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ABSTRACT 
 
 

FRANCES SHARER VERGARA. Optimal purchasing strategy for bandwidth: A buyer’s 
perspective. (Under direction of DR. MOUTAZ KHOUJA) 

 
 
In today’s burgeoning business environments, data frenetically pulses through 

massive interconnected networks as firms create, compile, and disseminate vast amounts 

of information.  Organizations need to acquire the bandwidth that allows them to 

effectively share information.  To acquire bandwidth, a firm agrees to pay a provider a 

fee, and the provider agrees to provide an acceptable quality bandwidth. 

Price of bandwidth depends on two parameters: size and duration of contracts.  

Size is the amount of bandwidth purchased, and duration is the length of the contract.  

Bandwidth prices have been declining over time.  Therefore, managers deciding on 

contracts to cover a given planning horizon have to decide on the number of contracts to 

purchase, their bandwidth (size), and their lengths (duration) to minimize costs.  This 

research analyzes bandwidth contracting decisions from a buyer’s perspective.  Historical 

data will be used to estimate bandwidth cost as a function of contract size and duration at 

a point in time, and to estimate bandwidth cost overtime.  Both mathematical 

programming and evolutionary algorithms will be used to solve the problem under 

deterministic increasing bandwidth demand.  In addition, simulation will be used with 

evolutionary algorithms to solve the problem under stochastic demand and prices. 
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CHAPTER 1 INTRODUCTION 
 
 

In today’s burgeoning business environments, data frenetically pulses through 

massive interconnected networks as firms create, compile, and disseminate vast amounts 

of information.  Organizations need to acquire the resources that allow them to 

effectively share information.  Just as networks have developed to enable the distribution 

of electricity, or facilitate telephone conversations, networks have also developed to 

enable the transmission of digital data from one location to another.  These networks can 

be dedicated channels or switched channels.  A dedicated channel is a link that is 

permanently established.  In general, a dedicated channel is more secure, but also more 

expensive.  These networks can be privately owned, or leased from a third party.  A 

switched channel dynamically establishes a path between two points based on present 

network conditions.  Links to these types of networks are often the most cost effective 

alternative.  In a switched network, data, containing the address of the desired 

destination, is placed on a network.  The destination address is used to guide the data 

through the network.  As the data traverses the network, a communications path from 

source to destination could span a variety of links, and each link could have a different 

bandwidth.  The bandwidth for the entire path is limited by the smallest bandwidth within 

the path.  The link in the path with the smallest bandwidth is referred to as a bottleneck 

(http://compnetworking.about.com/library/glossary/bldef-bandwidth.htm?terms 

=bandwidth).
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Typically, a firm seeking to purchase bandwidth from a vendor

engages in a contractual agreement in which the firm agrees to pay a fee, and the provider 

agrees to provide a set bandwidth for a given period of time at a specified level of quality. 

1.1 What is Bandwidth? 

Bandwidth is a measure of how much data can be transmitted through a network, 

either through a guided media, such as a wire or cable, or an unguided media, which uses 

the atmosphere to propagate a transmission.  In other words, bandwidth is a measure of 

the capacity, or data transfer rate, of a link.  It is sometime helpful to think of bandwidth 

as a pipe.  The larger the pipe, the more data can be sent.  Bandwidth is also known as 

throughput (http://compnetworking.about.com/library/glossary/bldef-andwidth.htm?terms 

=bandwidth). 

In digital transmission, bandwidth is measured as the number of bits, or binary 

digits that can be transmitted through a circuit or channel within a given period of time.  

The measure of bandwidth is recorded in bits per second (bps) 

(http://compnetworking.about.com/library/glossary/bldef-bandwidth.htm?terms 

=bandwidth).  One thousand bps is equivalent to 1 Kbps (kilobit per second), one 

thousand Kbps (or one million bps) is equivalent to 1 Mbps (Megabit per second), one 

thousand Mbps (or one billion bps) is equivalent to 1 Gbps (Gigabit per second), and one 

thousand Gbps (or one trillion bps) is equivalent to 1 Tbps (Terabit per second) (Horak, 

2000). 



 

 

3

1.1.1 Common Digital Communication Media 

There are numerous transmission media and technologies available.  The 

transmission mediums include guided media, such as Twisted Pair, Coaxial Cable, Fiber 

Optic, and unguided, or wireless, media, such as Microwave Radio and Satellite. 

Twisted pair, as its name suggests, consist of a pair of twisted copper wire that is 

used to propagate a carrier wave signal from one destination to another.  Twisted pair is 

the oldest transmission medium (Laudon and Laudon, 2003), and has historically been 

used by telephone companies for the transmission of analog voice signals; however 

digital data can also be transmitted over twisted pair.  The advantage of twisted pair is 

that it is ubiquitous and inexpensive.  The disadvantage is that the transmission speed is 

somewhat limited and is significantly less than some of the other media.  Some of the 

technologies employed for the transmission of digital data over twisted pairs include T-1 

connections, Category 5 (Cat 5) copper, and Asymmetric Digital Subscriber Loop 

(ADSL) (Horak, 2000). 

A T-1 connection can be used to transmit data and voice and has a capacity of 

1.544 Mbps (1,544,000 bits per second) (FitzGerald, and Dennis, 1999).  T-1 circuits are 

often used for inverse multiplexing.  Multiplexing is a process where multiple signals are 

merged onto one channel for transmission.  Inverse multiplexing is the reverse of 

multiplexing, for inverse multiplexing a single signal is split up and placed onto two or 

more channels for transmission.  The end result, a single signal is able to traverse the 

network in a fraction of the time it would take if the signal had traveled over a single 

channel (FitzGerald et al., 1999).  T-1 circuits are the most frequently used digital line in 

the United States, Canada, and Japan (http://searchnetworking.techtarget.com/sDefinition 
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/0,,sid7_gci213084,00.html).  Category 5 is a network cable standard for twisted pair.  

These cables are often used in 100Base-T Ethernet networks and provide a maximum 

data rate, or bandwidth, of 100 Mbps at a maximum distance of 200 meters (FitzGerald et 

al., 1999).  An Asymmetric Digital Subscriber Line (ADSL) is a technology that uses 

twisted pair media to transmit digital data at high bandwidths.  The ADSL provides a 

continuous circuit and is comprised of three separate channels 

(http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213764,00.html).  One 

channel is a dedicated analog circuit for telephone voice transmission.  The remaining 

two channels are used for incoming (downstream) and outgoing (upstream) digital data 

transmissions.  In ADSL, these two channels are asymmetric, meaning that one channel 

has a much higher bandwidth than the other channel.  The rational for this configuration 

is that often incoming data bandwidth requirements are greater than outgoing data 

bandwidth requirements.  A limitation to ADSL is distance.  For ADSL to function, the 

user needs to be located no more than three miles from a telephone companies end office; 

with better transfer rates as the user moves closer (FitzGerald et al., 1999). 

The second media for digital data transmission is coaxial cable which is a guided 

media like twisted pair; however the construction of coaxial cable is quite different than 

that of twisted pair.  A coaxial cable is comprised of two conductors.  The first conductor 

is a cylindrical copper core which is located at the center of the coaxial cable.  This core 

conductor is surrounded by a thick cylinder of insulating material.  Surrounding this 

insulating material is a second conductor which resembles a wire mesh.  Finally, 

surrounding the wire mesh is a secondary insulating material (FitzGerald et al., 1999).  

Two common network cable standards related to coaxial cables include RG-58 (10Base-2 
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Ethernet) and RG-8 (10Base-5 Ethernet).  Both standards have a maximum data 

transmission rate of 10 Mbps, and a maximum distance of 185 meters and 500 meters, 

respectively (FitzGerald et al., 1999). 

Fiber optics, another guided medium, is a relatively new media.  A fiber optic 

cable transmits data in the form of pulses of light within extremely thin glass or plastic 

filaments, or fibers (FitzGerald et al., 1999).  The original signal is an electrical signal 

which is converted into an optical (light) signal.  Once the signal reaches its destination, 

it is converted back to an electrical signal. 

Since the cost of laying fiber is high and demand is uncertain, new technologies 

for the effective use of bandwidth such as dense wavelength division multiplexing 

(DWDM) are emerging (http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci 

213892,00.html).  With the use of DWDM, multiple signals can be sent over one channel 

at the same time, in this case a single fiber optic filament, using a different color of light 

for each individual signal.  Each color of light is a separate frequency wavelength, and 

for this reason each signal remains separate and intact when it reaches its destination.  

The multiple light signals, upon reaching the destination, are then demultiplexed back 

into individual signals (Laudon, et al., 2003).  Prior to the development of DWDM only 

one signal of light (i.e., a single wavelength) could be transmitted over a single fiber 

(Laudon et al., 2003).  With the advent of DWDM the capacity of each fiber optic 

filament is significantly increased.  DWDM began by transmitting four separate light 

wave frequencies, each frequency comprising a separate stream of data, and each 

propagating through the fiber at approximately 10 Gbps, for a total bandwidth of 40 Gbps 

over a single fiber.  Thirty-two light wave frequencies have been transmitted over a 
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single fiber at a propagation rate of approximately 10 Gbps resulting in a total bandwidth 

of approximately 320 Gbps per fiber (Horak, 2000).  It is speculated that DWDM has the 

capability to transmit up to 160 separate signals, i.e., separate wavelengths, over a single 

fiber for a total transmission speed of up to 6.4 Tbps, or 6.4 trillion bits per second 

(Laudon et al., 2003).  Since optical fibers are often bundled into cables that contain 

thousands of single fibers, the potential bandwidth of fiber optical networks is 

astronomical (Horak, 2000). 

The advantage of fiber optics over traditional guided media is that fiber optic 

cables are able to transmit data at a much higher rate.  Fiber optic cables can also carry 

data, voice, graphical, and video transmission at the same time 

(http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212113,00.html).  This 

means that a variety of data formats can be accommodated simultaneously 

(http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213892,00.html).  In 

addition, fiber optical cables, since they do not transmit electrical signals, are not affected 

by electromagnetic disturbances that can degrade the quality of the data being 

transmitted, as can happen with some of the other guided media.  Fiber optic cables are 

also much less susceptible to the negative effects of environmental conditions (FitzGerald 

et al., 1999). 

Microwave radio is a type of unguided transmission media that employs terrestrial 

transmission stations to propagate a signal over some distance.  It supports high-volume, 

long-distance, point-to-point data transmission (Horak, 2000; Laudon et al., 2003).  

Bandwidth provided by microwave transmission can be greater than 6 Gbps.  The 

disadvantage of microwave is that the frequencies within the microwave radio spectrum 
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are limited, and these frequencies are licensed to users based on geographical regions.  

Once a frequency is licensed, it becomes unavailable for other uses within that regional 

area (Horak, 2000). 

Satellites also use microwave signals to transmit data, however, for satellite 

transmissions the satellite(s) are orbiting transmission relay stations, which perform the 

same function as the terrestrial transmission stations do for microwave transmissions.  

Signals are transmitted from terrestrial stations to the satellite and then sent back to Earth 

to another terrestrial station, or stations.  Satellites can broadcast transmissions over a 

large area so that many terrestrial stations have the ability to receive a broadcast signal.  

Satellites employ a single uplink station and one or more downlink stations.  Therefore, 

because of the large footprint (the area on the ground where the signal is accessible), 

satellites are ideal for point-to-multipoint network, such as television signal transmission 

(Horak, 2000).  Today’s satellites handle thousands of signals.  In addition, satellites can 

be employed to transmit a variety of signals, from simple data to broadcast television 

signals (http://searchmobilecomputing.techtarget.com/sDefinition/0,,sid40_gci212939,00 

.html). 

One disadvantage of satellites is propagation delay, which is a time lag 

experienced due to the time required for a signal to travel from Earth to a satellite several 

thousand miles away.  Satellites, while slower than microwave radio, are able to transmit 

data efficiently over immense distances, and into areas where it would be difficult to 

place physical wires and cables, or terrestrial transmission stations. 
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1.1.2 Media and Technology Selection Criteria 

There are several factors to consider when selecting a transmission media.  One 

factor is the type, or geographic scope, of the network to be used, since some media are 

predominantly used in certain types of networks.  For example, microwave radio and 

satellites are usually used for WAN (wide area networks), while twisted pair, and coaxial 

cable are not.  Fiber optic cables, on the other hand, are very versatile and can be used for 

various types of networks, either large or small.  Transmission distance is another 

important factor to consider.  Guided media, with the exception of fiber optic cables, 

must incorporate repeaters to boost the signal if it needs to travel more than a small 

distance.  Twisted pair and coaxial cable can transmit data approximately 100 meters, and 

500 meters, respectively, before a repeater is required.  Optical fibers can transmit data as 

much as 75 miles before the signal degrades enough that it requires regeneration.  It is 

expected that in the future, distances could reach 600 miles or more before a fiber optic 

signal will need to be regenerated.  Transmission speeds, or bandwidth, inherent to each 

media is also important.  Typically, twisted pair and coaxial cable have bandwidths 

ranging from 1 to 100 Mbps, while the wireless media, microwave radio and satellite, 

have bandwidths ranging from 20 to 50 Mbps, and fiber optic cable has bandwidths 

ranging from 100 Mbps to 10 Gbps.  Yet another factor to consider is the level of error 

rate inherent to each media.  Unguided media, or wireless media, are media most 

susceptible to transmission errors.  For guided media, twisted pair has the highest error 

rate; and yet still has a lower error rate than unguided media.  Fiber optic cable has the 

lowest error rate across all media, and coaxial cable falls somewhere between twisted pair 
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and fiber optic cable (FitzGerald et al., 1999).  Data throughput is affected by both 

transmission speed and error rate (Horak, 2000). 

Security is another important factor to consider.  Since signals are propagated 

through the air for unguided or wireless media, transmissions are much less secure than 

over guided media.  Fiber optic cables are the most secure medium.  Finally, cost is a 

very important factor.  Cost refers to the cost of the media itself, which is an important 

consideration for an entity building a network.  Therefore, cost in this instance is from a 

provider/seller’s point of view.  Later, we will focus on the cost of purchasing bandwidth 

services, which is cost from the purchaser/buyer’s perspective.  For guided media, 

twisted pair, being the oldest and least sophisticated, is typically the cheapest 

transmission media, followed by coaxial cable, then fiber optic cable.  Unguided media’s 

cost is related to distance.  Therefore, microwave radio is cheaper than satellite 

(FitzGerald et al., 1999).  Table 1-1 reports relative information about each of the media 

discussed with respect to the various selection factors identified. 

Table 1-1: Media Summary 
Guided Media 

Media 
Network 

Type 
Transmission

Distance Speed 
Error 
Rates Security Cost 

Twisted 
Pair LAN Short Low-High Low Good Low 

Coaxial 
Cable LAN Short Low-High Low Good Moderate
Fiber 
Optics Any 

Moderate- 
Long 

High- 
Very High 

Very 
Low 

Very 
Good High 

Unguided Media 

Media 
Network 

Type 
Transmission

Distance Speed 
Error 
Rates Security Cost 

Microwave WAN Long Moderate 
Low- 

Moderate Poor Moderate

Satellite WAN Long Moderate 
Low- 

Moderate Poor Moderate
Source: (FitzGerald et al., 1999) 
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Finally, networks can also be classified as either analog or digital.  There are 

numerous advantages to transmitting data digitally.  One advantage is that it is very easy 

to compress digital data, and security, and error detection and retrieval are much better 

for digital networks.  In addition, digital networks are easier to manage and upgrade 

(Horak, 2000). 

1.2 The Demand for Bandwidth 

Significant advances in information technology have brought about increased use 

of multimedia and Internet applications.  As a result, many firms, including Internet 

service providers (ISPs), application service providers (ASPs), and companies with 

operations in multiple locations spread across one or more continents have seen their 

demand for telecommunications capacity increase significantly over the last decade. 

It is estimated that more than half a trillion dollars of US-based company 

revenues in 1999 were generated through Internet activities (Galbi, 2001).  It is not 

surprising that the demand for bandwidth grew throughout the 1990s (Galbi, 2001). 

Galbi (2001) reports that Internet backbone traffic grew 1,000% per year in 1995 

and 1996, but the growth rate fell to 100% per year in 1997 and 1998.  The total Internet 

backbone bandwidth in the mid-1998 is estimated to be 110 Gbps (Galbi, 2001). 

The deployment of fiber optic cables peaked around 1990 with a growth rate of 

28%, but has continued to grow at a considerable rate (Galbi, 2001).  The inter-office 

non-switched bandwidth sold by Regional Bell Operation Company (RBOC) grew on 

average 37.4% per year between 1989 and 1999 (Galbi, 2001).  Furthermore, bandwidth 

data for combined US trans-Atlantic and trans-Pacific companies show that the growth 

rate from 1989 to 1995 was 981%, and from 1995 to 2000 was 4,215% (Galbi, 2001). 
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1.2.1 Bandwidth as a Commodity 

Bandwidth is typically traded in discrete capacities, and international standards 

(http://www.iec.org/online/tutorials/sonet_trans/topic05.html) are often used, e.g., 

SONET.  SONET (Synchronous Optical NETwork) is a fiber technology standard 

(Horak, 2000).  Line transmission rates in SONET include 51 Mbps, 155 Mbps, and 622 

Mbps, 2.5 Gbps, and 10 Gbps (Laudon et al., 2003).  With the advances that have 

developed in optical technology and increasing demands for fast, secure, and accurate 

bandwidth services, fiber optics will undoubtedly be a major medium well into the future. 

Of the countless networks that merge together to form a conglomerate network, 

e.g., the Internet and other communication networks, each individual network remains a 

separate entity made up of its own media and protocols.  This means that a signal 

traveling through a series of node-to-node connections within a constellation of networks 

could travel over a variety of media and network types.  Due to the enormous number of 

possible paths within the network, price competition among links is likely to be very low 

(Galbi, 2001).  Consequently, there has been increasing effort by third-party vendors to 

create bandwidth exchanges so that bandwidth can be easily and effectively traded just as 

other commodities are traded, e.g., electricity.  Currently, the transaction cost of 

bandwidth is high due to the fragmented nature of the individual networks (Galbi, 2001).  

While there is a push towards bandwidth exchanges, presently exchanges capture only a 

small sector of bandwidth sales (Galbi, 2001).  “One knowledgeable industry observer, 

while calling past price trends a ‘great anomaly’, predicts that data transmission prices 

‘are likely to start a rapid decline soon.’  The basis for this optimism seems to be that 

commodity markets for bandwidth will develop rapidly” (Galbi, 2001). 
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In fact, upon examination of prices for exchange-traded bandwidth it is found that 

these prices are significantly less than bandwidth prices offered outside exchanges (Galbi, 

2001).  Therefore, as bandwidth exchanges become more and more prevalent, bandwidth 

will become more standardized; as is the case with any commodity.  In addition, as 

bandwidth technology expands and evolves it is reasonable to assume that prices will 

decline.  According to Cheliotis (2000), in the late nineties a huge supply of bandwidth 

became available.  “This trend will urge suppliers and consumers to engage more actively 

in trading excess capacity, leading to the formation of bandwidth commodity markets” 

(Cheliotis, 2000). 

Demand uncertainty, technology uncertainty, and cost pressures on prices of 

bandwidth due to new entrants (Borthick, 2001) significantly increase the risk associated 

with telecommunications capacity planning for telecommunications companies.  Demand 

uncertainty causes organizations to lay telecommunications capacity in two steps.  In the 

first step, organizations lay excess capacity in the form of unlit optic fiber, or dark fiber.  

Later, when demand increases, an additional cost is incurred to “light” these dark fibers, 

thereby increasing bandwidth capacity. 

The high degree of risk associated with telecommunications capacity planning 

decisions has led to the emergence of bandwidth intermediaries and marketplaces where 

bandwidth can be traded.  One type of intermediary is wholesalers who typically enter 

into contracts with large telecommunications companies and manage the economic and 

technology risks associated with providing access to retail customers.  Cheliotis (2000) 

relates that a bandwidth broker performs typical brokerage functions (i.e., providing trust, 

aggregation, and negotiation), in addition to functions that are specific to the procurement 
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of bandwidth.  These functions include “trading multiple contracts in a spot market and 

even offering new composite contracts to customers, thus creating a secondary market for 

bandwidth” (Cheliotis, 2000).  Other types of intermediaries include market makers who 

match bandwidth sellers with bandwidth consumers (http://www.bandwidthfinders.com/,; 

http://www.band-x.com/en/).  These intermediaries cater to the needs of bandwidth 

providers seeking to sell excess bandwidth as well as consumers requiring bandwidth. 

As stated above, it is thought that bandwidth will eventually evolve into a 

commodity, which will be traded through exchanges.  However, two important 

developments are required for bandwidth to become a true tradable commodity.  First, it 

is necessary to develop standardized contracts (with strict penalties for non-performance) 

that ensure that a communications path with a particular bandwidth between a source and 

destination provided by supplier A is interchangeable in terms of performance and quality 

with a similar offering from supplier B.  Second, the infrastructure should provide inter-

organizational connectivity between carriers, referred to as pooling points.  The most cost 

effective route between two locations (say New York and LA) might involve multiple 

bandwidth suppliers, for example, New York to Chicago using supplier A, and Chicago 

to LA using supplier B.  However, this combination of links from multiple carriers would 

work only if A and B can connect to each other’s networks.  Some organizations have 

invested in pooling points, and additional developments are underway.  Current 

bandwidth markets, however, are only partially commoditized (Borthick, 2001; Cheliotis, 

2000). 
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1.2.2 Pricing of Bandwidth 

The cost of telecommunication capacity depends on the total bandwidth 

purchased, its geographical location, and the duration of the contract.  Bandwidth prices 

must be viewed at both a single point in time, and over time.  At any given point in time, 

contract prices per unit time decrease as size and duration of the contract increase.  Over 

time, prices are also decreasing.  Therefore, purchase decisions must consider the cost of 

being locked into an extended contract at a fixed price, when prices are likely to decrease 

over time. 

Table 1-2 illustrates the annual prices for bandwidth at different capacities (sizes) 

and for different contract lengths provided by a bandwidth supplier 

(www.thecomputerking.com) at a single point in time.  These prices are a snapshot of 

bandwidth prices from one supplier on December 3, 2001.  Other web sites containing 

information regarding telecommunications pricing include band-x.com 

(http://www.band-x.com/en/) and telegeography.com (http://www.telegeography.com/).  

Under current market conditions characterized by excess capacity and increased 

competition, prices may be lower, but discounts for larger transmission rates and longer 

contracts are still available.  Hence, the data in Table 1-2 is useful for research purposes. 

Table 1-2: Illustrative Annual Prices for Bandwidth 
  Contract Duration 
  Column (a) Column (b) Column (c) 
  1 year* 2 years‡ 3 years† 

6 Mbps $14,310  $13,595  $12,164  
9 Mbps $15,429  $14,658  $13,115  
12 Mbps $16,548  $15,721  $14,066  
15 Mbps $17,667  $16,784  $15,017  
18 Mbps $18,786  $17,847  $15,968  
21 Mbps $19,905  $18,910  $16,919  B

an
dw

id
th

 S
iz

e 

45 Mbps $25,500  $24,225  $21,675  
Source: (www.thecomputerking.com) 
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*Column (a) — price per bandwidth size for a 1 year contract 
‡Column (b) — price per bandwidth size for a 2 year contract, calculated as 95% 

of column (a) 
†Column (c) — price per bandwidth size for a 3 year contract, calculated as 85% 

of column (a) 
 
Table 1-3 provides a view of bandwidth pricing over time.  Table 1-3 shows the 

U.S. local inter-office circuit prices in dollars per month per Mbps for four different 

circuits (VG, DDS, DS1, and DS3) from 1990 to 2000.  These four types of circuits 

represented more than 80% of RBOC leased-line revenue in the 1990s (Galbi, 2001). 

Table 1-3: US Local Inter-Office Circuit Prices (Dollars per Month per Mbps) 

Year 
VG 

(64,128 Kbps) 
DDS 

(56 Kbps) 
DS1 

(1.5 Mbps) 
DS3 

(44.7 Mbps) 
1990 159 2,514 191 16.17
1991 156 2,421 174 19.03
1992 140 2,092 177 18.07
1993 121 1,399 136 16.21
1994 134 971 123 17.95
1995 140 1,171 114 17.15
1996 144 900 116 16.53
1997 138 846 118 16.46
1998 149 925 114 16.73
1999 147 942 113 17.49
2000 143 878 112 17.17

Source: (Galbi, 2001) 
 

Table 1-4 reports U.S. long-distance leased line prices for T-1 and T-3 circuits 

from 1994 through 1999.  The data in Table 1-4 shows that prices declined by 20% 

between 1994 and 1999, for both types of circuits (Galbi, 2001). 

Table 1-4: US Long-Distance Leased Line Prices 
Year T-1 (1.54 Mbps) T-3 (44.74 Mbps) 

1994 760 5,830
1995 760 5,830
1996 730 5,554
1997 680 5,260
1998 650 5,000
1999 620 4,750

Source: (Galbi, 2001) 
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This long-term decline in bandwidth prices is due to technological advances and 

excess capacity buildup by existing telecommunications companies in anticipation of 

increased demand, as well as new entrants.  Some researchers expect this trend to 

continue as carriers with excess capacity are under pressure to sell this capacity through 

brokers and exchanges (Borthick, 2001; Cheliotis, 2000). 

Figure 1-1 shows the price indices for Band-x starting from October 1998.  As 

can be seen from Figure 1, from October 1998 to July 2000, Band-X’s price index fell 

approximately 63% (Galbi, 2001). 

 
Figure 1-1: Band-X Bandwidth Price Indices 
Source: (Galbi, 2001) 
 
1.3 Bandwidth Contracts: The Buyer’s Problem 

The price for a bandwidth contract at a point in time depends on two parameters: 

size and duration.  Size is the amount of bandwidth that is being purchased, and duration 

is the length of the contract.  For buyers of bandwidth, contracts for large bandwidth may 

be attractive due to size discounts.  Similarly, long-term contracts may be attractive 
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because of duration discounts.  On the other hand, decreasing bandwidth prices over time 

and demand uncertainties may favor signing short-term contracts.  Hence, managers 

deciding on which contracts to purchase to cover a given planning horizon have to decide 

on (1) the number of contracts to purchase, (2) the bandwidth size for each contract, and 

(3) the duration for each contract, with the objective of minimizing total cost. 

There is a significant amount of research on problems faced by bandwidth 

providers under conditions of uncertain demand and price.  However, problems faced by 

bandwidth buyers in contracting for bandwidth are relatively under researched.  This 

problem from a buyer’s perspective can be quite complex.  For example, if the decision 

maker is faced with a 36 months planning horizon, and a purchase decision can be made 

once during each month, then there are 36 decision points for which the decision maker 

must decide whether to purchase, and if so, the size and duration of each contract to 

purchase to minimize the total cost over the entire planning horizon. 

This research analyzes bandwidth contracting decisions from a buyer’s 

perspective under conditions of discounts for larger bandwidth and longer term contracts 

and declining prices over time.  The parameters of interest are the number of contracts, 

and the size and duration of each contract.  This problem will be solved using 

mathematical programming and evolutionary algorithms and the solutions will be 

compared.  Two models will be examined.  In the first model, demand and price are 

treated as deterministic.  In the second model, demand and price are treated as random 

parameters that change in the mean over the planning horizon.  Both models will be 

solved using an evolutionary algorithm specifically designed for the bandwidth contract 
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problem.  For the stochastic model a simulation will be used in conjunction with the 

evolutionary algorithm. 

The remainder of this dissertation is organized as follows.  In Chapter 2 the 

mathematical formulation and assumptions for the bandwidth contract problem are 

outlined and discussed in detail, as well as a discussion of the techniques which will be 

employed to evaluate the performance of the two evolutionary algorithm 

implementations.  Chapter 3 gives a general overview of evolutionary algorithms and a 

discussion of how the deterministic evolutionary algorithm (DEA) and stochastic 

evolutionary algorithm (SEA) (with simulation) will be implemented in order to solve the 

bandwidth contract problem (BCP).  Chapter 4 gives a detailed description of the DBCP-

EA and the solution quality.  Chapter 5 is discusses the implementation of the SBCP-EA 

and the results obtained.  Chapter 6 contains a summary of this work and final comments, 

conclusions, and possible areas for future research. 

 



 

CHAPTER 2 THE BANDWIDTH CONTRACT PROBLEM (BCP) 
 
 

There is increasing recognition that the rapid proliferation of information 

networks will significantly impact business practices.  A significant body of literature on 

a variety of telecommunications related topics including economic and policy aspects of 

networking (Econmides, 1996), pricing (Cochi, Shenkar, Estrin, and Zhang, 1993), 

network design (Balakrishnan, Magnanti, and Mirchandani, 1998), and a variety of other 

issues (Shapiro, and Varian, 1999) exists. 

The problem of installing or expanding telecommunications capacity under 

conditions of uncertain demand from a telecommunication service provider’s perspective 

has been studied by many researchers.  Multi-period expansion of telecommunications 

networks has been studied by researchers who typically examined tradeoffs between 

waiting to invest, revenue opportunities, and maintenance costs for older equipment.  

Early research by Zadeh (1974) and Minoux (1987) emphasize the complexity and 

dynamic nature of the problem.  Some researchers such as Balakrishnan, Magnanti and 

Wong (1995) focus on capacity expansion in the context of a portion of a 

telecommunications network, while others (Chang, and Gavish, 1995; Gavish, 1992) 

examine the capacity expansion problems for the entire backbone network.  This 

literature basically examines how much capacity to add to each telecommunications link 

in a network during multiple periods of time.  Researchers have also explored
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alternative solution techniques for mathematical programming models in 

telecommunications network design (Premkumar, and Chu, 2000).  Mathematical models 

have also been developed to study telecommunications pricing decisions of suppliers 

(Brown, and Norgaard, 1992).  Other researchers (Chen, Hassin, and Tzur, 2002) 

analyzed the problem of allocating fixed capacity bandwidth and storage among a 

number of requests to maximize profits of the seller.  Keon and Anandalingam, (2003) 

present a model for optimally pricing different classes of telecommunications service 

(voice, data, etc.) from the telecommunications provider’s perspective.  This dissertation, 

though related, examines a different problem.  The focus here is on acquiring capacity 

from a buyer’s perspective, instead of the telecommunications provider or seller’s 

perspective. 

This research is also related to research on future manufacturing capacity 

procurements under conditions of increasing costs and uncertain demands.  Burnetas and 

Gilbert (2001) examine a scenario where the decision maker trades off waiting for 

improved demand information with increasing costs of waiting and uses dynamic 

programming and numerical analysis to decide on the capacity for each period. 

Khouja and Kumar (2004) also addressed the bandwidth contract problem from a 

purchaser’s perspective.  However, in Khouja and Kumar’s model overlapping contracts 

were not allowed, therefore, a single contract covers the demand for any given period.  

Khouja and Kumar showed that a fixed contract length works as well as variable contract 

lengths. 

2.1 Problem Formulation 

For this model, the following assumptions are made: 



 

    

21

1. Demand is deterministic and increasing over time, 

2. Prices are deterministic and decreasing over time, 

3. Discounts with respect to contract size and duration are offered, 

4. Overlapping contracts are allowed, 

5. Contract durations must be a multiple of τ , where τ  is the minimum contract 

duration, and 

6. No shortages are allowed. 

Notation used in formulating the model is as follows: 

T  = Length of planning horizon, 

τ  = Minimum duration of a contract, e.g., 1 month, 

N  = Number of contract periods in the planning horizon, τTN = , 

i  = Beginning period index for a contract, Ni …2,1= , 

j  = Ending period index for a contract, 12 += Nj … , 

iD  = Demand for bandwidth in period i , 
 
 
 

jix ,  =   

 
 

jiP ,  = Price per Mbps per time unit (i.e., τ ) for a contract beginning in period i  and 

 ending at the beginning of period j ; a function of size ( )Q  and duration ( )L , 

jiQ ,  = Size of a contract that begins in period i  and ends at the beginning of period j , 

 and 

1 if a contract beginning at period i  and ending at the beginning of period 
j  is purchased, 

 
0 otherwise, 
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jiL ,  = ij − , the duration of a contract that begins in period i  and ends at the 

 beginning of period j . 

The mathematical formulation of the cost minimization problem over the planning 

horizon is given by: 

)(
1

1

1
,,, ijPQxTCMin

N

i

N

ij
jijiji −= ∑ ∑

=

+

+=

.     (1) 

This problem is subject to N  constraints, ensuring that purchased bandwidth is sufficient 

to meet demand in every period. 

DQ ijk

i

k

N

ij

≥∑ ∑
=

+

+=
,

1

1

1
 Ni …2,1= .     (2) 

In other words, the sum of bandwidth sizes for all contracts active during period i  must 

be greater than or equal to the maximum demand for bandwidth in period i . 

It is assumed that the bandwidth demand will increase.  For the deterministic 

model, demand, growing at a constant rate, is modeled by 

gr DD += 1 ,        (3) 

where g D  is the demand growth rate.  Therefore, bandwidth demand at time t  is given 

by 

raD t
DDt = ,        (4) 

where aD  is the initial demand at the beginning of the planning horizon. 

For the deterministic model, the price of bandwidth is assumed to be decreasing at 

a constant rate according to 

PP gr −= 1 ,        (5) 
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where g P  is the price decrease rate.  The unit price for bandwidth per unit time at time t  

can be written as: 

raP t
PPt = ,        (6) 

where aP  is the initial bandwidth price at the beginning of the planning horizon.  To 

solve this problem bandwidth pricing parameters need to be computed by developing an 

empirical price function.  Historical data is analyzed to determine the price function at 

time t , tP .  Bandwidth price at the beginning of the planning horizon, or any point in 

time is a function of contract size and duration.  Therefore, at the beginning of the 

planning horizon 

( )LQfa p ,= .        (7) 

Substituting into (6) gives 

( ) rLQfP t
pt ,= .       (8) 

Since all contracts start at the beginning of a period and end at the beginning of a period, 

the price per Mbps per unit time for contract beginning in period i  and ending at the 

beginning of period j  is 

( ) ( ) ( )rarijQfP i
pP

i
pjiji

ττ 11
,, , −− =−= .     (9) 

Substituting ( )ra i
PP

τ1−  from Equation (9) for P ji,  in Equation (1) gives the following 

bandwidth acquisition problem 

( ) ( )∑ ∑
=

+

+=

− −=
N

i

N

ij

i
PPjiji ijraQxTCMin

1

1

1

1
,,

τ     (10) 

subject to Equation (2). 
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When τ  is equal to one, it can be removed from Equation (10).  The equations 

that follow assume that τ  is equal to one. 

2.2 Illustrative Example: N = 5 

Consider a problem with a planning horizon of five months, with possible 

contracts having a minimum length of one month, i.e., 1=τ .  Therefore, N  = 5, 

52,1 …=i , and 63,2 …=j . 

Table 2-1 shows the total number of possible contracts in a problem with 5=N  

decision points; note the format adopted for the numbering of each contract.  Each 

column represents a unique contract which could be purchased.  In Table 2-1, the white 

cells containing “# ≥ 0” indicate contracts that could potentially be active and the period 

in which they can be purchased.  The white cells, if any, below a first white cell for a 

purchased contract will also contain the bandwidth size of that contract.  In other words, a 

contract can only be purchased in the period in which its first white cell appears, and if a 

contract is purchased the bandwidth size for that contract is recorded in all the white cells 

for that contract.  Note that the duration of the contract is indicated by the number of 

white cells following the initial purchase of the contract.  The grey cells indicate the 

periods when any given contract cannot be active.  All white cells for any contract that is 

not purchased will contain a 0.  Table 2-2 illustrates how quickly the BCP can become 

intractable.  Even small increases in the size of the planning horizon (i.e., N) will 

dramatically increase the number of available contracts and, subsequently, exponentially 

increase the solution search space. 
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Contract [01, 02] 

Contract [01, 03] 

Contract [01, 04] 
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Contract [02, 04] 
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Table 2-2: Number of Possible Contracts for Different Values of N 
Number of Decision Points (N) Number of Possible Contracts (i.e., 1/2 N (N+1)) 

2 3
3 6
4 10
5 15
6 21

:..
:..

:..
:..

12 78
:..
:..

:..
:..

18 171
:..
:..

:..
:..

24 300
 

2.3 Bandwidth Contract Purchasing Problem: Formulations of the Problem 

To solve this problem, a mixed integer formulation is used.  The mixed integer 

programming technique uses Equations (1) and (2), and requires the inclusion of a binary 

variable jix ,  to indicate whether or not a given contract is active, i.e., purchased 

(Williams, 2005).  If 1, =jix , then a contract beginning at period i  and ending at the 

beginning of period j  is purchased, else if 0, =jix , then no such contract has been 

purchased.  Therefore, using Equations (1) and (2), the following minimization of total 

cost (MinTC) formula is derived: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )564645

363534
262524

231615
141312

6,56,56,56,46,46,45,45,45,4

6,36,36,35,35,35,34,34,34,3

6,26,26,25,25,25,24,24,24,2

3,23,23,26,16,16,15,15,15,1

4,14,14,13,13,13,12,12,12,1

−+−+−

+−+−+−

+−+−+−

+−+−+−

+−+−+−=

PQxPQxPQx
PQxPQxPQx
PQxPQxPQx

PQxPQxPQx
PQxPQxPQxMinTC

   (11) 

subject to: 

16,16,15,15,14,14,13,13,12,12,1 DQxQxQxQxQx ≥++++      (12) 
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26,26,25,25,24,24,23,23,26,16,15,15,14,14,13,13,1 DQxQxQxQxQxQxQxQx ≥+++++++  (13) 

36,36,3

5,35,34,34,36,26,25,25,24,24,26,16,15,15,14,14,1

DQx
QxQxQxQxQxQxQxQx

≥

++++++++
 (14) 

46,46,45,45,46,36,35,35,36,26,25,25,26,16,15,15,1 DQxQxQxQxQxQxQxQx ≥+++++++  (15) 

56,56,56,46,46,36,36,26,26,16,1 DQxQxQxQxQx ≥++++      (16) 

Equation (12) can be rewritten as. 

( )
( )
( )
( )

6,5

6,45,4

6,35,34,3

6,25,24,23,2

6,1

5,14,13,112

6,56,5
4

6,46,45,45,4
3

6,36,35,35,34,34,3
2

6,26,25,25,24,24,23,23,2
1

6,16,1

5,15,14,14,13,13,12,12,1
0

2

32

432

)5

432(

PP

PPP

PPPP

PPPPP

P

PPPPP

aQxr

aQxaQxr

aQxaQxaQxr

aQxaQxaQxaQxr

aQx

aQxaQxaQxaQxrTCMin

++

+++

++++

+

++++=

,  (17) 

which is the same as 

( )( ) ( )( )
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The pricing data given in Table 1-2 is used to estimate the price of bandwidth as a 

function of size, and duration.  Table 1-2 shows contract costs associated with varying 

bandwidth sizes for durations of 1, 2, and 3 years. 

To fit a regression function, the annual price per Mbps data recorded in Table 1-2 

is converted to the price per Mbps per month for each combination of Size and Duration 

listed in Table 1-2.  The price per Mbps per month is shown in Table 2-3.  Each 
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observation in Table 2-4 shows the price per Mbps per month with the inverse of size 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Q
1  and duration ⎟

⎠
⎞

⎜
⎝
⎛

L
1  to reflect the negative relationship price with size and duration.  

The resulting regression equation, fitted using SPSS, accounted for 98.8% of the variance 

in the price data.  Tables 2-5 show the regression results from the data in Table 2-4. 

Table 2-3: Price per Mbps per Month 

Contract Duration (L) 
(Years) 

Contract 
Bandwidth Size 

(Mbps) 
Annual Price/Mbps* Price/Mbps/Month 

1 6 $14,310  $198.7500
1 9 $15,429  $142.8611
1 12 $16,548  $114.9167
1 15 $17,667  $98.1500
1 18 $18,786  $86.9722
1 21 $19,905  $78.9881
1 45 $25,500  $47.2222
2 6 $13,595  $188.8194
2 9 $14,658  $135.7222
2 12 $15,721  $109.1736
2 15 $16,784  $93.2444
2 18 $17,847  $82.6250
2 21 $18,910  $75.0397
2 45 $24,225  $44.8611
3 6 $12,164  $168.9444
3 9 $13,115  $121.4352
3 12 $14,066  $97.6806
3 15 $15,017  $83.4278
3 18 $15,968  $73.9259
3 21 $16,919  $67.1389
3 45 $21,675  $40.1389

*Based on data from Table 1-2 
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Table 2-4: Price per Mbps per Month (Formulation #1) 
Y X1 X2 

Price/Mbps/Month 1/Size (i.e., 1/Q) 1/Duration (i.e., 1/L) 
198.7500 0.1667 0.0833
142.8611 0.1111 0.0833
114.9167 0.0833 0.0833
98.1500 0.0667 0.0833
86.9722 0.0556 0.0833
78.9881 0.0476 0.0833
47.2222 0.0222 0.0833

188.8194 0.1667 0.0417
135.7222 0.1111 0.0417
109.1736 0.0833 0.0417
93.2444 0.0667 0.0417
82.6250 0.0556 0.0417
75.0397 0.0476 0.0417
44.8611 0.0222 0.0417

168.9444 0.1667 0.0278
121.4352 0.1111 0.0278
97.6806 0.0833 0.0278
83.4278 0.0667 0.0278
73.9259 0.0556 0.0278
67.1389 0.0476 0.0278
40.1389 0.0222 0.0278

 
Table 2-5: Regression Model Output (Formulation #1) 

Regression Statistics 
Multiple R 0.994
R Square 0.989
Adjusted R Square 0.988
Standard Error 4.911
Observations 21

 
 

  Coefficients 
Standard 

Error t Stat P-value 
=1β  Intercept 13.116 3.191 4.110 0.001
=2β  1/Size (i.e., 1/Q) 962.927 24.266 39.682 0.000
=3β  1/Duration (i.e., 1/L) 258.526 45.446 5.689 0.000

 
 From Table 2-5 we find the fitted regression equation, which is 

LQ
aP

526.258927.962116.13 ++= ,     (19) 
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where pa  is the initial price per Mbps per month at the beginning of the planning 

horizon.  Equation (19) is the price function at a point in time.  To develop a longitudinal 

price function to estimate pr  historical data over time will need to be analyzed.   

Substituting from Equation (19) into Equation (10) gives the total cost ( ITC ) as 
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TC in Equation (20) can be divided into three parts, ,, 21 TCTC  and 3TC . 
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The xi,j binary variable is redundant in Equations (21) and (23) since if the contract is 

purchased the size will be greater than 0, and if the contract is not purchased the size will 

be 0.  Therefore, Equations (23) and (25) can be rewritten without xi,j.  In addition, 

Equations (22) and (23) are further simplified.  Therefore, Equations (21), (22), and (23) 

become 
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This problem can also be formulated as a non-linear programming problem with 

linear constraints.  This is done by raising the inverse Size variable by a value lambda 

prior to performing regression.  Tests showed that a lambda value just less than one fit 

the data best.  Therefore, a lambda of 0.999 was selected to reduce any inflation in the 

cost formulas.  The advantage of this second formulation is that it reduces the complexity 

of the problem by avoiding mixed integer programming.  To illustrate this second 

problem formulation, the data in Table 1-2 is used again.  Notice that Table 2-6 is 

identical to Table 2-4 with the exception that the values in column labeled “X1” are now 

equal to 
Size

1
999.0

 .1i.e., 999.0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Q

  Based on the data in Table 2-6, the resulting regression 

equation, fitted using SPSS, accounts for 98.8% of the variance in the price data.  Table 

2-7 shows the new regression results.  This formulation is simpler to solve than the first 

formulation and just as accurate. 
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Table 2-6: Price per Mbps per Month (Formulation #2) 
Y X1 X2 

Price/Mbps/Month 1/Size0.999 (i.e., 1/Q0.999) 1/Duration (i.e., 1/L) 
$198.7500 0.1670 0.0833
$142.8611 0.1114 0.0833
$114.9167 0.0835 0.0833
$98.1500 0.0668 0.0833
$86.9722 0.0557 0.0833
$78.9881 0.0478 0.0833
$47.2222 0.0223 0.0833

$188.8194 0.1670 0.0417
$135.7222 0.1114 0.0417
$109.1736 0.0835 0.0417
$93.2444 0.0668 0.0417
$82.6250 0.0557 0.0417
$75.0397 0.0478 0.0417
$44.8611 0.0223 0.0417

$168.9444 0.1670 0.0278
$121.4352 0.1114 0.0278
$97.6806 0.0835 0.0278
$83.4278 0.0668 0.0278
$73.9259 0.0557 0.0278
$67.1389 0.0478 0.0278
$40.1389 0.0223 0.0278

 
Table 2-7: Regression Model Output (Formulation #2) 

Regression Statistics 
Multiple R 0.994
R Square 0.989
Adjusted R Square 0.988
Standard Error 4.911
Observations 21.000

 
 

  Coefficients 
Standard 

Error t Stat P-value 
=1β  Intercept 13.051 3.191 4.090 0.001
=2β  1/Size^0.999 (i.e., 1/Q^0.999) 961.753 24.239 39.678 0.000
=3β  1/Duration (L) 258.169 45.399 5.687 0.000

 

From Table 2-7, the fitted regression equation is 
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LQ
aP

169.258753.961051.13 999.0 ++= .     (27) 

Substituting from Equation (27) into Equation (10), and removing the binary 

variable, jix , , gives the non-linear total cost ( CTC ) as 
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CTC  in Equation (28) can be divided into three parts, ,, 21 CC TCTC  and 3CTC . 
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Equations (30) and (31) reduce to  
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The binary variable jix ,  was needed in the first formulation because of Equation 

(25).  In the second formulation, we take advantage of the fact that if a contract does not 

exist its size is zero ( )0i.e., , =jiQ , and since Equations (29), (32), and (33) all contain 

jiQ , , the total costs ( ,, 21 CC TCTC  and 3CTC ) will only contain the sum totals of valid 
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contracts.  If the binary variable were not used in Equation (25) it would reduce to 
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2 β , which is incorrect because there is no way to indicate 

whether a contract has been purchased or not.  This formulation would sum all possible 

contracts, not just those contracts that have been purchased. 

Two ways to formulate this problem have been illustrated: (1) mixed integer 

linear programming, and (2) non-linear programming.  There are many software 

packages which might be used to solve the mixed integer linear programming problem; 

for example, CPLEX (CPLEX, 1995).  To solve the second programming formulation, 

non-linear objective function with linear constraints, a Lagrangian function could be 

used. 

The bandwidth contract purchasing problem presented in the rest of this 

dissertation will be solved using Formulation #1, which uses mixed integer linear 

programming (MILP), since it is easier to identify optimal solutions when solving a linear 

problem as opposed to a non-linear problem.  The solution and computational time of the 

evolutionary algorithms (a meta-heuristic, which will be discussed in detail in Chapter 3), 

are then compared and evaluated based on the solutions obtained by the mixed integer 

program (Williams, 2005) solved using CPLEX. 

Chapter 3 includes a general overview of evolutionary algorithms and a 

discussion of how the proposed evolutionary algorithm for the bandwidth contract 

problem, for both a deterministic model and a stochastic model, will be implemented. 



 

CHAPTER 3 EVOLUTIONARY ALGORITHMS: A POPULATION BASED 
HEURISTIC SEARCH ALGORITHMS 

 
 

As stated earlier, Khouja and Kumar (2004) also addressed the bandwidth 

contract problem.  The research proposed here is different in that it will use evolutionary 

algorithms to solve the problem.  An evolutionary algorithm provides a framework that is 

more flexible than the model used by Khouja and Kumar (2004).  Evolutionary 

algorithms can deal with many functional forms of price and demand changes, whereas 

Khouja and Kumar’s formulation can only handle fixed percentages of increase and 

decrease in price and demand.  In addition, evolutionary algorithms do not require that 

functions be continuous, i.e., step functions can easily be used. 

