

OPTIMAL PURCHASING STRATEGY FOR BANDWIDTH:
A BUYER’S PERSPECTIVE

by

Frances Sharer Vergara

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Information Technology

Charlotte

2008

Approved by:

Dr. Moutaz Khouja

Dr. Ram Kumar

Dr. Cem Saydam

Dr. Sungjune Park

Dr. Farid Tranjan

ii

©2008
Frances Sharer Vergara

ALL RIGHTS RESERVED

iii

ABSTRACT

FRANCES SHARER VERGARA. Optimal purchasing strategy for bandwidth: A buyer’s
perspective. (Under direction of DR. MOUTAZ KHOUJA)

In today’s burgeoning business environments, data frenetically pulses through

massive interconnected networks as firms create, compile, and disseminate vast amounts

of information. Organizations need to acquire the bandwidth that allows them to

effectively share information. To acquire bandwidth, a firm agrees to pay a provider a

fee, and the provider agrees to provide an acceptable quality bandwidth.

Price of bandwidth depends on two parameters: size and duration of contracts.

Size is the amount of bandwidth purchased, and duration is the length of the contract.

Bandwidth prices have been declining over time. Therefore, managers deciding on

contracts to cover a given planning horizon have to decide on the number of contracts to

purchase, their bandwidth (size), and their lengths (duration) to minimize costs. This

research analyzes bandwidth contracting decisions from a buyer’s perspective. Historical

data will be used to estimate bandwidth cost as a function of contract size and duration at

a point in time, and to estimate bandwidth cost overtime. Both mathematical

programming and evolutionary algorithms will be used to solve the problem under

deterministic increasing bandwidth demand. In addition, simulation will be used with

evolutionary algorithms to solve the problem under stochastic demand and prices.

iv

ACKNOWLEDGEMENTS

In completing this study, there were many people involved in the process. I

would like to acknowledge and extend my deep appreciation to them.

First, I would like to thank the members of my dissertation committee: Dr.

Moutaz Khouja for being a mentor, advocate and a guide throughout the dissertation

process, Dr. Cem Saydam for his critical inputs and feedback on this study, Dr. Ram

Kumar and Dr. Sungjune Park for their advice and support, and Dr. Farid Tranjan for his

assistance with the dissertation process.

I would like to thank my husband Hari K Rajagopalan, for his love, patience and

support during the last few years. It was always nice to have someone who could and

would talk to you about your dissertation late at night and show you a different way of

looking at the same problem.

 v

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES xi

LIST OF SYMBOLS AND ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION 1

1.1 What is Bandwidth? 2

1.1.1 Common Digital Communication Media 3

1.1.2 Media and Technology Selection Criteria 8

1.2 The Demand for Bandwidth 10

1.2.1 Bandwidth as a Commodity 11

1.2.2 Pricing of Bandwidth 14

1.3 Bandwidth Contracts: The Buyer’s Problem 16

CHAPTER 2 THE BANDWIDTH CONTRACT PROBLEM (BCP) 19

2.1 Problem Formulation 20

2.2 Illustrative Example: N = 5 24

2.3 Bandwidth Contract Purchasing Problem: Formulations of the Problem 26

CHAPTER 3 EVOLUTIONARY ALGORITHMS: A POPULATION BASED 35
 HEURISTIC SEARCH ALGORITHMS

3.1 Evolutionary Algorithms 35

3.2 Genetic Representation 38

3.3 Method for Creating the Initial Population 38

3.4 Genetic Operators 38

3.5 Evaluation Function 39

 vi

3.6 Selection Method 39

3.7 Generational Policy 40

3.8 Termination Conditions 40

3.9 Computational Parameters 41

3.10 Constraint Handling Techniques 42

CHAPTER 4 THE DETERMINISTIC BANDWIDTH CONTRACT PROBLEM 43
 EVOLUTIONARY ALGORITHM (DBCP-EA)

4.1 DBCP-EA Process Flowchart 46

4.1.1 BCP EA Genetic Representation 48

4.1.2 BCP-EA Method for Creating the Initial Population 52

4.1.3 Three BCP-EA Genetic Operators 52

4.1.4 Evaluation Function 60

4.1.5 Selection Method 61

4.1.6 Generational Policy 61

4.1.7 Termination Conditions 63

4.1.8 Computational Parameters 63

4.1.9 Repair Function for Infeasible Solutions 63

4.2 DBCP-EA Experimental Design 70

4.3 DBCP-EA Example Problems 73

4.4 DBCP-EA Results 81

4.4.1 Examination of DBCP-EA Problems with Substandard Solutions 94

4.4.2 Comparison between MILP and DBCP-EA Substandard Problem

Solutions 98

4.4.3 Aggregate Data Analysis for all DBCP-EA Problem Solutions 114

 vii

4.5 Final Comments 122

CHAPTER 5 THE STOCHASTIC BANDWIDTH CONTRACT PROBLEM 125
 EVOLUTIONARY ALGORITHM (SBCP-EA)

5.1 The DBCP-EA versus the SBCP-EA 125

5.2 The Three Parts of the SBCP-EA 127

5.2.1 The SBCP-EA Training Phase 127

5.2.2 The SBCP-EA Testing Phase 133

5.2.3 The SBCP-EA Test for Robustness Phase 134

5.3 SBCP-EA Pseudo Code 137

5.4 SBCP-EA Results 141

5.5 Conclusions 151

CHAPTER 6 CONCLUSIONS, COMMENTS, INSIGHTS, AND FUTURE 153
 RESEARCH

6.1 Summary 153

6.2 Contributions 160

6.3 Future Research 161

REFERENCES 164

APPENDIX A: SOURCE CODE FOR DBCP-EA 167

APPENDIX B: SOURCE CODE FOR SBCP-EA 224

 viii

LIST OF TABLES

TABLE 1-1: Media Summary 9

TABLE 1-2: Illustrative Annual Prices for Bandwidth 14

TABLE 1-3: US Local Inter-Office Circuit Prices (Dollars per Month per Mbps) 15

TABLE 1-4: US Long-Distance Leased Line Prices 15

TABLE 2-1: Contract Period Coverage Matrix for N = 5 Periods 25

TABLE 2-2: Number of Possible Contracts for Different Values of N 26

TABLE 2-3: Price per Mbps per Month 28

TABLE 2-4: Price per Mbps per Month (Formulation #1) 29

TABLE 2-5: Regression Model Output (Formulation #1) 29

TABLE 2-6: Price per Mbps per Month (Formulation #2) 32

TABLE 2-7: Regression Model Output (Formulation #2) 32

TABLE 4-1: The Three Values for each of the Four Parameters: N, s, d, and p 72

TABLE 4-2: Summary of the Temporal Discount Data 73

TABLE 4-3: The N = Small Example Problem MILP Input Data 74

TABLE 4-4: The N = Small Example Problem MILP Solution 75

TABLE 4-5: Cost and Error, and Time Data for Example Problems 77

TABLE 4-6: MILP vs. DBCP-EA Purchasing Strategy Solutions 79
 for N = Small, s = Small, p = Large, and d = Small

TABLE 4-7: MILP vs. DBCP-EA Purchasing Strategy Solutions 79
 for N = Medium, s = Small, p = Large, and d = Small

TABLE 4-8: MILP vs. DBCP-EA Purchasing Strategy Solutions 81
 for N = Large, s = Small, p = Large, and d = Small

TABLE 4-9: Problem Number Corresponding to Each of the 81 Problems 82

 ix

TABLE 4-10: Maximum % error, Minimum % error, %_Error, and Standard 84
 Deviation for the 81 Problems

TABLE 4-11: Maximum, Minimum, and Average EA Computational Time (sec) 90
 for the 81 Problems

TABLE 4-12: DBCP-EA Substandard Problem Solution Data 95

TABLE 4-13: Crosstab Count Analysis of DBCP-EA Substandard Problem Solutions 98
 for N versus s, p, and d

TABLE 4-14: Cumulative Purchased Bandwidth, Required Bandwidth, and Surplus 101
 for the MILP and Best DBCP-EA Solutions for Problem #36

TABLE 4-15: Cumulative Purchased Bandwidth, Required Bandwidth, and Surplus 102
 for the MILP and Best DBCP-EA Solutions for Problem #44

TABLE 4-16: Cumulative Purchased Bandwidth, Required Bandwidth, and Surplus 103
 for the MILP and Best DBCP-EA Solutions for Problem #45

TABLE 4-17: Cumulative Purchased Bandwidth, Required Bandwidth, and Surplus 104
 for the MILP and Best DBCP-EA Solutions for Problem #59

TABLE 4-18: Cumulative Purchased Bandwidth, Required Bandwidth, and Surplus 105
 for the MILP and Best DBCP-EA Solutions for Problem #60

TABLE 4-19: Cumulative Purchased Bandwidth, Required Bandwidth, and Surplus 106
 for the MILP and Best DBCP-EA Solutions for Problem #63

TABLE 4-20: Cumulative Purchased Bandwidth, Required Bandwidth, and Surplus 107
 for the MILP and Best DBCP-EA Solutions for Problem #67

TABLE 4-21: Cumulative Purchased Bandwidth, Required Bandwidth, and Surplus 108
 for the MILP and Best DBCP-EA Solutions for Problem #68

TABLE 4-22: Cumulative Purchased Bandwidth, Required Bandwidth, and Surplus 109
 for the MILP and Best DBCP-EA Solutions for Problem #69

TABLE 4-23: Cumulative Purchased Bandwidth, Required Bandwidth, and Surplus 110
 for the MILP and Best DBCP-EA Solutions for Problem #71

TABLE 4-24: Cumulative Purchased Bandwidth, Required Bandwidth, and Surplus 111
 for the MILP and Best DBCP-EA Solutions for Problem #72

TABLE 4-25: Cumulative Purchased Bandwidth, Required Bandwidth, and Surplus 112
 for the MILP and Best DBCP-EA Solutions for Problem #80

 x

TABLE 4-26: Cumulative Purchased Bandwidth, Required Bandwidth, and Surplus 113
 for the MILP and Best DBCP-EA Solutions for Problem #81

TABLE 4-27: Two-Dimensional Analysis for Aggregate Data 115
 for N vs. s, N vs. p, N vs. d, s vs. p, s vs. d, p vs. d

TABLE 5-1: Size Designations for the Three Values for each of the 127
 Four Parameters: N, s, Δd, and Δp

TABLE 5-2: Parameter Settings for each of the 81 Stochastic Problems 130

TABLE 5-3: Example for Calculating One Instance of Price Data 131
 for Problem 9: N = Small where Δp = Large

TABLE 5-4: Example of Price and Demand Entries 132
 for Problem 9: N = Small, s = Small, Δp = Large, and Δd = Large

TABLE 5-5: Comparison of Single Parameter Percentage Errors 143

TABLE 5-6: MOM_%_Error for SEA1 and %_Error for SEA2 Problem Solutions 144

TABLE 5-7: Average Training Computational Time (minutes) 145

TABLE 5-8: MOM_%_Error for SEA1 146

 xi

LIST OF FIGURES

FIGURE 1-1: Band-X Bandwidth Price Indices 16

FIGURE 4-1: DBCP-EA Flowchart 47

FIGURE 4-2: Chromosome Data Structure for N = 5 51

FIGURE 4-3: Example of a Randomly Generated Initial Chromosome for N = 5 56

FIGURE 4-4: Example of the One-point Crossover Operator for N = 5 57

FIGURE 4-5: Example of the Uniform Crossover Operator for N = 5 58

FIGURE 4-6: Example of the Mutation Operator for N = 5 59

FIGURE 4-7: Example of the RA1 Repair Algorithm 66

FIGURE 4-8: RA1 Example after Increasing Contract [01, 06] 67
 Bandwidth Size by 100 Mbps

FIGURE 4-9: Experimental Design for the DBCP-EA 71

FIGURE 4-10: MILP Formulation 73

FIGURE 4-11: Diagram of MILP Example Problem Solution for 76
 N = Small, s = Small, p = Large, d = Small

FIGURE 4-12: %_Error for the 81 Problems 86

FIGURE 4-13: Overlay of the %_Errors for N = Medium and Large 86

FIGURE 4-14: %_Error Standard Deviation for the 81 Problems 87

FIGURE 4-15: Overlay of %_Error Standard Deviation for N = Medium and Large 88

FIGURE 4-16: EA Computational Average Time (sec) the 81 Problems 92

FIGURE 4-17: Computational Time for MILP and DBCP-EA for N = Small 93

FIGURE 4-18: Computational Time for MILP and DBCP-EA for N = Medium 93

FIGURE 4-19: Computational Time for MILP and DBCP-EA for N = Large 94

 xii

FIGURE 4-20: Percent Error versus Temporal Discount (s) for 117
 N = Small and Three Values of Price Decrease Rate (p)

FIGURE 4-21: Percent Error versus Temporal Discount (s) for 117
 N = Medium and Three Values of Price Decrease Rate (p)

FIGURE 4-22: Percent Error versus Temporal Discount (s) for 118
 N = Large and Three Values of Price Decrease Rate (p)

FIGURE 4-23: Percent Error versus Temporal Discount (s) for 119
 N = Small and Three Values for Demand Increase Rate (d)

FIGURE 4-24: Percent Error versus Temporal Discount (s) for 119
 N = Medium with respect to varying Demand Increase Rate (d)

FIGURE 4-25: Percent Error versus Temporal Discount (s) for 120
 N = Large and Three Values for Demand Increase Rate (d)

FIGURE 4-26: Percent Error versus Demand Increase Rate (d) for 121
 N = Small and Three Values for Price Decrease Rate (p)

FIGURE 4-27: Percent Error versus Demand Increase Rate (d) for 121
 N = Medium and Three Values for Price Decrease Rate (p)

FIGURE 4-28: Percent Error versus Demand Increase Rate (d) for 122
 N = Large and Three Values for Price Decrease Rate (p)

FIGURE 5-1: SBCP-EA Flowchart 137

FIGURE 5-2: Effect of s on MOM_%_Error where N = Small 148

FIGURE 5-3: Effect of s on MOM_%_Error where N = Medium 149

FIGURE 5-4: Effect of Δp and Δd on MOM_%_Error where N = Medium 150

FIGURE 5-5: Effect of s and Δd on MOM_%_Error where N = Large 151

 xiii

LIST OF SYMBOLS AND ABBREVIATIONS

Bandwidth Contract Problem (BCP)

Deterministic Bandwidth Contract Problem (DBCP)

Stochastic Bandwidth Contract Problem (SBCP)

Evolutionary Algorithm (EA)

Deterministic Bandwidth Contract Problem-Evolutionary Algorithm (DBCP-EA)

Stochastic Bandwidth Contract Problem-Evolutionary Algorithm (SBCP-EA)

Model Notation:

T = Length of planning horizon,

τ = Minimum duration of a contract, e.g., 1 month,

N = Number of contract periods in the planning horizon, τTN = ,

i = Beginning period index for a contract, Ni …2,1= ,

j = Ending period index for a contract, 12 += Nj … ,

iD = Demand for bandwidth in period i ,

jix , =

jiP , = Price per Mbps per time unit for contract beginning in period i and ending at

the beginning of period j ; a function of size ()Q and duration ()L ,

jiQ , = Size of a contract that begins in period i and ends at the beginning of period j ,

jiL , = ij − , the duration of a contract that begins in period i and ends at the

beginning of period j ,

1 if a contract beginning at period i and ending at the beginning of period
j is purchased,

0 otherwise,

 xiv

g D = Demand growth rate,

gr DD += 1 ,

aD = Initial demand at the beginning of the planning horizon,

g P = Price decrease rate,

PP gr −= 1 , and

aP = Initial bandwidth price at the beginning of the planning horizon.

CHAPTER 1 INTRODUCTION

In today’s burgeoning business environments, data frenetically pulses through

massive interconnected networks as firms create, compile, and disseminate vast amounts

of information. Organizations need to acquire the resources that allow them to

effectively share information. Just as networks have developed to enable the distribution

of electricity, or facilitate telephone conversations, networks have also developed to

enable the transmission of digital data from one location to another. These networks can

be dedicated channels or switched channels. A dedicated channel is a link that is

permanently established. In general, a dedicated channel is more secure, but also more

expensive. These networks can be privately owned, or leased from a third party. A

switched channel dynamically establishes a path between two points based on present

network conditions. Links to these types of networks are often the most cost effective

alternative. In a switched network, data, containing the address of the desired

destination, is placed on a network. The destination address is used to guide the data

through the network. As the data traverses the network, a communications path from

source to destination could span a variety of links, and each link could have a different

bandwidth. The bandwidth for the entire path is limited by the smallest bandwidth within

the path. The link in the path with the smallest bandwidth is referred to as a bottleneck

(http://compnetworking.about.com/library/glossary/bldef-bandwidth.htm?terms

=bandwidth).

2

Typically, a firm seeking to purchase bandwidth from a vendor

engages in a contractual agreement in which the firm agrees to pay a fee, and the provider

agrees to provide a set bandwidth for a given period of time at a specified level of quality.

1.1 What is Bandwidth?

Bandwidth is a measure of how much data can be transmitted through a network,

either through a guided media, such as a wire or cable, or an unguided media, which uses

the atmosphere to propagate a transmission. In other words, bandwidth is a measure of

the capacity, or data transfer rate, of a link. It is sometime helpful to think of bandwidth

as a pipe. The larger the pipe, the more data can be sent. Bandwidth is also known as

throughput (http://compnetworking.about.com/library/glossary/bldef-andwidth.htm?terms

=bandwidth).

In digital transmission, bandwidth is measured as the number of bits, or binary

digits that can be transmitted through a circuit or channel within a given period of time.

The measure of bandwidth is recorded in bits per second (bps)

(http://compnetworking.about.com/library/glossary/bldef-bandwidth.htm?terms

=bandwidth). One thousand bps is equivalent to 1 Kbps (kilobit per second), one

thousand Kbps (or one million bps) is equivalent to 1 Mbps (Megabit per second), one

thousand Mbps (or one billion bps) is equivalent to 1 Gbps (Gigabit per second), and one

thousand Gbps (or one trillion bps) is equivalent to 1 Tbps (Terabit per second) (Horak,

2000).

3

1.1.1 Common Digital Communication Media

There are numerous transmission media and technologies available. The

transmission mediums include guided media, such as Twisted Pair, Coaxial Cable, Fiber

Optic, and unguided, or wireless, media, such as Microwave Radio and Satellite.

Twisted pair, as its name suggests, consist of a pair of twisted copper wire that is

used to propagate a carrier wave signal from one destination to another. Twisted pair is

the oldest transmission medium (Laudon and Laudon, 2003), and has historically been

used by telephone companies for the transmission of analog voice signals; however

digital data can also be transmitted over twisted pair. The advantage of twisted pair is

that it is ubiquitous and inexpensive. The disadvantage is that the transmission speed is

somewhat limited and is significantly less than some of the other media. Some of the

technologies employed for the transmission of digital data over twisted pairs include T-1

connections, Category 5 (Cat 5) copper, and Asymmetric Digital Subscriber Loop

(ADSL) (Horak, 2000).

A T-1 connection can be used to transmit data and voice and has a capacity of

1.544 Mbps (1,544,000 bits per second) (FitzGerald, and Dennis, 1999). T-1 circuits are

often used for inverse multiplexing. Multiplexing is a process where multiple signals are

merged onto one channel for transmission. Inverse multiplexing is the reverse of

multiplexing, for inverse multiplexing a single signal is split up and placed onto two or

more channels for transmission. The end result, a single signal is able to traverse the

network in a fraction of the time it would take if the signal had traveled over a single

channel (FitzGerald et al., 1999). T-1 circuits are the most frequently used digital line in

the United States, Canada, and Japan (http://searchnetworking.techtarget.com/sDefinition

4

/0,,sid7_gci213084,00.html). Category 5 is a network cable standard for twisted pair.

These cables are often used in 100Base-T Ethernet networks and provide a maximum

data rate, or bandwidth, of 100 Mbps at a maximum distance of 200 meters (FitzGerald et

al., 1999). An Asymmetric Digital Subscriber Line (ADSL) is a technology that uses

twisted pair media to transmit digital data at high bandwidths. The ADSL provides a

continuous circuit and is comprised of three separate channels

(http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213764,00.html). One

channel is a dedicated analog circuit for telephone voice transmission. The remaining

two channels are used for incoming (downstream) and outgoing (upstream) digital data

transmissions. In ADSL, these two channels are asymmetric, meaning that one channel

has a much higher bandwidth than the other channel. The rational for this configuration

is that often incoming data bandwidth requirements are greater than outgoing data

bandwidth requirements. A limitation to ADSL is distance. For ADSL to function, the

user needs to be located no more than three miles from a telephone companies end office;

with better transfer rates as the user moves closer (FitzGerald et al., 1999).

The second media for digital data transmission is coaxial cable which is a guided

media like twisted pair; however the construction of coaxial cable is quite different than

that of twisted pair. A coaxial cable is comprised of two conductors. The first conductor

is a cylindrical copper core which is located at the center of the coaxial cable. This core

conductor is surrounded by a thick cylinder of insulating material. Surrounding this

insulating material is a second conductor which resembles a wire mesh. Finally,

surrounding the wire mesh is a secondary insulating material (FitzGerald et al., 1999).

Two common network cable standards related to coaxial cables include RG-58 (10Base-2

5

Ethernet) and RG-8 (10Base-5 Ethernet). Both standards have a maximum data

transmission rate of 10 Mbps, and a maximum distance of 185 meters and 500 meters,

respectively (FitzGerald et al., 1999).

Fiber optics, another guided medium, is a relatively new media. A fiber optic

cable transmits data in the form of pulses of light within extremely thin glass or plastic

filaments, or fibers (FitzGerald et al., 1999). The original signal is an electrical signal

which is converted into an optical (light) signal. Once the signal reaches its destination,

it is converted back to an electrical signal.

Since the cost of laying fiber is high and demand is uncertain, new technologies

for the effective use of bandwidth such as dense wavelength division multiplexing

(DWDM) are emerging (http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci

213892,00.html). With the use of DWDM, multiple signals can be sent over one channel

at the same time, in this case a single fiber optic filament, using a different color of light

for each individual signal. Each color of light is a separate frequency wavelength, and

for this reason each signal remains separate and intact when it reaches its destination.

The multiple light signals, upon reaching the destination, are then demultiplexed back

into individual signals (Laudon, et al., 2003). Prior to the development of DWDM only

one signal of light (i.e., a single wavelength) could be transmitted over a single fiber

(Laudon et al., 2003). With the advent of DWDM the capacity of each fiber optic

filament is significantly increased. DWDM began by transmitting four separate light

wave frequencies, each frequency comprising a separate stream of data, and each

propagating through the fiber at approximately 10 Gbps, for a total bandwidth of 40 Gbps

over a single fiber. Thirty-two light wave frequencies have been transmitted over a

6

single fiber at a propagation rate of approximately 10 Gbps resulting in a total bandwidth

of approximately 320 Gbps per fiber (Horak, 2000). It is speculated that DWDM has the

capability to transmit up to 160 separate signals, i.e., separate wavelengths, over a single

fiber for a total transmission speed of up to 6.4 Tbps, or 6.4 trillion bits per second

(Laudon et al., 2003). Since optical fibers are often bundled into cables that contain

thousands of single fibers, the potential bandwidth of fiber optical networks is

astronomical (Horak, 2000).

The advantage of fiber optics over traditional guided media is that fiber optic

cables are able to transmit data at a much higher rate. Fiber optic cables can also carry

data, voice, graphical, and video transmission at the same time

(http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212113,00.html). This

means that a variety of data formats can be accommodated simultaneously

(http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213892,00.html). In

addition, fiber optical cables, since they do not transmit electrical signals, are not affected

by electromagnetic disturbances that can degrade the quality of the data being

transmitted, as can happen with some of the other guided media. Fiber optic cables are

also much less susceptible to the negative effects of environmental conditions (FitzGerald

et al., 1999).

Microwave radio is a type of unguided transmission media that employs terrestrial

transmission stations to propagate a signal over some distance. It supports high-volume,

long-distance, point-to-point data transmission (Horak, 2000; Laudon et al., 2003).

Bandwidth provided by microwave transmission can be greater than 6 Gbps. The

disadvantage of microwave is that the frequencies within the microwave radio spectrum

7

are limited, and these frequencies are licensed to users based on geographical regions.

Once a frequency is licensed, it becomes unavailable for other uses within that regional

area (Horak, 2000).

Satellites also use microwave signals to transmit data, however, for satellite

transmissions the satellite(s) are orbiting transmission relay stations, which perform the

same function as the terrestrial transmission stations do for microwave transmissions.

Signals are transmitted from terrestrial stations to the satellite and then sent back to Earth

to another terrestrial station, or stations. Satellites can broadcast transmissions over a

large area so that many terrestrial stations have the ability to receive a broadcast signal.

Satellites employ a single uplink station and one or more downlink stations. Therefore,

because of the large footprint (the area on the ground where the signal is accessible),

satellites are ideal for point-to-multipoint network, such as television signal transmission

(Horak, 2000). Today’s satellites handle thousands of signals. In addition, satellites can

be employed to transmit a variety of signals, from simple data to broadcast television

signals (http://searchmobilecomputing.techtarget.com/sDefinition/0,,sid40_gci212939,00

.html).

One disadvantage of satellites is propagation delay, which is a time lag

experienced due to the time required for a signal to travel from Earth to a satellite several

thousand miles away. Satellites, while slower than microwave radio, are able to transmit

data efficiently over immense distances, and into areas where it would be difficult to

place physical wires and cables, or terrestrial transmission stations.

8

1.1.2 Media and Technology Selection Criteria

There are several factors to consider when selecting a transmission media. One

factor is the type, or geographic scope, of the network to be used, since some media are

predominantly used in certain types of networks. For example, microwave radio and

satellites are usually used for WAN (wide area networks), while twisted pair, and coaxial

cable are not. Fiber optic cables, on the other hand, are very versatile and can be used for

various types of networks, either large or small. Transmission distance is another

important factor to consider. Guided media, with the exception of fiber optic cables,

must incorporate repeaters to boost the signal if it needs to travel more than a small

distance. Twisted pair and coaxial cable can transmit data approximately 100 meters, and

500 meters, respectively, before a repeater is required. Optical fibers can transmit data as

much as 75 miles before the signal degrades enough that it requires regeneration. It is

expected that in the future, distances could reach 600 miles or more before a fiber optic

signal will need to be regenerated. Transmission speeds, or bandwidth, inherent to each

media is also important. Typically, twisted pair and coaxial cable have bandwidths

ranging from 1 to 100 Mbps, while the wireless media, microwave radio and satellite,

have bandwidths ranging from 20 to 50 Mbps, and fiber optic cable has bandwidths

ranging from 100 Mbps to 10 Gbps. Yet another factor to consider is the level of error

rate inherent to each media. Unguided media, or wireless media, are media most

susceptible to transmission errors. For guided media, twisted pair has the highest error

rate; and yet still has a lower error rate than unguided media. Fiber optic cable has the

lowest error rate across all media, and coaxial cable falls somewhere between twisted pair

9

and fiber optic cable (FitzGerald et al., 1999). Data throughput is affected by both

transmission speed and error rate (Horak, 2000).

Security is another important factor to consider. Since signals are propagated

through the air for unguided or wireless media, transmissions are much less secure than

over guided media. Fiber optic cables are the most secure medium. Finally, cost is a

very important factor. Cost refers to the cost of the media itself, which is an important

consideration for an entity building a network. Therefore, cost in this instance is from a

provider/seller’s point of view. Later, we will focus on the cost of purchasing bandwidth

services, which is cost from the purchaser/buyer’s perspective. For guided media,

twisted pair, being the oldest and least sophisticated, is typically the cheapest

transmission media, followed by coaxial cable, then fiber optic cable. Unguided media’s

cost is related to distance. Therefore, microwave radio is cheaper than satellite

(FitzGerald et al., 1999). Table 1-1 reports relative information about each of the media

discussed with respect to the various selection factors identified.

Table 1-1: Media Summary
Guided Media

Media
Network

Type
Transmission

Distance Speed
Error
Rates Security Cost

Twisted
Pair LAN Short Low-High Low Good Low

Coaxial
Cable LAN Short Low-High Low Good Moderate
Fiber
Optics Any

Moderate-
Long

High-
Very High

Very
Low

Very
Good High

Unguided Media

Media
Network

Type
Transmission

Distance Speed
Error
Rates Security Cost

Microwave WAN Long Moderate
Low-

Moderate Poor Moderate

Satellite WAN Long Moderate
Low-

Moderate Poor Moderate
Source: (FitzGerald et al., 1999)

10

Finally, networks can also be classified as either analog or digital. There are

numerous advantages to transmitting data digitally. One advantage is that it is very easy

to compress digital data, and security, and error detection and retrieval are much better

for digital networks. In addition, digital networks are easier to manage and upgrade

(Horak, 2000).

1.2 The Demand for Bandwidth

Significant advances in information technology have brought about increased use

of multimedia and Internet applications. As a result, many firms, including Internet

service providers (ISPs), application service providers (ASPs), and companies with

operations in multiple locations spread across one or more continents have seen their

demand for telecommunications capacity increase significantly over the last decade.

It is estimated that more than half a trillion dollars of US-based company

revenues in 1999 were generated through Internet activities (Galbi, 2001). It is not

surprising that the demand for bandwidth grew throughout the 1990s (Galbi, 2001).

Galbi (2001) reports that Internet backbone traffic grew 1,000% per year in 1995

and 1996, but the growth rate fell to 100% per year in 1997 and 1998. The total Internet

backbone bandwidth in the mid-1998 is estimated to be 110 Gbps (Galbi, 2001).

The deployment of fiber optic cables peaked around 1990 with a growth rate of

28%, but has continued to grow at a considerable rate (Galbi, 2001). The inter-office

non-switched bandwidth sold by Regional Bell Operation Company (RBOC) grew on

average 37.4% per year between 1989 and 1999 (Galbi, 2001). Furthermore, bandwidth

data for combined US trans-Atlantic and trans-Pacific companies show that the growth

rate from 1989 to 1995 was 981%, and from 1995 to 2000 was 4,215% (Galbi, 2001).

11

1.2.1 Bandwidth as a Commodity

Bandwidth is typically traded in discrete capacities, and international standards

(http://www.iec.org/online/tutorials/sonet_trans/topic05.html) are often used, e.g.,

SONET. SONET (Synchronous Optical NETwork) is a fiber technology standard

(Horak, 2000). Line transmission rates in SONET include 51 Mbps, 155 Mbps, and 622

Mbps, 2.5 Gbps, and 10 Gbps (Laudon et al., 2003). With the advances that have

developed in optical technology and increasing demands for fast, secure, and accurate

bandwidth services, fiber optics will undoubtedly be a major medium well into the future.

Of the countless networks that merge together to form a conglomerate network,

e.g., the Internet and other communication networks, each individual network remains a

separate entity made up of its own media and protocols. This means that a signal

traveling through a series of node-to-node connections within a constellation of networks

could travel over a variety of media and network types. Due to the enormous number of

possible paths within the network, price competition among links is likely to be very low

(Galbi, 2001). Consequently, there has been increasing effort by third-party vendors to

create bandwidth exchanges so that bandwidth can be easily and effectively traded just as

other commodities are traded, e.g., electricity. Currently, the transaction cost of

bandwidth is high due to the fragmented nature of the individual networks (Galbi, 2001).

While there is a push towards bandwidth exchanges, presently exchanges capture only a

small sector of bandwidth sales (Galbi, 2001). “One knowledgeable industry observer,

while calling past price trends a ‘great anomaly’, predicts that data transmission prices

‘are likely to start a rapid decline soon.’ The basis for this optimism seems to be that

commodity markets for bandwidth will develop rapidly” (Galbi, 2001).

12

In fact, upon examination of prices for exchange-traded bandwidth it is found that

these prices are significantly less than bandwidth prices offered outside exchanges (Galbi,

2001). Therefore, as bandwidth exchanges become more and more prevalent, bandwidth

will become more standardized; as is the case with any commodity. In addition, as

bandwidth technology expands and evolves it is reasonable to assume that prices will

decline. According to Cheliotis (2000), in the late nineties a huge supply of bandwidth

became available. “This trend will urge suppliers and consumers to engage more actively

in trading excess capacity, leading to the formation of bandwidth commodity markets”

(Cheliotis, 2000).

Demand uncertainty, technology uncertainty, and cost pressures on prices of

bandwidth due to new entrants (Borthick, 2001) significantly increase the risk associated

with telecommunications capacity planning for telecommunications companies. Demand

uncertainty causes organizations to lay telecommunications capacity in two steps. In the

first step, organizations lay excess capacity in the form of unlit optic fiber, or dark fiber.

Later, when demand increases, an additional cost is incurred to “light” these dark fibers,

thereby increasing bandwidth capacity.

The high degree of risk associated with telecommunications capacity planning

decisions has led to the emergence of bandwidth intermediaries and marketplaces where

bandwidth can be traded. One type of intermediary is wholesalers who typically enter

into contracts with large telecommunications companies and manage the economic and

technology risks associated with providing access to retail customers. Cheliotis (2000)

relates that a bandwidth broker performs typical brokerage functions (i.e., providing trust,

aggregation, and negotiation), in addition to functions that are specific to the procurement

13

of bandwidth. These functions include “trading multiple contracts in a spot market and

even offering new composite contracts to customers, thus creating a secondary market for

bandwidth” (Cheliotis, 2000). Other types of intermediaries include market makers who

match bandwidth sellers with bandwidth consumers (http://www.bandwidthfinders.com/,;

http://www.band-x.com/en/). These intermediaries cater to the needs of bandwidth

providers seeking to sell excess bandwidth as well as consumers requiring bandwidth.

As stated above, it is thought that bandwidth will eventually evolve into a

commodity, which will be traded through exchanges. However, two important

developments are required for bandwidth to become a true tradable commodity. First, it

is necessary to develop standardized contracts (with strict penalties for non-performance)

that ensure that a communications path with a particular bandwidth between a source and

destination provided by supplier A is interchangeable in terms of performance and quality

with a similar offering from supplier B. Second, the infrastructure should provide inter-

organizational connectivity between carriers, referred to as pooling points. The most cost

effective route between two locations (say New York and LA) might involve multiple

bandwidth suppliers, for example, New York to Chicago using supplier A, and Chicago

to LA using supplier B. However, this combination of links from multiple carriers would

work only if A and B can connect to each other’s networks. Some organizations have

invested in pooling points, and additional developments are underway. Current

bandwidth markets, however, are only partially commoditized (Borthick, 2001; Cheliotis,

2000).

14

1.2.2 Pricing of Bandwidth

The cost of telecommunication capacity depends on the total bandwidth

purchased, its geographical location, and the duration of the contract. Bandwidth prices

must be viewed at both a single point in time, and over time. At any given point in time,

contract prices per unit time decrease as size and duration of the contract increase. Over

time, prices are also decreasing. Therefore, purchase decisions must consider the cost of

being locked into an extended contract at a fixed price, when prices are likely to decrease

over time.

Table 1-2 illustrates the annual prices for bandwidth at different capacities (sizes)

and for different contract lengths provided by a bandwidth supplier

(www.thecomputerking.com) at a single point in time. These prices are a snapshot of

bandwidth prices from one supplier on December 3, 2001. Other web sites containing

information regarding telecommunications pricing include band-x.com

(http://www.band-x.com/en/) and telegeography.com (http://www.telegeography.com/).

Under current market conditions characterized by excess capacity and increased

competition, prices may be lower, but discounts for larger transmission rates and longer

contracts are still available. Hence, the data in Table 1-2 is useful for research purposes.

Table 1-2: Illustrative Annual Prices for Bandwidth
 Contract Duration
 Column (a) Column (b) Column (c)
 1 year* 2 years‡ 3 years†

6 Mbps $14,310 $13,595 $12,164
9 Mbps $15,429 $14,658 $13,115
12 Mbps $16,548 $15,721 $14,066
15 Mbps $17,667 $16,784 $15,017
18 Mbps $18,786 $17,847 $15,968
21 Mbps $19,905 $18,910 $16,919 B

an
dw

id
th

 S
iz

e

45 Mbps $25,500 $24,225 $21,675
Source: (www.thecomputerking.com)

15

*Column (a) — price per bandwidth size for a 1 year contract
‡Column (b) — price per bandwidth size for a 2 year contract, calculated as 95%

of column (a)
†Column (c) — price per bandwidth size for a 3 year contract, calculated as 85%

of column (a)

Table 1-3 provides a view of bandwidth pricing over time. Table 1-3 shows the

U.S. local inter-office circuit prices in dollars per month per Mbps for four different

circuits (VG, DDS, DS1, and DS3) from 1990 to 2000. These four types of circuits

represented more than 80% of RBOC leased-line revenue in the 1990s (Galbi, 2001).

