dynamically adjust the selections.

We have conduct extensive simulations over a real-life mobile dataset (D4D data

set[24]) to evaluate the proposed algorithm against existing solutions in different MCS

settings. Our results show the proposed participant selection algorithm with caching

can achieve stable task coverages while use much less number of participants against

other solutions.

4.2 System Model and Participant Selection

4.2.1 System Model and Assumptions

As shown in Figure 12, there are four main components in our mobile crowd sensing

system: a large number of mobile participants, a set of crowd sensing applications, a

participant selection mechanism, and a sensing data storage. The mobile participants

are mobile users of smart devices who are willing to participant the sensing tasks. The

crowd sensing applications are sensing information requesters which generate various

sensing tasks continuously. The participant selection mechanism is the key of success

of MCS system, in which sensing tasks from the MCS applications are assigned to

particular sets of mobile participants. This has been the major focus of previous

research in MCS. The data storage can temporarily caches sensing data collected and

uploaded by selected participants, which later can be used to fulfill other sensing
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Figure 12: The architecture of MCS system with caching.

tasks.

The overall information flow in the system is as follows. Sensing tasks are gener-

ated by the applications and then sent to the participant selection mechanism. The

selection of participants are made based on estimated coverages of participants to

these tasks (based on historical user traces), and then the selected participants are

assigned to perform these tasks. If the selected participants do occur at certain place

and time, they will collect the sensing data and send it to the data storage and

the corresponding applications. The data storage is responsible to keep or drop the

collected data based on its caching strategy and size limit.

In this work, we focus on the participant selection with the caches (data storage).

We have the following assumptions.

There is a set of m various mobile sensing tasks S = {s1, · · · , sm} generated by

the crowd sensing applications within a particular time period T . Each task sk can

arrive at the system at any time, and the arriving time is defined as tarrive(sk). The

arriving time of incoming tasks subjects to certain probability distribution P in T
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(in the simulations, we use a Poisson distribution with a parameter λ). Each task sk

specifics a quadruple < tbegin(sk), tend(sk), l(sk), freq(sk) > as its target information

in both temporal and spacial domains. The first two items define the beginning time

and ending time of sensing task. l(sk) is the interested location of this task, and here

we assume that there are r different sensing locations, denoted as L = {l1, · · · , lr}.

freq(sk) is the number of needed samples of this task at this location during the

required time period. Note that here we assume that each sensing task only has one

interested point in both temporal and spacial domains, but it is easy to relax such an

assumption to handle complex sensing tasks with multiple interested points.

We further define two types of tasks. If tarrive(sk) ≤ tbegin(sk), we call sk a Type

I task. This task acquires the sensing information in the future of its arriving. For

such a task, we could assign participants to it after its arriving at the system. If

tarrive(sk) > tbegin(sk), we call sk a Type II task, which acquires the information in

the past. For this type of tasks, we have to make assignments before the tasks arrive

by prediction so that the collected information could meet the requirements of the

tasks. For this type of tasks, the caching mechanism proposed in this work becomes

crucial.

There is a set of n mobile participants P = {p1, · · · , pn}. Each participant pi has his

own visiting pattern or call pattern over both temporal and spacial domains. In this

work, we assume that the sensing tasks can be sent to the selected participants at any

time by cellular service and the sensed data from the selected participants can only

be updated to the system through piggyback [18, 19] during a phone call. Therefore,
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we are interested in the call patterns than the visiting patterns2. Each participant pi

has his own predicted probability p(pi, lj, t) of making at least one phone call at time t

and location lj. This probability is a critical and necessary knowledge for participant

selection. Since we cannot foreknow when and where a participant will place a phone

call during the real crowding sensing period T (e.g., one week), we have to leverage

knowledge from the historical traces. Here, we assume that for each user we have

multiple rounds of call traces (e.g., K weeks), and each round of data denoted as Di,

i = 1, · · · , K . Let ck(pi, lj, t) indicate whether pi made one or more phone call at lj

and t in Di (1 if it made, 0 otherwise). Then we simply estimate the call probability

as follow,

p(pi, lj, t) =

∑K
k=1 ck(pi, lj, t)

K
.

Instead of this simple model, we can also consider more complex models, such as

Bayesian/Markov model [22] or Poisson process [18, 19].

Based on this predicted information, the participant select mechanism can select

a subset of participants to perform the sensing task. Here we use an indicator x(i, t)

to represent whether user pi is selected to participant for the task set. x(pi, t) = 1

if user pi is selected to participate at beginning time t, otherwise x(pi, t) = 0. Here

we assume a fixed sensing period τ for each selection. In other word, whenever a

participant is selected to perform sensing tasks at a particular beginning time t, he

will be active for a fixed time period τ . That means that this participant will perform

sensing and upload data to data storage whenever he makes a phone call in the time

2In addition, the data set we used does not provide location information of each mobile phone
user.
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period of [t, t+τ ]. Therefore, we have to restrict the selection of the same participant

within τ as follows:

t+τ∑
t′=t

x(pi, t
′) ≤ 1 for any t ∈ [1, T ] and i ∈ [1, n]. (3)

Note that a single selected participant can perform the sensing task for multiple tasks

and can also be selected multiple times at different time. The rewards to participant

pi are based on the number of his selections, i.e,
∑

t∈[1,T ] x(pi, t).

The data storage is a data storage space with the total size of D, which can tem-

porarily stores the sensing data uploaded by selected participants. The sensing data

is formed by sensing data records. Each sensing data record ri includes the time ri(t),

location ri(l) and interested sensing information ri(d). Here, we assume that every

single sensing data record has the same length, which means every of them needs the

same size of storage space. Whenever selected participants place a phone call at the

desired location and time, the sensing data is uploaded to the data storage. The data

storage has the access to the full knowledge of tasks and assignments, and it can make

decision on which sensed data should be cached based on certain caching strategy.

Based on participant selection for two types of tasks, there are also two types of

collected sensing data uploaded to the data storage. For the first type, the sensing

data could be utilized immediately by current tasks (Type I). Therefore, it will be

forwarded directly to corresponding applications. In the same time, the storage will

make its decision whether caches it for possible later tasks. For the second one, the

sensing data are obtained based on prediction of future tasks (Type II). It will be

cached in the storage for future usage and will not be forwarded to applications at
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current time.

Since the participant rewards are based on the number of their selections, a perfect

situation is that the system stores all the data uploaded from selected participants

for current or future utilization so that the number of selected participants can be

reduced. However, such strategy will waste large number of storage space since most

of the cached data may not be used for fulfill later tasks. Therefore, a smart caching

strategy should be designed to determine whether to keep or drop data at any par-

ticular time.

4.2.2 Participant Selection Problem

Similar to [34], given the pool of candidates P and the crowd sensing tasks S, the

participant selection problem aims to minimize total sensing cost while still satis-

fying certain level of probabilistic coverage of the tasks. The output of participant

recruitment is a set of selected participants with selected time within the time cycle

T , which showed by the indicator x(pi, t). The overall optimization problem can be

defined as:

min
x

∑
i∈[1,n]

∑
t∈[1,T ]

x(pi, t)

s.t. C(x(pi, t)) ≥ γ and

Equation (1) on x(pi, t).

Here, the cost of sensing tasks is defined as the summation of all selections of par-

ticipants
∑

i∈[1,n]

∑
t∈[1,T ] x(pi, t). Once again that we assume a fix cost per selected

participant for τ , such as energy cost of being active for τ . C(x(pi, t)) and γ are the

overall expected coverage ratio of all tasks and the probabilistic coverage requirement,
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respectively.

For a particular task sj, every time a single sensing data record rk includes location

rk(l) = l(sj) and time rk(t) within time period [tbegin(sj), tend(sj)] is updated to the

system, we consider that this task sj is covered and accomplished by this record

once. The accomplish frequency of each task could be accumulated by the number

of different data records which could cover this task. Note that these sensing data

records could be uploaded by single or multiple participants. Moreover, one particular

participant could provide coverage to single or multiple tasks. Since the real coverage

of tasks are based on the users actual calls, we can only use the call probability to

estimate the expected probabilistic coverage of tasks. Let C(pi, sj, t) equals to the

number of the times that task sj covered by user pi who is selected starting from t.

Then the coverage of task sj can defined as follows:

C(x(pi, t), sj) = min(
∑
t∈[1,T ]

∑
i∈[1,n]

C(pi, sj, t)x(i, t), freq(sj)).

Note here if multiple selected users cover the same task, the coverage frequency cannot

exceed freq(sj), i.e., fully covered. We can then define the overall coverage ratio of

all tasks as follows:

C(x(pi, t)) =

∑m
j=1 C(x(pi, t), sj)∑m

j=1 freq(sj)
.

The overall coverage constraint is not a full coverage requirement, instead a prob-

abilistic coverage requirement (i.e., total task coverage is equal to or larger than a

predefined coverage threshold γ).

Hereafter, we assume that the number of participant candidates are large enough
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so that if all of them are selected to participant then the sensing tasks can all be

fulfilled. In other words, there always exists a feasible solution for this optimization

problem. Such an assumption is reasonable for large-scale crowd sensing system.

This participant selection problem can be proved NP-hard, by a simple reduction

from minimum set cover problem (as proved in [34] for a simpler version of this

problem). Therefore, in this work, we are looking for efficient heuristics to solve it

with the proposed caching storage. Though the participant selection problem defined

so far is a static one, we actually want to solve it in an online version. In other words,

the proposed participant selection algorithm is running with new tasks coming.

4.3 Participant Selection with Caching

In this section, we introduce our proposed participant selection algorithms and

caching strategies. We first show how we predict the task coverage ratio C(pi, sj, t)

for any task based on the call probability obtained from historical data and also how

we predict the future tasks.

4.3.1 Estimation of Coverage Ratio

To design our participant selection algorithm base on probability prediction, we

need have an accurate estimation of the coverage ratio of each task by certain partic-

ipants. Since each selected participant has independent probability to accomplish a

task and each task is independent but may need multiple participants to accomplish,

we need to estimate the coverage ratio C(B, sj, t) of task sj by certain set of partici-

pant B at time t based on the call probability obtained from historical data. By doing

so, we can have a simple greedy criteria in each round to select an individual user
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adding in the current selected participant set to maximize the increment of overall

task coverage for all tasks. We can define the incremented task coverage for task sj

by adding pi to current set of selected participants B as follows,

∆(B, pi, sj, t) = C(B + pi, sj, t)− C(B, sj, t). (4)

Then, the overall task coverage for all tasks by pi in this round is

∆(B, pi, t) =
m∑
j=1

∆(B, pi, sj, t). (5)

To calculate C(B, sj, t), we need to estimate the probability that participants in

B can fulfill task sj, i.e., at least freq(sj) calls happened in the location of l(sj) and

within the time period [tbegin(sj), tbegin(sj) + τ ] from users in B. We first define the

probability that x calls happened to fulfill task sj as Cx(B, sj, t). Then

C(B, sj, t) = 1−
freq(sj)−1∑

x=0

Cx(B, sj, t). (6)

Note that if a selected user contributes to sj, he will make a call at l(sj) at time t and

t ∈ [tbegin(sj), tbegin(sj) + τ ] and a corresponding data sensing record r is updated.

We call this event that the record r hits the task sj. We have a call probability of

such event p(r) = p(pi, l(sj), t). For a particular task sj, let Rj be all of the potential

record hits sj. To fulfill task sj, we need at least freq(sj) records from Rj. To obtain

Cx(B, sj, t), we can use the following formulation:

∑
∀<r1,··· ,rx>∈Rxj

∏
ri∈{r1,··· ,rx}

p(ri)
∏

ri∈Rj−{r1,··· ,rx}

(1− p(ri)).

Here, < r1, · · · , rx >∈ Rx
j is any x records can hit task sj. Note that the maximal
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size of Rj is nτ , while in reality it is much smaller. In addition, to further reduce

the calculation cost, a dynamic programming can be used to obtain Cx(B, sj, t) from

Cx−1(B, sj, t), which can be done in polynomial time.

When freq(sj) = 1, Equation (6) can be simplified to

C(B, sj, t)

=1−
∑

pi∈B,tbegin(sj)≤t′≤(tbegin(sj)+τ)

(1− p(pi, l(sj), t′)).

4.3.2 Prediction of Future Tasks

With Type II sensing tasks, we have to assign participants in advance to the coming

of these tasks since they may request the sensing data in a particular time period

before they come to the system. Recall that we assume that the coming task stream

subjects to a Poisson distribution with parameter γ. Therefore, at particular time t,

the number of future coming tasks n(t) is given by

n(t) =
(T − t)
T

λ.

Each time a task sj comes, it may request any combination of time period tbegin(sj)

and location l(sj) as its target requirement which is associated with an independent

probability p(sj, tbegin(sj), l(sj)) (we call it task probability), which can be obtained

from historical data of sensing requests3. Therefore, we have the overall probability

of a task sj will appear in the time period from current time t to T is calculated as:

p(sj, t) = p(sj, tbegin(sj), l(sj)n(t). (7)

3Since we do not have such traces, in our simulations, we assume that the probability distribution
of tbegin(sj) is uniformly distributed while the one of l(sj) is proportional to the population nearby.
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To assign participants to the possible future tasks or estimate the coverage ratio of

them by particular participant set, we basically modify Equation (5) to the following.

∆(B, pi, t) =
∑
sj∈St

∆(B, pi, sj, t) +
∑
sj /∈St

p(sj, t)∆(B, pi, sj, t). (8)

Here, St represents the current task set which include all arrived tasks until t. Note

that similar equations can also be defined by caching strategy to estimate the value

of a record for current and future task sets.

4.3.3 Participant Selection Algorithm

As discussed above, we would like to design the participant selection algorithm as

an online algorithm. First, the task streaming is dynamic, thus new tasks can come

at any time within the time cycle. Second, the completion of tasks is dynamic, due

to the mobility of users is dynamic. The coverage estimation above is based on the

knowledge learned from historical data. However, the mobility pattern of users or

distribution of tasks is random in real sensing period, thus the prediction may not be

accurate and the coverage estimation may not reflect the true coverage. Therefore,

in our online algorithm, we dynamically take new coming tasks into account and add

more participants for unfulfilled sensing tasks whenever the overall estimated coverage

can not meet the coverage requirement during the time cycle. On the other hand, if

certain tasks are fulfilled and partially fulfilled when certain sensing data is updated

at data storage, they will be removed or updated in current task set St and certain

previously selected users can be withdrawn from the selected participant set Bt. The

details of online algorithm is described in Algorithm 4. In each round, the algorithm
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Algorithm 4 Online Algorithm for Participant Selection at Time t′

Input: participant pool P , call probability p(pi, lj, t) for each user in P , task prob-
ability p(sj, tbegin(sj), l(sj), previous selected participant set Bt′−1, and current
task set St′ (including tasks arrived at time t′).

Output: current selection x(pi, t)
1: update the current task set Bt′−1 and previous selection x(pi, t) if there are new

sensing data uploaded at data storage and partially fulfilling certain tasks from
last time.

2: copy all previous selection x(pi, t) from Bt′−1.
3: while C(x(pi, t)) < γ based on St′ do
4: for all pi ∈ P and t ∈ [t′, T ] and x(pi, t) = 0 do
5: Calculate the improvement ∆(Bt′−1, pi, t

′) by adding pi with starting time t,
i.e., x(pi, t) = 1, based on Equation (8))

6: end for
7: Select the user pi who leads to the largest coverage improvement, and set

x(i, t) = 1
8: end while
9: return x(pi, t)

basically repeatedly adding new participant which leads to largest coverage gain at

current time until the estimated overall coverage reaches the requirement threshold.

4.3.4 Caching Operation and Strategies

So far, it seems that we did not discuss the cache operation yet. But actually

caching has been used in Algorithm 4. First, in Line 1, if any sensing data is up-

loaded at data storage, it may triggers updates of task set and selected participants.

If the record hits a particular task, the required frequency of that task will be re-

duced by 1. If frequency becomes zero (i.e, the task is fulfilled), the task will be

removed from the task set. If certain selected participants cannot contribute to the

updated task set, they can be removed from the current arrangements too. In ad-

dition, when we estimate the coverage improvement ∆(Bt′−1, pi, t
′) in Line 5, we do

consider the cached data from previous selected users. There are two scenarios of
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caching can be implemented there: passive caching and active caching. In the passive

caching, the participant selection algorithm only assign tasks that already arrived to

the candidates. That means that the caching sensing data are only from the assigned

participants for past tasks. In other words, the only difference between caching and

no caching is whether the collected sensing data can be reused by other tasks. In this

case, ∆(Bt′−1, pi, t
′) can be estimated using Equation (5). In the active caching, the

participant selection algorithm will assign and withdraw tasks dynamically during the

whole time cycle. In addition, the assignments are not only based on tasks that al-

ready arrived but also the predicted future coming tasks. In this case, ∆(Bt′−1, pi, t
′)

can be estimated using Equation (8), in which both existing tasks and future coming

tasks are considered. Note that for future coming tasks, the estimation is based on

p(sj, tbegin(sj), l(sj) and p(sj, t
′). In the same time, such operation may add many

unnecessary participants, thus we also allow the assignments can be withdrew when

the corresponding tasks have been fulfilled. The principle is that each assignment can

be withdrew with no cost at a particular time if and only if that time is before the

begin time of that assignment. It can not be withdrew once an assignment starts,

in other words, the selected participant in that assignment begin to upload sensing

tasks whenever he makes a call.