The purpose of this chapter is to provide a brief overview of evolutionary 

algorithms followed by a discussion of how evolutionary algorithms will be implemented 

in solving the bandwidth contract problem, hereafter referred to as BCP.  The 

performance of the deterministic implementation of the evolutionary algorithm will be 

evaluated through a comparison with results obtained through mathematical 

programming methods.  Finally, the chapter will conclude with a discussion of a 

stochastic implementation of an evolutionary algorithm with a simulation for the BCP. 

3.1 Evolutionary Algorithms 

Evolutionary algorithms, hereafter EAs, are a problem solving technique, known 

as a meta-heuristics.  EAs use the concept of evolution and hereditary to produce quality 

solutions to complex problems that have large search spaces and are, therefore, difficult 
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to solve.  EAs have been used to solve many types of complex problems (Aytug, Khouja 

and Vergara, 2003).  A well designed EA allows for the efficient and effective 

exploration and exploitation of a problem’s solution space in an effort to identify the 

global optimal, or a near optimal, solution. 

EAs create and manipulate a group of possible solutions referred to as a 

population.  Each possible solution within the population is called a chromosome.  The 

population undergoes change throughout the run of the EA thereby evolving the 

population of chromosomes toward a best solution.  Within the EA, the population loops 

through a series of processes numerous times; a complete execution of all procedures is 

referred to as a generation.  Hence, throughout the run of the EA, the population will 

cycle through many generations as the chromosomes within each subsequent population 

change and evolve, until, it is hoped, a good solution emerges.  The processes 

encountered within each generation include an evaluation process, an alteration process, 

and a selection process.  These processes may occur in various orders; however each is 

required at each generation (Michalewicz, 1996). 

The evaluation process uses an evaluation function that assesses the relative 

fitness, or “goodness,” of each chromosome within the population at each generation.  In 

addition, at each generation a number of chromosomes are subjected to some form of 

perturbation.  These perturbations constitute the alteration process.  These changes are 

manifested through the use of specific algorithmic operations, called genetic operators.  

Genetic operators can be either mutation operators, which introduce small changes within 

a single chromosome, or crossover operators, which cut and paste different parts from 

two or more chromosomes in order to create two or more new chromosomes.  The 
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probability of a chromosome experiencing some form of perturbation within any given 

generation is subject to predefined parameters for each of the operators.  Therefore, the 

probability of mutation and the probability of crossover will determine how many 

chromosomes are altered.  Through the alteration process, some, or all, of the 

chromosomes within a generation’s population are altered.  These altered chromosomes 

are often called offspring, and the chromosomes that are used to create the offspring are 

often called parents.  Offspring might replace their parents, or they might simply be 

added to the existing population, thereby creating a large pool from which the next 

generation can be created.  Finally, a selection process used within an EA provides a 

procedure for selecting parents so that offspring can be created, and is also used to 

promote the survival of the best chromosomes from one generation to the next (i.e., 

generational policy).  When properly implemented the use of selective pressure 

encourages the population to converge to a quality solution. 

Each EA is unique in its design with regard to several important elements 

depending on the problem domain and the programmer’s preferences.  However, 

regardless of the differences, all EAs attempt to evolve the chromosomes within the 

population through the use of genetic operators and selective pressures to converge to a 

good solution to complex problems.  So, while each manifestation of an EA is unique; it 

is important to begin a discussion of EA by describing a few relevant aspects that are 

common to most, if not all, EAs.  These elements include genetic representation, method 

for creating the initial population, genetic operators, evaluation function, selection 

method, generational policy, terminating conditions, parameters, and constraint handling 

techniques. 
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3.2 Genetic Representation 

The genetic representation, or data structure, of an EA specifies how a problem 

will be represented within the computer.  Each problem is unique and the data structure 

used to solve a problem must be carefully designed to accurately model the problem.  The 

classic representation within an EA is to use binary digits.  However, other 

representations such as integer and floating point have been found to yield better 

solutions for different problems.  The use of an inappropriate coding scheme has been the 

cause of many GA failures (Reeves, 1997). 

3.3 Method for Creating the Initial Population 

Often initial populations are generated randomly.  For problems with small 

feasible regions, initialization can incorporate problem-specific knowledge to increase the 

likelihood of having feasible chromosomes and to generate some good solutions in the 

initial population. 

3.4 Genetic Operators 

Genetic operators alter the genetic composition of parent chromosomes during 

reproduction, thereby creating offspring.  Genetic operations can include crossover, 

mutation, or both.  In addition, a given EA might employ a variety of crossover and/or 

mutation operators.  The operators that manipulate the chromosomes must be carefully 

selected so that alterations performed on the chromosomes are meaningful and promote 

diversity without unduly introducing infeasible solutions into the population. 

Of the two types of genetic operators, mutation changes one chromosome only 

slightly.  Mutation can be as simple as randomly changing the value stored within one 

gene within a chromosome.  The simplest mutation for a binary vector is to flip a bit in a 
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gene (index) within the chromosome.  Other mutation operators include swapping the 

values between two genes, randomly inserting the value of one gene into another location 

and shifting, etc.  Mutation moves the EA to a different neighborhood of the search space 

(Vose and Liepins, 1991), and is usually called the ‘exploration’ operator.  Mutation, 

therefore allows the EA to explore diverse regions in the search space. 

The second genetic operator, crossover, is called the focusing operator, enabling 

the EA to exploit the current neighborhood and is expected to move the EA to a local 

optimum.  Crossover exchanges genetic material between two or more parents.  A one-

point crossover exchanges all genes to the left of a cut-point whereas a two-point 

crossover exchanges genes between two cut-points.  Cut-points are usually randomly 

determined.  Most disruptive is the uniform crossover, where genes from both parent are 

randomly swapped. 

3.5 Evaluation Function 

An evaluation function (a.k.a. fitness value) is used to evaluate the “goodness,” or 

“fitness,” of each chromosome with regard to the total cost of the purchasing strategy 

represented in the data structure of each chromosome.  Since each chromosome 

represents a potential solution to a problem, the evaluation function assigns a real number 

as a measure of fitness to each chromosome. 

3.6 Selection Method 

There are many methods to employ selective pressure within an EA.  A selection 

method is a scheme for selecting chromosomes, either for undergoing an alteration 

process, or for generational policy, which involves selecting chromosome for a new 

population at the beginning of each new generation.  Two popular selection methods are 
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the roulette wheel and tournament.  The roulette wheel gives chromosomes a chance of 

selection equal to their fitness relative to the population.  The higher a chromosome’s 

fitness ratio is with respect to the overall population, the higher the probability that it will 

be selected.  Tournament selection randomly places k  chromosomes ( )2≥k  in 

competition against each other.  The winner is the chromosome with the best fitness 

value.  The winner then actively contributes to the next generation, by either participating 

in the alteration process, or by occupying a place in the next generation’s population.  An 

additional method often used is random selection, which selects chromosomes for either 

alteration, or to enter the next generation’s population, in a completely arbitrary manner. 

3.7 Generational Policy 

A replacement scheme for creating each new generation is called the generational 

policy.  Replacement strategies specify how the next generation is to be created.  Often, 

offspring replace their parents.  However, there are many variations to this rule.  One 

commonly applied strategy is the elitist strategy, which always carries at least one copy 

of the best chromosome to the next generation.  A tournament strategy is based on a 

tournament scheme, where the winner of a contest between two or more chromosomes is 

copied to the next generation.  Another scheme uses each offspring as a starting point for 

a local search algorithm and accepts the resulting, and improved, solutions as a new 

offspring, which is then carried over into the next generation. 

3.8 Termination Conditions 

The termination condition in an EA is essentially the stopping criteria.  Running 

the EA for a predetermined number of generations is the most common criterion, 

however, time-independent criterion such as population entropy or diversity have also 
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been used.  Entropy is a term borrowed from physics and is generally used to refer to the 

gradual loss of heat or “cooling” of a system from a chaotic, excited, state to a state of 

balance and equilibrium.  The use of entropy within an EA is modeled as a function that 

slowly degrades over many generations until its value falls below some given threshold 

value, at which point the program terminates.  Diversity reflects the difference between 

the chromosomes within a population.  Diversity in EAs can be implemented in several 

ways.  One way diversity can be measured is as a pairwise comparison of the values in 

corresponding indexes between chromosomes.  For example, by comparing the 

commonalities, index by index, among chromosomes the EA could be programmed to 

terminate when the population reaches some measure of homogeneity.  A second way 

that diversity can be measured is as the difference in the fitness value between 

chromosomes within a population.  For example, a common criterion sometimes used is 

to monitor the average (or best) fitness value within each successive generation, and 

when the number of generations where the average (or best) fitness value does not 

improve is greater than some set threshold value, the program terminates.  Another 

possibility is to set a threshold value, and when the difference between fitness values for 

the best and worst chromosomes within a population is less than this threshold value the 

program terminates. 

3.9 Computational Parameters 

The parameters define the settings used to run an EA.  EA parameter selection 

includes the setting of values for population size, crossover and mutation probabilities 

rates, and stopping criteria.  There is no definitive process for choosing these parameters.  

The practice is to use parameters based on pilot runs or ad-hoc selection. 
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3.10 Constraint Handling Techniques 

Most problems have constraints.  For example, for the bandwidth contract 

problem there are N  constraints, given by Equation (2).  These constraints stipulate that 

shortages are not allowed for any period.  Infeasibility can result if a constraint is 

violated.  Some EAs allow for the inclusion of such infeasible solutions; others include 

repair algorithms to transform them into feasible solutions.  Still others simply delete 

infeasible solutions when they occur (Michalewicz, 1996).  It is up to the EA designer to 

decide which course of action is appropriate.  A major advantage of EAs is there ability 

to solve highly constrained problems (Michalewicz, 1996). 



 

CHAPTER 4 THE DETERMINISTIC BANDWIDTH CONTRACT PROBLEM 
EVOLUTIONARY ALGORITHM (DBCP-EA) 

 
 

The proposed EA identifies an optimal or near optimal solution for the DBCP in a 

relatively short period of time.  The DBCP-EA is designed to allow multiple overlapping 

contracts, and contains a repair function that transforms infeasible solutions into feasible 

solutions.  A feasible solution is a solution where the total purchased bandwidth for all 

contracts active during each period in a planning horizon is equal to or greater than the 

demand for each period.  In testing the EA, each problem has different parameter settings 

for each of the four parameters: planning horizon length, temporal discount, price 

decrease rate, and demand increase rate.  Each of these parameters can assume one of 

three values resulting in 813333 =×××  problems. 

Several variable labels are used within this chapter to facilitate the discussion of 

the various aspects of the DBCP-EA.  A listing of these labels and a description of each is 

presented here. 

%_Error: The mean percent error (i.e., the distance from the optimal solution).  

For the DBCP-EA it is the mean percent error of 5 runs for each problem. 

MOM_%_Error: The mean of the mean percent errors (i.e., the average of a group 

of %_Error).  This variable is used when discussing observations from 

aggregated %_Error data with respect to the four parameters. 

Pop_Size: The number of chromosomes used throughout the run of the DBCP-

EA.  This value is held constant at 40. 
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The number of times to run each problem was determined based on preliminary 

tests run on sample problems.  It was found that running each problem for five runs 

produced a good representation of the variability in DBCP-EA solution quality.  The 

population size (Pop_Size) was identified based on an analysis of the tradeoff between 

population size, where larger populations might potentially achieving better solution 

quality, versus the computational run time required to solve each problem.  A Pop_Size 

of 40 chromosomes was found to perform well with respect to both solution quality and 

run time.  The DBCP-EA uses two crossover operators and one mutation operator.  Each 

operator has an operator rate which is a parameter setting that determines the probability 

of applying the operator.  Therefore, the One-point Crossover Rate, the Uniform 

Crossover Rate, and Mutation Rate, are associated with the One-point Crossover 

Operator, the Uniform Crossover Operator, and the Mutation Operator, respectively. 

fv: The measure of ‘goodness’ of a purchasing strategy recorded in index 0 of a 

chromosome.  For the BCP-EA the total cumulative cost of a purchasing 

strategy is used as the fitness value for each chromosome. 

X: A variable that contains the number of potential contracts available over the 

planning horizon plus one ( )( )1i.e., ++= )1(21 NNX  for each problem.  

The length of each chromosome is equal to X.   

Chromosome_Array: A two dimensional array of width X and length Pop_Size.  

This array is used to hold the population of chromosomes at the beginning 

of each generation during the run of a BCP-EA problem. 
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X Chromosome_Array structure 
Index 0 Index 1 … Index (1/2 N (N+1)

Chromosome 1         
Chromosome 2         

:         
Po

p_
Si

ze
 

Chromosome (Pop_Size)         
Pool_Array: A two dimensional array of width X and of varying length.  The final 

length is equal to the Pop_Size plus all of the offspring created by the use 

of the three genetic operators.  At the end of each generation, the next 

generation’s population of chromosomes is selected from the Pool_Array 

and copied into the Chromosome_Array.  

X Pool_Array structure 
Index 0 Index 1 … Index (1/2 N (N+1) 

Chromosome 1         
Chromosome 2         

: 
: 
: 
: 
: 

        

Po
p_

Si
ze

 +
 #

 o
f O

ffs
pr

in
g 

Chromosome (Pop_Size  
+ # of Offspring) 

        

 

 

 

X Chromosome_Array structure 
Index 0 Index 1 … Index (1/2 N (N+1)

Chromosome 1         
Chromosome 2         

:         

Po
p_

Si
ze

 

Chromosome (Pop_Size)         
 

Select next 
generation’s 
beginning 
population 
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Parent Chromosomes (e.g., Parent #1 and Parent #2): A one dimensional array of 

length X used during a tournament selection during the use of the 

crossover and mutation operators.  These arrays contain two chromosomes 

from the population. 

Offspring (e.g., Offspring #1 and Offspring #2): A one dimensional array of 

length X used within the crossover and mutation operators.  The Parent 

Chromosome(s) is/are altered and the resulting chromosome(s) is/are 

called Offspring(s).  Crossover operators create two Offspring; whereas, 

the mutation operator creates only one. 

bws: This the purchased bandwidth size.  If a contract is purchased the size of the 

purchased amount of bandwidth is recorded in the chromosome index 

corresponding to that contract.  Bandwidth sizes are restricted to integer 

values. 

Prob_Purchase: The probability of purchasing a given contract.  This value is 

used when creating the initial population of chromosomes for a DBCP-EA 

problem. 

4.1 DBCP-EA Process Flowchart 

Figure 4-1 is an overview of the basic processes within the DBCP-EA.  The 

DBCP-EA pseudo code follows Figure 4-1.  Appendix A contains the source code for 

DBCP-EA.  The remaining sections in this chapter discuss the various aspects of the 

DBCP-EA in detail.   
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Figure 4-1: DBCP-EA Flowchart 
 
BCP EA Pseudo Code 

1. Select N.  LOOP1 = 0.  LOOP2 = 0. 

2. Set Pop_Size. 

3. Set operator parameters: One-Point Crossover Operator Rate, Uniform Crossover 
Operator Rate, and Mutation Operator Rate.  Note: (0 ≤ Operator Rate ≤ 1). 

4. Set the maximum number of generations to run. 

Is 
Crossover/Mutation 

Complete? 

Start 

Initial Population 

Check for Deficits 

Is 
Solution 
Feasible? 

Crossover/Mutation 
Operation 

Yes 

No 

Repair No 

Yes 

No Yes 
Is 

Termination 
Condition  

Met? 

Select New Population 

Stop Evaluate Fitness Value 
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5. Create initial population of chromosomes and place them in the 
Chromosome_Array.  Calculate the fv for each chromosome and place the value 
in index 0 of each chromosome vector. 

6. LOOP1 = LOOP1 + 1.  Set loop to run 3 times, once for each temporal discount 
scheme.   

a. s = 1 for Small temporal discounts 

b. s = 2 for Medium temporal discounts 

c. s = 3 for Large temporal discounts 

7. LOOP2 = LOOP2 + 1.  Set loop to run 9 times, once for all possible price and 
demand combination (i.e., 3 x 3 = 9). 

a. Price decrease rate (p): 0.1, 0.2, and 0.3. 

b. Demand increase rate (d): 0.1, 0.2, and 0.3. 

8. Copy generation’s chromosomes from the Chromosome_Array into the 
Pool_Array. 

9. Initiate the one-point crossover operator.  Append two offspring to the end of the 
Pool_Array each time the one-point crossover operator is implemented.  (See 
Section 4.1.3.) 

10. Initiate the uniform crossover operator.  Append two offspring to the end of the 
Pool_Array each time the uniform crossover operator is implemented.  (See 
Section 4.1.3.) 

11. Initiate the mutation operator.  Append one offspring to the end of the Pool_Array 
each time the mutation operator is implemented.  (See Section 4.1.3.) 

12. Check all chromosomes in the Pool_Array for feasibility.  If infeasible, then 
correct using the repair function.  (See Section 4.1.9.) 

13. Use the evaluation function to assign a fitness value (i.e., fv) to each chromosome 
in the Pool_Array.  (See Section 4.1.4.) 

14. Select the next generation’s chromosomes from the Pool_Array and copy them 
into the Chromosome_Arrray.  (See Section 4.1.6.) 

15. If a termination condition is met, then go to step 16 (See Section 4.1.7).  Else, go 
to step 8. 

16. If LOOP2 < 9, then go to step 7.  Else, go to step 17. 

17. If LOOP1 < 3, then go to step 6.  Else, done! 

 

4.1.1 BCP EA Genetic Representation 

Chromosomes represent possible solutions, or purchasing strategies, for a given 

BCP problem.  For each BCP problem, the length of the planning horizon is specified.  



 

    

49

Therefore, there are N  possible contracts that can begin in the first period, and ( )1−N  

possible contracts that begin in the second period, etc.  The total number of possible 

contracts in a planning horizon of size N is 

( ) ( ) 1...21 ++−+−+ NNN  = )1(
2
1

+NN     (34) 

The BCP EA uses a simple data structure that is designed to be dynamic; allowing 

the EA to be used for varying values of N  without having to modify the EA program 

code.  The data structure is a one dimensional vector of length X that contains a feasible 

solution for a DBCP-EA problem.  Figure 4-2 is a graphical representation of the BCP-

EA chromosome data structure for a problem with 5=N  periods, and therefore 15 

possible contracts ( )( ) .155
2
1i.e., ⎟

⎠
⎞

⎜
⎝
⎛ +  

At the beginning of each generation, a population of chromosomes is recorded in 

the Chromosome_Array.  During the run of each generation, the chromosomes from the 

Chromosome_Array are used to create Offspring using the three genetic operators.  At the 

end of a generation the Pool_Array will contain the Chromosome_Array chromosomes 

plus any Offspring that were created.  At the end of each generation chromosomes are 

selected from the Pool_Array and copied into the Chromosome_Array, thereby 

generating the beginning population of chromosomes for the next generation. 

A problem solution is a sequence of integer numbers recorded in indexes 1 

through X in a chromosome.  Each index represents a unique contract, and each contract 

contains a bws.  If the contract has not been purchased its bws is zero, else the bws is 

some integer value.  Contracts are designated by the period in which they can begin and 

the period for which the contract expires; contracts begin in period i and end at the 
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beginning of period j.  Therefore, contracts are identified by their beginning and ending 

periods (i.e., Contract [i, j]).  For an N = 5 problem, index 1 would contain the bws for the 

first available contract in period 1, (i.e., the contract that begins in period 1 and ends at 

the beginning of period 2; designated as Contract [01, 02]).  Index 6 would contain the 

bws for the first contract available in period 2 (i.e., the contact that begins in period 2 and 

ends at the beginning of period 3; designated as Contract [02, 03]).  This indexing 

scheme concludes with the final contract, associated with index 15 (i.e., the contract that 

begins in period 5 and ends at the beginning of period 6; designated as Contract [05, 06]).  

Index 0 is reserved for the chromosome’s fitness value (fv). 



 
 

 
 

 

 
 

 
 

 
 

 
 

51

 

The chromosome’s fitness value 
(ie,TotalCost)
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4.1.2 BCP-EA Method for Creating the Initial Population 

The Pop_Size of 40 is held constant throughout the run of each problem.  The 

Chromosome_Array contains the beginning population of chromosomes.  Each row 

within the Chromosome_Array represents a unique chromosome. 

For each contract, within each chromosome, a random number (RandNum) is 

generated between 0 and 1.  If RandNum ≤ Prob_Purchase, then an integer bws value is 

randomly generated.  If RandNum > Prob_Purchase, then bws = 0.  Therefore, a bws > 0 

indicates that the contract has been purchased.  Figure 4-3 shows an example of how a 

randomly generated chromosome might appear. 

Initialize Chromosomes Pseudo Code 

1. Select Pop_Size (The population size is set to 40 chromosomes). 

2. Set value for Prob_Purchase (0 ≤ Prob_Purchase ≤ 1). 

3. Set variable Z = 1. 

4. For each index from 1 to X in chromosome number Z generate a random number.  
If the random number is greater than the Prob_Purchase then enter 0 into the 
index’s data location.  Else, generate a bws and place that value in the index’s 
data location. 

5. Z = Z + 1. 

6. If Z < Pop_Size, then go to step 2.  Else, stop. 

4.1.3 Three BCP-EA Genetic Operators 

The three genetic operators used in the BCP-EA are: (1) a one-point crossover 

(see Figure 4-4), (2) a uniform crossover operator (see Figure 4-5), and (3) a mutation 

operator (see Figure 4-6).  These three operators are used by the EA to create additional 

chromosomes called Offspring by altering copies of existing chromosomes.  All three 

operators work with the BCP-EA data structure.   

The one-point crossover operator uses two Parent Chromosomes to create two 

Offspring.  If the two Parent Chromosomes were stacked on top of each, then the 
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chromosome indexes would line up.  A cut point between 1 and X is randomly generated.  

All the contract data to the left of the cut point in Parent #1 are copied into Offspring #1; 

likewise the contract data to the left of the cut point in Parent #2 are copied into 

Offspring #2.  Then the contact data to the right of the cut point in Parent #1 are copied 

into Offspring #2, and the contract data to the right of the cut point in Parent #2 are 

copied into Offspring #1. 

One-point Crossover Operator Pseudo Code 

1. Set crossover to run (Pop_Size/2) times 

2. Generate a random number (RandNum) between 0 and 1.  If RandNum < One-
point Crossover Operator Rate, then go to step 3.  Else, go to step 9. 

3. Set Z = 1. 

4. Randomly generate a number between 1 and X.  This randomly generated number 
is the cut point. 

5. Randomly generate two numbers between 1 and Pop_Size to select two 
chromosomes from the Chromosome_Array.  Perform a tournament selection 
between the two chromosomes.  The chromosome with the smaller fitness value 
(see Section 4.1.4) is the winner and is labeled Parent #1.   

6. Repeat step 5 to identify Parent #2. 

7. For each parent, copy all the values from the data locations from index 1 up to the 
cut point and paste the data into one of the two offspring chromosomes.  Next, 
copy the values in the remaining data locations from both parents into the 
alternate offspring. 

8. Copy the two resulting Offspring (Offspring #1 and Offspring #2) into the 
Pool_Array. 

9. If Z < (Pop_Size/2), then go to step 2.  Else, stop. 

For the uniform crossover operator, a random number (RandNum) is generated.  If 

RandNum < Uniform Crossover Operator Rate two Offspring are created.  The procedure 

for selecting Parent Chromosomes is the same as described for the one-point crossover 

operator.   

For each index between 1 and X a random binary number (BinNum) is generated.  

If BinNum = 0, then the value in the data location for that index in Parent #1 is copied 
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into Offspring #1, and the value in the same data location in Parent #2 is copied into 

Offspring #2.  If BinNum = 1, then the value in that index’s data location in Parent #1 is 

copied into Offspring #2; likewise the value in the same data location in Parent #2 is 

copied into Offspring #1.   

Uniform Crossover Operator Pseudo Code 

1. Set crossover to run (Pop_Size/2) times. 

2. Randomly generate a number (RandNum) between 0 and 1.  If RandNum < 
Uniform Crossover Operator Rate, then go to step 3.  Else, go to step 12. 

3. Set Count = 0 and Z = 1. 

4. Randomly generate two numbers between 1 and (Pop_Size) to select two 
chromosomes from the Chromosome_Array.  Perform a tournament selection 
between the two chromosomes.  The chromosome with the smaller fitness value 
(see Section 4.1.4) is the winner and is labeled Parent #1. 

5. Repeat step 4 to identify Parent #2. 

6. Count = Count + 1. 

7. Randomly generate a binary number (BinNum).  If BinNum = 1, then go to step 8.  
Else, go to step 9. 

8. Copy the value in the data location for index Count in Parent #1 into index Count 
in Offspring #1.  At the same time, copy the value in the data location for index 
Count in Parent #2 into the corresponding data location of Offspring #2. 

9. Copy the value in the data location for the index Count in Parent #1 into the same 
data location in Offspring #2.  At the same time, copy the value in the data 
location of index Count in Parent #2 into index Count of Offspring #1.  If Count 
= X, then go to step 10.  Else, go to step 6. 

10. Copy the two Offspring into the Pool_Array. 

11. Z = Z + 1. 

12. If Z < (Pop_Size/2), then go to step 2.  Else, stop. 

The mutation operator alters one chromosome to create one Offspring.  The 

Parent Chromosome is randomly selected from the Chromosome_Array.  For each index 

between 1 and X in the Parent Chromosome a number is randomly generated (RandNum).  

If RandNum ≤ Mutation Operator Rate, a bws is generated and placed in the 

corresponding data location in the Offspring.  If RandNum > Mutation Operator Rate, the 
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value in the data location for that index in the Parent Chromosome is copied into the 

Offspring.   

Mutation Operator Pseudo Code 

1. Set mutation to run (Pop_Size/2) times. 

2. Set Count1 = 0, Count2 = 1, and Z = 1. 

3. Randomly generate two numbers between 1 and Pop_Size to select two 
chromosomes from the Chromosome_Array.  Perform a tournament selection 
between the two chromosomes.  The chromosome with the smaller fitness value 
(see Section 4.1.4) is the winner, i.e., the Parent. 

4. Count1 = Count1 + 1. 

5. Randomly generate a binary number (BinNum) between 0 and 1.  If BinNum > 
Mutation Operator Rate, copy the value in the data location for index Count1 in 
the Parent chromosome into the Offspring.  While Count1 < X, go to step 4.  Else, 
go to step 6. 

6. Check the Offspring for feasibility.  If the Offspring is infeasible, run the repair 
function.  Calculate present fv of the Offspring. 

7. For each index, if the bws > 0, then generate a random number (BinNum) between 
0 and 1.  If BinNum > Mutation Operator Rate, then generate a bws.  Subtract the 
bws from the existing bws value in the data location for that index.  Since, bws 
can’t be negative, if the resulting bws < 0, then set the bws = 0. 

8. Check the Offspring for feasibility.  If the Offspring is infeasible, run the repair 
function (see Section 4.1.9).  Recalculate the fv of the Offspring (see Section 
4.1.4).  Count2 = Count2 + 1.  If the new re-calculated fv is less than the previous 
fv and Count2 < 20, then go to step 7.  Else, go to step 9. 

9. Copy the Offspring chromosome into the Pool_Array. 

10. Z = Z + 1. 

11. If Z < (Pop_Size/2), then go to step 2.  Else, stop. 

At the end of each generation the beginning chromosomes and all the Offspring 

created by the three genetic operators are located in the Pool_Array.  The next 

generation’s population is selected from the Pool_Array after each chromosome has been 

checked, and if necessary repaired, for feasibility.    



 
 

 
 

 
 

 
 

 
 

 
 

56
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The chromosome’s fitness value 
(i.e., Total Cost) 
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4.1.4 Evaluation Function 

The objective is to find a purchasing strategy that minimizes the total cost while 

satisfying demand for bandwidth as expressed in Equation (2).  Equation (1) calculates 

the total cost for all purchased contracts over the planning horizon.  The total cost is the 

chromosome’s fitness value (fv).  A chromosome’s fv is recorded in Index 0 (see Figure 

4-2).  When evaluating a group of feasible chromosomes, chromosomes with lower fv are 

better than those with higher fv.   

Recall from Equation (19) that LQa p 526.258927.962116.13 ++= .  The 

numerical values in Equation (19) come from the regression analysis (shown in Table 2-

5) for a BCP problem where s = Small.  The general form of Equation (19) is 

LQ
a p

32
1

ββ
β ++= .  For s = Medium and Large problems the numerical beta values in 

Equation (19) are different and are shown in Table 4-2.  Notice that for Equations (24) 

and (26) the decision variable is jiQ , .  In these equations the jix ,  binary variable is not 

needed since the bws ( jiQ , ) of a contract indicates if it has been purchased. 

The fitness value for the BCP-EA is the summation of the three cost components 

shown by Equations (24) through (26), expanded as 
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which simplifies to 
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The feasibility of a solution is subject to the following constraints 
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,      (37) 

which is the same as Equation (2), and  

)1(1;1,, ++==∀≤ NijNixWQ jiji …… ,    (38) 

where 

{ }1,0, ∈jix .         (39) 

4.1.5 Selection Method 

The selection process used to obtain the next generation’s population of 

chromosomes includes a generational policy, random selection, tournament selection, and 

an elitist strategy.  The DBCP-EA uses an elitist strategy where a copy of the best 

chromosome identified within the Pool_Array at the end of a generation is copied in the 

next generation’s population (i.e., the Chromosome_Array).  If there is a tie, the best 

chromosome is selected randomly. 

4.1.6 Generational Policy 

A generational policy refers to how chromosomes are selected from one 

generation to the next.  Throughout the run of any generation, some of the chromosomes 

undergo some alteration through the use of the crossover and the mutation operators.  At 

the end of each generation, if the terminating condition is not met, a new population of 
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chromosomes is selected for the next generation.  The new generation is selected from 

the Pool_Array. 

Since the DBCP-EA uses an elitist strategy, it is possible that a ‘good’ 

chromosome could survive over many generations.  The remaining 39 (Pop_Size – 1) 

chromosomes are selected using a tournament selection process.  The tournament 

selection process begins by randomly selecting two chromosomes from the Pool_Array at 

the end of a generation.  The fv of the two chromosomes are compared and the 

chromosome with the lowest fv wins.  The winning chromosome is then added to the 

Chromosome_Array for the next generation.   

Generation Policy Pseudo Code (i.e., procedure for selecting the beginning population of 
chromosomes for the next generation) 

1. Check to see if the termination condition has been met.  If true, there is no need to 
generate a population of chromosomes for the next generation since the program 
has ended.  If false, go to step 2. 

2. Check each chromosome in the Pool_Array for feasibility.  If a chromosome is 
infeasible, the chromosome is made feasible by using the repair function (see 
Section 4.1.9).  Calculate the fv for each chromosome in the Pool_Array and place 
the value in index 0 for each chromosome. 

3. Perform an elitist strategy by copying the best chromosome in the Pool_Array 
into the Chromosome_Array.  If there is a tie between the fv of two or more 
chromosomes in the Pool_Array, a best chromosome is randomly selected. 

4. Perform a tournament selection (Pop_Size – 1) times on the chromosomes in the 
Pool_Array.  Count = 0. 

5. Randomly generate two numbers to select two chromosomes from the 
Pool_Array. 

6. Perform a tournament selection by comparing the fv of the two chromosomes 
selected in step 5.  The chromosome with the lowest fv is the winner.  Add the 
winning chromosome into the Chromosome_Array.  Count = Count + 1. 

7. If Count < (Pop_Size-1), then go to step 5.  Else, go to step 8. 

8. Clear the Pool_Array, and then copy the chromosomes in the Chromosome_Array 
into the Pool_Array.  The next generation’s population has been selected.  Done! 
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4.1.7 Termination Conditions 

The DBCP-EA terminates as soon as one of two conditions is met.  The first 

condition stipulates that if the best fv does not change for a predetermined number of 

generations, then the program will stop.  This number is proportional to the number of 

periods (N) in the planning horizon.  Specifically, if the DBCP EA runs Y1 times, where 

Y1 = (N * 100), without finding a better solution, the program will terminate. Otherwise, 

processing will terminate when the program has completed a predetermined maximum 

number of generations Y2 = 5,000.  Y1 and Y2 were determined based on results from 

preliminary tests. 

4.1.8 Computational Parameters 

The size of each generation’s population of chromosomes, Pop_Size, is held 

constant at 40 chromosomes.  The probability of crossover and mutation were determined 

through preliminary tests.  The Uniform Crossover Rate, One-Point Crossover Rate, and 

Mutation Rate are 0.8, 0.2, and 0.6, respectively. 

4.1.9 Repair Function for Infeasible Solutions 

The offspring produced by the three genetic operators are created by modifying 

and altering selected copies of chromosomes in a generation’s beginning population.  

These offspring chromosomes could be infeasible, i.e., violate the constraint in Equation 

(37).  If an offspring chromosome is infeasible it must be repaired prior to calculating its 

fv.  Infeasible chromosomes are altered by the repair function to make them feasible. 

The repair function has two separate repair algorithms used to change infeasible 

chromosomes into feasible chromosomes: RA1 and RA2.  Infeasible solutions are repaired 

by both RA1 and RA2.  Each algorithms employs a different rational in transforming 
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infeasible solutions into feasible solutions.  A description of each algorithm is presented 

here, as well as the overall repair procedure. 

The RA1 algorithm calculates the bandwidth deficit for each period in the planning 

horizon starting backwards from period N.  Let K equal the number of purchased 

contracts that affect the cumulative total bandwidth for a given period.  Out of the K 

contracts, the most common contract (i.e., among the purchased contracts that affect a 

given period, the one that affects the greatest number of periods) has the period’s deficit 

amount added to the bws for that contract.  If there is a tie for the most common contract, 

a contract is randomly selected.  Each period’s deficit is then recalculated.  If any 

period’s deficit > 0, the latest period in the planning horizon that has a deficit is 

identified.  Again, the period’s deficit amount is added to the period’s most common 

contract.  This procedure of deficit elimination continues until there are no more deficits.   

The rational for RA1 stems from the observation that when s = Large, p = Small or 

Medium, and d = Small or Medium the lowest fv often occurs when the last contract in 

each period is purchased.  Therefore, RA1 takes advantage of contract size discounts of 

active contracts that will not only satisfy the bws requirements for a given period, but will 

also increase the bws for the most additional periods.   

Within the chromosome data structure, for each period the shortest contract is 

listed first, and the longest contract is listed last.  The longer the duration of a contract, 

the more subsequent periods that will include that bws.  Therefore, longer duration 

contracts, which affect a greater number of periods, will be identified as most common 

contracts.  Therefore, adding deficit amounts to a most common contract affects the 

available bandwidth for not only the period in which the deficit has been identified, but 
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also all subsequent period for which the contract is active.  For example, Figure 4-7 

shows an N = 5 period chromosome.  The first row of white cells for each period 

represents the period in which that contract can be purchased.  The other grey cells 

represent the subsequent period for which a contract bws is active.   

A purchased contract is active for a number of periods equal to its duration.  As 

illustrated in Figure 4-7, Contract [01, 03], having a bws of 500 Mbps, can only be 

purchased in period 1.  This contract has a length of 2 periods (i.e., ending at the 

beginning of period 3 – starting at the beginning of period 1) therefore this contract 

provides 500 Mbps in period 1, as well as 500 Mbps in period 2.   

Figure 4-7 shows a deficit of 100 Mbps in period 5.  The most common active 

contract would be Contract [01, 06].  Starting backwards with Period 5, the active 

contracts are [01, 06], [04, 06], and [05, 06].  The duration for each of these contracts is 

calculated and the contract with the longest duration is selected to receive the deficit 

amount.  For example, Contract [01, 06] is active for all 5 periods; therefore its duration 

is 5.  Contract [04, 06] has duration of 2, and Contract [05, 06] has duration of 1.  Of 

these contract lengths, duration of 5 is the largest; therefore Contract [01, 06] is the most 

common contract.   

For the example shown in Figure 4-7, algorithm RA1 adds the deficit amount of 

100 Mbps to the bws already recorded in Contract [01, 06].  Notice that since Contract 

[01, 06] is purchased in period 1 and it is active for all 5 period its bws is added to the 

available bandwidth for periods 1 through 5.  Therefore, the infeasible solution shown in 

Figure 4-7 would be repaired as shown in Figure 4-8. 
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In Figures 4-7 and 4-8 the white cells in each row indicate those contracts that 

could be active during each period.  The total bandwidth for any period is equal to the 

total bandwidth purchased at the beginning of each period, plus the cumulative 

bandwidth of any pervious contracts that are active during each period.  Therefore, to 

calculate the available bandwidth for a period you simply add the values in the white 

cells for the newly purchased bandwidth, plus the values in the grey cells for each 

period’s row.  These are the values recorded in the columns labeled “(a) Cumulative 

Contracted Bandwidth per Period.”   

The RA2 algorithm uses a backward period-by-period random contract deficit 

elimination procedure.  RA2 alters selected contracts by moving backwards from period N 

to period 1.  The rational for eliminating deficits by moving backwards is that price 

decreases and demand increases over the planning horizon.  By starting with the later 

periods and working backwards the lowest period prices are used first, just as in RA1.  

RA2 calculates the bandwidth deficit for each period.  Starting backwards, this repair 

algorithm randomly adds a period’s deficit to a randomly selected contract that is active 

during that period.  After randomly selecting a contract and adding the deficit, the fv is 

recalculated.  This process is repeated 20 times to encourage exploration of the search 

space, while at the same time limiting search time.  Out of the 20 repaired chromosomes, 

the repaired chromosome with the lowest fv is selected to be the final repaired 

chromosome for the RA2 repair algorithm. 

The two repaired and feasible chromosomes resulting from RA1 and RA2 are then 

compared and the one with the lowest fv replaces the original infeasible chromosome in 

the Pool_Array.  Note that RA1 takes advantage of knowledge of the BCP, while RA2 
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benefits from randomness.  Both algorithms have their advantages; however, they are 

both biased because they both begin the alteration process from the latest period in the 

planning horizon and work backward.  Future research may identify better, less biased 

repair algorithms.  The pseudo code listed below outlines in detail the repair function, 

including the two repair algorithms, RA1 and RA2. 

Repair Function Pseudo Code 

(0.1) After the three genetic operators (see Section 4.1.3) have been performed.  
Count = (0).  Set Pool_Size = (Pop_Size + the number of Offspring created in 
last generation). 

(0.2) Count = Count + 1. 

(0.3) Select the chromosome number Count from the Pool_Array, and check for 
feasibility.  If the selected chromosome is infeasible, go to step (0.4).  Else if 
Count = Pool_Size, go to step (0.6).  Else if Count < Pool_Size, go to step 
(0.2). 

(0.4) Copy the infeasible chromosome into the temporary holding arrays: Holder1 
used in RA1), Holder2 (used in RA2), and Best_Holder (also used in RA2). 

• Begin RA1: Use Holder1 to complete steps (1.1) through (1.8). 
(1.1) Count2 = N + 1. 

(1.2) Count2 = Count2 – 1.  . 

(1.3) Determine if there is a deficit for period Count2.  If yes, then 
go to step (1.4).  Else, go to step (1.2). 

(1.4) Record all of the purchased contracts that affect the cumulative 
available bandwidth total for period Count2. 

(1.5) For each contract recorded in step (1.4), count how many 
periods the contract is active. 

(1.6) For period Count2, find the most common contract (i.e., an 
active contract that not only affects period Count2, but also 
affects the most number of other periods.  Ties are broken 
randomly.).  Once a contract is selected, determine the period 
in which that contract can be purchased. 

(1.7) Add the deficit amount for period Count2 to the bws for the 
contract selected in step (1.6).  If Count2 = 1, go to step (1.8).  
Else, go to step (1.2). 

(1.8) Calculate the fv for the chromosome in Holder1 and enter that 
value in index 0.  RA1 finished; go to step (2.1). 
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Begin RA2: Used Holder2 and Best_Holder to compete steps (2.1) through 
(2.8).  Count1 = 0. 

(2.1) Count1 = Count1 + 1.  Count2 = N + 1. 

(2.2) While Count1 ≤ 20 go to step (2.3).  If Count1 > 20, go to step 
(2.8). 

(2.3) Count2 = Count2 – 1. 

(2.4) For period Count2, determine if there is a bandwidth deficit.  If 
period Count2 has a deficit, then record all the contracts that 
could affect period Count2. 

(2.5) Let M = the number of active contracts in period Count2.  
Randomly generate a number between 1 and M to select a 
contract, and add the deficit amount for period Count2 to the 
selected contract’s bws. 

(2.6) If Count2 > 1, go to step (2.3).  Else, go to step (2.7). 

(2.7) Calculate the fv for the chromosome in Holder2 and enter that 
value in index 0.  If Count1 = 1, then copy the chromosome in 
Holder2 into Best_Holder.  If Count1 > 1, then compare the fv 
in index 0 of Best_Holder to the fv in Holder2.  If the fv in 
Holder2 < Best_Holder, then copy the chromosome in Holder2 
into Best_Holder. 

(2.8) If Count1 < 21, copy the original chromosome at location 
Count (see step (0.2)) from the Pool_Array into Holder2 and 
go to step (2.1).  If Count1 = 20, then RA2 is finished; go to 
step (0.5). 

(0.5) Compare the fv for Holder1 and Holder2.  The chromosome with the lowest fv 
replaces the original chromosome in the Pool_Array at location Count (see 
step (0.2)).  If Count < Pool_Size, go to step (0.3).  Else, go to step (0.6). 

(0.6) Done!  All infeasible chromosomes in the Pool_Array have been repaired and 
each has had its fv calculated and recorded in index 0. 

4.2 DBCP-EA Experimental Design 

To evaluate the performance of DBCP-EA, we consider the impact of four 

parameters: planning horizon size (N), temporal discount (s), price decrease rate (p), and 

demand increase rate (d) (see Figure 4-9).  Each parameter has three values, Small, 

Medium and Large (see Table 4-1), resulting in 81 problems. 
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Two solution methods are employed: (1) MILP, and (2) the DBCP-EA.  MILP 

gives the global optimal solution and can be used as a benchmark to measure the quality 

of the DBCP-EA solutions.  The %_Error is the percent increase in the total purchasing 

cost of the best solution found by the DBCP-EA over the optimal solution identified by 

MILP.  The computational time in seconds to solve a problem using the DBCP-EA and 

MILP is a secondary measure of comparison. 

Table 4-1: The Three Values for each of the Four Parameters: N, s, d, and p 
Parameters Small Medium Large 

N 6 12 18
s 1 2 3
d 0.1 0.2 0.3
p 0.1 0.2 0.3

 

Table 4-1 shows that the three levels of temporal discount (s) represented in the 

computer code as 1, 2, and 3 are referred to here as Small, Medium, and Large, 

respectively.  Temporal discounts represent the discounts per Mbps for longer duration 

contracts.  Table 4-2 summarizes the data related to the three levels of s.  The bandwidth 

cost data for s = Small was presented in Table 1-2.  For a 2 year contract, the bandwidth 

price for the same bandwidth size is 95% of the cost for a 1 year contract; 3 year 

contracts are 85% of the cost of a 1 year contract.  For problems where s = Medium, 

Table 4-2 shows the cost per Mbps of bandwidth for 2 years is 90% of that for a 1 year 

contract; the bandwidth cost for a 3 year contract is 80% of that for a 1 year contract.  

When s = Large the discount rates are 85% and 75% for 2 and 3 year contracts, 

respectively.  As can be seen from Table 4-2 the regression performed well for all levels 

of s.  The resulting regression beta coefficients are used in regression equations to 

calculate the total cost for a purchasing strategy given the bandwidth size (Q) and 
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duration (L) for each active contract in a planning horizon for each of the three temporal 

discount levels. 

Table 4-2: Summary of the Temporal Discount Data 

Contract 
Duration 
(years) 

 Duration 
Discounts 

Regression 
Equation 

Coefficients† 

Te
m

po
ra

l D
is

co
un

t L
ev

el
 

(s
) 

1* 2 3 

Adjusted 
R 

Squared 

Alpha 
Sign. 
Level 

β1 β2 β3 

Small c c*95% c*85% 98.8% 1.0 E-17 13.12 962.93 258.53 
Medium c c*90% c*80% 98.6% 1.0 E-17 6.76 928.50 364.99 
Large c c*85% c*75% 98.2% 1.0 E-16 0.40 894.11 471.42 

*c = The cost data in the column labeled “1 year” from Table 1-2 
†Equation (19) is the regression equation 

 

4.3  DBCP-EA Example Problems 

We use three example problems, one for each N, where s = Small, p = Large, and 

d = Small, to compare the solutions derived by the DBCP-EA and the MILP.  Figure 4-10 

shows the general MILP formulation that is used to generate the MILP input file.  Table 

4-3 shows the MILP input data and Table 4-4 shows the MILP solution for the smallest 

example problem, (N = Small, s = Small, p = Large, and d = Small).  Contracts with a 

binary variable jix ,  = 1 are the purchased contracts for the purchasing strategy described 

in a solution.  
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Figure 4-10: MILP Formulation 



 
 

 

 
 

 
 

 
 

 
 

74

Ta
bl

e 
4-

3:
 T

he
 N

 =
 S

m
al

l E
xa

m
pl

e 
Pr

ob
le

m
 M

IL
P 

In
pu

t D
at

a 
Ex

am
pl

e 
Pr

ob
le

m
:  

N
 =

 S
m

al
l, 

s =
 S

m
al

l, 
p 

= 
La

rg
e,

 d
 =

 S
m

al
l 

Objective 
Function 

Z 
= 

M
IN

 2
71

.6
4 

Q
[0

1,
 0

2]
 +

 9
62

.9
3 

X
[0

1,
 0

2]
 +

 2
84

.7
6 

Q
[0

1,
 0

3]
 +

 1
92

5.
85

 X
[0

1,
 0

3]
 +

 2
97

.8
7 

Q
[0

1,
 0

4]
 +

 2
88

8.
78

 X
[0

1,
 0

4]
 +

 
31

0.
99

 Q
[0

1,
 0

5]
 +

 3
85

1.
71

 X
[0

1,
 0

5]
 +

 3
24

.1
1 

Q
[0

1,
 0

6]
 +

 4
81

4.
64

 X
[0

1,
 0

6]
 +

 3
37

.2
2 

Q
[0

1,
 0

7]
 +

 5
77

7.
56

 X
[0

1,
 0

7]
 +

 1
90

.1
5 

Q
[0

2,
 0

3]
 +

 6
74

.0
5 

X
[0

2,
 0

3]
 +

 1
99

.3
3 

Q
[0

2,
 0

4]
 +

 1
34

8.
10

 X
[0

2,
 0

4]
 +

 2
08

.5
1 

Q
[0

2,
 0

5]
 +

 2
02

2.
15

 X
[0

2,
 0

5]
 +

 2
17

.6
9 

Q
[0

2,
 0

6]
 

+ 
26

96
.2

0 
X

[0
2,

 0
6]

 +
 2

26
.8

7 
Q

[0
2,

 0
7]

 +
 3

37
0.

24
 X

[0
2,

07
] +

 1
33

.1
0 

Q
[0

3,
 0

4]
 +

 4
71

.8
3 

X
[0

3,
 0

4]
 +

 1
39

.5
3 

Q
[0

3,
 0

5]
 +

 9
43

.6
7 

X
[0

3,
 0

5]
 +

 1
45

.9
6 

Q
[0

3,
 0

6]
 +

 1
41

5.
50

 X
[0

3,
 0

6]
 +

 1
52

.3
9 

Q
[0

3,
 0

7]
 +

 1
88

7.
34

 X
[0

3,
 0

7]
 +

 9
3.