Table 1-3: US Local Inter-Office Circuit Prices (Dollars per Month per Mbps)

Year
VG

(64,128 Kbps)
DDS

(56 Kbps)
DS1

(1.5 Mbps)
DS3

(44.7 Mbps)
1990 159 2,514 191 16.17
1991 156 2,421 174 19.03
1992 140 2,092 177 18.07
1993 121 1,399 136 16.21
1994 134 971 123 17.95
1995 140 1,171 114 17.15
1996 144 900 116 16.53
1997 138 846 118 16.46
1998 149 925 114 16.73
1999 147 942 113 17.49
2000 143 878 112 17.17

Source: (Galbi, 2001)

Table 1-4 reports U.S. long-distance leased line prices for T-1 and T-3 circuits

from 1994 through 1999. The data in Table 1-4 shows that prices declined by 20%

between 1994 and 1999, for both types of circuits (Galbi, 2001).

Table 1-4: US Long-Distance Leased Line Prices
Year T-1 (1.54 Mbps) T-3 (44.74 Mbps)

1994 760 5,830
1995 760 5,830
1996 730 5,554
1997 680 5,260
1998 650 5,000
1999 620 4,750

Source: (Galbi, 2001)

16

This long-term decline in bandwidth prices is due to technological advances and

excess capacity buildup by existing telecommunications companies in anticipation of

increased demand, as well as new entrants. Some researchers expect this trend to

continue as carriers with excess capacity are under pressure to sell this capacity through

brokers and exchanges (Borthick, 2001; Cheliotis, 2000).

Figure 1-1 shows the price indices for Band-x starting from October 1998. As

can be seen from Figure 1, from October 1998 to July 2000, Band-X’s price index fell

approximately 63% (Galbi, 2001).

Figure 1-1: Band-X Bandwidth Price Indices
Source: (Galbi, 2001)

1.3 Bandwidth Contracts: The Buyer’s Problem

The price for a bandwidth contract at a point in time depends on two parameters:

size and duration. Size is the amount of bandwidth that is being purchased, and duration

is the length of the contract. For buyers of bandwidth, contracts for large bandwidth may

be attractive due to size discounts. Similarly, long-term contracts may be attractive

17

because of duration discounts. On the other hand, decreasing bandwidth prices over time

and demand uncertainties may favor signing short-term contracts. Hence, managers

deciding on which contracts to purchase to cover a given planning horizon have to decide

on (1) the number of contracts to purchase, (2) the bandwidth size for each contract, and

(3) the duration for each contract, with the objective of minimizing total cost.

There is a significant amount of research on problems faced by bandwidth

providers under conditions of uncertain demand and price. However, problems faced by

bandwidth buyers in contracting for bandwidth are relatively under researched. This

problem from a buyer’s perspective can be quite complex. For example, if the decision

maker is faced with a 36 months planning horizon, and a purchase decision can be made

once during each month, then there are 36 decision points for which the decision maker

must decide whether to purchase, and if so, the size and duration of each contract to

purchase to minimize the total cost over the entire planning horizon.

This research analyzes bandwidth contracting decisions from a buyer’s

perspective under conditions of discounts for larger bandwidth and longer term contracts

and declining prices over time. The parameters of interest are the number of contracts,

and the size and duration of each contract. This problem will be solved using

mathematical programming and evolutionary algorithms and the solutions will be

compared. Two models will be examined. In the first model, demand and price are

treated as deterministic. In the second model, demand and price are treated as random

parameters that change in the mean over the planning horizon. Both models will be

solved using an evolutionary algorithm specifically designed for the bandwidth contract

18

problem. For the stochastic model a simulation will be used in conjunction with the

evolutionary algorithm.

The remainder of this dissertation is organized as follows. In Chapter 2 the

mathematical formulation and assumptions for the bandwidth contract problem are

outlined and discussed in detail, as well as a discussion of the techniques which will be

employed to evaluate the performance of the two evolutionary algorithm

implementations. Chapter 3 gives a general overview of evolutionary algorithms and a

discussion of how the deterministic evolutionary algorithm (DEA) and stochastic

evolutionary algorithm (SEA) (with simulation) will be implemented in order to solve the

bandwidth contract problem (BCP). Chapter 4 gives a detailed description of the DBCP-

EA and the solution quality. Chapter 5 is discusses the implementation of the SBCP-EA

and the results obtained. Chapter 6 contains a summary of this work and final comments,

conclusions, and possible areas for future research.

CHAPTER 2 THE BANDWIDTH CONTRACT PROBLEM (BCP)

There is increasing recognition that the rapid proliferation of information

networks will significantly impact business practices. A significant body of literature on

a variety of telecommunications related topics including economic and policy aspects of

networking (Econmides, 1996), pricing (Cochi, Shenkar, Estrin, and Zhang, 1993),

network design (Balakrishnan, Magnanti, and Mirchandani, 1998), and a variety of other

issues (Shapiro, and Varian, 1999) exists.

The problem of installing or expanding telecommunications capacity under

conditions of uncertain demand from a telecommunication service provider’s perspective

has been studied by many researchers. Multi-period expansion of telecommunications

networks has been studied by researchers who typically examined tradeoffs between

waiting to invest, revenue opportunities, and maintenance costs for older equipment.

Early research by Zadeh (1974) and Minoux (1987) emphasize the complexity and

dynamic nature of the problem. Some researchers such as Balakrishnan, Magnanti and

Wong (1995) focus on capacity expansion in the context of a portion of a

telecommunications network, while others (Chang, and Gavish, 1995; Gavish, 1992)

examine the capacity expansion problems for the entire backbone network. This

literature basically examines how much capacity to add to each telecommunications link

in a network during multiple periods of time. Researchers have also explored

20

alternative solution techniques for mathematical programming models in

telecommunications network design (Premkumar, and Chu, 2000). Mathematical models

have also been developed to study telecommunications pricing decisions of suppliers

(Brown, and Norgaard, 1992). Other researchers (Chen, Hassin, and Tzur, 2002)

analyzed the problem of allocating fixed capacity bandwidth and storage among a

number of requests to maximize profits of the seller. Keon and Anandalingam, (2003)

present a model for optimally pricing different classes of telecommunications service

(voice, data, etc.) from the telecommunications provider’s perspective. This dissertation,

though related, examines a different problem. The focus here is on acquiring capacity

from a buyer’s perspective, instead of the telecommunications provider or seller’s

perspective.

This research is also related to research on future manufacturing capacity

procurements under conditions of increasing costs and uncertain demands. Burnetas and

Gilbert (2001) examine a scenario where the decision maker trades off waiting for

improved demand information with increasing costs of waiting and uses dynamic

programming and numerical analysis to decide on the capacity for each period.

Khouja and Kumar (2004) also addressed the bandwidth contract problem from a

purchaser’s perspective. However, in Khouja and Kumar’s model overlapping contracts

were not allowed, therefore, a single contract covers the demand for any given period.

Khouja and Kumar showed that a fixed contract length works as well as variable contract

lengths.

2.1 Problem Formulation

For this model, the following assumptions are made:

21

1. Demand is deterministic and increasing over time,

2. Prices are deterministic and decreasing over time,

3. Discounts with respect to contract size and duration are offered,

4. Overlapping contracts are allowed,

5. Contract durations must be a multiple of τ , where τ is the minimum contract

duration, and

6. No shortages are allowed.

Notation used in formulating the model is as follows:

T = Length of planning horizon,

τ = Minimum duration of a contract, e.g., 1 month,

N = Number of contract periods in the planning horizon, τTN = ,

i = Beginning period index for a contract, Ni …2,1= ,

j = Ending period index for a contract, 12 += Nj … ,

iD = Demand for bandwidth in period i ,

jix , =

jiP , = Price per Mbps per time unit (i.e., τ) for a contract beginning in period i and

 ending at the beginning of period j ; a function of size ()Q and duration ()L ,

jiQ , = Size of a contract that begins in period i and ends at the beginning of period j ,

 and

1 if a contract beginning at period i and ending at the beginning of period
j is purchased,

0 otherwise,

22

jiL , = ij − , the duration of a contract that begins in period i and ends at the

 beginning of period j .

The mathematical formulation of the cost minimization problem over the planning

horizon is given by:

)(
1

1

1
,,, ijPQxTCMin

N

i

N

ij
jijiji −= ∑ ∑

=

+

+=

. (1)

This problem is subject to N constraints, ensuring that purchased bandwidth is sufficient

to meet demand in every period.

DQ ijk

i

k

N

ij

≥∑ ∑
=

+

+=
,

1

1

1
 Ni …2,1= . (2)

In other words, the sum of bandwidth sizes for all contracts active during period i must

be greater than or equal to the maximum demand for bandwidth in period i .

It is assumed that the bandwidth demand will increase. For the deterministic

model, demand, growing at a constant rate, is modeled by

gr DD += 1 , (3)

where g D is the demand growth rate. Therefore, bandwidth demand at time t is given

by

raD t
DDt = , (4)

where aD is the initial demand at the beginning of the planning horizon.

For the deterministic model, the price of bandwidth is assumed to be decreasing at

a constant rate according to

PP gr −= 1 , (5)

23

where g P is the price decrease rate. The unit price for bandwidth per unit time at time t

can be written as:

raP t
PPt = , (6)

where aP is the initial bandwidth price at the beginning of the planning horizon. To

solve this problem bandwidth pricing parameters need to be computed by developing an

empirical price function. Historical data is analyzed to determine the price function at

time t , tP . Bandwidth price at the beginning of the planning horizon, or any point in

time is a function of contract size and duration. Therefore, at the beginning of the

planning horizon

()LQfa p ,= . (7)

Substituting into (6) gives

() rLQfP t
pt ,= . (8)

Since all contracts start at the beginning of a period and end at the beginning of a period,

the price per Mbps per unit time for contract beginning in period i and ending at the

beginning of period j is

() () ()rarijQfP i
pP

i
pjiji

ττ 11
,, , −− =−= . (9)

Substituting ()ra i
PP

τ1− from Equation (9) for P ji, in Equation (1) gives the following

bandwidth acquisition problem

() ()∑ ∑
=

+

+=

− −=
N

i

N

ij

i
PPjiji ijraQxTCMin

1

1

1

1
,,

τ (10)

subject to Equation (2).

24

When τ is equal to one, it can be removed from Equation (10). The equations

that follow assume that τ is equal to one.

2.2 Illustrative Example: N = 5

Consider a problem with a planning horizon of five months, with possible

contracts having a minimum length of one month, i.e., 1=τ . Therefore, N = 5,

52,1 …=i , and 63,2 …=j .

Table 2-1 shows the total number of possible contracts in a problem with 5=N

decision points; note the format adopted for the numbering of each contract. Each

column represents a unique contract which could be purchased. In Table 2-1, the white

cells containing “# ≥ 0” indicate contracts that could potentially be active and the period

in which they can be purchased. The white cells, if any, below a first white cell for a

purchased contract will also contain the bandwidth size of that contract. In other words, a

contract can only be purchased in the period in which its first white cell appears, and if a

contract is purchased the bandwidth size for that contract is recorded in all the white cells

for that contract. Note that the duration of the contract is indicated by the number of

white cells following the initial purchase of the contract. The grey cells indicate the

periods when any given contract cannot be active. All white cells for any contract that is

not purchased will contain a 0. Table 2-2 illustrates how quickly the BCP can become

intractable. Even small increases in the size of the planning horizon (i.e., N) will

dramatically increase the number of available contracts and, subsequently, exponentially

increase the solution search space.

Ta
bl

e
2-

1:
 C

on
tra

ct
 P

er
io

d
C

ov
er

ag
e

M
at

rix
 fo

r N
 =

 5
 P

er
io

ds

D

at
a

St
ru

ct
ur

e
In

de
x

N
um

be
r

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

Contract Number

Contract [01, 02]

Contract [01, 03]

Contract [01, 04]

Contract [01, 05]

Contract [01, 06]

Contract [02, 03]

Contract [02, 04]

Contract [02, 05]

Contract [02, 06]

Contract [03, 04]

Contract [03, 05]

Contract [03, 06]

Contract [04, 05]

Contract [04, 06]

Contract [05, 06]

Constraint Minimum
Required Bandwidth

1
≥

0
≥

0
≥

0
≥

0
≥

0

¥

 D
1

2

●

●

●

●

≥
0

≥
0

≥
0

≥
0

¥
 D

2
3

●

●

●

●

●

●

≥

0
≥

0
≥

0

¥
 D

3
4

●

●

●

●

●

●

≥
0

≥
0

¥

 D
4

Period

5

●

●

●

●

≥

0
¥

 D
5

25

26

Table 2-2: Number of Possible Contracts for Different Values of N
Number of Decision Points (N) Number of Possible Contracts (i.e., 1/2 N (N+1))

2 3
3 6
4 10
5 15
6 21

:..
:..

:..
:..

12 78
:..
:..

:..
:..

18 171
:..
:..

:..
:..

24 300

2.3 Bandwidth Contract Purchasing Problem: Formulations of the Problem

To solve this problem, a mixed integer formulation is used. The mixed integer

programming technique uses Equations (1) and (2), and requires the inclusion of a binary

variable jix , to indicate whether or not a given contract is active, i.e., purchased

(Williams, 2005). If 1, =jix , then a contract beginning at period i and ending at the

beginning of period j is purchased, else if 0, =jix , then no such contract has been

purchased. Therefore, using Equations (1) and (2), the following minimization of total

cost (MinTC) formula is derived:

() () ()
() () ()
() () ()
() () ()
() () ()564645

363534
262524

231615
141312

6,56,56,56,46,46,45,45,45,4

6,36,36,35,35,35,34,34,34,3

6,26,26,25,25,25,24,24,24,2

3,23,23,26,16,16,15,15,15,1

4,14,14,13,13,13,12,12,12,1

−+−+−

+−+−+−

+−+−+−

+−+−+−

+−+−+−=

PQxPQxPQx
PQxPQxPQx
PQxPQxPQx

PQxPQxPQx
PQxPQxPQxMinTC

 (11)

subject to:

16,16,15,15,14,14,13,13,12,12,1 DQxQxQxQxQx ≥++++ (12)

27

26,26,25,25,24,24,23,23,26,16,15,15,14,14,13,13,1 DQxQxQxQxQxQxQxQx ≥+++++++ (13)

36,36,3

5,35,34,34,36,26,25,25,24,24,26,16,15,15,14,14,1

DQx
QxQxQxQxQxQxQxQx

≥

++++++++
 (14)

46,46,45,45,46,36,35,35,36,26,25,25,26,16,15,15,1 DQxQxQxQxQxQxQxQx ≥+++++++ (15)

56,56,56,46,46,36,36,26,26,16,1 DQxQxQxQxQx ≥++++ (16)

Equation (12) can be rewritten as.

()
()
()
()

6,5

6,45,4

6,35,34,3

6,25,24,23,2

6,1

5,14,13,112

6,56,5
4

6,46,45,45,4
3

6,36,35,35,34,34,3
2

6,26,25,25,24,24,23,23,2
1

6,16,1

5,15,14,14,13,13,12,12,1
0

2

32

432

)5

432(

PP

PPP

PPPP

PPPPP

P

PPPPP

aQxr

aQxaQxr

aQxaQxaQxr

aQxaQxaQxaQxr

aQx

aQxaQxaQxaQxrTCMin

++

+++

++++

+

++++=

, (17)

which is the same as

()() ()()

()() ()()

()()∑

∑∑

∑∑

+

=

+

=

+

=

+

=

+

=

−

+−+−

+−+−=

1

6

4
,5,5

1

5

3
,4,4

1

4

2
,3,3

1

3

1
,2,2

1

2

0
,1,1

,5,5

,4,4,3,3

,2,2,1,1

5

43

21

N

j
PPjj

N

j
PPjj

N

j
PPjj

N

j
PPjj

N

j
PPjj

jj

jjjj

jjjj

raQxj

raQxjraQxj

raQxjraQxjTCMin

 (18)

The pricing data given in Table 1-2 is used to estimate the price of bandwidth as a

function of size, and duration. Table 1-2 shows contract costs associated with varying

bandwidth sizes for durations of 1, 2, and 3 years.

To fit a regression function, the annual price per Mbps data recorded in Table 1-2

is converted to the price per Mbps per month for each combination of Size and Duration

listed in Table 1-2. The price per Mbps per month is shown in Table 2-3. Each

28

observation in Table 2-4 shows the price per Mbps per month with the inverse of size

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Q
1 and duration ⎟

⎠
⎞

⎜
⎝
⎛

L
1 to reflect the negative relationship price with size and duration.

The resulting regression equation, fitted using SPSS, accounted for 98.8% of the variance

in the price data. Tables 2-5 show the regression results from the data in Table 2-4.

Table 2-3: Price per Mbps per Month

Contract Duration (L)
(Years)

Contract
Bandwidth Size

(Mbps)
Annual Price/Mbps* Price/Mbps/Month

1 6 $14,310 $198.7500
1 9 $15,429 $142.8611
1 12 $16,548 $114.9167
1 15 $17,667 $98.1500
1 18 $18,786 $86.9722
1 21 $19,905 $78.9881
1 45 $25,500 $47.2222
2 6 $13,595 $188.8194
2 9 $14,658 $135.7222
2 12 $15,721 $109.1736
2 15 $16,784 $93.2444
2 18 $17,847 $82.6250
2 21 $18,910 $75.0397
2 45 $24,225 $44.8611
3 6 $12,164 $168.9444
3 9 $13,115 $121.4352
3 12 $14,066 $97.6806
3 15 $15,017 $83.4278
3 18 $15,968 $73.9259
3 21 $16,919 $67.1389
3 45 $21,675 $40.1389

*Based on data from Table 1-2

29

Table 2-4: Price per Mbps per Month (Formulation #1)
Y X1 X2

Price/Mbps/Month 1/Size (i.e., 1/Q) 1/Duration (i.e., 1/L)
198.7500 0.1667 0.0833
142.8611 0.1111 0.0833
114.9167 0.0833 0.0833
98.1500 0.0667 0.0833
86.9722 0.0556 0.0833
78.9881 0.0476 0.0833
47.2222 0.0222 0.0833

188.8194 0.1667 0.0417
135.7222 0.1111 0.0417
109.1736 0.0833 0.0417
93.2444 0.0667 0.0417
82.6250 0.0556 0.0417
75.0397 0.0476 0.0417
44.8611 0.0222 0.0417

168.9444 0.1667 0.0278
121.4352 0.1111 0.0278
97.6806 0.0833 0.0278
83.4278 0.0667 0.0278
73.9259 0.0556 0.0278
67.1389 0.0476 0.0278
40.1389 0.0222 0.0278

Table 2-5: Regression Model Output (Formulation #1)

Regression Statistics
Multiple R 0.994
R Square 0.989
Adjusted R Square 0.988
Standard Error 4.911
Observations 21

 Coefficients
Standard

Error t Stat P-value
=1β Intercept 13.116 3.191 4.110 0.001
=2β 1/Size (i.e., 1/Q) 962.927 24.266 39.682 0.000
=3β 1/Duration (i.e., 1/L) 258.526 45.446 5.689 0.000

 From Table 2-5 we find the fitted regression equation, which is

LQ
aP

526.258927.962116.13 ++= , (19)

30

where pa is the initial price per Mbps per month at the beginning of the planning

horizon. Equation (19) is the price function at a point in time. To develop a longitudinal

price function to estimate pr historical data over time will need to be analyzed.

Substituting from Equation (19) into Equation (10) gives the total cost (ITC) as

() ()
()∑ ∑

=

+

+=

−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
++−=

N

i

N

ij

i
pjijiI ijQ ji

rijQxTC
1

1

1

1
,,

3
,
2

1
ββ

β . (20)

TC in Equation (20) can be divided into three parts, ,, 21 TCTC and 3TC .

() ()()∑ ∑
=

+

+=

−−=
N

i

N

ij

i
pjiji rijQxTC

1

1

1
1

1
,,1 β , (21)

() ()∑ ∑
=

+

+=

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

N

i

N

ij

i
pjiji Q ji

rijQxTC
1

1

1

21
,,2

,

β
, and (22)

() ()
()∑ ∑

=

+

+=

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=
N

i

N

ij

i
pjiji ijrijQxTC

1

1

1

31
,,3

β
. (23)

The xi,j binary variable is redundant in Equations (21) and (23) since if the contract is

purchased the size will be greater than 0, and if the contract is not purchased the size will

be 0. Therefore, Equations (23) and (25) can be rewritten without xi,j. In addition,

Equations (22) and (23) are further simplified. Therefore, Equations (21), (22), and (23)

become

() ()()∑ ∑
=

+

+=

−−=
N

i

N

ij

i
pji rijQTC

1

1

1
1

1
,1 β (24)

() ()()∑ ∑
=

+

+=

−−=
N

i

N

ij

i
pji rijxTC

1

1

1
2

1
,2 β , and (25)

()()∑ ∑
=

+

+=

−=
N

i

N

ij

i
pji rQTC

1

1

1
3

1
,3 β . (26)

31

This problem can also be formulated as a non-linear programming problem with

linear constraints. This is done by raising the inverse Size variable by a value lambda

prior to performing regression. Tests showed that a lambda value just less than one fit

the data best. Therefore, a lambda of 0.999 was selected to reduce any inflation in the

cost formulas. The advantage of this second formulation is that it reduces the complexity

of the problem by avoiding mixed integer programming. To illustrate this second

problem formulation, the data in Table 1-2 is used again. Notice that Table 2-6 is

identical to Table 2-4 with the exception that the values in column labeled “X1” are now

equal to
Size

1
999.0

 .1i.e., 999.0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Q

 Based on the data in Table 2-6, the resulting regression

equation, fitted using SPSS, accounts for 98.8% of the variance in the price data. Table

2-7 shows the new regression results. This formulation is simpler to solve than the first

formulation and just as accurate.

32

Table 2-6: Price per Mbps per Month (Formulation #2)
Y X1 X2

Price/Mbps/Month 1/Size0.999 (i.e., 1/Q0.999) 1/Duration (i.e., 1/L)
$198.7500 0.1670 0.0833
$142.8611 0.1114 0.0833
$114.9167 0.0835 0.0833
$98.1500 0.0668 0.0833
$86.9722 0.0557 0.0833
$78.9881 0.0478 0.0833
$47.2222 0.0223 0.0833

$188.8194 0.1670 0.0417
$135.7222 0.1114 0.0417
$109.1736 0.0835 0.0417
$93.2444 0.0668 0.0417
$82.6250 0.0557 0.0417
$75.0397 0.0478 0.0417
$44.8611 0.0223 0.0417

$168.9444 0.1670 0.0278
$121.4352 0.1114 0.0278
$97.6806 0.0835 0.0278
$83.4278 0.0668 0.0278
$73.9259 0.0557 0.0278
$67.1389 0.0478 0.0278
$40.1389 0.0223 0.0278

Table 2-7: Regression Model Output (Formulation #2)

Regression Statistics
Multiple R 0.994
R Square 0.989
Adjusted R Square 0.988
Standard Error 4.911
Observations 21.000

 Coefficients
Standard

Error t Stat P-value
=1β Intercept 13.051 3.191 4.090 0.001
=2β 1/Size^0.999 (i.e., 1/Q^0.999) 961.753 24.239 39.678 0.000
=3β 1/Duration (L) 258.169 45.399 5.687 0.000

From Table 2-7, the fitted regression equation is

33

LQ
aP

169.258753.961051.13 999.0 ++= . (27)

Substituting from Equation (27) into Equation (10), and removing the binary

variable, jix , , gives the non-linear total cost (CTC) as

() ()
()∑ ∑

=

+

+=

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
++−=

N

i

N

ij ji

i
pjiC ijQ

rijQTC
1

1

1

3
999.0

,

2
1

1
,

ββ
β . (28)

CTC in Equation (28) can be divided into three parts, ,, 21 CC TCTC and 3CTC .

() ()()∑ ∑
=

+

+=

−−=
N

i

N

ij

i
pjiC rijQTC

1

1

1
1

1
,1 β , (29)

() ()∑ ∑
=

+

+=

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

N

i

N

ij
.
ji,

i
pjiC Q

β
rijQTC

1

1

1
9990
21

,2 , and (30)

() ()

()∑ ∑
=

+

+=

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=
N

i

N

ij

i
pjiC ij

rijQTC
1

1

1

31
,3

β . (31)

Equations (30) and (31) reduce to

() ()()∑ ∑
=

+

+=

−−=
N

i

N

ij

i
pjiC rijQTC

1

1

1
2

1001.0
,2 β , (32)

and

()()∑ ∑
=

+

+=

−=
N

i

N

ij

i
pjiC rQTC

1

1

1
3

1
,3 β . (33)

The binary variable jix , was needed in the first formulation because of Equation

(25). In the second formulation, we take advantage of the fact that if a contract does not

exist its size is zero ()0i.e., , =jiQ , and since Equations (29), (32), and (33) all contain

jiQ , , the total costs (,, 21 CC TCTC and 3CTC) will only contain the sum totals of valid

34

contracts. If the binary variable were not used in Equation (25) it would reduce to

() ()()∑ ∑
=

+

+=

−−=
N

i

N

ij

i
prijTC

1

1

1
2

1
2 β , which is incorrect because there is no way to indicate

whether a contract has been purchased or not. This formulation would sum all possible

contracts, not just those contracts that have been purchased.

Two ways to formulate this problem have been illustrated: (1) mixed integer

linear programming, and (2) non-linear programming. There are many software

packages which might be used to solve the mixed integer linear programming problem;

for example, CPLEX (CPLEX, 1995). To solve the second programming formulation,

non-linear objective function with linear constraints, a Lagrangian function could be

used.

The bandwidth contract purchasing problem presented in the rest of this

dissertation will be solved using Formulation #1, which uses mixed integer linear

programming (MILP), since it is easier to identify optimal solutions when solving a linear

problem as opposed to a non-linear problem. The solution and computational time of the

evolutionary algorithms (a meta-heuristic, which will be discussed in detail in Chapter 3),

are then compared and evaluated based on the solutions obtained by the mixed integer

program (Williams, 2005) solved using CPLEX.

Chapter 3 includes a general overview of evolutionary algorithms and a

discussion of how the proposed evolutionary algorithm for the bandwidth contract

problem, for both a deterministic model and a stochastic model, will be implemented.

CHAPTER 3 EVOLUTIONARY ALGORITHMS: A POPULATION BASED
HEURISTIC SEARCH ALGORITHMS

As stated earlier, Khouja and Kumar (2004) also addressed the bandwidth

contract problem. The research proposed here is different in that it will use evolutionary

algorithms to solve the problem. An evolutionary algorithm provides a framework that is

more flexible than the model used by Khouja and Kumar (2004). Evolutionary

algorithms can deal with many functional forms of price and demand changes, whereas

Khouja and Kumar’s formulation can only handle fixed percentages of increase and

decrease in price and demand. In addition, evolutionary algorithms do not require that

functions be continuous, i.e., step functions can easily be used.

The purpose of this chapter is to provide a brief overview of evolutionary

algorithms followed by a discussion of how evolutionary algorithms will be implemented

in solving the bandwidth contract problem, hereafter referred to as BCP. The

performance of the deterministic implementation of the evolutionary algorithm will be

evaluated through a comparison with results obtained through mathematical

programming methods. Finally, the chapter will conclude with a discussion of a

stochastic implementation of an evolutionary algorithm with a simulation for the BCP.

3.1 Evolutionary Algorithms

Evolutionary algorithms, hereafter EAs, are a problem solving technique, known

as a meta-heuristics. EAs use the concept of evolution and hereditary to produce quality

solutions to complex problems that have large search spaces and are, therefore, difficult

36

to solve. EAs have been used to solve many types of complex problems (Aytug, Khouja

and Vergara, 2003). A well designed EA allows for the efficient and effective

exploration and exploitation of a problem’s solution space in an effort to identify the

global optimal, or a near optimal, solution.

EAs create and manipulate a group of possible solutions referred to as a

population. Each possible solution within the population is called a chromosome. The

population undergoes change throughout the run of the EA thereby evolving the

population of chromosomes toward a best solution. Within the EA, the population loops

through a series of processes numerous times; a complete execution of all procedures is

referred to as a generation. Hence, throughout the run of the EA, the population will

cycle through many generations as the chromosomes within each subsequent population

change and evolve, until, it is hoped, a good solution emerges. The processes

encountered within each generation include an evaluation process, an alteration process,

and a selection process. These processes may occur in various orders; however each is

required at each generation (Michalewicz, 1996).

The evaluation process uses an evaluation function that assesses the relative

fitness, or “goodness,” of each chromosome within the population at each generation. In

addition, at each generation a number of chromosomes are subjected to some form of

perturbation. These perturbations constitute the alteration process. These changes are

manifested through the use of specific algorithmic operations, called genetic operators.

Genetic operators can be either mutation operators, which introduce small changes within

a single chromosome, or crossover operators, which cut and paste different parts from

two or more chromosomes in order to create two or more new chromosomes. The

37

probability of a chromosome experiencing some form of perturbation within any given

generation is subject to predefined parameters for each of the operators. Therefore, the

probability of mutation and the probability of crossover will determine how many

chromosomes are altered. Through the alteration process, some, or all, of the

chromosomes within a generation’s population are altered. These altered chromosomes

are often called offspring, and the chromosomes that are used to create the offspring are

often called parents. Offspring might replace their parents, or they might simply be

added to the existing population, thereby creating a large pool from which the next

generation can be created. Finally, a selection process used within an EA provides a

procedure for selecting parents so that offspring can be created, and is also used to

promote the survival of the best chromosomes from one generation to the next (i.e.,

generational policy). When properly implemented the use of selective pressure

encourages the population to converge to a quality solution.

Each EA is unique in its design with regard to several important elements

depending on the problem domain and the programmer’s preferences. However,

regardless of the differences, all EAs attempt to evolve the chromosomes within the

population through the use of genetic operators and selective pressures to converge to a

good solution to complex problems. So, while each manifestation of an EA is unique; it

is important to begin a discussion of EA by describing a few relevant aspects that are

common to most, if not all, EAs. These elements include genetic representation, method

for creating the initial population, genetic operators, evaluation function, selection

method, generational policy, terminating conditions, parameters, and constraint handling

techniques.

38

3.2 Genetic Representation

The genetic representation, or data structure, of an EA specifies how a problem

will be represented within the computer. Each problem is unique and the data structure

used to solve a problem must be carefully designed to accurately model the problem. The

classic representation within an EA is to use binary digits. However, other

representations such as integer and floating point have been found to yield better

solutions for different problems. The use of an inappropriate coding scheme has been the

cause of many GA failures (Reeves, 1997).

3.3 Method for Creating the Initial Population

Often initial populations are generated randomly. For problems with small

feasible regions, initialization can incorporate problem-specific knowledge to increase the

likelihood of having feasible chromosomes and to generate some good solutions in the

initial population.

3.4 Genetic Operators

Genetic operators alter the genetic composition of parent chromosomes during

reproduction, thereby creating offspring. Genetic operations can include crossover,

mutation, or both. In addition, a given EA might employ a variety of crossover and/or

mutation operators. The operators that manipulate the chromosomes must be carefully

selected so that alterations performed on the chromosomes are meaningful and promote

diversity without unduly introducing infeasible solutions into the population.

Of the two types of genetic operators, mutation changes one chromosome only

slightly. Mutation can be as simple as randomly changing the value stored within one

gene within a chromosome. The simplest mutation for a binary vector is to flip a bit in a

39

gene (index) within the chromosome. Other mutation operators include swapping the

values between two genes, randomly inserting the value of one gene into another location

and shifting, etc. Mutation moves the EA to a different neighborhood of the search space

(Vose and Liepins, 1991), and is usually called the ‘exploration’ operator. Mutation,

therefore allows the EA to explore diverse regions in the search space.

The second genetic operator, crossover, is called the focusing operator, enabling

the EA to exploit the current neighborhood and is expected to move the EA to a local

optimum. Crossover exchanges genetic material between two or more parents. A one-

point crossover exchanges all genes to the left of a cut-point whereas a two-point

crossover exchanges genes between two cut-points. Cut-points are usually randomly

determined. Most disruptive is the uniform crossover, where genes from both parent are

randomly swapped.

3.5 Evaluation Function

An evaluation function (a.k.a. fitness value) is used to evaluate the “goodness,” or

“fitness,” of each chromosome with regard to the total cost of the purchasing strategy

represented in the data structure of each chromosome. Since each chromosome

represents a potential solution to a problem, the evaluation function assigns a real number

as a measure of fitness to each chromosome.

3.6 Selection Method

There are many methods to employ selective pressure within an EA. A selection

method is a scheme for selecting chromosomes, either for undergoing an alteration

process, or for generational policy, which involves selecting chromosome for a new

population at the beginning of each new generation. Two popular selection methods are

40

the roulette wheel and tournament. The roulette wheel gives chromosomes a chance of

selection equal to their fitness relative to the population. The higher a chromosome’s

fitness ratio is with respect to the overall population, the higher the probability that it will

be selected. Tournament selection randomly places k chromosomes ()2≥k in

competition against each other. The winner is the chromosome with the best fitness

value. The winner then actively contributes to the next generation, by either participating

in the alteration process, or by occupying a place in the next generation’s population. An

additional method often used is random selection, which selects chromosomes for either

alteration, or to enter the next generation’s population, in a completely arbitrary manner.

3.7 Generational Policy

A replacement scheme for creating each new generation is called the generational

policy. Replacement strategies specify how the next generation is to be created. Often,

offspring replace their parents. However, there are many variations to this rule. One

commonly applied strategy is the elitist strategy, which always carries at least one copy

of the best chromosome to the next generation. A tournament strategy is based on a

tournament scheme, where the winner of a contest between two or more chromosomes is

copied to the next generation. Another scheme uses each offspring as a starting point for

a local search algorithm and accepts the resulting, and improved, solutions as a new

offspring, which is then carried over into the next generation.

3.8 Termination Conditions

The termination condition in an EA is essentially the stopping criteria. Running

the EA for a predetermined number of generations is the most common criterion,

however, time-independent criterion such as population entropy or diversity have also

41

been used. Entropy is a term borrowed from physics and is generally used to refer to the

gradual loss of heat or “cooling” of a system from a chaotic, excited, state to a state of

balance and equilibrium. The use of entropy within an EA is modeled as a function that

slowly degrades over many generations until its value falls below some given threshold

value, at which point the program terminates. Diversity reflects the difference between

the chromosomes within a population. Diversity in EAs can be implemented in several

ways. One way diversity can be measured is as a pairwise comparison of the values in

corresponding indexes between chromosomes. For example, by comparing the

commonalities, index by index, among chromosomes the EA could be programmed to

terminate when the population reaches some measure of homogeneity. A second way

that diversity can be measured is as the difference in the fitness value between

chromosomes within a population. For example, a common criterion sometimes used is

to monitor the average (or best) fitness value within each successive generation, and

when the number of generations where the average (or best) fitness value does not

improve is greater than some set threshold value, the program terminates. Another

possibility is to set a threshold value, and when the difference between fitness values for

the best and worst chromosomes within a population is less than this threshold value the

program terminates.

3.9 Computational Parameters

The parameters define the settings used to run an EA. EA parameter selection

includes the setting of values for population size, crossover and mutation probabilities

rates, and stopping criteria. There is no definitive process for choosing these parameters.

The practice is to use parameters based on pilot runs or ad-hoc selection.

42

3.10 Constraint Handling Techniques

Most problems have constraints. For example, for the bandwidth contract

problem there are N constraints, given by Equation (2). These constraints stipulate that

shortages are not allowed for any period. Infeasibility can result if a constraint is

violated. Some EAs allow for the inclusion of such infeasible solutions; others include

repair algorithms to transform them into feasible solutions. Still others simply delete

infeasible solutions when they occur (Michalewicz, 1996). It is up to the EA designer to

decide which course of action is appropriate. A major advantage of EAs is there ability

to solve highly constrained problems (Michalewicz, 1996).