In addition, there are two cases depending on the size of data storage in the pro-

posed MCS system. If the cache space is infinite (i.e., D = ∞), we call it infinite

cache. For this case, you may just want to cache every sensing data you received. If

the cache space is limited by a finite number, we call it finite cache, where carefully

caching strategy is needed when the space is full during a sensing data uploading. We
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consider three different strategies. The simplest is random cache. In this strategy,

whenever the data storage is full, the system will randomly choose one record to be

replaced by the next coming sensing date record. The second strategy is first in first

out (FIFO). the oldest data record will be dropped when the cache is full. The third

one is coverage based cache, in which we estimate the contribution of coverage of each

record. The system will always drop the data record with least coverage ratio. We

will test all of these three strategies in our simulations.

4.4 Simulations

In this section, we conduct extensive simulations over a real-life mobile traces (D4D

data set[24]) to evaluate the effectiveness of our proposed participant algorithms under

different scenarios.

4.4.1 D4D Dataset and Sensing Task Generation

To simulate the large scale mobile crowd sensing, we still utilize D4D datasets [24]

to evaluate our proposed solution. All the selected cellular towers are located in the

region of Abidjan, the economic and former capital of Ivory Coast and the largest

city in the nation. Figure 13 shows the locations of these towers on the map of

Abidjan. The area of Abidjan is informally composed of two parts (northern Abidjan

and southern Abidjan) with ten formal boroughs, or communes, each being run by a

mayor. One of them is covered by forest thus mobile call activities in that commune

are much fewer to the other ones. Therefore, we choose to pick the cellular towers

from the other nine communes. We have choose two towers from each communes with

the most and second most number of mobile calls during a two weeks period. Thus,
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Figure 13: Locations of cellular towers in Abidjan used as sensing locations.

we have 18 cellular towers in total.

For each sensing task si, we need to pick its arriving time tarrive(si), location l(si),

starting time tbegin(si), ending time tend(si), and freq(si). tarrive(si) is generated by a

Poisson distribution with parameter γ, while tbegin(si) is randomly picked within 1 to

T and tend(si) is fixed at τ (set to 24 hours). In other words, the duration of sensing

period of a task is limited to one day. For location l(si), it is chosen from 18 cellular

towers based on the publicized population within the communes where the towers

sit. In other words, the area with higher population has more chance to be chosen as

the sensing target. For the frequency requirement, we simply set freq(si) = 1 for all

tasks. Note that a task with freq(si) = k can be approximated by k identical tasks

with freq(si) = 1. For candidate participants, we randomly choose them from the

mobile users with the highest number of times of visiting these towers. All parameters

used are given in Table 2.

In all simulations, we randomly generate MCS tasks based on the method discussed

above, and apply different participant selection algorithms to select participants for
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Table 2: Simulation parameters

Parameter Value or Range
Unit of time 1 hour
Task life time τ 24 hours
Number of locations (towers) r 18
Number of tasks m or λ 100, 150, 200, 250, 300
Number of candidate participants n 100, 200, 300, 400, 500
Length of whole sensing cycle T one week = 7× 24 hours
Total simulation period Dec 5 2011 to Jan 8 2012
Coverage threshold γ 0.4, 0.45, 0.5, 0.55, 0.6

all tasks. The selected participant will upload the sensing data around the location

where he make calls during the assigned time interval (24 hours from the starting

time). Based on the real traces, we evaluate how many tasks can be fulfilled with

the selected participants. Here, a task is completed if and only if there is at least

required number of calls made in the period of the lifetime of the task within the

target location from the selected participants. Since the prediction of making a call

is based on historical data, it is not possible to guarantee full coverage of all tasks or

even the required portion of all tasks.

4.4.2 Tested Algorithms and Scenarios

Beside the proposed method, we also implement two simple algorithms and the one

in [34] for comparisons. Most of them are greedy algorithms, where in each round

a user is selected as the next participant of the MCS. Here are the four participant

selection algorithms.

• Random: In each round, a random user is selected as the next participant of the

MCS.

• Call Activity: In each round, the user with highest call activity is selected as the
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next participant.

• Coverage without Caching: In each round, the user with largest coverage im-

provement without caching is selected as the next participant [34].

• Coverage with Caching: In each round, the user with largest coverage improve-

ment with caching is selected as the next participant.

In all experiments, we compare each algorithm using the following three measurement

metrics.

• Number of selected participants: the number of selected participants4 generated

by the algorithm for the whole task set over the sensing period.

• Fulfilled task ratios: the ratio between the number of sensing tasks which are

successfully performed by selected participants from the algorithm during the

sensing period and the total tasks.

• Coverage ratio with caching: the portion of fulfilled tasks which are fulfilled by

cached sensing data.

All results reported here are the average from multiple runs over different periods

from the D4D data set.

Moreover, we construct two simulation scenarios. In Scenario A, the task cycle

type is single-cycle (e.g., one week) and all generated tasks are Type I. In Scenario

B, the task cycle type is still single-cycle, tasks could be either Type I or II.

4Note that a single user can be selected for multiple sensing periods (each of them lasts τ , e.g.
x(pi, t1) = 1 and xp(i, t2) = 1) and that is counted as multiple participants.
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Figure 14: Results under Scenario A, when λ = 200, γ = 0.6 and n = 100 to 500.
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Figure 15: Results under Scenario A, when n = 300, γ = 0.6 and λ = 100 to 300.

4.4.3 Performance under Scenario A

We first test the proposed algorithms (Coverage with Cache) against three existing

solutions (Random, Call Activity, Coverage without Cache) when all sensing tasks

are Type I. For this scenario, we consider infinite and passive cache.

In the first set of simulations, we fix the parameter λ of the coming task stream to

200 and coverage threshold γ to 0.6, while varying the number of candidate partici-

pant from 100 to 500. Figure 14 shows the performance comparison of four different

algorithms. Figure 14(a) shows that all methods have similar fulfilled task ratios,

since all of them will keep add participants until the expected fulfilled ratio reaches

the requirement. With more candidate participants, all of them can achieve better

fulfilled task ratio since you have more choices. However, as shown in Figure 14(b),

the coverage based solutions have much fewer selected participants than the other two
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Figure 16: Results under Scenario A, when n = 300, λ = 200 and γ = 0.4 to 0.6.

solutions and they are also stable with the increase of number of candidate partici-

pants. This shows the advantage of prediction of coverage in participant selection. In

addition, the coverage-based algorithm with caching could select fewer participants

than the one without caching. That is because when a task comes to the system,

it may already be covered by some selected participant via caching. Thus the sys-

tem may not assign or assign fewer participants to this task. Note the advantage

of caching is not significant here, but it is mainly due to the sparseness of the D4D

dataset. Figure 14(c) shows the portion of fulfilled tasks by either cached records

from previous selected participants or by newly assigned participants in the method

of Coverage with Cache. The caching data contributed to 10% to 30% coverage.

In the second set of simulations, we fix the number of candidate participant at 300

and coverage threshold γ to 0.6, while varying the parameter λ of the coming task

stream from 100 to 300. Figure 15 shows the performance comparison of four different

algorithms. Clearly, the number of tasks also affects the results. More tasks need

more selected participants to fulfill. The four algorithms still have similar fulfilled

task ratios but the method of Coverage with Cache uses the minimum number of

participants.
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Figure 17: Results in Scenario B when λ = 200, γ = 0.6 and n = 100 to 500.
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Figure 18: Results in Scenario B when n = 300, γ = 0.6 and λ = 100 to 300.

Last, we also test different values of the coverage threshold γ (as shown in Fig-

ure 16). Both the fulfilled task ratio and the number of selected participants increase

as the the threshold increases. In other words, high coverage requirements lead to

higher fulfilled task ratios with larger selected participant sets.

4.4.4 Performance under Scenario B

Next we consider Scenario B with infinite cache, where tasks could be either Type

I or Type II. We perform the same three sets of simulations as we did for Scenario

A. We test both active caching and passive caching. Figures 17 to 19 are the results

for the three sets of simulations, respectively. From these results, we can draw the

following conclusions.

(1) The fulfilled task ratio of Active Caching is about 60 percent more than that of

Passive Caching (Figures 17(a) to 19(a)). Recall that in Scenario B there are Type
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Figure 19: Results in Scenario B when n = 300, λ = 200 and γ = 0.4 to 0.6.

II sensing tasks which cannot be fulfilled by the passive caching. But the passive

caching can dynamically assign participants to future coming tasks which leads to

higher fulfilled ratios. But the cost of such advantage is more participants selected to

perform the sensing tasks (Figures 17(b) to 19(b)).

(2) Similar to Scenario A, as the number of task or the coverage threshold increases,

the number of selected participant increases (Figure 18(b) and Figure 19(b)). In

addition, the number of selected participants decreases as the number of candidate

participants increases (Figures 17(b)).

(3) The fulfilled tasks contributed by active caching could be about 40 ∼ 60% of

the total fulfilled tasks (Figures 17(c) to 19(c)). This again shows the advantage of

active caching due to Type II tasks.

4.4.5 Performance with Different Caching Strategies

Now we test different caching strategies when the cache storage has limited space

(finite cache). Three different caching strategies are implemented: random, FIFO,

and coverage-based. We set the size of data storage D = 500, i.e., at most 500 records

can be cached in the storage at any time. Figures 20 to 22 show the performance of

these three strategies. It is obvious that the strategy based on coverage can achieve
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Figure 20: Results of different caching strategies when λ = 200, γ = 0.5 and n = 100
to 500.
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Figure 21: Results of different caching strategies when n = 300, γ = 0.5 and λ = 100
to 300.

the best fulfilled task ratios with fewest selected participants. Also in term of the

coverage ratios with caching, the hitting rate of coverage based method is as twice

as much that of the other two caching strategies. Clearly, it still effective to use

estimated coverage as the metric in caching strategy.

4.4.6 Performance with Different Caching Sizes

In the last set of simulations, we vary the size of sensing data space D while fix

the other parameters to evaluate the affection of caching size. Figure 23(a) shows

that the total fulfilled task ratio increases when the size of the data storage space

increases. Moreover, the increasing of cache space size leads to fewer participants

selected (in Figure 23(b)). The reason is that more space for sensing records means

more chance for effective records being utilized. Figure 23(c) shows that the hitting
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Figure 22: Results of different caching strategies when n = 300, λ = 200, γ = 0.4 to
0.6 and D = 500.
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Figure 23: Results of different caching size when n = 300, λ = 200, γ = 0.5 and D =
300 to 700.

rates of different caching schemes are relevantly stable.

4.5 Summary

In this work, we introduce a new MCS system with caching capability, and study

a dynamic participant selection problem for heterogeneous sensing tasks in such a

system. The caching component enables new online participant selection algorithm

which can predict the future tasks and dynamic assign participants based on esti-

mated coverage improvement. In addition, when the caching space is full, a coverage

based caching strategy can be used to make smart decision on which cached data to

drop. Overall, the newly introduced mobile crowd sensing with caching can signifi-

cantly use less selected participants to achieve similar level of probabilistic coverage

than the previous best solution without caching. This is confirmed by extensive sim-
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ulations conducted with real-life D4D dataset. We leave further improvements on call

prediction as one of our future works.



CHAPTER 5: DATA COLLECTION THROUGH DEVICE-TO-DEVICE
COMMUNICATIONS IN MOBILE CROWD SENSING

5.1 Introduction

With the increasing popularity of mobile applications and services for smart de-

vices, we are currently facing the challenges of mobile big data explosion. Based on

the most recent Cisco’s report [38], mobile data traffic grew 74 percent in 2015 and

reached 3.7 exabytes per month at the end of 2015, which was nearly 4,000 times the

one in 2005. Cisco also forecasts that mobile data traffic will surpass 30.6 exabytes

per month in 2020. Even though smart devices only represent 36 percent of the total

mobile devices and connections, they account for 89 percent of the mobile data traffic.

The widespread availability of smart devices equipped with a rich set of built-in sen-

sors has also enabled a new sensing paradigm, mobile crowd sensing (MCS) [33], for

collecting and sharing sensing data from surrounding environment. MCS have been

widely used for different sensing applications, such as public safety [10, 39] , traffic

planning [12, 14], localization [40, 41], environment monitoring [16, 17], and urban

dynamic mining[8, 9]. In the same time, this new sensing paradigm makes the mobile

data explosion severer.

The current cellular networks do not have enough capacity to support all of the fast-

growing mobile big data from these smart devices and Internet of Things. Different

offloading solutions (such as WiFi networks [42, 43] or femtocells [44]) have been
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adopted. According to Cisco [38], fifty-one percent of total mobile data traffic was

offloaded onto the fixed network through Wi-Fi or femtocell in 2015, and this is the

first time offload traffic exceeded cellular traffic. Recently, offloading cellular traffic

through opportunistic device-to-device (D2D) communications [45, 46, 47] among

mobile phones becomes a new and possible solution. Compared with current WiFi or

femtocell solutions, this method uses occasional D2D contact opportunities to deliver

data rather than the fixed network infrastructure. The major advantage is low cost

and easy to deploy. Han et al. [45] study how to select the initial set of mobile users

to push the content to all users in the networks via D2D, and their proposed heuristics

can improve the delivery efficiency and offload a large fraction of data from the cellular

network. Li et al. [46] study the problem of multiple mobile data offloading through

D2D among different data subscribers under resource constraints. Zhu et al. [47]

study offloading peer to peer traffic among mobile users with D2D relays. In this

work, we focus on offloading data collection for mobile sensing data via D2D relays

instead broadcasting traffic from the service provider to all subscriber users (as in

[45, 46]) or peer-to-peer traffic between any two users (as in [47]).

In most existing mobile sensing systems [21, 19, 20, 34, 48], the sensing data is

collected via cellular networks with the assumption that the size of sensing data

is not large. However, with the new types of multimedia sensing (videos, audios,

high resolution images, real time streaming, etc.) and increasing number of sensing

devices (smart phones, smart watches, smart glasses, smart meters, smart vehicles,

RFIDs, etc.), the amount of mobile sensing data grows to a scale that traditional

cellular methods may not handle. Wang et al. [49] first consider leveraging the delay-
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tolerant mechanisms by offloading the data to Bluetooth/WiFi gateways or data-plan

users. The major goal for their method is to reduce the energy consumption and data

cost of data-plan users. Karaliopoulos et al. [50] consider a joint user recruitment

problem for both sensing and data collection, where the data collection is done via

D2D communications. They formulate the selection of users as a minimum cost set

cover problem and propose greedy heuristics to solve it. However, the solution has

large time complexity due to the huge search space over all space-time paths across

the network, which makes it not suitable for large-scale data collection. In this work,

we focus on the data collection phase of mobile data sensing by carefully selecting a

few mobile participants as relay nodes to help with data propagation via D2D relays.

By doing so, we limit the search space and make our algorithm more efficient. In

addition, since we use multiple space-time paths for data collection from the source

(in [50] only one space-time path is selected for one source), our method can achieve

better delivery ratio too. We also consider the joint problem where the selected

participants perform both sensing and data collection.

In summary, in this work, we study how to select a small subset of participants as

relaying (or/and sensing) devices so that the data propagation via these D2D relays

can achieve certain level of delivery ratio in mobile crowd sensing. We formulate the

problem as various optimization problems in Section 5.2. Then we propose simple

but efficient solutions in Section 5.3 and Section 5.4 for relay selection and joint

relay/sensing selection, respectively. In Section 5.5, we conduct experiments over

a real-life mobile trace to confirm the effectiveness of the proposed algorithms. A

preliminary version of this work appeared in [51].
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5.2 System Model and Problem Statement

5.2.1 System Model

We consider the relay node selection problem for sensing data collection. We as-

sume that a mobile user set User = {u1, u2, ..., un}, which includes n mobile users

who are willing to participate into sensing and the delivery of the sensing data. This

candidate set is assumed very large given the popularity of smartphones. Each mobile

users can visit m different locations, denoted as Location = {l1, l2, ..., lm}. The whole

time period is evenly divided into T sequential time slots, thus time t ∈ [1, T ]. Each

user has her own visiting pattern over both temporal and spacial domains. We use

P to denote the visiting probability matrix of all users, which its element p(ui, lj, t)

(or p(i, j, t) for short) represents the probability of mobile user ui to make a visit at

location lj during time slot t. There are various methods to estimate the visiting prob-

ability of each user based on historical traces, and our proposed solution can use any

such existing method. In our simulations, we utilize a simple statistic based method,

which is illustrated in Section sec:exp1. We assume that these visiting probabilities

are independence to the others for each particular mobile user. We also assume that

there is a set of sensing tasks Task = {q1, q2, ..., qo}, which includes o sensing tasks.

Each task i has a tuple of target (l(qi), t(qi)), which represents the temporal and

spacial target of this task. Note here each task only has a single interest point in the

temporal and spacial domain, however, it could be easily extended to the case where

each task has multiple interest points.

To enable device-to-device communications, we assume that two nodes can discover
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each other and transfer sensing data to each other when they both visit the same

location within a particular time slot. For each piece of sensing data, it is generated

at a source node s (a mobile device which perform the sensing task and generate the

data), and needs to be delivered to a sink node d (a mobile device or a static device at

certain location). For simplicity, we only focus on the selection of relay nodes for the

collection of sensing data to a single sink. However, all proposed methods are general

enough to handle multiple sources/sinks. To enhance the delivery probability, we

assume that restricted flooding (i.e., Epidemic [52]) is used within the selected relay

nodes. Fig. 24 shows an example of data delivery via multi-hop D2D relays. In

this figure, dashed curves are trajectories of devices, a circle represents an encounter

between two devices, and the device in black indicates that it has a copy of the

data. The one marked with “source” is the device performing sensing and generating

the data, and the sink is an access point or tower. During the encountering among

multiple devices, the data could be transmitted from one device to another. Through

this type of multi-hop D2D transmission, sensing data could be delivered to a sink

which is not able to directly communicate with the source. Note there we assume the

data collection is through only device-to-device communications, while in reality, a

hybrid solution (combining D2D and direct communication with cellular tower) could

be desired.