17
 Q

[0
4,

 0
5]

 +
 3

30
.2

8 
X

[0
4,

 0
5]

 
+ 

97
.6

7 
Q

[0
4,

 0
6]

 +
 6

60
.5

7 
X

[0
4,

 0
6]

 +
 1

02
.1

7 
Q

[0
4,

 0
7]

 +
 9

90
.8

5 
X

[0
4,

 0
7]

 +
 6

5.
22

 Q
[0

5,
 0

6]
 +

 2
31

.2
0 

X
[0

5,
 0

6]
 +

 6
8.

37
 Q

[0
5,

 
07

] +
 4

62
.4

0 
X

[0
5,

 0
7]

 +
 4

5.
65

 Q
[0

6,
 0

7]
 +

 1
61

.8
4 

X
[0

6,
 0

7]
 

Su
bj

ec
t t

o 
th

e 
fo

llo
w

in
g 

co
ns

tra
in

ts
: 

Q
[0

1,
 0

2]
 +

 Q
[0

1,
 0

3]
 +

 Q
[0

1,
 0

4]
 +

 Q
[0

1,
 0

5]
 +

 Q
[0

1,
 0

6]
 +

 Q
[0

1,
 0

7]
 >

 5
40

.0
0 

Q
[0

1,
 0

3]
 +

 Q
[0

1,
 0

4]
 +

 Q
[0

1,
 0

5]
 +

 Q
[0

1,
 0

6]
 +

 Q
[0

1,
 0

7]
 +

 Q
[0

2,
 0

3]
 +

 Q
[0

2,
 0

4]
 +

 Q
[0

2,
 0

5]
 +

 Q
[0

2,
 0

6]
 +

 Q
[0

2,
 0

7]
 >

 5
94

.0
0 

Q
[0

1,
 0

4]
 +

 Q
[0

1,
 0

5]
 +

 Q
[0

1,
 0

6]
 +

 Q
[0

1,
 0

7]
 +

  Q
[0

2,
 0

4]
 +

 Q
[0

2,
 0

5]
 +

 Q
[0

2,
 0

6]
 +

 Q
[0

2,
 0

7]
 +

 Q
[0

3,
 0

4]
 +

 Q
[0

3,
 0

5]
 +

 Q
[0

3,
 

06
] +

 Q
[0

3,
 0

7]
 >

 6
54

.0
0 

Q
[0

1,
 0

5]
 +

 Q
[0

1,
 0

6]
 +

 Q
[0

1,
 0

7]
 +

 Q
[0

2,
 0

5]
 +

  Q
[0

2,
 0

6]
 +

 Q
[0

2,
 0

7]
 +

 Q
[0

3,
 0

5]
 +

 Q
[0

3,
 0

6]
 +

 Q
[0

3,
 0

7]
 +

 Q
[0

4,
 0

5]
 +

 Q
[0

4,
 

06
] +

 Q
[0

4,
 0

7]
 >

 7
19

.0
0 

Q
[0

1,
 0

6]
 +

 Q
[0

1,
 0

7]
 +

 Q
[0

2,
 0

6]
 +

 Q
[0

2,
 0

7]
 +

  Q
[0

3,
 0

6]
 +

 Q
[0

3,
 0

7]
 +

 Q
[0

4,
 0

6]
 +

 Q
[0

4,
 0

7]
 +

 Q
[0

5,
 0

6]
 +

 Q
[0

5,
 0

7]
 >

 7
91

.0
0 

Demand 
Requirement 

Constraint 

Q
[0

1,
 0

7]
 +

 Q
[0

2,
 0

7]
 +

 Q
[0

3,
 0

7]
 +

 Q
[0

4,
 0

7]
 +

  Q
[0

5,
 0

7]
 +

 Q
[0

6,
 0

7]
 >

 8
70

.0
0 

 

 
 

 

 

 
 

Q
[0

1,
 0

2]
 - 

10
80

.0
0 

X
[0

1,
 0

2]
 <

 0
 

Q
[0

3,
 0

4]
 - 

13
08

.0
0 

X
[0

3,
 0

4]
 <

 0
 

 
IN

T 
X

[0
1,

 0
2]

 
IN

T 
X

[0
3,

 0
4]

 
Q

[0
1,

 0
3]

 - 
11

88
.0

0 
X

[0
1,

 0
3]

 <
 0

 
Q

[0
3,

 0
5]

 - 
14

38
.0

0 
X

[0
3,

 0
5]

 <
 0

 
 

IN
T 

X
[0

1,
 0

3]
 

IN
T 

X
[0

3,
 0

5]
 

Q
[0

1,
 0

4]
 - 

13
08

.0
0 

X
[0

1,
 0

4]
 <

 0
 

Q
[0

3,
 0

6]
 - 

15
82

.0
0 

X
[0

3,
 0

6]
 <

 0
 

 
IN

T 
X

[0
1,

 0
4]

 
IN

T 
X

[0
3,

 0
6]

 
Q

[0
1,

 0
5]

 - 
14

38
.0

0 
X

[0
1,

 0
5]

 <
 0

 
Q

[0
3,

 0
7]

 - 
17

40
.0

0 
X

[0
3,

 0
7]

 <
 0

 
 

IN
T 

X
[0

1,
 0

5]
 

IN
T 

X
[0

3,
 0

7]
 

Q
[0

1,
 0

6]
 - 

15
82

.0
0 

X
[0

1,
 0

6]
 <

 0
 

Q
[0

4,
 0

5]
 - 

14
38

.0
0 

X
[0

4,
 0

5]
 <

 0
 

 
IN

T 
X

[0
1,

 0
6]

 
IN

T 
X

[0
4,

 0
5]

 
Q

[0
1,

 0
7]

 - 
17

40
.0

0 
X

[0
1,

 0
7]

 <
 0

 
Q

[0
4,

 0
6]

 - 
15

82
.0

0 
X

[0
4,

 0
6]

 <
 0

 
 

IN
T 

X
[0

1,
 0

7]
 

IN
T 

X
[0

4,
 0

6]
 

Q
[0

2,
 0

3]
 - 

11
88

.0
0 

X
[0

2,
 0

3]
 <

 0
 

Q
[0

4,
 0

7]
 - 

17
40

.0
0 

X
[0

4,
 0

7]
 <

 0
 

 
IN

T 
X

[0
2,

 0
3]

 
IN

T 
X

[0
4,

 0
7]

 
Q

[0
2,

 0
4]

 - 
13

08
.0

0 
X

[0
2,

 0
4]

 <
 0

 
Q

[0
5,

 0
6]

 - 
15

82
.0

0 
X

[0
5,

 0
6]

 <
 0

 
 

IN
T 

X
[0

2,
 0

4]
 

IN
T 

X
[0

5,
 0

6]
 

Q
[0

2,
 0

5]
 - 

14
38

.0
0 

X
[0

2,
 0

5]
 <

 0
 

Q
[0

5,
 0

7]
 - 

17
40

.0
0 

X
[0

5,
 0

7]
 <

 0
 

 
IN

T 
X

[0
2,

 0
5]

 
IN

T 
X

[0
5,

 0
7]

 
Q

[0
2,

 0
6]

 - 
15

82
.0

0 
X

[0
2,

 0
6]

 <
 0

 
Q

[0
6,

 0
7]

 - 
17

40
.0

0 
X

[0
6,

 0
7]

 <
 0

 
 

IN
T 

X
[0

2,
 0

6]
 

IN
T 

X
[0

6,
 0

7]
 

Non-negative Contract Size 
Constraint 

Q
[0

2,
 0

7]
 - 

17
40

.0
0 

X
[0

2,
 0

7]
 <

 0
 

 
 

Binary Variable associated 
with each Contract 

IN
T 

X
[0

2,
 0

7]
 

 
 



    

    

75

Table 4-4: The N = Small Example Problem MILP Solution 
Example Problem: N = Small, s = Small, p = Large, d = Small 
Objective value:             $231,313.5 
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1 1 Q[01, 02] 0  X[01, 02] 0
1 2 Q[01, 03] 0  X[01, 03] 0
1 3 Q[01, 04] 0  X[01, 04] 0
1 4 Q[01, 05] 0  X[01, 05] 0
1 5 Q[01, 06] 0  X[01, 06] 0
1 6 Q[01, 07] 540  X[01, 07] 1
2 1 Q[02, 03] 0  X[02, 03] 0
2 2 Q[02, 04] 0  X[02, 04] 0
2 3 Q[02, 05] 0  X[02, 05] 0
2 4 Q[02, 06] 0  X[02, 06] 0
2 5 Q[02, 07] 54  X[02, 07] 1
3 1 Q[03, 04] 0  X[03, 04] 0
3 2 Q[03, 05] 0  X[03, 05] 0
3 3 Q[03, 06] 0  X[03, 06] 0
3 4 Q[03, 07] 60  X[03, 07] 1
4 1 Q[04, 05] 0  X[04, 05] 0
4 2 Q[04, 06] 0  X[04, 06] 0
4 3 Q[04, 07] 65  X[04, 07] 1
5 1 Q[05, 06] 0  X[05, 06] 0
5 2 Q[05, 07] 72  X[05, 07] 1
6 1 Q[06, 07] 79  X[06, 07] 1

 

Figure 4-11 shows all the contracts that could be active during each period.  

Contract [01, 07] is purchased in period 1 with a bws of 540 Mbps and has a length of 6 

periods; therefore 540 Mbps is available for all 6 periods.  The bandwidth available in 

period 2 is 594 Mbps which is the sum of bandwidths purchased for all contracts active 

during period 2 (Contract [02, 07] and Contract [01, 07]). 
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Table 4-5 compares the solutions generated by the MILP and the DBCP-EA for 

each of the three example problems.  The %_Error value is used to measure out how 

close the DBCP-EA solution is from the optimal solution.  The %_Error value is 

calculated by subtracting the DBCP-EA solution’s total cost from the MILP solution’s 

total cost and then divided by the MILP solution’s total cost and multiplied by 100.The 

DBCP-EA was able to find optimal solutions (%_Errors = 0) for N = Small and N = 

Medium problems.  However, for N = Large the DBCP-EA solution had a %_Error = 

0.25%.   

Table 4-5: Cost and Error, and Time Data for Example Problems 
Problem: N = Small, s = Small, p = Large, d = Small 

MILP Solution Total Cost = $231,313.45Cumulative Costs for Each Solution 
Best EA Solution Total Cost = $231,314.00
Cost Difference* = $0.50Error Data for the EA Solution 
%_Error = 0.00
MILP Time (seconds) = 0.010Computational Time for Each 

Solution EA Time (seconds) for Best EA = 0.072
Problem: N = Medium, s = Small, p = Large, d = Small  

MILP Solution Total Cost = $276,257.67Cumulative Costs for Each Solution Best EA Solution Total Cost = $276,261.00
Cost Difference* = $3.30Error Data for the EA Solution %_Error = 0.00
MILP Time (seconds) = 7.590Computational Time for Each 

Solution EA Time (seconds) for Best EA = 73.547
Problem: N = Large, s = Small, p = Large, d = Small 

MILP Solution Total Cost = $285,071.26Cumulative Costs for Each Solution Best EA Solution Total Cost = $285,777.00
Cost Difference = $705.74Error Data for the EA Solution %_Error = 0.25
MILP Time (seconds) = 1,373.000Computational Time for Each 

Solution EA Time (seconds) for Best EA = 1,338.562
* Cost Difference due to precision and rounding errors 

 

Table 4-5 also shows that as N increases the computational time between the 

MILP and the DBCP-EA becomes comparable, especially for the N = Large problem 
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where the DBCP-EA found a solution in less time than the MILP.  It was originally 

planned to use 6 month increments for N ranging from 6 to 24, but CPLEX was unable to 

find a solution to the MILP for a planning horizon of 24 months within a reasonable 

amount of time.  Furthermore, it should be noted that the DBCP-EA was not designed 

with the objective of minimizing computational time.  Therefore it may be possible in the 

future to re-code the DBCP-EA to improve computational. 

Tables 4-6 through 4-8 show a period by period breakdown of the MILP and the 

DBCP-EA solutions for the three example problems.  The column labeled “Available 

Bandwidth” shows the total bandwidth available in for any given period.  Tables 4.6 and 

4.7 show the DBCP-EA solutions for N = Small and N = Medium.  In these two example 

problems there is no surplus bandwidth in any period for these two problems, and the 

constraint from Equation (2) is binding.  Moreover, by comparing the “Contract Number” 

columns for the MILP and the DBCP-EA solutions theses tables show that both search 

methods selected the same contracts for each period.  Since the MILP gives an optimal 

solution, we can assert that the DBCP-EA has identified an optimal, lowest total cost 

solution for the N = Small and Medium example problems. 
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Table 4-6: MILP vs. DBCP-EA Purchasing Strategy Solutions for N = Small, s = Small, 
p = Large, and d = Small 

Constraint MILP Solution EA Solution 
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Number 
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1 540 [01, 07] 540 540 [01, 07] 540 540 ● ● 

2 594 [02, 07] 54 594 [02, 07] 54 594 ● ● 

3 654 [03, 07] 60 654 [03, 07] 60 654 ● ● 

4 719 [04, 07] 65 719 [04, 07] 65 719 ● ● 

5 791 [05, 07] 72 791 [05, 07] 72 791 ● ● 

6 870 [06, 07] 79 870 [06, 07] 79 870 ● ● 
 
Table 4-7: MILP vs. DBCP-EA Purchasing Strategy Solutions for N = Medium, s = 
Small, p = Large, and d = Small 
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Number 
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1 540 [01, 07] 540 540 [01, 07] 540 540 ● ● 

2 594 [02, 06] 54 594 [02, 06] 54 594 ● ● 

3 654 [03, 07] 60 654 [03, 07] 60 654 ● ● 

4 719 [04, 08] 65 719 [04, 08] 65 719 ● ● 

5 791 [05, 09] 72 791 [05, 09] 72 791 ● ● 

6 870 [06, 13] 133 870 [06, 13] 133 870 ● ● 

7 957 [07, 13] 687 957 [07, 13] 687 957 ● ● 

8 1,053 [08, 13] 161 1,053 [08, 13] 161 1,053 ● ● 

9 1,158 [09, 13] 177 1,158 [09, 13] 177 1,158 ● ● 

10 1,274 [10, 13] 116 1,274 [10, 13] 116 1,274 ● ● 

11 1,401 [11, 13] 127 1,401 [11, 13] 127 1,401 ● ● 

12 1,541 [12, 13] 140 1,541 [12, 13] 140 1,541 ● ● 
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Table 4.8 shows the N = Large example problem.  The MILP and the DBCP-EA 

did not find the same solution, although in each solution constraint Equation (2) is 

binding, therefore both solutions are feasible.  In the MILP solution the available 

bandwidth is exactly equal to the required demand for each period, and is the same for 

both the MILP and DBCP-EA solution; however, the contracts purchased do not match.  

The periods where purchased contracts are the same can be seen in the column labeled 

“Same Contract Number.”  The %_Error between the MILP and the DBCP-EA solutions 

is 0.25%.  Therefore, the DBCP-EA solution represents a feasible solution, albeit not 

optimal.  This solution could then be “tweaked” if desired.  It should also be noted that if 

the DBCP-EA had been allowed to run for a longer time it is possible that the optimal 

solution might have been found. 
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Table 4-8: MILP vs. DBCP-EA Purchasing Strategy Solutions for N = Large, s = Small, 
p = Large, and d = Small 

Constraint MILP Solution EA Solution 
Same 

Contract 
Number 

Same 
Available 

bws 

Pe
ri

od
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d 
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(2
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(a
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(b
) A
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bl
e 

B
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th
 p

er
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od
 

(c
) C

on
tr

ac
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N
um

be
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B
an

dw
id

th
 S

iz
e 

(b
w

s)
 

(d
) A

va
ila

bl
e 

B
an

dw
id

th
 p

er
 

Pe
ri

od
 

(a
) =

 (c
)  

(b
) =

 (d
) 

1 540 [01, 07] 540 540 [01, 07] 540 540 ● ● 

2 594 [02, 06] 54 594 [02, 07] 54 594   ● 

3 654 [03, 07] 60 654 [03, 08] 60 654   ● 

4 719 [04, 08] 65 719 [04, 08] 65 719 ● ● 

5 791 [05, 10] 72 791 [05, 11] 72 791   ● 

6 870 [06, 12] 133 870 [06, 12] 79 870 ● ● 

7 957 [07, 13] 687 957 [07, 14] 681 957   ● 

8 1,053 [08, 13] 161 1,053 [08, 12] 221 1,053   ● 

9 1,158 [09, 14] 105 1,158 [09, 13] 105 1,158   ● 

10 1,274 [10, 15] 188 1,274 [10, 16] 116 1,274   ● 

11 1,401 [11, 16] 127 1,401 [11, 19] 199 1,401   ● 

12 1,541 [12, 19] 273 1,541 [12, 19] 440 1,541 ● ● 

13 1,695 [13, 19] 1,002 1,695 [13, 19] 259 1,695 ● ● 

14 1,865 [14, 19] 275 1,865 [14, 19] 851 1,865 ● ● 

15 2,051 [15, 19] 374 2,051 [15, 19] 186 2,051 ● ● 

16 2,256 [16, 19] 332 2,256 [16, 19] 321 2,256 ● ● 

17 2,482 [17, 19] 226 2,482 [17, 19] 226 2,482 ● ● 

18 2,730 [18, 19] 248 2,730 [18, 19] 248 2,730 ● ● 
 

4.4 DBCP-EA Results 

Table 4-9 shows the parameter settings for each of the 81 problems identified in 

the experimental design in Section 4.2.  The categories in the table stand for Small (Sm), 

Medium (Md) and Large (Lg).  There are a total of 81 problems (4 parameters with 3 

categories each).   
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Table 4-9: Problem Number Corresponding to Each of the 81 Problems 

# N S p d # N s p d # N s p d 
1 Sm Sm Sm Sm 28 Md Sm Sm Sm 55 Lg Sm Sm Sm
2 Sm Sm Sm Md 29 Md Sm Sm Md 56 Lg Sm Sm Md
3 Sm Sm Sm Lg 30 Md Sm Sm Lg 57 Lg Sm Sm Lg 
4 Sm Sm Md Sm 31 Md Sm Md Sm 58 Lg Sm Md Sm
5 Sm Sm Md Md 32 Md Sm Md Md 59 Lg Sm Md Md
6 Sm Sm Md Lg 33 Md Sm Md Lg 60 Lg Sm Md Lg 
7 Sm Sm Lg Sm 34 Md Sm Lg Sm 61 Lg Sm Lg Sm
8 Sm Sm Lg Md 35 Md Sm Lg Md 62 Lg Sm Lg Md
9 Sm Sm Lg Lg 36 Md Sm Lg Lg 63 Lg Sm Lg Lg 
10 Sm Md Sm Sm 37 Md Md Sm Sm 64 Lg Md Sm Sm
11 Sm Md Sm Md 38 Md Md Sm Md 65 Lg Md Sm Md
12 Sm Md Sm Lg 39 Md Md Sm Lg 66 Lg Md Sm Lg 
13 Sm Md Md Sm 40 Md Md Md Sm 67 Lg Md Md Sm
14 Sm Md Md Md 41 Md Md Md Md 68 Lg Md Md Md
15 Sm Md Md Lg 42 Md Md Md Lg 69 Lg Md Md Lg 
16 Sm Md Lg Sm 43 Md Md Lg Sm 70 Lg Md Lg Sm
17 Sm Md Lg Md 44 Md Md Lg Md 71 Lg Md Lg Md
18 Sm Md Lg Lg 45 Md Md Lg Lg 72 Lg Md Lg Lg 
19 Sm Lg Sm Sm 46 Md Lg Sm Sm 73 Lg Lg Sm Sm
20 Sm Lg Sm Md 47 Md Lg Sm Md 74 Lg Lg Sm Md
21 Sm Lg Sm Lg 48 Md Lg Sm Lg 75 Lg Lg Sm Lg 
22 Sm Lg Md Sm 49 Md Lg Md Sm 76 Lg Lg Md Sm
23 Sm Lg Md Md 50 Md Lg Md Md 77 Lg Lg Md Md
24 Sm Lg Md Lg 51 Md Lg Md Lg 78 Lg Lg Md Lg 
25 Sm Lg Lg Sm 52 Md Lg Lg Sm 79 Lg Lg Lg Sm
26 Sm Lg Lg Md 53 Md Lg Lg Md 80 Lg Lg Lg Md
27 Sm Lg Lg Lg 54 Md Lg Lg Lg 81 Lg Lg Lg Lg 

 

For each problem the DBCP-EA is run 5 times, and %_Error is the mean of the % 

errors for the 5 runs.  Table 4-10 shows the maximum, minimum, and average percentage 

errors (% error), as well as the standard deviation, from the 5 runs for each problem.  The 

information given in this table provides a view of the variability encountered by the 

DBCP-EA in solving each problem.  Solutions with a %_Error ≤ 1% are deemed good 
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solutions.  Solutions with a %_Error > 1% are deemed substandard.  Of the 81 problems, 

13 had %_Errors > 1%.  These 13 problems are marked as bold in Table 4-9, and their 

data are also marked as bold in Table 4-10. 
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Table 4-10: Maximum % error, Minimum % error, %_Error, and Standard Deviation for 
the 81 Problems 
   N = Small N = Medium N = Large 

s p d M
ax

im
um

%
 e

rr
or

 

M
in

im
um

 %
 e

rr
or

 

%
_E

rr
or

 

St
an

da
rd

 D
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M
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Sm 0.00 0.00 0.00 0.00 0.19 0.00 0.07 0.10 1.13 0.00 0.25 0.49
Md 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Sm

al
l 

Lg 0.00 0.00 0.00 0.00 0.06 0.06 0.06 0.00 0.12 0.00 0.02 0.05
Sm 0.00 0.00 0.00 0.00 0.31 0.18 0.20 0.06 0.29 0.20 0.25 0.04
Md 0.00 0.00 0.00 0.00 1.18 0.77 0.85 0.19 2.10 1.31 1.54 0.32

M
ed

iu
m

 

Lg 0.00 0.00 0.00 0.00 0.65 0.65 0.65 0.00 6.45 5.41 5.62 0.46
Sm 0.00 0.00 0.00 0.00 0.86 0.00 0.34 0.35 1.29 0.25 0.63 0.43
Md 0.00 0.00 0.00 0.00 0.79 0.09 0.36 0.29 1.14 0.84 0.99 0.15
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l 
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Lg 0.00 0.00 0.00 0.00 2.29 0.98 1.24 0.58 8.55 0.94 4.44 3.86
Sm 0.00 0.00 0.00 0.00 0.04 0.00 0.03 0.02 1.07 0.00 0.27 0.46
Md 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.20 0.24 0.07Sm
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l 

Lg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.11 0.11 0.00
Sm 0.00 0.00 0.00 0.00 0.53 0.00 0.21 0.29 3.63 1.12 1.66 1.10
Md 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.40 2.40 2.40 0.00

M
ed

iu
m

 

Lg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.43 1.43 1.43 0.00
Sm 0.00 0.00 0.00 0.00 1.88 0.00 0.38 0.84 0.75 0.26 0.40 0.20
Md 0.00 0.00 0.00 0.00 1.57 0.67 1.18 0.47 1.68 0.90 1.08 0.34
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Sm 0.00 0.00 0.00 0.00 0.41 0.00 0.08 0.18 0.96 0.00 0.38 0.52
Md 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Lg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sm 0.00 0.00 0.00 0.00 0.06 0.06 0.06 0.00 1.00 0.84 0.89 0.07
Md 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.01 2.01 2.01 0.00
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Lg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.06 1.06 1.06 0.00
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Figure 4-12 shows the %_Error plotted for the 81 problems.  Ten of the thirteen 

substandard problem solutions, occur when N = Large.  Only three substandard problems 

occur when N = Medium and their %_Errors are all very close to 1%.  Figure 4-13 shows 

the %_Error data for the 27 problems where N = Medium and the 27 problems where N = 

Large overlaid on top of each other so that the %_Error for problems with the same s, p, 

and d parameter settings can be compared as the planning horizon increases from 12 

periods to 18 periods.  The 27 problems where N = Medium correspond to problem 

number 28-54, and the 27 problems where N = Large corresponds to problem number 55 

to 81, shown in Table 4-9.  Since the %_Errors are all zero for the 27 problems were N = 

Small, it is not necessary to plot those points.  These two figures show that as the 

planning horizon increases so does the %_Error, and to a lesser extent, in some instances, 

problems with the same s, p, and d parameter settings follow a similar pattern where the 

magnitude of the %_Error is greatly amplified for the N = Large problems. 
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Mean % Error for All 81 Problems
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Figure 4-12: %_Error for the 81 Problems 

%_Error  for of 27 Problems for N  = 12 and N  = 18
(Note: The %_Error  for N  = 6 is essentially zero for all 27 problems and is not shown here)
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Figure 4-13: Overlay of the %_Errors for N = Medium and Large 

 

Figure 4-14 shows a plot of the standard deviations for the 81 problems listed in 

Table 4-10.  Figure 4-15 shows the standard deviation for the N = Medium and N = Large 
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data overlaid on top of each other.  Of the 54 standard deviations in Figure 4-15 only 4 

(the 9th, 13th, 16th, and 18th problem from the N = Large data series) have a standard 

deviation greater than 0.5.  Of these 4 problems, the 9th, 13th, and 18th (from the N = 

Large data series) belonged to substandard solutions.  The 18th problem from the N = 

Large data series (problem 72 in Figures 4-12 and 4-14) and 9th problem (problem 63 in 

Figures 4-12 and 4-14) have the first (%_Error = 6.03, standard deviation = 2.09) and 

third (%_Errors = 4.44, standard deviation = 3.86) largest substandard solutions.  

Interestingly, the second largest %_Error (%_Error = 5.62) occurred for the 6th problem 

(problem 60 in Figures 4-12 and 4-14) from the N = Large data series and had an average 

standard deviation of only 0.46.  Therefore, while a large standard deviation seems to be 

correlated with larger %_Errors, it is not a required condition.  Only two of the 81 

problems had a standard deviation greater than 1.1, which means that the DBCP-EA 

performed consistently. 
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Figure 4-14: %_Error Standard Deviation for the 81 Problems 
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Standard Deviation for of 27 Problems for N  = 12 and N  = 18
(Note: The standard deviation for N  = 6 is zero for all 27 problems and is not shown here)
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Figure 4-15: Overlay of %_Error Standard Deviation for N = Medium and Large 

 

Table 4-11 shows the minimum, maximum, and average time it took the DBCP-

EA to find the best solution, as well as the standard deviation.  As expected, as the N 

increases, so does the computational time.  Since the standard deviation for all but a few 

problems is so low, we have some confidence that the DBCP-EA performs in a consistent 

manner allowing for fairly accurate estimates of computation time. 

The computation time for N = Small problems is negligible.  For N = Medium, 

problem 35 had the longest maximum run time with 11.5 minutes (691.53 seconds), its 

best time was 0.4 minutes (25.23 seconds), and its average time for the 5 runs was 4.2 

minutes (252.58 seconds).  The %_Error for problem 35 is 0.36%, with a %_Error 

standard deviation of 0.29.  N = Large problems have the most variable computational 

time (see Table 4-11) due to the time required to search a much larger search space.  For 

these problems the longest maximum run time is 49.3 minutes (2,958.48 seconds), which 
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was for problem 62.  The best computational time among the 5 runs for problem 62 was 

19.8 minutes (1,186.52 seconds); the average computational time is 36.3 minutes 

(2,176.49) with a standard deviation of 12.5 minutes.  The %_Error for problem 62 is 

0.99% with a %_Error standard deviation of 0.15, the accuracy is good and the 

variability is low.  Therefore, it would be safe to say that the DBCP-EA is fairly 

consistent at finding good solutions for this problem. 



 
 

 
 

 
 

 
 

 
 

 
 

90

Ta
bl

e 
4-

11
: M

ax
im

um
, M

in
im

um
, a

nd
 A

ve
ra

ge
 E

A
 C

om
pu

ta
tio

na
l T

im
e 

(s
ec

) f
or

 th
e 

81
 P

ro
bl

em
s 

 
 

 
N

 =
 S

m
al

l 
N

 =
 M

ed
iu

m
 

N
 =

 L
ar

ge
 

s 
p 

d 
Maximum 

Minimum 

Average 

Std. Dev. 

Maximum 

Minimum 

Average 

Std. Dev. 

Maximum 

Minimum 

Average 

Std. Dev. 

Sm
al

l 
0.

38
 

0.
17

 
0.

23
0.

1
15

0.
05

9.
11

46
.3

4
58

.6
1,

71
5.

42
95

.3
3

51
8.

68
68

0.
0

M
ed

iu
m

 
0.

08
 

0.
06

 
0.

07
0.

0
41

.3
1

1.
31

16
.9

0
17

.3
54

9.
67

16
6.

30
30

0.
24

14
9.

3

Small 

La
rg

e 
0.

08
 

0.
06

 
0.

07
0.

0
0.

23
0.

23
0.

23
0.

0
19

2.
56

0.
63

39
.0

2
85

.8
Sm

al
l 

0.
06

 
0.

06
 

0.
06

0.
0

38
4.

44
14

8.
92

25
6.

63
11

6.
1

2,
76

8.
61

47
7.

08
1,

12
4.

60
93

0.
8

M
ed

iu
m

 
0.

08
 

0.
06

 
0.

07
0.

0
12

3.
61

0.
22

24
.9

0
55

.2
2,

22
4.

84
0.

58
83

7.
07

86
3.

5

Medium 

La
rg

e 
0.

08
 

0.
06

 
0.

07
0.

0
0.

24
0.

22
0.

23
0.

0
94

7.
92

0.
64

24
3.

50
41

0.
4

Sm
al

l 
0.

08
 

0.
06

 
0.

07
0.

0
54

5.
19

51
.6

3
21

0.
47

20
5.

9
1,

33
8.

56
56

1.
06

93
2.

88
35

5.
2

M
ed

iu
m

 
0.

08
 

0.
06

 
0.

07
0.

0
69

1.
53

25
.2

3
25

2.
58

26
9.

2
2,

95
8.

48
1,

18
6.

52
2,

17
6.

49
75

0.
9

Small 

Large 

La
rg

e 
0.

08
 

0.
06

 
0.

07
0.

0
14

3.
69

3.
83

77
.7

4
64

.7
2,

56
2.

67
1,

32
6.

42
2,

06
4.

77
57

5.
8

Sm
al

l 
0.

48
 

0.
13

 
0.

27
0.

2
61

.6
9

13
.0

9
31

.8
5

18
.7

1,
42

7.
97

22
4.

91
94

7.
08

45
6.

4
M

ed
iu

m
 

0.
08

 
0.

06
 

0.
07

0.
0

20
.6

3
5.

27
10

.5
4

6.
2

30
3.

14
12

3.
45

19
8.

90
73

.7

Small 

La
rg

e 
0.

08
 

0.
06

 
0.

07
0.

0
98

.3
3

0.
22

19
.8

5
43

.9
0.

66
0.

64
0.

65
0.

0
Sm

al
l 

0.
08

 
0.

06
 

0.
07

0.
0

23
6.

30
5.

89
70

.7
0

96
.0

1,
50

2.
52

47
6.

94
1,

17
1.

90
40

4.
6

M
ed

iu
m

 
0.

08
 

0.
06

 
0.

07
0.

0
0.

22
0.

20
0.

21
0.

0
25

1.
80

0.
58

13
4.

44
12

4.
0

Medium 

La
rg

e 
0.

09
 

0.
06

 
0.

08
0.

0
0.

25
0.

23
0.

24
0.

0
0.

66
0.

64
0.

64
0.

0
Sm

al
l 

0.
08

 
0.

06
 

0.
07

0.
0

44
3.

83
58

.2
3

22
7.

05
16

7.
5

1,
93

8.
50

19
0.

45
1,

28
7.

55
70

2.
4

M
ed

iu
m

 
0.

08
 

0.
06

 
0.

07
0.

0
21

7.
20

58
.2

0
14

7.
65

73
.7

2,
35

2.
64

68
1.

47
1,

40
2.

32
68

6.
6

Medium 

Large 

La
rg

e 
0.

08
 

0.
06

 
0.

07
0.

0
11

0.
98

0.
23

22
.3

9
49

.5
2,

54
6.

69
0.

63
93

6.
06

1,
28

9.
2

  



 
 

 
 

 
 

 
 

 
 

 
 

91

Ta
bl

e 
4-

11
: c

on
tin

ue
d 

 
 

 
N

 =
 S

m
al

l 
N

 =
 M

ed
iu

m
 

N
 =

 L
ar

ge
 

s 
p 

d 
Maximum 

Minimum 

Average 

Std. Dev. 

Maximum 

Minimum 

Average 

Std. Dev. 

Maximum 

Minimum 

Average 

Std. Dev. 

Sm
al

l 
0.

38
 

0.
13

 
0.

19
0.

1
76

.0
3

4.
34

25
.4

9
29

.1
2,

67
0.

13
14

4.
23

1,
09

7.
74

1,
03

6.
1

M
ed

iu
m

 
0.

08
 

0.
06

 
0.

07
0.

0
18

.2
8

2.
09

7.
63

7.
0

97
9.

05
7.

63
34

2.
68

37
3.

1

Small 

La
rg

e 
0.

08
 

0.
06

 
0.

07
0.

0
23

3.
50

0.
24

83
.3

5
11

4.
7

99
9.

69
0.

64
26

0.
56

43
3.

2
Sm

al
l 

0.
08

 
0.

06
 

0.
07

0.
0

17
7.

39
2.

49
49

.2
3

72
.6

45
0.

31
59

.7
2

26
7.

78
14

1.
2

M
ed

iu
m

 
0.

08
 

0.
06

 
0.

08
0.

0
0.

22
0.

22
0.

22
0.

0
98

0.
05

0.
58

42
8.

54
42

8.
9

Medium 

La
rg

e 
0.

08
 

0.
06

 
0.

07
0.

0
0.

25
0.

23
0.

24
0.

0
0.

66
0.

63
0.

64
0.

0
Sm

al
l 

0.
08

 
0.

06
 

0.
07

0.
0

19
2.

44
21

.8
8

78
.3

2
68

.3
2,

65
9.

64
1,

55
5.

73
2,

08
3.

27
44

5.
6

M
ed

iu
m

 
0.

08
 

0.
06

 
0.

07
0.

0
0.

23
0.

20
0.

22
0.

0
0.

59
0.

56
0.

58
0.

0

Large 

Large 

La
rg

e 
0.

08
 

0.
06

 
0.

07
0.

0
0.

25
0.

23
0.

24
0.

0
0.

66
0.

63
0.

64
0.

0
     



  92  

    

In order to compare the DBCP-EA computational time to that of the MILP the 

times are overlaid in Figure 4-16.  From this figure it is clear that the greatest difference 

between the computational times for the MILP and the DBCP-EA occur during the N = 

Large problems.  Figures 4-17 through 4-19 compare the computational time of the MILP 

and the DBCP-EA for N = Small, Medium, and Large problems, respectively.  

MILP Time vs. EA Average Time for All 81 Problems
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Figure 4-16: EA Computational Average Time (sec) the 81 Problems 
 

Figure 4.17 shows that although the DBCP-EA, on average, took longer to solve 

N = Small problems, even for the worse cases the times were under 0.5 minutes, which 

makes it competitive with the MILP formulation.  The computational time for the DBCP-

EA jumps significantly over that of the MILP for most of the N = Medium problems, as 

can be seen in Figure 4-18.  In most cases, for N = Medium the DBCP-EA found 



  93  

    

solutions in less than 1 minute.  With respect to the average computational time for any N 

= Medium problem, the worse case was 4.3 minutes (256.63 seconds) for problem 31. 
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0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Problem Number

C
om

pu
ta

tio
na

l T
im

e 
(s

ec
)  

 

MILP Computational Time (sec) EA Average Computational Time (sec)  
Figure 4-17: Computational Time for MILP and DBCP-EA for N = Small 
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(Problem Number 28-54)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Problem Number

C
om

pu
ta

tio
na

l T
im

e 
(s

ec
)  

 

MILP Computational Time (sec) EA Average Computational Time (sec)  
Figure 4-18: Computational Time for MILP and DBCP-EA for N = Medium 
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Figure 4-19 show that the DBCP-EA outperforms the MILP with respect to 

computational time for 11 out of the 27 N = Large problems.  Of these, there are 5 

problems where the MILP computational time is clearly larger than the average DBCP-

EA computational time; the most significant difference occurs for problem 70.  Of the 

remaining 16 problems the computational times between the DBCP-EA and the MILP are 

very competitive.  For the three planning horizons, the average DBCP-EA computational 

times were 0.09 seconds, 1 minute, and 11.6 minutes for N = Small, Medium, and Large 

problems, respectively.   

MILP Time vs. EA Average Time for N = Large
(Problem Number 55 - 81)
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Figure 4-19: Computational Time for MILP and DBCP-EA for N = Large 
 
4.4.1 Examination of DBCP-EA Problems with Substandard Solutions 

By examining the 13 DBCP-EA substandard problem solutions insight can be 

gained into the how the DBCP-EA performs and some common characteristics that exist 

among these substandard solutions can be discussed.   
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Table 4-12 shows the % error for the 5 runs for each of the substandard problems.  

While a majority of the problems (8 out of 13) have %_Errors less than 2%, there are 3 

problems with %_Errors greater than 4%.  Interestingly, for some problems, such as 

problem 81 (also problem 68, 69, and 80), the % error for all 5 runs is the same indicating 

that while the DBCP-EA was unable to identify a good solution the DBCP-EA did 

perform consistently.  These problems are highlighted in the table.   

Table 4-12: DBCP-EA Substandard Problem Solution Data 
Problem Parameter  % error for each Runs %_Error  Standard
Number N s P d 1 2 3 4 5 (Avg.) Deviation

81 Lg Lg Lg Lg 1.06 1.06 1.06 1.06 1.06 1.06 0.00
71 Lg Md Lg Md 0.90 0.90 0.90 1.03 1.68 1.08 0.34
45 Md Md Lg Lg 1.05 1.05 1.05 1.05 1.39 1.12 0.15
44 Md Md Lg Md 0.67 0.67 1.42 1.57 1.57 1.18 0.47
36 Md Sm Lg Lg 0.98 0.98 0.98 0.98 2.29 1.24 0.58
69 Lg Md Md Lg 1.43 1.43 1.43 1.43 1.43 1.43 0.00
59 Lg Sm Md Md 1.31 1.31 1.49 1.49 2.10 1.54 0.32
67 Lg Md Md Sm 1.21 1.21 1.12 1.12 3.63 1.66 1.10
80 Lg Lg Lg Md 2.01 2.01 2.01 2.01 2.01 2.01 0.00
68 Lg Md Md Md 2.40 2.40 2.40 2.40 2.40 2.40 0.00
63 Lg Sm Lg Lg 0.94 0.94 3.25 8.55 8.55 4.44 3.86
60 Lg Sm Md Lg 5.41 5.41 5.41 5.41 6.45 5.62 0.46
72 Lg Md Lg Lg 3.83 3.83 7.02 7.02 8.47 6.03 2.10
 

Problem 36 has a % error of 0.98 for 4 of the 5 runs; it is only the 5th run with a % 

error of 2.29 which causes the %_Error to be above 1%.  This may indicate that the % 

error for the 5th run might have been an outlier and not representative of the DBCP-EA 

ability to produce good solutions for this problem.  Also, problem 63 two out of the 5 

runs had relatively low % errors (both were 0.94 % error) and 2 out of 5 % errors were 

very large (both were 8.55 % error).  The DBCP-EA is inconsistent for this problem 
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(standard deviation = 3.86) which makes it difficult for the DBCP-EA to find a good 

solution sometimes.  Problem 72 has not only the largest %_Error, but also a large 

standard deviation.  So, the % errors for all 5 runs are high as well as being not consistent 

(%_Error = 6.03, standard deviation = 2.10).  On the other hand, the % errors for problem 

60 are consistently large but without much variability. 

Problems 60, 63, and 72 are three substandard problems that have some unusually 

large % errors within their 5 runs.  These problems all have N = Large and d = Large.  

For two of these problems s = Small, and for two of the problems p = Large.  These three 

problems also have the largest %_Errors.   

A possible explanation for these results is that as s increases from Small to Large, 

contracts with longer duration become optimal because as the temporal discount 

increases it becomes more attractive to buy long duration contracts.  However, when p 

increases from Small to Large, it is more optimal to buy contracts with smaller durations 

as price decrease makes contracts with long durations costly.  The algorithm’s repair 

function which biases solutions toward contracts with the longest durations works well if 

long duration contracts are favorable.  For N = Small and Medium these biases are not 

that problematic because the search space was small enough to allows the solution to still 

find adequate solutions, in most cases.  However, for N = Large problems, the search 

space becomes much bigger and these biases towards the extreme become expensive, 

which is evidenced in problems 60, 63 and 72.  Therefore when N = Large and s = Small 

and/or p = Large then long duration contracts become expensive.  In addition, if d = 

Large, these long duration contracts becomes even more expensive since these contracts 

have larger bws due to the rapid increase of demand over time.  The settings of these 
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three problems have a bias towards common contracts which produce substandard 

solutions. 

Table 4-13 shows aggregate data pertaining to the 13 DBCP-EA substandard 

problems.  Problems with N = Large are much more likely to have substandard solutions 

than N = Small or Medium.  For s the majority of substandard problems occur when s = 

Medium.  This indicates that the DBCP-EA is much better at identifying the best 

solutions for s = Small where it can forgo small temporal discounts in favor of future 

price discounts.  Likewise, for s = Large it can take advantage of temporal discounts 

which could result in lower per unit cost.  With respect to N = Large, large decreases in 

price and/or increases in demand also have more occurrences of large %_Errors.  This is 

expected since the greater the rate of change in price and/or demand the more complex 

the problem becomes and the more sensitive the solution quality is to erroneous choices 

made early in the planning horizon. 
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Table 4-13: Crosstab Count Analysis of DBCP-EA Substandard Problem Solutions for N 
versus s, p, and d  

  s   
N Large Medium Small Grand Total 

Large 15.38% 38.46% 23.08% 76.92%
Medium 0.00% 15.38% 7.69% 23.08%
Small 0.00% 0.00% 0.00% 0.00%

Grand Total 15.38% 53.85% 30.77% 100.00%
  p   

N Large Medium Small Grand Total 
Large 38.46% 38.46% 0.00% 76.92%
Medium 23.08% 0.00% 0.00% 23.08%
Small 0.00% 0.00% 0.00% 0.00%

Grand Total 61.54% 38.46% 0.00% 100.00%
  d   

N Large Medium Small Grand Total 
Large 38.46% 30.77% 7.69% 76.92%
Medium 15.38% 7.69% 0.00% 23.08%
Small 0.00% 0.00% 0.00% 0.00%

Grand Total 53.85% 38.46% 7.69% 100.00%
 

4.4.2 Comparison between MILP and DBCP-EA Substandard Problem Solutions 

Tables 4-14 through 4-26 show the cumulative purchased bandwidth, required 

bandwidth, and surplus for each period for both the MILP and the best DBCP-EA 

solutions for the 13 substandard problems.  Each table includes the problem number, the 

parameter settings, and the % error for the solution shown, the % _Error, and the % 

_Error standard deviation.  While % error is the measure of error between the MILP 

solution total cost and the DBCP-EA solution’s total cost shown within each table, 

%_Error is the measure of error between the MILP solution total cost and the average of 

the DBCP-EA solutions’ total costs for the 5 runs.  The differences between the MILP 

and the DBCP-EA solutions are highlighted in grey.  In problems 36 (Table 4-14, % 

error = 0.98, %_Error = 1.24), 45 (Table 4-16, % error = 1.05, %_Error = 1.12), 60 



  99  

    

(Table 4-18, % error = 5.41, %_Error = 5.62), 68 (Table 4-21, % error = 2.40, %_Error 

= 2.40), 69 (Table 4-22, % error = 1.43, %_Error = 1.43), 71 (Table 4-23, % error = 

0.90, %_Error = 1.08), 72 (Table 4-24, % error = 3.83, %_Error = 6.03), 80 (Table 4-25, 

% error = 2.01, %_Error = 2.01) and 81 (Table 4-26, % error = 1.06, %_Error = 1.06), 

the DBCP-EA erroneously chose the longest possible contract in at least one period.  This 

is undoubtedly a bias imposed by the repair function.  Future research would attempt to 

reduce or eliminate this bias. 

In problems 59 (Table 4-17, % error = 1.31, %_Error = 1.54), 63 (Table 4-19, % 

error = 0.94, %_Error = 4.44), and 67 (Table 4-20, % error = 1.12, %_Error = 1.66) the 

DBCP-EA purchased some contracts that are too short and some contracts that are too 

long.  This type of error could indicate that the DBCP-EA was stopped prematurely.  

Future research could look at the effects on solution quality and computational time 

when the EA is allowed to run for more generations.  Problem 44 (Table 4-15, % error = 

0.67, %_Error = 1.18) is the exception to the observation that the DBCP-EA tends to 

purchase contracts that are of longer duration than is necessary.  In problem 44 the MILP 

solution purchases the longest contract available in all periods, whereas the DBCP-EA 

purchased one contract that was not the longest available.  Again, this error might 

indicate that the DBCP-EA was terminated too soon. 

Another interesting observation is that in most cases the MILP and the DBCP-EA 

solutions purchased only one contract in each period, even though no restriction was 

imposed.  Problem 67, Table 4-20, is the only problem of the 13 substandard solutions 

that does not have N number of contracts in the optimal solution, where N = 18 periods.  

The MILP optimal solution only purchased 17 contracts; no contracts were purchased 
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during period 2.  The DBCP-EA solution had only 16 contracts.  Interestingly, in the 

optimal solution it is cheaper to purchase a contract with more bandwidth than is needed 

for period 1, where the amount covered the bandwidth requirement for periods 1 and 2, 

thereby creating a surplus in period 1.  This action is optimal due to the unique parameter 

settings of N = Large, s = Medium, p = Medium, and d = Small.  In this instance it is 

cheaper to purchase excessive bandwidth in period 1, than to purchase the exact amount 

of bandwidth needed in period 1 and then purchase another contract in period 2.  For this 

problem the demand increase between periods is small so the surplus bandwidth in period 

1 is small, only 54 Mbps.  Starting in period 8 the contracts selected by the MILP and the 

DBCP-EA are identical, but due to difference in contract lengths purchased in pervious 

periods the bandwidth sizes for the majority of the contracts from the 8th period to the end 

of the planning horizon have differing bws for the two solutions. 

Problem 63, Table 4-19, has an odd occurrence.  The optimal solution found by 

the MILP purchases 18 contracts, while the DBCP-EA solution purchases 19 contracts; 

the % error is 0.94 and %_Error is 4.44.  In this case, the DBCP-EA solution has two 

contracts purchased in the 7th period.  This occurrence proves that the algorithm does not 

restrict the number of contract per period.   
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4.4.3 Aggregate Data Analysis for all DBCP-EA Problem Solutions 

Table 4-27 shows another aggregated view for all 81 of the DBCP-EA problem 

solutions.  MOM_%_Error is used to denote the mean %_Error.  For all two dimensional 

comparisons where N a parameter, the largest errors only occur when N = Large.  Longer 

planning horizons are inherently more difficult to solve than smaller problems, therefore 

is observation is not surprising.  Comparing the MOM_%_Error with respect to N versus 

s the %_Error are large only when N = Large and s = Small and Medium.  With N versus 

p, large errors occur when N = Large and p = Medium and Large.  For N versus d, large 

errors occur when N and d are both Large.  With s versus p, s = Small and Medium and p 

= Large produced a large error, and, with respect to s versus d, the only large error occurs 

when s = Small and d = Large.  For p versus d, the only large error occurs when both p 

and d are Large.   