CHAPTER 4 THE DETERMINISTIC BANDWIDTH CONTRACT PROBLEM
EVOLUTIONARY ALGORITHM (DBCP-EA)

The proposed EA identifies an optimal or near optimal solution for the DBCP in a

relatively short period of time. The DBCP-EA is designed to allow multiple overlapping

contracts, and contains a repair function that transforms infeasible solutions into feasible

solutions. A feasible solution is a solution where the total purchased bandwidth for all

contracts active during each period in a planning horizon is equal to or greater than the

demand for each period. In testing the EA, each problem has different parameter settings

for each of the four parameters: planning horizon length, temporal discount, price

decrease rate, and demand increase rate. Each of these parameters can assume one of

three values resulting in 813333 =××× problems.

Several variable labels are used within this chapter to facilitate the discussion of

the various aspects of the DBCP-EA. A listing of these labels and a description of each is

presented here.

%_Error: The mean percent error (i.e., the distance from the optimal solution).

For the DBCP-EA it is the mean percent error of 5 runs for each problem.

MOM_%_Error: The mean of the mean percent errors (i.e., the average of a group

of %_Error). This variable is used when discussing observations from

aggregated %_Error data with respect to the four parameters.

Pop_Size: The number of chromosomes used throughout the run of the DBCP-

EA. This value is held constant at 40.

44

The number of times to run each problem was determined based on preliminary

tests run on sample problems. It was found that running each problem for five runs

produced a good representation of the variability in DBCP-EA solution quality. The

population size (Pop_Size) was identified based on an analysis of the tradeoff between

population size, where larger populations might potentially achieving better solution

quality, versus the computational run time required to solve each problem. A Pop_Size

of 40 chromosomes was found to perform well with respect to both solution quality and

run time. The DBCP-EA uses two crossover operators and one mutation operator. Each

operator has an operator rate which is a parameter setting that determines the probability

of applying the operator. Therefore, the One-point Crossover Rate, the Uniform

Crossover Rate, and Mutation Rate, are associated with the One-point Crossover

Operator, the Uniform Crossover Operator, and the Mutation Operator, respectively.

fv: The measure of ‘goodness’ of a purchasing strategy recorded in index 0 of a

chromosome. For the BCP-EA the total cumulative cost of a purchasing

strategy is used as the fitness value for each chromosome.

X: A variable that contains the number of potential contracts available over the

planning horizon plus one ()()1i.e., ++=)1(21 NNX for each problem.

The length of each chromosome is equal to X.

Chromosome_Array: A two dimensional array of width X and length Pop_Size.

This array is used to hold the population of chromosomes at the beginning

of each generation during the run of a BCP-EA problem.

45

X Chromosome_Array structure
Index 0 Index 1 … Index (1/2 N (N+1)

Chromosome 1
Chromosome 2

:
Po

p_
Si

ze

Chromosome (Pop_Size)
Pool_Array: A two dimensional array of width X and of varying length. The final

length is equal to the Pop_Size plus all of the offspring created by the use

of the three genetic operators. At the end of each generation, the next

generation’s population of chromosomes is selected from the Pool_Array

and copied into the Chromosome_Array.

X Pool_Array structure
Index 0 Index 1 … Index (1/2 N (N+1)

Chromosome 1
Chromosome 2

:
:
:
:
:

Po
p_

Si
ze

 +
 #

 o
f O

ffs
pr

in
g

Chromosome (Pop_Size
+ # of Offspring)

X Chromosome_Array structure
Index 0 Index 1 … Index (1/2 N (N+1)

Chromosome 1
Chromosome 2

:

Po
p_

Si
ze

Chromosome (Pop_Size)

Select next
generation’s
beginning
population

46

Parent Chromosomes (e.g., Parent #1 and Parent #2): A one dimensional array of

length X used during a tournament selection during the use of the

crossover and mutation operators. These arrays contain two chromosomes

from the population.

Offspring (e.g., Offspring #1 and Offspring #2): A one dimensional array of

length X used within the crossover and mutation operators. The Parent

Chromosome(s) is/are altered and the resulting chromosome(s) is/are

called Offspring(s). Crossover operators create two Offspring; whereas,

the mutation operator creates only one.

bws: This the purchased bandwidth size. If a contract is purchased the size of the

purchased amount of bandwidth is recorded in the chromosome index

corresponding to that contract. Bandwidth sizes are restricted to integer

values.

Prob_Purchase: The probability of purchasing a given contract. This value is

used when creating the initial population of chromosomes for a DBCP-EA

problem.

4.1 DBCP-EA Process Flowchart

Figure 4-1 is an overview of the basic processes within the DBCP-EA. The

DBCP-EA pseudo code follows Figure 4-1. Appendix A contains the source code for

DBCP-EA. The remaining sections in this chapter discuss the various aspects of the

DBCP-EA in detail.

47

Figure 4-1: DBCP-EA Flowchart

BCP EA Pseudo Code

1. Select N. LOOP1 = 0. LOOP2 = 0.

2. Set Pop_Size.

3. Set operator parameters: One-Point Crossover Operator Rate, Uniform Crossover
Operator Rate, and Mutation Operator Rate. Note: (0 ≤ Operator Rate ≤ 1).

4. Set the maximum number of generations to run.

Is
Crossover/Mutation

Complete?

Start

Initial Population

Check for Deficits

Is
Solution
Feasible?

Crossover/Mutation
Operation

Yes

No

Repair No

Yes

No Yes
Is

Termination
Condition

Met?

Select New Population

Stop Evaluate Fitness Value

48

5. Create initial population of chromosomes and place them in the
Chromosome_Array. Calculate the fv for each chromosome and place the value
in index 0 of each chromosome vector.

6. LOOP1 = LOOP1 + 1. Set loop to run 3 times, once for each temporal discount
scheme.

a. s = 1 for Small temporal discounts

b. s = 2 for Medium temporal discounts

c. s = 3 for Large temporal discounts

7. LOOP2 = LOOP2 + 1. Set loop to run 9 times, once for all possible price and
demand combination (i.e., 3 x 3 = 9).

a. Price decrease rate (p): 0.1, 0.2, and 0.3.

b. Demand increase rate (d): 0.1, 0.2, and 0.3.

8. Copy generation’s chromosomes from the Chromosome_Array into the
Pool_Array.

9. Initiate the one-point crossover operator. Append two offspring to the end of the
Pool_Array each time the one-point crossover operator is implemented. (See
Section 4.1.3.)

10. Initiate the uniform crossover operator. Append two offspring to the end of the
Pool_Array each time the uniform crossover operator is implemented. (See
Section 4.1.3.)

11. Initiate the mutation operator. Append one offspring to the end of the Pool_Array
each time the mutation operator is implemented. (See Section 4.1.3.)

12. Check all chromosomes in the Pool_Array for feasibility. If infeasible, then
correct using the repair function. (See Section 4.1.9.)

13. Use the evaluation function to assign a fitness value (i.e., fv) to each chromosome
in the Pool_Array. (See Section 4.1.4.)

14. Select the next generation’s chromosomes from the Pool_Array and copy them
into the Chromosome_Arrray. (See Section 4.1.6.)

15. If a termination condition is met, then go to step 16 (See Section 4.1.7). Else, go
to step 8.

16. If LOOP2 < 9, then go to step 7. Else, go to step 17.

17. If LOOP1 < 3, then go to step 6. Else, done!

4.1.1 BCP EA Genetic Representation

Chromosomes represent possible solutions, or purchasing strategies, for a given

BCP problem. For each BCP problem, the length of the planning horizon is specified.

49

Therefore, there are N possible contracts that can begin in the first period, and ()1−N

possible contracts that begin in the second period, etc. The total number of possible

contracts in a planning horizon of size N is

() () 1...21 ++−+−+ NNN =)1(
2
1

+NN (34)

The BCP EA uses a simple data structure that is designed to be dynamic; allowing

the EA to be used for varying values of N without having to modify the EA program

code. The data structure is a one dimensional vector of length X that contains a feasible

solution for a DBCP-EA problem. Figure 4-2 is a graphical representation of the BCP-

EA chromosome data structure for a problem with 5=N periods, and therefore 15

possible contracts ()() .155
2
1i.e., ⎟

⎠
⎞

⎜
⎝
⎛ +

At the beginning of each generation, a population of chromosomes is recorded in

the Chromosome_Array. During the run of each generation, the chromosomes from the

Chromosome_Array are used to create Offspring using the three genetic operators. At the

end of a generation the Pool_Array will contain the Chromosome_Array chromosomes

plus any Offspring that were created. At the end of each generation chromosomes are

selected from the Pool_Array and copied into the Chromosome_Array, thereby

generating the beginning population of chromosomes for the next generation.

A problem solution is a sequence of integer numbers recorded in indexes 1

through X in a chromosome. Each index represents a unique contract, and each contract

contains a bws. If the contract has not been purchased its bws is zero, else the bws is

some integer value. Contracts are designated by the period in which they can begin and

the period for which the contract expires; contracts begin in period i and end at the

50

beginning of period j. Therefore, contracts are identified by their beginning and ending

periods (i.e., Contract [i, j]). For an N = 5 problem, index 1 would contain the bws for the

first available contract in period 1, (i.e., the contract that begins in period 1 and ends at

the beginning of period 2; designated as Contract [01, 02]). Index 6 would contain the

bws for the first contract available in period 2 (i.e., the contact that begins in period 2 and

ends at the beginning of period 3; designated as Contract [02, 03]). This indexing

scheme concludes with the final contract, associated with index 15 (i.e., the contract that

begins in period 5 and ends at the beginning of period 6; designated as Contract [05, 06]).

Index 0 is reserved for the chromosome’s fitness value (fv).

51

The chromosome’s fitness value
(ie,TotalCost)

Contract [01, 02]

Contract [01, 03]

Contract [01, 04]

Contract [01, 05]

Contract [01, 06]

Contract [02, 03]

Contract [02, 04]

Contract [02, 05]

Contract [02, 06]

Contract [03, 04]

Contract [03, 05]

Contract [03, 06]

Contract [04, 05]

Contract [04, 06]

Contract [05 , 06]

C
on

tr
ac

t L
en

gt
h
→

1
2

3
4

5
1

2
3

4
1

2
3

1
2

1

fv

bw
s

bw
s

bw
s

bw
s

bw
s

bw
s

bw
s

bw
s

bw
s

bw
s

bw
s

bw
s

bw
s

bw
s

bw
s

D

at
a

st
ru

ct
ur

e
in

de
x

nu
m

be
r →

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Fi
gu

re
 4

-2
: C

hr
om

os
om

e
D

at
a

St
ru

ct
ur

e
fo

r N
 =

 5

 52

4.1.2 BCP-EA Method for Creating the Initial Population

The Pop_Size of 40 is held constant throughout the run of each problem. The

Chromosome_Array contains the beginning population of chromosomes. Each row

within the Chromosome_Array represents a unique chromosome.

For each contract, within each chromosome, a random number (RandNum) is

generated between 0 and 1. If RandNum ≤ Prob_Purchase, then an integer bws value is

randomly generated. If RandNum > Prob_Purchase, then bws = 0. Therefore, a bws > 0

indicates that the contract has been purchased. Figure 4-3 shows an example of how a

randomly generated chromosome might appear.

Initialize Chromosomes Pseudo Code

1. Select Pop_Size (The population size is set to 40 chromosomes).

2. Set value for Prob_Purchase (0 ≤ Prob_Purchase ≤ 1).

3. Set variable Z = 1.

4. For each index from 1 to X in chromosome number Z generate a random number.
If the random number is greater than the Prob_Purchase then enter 0 into the
index’s data location. Else, generate a bws and place that value in the index’s
data location.

5. Z = Z + 1.

6. If Z < Pop_Size, then go to step 2. Else, stop.

4.1.3 Three BCP-EA Genetic Operators

The three genetic operators used in the BCP-EA are: (1) a one-point crossover

(see Figure 4-4), (2) a uniform crossover operator (see Figure 4-5), and (3) a mutation

operator (see Figure 4-6). These three operators are used by the EA to create additional

chromosomes called Offspring by altering copies of existing chromosomes. All three

operators work with the BCP-EA data structure.

The one-point crossover operator uses two Parent Chromosomes to create two

Offspring. If the two Parent Chromosomes were stacked on top of each, then the

 53

chromosome indexes would line up. A cut point between 1 and X is randomly generated.

All the contract data to the left of the cut point in Parent #1 are copied into Offspring #1;

likewise the contract data to the left of the cut point in Parent #2 are copied into

Offspring #2. Then the contact data to the right of the cut point in Parent #1 are copied

into Offspring #2, and the contract data to the right of the cut point in Parent #2 are

copied into Offspring #1.

One-point Crossover Operator Pseudo Code

1. Set crossover to run (Pop_Size/2) times

2. Generate a random number (RandNum) between 0 and 1. If RandNum < One-
point Crossover Operator Rate, then go to step 3. Else, go to step 9.

3. Set Z = 1.

4. Randomly generate a number between 1 and X. This randomly generated number
is the cut point.

5. Randomly generate two numbers between 1 and Pop_Size to select two
chromosomes from the Chromosome_Array. Perform a tournament selection
between the two chromosomes. The chromosome with the smaller fitness value
(see Section 4.1.4) is the winner and is labeled Parent #1.

6. Repeat step 5 to identify Parent #2.

7. For each parent, copy all the values from the data locations from index 1 up to the
cut point and paste the data into one of the two offspring chromosomes. Next,
copy the values in the remaining data locations from both parents into the
alternate offspring.

8. Copy the two resulting Offspring (Offspring #1 and Offspring #2) into the
Pool_Array.

9. If Z < (Pop_Size/2), then go to step 2. Else, stop.

For the uniform crossover operator, a random number (RandNum) is generated. If

RandNum < Uniform Crossover Operator Rate two Offspring are created. The procedure

for selecting Parent Chromosomes is the same as described for the one-point crossover

operator.

For each index between 1 and X a random binary number (BinNum) is generated.

If BinNum = 0, then the value in the data location for that index in Parent #1 is copied

 54

into Offspring #1, and the value in the same data location in Parent #2 is copied into

Offspring #2. If BinNum = 1, then the value in that index’s data location in Parent #1 is

copied into Offspring #2; likewise the value in the same data location in Parent #2 is

copied into Offspring #1.

Uniform Crossover Operator Pseudo Code

1. Set crossover to run (Pop_Size/2) times.

2. Randomly generate a number (RandNum) between 0 and 1. If RandNum <
Uniform Crossover Operator Rate, then go to step 3. Else, go to step 12.

3. Set Count = 0 and Z = 1.

4. Randomly generate two numbers between 1 and (Pop_Size) to select two
chromosomes from the Chromosome_Array. Perform a tournament selection
between the two chromosomes. The chromosome with the smaller fitness value
(see Section 4.1.4) is the winner and is labeled Parent #1.

5. Repeat step 4 to identify Parent #2.

6. Count = Count + 1.

7. Randomly generate a binary number (BinNum). If BinNum = 1, then go to step 8.
Else, go to step 9.

8. Copy the value in the data location for index Count in Parent #1 into index Count
in Offspring #1. At the same time, copy the value in the data location for index
Count in Parent #2 into the corresponding data location of Offspring #2.

9. Copy the value in the data location for the index Count in Parent #1 into the same
data location in Offspring #2. At the same time, copy the value in the data
location of index Count in Parent #2 into index Count of Offspring #1. If Count
= X, then go to step 10. Else, go to step 6.

10. Copy the two Offspring into the Pool_Array.

11. Z = Z + 1.

12. If Z < (Pop_Size/2), then go to step 2. Else, stop.

The mutation operator alters one chromosome to create one Offspring. The

Parent Chromosome is randomly selected from the Chromosome_Array. For each index

between 1 and X in the Parent Chromosome a number is randomly generated (RandNum).

If RandNum ≤ Mutation Operator Rate, a bws is generated and placed in the

corresponding data location in the Offspring. If RandNum > Mutation Operator Rate, the

 55

value in the data location for that index in the Parent Chromosome is copied into the

Offspring.

Mutation Operator Pseudo Code

1. Set mutation to run (Pop_Size/2) times.

2. Set Count1 = 0, Count2 = 1, and Z = 1.

3. Randomly generate two numbers between 1 and Pop_Size to select two
chromosomes from the Chromosome_Array. Perform a tournament selection
between the two chromosomes. The chromosome with the smaller fitness value
(see Section 4.1.4) is the winner, i.e., the Parent.

4. Count1 = Count1 + 1.

5. Randomly generate a binary number (BinNum) between 0 and 1. If BinNum >
Mutation Operator Rate, copy the value in the data location for index Count1 in
the Parent chromosome into the Offspring. While Count1 < X, go to step 4. Else,
go to step 6.

6. Check the Offspring for feasibility. If the Offspring is infeasible, run the repair
function. Calculate present fv of the Offspring.

7. For each index, if the bws > 0, then generate a random number (BinNum) between
0 and 1. If BinNum > Mutation Operator Rate, then generate a bws. Subtract the
bws from the existing bws value in the data location for that index. Since, bws
can’t be negative, if the resulting bws < 0, then set the bws = 0.

8. Check the Offspring for feasibility. If the Offspring is infeasible, run the repair
function (see Section 4.1.9). Recalculate the fv of the Offspring (see Section
4.1.4). Count2 = Count2 + 1. If the new re-calculated fv is less than the previous
fv and Count2 < 20, then go to step 7. Else, go to step 9.

9. Copy the Offspring chromosome into the Pool_Array.

10. Z = Z + 1.

11. If Z < (Pop_Size/2), then go to step 2. Else, stop.

At the end of each generation the beginning chromosomes and all the Offspring

created by the three genetic operators are located in the Pool_Array. The next

generation’s population is selected from the Pool_Array after each chromosome has been

checked, and if necessary repaired, for feasibility.

56

The chromosome’s fitness value
(i.e., Total Cost)

Contract [01, 02]

Contract [01, 03]

Contract [01, 04]

Contract [01, 05]

Contract [01, 06]

Contract [02, 03]

Contract [02, 04]

Contract [02, 05]

Contract [02, 06]

Contract [03, 04]

Contract [03, 05]

Contract [03, 06]

Contract [04, 05]

Contract [04, 06]

Contract [05 ,06]

fv

0

75
0

25
10

0
70

0
0

20
0

0
0

25
0

0
0

20

D
at

a
st

ru
ct

ur
e

in
de

x
nu

m
be

r →

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

 Fi
gu

re
 4

-3
: E

xa
m

pl
e

of
 a

 R
an

do
m

ly
 G

en
er

at
ed

 In
iti

al
 C

hr
om

os
om

e
fo

r N
 =

 5

Ex
am

pl
e

B
an

dw
id

th
 S

iz
e

(b
w

s)
 fo

r e
ac

h
C

on
tra

ct

57

The chromosome’s fitness value
(i.e., Total Cost)

Contract [01, 02]

Contract [01, 03]

Contract [01, 04]

Contract [01, 05]

Contract [01, 06]

Contract [02, 03]

Contract [02, 04]

Contract [02, 05]

Contract [02, 06]

Contract [03, 04]

Contract [03, 05]

Contract [03, 06]

Contract [04, 05]

Contract [04, 06]

Contract [05 ,06]

fv

0
75

0

25

10
0

70

0
0

20
0

0
0

25
0

0
0

20

Pa
re

nt
 1

 C
hr

om
os

om
e

D
at

a
st

ru
ct

ur
e

in
de

x
nu

m
be

r →

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

fv

20

0

50

35

0
0

55

22
5

0
0

0
0

80
0

0
0

Pa
re

nt
 2

 C
hr

om
os

om
e

D
at

a
st

ru
ct

ur
e

in
de

x
nu

m
be

r →

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

fv

0
75

0

25

10
0

70

0
22

5
0

0
0

0
80

0
0

0
O

ff
sp

ri
ng

 1
 C

hr
om

os
om

e
D

at
a

st
ru

ct
ur

e
in

de
x

nu
m

be
r →

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

fv

20

0

50

35

0
0

55

0
20

0
0

0
25

0
0

0
20

O

ff
sp

ri
ng

 2
 C

hr
om

os
om

e
D

at
a

st
ru

ct
ur

e
in

de
x

nu
m

be
r →

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

 Fi
gu

re
 4

-4
: E

xa
m

pl
e

of
 th

e
O

ne
-p

oi
nt

 C
ro

ss
ov

er
 O

pe
ra

to
r f

or
 N

 =
 5

R
an

do
m

ly
 G

en
er

at
ed

 C
ut

 P
oi

nt

58

The chromosome’s fitness
value (i.e., Total Cost)

Contract [01, 02]

Contract [01, 03]

Contract [01, 04]

Contract [01, 05]

Contract [01, 06]

Contract [02, 03]

Contract [02, 04]

Contract [02, 05]

Contract [02, 06]

Contract [03, 04]

Contract [03, 05]

Contract [03, 06]

Contract [04, 05]

Contract [04, 06]

Contract [05, 06]

Pa
re

nt
 1

 C
hr

om
os

om
e

fv

0
75

0

25

10
0

70

0
0

20
0

0
0

25
0

0
0

20

D

at
a

st
ru

ct
ur

e
in

de
x

nu
m

be
r →

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Pa
re

nt
 2

 C
hr

om
os

om
e

fv

20

0
50

35

0

0
55

22

5
0

0
0

0
80

0
0

0

D
at

a
st

ru
ct

ur
e

in
de

x
nu

m
be

r →

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Ra

nd
om

ly
 B

in
ar

y
Va

lu
es

: →

--

0
1

1
0

0
1

0
1

1
0

1
0

1
0

0

D
at

a
st

ru
ct

ur
e

in
de

x
nu

m
be

r →

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

O
ff

sp
ri

ng
 1

 C
hr

om
os

om
e

fv

20

75

0
35

0

70

55

0
20

0
0

0
0

0
0

0

D
at

a
st

ru
ct

ur
e

in
de

x
nu

m
be

r →

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

O

ff
sp

ri
ng

 2
 C

hr
om

os
om

e
fv

0

0
50

25

10

0
0

0
22

5
0

0
0

25
0

80
0

0
20

D
at

a
st

ru
ct

ur
e

in
de

x
nu

m
be

r →

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

 Fi
gu

re
 4

-5
: E

xa
m

pl
e

of
 th

e
U

ni
fo

rm
 C

ro
ss

ov
er

 O
pe

ra
to

r f
or

 N
 =

 5

59

The chromosome’s fitness value
(i.e., Total Cost)

Contract [01, 02]

Contract [01, 03]

Contract [01, 04]

Contract [01, 05]

Contract [01, 06]

Contract [02, 03]

Contract [02, 04]

Contract [02, 05]

Contract [02, 06]

Contract [03, 04]

Contract [03, 05]

Contract [03, 06]

Contract [04, 05]

Contract [04, 06]

Contract [05, 06]

Pa
re

nt
 C

hr
om

os
om

e
fv

0

75
0

25
10

0
70

0
0

20
0

0
0

25
0

0
0

20
 D

at
a

st
ru

ct
ur

e
in

de
x

nu
m

be
r →

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

O
ff

sp
ri

ng
 C

hr
om

os
om

e
fv

0

60
0

25
10

0
30

85

0
20

0
0

0
25

0
0

45
20

 D
at

a
st

ru
ct

ur
e

in
de

x
nu

m
be

r →

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

R
an

do
m

ly
 S

el
ec

te
d

G
en

es

≠

≠

≠

≠

 Fi
gu

re
 4

-6
: E

xa
m

pl
e

of
 th

e
M

ut
at

io
n

O
pe

ra
to

r f
or

 N
 =

 5

60

4.1.4 Evaluation Function

The objective is to find a purchasing strategy that minimizes the total cost while

satisfying demand for bandwidth as expressed in Equation (2). Equation (1) calculates

the total cost for all purchased contracts over the planning horizon. The total cost is the

chromosome’s fitness value (fv). A chromosome’s fv is recorded in Index 0 (see Figure

4-2). When evaluating a group of feasible chromosomes, chromosomes with lower fv are

better than those with higher fv.

Recall from Equation (19) that LQa p 526.258927.962116.13 ++= . The

numerical values in Equation (19) come from the regression analysis (shown in Table 2-

5) for a BCP problem where s = Small. The general form of Equation (19) is

LQ
a p

32
1

ββ
β ++= . For s = Medium and Large problems the numerical beta values in

Equation (19) are different and are shown in Table 4-2. Notice that for Equations (24)

and (26) the decision variable is jiQ , . In these equations the jix , binary variable is not

needed since the bws (jiQ ,) of a contract indicates if it has been purchased.

The fitness value for the BCP-EA is the summation of the three cost components

shown by Equations (24) through (26), expanded as

()

3
)1(

1

1

1
,

2
)1(

1

1

1
,1

)1(

1

1

1
,)(

β

ββ

−

=

+

+=

−

=

+

+=

−

=

+

+=

∑ ∑

∑ ∑∑∑

+

−+−=

i
p

N

i

N

ij
ji

i
p

N

i

N

ij
ji

i
p

N

i

N

ij
ji

rQ

rijxrijQTCMIN
, (35)

which simplifies to

61

()[] ()∑ ∑∑ ∑
=

−
+

+==

−
+

+=

−++−=
N

i

i
p

N

ij
ji

N

i

i
p

N

ij
ji rijxijrQTCMIN

1
2

)1(
1

1
,

1
31

)1(
1

1
, βββ . (36)

The feasibility of a solution is subject to the following constraints

NiDQ
i

k
i

N

ij
jk …1

1

1

1
, =∀→≥∑ ∑

=

+

+=

, (37)

which is the same as Equation (2), and

)1(1;1,, ++==∀≤ NijNixWQ jiji …… , (38)

where

{ }1,0, ∈jix . (39)

4.1.5 Selection Method

The selection process used to obtain the next generation’s population of

chromosomes includes a generational policy, random selection, tournament selection, and

an elitist strategy. The DBCP-EA uses an elitist strategy where a copy of the best

chromosome identified within the Pool_Array at the end of a generation is copied in the

next generation’s population (i.e., the Chromosome_Array). If there is a tie, the best

chromosome is selected randomly.

4.1.6 Generational Policy

A generational policy refers to how chromosomes are selected from one

generation to the next. Throughout the run of any generation, some of the chromosomes

undergo some alteration through the use of the crossover and the mutation operators. At

the end of each generation, if the terminating condition is not met, a new population of

62

chromosomes is selected for the next generation. The new generation is selected from

the Pool_Array.

Since the DBCP-EA uses an elitist strategy, it is possible that a ‘good’

chromosome could survive over many generations. The remaining 39 (Pop_Size – 1)

chromosomes are selected using a tournament selection process. The tournament

selection process begins by randomly selecting two chromosomes from the Pool_Array at

the end of a generation. The fv of the two chromosomes are compared and the

chromosome with the lowest fv wins. The winning chromosome is then added to the

Chromosome_Array for the next generation.

Generation Policy Pseudo Code (i.e., procedure for selecting the beginning population of
chromosomes for the next generation)

1. Check to see if the termination condition has been met. If true, there is no need to
generate a population of chromosomes for the next generation since the program
has ended. If false, go to step 2.

2. Check each chromosome in the Pool_Array for feasibility. If a chromosome is
infeasible, the chromosome is made feasible by using the repair function (see
Section 4.1.9). Calculate the fv for each chromosome in the Pool_Array and place
the value in index 0 for each chromosome.

3. Perform an elitist strategy by copying the best chromosome in the Pool_Array
into the Chromosome_Array. If there is a tie between the fv of two or more
chromosomes in the Pool_Array, a best chromosome is randomly selected.

4. Perform a tournament selection (Pop_Size – 1) times on the chromosomes in the
Pool_Array. Count = 0.

5. Randomly generate two numbers to select two chromosomes from the
Pool_Array.

6. Perform a tournament selection by comparing the fv of the two chromosomes
selected in step 5. The chromosome with the lowest fv is the winner. Add the
winning chromosome into the Chromosome_Array. Count = Count + 1.

7. If Count < (Pop_Size-1), then go to step 5. Else, go to step 8.

8. Clear the Pool_Array, and then copy the chromosomes in the Chromosome_Array
into the Pool_Array. The next generation’s population has been selected. Done!

63

4.1.7 Termination Conditions

The DBCP-EA terminates as soon as one of two conditions is met. The first

condition stipulates that if the best fv does not change for a predetermined number of

generations, then the program will stop. This number is proportional to the number of

periods (N) in the planning horizon. Specifically, if the DBCP EA runs Y1 times, where

Y1 = (N * 100), without finding a better solution, the program will terminate. Otherwise,

processing will terminate when the program has completed a predetermined maximum

number of generations Y2 = 5,000. Y1 and Y2 were determined based on results from

preliminary tests.

4.1.8 Computational Parameters

The size of each generation’s population of chromosomes, Pop_Size, is held

constant at 40 chromosomes. The probability of crossover and mutation were determined

through preliminary tests. The Uniform Crossover Rate, One-Point Crossover Rate, and

Mutation Rate are 0.8, 0.2, and 0.6, respectively.

4.1.9 Repair Function for Infeasible Solutions

The offspring produced by the three genetic operators are created by modifying

and altering selected copies of chromosomes in a generation’s beginning population.

These offspring chromosomes could be infeasible, i.e., violate the constraint in Equation

(37). If an offspring chromosome is infeasible it must be repaired prior to calculating its

fv. Infeasible chromosomes are altered by the repair function to make them feasible.

The repair function has two separate repair algorithms used to change infeasible

chromosomes into feasible chromosomes: RA1 and RA2. Infeasible solutions are repaired

by both RA1 and RA2. Each algorithms employs a different rational in transforming

64

infeasible solutions into feasible solutions. A description of each algorithm is presented

here, as well as the overall repair procedure.

The RA1 algorithm calculates the bandwidth deficit for each period in the planning

horizon starting backwards from period N. Let K equal the number of purchased

contracts that affect the cumulative total bandwidth for a given period. Out of the K

contracts, the most common contract (i.e., among the purchased contracts that affect a

given period, the one that affects the greatest number of periods) has the period’s deficit

amount added to the bws for that contract. If there is a tie for the most common contract,

a contract is randomly selected. Each period’s deficit is then recalculated. If any

period’s deficit > 0, the latest period in the planning horizon that has a deficit is

identified. Again, the period’s deficit amount is added to the period’s most common

contract. This procedure of deficit elimination continues until there are no more deficits.

The rational for RA1 stems from the observation that when s = Large, p = Small or

Medium, and d = Small or Medium the lowest fv often occurs when the last contract in

each period is purchased. Therefore, RA1 takes advantage of contract size discounts of

active contracts that will not only satisfy the bws requirements for a given period, but will

also increase the bws for the most additional periods.

Within the chromosome data structure, for each period the shortest contract is

listed first, and the longest contract is listed last. The longer the duration of a contract,

the more subsequent periods that will include that bws. Therefore, longer duration

contracts, which affect a greater number of periods, will be identified as most common

contracts. Therefore, adding deficit amounts to a most common contract affects the

available bandwidth for not only the period in which the deficit has been identified, but

65

also all subsequent period for which the contract is active. For example, Figure 4-7

shows an N = 5 period chromosome. The first row of white cells for each period

represents the period in which that contract can be purchased. The other grey cells

represent the subsequent period for which a contract bws is active.

A purchased contract is active for a number of periods equal to its duration. As

illustrated in Figure 4-7, Contract [01, 03], having a bws of 500 Mbps, can only be

purchased in period 1. This contract has a length of 2 periods (i.e., ending at the

beginning of period 3 – starting at the beginning of period 1) therefore this contract

provides 500 Mbps in period 1, as well as 500 Mbps in period 2.

Figure 4-7 shows a deficit of 100 Mbps in period 5. The most common active

contract would be Contract [01, 06]. Starting backwards with Period 5, the active

contracts are [01, 06], [04, 06], and [05, 06]. The duration for each of these contracts is

calculated and the contract with the longest duration is selected to receive the deficit

amount. For example, Contract [01, 06] is active for all 5 periods; therefore its duration

is 5. Contract [04, 06] has duration of 2, and Contract [05, 06] has duration of 1. Of

these contract lengths, duration of 5 is the largest; therefore Contract [01, 06] is the most

common contract.

For the example shown in Figure 4-7, algorithm RA1 adds the deficit amount of

100 Mbps to the bws already recorded in Contract [01, 06]. Notice that since Contract

[01, 06] is purchased in period 1 and it is active for all 5 period its bws is added to the

available bandwidth for periods 1 through 5. Therefore, the infeasible solution shown in

Figure 4-7 would be repaired as shown in Figure 4-8.

66

Pl

an
ni

ng
 H

or
iz

on
 (N

 =
 5

 p
er

io
ds

)

Contract Number

Contract [01, 02]

Contract [01, 03]

Contract [01, 04]

Contract [01, 05]

Contract [01, 06]

Contract [02, 03]

Contract [02, 04]

Contract [02, 05]

Contract [02, 06]

Contract [03, 04]

Contract [03, 05]

Contract [03, 06]

Contract [04, 05]

Contract [04, 06]

Contract [05, 06]

Contract Length

1
2

3
4

5
1

2
3

4
1

2
3

1
2

1

(a) Cumulative Contracted Bandwidth per Period

(b) Required Bandwidth per Period

(c) Period Deficit
(i.e., (c) = (a) – (b) iff ((a) – (b)) > 0)

1
0

0
0

0
50

0

50
0

50
0

0
2

0

0
0

50
0

30
0

0
0

0

80
0

88
0

80

3

0

0
50

0

0
0

0
0

60
0

0

1,

10
0

1,
10

0
0

4

0
50

0

0

0

60
0

0
0

80
0

1,
90

0
1,

90
0

0

Period

5

50

0

0

0

80

0
90

0

2,
20

0
2,

30
0

10
0

 Fi
gu

re
 4

-7
: E

xa
m

pl
e

of
 th

e
RA

1 R
ep

ai
r A

lg
or

ith
m

67

Pl

an
ni

ng
 H

or
iz

on
 (N

 =
 5

 p
er

io
ds

)

Contract Number

Contract [01, 02]

Contract [01, 03]

Contract [01, 04]

Contract [01, 05]

Contract [01, 06]

Contract [02, 03]

Contract [02, 04]

Contract [02, 05]

Contract [02, 06]

Contract [03, 04]

Contract [03, 05]

Contract [03, 06]

Contract [04, 05]

Contract [04, 06]

Contract [05, 06]

Contract Length

1
2

3
4

5
1

2
3

4
1

2
3

1
2

1

(a) Cumulative Contracted Bandwidth per Period

(b) Required Bandwidth per Period

(c) Period Deficit
(i.e., (c) = (a) – (b) iff ((a) – (b)) > 0)

1
0

0
0

0
60

0

60
0

50
0

0
2

0

0
0

60
0

30
0

0
0

0

90
0

88
0

0
3

0
0

60
0

0

0
0

0
60

0
0

1,
10

0
1,

10
0

0
4

0

60
0

0
0

60

0
0

0
80

0

1,

90
0

1,
90

0
0

Period

5

60

0

0

0

80

0
90

0

2,
30

0
2,

30
0

0
 Fi

gu
re

 4
-8

: R
A 1

 E
xa

m
pl

e
af

te
r I

nc
re

as
in

g
C

on
tra

ct
 [0

1,
 0

6]
 B

an
dw

id
th

 S
iz

e
by

 1
00

 M
bp

s

 68

In Figures 4-7 and 4-8 the white cells in each row indicate those contracts that

could be active during each period. The total bandwidth for any period is equal to the

total bandwidth purchased at the beginning of each period, plus the cumulative

bandwidth of any pervious contracts that are active during each period. Therefore, to

calculate the available bandwidth for a period you simply add the values in the white

cells for the newly purchased bandwidth, plus the values in the grey cells for each

period’s row. These are the values recorded in the columns labeled “(a) Cumulative

Contracted Bandwidth per Period.”

The RA2 algorithm uses a backward period-by-period random contract deficit

elimination procedure. RA2 alters selected contracts by moving backwards from period N

to period 1. The rational for eliminating deficits by moving backwards is that price

decreases and demand increases over the planning horizon. By starting with the later

periods and working backwards the lowest period prices are used first, just as in RA1.

RA2 calculates the bandwidth deficit for each period. Starting backwards, this repair

algorithm randomly adds a period’s deficit to a randomly selected contract that is active

during that period. After randomly selecting a contract and adding the deficit, the fv is

recalculated. This process is repeated 20 times to encourage exploration of the search

space, while at the same time limiting search time. Out of the 20 repaired chromosomes,

the repaired chromosome with the lowest fv is selected to be the final repaired

chromosome for the RA2 repair algorithm.