5.2.2 Relay Selection Problems

First, we only consider the participant selection for D2D data collection in MCS.

For simplicity, we only focus on the selection of relay nodes for the collection of



62

Figure 24: Example of data delivery via multi-hop D2D communications.

a single piece of sensing data. However, the method is general enough to handle

multiple data pieces. The key challenging is how to identify a small set of relay nodes

from the huge candidate pool User while guarantee certain level of data delivery.

This is different with traditional DTN routing, in which relay nodes are dynamically

selected during the routing. We can formally define the relay selection problem as

the following optimization problem.

Definition 2. Given the volunteering users User (with their historical call and location

traces), and the source s (who generates the sensing data) and destination d of the

sensing data, Minimum Relay Problem is to find a subset U(s, d) of mobile users from

User as the relay nodes with the objective to

min |U(s, d)|

s.t. pr(U(s, d), s, d) ≥ γ.

in which pr(U(s, d), s, d) is denoted as the probability that the sensing data can be

delivered to its destination sink and γ represents a threshold of the probability.

Similarly, the optimization problem can be defined as another formulation as well.
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Definition 3. Given the volunteering users User (with their historical call and location

traces) , and the source s and destination d of the sensing data, K Relay Problem is

to find a subset Us,d of K mobile user from User as the relay nodes with the objective

to

max pr(U(s, d), s, d)

s.t. |U(s, d)| = K.

Note that both versions of the problem are computational challenging, since even

with perfect predication of visiting patterns this problem can be reduced to a set

cover problem which is NP-hard. Therefore, in the next section, we are looking for

efficient heuristics to tackle them.

5.2.3 Joint Sensing and Relay Selection Problems

In the problems above, we focus on the selection of participants who will only

participate the D2D data collection, by assuming the participants for sensing tasks

have been selected and fixed via existing participant selection methods [21, 19, 20,

34, 48]. However, it is very natural to consider the selection of the same group

participants for both sensing and data collection purposes. Then, we can define the

following joint problems.

Definition 4. Given the volunteering users User (with their historical call and location

traces) , and the sensing task q and destination d of the sensing data, Minimum

Sensing & Relay Problem is to find a subset U(q, d) mobile user from User as the
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selected participants with the objective to

min |U(q, d)|

s.t. ps(U(q, d), q, d) ≥ γ.

in which ps(U(q, d), q, d) is denoted as the probability that the target information

can be collected and the sensing data can be delivered to the destination sink.

Definition 5. Given the volunteering users User (with their historical call and location

traces) , and the sensing task q and destination d of the sensing data, K Sensing &

Relay Problem is to find a subset U(q, d) of K mobile user from User as the selected

participants with the objective to

max ps(U(q, d), q, d)

s.t. |U(q, d)| = K.

Note the problems above are defined for a single sensing task q. We can also con-

sider the optimization over the whole sensing task set Task, i.e., we select the common

set of participants U(Task, d) to perform all sensing tasks in Task. The only differ-

ence in the definitions is using
∑

qi∈Task ps(U(Task, d), qi, d) ≥ γ as the constraint

in the Minimum Sensing & Relay Problem or max
∑

qi∈Task ps(U(Task, d), qi, d) as

the optimization goal of the K Sensing & Relay Problem. All of these problems are

obviously NP-hard.

5.3 Relay Selection for D2D Collection

Recall that we use a flooding/epidemic strategy to deliver the sensing data via

multiple hops among selected relay nodes. The selection criteria for relay nodes may
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rely on how to estimate the delivery probability of a particular group of relay nodes.

To achieve this, we first introduce a space-time graph based method, then we propose

our greedy based algorithm for relay node selection.

5.3.1 Estimation of Delivery Probability via Space-Time Graphs

To capture the evolving characteristics in both spacial and temporal spaces, we

adopt the space-time graph [53, 54] to model the time-evolving D2D links among

selected relay nodes. Let U(s, d) = {u1, · · · , ur} is the relay nodes selected for source

s and sink d. We can define a space-time graph GU(s,d) = (V , E), which is a directed

graph defined in both spacial and temporal spaces. Hereafter, we simply use G to

represent GU(s,d). In G, T + 1 layers of nodes are defined and each layer has r + 2

nodes (corresponding to {u0 = s, u1, · · · , ur, ur+1 = d}), thus the whole vertex set

V = {utj|j = 0, · · · , r + 1 and t = 0, · · · , T} and there are (r + 2)(T + 1) nodes in

total. Fig. 25 illustrates the corresponding space-time graph for the network shown

in Fig. 24. Two kinds of links (spacial links and temporal links) are added between

consecutive layers in the edge set E . A temporal link
−−−−→
ut−1
j utj (those horizontal links in

Fig. 25) connects the same node uj across consecutive (t− 1)th and tth layers, which

represents the node carrying the data in the tth time slot. A spacial link
−−−−→
ut−1
j utk

represents a forwarding possibility from one node uj to its encountering node uk in

the tth time slot (i.e., uj encounters uk in time slot t). By defining the space-time

graph G, any communication operation in the time-evolving network can be simulated

on this directed graph. E.g., the propagation path in Fig. 24 is highlighted in Fig. 25.

To estimate the delivery probability, we need first define the link probability p(e)
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Figure 25: Space time graph: the corresponding space-time graph G of Fig. 24, where
a space-time path from the source s to the sink d is highlighted.

of each link e ∈ E), i.e. the probability of existing such a link. For each temporal

link
−−−−→
ut−1
j utj, its link probability is set to 1 since a node can always hold the data. For

a spacial link
−−−−→
ut−1
j utk, its link probability is calculated as follows.

p(
−−−−→
ut−1
j utk) = (1−

m∏
i=1

(1− p(j, i, t)p(k, i, t))) · r(
−−−−→
ut−1
j utk),

where 1 −
∏m

i=1(1 − p(j, i, t)p(k, i, t)) is the probability that node uj and uk are co-

located at any location and r(
−−−−→
ut−1
j utk) is the link reliability (representing the successful

transfer over the encounter). If uk is a location lk instead of a mobile user, p(
−−−−→
ut−1
j utk) =

p(j, k, t) · r(
−−−−→
ut−1
j utk).

We then define the delivery probability of a space-time graph G is pG(s0, dT ) regard-

ing the source s and destination d. It is the probability that a packet sent from node

s over the routing topology G reaches node d under flooding-based routing. Similar

definition is used in [55] as broadcast reliability. To efficiently calculate this delivery

probability is not an easy job. Actually, it is known that the computation of such
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reliability over general graphs is a problem of NP-hard [56]. Fortunately, the nice

loop-free property of our space-time graph model allows us to compute the reliability

very efficiently with a dynamic programming (DP) algorithm [55]. Basically, for any

node uti in G, its delivery probability from the source node s can be calculated as

follows:

pG(s0, uti) = 1−
∏

−−−−→
ut−1
j uti∈G

(1− pG(s0, ut−1
j )p(

−−−→
ut−1
j uti)).

Given the structure G defined by r relay nodes, starting from a source node, the

dynamic programming algorithm can compute the delivery ratio of all other nodes

within time of O(rT (log(rT ) + r)). Notice that the time complexity of DP algorithm

is the same with that of Dijkstra’s algorithm. Given the relay node set U(s, d) for

source s and sink d, we can estimate the delivery probability based on the space-time

graph G as follows: pr(U(s, d), s, d) = pG(s0, dT ).

5.3.2 Relay Selection Algorithm

Then the relay selection algorithm is quite straightforward. In each step, we greed-

ily select the user ui which leads to maximal improvement of pr(U(s, d), s, d) into

U(s, d). Repeat this until either the delivery probability reaches the threshold γ for

minimum relay problem or U(s, d) has K users for k relay problem. However, there is

still a starting problem, since initially when U(s, d) is empty or just with a few users

the space time graph GU(s,d) may not be connected at all (i.e., pr(U(s, d), s, d) = 0).

In this case, adding any single user may not improve the delivery probability. There-

fore, instead of considering improvement of pr(U(s, d), s, d), we simply pick the user

who is the most active (in term of visited locations). Detailed algorithm is given as
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Algorithm 5 Relay Selection Algorithm

Input: potential user set User, visiting probability matrix P of all users in User,
the source s and the sink d.

Output: selected relay nodes U(s, d).
1: U(s, d) = ∅
2: while GU(s,d) is not connected do
3: Choose the most active user and add it into U(s, d)
4: end while
5: while |U(s, d)| < K or pr(U(s, d), s, d) < γ (for K relay problem or minimum

relay problem, respectively) do
6: for all ui ∈ User and /∈ U(s, d) do
7: Calculate the improvement of pr(U(s, d), s, d) by adding ui in to U(s, d) (Sec-

tion 5.3)
8: end for
9: Select the user ui with the largest reliability improvement and add it into U(s, d)
10: end while
11: return U(s, d)

Algorithm 5.

Next we consider the time complexity of Algorithm 5. Since the complexity of

initial step to form a connected space time graph (lines 2−3) is much smaller than the

complexity of relay selection step (lines 4− 7), we only focus on the latter. First, the

while loop will be performed K rounds in K relay problem and n rounds in minimum

relay problem since in the worst case we need to select all participants to achieve the

threshold. Second, the for loop is bounded by n rounds. Third, the complexity of

DP algorithm for the estimation of delivery probability is O(rT (log(rT ) + r)) and r

is the size of selected relay group which is bounded by K or n in K relay problem and

minimum relay problem. Therefore, the time complexity of Algorithm 5 is bounded

by O(nKT (log(KT ) +K)) or O(n2T (log(nT ) +n)) for K relay problem or minimum

relay problem, respectively.
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5.4 Joint Sensing and Relay Selection

When we consider the joint sensing and relay selection problems (defined in Def-

inition 4 and Definition 5), we have to first estimate the sensing capability of each

participants and then integrate it into the participant selection procedure.

5.4.1 Estimation of Sensing & Delivery Probability

Recall that each task has a target tuple of location and time. Therefore, given a

specific task qi and a set of selected participant U(qi, d), the probability that this task

can be performed by one participant uj ∈ U(qi, d) can be obtained. Basically, the

probability of uj making a visit to location l(qi) at time t(qi) is p(uj, l(qi), t(qi)).

Here, we assume that the probability of sensing and data delivery is independent to

each another. Therefore, the probability of sensing and delivery of a sensing task qi

with a particular source can be calculated by multiply the sensing probability (at time

t(qi)) with the delivery probability (from time t(qi) to T over the space-time graph).

Thus, given a sensing task qi and a selected participant uj ∈ U(qi, d) as the source

(the sensing performer), the sensing & delivery probability from this participant is

ps(uj, U(qi, d), qi, d) = p(uj, l(qi), t(qi)) · pG(ut(qi)j , dT )

Then overall sensing & relay probability of task qi by U(qi, d) is:

ps(U(qi, d), qi, d) = 1−
∏

uj∈U(qi,d)

(1− ps(uj, U(qi, d), qi, d)).
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Algorithm 6 Sensing and Relay Selection Algorithm

Input: potential user set User, visiting probability matrix P of all users in User,
the sensing task q and the sink d.

Output: selected relay nodes U(q, d).
1: U(q, d) = ∅
2: while GU(q,d) is not connected do
3: Choose the most active user and add it into U(q, d)
4: end while
5: while |U(q, d)| < K or ps(U(q, d), q, d) < γ (for K sensing & relay problem or

minimum sensing & relay problem, respectively) do
6: for all ui ∈ User and /∈ U(q, d) do
7: Calculate the improvement of ps(U(q, d), q, d) by adding ui in to U(q, d) (Sec-

tion 5.4)
8: end for
9: Select the user ui with the largest sensing and relay improvement and add it

into U(q, d)
10: end while
11: return U(q, d)

5.4.2 Sensing and Relay Selection Algorithm

The participant selection algorithm basically is still the same. The only differ-

ence is now the joint sensing and relay probability is considered instead of relay

probability. Algorithm 6 shows the detailed algorithm. If we consider the selection

over the whole sensing task set Task, the improvement of sensing and relay prob-

ability should be over the summation of all sensing tasks, i.e. the improvement of∑
qi∈Task ps(U(Task, d), qi, d). Since Algorithm 6 is similar to the one for relay selec-

tion, the time complexity of this algorithm is bounded by O(nKT (log(KT ) +K)) or

O(n2T (log(nT ) + n)) for K relay problem or minimum relay problem as well.

5.5 Experiments over D4D Dataset

To evaluate the proposed algorithms, we conduct extensive simulations over D4D

dataset [24]. To make comparisons, we also implement two simple heuristics: random
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selection and activity-based selection. Random selection randomly chooses a user at

each step until the algorithm ends, while activity-based selection greedily chooses a

user who is most active (visiting most locations) at each step. In our simulations,

we use the real delivery ratio and the number of selected users as the metrics of

measurement.

5.5.1 Experiment Settings

We select 20 most popular towers, i.e. the towers with largest number of associated

records, to implement our simulations. Thus, m = 20. We choose a 100 candidate

user set as User, i.e., n = 100. For each sensing task, we randomly generate its

request at one of the towers and at one of the time slots from 1 to T . We assume

that the whole sensing period T is one week and treat one hour as the smallest time

unit. For each data collection task, we randomly select one location as the sink. If

two users make phone calls associated with same tower at same time, we assume that

they are close to each other and could transfer data between them via D2D links. For

simplicity, we set the link reliability as 0.5, i.e., the successful transferring over a pair

of nodes is 50% during their encountering.

To calculate the probability p(ui, lj, t) of a particular user ui visiting a location lj

at certain time t, we have to leverage the knowledge from the historical call traces.

Here, we assume that for each user we have multiple rounds of call traces (e.g., X

weeks), and each round of data denoted as Di, i = 1, · · · ,W . Let cx(ui, lj, t) indicate

whether ui made one or more phone call at lj and t in Dx (1 if it made, 0 otherwise).
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Then we simply estimate the visiting probability as follows,

p(ui, lj, t) =

∑W
x=1 cx(ui, lj, t)

W
.

Instead of this simple model, we can also consider Markov model [22] or Poisson

process [19].

5.5.2 Experiments on D2D Data Collection

We first test our proposed algorithm (Algorithm 5) for D2D data collection of sensed

data (K relay problem and minimum relay problem). For each data collection task,

we randomly select a mobile user as the data source. For each set of experiments, we

test 15 tasks and 100 rounds per tasks. The average performances over 1, 500 rounds

are reported.

In the first set of simulations, we consider the K relay problem. We vary the

number of selected relay nodes from 10 to 20. Fig. 26(a) shows the delivery rate

achieved by each algorithm. It is clear that our proposed algorithm achieves the

highest delivery ratio among the three algorithms when the number of selected relay

nodes are the same. In addition, we can find that the delivery ratio of all the three

algorithms increase as the number of selected relay nodes increase. This is obvious

since more selected relay nodes provide more possible routes for the data to reach the

sink node. Fig. 26(b) shows the comparison between expected delivery ratio and real

delivery ratio of our proposed algorithm. The real delivery ratio is always lower than

the expected one since the estimation is based on the historical records. Although it

is not 100 percent accurate, the expected delivery ratio still provides us the guidance
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Figure 26: Results for K relay problem where K = 10, 15 or 20.
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Figure 27: Results for minimum relay problem where γ = 0.6, 0.75 or 0.9.

to pick the relay nodes.

In this set of simulations, we evaluate the performance of algorithms over minimum

relay problem. Here we vary the delivery ratio threshold γ from 0.6 to 0.9. Fig. 27(a)

shows that the delivery ratios of the three algorithms are similar to each others.

Recall that all algorithms will continue add new relay nodes until the estimated

delivery probability reach the threshold. Since the threshold is the same for the three

algorithms, the overall delivery ratios are similar. However, in Fig. 27(b), we can see

that the number of selected relay nodes of our algorithm is much fewer than those

of the other algorithms when achieving similar level of delivery ratios. This confirms

that our proposed algorithm is more efficient than the other two simple heuristics.
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Figure 28: Results for K sensing & relay problem with a single sensing task where
K = 10, 15 or 20.
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Figure 29: Results for minimum sensing & relay problem with a single sensing task
where γ = 0.6, 0.75 or 0.9.

5.5.3 Experiments on Joint Sensing and D2D Relay

We also test our proposed algorithm (Algorithm 6) for joint sensing and relay

problems. Here we consider two cases: (1) the optimization of participant selection

is done per task based; and (2) the optimization of participant selection is done for

multiple tasks. For each set of experiments for the first case, we test 15 different

tasks and 100 rounds per task. For each set of experiments for the second case, we

test several task sets with various numbers of tasks and perform participant selection

over 100 round per task set. For each sensing task, its interested location is generated
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Figure 30: Results for K sensing & relay problem with 5 sensing tasks where K = 10,
15 or 20.

randomly.

For K sensing & relay selection, we vary the number of selected relay nodes H from

10 to 20. Fig. 28(a) shows the delivery rate achieved by each algorithm. Similar to the

results of the experiments on K relay selection, our proposed algorithm achieves the

highest delivery ratio among the three algorithms when the number of selected nodes

are the same. The delivery ratio increases as the number of selected participants

increases. Fig. 28(b) also shows that there are still differences between the expected

delivery ratio and real delivery ratio of our proposed algorithm since the estimation

is based on the historical records. In the simulations of minimum sensing & relay

selection, we vary the delivery ratio threshold γ from 0.6 to 0.9. Fig. 29(a) shows that

the three different algorithms achieve similar delivery ratio under the same delivery

ratio threshold. However, our proposed algorithm selects fewer participants than

those of the other two algorithms (Fig. 29(b)).