The DBCP-EA appears to have trouble identifying a good solution when there is a 

choice between a moderate duration discount (i.e., s = Medium) and a rapid rate of 

decrease in price over time (p = Large).  The DBCP-EA does not wait to purchase 

bandwidth until the last possible moment where the advantage of lower prices can be 

realized, but instead opts to purchase longer duration contracts.  Likewise, when the 

duration discount is small (s = Small) and there is a rapid increase in demand over time (d 

= Large) the DBCP-EA has difficulty identifying good solutions.  The DBCP-EA does 

not exploit the long duration contracts when the duration discount is small, thereby 

incurring higher costs when demand rapidly increases for subsequent periods in the 

planning horizon.  These types of erroneous decisions made early in the planning process 

may not be obvious until late the planning horizon.  Looking at p versus d, the only large 
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error occurs when p and d are both Large.  This is because when p = Large it is typically 

prudent to wait to purchase bandwidth as late as possible in order to take advantage of 

reduced costs.  However, DBCP-EA’s repair function biases solutions towards long term 

contracts and when d = Large, these long term contracts become even more expensive as 

more bandwidth is bought for long term contracts due to large increases in demand. 

Table 4-27: Two-Dimensional Analysis for Aggregate Data for N vs. s, N vs. p, N vs. d, s 
vs. p, s vs. d, p vs. d 
      MOM_%_Error (Std. Dev.) 
      s = Small s = Medium s = Large Average 

Small 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Medium 0.42 (0.17) 0.32 (0.20) 0.02 (0.03) 0.26 (0.13)N vs. s N 
Large 1.53 (0.65) 1.52 (0.48) 0.53 (0.08) 1.19 (0.40)

    p = Small p = Medium p = Large Average 
Small 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Medium 0.02 (0.19) 0.22 (0.08) 0.52 (0.30) 0.26 (0.13)N vs. p N 
Large 0.14 (0.13) 1.48 (0.27) 1.95 (0.80) 1.19 (0.40)

    d = Small d = Medium d = Large Average 
Small 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Medium 0.16 (0.21) 0.27 (0.11) 0.34 (0.08) 0.26 (0.13)N vs. d N 
Large 0.56 (0.38) 0.93 (0.11) 2.08 (0.72) 1.19 (0.40)

    p = Small p = Medium p = Large Average 
Small 0.05 (0.07) 1.01 (0.12) 0.89 (0.63) 0.65 (0.27)
Medium 0.07 (0.06) 0.64 (0.15) 1.13 (0.46) 0.61 (0.22)s vs. p s 
Large 0.05 (0.02) 0.05 (0.08) 0.45 (0.01) 0.18 (0.04)

    d = Small d = Medium d = Large Average 
Small 0.20 (0.16) 0.42 (0.11) 1.34 (0.55) 0.65 (0.27)
Medium 0.33 (0.32) 0.55 (0.10) 0.97 (0.25) 0.61 (0.22)s vs. d s 
Large 0.19 (0.10) 0.23 (0.01) 0.12 (0.00) 0.18 (0.04)

    d = Small d = Medium d = Large Average 
Small 0.11 (0.13) 0.03 (0.01) 0.02 (0.01) 0.05 (0.05)
Medium 0.31 (0.24) 0.53 (0.06) 0.86 (0.05) 0.57 (0.12)p vs. d p 
Large 0.30 (0.21) 0.63 (0.14) 1.55 (0.74) 0.82 (0.36)

 

Figures 4-20 through 4-22 show MOM_%_Error versus s and three values of p 

for N = Small, Medium, and Large, respectively.  As can be seen when N = Small (Figure 
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4-20), the error is extremely small and there is little, if any impact of s or p on the quality 

of the solution.  When N = Medium (Figure 4-21), we can see that when p = Small, 

MOM_%_Error is close to zero.  This is because small price decreases favor solutions 

with contract of long duration and DBCP-EA’s repair function biases the algorithm 

towards such contracts.  When p = Medium and Large, we can see that MOM_%_Error 

decline as s increases.  This is because large discounts overshadow the price decreases 

again favoring contracts with longer duration.  However, when discounts are small, 

contracts of shorter duration are favored with larger price decreases.  While DBCP-EA’s 

second repair function considers contracts with the shortest possible period (period of 

one), there is no search towards contracts of intermediate time periods.  So when d is 

larger it causes DBCP-EA to settle into suboptimal solutions which is shown with a 

larger MOM_%_Error.  A similar phenomenon is observed when N = Large (Figure 4-

22).  In this case however the MOM_%_Error is much larger due to the greater 

complexity of the search space when N = Large. 
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Figure 4-20: Percent Error versus Temporal Discount (s) for N = Small and Three Values 
of Price Decrease Rate (p) 

 
Figure 4-21: Percent Error versus Temporal Discount (s) for N = Medium and Three 
Values of Price Decrease Rate (p) 
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Figure 4-22: Percent Error versus Temporal Discount (s) for N = Large and Three Values 
of Price Decrease Rate (p) 

 

Figures 4-23 through 4-25 show MOM_%_Error versus s and three values of p 

for N = Small, Medium, and Large, respectively.  When N = Small (Figure 4-23), the 

MOM_%_Error is very small and DBCP-EA finds the optimal or close to optimal 

solutions for all combinations of s and d.  When N = Medium (Figure 4-24) or Large 

(Figure 4-25), we can see that as s increases the MOM_%_Error.  When d = Large we 

see that MOM_%_Error is the largest when s = Small because it is typically prudent to 

wait to purchase bandwidth as late as possible in order to take advantage of reduced 

costs.  However, DBCP-EA’s repair function biases solutions towards long term 

contracts and when d = Large, these long term contracts become even more expensive as 

more bandwidth is bought for long term contracts due to large increases in demand.  
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Figure 4-23: Percent Error versus Temporal Discount (s) for N = Small and Three Values 
for Demand Increase Rate (d) 

 
Figure 4-24: Percent Error versus Temporal Discount (s) for N = Medium with respect to 
varying Demand Increase Rate (d) 
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Figure 4-25: Percent Error versus Temporal Discount (s) for N = Large and Three Values 
for Demand Increase Rate (d) 

 

Figures 4-26 through 4-28 show MOM_%_Error versus d and three values of p 

for N = Small, Medium, and Large, respectively.  When N = Small (Figure 4-26), the 

MOM_%_Error is very small or close to zero.  When N = Medium (Figure 4-27) or 

Large (Figure 4-28) we see similar behavior except when N = Large the MOM_%_Error 

is much larger to due to the increased complexity in the search space.  As p increases 

from Small to Large, MOM_%_Error also increases.  This is because as p increases, long 

term contracts become more expensive and DBCP-EA which is biased towards long term 

contracts due to its repair functions find more expensive solutions.  It also clear that this 

effect is magnified when d = Large as the long term contract have a larger quantities 

making them much more expensive. 
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Figure 4-26: Percent Error versus Demand Increase Rate (d) for N = Small and Three 
Values for Price Decrease Rate (p) 

 
Figure 4-27: Percent Error versus Demand Increase Rate (d) for N = Medium and Three 
Values for Price Decrease Rate (p) 
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Figure 4-28: Percent Error versus Demand Increase Rate (d) for N = Large and Three 
Values for Price Decrease Rate (p) 
 

4.5 Final Comments 

The DBCP-EA algorithm is able to find optimal or close to optimal solutions 

(>99% of optimal) for a majority of the problems (68 out of 81).  Out of the 13 of the 81 

problems that DBCP-EA had substandard solutions only 5 out of 13 had a solution 

quality less than 98% of the optimal. 

Solution quality for DBCP-EA is affected by planning horizon.  The DBCP-EA 

performs very well for short planning horizons.  The solution quality is progressively 

poorer for longer planning horizons.  This is due to the fact that the search space explodes 

as N increases.  For example, the number of possible contracts for an N = Small periods is 

21, for N = Medium the number of possible contracts is 78, and for N = Large the number 

of possible contracts is 171 (see Table 2-2).  This translates into countless possible 
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combinations of contracts that can be purchased to satisfy a problem.  The assertion that 

the search space for larger N problems is very large is confirmed when the number of 

iterations performed by CPLEX are examined.  In fact, CPLEX was unable to find an 

optimal integer solution for N = Very Large (i.e., 24 period) problems in a reasonable 

amount of time.  

DBCP-EA is also affected by the values of s , p and d.  This is due to the nature of 

the repair functions used.  The repair function, though not intentionally designed to do so, 

exhibits some influence on the quality of solutions and the diversity of the chromosomes.  

There are two repair algorithms within the repair functions; however these repair 

algorithms are biased.  The first repair algorithm identifies the periods with deficit 

bandwidth.  It then identifies the most common contract, and then the deficit amount is 

added into that contract.  Feasibility is rechecked.  If the chromosome still has periods 

with deficit bandwidth amounts the procedure is repeated.  The procedure repeats until 

feasibility is achieved.  The second repair algorithm identifies the periods with bandwidth 

deficits, and then adds the deficit amount into the first contract that could be purchased in 

that period (i.e., a one month contract beginning in the deficit period).  This is a greedy 

procedure.   

When s increases from Small to Large, solutions with contracts with longer 

duration will have lower cost, when p increases from Small to Large, solutions with 

contracts with shorter duration will have lower costs.  When these parameters oppose 

each other it is difficult for the DBCP-EA to identify an optimal solution based on the 

influence exhibited by the two repair algorithms within the repair function.  It may be that 

under this scenario mid-range duration contract purchases would be optimal.  This is the 
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kind of purchasing strategy we see in many of the optimal MILP solutions.  For the 

longer horizon problems, typically the beginning periods will have contracts that are 

active for only a few periods.  As time moves on, longer duration contracts are purchased.  

This kind of behavior is not encouraged by the two repair algorithms within the repair 

function.  Future research could examine the inclusion of different repair algorithms 

within the repair function.    



   

    

CHAPTER 5 THE STOCHASTIC BANDWIDTH CONTRACT PROBLEM 
EVOLUTIONARY ALGORITHM (SBCP-EA) 

 
 

A major source of risk for organizations is the risk of bandwidth price and 

demand fluctuations.  The BCP-EA presented in Chapter 4 assumes a deterministic 

demand increase rate and price decrease rate.  The stochastic bandwidth contract problem 

(SBCP) is a modification of the DBCP-EA which employees a simulation model with the 

evolutionary algorithm that incorporates stochastic demand and price for bandwidth 

purchases.  Previous research has incorporated simulations within EAs to solve problems 

within stochastic environments (Azadivar, and Wang, 2000; Paris, and Pierreval, 2001; 

Pierreval, and Tautou, 1997).  The simulation is used to generate problem instances 

drawn from uniform demand and price probability distributions.  A group of problem 

instances are used to evolve and evaluate solutions during the run of the SBCP-EA.  

Another group of problem instances are used to re-evaluate these same solutions.  The 

objective is to identify solutions that perform well under a wide range of problem 

instances; such solutions are said to be robust. 

5.1 The DBCP-EA versus the SBCP-EA 

The DBCP-EA, discussed in Chapter 4, was modified in two ways for the SBCP-

EA.  The first modification to the DBCP-EA was to the termination condition.  The 

SBCP-EA termination condition has been simplified from that used in the DBCP-EA, 

which had more than one termination criterion.  For the SBCP-EA the maximum number
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of generations was set to 500.  This value was selected based on the results of preliminary 

tests.  The purpose of restricting the number of generations is to limit the computational 

time of the SBCP-EA while still maintaining good results.  

The second modification to the DBCP-EA was to the representation of the price 

and demand parameters.  In the SBCP-EA the rate of change in price and demand are 

probabilistic.  Therefore the stochastic parameters are the probabilities of a change in 

price (Δp) and a change in demand (Δd).  Both Δp and Δd have three settings: Large, 

Medium, and Small.  The uniform distribution where the probability of a Large change is 

drawn randomly from a uniform probability distribution ranging from 0.05 to 0.15.  The 

Medium probability distribution range is from 0.07 to 0.13, and the Small probability 

distribution range is from 0.09 to 0.11.  All three probability distribution ranges have an 

expected value of 0.1, which allows the effects of the different spreads of the range of 

values to be compared.  Since all three ranges have the same expected value we are on 

average using the deterministic problem where p = 0.1 and d = 0.1 with a stochastic 

component added.   

The two remaining parameters are temporal discount (s) and planning horizon 

(N).  Table 5-1 show the four parameters and the three measures for each which are 

designated as Small, Medium, and Large.  These designations are used throughout the 

remainder of this chapter.  The Pop_Size remains constant at 40 chromosomes throughout 

the run of the SBCP-EA. 
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Table 5-1: Size Designations for the Three Values for each of the Four Parameters: N, s, 
Δd, and Δp 

Parameters Small Medium Large 
N 6 12 18
s 1 2 3
Δp 0.09-0.11 0.07-0.13 0.05-0.15
Δd 0.09-0.11 0.07-0.13 0.05-0.15

 

5.2 The Three Parts of the SBCP-EA 

Unlike the DBCP-EA, the SBCP-EA has three parts: (1) the training phase, (2) 

the testing phase to re-evaluate solutions, and (3) testing for robustness.  Within the 

following sections variable labels are used in an effort to simplify the discussion.  

Variable labels are italicized, and after each label a brief description is given. 

5.2.1 The SBCP-EA Training Phase 

The training phase of the SBCP-EA is the only time that the stochastic EA (SEA) 

is run.  During the run of the SEA solutions are evolved and evaluated based on a 

randomly generated set of price and demand instances for each problem. 

IN: The number of price-demand instances used to evaluate the fitness value of a 

solution.  IN values of 100 and 500 were used.  IN of 100 indicates that 

there are 100 instances of price and 100 instances of demand for each 

period within the planning horizon for a problem.  A single instance 

contains price and demand entries for each period in a problem’s planning 

horizon. 

Price-Demand_Array: An array of length N and width of (2 * IN) (IN price and 

IN demand instances).  The total number of price entries recorded within a 

Price-Demand_Array would also be (N * IN), and the total number of 

demand entries would be (N * IN).  There are two different Price-
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Demand_Arrays: Price-Demand_Array_1 and Price-Demand_Array_2, 

both have the same IN.  For each problem, Price-Demand_Array_1 is used 

in the training phase, and Price-Demand_Array_2 is in the testing phase. 

Training_Chromosomes: A two dimensional array populated at the end of the 

training phase with the 20 best chromosomes found during the training 

phase for each problem. 

Training_fv: A one dimensional array of length 81 which contains the average fv 

of the 20 chromosomes in the Training_Chromosomes array calculated for 

each problem. 

5.2.1.1 The Stochastic Parameters: Price and Demand 

For the sake of brevity only the price parameter will be discussed.  The demand 

variables can be identified by replacing ‘Demand’ wherever ‘Price’ is found in the 

following discussion. 

Prob_Price_Change: The cumulative probability from period to period that price 

will decrease.   

Price_Delta: A randomly generated number indicating a price decrease rate from 

one period to the next.  This number is recorded within one of the Price-

Demand_Arrays. 

The two stochastic parameters price (Δp) and demand (Δd) are procedurally 

virtually identically.  The only difference between them is the direction of change.  

Price_Delta is the percentage reduction in price, while Demand_Delta is the percentage 

increase in price. 
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5.2.1.2 The Creation of the Price-Demand_Arrays 

The two Price-Demand_Arrays are created before the SEA is run, and are created 

with respect to a problem’s price and demand distribution ranges, as well as the length of 

the planning horizon as shown in Table 5-2.  For example, if N = Small and Δp = Large, 

then the price instance part of a price-demand instance in Price-Demand_Array_1 for 

SEA1 would contain a price entry for all 6 periods generated based on a uniform 

distribution within the range of 0.05 to 0.15 if a change in price is selected, else a “1” is 

recorded if a change in price is not selected.  For either of the two Price-Demand_Arrays 

the total number of entries is equal to the number of Price_Delta values plus the number 

of “1”s.  Therefore, for SEA1 when IN = 100 there will be (N * 100) price entries, 

whereas for SEA2 when IN = 500 there will be (N * 500) price entries. 
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Table 5-2: Parameter Settings for each of the 81 Stochastic Problems 
# N s Δp Δd # N s Δp Δd # N s Δp Δd 
1 Sm Sm Sm Sm 28 Md Sm Sm Sm 55 Lg Sm Sm Sm 
2 Sm Sm Sm Md 29 Md Sm Sm Md 56 Lg Sm Sm Md 
3 Sm Sm Sm Lg 30 Md Sm Sm Lg 57 Lg Sm Sm Lg 
4 Sm Sm Md Sm 31 Md Sm Md Sm 58 Lg Sm Md Sm 
5 Sm Sm Md Md 32 Md Sm Md Md 59 Lg Sm Md Md 
6 Sm Sm Md Lg 33 Md Sm Md Lg 60 Lg Sm Md Lg 
7 Sm Sm Lg Sm 34 Md Sm Lg Sm 61 Lg Sm Lg Sm 
8 Sm Sm Lg Md 35 Md Sm Lg Md 62 Lg Sm Lg Md 
9 Sm Sm Lg Lg 36 Md Sm Lg Lg 63 Lg Sm Lg Lg 

10 Sm Md Sm Sm 37 Md Md Sm Sm 64 Lg Md Sm Sm 
11 Sm Md Sm Md 38 Md Md Sm Md 65 Lg Md Sm Md 
12 Sm Md Sm Lg 39 Md Md Sm Lg 66 Lg Md Sm Lg 
13 Sm Md Md Sm 40 Md Md Md Sm 67 Lg Md Md Sm 
14 Sm Md Md Md 41 Md Md Md Md 68 Lg Md Md Md 
15 Sm Md Md Lg 42 Md Md Md Lg 69 Lg Md Md Lg 
16 Sm Md Lg Sm 43 Md Md Lg Sm 70 Lg Md Lg Sm 
17 Sm Md Lg Md 44 Md Md Lg Md 71 Lg Md Lg Md 
18 Sm Md Lg Lg 45 Md Md Lg Lg 72 Lg Md Lg Lg 
19 Sm Lg Sm Sm 46 Md Lg Sm Sm 73 Lg Lg Sm Sm 
20 Sm Lg Sm Md 47 Md Lg Sm Md 74 Lg Lg Sm Md 
21 Sm Lg Sm Lg 48 Md Lg Sm Lg 75 Lg Lg Sm Lg 
22 Sm Lg Md Sm 49 Md Lg Md Sm 76 Lg Lg Md Sm 
23 Sm Lg Md Md 50 Md Lg Md Md 77 Lg Lg Md Md 
24 Sm Lg Md Lg 51 Md Lg Md Lg 78 Lg Lg Md Lg 
25 Sm Lg Lg Sm 52 Md Lg Lg Sm 79 Lg Lg Lg Sm 
26 Sm Lg Lg Md 53 Md Lg Lg Md 80 Lg Lg Lg Md 
27 Sm Lg Lg Lg 54 Md Lg Lg Lg 81 Lg Lg Lg Lg 
 

5.2.1.3 Generation of Price Entries into the Price-Demand_Arrays 

There are two steps to generating the price entries for each period within each 

instance.  The procedure is as follows: (1) Determine if a price decrease should occur in 

the next period.  (2a) If yes, how much should price decrease.  (2b) Else, the price for the 

next period will remain the same as the previous. 
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The first step requires a randomly generated number (Rand) between 0 and 1 to 

determine if a change should occur.  Rand is compared to Prob_Price_Change, a cutoff 

variable initially set to 0.50.  The second step is to record a price entry within a Price-

Demand_Array.  If Rand ≤ Prob_Price_Change, then a Price_Delta value will be 

randomly generated based on a uniform distribution from the Δp distribution range 

specified for that problem.  These ranges are shown in Table 5.1.  If Rand > 

Prob_Price_Change then the price remains unchanged from the previous period, a price 

entry of “1” is recorded for that period within that instance, and Prob_Price_Change is 

increased by 0.05., thereby providing a slightly higher probability that a price change will 

occur in the next period.  Table 5-3 shows an example of how one price instance might be 

calculated for a problem with 6 periods (i.e., N = Small), where  Δp = Large. 

Table 5-3: Example for Calculating One Instance of Price Data for Problem 9: N = Small 
where Δp = Large 
*Period 1 always contains “1” which means that the initial price is the same for all 
instances 
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1 1*  N/A N/A N/A N/A 
2 1  0.83 0.50 False (No Change) N/A 
3 0.092  0.25 0.55 True 0.092 
4 0.112  0.39 0.55 True 0.112 
5 0.136  0.11 0.55 True 0.136 
6 0.085  0.52 0.55 True 0.085 
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When populating a Price-Demand_Array the cells in the first row of all instances 

contain a price entry of 1, or 100%.  Therefore, the first period for all instances has a 

price change value of ‘1,’ indicating that the same initial price is used for all instances, 

for all problems.  The cell in the first column (i.e., the first instance) and the second row 

represents the price entry for the second period in the first instance.  This cell will contain 

a Price_Delta value drawn from the distribution range for Δp if a change has been 

selected, else a price entry of “1” is recorded.  For each period with in each instance a 

price entry is recorded.  This price entry is be multiplied by the actual price value used 

within the SEA to make purchasing decisions for a given period, and gives the actual 

price value to be used to make purchasing decisions for the next period.  Table 5-4 shows 

an example of 8 price-demand instances that could be found in either of the Price-

Demand_Arrays for a problem 9 which has 6 periods. 

Table 5-4: Example of Price and Demand Entries for Problem 9: N = Small, s = Small, 
Δp = Large, and Δd = Large 
 Price-Demand Instances 
N 1 2 3 4 5 6 7 8 
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 0.069 1 0.061 1 1 1.091 0.125 1 0.120 1 0.120 1 1 1 
3 0.012 1.147 0.076 1.086 0.1181.094 1 1.131 0.1181.091 0.1151.050 0.127 1 0.0681.144
4 0.148 1 0.075 1 1 1.065 1 1.119 0.0661.055 0.108 1 0.056 1.083 0.0621.113
5 0.072 1.131 0.125 1 0.060 1 0.0621.062 0.1241.088 0.0711.070 0.141 1.122 0.1341.122
6 0.135 1.075 0.116 1.101 0.104 1 0.1431.144 0.065 1 0.143 1 0.061 1.068 0.0751.107

 

5.2.1.4 Procedure for Calculating the Training_fv  

During the run of an SEA a population of chromosomes evolves.  During this 

evolutionary process the chromosomes are continuously evaluated using Price-
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Demand_Array_1 with IN price-demand instances to obtain the chromosome’s fv.  Each 

chromosome’s fv is calculated IN times, once for every instance within Price-

Demand_Array_1, thereby producing IN fitness values.  The average of the IN fitness 

values is the fv assigned to a chromosome.  For each problem, 20 best chromosomes are 

recorded in the Training_Chromosomes array, and the average fv for the 20 best 

chromosomes is recorded in the Training_fv array.  The Training_fv array is used in part 

three of the SBCP-EA, the test for robustness. 

5.2.2 The SBCP-EA Testing Phase 

The testing phase of the SBCP-EA takes the 20 best chromosomes identified in 

the training phase for each problem and re-evaluates them using another set of price-

demand instances located in Price-Demand_Array_2.  As with the training phase, the 

testing phase introduces a number of variable labels to simplify the discussion.  Variable 

labels are italicized, and after each label a brief description is given.   

NTR: The number of training runs, which is the number of times an SEA’s 

solutions are re-evaluated, each time using a newly populated Price-

Demand_Array_2.  The number of training runs is 5 and 1 for SEA1 and 

SEA2, respectively. 

Testing_fv: A two dimensional array of a length equal to NTR and width equal to 

81, which contains the average fitness value of the 20 chromosomes for 

each problem recorded in the Training_Chromosomes array after the 

chromosomes have been re-evaluated using Price-Demand_Array_2.  

The testing phase begins by creating the Price-Demand_Array_2.  The 20 best 

chromosomes for each problem found during the training phase are re-evaluated IN 
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times, once for each of the IN price-demand instances recorded in Price-

Demand_Array_2, and then the average fitness values for each problem is recorded in the 

Testing_fv array.  SEA1 and SEA2 were both run once in the training phase.  However, 

while SEA2 was only tested once (NTR = 1), SEA1 was tested 5 times (NTR = 5).  Once 

each of the 20 best chromosomes is re-evaluated using Price-Demand_Array_2 each of 

the 20 chromosomes will have a new fv.  The average of the 20 fv is the Testing_fv for 

each problem.  The Testing_fv is used in part three of the SBCP-EA, the test for 

robustness. 

5.2.3 The SBCP-EA Test for Robustness Phase 

The test for robustness allows for a comparison between the average fitness value 

using the price-demand instances recorded in Price-Demand_Array_1 and those recorded 

in Price-Demand_Array_2.  Those problems whose solution’s fitness values were not 

very different after being evaluated using both Price-Demand_Arrays are viewed as 

being robust across a variety of price-demand possibilities within a given range.  More 

robust solutions are more desirable than solutions that vary greatly depending on price 

and demand fluctuations.  As in the previous two sections variable labels have been 

included in this section to simplify the discussion.  Variable labels are italicized, and after 

each label a brief description is given. 

%_Error: The mean percent error for a problem calculated by subtracting the 

Testing_fv from the Training_fv , dividing the result by the Training_fv, 

and then multiplying by 100, 

.100
_

__ %_Error
fvTraining

fvTestingfvTraining i.e., =×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −  
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In Chapter 4 the DBCP-EA solutions were compared to the optimal solutions 

identified by the MILP, however within a stochastic environment there is no optimal 

solutions.  In this chapter robustness is a surrogate quality measure used to evaluate each 

problem’s solution.  The idea is that in a stochastic environment it is best to have a 

solution(s) for a given problem that will perform well over varying values of the 

stochastic parameters.  Therefore, when comparing the average fv produced in the 

training phase with the average fv produced in the testing phase a measure of robustness 

is found for each problem.  Ideally, a problem’s solutions should exhibit little variation, 

or error.  Such solutions would be considered robust.  Conversely, if the error term is 

large the problem’s solutions would not be considered robust.  There is no predetermined 

‘good’ measure of robustness, but this procedure allows us to perform a comparison 

between problem solutions for different stochastic price and demand values.  A test for 

robustness was run once for the 81 SEA2 problem solutions, whereas the 81 SEA1 

problem solutions were tested for robustness five times, each time with a newly 

populated Price-Demand_Array_2. 

For all problems, the Training_fv will always be less than Testing_fv since 

Price_Demand_Array_1 was used to create the 20 best solutions for each problem.  

Therefore, all measures of error will be negative.  For SEA2 the measure of error is 

%_Error, the measures of error for SEA1 are %_Error and MOM_%_Error.   

MOM_%_Error: An error term variable that holds the average %_Error for the 5 

SEA1 testing runs for each of the 81 problems. 

Figure 5-1 shows a flowchart for the SBCP-EA, followed by the SBCP-EA 

pseudo code in Section 5.3.  The source code for SBCP-EA is given in Appendix B. 
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Figure 5-1: SBCP-EA Flowchart 

5.3 SBCP-EA Pseudo Code 

Within the pseudo-code presented below, an asterisk (i.e., *) is used to marks 

those steps within the training phase which are unique to SBCP-EA.  The testing phase 
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Part 3: Test for Robustness Phase 
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Create Price-Demand_Array_2 based on problem parameters 

Retrieve the 20 best chromosomes for each problem 

Use new price-demand array to calculate the average fv for each chromosome 

Calculate the average testing fv across all 20 chromosomes 
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and test for robustness phase in the SBCP-EA have no corresponding parts in the DBCP-

EA.   

Part 1: Training Phase Pseudo Code 

1. Select N. 

2. Set Pop_Size = 40 chromosomes. 

3. Set operator parameters: One-Point Crossover Operator Rate, Uniform Crossover 
Operator Rate, and Mutation Operator Rate.  Note: (0 ≤ Operator Rate ≤ 1). 

4. *Set the maximum number of generations to run = 500 generations.  (See Section 
5.1.) 

5. Set loop to run 3 times, once for each planning horizon size 

a. N = Small 
b. N = Medium 
c. N = Large 

6. *Set Training_fv = 0, Testing_fv = 0, and NTR_Count = 0.     

7. Create initial population of chromosomes and place them in the 
Chromosome_Array.  Calculate the fv for each chromosome and place the value 
in index 0 of each chromosome vector. 

8. Set loop to run 3 times, once for each temporal discount scheme 

a. s = 1 for Small temporal discount 
b. s = 2 for Medium temporal discount 
c. s = 3 for Large temporal discount 

9. *Create Price-Demand_Array_1 which contains 100 price and demand 
probabilities for each period.   

10. Set loop to run 9 times, once for all possible price and demand combination (i.e., 
3 x 3 = 9). 

a. Price decrease probability distribution ranges:  
i. Δp = Small range: 0.09-0.11 

ii. Δp = Medium range: 0.07-0.13 
iii. Δp = Large range: 0.05-0.15 

b. Demand increase probability distribution ranges:  
i. Δd = Small range: 0.09-0.11 

ii. Δd = Medium range: 0.07-0.13 
iii. Δd = Large range: 0.05-0.15 

11. Copy generation’s chromosomes from the Chromosome_Array into the 
Pool_Array. 

12. Initiate the one-point crossover operator.  Append two offspring to the end of the 
Pool_Array each time the one-point crossover operator is implemented. 
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13. Initiate the uniform crossover operator.  Append two offspring to the end of the 
Pool_Array each time the uniform crossover operator is implemented. 

14. Initiate the mutation operator.  Append one offspring to the end of the Pool_Array 
each time the mutation operator is implemented. 

15. Check all chromosomes in the Pool_Array for feasibility.  If infeasible, then 
correct using the repair function. 

16. *Use the evaluation function to assign a fitness value (i.e., fv) to each 
chromosome in the Pool_Array. 

Modification of the DBCP-EA Evaluation Function for the SBCP-EA 

a. Set Counter = 0. 

b. Counter = Counter + 1. 

c. For chromosome number Counter do the following: 

i. Evaluate the fv 100 times using the 100 price and demand 
combination data in Price-Demand_Array_1. 

ii. Calculate the average fv for the 100 fv created in previous step. 

iii. Record the average fv calculated in previous step into index 0 of 
the chromosome. 

iv. If Counter < Pop_Size, then go to step 16 b.  Else, done! 

17. Select the next generation’s chromosomes from the Pool_Array and copy them 
into the Chromosome_Arrray.   

18. *If the maximum number of generations has been reached then terminate run and 
go to step 19.  Else, go to step 11. 

19. *Based on average fv recorded in index 0 of each chromosome select best 20 
chromosomes, these chromosomes are referred to as the Training_Chromosomes. 

a. Set Counter = 0. 

b. Counter = Counter + 1. 
c. For chromosome number Counter within the Training_Chromosomes do 

the following: 

i. Training_fv = Training_fv + 
Training_Chromosomes[Counter][0]*. 

*Within the Training_Chromosome array we select each of 
the 20 chromosomes one at a time and retrieve its fitness 
value which is recorded in index 0. 

ii. If Counter < 20, then go back to step 19 b.  Else, 

20
__ fvTrainingfvTraining = .  Go to step 20. 

20. *Record the Training_Chromosomes into Data.txt data file. 
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21. If the problem has not run 9 times, then go to step 10.  Else, go to step 22. 

22. If all three values for temporal discount schemes have not been run, then go to 
step 8.  Else, go to step 23. 

23. If all three values for temporal discount schemes have not been run, then go to 
step 5.  Else, go to step 24. 

Part 2: Testing (Simulation) Phase Pseudo Code 

24. Set Prob_Number = 1. 

25. Create a new Price-Demand_Array_2 which contains 100 price and demand 
probabilities for each period.  Set Holder = 0. 

26. Read the Training_Chromosome data for the problem indicated by Prob_Number 
within the Data.txt data file. 

27. Copy the Training_Chromosomes data into the Testing_Chromosomes for 
Problem_Number and reevaluate the 20 chromosomes using the new Price-
Demand_Array_2 created in step 22 to calculate a new fv for the chromosome. 

Modification of the DBCP-EA Evaluation Function for the SBCP-EA 

a. Set Counter = 0. 

b. Counter = Counter + 1. 

c. For chromosome number Counter do the following: 

i. Evaluate the fv 100 times using the 100 price and demand 
combination data recorded in the Price-Demand_Array_2. 

ii. Calculate the average fv based on the 100 fv created in previous 
step. 

iii. Record the average fv calculated in the previous step into index 0 
of the chromosome. 

iv. Testing_fv = Testing_fv + fv. 

v. If Counter < 20, then go back to step 27 b.  Else, 

20
__ fvTestingfvTesting = .  Go to step 26. 

Part 3: Test for Robustness Phase Pseudo Code 

28. ( ) .100
_

__
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

fvTraining
fvTestingfvTraining%_Error   

29. NTR_Count = NTR_Count + 1. 

30. If SEA = SEA1 and NTR_Count < 5, then Holder = Holder + %_Error and go 
to step 25.  Else, if SEA = SEA2, then Holder = %_Error. 

31. Record Holder value into index 0 for Prob_Number in the Testing_Chromosomes 
array.  
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32. If Prob_Number < 81, then Prob_Number = Prob_Number + 1 and go back to 
step 25.  Else, Done! 

33. Set Prob_Number = 1. 

34. If SEA = SEA1, then  

a. Set Holder equal to the value recorded in index 0 for Prob_Number in the 
Testing_Chromosomes array.   

b. Holder = Holder/5 (This gives MOM_%_Error). 

c. Record Holder value into index 0 for Prob_Number in the 
Testing_Chromosomes array.   

d. Record Holder value (i.e., MOM_%_Error) for Prob_Number into Table 
5-6. 

e. If Prob_Number < 81, then Prob_Number = Prob_Number + 1 and go 
back to step 34 a.  Else, Prob_Number = 1. 

35. If SEA = SEA2, then  

a. Record Holder value (i.e., %_Error) for Prob_Number into Table 5-6. 

b. If Prob_Number < 81, then Prob_Number = Prob_Number + 1 and go 
back to step 35 a.  Else, Prob_Number = 1. 

36. Done! 

5.4 SBCP-EA Results 

SEA1 problem solutions were generated using an IN = 100.  To test whether a 

larger sample size would result in more robust solutions, SEA2 was run using an IN = 

500.  Since the SEA1 uses a smaller sample size, the computational time was faster than 

the computational time for SEA2.  For that reason SEA1 was tested 5 times, while SEA2 

was tested only once.  The MOM_%_Error for SEA1 is compared to the %_Error for 

SEA2.  Table 5-5 shows that, in the aggregate, there is very little difference in robustness 

between SEA1 and SEA2 problem solutions.   

A detailed breakdown of the aggregate data in Table 5-5 is shown in Table 5-6.  

This table shows that 49.4% (40/81) of the time SEA1 gives a smaller error and 50.6% 

(41/81) of the time SEA2 gives a smaller error.  SEA1 gave a smaller error 55.6% (15/27) 

of the time for N = Small problems, 40.7% (11/27) of the time for N = Medium problems, 
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and 51.9% (14/27) of the time for N = Large problems.  Therefore, with respect to 

planning horizon size (N) there doesn’t seem to be a great improvement in solution 

robustness when SEA2 is used.   

With respect to the other three parameters, SEA1 gave smaller errors 59.3% 

(16/27), 55.6% (15/27), and 33.3% (9/27) of the time for s = Small, Medium, and Large 

problems, respectively.  Therefore, SEA2 does seem to give slightly more robust 

solutions than SEA1 when temporal discounts are large.  With respect to change in price 

(Δp), SEA1 gave smaller errors 44.4% (12/27), 59.3% (16/27), and 44.4% (12/27) of the 

time for Δp = Small, Medium, and Large problems, respectively.  With respect to changes 

in demand (Δd), SEA1 gave smaller errors 48.1% (13/27), 51.9% (14/27), and 48.1% 

(13/27) of the time for Δd = Small, Medium, and Large problems, respectively.  For Δp 

and Δd there is not discernable improvement in problem solution robustness when SEA2 

is run.  The vast majority of the absolute difference between the errors for SEA1 and 

SEA2 are well below 10%.  The majority of the large (around 20%) absolute difference 

between the errors occurs when N = Large.  Overall, there is no apparent advantage 

associated with using SEA2 over SEA1. 
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Table 5-5: Comparison of Single Parameter Percentage Errors 
N MOM_%_Error %_Error Difference 

Small -20.66 -20.38 -0.28
Medium -47.60 -45.88 -1.72
Large -79.90 -79.16 -0.74

s MOM_%_Error %_Error Difference 
Small -47.38 -47.50 0.12
Medium -51.46 -51.38 -0.08
Large -49.32 -46.55 -2.77

Δp MOM_%_Error %_Error Difference 
Small -49.35 -47.84 -1.51
Medium -47.57 -47.66 0.09
Large -51.24 -49.92 -1.32

Δd MOM_%_Error %_Error Difference 
Small -48.02 -47.96 -0.06
Medium -50.38 -47.84 -2.54
Large -49.76 -49.61 -0.15
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Table 5-7 shows that SEA2 has a much longer computational time than SEA1, 

especially as the planning horizon increases.   

Table 5-7: Average Training Computational  Time (minutes) 

N 
SEA1 

(IN = 100) 
SEA2 

(IN = 500) 
Difference 

SEA2-SEA1 
Small (per problems) 1 5 4 
Medium (per problems) 7 17 10 
Large (per problems) 20 85 65 

 

From the data in Tables 5-5, 5-6 and 5-7 it was determined that it was not 

necessary to run the SEA2 more than once.  Since the SEA2 error terms were close to 

those of SEA1, and the average SEA2 computational time is 3.8 times longer on average 

than that for SEA1, there is no advantage to training and testing problem solutions when 

IN is increased from 100 to 500.  Since there is only a slight difference between the SEA1 

and SEA2 problem solutions, only SEA1 results will be discussed in the remainder of this 

section.  Future research, perhaps using a faster algorithm, could examine the impact of 

using an even larger IN (e.g., greater than 1,000) in an effort to improve problem solution 

robustness. 

Table 5-8 shows MOM_%_Error for all 81 problem solutions from SEA1.  

Clearly as N increases from Small to Large, the MOM_%_Error also increases from an 

average of 20.66% for N = Small, to 47.2% for N = Medium, and 79.2% for N = Large.  

This increase in the error is expected since as the planning horizon gets longer the 

number of possible contracts increases very quickly, thereby greatly increasing the search 

space and making solutions more sensitive to fluctuations in price and demand.  For this 

reason, practitioners should not attempt to produce solutions for long period horizons, 

especially in a stochastic environment. 
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Table 5-8: MOM_%_Error for SEA1 
   N 

s 
Probability of 
Δp Range 

Probability of 
Δd Range Small Medium Large 

Small -16.00 -42.84 -69.11
Medium -24.77 -44.67 -74.75Small 
Large -20.62 -49.50 -75.94
Small -19.67 -43.20 -79.09
Medium -18.38 -41.78 -75.03Medium 
Large -15.55 -43.95 -79.76
Small -18.46 -49.47 -78.78
Medium -25.58 -33.15 -91.55

Small 

Large 
Large -16.56 -47.07 -83.90
Small -19.60 -54.95 -79.31
Medium -17.46 -46.54 -89.59Small 
Large -18.31 -61.85 -90.59
Small -19.93 -44.41 -91.26
Medium -18.62 -45.44 -77.53Medium 
Large -22.40 -42.61 -83.21
Small -20.51 -57.43 -77.54
Medium -22.60 -48.55 -100.60

Medium 

Large 
Large -23.52 -49.84 -65.23
Small -24.62 -43.95 -70.48
Medium -24.55 -49.86 -83.70Small 
Large -19.25 -41.15 -78.38
Small -24.49 -46.51 -67.04
Medium -19.46 -45.03 -71.04Medium 
Large -21.00 -43.54 -84.51
Small -18.54 -60.21 -59.13
Medium -21.28 -54.51 -94.29

Large 

Large 
Large -26.03 -53.20 -85.98

 

Given that the effect of N is very large, it is not possible to see any effects from s, 

Δp, or Δd without controlling for the effect of N.  These three parameters, with respect to 

N = Small, Medium, and Large, will be analyzed separately. 

When N = Small, only s has any effect on MOM_%_Error.  Figure 5-2 shows that 

when N = Small and s = Large the MOM_%_Error increases.  This is due to the fact that 

when s = Large the large discounts cause the SEA to select the most common contracts 
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which results in a commitment to longer period contracts.  This strategy is advantageous 

when price is relatively stable.  However when price is decreasing rapidly the cost per 

Mbps afforded from the temporal discounts associated with longer contracts may be 

higher than the cost per Mbps when price is decreased later in the planning horizon.  

Therefore, since s = Large problems encourage the purchase of the most common 

contracts these problems are most sensitive to stochastic fluctuations in price and 

demand.  When all demand is being satisfied by a few common contracts, any stochastic 

fluctuations in demand could result in deficits in each period.  This may force the SEA to 

buy expensive single period contracts, i.e., spot contracts from the market (Cheliotis, G. 

2000).  These single period contracts are also sensitive to stochastic price fluctuations, 

which makes these solutions less robust. 

It was expected that MOM_%_Errors would increase as Δp and Δd increased 

from Small to Large.  However there was no indication that this was true.  The search 

space for N = Small is smaller than for N = Medium, and much smaller than for N = 

Large.  Therefore Δp and Δd do not effect the quality of the solution as expected when N 

= Small. 
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Figure 5-2: Effect of s on MOM_%_Error where N = Small 
 

When N = Medium, s, Δp, and Δd all have an effect on MOM_%_Error.  Figure 

5-3 shows the impact of s on MOM_%_Error when N = Medium.  For N = Medium, 

when s = Small the solutions were much more robust than when s = Medium or Large.  

Solutions for where s = Medium and s = Large are very similar with respect to 

robustness.  Interestingly, this is different from what is shown in Figure 5-2 where N = 

Small.  In that figure s = Large is very different from s = Small and Medium.  This is 

because as the N increases from Small to Medium the search space gets larger, and the 

overall error terms also become larger.  As the search space increases from Small to 

Medium, both s = Medium and Large problem solutions are less robust than s = Small 

problem solutions, whereas s = Large problem solutions have the most variability for N = 

Small problems. 
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Figure 5-3: Effect of s on MOM_%_Error where N = Medium 
 

Figure 5-4 shows the impact of Δp and Δd on MOM_%_Error when N = Medium.  

Across all three parameter settings for Δd the MOM_%_Errors when Δp = Small and 

Medium are very similar.  However, the solutions become noticeably less robust when Δd 

= Small and Δp = Large.  Common contracts produce greater penalty as Δp gets larger.  

However when Δd increases, single period contracts are needed to cover deficits, this 

reduces the penalty produced by large price fluctuations. 
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Figure 5-4: Effect of Δp and Δd on MOM_%_Error where N = Medium 
 

Figure 5-5 shows the impact of s and Δd on MOM_%_Error when N = Large.  

When N = Large, s and Δd have an interaction, and Δp has no effect on MOM_%_Error.  

When Δd = Small and s = Large the MOM_%_Errors are much smaller than for the other 

parameter settings of Δd and s.  This is because when s = Large the solutions have more 

common contracts and with small fluctuations in demand any deficits are also small.  

Therefore the resulting cost from any necessary single period contracts purchased is 

negligible, resulting in more robust problem solutions.   
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Figure 5-5: Effect of s and Δd on MOM_%_Error where N = Large 

5.5 Conclusions 

This chapter developed and tested an algorithm for solving the BCP in a 

stochastic environment.  While it is not possible to compare the result from the SEA to an 

optimal solution, we have defined a measure of robustness for a problem solution.  

Robustness is measured by comparing the solutions from running the SEA on one set of 

price-demand instances (training) and then re-evaluating the problem solutions with 

another set of price-demand instances (testing) drawn from the same population.  A 

robust solution should show little variation between the training and testing fitness 

values.  The error measure which acts as a surrogate for robustness is MOM_%_Error, 

which is the average percentage difference between the training and testing fitness 

values. 

The effect on problem solution robustness was also tested by increasing the 

number of price-demand instances from 100 to 500.  There was no discernable 

improvement in problem solution robustness.   
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The results presented in this chapter show that as the planning horizon gets longer 

problem solution robustness decreases.  This is due to the fact that the search space gets 

very larger quickly as the planning horizon increases.  It was shown that there is some 

effect on the robustness of some problem solutions related to temporal discounts (s), and 

changes in price (Δp) and demand (Δd). 

Future research could explore the impact of other demand distributions on the 

robustness of problem solutions.  A more efficient EA could also aid in exploring the 

impact of wider ranges for price and demand distributions.  Increasing the number of 

price-demand instances to a much larger number (e.g., 1000) might improve the 

robustness of problem solutions as well.  However, with the advent of improved 

computational power or the development of a faster evolutionary algorithm this option 

might also be an avenue for future research. 



 

CHAPTER 6 CONCLUSIONS, COMMENTS, INSIGHTS, AND FUTURE 
RESEARCH 

 
 

In today’s highly competitive environment companies need to be effective and 

efficient.  Virtually all companies use electronic data and require a medium by which to 

transfer that data from one location to another.  In order to accomplish this task 

companies need to purchase bandwidth, a medium for electronic transmission of data, 

provided by a third party.  The cost of a bandwidth contract is dependent on the amount 

of bandwidth purchased (size) and the duration of the contract (length).  In addition, there 

are often temporal discounts where the cost per unit gets considerably smaller as the 

duration of a contract increases.   

Bandwidth purchasing is an area where companies can reduce costs of a required 

service.  Even for small problems sizes, say a planning horizon of 6 months, the search 

space for possible solutions (purchasing strategies) represents a complex combinatorial 

problem.  As the planning horizon length increases the solutions search space increases 

very fast.  This size increase is shown in Table 2-2, where, for example, the number of 

contracts is 21, 78, and 171 for a 6 month, 12 month, and 18 month planning horizon, 

respectively. 

6.1 Summary 

This dissertation solves a generalized version of the problem presented by Khouja and 

Kumar (2004), developing and implementing an EA (a population based heuristic search 
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algorithm) as a means of solving the BCP.  The BCP-EA allows for changes in price and 

demand over time. 

Chapter 1 defines bandwidth, the concept of bandwidth as a commodity, and how 

bandwidth contract costs are assessed with respect to the purchased amount, and contract 

duration.  Chapter 2 discusses the assumptions, constraints, and the derivation of the 

mathematical model that represents the BCP.  Chapter 2 also includes a discussion of the 

data structure (i.e., the computerized representation of a problem solution) used to 

represent the BCP within the EA.  This data structure was used for both the DEA and 

SEA and is shown in Table 2-1.  The remainder of the chapter discusses the necessary 

elements that make up an EA. 

Chapter 3 began with a detailed description of the important characteristics of the 

BCP-EA.  These important characteristics include:  (1) The genetic representation of a 

problem which translates into the computerized representation of a chromosome, or 

solution.  (2) The method used to create the initial population of solutions.  The quality of 

the initial population can influence the quality of the final solutions, as well as the time 

required to find the final solutions.  Knowledge about the problem is usually considered 

when devising the procedure for creating the initial population.  (3) The genetic 

operators, which are procedures that perturb existing solutions in order to create new 

solutions, or offspring.  (4) The evaluation function, which provides a means of assessing 

the relative “goodness” of a given solution.  (5) The selection method specifies how 

solutions will be selected either for the purpose of propagation (i.e., creating new 

solutions), or as a means of transferring selected solutions from one generation to the 

next.  (6) The generational policy, which specifies how to select a subset of solutions 
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from a larger group of available solutions, where the subset group will be used as the 

population for the next iteration.  (7) The terminating conditions, which specifies the 

conditions that, when met, will cause the EA to stop.  (8) The EA parameters refers to the 

setting used within the EA such as the population size, the maximum number of 

generations, the probability of mutation or crossover, etc.  Parameter settings can be static 

or dynamic.  (9) Constraint handling techniques provide a procedure which transforming 

infeasible solutions into feasible solutions.   

Chapter 4 outlines the specifications for the DBCP-EA.  Figure 4-1, which shows 

the DBCP-EA flowchart, and the DBCP-EA pseudo code give a detailed description of 

the processes within the EA, as well as the order in which these processes are completed.  