The two repaired and feasible chromosomes resulting from RA1 and RA2 are then

compared and the one with the lowest fv replaces the original infeasible chromosome in

the Pool_Array. Note that RA1 takes advantage of knowledge of the BCP, while RA2

 69

benefits from randomness. Both algorithms have their advantages; however, they are

both biased because they both begin the alteration process from the latest period in the

planning horizon and work backward. Future research may identify better, less biased

repair algorithms. The pseudo code listed below outlines in detail the repair function,

including the two repair algorithms, RA1 and RA2.

Repair Function Pseudo Code

(0.1) After the three genetic operators (see Section 4.1.3) have been performed.
Count = (0). Set Pool_Size = (Pop_Size + the number of Offspring created in
last generation).

(0.2) Count = Count + 1.

(0.3) Select the chromosome number Count from the Pool_Array, and check for
feasibility. If the selected chromosome is infeasible, go to step (0.4). Else if
Count = Pool_Size, go to step (0.6). Else if Count < Pool_Size, go to step
(0.2).

(0.4) Copy the infeasible chromosome into the temporary holding arrays: Holder1
used in RA1), Holder2 (used in RA2), and Best_Holder (also used in RA2).

• Begin RA1: Use Holder1 to complete steps (1.1) through (1.8).
(1.1) Count2 = N + 1.

(1.2) Count2 = Count2 – 1. .

(1.3) Determine if there is a deficit for period Count2. If yes, then
go to step (1.4). Else, go to step (1.2).

(1.4) Record all of the purchased contracts that affect the cumulative
available bandwidth total for period Count2.

(1.5) For each contract recorded in step (1.4), count how many
periods the contract is active.

(1.6) For period Count2, find the most common contract (i.e., an
active contract that not only affects period Count2, but also
affects the most number of other periods. Ties are broken
randomly.). Once a contract is selected, determine the period
in which that contract can be purchased.

(1.7) Add the deficit amount for period Count2 to the bws for the
contract selected in step (1.6). If Count2 = 1, go to step (1.8).
Else, go to step (1.2).

(1.8) Calculate the fv for the chromosome in Holder1 and enter that
value in index 0. RA1 finished; go to step (2.1).

 70

Begin RA2: Used Holder2 and Best_Holder to compete steps (2.1) through
(2.8). Count1 = 0.

(2.1) Count1 = Count1 + 1. Count2 = N + 1.

(2.2) While Count1 ≤ 20 go to step (2.3). If Count1 > 20, go to step
(2.8).

(2.3) Count2 = Count2 – 1.

(2.4) For period Count2, determine if there is a bandwidth deficit. If
period Count2 has a deficit, then record all the contracts that
could affect period Count2.

(2.5) Let M = the number of active contracts in period Count2.
Randomly generate a number between 1 and M to select a
contract, and add the deficit amount for period Count2 to the
selected contract’s bws.

(2.6) If Count2 > 1, go to step (2.3). Else, go to step (2.7).

(2.7) Calculate the fv for the chromosome in Holder2 and enter that
value in index 0. If Count1 = 1, then copy the chromosome in
Holder2 into Best_Holder. If Count1 > 1, then compare the fv
in index 0 of Best_Holder to the fv in Holder2. If the fv in
Holder2 < Best_Holder, then copy the chromosome in Holder2
into Best_Holder.

(2.8) If Count1 < 21, copy the original chromosome at location
Count (see step (0.2)) from the Pool_Array into Holder2 and
go to step (2.1). If Count1 = 20, then RA2 is finished; go to
step (0.5).

(0.5) Compare the fv for Holder1 and Holder2. The chromosome with the lowest fv
replaces the original chromosome in the Pool_Array at location Count (see
step (0.2)). If Count < Pool_Size, go to step (0.3). Else, go to step (0.6).

(0.6) Done! All infeasible chromosomes in the Pool_Array have been repaired and
each has had its fv calculated and recorded in index 0.

4.2 DBCP-EA Experimental Design

To evaluate the performance of DBCP-EA, we consider the impact of four

parameters: planning horizon size (N), temporal discount (s), price decrease rate (p), and

demand increase rate (d) (see Figure 4-9). Each parameter has three values, Small,

Medium and Large (see Table 4-1), resulting in 81 problems.

 Fi
gu

re
 4

-9
: E

xp
er

im
en

ta
l D

es
ig

n
fo

r t
he

 D
B

C
P-

EA

71

PA
R

A
M

E
T

E
R

S
E

R
R

O
R

 M
E

A
SU

R
E

Se
ar

ch
 M

et
ho

d:

1.

M
IL

P
2.

D

B
C

P-
EA

T
em

po
ra

l D
is

co
un

ts
:

1.

Sm
al

l (
s =

 1
)

2.

M
ed

iu
m

 (s
 =

 2
)

3.

La
rg

e
(s

 =
 3

)

Pr
ic

e
D

ec
re

as
e

R
at

e:

1.

Sm
al

l (
p

=
0.

1)

2.

M
ed

iu
m

 (p
 =

 0
.2

)
3.

La

rg
e

(p
 =

 0
.3

)

D
em

an
d

In
cr

ea
se

 R
at

e:

1.

Sm
al

l (
d

=
0.

1)

2.

M
ed

iu
m

 (d
 =

 0
.2

)
3.

La

rg
e

(d
 =

 0
.3

)

Pl
an

ni
ng

 H
or

iz
on

:
1.

Sm

al
l (

N
 =

 6
)

2.

M
ed

iu
m

 (N
 =

 1
2)

3.

La

rg
e

(N
 =

 1
8)

Pr
ob

le
m

So

lu
tio

ns

1.

EA
 P

er
ce

nt
ag

e
Er

ro
r

2.

C
om

pu
ta

tio
na

l T
im

e
•

M
IL

P
•

EA

72

Two solution methods are employed: (1) MILP, and (2) the DBCP-EA. MILP

gives the global optimal solution and can be used as a benchmark to measure the quality

of the DBCP-EA solutions. The %_Error is the percent increase in the total purchasing

cost of the best solution found by the DBCP-EA over the optimal solution identified by

MILP. The computational time in seconds to solve a problem using the DBCP-EA and

MILP is a secondary measure of comparison.

Table 4-1: The Three Values for each of the Four Parameters: N, s, d, and p
Parameters Small Medium Large

N 6 12 18
s 1 2 3
d 0.1 0.2 0.3
p 0.1 0.2 0.3

Table 4-1 shows that the three levels of temporal discount (s) represented in the

computer code as 1, 2, and 3 are referred to here as Small, Medium, and Large,

respectively. Temporal discounts represent the discounts per Mbps for longer duration

contracts. Table 4-2 summarizes the data related to the three levels of s. The bandwidth

cost data for s = Small was presented in Table 1-2. For a 2 year contract, the bandwidth

price for the same bandwidth size is 95% of the cost for a 1 year contract; 3 year

contracts are 85% of the cost of a 1 year contract. For problems where s = Medium,

Table 4-2 shows the cost per Mbps of bandwidth for 2 years is 90% of that for a 1 year

contract; the bandwidth cost for a 3 year contract is 80% of that for a 1 year contract.

When s = Large the discount rates are 85% and 75% for 2 and 3 year contracts,

respectively. As can be seen from Table 4-2 the regression performed well for all levels

of s. The resulting regression beta coefficients are used in regression equations to

calculate the total cost for a purchasing strategy given the bandwidth size (Q) and

73

duration (L) for each active contract in a planning horizon for each of the three temporal

discount levels.

Table 4-2: Summary of the Temporal Discount Data

Contract
Duration
(years)

 Duration
Discounts

Regression
Equation

Coefficients†

Te
m

po
ra

l D
is

co
un

t L
ev

el

(s
)

1* 2 3

Adjusted
R

Squared

Alpha
Sign.
Level

β1 β2 β3

Small c c*95% c*85% 98.8% 1.0 E-17 13.12 962.93 258.53
Medium c c*90% c*80% 98.6% 1.0 E-17 6.76 928.50 364.99
Large c c*85% c*75% 98.2% 1.0 E-16 0.40 894.11 471.42

*c = The cost data in the column labeled “1 year” from Table 1-2
†Equation (19) is the regression equation

4.3 DBCP-EA Example Problems

We use three example problems, one for each N, where s = Small, p = Large, and

d = Small, to compare the solutions derived by the DBCP-EA and the MILP. Figure 4-10

shows the general MILP formulation that is used to generate the MILP input file. Table

4-3 shows the MILP input data and Table 4-4 shows the MILP solution for the smallest

example problem, (N = Small, s = Small, p = Large, and d = Small). Contracts with a

binary variable jix , = 1 are the purchased contracts for the purchasing strategy described

in a solution.

()()

()

()12,1 INT
END

number large a is where,12,10

ST

TC MIN

,

,,

N

1 i

1 N

1
,

N

1 i

1 N

1
,2,31

+=∀=∀

+=∀=∀<−

≥

++

∑ ∑

∑ ∑

=

+

+=

=

+

+=

NjNix

WNjNixWQ

DQ

xTCQTC

ji

jiji

ij
iji

ij
jiji

……

……

Figure 4-10: MILP Formulation

74

Ta
bl

e
4-

3:
 T

he
 N

 =
 S

m
al

l E
xa

m
pl

e
Pr

ob
le

m
 M

IL
P

In
pu

t D
at

a
Ex

am
pl

e
Pr

ob
le

m
:

N
 =

 S
m

al
l,

s =
 S

m
al

l,
p

=
La

rg
e,

 d
 =

 S
m

al
l

Objective
Function

Z
=

M
IN

 2
71

.6
4

Q
[0

1,
 0

2]
 +

 9
62

.9
3

X
[0

1,
 0

2]
 +

 2
84

.7
6

Q
[0

1,
 0

3]
 +

 1
92

5.
85

 X
[0

1,
 0

3]
 +

 2
97

.8
7

Q
[0

1,
 0

4]
 +

 2
88

8.
78

 X
[0

1,
 0

4]
 +

31

0.
99

 Q
[0

1,
 0

5]
 +

 3
85

1.
71

 X
[0

1,
 0

5]
 +

 3
24

.1
1

Q
[0

1,
 0

6]
 +

 4
81

4.
64

 X
[0

1,
 0

6]
 +

 3
37

.2
2

Q
[0

1,
 0

7]
 +

 5
77

7.
56

 X
[0

1,
 0

7]
 +

 1
90

.1
5

Q
[0

2,
 0

3]
 +

 6
74

.0
5

X
[0

2,
 0

3]
 +

 1
99

.3
3

Q
[0

2,
 0

4]
 +

 1
34

8.
10

 X
[0

2,
 0

4]
 +

 2
08

.5
1

Q
[0

2,
 0

5]
 +

 2
02

2.
15

 X
[0

2,
 0

5]
 +

 2
17

.6
9

Q
[0

2,
 0

6]

+
26

96
.2

0
X

[0
2,

 0
6]

 +
 2

26
.8

7
Q

[0
2,

 0
7]

 +
 3

37
0.

24
 X

[0
2,

07
] +

 1
33

.1
0

Q
[0

3,
 0

4]
 +

 4
71

.8
3

X
[0

3,
 0

4]
 +

 1
39

.5
3

Q
[0

3,
 0

5]
 +

 9
43

.6
7

X
[0

3,
 0

5]
 +

 1
45

.9
6

Q
[0

3,
 0

6]
 +

 1
41

5.
50

 X
[0

3,
 0

6]
 +

 1
52

.3
9

Q
[0

3,
 0

7]
 +

 1
88

7.
34

 X
[0

3,
 0

7]
 +

 9
3.

17
 Q

[0
4,

 0
5]

 +
 3

30
.2

8
X

[0
4,

 0
5]

+

97
.6

7
Q

[0
4,

 0
6]

 +
 6

60
.5

7
X

[0
4,

 0
6]

 +
 1

02
.1

7
Q

[0
4,

 0
7]

 +
 9

90
.8

5
X

[0
4,

 0
7]

 +
 6

5.
22

 Q
[0

5,
 0

6]
 +

 2
31

.2
0

X
[0

5,
 0

6]
 +

 6
8.

37
 Q

[0
5,

07

] +
 4

62
.4

0
X

[0
5,

 0
7]

 +
 4

5.
65

 Q
[0

6,
 0

7]
 +

 1
61

.8
4

X
[0

6,
 0

7]

Su
bj

ec
t t

o
th

e
fo

llo
w

in
g

co
ns

tra
in

ts
:

Q
[0

1,
 0

2]
 +

 Q
[0

1,
 0

3]
 +

 Q
[0

1,
 0

4]
 +

 Q
[0

1,
 0

5]
 +

 Q
[0

1,
 0

6]
 +

 Q
[0

1,
 0

7]
 >

 5
40

.0
0

Q
[0

1,
 0

3]
 +

 Q
[0

1,
 0

4]
 +

 Q
[0

1,
 0

5]
 +

 Q
[0

1,
 0

6]
 +

 Q
[0

1,
 0

7]
 +

 Q
[0

2,
 0

3]
 +

 Q
[0

2,
 0

4]
 +

 Q
[0

2,
 0

5]
 +

 Q
[0

2,
 0

6]
 +

 Q
[0

2,
 0

7]
 >

 5
94

.0
0

Q
[0

1,
 0

4]
 +

 Q
[0

1,
 0

5]
 +

 Q
[0

1,
 0

6]
 +

 Q
[0

1,
 0

7]
 +

 Q
[0

2,
 0

4]
 +

 Q
[0

2,
 0

5]
 +

 Q
[0

2,
 0

6]
 +

 Q
[0

2,
 0

7]
 +

 Q
[0

3,
 0

4]
 +

 Q
[0

3,
 0

5]
 +

 Q
[0

3,

06
] +

 Q
[0

3,
 0

7]
 >

 6
54

.0
0

Q
[0

1,
 0

5]
 +

 Q
[0

1,
 0

6]
 +

 Q
[0

1,
 0

7]
 +

 Q
[0

2,
 0

5]
 +

 Q
[0

2,
 0

6]
 +

 Q
[0

2,
 0

7]
 +

 Q
[0

3,
 0

5]
 +

 Q
[0

3,
 0

6]
 +

 Q
[0

3,
 0

7]
 +

 Q
[0

4,
 0

5]
 +

 Q
[0

4,

06
] +

 Q
[0

4,
 0

7]
 >

 7
19

.0
0

Q
[0

1,
 0

6]
 +

 Q
[0

1,
 0

7]
 +

 Q
[0

2,
 0

6]
 +

 Q
[0

2,
 0

7]
 +

 Q
[0

3,
 0

6]
 +

 Q
[0

3,
 0

7]
 +

 Q
[0

4,
 0

6]
 +

 Q
[0

4,
 0

7]
 +

 Q
[0

5,
 0

6]
 +

 Q
[0

5,
 0

7]
 >

 7
91

.0
0

Demand
Requirement

Constraint

Q
[0

1,
 0

7]
 +

 Q
[0

2,
 0

7]
 +

 Q
[0

3,
 0

7]
 +

 Q
[0

4,
 0

7]
 +

 Q
[0

5,
 0

7]
 +

 Q
[0

6,
 0

7]
 >

 8
70

.0
0

Q
[0

1,
 0

2]
 -

10
80

.0
0

X
[0

1,
 0

2]
 <

 0

Q
[0

3,
 0

4]
 -

13
08

.0
0

X
[0

3,
 0

4]
 <

 0

IN

T
X

[0
1,

 0
2]

IN

T
X

[0
3,

 0
4]

Q

[0
1,

 0
3]

 -
11

88
.0

0
X

[0
1,

 0
3]

 <
 0

Q

[0
3,

 0
5]

 -
14

38
.0

0
X

[0
3,

 0
5]

 <
 0

IN
T

X
[0

1,
 0

3]

IN
T

X
[0

3,
 0

5]

Q
[0

1,
 0

4]
 -

13
08

.0
0

X
[0

1,
 0

4]
 <

 0

Q
[0

3,
 0

6]
 -

15
82

.0
0

X
[0

3,
 0

6]
 <

 0

IN

T
X

[0
1,

 0
4]

IN

T
X

[0
3,

 0
6]

Q

[0
1,

 0
5]

 -
14

38
.0

0
X

[0
1,

 0
5]

 <
 0

Q

[0
3,

 0
7]

 -
17

40
.0

0
X

[0
3,

 0
7]

 <
 0

IN
T

X
[0

1,
 0

5]

IN
T

X
[0

3,
 0

7]

Q
[0

1,
 0

6]
 -

15
82

.0
0

X
[0

1,
 0

6]
 <

 0

Q
[0

4,
 0

5]
 -

14
38

.0
0

X
[0

4,
 0

5]
 <

 0

IN

T
X

[0
1,

 0
6]

IN

T
X

[0
4,

 0
5]

Q

[0
1,

 0
7]

 -
17

40
.0

0
X

[0
1,

 0
7]

 <
 0

Q

[0
4,

 0
6]

 -
15

82
.0

0
X

[0
4,

 0
6]

 <
 0

IN
T

X
[0

1,
 0

7]

IN
T

X
[0

4,
 0

6]

Q
[0

2,
 0

3]
 -

11
88

.0
0

X
[0

2,
 0

3]
 <

 0

Q
[0

4,
 0

7]
 -

17
40

.0
0

X
[0

4,
 0

7]
 <

 0

IN

T
X

[0
2,

 0
3]

IN

T
X

[0
4,

 0
7]

Q

[0
2,

 0
4]

 -
13

08
.0

0
X

[0
2,

 0
4]

 <
 0

Q

[0
5,

 0
6]

 -
15

82
.0

0
X

[0
5,

 0
6]

 <
 0

IN
T

X
[0

2,
 0

4]

IN
T

X
[0

5,
 0

6]

Q
[0

2,
 0

5]
 -

14
38

.0
0

X
[0

2,
 0

5]
 <

 0

Q
[0

5,
 0

7]
 -

17
40

.0
0

X
[0

5,
 0

7]
 <

 0

IN

T
X

[0
2,

 0
5]

IN

T
X

[0
5,

 0
7]

Q

[0
2,

 0
6]

 -
15

82
.0

0
X

[0
2,

 0
6]

 <
 0

Q

[0
6,

 0
7]

 -
17

40
.0

0
X

[0
6,

 0
7]

 <
 0

IN
T

X
[0

2,
 0

6]

IN
T

X
[0

6,
 0

7]

Non-negative Contract Size
Constraint

Q
[0

2,
 0

7]
 -

17
40

.0
0

X
[0

2,
 0

7]
 <

 0

Binary Variable associated
with each Contract

IN
T

X
[0

2,
 0

7]

75

Table 4-4: The N = Small Example Problem MILP Solution
Example Problem: N = Small, s = Small, p = Large, d = Small
Objective value: $231,313.5

Pe
ri

od

N
um

be
r

C
on

tr
ac

t
D

ur
at

io
n

C
on

tr
ac

t
N

um
be

r

B
an

dw
id

th

Si
ze

 C
on

tr
ac

t
N

um
be

r
B

in
ar

y
V

ar
ia

bl
e

B
in

ar
y

V
al

ue

(i.
e.

, 1
 =

Pu

rc
ha

se
d

C
on

tr
ac

t)

1 1 Q[01, 02] 0 X[01, 02] 0
1 2 Q[01, 03] 0 X[01, 03] 0
1 3 Q[01, 04] 0 X[01, 04] 0
1 4 Q[01, 05] 0 X[01, 05] 0
1 5 Q[01, 06] 0 X[01, 06] 0
1 6 Q[01, 07] 540 X[01, 07] 1
2 1 Q[02, 03] 0 X[02, 03] 0
2 2 Q[02, 04] 0 X[02, 04] 0
2 3 Q[02, 05] 0 X[02, 05] 0
2 4 Q[02, 06] 0 X[02, 06] 0
2 5 Q[02, 07] 54 X[02, 07] 1
3 1 Q[03, 04] 0 X[03, 04] 0
3 2 Q[03, 05] 0 X[03, 05] 0
3 3 Q[03, 06] 0 X[03, 06] 0
3 4 Q[03, 07] 60 X[03, 07] 1
4 1 Q[04, 05] 0 X[04, 05] 0
4 2 Q[04, 06] 0 X[04, 06] 0
4 3 Q[04, 07] 65 X[04, 07] 1
5 1 Q[05, 06] 0 X[05, 06] 0
5 2 Q[05, 07] 72 X[05, 07] 1
6 1 Q[06, 07] 79 X[06, 07] 1

Figure 4-11 shows all the contracts that could be active during each period.

Contract [01, 07] is purchased in period 1 with a bws of 540 Mbps and has a length of 6

periods; therefore 540 Mbps is available for all 6 periods. The bandwidth available in

period 2 is 594 Mbps which is the sum of bandwidths purchased for all contracts active

during period 2 (Contract [02, 07] and Contract [01, 07]).

76

Contrtact Number

Contract [01, 02]

Contract [01, 03]

Contract [01, 04]

Contract [01, 05]

Contract [01, 06]

Contract [01, 07]

Contract [02, 03]

Contract [02, 04]

Contract [02, 05]

Contract [02, 06]

Contract [02, 07]

Contract [03, 04]

Contract [03, 05]

Contract [03, 06]

Contract [03, 07]

Contract [04, 05]

Contract [04, 06]

Contract [04, 07]

Contract [05, 06]

Contract [05, 07]

Contract [06, 07]

Available Bandwidth per Period

Required Demand per Period

Bandwidth Deficit

1
0

0
0

0
0

54
0

54

0
54

0
0

2

0
0

0
0

54
0

0
0

0
0

54

59
4

59
4

0
3

0
0

0
54

0

0
0

0
54

0

0
0

60

65
4

65
4

0
4

0

0
54

0

0

0
54

0
0

60

0
0

65

71

9
71

9
0

5

0

54
0

0

54

0
60

0
65

0

72

79

1
79

1
0

Period

6

54
0

54

60

65

72

79

87
0

87
0

0
Fi

gu
re

 4
-1

1:
 D

ia
gr

am
 o

f M
IL

P
Ex

am
pl

e
Pr

ob
le

m
 S

ol
ut

io
n

fo
r N

 =
 S

m
al

l,
s =

 S
m

al
l,

p
=

La
rg

e,
 d

 =
 S

m
al

l

 77

Table 4-5 compares the solutions generated by the MILP and the DBCP-EA for

each of the three example problems. The %_Error value is used to measure out how

close the DBCP-EA solution is from the optimal solution. The %_Error value is

calculated by subtracting the DBCP-EA solution’s total cost from the MILP solution’s

total cost and then divided by the MILP solution’s total cost and multiplied by 100.The

DBCP-EA was able to find optimal solutions (%_Errors = 0) for N = Small and N =

Medium problems. However, for N = Large the DBCP-EA solution had a %_Error =

0.25%.

Table 4-5: Cost and Error, and Time Data for Example Problems
Problem: N = Small, s = Small, p = Large, d = Small

MILP Solution Total Cost = $231,313.45Cumulative Costs for Each Solution
Best EA Solution Total Cost = $231,314.00
Cost Difference* = $0.50Error Data for the EA Solution
%_Error = 0.00
MILP Time (seconds) = 0.010Computational Time for Each

Solution EA Time (seconds) for Best EA = 0.072
Problem: N = Medium, s = Small, p = Large, d = Small

MILP Solution Total Cost = $276,257.67Cumulative Costs for Each Solution Best EA Solution Total Cost = $276,261.00
Cost Difference* = $3.30Error Data for the EA Solution %_Error = 0.00
MILP Time (seconds) = 7.590Computational Time for Each

Solution EA Time (seconds) for Best EA = 73.547
Problem: N = Large, s = Small, p = Large, d = Small

MILP Solution Total Cost = $285,071.26Cumulative Costs for Each Solution Best EA Solution Total Cost = $285,777.00
Cost Difference = $705.74Error Data for the EA Solution %_Error = 0.25
MILP Time (seconds) = 1,373.000Computational Time for Each

Solution EA Time (seconds) for Best EA = 1,338.562
* Cost Difference due to precision and rounding errors

Table 4-5 also shows that as N increases the computational time between the

MILP and the DBCP-EA becomes comparable, especially for the N = Large problem

 78

where the DBCP-EA found a solution in less time than the MILP. It was originally

planned to use 6 month increments for N ranging from 6 to 24, but CPLEX was unable to

find a solution to the MILP for a planning horizon of 24 months within a reasonable

amount of time. Furthermore, it should be noted that the DBCP-EA was not designed

with the objective of minimizing computational time. Therefore it may be possible in the

future to re-code the DBCP-EA to improve computational.

Tables 4-6 through 4-8 show a period by period breakdown of the MILP and the

DBCP-EA solutions for the three example problems. The column labeled “Available

Bandwidth” shows the total bandwidth available in for any given period. Tables 4.6 and

4.7 show the DBCP-EA solutions for N = Small and N = Medium. In these two example

problems there is no surplus bandwidth in any period for these two problems, and the

constraint from Equation (2) is binding. Moreover, by comparing the “Contract Number”

columns for the MILP and the DBCP-EA solutions theses tables show that both search

methods selected the same contracts for each period. Since the MILP gives an optimal

solution, we can assert that the DBCP-EA has identified an optimal, lowest total cost

solution for the N = Small and Medium example problems.

 79

Table 4-6: MILP vs. DBCP-EA Purchasing Strategy Solutions for N = Small, s = Small,
p = Large, and d = Small

Constraint MILP Solution EA Solution
Same

Contract
Number

Same
Available

bws

Pe
ri

od
 N

um
be

r

R
eq

ui
re

d
D

em
an

d
pe

r
Pe

ri
od

 fr
om

E

qu
at

io
n

(2
)

(a
) C

on
tr

ac
t

N
um

be
r

B
an

dw
id

th
 S

iz
e

(b
w

s)

(b
) A

va
ila

bl
e

B
an

dw
id

th
 p

er

Pe
ri

od

(c
) C

on
tr

ac
t

N
um

be
r

B
an

dw
id

th
 S

iz
e

(b
w

s)

(d
) A

va
ila

bl
e

B
an

dw
id

th
 p

er

Pe
ri

od

(a
) =

 (c
)

(b
) =

 (d
)

1 540 [01, 07] 540 540 [01, 07] 540 540 ● ●

2 594 [02, 07] 54 594 [02, 07] 54 594 ● ●

3 654 [03, 07] 60 654 [03, 07] 60 654 ● ●

4 719 [04, 07] 65 719 [04, 07] 65 719 ● ●

5 791 [05, 07] 72 791 [05, 07] 72 791 ● ●

6 870 [06, 07] 79 870 [06, 07] 79 870 ● ●

Table 4-7: MILP vs. DBCP-EA Purchasing Strategy Solutions for N = Medium, s =
Small, p = Large, and d = Small

Constraint MILP Solution EA Solution
Same

Contract
Number

Same
Available

bws

Pe
ri

od
 N

um
be

r

R
eq

ui
re

d
D

em
an

d
pe

r
Pe

ri
od

 fr
om

E

qu
at

io
n

(2
)

(a
) C

on
tr

ac
t

N
um

be
r

B
an

dw
id

th
 S

iz
e

(b
w

s)

(b
) A

va
ila

bl
e

B
an

dw
id

th
 p

er

Pe
ri

od

(c
) C

on
tr

ac
t

N
um

be
r

B
an

dw
id

th
 S

iz
e

(b
w

s)

(d
) A

va
ila

bl
e

B
an

dw
id

th
 p

er

Pe
ri

od

(a
) =

 (c
)

(b
) =

 (d
)

1 540 [01, 07] 540 540 [01, 07] 540 540 ● ●

2 594 [02, 06] 54 594 [02, 06] 54 594 ● ●

3 654 [03, 07] 60 654 [03, 07] 60 654 ● ●

4 719 [04, 08] 65 719 [04, 08] 65 719 ● ●

5 791 [05, 09] 72 791 [05, 09] 72 791 ● ●

6 870 [06, 13] 133 870 [06, 13] 133 870 ● ●

7 957 [07, 13] 687 957 [07, 13] 687 957 ● ●

8 1,053 [08, 13] 161 1,053 [08, 13] 161 1,053 ● ●

9 1,158 [09, 13] 177 1,158 [09, 13] 177 1,158 ● ●

10 1,274 [10, 13] 116 1,274 [10, 13] 116 1,274 ● ●

11 1,401 [11, 13] 127 1,401 [11, 13] 127 1,401 ● ●

12 1,541 [12, 13] 140 1,541 [12, 13] 140 1,541 ● ●

 80

Table 4.8 shows the N = Large example problem. The MILP and the DBCP-EA

did not find the same solution, although in each solution constraint Equation (2) is

binding, therefore both solutions are feasible. In the MILP solution the available

bandwidth is exactly equal to the required demand for each period, and is the same for

both the MILP and DBCP-EA solution; however, the contracts purchased do not match.

The periods where purchased contracts are the same can be seen in the column labeled

“Same Contract Number.” The %_Error between the MILP and the DBCP-EA solutions

is 0.25%. Therefore, the DBCP-EA solution represents a feasible solution, albeit not

optimal. This solution could then be “tweaked” if desired. It should also be noted that if

the DBCP-EA had been allowed to run for a longer time it is possible that the optimal

solution might have been found.

 81

Table 4-8: MILP vs. DBCP-EA Purchasing Strategy Solutions for N = Large, s = Small,
p = Large, and d = Small

Constraint MILP Solution EA Solution
Same

Contract
Number

Same
Available

bws

Pe
ri

od
 N

um
be

r

R
eq

ui
re

d
D

em
an

d
pe

r
Pe

ri
od

 fr
om

E

qu
at

io
n

(2
)

(a
) C

on
tr

ac
t

N
um

be
r

B
an

dw
id

th
 S

iz
e

(b
w

s)

(b
) A

va
ila

bl
e

B
an

dw
id

th
 p

er

Pe
ri

od

(c
) C

on
tr

ac
t

N
um

be
r

B
an

dw
id

th
 S

iz
e

(b
w

s)

(d
) A

va
ila

bl
e

B
an

dw
id

th
 p

er

Pe
ri

od

(a
) =

 (c
)

(b
) =

 (d
)

1 540 [01, 07] 540 540 [01, 07] 540 540 ● ●

2 594 [02, 06] 54 594 [02, 07] 54 594 ●

3 654 [03, 07] 60 654 [03, 08] 60 654 ●

4 719 [04, 08] 65 719 [04, 08] 65 719 ● ●

5 791 [05, 10] 72 791 [05, 11] 72 791 ●

6 870 [06, 12] 133 870 [06, 12] 79 870 ● ●

7 957 [07, 13] 687 957 [07, 14] 681 957 ●

8 1,053 [08, 13] 161 1,053 [08, 12] 221 1,053 ●

9 1,158 [09, 14] 105 1,158 [09, 13] 105 1,158 ●

10 1,274 [10, 15] 188 1,274 [10, 16] 116 1,274 ●

11 1,401 [11, 16] 127 1,401 [11, 19] 199 1,401 ●

12 1,541 [12, 19] 273 1,541 [12, 19] 440 1,541 ● ●

13 1,695 [13, 19] 1,002 1,695 [13, 19] 259 1,695 ● ●

14 1,865 [14, 19] 275 1,865 [14, 19] 851 1,865 ● ●

15 2,051 [15, 19] 374 2,051 [15, 19] 186 2,051 ● ●

16 2,256 [16, 19] 332 2,256 [16, 19] 321 2,256 ● ●

17 2,482 [17, 19] 226 2,482 [17, 19] 226 2,482 ● ●

18 2,730 [18, 19] 248 2,730 [18, 19] 248 2,730 ● ●

4.4 DBCP-EA Results

Table 4-9 shows the parameter settings for each of the 81 problems identified in

the experimental design in Section 4.2. The categories in the table stand for Small (Sm),

Medium (Md) and Large (Lg). There are a total of 81 problems (4 parameters with 3

categories each).

 82

Table 4-9: Problem Number Corresponding to Each of the 81 Problems

N S p d # N s p d # N s p d
1 Sm Sm Sm Sm 28 Md Sm Sm Sm 55 Lg Sm Sm Sm
2 Sm Sm Sm Md 29 Md Sm Sm Md 56 Lg Sm Sm Md
3 Sm Sm Sm Lg 30 Md Sm Sm Lg 57 Lg Sm Sm Lg
4 Sm Sm Md Sm 31 Md Sm Md Sm 58 Lg Sm Md Sm
5 Sm Sm Md Md 32 Md Sm Md Md 59 Lg Sm Md Md
6 Sm Sm Md Lg 33 Md Sm Md Lg 60 Lg Sm Md Lg
7 Sm Sm Lg Sm 34 Md Sm Lg Sm 61 Lg Sm Lg Sm
8 Sm Sm Lg Md 35 Md Sm Lg Md 62 Lg Sm Lg Md
9 Sm Sm Lg Lg 36 Md Sm Lg Lg 63 Lg Sm Lg Lg
10 Sm Md Sm Sm 37 Md Md Sm Sm 64 Lg Md Sm Sm
11 Sm Md Sm Md 38 Md Md Sm Md 65 Lg Md Sm Md
12 Sm Md Sm Lg 39 Md Md Sm Lg 66 Lg Md Sm Lg
13 Sm Md Md Sm 40 Md Md Md Sm 67 Lg Md Md Sm
14 Sm Md Md Md 41 Md Md Md Md 68 Lg Md Md Md
15 Sm Md Md Lg 42 Md Md Md Lg 69 Lg Md Md Lg
16 Sm Md Lg Sm 43 Md Md Lg Sm 70 Lg Md Lg Sm
17 Sm Md Lg Md 44 Md Md Lg Md 71 Lg Md Lg Md
18 Sm Md Lg Lg 45 Md Md Lg Lg 72 Lg Md Lg Lg
19 Sm Lg Sm Sm 46 Md Lg Sm Sm 73 Lg Lg Sm Sm
20 Sm Lg Sm Md 47 Md Lg Sm Md 74 Lg Lg Sm Md
21 Sm Lg Sm Lg 48 Md Lg Sm Lg 75 Lg Lg Sm Lg
22 Sm Lg Md Sm 49 Md Lg Md Sm 76 Lg Lg Md Sm
23 Sm Lg Md Md 50 Md Lg Md Md 77 Lg Lg Md Md
24 Sm Lg Md Lg 51 Md Lg Md Lg 78 Lg Lg Md Lg
25 Sm Lg Lg Sm 52 Md Lg Lg Sm 79 Lg Lg Lg Sm
26 Sm Lg Lg Md 53 Md Lg Lg Md 80 Lg Lg Lg Md
27 Sm Lg Lg Lg 54 Md Lg Lg Lg 81 Lg Lg Lg Lg

For each problem the DBCP-EA is run 5 times, and %_Error is the mean of the %

errors for the 5 runs. Table 4-10 shows the maximum, minimum, and average percentage

errors (% error), as well as the standard deviation, from the 5 runs for each problem. The

information given in this table provides a view of the variability encountered by the

DBCP-EA in solving each problem. Solutions with a %_Error ≤ 1% are deemed good

 83

solutions. Solutions with a %_Error > 1% are deemed substandard. Of the 81 problems,

13 had %_Errors > 1%. These 13 problems are marked as bold in Table 4-9, and their

data are also marked as bold in Table 4-10.