We then test our proposed algorithm in multi-task scenario where the selection of

participants is optimized for the whole task set Task. Firstly, we test our algorithm

over task sets with 5 sensing tasks. Fig. 30 and Fig. 31 show the performance of K
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Figure 31: Results for minimum sensing & relay problem with 5 sensing tasks where
γ = 0.6, 0.75 or 0.9.

sensing & relay problem and minimum sensing & relay problem respectively. The

trends are similar to those in the single-task cases.

We also vary the number of sensing tasks in Task from 1 to 10 to evaluate the

performance over different size of task set. Fig. 32(a) shows the changing of delivery

ratio when we fix the K to 20 and γ to 0.6 for K sensing & relay problem. We find

that the delivery ratio drops when the number of tasks increases. Fig. 32(b) shows

the number of selected participants increases along the increasing of tasks when we

fixed γ in minimum sensing & relay problem. Both of the trends above are reasonable

since more tasks usually take more participants to perform and relay the data. One

one hand, it needs more people to perform the sensing tasks. On the other hand, it

also needs more possible path to relay the sensing data to the destination.

5.6 Summary

In this work, we investigate the feasibility of collecting data packets from mo-

bile devices in mobile sensing through device-to-device communications, by carefully

selecting the subset of participant devices. We formulate the problem as several op-
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Figure 32: Results for K sensing & relay problem (K = 10) and minimum sensing &
relay problem where the number of sensing tasks o = 1, 5 or 10.

timization problems (K relay selection, minimum relay selection, K sensing & relay

selection, and minimum sensing & relay selection) and propose simple greedy algo-

rithms to solve them. The proposed algorithms use historical information to obtain

the estimated sensing and delivery probability of a given participant set and greedily

select the participant based on this estimated probability. Our experiments over the

real-life D4D mobile traces confirm the effectiveness of the proposed algorithms.

As for future works, we plan to continue our study on data collection in mobile

sensing along the following directions: (1) hybrid data collection schemes which com-

bine D2D and direct communications; (2) implementation of the proposed methods

over a real testbed with mobile devices and experiments with real world sensing tasks;

and (3) modeling of energy consumption in mobile sensing and designing new energy

efficient solutions.



CHAPTER 6: MULTI-EXPERTISE AWARE PARTICIPANT SELECTION IN
MOBILE CROWD SENSING VIA ONLINE LEARNING

6.1 Introduction

Smart mobile devices with embedded sensors have been developing rapidly, which

enables a new sensing paradigm mobile crowding sensing (MCS). By leveraging large

number of mobile device owners, MCS can collect tremendous data without addi-

tional infrastructure cost [7, 33]. There are also advantages such as providing better

temporal and spacial coverages, observing unpredictable events, and integrating hu-

man intelligence compared with traditional wireless sensor networks. Several MCS

applications have been used in real world such as dynamic behavior mining [8, 9],

environment monitoring [15, 16, 17], traffic planning [11, 12, 13, 14] and public safety

monitoring [10]. MCS brings convenient, flexible and efficient solutions for large-scale

heterogeneous sensing tasks. However, it also brings new challenges into the system

design due to its large-scale tasks and participants. One of the most challenging

problems is the participant selection problem.

It is challenging to select participants from a large candidate pool to perform het-

erogeneous sensing tasks. There are different constraints needed to be taken into

consideration such as coverage [63, 34, 64], cost [18, 21, 65] and quality [66, 67]. In

most existing participant selection methods, the MCS platform usually needs the

participant information, such as their mobility patterns and sensing qualities, to se-
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lect the appropriate participants for certain tasks more efficiently in many real world

scenarios. However, it is difficult to for MCS system to retrieve such participant in-

formation due to lack of history records or privacy concerns [68, 69, 70]. Therefore,

how to self learn the valued information of the participants and utilize it to improve

the performance of the selection becomes a critical issue in large-scale MCS systems.

There are several studies begin to focus on such type of learning problems [71, 72,

73] in MCS. However, [71] only considers learning sensing quality for homogeneous

sensing tasks, where the sensing quality is modeled as random normalized variables.

[72] focuses on the online labeling problem in which the true label is unknown. It

only considers homogeneous sensing tasks with one-dimension metric. [73] consider

heterogeneous tasks but learn the participant’s expertise based on semantic analy-

sis. Instead, the real heterogeneous tasks could have different temporal and spatial

requirements, and the participant’s capability could also include the data collection

performance (such as time delay caused by different access methods or availabilities).

In other words, the participant may have multi-expertise to perform sensing tasks.

Therefore, in this work, we study the learning method for a dynamic participant

selection problem with multi-expertise (both sensing probability and time delay).

To address this issue, we formulate and investigate a dynamic participant selection

problem (PSP) in this work. In our MCS model, the selection mechanism selects the

participants for heterogeneous sensing tasks on both spatial and temporal domain.

The selected participant has unknown probability to perform the assigned sensing

tasks. After performing sensing tasks, the participant may utilize different ways

to upload collected sensing data, such as WiFi, Device-to-Device (D2D) or cellular
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platform so that they could be considered as candidates. Each par-
ticipant pi has her own capability to perform each speci�c type of
sensing tasks. This capability can be treated as the success proba-
bility of the participant for such sensing tasks. Since we consider
both sensing and uploading in our model, the capability can be
represented by a tuple (Pri ,�i ) for a given type of tasks sj , in which
Pri represents the expected mobility pattern of participant pi (reach
l (sj ) at t (sj ) during the sensing stage) and �i represents the expected
time forpi to upload the collected sensing data during the uploading
stage after she succeeds collecting data.

This capability is critical and necessary knowledge for partici-
pant selection. However, the capability of each participant is un-
known to the platform. We can only observe the values of those
random variable outputs after each time the selected participants
performing their sensing tasks. In this paper, we assume that the
participants are truthful and trusted (i.e., they will report if they
fail to preform the sensing tasks).

2.1.3 Participant Selection Mechanism. In our proposed MCS
system, MCS tasks arrive at the platform at each discrete time slot
t = 0, 1, ...,M . In each time slot, the selection mechanism could
communicate with the selected participants to assign MCS tasks
to them. For each task sk , the selection mechanism selects a subset
Pk of P to perform it. Here we denote �k = (�1,k ,�2,k , ...,�N ,k )
as an indicator vector, in which �i,k 2 {0, 1} indicates whether
participant pi is selected for task sk . If so, �i,k = 1; else �i,k = 0.
Furthermore, we de�ne � = {�1,�2, ...�M } as all the selections
made till task sM . The goal of participant selection is to maximize
the expected utility under budget constraint. The detailed de�nition
of utility and problem formation are provided in Section 3 and 4.

2.1.4 Rewards. In this paper, all the participants are associated
with a global reward r , i.e., if a participant is selected for a task at
certain time slot, it will be rewarded of r . In addition, each switch
of selected user may cost additional expense of the platform. For
example, if participant pi is selected to perform task sj while not
be selected for the next task sj+1, then an additional compensation
c has to be payed to pi . This is because in real world applications,
participants may have a contract with MCS platforms so that they
could receive rewards for multiple tasks. If the platform decides to
terminated this contract with a user, it has to pay an compensation
to that user. Another possible switch cost is due to the additional
initialization cost when the participant is selected, such as certain
security initialization (e.g., key distribution). Note that previous
works have never considered such switch costs, thus this is a unique
contribution of this work.

2.2 Model Capability of Mobile Participants
As discussed above, there are two unknown attributes of capability
of mobile participants in this paper, one related to mobility pattern
during sensing stage and the other related to time delay during
o�oading stage. We will discuss them respectively in the following
subsections.

2.2.1 Sensing Probability. We use Pri to present the visiting pat-
tern of each participant pi over both spacial and temporal domains.
We assume that participant pi has her own probability Pri visiting

the sensing target at l (sk ) at certain time t (sk ), we call this probabil-
ity sensing probability. However, this probability is unknown to the
platform. Denoted by Di,� the random variable indicates whether
participant pi visits the sensing target when she is selected for the
� th time. Then Di,� is subject to a Bernoulli distribution B (1, Pri ).
We can still estimate this sensing probability Pri by leveraging the
historical observations of Di,� . Here we assume the number of
participant pi being selected till time t is Ni,t . Then the estimated
sensing probability P̃ri can be obtained by the following:

P̃ri =

PNi,t
�=1 Di,�

Ni,t
. (1)

2.2.2 Time delay. In this paper, we assume that the selection
mechanism can assign MCS tasks to participants at any time by
sending a task request. After the selected participants perform the
sensing tasks, they have to upload the collected data so that they can
receive their rewards. There is a time delay before the participants
complete uploading their sensed data. We de�ne the time delay as
the time from the ending of the sensing until the beginning of the
data uploading as:

� = tU ploadin� � tSensin� (2)

On one hand, some participants may not upload the sensed data
through cellular networks, but wait for some low cost networks
access (such as WiFi or D2D relays). On the other hand, it takes time
to upload the data with a large size (note that the size of sensed data
could be much larger than the size of sensing task). Di�erent partic-
ipants may have di�erent network access patterns and bandwidths,
thus each participant pi has her own delay pattern on uploading
MCS tasks. We assume that each participant pi is associated with
a set of random variables Ti,� . Variable Ti,� indicates the random
delay time of pi in its � -th selection. Each variable is independent
and subject to a known distribution with an unknown mean �i . To
estimate the time delay of each participant pi , we have:

�̃i =

PNi,t
k=1 Ti,k

Ni,t
. (3)

This time delay represents the computing capability and encounter-
ing frequency to WiFi APs or D2D relays of each participant, which
may vary among di�erent tasks. The participants with shorter de-
lay attribute has bigger probability to competing the uploading
collected data faster than the ones with longer delay attribute.

2.2.3 Participant Utility. Denoted by Ui,� , the utility of select-
ing a particular participant pi to perform sensing task at her � th
selection can be de�ned as follows:

Ui,� = Di,� /Ti,� . (4)

Here, a higher sensing probability and a shorter time delay lead
to higher utility. Ui,1,Ui,2, ... is subject to an distribution f (x ,ui )
with unknown expectation ui , in which ui = Pri/�i . Therefore, we
have

R +1
�1 x f (x ,ui )dx = ui .

Since the true values of Pri and �i are unknown and the estima-
tions of them are updated along the time, we have an empirical ˜Pr i
and �̃i for each pi at any time. Then we have the empirical expected
utility ũi at any time as:

pi
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both sensing and uploading in our model, the capability can be
represented by a tuple (Pri ,�i ) for a given type of tasks sj , in which
Pri represents the expected mobility pattern of participant pi (reach
l (sj ) at t (sj ) during the sensing stage) and �i represents the expected
time forpi to upload the collected sensing data during the uploading
stage after she succeeds collecting data.

This capability is critical and necessary knowledge for partici-
pant selection. However, the capability of each participant is un-
known to the platform. We can only observe the values of those
random variable outputs after each time the selected participants
performing their sensing tasks. In this paper, we assume that the
participants are truthful and trusted (i.e., they will report if they
fail to preform the sensing tasks).

2.1.3 Participant Selection Mechanism. In our proposed MCS
system, MCS tasks arrive at the platform at each discrete time slot
t = 0, 1, ...,M . In each time slot, the selection mechanism could
communicate with the selected participants to assign MCS tasks
to them. For each task sk , the selection mechanism selects a subset
Pk of P to perform it. Here we denote �k = (�1,k ,�2,k , ...,�N ,k )
as an indicator vector, in which �i,k 2 {0, 1} indicates whether
participant pi is selected for task sk . If so, �i,k = 1; else �i,k = 0.
Furthermore, we de�ne Θ = {�1,�2, ...�M } as all the selections
made till task sM . The goal of participant selection is to maximize
the expected utility under budget constraint. The detailed de�nition
of utility and problem formation are provided in Section 3 and 4.

2.1.4 Rewards. In this paper, all the participants are associated
with a global reward r , i.e., if a participant is selected for a task at
certain time slot, it will be rewarded of r . In addition, each switch
of selected user may cost additional expense of the platform. For
example, if participant pi is selected to perform task sj while not
be selected for the next task sj+1, then an additional compensation
c has to be payed to pi . This is because in real world applications,
participants may have a contract with MCS platforms so that they
could receive rewards for multiple tasks. If the platform decides to
terminated this contract with a user, it has to pay an compensation
to that user. Another possible switch cost is due to the additional
initialization cost when the participant is selected, such as certain
security initialization (e.g., key distribution). Note that previous
works have never considered such switch costs, thus this is a unique
contribution of this work.

2.2 Model Capability of Mobile Participants
As discussed above, there are two unknown attributes of capability
of mobile participants in this paper, one related to mobility pattern
during sensing stage and the other related to time delay during
o�oading stage. We will discuss them respectively in the following
subsections.

2.2.1 Sensing Probability. We use Pri to present the visiting pat-
tern of each participant pi over both spacial and temporal domains.
We assume that participant pi has her own probability Pri visiting
the sensing target at l (sk ) at certain time t (sk ), we call this probabil-
ity sensing probability. However, this probability is unknown to the
platform. Denoted by Di,� the random variable indicates whether
participant pi visits the sensing target when she is selected for the
� th time. Then Di,� is subject to a Bernoulli distribution B (1, Pri ).

We can still estimate this sensing probability Pri by leveraging the
historical observations of Di,� . Here we assume the number of
participant pi being selected till time t is Ni,t . Then the estimated
sensing probability P̃ri can be obtained by the following:

P̃ri =

PNi,t
�=1 Di,�

Ni,t
. (1)

2.2.2 Time delay. In this paper, we assume that the selection
mechanism can assign MCS tasks to participants at any time by
sending a task request. After the selected participants perform the
sensing tasks, they have to upload the collected data so that they can
receive their rewards. There is a time delay before the participants
complete uploading their sensed data. We de�ne the time delay as
the time from the ending of the sensing until the beginning of the
data uploading as:

� = tU ploadin� � tSensin� (2)

On one hand, some participants may not upload the sensed data
through cellular networks, but wait for some low cost networks
access (such as WiFi or D2D relays). On the other hand, it takes time
to upload the data with a large size (note that the size of sensed data
could be much larger than the size of sensing task). Di�erent partic-
ipants may have di�erent network access patterns and bandwidths,
thus each participant pi has her own delay pattern on uploading
MCS tasks. We assume that each participant pi is associated with
a set of random variables Ti,� . Variable Ti,� indicates the random
delay time of pi in its � -th selection. Each variable is independent
and subject to a known distribution with an unknown mean �i . To
estimate the time delay of each participant pi , we have:

�̃i =

PNi,t
k=1 Ti,k

Ni,t
. (3)

This time delay represents the computing capability and encounter-
ing frequency to WiFi APs or D2D relays of each participant, which
may vary among di�erent tasks. The participants with shorter de-
lay attribute has bigger probability to competing the uploading
collected data faster than the ones with longer delay attribute.

2.2.3 Participant Utility. Denoted by Ui,� , the utility of select-
ing a particular participant pi to perform sensing task at her � th
selection can be de�ned as follows:

Ui,� = Di,� /Ti,� . (4)

Here, a higher sensing probability and a shorter time delay lead
to higher utility. Ui,1,Ui,2, ... is subject to an distribution f (x ,ui )
with unknown expectation ui , in which ui = Pri/�i . Therefore, we
have

R +1
�1 x f (x ,ui )dx = ui .

Since the true values of Pri and �i are unknown and the estima-
tions of them are updated along the time, we have an empirical ˜Pr i
and �̃i for each pi at any time. Then we have the empirical expected
utility ũi at any time as:

ũi = P̃r i/�̃i . (5)

T������ 2.1. The successive selection of each participant pi prod-
ucts i.i.d. Participant Utility.
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both sensing and uploading in our model, the capability can be
represented by a tuple (Pri ,�i ) for a given type of tasks sj , in which
Pri represents the expected mobility pattern of participant pi (reach
l (sj ) at t (sj ) during the sensing stage) and �i represents the expected
time forpi to upload the collected sensing data during the uploading
stage after she succeeds collecting data.

This capability is critical and necessary knowledge for partici-
pant selection. However, the capability of each participant is un-
known to the platform. We can only observe the values of those
random variable outputs after each time the selected participants
performing their sensing tasks. In this paper, we assume that the
participants are truthful and trusted (i.e., they will report if they
fail to preform the sensing tasks).

2.1.3 Participant Selection Mechanism. In our proposed MCS
system, MCS tasks arrive at the platform at each discrete time slot
t = 0, 1, ...,M . In each time slot, the selection mechanism could
communicate with the selected participants to assign MCS tasks
to them. For each task sk , the selection mechanism selects a subset
Pk of P to perform it. Here we denote �k = (�1,k ,�2,k , ...,�N ,k )
as an indicator vector, in which �i,k 2 {0, 1} indicates whether
participant pi is selected for task sk . If so, �i,k = 1; else �i,k = 0.
Furthermore, we de�ne Θ = {�1,�2, ...�M } as all the selections
made till task sM . The goal of participant selection is to maximize
the expected utility under budget constraint. The detailed de�nition
of utility and problem formation are provided in Section 3 and 4.

2.1.4 Rewards. In this paper, all the participants are associated
with a global reward r , i.e., if a participant is selected for a task at
certain time slot, it will be rewarded of r . In addition, each switch
of selected user may cost additional expense of the platform. For
example, if participant pi is selected to perform task sj while not
be selected for the next task sj+1, then an additional compensation
c has to be payed to pi . This is because in real world applications,
participants may have a contract with MCS platforms so that they
could receive rewards for multiple tasks. If the platform decides to
terminated this contract with a user, it has to pay an compensation
to that user. Another possible switch cost is due to the additional
initialization cost when the participant is selected, such as certain
security initialization (e.g., key distribution). Note that previous
works have never considered such switch costs, thus this is a unique
contribution of this work.

2.2 Model Capability of Mobile Participants
As discussed above, there are two unknown attributes of capability
of mobile participants in this paper, one related to mobility pattern
during sensing stage and the other related to time delay during
o�oading stage. We will discuss them respectively in the following
subsections.