Each of the unique elements of the DBCP-EA are discussed in detail.  The experimental 

design for testing the DBCP-EA is illustrated in Figure 4-9.  The MILP mathematical 

formulation is shown in Figure 4-10 and an example of an MILP output is shown in 

Table 4-4.  The DBCP-EA and the MILP were run for the 81 problems identified in the 

experimental design.  The best solution created by the DBCP-EA for each problem is 

then compared to the optimal solution found by the MILP.  Table 4-5 shows the results of 

three example problems.  For the first two example problems, with planning horizons of 6 

months and 12 months, respectively, DBCP-EA performed very well when compared to 

the MILP.  For the example problem with an 18 months horizon the DBCP-EA did not 

perform as well, with an error slightly less than 0.25%.   

The computational time differential between the DBCP-EA and the MILP for the 

6 month planning horizon was negligible, for the 12 month planning horizon the DBCP-

EA took longer to find a solution than the MILP, yet the time is only slightly more than 1 
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minute.  At 18 month the DBCP-EA is in many instances competitive with the MILP 

with respect to computational time, and sometimes better, as shown in Table 4-5.  This 

fact illuminates one advantage of an EA over the MILP.  That is, the DBCP-EA performs 

reasonably well for most problems, and it is expected that the DBCP-EA would continue 

to perform well with respect to solution quality and computational time for planning 

horizons longer than those tested.  In fact, as the planning horizon gets longer the DBCP-

EA may provide good solutions much faster than the MILP. 

For 68 out of the 81 problems (84%) the error was less than 1%.  The other 

thirteen problems had an average percentage error greater than 1%.  Table 4-12 shows the 

DBCP-EA errors for the 5 runs for each of the thirteen problems.  For many of the 

thirteen problems, there were no assignable common reasons for the occurrence of large 

percent errors (i.e., greater than 1%).  However, when comparing the DBCP-EA results 

for the thirteen problems with the optimal solutions identified by the MILP, it was clear 

that the propensity of the repair function to assign deficit bandwidth amounts to the most 

common contracts (i.e., the longest duration contract available for purchase in a period) 

to transform infeasible solutions into feasible solutions causes suboptimal solutions. 

In an effort to expand our knowledge of the effect of the parameters (N, s, p, and 

d) on the quality of the DBCP-EA solutions, results were examined in the aggregate.  The 

planning horizon parameter is the greatest determinant of solution quality.  As the 

planning horizon increases the solution quality deteriorates.  This is undoubtedly due to 

the fact that as the planning horizon increases the solutions search space becomes 

dramatically larger.  Since the DBCP-EA is essentially a directed random search of a 
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solution’s search space, as the search space becomes increasingly larger, it becomes more 

difficult for the DBCP-EA to stumble upon an optimal solution.  

It might be intuitive to think that the best strategy is to purchase the longest 

available contracts during any period, thereby acquiring the lowest per unit price, which 

will affect as many subsequent periods as possible.  In some situations this is a viable 

option, however this dissertation has shown that in many cases in order to arrive at the 

lowest cost purchasing strategy purchasing the longest available contract will not provide 

an optimal solution.  This is especially noticeable when price is declining rapidly over 

time.  In this case, the cost savings associated with temporal discounts (i.e., a reduced per 

unit cost when longer duration contracts are purchased) may turn out to be more costly 

than if the necessary bandwidth had been purchased as late as possible in the planning 

horizon when the price of bandwidth has been greatly reduced.  The added cost 

associated with bandwidth surpluses (i.e., unnecessary, wasted bandwidth capacity) and 

bandwidth deficits (i.e., shortages in required bandwidth) also need to be factored into the 

purchasing decision.   

While surpluses incur added cost, in some cases a surplus in early periods can be 

part of the lowest purchasing strategy.  This is because by purchasing more bandwidth 

than is required in a given  period(s) the cost per unit due to temporal discounts could be 

less than the per unit cost applied to smaller bandwidth size contracts purchased later in 

the planning horizon, even when price is decreasing with time.  An example of this 

phenomenon is illustrated in Table 4-28 where the optimal solution contains a surplus in 

the first period.  On the other hand, deficits are strictly not allowed.  When a deficit 

arises, the repair function either adds the amount to the most common contract (possibly 
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creating surpluses in other time periods) or the least common contract (the shortest 

commitment, yet most expensive option).  The cheaper of the two options is chosen.  This 

repair function works well with most problems (68 out of 81) but in a few problems, it 

produced solutions with a 1% or greater error.  An increase in percentage error is 

especially likely to occur when the optimal solution stipulates the purchase of mid-range 

contracts (i.e., contracts that are neither the most common nor the least common in a 

period).  

In Chapter 5 the EA is modified to incorporate stochastic changes in the price and 

demand.  A uniform distribution with three difference ranges was used to generate 

instances of price and demand.  Purchasing strategies in a stochastic environment needs 

to be resilient, providing good solutions regardless of stochastic changes in price and 

demand.  Therefore, a good problem solution, i.e., robust, would consistently perform 

well over different distribution ranges for price and demand.  

For each problem, a probability distribution range is chosen for price and demand, 

along with other parameter settings.  The price and demand probability distribution 

ranges used by the SEA is given in Table 5-1.  The SEA uses a two-dimensional array, 

Price-Demand_Array_1, of width 200 (100 price instances and 100 demand instances) 

and of a length equal to the planning horizon for that problem.  The SEA is run in the 

training phase of the SBCP-EA.  At the end of the training phase the 20 best solutions for 

each problem are recorded and the 20 fitness values are averaged together to obtain an 

overall solution fitness value, referred to as the Training_fv.  Following the training phase 

a new two-dimensional array, Price-Demand_Array_2, is populated with a new set of 

100 price-demand instances.  The 20 best solutions for each problem are then re-
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evaluated using the Price-Demand_Array_2 during the testing phase.  At the end of the 

testing phase the fitness values of 20 best solutions for each problem are averaged 

together to obtain an overall problem solution fitness value, referred to as the Testing_fv.  

The average percent difference between the Training_fv and the Testing_fv for each 

problem represents a solution’s measure of robustness.  This is called the testing for 

robustness phase of the SEA.  A detailed discussion of the three phases of the SEA can be 

found in Section 5.2.  Figure 5.1 shows the flowchart of the SEA process, and the SEA 

pseudo code is presented in Section 5.3. 

Within the SBCP-EA the SEA was run twice.  The first time, the SEA was run 

using 100 price-demand instances (SEA1).  The resulting 20 best solutions for each 

problem were re-evaluated in the testing phase five separate times, where each time a 

different Price-Demand_Array_2 was used.  The robustness for each SEA1 problem 

solutions showed little variation between the five runs.  Table 5-8 shows that as the 

planning horizon gets longer problem solution’s become less robust; that is to say, that 

the percentage difference becomes larger.  These are the same results found in the DBCP-

EA section where the solution quality for each problem also decreased as the planning 

horizon increased. 

SEA (training phase) was run a second time with 500 instances (SEA2) to see if a 

larger number of price-demand instances would result in greater problem solution 

robustness.  The robustness for each of the problem solutions was then calculated.  The 

results in Table 5-6 show that there was no added benefit to running the SEA for greater 

number of price-demand instances. 
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The length of the planning horizon is the only parameter that consistently and 

noticeably affects the quality of the results.  Shorter planning horizon solutions are much 

more robust than solutions for larger planning horizons.  For that reason, it is advisable 

that practitioners not attempt make financial commitments based on the purchasing 

strategies obtained using long planning horizon problem formulations.  Future research in 

this area may provide the tools and techniques that can improve upon the results obtained 

in this dissertation, thereby providing more robust and accurate low cost purchasing 

strategies.   

6.2 Contributions 

The five main contributions from this work are enumerated below. 

1. Extended the original model by Khouja and Kumar (2004) by allowing 

overlapping contracts and changes in price and demand over time. 

2. Formulated an MILP to find optimum solutions for the BCP problem. 

3. Designed and implemented an EA to find good solutions for the BCP in 

deterministic and stochastic environments where there is no restriction on the 

behavior of price, demand, or temporal discounts. 

4. Demonstrated that the DEA performed well in a deterministic environment 

producing optimal, or near optimal, solutions in most cases, especially for 

short and medium planning horizons. 

5. Modified the DEA to a stochastic environment and performed an exploratory 

study to examine the robustness of problem solutions. 

The EA is able to solve very large problems, whereas CPLEX was unable to 

identify the optimal solutions in a reasonable amount of time (i.e., days) for planning 
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horizons of 24 months.  These runs were terminated due to the excessive time and 

computation resources that were required.  We have also shown that the BCP-EA can be 

used in a stochastic environment, which allows for the modeling of change in prices and 

demand that is not mathematically tractable. 

6.3 Future Research 

As mentioned earlier, the repair function employed by the BCP-EA has been 

shown to unintentionally bias infeasible solutions as they are transformed into feasible 

solutions.  Often the repair function adds deficit amounts for a period to the contract that 

has the greatest effect of increasing bandwidth for subsequent periods in the planning 

horizon (i.e., most common contracts).  It is believed that since the repair function is 

biased and a substantial amount of chromosomes undergo repair, the procedures used in 

the repair function restrict and limit the exploration of the problem’s search space.   

One pattern of good solutions that was seen in the optimal MILP solutions is that 

periods at the beginning of the planning horizon often purchase mid-range contracts (i.e., 

contracts that are neither most common nor least common, but somewhere in between).  

For those periods that fall within the middle and end of the planning horizon the optimal 

strategy is often to purchase contracts with the longest durations possible (i.e., most 

common contracts).  This knowledge may be useful for future research when a new repair 

function will be developed that will not negatively affect solution quality.  If a new, 

improved repair function can not be created, then it might be more efficient to simply 

discard infeasible solutions.  The ultimate goal is to reduce the overall percentage error 

for the problem solutions obtained using the DBCP-EA and the SBCP-EA by 
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eliminating, or reducing, the apparent negative bias imposed by the existing repair 

function. 

Even though the BCP-EA was not designed with speed as a required criterion, it 

was found that an added benefit of the BCP-EA was that in some cases it identified a 

“good” solution faster than the MILP for 18 period planning horizon problems.  

Therefore, the BCP-EA is very attractive when solving large problems.  It is believed that 

the existing BCP-EA could be streamlined and optimized to reduce its computational 

time further so that “good” solutions can be identified in much less time. 

Along with making the BCP-EA faster, it might also be advantageous to examine 

the impact of a larger number of price-demand instances has on the measure of 

robustness in a stochastic environment thereby potentially increasing solution robustness.  

However, the number of price-demand instance that can practically be used will be 

determined by available computational speed, data storage resources, and time 

constraints. 

In an extension of this dissertation, future research could focus on redesigning the 

SBCP-EA to examine the effect of other probability distributions; for example, normal 

and exponential.  Another area of future research that might provide more robust 

solutions for the SBCP-EA would be to alter the way that the training phase is performed.  

Presently, the same 100 price-demand instance array is used to evolve and evaluate the 

20 best problem solutions across all generations of the run of a problem.  Future research 

might incorporate a more complex procedure.  For example, for each generation a new 

set of 100 price-demand instances could be used to evolve and evaluate the 

chromosomes.  This procedure has the advantage of introducing more diversity and 
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randomness in identifying ‘good’ solutions.  Another possibility would be to use a unique 

100 price-demand instance for each chromosome within each generation.  This procedure 

has the advantage of being truly random, yet would be very computationally intensive.   
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APPENDIX A: SOURCE CODE FOR DBCP-EA 
 
 
package ea_improved; 
/** imports**/ 
import java.util.*; 
import java.lang.*; 
import java.io.InputStreamReader; 
import java.io.BufferedReader; 
import java.io.*; 
import java.lang.Math.*; 
 
public class ea 
{ 
  /** initialize variables **/ 
  int NumPeriods; 
  int PopSize;  
  int maxGenerations; 
  double OnePointCrossoverRate; 
  double UniformCrossoverRate; 
  double MutationRate1; 
  double MutationRate2; 
  int gen; 
  double[][] Chromosome; 
  Random Rand_Number; 
  ReadFile read; 
  WriteFile write; 
  double NumContracts; 
  int n_scale; 
  int IntNumContracts; 
  double[] B = new double[3]; 
  String temp; 
  String temp2; 
  StringBuffer buff; 
  StringBuffer buff2; 
  double rp; 
  double rd; 
  double gp; 
  double ad; 
  double gd; 
  double B1; 
  double B2; 
  double B3; 
  double iLP_Opt; 
  double[] rp_Array; 
  double[] rd_Array; 



    

 
    

168

  double[] D; 
  int[] Contract_Length; 
  double[] TCQ; 
  double[] TCX; 
  int[] Contract_Period; 
  int[] NumContracts_EachPeriod; 
  int feasibilityFlag = 0; 
  int feasibilityFlagPool = 0; 
  int indexHolder; 
  double[] bestChromosome; 
  double[][] Pool; 
  int PoolSize; 
  int counter; 
  int NumOffspring; 
  double Date; 
  int FileNum = 0;  
  int change; 
  double[] Best_All_Runs; 
  int Repair1; 
  int Repair2; 
  int RepairTie; 
  int AlreadyDone = 0; 
 
  Vector Fill_Best = new Vector(); 
 
  public ea() 
  { 
    this.Rand_Number = new Random(); 
    this.read = new ReadFile("input.txt"); 
    this.buff = new StringBuffer(); 
    this.buff2 = new StringBuffer(); 
    try 
    { 
      jbInit(); 
    } 
    catch (Exception ex) 
    { 
      ex.printStackTrace(); 
    } 
  } 
 
  private void read_input_file() 
  { 
    System.out.println("DATE: " + Date); 
    temp = "DATE: " + Date; 
    buff.append(temp + "\r\n"); 
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    System.out.println("N = " + NumPeriods + ", gp = " + gp + ", ad = " + ad + 
                       ", gd = " + gd + ", B1 = " + B1 + " , B2 = " + B2 + 
                       ", B3 = " + B3); 
    temp = "N = " + NumPeriods + ", gp = " + gp + ", ad = " + ad + ", gd = " + 
        gd + ", B1 = " + B1 + " , B2 = " + B2 + ", B3 = " + B3; 
    buff.append(temp + "\r\n"); 
 
    NumContracts = .5 * NumPeriods * (NumPeriods + 1); 
    IntNumContracts = new Double(NumContracts).intValue(); 
 
    System.out.println("Number of contracts =" + IntNumContracts + 
                       ", NumPeriods = " + NumPeriods); 
    temp = "!Number of contracts =" + IntNumContracts; 
    buff.append(temp + "\r\n"); 
 
    System.out.println("LP Optimal =" + iLP_Opt); 
    temp = "LP Optimal =" + iLP_Opt; 
    buff.append(temp + "\r\n"); 
  } 
 
  private void fill_arrays() 
  { 
    double product = 1; 
    int count; 
    int i; 
    int j; 
    int index1; 
    int enumerate1; 
    int enumerate2; 
    Contract_Period = new int[IntNumContracts]; 
    Contract_Length = new int[IntNumContracts]; 
    Pool = new double[PoolSize][IntNumContracts + 1]; 
    int p = new Integer(Rounding.toString(gp * 10, 0)).intValue(); 
    int ad_d = new Integer(Rounding.toString(ad * 1, 0)).intValue(); 
    int d = new Integer(Rounding.toString(gd * 10, 0)).intValue(); 
    rp = 1 - gp; 
    rd = 1 + gd; 
    rp_Array = new double[NumPeriods]; 
    rd_Array = new double[NumPeriods]; 
    D = new double[NumPeriods]; 
    NumContracts_EachPeriod = new int[NumPeriods]; 
 
    rp_Array[0] = 1; 
    for (count = 1; count < NumPeriods; count++) 
    { 
      product = product * rp; 
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      rp_Array[count] = product; 
    } 
    product = 1; 
    rd_Array[0] = 1; 
    for (count = 1; count < NumPeriods; count++) 
    { 
      product = product * rd; 
      rd_Array[count] = product; 
    } 
    D[0] = ad; 
    for (count = 1; count < NumPeriods; count++) 
    { 
      D[count] = new Double(Math.ceil(ad * rd_Array[count])).intValue(); 
    } 
    for (i = 0; i < NumPeriods; i++) 
    { 
      NumContracts_EachPeriod[i] = (NumPeriods - (i)) * (i + 1); 
    } 
    index1 = 0; 
    for (enumerate1 = 0; enumerate1 <= NumPeriods; enumerate1++) 
    { 
      for (enumerate2 = 1; enumerate2 <= NumPeriods - enumerate1;  
           enumerate2++) 
      { 
        Contract_Length[index1] = enumerate2; 
        index1 = index1 + 1; 
      } 
    } 
    count = 0; 
    for (i = 1; i < NumPeriods + 1; i++) 
    { 
      for (j = 1; j < NumPeriods + 2 - i; j++) 
      { 
        Contract_Period[count] = i; 
        count = count + 1; 
      } 
    } 
  } 
 
  private void initialize_chromosomes() 
  { 
    double prob_purchase = .5;  
    double Num_Contracts = NumPeriods * .5 * (NumPeriods + 1); 
    Chromosome = new double[PopSize][IntNumContracts + 1]; 
    int j; 
    int k; 
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    double number; 
    double tempz; 
    double tempzz; 
    double tempy; 
    int number2; 
    int x; 
    int y; 
 
    for (k = 0; k < PopSize; k++) 
    { 
      Chromosome[k][0] = 999999; 
      for (j = 1; j <= IntNumContracts; j++) 
      { 
        number = Rand_Number.nextDouble(); 
        if (number <= prob_purchase) 
        { 
          tempz = Rand_Number.nextDouble() * 100;  
          tempzz = Rand_Number.nextDouble() * 10;  
          tempy = (tempz * tempzz) / 2; 
          number2 = new Integer(Rounding.toString(tempy, 0)).intValue(); 
          Chromosome[k][j] = number2; 
        } 
        else 
        { 
          Chromosome[k][j] = 0; 
        } 
      } 
    } 
  } 
 
  public void print_Chromosome() 
  { 
    int start; 
    int start1; 
    System.out.println("Print Pool"); 
    for (start = 0; start < PopSize; start++) 
    { 
      System.out.print(Chromosome[start][0] + " | "); 
      System.out.println(); 
    } 
    System.out.println(); 
  } 
 
  public void print_Chromosome(int indexHolder) 
  { 
    System.out.println("Repaired Chromosome: "); 
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    for (int k5 = 0; k5 < this.IntNumContracts; k5++) 
    { 
      System.out.print(this.Pool[indexHolder][k5] + " | "); 
    } 
    System.out.println("\n"); 
  } 
 
  private void initialize_chromosome_pool(int PopSize, int IntNumContracts) 
  { 
    int i; 
    int j; 
    for (i = 0; i < PopSize; i++) 
    { 
      for (j = 0; j < IntNumContracts + 1; j++) 
      { 
        Pool[i][j] = Chromosome[i][j]; 
      } 
    } 
  } 
 
  private void OnePoint_crossover_operator() 
  { 
    double randNum; 
    int cutPoint; 
    int[] OffSpringOne = new int[IntNumContracts]; 
    int[] OffSpringTwo = new int[IntNumContracts]; 
    int[] ParentOne = new int[IntNumContracts]; 
    int[] ParentTwo = new int[IntNumContracts]; 
    int i; 
    int j; 
    int x; 
    int z; 
    int num1; 
    int num2; 
    Vector tabu = new Vector(); 
    for (int a = 0; a < PopSize; a++) 
    { 
      tabu.addElement(new Integer(a)); 
    } 
 
    for (x = 0; x < PopSize / 2; x++) 
    { 
      randNum = Rand_Number.nextDouble(); 
      if (randNum < OnePointCrossoverRate) 
      { 
        randNum = Rand_Number.nextDouble(); 
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        randNum = randNum * (IntNumContracts - 1) + 1; 
        cutPoint = new Integer(Rounding.toString(randNum, 0)).intValue(); 
        cutPoint = cutPoint - 1; 
        num1 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
            intValue(); 
        num2 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
            intValue(); 
        if (Pool[num1][0] > Pool[num2][0]) 
        { 
          for (z = 1; z < IntNumContracts + 1; z++) 
          { 
            ParentOne[z - 1] = new Double(Pool[num2][z]).intValue(); 
          } 
        } 
        else 
        { 
          for (z = 1; z < IntNumContracts + 1; z++) 
          { 
            ParentOne[z - 1] = new Double(Pool[num1][z]).intValue(); 
          } 
        } 
        num1 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
            intValue(); 
        num2 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
            intValue(); 
        if (Pool[num1][0] > Pool[num2][0]) 
        { 
          for (z = 1; z < IntNumContracts + 1; z++) 
          { 
            ParentTwo[z - 1] = new Double(Pool[num2][z]).intValue(); 
          } 
        } 
        else 
        { 
          for (z = 1; z < IntNumContracts + 1; z++) 
          { 
            ParentTwo[z - 1] = new Double(Pool[num1][z]).intValue(); 
          } 
        } 
        for (i = 0; i < cutPoint; i++) 
        { 
          OffSpringOne[i] = ParentOne[i]; 
          OffSpringTwo[i] = ParentTwo[i]; 
        } 
        for (i = cutPoint; i < IntNumContracts; i++) 
        { 
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          OffSpringOne[i] = ParentTwo[i]; 
          OffSpringTwo[i] = ParentOne[i]; 
        } 
        //***************** 
         for (i = 1; i < IntNumContracts + 1; i++) 
         { 
           Pool[counter][i] = OffSpringOne[i - 1]; 
           Pool[counter + 1][i] = OffSpringTwo[i - 1]; 
         } 
        counter = counter + 2; 
        NumOffspring = NumOffspring + 2; 
      } 
    } 
  } 
 
  private void Uniform_crossover_operator() 
  { 
    int i; 
    int j; 
    int k; 
    int x; 
    int z; 
    double randNum; 
    int decisionVariable; 
    int[] scrambleArray = new int[IntNumContracts]; 
    int[] OffSpringOne = new int[IntNumContracts]; 
    int[] OffSpringTwo = new int[IntNumContracts]; 
    int[] ParentOne = new int[IntNumContracts]; 
    int[] ParentTwo = new int[IntNumContracts]; 
    int decision; 
    int num1; 
    int num2; 
    Vector tabu = new Vector(); 
 
    for (int a = 0; a < PopSize; a++) 
    { 
      tabu.addElement(new Integer(a)); 
    } 
    for (x = 0; x < PopSize / 2; x++) 
    { 
      for (i = 0; i < IntNumContracts; i++) 
      { 
        randNum = Rand_Number.nextDouble(); 
        if (randNum < UniformCrossoverRate) 
        { 
          scrambleArray[i] = 1; 
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        } 
        else 
        { 
          scrambleArray[i] = 0; 
        } 
      } 
      num1 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
          intValue(); 
      num2 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
          intValue(); 
      if (Pool[num1][0] > Pool[num2][0]) 
      { 
        for (z = 1; z < IntNumContracts + 1; z++) 
        { 
          ParentOne[z - 1] = new Double(Pool[num2][z]).intValue(); 
        } 
      } 
      else 
      { 
        for (z = 1; z < IntNumContracts + 1; z++) 
        { 
          ParentOne[z - 1] = new Double(Pool[num1][z]).intValue(); 
        } 
      } 
      num1 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
          intValue(); 
      num2 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
          intValue(); 
      if (Pool[num1][0] > Pool[num2][0]) 
      { 
        for (z = 1; z < IntNumContracts + 1; z++) 
        { 
          ParentTwo[z - 1] = new Double(Pool[num2][z]).intValue(); 
        } 
      } 
      else 
      { 
        for (z = 1; z < IntNumContracts + 1; z++) 
        { 
          ParentTwo[z - 1] = new Double(Pool[num1][z]).intValue(); 
        } 
      } 
      for (k = 0; k < IntNumContracts; k++) 
      { 
        decision = scrambleArray[k]; 
        if (decision == 0) 
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        { 
          OffSpringOne[k] = ParentOne[k]; 
          OffSpringTwo[k] = ParentTwo[k]; 
        } 
        else if (decision == 1) 
        { 
          OffSpringOne[k] = ParentTwo[k]; 
          OffSpringTwo[k] = ParentOne[k]; 
        } 
      } 
      //***************** 
 
       for (i = 1; i < IntNumContracts + 1; i++) 
       { 
         Pool[counter][i] = OffSpringOne[i - 1]; 
         Pool[counter + 1][i] = OffSpringTwo[i - 1]; 
       } 
      counter = counter + 2; 
      NumOffspring = NumOffspring + 2; 
    } 
  } 
 
  private void mutation_operator() 
  { 
//Mutation #2: Local Seach with Tabu List 
    int x; 
    int z; 
    int i; 
    int j; 
    int k; 
    double randNum; 
    int decisionVariable; 
    int[] scrambleArray = new int[IntNumContracts]; 
    int[] OffSpring = new int[IntNumContracts]; 
    int[] Parent = new int[IntNumContracts]; 
    int decision; 
    int num1; 
    int num2; 
    int P1 = 999; 
    double tempz = 0; 
    double tempzz; 
    int number2; 
    int number3; 
    Integer number4; 
    int listSize; 
    int redo_flag = 0; 
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    Vector list = new Vector(); 
    Vector tabu = new Vector(); 
 
    for (int a = 0; a < PopSize; a++) 
    { 
      tabu.addElement(new Integer(a)); 
    } 
    for (x = 0; x < PopSize; x++) 
    { 
      for (i = 0; i < IntNumContracts; i++) 
      { 
        randNum = Rand_Number.nextDouble(); 
        if (randNum < MutationRate2) 
        { 
          scrambleArray[i] = 1; 
        } 
        else 
        { 
          scrambleArray[i] = 0; 
        } 
      } 
 
//_______________________________________________________________ 
 
      randNum = Rand_Number.nextInt(tabu.size()); 
      int temp = new Double(randNum).intValue(); 
      num1 = ( (Integer) tabu.elementAt(temp)).intValue(); 
      for (z = 1; z < IntNumContracts + 1; z++) 
      { 
        Parent[z - 1] = new Double(Pool[num1][z]).intValue(); 
        OffSpring[z - 1] = new Double(Pool[num1][z]).intValue(); 
      } 
      number4 = new Integer(num1); 
      list.addElement(number4); 
      for (k = 0; k < IntNumContracts; k++) 
      { 
        decision = scrambleArray[k]; 
        if (decision == 0) 
        { 
          OffSpring[k] = Parent[k]; 
        } 
        else if (decision == 1) 
        { 
 
          int size1; 
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          int Purchased = 0; 
          double cumulativeTotal = 0; 
          int index2; 
          int period = 0; 
          int index3; 
          double Total; 
          double tempy1; 
          double tempy2; 
          double tempy3; 
          int turns; 
          int numx; 
 
          TCQ = new double[IntNumContracts]; 
          TCX = new double[IntNumContracts]; 
          for (j = 0; j < IntNumContracts; j++) 
          { 
            index2 = Contract_Period[j]; 
            if (j == k) 
            { 
              period = index2; 
            } 
            index3 = Contract_Length[j]; 
            size1 = OffSpring[j]; 
            TCQ[j] = rp_Array[index2 - 1] * ( (B[0] * index3) + B[2]); 
            if (size1 > 0) 
            { 
              Purchased = 1; 
            } 
            else 
            { 
              Purchased = 0; 
            } 
            TCX[j] = rp_Array[index2 - 1] * B[1] * index3; 
 
            Total = 0; 
            Total = TCQ[j] * size1 + TCX[j] * Purchased; 
 
            cumulativeTotal = cumulativeTotal + Total; 
          } 
 
          tempy1 = cumulativeTotal; 
          tempy3 = tempy1; 
          tempy2 = 0; 
          turns = 0;  
          while (tempy2 < tempy1) 
          { 
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            cumulativeTotal = 0; 
            tempy1 = tempy3; 
            turns = turns + 1; 
            randNum = Rand_Number.nextDouble(); 
            randNum = randNum * 
                ( (D[period - 1] * Rand_Number.nextDouble() * .3) - 1) + 1; 
            numx = new Integer(Rounding.toString(randNum, 0)).intValue(); 
            numx = numx - 1; 
            randNum = Rand_Number.nextDouble(); 
            if (Parent[k] > 0) 
            { 
              if (randNum <= .8) 
              { 
                tempz = Parent[k] + (numx * -1);  
                if (tempz < 0) 
                { 
                 tempz = 0; 
                } 
              } 
 
              number2 = new Integer(Rounding.toString(tempz, 0)).intValue(); 
              OffSpring[k] = number2; 
            } 
 
            TCQ = new double[IntNumContracts]; 
            TCX = new double[IntNumContracts]; 
 
            for (j = 0; j < IntNumContracts; j++) 
            { 
              index2 = Contract_Period[j]; 
              index3 = Contract_Length[j]; 
              size1 = OffSpring[j]; 
              TCQ[j] = rp_Array[index2 - 
                  1] * ( (B[0] * index3) + B[2]); 
              if (size1 > 0) 
              { 
                Purchased = 1; 
              } 
              else 
              { 
                Purchased = 0; 
              } 
              TCX[j] = rp_Array[index2 - 1] * B[1] * index3; 
 
              Total = 0; 
              Total = TCQ[j] * size1 + TCX[j] * Purchased; 
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              cumulativeTotal = cumulativeTotal + Total; 
            } 
            tempy2 = cumulativeTotal; 
            tempy3 = tempy2; 
            if (turns == 20) 
            { 
              OffSpring[k] = Parent[k]; 
              tempy1 = 0; 
            } 
          } 
          turns = 0; 
        }  
      }  
      //***************** 
 
       for (i = 1; i < IntNumContracts + 1; i++) 
       { 
         Pool[counter][i] = OffSpring[i - 1]; 
       } 
      counter = counter + 1; 
      NumOffspring = NumOffspring + 1; 
    } 
  } 
 
  private void mutation_operator_original() 
  { 
    //Mutation #1: Tabu List with decreases in randomly selected genes *Not Used 
    int x; 
    int z; 
    int i; 
    int j; 
    int k; 
    double randNum; 
    int decisionVariable; 
    int[] scrambleArray = new int[IntNumContracts]; 
    int[] OffSpring = new int[IntNumContracts]; 
    int[] Parent = new int[IntNumContracts]; 
    int decision; 
    int num1; 
    int num2; 
    int P1 = 999; 
    double tempz; 
    double tempzz; 
    double tempy; 
    int number2; 
    int number3; 
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    Integer number4; 
    int listSize; 
    int redo_flag = 0; 
    int index2; 
    int period = 0; 
 
    Vector list = new Vector(); 
    Vector tabu = new Vector(); 
 
    for (int a = 0; a < PopSize; a++) 
    { 
      tabu.addElement(new Integer(a)); 
    } 
    for (x = 0; x < PopSize; x++) 
    { 
      for (i = 0; i < IntNumContracts; i++) 
      { 
        randNum = Rand_Number.nextDouble(); 
        if (randNum < MutationRate1) 
        { 
          scrambleArray[i] = 1; 
        } 
        else 
        { 
          scrambleArray[i] = 0; 
        } 
      } 
      //_______________________________________________________________ 
 
      randNum = Rand_Number.nextInt(tabu.size()); 
      int temp = new Double(randNum).intValue(); 
      num1 = ( (Integer) tabu.elementAt(temp)).intValue(); 
 
      for (z = 1; z < IntNumContracts + 1; z++) 
      { 
        Parent[z - 1] = new Double(Pool[num1][z]).intValue(); 
        OffSpring[z - 1] = new Double(Pool[num1][z]).intValue(); 
      } 
      number4 = new Integer(num1); 
      list.addElement(number4); 
      for (k = 0; k < IntNumContracts; k++) 
      { 
        decision = scrambleArray[k]; 
        if (decision == 0) 
        { 
          OffSpring[k] = Parent[k]; 
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        } 
        else if (decision == 1) 
        { 
          for (j = 0; j < IntNumContracts; j++) 
          { 
            index2 = Contract_Period[j]; 
            if (j == k) 
            { 
              period = index2; 
            } 
          } 
          randNum = Rand_Number.nextDouble(); 
          tempz = randNum * 
              ( (D[period - 1] * Rand_Number.nextDouble() * .3) - 1) + 1;  
          number2 = new Integer(Rounding.toString(tempz, 0)).intValue(); 
          if (Parent[k] > 0) 
          { 
            if (Parent[k] > number2) 
            { 
              OffSpring[k] = Parent[k] - number2; 
            } 
            else 
            { 
              OffSpring[k] = 0; 
            } 
          } 
        } 
      } 
      for (i = 1; i < IntNumContracts + 1; i++) 
      { 
        Pool[counter][i] = OffSpring[i - 1]; 
      } 
      counter = counter + 1; 
      NumOffspring = NumOffspring + 1; 
    } 
  } 
 
  private void select_next_generation() 
  { 
    int i; 
    int j; 
    int x; 
    int y; 
    double randNum; 
    int number; 
    int num1; 
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    int num2; 
    Vector tabu = new Vector(); 
    Chromosome[0] = this.bestChromosome.clone(); 
    for (int a = 0; a < NumOffspring + PopSize; a++) 
    { 
      tabu.addElement(new Integer(a)); 
    } 
    for (i = 1; i < PopSize; i++) 
    { 
      randNum = Rand_Number.nextDouble(); 
      randNum = randNum * (NumOffspring + PopSize - 1) + 1; 
      number = new Integer(Rounding.toString(randNum, 0)).intValue(); 
      number = number - 1; 
      num1 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
          intValue(); 
      num2 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
          intValue(); 
      if (Pool[num1][0] < Pool[num2][0]) 
      { 
        for (j = 0; j < IntNumContracts + 1; j++) 
        { 
          Chromosome[i][j] = Pool[num1][j]; 
        } 
      } 
      else 
      { 
        for (j = 0; j < IntNumContracts + 1; j++) 
        { 
          Chromosome[i][j] = Pool[num2][j]; 
        } 
      } 
    } 
  } 
 
  public void print_Chromosome_pool_with_FV() 
  { 
    int start; 
    int start1; 
    System.out.println("Print Pool"); 
    for (start = 0; start < NumOffspring; start++) 
    { 
      for (start1 = 0; start1 < IntNumContracts; start1++) 
      { 
        System.out.print(Pool[start][start1] + " | "); 
      } 
      System.out.println("<-- PoolFitnessValue = " + Pool[start][0]); 
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    } 
    System.out.println(); 
  } 
 
  public void print_Chromosome_pool_withOUT_FV(int PopSize, int IntNumContracts) 
  { 
    int start; 
    int start1; 
    System.out.println("Print Pool"); 
    for (start = 0; start < NumOffspring; start++) 
    { 
      for (start1 = 0; start1 < IntNumContracts; start1++) 
      { 
        System.out.print(Pool[start][start1] + " | "); 
      } 
      System.out.println(); 
    } 
    System.out.println(); 
  } 
 
  private void check_feasibility_pool(int NumPeriods) 
  { 
    int k = 0; 
    int i = 0; 
    int j = 0; 
    int temp1 = 0; 
    int temp3 = 0; 
    int offset; 
    int index; 
    int y; 
    int[] Copy = new int[IntNumContracts]; 
 
    for (i = 1; i < IntNumContracts + 1; i++) 
    { 
      Copy[i - 1] = new Double(Pool[indexHolder][i]).intValue(); 
    } 
    feasibilityFlagPool = 0; 
    for (k = 1; k <= NumPeriods; k++) 
    { 
      offset = k - 1; 
      index = offset; 
      for (i = NumPeriods - k; i < NumPeriods; i++) 
      { 
        for (j = 1; j <= NumPeriods - k + 1; j++) 
        { 
          index = index + 1; 
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          temp1 = Copy[index - 1]; 
          temp3 = temp3 + temp1; 
        } 
        offset = offset - 1; 
        index = index + offset; 
      } 
      if (D[k - 1] > temp3) 
      { 
        feasibilityFlagPool = 1; 
      } 
      temp3 = 0; 
    } 
  } 
 
  private void repair_function_pool(int NumPeriods) 
  { 
    NumContracts = .5 * NumPeriods * (NumPeriods + 1); 
    IntNumContracts = new Double(NumContracts).intValue(); 
 
    int k = 0; 
    int i = 0; 
    int j = 0; 
    int temp1 = 0; 
    int temp3 = 0; 
    int index = 0; 
    double difference = 0; 
    int sizeDifference = 0; 
    double[] OffSpring1 = new double[IntNumContracts + 1]; 
    double[] OffSpring2 = new double[IntNumContracts + 1]; 
    double[][] DeficitArray = new double[NumPeriods][IntNumContracts + 1]; 
    int[] CommonContracts = new int[IntNumContracts + 1]; 
    int countPeriod3 = 0; 
    int k5; 
    int k6; 
    int holder = 0; 
    int holderB = 0; 
    int maxNum; 
    int ConCount; 
    int maxNumIndex = 0; 
    double deficitAmount; 
    int turns = 0; 
    int numDeficit = IntNumContracts; 
    int requiredRepair = 0; 
    turns = 0; 
    numDeficit = NumPeriods + 1;  
    temp3 = 0; 
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    index = 0; 
    temp1 = 0; 
    difference = 0; 
    sizeDifference = 0; 
    countPeriod3 = 0; 
    holder = 0; 
    ConCount = 0; 
    maxNum = 0; 
    maxNum = 0; 
    maxNumIndex = 0; 
    deficitAmount = 0; 
    holderB = 0; 
    int period = 0; 
    int offset_x = 0; 
    int[] Copy1 = new int[IntNumContracts + 1]; 
    int[] Copy2 = new int[IntNumContracts + 1]; 
    int[] Best2 = new int[IntNumContracts + 1]; 
 
    for (i = 0; i < IntNumContracts + 1; i++) 
    { 
      Copy1[i] = new Double(Pool[indexHolder][i]).intValue(); 
    } 
    requiredRepair = 0; 
    while (numDeficit > 0) 
    { 
      requiredRepair = 0; 
      numDeficit = 0; 
      turns = turns + 1; 
      DeficitArray = new double[NumPeriods][IntNumContracts + 1]; 
      CommonContracts = new int[IntNumContracts + 1]; 
 
      for (i = 0; i < IntNumContracts; i++) 
      { 
        CommonContracts[i] = 0; 
      } 
 
      //-------------- 
      // This code finds the deficit amount for each period 
      //-------------- 
 
      for (k = 1; k <= NumPeriods; k++)  
      { 
        temp3 = 0; 
        if (k == 1) 
        { 
          index = k - 1; 
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          for (j = 1; j <= NumPeriods; j++) 
          { 
            index = index + 1; 
            temp1 = 0; 
            temp1 = Copy1[index];  
            temp3 = temp3 + temp1; 
          } 
        } 
        if (k > 1) 
        { 
          index = k - 1; 
          offset_x = k - 2; 
          for (i = 1; i <= k; i++) 
          { 
            for (j = k; j <= NumPeriods; j++) 
            { 
              index = index + 1; 
              temp1 = 0; 
              temp1 = Copy1[index];  
              temp3 = temp3 + temp1; 
            } 
            index = index + offset_x; 
            offset_x = offset_x - 1; 
          } 
        } 
        if (temp3 < D[k - 1]) 
        { 
          numDeficit = numDeficit + 1; 
          requiredRepair = 1; 
          difference = D[k - 1] - temp3; 
          sizeDifference = new Double(Math.ceil(difference)).intValue(); 
          DeficitArray[k - 1][0] = sizeDifference; 
        }  
        else 
        { 
          DeficitArray[k - 1][0] = 0; 
        } 
      }  
 
//----------------------------- 
// This code fills in contracts for deficit periods 
//------------------------ 
 
      for (k = 1; k <= NumPeriods; k++)  
      { 
        if (DeficitArray[k - 1][0] != 0) 
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        { 
          if (k == 1) 
          { 
            countPeriod3 = 0; 
            index = k - 1; 
 
            //----------------------------------------- 
            // DeficitArray: One array for every period 
            // first index in every array is the deficit for that period 
            // Subsequent genes list the contracts which are active for a given period 
            //------------------------------------------ 
 
            for (j = 1; j <= NumPeriods; j++) 
            { 
              index = index + 1; 
              countPeriod3 = countPeriod3 + 1; 
              DeficitArray[k - 1][countPeriod3] = index; 
            } 
          } 
          if (k > 1) 
          { 
            countPeriod3 = 0; 
            index = k - 1; 
            offset_x = k - 2; 
            for (i = 1; i <= k; i++) 
            { 
 
              //----------------------------------------- 
              // DeficitArray: One array for every period 
              // first index in every array is the deficit for that period 
              // Subsequent genes list the contracts which are active for a given period 
              //------------------------------------------ 
 
              for (j = k; j <= NumPeriods; j++) 
              { 
                index = index + 1; 
                countPeriod3 = countPeriod3 + 1; 
                DeficitArray[k - 1][countPeriod3] = index; 
              } 
              index = index + offset_x; 
              offset_x = offset_x - 1; 
            } 
          } 
        } 
      }  
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      //---------------------------------------------- 
      // This code counts, for each contract, the number of times 
      //  it appears in a deficit period 
      //-------------------------------------------- 
      int holder2 = 0; 
      for (k5 = 0; k5 < NumPeriods; k5++) 
      { 
        if (DeficitArray[k5][0] != 0) 
        { 
          for (k6 = 1; k6 < IntNumContracts + 1; k6++)  
          { 
            // Note: holder contains a contact #, which is an index in the CommonContracts 
array 
            holder = new Double(DeficitArray[k5][k6]).intValue(); 
            if (holder != 0) 
            { 
              ConCount = CommonContracts[holder]; 
              ConCount = ConCount + 1; 
              CommonContracts[holder] = ConCount; 
            } 
          } 
        } 
      } 
 
      //---------------------------------------------- 
      // NumCommonContracts = variable containing the total number of 
      // contracts in periods with deficits 
      //-------------------------------------------- 
 
      CommonContracts[0] = 0; 
 
      //----------------------- 
      // The code that follows assigns the index number of the 1st contract to 
      // have the highest number of occurances in a deficit period to variable 
      // maxNumIndex; the highest number of occurances is stored in maxNum 
      //--------------------------------------- 
 
      maxNum = 0; 
      maxNumIndex = 0; 
      for (k6 = 1; k6 <= IntNumContracts; k6++)  
      { 
        holder = CommonContracts[k6]; 
        if (holder >= maxNum) 
        { 
          maxNum = holder; 
          maxNumIndex = k6; 
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        } 
      } 
      if (maxNumIndex > 0) 
      { 
        for (k5 = 0; k5 < NumPeriods; k5++) 
        { 
          if (DeficitArray[k5][0] != 0) 
          { 
            for (k6 = 1; k6 < IntNumContracts + 1; k6++) 
            { 
              if (maxNumIndex == DeficitArray[k5][k6]) 
              { 
                period = k5; 
                k6 = IntNumContracts + 1; 
                k5 = NumPeriods; 
              } 
            } 
          } 
        } 
 
        deficitAmount = new Double(DeficitArray[period][0]).intValue(); 
        DeficitArray[period][0] = 0; 
 
        //---------------------- 
        // holderB = the deficitAmount for a given period divided by 
        // the number of contracts of the given period 
        //------------------------ 
 
        holderB = new Integer(Rounding.toString(deficitAmount, 0)).intValue(); 
        holder = Copy1[maxNumIndex]; 
        holder = holder + holderB; 
        Copy1[maxNumIndex] = holder; 
      } 
    }  
    double Total; 
    double cumulativeTotal; 
    int index2; 
    int index3; 
    double size1; 
 
    Total = 0; 
    cumulativeTotal = 0; 
    for (j = 1; j <= IntNumContracts; j++) 
    { 
      index2 = Contract_Period[j - 1]; 
      index3 = Contract_Length[j - 1]; 
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      size1 = Copy1[j]; 
      if (size1 > 0) 
      { 
        /**********************************/ 
        TCQ[j - 1] = rp_Array[index2 - 1] * ( (B[0] * index3) + B[2]); 
        TCX[j - 1] = rp_Array[index2 - 1] * B[1] * index3; 
        Total = 0; 
        Total = TCQ[j - 1] * size1 + TCX[j - 1]; 
        /********************************/ 
 
        cumulativeTotal = cumulativeTotal + Total; 
        Copy1[0] = new Double(cumulativeTotal).intValue(); 
      } 
    } 
 
    for (i = 0; i < IntNumContracts + 1; i++) 
    { 
      OffSpring1[i] = new Integer(Copy1[i]).doubleValue(); 
    } 
    temp1 = 0; 
    temp3 = 0; 
    index = 0; 
    difference = 0; 
    sizeDifference = 0; 
    feasibilityFlagPool = 0; 
 
    Total = 0; 
    cumulativeTotal = 0; 
 
    index3 = 0; 
    // -------------------------------------------------- 
 
    for (i = 0; i < IntNumContracts + 1; i++) 
    { 
      CommonContracts[i] = 0; 
      for (j = 0; j < NumPeriods; j++) 
      { 
        DeficitArray[j][i] = 0; 
      } 
    } 
 
    period = 0; 
    turns = turns + 1; 
    temp3=0; 
    for (i = 0; i < IntNumContracts + 1; i++) 
    { 
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      Copy2[i] = new Double(Pool[indexHolder][i]).intValue(); 
      Best2[i] = new Double(Pool[indexHolder][i]).intValue(); 
    } 
    Best2[0]=9999999; 
    for(int alpha=0;alpha<20;alpha++) 
    { 
      for (i = 0; i < NumPeriods; i++) 
      { 
        for (j = 0; j <= IntNumContracts; j++) 
        { 
          DeficitArray[i][j] = 0; 
          CommonContracts[j] = 0; 
        } 
      } 
      numDeficit = 1; 
      while (numDeficit > 0) 
      { 
        requiredRepair = 0; 
        numDeficit = 0; 
        turns = turns + 1; 
        DeficitArray = new double[NumPeriods][IntNumContracts + 1]; 
        //-------------- 
        // This code finds the deficit amount for each period 
        //-------------- 
 
        for (k = 1; k <= NumPeriods; k++)  
        { 
          temp3 = 0; 
          if (k == 1) 
          { 
            index = k - 1; 
            for (j = 1; j <= NumPeriods; j++) 
            { 
              index = index + 1; 
              temp1 = 0; 
              temp1 = Copy2[index];  
              temp3 = temp3 + temp1; 
            } 
          } 
          if (k > 1) 
          { 
            index = k - 1; 
            offset_x = k - 2; 
            for (i = 1; i <= k; i++) 
            { 
              for (j = k; j <= NumPeriods; j++) 
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              { 
                index = index + 1; 
                temp1 = 0; 
                temp1 = Copy2[index];  
                temp3 = temp3 + temp1; 
              } 
              index = index + offset_x; 
              offset_x = offset_x - 1; 
            } 
          } 
          if (temp3 < D[k - 1]) 
          { 
            numDeficit = numDeficit + 1; 
            requiredRepair = 1; 
            difference = D[k - 1] - temp3; 
            sizeDifference = new Double(Math.ceil(difference)).intValue(); 
            DeficitArray[k - 1][0] = sizeDifference; 
          }  
          else 
          { 
            DeficitArray[k - 1][0] = 0; 
          } 
        }  
        if (numDeficit == 0) 
          break; 
//----------------------------- 
// This code fills in contracts for deficit periods 
//------------------------ 
 
        for (k = 1; k <= NumPeriods; k++)  
        { 
          if (DeficitArray[k - 1][0] != 0) 
          { 
            if (k == 1) 
            { 
              countPeriod3 = 0; 
              index = k - 1; 
 
              //----------------------------------------- 
              // DeficitArray: One array for every period 
              // first index in every array is the deficit for that period 
              // Subsequent genes list the contracts which are active for a given period 
              //------------------------------------------ 
 
              for (j = 1; j <= NumPeriods; j++) 
              { 
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                index = index + 1; 
                countPeriod3 = countPeriod3 + 1; 
                DeficitArray[k - 1][countPeriod3] = index; 
              } 
            } 
            if (k > 1) 
            { 
              countPeriod3 = 0; 
              index = k - 1; 
              offset_x = k - 2; 
              for (i = 1; i <= k; i++) 
              { 
 