 84

Table 4-10: Maximum % error, Minimum % error, %_Error, and Standard Deviation for
the 81 Problems
 N = Small N = Medium N = Large

s p d M
ax

im
um

%
 e

rr
or

M
in

im
um

 %
 e

rr
or

%
_E

rr
or

St
an

da
rd

 D
ev

ia
tio

n

M
ax

im
um

%
 e

rr
or

M
in

im
um

 %
 e

rr
or

%
_E

rr
or

St
an

da
rd

 D
ev

ia
tio

n

M
ax

im
um

%
 e

rr
or

M
in

im
um

 %
 e

rr
or

%
_E

rr
or

St
an

da
rd

 D
ev

ia
tio

n

Sm 0.00 0.00 0.00 0.00 0.19 0.00 0.07 0.10 1.13 0.00 0.25 0.49
Md 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Sm

al
l

Lg 0.00 0.00 0.00 0.00 0.06 0.06 0.06 0.00 0.12 0.00 0.02 0.05
Sm 0.00 0.00 0.00 0.00 0.31 0.18 0.20 0.06 0.29 0.20 0.25 0.04
Md 0.00 0.00 0.00 0.00 1.18 0.77 0.85 0.19 2.10 1.31 1.54 0.32

M
ed

iu
m

Lg 0.00 0.00 0.00 0.00 0.65 0.65 0.65 0.00 6.45 5.41 5.62 0.46
Sm 0.00 0.00 0.00 0.00 0.86 0.00 0.34 0.35 1.29 0.25 0.63 0.43
Md 0.00 0.00 0.00 0.00 0.79 0.09 0.36 0.29 1.14 0.84 0.99 0.15

Sm
al

l

La
rg

e

Lg 0.00 0.00 0.00 0.00 2.29 0.98 1.24 0.58 8.55 0.94 4.44 3.86
Sm 0.00 0.00 0.00 0.00 0.04 0.00 0.03 0.02 1.07 0.00 0.27 0.46
Md 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.20 0.24 0.07Sm

al
l

Lg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.11 0.11 0.00
Sm 0.00 0.00 0.00 0.00 0.53 0.00 0.21 0.29 3.63 1.12 1.66 1.10
Md 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.40 2.40 2.40 0.00

M
ed

iu
m

Lg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.43 1.43 1.43 0.00
Sm 0.00 0.00 0.00 0.00 1.88 0.00 0.38 0.84 0.75 0.26 0.40 0.20
Md 0.00 0.00 0.00 0.00 1.57 0.67 1.18 0.47 1.68 0.90 1.08 0.34

M
ed

iu
m

La
rg

e

Lg 0.00 0.00 0.00 0.00 1.39 1.05 1.12 0.15 8.47 3.83 6.03 2.10
Sm 0.00 0.00 0.00 0.00 0.04 0.00 0.02 0.02 0.40 0.27 0.32 0.07
Md 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.06 0.06Sm

al
l

Lg 0.00 0.00 0.00 0.00 0.05 0.00 0.01 0.02 0.00 0.00 0.00 0.00
Sm 0.00 0.00 0.00 0.00 0.41 0.00 0.08 0.18 0.96 0.00 0.38 0.52
Md 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M
ed

iu
m

Lg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sm 0.00 0.00 0.00 0.00 0.06 0.06 0.06 0.00 1.00 0.84 0.89 0.07
Md 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.01 2.01 2.01 0.00

La
rg

e

La
rg

e

Lg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.06 1.06 1.06 0.00

 85

Figure 4-12 shows the %_Error plotted for the 81 problems. Ten of the thirteen

substandard problem solutions, occur when N = Large. Only three substandard problems

occur when N = Medium and their %_Errors are all very close to 1%. Figure 4-13 shows

the %_Error data for the 27 problems where N = Medium and the 27 problems where N =

Large overlaid on top of each other so that the %_Error for problems with the same s, p,

and d parameter settings can be compared as the planning horizon increases from 12

periods to 18 periods. The 27 problems where N = Medium correspond to problem

number 28-54, and the 27 problems where N = Large corresponds to problem number 55

to 81, shown in Table 4-9. Since the %_Errors are all zero for the 27 problems were N =

Small, it is not necessary to plot those points. These two figures show that as the

planning horizon increases so does the %_Error, and to a lesser extent, in some instances,

problems with the same s, p, and d parameter settings follow a similar pattern where the

magnitude of the %_Error is greatly amplified for the N = Large problems.

 86

Mean % Error for All 81 Problems

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

Problem Number

M
ea

n
%

 E
rro

r .

Figure 4-12: %_Error for the 81 Problems

%_Error for of 27 Problems for N = 12 and N = 18
(Note: The %_Error for N = 6 is essentially zero for all 27 problems and is not shown here)

0.00000

1.00000

2.00000

3.00000

4.00000

5.00000

6.00000

7.00000

Problem Number (1-27) for Each Planning Horizon

%
_E

rr
or

N = 12 N = 18

N = 12 0.07 0.00 0.05 0.20 0.85 0.64 0.34 0.36 1.24 0.02 0.00 0.00 0.21 0.00 0.00 0.38 1.18 1.11 0.01 0.00 0.00 0.08 0.00 0.00 0.05 0.00 0.00

N = 18 0.25 0.00 0.02 0.24 1.53 5.62 0.63 0.98 4.44 0.26 0.24 0.10 1.65 2.40 1.43 0.39 1.08 6.03 0.32 0.06 0.00 0.38 0.00 0.00 0.88 2.01 1.06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Figure 4-13: Overlay of the %_Errors for N = Medium and Large

Figure 4-14 shows a plot of the standard deviations for the 81 problems listed in

Table 4-10. Figure 4-15 shows the standard deviation for the N = Medium and N = Large

 87

data overlaid on top of each other. Of the 54 standard deviations in Figure 4-15 only 4

(the 9th, 13th, 16th, and 18th problem from the N = Large data series) have a standard

deviation greater than 0.5. Of these 4 problems, the 9th, 13th, and 18th (from the N =

Large data series) belonged to substandard solutions. The 18th problem from the N =

Large data series (problem 72 in Figures 4-12 and 4-14) and 9th problem (problem 63 in

Figures 4-12 and 4-14) have the first (%_Error = 6.03, standard deviation = 2.09) and

third (%_Errors = 4.44, standard deviation = 3.86) largest substandard solutions.

Interestingly, the second largest %_Error (%_Error = 5.62) occurred for the 6th problem

(problem 60 in Figures 4-12 and 4-14) from the N = Large data series and had an average

standard deviation of only 0.46. Therefore, while a large standard deviation seems to be

correlated with larger %_Errors, it is not a required condition. Only two of the 81

problems had a standard deviation greater than 1.1, which means that the DBCP-EA

performed consistently.

% Error Standard Deviation for All 81 Problems

0

1

2

3

4

5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81

Problem Number

St
an

da
rd

 D
ev

ia
tio

n .

Figure 4-14: %_Error Standard Deviation for the 81 Problems

 88

Standard Deviation for of 27 Problems for N = 12 and N = 18
(Note: The standard deviation for N = 6 is zero for all 27 problems and is not shown here)

0.00000

0.50000

1.00000

1.50000

2.00000

2.50000

3.00000

3.50000

4.00000

4.50000

Problem Number (1-27) for Each Planning Horizon

St
an

da
rd

 D
ev

ia
tio

n
 .

N = 12 N = 18

N = 12 0.10 0.00 0.00 0.05 0.18 0.00 0.34 0.28 0.58 0.02 0.00 0.00 0.28 0.00 0.00 0.83 0.46 0.14 0.02 0.00 0.02 0.18 0.00 0.00 0.00 0.00 0.00

N = 18 0.49 0.00 0.05 0.04 0.32 0.46 0.42 0.15 3.86 0.46 0.06 0.00 1.10 0.00 0.00 0.20 0.34 2.09 0.07 0.05 0.00 0.52 0.00 0.00 0.06 0.00 0.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Figure 4-15: Overlay of %_Error Standard Deviation for N = Medium and Large

Table 4-11 shows the minimum, maximum, and average time it took the DBCP-

EA to find the best solution, as well as the standard deviation. As expected, as the N

increases, so does the computational time. Since the standard deviation for all but a few

problems is so low, we have some confidence that the DBCP-EA performs in a consistent

manner allowing for fairly accurate estimates of computation time.

The computation time for N = Small problems is negligible. For N = Medium,

problem 35 had the longest maximum run time with 11.5 minutes (691.53 seconds), its

best time was 0.4 minutes (25.23 seconds), and its average time for the 5 runs was 4.2

minutes (252.58 seconds). The %_Error for problem 35 is 0.36%, with a %_Error

standard deviation of 0.29. N = Large problems have the most variable computational

time (see Table 4-11) due to the time required to search a much larger search space. For

these problems the longest maximum run time is 49.3 minutes (2,958.48 seconds), which

 89

was for problem 62. The best computational time among the 5 runs for problem 62 was

19.8 minutes (1,186.52 seconds); the average computational time is 36.3 minutes

(2,176.49) with a standard deviation of 12.5 minutes. The %_Error for problem 62 is

0.99% with a %_Error standard deviation of 0.15, the accuracy is good and the

variability is low. Therefore, it would be safe to say that the DBCP-EA is fairly

consistent at finding good solutions for this problem.

90

Ta
bl

e
4-

11
: M

ax
im

um
, M

in
im

um
, a

nd
 A

ve
ra

ge
 E

A
 C

om
pu

ta
tio

na
l T

im
e

(s
ec

) f
or

 th
e

81
 P

ro
bl

em
s

N

 =
 S

m
al

l
N

 =
 M

ed
iu

m

N
 =

 L
ar

ge

s
p

d
Maximum

Minimum

Average

Std. Dev.

Maximum

Minimum

Average

Std. Dev.

Maximum

Minimum

Average

Std. Dev.

Sm
al

l
0.

38

0.
17

0.

23
0.

1
15

0.
05

9.
11

46
.3

4
58

.6
1,

71
5.

42
95

.3
3

51
8.

68
68

0.
0

M
ed

iu
m

0.

08

0.
06

0.

07
0.

0
41

.3
1

1.
31

16
.9

0
17

.3
54

9.
67

16
6.

30
30

0.
24

14
9.

3

Small

La
rg

e
0.

08

0.
06

0.

07
0.

0
0.

23
0.

23
0.

23
0.

0
19

2.
56

0.
63

39
.0

2
85

.8
Sm

al
l

0.
06

0.

06

0.
06

0.
0

38
4.

44
14

8.
92

25
6.

63
11

6.
1

2,
76

8.
61

47
7.

08
1,

12
4.

60
93

0.
8

M
ed

iu
m

0.

08

0.
06

0.

07
0.

0
12

3.
61

0.
22

24
.9

0
55

.2
2,

22
4.

84
0.

58
83

7.
07

86
3.

5

Medium

La
rg

e
0.

08

0.
06

0.

07
0.

0
0.

24
0.

22
0.

23
0.

0
94

7.
92

0.
64

24
3.

50
41

0.
4

Sm
al

l
0.

08

0.
06

0.

07
0.

0
54

5.
19

51
.6

3
21

0.
47

20
5.

9
1,

33
8.

56
56

1.
06

93
2.

88
35

5.
2

M
ed

iu
m

0.

08

0.
06

0.

07
0.

0
69

1.
53

25
.2

3
25

2.
58

26
9.

2
2,

95
8.

48
1,

18
6.

52
2,

17
6.

49
75

0.
9

Small

Large

La
rg

e
0.

08

0.
06

0.

07
0.

0
14

3.
69

3.
83

77
.7

4
64

.7
2,

56
2.

67
1,

32
6.

42
2,

06
4.

77
57

5.
8

Sm
al

l
0.

48

0.
13

0.

27
0.

2
61

.6
9

13
.0

9
31

.8
5

18
.7

1,
42

7.
97

22
4.

91
94

7.
08

45
6.

4
M

ed
iu

m

0.
08

0.

06

0.
07

0.
0

20
.6

3
5.

27
10

.5
4

6.
2

30
3.

14
12

3.
45

19
8.

90
73

.7

Small

La
rg

e
0.

08

0.
06

0.

07
0.

0
98

.3
3

0.
22

19
.8

5
43

.9
0.

66
0.

64
0.

65
0.

0
Sm

al
l

0.
08

0.

06

0.
07

0.
0

23
6.

30
5.

89
70

.7
0

96
.0

1,
50

2.
52

47
6.

94
1,

17
1.

90
40

4.
6

M
ed

iu
m

0.

08

0.
06

0.

07
0.

0
0.

22
0.

20
0.

21
0.

0
25

1.
80

0.
58

13
4.

44
12

4.
0

Medium

La
rg

e
0.

09

0.
06

0.

08
0.

0
0.

25
0.

23
0.

24
0.

0
0.

66
0.

64
0.

64
0.

0
Sm

al
l

0.
08

0.

06

0.
07

0.
0

44
3.

83
58

.2
3

22
7.

05
16

7.
5

1,
93

8.
50

19
0.

45
1,

28
7.

55
70

2.
4

M
ed

iu
m

0.

08

0.
06

0.

07
0.

0
21

7.
20

58
.2

0
14

7.
65

73
.7

2,
35

2.
64

68
1.

47
1,

40
2.

32
68

6.
6

Medium

Large

La
rg

e
0.

08

0.
06

0.

07
0.

0
11

0.
98

0.
23

22
.3

9
49

.5
2,

54
6.

69
0.

63
93

6.
06

1,
28

9.
2

91

Ta
bl

e
4-

11
: c

on
tin

ue
d

N

 =
 S

m
al

l
N

 =
 M

ed
iu

m

N
 =

 L
ar

ge

s
p

d
Maximum

Minimum

Average

Std. Dev.

Maximum

Minimum

Average

Std. Dev.

Maximum

Minimum

Average

Std. Dev.

Sm
al

l
0.

38

0.
13

0.

19
0.

1
76

.0
3

4.
34

25
.4

9
29

.1
2,

67
0.

13
14

4.
23

1,
09

7.
74

1,
03

6.
1

M
ed

iu
m

0.

08

0.
06

0.

07
0.

0
18

.2
8

2.
09

7.
63

7.
0

97
9.

05
7.

63
34

2.
68

37
3.

1

Small

La
rg

e
0.

08

0.
06

0.

07
0.

0
23

3.
50

0.
24

83
.3

5
11

4.
7

99
9.

69
0.

64
26

0.
56

43
3.

2
Sm

al
l

0.
08

0.

06

0.
07

0.
0

17
7.

39
2.

49
49

.2
3

72
.6

45
0.

31
59

.7
2

26
7.

78
14

1.
2

M
ed

iu
m

0.

08

0.
06

0.

08
0.

0
0.

22
0.

22
0.

22
0.

0
98

0.
05

0.
58

42
8.

54
42

8.
9

Medium

La
rg

e
0.

08

0.
06

0.

07
0.

0
0.

25
0.

23
0.

24
0.

0
0.

66
0.

63
0.

64
0.

0
Sm

al
l

0.
08

0.

06

0.
07

0.
0

19
2.

44
21

.8
8

78
.3

2
68

.3
2,

65
9.

64
1,

55
5.

73
2,

08
3.

27
44

5.
6

M
ed

iu
m

0.

08

0.
06

0.

07
0.

0
0.

23
0.

20
0.

22
0.

0
0.

59
0.

56
0.

58
0.

0

Large

Large

La
rg

e
0.

08

0.
06

0.

07
0.

0
0.

25
0.

23
0.

24
0.

0
0.

66
0.

63
0.

64
0.

0

 92

In order to compare the DBCP-EA computational time to that of the MILP the

times are overlaid in Figure 4-16. From this figure it is clear that the greatest difference

between the computational times for the MILP and the DBCP-EA occur during the N =

Large problems. Figures 4-17 through 4-19 compare the computational time of the MILP

and the DBCP-EA for N = Small, Medium, and Large problems, respectively.

MILP Time vs. EA Average Time for All 81 Problems

0.00

5,000.00

10,000.00

15,000.00

20,000.00

25,000.00

30,000.00

35,000.00

40,000.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

Problem Number

C
om

pu
ta

tio
na

l T
im

e
(s

ec
) .

MILP Computational Time (sec) EA Computational Time (sec)

Figure 4-16: EA Computational Average Time (sec) the 81 Problems

Figure 4.17 shows that although the DBCP-EA, on average, took longer to solve

N = Small problems, even for the worse cases the times were under 0.5 minutes, which

makes it competitive with the MILP formulation. The computational time for the DBCP-

EA jumps significantly over that of the MILP for most of the N = Medium problems, as

can be seen in Figure 4-18. In most cases, for N = Medium the DBCP-EA found

 93

solutions in less than 1 minute. With respect to the average computational time for any N

= Medium problem, the worse case was 4.3 minutes (256.63 seconds) for problem 31.

MILP Computational Time vs. EA Average Computational Time for N = Small
(Problem Number 1-27)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Problem Number

C
om

pu
ta

tio
na

l T
im

e
(s

ec
)

MILP Computational Time (sec) EA Average Computational Time (sec)
Figure 4-17: Computational Time for MILP and DBCP-EA for N = Small

MILP Computational ime vs. EA Average Computational Time for N = Medium
(Problem Number 28-54)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Problem Number

C
om

pu
ta

tio
na

l T
im

e
(s

ec
)

MILP Computational Time (sec) EA Average Computational Time (sec)
Figure 4-18: Computational Time for MILP and DBCP-EA for N = Medium

 94

Figure 4-19 show that the DBCP-EA outperforms the MILP with respect to

computational time for 11 out of the 27 N = Large problems. Of these, there are 5

problems where the MILP computational time is clearly larger than the average DBCP-

EA computational time; the most significant difference occurs for problem 70. Of the

remaining 16 problems the computational times between the DBCP-EA and the MILP are

very competitive. For the three planning horizons, the average DBCP-EA computational

times were 0.09 seconds, 1 minute, and 11.6 minutes for N = Small, Medium, and Large

problems, respectively.

MILP Time vs. EA Average Time for N = Large
(Problem Number 55 - 81)

0.00

5,000.00

10,000.00

15,000.00

20,000.00

25,000.00

30,000.00

35,000.00

40,000.00

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

Problem Number

C
om

pu
ta

tio
na

l T
im

e
(s

ec
)

 .

MILP Computational Time (sec) EA Average Computational Time (sec)
Figure 4-19: Computational Time for MILP and DBCP-EA for N = Large

4.4.1 Examination of DBCP-EA Problems with Substandard Solutions

By examining the 13 DBCP-EA substandard problem solutions insight can be

gained into the how the DBCP-EA performs and some common characteristics that exist

among these substandard solutions can be discussed.

 95

Table 4-12 shows the % error for the 5 runs for each of the substandard problems.

While a majority of the problems (8 out of 13) have %_Errors less than 2%, there are 3

problems with %_Errors greater than 4%. Interestingly, for some problems, such as

problem 81 (also problem 68, 69, and 80), the % error for all 5 runs is the same indicating

that while the DBCP-EA was unable to identify a good solution the DBCP-EA did

perform consistently. These problems are highlighted in the table.

Table 4-12: DBCP-EA Substandard Problem Solution Data
Problem Parameter % error for each Runs %_Error Standard
Number N s P d 1 2 3 4 5 (Avg.) Deviation

81 Lg Lg Lg Lg 1.06 1.06 1.06 1.06 1.06 1.06 0.00
71 Lg Md Lg Md 0.90 0.90 0.90 1.03 1.68 1.08 0.34
45 Md Md Lg Lg 1.05 1.05 1.05 1.05 1.39 1.12 0.15
44 Md Md Lg Md 0.67 0.67 1.42 1.57 1.57 1.18 0.47
36 Md Sm Lg Lg 0.98 0.98 0.98 0.98 2.29 1.24 0.58
69 Lg Md Md Lg 1.43 1.43 1.43 1.43 1.43 1.43 0.00
59 Lg Sm Md Md 1.31 1.31 1.49 1.49 2.10 1.54 0.32
67 Lg Md Md Sm 1.21 1.21 1.12 1.12 3.63 1.66 1.10
80 Lg Lg Lg Md 2.01 2.01 2.01 2.01 2.01 2.01 0.00
68 Lg Md Md Md 2.40 2.40 2.40 2.40 2.40 2.40 0.00
63 Lg Sm Lg Lg 0.94 0.94 3.25 8.55 8.55 4.44 3.86
60 Lg Sm Md Lg 5.41 5.41 5.41 5.41 6.45 5.62 0.46
72 Lg Md Lg Lg 3.83 3.83 7.02 7.02 8.47 6.03 2.10

Problem 36 has a % error of 0.98 for 4 of the 5 runs; it is only the 5th run with a %

error of 2.29 which causes the %_Error to be above 1%. This may indicate that the %

error for the 5th run might have been an outlier and not representative of the DBCP-EA

ability to produce good solutions for this problem. Also, problem 63 two out of the 5

runs had relatively low % errors (both were 0.94 % error) and 2 out of 5 % errors were

very large (both were 8.55 % error). The DBCP-EA is inconsistent for this problem

 96

(standard deviation = 3.86) which makes it difficult for the DBCP-EA to find a good

solution sometimes. Problem 72 has not only the largest %_Error, but also a large

standard deviation. So, the % errors for all 5 runs are high as well as being not consistent

(%_Error = 6.03, standard deviation = 2.10). On the other hand, the % errors for problem

60 are consistently large but without much variability.

Problems 60, 63, and 72 are three substandard problems that have some unusually

large % errors within their 5 runs. These problems all have N = Large and d = Large.

For two of these problems s = Small, and for two of the problems p = Large. These three

problems also have the largest %_Errors.

A possible explanation for these results is that as s increases from Small to Large,

contracts with longer duration become optimal because as the temporal discount

increases it becomes more attractive to buy long duration contracts. However, when p

increases from Small to Large, it is more optimal to buy contracts with smaller durations

as price decrease makes contracts with long durations costly. The algorithm’s repair

function which biases solutions toward contracts with the longest durations works well if

long duration contracts are favorable. For N = Small and Medium these biases are not

that problematic because the search space was small enough to allows the solution to still

find adequate solutions, in most cases. However, for N = Large problems, the search

space becomes much bigger and these biases towards the extreme become expensive,

which is evidenced in problems 60, 63 and 72. Therefore when N = Large and s = Small

and/or p = Large then long duration contracts become expensive. In addition, if d =

Large, these long duration contracts becomes even more expensive since these contracts

have larger bws due to the rapid increase of demand over time. The settings of these

 97

three problems have a bias towards common contracts which produce substandard

solutions.

Table 4-13 shows aggregate data pertaining to the 13 DBCP-EA substandard

problems. Problems with N = Large are much more likely to have substandard solutions

than N = Small or Medium. For s the majority of substandard problems occur when s =

Medium. This indicates that the DBCP-EA is much better at identifying the best

solutions for s = Small where it can forgo small temporal discounts in favor of future

price discounts. Likewise, for s = Large it can take advantage of temporal discounts

which could result in lower per unit cost. With respect to N = Large, large decreases in

price and/or increases in demand also have more occurrences of large %_Errors. This is

expected since the greater the rate of change in price and/or demand the more complex

the problem becomes and the more sensitive the solution quality is to erroneous choices

made early in the planning horizon.

 98

Table 4-13: Crosstab Count Analysis of DBCP-EA Substandard Problem Solutions for N
versus s, p, and d

 s
N Large Medium Small Grand Total

Large 15.38% 38.46% 23.08% 76.92%
Medium 0.00% 15.38% 7.69% 23.08%
Small 0.00% 0.00% 0.00% 0.00%

Grand Total 15.38% 53.85% 30.77% 100.00%
 p

N Large Medium Small Grand Total
Large 38.46% 38.46% 0.00% 76.92%
Medium 23.08% 0.00% 0.00% 23.08%
Small 0.00% 0.00% 0.00% 0.00%

Grand Total 61.54% 38.46% 0.00% 100.00%
 d

N Large Medium Small Grand Total
Large 38.46% 30.77% 7.69% 76.92%
Medium 15.38% 7.69% 0.00% 23.08%
Small 0.00% 0.00% 0.00% 0.00%

Grand Total 53.85% 38.46% 7.69% 100.00%

4.4.2 Comparison between MILP and DBCP-EA Substandard Problem Solutions

Tables 4-14 through 4-26 show the cumulative purchased bandwidth, required

bandwidth, and surplus for each period for both the MILP and the best DBCP-EA

solutions for the 13 substandard problems. Each table includes the problem number, the

parameter settings, and the % error for the solution shown, the % _Error, and the %

_Error standard deviation. While % error is the measure of error between the MILP

solution total cost and the DBCP-EA solution’s total cost shown within each table,

%_Error is the measure of error between the MILP solution total cost and the average of

the DBCP-EA solutions’ total costs for the 5 runs. The differences between the MILP

and the DBCP-EA solutions are highlighted in grey. In problems 36 (Table 4-14, %

error = 0.98, %_Error = 1.24), 45 (Table 4-16, % error = 1.05, %_Error = 1.12), 60

 99

(Table 4-18, % error = 5.41, %_Error = 5.62), 68 (Table 4-21, % error = 2.40, %_Error

= 2.40), 69 (Table 4-22, % error = 1.43, %_Error = 1.43), 71 (Table 4-23, % error =

0.90, %_Error = 1.08), 72 (Table 4-24, % error = 3.83, %_Error = 6.03), 80 (Table 4-25,

% error = 2.01, %_Error = 2.01) and 81 (Table 4-26, % error = 1.06, %_Error = 1.06),

the DBCP-EA erroneously chose the longest possible contract in at least one period. This

is undoubtedly a bias imposed by the repair function. Future research would attempt to

reduce or eliminate this bias.

In problems 59 (Table 4-17, % error = 1.31, %_Error = 1.54), 63 (Table 4-19, %

error = 0.94, %_Error = 4.44), and 67 (Table 4-20, % error = 1.12, %_Error = 1.66) the

DBCP-EA purchased some contracts that are too short and some contracts that are too

long. This type of error could indicate that the DBCP-EA was stopped prematurely.

Future research could look at the effects on solution quality and computational time

when the EA is allowed to run for more generations. Problem 44 (Table 4-15, % error =

0.67, %_Error = 1.18) is the exception to the observation that the DBCP-EA tends to

purchase contracts that are of longer duration than is necessary. In problem 44 the MILP

solution purchases the longest contract available in all periods, whereas the DBCP-EA

purchased one contract that was not the longest available. Again, this error might

indicate that the DBCP-EA was terminated too soon.

Another interesting observation is that in most cases the MILP and the DBCP-EA

solutions purchased only one contract in each period, even though no restriction was

imposed. Problem 67, Table 4-20, is the only problem of the 13 substandard solutions

that does not have N number of contracts in the optimal solution, where N = 18 periods.

The MILP optimal solution only purchased 17 contracts; no contracts were purchased

 100

during period 2. The DBCP-EA solution had only 16 contracts. Interestingly, in the

optimal solution it is cheaper to purchase a contract with more bandwidth than is needed

for period 1, where the amount covered the bandwidth requirement for periods 1 and 2,

thereby creating a surplus in period 1. This action is optimal due to the unique parameter

settings of N = Large, s = Medium, p = Medium, and d = Small. In this instance it is

cheaper to purchase excessive bandwidth in period 1, than to purchase the exact amount

of bandwidth needed in period 1 and then purchase another contract in period 2. For this

problem the demand increase between periods is small so the surplus bandwidth in period

1 is small, only 54 Mbps. Starting in period 8 the contracts selected by the MILP and the

DBCP-EA are identical, but due to difference in contract lengths purchased in pervious

periods the bandwidth sizes for the majority of the contracts from the 8th period to the end

of the planning horizon have differing bws for the two solutions.

Problem 63, Table 4-19, has an odd occurrence. The optimal solution found by

the MILP purchases 18 contracts, while the DBCP-EA solution purchases 19 contracts;

the % error is 0.94 and %_Error is 4.44. In this case, the DBCP-EA solution has two

contracts purchased in the 7th period. This occurrence proves that the algorithm does not

restrict the number of contract per period.

101

Ta
bl

e
4-

14
: C

um
ul

at
iv

e
Pu

rc
ha

se
d

B
an

dw
id

th
, R

eq
ui

re
d

B
an

dw
id

th
, a

nd
 S

ur
pl

us
 fo

r t
he

 M
IL

P
an

d
B

es
t D

B
C

P-
EA

 S
ol

ut
io

ns
 fo

r
Pr

ob
le

m
 #

36

Pr
ob

N

s

P
d

%
 e

rr
or

%

_E
rr

or

St
d.

 D
ev

.
R

an
k

36

M

ed
iu

m

Sm
al

l
La

rg
e

La
rg

e
0.

98

1.
24

0.
58

9
 M

IL
P

Su
rp

lu
s

0
0

0
0

0
0

0
0

0
0

0
0

R
eq

ui
re

d
B

an
dw

id
th

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

M
IL

P
C

um
ul

at
iv

e
bw

s
540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

M
IL

P
So

lu
tio

n

(i.
e.

, A
ct

iv
e

C
on

tra
ct

s)

[01, 07]

[02, 07]

[03, 09]

[04, 10]

[05, 13]

[06, 13]

[07, 13]

[08, 13]

[09, 13]

[10, 13]

[11, 13]

[12, 13]

M
IL

P
bw

s

540

162

211

274

356

462

1,304

782

1,227

1,596

1,718

2,233

 P
er

io
d

1
2

3
4

5
6

7
8

9
10

11

12

EA
 b

w
s

540

162

211

274

356

462

1,304

782

1,016

1,322

1,718

2,233

EA
 B

es
t S

ol
ut

io
n

(i.

e.
, A

ct
iv

e
C

on
tra

ct
s)

[01, 07]

[02, 07]

[03, 13]

[04, 13]

[05, 13]

[06, 13]

[07, 13]

[08, 13]

[09, 13]

[10, 13]

[11, 13]

[12, 13]

EA

C
um

ul
at

iv
e

bw
s

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

R
eq

ui
re

d
B

an
dw

id
th

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

EA
 S

ur
pl

us

0
0

0
0

0
0

0
0

0
0

0
0

102

Ta
bl

e
4-

15
: C

um
ul

at
iv

e
Pu

rc
ha

se
d

B
an

dw
id

th
, R

eq
ui

re
d

B
an

dw
id

th
, a

nd
 S

ur
pl

us
 fo

r t
he

 M
IL

P
an

d
B

es
t D

B
C

P-
EA

 S
ol

ut
io

ns
 fo

r
Pr

ob
le

m
 #

44

Pr
ob

N

s

P
d

%
 e

rr
or

%

_E
rr

or

St
d.

 D
ev

.
R

an
k

44

M

ed
iu

m

M
ed

iu
m

La
rg

e
M

ed
iu

m
0.

67

1.
18

0.
47

10
 M

IL
P

Su
rp

lu
s

0
0

0
0

0
0

0
0

0
0

0
0

R
eq

ui
re

d
B

an
dw

id
th

540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

M
IL

P
C

um
ul

at
iv

e
bw

s
540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

M
IL

P
So

lu
tio

n
(i.

e.
, A

ct
iv

e
C

on
tra

ct
s)

 [01, 13]

 [02, 13]

 [03, 13]

 [04, 13]

 [05, 13]

 [06, 13]

 [07, 13]

 [08, 13]

 [09, 13]

 [10, 13]

 [11, 13]

 [12, 13]

M
IL

P
bw

s

540

108

130

156

186

224

269

322

387

465

557

669

 P
er

io
d

1
2

3
4

5
6

7
8

9
10

11

12

EA
 b

w
s

540

108

130

156

186

224

269

322

927

465

557

669

EA
 B

es
t S

ol
ut

io
n

(i.
e.

, A
ct

iv
e

C
on

tra
ct

s)

 [01, 09]

 [02, 13]

 [03, 13]

 [04, 13]

 [05, 13]

 [06, 13]

 [07, 13]

 [08, 13]

 [09, 13]

 [10, 13]

 [11, 13]

 [12, 13]

EA

C
um

ul
at

iv
e

bw
s

540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

R
eq

ui
re

d
B

an
dw

id
th

540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

EA
 S

ur
pl

us

0
0

0
0

0
0

0
0

0
0

0
0

103

Ta
bl

e
4-

16
: C

um
ul

at
iv

e
Pu

rc
ha

se
d

B
an

dw
id

th
, R

eq
ui

re
d

B
an

dw
id

th
, a

nd
 S

ur
pl

us
 fo

r t
he

 M
IL

P
an

d
B

es
t D

B
C

P-
EA

 S
ol

ut
io

ns
 fo

r
Pr

ob
le

m
 #

45

Pr
ob

N

s

p
d

%
 e

rr
or

%

_E
rr

or

St
d.

 D
ev

.
R

an
k

45

M

ed
iu

m

M
ed

iu
m

La
rg

e
La

rg
e

1.
05

1.

12
0.

15
11

 M
IL

P
Su

rp
lu

s
0

0
0

0
0

0
0

0
0

0
0

0

R
eq

ui
re

d
B

an
dw

id
th

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

M
IL

P
C

um
ul

at
iv

e
bw

s
540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

M
IL

P
So

lu
tio

n
(i.

e.
, A

ct
iv

e
C

on
tra

ct
s)

 [01, 09]

 [02, 09]

 [03, 10]

 [04, 13]

 [05, 13]

 [06, 13]

 [07, 13]

 [08, 13]

 [09, 13]

 [10, 13]

 [11, 13]

 [12, 13]

M
IL

P
bw

s

540

162

211

274

356

462

602

782

1,718

1,533

1,718

2,233

 P
er

io
d

1
2

3
4

5
6

7
8

9
10

11

12

EA
 b

w
s

540

162

211

274

356

462

602

782

1,178

1,322

1,718

2,233

EA
 B

es
t S

ol
ut

io
n

(i.
e.

, A
ct

iv
e

C
on

tra
ct

s)

 [01, 13]

 [02, 09]

 [03, 13]

 [04, 13]

 [05, 13]

 [06, 13]

 [07, 13]

 [08, 13]

 [09, 13]

 [10, 13]

 [11, 13]

 [12, 13]

EA

C
um

ul
at

iv
e

bw
s

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

R
eq

ui
re

d
B

an
dw

id
th

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

EA
 S

ur
pl

us

0
0

0
0

0
0

0
0

0
0

0
0

104

Ta
bl

e
4-

17
: C

um
ul

at
iv

e
Pu

rc
ha

se
d

B
an

dw
id

th
, R

eq
ui

re
d

B
an

dw
id

th
, a

nd
 S

ur
pl

us
 fo

r t
he

 M
IL

P
an

d
B

es
t D

B
C

P-
EA

 S
ol

ut
io

ns
 fo

r
Pr

ob
le

m
 #

59

Pr
ob

N

s

p
d

%
 e

rr
or

%

_E
rr

or

St
d.

 D
ev

.
R

an
k

59

La

rg
e

Sm
al

l
M

ed
iu

m
M

ed
iu

m
1.

31

1.
54

0.
32

7
 M

IL
P

Su
rp

lu
s

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

R
eq

ui
re

d
B

an
dw

id
th

540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

4,815

5,778

6,934

8,320

9,984

11,981

M
IL

P
C

um
ul

at
iv

e
bw

s

540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

4,815

5,778

6,934

8,320

9,984

11,981

M
IL

P
So

lu
tio

n
(i.

e.
,

A
ct

iv
e

C
on

tra
ct

s)

 [01, 09]

 [02, 09]

 [03, 10]

 [04, 11]

 [05, 12]

 [06, 13]

 [07, 14]

 [08, 19]

 [09, 19]

 [10, 19]

 [11, 19]

 [12, 19]

 [13, 19]

 [14, 19]

 [15, 19]

 [16, 19]

 [17, 19]

 [18, 19]

M
IL

P
bw

s

540

108

130

156

186

224

269

322

1,035

595

713

855

1,026

1,232

1,156

1,386

1,664

1,997

 P
er

io
d

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

EA
 b

w
s

540

108

130

156

186

224

269

560

927

465

713

669

802

963

1,156

1,386

1,664

1,997

EA
 B

es
t S

ol
ut

io
n

(i.
e.

,
A

ct
iv

e
C

on
tra

ct
s)

 [01, 09]

 [02, 08]

 [03, 08]

 [04, 11]

 [05, 19]

 [06, 19]

 [07, 19]

 [08, 19]

 [09, 19]

 [10, 19]

 [11, 19]

 [12, 19]

 [13, 19]

 [14, 19]

 [15, 19]

 [16, 19]

 [17, 19]

 [18, 19]

EA

C
um

ul
at

iv
e

bw
s

540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

4,815

5,778

6,934

8,320

9,984

11,981

R
eq

ui
re

d
B

an
dw

id
th

540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

4,815

5,778

6,934

8,320

9,984

11,981

EA
 S

ur
pl

us

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

105

Ta
bl

e
4-

18
: C

um
ul

at
iv

e
Pu

rc
ha

se
d

B
an

dw
id

th
, R

eq
ui

re
d

B
an

dw
id

th
, a

nd
 S

ur
pl

us
 fo

r t
he

 M
IL

P
an

d
B

es
t D

B
C

P-
EA

 S
ol

ut
io

ns
 fo

r
Pr

ob
le

m
 #

60

Pr
ob

N

s

P
d

%
 e

rr
or

%

_E
rr

or

St
d.

 D
ev

.
R

an
k

60

La

rg
e

Sm
al

l
M

ed
iu

m
La

rg
e

5.
41

5.

62
0.