2.2.1 Sensing Probability. We use Pri to present the visiting pat-
tern of each participant pi over both spacial and temporal domains.
We assume that participant pi has her own probability Pri visiting
the sensing target at l (sk ) at certain time t (sk ), we call this probabil-
ity sensing probability. However, this probability is unknown to the
platform. Denoted by Di,� the random variable indicates whether
participant pi visits the sensing target when she is selected for the
� th time. Then Di,� is subject to a Bernoulli distribution B (1, Pri ).

We can still estimate this sensing probability Pri by leveraging the
historical observations of Di,� . Here we assume the number of
participant pi being selected till time t is Ni,t . Then the estimated
sensing probability P̃ri can be obtained by the following:

P̃ri =

PNi,t
�=1 Di,�

Ni,t
. (1)

2.2.2 Time delay. In this paper, we assume that the selection
mechanism can assign MCS tasks to participants at any time by
sending a task request. After the selected participants perform the
sensing tasks, they have to upload the collected data so that they can
receive their rewards. There is a time delay before the participants
complete uploading their sensed data. We de�ne the time delay as
the time from the ending of the sensing until the beginning of the
data uploading as:

� = tU ploadin� � tSensin� (2)

On one hand, some participants may not upload the sensed data
through cellular networks, but wait for some low cost networks
access (such as WiFi or D2D relays). On the other hand, it takes time
to upload the data with a large size (note that the size of sensed data
could be much larger than the size of sensing task). Di�erent partic-
ipants may have di�erent network access patterns and bandwidths,
thus each participant pi has her own delay pattern on uploading
MCS tasks. We assume that each participant pi is associated with
a set of random variables Ti,� . Variable Ti,� indicates the random
delay time of pi in its � -th selection. Each variable is independent
and subject to a known distribution with an unknown mean �i . To
estimate the time delay of each participant pi , we have:

�̃i =

PNi,t
k=1 Ti,k

Ni,t
. (3)

This time delay represents the computing capability and encounter-
ing frequency to WiFi APs or D2D relays of each participant, which
may vary among di�erent tasks. The participants with shorter de-
lay attribute has bigger probability to competing the uploading
collected data faster than the ones with longer delay attribute.

2.2.3 Participant Utility. Denoted by Ui,� , the utility of select-
ing a particular participant pi to perform sensing task at her � th
selection can be de�ned as follows:

Ui,� = Di,� /Ti,� . (4)

Here, a higher sensing probability and a shorter time delay lead
to higher utility. Ui,1,Ui,2, ... is subject to an distribution f (x ,ui )
with unknown expectation ui , in which ui = Pri/�i . Therefore, we
have

R +1
�1 x f (x ,ui )dx = ui .

Since the true values of Pri and �i are unknown and the estima-
tions of them are updated along the time, we have an empirical ˜Pr i
and �̃i for each pi at any time. Then we have the empirical expected
utility ũi at any time as:

ũi = P̃r i/�̃i . (5)

T������ 2.1. The successive selection of each participant pi prod-
ucts i.i.d. Participant Utility.

Figure 33: The framework of the proposed online learning for participant selection in
MCS.

networks. Different uploading methods may lead to different delay time, which is still

unknown by the selection mechanism. Having the historical records of participant

performing tasks, we propose online self-learning algorithms to solve this participant

selection problem by combinational multi-armed bandit (CMAB) concepts [74]. We

show that our proposed methods can achieve both bounded performance in each

round of PSP and bounded regret compared with optimal solution over time. We

have conducted extensive simulations over a real-life mobile dataset (D4D data set

[24]) to evaluate the proposed algorithms in different MCS settings. Our results

show that the proposed methods can achieve stable task coverages while the regret is

bounded compared with optimal solution. The main contributions of this work are

summarized as below.

• We propose a new MCS system model to capture the multi-expertise of each

participant in both sensing and data uploading stages for heterogeneous sensing

tasks on both spatial and temporal domain.
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• We formulate a dynamic participant selection problem (PSP) as a combinational

multi-armed bandit problem, prove its NP-hardness, and propose an online

learning algorithm to solve this problem.

• We provide theoretical performance guarantees of the proposed method: an

(1 − 1/e)/2-approximation for PSP in each round and a bounded regret over

time.

• We implement our solutions over a real-world mobile dataset and conduct ex-

tensive simulations to evaluate the proposed methods against both existing

solutions and optimal solutions.

The rest of this work is organized as follows. We first introduce our MCS sys-

tem model and the corresponding participant selection problem in Section 6.2. Then

we provide the detailed design of proposed online-learning participant selection al-

gorithms in Section 6.3. Section 6.4 presents our simulation results over a real-life

mobile tracing dataset. Section ?? reviews the related works. Finally, Section 6.5

concludes this work.

6.2 System Models and Problem Statement

6.2.1 Crowdsensing Model and Assumptions

As shown in Figure 33, there are three main components in our proposed mobile

crowd sensing (MCS) model: a set of sensing tasks, a number of mobile partici-

pants, and a participant recruitment mechanism. The sensing tasks are generated by

crowd sensing applications continuously and then sent to the participant recruitment
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mechanism. The mobile participants are mobile users, who are willing to partici-

pate in performing mobile sensing tasks. The participants must register to the MCS

platform so that they could be assigned with sensing tasks. The participant recruit-

ment mechanism is a centralized mechanism in MCS system in which the decisions

of participant selection and task assignments are made. In our design, there are two

sub-components inside the participant selection mechanism: self-learning capability

and participant selection algorithm. The self-learning capability analyzes the per-

formance of each participant to learn its capability, while the participant selection

algorithm selects the participants for each task in each round. We assume that task

assignments from selection algorithm can be sent to selected participants via cellu-

lar networks instantly at any time. However, the collected sensing data take longer

time to the MCS platform (or MCS applications) via diverse methods (such as WiFi

offloading or D2D relays).

6.2.1.1 Sensing Tasks

There is a set of m heterogeneous sensing tasks, denoted by S = {s1, s2, ..., sm}.

Here the tasks are time sequential, i.e. for each task pair si and sj, if i < j, then

si comes earlier than sj. Each sensing task has its own target information in both

spatial and temporal domains. In this work, we assume that there is a finite set

of r locations and a finite set of T time slots, denoted by L = {l1, l2, ..., lr} and

T = {1, 2, ..., T} respectively. These tasks are all generated by the MCS applications

within time period from 1 to T repeatedly.

Each sensing task sk specifics a tuple < l(sk), t(sk) > as its target information5.

5Note that here we assume that each sensing task only has one interested point in both temporal
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Here l(sk) and t(sk) is the interested location and time slot of sensing task sk, respec-

tively. I.e., a sensing task sk(l(sk), t(sk)) requires the participants to collect sensing

information from location l(sk) at time t(sk) and upload such information to the

platform.

Here, we assume that each sensing task has two different stages to be performed,

sensing stage and uploading stage. In sensing stage, the target sensing information of

a task needs to be collected by selected participant(s) at the target location within

the target time slot. Successfully collecting such information is only half of the task,

in uploading stage, the participant(s) who collect the target sensing information need

to upload the collected data to the platform. The collection of sensing data can be

done by WiFi offloading [75] or D2D relays [76, 77]. Only when the MCS platform

receives the requested sensing information from no fewer than one participant, the

sensing task is marked as successfully performed.

6.2.1.2 Mobile Participants

There is a set of n participants, who are willing to participate into performing

sensing tasks, denoted by P = {p1, p2, ..., pn}. These participants register into the

MSC system so that they could be considered as candidates. Each participant pi has

her own capability to perform sensing tasks represented by a tuple < Pri, τi >. Here,

we consider two types of expertise for each participant to illustrate how to handle

multiple expertise during participant selection.

First, Pri is a r × T matrix represents the expertise of participant pi in term

and spacial domains, but it is easy to relax such an assumption to handle complex sensing tasks
with multiple interested points.
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of mobility pattern over both spacial and temporal domains (i.e., each participant

pi has her own probability Pri(lj, ts) that i will arrive at location lj at time ts in

sensing stage). We call such probability sensing probability and the matrix Pri =

{Pri(lj, ts)}, (lj ∈ L, ts ∈ T). Therefore, if we use D as a random variable to indicate

whether participant pi arrives location lj at time ts (if yes, D = 1, else D = 0), then

D is subject to a Bernoulli distribution B(1, P ri(lj, ts)).

Second, τi represents the expertise of participant pi in term of communication

capability (i.e., the expected time for participant i to upload the collected sensing

data during uploading stage after she is selected and succeeds in sensing stage). We

call such time time delay. Here we use a random variable Γ to represent this time

delay of participant pi with any given sensing task. Then we assume that Γ is subject

to a normal distribution with the mean of τi, i.e. τi is the expected time delay of pi.

This capability of < Pri, τi > is critical and necessary knowledge for participant

selection. The capability of each participant is unknown to the MCS platform (i.e.,

recruitment mechanism). The platform can only know the values of those random

variable outputs after each time the selected participants performing the sensing tasks.

We assume that the participants are trusted and truthful so that they will report if

they do not perform the sensing tasks. Participants will be rewarded if they perform

sensing tasks. We assume that each participant pi has her own price ri for performing

each task.
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6.2.2 Estimation of Participant’s Capability

As discussed above, there are two unknown attributes of participant capability in

this work, sensing probability and time delay. We now discuss how to estimate them.

6.2.2.1 Sensing Probability

Since we cannot foreknow when and where a participant will arrive the task location

during the real crowding sensing period T (e.g., one week), we have to leverage

knowledge from the historical performances. Here, we assume that for each user

we have multiple rounds of performance traces (e.g., K weeks), and each round of

data denoted as Ri, i = 1, · · · , K . Let ck(pi, lj, ts) indicate whether pi successfully

visit lj at ts in Ri (1 if it visits, 0 otherwise). Then we simply estimate the sensing

probability as follow,

P̃ ri(lj, ts) =

∑K
k=1 ck(pi, lj, ts)

K
. (9)

6.2.2.2 Time Delay

In this work, sensing tasks are assigned to participants at any time by sending a

task assignment. After the selected participants perform the sensing tasks, they have

to upload the collected data back to the MCS platform so that they can receive their

rewards. However, there are time delays before the participants complete uploading

their data to the platform. One one hand, it takes time to upload the data with

various bandwidths and sizes of data. On the other hand, participants may not

want to upload the data through cellular networks, but wait for some free or cheap

networks access (such as WiFi access points or D2D replays). We define the time
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delay as the time from the ending of the sensing stage until the finish of the data

uploading. Different participants may have different network access patterns thus

each participant pi has her own delay time τi on MCS tasks. Assume that each

participant pi is associated with a set of random variables Ti,γ. Variable Ti,γ indicates

the random delay time of pi in its γ-th selection. These variables are independent

and objected to a distribution with expectation τi.

Then we can use the following method to estimate τi:

τ̃i =

∑K
k=1 ck(pi)τi,k

K
, (10)

where ck(pi) indicates whether pi successfully uploads the data, and τi,k is the delay

time of pi to perform the task in k-th round. This time delay represents the computing

capability and encountering frequency to WiFi APs or D2D relays of each participant,

which may vary among different tasks. The participants with shorter delay attribute

has bigger probability to competing the uploading collected data faster than the ones

with longer delay attribute.

Note that we model two expertise Pri and τi quite differently, Pri depends on

the target location and time while τi did not. One of the advantages of the proposed

framework for multi-expertise solution is allowing separately model different expertise

of participants.

6.2.3 Participant Selection Problem

In our proposed MCS system, MCS tasks arrive at the recruitment mechanism at

each discrete round k = 0, 1, ...,m. For simplicity, we assume that each task arrived
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per round. However, a simple extension can handle multiple tasks per round. Note

here a round is much larger than a time slot (which is used for sensing task, where

each task has a target time within [0, T ]). For each task sk, the selection mechanism

selects a subset Pk of P to perform it. Here we denote θk = (θ1,k, θ2,k, ..., θn,k) as an

indicator vector, in which θi,k ∈ {0, 1} indicates whether participant pi is selected for

task sk. If so, θi,k = 1; else θi,k = 0.

Denoted by U(pi, lj, ts), the expected utility of selecting a particular participant pi

to perform task with requirement (lj, ts) can be defined as follows:

U(pi, lj, ts) = Pri(lj, ts)φ(τi), (11)

where φ(τi) is a non-negative decay function that represents the decay of the value

of the collected data in term of time delay, whose value is within [0, 1]. Recall that

τi is the expected time delay needed by participant pi for uploading her data after

performing sensing task. The value of U(pi, lj, ts) is in [0, 1] as well.

Since the true values of Pri and τi are unknown and the estimations of them are

updated along the time by our learning algorithm, we have an empirical P̃ ri and τ̃i

for each pi at any time. Then we have the empirical utility Ũ(pi, lj, ts) at any time as

Ũ(pi, lj, ts) = P̃ ri(lj, ts)φ(τ̃i). (12)

Then the overall expected utility of a given participant subset Pk on a given task

sk(l(sk), t(sk)) as:

U(Pk, l(sk), t(sk)) = 1− Πpi∈Pk(1− U(pi, l(sk), t(sk))). (13)
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Finally, the participant selection problem we aim to solve in this work can be

defined.

Definition 6. Given the volunteering participants P and the crowd sensing task set

S, for each task sk(l(sk), t(sk)) ∈ S, the participant selection problem (PSP)

tries to select a participant set Pk (and its corresponding θk) with the objective of

maximizing the overall expected utility:

max
Pk⊆P

U(Pk, l(sk), t(sk))

s.t.
∑
i∈[1,n]

riθi,k ≤ B,

(14)

in which the constraint restricts that the total cost of each task must be smaller that

a predefined budget B. Let P ∗k (l(sk), t(sk)) and θ∗k be the optimal solution.

Theorem 2. The participant selection problem is NP-hard even if the Pr and τ is

known.

Proof. This can be proved from the reduction of the 0-1 knapsack problem. In 0-1

knapsack problem, there is a set of items, each of them i has a weight wi and value vi.

The objective of the problem is to maximize the sum of the values of the items while

the sum of the weights is less or equal than the given weight capacity W . Our problem

is a special instance of 0-1 knapsack problem, in which participants are the items.

The value and the weight of each item is replaced by the utility and reward of each

participant respectively. The only difference is that our problem goal is not the sum

of the values. However, these two goals are equivalent since each individual utility of

participant (i.e., U(pi, l(sk), t(sk))) is independent. Since 0-1 knapsack problem is an
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Algorithm 7 Online Algorithm for Participant Selection

Input: participant pool P, task set S, and price ri of each pi
Output: Pk for every task sk(l(sk), t(sk)) ∈ S
1: Initialization: set P̃ ri and τ̃ i to some values (such as 1s)
2: for k = 1 to m do
3: {Participant Selection: Line 4-5}
4: Run Algorithm 2 and Algorithm 3, select and output the Pk with higher utility
5: Update Nk(pi, l(sk), t(sk)) if pi ∈ Pk
6: {Self-Learning Capability : Line 7-14}
7: if sensing data from pi is uploaded then
8: update P̃ ri with a success and τ̃i with measured delay
9: else if pi visits l(sk) at t(sk) then
10: update P̃ ri with a success and τ̃i with maximal delay
11: else
12: update P̃ ri with a failure
13: end if
14: Update Ũ(pi, l(sk), t(sk)) with Pri and τi

15: Set Ū(pi, l(sk), t(sk)) = Ũ(pi, l(sk), t(sk)) +
√

3 ln k
2Nk(pi,l(sk),t(sk))

16: end for

known NP-hard problem thus our problem is NP-hard as well.

6.3 Participant Selection via Online Learning

We provide the design of our online learning algorithm in this section. Utilizing

the proposed algorithm, we estimate Pri and τi of each participant in each round

and make the online participant selection for performing sensing tasks.

6.3.1 Online Algorithm

As defined above, the PSP could be categorized as a combinational multi-armed

bandits (CMAB) [74]. In a CMAB problem, each arm is associated with a set of

random variables which represent the reward of this arm. The reward of each arm

is independent to each other and object to an unknown expectation. The objective

of a CMAB problem is to find a subset of all arms under specified constraints so
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that the sum of the reward is maximized. In our scenario, each participant is an arm

for a particular sensing task. Thus we have 2n possible subsets and each subset is

considered as a super arm. For each task, a super arm is played to perform this task.

If an arm belongs to an selected super arm, its utility will be revealed after performing

the task. Obviously, the utility of a super arm for a given arm is a function of the

arm set of this super arm and the utility expectation of each arm.

Theorem 3. The expected utility of playing any super arm P ⊆ P is monotonically

nondecreasing with respect to the expected utility of each participant for a give task

sk(l(sk), t(sk)), i.e., if for all pi ∈ P , U(pi, l(sk), t(sk)) < U ′(pi, l(sk), t(sk)), we have

U(P, l(sk), t(sk)) < U′(P, l(sk), t(sk))

Proof. Assume there is an arbitrary selected participant set P for sk, then we have

U(P, l(sk), t(sk)) is equals to 1−Πi∈P (1− U(pi, l(sk), t(sk))) while U′(P, l(sk), t(sk))

is equals to 1 − Πi∈P (1 − U ′(pi, l(sk), t(sk))). We have 1 − U(pi, l(sk), t(sk)) > 1 −

U ′(pi, l(sk), t(sk)) and Πi∈P (1−U(pi, l(sk), t(sk)) > Πi∈P (1−U ′(pi, l(sk), t(sk))) for any

pi ∈ P since U(pi, l(sk), t(sk)) < U ′(pi, l(sk), t(sk)). Therefore the theorem holds.