                //----------------------------------------- 
                // DeficitArray: One array for every period 
                // first index in every array is the deficit for that period 
                // Subsequent genes list the contracts which are active for a given period 
                //------------------------------------------ 
 
                for (j = k; j <= NumPeriods; j++) 
                { 
                  index = index + 1; 
                  countPeriod3 = countPeriod3 + 1; 
                  DeficitArray[k - 1][countPeriod3] = index; 
                } 
                index = index + offset_x; 
                offset_x = offset_x - 1; 
              } 
            } 
          } 
        } 
        for (int l = NumPeriods - 1; l >= 0; l--) 
        { 
          if (DeficitArray[l][0] != 0) 
          { 
            period = l; 
            break; 
          } 
        } 
        int counter = 0; 
        for (int l = 1; l < DeficitArray[period].length; l++) 
        { 
          if (DeficitArray[period][l] == 0) 
          { 
            counter = l - 1; 
            break; 
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          } 
        } 
        int rand =1+ this.Rand_Number.nextInt(counter-1); 
        int contract = new Double(DeficitArray[period][rand]).intValue(); 
        deficitAmount = new Double(DeficitArray[period][0]).intValue(); 
        DeficitArray[period][0] = 0; 
 
        //---------------------- 
        // holderB = the deficitAmount for a given period divided by 
        // the number of contracts of the given period 
        //------------------------ 
 
        holderB = new Integer(Rounding.toString(deficitAmount, 0)).intValue(); 
        holder = Copy2[contract]; 
        holder = holder + holderB; 
        Copy2[contract] = holder; 
      }        
 
      //--------------------- 
      Total = 0; 
      cumulativeTotal = 0; 
      for (j = 1; j <= IntNumContracts; j++) 
      { 
        index2 = Contract_Period[j - 1]; 
        index3 = Contract_Length[j - 1]; 
        size1 = Copy2[j]; 
        if (size1 > 0) 
        { 
          /**********************************/ 
          TCQ[j - 1] = rp_Array[index2 - 1] * ( (B[0] * index3) + B[2]); 
          TCX[j - 1] = rp_Array[index2 - 1] * B[1] * index3; 
          Total = 0; 
          Total = TCQ[j - 1] * size1 + TCX[j - 1]; 
          /********************************/ 
 
          cumulativeTotal = cumulativeTotal + Total; 
          Copy2[0] = new Double(cumulativeTotal).intValue(); 
        } 
      } 
      if(Best2[0]>Copy2[0]) 
      { 
        for(int beta=0;beta<this.IntNumContracts;beta++) 
        { 
 
          Best2[beta] = Copy2[beta]; 
        } 
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      } 
      for(int m=0;m<this.IntNumContracts;m++) 
      { 
        Copy2[m]= new Double(Pool[indexHolder][m]).intValue(); 
      } 
    } 
    for(int beta=0;beta<this.IntNumContracts;beta++) 
    { 
      Copy2[beta] = Best2[beta]; 
    } 
 
    for (i = 0; i < IntNumContracts + 1; i++) 
    { 
      OffSpring2[i] = new Integer(Copy2[i]).doubleValue(); 
    } 
 
    temp1 = 0; 
    temp3 = 0; 
    index = 0; 
    difference = 0; 
    sizeDifference = 0; 
 
    if (OffSpring1[0] < OffSpring2[0]) 
    { 
      for (i = 0; i < IntNumContracts + 1; i++) 
      { 
        Pool[indexHolder][i] = OffSpring1[i]; 
      } 
      Repair1 = Repair1 + 1; 
    } 
 
    if (OffSpring1[0] == OffSpring2[0]) 
    { 
      for (i = 0; i < IntNumContracts + 1; i++) 
      { 
        Pool[indexHolder][i] = OffSpring1[i]; 
      } 
      RepairTie = RepairTie + 1; 
    } 
 
    if (OffSpring1[0] > OffSpring2[0]) 
    { 
      for (i = 0; i < IntNumContracts + 1; i++) 
      { 
        Pool[indexHolder][i] = OffSpring2[i]; 
      } 
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      Repair2 = Repair2 + 1; 
    } 
  } 
 
  private void evaluation_function_pool(int NumPeriods) 
  { 
    int i; 
    int j; 
    int size1; 
    int Purchased = 0; 
    double cumulativeTotal = 0; 
    int index2; 
    int index3; 
    double Total = 0; 
    int[] Copy = new int[IntNumContracts]; 
 
    NumContracts = .5 * NumPeriods * (NumPeriods + 1); 
    IntNumContracts = new Double(NumContracts).intValue(); 
 
    TCQ = new double[IntNumContracts]; 
    TCX = new double[IntNumContracts]; 
 
    for (i = 1; i < IntNumContracts + 1; i++) 
    { 
      Copy[i - 1] = new Double(Pool[indexHolder][i]).intValue(); 
    } 
 
    Total = 0; 
    cumulativeTotal = 0; 
    for (j = 0; j < IntNumContracts; j++) 
    { 
      index2 = Contract_Period[j]; 
      index3 = Contract_Length[j]; 
      size1 = Copy[j]; 
      if (size1 > 0) 
      { 
        TCQ[j] = rp_Array[index2 - 1] * ( (B[0] * index3) + B[2]); 
        TCX[j] = rp_Array[index2 - 1] * B[1] * index3; 
 
        Total = 0; 
        Total = TCQ[j] * size1 + TCX[j]; 
 
        cumulativeTotal = cumulativeTotal + Total; 
        Pool[indexHolder][0] = cumulativeTotal; 
      } 
    } 
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    for (i = 1; i < IntNumContracts + 1; i++) 
    { 
      Pool[indexHolder][i] = new Integer(Copy[i - 1]).doubleValue(); 
    } 
  } 
 
  private int record_best_chromosome_from_Pool(int NumPeriods) 
  { 
    int i; 
    int j; 
    int x; 
    int y; 
    int count = 0; 
    Vector Best = new Vector(); 
    Vector Test = new Vector(); 
    int same = 0; 
 
    NumContracts = .5 * NumPeriods * (NumPeriods + 1); 
    IntNumContracts = new Double(NumContracts).intValue(); 
    change = 0; 
 
    if (gen == 0) 
    { 
      for (i = 0; i < NumOffspring + this.PopSize; i++) 
      { 
        if (i == 0) 
        { 
          for (j = 0; j < IntNumContracts + 1; j++) 
          { 
            bestChromosome[j] = Pool[i][j]; 
          } 
        } 
        if (i > 0) 
        { 
          if (bestChromosome[0] > Pool[i][0]) 
          { 
            for (j = 0; j < IntNumContracts + 1; j++) 
            { 
              bestChromosome[j] = Pool[i][j]; 
            } 
          } 
          else if (bestChromosome[0] == Pool[i][0]) 
          { 
            for (j = 0; j < IntNumContracts + 1; j++) 
            { 
              if (bestChromosome[j] != Pool[i][j]) 
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              { 
                same = 1; 
                change = 1; 
              } 
            } 
            if (same == 1) 
            { 
              for (j = 0; j < IntNumContracts + 1; j++) 
              { 
                bestChromosome[j] = Pool[i][j]; 
              } 
            } 
          } 
        } 
      } 
    } 
    else if (gen > 0) 
    { 
      for (i = 0; i < NumOffspring; i++) 
      { 
        if (bestChromosome[0] > Pool[i][0]) 
        { 
          change = 1; 
          for (j = 0; j < IntNumContracts + 1; j++) 
          { 
            bestChromosome[j] = Pool[i][j]; 
          } 
        } 
        else if (bestChromosome[0] == Pool[i][0]) 
        { 
          for (j = 0; j < IntNumContracts + 1; j++) 
          { 
            if (bestChromosome[j] != Pool[i][j]) 
            { 
              same = 1; 
              change = 1; 
            } 
          } 
          if (same == 1) 
          { 
            for (j = 0; j < IntNumContracts + 1; j++) 
            { 
              bestChromosome[j] = Pool[i][j]; 
            } 
          } 
        } 
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      } 
    } 
    return change; 
  }  
 
  public void write_to_file(boolean first_time, String FileName) 
  { 
    int p = new Integer(Rounding.toString(gp * 10, 0)).intValue(); 
    int ad_d = new Integer(Rounding.toString(ad * 1, 0)).intValue(); 
    int d = new Integer(Rounding.toString(gd * 10, 0)).intValue(); 
    if (FileName.equals("")) 
    { 
      this.write = new WriteFile(buff, FileNum); 
      if (first_time == true) 
      { 
        this.write.write_toFile(); 
      } 
      else 
      { 
        this.write.append_toFile(); 
      } 
      this.buff.delete(0, this.buff.length()); 
      this.buff = new StringBuffer(); 
    } 
    else 
    { 
      this.write = new WriteFile(buff2, FileNum, FileName); 
      if (first_time == true) 
      { 
        this.write.write_toFile(); 
      } 
      else 
      { 
        this.write.append_toFile(); 
      } 
      this.buff2.delete(0, this.buff2.length()); 
      this.buff2 = new StringBuffer(); 
    } 
  } 
 
  public void Fill_Best_Vector() 
  { 
    int i; 
    int j; 
    int k; 
    int Size; 
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    double[] tempA; 
    double[] tempB; 
    NumContracts = .5 * NumPeriods * (NumPeriods + 1); 
    IntNumContracts = new Double(NumContracts).intValue(); 
 
    tempA = new double[IntNumContracts + 1]; 
    tempB = new double[IntNumContracts + 1]; 
    int Size_of_Vector = 20; 
 
    if (gen == 0) 
    { 
      for (k = 0; k < Size_of_Vector; k++) 
      { 
        tempB[0] = 999999999; 
        Fill_Best.addElement(tempB); 
      } 
    } 
    for (i = 0; i < (NumOffspring + PopSize); i++) 
    { 
      for (j = Size_of_Vector - 1; j >= 0; j--) 
      { 
        tempA = (double[]) Fill_Best.elementAt(j); 
        if (Pool[i][0] < tempA[0]) 
        { 
          if (j != 0) 
          { 
            continue; 
          } 
          else 
          { 
            Fill_Best.insertElementAt( (double[]) Pool[i].clone(), 0); 
            Fill_Best.removeElementAt(Fill_Best.size() - 1); 
          } 
        } 
        else if (Pool[i][0] == tempA[0]) 
        { 
          tempB = (double[]) Pool[i].clone(); 
          int p; 
          for (p = 0; p < IntNumContracts + 1; p++) 
          { 
            if (tempA[p] != tempB[p]) 
            { 
              p = IntNumContracts + 2; 
              Fill_Best.insertElementAt( (double[]) Pool[i].clone(), j + 1); 
              Size = Fill_Best.size(); 
              if (Size > Size_of_Vector) 
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              { 
                Fill_Best.removeElementAt(Fill_Best.size() - 1); 
              } 
            } 
          } 
          break; 
        } 
        else if (Pool[i][0] > tempA[0]) 
        { 
          if (Size_of_Vector - 1 == j) 
          { 
            Fill_Best.addElement( (double[]) Pool[i].clone()); 
          } 
          else 
          { 
            Fill_Best.insertElementAt( (double[]) Pool[i].clone(), j + 1); 
          } 
          Size = Fill_Best.size(); 
          if (Size > Size_of_Vector) 
          { 
            Fill_Best.removeElementAt(Fill_Best.size() - 1); 
          } 
          break; 
        } 
      } 
    } 
    Fill_Best.trimToSize(); 
  } 
 
  //If you send the timeperiod it will return the index number of all 
  // valid contracts in a Vector 
  public Vector valid_contracts(int timeperiod) 
  { 
      Vector valid = new Vector(); 
      int x = this.NumPeriods; 
      int y = timeperiod; 
      for (int i =1;i<=timeperiod;i++) 
      { 
          for(int j=x;j>=y;j--) 
          { 
              valid.addElement(new Integer(j)); 
          } 
          x= x+this.NumPeriods-i; 
          y=y+this.NumPeriods -i; 
      } 
      return valid; 
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    } 
 
 
  /*************** MAIN ****************/ 
  public static void main(String[] args) 
  { 
    ea ea1 = new ea(); 
    System.out.println("Begin EA"); 
 
    ea1.NumPeriods = 6; 
    ea1.PopSize = 40;  
    ea1.maxGenerations = 5000;  
    int n = 0; 
    int z; 
    int ProblemNumber = 0; 
    int x; 
    int y; 
    int count = 0; 
    int term = 0; 
    double Term_Condition; 
    double prob_purchase; 
    double randNum; 
    int num1; 
    int j, k; 
    double number; 
    int number2; 
    int number3; 
    double tempz; 
    double tempzz; 
    double tempy; 
    double Restart = 0; 
    int Restart_Counter = 0; 
    int Gen_Best_Found = 0; 
    long TimetoComplete = 0; 
    long TimetoBest = 0; 
    int Size = 1; 
    double increment_gp = .1; 
    double increment_gd = .1; 
    int increment_n = 6; 
    int increment_Size = 1; 
    int x_count = 0; 
    int y_count = 0; 
    int z_count = 0; 
    String econScale = "x"; 
    ea1.n_scale = 0; 
    int tempRepair1 = 0; 
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    int tempRepair2 = 0; 
    int tempRepairTie = 0; 
    ea1.gp = .10; 
    ea1.ad = 540;  
    ea1.gd = .10; 
    ea1.Date = 10.26; 
    int i; 
    int runNumber; 
    int Bingo = 0; 
    int numRuns; 
    int remainder; 
    int numProb; 
    int AdjPopSize; 
    int AdjMaxGen; 
    int AdjInitialDemand; 
    int incrementPrice = 0; 
 
    ea1.UniformCrossoverRate = .8;  
    ea1.OnePointCrossoverRate = .2;  
    ea1.MutationRate2 = .6;  
    ea1.MutationRate1 = .6;  
 
    ea1.NumPeriods = 0; 
    for (int x_n = 1; x_n <= 3; x_n++)  
    { 
      int buff_Length = ea1.buff.length(); 
      ea1.buff.delete(0, buff_Length); 
      ea1.buff = new StringBuffer(); 
      ea1.NumPeriods = ea1.NumPeriods + increment_n;  
      ea1.n_scale = ea1.n_scale + 1; 
      ea1.NumContracts = .5 * ea1.NumPeriods * (ea1.NumPeriods + 1); 
      ea1.IntNumContracts = new Double(ea1.NumContracts).intValue(); 
      ea1.PoolSize = ea1.PopSize * 200; 
      ea1.Best_All_Runs = new double[ea1.IntNumContracts + 1]; 
      ea1.bestChromosome = new double[ea1.IntNumContracts + 1]; 
      double[] overall_Best = new double[ea1.IntNumContracts + 1]; 
      int[] OffSpring1 = new int[ea1.IntNumContracts]; 
      int[] OffSpring2 = new int[ea1.IntNumContracts]; 
      Size = 0; 
      y_count = 0; 
 
      for (int x_Size = 1; x_Size <= 3; x_Size++) 
      { 
        ea1.gen = 0; 
        Size = Size + 1; 
        y_count = 0; 
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        ea1.gp = .1; 
        ea1.gd = .1; 
 
        buff_Length = ea1.buff.length(); 
        ea1.buff.delete(0, buff_Length); 
        ea1.buff = new StringBuffer(); 
 
        if (Size == 1) 
        { 
          //Small economies of scale 
          /* */ 
          ea1.B1 = 13.116; 
          ea1.B2 = 962.927; 
          ea1.B3 = 258.526; 
          econScale = "econScale-Small"; 
          /* */ 
        } 
        if (Size == 2) 
        { 
          //Medium economies of scale 
          /* */ 
          ea1.B1 = 6.757; 
          ea1.B2 = 928.503; 
          ea1.B3 = 364.989; 
          econScale = "econScale-Medium"; 
          /* */ 
        } 
        if (Size == 3) 
        { 
          //Large economies of scale 
          /* */ 
          ea1.B1 = 0.3977; 
          ea1.B2 = 894.115; 
          ea1.B3 = 471.416; 
          econScale = "econScale-Large"; 
          /* */ 
        } 
 
        ea1.B[0] = ea1.B1; 
        ea1.B[1] = ea1.B2; 
        ea1.B[2] = ea1.B3; 
 
        for (numProb = 1; numProb <= 9; numProb++)  
        { 
          ProblemNumber = ProblemNumber + 1; 
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          y_count = y_count + 1; 
          ea1.gen = 0; 
 
          ea1.NumContracts = .5 * ea1.NumPeriods * (ea1.NumPeriods + 1); 
          ea1.IntNumContracts = new Double(ea1.NumContracts).intValue(); 
 
          ea1.fill_arrays(); 
 
          if (ea1.NumPeriods == 6) 
          { 
            if (ea1.gp == 0.1 && ea1.gd == 0.1 && Size == 1) 
            { 
              ea1.iLP_Opt = 268496.3; 
 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.1 && Size == 2) 
            { 
              ea1.iLP_Opt = 325790.3; 
 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.1 && Size == 3) 
            { 
              ea1.iLP_Opt = 383054.8; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.2 && Size == 1) 
            { 
              ea1.iLP_Opt = 368073.5; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.2 && Size == 2) 
            { 
              ea1.iLP_Opt = 454755.3; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.2 && Size == 3) 
            { 
              ea1.iLP_Opt = 541396.1; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.30000000000000004 && Size == 1) 
            { 
              ea1.iLP_Opt = 499789.2; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.30000000000000004 && Size == 2) 
            { 
              ea1.iLP_Opt = 627457.3; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.30000000000000004 && Size == 3) 
            { 
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              ea1.iLP_Opt = 755068.4; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.1 && Size == 1) 
            { 
              ea1.iLP_Opt = 248062.5; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.1 && Size == 2) 
            { 
              ea1.iLP_Opt = 299026.1; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.1 && Size == 3) 
            { 
              ea1.iLP_Opt = 349963.3; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.2 && Size == 1) 
            { 
              ea1.iLP_Opt = 316077.6; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.2 && Size == 2) 
            { 
              ea1.iLP_Opt = 387101.1; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.2 && Size == 3) 
            { 
              ea1.iLP_Opt = 458091.6; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.30000000000000004 && Size == 1) 
            { 
              ea1.iLP_Opt = 405209.5; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.30000000000000004 && Size == 2) 
            { 
              ea1.iLP_Opt = 503271.7; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.30000000000000004 && Size == 3) 
            { 
              ea1.iLP_Opt = 601292.7; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.1 && Size == 1) 
            { 
              ea1.iLP_Opt = 231313.5; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.1 && Size == 2) 
            { 
              ea1.iLP_Opt = 277851.5; 
            } 
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            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.1 && Size == 3) 
            { 
              ea1.iLP_Opt = 324363.5; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.2 && Size == 1) 
            { 
              ea1.iLP_Opt = 277942.6; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.2 && Size == 2) 
            { 
              ea1.iLP_Opt = 337816.1; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.2 && Size == 3) 
            { 
              ea1.iLP_Opt = 397656.8; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.30000000000000004 && 
                Size == 1) 
            { 
              ea1.iLP_Opt = 337080.9; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.30000000000000004 && 
                Size == 2) 
            { 
              ea1.iLP_Opt = 414361.3; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.30000000000000004 && 
                Size == 3) 
            { 
              ea1.iLP_Opt = 491600.5; 
            } 
          } 
          if (ea1.NumPeriods == 12) 
          { 
            if (ea1.gp == 0.1 && ea1.gd == 0.1 && Size == 1) 
            { 
              ea1.iLP_Opt = 438512.7; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.1 && Size == 2) 
            { 
              ea1.iLP_Opt = 487799.3; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.1 && Size == 3) 
            { 
              ea1.iLP_Opt = 537047.3; 
            } 
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            if (ea1.gp == 0.1 && ea1.gd == 0.2 && Size == 1) 
            { 
              ea1.iLP_Opt = 803822.1; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.2 && Size == 2) 
            { 
              ea1.iLP_Opt = 936621.8; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.2 && Size == 3) 
            { 
              ea1.iLP_Opt = 1069332.; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.30000000000000004 && Size == 1) 
            { 
              ea1.iLP_Opt = 1536695.; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.30000000000000004 && Size == 2) 
            { 
              ea1.iLP_Opt = 1859647.; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.30000000000000004 && Size == 3) 
            { 
              ea1.iLP_Opt = 2182392.; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.1 && Size == 1) 
            { 
              ea1.iLP_Opt = 351317.8; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.1 && Size == 2) 
            { 
              ea1.iLP_Opt = 388381.6; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.1 && Size == 3) 
            { 
              ea1.iLP_Opt = 420306.0; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.2 && Size == 1) 
            { 
              ea1.iLP_Opt = 526002.2; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.2 && Size == 2) 
            { 
              ea1.iLP_Opt = 598458.9; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.2 && Size == 3) 
            { 
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              ea1.iLP_Opt = 664641.3; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.30000000000000004 && Size == 1) 
            { 
              ea1.iLP_Opt = 839560.6; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.30000000000000004 && Size == 2) 
            { 
              ea1.iLP_Opt = 983596.4; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.30000000000000004 && Size == 3) 
            { 
              ea1.iLP_Opt = 1122124.; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.1 && Size == 1) 
            { 
              ea1.iLP_Opt = 276257.7; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.1 && Size == 2) 
            { 
              ea1.iLP_Opt = 325630.2; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.1 && Size == 3) 
            { 
              ea1.iLP_Opt = 358465.1; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.2 && Size == 1) 
            { 
              ea1.iLP_Opt = 363260.8; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.2 && Size == 2) 
            { 
              ea1.iLP_Opt = 429939.2; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.2 && Size == 3) 
            { 
              ea1.iLP_Opt = 477405.9; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.30000000000000004 && 
                Size == 1) 
            { 
              ea1.iLP_Opt = 501702.1; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.30000000000000004 && 
                Size == 2) 
            { 
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              ea1.iLP_Opt = 597692.8; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.30000000000000004 && 
                Size == 3) 
            { 
              ea1.iLP_Opt = 671895.9; 
            } 
          } 
          if (ea1.NumPeriods == 18) 
          { 
            if (ea1.gp == 0.1 && ea1.gd == 0.1 && Size == 1) 
            { 
              ea1.iLP_Opt = 628844.50; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.1 && Size == 2) 
            { 
              ea1.iLP_Opt = 657505.92; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.1 && Size == 3) 
            { 
              ea1.iLP_Opt = 686122.87; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.2 && Size == 1) 
            { 
              ea1.iLP_Opt = 1513748.34; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.2 && Size == 2) 
            { 
              ea1.iLP_Opt = 1704381.20; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.2 && Size == 3) 
            { 
              ea1.iLP_Opt = 1894885.93; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.30000000000000004 && Size == 1) 
            { 
              ea1.iLP_Opt = 4187309.76; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.30000000000000004 && Size == 2) 
            { 
              ea1.iLP_Opt = 4993621.49; 
            } 
            if (ea1.gp == 0.1 && ea1.gd == 0.30000000000000004 && Size == 3) 
            { 
              ea1.iLP_Opt = 5799518.77; 
            } 
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            if (ea1.gp == 0.2 && ea1.gd == 0.1 && Size == 1) 
            { 
              ea1.iLP_Opt = 391171.05; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.1 && Size == 2) 
            { 
              ea1.iLP_Opt = 440385.34; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.1 && Size == 3) 
            { 
              ea1.iLP_Opt = 462806.17; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.2 && Size == 1) 
            { 
              ea1.iLP_Opt = 675913.15; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.2 && Size == 2) 
            { 
              ea1.iLP_Opt = 771270.01; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.2 && Size == 3) 
            { 
              ea1.iLP_Opt = 833514.47; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.30000000000000004 && Size == 1) 
            { 
              ea1.iLP_Opt = 1365808.49; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.30000000000000004 && Size == 2) 
            { 
              ea1.iLP_Opt = 1593712.59; 
            } 
            if (ea1.gp == 0.2 && ea1.gd == 0.30000000000000004 && Size == 3) 
            { 
              ea1.iLP_Opt = 1779087.80; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.1 && Size == 1) 
            { 
              ea1.iLP_Opt = 285071.26; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.1 && Size == 2) 
            { 
              ea1.iLP_Opt = 333592.52; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.1 && Size == 3) 
            { 
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              ea1.iLP_Opt = 368648.84; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.2 && Size == 1) 
            { 
              ea1.iLP_Opt = 391247.28; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.2 && Size == 2) 
            { 
              ea1.iLP_Opt = 458638.36; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.2 && Size == 3) 
            { 
              ea1.iLP_Opt = 508518.68; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.30000000000000004 && 
                Size == 1) 
            { 
              ea1.iLP_Opt = 590782.49; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.30000000000000004 && 
                Size == 2) 
            { 
              ea1.iLP_Opt = 695741.19; 
            } 
            if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.30000000000000004 && 
                Size == 3) 
            { 
              ea1.iLP_Opt = 775928.02; 
            } 
          } 
          ea1.FileNum = ea1.FileNum + 1; 
       
          runNumber = 0; 
          int MaxRuns = 5;  
          double overall_BestofRuns = 0; 
          double TimetoBestofRuns = 0; 
          double TimetoCompleteforAllRuns = 0; 
          int Gen_BestofRuns = 0; 
          double[][] runFitnessTimes = new double[MaxRuns][5]; 
          double TotalTimetoCompleteforAllRuns = 0; 
 
          System.out.println("\n"); 
          ea1.buff.append("\n"); 
          System.out.println("N = " + ea1.NumPeriods + ", gp = " + ea1.gp + 
                             ", ad = " + ea1.ad + 
                             ", gd = " + ea1.gd + ", B1 = " + ea1.B1 + 
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                             ", B2 = " + ea1.B2 + ", B3 = " + ea1.B3 + 
                             ", LP Solution = " + ea1.iLP_Opt + 
                             ", # best the same last value = " + count + 
                             ", PopSize = " + ea1.PopSize + 
                             ", MaxGeneration = " + ea1.maxGenerations); 
          ea1.temp = "N = " + ea1.NumPeriods + ", gp = " + ea1.gp + 
              ", ad = " + ea1.ad + 
              ", gd = " + ea1.gd + ", B1 = " + ea1.B1 + " , B2 = " + 
              ea1.B2 + 
              ", B3 = " + ea1.B3 + ", LP Solution = " + ea1.iLP_Opt + 
              ", # best the same last value = " + count + 
              ", PopSize = " + ea1.PopSize + 
              ", MaxGeneration = " + ea1.maxGenerations; 
          ea1.buff.append(ea1.temp + "\r\n"); 
 
          System.out.println(econScale + ", UniformCrossoverRate = " + 
                             ea1.UniformCrossoverRate + 
                             ", OnePointCrossoverRate = " + 
                             ea1.OnePointCrossoverRate + 
                             ", MutationRate2 = " + ea1.MutationRate2 + 
                             ", ea1.MutationRate1 = " + ea1.MutationRate1); 
          ea1.temp = econScale + ", UniformCrossoverRate = " + 
              ea1.UniformCrossoverRate + 
              ", OnePointCrossoverRate = " + ea1.OnePointCrossoverRate + 
              ", MutationRate2 = " + ea1.MutationRate2 + 
              ", ea1.MutationRate1 = " + ea1.MutationRate1; 
          ea1.buff.append(ea1.temp + "\r\n"); 
 
          System.out.println("PopSize = " + ea1.PopSize + 
                             ", MaxGeneration = " + ea1.maxGenerations + 
                             ", # Restarts = " + Restart_Counter); 
          ea1.temp = "PopSize = " + ea1.PopSize + ", MaxGeneration = " + 
              ea1.maxGenerations; 
          ea1.buff.append(ea1.temp + "\r\n"); 
 
          for (numRuns = 1; numRuns <= MaxRuns; numRuns++)  
          { 
            ea1.gen = 0; 
 
            ea1.initialize_chromosomes(); 
            long Start = System.currentTimeMillis(); 
 
            TimetoComplete = 0; 
            TimetoBest = 0; 
            term = 0; 
            Restart = 0; 
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            Restart_Counter = 0; 
            overall_Best[0] = 999999999; 
            Gen_Best_Found = 0; 
            count = 0; 
            runNumber = runNumber + 1; 
 
            System.out.println(" "); 
            ea1.buff.append("\n"); 
            System.out.println("Problem Number = " + ProblemNumber + 
                               ", Run Number = " + runNumber); 
            ea1.temp = "Problem Number = " + ProblemNumber + 
                ", Run Number = " + runNumber; 
            ea1.buff.append(ea1.temp + "\r\n"); 
            ea1.counter = ea1.PopSize; 
 
            for (ea1.gen = 0; ea1.gen < ea1.maxGenerations; ea1.gen++) 
            { 
              ea1.NumOffspring = ea1.PopSize; 
              ea1.counter = ea1.PopSize; 
              ea1.initialize_chromosome_pool(ea1.PopSize, ea1.IntNumContracts); 
 
              ea1.mutation_operator(); 
              ea1.OnePoint_crossover_operator();  
              ea1.Uniform_crossover_operator();  
 
              ea1.Repair1 = 0; 
              ea1.Repair2 = 0; 
              ea1.RepairTie = 0; 
              for (ea1.indexHolder = 0; 
                   ea1.indexHolder < (ea1.NumOffspring + ea1.PopSize); 
                   ea1.indexHolder++) 
              { 
                ea1.repair_function_pool(ea1.NumPeriods); 
                tempRepair1 = tempRepair1 + ea1.Repair1; 
                tempRepair2 = tempRepair2 + ea1.Repair2; 
                tempRepairTie = tempRepairTie + ea1.RepairTie; 
              } 
 
              ea1.change = ea1.record_best_chromosome_from_Pool(ea1.NumPeriods);  
 
//Pool of best 20 chromosomes found throughout each run of an EA 
 
              ea1.Fill_Best_Vector(); 
              if (ea1.change == 0) 
              { 
                count = count + 1; 
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              } 
              else if (ea1.change == 1) 
              { 
                count = 0; 
              } 
              term = ea1.gen; 
              if (overall_Best[0] > ea1.bestChromosome[0])  
              { 
                Gen_Best_Found = ea1.gen; 
                for (i = 0; i < ea1.IntNumContracts + 1; i++) 
                { 
                  overall_Best[i] = ea1.bestChromosome[i]; 
                } 
                long ToBest = System.currentTimeMillis(); 
                TimetoBest = ToBest - Start; 
              } 
              for (i = 0; i < ea1.PopSize; i++) 
              { 
                for (j = 0; j < ea1.IntNumContracts + 1; j++) 
                { 
                  ea1.Chromosome[i][j] = 0; 
                } 
              } 
              for (ea1.indexHolder = 0; 
                   ea1.indexHolder < ea1.IntNumContracts + 1; 
                   ea1.indexHolder++) 
              { 
                ea1.Chromosome[0][ea1.indexHolder] = 
                    ea1.bestChromosome[ea1.indexHolder]; 
              } 
 
              ea1.select_next_generation(); 
              for (i = 0; i < ea1.PoolSize; i++) 
              { 
                for (j = 0; j < ea1.IntNumContracts + 1; j++) 
                { 
                  ea1.Pool[i][j] = 0; 
                } 
              } 
              if (count >= 100 * ea1.NumPeriods)  
              { 
                term = ea1.gen; 
                ea1.gen = ea1.maxGenerations; 
              } 
            }  
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            System.out.println("Number of times Repair #1 best = " + 
                               tempRepair1); 
            System.out.println("Number of times Repair #2 best = " + 
                               tempRepair2); 
            System.out.println( 
                "Number of times Repair #1 and Repair #2 Tied = " + 
                tempRepairTie); 
            ea1.temp = "Number of times Repair #1 best = " + 
                tempRepair1; 
            ea1.buff.append(ea1.temp + "\r\n"); 
            ea1.temp = "Number of times Repair #2 best = " + 
                tempRepair2; 
            ea1.buff.append(ea1.temp + "\r\n"); 
            ea1.temp = "Number of times Repair #1 and Repair #2 Tied = " + 
                tempRepairTie; 
            ea1.buff.append(ea1.temp + "\r\n"); 
 
            long End = System.currentTimeMillis(); 
            TimetoComplete = End - Start; 
            System.out.println("The End!"); 
            ea1.temp = "The End!"; 
            ea1.buff.append(ea1.temp + "\r\n"); 
 
            runFitnessTimes[numRuns - 1][0] = overall_Best[0]; 
            runFitnessTimes[numRuns - 1][1] = Gen_Best_Found; 
            runFitnessTimes[numRuns - 1][2] = TimetoBest; 
            runFitnessTimes[numRuns - 1][3] = TimetoComplete; 
 
            if (numRuns == 1) 
            { 
              overall_BestofRuns = runFitnessTimes[numRuns - 1][0]; 
              Gen_BestofRuns = new Double(runFitnessTimes[numRuns - 1][1]). 
                  intValue(); 
              TotalTimetoCompleteforAllRuns = TimetoComplete; 
              TimetoBestofRuns = runFitnessTimes[numRuns - 1][2]; 
 
              for (z = 0; z < ea1.IntNumContracts + 1; z++) 
              { 
                ea1.Best_All_Runs[z] = ea1.bestChromosome[z]; 
              } 
            } 
            else 
            { 
              if (runFitnessTimes[numRuns - 2][0] > 
                  runFitnessTimes[numRuns - 1][0]) 
              { 
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                overall_BestofRuns = runFitnessTimes[numRuns - 1][0]; 
                Gen_BestofRuns = new Double(runFitnessTimes[numRuns - 1][1]). 
                    intValue(); 
                TimetoBestofRuns = runFitnessTimes[numRuns - 1][2]; 
                for (j = 0; j < ea1.IntNumContracts + 1; j++) 
                { 
                  ea1.Best_All_Runs[j] = ea1.bestChromosome[j]; 
                } 
              } 
              else 
              { 
                if (runFitnessTimes[numRuns - 2][0] == 
                    runFitnessTimes[numRuns - 1][0] && 
                    runFitnessTimes[numRuns - 2][1] > 
                    runFitnessTimes[numRuns - 1][1]) 
                { 
                  overall_BestofRuns = runFitnessTimes[numRuns - 1][0]; 
                  Gen_BestofRuns = new Double(runFitnessTimes[numRuns - 1][1]). 
                      intValue(); 
                  TimetoBestofRuns = runFitnessTimes[numRuns - 1][2]; 
                  for (j = 0; j < ea1.IntNumContracts + 1; j++) 
                  { 
                    ea1.Best_All_Runs[j] = ea1.bestChromosome[j]; 
                  } 
                } 
              } 
              TotalTimetoCompleteforAllRuns = TotalTimetoCompleteforAllRuns + 
                  TimetoComplete; 
            } 
            System.out.println("Gen # Run terminated = " + term); 
            ea1.temp = "Gen # Run terminated = " + term; 
            ea1.buff.append(ea1.temp + "\r\n"); 
            System.out.println("Gen to find Best Chromosome this run = " + 
                               runFitnessTimes[numRuns - 1][1]); 
            ea1.temp = "Gen to find Best Chromosome this run = " + 
                runFitnessTimes[numRuns - 1][1]; 
            ea1.buff.append(ea1.temp + "\r\n"); 
            System.out.println("Time to find Best Chromosome = " + 
                               runFitnessTimes[numRuns - 1][2] + 
                               " milliseconds; i.e., " + 
                               (runFitnessTimes[numRuns - 1][2] / 1000) + 
                               " seconds"); 
            ea1.temp = "Time to find Best Chromosome = " + 
                runFitnessTimes[numRuns - 1][2] + " milliseconds; i.e., " + 
                (runFitnessTimes[numRuns - 1][2] / 1000) + " seconds"; 
            ea1.buff.append(ea1.temp + "\r\n"); 
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            System.out.println("Time to Complete EA run = " + 
                               runFitnessTimes[numRuns - 1][3] + 
                               " milliseconds; i.e., " + 
                               (runFitnessTimes[numRuns - 1][3] / 1000) + 
                               " seconds"); 
            ea1.temp = "Time to Complete EA run = " + 
                runFitnessTimes[numRuns - 1][3] + " milliseconds; i.e., " + 
                (runFitnessTimes[numRuns - 1][3] / 1000) + " seconds"; 
            ea1.buff.append(ea1.temp + "\r\n"); 
            System.out.println(" "); 
            System.out.println("EA Solution - LP Solution = " + 
                               (overall_BestofRuns - 
                                ea1.iLP_Opt)); 
            ea1.temp = "EA Solution - LP Solution = " + 
                (overall_BestofRuns - ea1.iLP_Opt); 
            ea1.buff.append(ea1.temp + "\r\n"); 
            System.out.println("Precent Error = " + 
                               ( ( (overall_BestofRuns - 
                                    ea1.iLP_Opt) / ea1.iLP_Opt) * 100)); 
            ea1.temp = "Precent Error = " + 
                ( ( (overall_BestofRuns - ea1.iLP_Opt) / 
                   ea1.iLP_Opt) * 100); 
            ea1.buff.append(ea1.temp + "\r\n\r\n"); 
            runFitnessTimes[numRuns - 
                1][4] = ( ( (overall_BestofRuns - ea1.iLP_Opt) / ea1.iLP_Opt) * 
                         100); 
            System.out.println(" "); 
            ea1.buff.append("\r\n"); 
            System.out.print("Run #" + numRuns + ". "); 
            ea1.temp = "Run #" + numRuns + "). "; 
            ea1.buff.append(ea1.temp); 
            for (y = 0; y < 5; y++) 
            { 
              System.out.print(runFitnessTimes[numRuns - 1][y] + " | "); 
              ea1.temp = runFitnessTimes[numRuns - 1][y] + " | "; 
              ea1.buff.append(ea1.temp); 
            } 
            System.out.println(" "); 
            ea1.buff.append("\r\n"); 
            System.out.println("(1: best fitness value, 2: gen best found, 3: time to best 
(msec), 4: time to complete (msec), 5:% error)"); 
            ea1.buff.append("\r\n"); 
            System.out.println(" "); 
            ea1.buff.append("\r\n"); 
            System.out.print("Best All Runs: "); 
            ea1.temp = "Best All Runs: "; 
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            ea1.buff.append(ea1.temp + "\r\n"); 
            System.out.println("Best Chromosome for Run Number #" + numRuns + 
                               ": "); 
            ea1.temp = "Best Chromosome for Run Number #" + numRuns + ": "; 
            ea1.buff.append(ea1.temp + "\r\n"); 
            for (j = 0; j < ea1.IntNumContracts + 1; j++) 
            { 
              System.out.print(ea1.bestChromosome[j] + " | "); 
              ea1.temp = ea1.bestChromosome[j] + " | "; 
              ea1.buff.append(ea1.temp); 
            } 
            System.out.println(" "); 
            ea1.buff.append("\r\n"); 
            System.out.println("Best 20 chromosomes from EA run #" + numRuns + 
                               " for Problem # " + ea1.FileNum); 
            ea1.buff2.append("Best 20 chromosomes from EA run  \r\n"); 
 
            double[] tempA; 
 
            for (i = 0; i < 20; i++) 
            { 
              tempA = (double[]) ea1.Fill_Best.elementAt(i); 
              for (j = 0; j < tempA.length; j++) 
              { 
                ea1.temp2 = new Double(tempA[j]).toString() + " | "; 
                ea1.buff2.append(ea1.temp2); 
              } 
              ea1.buff2.append("\r\n"); 
            } 
            ea1.buff2.append("\r\n"); 
            ea1.Fill_Best.removeAllElements(); 
            if (numRuns == 1) 
            { 
              ea1.write_to_file(true, "Best Chromosomes "); 
            } 
            else 
            { 
              ea1.write_to_file(false, "Best Chromosomes "); 
            } 
            System.out.println(" "); 
            ea1.buff.append("\r\n"); 
          }  
          System.out.println(" "); 
          ea1.buff.append("\r\n"); 
          System.out.println("Total Time to Complete " + MaxRuns + 
                             " EA runs = " + 
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                             TimetoCompleteforAllRuns + 
                             " milliseconds; i.e., " + 
                             (TimetoCompleteforAllRuns / 1000) + " seconds"); 
          ea1.temp = "Total Time to Complete " + MaxRuns + " EA runs = " + 
              TimetoCompleteforAllRuns + " milliseconds; i.e., " + 
              (TimetoCompleteforAllRuns / 1000) + " seconds"; 
          ea1.buff.append(ea1.temp + "\r\n"); 
          System.out.println("Average Total Time to Complete " + MaxRuns + 
                             " EA runs = " + 
                             (TimetoCompleteforAllRuns / MaxRuns) + 
                             " milliseconds; i.e., " + 
                             (TimetoCompleteforAllRuns / MaxRuns / 1000) + 
                             " seconds"); 
          ea1.temp = "Average Total Time to Complete " + MaxRuns + 
              " EA runs = " + 
              (TimetoCompleteforAllRuns / MaxRuns) + " milliseconds; i.e., " + 
              (TimetoCompleteforAllRuns / MaxRuns / 1000) + " seconds"; 
          ea1.buff.append(ea1.temp + "\r\n"); 
          System.out.println("Best Fitness Value found during " + MaxRuns + 
                             " EA runs = " + 
                             overall_BestofRuns); 
          ea1.temp = "Best Fitness Value found during " + MaxRuns + 
              " EA runs = " + 
              overall_BestofRuns; 
          ea1.buff.append(ea1.temp + "\r\n"); 
 
          for (x = 1; x <= MaxRuns; x++) 
          { 
            System.out.print("Run #" + x + ". "); 
            ea1.temp = "Run #" + x + "). "; 
            ea1.buff.append(ea1.temp + "\r\n"); 
            for (y = 0; y < 5; y++) 
            { 
              System.out.print(runFitnessTimes[x - 1][y] + " | "); 
              ea1.temp = runFitnessTimes[x - 1][y] + " | "; 
              ea1.buff.append(ea1.temp); 
            } 
            System.out.println(" "); 
            ea1.buff.append("\r\n"); 
          } 
          System.out.println(" "); 
          ea1.buff.append("\r\n"); 
          System.out.print("Best All Runs: "); 
          ea1.temp = "Best All Runs: "; 
          ea1.buff.append(ea1.temp + "\r\n"); 
          for (j = 0; j < ea1.IntNumContracts + 1; j++) 
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          { 
            System.out.print(ea1.Best_All_Runs[j] + " | "); 
            ea1.temp = ea1.Best_All_Runs[j] + " | "; 
            ea1.buff.append(ea1.temp); 
          } 
          System.out.println("\n "); 
          ea1.buff.append("\r\n\n"); 
          System.out.println("Total Time to Complete All " + numRuns + "Runs: " + 
                             TotalTimetoCompleteforAllRuns); 
          ea1.temp = "Total Time to Complete All " + numRuns + "Runs: " + 
              TotalTimetoCompleteforAllRuns; 
          ea1.buff.append("\r\n"); 
          System.out.println("D Array: "); 
          ea1.buff.append("D Array: "); 
          ea1.buff.append("\r\n"); 
          for (j = 0; j < ea1.NumPeriods; j++) 
          { 
            System.out.println(ea1.D[j]); 
            ea1.temp = ea1.D[j] + "\n"; 
            ea1.buff.append(ea1.temp + "\r\n"); 
          } 
          System.out.println("\n "); 
          ea1.buff.append("\r\n"); 
          if (numRuns == 1) 
          { 
            ea1.write_to_file(true, ""); 
          } 
          else 
          { 
            ea1.write_to_file(false, ""); 
          } 
          Bingo = 0; 
 
          if (ea1.gd >= .3) 
          { 
            if (z_count <= 2) 
            { 
              ea1.gp = ea1.gp + increment_gp; 
              ea1.gd = 0; 
              z_count = z_count + 1; 
            } 
            if (z_count > 2) 
            { 
              z_count = 0; 
              ea1.gp = .1; 
              ea1.gd = 0; 
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            } 
          } 
          ea1.gd = ea1.gd + increment_gd; 
        }  
      }  
    }  
  }  
 
  private void jbInit() 
      throws Exception 
  { 
  } 
} 
 



    

 
    

224

APPENDIX B: SOURCE CODE FOR SBCP-EA 
 
 
Training 

Start.java 
 
package sim_ea; 
import java.util.*; 
import java.lang.*; 
import java.lang.Math.*; 
 
public class start 
{ 
    /** initialize variables **/ 
    /************SIM VARIABLES**************************************/ 
    public sim sim1; 
    public double sim_demand[][]; 
    public double sim_price[][]; 
    public double[][] sim_chromosome_value; 
    public int sim_instances; 
    
/*********************************************************************/ 
    int NumPeriods; 
    int PopSize;  
    int maxGenerations;  
    double OnePointCrossoverRate; 
    double UniformCrossoverRate; 
    double MutationRate1; 
    double MutationRate2; 
    int gen; 
    double[][] Chromosome; 
    Random Rand_Number; 
    ReadFile read; 
    WriteFile write; 
    double NumContracts; 
    int n_scale; 
    int IntNumContracts; 
    double[] B = new double[3]; 
    String temp; 
    String temp2; 
    StringBuffer buff; 
    StringBuffer buff2; 
    double rp; 
    double rd; 
    double gp; 
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    double ad; 
    double gd; 
    double B1; 
    double B2; 
    double B3; 
    double iLP_Opt; 
    double[] rp_Array; 
    double[] rd_Array; 
    double[] D; 
    int[] Contract_Length; 
    double[] TCQ; 
    double[] TCX; 
    int[] Contract_Period; 
    int[] NumContracts_EachPeriod; 
    int feasibilityFlag = 0; 
    int feasibilityFlagPool = 0; 
    int indexHolder; 
    double[] bestChromosome; 
    double[][] Pool; 
    int PoolSize; 
    int counter; 
    int NumOffspring; 
    double Date; 
    int FileNum = 0;  
    int change; 
    double[] Best_All_Runs; 
    int Repair1; 
    int Repair2; 
    int RepairTie; 
    int AlreadyDone = 0; 
    Vector Fill_Best = new Vector(); 
 
    public start() 
    { 
      this.Rand_Number = new Random(); 
      this.read = new ReadFile("input.txt"); 
      this.buff = new StringBuffer(); 
      this.buff2 = new StringBuffer(); 
    } 
 
    private void read_input_file() 
    { 
      System.out.println("DATE: " + Date); 
      temp = "DATE: " + Date; 
      buff.append(temp + "\r\n"); 
      System.out.println("N = " + NumPeriods + ", gp = " + gp + ", ad = " + ad + 
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                         ", gd = " + gd + ", B1 = " + B1 + " , B2 = " + B2 + 
                         ", B3 = " + B3); 
      temp = "N = " + NumPeriods + ", gp = " + gp + ", ad = " + ad + ", gd = " + 
          gd + ", B1 = " + B1 + " , B2 = " + B2 + ", B3 = " + B3; 
      buff.append(temp + "\r\n"); 
 
      NumContracts = .5 * NumPeriods * (NumPeriods + 1); 
      IntNumContracts = new Double(NumContracts).intValue(); 
 
      System.out.println("Number of contracts =" + IntNumContracts + 
                         ", NumPeriods = " + NumPeriods); 
      temp = "!Number of contracts =" + IntNumContracts; 
      buff.append(temp + "\r\n"); 
 