46
2

 M
IL

P
Su

rp
lu

s
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
R

eq
ui

re
d

B
an

dw
id

th

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

M
IL

P
C

um
ul

at
iv

e
bw

s

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

M
IL

P
So

lu
tio

n
(i.

e.
, A

ct
iv

e
C

on
tra

ct
s)

 [01, 09]

 [02, 09]

 [03, 11]

 [04, 12]

 [05, 13]

 [06, 14]

 [07, 15]

 [08, 19]

 [09, 19]

 [10, 19]

 [11, 19]

 [12, 19]

 [13, 19]

 [14, 19]

 [15, 19]

 [16, 19]

 [17, 19]

 [18, 19]

M
IL

P
bw

s

540

162

211

274

356

462

602

782

1,718

1,322

1,929

2,507

3,259

4,237

5,508

6,379

8,292

10,780

 P
er

io
d

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

EA
 b

w
s

540

162

211

274

356

462

602

782

1,178

1,322

1,718

2,233

2,903

3,775

4,906

6,379

8,292

10,780

EA
 B

es
t

So
lu

tio
n

(i.
e.

,
A

ct
iv

e

 [01, 19]

 [02, 09]

 [03, 19]

 [04, 19]

 [05, 19]

 [06, 19]

 [07, 19]

 [08, 19]

 [09, 19]

 [10, 19]

 [11, 19]

 [12, 19]

 [13, 19]

 [14, 19]

 [15, 19]

 [16, 19]

 [17, 19]

 [18, 19]

EA

C
um

ul
at

iv
e

bw
s

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

R
eq

ui
re

d
B

an
dw

id
th

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

EA
 S

ur
pl

us

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

106

Ta
bl

e
4-

19
: C

um
ul

at
iv

e
Pu

rc
ha

se
d

B
an

dw
id

th
, R

eq
ui

re
d

B
an

dw
id

th
, a

nd
 S

ur
pl

us
 fo

r t
he

 M
IL

P
an

d
B

es
t D

B
C

P-
EA

 S
ol

ut
io

ns
 fo

r
Pr

ob
le

m
 #

63

Pr
ob

N

s

P
d

%
 e

rr
or

%

_E
rr

or

St
d.

 D
ev

.
R

an
k

63

La

rg
e

Sm
al

l
La

rg
e

La
rg

e
0.

94

4.
44

3.
86

3
 M

IL
P

Su
rp

lu
s

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
R

eq
ui

re
d

B
an

dw
id

th

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

M
IL

P
C

um
ul

at
iv

e
bw

s

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

M
IL

P
So

lu
tio

n
(i.

e.
, A

ct
iv

e
C

on
tra

ct
s)

[01, 07]

[02, 08]

[03, 09]

[04, 10]

[05, 11]

[06, 12]

[07, 13]

__

[08, 14]

[09, 15]

[10, 16]

[11, 19]

[12, 19]

[13, 19]

[14, 19]

[15, 19]

[16, 19]

[17, 19]

[18, 19]

M
IL

P
bw

s

540

162

211

274

356

462

1,142

944

1,227

1,596

2,074

2,695

4,045

4,719

6,133

7,975

8,292

10,780

 P
er

io
d

1
2

3
4

5
6

7
-

8
9

10

11

12

13

14

15

16

17

18

EA
 b

w
s

540

162

211

274

356

462

195

947

944

1,501

1,322

2,074

2,890

2,903

4,722

4,906

6,379

8,292

10,780

EA
 B

es
t S

ol
ut

io
n

(i.
e.

, A
ct

iv
e

C
on

tra
ct

s)

[01, 07]

[02, 08]

[03, 09]

[04, 09]

[05, 11]

[06, 12]

[07, 12]

[07, 14]

[08, 19]

[09, 19]

[10, 19]

[11, 19]

[12, 19]

[13, 19]

[14, 19]

[15, 19]

[16, 19]

[17, 19]

[18, 19]

EA

C
um

ul
at

iv
e

bw
s

540

702

913

1,187

1,543

2,005

2,200

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

R
eq

ui
re

d
B

an
dw

id
th

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

EA
 S

ur
pl

us

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0

107

Ta
bl

e
4-

20
: C

um
ul

at
iv

e
Pu

rc
ha

se
d

B
an

dw
id

th
, R

eq
ui

re
d

B
an

dw
id

th
, a

nd
 S

ur
pl

us
 fo

r t
he

 M
IL

P
an

d
B

es
t D

B
C

P-
EA

 S
ol

ut
io

ns
 fo

r
Pr

ob
le

m
 #

67

Pr
ob

N

s

P
d

%
 e

rr
or

%

_E
rr

or

St
d.

 D
ev

.
R

an
k

67

La

rg
e

M
ed

iu
m

M
ed

iu
m

Sm
al

l
1.

12

1.
66

1.
10

6
 M

IL
P

Su
rp

lu
s

54

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

R
eq

ui
re

d
B

an
dw

id
th

540

594

654

719

791

870

957

1,053

1,158

1,274

1,401

1,541

1,695

1,865

2,051

2,256

2,482

2,730

M
IL

P
C

um
ul

at
iv

e
bw

s

594

594

654

719

791

870

957

1,053

1,158

1,274

1,401

1,541

1,695

1,865

2,051

2,256

2,482

2,730

M
IL

P
So

lu
tio

n
(i.

e.
,

A
ct

iv
e

C
on

tra
ct

s)

 [01, 12]

 [03, 10]

 [04, 11]

 [05, 12]

 [06, 13]

 [07, 15]

 [08, 19]

 [09, 19]

 [10, 19]

 [11, 19]

 [12, 19]

 [13, 19]

 [14, 19]

 [15, 19]

 [16, 19]

 [17, 19]

 [18, 19]

M
IL

P
bw

s

594

60

65

72

79

87

96

105

176

192

806

233

170

273

205

226

248

 P
er

io
d

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

EA
 b

w
s

540

114

65

151

87

96

105

230

192

140

154

710

186

205

226

248

EA
 B

es
t S

ol
ut

io
n

(i.
e.

,
A

ct
iv

e
C

on
tra

ct
s)

 [01, 14]

 [02, 10]

 [04, 11]

 [05, 19]

 [07, 19]

 [08, 19]

 [09, 19]

 [10, 19]

 [11, 19]

 [12, 19]

 [13, 19]

 [14, 19]

 [15, 19]

 [16, 19]

 [17, 19]

 [18, 19]

EA

C
um

ul
at

iv
e

bw
s

540

654

654

719

870

870

957

1,053

1,158

1,274

1,401

1,541

1,695

1,865

2,051

2,256

2,482

2,730

R
eq

ui
re

d
B

an
dw

id
th

540

594

654

719

791

870

957

1,053

1,158

1,274

1,401

1,541

1,695

1,865

2,051

2,256

2,482

2,730

EA
 S

ur
pl

us

0
60

0

0
79

0

0
0

0
0

0
0

0
0

0
0

0
0

108

Ta
bl

e
4-

21
: C

um
ul

at
iv

e
Pu

rc
ha

se
d

B
an

dw
id

th
, R

eq
ui

re
d

B
an

dw
id

th
, a

nd
 S

ur
pl

us
 fo

r t
he

 M
IL

P
an

d
B

es
t D

B
C

P-
EA

 S
ol

ut
io

ns
 fo

r
Pr

ob
le

m
 #

68

Pr
ob

N

s

P
d

%
 e

rr
or

%

_E
rr

or

St
d.

 D
ev

.
R

an
k

68

La

rg
e

M
ed

iu
m

M
ed

iu
m

M
ed

iu
m

2.
40

2.

40
0.

00
4

 M
IL

P
Su

rp
lu

s
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

R
eq

ui
re

d
B

an
dw

id
th

540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

4,815

5,778

6,934

8,320

9,984

11,981

M
IL

P
C

um
ul

at
iv

e
bw

s

540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

4,815

5,778

6,934

8,320

9,984

11,981

M
IL

P
So

lu
tio

n
(i.

e.
,

A
ct

iv
e

C
on

tra
ct

s)

 [01, 12]

 [02, 10]

 [03, 12]

 [04, 13]

 [05, 14]

 [06, 19]

 [07, 19]

 [08, 19]

 [09, 19]

 [10, 19]

 [11, 19]

 [12, 19]

 [13, 19]

 [14, 19]

 [15, 19]

 [16, 19]

 [17, 19]

 [18, 19]

M
IL

P
bw

s

540

108

130

156

186

224

269

322

387

573

557

1,339

958

1,149

1,156

1,386

1,664

1,997

 P
er

io
d

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

EA
 b

w
s

540

108

130

156

186

224

269

322

387

573

557

669

802

963

1,156

1,386

1,664

1,997

EA
 B

es
t S

ol
ut

io
n

(i.
e.

,
A

ct
iv

e
C

on
tra

ct
s)

 [01, 19]

 [02, 10]

 [03, 19]

 [04, 19]

 [05, 19]

 [06, 19]

 [07, 19]

 [08, 19]

 [09, 19]

 [10, 19]

 [11, 19]

 [12, 19]

 [13, 19]

 [14, 19]

 [15, 19]

 [16, 19]

 [17, 19]

 [18, 19]

EA

C
um

ul
at

iv
e

bw
s

540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

4,815

5,778

6,934

8,320

9,984

11,981

R
eq

ui
re

d
B

an
dw

id
th

540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

4,815

5,778

6,934

8,320

9,984

11,981

EA
 S

ur
pl

us

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

109

Ta
bl

e
4-

22
: C

um
ul

at
iv

e
Pu

rc
ha

se
d

B
an

dw
id

th
, R

eq
ui

re
d

B
an

dw
id

th
, a

nd
 S

ur
pl

us
 fo

r t
he

 M
IL

P
an

d
B

es
t D

B
C

P-
EA

 S
ol

ut
io

ns
 fo

r
Pr

ob
le

m
 #

69

Pr
ob

N

s

P
d

%
 e

rr
or

%

_E
rr

or

St
d.

 D
ev

.
R

an
k

69

La

rg
e

M
ed

iu
m

M
ed

iu
m

La
rg

e
1.

43

1.
43

0.
00

8
 M

IL
P

Su
rp

lu
s

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

R
eq

ui
re

d
B

an
dw

id
th

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

M
IL

P
C

um
ul

at
iv

e
bw

s

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

M
IL

P
So

lu
tio

n
(i.

e.
,

A
ct

iv
e

C
on

tra
ct

s)

 [01, 12]

 [02, 11]

 [03, 13]

[04, 14]

 [05, 19]

 [06, 19]

 [07, 19]

 [08, 19]

 [09, 19]

 [10, 19]

 [11, 19]

 [12, 19]

 [13, 19]

 [14, 19]

 [15, 19]

 [16, 19]

 [17, 19]

 [18, 19]

M
IL

P
bw

s

540

162

211

274

356

462

602

782

1,016

1,322

1,880

2,773

3,114

4,049

4,906

6,379

8,292

10,780

 P
er

io
d

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

EA
 b

w
s

540

162

211

274

356

462

602

782

1,016

1,322

1,718

2,233

2,903

3,775

4,906

6,379

8,292

10,780

EA
 B

es
t S

ol
ut

io
n

(i.
e.

,
A

ct
iv

e
C

on
tra

ct
s)

 [01, 19]

 [02, 19]

 [03, 19]

 [04, 19]

 [05, 19]

 [06, 19]

 [07, 19]

 [08, 19]

 [09, 19]

 [10, 19]

 [11, 19]

 [12, 19]

 [13, 19]

 [14, 19]

 [15, 19]

 [16, 19]

 [17, 19]

 [18, 19]

EA

C
um

ul
at

iv
e

bw
s

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

R
eq

ui
re

d
B

an
dw

id
th

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

EA
 S

ur
pl

us

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

110

Ta
bl

e
4-

23
: C

um
ul

at
iv

e
Pu

rc
ha

se
d

B
an

dw
id

th
, R

eq
ui

re
d

B
an

dw
id

th
, a

nd
 S

ur
pl

us
 fo

r t
he

 M
IL

P
an

d
B

es
t D

B
C

P-
EA

 S
ol

ut
io

ns
 fo

r
Pr

ob
le

m
 #

71

Pr
ob

N

s

P
d

%
 e

rr
or

%

_E
rr

or

St
d.

 D
ev

.
R

an
k

71

La

rg
e

M
ed

iu
m

La
rg

e
M

ed
iu

m
0.

90

1.
08

0.
34

12
 M

IL
P

Su
rp

lu
s

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

R
eq

ui
re

d
B

an
dw

id
th

540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

4,815

5,778

6,934

8,320

9,984

11,981

M
IL

P
C

um
ul

at
iv

e
bw

s

540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

4,815

5,778

6,934

8,320

9,984

11,981

M
IL

P
So

lu
tio

n
(i.

e.
,

A
ct

iv
e

C
on

tra
ct

s)

 [01, 09]

 [02, 09]

 [03, 10]

 [04, 11]

 [05, 12]

 [06, 13]

 [07, 15]

 [08, 16]

 [09, 19]

 [10, 19]

 [11, 19]

 [12, 19]

 [13, 19]

 [14, 19]

 [15, 19]

 [16, 19]

 [17, 19]

 [18, 19]

M
IL

P
bw

s

540

108

130

156

186

224

269

322

1,035

595

713

855

1,026

963

1,425

1,708

1,664

1,997

 P
er

io
d

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

EA
 b

w
s

540

108

130

156

186

224

269

322

1,035

595

713

669

802

963

1,156

1,386

1,664

1,997

EA
 B

es
t S

ol
ut

io
n

(i.
e.

,
A

ct
iv

e
C

on
tra

ct
s)

 [01, 09]

 [02, 09]

 [03, 10]

 [04, 11]

 [05, 19]

 [06, 19]

 [07, 19]

 [08, 19]

 [09, 19]

 [10, 19]

 [11, 19]

 [12, 19]

 [13, 19]

 [14, 19]

 [15, 19]

 [16, 19]

 [17, 19]

 [18, 19]

EA

C
um

ul
at

iv
e

bw
s

540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

4,815

5,778

6,934

8,320

9,984

11,981

R
eq

ui
re

d
B

an
dw

id
th

540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

4,815

5,778

6,934

8,320

9,984

11,981

EA
 S

ur
pl

us

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

111

Ta
bl

e
4-

24
: C

um
ul

at
iv

e
Pu

rc
ha

se
d

B
an

dw
id

th
, R

eq
ui

re
d

B
an

dw
id

th
, a

nd
 S

ur
pl

us
 fo

r t
he

 M
IL

P
an

d
B

es
t D

B
C

P-
EA

 S
ol

ut
io

ns
 fo

r
Pr

ob
le

m
 #

72

Pr
ob

N

s

P
d

%
 e

rr
or

%

_E
rr

or

St
d.

 D
ev

.
R

an
k

72

La

rg
e

M
ed

iu
m

La
rg

e
La

rg
e

3.
83

6.

03
2.

10
1

 M
IL

P
Su

rp
lu

s
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

R
eq

ui
re

d
B

an
dw

id
th

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

M
IL

P
C

um
ul

at
iv

e
bw

s

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

M
IL

P
So

lu
tio

n
(i.

e.
,

A
ct

iv
e

C
on

tra
ct

s)

 [01, 09]

 [02, 09]

 [03, 10]

 [04, 12]

 [05, 13]

 [06, 14]

 [07, 15]

 [08, 16]

 [09, 19]

 [10, 19]

 [11, 19]

 [12, 19]

 [13, 19]

 [14, 19]

 [15, 19]

 [16, 19]

 [17, 19]

 [18, 19]

M
IL

P
bw

s

540

162

211

274

356

462

602

782

1,718

1,533

1,718

2,507

3,259

4,237

5,508

7,161

8,292

10,780

 P
er

io
d

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

EA
 b

w
s

540

162

211

274

356

462

602

782

1,556

1,322

1,718

2,233

2,903

3,775

4,906

6,379

8,292

10,780

EA
 B

es
t S

ol
ut

io
n

(i.
e.

,
A

ct
iv

e
C

on
tra

ct
s)

 [01, 09]

 [02, 19]

 [03, 19]

 [04, 19]

 [05, 19]

 [06, 19]

 [07, 19]

 [08, 19]

 [09, 19]

 [10, 19]

 [11, 19]

 [12, 19]

 [13, 19]

 [14, 19]

 [15, 19]

 [16, 19]

 [17, 19]

 [18, 19]

EA

C
um

ul
at

iv
e

bw
s

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

R
eq

ui
re

d
B

an
dw

id
th

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

EA
 S

ur
pl

us

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

112

Ta
bl

e
4-

25
: C

um
ul

at
iv

e
Pu

rc
ha

se
d

B
an

dw
id

th
, R

eq
ui

re
d

B
an

dw
id

th
, a

nd
 S

ur
pl

us
 fo

r t
he

 M
IL

P
an

d
B

es
t D

B
C

P-
EA

 S
ol

ut
io

ns
 fo

r
Pr

ob
le

m
 #

80

Pr
ob

N

s

P
d

%
 e

rr
or

%

_E
rr

or

St
d.

 D
ev

.
R

an
k

80

La

rg
e

La
rg

e
La

rg
e

M
ed

iu
m

2.
01

2.

01
0.

00
5

 M
IL

P
Su

rp
lu

s
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

R
eq

ui
re

d
B

an
dw

id
th

540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

4,815

5,778

6,934

8,320

9,984

11,981

M
IL

P
C

um
ul

at
iv

e
bw

s

540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

4,815

5,778

6,934

8,320

9,984

11,981

M
IL

P
So

lu
tio

n
(i.

e.
,

A
ct

iv
e

C
on

tra
ct

s)

 [01, 13]

 [02, 10]

 [03, 12]

 [04, 13]

 [05, 15]

 [06, 19]

 [07, 19]

 [08, 19]

 [09, 19]

 [10, 19]

 [11, 19]

 [12, 19]

 [13, 19]

 [14, 19]

 [15, 19]

 [16, 19]

 [17, 19]

 [18, 19]

M
IL

P
bw

s

540

108

130

156

186

224

269

322

387

573

557

799

1,498

963

1,342

1,386

1,664

1,997

 P
er

io
d

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

EA
 b

w
s

540

108

130

156

186

224

269

322

387

465

557

669

802

963

1,156

1,386

1,664

1,997

EA
 B

es
t S

ol
ut

io
n

(i.
e.

,
A

ct
iv

e
C

on
tra

ct
s)

 [01, 19]

 [02, 19]

 [03, 19]

 [04, 19]

 [05, 19]

 [06, 19]

 [07, 19]

 [08, 19]

 [09, 19]

 [10, 19]

 [11, 19]

 [12, 19]

 [13, 19]

 [14, 19]

 [15, 19]

 [16, 19]

 [17, 19]

 [18, 19]

EA

C
um

ul
at

iv
e

bw
s

540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

4,815

5,778

6,934

8,320

9,984

11,981

R
eq

ui
re

d
B

an
dw

id
th

540

648

778

934

1,120

1,344

1,613

1,935

2,322

2,787

3,344

4,013

4,815

5,778

6,934

8,320

9,984

11,981

EA
 S

ur
pl

us

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

113

Ta
bl

e
4-

26
: C

um
ul

at
iv

e
Pu

rc
ha

se
d

B
an

dw
id

th
, R

eq
ui

re
d

B
an

dw
id

th
, a

nd
 S

ur
pl

us
 fo

r t
he

 M
IL

P
an

d
B

es
t D

B
C

P-
EA

 S
ol

ut
io

ns
 fo

r
Pr

ob
le

m
 #

81

Pr
ob

N

s

P
d

%
 e

rr
or

%

_E
rr

or

St
d.

 D
ev

.
R

an
k

81

La

rg
e

La
rg

e
La

rg
e

La
rg

e
1.

06

1.
06

0.
00

13
 M

IL
P

Su
rp

lu
s

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

R
eq

ui
re

d
B

an
dw

id
th

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

M
IL

P
C

um
ul

at
iv

e
bw

s
540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

M
IL

P
So

lu
tio

n
(i.

e.
, A

ct
iv

e
C

on
tra

ct
s)

 [01, 13]

 [02, 11]

 [03, 13]

 [04, 15]

 [05, 19]

 [06, 19]

 [07, 19]

 [08, 19]

 [09, 19]

 [10, 19]

 [11, 19]

 [12, 19]

 [13, 19]

 [14, 19]

 [15, 19]

 [16, 19]

 [17, 19]

 [18, 19]

M
IL

P
bw

s

540

162

211

274

356

462

602

782

1,016

1,322

1,880

2,233

3,654

3,775

5,180

6,379

8,292

10,780

 P
er

io
d

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

EA
 b

w
s

540

162

211

274

356

462

602

782

1,016

1,322

1,718

2,233

2,903

3,775

4,906

6,379

8,292

10,780

EA
 B

es
t S

ol
ut

io
n

(i.
e.

, A
ct

iv
e

C
on

tra
ct

s)

 [01, 19]

 [02, 19]

 [03, 19]

 [04, 19]

 [05, 19]

 [06, 19]

 [07, 19]

 [08, 19]

 [09, 19]

 [10, 19]

 [11, 19]

 [12, 19]

 [13, 19]

 [14, 19]

 [15, 19]

 [16, 19]

 [17, 19]

 [18, 19]

EA

C
um

ul
at

iv
e

bw
s

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

R
eq

ui
re

d
B

an
dw

id
th

540

702

913

1,187

1,543

2,005

2,607

3,389

4,405

5,727

7,445

9,678

12,581

16,356

21,262

27,641

35,933

46,713

EA
 S

ur
pl

us

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

 114

4.4.3 Aggregate Data Analysis for all DBCP-EA Problem Solutions

Table 4-27 shows another aggregated view for all 81 of the DBCP-EA problem

solutions. MOM_%_Error is used to denote the mean %_Error. For all two dimensional

comparisons where N a parameter, the largest errors only occur when N = Large. Longer

planning horizons are inherently more difficult to solve than smaller problems, therefore

is observation is not surprising. Comparing the MOM_%_Error with respect to N versus

s the %_Error are large only when N = Large and s = Small and Medium. With N versus

p, large errors occur when N = Large and p = Medium and Large. For N versus d, large

errors occur when N and d are both Large. With s versus p, s = Small and Medium and p

= Large produced a large error, and, with respect to s versus d, the only large error occurs

when s = Small and d = Large. For p versus d, the only large error occurs when both p

and d are Large.

The DBCP-EA appears to have trouble identifying a good solution when there is a

choice between a moderate duration discount (i.e., s = Medium) and a rapid rate of

decrease in price over time (p = Large). The DBCP-EA does not wait to purchase

bandwidth until the last possible moment where the advantage of lower prices can be

realized, but instead opts to purchase longer duration contracts. Likewise, when the

duration discount is small (s = Small) and there is a rapid increase in demand over time (d

= Large) the DBCP-EA has difficulty identifying good solutions. The DBCP-EA does

not exploit the long duration contracts when the duration discount is small, thereby

incurring higher costs when demand rapidly increases for subsequent periods in the

planning horizon. These types of erroneous decisions made early in the planning process

may not be obvious until late the planning horizon. Looking at p versus d, the only large

 115

error occurs when p and d are both Large. This is because when p = Large it is typically

prudent to wait to purchase bandwidth as late as possible in order to take advantage of

reduced costs. However, DBCP-EA’s repair function biases solutions towards long term

contracts and when d = Large, these long term contracts become even more expensive as

more bandwidth is bought for long term contracts due to large increases in demand.

Table 4-27: Two-Dimensional Analysis for Aggregate Data for N vs. s, N vs. p, N vs. d, s
vs. p, s vs. d, p vs. d
 MOM_%_Error (Std. Dev.)
 s = Small s = Medium s = Large Average

Small 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Medium 0.42 (0.17) 0.32 (0.20) 0.02 (0.03) 0.26 (0.13)N vs. s N
Large 1.53 (0.65) 1.52 (0.48) 0.53 (0.08) 1.19 (0.40)

 p = Small p = Medium p = Large Average
Small 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Medium 0.02 (0.19) 0.22 (0.08) 0.52 (0.30) 0.26 (0.13)N vs. p N
Large 0.14 (0.13) 1.48 (0.27) 1.95 (0.80) 1.19 (0.40)

 d = Small d = Medium d = Large Average
Small 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Medium 0.16 (0.21) 0.27 (0.11) 0.34 (0.08) 0.26 (0.13)N vs. d N
Large 0.56 (0.38) 0.93 (0.11) 2.08 (0.72) 1.19 (0.40)

 p = Small p = Medium p = Large Average
Small 0.05 (0.07) 1.01 (0.12) 0.89 (0.63) 0.65 (0.27)
Medium 0.07 (0.06) 0.64 (0.15) 1.13 (0.46) 0.61 (0.22)s vs. p s
Large 0.05 (0.02) 0.05 (0.08) 0.45 (0.01) 0.18 (0.04)

 d = Small d = Medium d = Large Average
Small 0.20 (0.16) 0.42 (0.11) 1.34 (0.55) 0.65 (0.27)
Medium 0.33 (0.32) 0.55 (0.10) 0.97 (0.25) 0.61 (0.22)s vs. d s
Large 0.19 (0.10) 0.23 (0.01) 0.12 (0.00) 0.18 (0.04)

 d = Small d = Medium d = Large Average
Small 0.11 (0.13) 0.03 (0.01) 0.02 (0.01) 0.05 (0.05)
Medium 0.31 (0.24) 0.53 (0.06) 0.86 (0.05) 0.57 (0.12)p vs. d p
Large 0.30 (0.21) 0.63 (0.14) 1.55 (0.74) 0.82 (0.36)

Figures 4-20 through 4-22 show MOM_%_Error versus s and three values of p

for N = Small, Medium, and Large, respectively. As can be seen when N = Small (Figure

 116

4-20), the error is extremely small and there is little, if any impact of s or p on the quality

of the solution. When N = Medium (Figure 4-21), we can see that when p = Small,

MOM_%_Error is close to zero. This is because small price decreases favor solutions

with contract of long duration and DBCP-EA’s repair function biases the algorithm

towards such contracts. When p = Medium and Large, we can see that MOM_%_Error

decline as s increases. This is because large discounts overshadow the price decreases

again favoring contracts with longer duration. However, when discounts are small,

contracts of shorter duration are favored with larger price decreases. While DBCP-EA’s

second repair function considers contracts with the shortest possible period (period of

one), there is no search towards contracts of intermediate time periods. So when d is

larger it causes DBCP-EA to settle into suboptimal solutions which is shown with a

larger MOM_%_Error. A similar phenomenon is observed when N = Large (Figure 4-

22). In this case however the MOM_%_Error is much larger due to the greater

complexity of the search space when N = Large.

 117

Figure 4-20: Percent Error versus Temporal Discount (s) for N = Small and Three Values
of Price Decrease Rate (p)

Figure 4-21: Percent Error versus Temporal Discount (s) for N = Medium and Three
Values of Price Decrease Rate (p)

 118

Figure 4-22: Percent Error versus Temporal Discount (s) for N = Large and Three Values
of Price Decrease Rate (p)

Figures 4-23 through 4-25 show MOM_%_Error versus s and three values of p

for N = Small, Medium, and Large, respectively. When N = Small (Figure 4-23), the

MOM_%_Error is very small and DBCP-EA finds the optimal or close to optimal

solutions for all combinations of s and d. When N = Medium (Figure 4-24) or Large

(Figure 4-25), we can see that as s increases the MOM_%_Error. When d = Large we

see that MOM_%_Error is the largest when s = Small because it is typically prudent to

wait to purchase bandwidth as late as possible in order to take advantage of reduced

costs. However, DBCP-EA’s repair function biases solutions towards long term

contracts and when d = Large, these long term contracts become even more expensive as

more bandwidth is bought for long term contracts due to large increases in demand.

 119

Figure 4-23: Percent Error versus Temporal Discount (s) for N = Small and Three Values
for Demand Increase Rate (d)

Figure 4-24: Percent Error versus Temporal Discount (s) for N = Medium with respect to
varying Demand Increase Rate (d)

 120

Figure 4-25: Percent Error versus Temporal Discount (s) for N = Large and Three Values
for Demand Increase Rate (d)

Figures 4-26 through 4-28 show MOM_%_Error versus d and three values of p

for N = Small, Medium, and Large, respectively. When N = Small (Figure 4-26), the

MOM_%_Error is very small or close to zero. When N = Medium (Figure 4-27) or

Large (Figure 4-28) we see similar behavior except when N = Large the MOM_%_Error

is much larger to due to the increased complexity in the search space. As p increases

from Small to Large, MOM_%_Error also increases. This is because as p increases, long

term contracts become more expensive and DBCP-EA which is biased towards long term

contracts due to its repair functions find more expensive solutions. It also clear that this

effect is magnified when d = Large as the long term contract have a larger quantities

making them much more expensive.

 121

Figure 4-26: Percent Error versus Demand Increase Rate (d) for N = Small and Three
Values for Price Decrease Rate (p)

Figure 4-27: Percent Error versus Demand Increase Rate (d) for N = Medium and Three
Values for Price Decrease Rate (p)

 122

Figure 4-28: Percent Error versus Demand Increase Rate (d) for N = Large and Three
Values for Price Decrease Rate (p)

4.5 Final Comments

The DBCP-EA algorithm is able to find optimal or close to optimal solutions

(>99% of optimal) for a majority of the problems (68 out of 81). Out of the 13 of the 81

problems that DBCP-EA had substandard solutions only 5 out of 13 had a solution

quality less than 98% of the optimal.

Solution quality for DBCP-EA is affected by planning horizon. The DBCP-EA

performs very well for short planning horizons. The solution quality is progressively

poorer for longer planning horizons. This is due to the fact that the search space explodes

as N increases. For example, the number of possible contracts for an N = Small periods is

21, for N = Medium the number of possible contracts is 78, and for N = Large the number

of possible contracts is 171 (see Table 2-2). This translates into countless possible

 123

combinations of contracts that can be purchased to satisfy a problem. The assertion that

the search space for larger N problems is very large is confirmed when the number of

iterations performed by CPLEX are examined. In fact, CPLEX was unable to find an

optimal integer solution for N = Very Large (i.e., 24 period) problems in a reasonable

amount of time.

DBCP-EA is also affected by the values of s , p and d. This is due to the nature of

the repair functions used. The repair function, though not intentionally designed to do so,

exhibits some influence on the quality of solutions and the diversity of the chromosomes.

There are two repair algorithms within the repair functions; however these repair

algorithms are biased. The first repair algorithm identifies the periods with deficit

bandwidth. It then identifies the most common contract, and then the deficit amount is

added into that contract. Feasibility is rechecked. If the chromosome still has periods

with deficit bandwidth amounts the procedure is repeated. The procedure repeats until

feasibility is achieved. The second repair algorithm identifies the periods with bandwidth

deficits, and then adds the deficit amount into the first contract that could be purchased in

that period (i.e., a one month contract beginning in the deficit period). This is a greedy

procedure.

When s increases from Small to Large, solutions with contracts with longer

duration will have lower cost, when p increases from Small to Large, solutions with

contracts with shorter duration will have lower costs. When these parameters oppose

each other it is difficult for the DBCP-EA to identify an optimal solution based on the

influence exhibited by the two repair algorithms within the repair function. It may be that

under this scenario mid-range duration contract purchases would be optimal. This is the

 124

kind of purchasing strategy we see in many of the optimal MILP solutions. For the

longer horizon problems, typically the beginning periods will have contracts that are

active for only a few periods. As time moves on, longer duration contracts are purchased.

This kind of behavior is not encouraged by the two repair algorithms within the repair

function. Future research could examine the inclusion of different repair algorithms

within the repair function.

CHAPTER 5 THE STOCHASTIC BANDWIDTH CONTRACT PROBLEM
EVOLUTIONARY ALGORITHM (SBCP-EA)

A major source of risk for organizations is the risk of bandwidth price and

demand fluctuations. The BCP-EA presented in Chapter 4 assumes a deterministic

demand increase rate and price decrease rate. The stochastic bandwidth contract problem

(SBCP) is a modification of the DBCP-EA which employees a simulation model with the

evolutionary algorithm that incorporates stochastic demand and price for bandwidth

purchases. Previous research has incorporated simulations within EAs to solve problems

within stochastic environments (Azadivar, and Wang, 2000; Paris, and Pierreval, 2001;

Pierreval, and Tautou, 1997). The simulation is used to generate problem instances

drawn from uniform demand and price probability distributions. A group of problem

instances are used to evolve and evaluate solutions during the run of the SBCP-EA.

Another group of problem instances are used to re-evaluate these same solutions. The

objective is to identify solutions that perform well under a wide range of problem

instances; such solutions are said to be robust.

5.1 The DBCP-EA versus the SBCP-EA

The DBCP-EA, discussed in Chapter 4, was modified in two ways for the SBCP-

EA. The first modification to the DBCP-EA was to the termination condition. The

SBCP-EA termination condition has been simplified from that used in the DBCP-EA,

which had more than one termination criterion. For the SBCP-EA the maximum number

126

of generations was set to 500. This value was selected based on the results of preliminary

tests. The purpose of restricting the number of generations is to limit the computational

time of the SBCP-EA while still maintaining good results.

The second modification to the DBCP-EA was to the representation of the price

and demand parameters. In the SBCP-EA the rate of change in price and demand are

probabilistic. Therefore the stochastic parameters are the probabilities of a change in

price (Δp) and a change in demand (Δd). Both Δp and Δd have three settings: Large,

Medium, and Small. The uniform distribution where the probability of a Large change is

drawn randomly from a uniform probability distribution ranging from 0.05 to 0.15. The

Medium probability distribution range is from 0.07 to 0.13, and the Small probability

distribution range is from 0.09 to 0.11. All three probability distribution ranges have an

expected value of 0.1, which allows the effects of the different spreads of the range of

values to be compared. Since all three ranges have the same expected value we are on

average using the deterministic problem where p = 0.1 and d = 0.1 with a stochastic

component added.

The two remaining parameters are temporal discount (s) and planning horizon

(N). Table 5-1 show the four parameters and the three measures for each which are

designated as Small, Medium, and Large. These designations are used throughout the

remainder of this chapter. The Pop_Size remains constant at 40 chromosomes throughout

the run of the SBCP-EA.

127

Table 5-1: Size Designations for the Three Values for each of the Four Parameters: N, s,
Δd, and Δp

Parameters Small Medium Large
N 6 12 18
s 1 2 3
Δp 0.09-0.11 0.07-0.13 0.05-0.15
Δd 0.09-0.11 0.07-0.13 0.05-0.15

5.2 The Three Parts of the SBCP-EA

Unlike the DBCP-EA, the SBCP-EA has three parts: (1) the training phase, (2)

the testing phase to re-evaluate solutions, and (3) testing for robustness. Within the

following sections variable labels are used in an effort to simplify the discussion.

Variable labels are italicized, and after each label a brief description is given.

5.2.1 The SBCP-EA Training Phase

The training phase of the SBCP-EA is the only time that the stochastic EA (SEA)

is run. During the run of the SEA solutions are evolved and evaluated based on a

randomly generated set of price and demand instances for each problem.

IN: The number of price-demand instances used to evaluate the fitness value of a

solution. IN values of 100 and 500 were used. IN of 100 indicates that

there are 100 instances of price and 100 instances of demand for each

period within the planning horizon for a problem. A single instance

contains price and demand entries for each period in a problem’s planning

horizon.

Price-Demand_Array: An array of length N and width of (2 * IN) (IN price and

IN demand instances). The total number of price entries recorded within a

Price-Demand_Array would also be (N * IN), and the total number of

demand entries would be (N * IN). There are two different Price-

128

Demand_Arrays: Price-Demand_Array_1 and Price-Demand_Array_2,

both have the same IN. For each problem, Price-Demand_Array_1 is used

in the training phase, and Price-Demand_Array_2 is in the testing phase.

Training_Chromosomes: A two dimensional array populated at the end of the

training phase with the 20 best chromosomes found during the training

phase for each problem.

Training_fv: A one dimensional array of length 81 which contains the average fv

of the 20 chromosomes in the Training_Chromosomes array calculated for

each problem.

5.2.1.1 The Stochastic Parameters: Price and Demand

For the sake of brevity only the price parameter will be discussed. The demand

variables can be identified by replacing ‘Demand’ wherever ‘Price’ is found in the

following discussion.

Prob_Price_Change: The cumulative probability from period to period that price

will decrease.

Price_Delta: A randomly generated number indicating a price decrease rate from

one period to the next. This number is recorded within one of the Price-

Demand_Arrays.