With the above in mind, the overall online self learning algorithm conceptually pro-

ceeds as follows. After some initialization processes, we could maintain an empirical

mean of the capability ( ˜Pri, τ̃i) for each participant pi. This empirical mean could be

maintained by the methods (Equations (1) and (2)) discussed in Section 6.2.2. The

real expectation of the two capability parameters are still unknown but estimated

by Ū(pi, l(sk), t(sk)) from their empirical values Ũ(pi, l(sk), t(sk)) with an adjustment

(Algorithm 1, Line 14-15) after each round of participant selection (done at Algorithm
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1, Line 4). We estimate the empirical values Ũ(pi, l(sk), t(sk)) of each participant pi

for a given task sk(l(sk), t(sk)) based on the output from the task performance (Algo-

rithm 1, Line 7-14). Note depending on whether pi visit the location at required time

and whether the sensing data is uploaded to the platform, the capability ( ˜Pri, τ̃i) are

updated. Since the empirical value is calculated by the number of the times that an

arm is selected, the estimated expected capability depends on the number of historical

tasks k and the number of the times Nk(pi, l(sk), t(sk)) that an arm is selected. Here,

we use Nk(pi, l(sk), t(sk)) to record the number of time that pi is selected to perform

tasks at l(sk) and t(sk) until kth-round. Algorithm 7 shows the detailed steps.

Algorithm 8 and Algorithm 9 show two simple greedy methods to select a super

arm in each round. In each time, they add the participant who contributes either

the largest utility improvement (Algorithm 2) or the largest ratio between her utility

improvement and cost (Algorithm 3), until the budget is not allowed, respectively.

Note that our PSP problem is a submodular maximization problem with Knapsack

constraints. Either Algorithm 2 and Algorithm 3 may not give good approximation

ratio of the problem, but the best of these two algorithms can indeed [78]. Therefore,

in Algorithm 1, Line 4, we pick the better solution out of these two greedy algorithm.

Traditional online learning algorithms for solving MAB problems has two phases,

exploration and exploitation. In exploration phase, some arms are selected to evaluate

their efficiency. In exploitation phase, the best performed arms are selected so that

the total revenue is maximized. In both exploration and exploitation phases, the

revenue is found after the arms are selected. Here, in our solution (Algorithm 1 and

2), these two phases are taken simultaneously, which means that each exploitation
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Algorithm 8 Greedy Selection 1 for Task sk

Input: Task sk(l(sk, t(sk)), and utility Ū(pi, l(sk), t(sk)) and price ri for each pi ∈ P
Output: Pk for sk in this round
1: Pk = ∅ and θi,k = 0 for all i
2: while

∑
i∈[1,n] riθi,k ≤ B do

3: for all pi ∈ P and θi,k = 0 do
4: Calculate the improvement of U(Pk, l(sk), t(sk)) (based on Equation (5)) by

adding pi into Pk
5: end for
6: Select the user pi who leads to the largest utility improvement, set θi,k = 1 and

add it into Pk
7: end while
8: return Pk

Algorithm 9 Greedy Selection 2 for Task sk

Input: Task sk(l(sk, t(sk)), and utility Ū(pi, l(sk), t(sk)) and price ri for each pi ∈ P
Output: Pk for sk in this round
1: Pk = ∅ and θi,k = 0 for all i
2: while

∑
i∈[1,n] riθi,k ≤ B do

3: for all pi ∈ P and θi,k = 0 do
4: Calculate the improvement of U(Pk, l(sk), t(sk)) (based on Equation (5)) by

adding pi into Pk
5: end for
6: Select the user pi who leads to the largest ratio between its utility improvement

and cost ri, set θi,k = 1 and add it into Pk
7: end while
8: return Pk

phase is also an exploration phase. We use the exploitation results to perform the

exploration, i.e. update the capability of each selected participant in exploitation.

6.3.2 Approximation over Optimal Selection

The proposed algorithms are online process in which the estimated capability met-

rics of participants are updated by time. For each round of selection, Algorithm 2

determines the selected set of participants based on the latest estimation. Given a

budget constraint B of selected participants for each task sk, there should be a com-

binatorial number of possible selection to decide the optimal selection of participants.
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As we showed in Theorem 1, this participant selection problem is still NP hard even

if the true values of the capability metrics are known. Fortunately, we can prove that

the proposed algorithm can achieve efficiently approximation ratio for the PSP.

First, we prove the utility is submodular.

Theorem 4. The utility U(·) used in our greedy selection in Algorithm 2 or 3 is

submodular.

Proof. Let let X and Y be two subset of participant selections, and X ⊆ Y ⊆ P

and e ∈ P− Y . For simplicity, we use U(·) to represent U(·, l(sk), t(sk)) and U(·) to

represent U(·, l(sk), t(sk)).

As Equation (5), we have U(X) = 1−Πpi∈X(1−U(pi) and U(Y ) = 1−Πpi∈Y (1−

U(pi)) = 1− Πpi∈X(1− U(pi)Πpj∈Y−X(1− U(pj)). In addition we have:

U(X ∪ {e})−U(X) = 1− Πpi∈X(1− U(pi))(1− U(e))

−(1− Πpi∈X(1− U(pi)) = U(e)Πpi∈X(1− U(pi))

(15)

and

U(Y ∪ {e})−U(Y ) = U(e)Πpi∈Y (1− U(pi))

= U(e)Πpi∈X(1− U(pi)Πpj∈Y−X(1− U(pj)).

(16)

Therefore,

U(X ∪ {e})−U(X)− (U(Y ∪ {e})−U(Y ))

= U(e)Πpi∈X(1− U(pi))(1− Πpj∈Y−X(1− U(pj)).

(17)

Since all the three factors in the last result are larger than or equal to 0. Therefore we

have U(X ∪{e})−U(X)− (U(Y ∪{e})−U(Y )) ≥ 0. Then U(·) is submodular.

Theorem 5. [78] For a non-negative, monotone submodular function f and a set of
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element S in which each element has a cost c(s), let P ∗ be a set that maximizes the

value of f over all sets whose cost satisfies the budget constraint B. Let P1 be a

set obtained by selecting elements one at a time, each time choosing an element that

provides the largest marginal increase in the function value while B allows. Let P2

be a set obtained by selecting elements one at a time, each time choosing an element

that provides the largest ratio between the marginal increase in the function value

and its cost while B allows. Then max(f(P1), f(P2)) ≥ (1− 1/e)/2 · f(P ∗); in other

words, max(f(P1), f(P2)) provides an (1− 1/e)/2 approximation.

Based on Theorem 2, Theorem 3 and Theorem 4, we know that Algorithm 1 can

achieve a (1− 1/e)/2 approximation for PSP in each round. Next theorem also gives

the time complexity of our algorithms.

Theorem 6. The total time complexity of proposed algorithms is O(mn2).

Proof. For each selection Pk for a given task sk, Algorithm 2 or Algorithm 3 needs

to calculate each participant’s ratio of utility improvement and cost for current Pk.

Thus, the total complexity of Algorithm 2 or Algorithm 3 is O(n2). Since there is m

tasks in Algorithm 1, the total time complexity is O(mn2).

6.3.3 Regret Analysis

With an α-approximation algorithm, it is no longer fair to compare the performance

of a CMAB algorithm against the optimal reward as the regret of the algorithm.

Instead, we can compare against the α-fraction of the optimal reward, because the

reward is only α-approximate of the optimal value. In other words, we define α-

approximation regret of a CMAB algorithm A after m rounds of play using an α-
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approximation oracle is the difference between m·α·Uopt and the expected cumulative

utility obtained by algorithm A. To perform the regret analysis of the proposed

algorithm, we also need the following definitions.

Definition 7. For a given participant pi, a task sk(l(sk), t(sk)) and an optimal utility

Uopt, we define Pbad = {P ′|U(P ′, l(sk), t(sk)) < (1 − 1/e)/2Uopt} as the set of bad

super arms. Then we define

∆i
min = (1− 1/e)/2Uopt −max{U(P ′, l(sk), t(sk))|P ′ ∈ Pbad,

pi ∈ P ′}

∆i
max = (1− 1/e)/2Uopt −min{U(P ′, l(sk), t(sk))|P ′ ∈ Pbad,

pi ∈ P ′}

(18)

Then we define: ∆min = maxpi∈P∆i
max and ∆max = minpi∈P∆i

min

Using the conclusion (Theorem 1) in [74], since we have an (1− 1/e)/2 approxima-

tion oracle, we have the following theorem on regret bound of our proposed algorithms.

Theorem 7. With an (1 − 1/e)/2-approximation greedy algorithm (best from Algo-

rithm 2 and Algorithm 3), the (1 − 1/e)/2 approximation regret of the proposed

algorithm (Algorithm 1) for m tasks is at most

∑
pi∈P,∆i

min≥0

12n2 lnm

∆min

+ (
π2

3
+ 1)n∆max. (19)

Note that in our proposed algorithms, the total number of the times (Ni) that a

participant pi is selected is larger than the number of times (Nk(pi, l(sk), t(sk))) that a

participant pi is selected for any given task sk since we haveNi =
∑

sk∈S Nk(pi, l(sk), t(sk)).

Thus the theorem still holds.
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Figure 34: Cumulative tower coverage (visiting frequency) along the distance between
a participant (her geometric center) and a tower for 5 towers in D4D dataset.

6.3.4 Handling Cold Start

In our proposed algorithm, since initially the platform do not have any estimation

on the capability of participant, we assign all of them equal to 1. Therefore, during

the first round, the participant is randomly selected without any preference. However,

such selection may be a very bad choice, and it may take longer time to converge to

the good choice. This issue is named as a cold start problem, which exists in most

of the learning methods. In this work, we also consider some possible solutions to

handle the cold start problem.

Based on our observation, there is usually correlations among the adjacent locations

in each participant’s historical records. For example, if a participant appears in

some locations of one area, then there is more chance that this participant visits

the other locations in the same area. We analyze the historical records of some
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participants in our dataset (more detail about the dataset is presented in next section)

to verify this type of correlation. Figure 34 shows the cumulative visit times of 5

different locations (cellular towers) along with the distance between the participants

and locations. For each participant, we utilize all her historical records to find the

geometric center and then use the distance between this geometric center and the

location as the distance between this participant and the location. Then we sort

the distance between each participant and the location from short to long. Figure 34

shows that the visit frequency increases dramatically when the distance is short, while

increases slowly when the distance is long. This indicates that the participants has a

closer geometric center has more chance to visit a location than those who has further

geometric centers. Therefore, we can use this rough estimation (the distance between

her geometric center and the sensing target location) to scale the initial capability of

a participant to certain sensing task. Another alternate way is using the home tower

(most visited location) as the location of a participant. In our simulation section, we

test both methods to handle the cold start problem.

6.4 Simulation Results

In this section, we conduct extensive simulations over a real-life mobile data to

exam the effectiveness of our proposed algorithms under different scenarios. We

mainly make the comparison among our proposed algorithm, a existing learning-

based approach [73], and the optimal solution.
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Figure 35: Results of our proposed algorithm compared with Random and optimal
solution when m = 500 and n = 50 to 250.

6.4.1 Simulation Configuration

To simulate the large scale mobile crowd sensing (especially for mobile phone sens-

ing), we use a real-life mobile dataset from the cellular operator Orange for the Data

for Development (D4D) challenge [24]. We assume that the mobile users with the

same user IDs are same users in all of these weekly call records. For the time delay

distribution and cost value of each participant, we randomly generate them.

In all simulations, we randomly generate MCS tasks from all possible times and

locations in each round. Then we apply our proposed algorithm on the tasks to select

participants. The selected participants will perform the sensing with both spatial and

temporal requirements and then have a fixed time limit to upload the sensing data.

Once again, the real time delay is randomly drawn from the generated distribution.

As discussed before, we assume that the whether a participant passes by the target

location at target time is known. If a participant does not upload the sensing task

in the time limit, it’s delay in this round would be set to the time limit. However,

if a participant does not pass by the target location at target time, only the sensing

probability matrix will be updated for this participant in this round as shown in

Algorithm 1. Note that here the optimization object is maximizing the expected

utility of the selected participants, but not the real utility. Therefore, we measure
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both expected utilities and real utilities on each round.

6.4.2 Performance Results

In the first set of simulations, we compare the performance of our proposed method

among different number of candidate participants n. Here, we fix the budget B and

generate the same type of sensing task for multiple rounds m = 500. We vary the

number of candidate participants from 50 to 250. We also implement a random

selection, Random, where a random set of participant is selected within budget limit

in each round. Figure 35 shows the performance comparison. In each figure, we plot

three curves which represent the optimal utility, the real overall utility of the selection

by our method or Random in each task round. First, obviously, Random is not an

efficient method, with very poor performances. Second, while the optimal utility keeps

invariant, the real utility have a clear pattern in which it increases as the task round

increases. As the task round increases, the number of times that each participant

is selected increases. Thus, the estimated capability of each participant turns more

accurate so that the selection has a trend to approach the optimal selection. This

confirms the power of our proposed self-learning approach. Third, the real utility can

not reach the optimal one, since the selection problem is NP-hard and our greedy

algorithm is only approximation of the PSP. In other words, even if we have the

absolute accurate estimation of the capability for each participant, it is still not

guaranteed to achieve the optimal utility.

Figure 36(a) merges the results of our proposed methods in the first set of simula-

tions. We can also find that as the number of candidate participants increases, the
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Figure 36: Results of our proposed method for different n or B.

higher bound of overall utility increases as well as the optimal utility increases. This

is reasonable because a larger participant pool means more possible better selection.

Thus the real utility and optimal utility is monotonic along with the increasing of the

number of candidate participants. In addition, Figure 36(a) also shows that the algo-

rithm needs more time to converge as the number of candidate participants increases.

The reason is that more candidate participants brings more possible selections thus

it needs more rounds of selection for the algorithm to find better solutions.

In the next set of simulations, we fix the number of candidate participant n and

vary the budget B. Figure 36(b) shows the results. It is clear that the real utility

of our algorithm increases as the budget B increases, since larger budget allows the

algorithm have more chance to select efficient participants.

In the third set of simulations, we make comparisons against another expertise-

aware solution [73], Expertise-Aware which is also based on self-learning techniques. It

estimates and learns the expertise of each participant in performing sensing tasks. The

main difference between it and our method is the way to learn capability (or expertise)

of each participant. Our proposed method learns two type of expertise (sensing
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Figure 37: Results against Expertise-Aware when deadline = 24.
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Figure 38: Results against Expertise-Aware when deadline = 16

probability and time delay) separately, while Expertise-Aware learns the expertise as

a single metric without considering the uploading deadline. Given different deadline

requirements for the sensing tasks, the results vary for both methods. We run both

algorithms with different deadlines, and results are reported in Figure 37 to Figure

39. In these figures, we plot both real utility and expected utility.

Figure 37(a) shows the results when the sensing deadline equals to 24. We can find

that the two methods achieve similar performances of expected/real overall utility (of

selected participants). The converge patterns are also similar. Figure 37(b) shows

the individual expected utility (i.e., estimated capability/expertise) of one random

selected participant. It converges to the true value with similar patterns in both of

the methods. In summary, the two methods do not have significant difference when
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Figure 39: Results against Expertise-Aware when deadline = 8
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Figure 40: (a) Results considering cold start; (b) Results for different sensing tasks
(at different towers).

the deadline is long. Figure 38 shows the results when the sensing deadline equals

to 16. Our proposed method begins to outperform Expertise-Aware by 4 percent.

In addition, the estimated expected utility is more close to the true value against

Expertise-Aware method. For results shown in Figure 39, the sensing deadline is

set to 8. Our proposed method outperforms Expertise-Aware by 13 percent, while

the estimated expected utility is much more accurate than Expertise-Aware. This is

because the capability/expertise of our participants are modeled and updated sepa-

rately, thus the updating of one of expertise will not be affected by the updating of

others. It allows more detailed estimation and accurate learning results.

Next, we also test the two simple proposed ways to handle cold start. Figure 40(a)
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shows the performances between our proposed method (without special handling) and

our method with either location or home preference. Recall that we can utilize the

geometric center of the participant’s traces or the location with his highest visit fre-

quency respectively to calculate the distance between one participant and the sensing

task location. Then initially, we use such a distance to scale the default capability

of each participant. From the simulation results we can see both proposed methods

can make the convergence more smooth. However, the final results may not be better

than the one without special handling.

Last, we also test different types of sensing tasks. For example, Figure 40(b) shows

the performances of our proposed method on five different types of sensing tasks

(here, they are different with five different target locations). It is obviously that the

same set of participants have different capability for these sensing tasks. Some tasks

can be performed better with this set of participants. This also confirms that the

self-learning algorithm is necessary for various sensing tasks and various expertise

from a diverse population.

6.5 Summary

In this work, we focus on a dynamic participant problem for heterogeneous mo-

bile crowd sensing tasks, with a goal to maximize the sensing utility under budget

constraints. Unlike other existing works, each participant’s capability (with multi-

expertise) is unknown to the selection mechanism. We propose an online algorithm

to dynamically select a subset of participants to perform the tasks while updating the

estimation of the capabilities of them. In our model, we consider both the sensing
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probability from mobility pattern and the time delay from various uploading methods

as participant?s capability. We provide detailed theoretical analysis of the proposed

method with guaranteed approximation ratio and regret bound. Simulation results

with a real-life dataset also confirm the efficiency of our proposed algorithms.