      System.out.println("LP Optimal =" + iLP_Opt); 
      temp = "LP Optimal =" + iLP_Opt; 
      buff.append(temp + "\r\n"); 
    } 
 
    private void fill_arrays() 
    { 
      double product = 1; 
      int count; 
      int i; 
      int j; 
      int index1; 
      int enumerate1; 
      int enumerate2; 
      Contract_Period = new int[IntNumContracts]; 
      Contract_Length = new int[IntNumContracts]; 
      Pool = new double[PoolSize][IntNumContracts + 1]; 
      int p = new Integer(Rounding.toString(gp * 10, 0)).intValue(); 
      int ad_d = new Integer(Rounding.toString(ad * 1, 0)).intValue(); 
      int d = new Integer(Rounding.toString(gd * 10, 0)).intValue(); 
      rp = 1 - gp; 
      rd = 1 + gd; 
      rp_Array = new double[NumPeriods]; 
      rd_Array = new double[NumPeriods]; 
      D = new double[NumPeriods]; 
      NumContracts_EachPeriod = new int[NumPeriods]; 
 
      rp_Array[0] = 1; 
      for (count = 1; count < NumPeriods; count++) 
      { 
        product = product * rp; 
        rp_Array[count] = product; 
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      } 
      product = 1; 
      rd_Array[0] = 1; 
      for (count = 1; count < NumPeriods; count++) 
      { 
        product = product * rd; 
        rd_Array[count] = product; 
      } 
      D[0] = ad; 
      for (count = 1; count < NumPeriods; count++) 
      { 
        D[count] = new Double(Math.ceil(ad * rd_Array[count])).intValue(); 
      } 
      for (i = 0; i < NumPeriods; i++) 
      { 
        NumContracts_EachPeriod[i] = (NumPeriods - (i)) * (i + 1); 
      } 
      index1 = 0; 
      for (enumerate1 = 0; enumerate1 <= NumPeriods; enumerate1++) 
      { 
        for (enumerate2 = 1; enumerate2 <= NumPeriods - enumerate1;  
             enumerate2++) 
        { 
          Contract_Length[index1] = enumerate2; 
          index1 = index1 + 1; 
        } 
      } 
      count = 0; 
      for (i = 1; i < NumPeriods + 1; i++) 
      { 
        for (j = 1; j < NumPeriods + 2 - i; j++) 
        { 
          Contract_Period[count] = i; 
          count = count + 1; 
        } 
      } 
    } 
 
    private void initialize_chromosomes() 
    { 
      double prob_purchase = .5;  
      double Num_Contracts = NumPeriods * .5 * (NumPeriods + 1); 
      Chromosome = new double[PopSize][IntNumContracts + 1]; 
      int j; 
      int k; 
      double number; 
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      double tempz; 
      double tempzz; 
      double tempy; 
      int number2; 
      int x; 
      int y; 
 
      for (k = 0; k < PopSize; k++) 
      { 
        Chromosome[k][0] = 999999; 
        for (j = 1; j <= IntNumContracts; j++) 
        { 
          number = Rand_Number.nextDouble(); 
          if (number <= prob_purchase) 
          { 
            tempz = Rand_Number.nextDouble() * 100;  
            tempzz = Rand_Number.nextDouble() * 10;  
            tempy = (tempz * tempzz) / 2; 
            number2 = new Integer(Rounding.toString(tempy, 0)).intValue(); 
            Chromosome[k][j] = number2; 
          } 
          else 
          { 
            Chromosome[k][j] = 0; 
          } 
        } 
      } 
    } 
 
    public void print_Chromosome() 
    { 
      int start; 
      int start1; 
      System.out.println("Print Pool"); 
      for (start = 0; start < PopSize; start++) 
      { 
        for (start1 = 0; start1 < IntNumContracts; start1++) 
        { 
          System.out.print(Chromosome[start][start1] + " , "); 
        } 
        System.out.println(); 
      } 
      System.out.println(); 
 
    } 
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    public void print_Chromosome(int indexHolder) 
    { 
      System.out.println("Repaired Chromosome: "); 
      for (int k5 = 0; k5 < this.IntNumContracts; k5++) 
      { 
        System.out.print(this.Pool[indexHolder][k5] + " , "); 
      } 
      System.out.println("\n"); 
    } 
 
    private void initialize_chromosome_pool(int PopSize, int IntNumContracts) 
    { 
      int i; 
      int j; 
      for (i = 0; i < PopSize; i++) 
      { 
        for (j = 0; j < IntNumContracts + 1; j++) 
        { 
          Pool[i][j] = Chromosome[i][j]; 
        } 
      } 
    } 
 
    private void OnePoint_crossover_operator() 
    { 
      double randNum; 
      int cutPoint; 
      int[] OffSpringOne = new int[IntNumContracts]; 
      int[] OffSpringTwo = new int[IntNumContracts]; 
      int[] ParentOne = new int[IntNumContracts]; 
      int[] ParentTwo = new int[IntNumContracts]; 
      int i; 
      int j; 
      int x; 
      int z; 
      int num1; 
      int num2; 
      Vector tabu = new Vector(); 
      for (int a = 0; a < PopSize; a++) 
      { 
        tabu.addElement(new Integer(a)); 
      } 
 
      for (x = 0; x < PopSize / 2; x++) 
      { 
        randNum = Rand_Number.nextDouble(); 
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        if (randNum < OnePointCrossoverRate) 
        { 
          randNum = Rand_Number.nextDouble(); 
          randNum = randNum * (IntNumContracts - 1) + 1; 
          cutPoint = new Integer(Rounding.toString(randNum, 0)).intValue(); 
          cutPoint = cutPoint - 1; 
          num1 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
              intValue(); 
          num2 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
              intValue(); 
          if (Pool[num1][0] > Pool[num2][0]) 
          { 
            for (z = 1; z < IntNumContracts + 1; z++) 
            { 
              ParentOne[z - 1] = new Double(Pool[num2][z]).intValue(); 
            } 
          } 
          else 
          { 
            for (z = 1; z < IntNumContracts + 1; z++) 
            { 
              ParentOne[z - 1] = new Double(Pool[num1][z]).intValue(); 
            } 
          } 
          num1 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
              intValue(); 
          num2 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
              intValue(); 
          if (Pool[num1][0] > Pool[num2][0]) 
          { 
            for (z = 1; z < IntNumContracts + 1; z++) 
            { 
              ParentTwo[z - 1] = new Double(Pool[num2][z]).intValue(); 
            } 
          } 
          else 
          { 
            for (z = 1; z < IntNumContracts + 1; z++) 
            { 
              ParentTwo[z - 1] = new Double(Pool[num1][z]).intValue(); 
            } 
          } 
          for (i = 0; i < cutPoint; i++) 
          { 
            OffSpringOne[i] = ParentOne[i]; 
            OffSpringTwo[i] = ParentTwo[i]; 
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          } 
          for (i = cutPoint; i < IntNumContracts; i++) 
          { 
            OffSpringOne[i] = ParentTwo[i]; 
            OffSpringTwo[i] = ParentOne[i]; 
          } 
          //***************** 
           for (i = 1; i < IntNumContracts + 1; i++) 
           { 
             Pool[counter][i] = OffSpringOne[i - 1]; 
             Pool[counter + 1][i] = OffSpringTwo[i - 1]; 
           } 
          counter = counter + 2; 
          NumOffspring = NumOffspring + 2; 
        } 
      } 
    } 
 
    private void Uniform_crossover_operator() 
    { 
      int i; 
      int j; 
      int k; 
      int x; 
      int z; 
      double randNum; 
      int decisionVariable; 
      int[] scrambleArray = new int[IntNumContracts]; 
      int[] OffSpringOne = new int[IntNumContracts]; 
      int[] OffSpringTwo = new int[IntNumContracts]; 
      int[] ParentOne = new int[IntNumContracts]; 
      int[] ParentTwo = new int[IntNumContracts]; 
      int decision; 
      int num1; 
      int num2; 
      Vector tabu = new Vector(); 
 
      for (int a = 0; a < PopSize; a++) 
      { 
        tabu.addElement(new Integer(a)); 
      } 
      for (x = 0; x < PopSize / 2; x++) 
      { 
        for (i = 0; i < IntNumContracts; i++) 
        { 
          randNum = Rand_Number.nextDouble(); 
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          if (randNum < UniformCrossoverRate) 
          { 
            scrambleArray[i] = 1; 
          } 
          else 
          { 
            scrambleArray[i] = 0; 
          } 
        } 
        num1 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
            intValue(); 
        num2 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
            intValue(); 
        if (Pool[num1][0] > Pool[num2][0]) 
        { 
          for (z = 1; z < IntNumContracts + 1; z++) 
          { 
            ParentOne[z - 1] = new Double(Pool[num2][z]).intValue(); 
          } 
        } 
        else 
        { 
          for (z = 1; z < IntNumContracts + 1; z++) 
          { 
            ParentOne[z - 1] = new Double(Pool[num1][z]).intValue(); 
          } 
        } 
        num1 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
            intValue(); 
        num2 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
            intValue(); 
        if (Pool[num1][0] > Pool[num2][0]) 
        { 
          for (z = 1; z < IntNumContracts + 1; z++) 
          { 
            ParentTwo[z - 1] = new Double(Pool[num2][z]).intValue(); 
          } 
        } 
        else 
        { 
          for (z = 1; z < IntNumContracts + 1; z++) 
          { 
            ParentTwo[z - 1] = new Double(Pool[num1][z]).intValue(); 
          } 
        } 
        for (k = 0; k < IntNumContracts; k++) 
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        { 
          decision = scrambleArray[k]; 
          if (decision == 0) 
          { 
            OffSpringOne[k] = ParentOne[k]; 
            OffSpringTwo[k] = ParentTwo[k]; 
          } 
          else if (decision == 1) 
          { 
            OffSpringOne[k] = ParentTwo[k]; 
            OffSpringTwo[k] = ParentOne[k]; 
          } 
        } 
        //***************** 
 
         for (i = 1; i < IntNumContracts + 1; i++) 
         { 
           Pool[counter][i] = OffSpringOne[i - 1]; 
           Pool[counter + 1][i] = OffSpringTwo[i - 1]; 
         } 
        counter = counter + 2; 
        NumOffspring = NumOffspring + 2; 
      } 
    } 
 
    private void mutation_operator() 
    { 
//Mutation #2: Local Seach with Tabu List 
      int x; 
      int z; 
      int i; 
      int j; 
      int k; 
      double randNum; 
      int decisionVariable; 
      int[] scrambleArray = new int[IntNumContracts]; 
      int[] OffSpring = new int[IntNumContracts]; 
      int[] Parent = new int[IntNumContracts]; 
      int decision; 
      int num1; 
      int num2; 
      int P1 = 999; 
      double tempz = 0; 
      double tempzz; 
      int number2; 
      int number3; 
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      Integer number4; 
      int listSize; 
      int redo_flag = 0; 
 
      Vector list = new Vector(); 
      Vector tabu = new Vector(); 
 
      for (int a = 0; a < PopSize; a++) 
      { 
        tabu.addElement(new Integer(a)); 
      } 
      for (x = 0; x < PopSize; x++) 
      { 
         for (i = 0; i < IntNumContracts; i++) 
        { 
          randNum = Rand_Number.nextDouble(); 
          if (randNum < MutationRate2) 
          { 
            scrambleArray[i] = 1; 
          } 
          else 
          { 
            scrambleArray[i] = 0; 
          } 
        } 
 
//_______________________________________________________________ 
 
        randNum = Rand_Number.nextInt(tabu.size()); 
        int temp = new Double(randNum).intValue(); 
        num1 = ( (Integer) tabu.elementAt(temp)).intValue(); 
         
for (z = 1; z < IntNumContracts + 1; z++) 
        { 
          Parent[z - 1] = new Double(Pool[num1][z]).intValue(); 
          OffSpring[z - 1] = new Double(Pool[num1][z]).intValue(); 
        } 
        number4 = new Integer(num1); 
        list.addElement(number4); 
        for (k = 0; k < IntNumContracts; k++) 
        { 
          decision = scrambleArray[k]; 
          if (decision == 0) 
          { 
            OffSpring[k] = Parent[k]; 
          } 
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          else if (decision == 1) 
          { 
             
            int size1; 
            int Purchased = 0; 
            double cumulativeTotal = 0; 
            int index2; 
            int period = 0; 
            int index3; 
            double Total; 
            double tempy1; 
            double tempy2; 
            double tempy3; 
            int turns; 
            int numx; 
 
            TCQ = new double[IntNumContracts]; 
            TCX = new double[IntNumContracts]; 
            for (j = 0; j < IntNumContracts; j++) 
            { 
 
              index2 = Contract_Period[j]; 
              if (j == k) 
              { 
                period = index2; 
              } 
              index3 = Contract_Length[j]; 
              size1 = OffSpring[j]; 
              TCQ[j] = rp_Array[index2 - 1] * ( (B[0] * index3) + B[2]); 
              if (size1 > 0) 
              { 
                Purchased = 1; 
              } 
              else 
              { 
                Purchased = 0; 
              } 
              TCX[j] = rp_Array[index2 - 1] * B[1] * index3; 
 
              Total = 0; 
              Total = TCQ[j] * size1 + TCX[j] * Purchased; 
 
              cumulativeTotal = cumulativeTotal + Total; 
            } 
 
            tempy1 = cumulativeTotal; 
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            tempy3 = tempy1; 
            tempy2 = 0; 
            turns = 0;  
            while (tempy2 < tempy1) 
            { 
              cumulativeTotal = 0; 
              tempy1 = tempy3; 
              turns = turns + 1; 
              randNum = Rand_Number.nextDouble(); 
              randNum = randNum * 
                  ( (D[period - 1] * Rand_Number.nextDouble() * .3) - 1) + 1; 
              numx = new Integer(Rounding.toString(randNum, 0)).intValue(); 
              numx = numx - 1; 
              randNum = Rand_Number.nextDouble(); 
              if (Parent[k] > 0) 
              { 
                if (randNum <= .8) 
                { 
                  tempz = Parent[k] + (numx * -1);  
                  if (tempz < 0) 
                  { 
                    tempz = 0; 
                  } 
                } 
     
                number2 = new Integer(Rounding.toString(tempz, 0)).intValue(); 
                OffSpring[k] = number2; 
              } 
               
              TCQ = new double[IntNumContracts]; 
              TCX = new double[IntNumContracts]; 
 
              for (j = 0; j < IntNumContracts; j++) 
              { 
                index2 = Contract_Period[j]; 
                index3 = Contract_Length[j]; 
                size1 = OffSpring[j]; 
                TCQ[j] = rp_Array[index2 - 
                    1] * ( (B[0] * index3) + B[2]); 
                if (size1 > 0) 
                { 
                  Purchased = 1; 
                } 
                else 
                { 
                  Purchased = 0; 
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                } 
                TCX[j] = rp_Array[index2 - 1] * B[1] * index3; 
 
                Total = 0; 
                Total = TCQ[j] * size1 + TCX[j] * Purchased; 
                cumulativeTotal = cumulativeTotal + Total; 
              } 
              tempy2 = cumulativeTotal; 
              tempy3 = tempy2; 
              if (turns == 20) 
              { 
                OffSpring[k] = Parent[k]; 
                tempy1 = 0; 
              } 
            } 
            turns = 0; 
          }  
        }  
        //***************** 
 
         for (i = 1; i < IntNumContracts + 1; i++) 
         { 
           Pool[counter][i] = OffSpring[i - 1]; 
         } 
        counter = counter + 1; 
        NumOffspring = NumOffspring + 1; 
      } 
    } 
 
    private void mutation_operator_original() 
    { 
      //Mutation #1: Tabu List with decreases in randomly selected genes *Not Used 
      int x; 
      int z; 
      int i; 
      int j; 
      int k; 
      double randNum; 
      int decisionVariable; 
      int[] scrambleArray = new int[IntNumContracts]; 
      int[] OffSpring = new int[IntNumContracts]; 
      int[] Parent = new int[IntNumContracts]; 
      int decision; 
      int num1; 
      int num2; 
      int P1 = 999; 
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      double tempz; 
      double tempzz; 
      double tempy; 
      int number2; 
      int number3; 
      Integer number4; 
      int listSize; 
      int redo_flag = 0; 
      int index2; 
      int period = 0; 
 
      Vector list = new Vector(); 
      Vector tabu = new Vector(); 
 
      for (int a = 0; a < PopSize; a++) 
      { 
        tabu.addElement(new Integer(a)); 
      } 
      for (x = 0; x < PopSize; x++) 
      { 
        for (i = 0; i < IntNumContracts; i++) 
        { 
          randNum = Rand_Number.nextDouble(); 
          if (randNum < MutationRate1) 
          { 
            scrambleArray[i] = 1; 
          } 
          else 
          { 
            scrambleArray[i] = 0; 
          } 
        } 
        //_______________________________________________________________ 
 
        randNum = Rand_Number.nextInt(tabu.size()); 
        int temp = new Double(randNum).intValue(); 
        num1 = ( (Integer) tabu.elementAt(temp)).intValue(); 
        
        for (z = 1; z < IntNumContracts + 1; z++) 
        { 
          Parent[z - 1] = new Double(Pool[num1][z]).intValue(); 
          OffSpring[z - 1] = new Double(Pool[num1][z]).intValue(); 
        } 
        number4 = new Integer(num1); 
        list.addElement(number4); 
        for (k = 0; k < IntNumContracts; k++) 
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        { 
          decision = scrambleArray[k]; 
          if (decision == 0) 
          { 
            OffSpring[k] = Parent[k]; 
          } 
          else if (decision == 1) 
          { 
            for (j = 0; j < IntNumContracts; j++) 
            { 
              index2 = Contract_Period[j]; 
              if (j == k) 
              { 
                period = index2; 
              } 
            } 
            randNum = Rand_Number.nextDouble(); 
            tempz = randNum * 
                ( (D[period - 1] * Rand_Number.nextDouble() * .3) - 1) + 1;  
            number2 = new Integer(Rounding.toString(tempz, 0)).intValue(); 
            if (Parent[k] > 0) 
            { 
              if (Parent[k] > number2) 
              { 
                OffSpring[k] = Parent[k] - number2; 
              } 
              else 
              { 
                OffSpring[k] = 0; 
              } 
            } 
          } 
        } 
        for (i = 1; i < IntNumContracts + 1; i++) 
        { 
          Pool[counter][i] = OffSpring[i - 1]; 
        } 
        counter = counter + 1; 
        NumOffspring = NumOffspring + 1; 
      } 
    } 
 
    private void select_next_generation() 
    { 
      int i; 
      int j; 
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      int x; 
      int y; 
      double randNum; 
      int number; 
      int num1; 
      int num2; 
      Vector tabu = new Vector(); 
      Chromosome[0] = this.bestChromosome.clone(); 
      for (int a = 0; a < NumOffspring + PopSize; a++) 
      { 
        tabu.addElement(new Integer(a)); 
      } 
      for (i = 1; i < PopSize; i++) 
      { 
        randNum = Rand_Number.nextDouble(); 
        randNum = randNum * (NumOffspring + PopSize - 1) + 1; 
        number = new Integer(Rounding.toString(randNum, 0)).intValue(); 
        number = number - 1; 
        num1 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
            intValue(); 
        num2 = ( (Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))). 
            intValue(); 
        if (Pool[num1][0] < Pool[num2][0]) 
        { 
          for (j = 0; j < IntNumContracts + 1; j++) 
          { 
            Chromosome[i][j] = Pool[num1][j]; 
          } 
        } 
        else 
        { 
          for (j = 0; j < IntNumContracts + 1; j++) 
          { 
            Chromosome[i][j] = Pool[num2][j]; 
          } 
        } 
      } 
    } 
 
    public void print_Chromosome_pool_with_FV() 
    { 
      int start; 
      int start1; 
      System.out.println("Print Pool"); 
      for (start = 0; start < NumOffspring; start++) 
      { 
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        for (start1 = 0; start1 < IntNumContracts; start1++) 
        { 
          System.out.print(Pool[start][start1] + " | "); 
        } 
        System.out.println("<-- PoolFitnessValue = " + Pool[start][0]); 
      } 
      System.out.println(); 
    } 
 
    public void print_Chromosome_pool_withOUT_FV(int PopSize, int IntNumContracts) 
    { 
      int start; 
      int start1; 
      System.out.println("Print Pool"); 
      for (start = 0; start < NumOffspring; start++) 
      { 
        for (start1 = 0; start1 < IntNumContracts; start1++) 
        { 
          System.out.print(Pool[start][start1] + " | "); 
        } 
        System.out.println(); 
      } 
      System.out.println(); 
    } 
 
    private void check_feasibility_pool(int NumPeriods) 
    { 
      int k = 0; 
      int i = 0; 
      int j = 0; 
      int temp1 = 0; 
      int temp3 = 0; 
      int offset; 
      int index; 
      int y; 
      int[] Copy = new int[IntNumContracts]; 
 
      for (i = 1; i < IntNumContracts + 1; i++) 
      { 
        Copy[i - 1] = new Double(Pool[indexHolder][i]).intValue(); 
      } 
      feasibilityFlagPool = 0; 
      for (k = 1; k <= NumPeriods; k++) 
      { 
        offset = k - 1; 
        index = offset; 
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        for (i = NumPeriods - k; i < NumPeriods; i++) 
        { 
          for (j = 1; j <= NumPeriods - k + 1; j++) 
          { 
            index = index + 1; 
            temp1 = Copy[index - 1]; 
            temp3 = temp3 + temp1; 
          } 
          offset = offset - 1; 
          index = index + offset; 
        } 
        if (D[k - 1] > temp3) 
        { 
          feasibilityFlagPool = 1; 
        } 
        temp3 = 0; 
      } 
    } 
 
    private void repair_function_pool(int NumPeriods) 
    { 
      NumContracts = .5 * NumPeriods * (NumPeriods + 1); 
      IntNumContracts = new Double(NumContracts).intValue(); 
 
      int k = 0; 
      int i = 0; 
      int j = 0; 
      int temp1 = 0; 
      int temp3 = 0; 
      int index = 0; 
      double difference = 0; 
      int sizeDifference = 0; 
      double[] OffSpring1 = new double[IntNumContracts + 1]; 
      double[] OffSpring2 = new double[IntNumContracts + 1]; 
      double[][] DeficitArray = new double[NumPeriods][IntNumContracts + 1]; 
      int[] CommonContracts = new int[IntNumContracts + 1]; 
      int countPeriod3 = 0; 
      int k5; 
      int k6; 
      int holder = 0; 
      int holderB = 0; 
      int maxNum; 
      int ConCount; 
      int maxNumIndex = 0; 
      double deficitAmount; 
      int turns = 0; 
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      int numDeficit = IntNumContracts; 
      int requiredRepair = 0; 
      turns = 0; 
      numDeficit = NumPeriods + 1;  
      temp3 = 0; 
      index = 0; 
      temp1 = 0; 
      difference = 0; 
      sizeDifference = 0; 
      countPeriod3 = 0; 
      holder = 0; 
      ConCount = 0; 
      maxNum = 0; 
      maxNum = 0; 
      maxNumIndex = 0; 
      deficitAmount = 0; 
      holderB = 0; 
      int period = 0; 
      int offset_x = 0; 
      int[] Copy1 = new int[IntNumContracts + 1]; 
      int[] Copy2 = new int[IntNumContracts + 1]; 
      int[] Best2 = new int[IntNumContracts + 1]; 
 
      for (i = 0; i < IntNumContracts + 1; i++) 
      { 
        Copy1[i] = new Double(Pool[indexHolder][i]).intValue(); 
      } 
      requiredRepair = 0; 
      while (numDeficit > 0) 
      { 
        requiredRepair = 0; 
        numDeficit = 0; 
        turns = turns + 1; 
        DeficitArray = new double[NumPeriods][IntNumContracts + 1]; 
        CommonContracts = new int[IntNumContracts + 1]; 
 
        for (i = 0; i < IntNumContracts; i++) 
        { 
          CommonContracts[i] = 0; 
        } 
 
        //-------------- 
        // This code finds the deficit amount for each period 
        //-------------- 
 
        for (k = 1; k <= NumPeriods; k++)  
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        { 
          temp3 = 0; 
          if (k == 1) 
          { 
            index = k - 1; 
            for (j = 1; j <= NumPeriods; j++) 
            { 
              index = index + 1; 
              temp1 = 0; 
              temp1 = Copy1[index];  
              temp3 = temp3 + temp1; 
            } 
          } 
          if (k > 1) 
          { 
            index = k - 1; 
            offset_x = k - 2; 
            for (i = 1; i <= k; i++) 
            { 
              for (j = k; j <= NumPeriods; j++) 
              { 
                index = index + 1; 
                temp1 = 0; 
                temp1 = Copy1[index];  
                temp3 = temp3 + temp1; 
              } 
              index = index + offset_x; 
              offset_x = offset_x - 1; 
            } 
          } 
          if (temp3 < D[k - 1]) 
          { 
            numDeficit = numDeficit + 1; 
            requiredRepair = 1; 
            difference = D[k - 1] - temp3; 
            sizeDifference = new Double(Math.ceil(difference)).intValue(); 
            DeficitArray[k - 1][0] = sizeDifference; 
          }  
          else 
          { 
            DeficitArray[k - 1][0] = 0; 
          } 
        }  
 
//----------------------------- 
// This code fills in contracts for deficit periods 
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//------------------------ 
 
        for (k = 1; k <= NumPeriods; k++)  
        { 
          if (DeficitArray[k - 1][0] != 0) 
          { 
            if (k == 1) 
            { 
              countPeriod3 = 0; 
              index = k - 1; 
 
              //----------------------------------------- 
              // DeficitArray: One array for every period 
              // first index in every array is the deficit for that period 
              // Subsequent genes list the contracts which are active for a given period 
              //------------------------------------------ 
 
              for (j = 1; j <= NumPeriods; j++) 
              { 
                index = index + 1; 
                countPeriod3 = countPeriod3 + 1; 
                DeficitArray[k - 1][countPeriod3] = index; 
              } 
            } 
            if (k > 1) 
            { 
              countPeriod3 = 0; 
              index = k - 1; 
              offset_x = k - 2; 
              for (i = 1; i <= k; i++) 
              { 
 
                //----------------------------------------- 
                // DeficitArray: One array for every period 
                // first index in every array is the deficit for that period 
                // Subsequent genes list the contracts which are active for a given period 
                //------------------------------------------ 
 
                for (j = k; j <= NumPeriods; j++) 
                { 
                  index = index + 1; 
                  countPeriod3 = countPeriod3 + 1; 
                  DeficitArray[k - 1][countPeriod3] = index; 
                } 
                index = index + offset_x; 
                offset_x = offset_x - 1; 
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              } 
            } 
          } 
        }  
 
        //---------------------------------------------- 
        // This code counts, for each contract, the number of times 
        //  it appears in a deficit period 
        //-------------------------------------------- 
        int holder2 = 0; 
        for (k5 = 0; k5 < NumPeriods; k5++) 
        { 
          if (DeficitArray[k5][0] != 0) 
          { 
            for (k6 = 1; k6 < IntNumContracts + 1; k6++)  
            { 
              holder = new Double(DeficitArray[k5][k6]).intValue(); 
              if (holder != 0) 
              { 
                ConCount = CommonContracts[holder]; 
                ConCount = ConCount + 1; 
                CommonContracts[holder] = ConCount; 
              } 
            } 
          } 
        } 
 
        //---------------------------------------------- 
        // NumCommonContracts = variable containing the total number of 
        // contracts in periods with deficits 
        //-------------------------------------------- 
 
        CommonContracts[0] = 0; 
 
        //----------------------- 
        // The code that follows assigns the index number of the 1st contract to 
        // have the highest number of occurances in a deficit period to variable 
        // maxNumIndex; the highest number of occurances is stored in maxNum 
        //--------------------------------------- 
 
        maxNum = 0; 
        maxNumIndex = 0; 
        for (k6 = 1; k6 <= IntNumContracts; k6++)  
        { 
          holder = CommonContracts[k6]; 
          if (holder >= maxNum) 
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          { 
            maxNum = holder; 
            maxNumIndex = k6; 
          } 
        } 
        if (maxNumIndex > 0) 
        { 
          for (k5 = 0; k5 < NumPeriods; k5++) 
          { 
            if (DeficitArray[k5][0] != 0) 
            { 
              for (k6 = 1; k6 < IntNumContracts + 1; k6++) 
              { 
                if (maxNumIndex == DeficitArray[k5][k6]) 
                { 
                  period = k5; 
                  k6 = IntNumContracts + 1; 
                  k5 = NumPeriods; 
                } 
              } 
            } 
          } 
 
          deficitAmount = new Double(DeficitArray[period][0]).intValue(); 
          DeficitArray[period][0] = 0; 
 
          //---------------------- 
          // holderB = the deficitAmount for a given period divided by 
          // the number of contracts of the given period 
          //------------------------ 
 
          holderB = new Integer(Rounding.toString(deficitAmount, 0)).intValue(); 
          holder = Copy1[maxNumIndex]; 
          holder = holder + holderB; 
          Copy1[maxNumIndex] = holder; 
        } 
      }  
 
      double Total; 
      double cumulativeTotal; 
      int index2; 
      int index3; 
      double size1; 
 
      Total = 0; 
      cumulativeTotal = 0; 
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      for (j = 1; j <= IntNumContracts; j++) 
      { 
        index2 = Contract_Period[j - 1]; 
        index3 = Contract_Length[j - 1]; 
        size1 = Copy1[j]; 
        if (size1 > 0) 
        { 
          /**********************************/ 
          TCQ[j - 1] = rp_Array[index2 - 1] * ( (B[0] * index3) + B[2]); 
          TCX[j - 1] = rp_Array[index2 - 1] * B[1] * index3; 
          Total = 0; 
          Total = TCQ[j - 1] * size1 + TCX[j - 1]; 
          /********************************/ 
 
          cumulativeTotal = cumulativeTotal + Total; 
          Copy1[0] = new Double(cumulativeTotal).intValue(); 
        } 
      } 
 
      for (i = 0; i < IntNumContracts + 1; i++) 
      { 
        OffSpring1[i] = new Integer(Copy1[i]).doubleValue(); 
      } 
      temp1 = 0; 
      temp3 = 0; 
      index = 0; 
      difference = 0; 
      sizeDifference = 0; 
      feasibilityFlagPool = 0; 
 
      Total = 0; 
      cumulativeTotal = 0; 
 
      index3 = 0; 
      for (i = 0; i < IntNumContracts + 1; i++) 
      { 
        CommonContracts[i] = 0; 
        for (j = 0; j < NumPeriods; j++) 
        { 
          DeficitArray[j][i] = 0; 
        } 
      } 
 
      period = 0; 
      turns = turns + 1; 
      temp3=0; 
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      for (i = 0; i < IntNumContracts + 1; i++) 
      { 
        Copy2[i] = new Double(Pool[indexHolder][i]).intValue(); 
        Best2[i] = new Double(Pool[indexHolder][i]).intValue(); 
      } 
      Best2[0]=9999999; 
      for(int alpha=0;alpha<20;alpha++) 
      { 
        for (i = 0; i < NumPeriods; i++) 
        { 
          for (j = 0; j <= IntNumContracts; j++) 
          { 
            DeficitArray[i][j] = 0; 
            CommonContracts[j] = 0; 
          } 
        } 
        numDeficit = 1; 
        while (numDeficit > 0) 
        { 
          requiredRepair = 0; 
          numDeficit = 0; 
          turns = turns + 1; 
          DeficitArray = new double[NumPeriods][IntNumContracts + 1]; 
          //-------------- 
          // This code finds the deficit amount for each period 
          //-------------- 
 
          for (k = 1; k <= NumPeriods; k++)  
          { 
            temp3 = 0; 
            if (k == 1) 
            { 
              index = k - 1; 
              for (j = 1; j <= NumPeriods; j++) 
              { 
                index = index + 1; 
                temp1 = 0; 
                temp1 = Copy2[index];  
                temp3 = temp3 + temp1; 
              } 
            } 
            if (k > 1) 
            { 
              index = k - 1; 
              offset_x = k - 2; 
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              for (i = 1; i <= k; i++) 
              { 
                for (j = k; j <= NumPeriods; j++) 
                { 
                  index = index + 1; 
                  temp1 = 0; 
                  temp1 = Copy2[index]; 
                  temp3 = temp3 + temp1; 
                } 
                index = index + offset_x; 
                offset_x = offset_x - 1; 
              } 
            } 
            if (temp3 < D[k - 1]) 
            { 
              numDeficit = numDeficit + 1; 
              requiredRepair = 1; 
              difference = D[k - 1] - temp3; 
              sizeDifference = new Double(Math.ceil(difference)).intValue(); 
              DeficitArray[k - 1][0] = sizeDifference; 
            }  
            else 
            { 
              DeficitArray[k - 1][0] = 0; 
            } 
          }  
          if (numDeficit == 0) 
            break; 
//----------------------------- 
// This code fills in contracts for deficit periods 
//------------------------ 
 
          for (k = 1; k <= NumPeriods; k++)  
          { 
            if (DeficitArray[k - 1][0] != 0) 
            { 
              if (k == 1) 
              { 
                countPeriod3 = 0; 
                index = k - 1; 
 
                //----------------------------------------- 
                // DeficitArray: One array for every period 
                // first index in every array is the deficit for that period 
                // Subsequent genes list the contracts which are active for a given period 
                //------------------------------------------ 
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                for (j = 1; j <= NumPeriods; j++) 
                { 
                  index = index + 1; 
                  countPeriod3 = countPeriod3 + 1; 
                  DeficitArray[k - 1][countPeriod3] = index; 
                } 
              } 
              if (k > 1) 
              { 
                countPeriod3 = 0; 
                index = k - 1; 
                offset_x = k - 2; 
                for (i = 1; i <= k; i++) 
                { 
 
                  //----------------------------------------- 
                  // DeficitArray: One array for every period 
                  // first index in every array is the deficit for that period 
                  // Subsequent genes list the contracts which are active for a given period 
                  //------------------------------------------ 
 
                  for (j = k; j <= NumPeriods; j++) 
                  { 
                    index = index + 1; 
                    countPeriod3 = countPeriod3 + 1; 
                    DeficitArray[k - 1][countPeriod3] = index; 
                  } 
                  index = index + offset_x; 
                  offset_x = offset_x - 1; 
                } 
              } 
            } 
          }  
 
          for (int l = NumPeriods - 1; l >= 0; l--) 
          { 
            if (DeficitArray[l][0] != 0) 
            { 
              period = l; 
              break; 
            } 
          } 
          int counter = 0; 
          for (int l = 1; l < DeficitArray[period].length; l++) 
          { 
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            if (DeficitArray[period][l] == 0) 
            { 
              counter = l - 1; 
              break; 
            } 
          } 
          int rand =1+ this.Rand_Number.nextInt(counter-1); 
         
          int contract = new Double(DeficitArray[period][rand]).intValue(); 
          deficitAmount = new Double(DeficitArray[period][0]).intValue(); 
          DeficitArray[period][0] = 0; 
 
          //---------------------- 
          // holderB = the deficitAmount for a given period divided by 
          // the number of contracts of the given period 
          //------------------------ 
 
          holderB = new Integer(Rounding.toString(deficitAmount, 0)).intValue(); 
          holder = Copy2[contract]; 
          holder = holder + holderB; 
          Copy2[contract] = holder; 
        }  
 
        Total = 0; 
        cumulativeTotal = 0; 
        for (j = 1; j <= IntNumContracts; j++) 
        { 
          index2 = Contract_Period[j - 1]; 
          index3 = Contract_Length[j - 1]; 
          size1 = Copy2[j]; 
          if (size1 > 0) 
          { 
            /**********************************/ 
            TCQ[j - 1] = rp_Array[index2 - 1] * ( (B[0] * index3) + B[2]); 
            TCX[j - 1] = rp_Array[index2 - 1] * B[1] * index3; 
            Total = 0; 
            Total = TCQ[j - 1] * size1 + TCX[j - 1]; 
            /********************************/ 
 
            cumulativeTotal = cumulativeTotal + Total; 
            Copy2[0] = new Double(cumulativeTotal).intValue(); 
          } 
        } 
        if(Best2[0]>Copy2[0]) 
        { 
          for(int beta=0;beta<this.IntNumContracts;beta++) 
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          { 
 
            Best2[beta] = Copy2[beta]; 
          } 
        } 
        for(int m=0;m<this.IntNumContracts;m++) 
        { 
          Copy2[m]= new Double(Pool[indexHolder][m]).intValue(); 
        } 
      } 
      for(int beta=0;beta<this.IntNumContracts;beta++) 
      { 
        Copy2[beta] = Best2[beta]; 
      } 
 
      for (i = 0; i < IntNumContracts + 1; i++) 
      { 
        OffSpring2[i] = new Integer(Copy2[i]).doubleValue(); 
      } 
 
      temp1 = 0; 
      temp3 = 0; 
      index = 0; 
      difference = 0; 
      sizeDifference = 0; 
 
      if (OffSpring1[0] < OffSpring2[0]) 
      { 
        for (i = 0; i < IntNumContracts + 1; i++) 
        { 
          Pool[indexHolder][i] = OffSpring1[i]; 
        } 
        Repair1 = Repair1 + 1; 
      } 
 
      if (OffSpring1[0] == OffSpring2[0]) 
      { 
        for (i = 0; i < IntNumContracts + 1; i++) 
        { 
          Pool[indexHolder][i] = OffSpring1[i]; 
        } 
        RepairTie = RepairTie + 1; 
      } 
 
      if (OffSpring1[0] > OffSpring2[0]) 
      { 
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        for (i = 0; i < IntNumContracts + 1; i++) 
        { 
          Pool[indexHolder][i] = OffSpring2[i]; 
        } 
        Repair2 = Repair2 + 1; 
      } 
    } 
 
    private int record_best_chromosome_from_Pool(int NumPeriods) 
    { 
      int i; 
      int j; 
      int x; 
      int y; 
      int count = 0; 
      Vector Best = new Vector(); 
      Vector Test = new Vector(); 
      int same = 0; 
 
      NumContracts = .5 * NumPeriods * (NumPeriods + 1); 
      IntNumContracts = new Double(NumContracts).intValue(); 
      change = 0; 
 
      if (gen == 0) 
      { 
        for (i = 0; i < NumOffspring + this.PopSize; i++) 
        { 
          if (i == 0) 
          { 
            for (j = 0; j < IntNumContracts + 1; j++) 
            { 
              bestChromosome[j] = Pool[i][j]; 
            } 
          } 
          if (i > 0) 
          { 
            if (bestChromosome[0] > Pool[i][0]) 
            { 
              for (j = 0; j < IntNumContracts + 1; j++) 
              { 
                bestChromosome[j] = Pool[i][j]; 
              } 
            } 
            else if (bestChromosome[0] == Pool[i][0]) 
            { 
              for (j = 0; j < IntNumContracts + 1; j++) 
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              { 
                if (bestChromosome[j] != Pool[i][j]) 
                { 
                  same = 1; 
                  change = 1; 
                } 
              } 
              if (same == 1) 
              { 
                for (j = 0; j < IntNumContracts + 1; j++) 
                { 
                  bestChromosome[j] = Pool[i][j]; 
                } 
              } 
            } 
          } 
        } 
      } 
      else if (gen > 0) 
      { 
        for (i = 0; i < NumOffspring; i++) 
        { 
          if (bestChromosome[0] > Pool[i][0]) 
          { 
            change = 1; 
            for (j = 0; j < IntNumContracts + 1; j++) 
            { 
              bestChromosome[j] = Pool[i][j]; 
            } 
          } 
          else if (bestChromosome[0] == Pool[i][0]) 
          { 
            for (j = 0; j < IntNumContracts + 1; j++) 
            { 
              if (bestChromosome[j] != Pool[i][j]) 
              { 
                same = 1; 
                change = 1; 
              } 
            } 
            if (same == 1) 
            { 
              for (j = 0; j < IntNumContracts + 1; j++) 
              { 
                bestChromosome[j] = Pool[i][j]; 
              } 
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            } 
          } 
        } 
      } 
      return change; 
    } 
 
    public void write_to_file(boolean first_time, String FileName) 
    { 
      int p = new Integer(Rounding.toString(gp * 10, 0)).intValue(); 
      int ad_d = new Integer(Rounding.toString(ad * 1, 0)).intValue(); 
      int d = new Integer(Rounding.toString(gd * 10, 0)).intValue(); 
      if (FileName.equals("")) 
      { 
        this.write = new WriteFile(buff, FileNum); 
        if (first_time == true) 
        { 
          this.write.write_toFile(); 
        } 
        else 
        { 
          this.write.append_toFile(); 
        } 
        this.buff.delete(0, this.buff.length()); 
        this.buff = new StringBuffer(); 
      } 
      else 
      { 
        this.write = new WriteFile(buff2, FileNum, FileName); 
        if (first_time == true) 
        { 
          this.write.write_toFile(); 
        } 
        else 
        { 
          this.write.append_toFile(); 
        } 
        this.buff2.delete(0, this.buff2.length()); 
        this.buff2 = new StringBuffer(); 
      } 
    } 
 
    public void Fill_Best_Vector() 
    { 
      int i; 
      int j; 
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      int k; 
      int Size; 
      double[] tempA; 
      double[] tempB; 
      NumContracts = .5 * NumPeriods * (NumPeriods + 1); 
      IntNumContracts = new Double(NumContracts).intValue(); 
 
      tempA = new double[IntNumContracts + 1]; 
      tempB = new double[IntNumContracts + 1]; 
      int Size_of_Vector = 20; 
 
      if (gen == 0) 
      { 
        for (k = 0; k < Size_of_Vector; k++) 
        { 
          tempB[0] = 999999999; 
          Fill_Best.addElement(tempB); 
        } 
      } 
      for (i = 0; i < (NumOffspring + PopSize); i++) 
      { 
        for (j = Size_of_Vector - 1; j >= 0; j--) 
        { 
          tempA = (double[]) Fill_Best.elementAt(j); 
          if (Pool[i][0] < tempA[0]) 
          { 
            if (j != 0) 
            { 
              continue; 
            } 
            else 
            { 
              Fill_Best.insertElementAt( (double[]) Pool[i].clone(), 0); 
              Fill_Best.removeElementAt(Fill_Best.size() - 1); 
            } 
          } 
          else if (Pool[i][0] == tempA[0]) 
          { 
            tempB = (double[]) Pool[i].clone(); 
            int p; 
            for (p = 0; p < IntNumContracts + 1; p++) 
            { 
              if (tempA[p] != tempB[p]) 
              { 
                p = IntNumContracts + 2; 
                Fill_Best.insertElementAt( (double[]) Pool[i].clone(), j + 1); 
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                Size = Fill_Best.size(); 
                if (Size > Size_of_Vector) 
                { 
                  Fill_Best.removeElementAt(Fill_Best.size() - 1); 
                } 
              } 
            } 
            break; 
          } 
          else if (Pool[i][0] > tempA[0]) 
          { 
            if (Size_of_Vector - 1 == j) 
            { 
              Fill_Best.addElement( (double[]) Pool[i].clone()); 
            } 
            else 
            { 
              Fill_Best.insertElementAt( (double[]) Pool[i].clone(), j + 1); 
            } 
            Size = Fill_Best.size(); 
            if (Size > Size_of_Vector) 
            { 
              Fill_Best.removeElementAt(Fill_Best.size() - 1); 
            } 
            break; 
          } 
        } 
      } 
      Fill_Best.trimToSize(); 
    } 
 
    //If you send the timeperiod it will return the index number of all 
    // valid contracts in a Vector 
    public Vector valid_contracts(int timeperiod) 
    { 
        Vector valid = new Vector(); 
        int x = this.NumPeriods; 
        int y = timeperiod; 
        for (int i =1;i<=timeperiod;i++) 
        { 
            for(int j=x;j>=y;j--) 
            { 
                valid.addElement(new Integer(j)); 
            } 
            x= x+this.NumPeriods-i; 
            y=y+this.NumPeriods -i; 
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        } 
        valid.trimToSize(); 
        return valid; 
      } 
 
/**********************************************************************/ 
/********************START SIMULATION FUNCTIONS*******************/ 
/**********************************************************************/ 
/*Updating demand array with average demand from simulation*******************/ 
      public void sim_update_demand(double[][] demand) 
      { 
        double value = 0; 
        for(int i=0;i<this.NumPeriods;i++) 
        { 
         int x = demand[i].length; 
          for(int j=0;j<demand[i].length;j++) 
          { 
            value = value + demand[i][j]; 
          } 
          this.D[i] = value/demand[i].length; 
          value=0; 
        } 
      } 
/*Updating price array with average price from simulation********************/ 
      public void sim_update_price(double[][] price) 
      { 
        double value = 0; 
        for(int i=0;i<this.NumPeriods;i++) 
        { 
          for(int j=0;j<price[i].length;j++) 
          { 
            value = value + price[i][j]; 
          } 
          this.rp_Array[i] = value/price[i].length; 
          value=0; 
        } 
      } 
 
      public double find_deficit(double[] chromosome, int Period, int instance) 
      { 
        double deficit = 0; 
        double contract_amount = 0; 
        Vector temp = this.valid_contracts(Period+1); 
        for(int i =0;i<temp.size();i++) 
        { 
          int index = ((Integer)temp.elementAt(i)).intValue(); 
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          contract_amount = contract_amount+chromosome[index]; 
        } 
        if(instance >=0) 
        { 
          deficit = this.sim_demand[Period][instance] - contract_amount; 
        } 
        else 
        { 
          deficit = this.D[Period] - contract_amount; 
        } 
        if(deficit<0) 
          deficit = 0; 
        return deficit; 
      } 
 
      public double[] sim_evaluate_chromosome(double[] chromosome, int 
chromosome_index) 
      { 
        this.NumContracts = .5 * this.NumPeriods * (this.NumPeriods + 1); 
        this.IntNumContracts = new Double(NumContracts).intValue(); 
        double [] sim_evaluation = new double[this.sim_instances]; 
        double avgTotal = 0; 
        for(int i=0;i<this.NumPeriods;i++) 
        { 
          for(int j=0;j<this.sim_instances;j++) 
          { 
            double deficit = this.find_deficit(chromosome,i,j); 
            if (deficit !=0) 
            { 
              sim_evaluation[j]=sim_evaluation[j]+deficit*(this.sim_price[i][j]* 
                  B[0]*1+B[2])+this.sim_price[i][j]* 
                  B[1]*1; 
            } 
          } 
        } 
        for (int i=0;i<this.IntNumContracts;i++) 
        { 
          int contract_period = this.Contract_Period[i]; 
          int contract_length = this.Contract_Length[i]; 
          double contract_amount = chromosome[i+1]; 
          for(int j =0;j<this.sim_instances;j++) 
          { 
            if(contract_amount != 0) 
            { 
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sim_evaluation[j]=sim_evaluation[j]+contract_amount*(this.sim_price[contract_period-
1][j]* 
                  B[0]*contract_length+B[2])+this.sim_price[contract_period-1][j]* 
                  B[1]*contract_length; 
            } 
          } 
        } 
        this.sim_chromosome_value[chromosome_index]= sim_evaluation.clone(); 
        for(int i =0;i<this.sim_instances;i++) 
        { 
          avgTotal = avgTotal + sim_evaluation[i]; 
        } 
        avgTotal = avgTotal/this.sim_instances; 
        chromosome[0]= avgTotal; 
        return chromosome; 
      } 
 
      public double [] training_results(double[] chromosome, int chromosome_index) 
      { 
        this.NumContracts = .5 * this.NumPeriods * (this.NumPeriods + 1); 
        this.IntNumContracts = new Double(NumContracts).intValue(); 
        double [] sim_evaluation = new double[this.sim_instances]; 
        double avgTotal = 0; 
        for(int i=0;i<this.NumPeriods;i++) 
        { 
          for(int j=0;j<this.sim_instances;j++) 
          { 
            double deficit = this.find_deficit(chromosome,i,j); 
            if (deficit !=0) 
            { 
              sim_evaluation[j]=sim_evaluation[j]+deficit*this.sim_price[i][j]* 
                  (B[0]*1+B[2])+this.sim_price[i][j]* 
                  B[1]*1; 
            } 
          } 
        } 
        for (int i=0;i<this.IntNumContracts;i++) 
        { 
          int contract_period = this.Contract_Period[i]; 
          int contract_length = this.Contract_Length[i]; 
          double contract_amount = chromosome[i+1]; 
          for(int j =0;j<this.sim_instances;j++) 
          { 
            if(contract_amount != 0) 
            { 



    

 
    

262

              
sim_evaluation[j]=sim_evaluation[j]+contract_amount*this.sim_price[contract_period-
1][j]* 
                  (B[0]*contract_length+B[2])+this.sim_price[contract_period-1][j]* 
                  B[1]*contract_length; 
            } 
          } 
        } 
        return sim_evaluation; 
      } 
 