The two stochastic parameters price (Δp) and demand (Δd) are procedurally

virtually identically. The only difference between them is the direction of change.

Price_Delta is the percentage reduction in price, while Demand_Delta is the percentage

increase in price.

129

5.2.1.2 The Creation of the Price-Demand_Arrays

The two Price-Demand_Arrays are created before the SEA is run, and are created

with respect to a problem’s price and demand distribution ranges, as well as the length of

the planning horizon as shown in Table 5-2. For example, if N = Small and Δp = Large,

then the price instance part of a price-demand instance in Price-Demand_Array_1 for

SEA1 would contain a price entry for all 6 periods generated based on a uniform

distribution within the range of 0.05 to 0.15 if a change in price is selected, else a “1” is

recorded if a change in price is not selected. For either of the two Price-Demand_Arrays

the total number of entries is equal to the number of Price_Delta values plus the number

of “1”s. Therefore, for SEA1 when IN = 100 there will be (N * 100) price entries,

whereas for SEA2 when IN = 500 there will be (N * 500) price entries.

130

Table 5-2: Parameter Settings for each of the 81 Stochastic Problems
N s Δp Δd # N s Δp Δd # N s Δp Δd
1 Sm Sm Sm Sm 28 Md Sm Sm Sm 55 Lg Sm Sm Sm
2 Sm Sm Sm Md 29 Md Sm Sm Md 56 Lg Sm Sm Md
3 Sm Sm Sm Lg 30 Md Sm Sm Lg 57 Lg Sm Sm Lg
4 Sm Sm Md Sm 31 Md Sm Md Sm 58 Lg Sm Md Sm
5 Sm Sm Md Md 32 Md Sm Md Md 59 Lg Sm Md Md
6 Sm Sm Md Lg 33 Md Sm Md Lg 60 Lg Sm Md Lg
7 Sm Sm Lg Sm 34 Md Sm Lg Sm 61 Lg Sm Lg Sm
8 Sm Sm Lg Md 35 Md Sm Lg Md 62 Lg Sm Lg Md
9 Sm Sm Lg Lg 36 Md Sm Lg Lg 63 Lg Sm Lg Lg

10 Sm Md Sm Sm 37 Md Md Sm Sm 64 Lg Md Sm Sm
11 Sm Md Sm Md 38 Md Md Sm Md 65 Lg Md Sm Md
12 Sm Md Sm Lg 39 Md Md Sm Lg 66 Lg Md Sm Lg
13 Sm Md Md Sm 40 Md Md Md Sm 67 Lg Md Md Sm
14 Sm Md Md Md 41 Md Md Md Md 68 Lg Md Md Md
15 Sm Md Md Lg 42 Md Md Md Lg 69 Lg Md Md Lg
16 Sm Md Lg Sm 43 Md Md Lg Sm 70 Lg Md Lg Sm
17 Sm Md Lg Md 44 Md Md Lg Md 71 Lg Md Lg Md
18 Sm Md Lg Lg 45 Md Md Lg Lg 72 Lg Md Lg Lg
19 Sm Lg Sm Sm 46 Md Lg Sm Sm 73 Lg Lg Sm Sm
20 Sm Lg Sm Md 47 Md Lg Sm Md 74 Lg Lg Sm Md
21 Sm Lg Sm Lg 48 Md Lg Sm Lg 75 Lg Lg Sm Lg
22 Sm Lg Md Sm 49 Md Lg Md Sm 76 Lg Lg Md Sm
23 Sm Lg Md Md 50 Md Lg Md Md 77 Lg Lg Md Md
24 Sm Lg Md Lg 51 Md Lg Md Lg 78 Lg Lg Md Lg
25 Sm Lg Lg Sm 52 Md Lg Lg Sm 79 Lg Lg Lg Sm
26 Sm Lg Lg Md 53 Md Lg Lg Md 80 Lg Lg Lg Md
27 Sm Lg Lg Lg 54 Md Lg Lg Lg 81 Lg Lg Lg Lg

5.2.1.3 Generation of Price Entries into the Price-Demand_Arrays

There are two steps to generating the price entries for each period within each

instance. The procedure is as follows: (1) Determine if a price decrease should occur in

the next period. (2a) If yes, how much should price decrease. (2b) Else, the price for the

next period will remain the same as the previous.

131

The first step requires a randomly generated number (Rand) between 0 and 1 to

determine if a change should occur. Rand is compared to Prob_Price_Change, a cutoff

variable initially set to 0.50. The second step is to record a price entry within a Price-

Demand_Array. If Rand ≤ Prob_Price_Change, then a Price_Delta value will be

randomly generated based on a uniform distribution from the Δp distribution range

specified for that problem. These ranges are shown in Table 5.1. If Rand >

Prob_Price_Change then the price remains unchanged from the previous period, a price

entry of “1” is recorded for that period within that instance, and Prob_Price_Change is

increased by 0.05., thereby providing a slightly higher probability that a price change will

occur in the next period. Table 5-3 shows an example of how one price instance might be

calculated for a problem with 6 periods (i.e., N = Small), where Δp = Large.

Table 5-3: Example for Calculating One Instance of Price Data for Problem 9: N = Small
where Δp = Large
*Period 1 always contains “1” which means that the initial price is the same for all
instances

Pe
ri

od
 N

um
be

r

In
st

an
ce

 #
1

 R
an

d
(a

 ra
nd

om
ly

ge

ne
ra

te
d

nu
m

be
r

be
tw

ee
n

0
an

d
1)

Pr
ob

_P
ri

ce
_C

ha
ng

e

R
an

d
≤

Pr
ob

_P
ri

ce
_C

ha
ng

e

Pr
ic

e_
D

el
ta

1 1* N/A N/A N/A N/A
2 1 0.83 0.50 False (No Change) N/A
3 0.092 0.25 0.55 True 0.092
4 0.112 0.39 0.55 True 0.112
5 0.136 0.11 0.55 True 0.136
6 0.085 0.52 0.55 True 0.085

132

When populating a Price-Demand_Array the cells in the first row of all instances

contain a price entry of 1, or 100%. Therefore, the first period for all instances has a

price change value of ‘1,’ indicating that the same initial price is used for all instances,

for all problems. The cell in the first column (i.e., the first instance) and the second row

represents the price entry for the second period in the first instance. This cell will contain

a Price_Delta value drawn from the distribution range for Δp if a change has been

selected, else a price entry of “1” is recorded. For each period with in each instance a

price entry is recorded. This price entry is be multiplied by the actual price value used

within the SEA to make purchasing decisions for a given period, and gives the actual

price value to be used to make purchasing decisions for the next period. Table 5-4 shows

an example of 8 price-demand instances that could be found in either of the Price-

Demand_Arrays for a problem 9 which has 6 periods.

Table 5-4: Example of Price and Demand Entries for Problem 9: N = Small, s = Small,
Δp = Large, and Δd = Large
 Price-Demand Instances
N 1 2 3 4 5 6 7 8

Pr
ic

e

D
em

an
d

Pr
ic

e

D
em

an
d

Pr
ic

e

D
em

an
d

Pr
ic

e

D
em

an
d

Pr
ic

e

D
em

an
d

Pr
ic

e

D
em

an
d

Pr
ic

e

D
em

an
d

Pr
ic

e

D
em

an
d

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 0.069 1 0.061 1 1 1.091 0.125 1 0.120 1 0.120 1 1 1
3 0.012 1.147 0.076 1.086 0.1181.094 1 1.131 0.1181.091 0.1151.050 0.127 1 0.0681.144
4 0.148 1 0.075 1 1 1.065 1 1.119 0.0661.055 0.108 1 0.056 1.083 0.0621.113
5 0.072 1.131 0.125 1 0.060 1 0.0621.062 0.1241.088 0.0711.070 0.141 1.122 0.1341.122
6 0.135 1.075 0.116 1.101 0.104 1 0.1431.144 0.065 1 0.143 1 0.061 1.068 0.0751.107

5.2.1.4 Procedure for Calculating the Training_fv

During the run of an SEA a population of chromosomes evolves. During this

evolutionary process the chromosomes are continuously evaluated using Price-

133

Demand_Array_1 with IN price-demand instances to obtain the chromosome’s fv. Each

chromosome’s fv is calculated IN times, once for every instance within Price-

Demand_Array_1, thereby producing IN fitness values. The average of the IN fitness

values is the fv assigned to a chromosome. For each problem, 20 best chromosomes are

recorded in the Training_Chromosomes array, and the average fv for the 20 best

chromosomes is recorded in the Training_fv array. The Training_fv array is used in part

three of the SBCP-EA, the test for robustness.

5.2.2 The SBCP-EA Testing Phase

The testing phase of the SBCP-EA takes the 20 best chromosomes identified in

the training phase for each problem and re-evaluates them using another set of price-

demand instances located in Price-Demand_Array_2. As with the training phase, the

testing phase introduces a number of variable labels to simplify the discussion. Variable

labels are italicized, and after each label a brief description is given.

NTR: The number of training runs, which is the number of times an SEA’s

solutions are re-evaluated, each time using a newly populated Price-

Demand_Array_2. The number of training runs is 5 and 1 for SEA1 and

SEA2, respectively.

Testing_fv: A two dimensional array of a length equal to NTR and width equal to

81, which contains the average fitness value of the 20 chromosomes for

each problem recorded in the Training_Chromosomes array after the

chromosomes have been re-evaluated using Price-Demand_Array_2.

The testing phase begins by creating the Price-Demand_Array_2. The 20 best

chromosomes for each problem found during the training phase are re-evaluated IN

134

times, once for each of the IN price-demand instances recorded in Price-

Demand_Array_2, and then the average fitness values for each problem is recorded in the

Testing_fv array. SEA1 and SEA2 were both run once in the training phase. However,

while SEA2 was only tested once (NTR = 1), SEA1 was tested 5 times (NTR = 5). Once

each of the 20 best chromosomes is re-evaluated using Price-Demand_Array_2 each of

the 20 chromosomes will have a new fv. The average of the 20 fv is the Testing_fv for

each problem. The Testing_fv is used in part three of the SBCP-EA, the test for

robustness.

5.2.3 The SBCP-EA Test for Robustness Phase

The test for robustness allows for a comparison between the average fitness value

using the price-demand instances recorded in Price-Demand_Array_1 and those recorded

in Price-Demand_Array_2. Those problems whose solution’s fitness values were not

very different after being evaluated using both Price-Demand_Arrays are viewed as

being robust across a variety of price-demand possibilities within a given range. More

robust solutions are more desirable than solutions that vary greatly depending on price

and demand fluctuations. As in the previous two sections variable labels have been

included in this section to simplify the discussion. Variable labels are italicized, and after

each label a brief description is given.

%_Error: The mean percent error for a problem calculated by subtracting the

Testing_fv from the Training_fv , dividing the result by the Training_fv,

and then multiplying by 100,

.100
_

__ %_Error
fvTraining

fvTestingfvTraining i.e., =×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

135

In Chapter 4 the DBCP-EA solutions were compared to the optimal solutions

identified by the MILP, however within a stochastic environment there is no optimal

solutions. In this chapter robustness is a surrogate quality measure used to evaluate each

problem’s solution. The idea is that in a stochastic environment it is best to have a

solution(s) for a given problem that will perform well over varying values of the

stochastic parameters. Therefore, when comparing the average fv produced in the

training phase with the average fv produced in the testing phase a measure of robustness

is found for each problem. Ideally, a problem’s solutions should exhibit little variation,

or error. Such solutions would be considered robust. Conversely, if the error term is

large the problem’s solutions would not be considered robust. There is no predetermined

‘good’ measure of robustness, but this procedure allows us to perform a comparison

between problem solutions for different stochastic price and demand values. A test for

robustness was run once for the 81 SEA2 problem solutions, whereas the 81 SEA1

problem solutions were tested for robustness five times, each time with a newly

populated Price-Demand_Array_2.

For all problems, the Training_fv will always be less than Testing_fv since

Price_Demand_Array_1 was used to create the 20 best solutions for each problem.

Therefore, all measures of error will be negative. For SEA2 the measure of error is

%_Error, the measures of error for SEA1 are %_Error and MOM_%_Error.

MOM_%_Error: An error term variable that holds the average %_Error for the 5

SEA1 testing runs for each of the 81 problems.

Figure 5-1 shows a flowchart for the SBCP-EA, followed by the SBCP-EA

pseudo code in Section 5.3. The source code for SBCP-EA is given in Appendix B.

136

Start

Part 1: Training Phase

Run the DBCP-EA for each problem
(Figure 4-1 shows the DBCP-EA Flowchart)

Have
all 81 problems

been run?

Record 20 best chromosomes for each problem

Part 2: Testing Phase

Calculate the average training fv across all 20 chromosomes

No

Yes

Create Price-Demand_Array_1 based on problem parameters

137

Figure 5-1: SBCP-EA Flowchart

5.3 SBCP-EA Pseudo Code

Within the pseudo-code presented below, an asterisk (i.e., *) is used to marks

those steps within the training phase which are unique to SBCP-EA. The testing phase

Have
all 81 problems

been run?

No

Yes

() 100*
 Training

 Testing - Training Error %Mean
fv

fvfv
=

Part 3: Test for Robustness Phase

Have
all 81 problems

been run?

Stop

No

Yes

Create Price-Demand_Array_2 based on problem parameters

Retrieve the 20 best chromosomes for each problem

Use new price-demand array to calculate the average fv for each chromosome

Calculate the average testing fv across all 20 chromosomes

138

and test for robustness phase in the SBCP-EA have no corresponding parts in the DBCP-

EA.

Part 1: Training Phase Pseudo Code

1. Select N.

2. Set Pop_Size = 40 chromosomes.

3. Set operator parameters: One-Point Crossover Operator Rate, Uniform Crossover
Operator Rate, and Mutation Operator Rate. Note: (0 ≤ Operator Rate ≤ 1).

4. *Set the maximum number of generations to run = 500 generations. (See Section
5.1.)

5. Set loop to run 3 times, once for each planning horizon size

a. N = Small
b. N = Medium
c. N = Large

6. *Set Training_fv = 0, Testing_fv = 0, and NTR_Count = 0.

7. Create initial population of chromosomes and place them in the
Chromosome_Array. Calculate the fv for each chromosome and place the value
in index 0 of each chromosome vector.

8. Set loop to run 3 times, once for each temporal discount scheme

a. s = 1 for Small temporal discount
b. s = 2 for Medium temporal discount
c. s = 3 for Large temporal discount

9. *Create Price-Demand_Array_1 which contains 100 price and demand
probabilities for each period.

10. Set loop to run 9 times, once for all possible price and demand combination (i.e.,
3 x 3 = 9).

a. Price decrease probability distribution ranges:
i. Δp = Small range: 0.09-0.11

ii. Δp = Medium range: 0.07-0.13
iii. Δp = Large range: 0.05-0.15

b. Demand increase probability distribution ranges:
i. Δd = Small range: 0.09-0.11

ii. Δd = Medium range: 0.07-0.13
iii. Δd = Large range: 0.05-0.15

11. Copy generation’s chromosomes from the Chromosome_Array into the
Pool_Array.

12. Initiate the one-point crossover operator. Append two offspring to the end of the
Pool_Array each time the one-point crossover operator is implemented.

139

13. Initiate the uniform crossover operator. Append two offspring to the end of the
Pool_Array each time the uniform crossover operator is implemented.

14. Initiate the mutation operator. Append one offspring to the end of the Pool_Array
each time the mutation operator is implemented.

15. Check all chromosomes in the Pool_Array for feasibility. If infeasible, then
correct using the repair function.

16. *Use the evaluation function to assign a fitness value (i.e., fv) to each
chromosome in the Pool_Array.

Modification of the DBCP-EA Evaluation Function for the SBCP-EA

a. Set Counter = 0.

b. Counter = Counter + 1.

c. For chromosome number Counter do the following:

i. Evaluate the fv 100 times using the 100 price and demand
combination data in Price-Demand_Array_1.

ii. Calculate the average fv for the 100 fv created in previous step.

iii. Record the average fv calculated in previous step into index 0 of
the chromosome.

iv. If Counter < Pop_Size, then go to step 16 b. Else, done!

17. Select the next generation’s chromosomes from the Pool_Array and copy them
into the Chromosome_Arrray.

18. *If the maximum number of generations has been reached then terminate run and
go to step 19. Else, go to step 11.

19. *Based on average fv recorded in index 0 of each chromosome select best 20
chromosomes, these chromosomes are referred to as the Training_Chromosomes.

a. Set Counter = 0.

b. Counter = Counter + 1.
c. For chromosome number Counter within the Training_Chromosomes do

the following:

i. Training_fv = Training_fv +
Training_Chromosomes[Counter][0]*.

*Within the Training_Chromosome array we select each of
the 20 chromosomes one at a time and retrieve its fitness
value which is recorded in index 0.

ii. If Counter < 20, then go back to step 19 b. Else,

20
__ fvTrainingfvTraining = . Go to step 20.

20. *Record the Training_Chromosomes into Data.txt data file.

140

21. If the problem has not run 9 times, then go to step 10. Else, go to step 22.

22. If all three values for temporal discount schemes have not been run, then go to
step 8. Else, go to step 23.

23. If all three values for temporal discount schemes have not been run, then go to
step 5. Else, go to step 24.

Part 2: Testing (Simulation) Phase Pseudo Code

24. Set Prob_Number = 1.

25. Create a new Price-Demand_Array_2 which contains 100 price and demand
probabilities for each period. Set Holder = 0.

26. Read the Training_Chromosome data for the problem indicated by Prob_Number
within the Data.txt data file.

27. Copy the Training_Chromosomes data into the Testing_Chromosomes for
Problem_Number and reevaluate the 20 chromosomes using the new Price-
Demand_Array_2 created in step 22 to calculate a new fv for the chromosome.

Modification of the DBCP-EA Evaluation Function for the SBCP-EA

a. Set Counter = 0.

b. Counter = Counter + 1.

c. For chromosome number Counter do the following:

i. Evaluate the fv 100 times using the 100 price and demand
combination data recorded in the Price-Demand_Array_2.

ii. Calculate the average fv based on the 100 fv created in previous
step.

iii. Record the average fv calculated in the previous step into index 0
of the chromosome.

iv. Testing_fv = Testing_fv + fv.

v. If Counter < 20, then go back to step 27 b. Else,

20
__ fvTestingfvTesting = . Go to step 26.

Part 3: Test for Robustness Phase Pseudo Code

28. () .100
_

__
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

fvTraining
fvTestingfvTraining%_Error

29. NTR_Count = NTR_Count + 1.

30. If SEA = SEA1 and NTR_Count < 5, then Holder = Holder + %_Error and go
to step 25. Else, if SEA = SEA2, then Holder = %_Error.

31. Record Holder value into index 0 for Prob_Number in the Testing_Chromosomes
array.

141

32. If Prob_Number < 81, then Prob_Number = Prob_Number + 1 and go back to
step 25. Else, Done!

33. Set Prob_Number = 1.

34. If SEA = SEA1, then

a. Set Holder equal to the value recorded in index 0 for Prob_Number in the
Testing_Chromosomes array.

b. Holder = Holder/5 (This gives MOM_%_Error).

c. Record Holder value into index 0 for Prob_Number in the
Testing_Chromosomes array.

d. Record Holder value (i.e., MOM_%_Error) for Prob_Number into Table
5-6.

e. If Prob_Number < 81, then Prob_Number = Prob_Number + 1 and go
back to step 34 a. Else, Prob_Number = 1.

35. If SEA = SEA2, then

a. Record Holder value (i.e., %_Error) for Prob_Number into Table 5-6.

b. If Prob_Number < 81, then Prob_Number = Prob_Number + 1 and go
back to step 35 a. Else, Prob_Number = 1.

36. Done!

5.4 SBCP-EA Results

SEA1 problem solutions were generated using an IN = 100. To test whether a

larger sample size would result in more robust solutions, SEA2 was run using an IN =

500. Since the SEA1 uses a smaller sample size, the computational time was faster than

the computational time for SEA2. For that reason SEA1 was tested 5 times, while SEA2

was tested only once. The MOM_%_Error for SEA1 is compared to the %_Error for

SEA2. Table 5-5 shows that, in the aggregate, there is very little difference in robustness

between SEA1 and SEA2 problem solutions.

A detailed breakdown of the aggregate data in Table 5-5 is shown in Table 5-6.

This table shows that 49.4% (40/81) of the time SEA1 gives a smaller error and 50.6%

(41/81) of the time SEA2 gives a smaller error. SEA1 gave a smaller error 55.6% (15/27)

of the time for N = Small problems, 40.7% (11/27) of the time for N = Medium problems,

142

and 51.9% (14/27) of the time for N = Large problems. Therefore, with respect to

planning horizon size (N) there doesn’t seem to be a great improvement in solution

robustness when SEA2 is used.

With respect to the other three parameters, SEA1 gave smaller errors 59.3%

(16/27), 55.6% (15/27), and 33.3% (9/27) of the time for s = Small, Medium, and Large

problems, respectively. Therefore, SEA2 does seem to give slightly more robust

solutions than SEA1 when temporal discounts are large. With respect to change in price

(Δp), SEA1 gave smaller errors 44.4% (12/27), 59.3% (16/27), and 44.4% (12/27) of the

time for Δp = Small, Medium, and Large problems, respectively. With respect to changes

in demand (Δd), SEA1 gave smaller errors 48.1% (13/27), 51.9% (14/27), and 48.1%

(13/27) of the time for Δd = Small, Medium, and Large problems, respectively. For Δp

and Δd there is not discernable improvement in problem solution robustness when SEA2

is run. The vast majority of the absolute difference between the errors for SEA1 and

SEA2 are well below 10%. The majority of the large (around 20%) absolute difference

between the errors occurs when N = Large. Overall, there is no apparent advantage

associated with using SEA2 over SEA1.

143

Table 5-5: Comparison of Single Parameter Percentage Errors
N MOM_%_Error %_Error Difference

Small -20.66 -20.38 -0.28
Medium -47.60 -45.88 -1.72
Large -79.90 -79.16 -0.74

s MOM_%_Error %_Error Difference
Small -47.38 -47.50 0.12
Medium -51.46 -51.38 -0.08
Large -49.32 -46.55 -2.77

Δp MOM_%_Error %_Error Difference
Small -49.35 -47.84 -1.51
Medium -47.57 -47.66 0.09
Large -51.24 -49.92 -1.32

Δd MOM_%_Error %_Error Difference
Small -48.02 -47.96 -0.06
Medium -50.38 -47.84 -2.54
Large -49.76 -49.61 -0.15

144

Ta
bl

e
5-

6:
 M

O
M

_%
_E

rr
or

 fo
r S

EA
1

an
d

%
_E

rr
or

 fo
r S

EA
2

Pr
ob

le
m

 S
ol

ut
io

ns

N

N

N

 s

 Δp

 Δd

Sm

al
l

M
ed

iu
m

La

rg
e

 s

 Δp

 Δd

Sm

al
l

M
ed

iu
m

La

rg
e

 s

 Δp

 Δd

Sm

al
l

M
ed

iu
m

La
rg

e

SE
A

1
-1

6.
00

-4

2.
84

-6

9.
11

SE
A

1
-1

9.
60

-5
4.

95

-7
9.

31
SE

A
1

-2
4.

62
-4

3.
95

-7
0.

48

Sm

SE
A

2
-1

7.
34

-3

9.
41

-7

3.
94

Sm

SE
A

2
-2

0.
04

-4
7.

95

-8
6.

68

Sm

SE
A

2
-2

1.
04

-4
3.

37
-7

0.
32

SE
A

1
-2

4.
77

-4

4.
67

-7

4.
75

SE
A

1
-1

7.
46

-4
6.

54

-8
9.

59
SE

A
1

-2
4.

55
-4

9.
86

-8
3.

70

Md

SE
A

2
-1

7.
06

-3

9.
53

-7

6.
33

Md

SE
A

2
-2

2.
15

-4
8.

65

-7
5.

82

Md

SE
A

2
-2

0.
32

-3
8.

25
-8

1.
81

SE
A

1
-2

0.
62

-4

9.
50

-7

5.
94

SE
A

1
-1

8.
31

-6
1.

85

-9
0.

59
SE

A
1

-1
9.

25
-4

1.
15

-7
8.

38

Small

Lg

SE
A

2
-1

7.
11

-4

6.
03

-7

6.
45

Small

Lg

SE
A

2
-2

1.
17

-4
7.

12

-8
6.

88

Small

Lg

SE
A

2
-2

3.
12

-5
0.

66
-8

3.
06

SE
A

1
-1

9.
67

-4

3.
20

-7

9.
09

SE
A

1
-1

9.
93

-4
4.

41

-9
1.

26
SE

A
1

-2
4.

49
-4

6.
51

-6
7.

04

Sm

SE
A

2
-1

7.
24

-4

3.
68

-8

4.
47

Sm

SE
A

2
-2

0.
99

-5
0.

19

-8
2.

75

Sm

SE
A

2
-2

1.
34

-4
4.

04
-6

3.
35

SE
A

1
-1

8.
38

-4

1.
78

-7

5.
03

SE
A

1
-1

8.
62

-4
5.

44

-7
7.

53
SE

A
1

-1
9.

46
-4

5.
03

-7
1.

04

Md

SE
A

2
-2

0.
66

-4

8.
08

-7

5.
85

Md

SE
A

2
-2

2.
70

-4
3.

34

-8
1.

20

Md

SE
A

2
-2

0.
83

-4
5.

55
-5

5.
69

SE
A

1
-1

5.
55

-4

3.
95

-7

9.
76

SE
A

1
-2

2.
40

-4
2.

61

-8
3.

21
SE

A
1

-2
1.

00
-4

3.
54

-8
4.

51

Medium

Lg

SE
A

2
-1

7.
59

-4

5.
59

-7

9.
20

Medium

Lg
SE

A
2

-2
0.

27
-4

9.
38

-9

2.
01

Medium

Lg

SE
A

2
-2

2.
24

-4
2.

20
-7

6.
48

SE
A

1
-1

8.
46

-4

9.
47

-7

8.
78

SE
A

1
-2

0.
51

-5
7.

43

-7
7.

54
SE

A
1

-1
8.

54
-6

0.
21

-5
9.

13

Sm

SE
A

2
-1

8.
31

-4

2.
80

-8

1.
30

Sm

SE
A

2
-2

1.
46

-4
9.

90

-8
4.

79

Sm

SE
A

2
-2

3.
28

-4
4.

27
-8

0.
79

SE
A

1
-2

5.
58

-3

3.
15

-9

1.
55

SE
A

1
-2

2.
60

-4
8.

55

-1
00

.6
0

SE
A

1
-2

1.
28

-5
4.

51
-9

4.
29

Md

SE
A

2
-1

9.
37

-4

4.
91

-9

4.
50

Md

SE
A

2
-1

7.
92

-5
4.

30

-7
8.

58

Md

SE
A

2
-2

2.
33

-4
6.

87
-7

9.
21

SE
A

1
-1

6.
56

-4

7.
07

-8

3.
90

SE
A

1
-2

3.
52

-4
9.

84

-6
5.

23
SE

A
1

-2
6.

03
-5

3.
20

-8
5.

98

Small

Large

Lg

SE
A

2
-1

8.
08

-4

8.
07

-7

9.
58

Medium

Large

Lg

SE
A

2
-2

1.
79

-4
6.

14

-9
2.

99

Large

Large

Lg

SE
A

2
-2

4.
64

-4
8.

47
-6

3.
26

145

Table 5-7 shows that SEA2 has a much longer computational time than SEA1,

especially as the planning horizon increases.

Table 5-7: Average Training Computational Time (minutes)

N
SEA1

(IN = 100)
SEA2

(IN = 500)
Difference

SEA2-SEA1
Small (per problems) 1 5 4
Medium (per problems) 7 17 10
Large (per problems) 20 85 65

From the data in Tables 5-5, 5-6 and 5-7 it was determined that it was not

necessary to run the SEA2 more than once. Since the SEA2 error terms were close to

those of SEA1, and the average SEA2 computational time is 3.8 times longer on average

than that for SEA1, there is no advantage to training and testing problem solutions when

IN is increased from 100 to 500. Since there is only a slight difference between the SEA1

and SEA2 problem solutions, only SEA1 results will be discussed in the remainder of this

section. Future research, perhaps using a faster algorithm, could examine the impact of

using an even larger IN (e.g., greater than 1,000) in an effort to improve problem solution

robustness.

Table 5-8 shows MOM_%_Error for all 81 problem solutions from SEA1.

Clearly as N increases from Small to Large, the MOM_%_Error also increases from an

average of 20.66% for N = Small, to 47.2% for N = Medium, and 79.2% for N = Large.

This increase in the error is expected since as the planning horizon gets longer the

number of possible contracts increases very quickly, thereby greatly increasing the search

space and making solutions more sensitive to fluctuations in price and demand. For this

reason, practitioners should not attempt to produce solutions for long period horizons,

especially in a stochastic environment.

146

Table 5-8: MOM_%_Error for SEA1
 N

s
Probability of
Δp Range

Probability of
Δd Range Small Medium Large

Small -16.00 -42.84 -69.11
Medium -24.77 -44.67 -74.75Small
Large -20.62 -49.50 -75.94
Small -19.67 -43.20 -79.09
Medium -18.38 -41.78 -75.03Medium
Large -15.55 -43.95 -79.76
Small -18.46 -49.47 -78.78
Medium -25.58 -33.15 -91.55

Small

Large
Large -16.56 -47.07 -83.90
Small -19.60 -54.95 -79.31
Medium -17.46 -46.54 -89.59Small
Large -18.31 -61.85 -90.59
Small -19.93 -44.41 -91.26
Medium -18.62 -45.44 -77.53Medium
Large -22.40 -42.61 -83.21
Small -20.51 -57.43 -77.54
Medium -22.60 -48.55 -100.60

Medium

Large
Large -23.52 -49.84 -65.23
Small -24.62 -43.95 -70.48
Medium -24.55 -49.86 -83.70Small
Large -19.25 -41.15 -78.38
Small -24.49 -46.51 -67.04
Medium -19.46 -45.03 -71.04Medium
Large -21.00 -43.54 -84.51
Small -18.54 -60.21 -59.13
Medium -21.28 -54.51 -94.29

Large

Large
Large -26.03 -53.20 -85.98

Given that the effect of N is very large, it is not possible to see any effects from s,

Δp, or Δd without controlling for the effect of N. These three parameters, with respect to

N = Small, Medium, and Large, will be analyzed separately.

When N = Small, only s has any effect on MOM_%_Error. Figure 5-2 shows that

when N = Small and s = Large the MOM_%_Error increases. This is due to the fact that

when s = Large the large discounts cause the SEA to select the most common contracts

147

which results in a commitment to longer period contracts. This strategy is advantageous

when price is relatively stable. However when price is decreasing rapidly the cost per

Mbps afforded from the temporal discounts associated with longer contracts may be

higher than the cost per Mbps when price is decreased later in the planning horizon.

Therefore, since s = Large problems encourage the purchase of the most common

contracts these problems are most sensitive to stochastic fluctuations in price and

demand. When all demand is being satisfied by a few common contracts, any stochastic

fluctuations in demand could result in deficits in each period. This may force the SEA to

buy expensive single period contracts, i.e., spot contracts from the market (Cheliotis, G.

2000). These single period contracts are also sensitive to stochastic price fluctuations,

which makes these solutions less robust.

It was expected that MOM_%_Errors would increase as Δp and Δd increased

from Small to Large. However there was no indication that this was true. The search

space for N = Small is smaller than for N = Medium, and much smaller than for N =

Large. Therefore Δp and Δd do not effect the quality of the solution as expected when N

= Small.

148

-22.50%

-22.00%

-21.50%

-21.00%

-20.50%

-20.00%

-19.50%

-19.00%
Small Medium Large

s

Pe
rc

en
t E

rr
or

Figure 5-2: Effect of s on MOM_%_Error where N = Small

When N = Medium, s, Δp, and Δd all have an effect on MOM_%_Error. Figure

5-3 shows the impact of s on MOM_%_Error when N = Medium. For N = Medium,

when s = Small the solutions were much more robust than when s = Medium or Large.

Solutions for where s = Medium and s = Large are very similar with respect to

robustness. Interestingly, this is different from what is shown in Figure 5-2 where N =

Small. In that figure s = Large is very different from s = Small and Medium. This is

because as the N increases from Small to Medium the search space gets larger, and the

overall error terms also become larger. As the search space increases from Small to

Medium, both s = Medium and Large problem solutions are less robust than s = Small

problem solutions, whereas s = Large problem solutions have the most variability for N =

Small problems.

149

-50.00%

-49.00%

-48.00%

-47.00%

-46.00%

-45.00%

-44.00%

-43.00%
Small Medium Large

s

Pe
rc

en
t E

rr
or

Figure 5-3: Effect of s on MOM_%_Error where N = Medium

Figure 5-4 shows the impact of Δp and Δd on MOM_%_Error when N = Medium.

Across all three parameter settings for Δd the MOM_%_Errors when Δp = Small and

Medium are very similar. However, the solutions become noticeably less robust when Δd

= Small and Δp = Large. Common contracts produce greater penalty as Δp gets larger.

However when Δd increases, single period contracts are needed to cover deficits, this

reduces the penalty produced by large price fluctuations.

150

-58.00%

-55.00%

-52.00%

-49.00%

-46.00%

-43.00%

-40.00%
Small Medium Large

d_range

Pe
rc

en
t E

rr
or

p_range=Small p_range=Medium p_range=Large

Figure 5-4: Effect of Δp and Δd on MOM_%_Error where N = Medium

Figure 5-5 shows the impact of s and Δd on MOM_%_Error when N = Large.

When N = Large, s and Δd have an interaction, and Δp has no effect on MOM_%_Error.

When Δd = Small and s = Large the MOM_%_Errors are much smaller than for the other

parameter settings of Δd and s. This is because when s = Large the solutions have more

common contracts and with small fluctuations in demand any deficits are also small.

Therefore the resulting cost from any necessary single period contracts purchased is

negligible, resulting in more robust problem solutions.

151

-95.00%

-90.00%

-85.00%

-80.00%

-75.00%

-70.00%

-65.00%

-60.00%
Small Medium Large

s

Pe
rc

en
t E

rr
or

d_range=Small d_range=Medium d_range=Large

Figure 5-5: Effect of s and Δd on MOM_%_Error where N = Large

5.5 Conclusions

This chapter developed and tested an algorithm for solving the BCP in a

stochastic environment. While it is not possible to compare the result from the SEA to an

optimal solution, we have defined a measure of robustness for a problem solution.

Robustness is measured by comparing the solutions from running the SEA on one set of

price-demand instances (training) and then re-evaluating the problem solutions with

another set of price-demand instances (testing) drawn from the same population. A

robust solution should show little variation between the training and testing fitness

values. The error measure which acts as a surrogate for robustness is MOM_%_Error,

which is the average percentage difference between the training and testing fitness

values.

The effect on problem solution robustness was also tested by increasing the

number of price-demand instances from 100 to 500. There was no discernable

improvement in problem solution robustness.

152

The results presented in this chapter show that as the planning horizon gets longer

problem solution robustness decreases. This is due to the fact that the search space gets

very larger quickly as the planning horizon increases. It was shown that there is some

effect on the robustness of some problem solutions related to temporal discounts (s), and

changes in price (Δp) and demand (Δd).

Future research could explore the impact of other demand distributions on the

robustness of problem solutions. A more efficient EA could also aid in exploring the

impact of wider ranges for price and demand distributions. Increasing the number of

price-demand instances to a much larger number (e.g., 1000) might improve the

robustness of problem solutions as well. However, with the advent of improved

computational power or the development of a faster evolutionary algorithm this option

might also be an avenue for future research.

CHAPTER 6 CONCLUSIONS, COMMENTS, INSIGHTS, AND FUTURE
RESEARCH

In today’s highly competitive environment companies need to be effective and

efficient. Virtually all companies use electronic data and require a medium by which to

transfer that data from one location to another. In order to accomplish this task

companies need to purchase bandwidth, a medium for electronic transmission of data,

provided by a third party. The cost of a bandwidth contract is dependent on the amount

of bandwidth purchased (size) and the duration of the contract (length). In addition, there

are often temporal discounts where the cost per unit gets considerably smaller as the

duration of a contract increases.