CHAPTER 7: CUMULATIVE PARTICIPANT SELECTION WITH SWITCH
COSTS IN LARGE-SCALE MOBILE CROWD SENSING

7.1 Introduction

Smart mobile devices with various embedded sensors have been developing and

deploying rapidly in recent years, which enables a new paradigm, mobile crowding

sensing (MCS). In MCS, tremendous data can be collected by a large group of mobile

device owners without additional infrastructure cost [7, 33]. There are advantages

such as observing unpredictable events; dynamic temporal and spacial coverages;

integrating human intelligence compared with traditional sensor networks. Therefore,

MCS has been used in many applications such as human behavior mining [8, 9],

environment monitoring [15, 16, 17], traffic planning [11, 12, 13, 14] and public safety

monitoring [10]. Though MCS brings convenient, flexible and efficient solutions for

heterogeneous sensing tasks, it also brings new challenges into the system design due

to its large-scale tasks and participants. One of the most challenging problem in MCS

is the participant selection problem.

It is challenging to select participants from a large candidates pool to perform

heterogeneous sensing tasks. There are different constraints needed to be taken into

consideration such as coverage [63, 34, 64], cost [18, 21, 65] and quality [66, 67]. It

usually needs the participant information, such as the mobility patterns and sensing

qualities, to select the appropriate participants for certain tasks more efficiently in
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many real world applications. However, it is difficult to retrieve the participant

information due to the lack of history records or privacy concerns [68, 69, 70, 82,

83]. Most of existing participant selection methods assume that the MCS platform

knows the capability of each participant, either via historical records or self-reports

from participants themselves. Some previous works simply assume that every one

has the same capability to perform any task. However, in reality, the capability

of a particular user for certain task depends on many factors, such as her moving

pattern/behavior, device capability, sensor quality, or even uploading bandwidth.

Therefore, how to learn the valued capability of the participants and utilize it to

improve the performance of participant selection becomes a critical issue.

There are several studies begin to focus on such type of learning approaches, where

the capability or quality is self learned from multiple trials over time [71, 72, 73].

However, [71] only considers learning sensing quality for homogeneous sensing tasks,

where the sensing quality is modeled as random normalized variables. [72] focuses

on the online labeling problem in which the true label is unknown. It only considers

homogeneous sensing tasks with one-dimension metric. [73] consider heterogeneous

tasks but learn the participant’s expertise based on semantic analysis. Instead, the

real heterogeneous tasks could have different temporal and spatial requirements, and

the participant’s capability could also include the data collection performance (such

as time delay caused by different access methods or availabilities). Last, in certain

applications, switching selected users also lead to additional cost (such as refreshing

the security key or comprising the termination of a contract). None of the previous

methods consider such switch costs. Therefore, in this work, we study the learning
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method for a dynamic participant selection problem with additional consideration of

these issues.

To address these issues, we formulate and investigate cumulative participant selec-

tion problems (with or without switch costs) in this work. In our MCS model, the

selection mechanism selects the participants for heterogeneous sensing tasks on both

spatial and temporal domain. The selected participant has unknown probability to

perform the assigned sensing tasks. After performing sensing tasks, the participant

may utilize different ways to upload collected sensing data, such as WiFi, Device-to-

Device (D2D) or cellular networks. Different uploading methods may lead different

delay time, which is still unknown by the selection mechanism. Having the histori-

cal records of participant performing tasks, we propose online learning algorithms to

solve the participant problem by leveraging combinational multi-armed bandit (MAB)

concepts. We show that the regret of proposed methods are bounded compared with

optimal solution. Extensive simulations over real-life mobile datasets are conducted

to evaluate the proposed algorithms in different MCS settings. Our results show the

proposed methods can achieve great cumulative ultility. The main contributions of

this work are summarized as below.

• We propose a new MCS system model to capture the capability of each partici-

pant in both sensing and data uploading stages for heterogeneous sensing tasks

on both spatial and temporal domain.

• We formulate a cumulative participant selection problem (CPS) as a multi-armed

bandit problem, and propose a corresponding online learning algorithm to guar-
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antee bounded regret in theory.

• We introduce switch costs into MCS model, formulate a cumulative participant

selection problem with switch costs (CPSS), and propose a corresponding online

learning algorithm to theoretically guarantee a bounded regret.

• We implement our solutions over two real-world mobile datasets and conduct

extensive simulations to evaluate the proposed methods against existing solu-

tions.

The rest of this work is organized as follows. We first introduce our MCS system

model and assumptions in Section 7.2. Then we present cumulative participant se-

lection problem (without or with switch costs) and its corresponding proposed online

participant selection algorithm in Section 7.3 and Section 7.4, respectively. Section 7.5

presents simulation results over two real-life mobile tracing datasets. Section ?? re-

views the related works. Finally, Section 7.6 concludes this work.

7.2 System Model

7.2.1 MCS Model and Assumptions

As shown in Figure 41, there are three main components in the mobile crowd sens-

ing system: a set of sensing tasks, a number of mobile participants, and a participant

selection mechanism. The sensing tasks are generated by crowd sensing applications

continuously and then sent to the participant selection mechanism. The mobile par-

ticipants are mobile users, who are willing to participate in performing mobile sensing

tasks. The participants must register with the MCS system, so that they could be
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Figure 41: The framework of the proposed online learning for participant selection in
MCS.

assigned with sensing tasks by the selection mechanism. The participant selection

mechanism is a centralized mechanism in which the decision of which participant is

selected to perform certain task is made. In this work, we assume that the task as-

signments can be sent to be selected participants via cellular networks instantly at

any time. However, the collected sensing data may take more time to be sent back

to the MCS applications due to its larger size and diverse collection paths (via WiFi

or D2D relays).

7.2.1.1 Sensing Tasks

There is a sequence ofM heterogeneous sensing tasks, denoted by S = {s1, s2, ..., sM}.

The operation time of MCS is divided into time slots of equal length t = {1, 2, ...M},

for example, one day per time unit. Here, we assume that only one task is generated

at the beginning of each time slot, but this can be relaxed to multi-task scenarios

easily. Each sensing task sk may require the sensing data in a location l(sk) at par-

ticular time t(sk) within the time slot. Given that we assume that each participant’s
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capability for different tasks are independent, we can simplify the model with hetero-

geneous tasks to one with only single type task. I.e., all tasks in S has the same target

with the same spacial and temporal requirement. The participant selection problem

with heterogeneous sensing tasks can be solved by dividing the original problem into

multiple sub-problems with the same type sensing tasks.

Additionally, we also make the assumption that each sensing task has two different

stages to be performed, sensing stage and uploading stage. In the sensing stage, the

target sensing information of a task needs to be collected by selected participant(s)

at the required location and time. In the uploading stage, the participant(s) who

successfully collect the target sensing information need to upload the collected data

to the MCS platform or applications. Note that previous works mostly only consider

the sensing stage while ignore the uploading stage. However, in reality, if the sensing

data is not successfully collected the sensing task should be considered a failure. This

is one of the major contributions of this work.

7.2.1.2 Mobile Participants

There is a set of N participants, who are willing to participate into performing

sensing tasks, denoted by P = {p1, p2, ..., pN}. These participants must register to the

MCS platform so that they could be considered as candidates. Each participant pi

has her own capability to perform each specific type of sensing tasks. This capability

can be treated as the success probability of the participant for such sensing tasks.

Since we consider both sensing and uploading in our model, the capability can be

represented by a tuple (Pri, τi) for a given type of tasks sj, in which Pri represents
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the expected mobility pattern of participant pi (reach l(sj) at t(sj) during the sensing

stage) and τi represents the expected time for pi to upload the collected sensing data

during the uploading stage after she succeeds collecting data.

This capability is critical and necessary knowledge for participant selection. How-

ever, the capability of each participant is unknown to the platform. We can only

observe the values of those random variable outputs after each time the selected par-

ticipants performing their sensing tasks. In this work, we assume that the participants

are truthful and trusted (i.e., they will report if they fail to preform the sensing tasks).

7.2.1.3 Participant Selection Mechanism

In our proposed MCS system, MCS tasks arrive at the platform at each discrete

time slot t = 0, 1, ...,M . In each time slot, the selection mechanism could commu-

nicate with the selected participants to assign MCS tasks to them. For each task

sk, the selection mechanism selects a subset Pk of P to perform it. Here we denote

θk = (θ1,k, θ2,k, ..., θN,k) as an indicator vector, in which θi,k ∈ {0, 1} indicates whether

participant pi is selected for task sk. If so, θi,k = 1; else θi,k = 0. Furthermore, we

define Θ = {θ1,θ2, ...θM} as all the selections made till task sM . The goal of par-

ticipant selection is to maximize the expected utility under budget constraint. The

detailed definition of utility and problem formation are provided in Section 7.3 and

7.4.

7.2.1.4 Rewards

In this work, all the participants are associated with a global reward r, i.e., if a

participant is selected for a task at certain time slot, it will be rewarded of r. In
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addition, each switch of selected user may cost additional expense of the platform.

For example, if participant pi is selected to perform task sj while not be selected

for the next task sj+1, then an additional compensation c has to be payed to pi.

This is because in real world applications, participants may have a contract with

MCS platforms so that they could receive rewards for multiple tasks. If the platform

decides to terminated this contract with a user, it has to pay an compensation to that

user. Another possible switch cost is due to the additional initialization cost when the

participant is selected, such as certain security initialization (e.g., key distribution).

Note that previous works have never considered such switch costs, thus this is a

unique contribution of this work.

7.2.2 Model Capability of Mobile Participants

As discussed above, there are two unknown attributes of capability of mobile par-

ticipants in this work, one related to mobility pattern during sensing stage and the

other related to time delay during offloading stage. We will discuss them respectively

in the following subsections.

7.2.2.1 Sensing Probability

We use Pri to present the visiting pattern of each participant pi over both spa-

cial and temporal domains. We assume that participant pi has her own probability

Pri visiting the sensing target at l(sk) at certain time t(sk), we call this probability

sensing probability. However, this probability is unknown to the platform. Denoted

by Di,γ the random variable indicates whether participant pi visits the sensing target

when she is selected for the γth time. Then Di,γ is subject to a Bernoulli distribution
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B(1, P ri). We can still estimate this sensing probability Pri by leveraging the histor-

ical observations of Di,γ. Here we assume the number of participant pi being selected

till time t is Ni,t. Then the estimated sensing probability P̃ ri can be obtained by the

following:

P̃ ri =

∑Ni,t
γ=1Di,γ

Ni,t

. (20)

7.2.2.2 Time delay

In this work, we assume that the selection mechanism can assign MCS tasks to

participants at any time by sending a task request. After the selected participants

perform the sensing tasks, they have to upload the collected data so that they can

receive their rewards. There is a time delay before the participants complete uploading

their sensed data. We define the time delay as the time from the ending of the sensing

until the beginning of the data uploading as:

τ = tUploading − tSensing (21)

On one hand, some participants may not upload the sensed data through cellular

networks, but wait for some low cost networks access (such as WiFi or D2D relays).

On the other hand, it takes time to upload the data with a large size (note that the

size of sensed data could be much larger than the size of sensing task). Different

participants may have different network access patterns and bandwidths, thus each

participant pi has her own delay pattern on uploading MCS tasks. We assume that

each participant pi is associated with a set of random variables Ti,γ. Variable Ti,γ in-

dicates the random delay time of pi in its γ-th selection. Each variable is independent
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and subject to a known distribution with an unknown mean τi. To estimate the time

delay of each participant pi, we have:

τ̃i =

∑Ni,t
k=1 Ti,k
Ni,t

. (22)

This time delay represents the computing capability and encountering frequency to

WiFi APs or D2D relays of each participant, which may vary among different tasks.

The participants with shorter delay attribute has bigger probability to competing the

uploading collected data faster than the ones with longer delay attribute.

7.2.2.3 Participant Utility

Denoted by Ui,γ, the utility of selecting a particular participant pi to perform

sensing task at her γth selection can be defined as follows:

Ui,γ = Di,γ/Ti,γ. (23)

Here, a higher sensing probability and a shorter time delay lead to higher utility.

Ui,1, Ui,2, ... is subject to an distribution f(x, ui) with unknown expectation ui, in

which ui = Pri/τi. Therefore, we have
∫ +∞
−∞ xf(x, ui)dx = ui.

Since the true values of Pri and τi are unknown and the estimations of them are

updated along the time, we have an empirical P̃ ri and τ̃i for each pi at any time.

Then we have the empirical expected utility ũi at any time as:

ũi = P̃ ri/τ̃i. (24)

Theorem 8. The successive selection of each participant pi products i.i.d. Participant
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Utility.

Proof. Let I ∈ R and Ui,s, Ui,t be arbitrary pair of the random variables of pi’s utility

output. Since they are subject to same distribution f , we have P [u ≤ Ui,s] = P [u ≤

Ui,t] and P [u ≤ Ui,t] = P [u ≤ Ui,t|u ≤ Ui,s] ∧ P [u ≤ Ui,s] = P [u ≤ Ui,s|u ≤ Ui,t],

∀u ∈ I. Therefore they are identically distributed and independent (i.i.d).

7.3 Cumulative Participant Selection

In this section, we propose the formulation of Cumulative Participant Selection

Problem (CPS), in which we focus on the maximization of the cumulative utility

for multiple tasks. Particularly, we aim to solve the problem that maximizing the

expected sum of the utilities for a give task set while satisfying the constraint on the

number of selected participants.

7.3.1 Problem Formulation

We firstly define the expectation of cumulative utility J(t) till time t as follows:

E(J(t)) =
N∑
i=1

uiE(Ni,t), (25)

where Ni,t is the number that participant pi is selected till time t. Then the CPS

problem we try to solve is defined as follows.

Definition 8. Cumulative Participant Selection (CPS). Given the volunteering

participants P and the crowd sensing task set S, the CPS tries to make all selections
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Θ∗ for all task s ∈ S with the objective:

max
Θ∗

E(J(M))

s.t.
∑
i∈[1,N ]

θi,j = n for each j ∈ [1,M ].
(26)

Note that for each time slot, only n participants are selected.

The CPS problem we define above belongs to the concept of Multi-armed Bandit

Problem (MAB). In classical MAB problems, there are a number of arms for a player

to play. The playing of each arm provides a random reward from a specific distri-

bution. The player’s goal is to maximize the rewords through a sequence of playing

of the arms. In CPS, the participants can be regarded as different arms and the

participant utilities are the rewards provided through the selections of participants.

Definition 9. n-best participants and n-worst participants. We first let σ be a

permutation of (1, ..., n, ...N) such that

uσ(1) ≥ uσ(2) ≥ ... ≥ uσ(n) ≥ ... ≥ uσ(N)
(27)

If uσ(n) > uσ(n+1), we call σ(1),... σ(n) the distinct n-best participants and σ(n+1),

... σ(N) the distinct n-worst participants.

Else if uσ(n) = uσ(n+1), 0 ≤ l < n and n ≤ k ≤ N such that uσ(1) ≥ ... ≥ uσ(σ(l)) >

uσ(l+1) = ... = uσ(n) = ... = uσ(k) > uσ(k+1) ≥ ... ≥ uσ(N) , we call σ(1), ... σ(l) the

distinct n-best participants and σ(k + 1), ... σ(N) the distinct n-worst participants.

Then we call participants with expectation utility equal to uσ(n) the n-border

participants.
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In most MAB models, regret is used to evaluate the performance of the given

solution. The regret is defined as the difference between the given solution and the

optimal solution. Here the optimal solution should be choosing the n-best participants

for each sensing task. Then we have the regret for any given selection until t:

Rt = t

n∑
i=1

uσ(i) − E(J(t)). (28)

The first part of the regret represents the optimal solution, in which we always select

the n-best participant for all tasks. The second part of the regret represents our

problem objective. Therefore, our goal can be re-formalized to minimize the regret

defined above at M .

7.3.2 Regret Analysis

Before we provide our solution to the CPS problem, we first have some analysis on

the regret. Given the Kullback-Liebler number,

I(θ, λ) =

∫ +∞

−∞
log[

f(x, θ)

f(x, λ)
]f(x, θ)d(x), (29)

which is the measure of dissimilarity between two distributions. Based on the as-

sumption made in Section 7.2, we have the following three conclusions.

0 < I(θ, λ) <∞ if λ > θ, (30)

I(θ, λ) is continuous in λ > θ for fixed θ, (31)

and for all u and δ > 0,∃u s.t. u < u
′
< u+ δ. (32)

Here we consider a uniformly good selection rule such that Rt = o(tα) for every
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real α > 0. According to Theorem 3.1 in [85] we have the following result.

Theorem 9. Let Θ be uniformly good rule. For each distinctly n-worst participant pi

and each ε > 0, we have:

lim inf
t→∞

E(Ni,t)

log t
≥ 1

I(ui, uσ(n))
, (33)

and consequently,

lim inf
t→∞

Rt

log t
≥

∑
i is n-worst

uσ(n) − ui
I(ui, uσ(n))

. (34)

Theorem 9 proposes the estimation of the number of selection of an n-worst par-

ticipant till time t and a lower bound of the total regret. Using the conclusion in

Theorem 9, we have an asymptotically efficient selection defined as:

lim sup
t→∞

Rt

log t
≤

∑
i is n-worst

uσ(n) − ui
I(ui, uσ(n))

. (35)

Such an asymptotically efficient selection is the solution we try to find for our

proposed CPS problem.

7.3.3 Online Learning Algorithm

To solve the CPS, we need to determine when we should test some participants or

select the participants with the best performance at any given time t. MAB algorithms

usually consist two phases, exploitation and exploration. In the exploitation phase,

arms are selected based on the current experiences. On the contrary, arms are selected

to be tested in the exploitation phase. On one hand, we could only select the arms

based on the formal performance of the arms since the arm output distribution is

unknown. On the other hand, the arm output is probabilistic thus sometimes the
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‘good’ arm may have ‘bad’ outputs. Therefore, we need to explore arms to avoid

missing ‘good’ arms. In this work, we select the n participants who have the highest

estimated utilities in exploitation phase. In exploration, we select some participant

who do not have the highest estimated utilities but satisfy some constraints.