/**********************************************************************/ 
/************************END SIMULATION FUNCTIONS******************/ 
/**********************************************************************/ 
 
    /*************** MAIN ****************/ 
    public static void main(String[] args) 
    { 
      start ea1 = new start(); 
      System.out.println("Begin EA"); 
      ea1.NumPeriods = 6; 
      ea1.PopSize = 40;  
      ea1.maxGenerations = 500;  
      int n = 0; 
      int z; 
      int ProblemNumber = 0; 
      int x; 
      int y; 
      int count = 0; 
      int term = 0; 
      double Term_Condition; 
      double prob_purchase; 
      double randNum; 
      int num1; 
      int j, k; 
      double number; 
      int number2; 
      int number3; 
      double tempz; 
      double tempzz; 
      double tempy; 
      double Restart = 0; 
      int Restart_Counter = 0; 
      int Gen_Best_Found = 0; 
      long TimetoComplete = 0; 
      long TimetoBest = 0; 
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      int Size = 1; 
      double increment_gp = .02; 
      double increment_gd = .02; 
      int increment_n = 6; 
      int increment_Size = 1; 
      int x_count = 0; 
      int y_count = 0; 
      int z_count = 0; 
      String econScale = "x"; 
      ea1.n_scale = 0; 
      int tempRepair1 = 0; 
      int tempRepair2 = 0; 
      int tempRepairTie = 0; 
      ea1.gp = .05; 
      ea1.ad = 540;  
      ea1.gd = .05; 
      ea1.Date = 10.26; 
      int i; 
      int runNumber; 
      int Bingo = 0; 
      int numRuns; 
      int remainder; 
      int numProb; 
      int AdjPopSize; 
      int AdjMaxGen; 
      int AdjInitialDemand; 
      int incrementPrice = 0; 
 
      ea1.UniformCrossoverRate = .8;  
      ea1.OnePointCrossoverRate = .2;  
      ea1.MutationRate2 = .6;  
      ea1.MutationRate1 = .6;  
 
      ea1.NumPeriods = 0;  
      for (int x_n = 1; x_n <= 3; x_n 
      { 
        int buff_Length = ea1.buff.length(); 
        ea1.buff.delete(0, buff_Length); 
        ea1.buff = new StringBuffer(); 
        if (x_n==1) 
        { 
          ea1.NumPeriods=6; 
        } 
        else if (x_n==2) 
        { 
          ea1.NumPeriods=12; 
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        } 
        else if(x_n==3) 
        { 
          ea1.NumPeriods=18; 
        } 
        else 
        { 
          System.exit(0); 
        } 
        ea1.n_scale = ea1.n_scale + 1; 
        ea1.NumContracts = .5 * ea1.NumPeriods * (ea1.NumPeriods + 1); 
        ea1.IntNumContracts = new Double(ea1.NumContracts).intValue(); 
        ea1.PoolSize = ea1.PopSize * 200; 
        ea1.Best_All_Runs = new double[ea1.IntNumContracts + 1]; 
        ea1.bestChromosome = new double[ea1.IntNumContracts + 1]; 
        double[] overall_Best = new double[ea1.IntNumContracts + 1]; 
        int[] OffSpring1 = new int[ea1.IntNumContracts]; 
        int[] OffSpring2 = new int[ea1.IntNumContracts]; 
        Size = 0; 
        y_count = 0; 
 
        for (int x_Size = 1; x_Size <= 3; x_Size++) 
        { 
          ea1.gen = 0; 
          Size = Size + 1; 
          y_count = 0; 
          ea1.gp = .05; 
          ea1.gd = .05; 
 
          buff_Length = ea1.buff.length(); 
          ea1.buff.delete(0, buff_Length); 
          ea1.buff = new StringBuffer(); 
 
          if (Size == 1) 
          { 
            //Small economies of scale 
            /* */ 
            ea1.B1 = 13.116; 
            ea1.B2 = 962.927; 
            ea1.B3 = 258.526; 
            econScale = "econScale-Small"; 
            /* */ 
          } 
          if (Size == 2) 
          { 
            //Medium economies of scale 
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            /* */ 
            ea1.B1 = 6.757; 
            ea1.B2 = 928.503; 
            ea1.B3 = 364.989; 
            econScale = "econScale-Medium"; 
            /* */ 
          } 
          if (Size == 3) 
          { 
            //Large economies of scale 
            /* */ 
            ea1.B1 = 0.3977; 
            ea1.B2 = 894.115; 
            ea1.B3 = 471.416; 
            econScale = "econScale-Large"; 
            /* */ 
          } 
 
          ea1.B[0] = ea1.B1; 
          ea1.B[1] = ea1.B2; 
          ea1.B[2] = ea1.B3; 
 
          for (numProb = 1; numProb <= 9; numProb++)  
          { 
            ProblemNumber = ProblemNumber + 1; 
            y_count = y_count + 1; 
            ea1.gen = 0; 
            ea1.NumContracts = .5 * ea1.NumPeriods * (ea1.NumPeriods + 1); 
            ea1.IntNumContracts = new Double(ea1.NumContracts).intValue(); 
            ea1.fill_arrays(); 
            ea1.FileNum = ea1.FileNum + 1; 
            runNumber = 0; 
            int MaxRuns = 1;  
            double overall_BestofRuns = 0; 
            double TimetoBestofRuns = 0; 
            double TimetoCompleteforAllRuns = 0; 
            int Gen_BestofRuns = 0; 
            double[][] runFitnessTimes = new double[MaxRuns][5]; 
            double TotalTimetoCompleteforAllRuns = 0; 
/**********************************************************************/ 
/************************SIMULATION CODE****************************/ 
/**********************************************************************/ 
            ea1.sim1 = new sim(ea1.NumPeriods,ea1.B, false, false,ProblemNumber); 
            int distribution = 1;//1 for Uniform, 2 for Normal, 3 for Exponential 
            double d_spread = 0.1;// This gives the width for Uniform and std dev for Normal 
distribution (< 1) 
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            double p_spread = 0.1; 
 
            if(ea1.gd == 0.05) 
            { 
              d_spread = 0.1; 
            } 
            else if (ea1.gd == 0.07) 
            { 
              d_spread = 0.06; 
            } 
            else if (ea1.gd == 0.09) 
            { 
              d_spread = 0.02; 
            } 
            if(ea1.gp == 0.05) 
            { 
              p_spread = 0.1; 
            } 
            else if (ea1.gp == 0.07) 
            { 
              p_spread = 0.06; 
            } 
            else if (ea1.gp == 0.09) 
            { 
              p_spread = 0.02; 
            } 
            ea1.sim1.populate(distribution,ea1.gp,ea1.gd,d_spread, p_spread); 
            ea1.sim_price = ea1.sim1.price.clone(); 
            ea1.sim_demand = ea1.sim1.demand.clone(); 
            ea1.sim_update_demand(ea1.sim_demand); 
            ea1.sim_update_price(ea1.sim_price); 
            ea1.sim_instances = ea1.sim1.NumSim; 
/**********************************************************************/ 
            System.out.println("Solving Problem Number " + ProblemNumber); 
            System.out.println("N = " + ea1.NumPeriods + ", gp = " + ea1.gp + 
                               ", ad = " + ea1.ad + ", d_spread = "+ d_spread + 
                               ", p_spread = "+ p_spread + 
                               ", gd = " + ea1.gd + ", B1 = " + ea1.B1 + 
                               ", B2 = " + ea1.B2 + ", B3 = " + ea1.B3 + 
                               ", # best the same last value = " + count + 
                               ", PopSize = " + ea1.PopSize + 
                               ", MaxGeneration = " + ea1.maxGenerations); 
            System.out.println(econScale + ", UniformCrossoverRate = " + 
                               ea1.UniformCrossoverRate + 
                               ", OnePointCrossoverRate = " + 
                               ea1.OnePointCrossoverRate + 
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                               ", MutationRate2 = " + ea1.MutationRate2 + 
                               ", ea1.MutationRate1 = " + ea1.MutationRate1); 
            System.out.println("PopSize = " + ea1.PopSize + 
                               ", MaxGeneration = " + ea1.maxGenerations + 
                               ", # Restarts = " + Restart_Counter); 
            ea1.temp = "N = "+ea1.NumPeriods+", gp = "+ea1.gp+", ad = "+ea1.ad 
                +", gd = "+ea1.gd+", d_spread = "+ d_spread+", p_spread = "+ 
                p_spread +", B1 = "+ea1.B1+" , B2 = "+ea1.B2+", B3 = " 
                +ea1.B3+", PopSize = "+ea1.PopSize+", MaxGeneration = "+ 
                ea1.maxGenerations; 
            ea1.buff.append(ea1.temp + "\r\n"); 
            ea1.temp = econScale + ", UniformCrossoverRate = " + 
                ea1.UniformCrossoverRate + 
                ", OnePointCrossoverRate = " + ea1.OnePointCrossoverRate + 
                ", MutationRate2 = " + ea1.MutationRate2 + 
                ", ea1.MutationRate1 = " + ea1.MutationRate1; 
            ea1.buff.append(ea1.temp + "\r\n"); 
            ea1.temp = "PopSize = " + ea1.PopSize + ", MaxGeneration = " + 
                ea1.maxGenerations; 
            ea1.buff.append(ea1.temp + "\r\n"); 
 
            for (numRuns = 1; numRuns <= MaxRuns; numRuns++)  
            { 
              ea1.gen = 0; 
              ea1.initialize_chromosomes(); 
              long Start = System.currentTimeMillis(); 
              TimetoComplete = 0; 
              TimetoBest = 0; 
              term = 0; 
              Restart = 0; 
              Restart_Counter = 0; 
              overall_Best[0] = 999999999; 
              Gen_Best_Found = 0; 
              count = 0; 
              runNumber = runNumber + 1; 
              System.out.println(" "); 
              ea1.buff.append("\n"); 
              System.out.println("Problem Number = " + ProblemNumber + 
                                 ", Run Number = " + runNumber); 
              ea1.temp = "Problem Number = " + ProblemNumber + 
                  ", Run Number = " + runNumber; 
              ea1.buff.append(ea1.temp + "\r\n"); 
              ea1.counter = ea1.PopSize; 
              for (ea1.gen = 0; ea1.gen <= ea1.maxGenerations; ea1.gen++) 
              { 
                ea1.NumOffspring = ea1.PopSize; 
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                ea1.counter = ea1.PopSize; 
                ea1.initialize_chromosome_pool(ea1.PopSize, ea1.IntNumContracts); 
                ea1.mutation_operator(); 
                ea1.OnePoint_crossover_operator();  
                ea1.Uniform_crossover_operator(); 
                ea1.Repair1 = 0; 
                ea1.Repair2 = 0; 
                ea1.RepairTie = 0; 
                for (ea1.indexHolder = 0; 
                     ea1.indexHolder < (ea1.NumOffspring + ea1.PopSize); 
                     ea1.indexHolder++) 
                { 
                  ea1.repair_function_pool(ea1.NumPeriods); 
                  tempRepair1 = tempRepair1 + ea1.Repair1; 
                  tempRepair2 = tempRepair2 + ea1.Repair2; 
                  tempRepairTie = tempRepairTie + ea1.RepairTie; 
                } 
/**********************************************************************/ 
/******************SIM CODING****************************************/ 
/**********************************************************************/ 
                ea1.sim_chromosome_value = new double[ea1.NumOffspring + 
ea1.PopSize][ea1.sim_instances]; 
                for(i =0;i<(ea1.NumOffspring + ea1.PopSize);i++) 
                { 
                  double[] chromosome = ea1.sim_evaluate_chromosome(ea1.Pool[i],i); 
                  ea1.Pool[i] = chromosome.clone(); 
                } 
/**********************************************************************/ 
 
                ea1.change = ea1.record_best_chromosome_from_Pool(ea1.NumPeriods);  
                ea1.Fill_Best_Vector(); 
                if (ea1.change == 0) 
                { 
                  count = count + 1; 
                } 
                else if (ea1.change == 1) 
                { 
                  count = 0; 
                } 
                term = ea1.gen; 
                if (overall_Best[0] > ea1.bestChromosome[0])  
                { 
                  Gen_Best_Found = ea1.gen; 
                  for (i = 0; i < ea1.IntNumContracts + 1; i++) 
                  { 
                    overall_Best[i] = ea1.bestChromosome[i]; 
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                  } 
                  long ToBest = System.currentTimeMillis(); 
                  TimetoBest = ToBest - Start; 
                } 
                for (i = 0; i < ea1.PopSize; i++) 
                { 
                  for (j = 0; j < ea1.IntNumContracts + 1; j++) 
                  { 
                    ea1.Chromosome[i][j] = 0; 
                  } 
                } 
                for (ea1.indexHolder = 0; 
                     ea1.indexHolder < ea1.IntNumContracts + 1; 
                     ea1.indexHolder++) 
                { 
                  ea1.Chromosome[0][ea1.indexHolder] = 
                      ea1.bestChromosome[ea1.indexHolder]; 
                } 
 
                ea1.select_next_generation(); 
                for (i = 0; i < ea1.PoolSize; i++) 
                { 
                  for (j = 0; j < ea1.IntNumContracts + 1; j++) 
                  { 
                    ea1.Pool[i][j] = 0; 
                  } 
                } 
                if (count >= 100 * ea1.NumPeriods)  
                { 
                  term = ea1.gen; 
                  ea1.gen = ea1.maxGenerations; 
                } 
              }  
 
              long End = System.currentTimeMillis(); 
              TimetoComplete = End - Start; 
              runFitnessTimes[numRuns - 1][0] = overall_Best[0]; 
              runFitnessTimes[numRuns - 1][1] = Gen_Best_Found; 
              runFitnessTimes[numRuns - 1][2] = TimetoBest; 
              runFitnessTimes[numRuns - 1][3] = TimetoComplete; 
 
              if (numRuns == 1) 
              { 
                overall_BestofRuns = runFitnessTimes[numRuns - 1][0]; 
                Gen_BestofRuns = new Double(runFitnessTimes[numRuns - 1][1]). 
                    intValue(); 
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                TotalTimetoCompleteforAllRuns = TimetoComplete; 
                TimetoBestofRuns = runFitnessTimes[numRuns - 1][2]; 
 
                for (z = 0; z < ea1.IntNumContracts + 1; z++) 
                { 
                  ea1.Best_All_Runs[z] = ea1.bestChromosome[z]; 
                } 
              } 
              else 
              { 
                if (runFitnessTimes[numRuns - 2][0] > 
                    runFitnessTimes[numRuns - 1][0]) 
                { 
                  overall_BestofRuns = runFitnessTimes[numRuns - 1][0]; 
                  Gen_BestofRuns = new Double(runFitnessTimes[numRuns - 1][1]). 
                      intValue(); 
                  TimetoBestofRuns = runFitnessTimes[numRuns - 1][2]; 
                  for (j = 0; j < ea1.IntNumContracts + 1; j++) 
                  { 
                    ea1.Best_All_Runs[j] = ea1.bestChromosome[j]; 
                  } 
                } 
                else 
                { 
                  if (runFitnessTimes[numRuns - 2][0] == 
                      runFitnessTimes[numRuns - 1][0] && 
                      runFitnessTimes[numRuns - 2][1] > 
                      runFitnessTimes[numRuns - 1][1]) 
                  { 
                    overall_BestofRuns = runFitnessTimes[numRuns - 1][0]; 
                    Gen_BestofRuns = new Double(runFitnessTimes[numRuns - 1][1]). 
                        intValue(); 
                    TimetoBestofRuns = runFitnessTimes[numRuns - 1][2]; 
                    for (j = 0; j < ea1.IntNumContracts + 1; j++) 
                    { 
                      ea1.Best_All_Runs[j] = ea1.bestChromosome[j]; 
                    } 
                  } 
                } 
                TotalTimetoCompleteforAllRuns = TotalTimetoCompleteforAllRuns + 
                    TimetoComplete; 
              } 
              System.out.println("Gen # Run terminated = " + term); 
              ea1.temp = "Gen # Run terminated = " + term; 
              ea1.buff.append(ea1.temp + "\r\n"); 
              System.out.println("Gen to find Best Chromosome this run = " + 
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                                 runFitnessTimes[numRuns - 1][1]); 
              ea1.temp = "Gen to find Best Chromosome this run = " + 
                  runFitnessTimes[numRuns - 1][1]; 
              ea1.buff.append(ea1.temp + "\r\n"); 
              System.out.println("Time to find Best Chromosome = " + 
                                 runFitnessTimes[numRuns - 1][2] + 
                                 " milliseconds; i.e., " + 
                                 (runFitnessTimes[numRuns - 1][2] / 1000) + 
                                 " seconds"); 
              ea1.temp = "Time to find Best Chromosome = " + 
                  runFitnessTimes[numRuns - 1][2] + " milliseconds; i.e., " + 
                  (runFitnessTimes[numRuns - 1][2] / 1000) + " seconds"; 
              ea1.buff.append(ea1.temp + "\r\n"); 
              System.out.println("Time to Complete EA run = " + 
                                 runFitnessTimes[numRuns - 1][3] + 
                                 " milliseconds; i.e., " + 
                                 (runFitnessTimes[numRuns - 1][3] / 1000) + 
                                 " seconds"); 
              ea1.temp = "Time to Complete EA run = " + 
                  runFitnessTimes[numRuns - 1][3] + " milliseconds; i.e., " + 
                  (runFitnessTimes[numRuns - 1][3] / 1000) + " seconds"; 
              ea1.buff.append(ea1.temp + "\r\n"); 
              System.out.println(" "); 
              ea1.buff.append(ea1.temp + "\r\n\r\n"); 
              runFitnessTimes[numRuns - 
                  1][4] = ( ( (overall_BestofRuns - ea1.iLP_Opt) / ea1.iLP_Opt) * 
                           100); 
              System.out.println(" "); 
              ea1.buff.append("\r\n"); 
              System.out.print("Run #" + numRuns + ". "); 
              ea1.temp = "Run #" + numRuns + "). "; 
              ea1.buff.append(ea1.temp); 
              for (y = 0; y < 5; y++) 
              { 
                System.out.print(runFitnessTimes[numRuns - 1][y] + " | "); 
                ea1.temp = runFitnessTimes[numRuns - 1][y] + " | "; 
                ea1.buff.append(ea1.temp); 
              } 
              System.out.println(" "); 
              ea1.buff.append("\r\n"); 
              System.out.println("(1: best fitness value, 2: gen best found, 3: time to best 
(msec), 4: time to complete (msec), 5:% error)"); 
              ea1.buff.append("\r\n"); 
              System.out.println(" "); 
              ea1.buff.append("\r\n"); 
              System.out.print("Best All Runs: "); 



    

 
    

272

              ea1.temp = "Best All Runs: "; 
              ea1.buff.append(ea1.temp + "\r\n"); 
              System.out.println("Best Chromosome for Run Number #" + numRuns + 
                                 ": "); 
              ea1.temp = "Best Chromosome for Run Number #" + numRuns + ": "; 
              ea1.buff.append(ea1.temp + "\r\n"); 
              for (j = 0; j < ea1.IntNumContracts + 1; j++) 
              { 
                System.out.print(ea1.bestChromosome[j] + " | "); 
                ea1.temp = ea1.bestChromosome[j] + " | "; 
                ea1.buff.append(ea1.temp); 
              } 
              System.out.println(" "); 
              ea1.buff.append("\r\n"); 
              System.out.println("Best 20 chromosomes from EA run #" + numRuns + 
                                 " for Problem # " + ea1.FileNum); 
              ea1.buff2.append("Best 20 chromosomes from EA run  \r\n"); 
 
              double[][] tempA1 = new double[20][100]; 
              StringBuffer sim_buff = new StringBuffer(); 
              for(i=0;i<20;i++) 
              { 
                tempA1[i]=ea1.training_results((double[]) ea1.Fill_Best.elementAt(i),i); 
              } 
              StringBuffer buff1 = new StringBuffer(); 
              for(i=0;i<20;i++) 
              { 
                for(k=0;k<100;k++) 
                { 
                  buff1.append(tempA1[i][k]+","); 
                } 
                buff1.append("\r\n"); 
              } 
              WriteFile sim_write = new WriteFile(buff1,ProblemNumber,"train_res"); 
              sim_write.write_toFile(); 
              double [] tempA = new double[ea1.IntNumContracts]; 
              for (i = 0; i < 20; i++) 
              { 
                tempA = (double[]) ea1.Fill_Best.elementAt(i); 
                for (j = 0; j < tempA.length; j++) 
                { 
                  ea1.temp2 = new Double(tempA[j]).toString() + " , "; 
                  ea1.buff2.append(ea1.temp2); 
                } 
                ea1.buff2.append("\r\n"); 
              } 
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              ea1.buff2.append("\r\n"); 
              ea1.Fill_Best.removeAllElements(); 
              if (numRuns == 1) 
              { 
                ea1.write_to_file(true, "Best Chromosomes "); 
              } 
              else 
              { 
                ea1.write_to_file(false, "Best Chromosomes "); 
              } 
              System.out.println(" "); 
              ea1.buff.append("\r\n"); 
            }  
            System.out.println(" "); 
            ea1.buff.append("\r\n"); 
            System.out.println("Total Time to Complete " + MaxRuns + 
                               " EA runs = " + 
                               TimetoCompleteforAllRuns + 
                               " milliseconds; i.e., " + 
                               (TimetoCompleteforAllRuns / 1000) + " seconds"); 
            ea1.temp = "Total Time to Complete " + MaxRuns + " EA runs = " + 
                TimetoCompleteforAllRuns + " milliseconds; i.e., " + 
                (TimetoCompleteforAllRuns / 1000) + " seconds"; 
            ea1.buff.append(ea1.temp + "\r\n"); 
            System.out.println("Average Total Time to Complete " + MaxRuns + 
                               " EA runs = " + 
                               (TimetoCompleteforAllRuns / MaxRuns) + 
                               " milliseconds; i.e., " + 
                               (TimetoCompleteforAllRuns / MaxRuns / 1000) + 
                               " seconds"); 
            ea1.temp = "Average Total Time to Complete " + MaxRuns + 
                " EA runs = " + 
                (TimetoCompleteforAllRuns / MaxRuns) + " milliseconds; i.e., " + 
                (TimetoCompleteforAllRuns / MaxRuns / 1000) + " seconds"; 
            ea1.buff.append(ea1.temp + "\r\n"); 
            System.out.println("Best Fitness Value found during " + MaxRuns + 
                               " EA runs = " + 
                               overall_BestofRuns); 
            ea1.temp = "Best Fitness Value found during " + MaxRuns + 
                " EA runs = " + 
                overall_BestofRuns; 
            ea1.buff.append(ea1.temp + "\r\n"); 
 
            for (x = 1; x <= MaxRuns; x++) 
            { 
              System.out.print("Run #" + x + ". "); 
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              ea1.temp = "Run #" + x + "). "; 
              ea1.buff.append(ea1.temp + "\r\n"); 
              for (y = 0; y < 5; y++) 
              { 
                System.out.print(runFitnessTimes[x - 1][y] + " | "); 
                ea1.temp = runFitnessTimes[x - 1][y] + " | "; 
                ea1.buff.append(ea1.temp); 
              } 
              System.out.println(" "); 
              ea1.buff.append("\r\n"); 
            } 
            System.out.println(" "); 
            ea1.buff.append("\r\n"); 
            System.out.print("Best All Runs: "); 
            ea1.temp = "Best All Runs: "; 
            ea1.buff.append(ea1.temp + "\r\n"); 
            for (j = 0; j < ea1.IntNumContracts + 1; j++) 
            { 
              System.out.print(ea1.Best_All_Runs[j] + " | "); 
              ea1.temp = ea1.Best_All_Runs[j] + " | "; 
              ea1.buff.append(ea1.temp); 
            } 
            System.out.println("\n "); 
            ea1.buff.append("\r\n\n"); 
            System.out.println("Total Time to Complete All " + numRuns + "Runs: " + 
                               TotalTimetoCompleteforAllRuns); 
            ea1.temp = "Total Time to Complete All " + numRuns + "Runs: " + 
                TotalTimetoCompleteforAllRuns; 
            ea1.buff.append("\r\n"); 
            System.out.println("D Array: "); 
            ea1.buff.append("D Array: "); 
            ea1.buff.append("\r\n"); 
            for (j = 0; j < ea1.NumPeriods; j++) 
            { 
              System.out.println(ea1.D[j]); 
              ea1.temp = ea1.D[j] + "\n"; 
              ea1.buff.append(ea1.temp + "\r\n"); 
            } 
            System.out.println("\n "); 
            ea1.buff.append("\r\n"); 
 
 
            if (numRuns == 1) 
            { 
              ea1.write_to_file(true, ""); 
            } 
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            else 
            { 
              ea1.write_to_file(false, ""); 
            } 
            Bingo = 0; 
 
            if (ea1.gd >= .09) 
            { 
              if (z_count < 2) 
              { 
                ea1.gp = ea1.gp + increment_gp; 
                ea1.gd = 0.03; 
                z_count = z_count + 1; 
              } 
              else if (z_count >= 2) 
              { 
                z_count = 0; 
                ea1.gp = 0.05; 
                ea1.gd = 0.03; 
              } 
            } 
            ea1.gd = ea1.gd + increment_gd; 
            ea1.gd= new Double(Rounding.toString(ea1.gd,2)).doubleValue(); 
            ea1.gp = new Double(Rounding.toString(ea1.gp,2)).doubleValue(); 
          }  
        }  
      }  
  }  
} 
 
Sim.java 
package sim_ea; 
 
import java.util.Random; 
import java.math.*; 
 
public class sim 
{ 
  public Random random; 
  public double demand[][]; 
  public double price[][]; 
  public double dem_prob []; //Probability of Demand Increase happening 
  public double price_prob []; //Probability of Price Increase happening 
  public int NumPeriod;  //Number of Periods 
  public int NumSim; //Number of Simulations 
  public double B[]; //Beta weights to calculate price 
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  public boolean dem_iid; //True demand increase is independent 
  public boolean price_iid; //True price decrease in independent 
  public boolean did_dem_increase[]; //For each instance did demand increase or decrease 
in the previous period 
  public boolean did_price_decrease[]; //For each instance did price decrease in the 
previous period 
  public int Problem_Number; 
 
  public sim(int NumPeriod, double[] B, boolean dem_iid, boolean price_iid, int 
ProblemNumber) 
  { 
    this.Problem_Number = ProblemNumber; 
    this.price_iid = price_iid; 
    this.dem_iid = dem_iid; 
    this.NumPeriod = NumPeriod; 
    this.B = B.clone(); 
    this.NumSim=500; 
    this.random = new Random(); 
    this.demand = new double[this.NumPeriod][this.NumSim]; 
    this.price= new double [this.NumPeriod][this.NumSim]; 
    this.dem_prob = new double[this.NumSim]; 
    this.price_prob = new double[this.NumSim]; 
    this.did_dem_increase = new boolean[this.NumSim]; 
    this.did_price_decrease = new boolean[this.NumSim]; 
    for(int i = 0; i<this.NumSim;i++) 
    { 
      this.dem_prob[i]=0.5; 
      this.price_prob[i]=0.5; 
      this.did_dem_increase[i] = false; 
      this.did_price_decrease[i] = false; 
    } 
  } 
 
  public boolean bernoulli(double value) 
  { 
    boolean result = false; 
    if(this.random.nextDouble()<value) 
    { 
      result = true; 
    } 
    return result; 
  } 
 
  public double exponential(double mean) 
  { 
    double value = 0; 
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    value = - mean * Math.log(1-this.random.nextDouble()); 
    return value; 
  } 
 
  public double uniform(double min, double max) 
  { 
    double value = this.random.nextDouble(); 
    value  = min + (max - min)*value; 
    return value; 
  } 
 
  public double normal (double mean, double stdev) 
  { 
    double value = 0; 
    value = mean + stdev*this.random.nextGaussian(); 
    return value; 
  } 
 
  public void write(int distribution) 
  { 
    StringBuffer dem_buff = new StringBuffer(); 
    StringBuffer price_buff = new StringBuffer(); 
    for(int i=0;i<this.NumPeriod;i++) 
    { 
      for (int j = 0; j < this.NumSim; j++) 
      { 
        dem_buff.append(Rounding.toString(this.demand[i][j],0)+","); 
        price_buff.append(Rounding.toString(this.price[i][j],4)+","); 
      } 
      dem_buff.append("\r\n"); 
      price_buff.append("\r\n"); 
    } 
    WriteFile dem_write = new WriteFile(dem_buff, this.Problem_Number,"Demand-
"+distribution+"-"); 
    dem_write.write_toFile(); 
    WriteFile price_write = new WriteFile(price_buff, this.Problem_Number,"Price-
"+distribution+"-"); 
    price_write.write_toFile(); 
  } 
 
  public void populate(int distribution, double gp, double gd, double d_spread, double 
p_spread) 
  { 
    for(int i=0;i<this.NumPeriod;i++) 
    { 
      for(int j=0;j<this.NumSim;j++) 
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      { 
        if(i==0) 
        { 
          this.demand[0][j]=540; 
          this.price[0][j]=1; 
          this.did_price_decrease[j] = false; 
          this.did_dem_increase[j]=false; 
          continue; 
        } 
        if(this.dem_iid==false) 
        { 
          if (this.did_dem_increase[j] == true) 
          { 
            this.dem_prob[j] = this.dem_prob[j]; 
          } 
          else 
          { 
            this.dem_prob[j] = this.dem_prob[j] + 0.05; 
          } 
        } 
        boolean dem_increase = this.bernoulli(this.dem_prob[j]); 
        if (dem_increase == true) 
        { 
          if(distribution == 1)//1 for Uniform, 2 for Normal, 3 for Exponential 
          { 
            this.demand[i][j]=this.demand[i-1][j]*(1+this.uniform(gd,gd+d_spread)); 
          } 
          else if (distribution == 2) 
          { 
            this.demand[i][j]=this.demand[i-1][j]*(1+this.normal(gd,d_spread)); 
          } 
          else if (distribution ==3) 
          { 
            this.demand[i][j]=this.demand[i-1][j]*(1+this.exponential(gd)); 
          } 
          this.did_dem_increase[i] = true; 
        } 
        else 
        { 
          this.demand[i][j]=this.demand[i-1][j]; 
          this.did_dem_increase[j] = false; 
        } 
        if(this.price_iid==false) 
        { 
          if (this.did_price_decrease[j] == true) 
          { 
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            this.price_prob[j] = this.price_prob[j]; 
          } 
          else 
          { 
            this.price_prob[j] = this.price_prob[j] + 0.05; 
          } 
        } 
        boolean price_decrease = this.bernoulli(this.price_prob[j]); 
        if (price_decrease == true) 
        { 
          if(distribution == 1)//1 for Uniform, 2 for Normal, 3 for Exponential 
          { 
            this.price[i][j]=this.price[i-1][j]*(1-this.uniform(gp,gp+p_spread)); 
          } 
          else if (distribution == 2) 
          { 
            this.price[i][j]=this.price[i-1][j]*(1-this.normal(gp,p_spread)); 
          } 
          else if (distribution ==3) 
          { 
            this.price[i][j]=this.price[i-1][j]*(1-this.exponential(gp)); 
          } 
          this.did_price_decrease[i] = true; 
        } 
        else 
        { 
          this.price[i][j]=this.price[i-1][j]; 
          this.did_price_decrease[j] = false; 
        } 
      } 
 
    } 
    this.write(distribution); 
  } 
} 
 

Testing 

Start.java 
package sim_contract; 
import java.util.StringTokenizer; 
import java.util.Vector; 
public class start 
{ 
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  public ReadFile read; 
  public WriteFile write; 
  public int NumPeriods; 
  public int NumContracts; 
  public int ProblemNumber; 
  public double[] B; 
  public double [] D; 
  public double [] rp_Array; 
  public double [] rd_Array; 
  public double gp; 
  public double gd; 
  public sim sim1; 
  public Vector solution; 
  public int [] Contract_Period; 
  public int [] Contract_Length; 
  /************SIM VARIABLES*****************************************/ 
  public double sim_demand[][]; 
  public double sim_price[][]; 
  public double[][] sim_chromosome_value; 
  public int sim_instances; 
  
/**********************************************************************/ 
 
  public start () 
  { 
    this.B = new double[3]; 
    this.solution = new Vector(); 
  } 
 
  /*Updating demand array with average demand from simulation******************/ 
  public void sim_update_demand(double[][] demand) 
  { 
    double value = 0; 
    for(int i=0;i<this.NumPeriods;i++) 
    { 
      for(int j=0;j<demand[i].length;j++) 
      { 
        value = value + demand[i][j]; 
      } 
      this.D[i] = value/demand[i].length; 
      value=0; 
    } 
  } 
  /*Updating price array with average price from simulation********************/ 
  public void sim_update_price(double[][] price) 
  { 
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    double value = 0; 
    for(int i=0;i<this.NumPeriods;i++) 
    { 
      for(int j=0;j<price[i].length;j++) 
      { 
        value = value + price[i][j]; 
      } 
      this.rp_Array[i] = value/price[i].length; 
      value=0; 
    } 
  } 
 
  public void initialize_globalvariables() 
  { 
    this.D = new double[this.NumPeriods]; 
    this.rp_Array = new double[this.NumPeriods]; 
    this.rd_Array = new double[this.NumPeriods]; 
    this.NumContracts=this.NumPeriods*(this.NumPeriods+1)/2; 
    this.Contract_Length = new int[this.NumContracts]; 
    this.Contract_Period= new int[this.NumContracts]; 
    int index = 0; 
    for (int i = 0; i <= NumPeriods; i++) 
    { 
      for (int j = 1; j <= NumPeriods - i; j++) 
      { 
        Contract_Length[index] = j; 
        index = index + 1; 
      } 
    } 
    int count = 0; 
    for (int i = 1; i < this.NumPeriods + 1; i++) 
    { 
      for (int j = 1; j < this.NumPeriods + 2 - i; j++) 
      { 
        this.Contract_Period[count] = i; 
        count = count + 1; 
      } 
    } 
  } 
 
  public void parse_input() 
  { 
    StringTokenizer token = new StringTokenizer(this.read.buf.toString(),","); 
    StringBuffer buff = new StringBuffer(); 
    double[] chromosome = new double[this.NumContracts + 1]; 
    for(int i=0;i<20;i++) 



    

 
    

282

    { 
      for(int j=0;j<=this.NumContracts;j++) 
      { 
        chromosome[j]=new Double(token.nextToken()).doubleValue(); 
      } 
      buff.append(chromosome[0]+"\r\n"); 
      this.solution.addElement((double[])chromosome.clone()); 
    } 
    WriteFile write = new WriteFile(buff,1,"Det-fitness"); 
    try 
    { 
        write.append_toFile(); 
    } 
    catch(Exception ex) 
    { 
        System.out.println(ex); 
    } 
  } 
 
  public Vector valid_contracts(int timeperiod) 
  { 
      Vector valid = new Vector(); 
      int x = this.NumPeriods; 
      int y = timeperiod; 
      for (int i =1;i<=timeperiod;i++) 
      { 
          for(int j=x;j>=y;j--) 
          { 
              valid.addElement(new Integer(j)); 
          } 
          x= x+this.NumPeriods-i; 
          y=y+this.NumPeriods -i; 
      } 
      valid.trimToSize(); 
      return valid; 
    } 
 
  public double find_deficit(double[] chromosome, int Period, int instance) 
  { 
    double deficit = 0; 
    double contract_amount = 0; 
    Vector temp = this.valid_contracts(Period+1); 
    for(int i =0;i<temp.size();i++) 
    { 
      int index = ((Integer)temp.elementAt(i)).intValue(); 
      contract_amount = contract_amount+chromosome[index]; 
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    } 
    if(instance >=0) 
    { 
      deficit = this.sim_demand[Period][instance] - contract_amount; 
    } 
    else 
    { 
      deficit = this.D[Period] - contract_amount; 
    } 
    if(deficit<0) 
      deficit = 0; 
    return deficit; 
  } 
  public double [] training_results(double[] chromosome, int chromosome_index) 
  { 
    int IntNumContracts = NumContracts; 
    double [] sim_evaluation = new double[this.sim_instances]; 
    double avgTotal = 0; 
    for(int i=0;i<this.NumPeriods;i++) 
    { 
      for(int j=0;j<this.sim_instances;j++) 
      { 
        double deficit = this.find_deficit(chromosome,i,j); 
        if (deficit !=0) 
        { 
          sim_evaluation[j]=sim_evaluation[j]+deficit*(this.sim_price[i][j]* 
              B[0]*1+B[2])+this.sim_price[i][j]* 
              B[1]*1; 
        } 
      } 
    
    } 
    for (int i=0;i<IntNumContracts;i++) 
    { 
      int contract_period = this.Contract_Period[i]; 
      int contract_length = this.Contract_Length[i]; 
      double contract_amount = chromosome[i+1]; 
      for(int j =0;j<this.sim_instances;j++) 
      { 
        if(contract_amount != 0) 
        { 
          
sim_evaluation[j]=sim_evaluation[j]+contract_amount*(this.sim_price[contract_period-
1][j]* 
              B[0]*contract_length+B[2])+this.sim_price[contract_period-1][j]* 
              B[1]*contract_length; 
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        } 
      } 
    } 
    return sim_evaluation; 
    } 
 
 
  public static void main ( String[] args ) 
  { 
    start start1 = new start () ; 
    for (int x_n = 1; x_n <= 3; x_n++) 
    { 
      if (x_n==1) 
      { 
        start1.NumPeriods=6; 
      } 
      else if (x_n==2) 
      { 
        start1.NumPeriods=12; 
      } 
      else if(x_n==3) 
      { 
        start1.NumPeriods=18; 
      } 
      else 
      { 
        System.exit(0); 
      } 
      start1.initialize_globalvariables(); 
      for (int x_Size = 1; x_Size <= 3; x_Size++) 
      { 
        start1.gp = .05; 
        start1.gd = .05; 
        //Commented for testing deterministic sol 
 
 
        if (x_Size == 1) 
        { 
          //Small economies of scale 
          /* */ 
          start1.B[0] = 13.116; 
          start1.B[1] = 962.927; 
          start1.B[2] = 258.526; 
          //econScale = "econScale-Small"; 
          /* */ 
        } 
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        if (x_Size == 2) 
        { 
          //Medium economies of scale 
          /* */ 
          start1.B[0] = 6.757; 
          start1.B[1] = 928.503; 
          start1.B[2] = 364.989; 
          //econScale = "econScale-Medium"; 
          /* */ 
        } 
        if (x_Size == 3) 
        { 
          //Large economies of scale 
          /* */ 
          start1.B[0] = 0.3977; 
          start1.B[1] = 894.115; 
          start1.B[2] = 471.416; 
          //econScale = "econScale-Large"; 
          /* */ 
        } 
        int counter =0; 
        for (int numProb = 1; numProb <= 9; numProb++) 
        { 
          start1.solution = new Vector(); 
          start1.ProblemNumber++; 
          
/*********************************************************************/ 
/***********************SIMULATION CODE***************************/ 
          
/*********************************************************************/ 
            start1.sim1 = new sim(start1.NumPeriods,start1.B, false, 
false,start1.ProblemNumber); 
            int distribution = 1;//1 for Uniform, 2 for Normal, 3 for Exponential 
            double d_spread = 0.1;// This gives the width for Uniform and std dev for Normal 
distribution (< 1) 
            double p_spread = 0.1; 
 
            if(start1.gd == 0.05) 
            { 
              d_spread = 0.1; 
            } 
            else if (start1.gd == 0.07) 
            { 
              d_spread = 0.06; 
            } 
            else if (start1.gd == 0.09) 
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            { 
              d_spread = 0.02; 
            } 
            if(start1.gp == 0.05) 
            { 
              p_spread = 0.1; 
            } 
            else if (start1.gp == 0.07) 
            { 
              p_spread = 0.06; 
            } 
            else if (start1.gp == 0.09) 
            { 
              p_spread = 0.02; 
            } 
            start1.sim1.populate(distribution,start1.gp,start1.gd,d_spread, p_spread); 
            start1.sim_price = start1.sim1.price.clone(); 
            start1.sim_demand = start1.sim1.demand.clone(); 
            start1.sim_update_demand(start1.sim_demand); 
            start1.sim_update_price(start1.sim_price); 
            start1.sim_instances = start1.sim1.NumSim; 
            
/**********************************************************************/ 
            start1.read = new ReadFile("Best Chromosomes "+start1.ProblemNumber+".txt"); 
            try 
            { 
              start1.read.read_input(); 
            } 
            catch(Exception ex) 
            { 
              System.out.println(ex); 
            } 
            start1.parse_input(); 
            System.out.println("Best Chromosomes "+start1.ProblemNumber+".txt "+ 
                    "gd="+start1.gd+" gp="+start1.gp+" d_spread="+d_spread+" 
p_spread="+p_spread); 
            double[][] tempA = new double[20][100]; 
            StringBuffer sim_buff = new StringBuffer(); 
            for(int i=0;i<20;i++) 
            { 
              double[] temp =(double[]) start1.solution.elementAt(i); 
              tempA[i]=start1.training_results(temp,i); 
            } 
            StringBuffer buff1 = new StringBuffer(); 
            for(int i=0;i<20;i++) 
            { 
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              for(int j=0;j<100;j++) 
              { 
                buff1.append(tempA[i][j]+","); 
              } 
              buff1.append("\r\n"); 
            } 
            WriteFile sim_write = new WriteFile(buff1,start1.ProblemNumber,"test_res"); 
            sim_write.write_toFile(); 
            start1.gd=new Double(Rounding.toString(start1.gd+0.02,2)).doubleValue(); 
            counter++; 
            if(counter > 2) 
            { 
               start1.gd=0.05; 
               start1.gp=new Double(Rounding.toString(start1.gp+0.02,2)).doubleValue(); 
               counter =0; 
            } 
          } 
        } 
      } 
    } 
  } 
 
Sim.java 
package sim_contract; 
import java.util.Random; 
import java.math.*; 
 
public class sim 
{ 
  public Random random; 
  public double demand[][]; 
  public double price[][]; 
  public double dem_prob []; //Probability of Demand Increase happening 
  public double price_prob []; //Probability of Price Increase happening 
  public int NumPeriod;  //Number of Periods 
  public int NumSim; //Number of Simulations 
  public double B[]; //Beta weights to calculate price 
  public boolean dem_iid; //True demand increase is independent 
  public boolean price_iid; //True price decrease in independent 
  public boolean did_dem_increase[]; //For each instance did demand increase or decrease 
in the previous period 
  public boolean did_price_decrease[]; //For each instance did price decrease in the 
previous period 
  public int Problem_Number; 
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  public sim(int NumPeriod, double[] B, boolean dem_iid, boolean price_iid, int 
ProblemNumber) 
  { 
    this.Problem_Number = ProblemNumber; 
    this.price_iid = price_iid; 
    this.dem_iid = dem_iid; 
    this.NumPeriod = NumPeriod; 
    this.B = B.clone(); 
    this.NumSim=100; 
    this.random = new Random(); 
    this.demand = new double[this.NumPeriod][this.NumSim]; 
    this.price= new double [this.NumPeriod][this.NumSim]; 
    this.dem_prob = new double[this.NumSim]; 
    this.price_prob = new double[this.NumSim]; 
    this.did_dem_increase = new boolean[this.NumSim]; 
    this.did_price_decrease = new boolean[this.NumSim]; 
    for(int i = 0; i<this.NumSim;i++) 
    { 
      this.dem_prob[i]=1; 
      this.price_prob[i]=1; 
      this.did_dem_increase[i] = false; 
      this.did_price_decrease[i] = false; 
    } 
  } 
 
  public boolean bernoulli(double value) 
  { 
    boolean result = false; 
    if(this.random.nextDouble()<value) 
    { 
      result = true; 
    } 
    return result; 
  } 
 
  public double exponential(double mean) 
  { 
    double value = 0; 
    value = - mean * Math.log(1-this.random.nextDouble()); 
    return value; 
  } 
 
  public double uniform(double min, double max) 
  { 
    double value = this.random.nextDouble(); 
    value  = min + (max - min)*value; 
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    return value; 
  } 
 
  public double normal (double mean, double stdev) 
  { 
    double value = 0; 
    value = mean + stdev*this.random.nextGaussian(); 
    return value; 
  } 
 
  public void write(int distribution) 
  { 
    StringBuffer dem_buff = new StringBuffer(); 
    StringBuffer price_buff = new StringBuffer(); 
    for(int i=0;i<this.NumPeriod;i++) 
    { 
      for (int j = 0; j < this.NumSim; j++) 
      { 
        dem_buff.append(Rounding.toString(this.demand[i][j],0)+","); 
        price_buff.append(Rounding.toString(this.price[i][j],4)+","); 
      } 
      dem_buff.append("\r\n"); 
      price_buff.append("\r\n"); 
    } 
    WriteFile dem_write = new WriteFile(dem_buff, this.Problem_Number,"Demand-
"+distribution+"-"); 
    dem_write.write_toFile(); 
    WriteFile price_write = new WriteFile(price_buff, this.Problem_Number,"Price-
"+distribution+"-"); 
    price_write.write_toFile(); 
  } 
 
  public void populate(int distribution, double gp, double gd, double d_spread, double 
p_spread) 
  { 
    for(int i=0;i<this.NumPeriod;i++) 
    { 
      for(int j=0;j<this.NumSim;j++) 
      { 
        if(i==0) 
        { 
          this.demand[0][j]=540; 
          this.price[0][j]=1; 
          this.did_price_decrease[j] = false; 
          this.did_dem_increase[j]=false; 
          continue; 
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        } 
        if(this.dem_iid==false) 
        { 
          if (this.did_dem_increase[j] == true) 
          { 
            this.dem_prob[j] = this.dem_prob[j]; 
          } 
          else 
          { 
            this.dem_prob[j] = this.dem_prob[j] + 0.05; 
          } 
        } 
        boolean dem_increase = this.bernoulli(this.dem_prob[j]); 
        if (dem_increase == true) 
        { 
          if(distribution == 1)//1 for Uniform, 2 for Normal, 3 for Exponential 
          { 
            this.demand[i][j]=this.demand[i-1][j]*(1+this.uniform(gd,gd+d_spread)); 
          } 
          else if (distribution == 2) 
          { 
            this.demand[i][j]=this.demand[i-1][j]*(1+this.normal(gd,d_spread)); 
          } 
          else if (distribution ==3) 
          { 
            this.demand[i][j]=this.demand[i-1][j]*(1+this.exponential(gd)); 
          } 
          this.did_dem_increase[i] = true; 
        } 
        else 
        { 
          this.demand[i][j]=this.demand[i-1][j]; 
          this.did_dem_increase[j] = false; 
        } 
        if(this.price_iid==false) 
        { 
          if (this.did_price_decrease[j] == true) 
          { 
            this.price_prob[j] = this.price_prob[j]; 
          } 
          else 
          { 
            this.price_prob[j] = this.price_prob[j] + 0.05; 
          } 
        } 
        boolean price_decrease = this.bernoulli(this.price_prob[j]); 
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        if (price_decrease == true) 
        { 
          if(distribution == 1)//1 for Uniform, 2 for Normal, 3 for Exponential 
          { 
            this.price[i][j]=this.price[i-1][j]*(1-this.uniform(gp,gp+p_spread)); 
          } 
          else if (distribution == 2) 
          { 
            this.price[i][j]=this.price[i-1][j]*(1-this.normal(gp,p_spread)); 
          } 
          else if (distribution ==3) 
          { 
            this.price[i][j]=this.price[i-1][j]*(1-this.exponential(gp)); 
          } 
          this.did_price_decrease[i] = true; 
        } 
        else 
        { 
          this.price[i][j]=this.price[i-1][j]; 
          this.did_price_decrease[j] = false; 
        } 
      } 
    } 
    this.write(distribution); 
  } 
} 
 