The main idea to solve this problem is to construct a family of statistics gtNi,t for

each participant pi. When a participant’s statistic is larger than the estimated utility

of any n-best participants, we select this participant as an exploration for the next

task.

According to [85, 84], we can construct the statistics as follows. Let Y1, Y2, ..., YNi,t

be the utility output from a participant i. Let

WNi,t(ui) =

∫ 0

−∞

Ni,t∏
j=1

f(Yj, ui + t)

f(Yj, ui)
h(t)dt, (36)

where h : (−∞, 0)→ R+ is a strictly positive continuous function with
∫ 0

−∞ h(t)dt =

1. For any K > 0 let

U(Ni,t, Y1, Y2, ..., YNi,t , K) = inf{u|WNi,t(u) ≥ K}. (37)

Here WNi,t(ui) serves as a natural statistic to test a group of samples generated

from parameter u that whether u < ui or u = ui according to [84]. Here WNi,t(ui)

increases as ui increases. Therefore given a fixed K, we have the following conclusion.

For any u > U(Ni,t, Y1, Y2, ..., YNi,t , K), the probability that the samples is generated

from parameter ui < u is greater than the probability that the samples is generated

form parameter ui. For any u < U(Ni,t, Y1, Y2, ..., YNi,t , K). The probability that

the samples is generated from parameter ui < u is smaller than the probability that
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the samples is generated form parameter ui. This property suggests that we can

use U(Ni,t, Y1, Y2, ..., YNi,t , K) to determine when we should explore new participants.

This also suggests us that the larger K is chosen, more accurate this estimation is.

Leveraging the above property, we let

gtNi,t(Y 1, Y2, ..., YNi,t) = µ[U(Ni,t, Y1, Y2, ..., YNi,t , t(logt)
p)], (38)

for some p > 1 as the statistics we construct. In addition we let

hNi,t(Y 1, ..., YNi,t) =
Y1 + Y2 + ...+ YNi,t

Ni,t

, (39)

as the estimated mean utility of each participant pi.

Let

Ut(i) = gtNi,t(Y1, Y2, ..., YNi,t), (40)

and

µt(i) = hN(i,t)(Y1, Y2, ..., YNi,t), (41)

be the statistic and estimate point for participant pi at time t. Now we are ready

to utilize the allocation rule proposed in [85] to solve the CPS in Algorithm 10 and

Algorithm 11.

In Algorithm 10 we first select each participant n times thus we have an estimation

of the utility of each participant. Then at any given time t, we determine whether

we should select the same participants at t − 1 or select a participant who is not

among the n- best participants according to Ut and µt. If a participant’s Ut is not

less than the least best one of the n-best participants, we select this participant at
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Algorithm 10 Online Learning Algorithm for CPS

Input: participant pool P, task set S.
Output: Θ∗

1: Initialization at t = 0, Θ∗ = ∅. Initialize P̃ r and τ̃ to 0; denote the initialization
task as s0 and Ni,t = 0 and t = 0.

2: Choose 0 < δ < 1/N2.
3: for each t do
4: if t = 0 then
5: Select each participant n times and update P̃ ri and τ̃i for each participant

pi. Update t.
6: else
7: Calculate P ∗t using Algorithm 11.
8: Put P ∗t into Θ∗ and update all Ni,t, P̃ ri and τ̃i. (i ∈ P ∗k ).
9: t = t+ 1.
10: end if
11: end for
12: Return Θ∗

time t instead.

Theorem 10. The selection described by Algorithm 10 and Algorithm 11 is asymptot-

ically efficient.

Proof. We can prove the above theorem by proving the following setps and combining

them together. Define 0 ≤ l ≤ n− 1 and n ≤ k ≤ N by

u1 ≥ ... ≥ ul > ul+1 = ... = un = ... = uk > uk+1 ≥ ... ≥ uN , (42)

and fixed ε > 0, satisfying ε < ul − un/2 if l > 0 and ε < uk − uk+1/2 if k < N .

• If l > 0 and uj ≥ ul, then E(t−Ni,t) = o(log t).

• If k < N and define the increasing sequence of integer-valued random variables

Bt = |{N ≤ a ≤ t|for some j ≥ n+1 and j is one of the n-best participants at

time a+ 1}|, then E(Bt) = o(log t).
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Algorithm 11 Participant Selection at Time t

Input: participant pool P, P̃ r and τ̃ .
Output: P ∗t ∈ P(|P ∗t | = n)
1: Initialize P ∗t = ∅
2: for all pi ∈ P do
3: Calculate µt(i) using current P̃ ri and τ̃i.
4: end for
5: Sort the participants according to their estimate point µt(i) and let pk be the n

th participant.
6: Put first n participant into P ∗t .
7: Find j ∈ {1, 2, ..., N} and t+ 1 ≡ j mod N
8: if Ut(j) ≥ µ̂t(k) then
9: Replace pk by pj in P ∗t .
10: end if
11: Return P ∗t

• If k < N and define the increasing sequence of integer-valued random variables

St(j) = |{N ≤ a ≤ t|All the n-bestparticipants at time a+ 1 are among the

participantss with us ≥ uk and for each n-best participant at time a+1, |hNs,a−

us| < ε, but still participant pj is selected at time a + 1}|, then for each ρ > 0

we can choose ε > 0 so small that E(St(j)) ≤ 1+ρ+o(1)
I(uj ,un)

log t.

The detailed proof of the above three steps can be found in Theorem 5.1 from

[85].

Theorem 10 proves that by implementing the above selection method, we can

achieve the regret bound given by Equation (16).

7.4 Cumulative Participant Selection with Switch Costs

In this section, we consider the cumulative selection problem with switch costs. In

practical scenario, there maybe an additional cost if the selection mechanism switch

the selected participants. This could be caused by the contract between the partici-
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pants and the selection platform or the cost of each participant’s own travel cost or

initialization cost. In this scenario, we have to take this switch cost into account.

7.4.1 Problem Formulation

We first define a switch function of a selection θi,k for participant pi and the kth

task as:

d(θi,k, θi,k+1) =


1 θi,k 6= θi,k+1,

0 θi,k = θi,k+1.

(43)

Let

d(θk,θk+1) =
N∑
i=1

d(θi,k, θi,k+1) (44)

be the total number of participant switches to task sk and let

St =
t∑

k=1

d(θk,θk+1) (45)

be the cumulative participant switches till time t. Then the objective of Cumulative

Selection Problem with Switch Cost (CPSS) is defined as in the following definition.

Definition 10. Cumulative Selection Problem with Switch Cost (CPSS).

Given the volunteering participants P and the crowd sensing task set S, for each

task st (st ∈ S), the participant selection problem tries to select a participant set P ∗t

with the objective:

max
Θ∗

E(J(M)− cSM)

s.t.
∑
i∈[1,N ]

θi,j = n for each j ∈ [1,M ],
(46)

in which c is the cost for each switch.
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7.4.2 Regret Analysis

Similar to CPS, CPSS can be also reformed to a problem that minimizing the total

regret of a given solution. The total regret of CPSS should be the sum of the utility

regret and the switch regret. Thus we have:

R
′

t = Rt + cE(St). (47)

Then our goal of CPSS is to minimize the R
′
M above.

In Theorem 9 we can find that the number of times that we select any participant

pi who is not among the n-best participants is about log t
I(ui,uσ(n))

until time t. Then we

can estimate that the regret contribution for switching from this participant pi is at

most about 2 log t
I(ui,uσ(n))

, i.e. participant pi is never successive selected more than once.

Through the analysis above we try to find an asymptotically efficient selection

while satisfying the contribution for switching is much smaller than the upper bound

(o(log t)) above. A straight forward idea is to minimizing the number of switches

when we select participants.

7.4.3 Online Learning Algorithm

Based on the idea in solving CPS, we try to determine whether a participant is well-

estimated at any given time by using the number of the selections of this participant.

Therefore, we could group the selection of any participant together to minimize the

number of switches. We implement a block allocation method [86] to solve CPSS.

The detailed algorithms to solve CPSS are given in Algorithm 12 and Algorithm 11.

The main idea of the proposed algorithm still includes two steps. In the first step,
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Algorithm 12 Online Learning Algorithm for CPSS

Input: participant pool P, task set S, location set L.
Output: Θ∗

1: Initialization at t = 0, Θ∗ = ∅. Initialize the P̃ r and τ̃ to 0; denote the initial-
ization task as s0 and Ni,t = 0, let frame = 0, t = 0.

2: if frame = 0 then
3: Select each participant N times.
4: else
5: for each frame do
6: Calculate the length of the frame and the blocks in this frame using Equations

(48) and (49).
7: if at the beginning of a block then
8: Calculate P ∗t using using Algorithm 11.
9: Put P ∗t into Θ∗ and update all Ni,t, P̃ ri and τ̃i. (i ∈ P ∗k ).
10: t = t+ 1.
11: else
12: Put P ∗t−1 into Θ∗.
13: end if
14: end for
15: end if
16: Return Θ∗

we need to determine different time intervals, in which same participants are selected

to perform the sensing tasks in these intervals. In the second steps, we need to

determine which participants are selected during each interval.

Time is first divided into frames and each frame is further divided into blocks.

Different frames have different lengths and while blocks in each frame have the same

length. In each block, same participants are selected for performing sensing tasks. At

the beginning of each block, the selection of participants is made. The length of the

f frame is chosen as:

lf =


N f = 0

b2f
2−2(f−1)2

f
cNf f ≥ 1,

(48)
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f=0 f=1 f=F-1 f=F

Figure 42: The frames allocation in Algorithm 12 when N = 4.

and the length of the block in frame f is:

bf =


1 f = 0

f f ≥ 1.

(49)

Figure 42 shows an example of this frame allocation when N = 4. The way defining

frames and blocks is mainly for proof of regret bound of the proposed algorithm.

Theorem 11. Assume that the participant have been re-indexed and l ≤ 0 so that

u1 ≥ ... ≥ ul > ul+1 = ... = um > ... ≥ up. (50)

Under Θ∗, if there is a unique set of n-best arms amongst all of the N participants.

Then we have:

lim sup
t→∞

R
′
t

log t
≤

∑
i is n-worst

uσ(n) − ui
I(ui, uσ(n))

. (51)

The proof of the above theorem can be found in [85] and [86]. This theorem

indicates that the selection Θ∗ is an asymptotically efficient selection. Therefore we

can achieve the upper bound of the regret of the proposed algorithm as Equation (32)

shows.

7.5 Evaluations

In this section, we conduct extensive simulations over real-life mobile data to exam

the effectiveness of our proposed selection algorithms under different scenarios. Par-
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(a) D4D (b) SFC

Figure 43: Locations of sensing targets: (a) cellular towers in Abidjan in D4D and
(b) random GPS locations in SFC.
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Figure 44: Results of different algorithms in D4D ((a)-(e)) and SFC ((f)-(j)) when
M = 300, N = 150 and n = 5 to 25.

ticularly, we mainly implement the proposed algorithms and test them on two real-

world datasets, Data for development (D4D) dataset [24] and San Francisco Yellow

Cab (SFC) dataset [87].

7.5.1 Datasets and Simulation Configuration

7.5.1.1 D4D cellular dataset

D4D dataset [24] is utilized in the simulations. We use one day as the basic time

unit to generate the sensing tasks. Different cellular towers are selected as the sensing

target location to evaluate the proposed algorithms, as shown in Figure 43(a).
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7.5.1.2 San Francisco Yellow Cab dataset

San Francisco Yellow Cab (SFC) dataset [87] collects the location information of

yellow cabs in the city of San Francisco, in May 2008. The vehicles are all equipped

with GPS tracking device. The GPS information of each vehicle is is transmitted to a

central receiving station. From the records, we can extract the GPS position of each

cab with a timestamp. There are 536 vehicles in total contained in this dataset. We

randomly select GPS locations as the sensing targets as shown in Figure 43(b). We

set a fixed sensing range of each location. If one taxi has one GPS record located in

this sensing range, we consider this taxi visits this location once.

7.5.1.3 Ground Truth Generation

D4D dataset includes the cellular phone call records and FSC dataset includes the

GPS records, by which we use to generate the ground truth of the visiting probability

of each participant. Here, we assume that for each user we have multiple rounds

of traces (e.g., K weeks), and there are K rounds in total . Let ck(pi, l, t) indicate

whether pi made one or more phone call at l and t in D4D or visited l’s range at

least once at t in SFC (1 if it made, 0 otherwise). Then the ground truth of visiting

probability (i.e. sensing probability Pri) can be generated as:

P̃ r(pi, l, t) =

∑K
k=1 ck(pi, l, t)

K
(52)

In addition, the ground truth of the delay time τi is generated randomly in the

simulations.
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7.5.1.4 Other Simulation Settings

In all simulations, we randomly generate MCS tasks from the possible times and

locations in each round. Then we apply our proposed algorithm on the tasks to select

n participants per round. The selected participants will perform the sensing with

both spatial and temporal requirements and then have a fixed time limit to upload

the sensing data. As defined before, we assume that whether a participant passes

by the target location at target time is known. If a participant does not upload the

sensing task in the time limit, it’s delay in this round would be set to the time limit.

However, if a participant does not pass by the target location at target time. Only

the sensing probability Pri will be updated for this participant in this round. Recall

that the optimization object is to maximize the cumulative utility. In addition, we

also implement the random selection and one existing method for MAB (CUCB [88])

to make comparison with our proposed algorithms.

7.5.2 Performance of Different Selection Algorithms

In the first set of simulations, we make the comparisons among proposed algorithms

and other two base line algorithms. In total, four participant selection algorithms are

implemented and compared.

• CUCB is an index-based algorithm which tries to solve the combinatorial multi-

armed bandit (CMAB) problems proposed in [88]. However, it does not consider

the switch cost in its design.
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• Random simply selects n participants randomly from the candidate pool for

each sensing task.

• CPS is the selection method proposed in Algorithm 10 and Algorithm 11, which

does not consider the switch cost.

• CPSS is the selection method proposed in Algorithm 12 and Algorithm 11,

which considerthe switch cost.

We set the budget of selection as n from 5 to 25, and perform all algorithms with

N = 150 participants and M = 300 tasks. The results (the cumulative utility) are

reported in Figure 44 for both D4D and SFC datasets. Similar trends can be found

in both set of results. We can find that the proposed algorithm CPSS outperforms

CUCB and Random. Specifically, CPSS outperforms CUCB about 15%. The CUCB

can not achieve best utility per task at the beginning since it needs to switch the

selected participants very frequently. Random also performs bad since every random

selection has a large chance to switch many selected participants. CPS performs

similar to CUCB and better than Random. In addition, as the number of selected

participants (i.e. n) increases, the utility increases. This is reasonable since more

selected participants intuitively lead to more utilities.

7.5.3 Performance of Proposed Algorithm over Different Settings

In the second set of simulations, we evaluate our proposed algorithm CPSS in

different simulation settings.

First, we test with different size of candidate pool as shown in Figure 45. We
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Figure 45: Cumulative utility among different candidate pools.
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Figure 46: Cumulative utility among different locations.

vary the size of the candidate pool N while fix the number of selected participants

n = 15. Here, the value of N varies from 50 to 250 for D4D and from 50 to 150 for

SFC. The simulation results show that more candidates achieve better performance.

This is because larger candidate pool contains more participants in which there are

participants more competitive.

To demonstrate the differences of capability among different sensing tasks (i.e.,

different locations), we also plot results for 5 different locations as shown in Figure 46.

Here we fix N = 150 and n = 15. The simulation results shows different participant

patterns at different locations. which also lead to different utilities. However, the

increasing trends are still similar, which shows that the algorithm works on different

type of sensing tasks.
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7.6 Summary

In this work, we focus on a dynamic participant problem for heterogeneous mo-

bile crowd sensing tasks, with a goal to maximize the sensing utility under budget

constraints. Unlike other existing works, each participant’s capability is unknown

to the selection mechanism. We propose an online algorithm to dynamically select

a subset of participants to perform the tasks while updating the estimation of the

capabilities of them. In our model, we not only consider both the sensing probability

from mobility pattern and the time delay from various uploading methods as partic-

ipant’s capability, but also can take the cost of switching participants into account.

We provide both theoretical regret analysis and extensive simulations conducted with

real-life datasets. Simulation results confirm the efficiency of our proposed algorithms.

We leave further improvements on our online learning algorithms (such as design a

cold start strategy for our proposed algorithm to accelerate the convergence) as one

of our future works.



CHAPTER 8: CONCLUSION

As we address, one of the key challenges in MCS participant selection is how to

effectively select appropriate participants from a huge user pool to perform various

sensing tasks while satisfying certain constraints. Firstly, there has to be specified

MCS architectures in which the working processes can be organized. Secondly, the

crowd sensing tasks are usually heterogeneous that they may have different require-

ment in both spatial and temporal domains. Meanwhile, MCS systems often run

in dynamic environments in which the patterns of both participants and tasks vary

with time and locations. In addition, we also need to consider the data transmission

mechanisms in MCS systems.

In this dissertation, we present different mechanisms to enhance the performance

of participant selection and task assignment in MCS. We try to solve the partici-

pant selection problem from the different aspects mentioned above respectively. For

each scenario, we proposed detailed system model and problem definition. Then we

present our solution and essential analysis. Extensive simulations over a real-life

mobile dataset confirm the efficiency of the proposed algorithms in these works.

In our future works, we plan to investigate hybrid data collection schemes which

combine D2D and direct communications to deliver the collected sensing data. This

is because different data accesses may have different time or reward cost. The partici-

pants may also have their own preferences for data delivery so that they can optimize
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their utility. In addition, we consider adding energy consumption model in current

mobile crowd sensing model so that we can design energy efficient solutions. Finally,

we plan to utilize multiple real world datasets since each dataset has its own features

thus different datasets may bring different inspirations in solving the participant se-

lection problem.
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