Bandwidth purchasing is an area where companies can reduce costs of a required

service. Even for small problems sizes, say a planning horizon of 6 months, the search

space for possible solutions (purchasing strategies) represents a complex combinatorial

problem. As the planning horizon length increases the solutions search space increases

very fast. This size increase is shown in Table 2-2, where, for example, the number of

contracts is 21, 78, and 171 for a 6 month, 12 month, and 18 month planning horizon,

respectively.

6.1 Summary

This dissertation solves a generalized version of the problem presented by Khouja and

Kumar (2004), developing and implementing an EA (a population based heuristic search

154

algorithm) as a means of solving the BCP. The BCP-EA allows for changes in price and

demand over time.

Chapter 1 defines bandwidth, the concept of bandwidth as a commodity, and how

bandwidth contract costs are assessed with respect to the purchased amount, and contract

duration. Chapter 2 discusses the assumptions, constraints, and the derivation of the

mathematical model that represents the BCP. Chapter 2 also includes a discussion of the

data structure (i.e., the computerized representation of a problem solution) used to

represent the BCP within the EA. This data structure was used for both the DEA and

SEA and is shown in Table 2-1. The remainder of the chapter discusses the necessary

elements that make up an EA.

Chapter 3 began with a detailed description of the important characteristics of the

BCP-EA. These important characteristics include: (1) The genetic representation of a

problem which translates into the computerized representation of a chromosome, or

solution. (2) The method used to create the initial population of solutions. The quality of

the initial population can influence the quality of the final solutions, as well as the time

required to find the final solutions. Knowledge about the problem is usually considered

when devising the procedure for creating the initial population. (3) The genetic

operators, which are procedures that perturb existing solutions in order to create new

solutions, or offspring. (4) The evaluation function, which provides a means of assessing

the relative “goodness” of a given solution. (5) The selection method specifies how

solutions will be selected either for the purpose of propagation (i.e., creating new

solutions), or as a means of transferring selected solutions from one generation to the

next. (6) The generational policy, which specifies how to select a subset of solutions

155

from a larger group of available solutions, where the subset group will be used as the

population for the next iteration. (7) The terminating conditions, which specifies the

conditions that, when met, will cause the EA to stop. (8) The EA parameters refers to the

setting used within the EA such as the population size, the maximum number of

generations, the probability of mutation or crossover, etc. Parameter settings can be static

or dynamic. (9) Constraint handling techniques provide a procedure which transforming

infeasible solutions into feasible solutions.

Chapter 4 outlines the specifications for the DBCP-EA. Figure 4-1, which shows

the DBCP-EA flowchart, and the DBCP-EA pseudo code give a detailed description of

the processes within the EA, as well as the order in which these processes are completed.

Each of the unique elements of the DBCP-EA are discussed in detail. The experimental

design for testing the DBCP-EA is illustrated in Figure 4-9. The MILP mathematical

formulation is shown in Figure 4-10 and an example of an MILP output is shown in

Table 4-4. The DBCP-EA and the MILP were run for the 81 problems identified in the

experimental design. The best solution created by the DBCP-EA for each problem is

then compared to the optimal solution found by the MILP. Table 4-5 shows the results of

three example problems. For the first two example problems, with planning horizons of 6

months and 12 months, respectively, DBCP-EA performed very well when compared to

the MILP. For the example problem with an 18 months horizon the DBCP-EA did not

perform as well, with an error slightly less than 0.25%.

The computational time differential between the DBCP-EA and the MILP for the

6 month planning horizon was negligible, for the 12 month planning horizon the DBCP-

EA took longer to find a solution than the MILP, yet the time is only slightly more than 1

156

minute. At 18 month the DBCP-EA is in many instances competitive with the MILP

with respect to computational time, and sometimes better, as shown in Table 4-5. This

fact illuminates one advantage of an EA over the MILP. That is, the DBCP-EA performs

reasonably well for most problems, and it is expected that the DBCP-EA would continue

to perform well with respect to solution quality and computational time for planning

horizons longer than those tested. In fact, as the planning horizon gets longer the DBCP-

EA may provide good solutions much faster than the MILP.

For 68 out of the 81 problems (84%) the error was less than 1%. The other

thirteen problems had an average percentage error greater than 1%. Table 4-12 shows the

DBCP-EA errors for the 5 runs for each of the thirteen problems. For many of the

thirteen problems, there were no assignable common reasons for the occurrence of large

percent errors (i.e., greater than 1%). However, when comparing the DBCP-EA results

for the thirteen problems with the optimal solutions identified by the MILP, it was clear

that the propensity of the repair function to assign deficit bandwidth amounts to the most

common contracts (i.e., the longest duration contract available for purchase in a period)

to transform infeasible solutions into feasible solutions causes suboptimal solutions.

In an effort to expand our knowledge of the effect of the parameters (N, s, p, and

d) on the quality of the DBCP-EA solutions, results were examined in the aggregate. The

planning horizon parameter is the greatest determinant of solution quality. As the

planning horizon increases the solution quality deteriorates. This is undoubtedly due to

the fact that as the planning horizon increases the solutions search space becomes

dramatically larger. Since the DBCP-EA is essentially a directed random search of a

157

solution’s search space, as the search space becomes increasingly larger, it becomes more

difficult for the DBCP-EA to stumble upon an optimal solution.

It might be intuitive to think that the best strategy is to purchase the longest

available contracts during any period, thereby acquiring the lowest per unit price, which

will affect as many subsequent periods as possible. In some situations this is a viable

option, however this dissertation has shown that in many cases in order to arrive at the

lowest cost purchasing strategy purchasing the longest available contract will not provide

an optimal solution. This is especially noticeable when price is declining rapidly over

time. In this case, the cost savings associated with temporal discounts (i.e., a reduced per

unit cost when longer duration contracts are purchased) may turn out to be more costly

than if the necessary bandwidth had been purchased as late as possible in the planning

horizon when the price of bandwidth has been greatly reduced. The added cost

associated with bandwidth surpluses (i.e., unnecessary, wasted bandwidth capacity) and

bandwidth deficits (i.e., shortages in required bandwidth) also need to be factored into the

purchasing decision.

While surpluses incur added cost, in some cases a surplus in early periods can be

part of the lowest purchasing strategy. This is because by purchasing more bandwidth

than is required in a given period(s) the cost per unit due to temporal discounts could be

less than the per unit cost applied to smaller bandwidth size contracts purchased later in

the planning horizon, even when price is decreasing with time. An example of this

phenomenon is illustrated in Table 4-28 where the optimal solution contains a surplus in

the first period. On the other hand, deficits are strictly not allowed. When a deficit

arises, the repair function either adds the amount to the most common contract (possibly

158

creating surpluses in other time periods) or the least common contract (the shortest

commitment, yet most expensive option). The cheaper of the two options is chosen. This

repair function works well with most problems (68 out of 81) but in a few problems, it

produced solutions with a 1% or greater error. An increase in percentage error is

especially likely to occur when the optimal solution stipulates the purchase of mid-range

contracts (i.e., contracts that are neither the most common nor the least common in a

period).

In Chapter 5 the EA is modified to incorporate stochastic changes in the price and

demand. A uniform distribution with three difference ranges was used to generate

instances of price and demand. Purchasing strategies in a stochastic environment needs

to be resilient, providing good solutions regardless of stochastic changes in price and

demand. Therefore, a good problem solution, i.e., robust, would consistently perform

well over different distribution ranges for price and demand.

For each problem, a probability distribution range is chosen for price and demand,

along with other parameter settings. The price and demand probability distribution

ranges used by the SEA is given in Table 5-1. The SEA uses a two-dimensional array,

Price-Demand_Array_1, of width 200 (100 price instances and 100 demand instances)

and of a length equal to the planning horizon for that problem. The SEA is run in the

training phase of the SBCP-EA. At the end of the training phase the 20 best solutions for

each problem are recorded and the 20 fitness values are averaged together to obtain an

overall solution fitness value, referred to as the Training_fv. Following the training phase

a new two-dimensional array, Price-Demand_Array_2, is populated with a new set of

100 price-demand instances. The 20 best solutions for each problem are then re-

159

evaluated using the Price-Demand_Array_2 during the testing phase. At the end of the

testing phase the fitness values of 20 best solutions for each problem are averaged

together to obtain an overall problem solution fitness value, referred to as the Testing_fv.

The average percent difference between the Training_fv and the Testing_fv for each

problem represents a solution’s measure of robustness. This is called the testing for

robustness phase of the SEA. A detailed discussion of the three phases of the SEA can be

found in Section 5.2. Figure 5.1 shows the flowchart of the SEA process, and the SEA

pseudo code is presented in Section 5.3.

Within the SBCP-EA the SEA was run twice. The first time, the SEA was run

using 100 price-demand instances (SEA1). The resulting 20 best solutions for each

problem were re-evaluated in the testing phase five separate times, where each time a

different Price-Demand_Array_2 was used. The robustness for each SEA1 problem

solutions showed little variation between the five runs. Table 5-8 shows that as the

planning horizon gets longer problem solution’s become less robust; that is to say, that

the percentage difference becomes larger. These are the same results found in the DBCP-

EA section where the solution quality for each problem also decreased as the planning

horizon increased.

SEA (training phase) was run a second time with 500 instances (SEA2) to see if a

larger number of price-demand instances would result in greater problem solution

robustness. The robustness for each of the problem solutions was then calculated. The

results in Table 5-6 show that there was no added benefit to running the SEA for greater

number of price-demand instances.

160

The length of the planning horizon is the only parameter that consistently and

noticeably affects the quality of the results. Shorter planning horizon solutions are much

more robust than solutions for larger planning horizons. For that reason, it is advisable

that practitioners not attempt make financial commitments based on the purchasing

strategies obtained using long planning horizon problem formulations. Future research in

this area may provide the tools and techniques that can improve upon the results obtained

in this dissertation, thereby providing more robust and accurate low cost purchasing

strategies.

6.2 Contributions

The five main contributions from this work are enumerated below.

1. Extended the original model by Khouja and Kumar (2004) by allowing

overlapping contracts and changes in price and demand over time.

2. Formulated an MILP to find optimum solutions for the BCP problem.

3. Designed and implemented an EA to find good solutions for the BCP in

deterministic and stochastic environments where there is no restriction on the

behavior of price, demand, or temporal discounts.

4. Demonstrated that the DEA performed well in a deterministic environment

producing optimal, or near optimal, solutions in most cases, especially for

short and medium planning horizons.

5. Modified the DEA to a stochastic environment and performed an exploratory

study to examine the robustness of problem solutions.

The EA is able to solve very large problems, whereas CPLEX was unable to

identify the optimal solutions in a reasonable amount of time (i.e., days) for planning

161

horizons of 24 months. These runs were terminated due to the excessive time and

computation resources that were required. We have also shown that the BCP-EA can be

used in a stochastic environment, which allows for the modeling of change in prices and

demand that is not mathematically tractable.

6.3 Future Research

As mentioned earlier, the repair function employed by the BCP-EA has been

shown to unintentionally bias infeasible solutions as they are transformed into feasible

solutions. Often the repair function adds deficit amounts for a period to the contract that

has the greatest effect of increasing bandwidth for subsequent periods in the planning

horizon (i.e., most common contracts). It is believed that since the repair function is

biased and a substantial amount of chromosomes undergo repair, the procedures used in

the repair function restrict and limit the exploration of the problem’s search space.

One pattern of good solutions that was seen in the optimal MILP solutions is that

periods at the beginning of the planning horizon often purchase mid-range contracts (i.e.,

contracts that are neither most common nor least common, but somewhere in between).

For those periods that fall within the middle and end of the planning horizon the optimal

strategy is often to purchase contracts with the longest durations possible (i.e., most

common contracts). This knowledge may be useful for future research when a new repair

function will be developed that will not negatively affect solution quality. If a new,

improved repair function can not be created, then it might be more efficient to simply

discard infeasible solutions. The ultimate goal is to reduce the overall percentage error

for the problem solutions obtained using the DBCP-EA and the SBCP-EA by

162

eliminating, or reducing, the apparent negative bias imposed by the existing repair

function.

Even though the BCP-EA was not designed with speed as a required criterion, it

was found that an added benefit of the BCP-EA was that in some cases it identified a

“good” solution faster than the MILP for 18 period planning horizon problems.

Therefore, the BCP-EA is very attractive when solving large problems. It is believed that

the existing BCP-EA could be streamlined and optimized to reduce its computational

time further so that “good” solutions can be identified in much less time.

Along with making the BCP-EA faster, it might also be advantageous to examine

the impact of a larger number of price-demand instances has on the measure of

robustness in a stochastic environment thereby potentially increasing solution robustness.

However, the number of price-demand instance that can practically be used will be

determined by available computational speed, data storage resources, and time

constraints.

In an extension of this dissertation, future research could focus on redesigning the

SBCP-EA to examine the effect of other probability distributions; for example, normal

and exponential. Another area of future research that might provide more robust

solutions for the SBCP-EA would be to alter the way that the training phase is performed.

Presently, the same 100 price-demand instance array is used to evolve and evaluate the

20 best problem solutions across all generations of the run of a problem. Future research

might incorporate a more complex procedure. For example, for each generation a new

set of 100 price-demand instances could be used to evolve and evaluate the

chromosomes. This procedure has the advantage of introducing more diversity and

163

randomness in identifying ‘good’ solutions. Another possibility would be to use a unique

100 price-demand instance for each chromosome within each generation. This procedure

has the advantage of being truly random, yet would be very computationally intensive.

164

REFERENCES

ADSL, http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213764,00.html,
04/04/04.

Azadivar, F., and Wang, J. J. 2000. Facility layout optimizaton using simulation and
genetic algorithms. International Journal of Production Research, 38(17): 4369-
4383.

Balakrishnan, A., Magnanti, T. L., and Mirchandani, P. 1998. Designing hierarchical
survivable networks. Operations Research, 46(116-136).

Balakrishnan, A., Magnanti, T. L., and Wong, R. T. 1995. A dual-ascent procedure for
large scale uncapacitated network design. Operations Research, 37: 716-740.

Bandwidth, http://compnetworking.about.com/library/glossary/bldef-
bandwidth.htm?terms=bandwidth, 04/04/04.

Bandwidth Finders, http://www.bandwidthfinders.com/, 04/04/04.

Band-X, http://www.band-x.com/en/, 04/04/04.

Borthick, S. 2001. Cheap bandwidth: How low can it go? Business Communications
Review, 31(8): 14-16.

Brown, K., and Norgaard, R. 1992. Modeling the telecommunications pricing decision.
Decision Sciences, 23(3): 673-687.

Burnetas, A., and Gilbert, S. 2001. Future capacity procurements under unknown demand
and increasing cost. Management Science, 47(7): 979-992.

Chang, S., and Gavish, B. 1995. Lower bounding procedures for multi-period
telecommunications network expansion problems. Operations Research, 43(1):
43-57.

Cheliotis, G. 2000. Bandwidth Trading in the Real World: Findings and Implications for
Commodities Brokerage. Reseach Report (+93290)Computer
Science/Mathematics, IBM Research, Zurich Research Laboratory, 8803
Ruschlikon, Switzerland.

Chen, B., Hassin, R., and Tzur, M. 2002. Allocation of bandwidth and storage. IIE
Transactions, 34(5): 501-507.

Cochi, R., Shenkar, S., Estrin, D., and Zhang, L. 1993. Pricing in computer networks:
Motivation, formulation and example. IEEE/ACM Transactions on Networking,
1: 614-627.

165

Computer King, www.thecomputerking.com, 04/04/04.

CPLEX (1995). Using the CPLEX Callable Library. Incline Village, NV: CPLEX
Optimization, Inc.

Dense Wavelength Division Multiplexing,
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213892,00.html,
04/04/04.

Econmides, N. 1996. The economics of networks. International Journal of Industrial
Organization, 16: 675-699.

Fiber Optic,
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212113,00.html,
04/04/04.

FitzGerald, J., and Dennis, A. 1999. Business Data Communications and Networking.
New York, NY: John Wiley & Sons, Inc.

Galbi, D. A. 2001. Growth in the "new economy": US bandwidth use and pricing across
the 1990s. Telecommunications Policy, 25: 139-154.

Gavish, B. 1992. Topological design of computer communication networks--the overall
design problem. European Journal of Operational Research, 58: 149-172.

Horak, R. 2000. Communications Systems and Networks (2nd ed.). New York, NY:
M&T Books.

Keon, N. J., and Anandalingam, A. 2003. Optimal Pricing for Multiple Services in
Telecommunications Networks Offering Quality of Service Guarantees. IEEE
Transactions on Networking, 11: 66-80.

Khouja, M. J., and Kumar, R. L. 2004. Acquisition of Telecommunications Bandwidth
Under Economies of Scale in Size and Duration of Contracts. Decision Sciences,
36(1): 135-158.

Laudon, K. C., and Laudon, J. P. 2003. Essentials of Management Information Systems:
Managing the Digital Firm (5th ed.). New Jersey: Prentice Hall.

Michalewicz, Z. 1996. Genetic algorithms + data structures = evolution programs (3rd
ed.). New York, NY: Springer-Verlag.

Paris, J.-L., and Pierreval, H. 2001. A distributed evolutionary simulation optimization
approach for the configuration of multiproduct kanban systems. International
Journal of Computer Integrated Manufacturing, 14(5): 421-430.

Pierreval, H., and Tautou, L. 1997. Using evolutionary algorithms and simulation for the
optimization of manufacturing systems. IIE Transactions, 29(3): 181-189.

166

Premkumar, G., and Chu, C. H. 2000. Telecommunications network design--comparison
of alternative approaches. Decision Sciences, 31(2): 483-507.

Reeves, C. R. 1997. Genetic algorithms for the operations researcher. INFORMS Journal
on Computing, 9: 231-250.

Satellite,
http://searchmobilecomputing.techtarget.com/sDefinition/0,,sid40_gci212939,00.
html, 04/04/04.

Shapiro, C., and Varian, C. 1999. Information Rules: A strategic guide to the network
economy. Boston, MA: Harvard Business School Press.

SPSS 13.0 for Windows, 2004. SPSS Inc., Chicago, Illinois 60606.

Synchronous Optical Network (SONET) Transmission,
http://www.iec.org/online/tutorials/sonet_trans/topic05.html, 04/04/04.

T1, http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213084,00.html,
04/04/04.

TeleGeography, http://www.telegeography.com/, 04/04/04.

Vose M. D., and Liepins, G. E. 1991. Punctuated equilibria in genetic search. Complex
Systems, 5: 31 44.

Williams, H. Paul 2005. Model Building in Mathematical Programming (4th ed.). New
York, NY: John Wiley & Sons Ltd., pages 144-153 (Chapter 8).

167

APPENDIX A: SOURCE CODE FOR DBCP-EA

package ea_improved;
/** imports**/
import java.util.*;
import java.lang.*;
import java.io.InputStreamReader;
import java.io.BufferedReader;
import java.io.*;
import java.lang.Math.*;

public class ea
{
 /** initialize variables **/
 int NumPeriods;
 int PopSize;
 int maxGenerations;
 double OnePointCrossoverRate;
 double UniformCrossoverRate;
 double MutationRate1;
 double MutationRate2;
 int gen;
 double[][] Chromosome;
 Random Rand_Number;
 ReadFile read;
 WriteFile write;
 double NumContracts;
 int n_scale;
 int IntNumContracts;
 double[] B = new double[3];
 String temp;
 String temp2;
 StringBuffer buff;
 StringBuffer buff2;
 double rp;
 double rd;
 double gp;
 double ad;
 double gd;
 double B1;
 double B2;
 double B3;
 double iLP_Opt;
 double[] rp_Array;
 double[] rd_Array;

168

 double[] D;
 int[] Contract_Length;
 double[] TCQ;
 double[] TCX;
 int[] Contract_Period;
 int[] NumContracts_EachPeriod;
 int feasibilityFlag = 0;
 int feasibilityFlagPool = 0;
 int indexHolder;
 double[] bestChromosome;
 double[][] Pool;
 int PoolSize;
 int counter;
 int NumOffspring;
 double Date;
 int FileNum = 0;
 int change;
 double[] Best_All_Runs;
 int Repair1;
 int Repair2;
 int RepairTie;
 int AlreadyDone = 0;

 Vector Fill_Best = new Vector();

 public ea()
 {
 this.Rand_Number = new Random();
 this.read = new ReadFile("input.txt");
 this.buff = new StringBuffer();
 this.buff2 = new StringBuffer();
 try
 {
 jbInit();
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }

 private void read_input_file()
 {
 System.out.println("DATE: " + Date);
 temp = "DATE: " + Date;
 buff.append(temp + "\r\n");

169

 System.out.println("N = " + NumPeriods + ", gp = " + gp + ", ad = " + ad +
 ", gd = " + gd + ", B1 = " + B1 + " , B2 = " + B2 +
 ", B3 = " + B3);
 temp = "N = " + NumPeriods + ", gp = " + gp + ", ad = " + ad + ", gd = " +
 gd + ", B1 = " + B1 + " , B2 = " + B2 + ", B3 = " + B3;
 buff.append(temp + "\r\n");

 NumContracts = .5 * NumPeriods * (NumPeriods + 1);
 IntNumContracts = new Double(NumContracts).intValue();

 System.out.println("Number of contracts =" + IntNumContracts +
 ", NumPeriods = " + NumPeriods);
 temp = "!Number of contracts =" + IntNumContracts;
 buff.append(temp + "\r\n");

 System.out.println("LP Optimal =" + iLP_Opt);
 temp = "LP Optimal =" + iLP_Opt;
 buff.append(temp + "\r\n");
 }

 private void fill_arrays()
 {
 double product = 1;
 int count;
 int i;
 int j;
 int index1;
 int enumerate1;
 int enumerate2;
 Contract_Period = new int[IntNumContracts];
 Contract_Length = new int[IntNumContracts];
 Pool = new double[PoolSize][IntNumContracts + 1];
 int p = new Integer(Rounding.toString(gp * 10, 0)).intValue();
 int ad_d = new Integer(Rounding.toString(ad * 1, 0)).intValue();
 int d = new Integer(Rounding.toString(gd * 10, 0)).intValue();
 rp = 1 - gp;
 rd = 1 + gd;
 rp_Array = new double[NumPeriods];
 rd_Array = new double[NumPeriods];
 D = new double[NumPeriods];
 NumContracts_EachPeriod = new int[NumPeriods];

 rp_Array[0] = 1;
 for (count = 1; count < NumPeriods; count++)
 {
 product = product * rp;

170

 rp_Array[count] = product;
 }
 product = 1;
 rd_Array[0] = 1;
 for (count = 1; count < NumPeriods; count++)
 {
 product = product * rd;
 rd_Array[count] = product;
 }
 D[0] = ad;
 for (count = 1; count < NumPeriods; count++)
 {
 D[count] = new Double(Math.ceil(ad * rd_Array[count])).intValue();
 }
 for (i = 0; i < NumPeriods; i++)
 {
 NumContracts_EachPeriod[i] = (NumPeriods - (i)) * (i + 1);
 }
 index1 = 0;
 for (enumerate1 = 0; enumerate1 <= NumPeriods; enumerate1++)
 {
 for (enumerate2 = 1; enumerate2 <= NumPeriods - enumerate1;
 enumerate2++)
 {
 Contract_Length[index1] = enumerate2;
 index1 = index1 + 1;
 }
 }
 count = 0;
 for (i = 1; i < NumPeriods + 1; i++)
 {
 for (j = 1; j < NumPeriods + 2 - i; j++)
 {
 Contract_Period[count] = i;
 count = count + 1;
 }
 }
 }

 private void initialize_chromosomes()
 {
 double prob_purchase = .5;
 double Num_Contracts = NumPeriods * .5 * (NumPeriods + 1);
 Chromosome = new double[PopSize][IntNumContracts + 1];
 int j;
 int k;

171

 double number;
 double tempz;
 double tempzz;
 double tempy;
 int number2;
 int x;
 int y;

 for (k = 0; k < PopSize; k++)
 {
 Chromosome[k][0] = 999999;
 for (j = 1; j <= IntNumContracts; j++)
 {
 number = Rand_Number.nextDouble();
 if (number <= prob_purchase)
 {
 tempz = Rand_Number.nextDouble() * 100;
 tempzz = Rand_Number.nextDouble() * 10;
 tempy = (tempz * tempzz) / 2;
 number2 = new Integer(Rounding.toString(tempy, 0)).intValue();
 Chromosome[k][j] = number2;
 }
 else
 {
 Chromosome[k][j] = 0;
 }
 }
 }
 }

 public void print_Chromosome()
 {
 int start;
 int start1;
 System.out.println("Print Pool");
 for (start = 0; start < PopSize; start++)
 {
 System.out.print(Chromosome[start][0] + " | ");
 System.out.println();
 }
 System.out.println();
 }

 public void print_Chromosome(int indexHolder)
 {
 System.out.println("Repaired Chromosome: ");

172

 for (int k5 = 0; k5 < this.IntNumContracts; k5++)
 {
 System.out.print(this.Pool[indexHolder][k5] + " | ");
 }
 System.out.println("\n");
 }

 private void initialize_chromosome_pool(int PopSize, int IntNumContracts)
 {
 int i;
 int j;
 for (i = 0; i < PopSize; i++)
 {
 for (j = 0; j < IntNumContracts + 1; j++)
 {
 Pool[i][j] = Chromosome[i][j];
 }
 }
 }

 private void OnePoint_crossover_operator()
 {
 double randNum;
 int cutPoint;
 int[] OffSpringOne = new int[IntNumContracts];
 int[] OffSpringTwo = new int[IntNumContracts];
 int[] ParentOne = new int[IntNumContracts];
 int[] ParentTwo = new int[IntNumContracts];
 int i;
 int j;
 int x;
 int z;
 int num1;
 int num2;
 Vector tabu = new Vector();
 for (int a = 0; a < PopSize; a++)
 {
 tabu.addElement(new Integer(a));
 }

 for (x = 0; x < PopSize / 2; x++)
 {
 randNum = Rand_Number.nextDouble();
 if (randNum < OnePointCrossoverRate)
 {
 randNum = Rand_Number.nextDouble();

173

 randNum = randNum * (IntNumContracts - 1) + 1;
 cutPoint = new Integer(Rounding.toString(randNum, 0)).intValue();
 cutPoint = cutPoint - 1;
 num1 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 num2 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 if (Pool[num1][0] > Pool[num2][0])
 {
 for (z = 1; z < IntNumContracts + 1; z++)
 {
 ParentOne[z - 1] = new Double(Pool[num2][z]).intValue();
 }
 }
 else
 {
 for (z = 1; z < IntNumContracts + 1; z++)
 {
 ParentOne[z - 1] = new Double(Pool[num1][z]).intValue();
 }
 }
 num1 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 num2 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 if (Pool[num1][0] > Pool[num2][0])
 {
 for (z = 1; z < IntNumContracts + 1; z++)
 {
 ParentTwo[z - 1] = new Double(Pool[num2][z]).intValue();
 }
 }
 else
 {
 for (z = 1; z < IntNumContracts + 1; z++)
 {
 ParentTwo[z - 1] = new Double(Pool[num1][z]).intValue();
 }
 }
 for (i = 0; i < cutPoint; i++)
 {
 OffSpringOne[i] = ParentOne[i];
 OffSpringTwo[i] = ParentTwo[i];
 }
 for (i = cutPoint; i < IntNumContracts; i++)
 {

174

 OffSpringOne[i] = ParentTwo[i];
 OffSpringTwo[i] = ParentOne[i];
 }
 //*****************
 for (i = 1; i < IntNumContracts + 1; i++)
 {
 Pool[counter][i] = OffSpringOne[i - 1];
 Pool[counter + 1][i] = OffSpringTwo[i - 1];
 }
 counter = counter + 2;
 NumOffspring = NumOffspring + 2;
 }
 }
 }

 private void Uniform_crossover_operator()
 {
 int i;
 int j;
 int k;
 int x;
 int z;
 double randNum;
 int decisionVariable;
 int[] scrambleArray = new int[IntNumContracts];
 int[] OffSpringOne = new int[IntNumContracts];
 int[] OffSpringTwo = new int[IntNumContracts];
 int[] ParentOne = new int[IntNumContracts];
 int[] ParentTwo = new int[IntNumContracts];
 int decision;
 int num1;
 int num2;
 Vector tabu = new Vector();

 for (int a = 0; a < PopSize; a++)
 {
 tabu.addElement(new Integer(a));
 }
 for (x = 0; x < PopSize / 2; x++)
 {
 for (i = 0; i < IntNumContracts; i++)
 {
 randNum = Rand_Number.nextDouble();
 if (randNum < UniformCrossoverRate)
 {
 scrambleArray[i] = 1;

175

 }
 else
 {
 scrambleArray[i] = 0;
 }
 }
 num1 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 num2 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 if (Pool[num1][0] > Pool[num2][0])
 {
 for (z = 1; z < IntNumContracts + 1; z++)
 {
 ParentOne[z - 1] = new Double(Pool[num2][z]).intValue();
 }
 }
 else
 {
 for (z = 1; z < IntNumContracts + 1; z++)
 {
 ParentOne[z - 1] = new Double(Pool[num1][z]).intValue();
 }
 }
 num1 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 num2 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 if (Pool[num1][0] > Pool[num2][0])
 {
 for (z = 1; z < IntNumContracts + 1; z++)
 {
 ParentTwo[z - 1] = new Double(Pool[num2][z]).intValue();
 }
 }
 else
 {
 for (z = 1; z < IntNumContracts + 1; z++)
 {
 ParentTwo[z - 1] = new Double(Pool[num1][z]).intValue();
 }
 }
 for (k = 0; k < IntNumContracts; k++)
 {
 decision = scrambleArray[k];
 if (decision == 0)

176

 {
 OffSpringOne[k] = ParentOne[k];
 OffSpringTwo[k] = ParentTwo[k];
 }
 else if (decision == 1)
 {
 OffSpringOne[k] = ParentTwo[k];
 OffSpringTwo[k] = ParentOne[k];
 }
 }
 //*****************

 for (i = 1; i < IntNumContracts + 1; i++)
 {
 Pool[counter][i] = OffSpringOne[i - 1];
 Pool[counter + 1][i] = OffSpringTwo[i - 1];
 }
 counter = counter + 2;
 NumOffspring = NumOffspring + 2;
 }
 }

 private void mutation_operator()
 {
//Mutation #2: Local Seach with Tabu List
 int x;
 int z;
 int i;
 int j;
 int k;
 double randNum;
 int decisionVariable;
 int[] scrambleArray = new int[IntNumContracts];
 int[] OffSpring = new int[IntNumContracts];
 int[] Parent = new int[IntNumContracts];
 int decision;
 int num1;
 int num2;
 int P1 = 999;
 double tempz = 0;
 double tempzz;
 int number2;
 int number3;
 Integer number4;
 int listSize;
 int redo_flag = 0;

177

 Vector list = new Vector();
 Vector tabu = new Vector();

 for (int a = 0; a < PopSize; a++)
 {
 tabu.addElement(new Integer(a));
 }
 for (x = 0; x < PopSize; x++)
 {
 for (i = 0; i < IntNumContracts; i++)
 {
 randNum = Rand_Number.nextDouble();
 if (randNum < MutationRate2)
 {
 scrambleArray[i] = 1;
 }
 else
 {
 scrambleArray[i] = 0;
 }
 }

//___

 randNum = Rand_Number.nextInt(tabu.size());
 int temp = new Double(randNum).intValue();
 num1 = ((Integer) tabu.elementAt(temp)).intValue();
 for (z = 1; z < IntNumContracts + 1; z++)
 {
 Parent[z - 1] = new Double(Pool[num1][z]).intValue();
 OffSpring[z - 1] = new Double(Pool[num1][z]).intValue();
 }
 number4 = new Integer(num1);
 list.addElement(number4);
 for (k = 0; k < IntNumContracts; k++)
 {
 decision = scrambleArray[k];
 if (decision == 0)
 {
 OffSpring[k] = Parent[k];
 }
 else if (decision == 1)
 {

 int size1;

178

 int Purchased = 0;
 double cumulativeTotal = 0;
 int index2;
 int period = 0;
 int index3;
 double Total;
 double tempy1;
 double tempy2;
 double tempy3;
 int turns;
 int numx;

 TCQ = new double[IntNumContracts];
 TCX = new double[IntNumContracts];
 for (j = 0; j < IntNumContracts; j++)
 {
 index2 = Contract_Period[j];
 if (j == k)
 {
 period = index2;
 }
 index3 = Contract_Length[j];
 size1 = OffSpring[j];
 TCQ[j] = rp_Array[index2 - 1] * ((B[0] * index3) + B[2]);
 if (size1 > 0)
 {
 Purchased = 1;
 }
 else
 {
 Purchased = 0;
 }
 TCX[j] = rp_Array[index2 - 1] * B[1] * index3;

 Total = 0;
 Total = TCQ[j] * size1 + TCX[j] * Purchased;

 cumulativeTotal = cumulativeTotal + Total;
 }

 tempy1 = cumulativeTotal;
 tempy3 = tempy1;
 tempy2 = 0;
 turns = 0;
 while (tempy2 < tempy1)
 {

179

 cumulativeTotal = 0;
 tempy1 = tempy3;
 turns = turns + 1;
 randNum = Rand_Number.nextDouble();
 randNum = randNum *
 ((D[period - 1] * Rand_Number.nextDouble() * .3) - 1) + 1;
 numx = new Integer(Rounding.toString(randNum, 0)).intValue();
 numx = numx - 1;
 randNum = Rand_Number.nextDouble();
 if (Parent[k] > 0)
 {
 if (randNum <= .8)
 {
 tempz = Parent[k] + (numx * -1);
 if (tempz < 0)
 {
 tempz = 0;
 }
 }

 number2 = new Integer(Rounding.toString(tempz, 0)).intValue();
 OffSpring[k] = number2;
 }

 TCQ = new double[IntNumContracts];
 TCX = new double[IntNumContracts];

 for (j = 0; j < IntNumContracts; j++)
 {
 index2 = Contract_Period[j];
 index3 = Contract_Length[j];
 size1 = OffSpring[j];
 TCQ[j] = rp_Array[index2 -
 1] * ((B[0] * index3) + B[2]);
 if (size1 > 0)
 {
 Purchased = 1;
 }
 else
 {
 Purchased = 0;
 }
 TCX[j] = rp_Array[index2 - 1] * B[1] * index3;

 Total = 0;
 Total = TCQ[j] * size1 + TCX[j] * Purchased;

180

 cumulativeTotal = cumulativeTotal + Total;
 }
 tempy2 = cumulativeTotal;
 tempy3 = tempy2;
 if (turns == 20)
 {
 OffSpring[k] = Parent[k];
 tempy1 = 0;
 }
 }
 turns = 0;
 }
 }
 //*****************

 for (i = 1; i < IntNumContracts + 1; i++)
 {
 Pool[counter][i] = OffSpring[i - 1];
 }
 counter = counter + 1;
 NumOffspring = NumOffspring + 1;
 }
 }

 private void mutation_operator_original()
 {
 //Mutation #1: Tabu List with decreases in randomly selected genes *Not Used
 int x;
 int z;
 int i;
 int j;
 int k;
 double randNum;
 int decisionVariable;
 int[] scrambleArray = new int[IntNumContracts];
 int[] OffSpring = new int[IntNumContracts];
 int[] Parent = new int[IntNumContracts];
 int decision;
 int num1;
 int num2;
 int P1 = 999;
 double tempz;
 double tempzz;
 double tempy;
 int number2;
 int number3;

181

 Integer number4;
 int listSize;
 int redo_flag = 0;
 int index2;
 int period = 0;

 Vector list = new Vector();
 Vector tabu = new Vector();

 for (int a = 0; a < PopSize; a++)
 {
 tabu.addElement(new Integer(a));
 }
 for (x = 0; x < PopSize; x++)
 {
 for (i = 0; i < IntNumContracts; i++)
 {
 randNum = Rand_Number.nextDouble();
 if (randNum < MutationRate1)
 {
 scrambleArray[i] = 1;
 }
 else
 {
 scrambleArray[i] = 0;
 }
 }
 //___

 randNum = Rand_Number.nextInt(tabu.size());
 int temp = new Double(randNum).intValue();
 num1 = ((Integer) tabu.elementAt(temp)).intValue();

 for (z = 1; z < IntNumContracts + 1; z++)
 {
 Parent[z - 1] = new Double(Pool[num1][z]).intValue();
 OffSpring[z - 1] = new Double(Pool[num1][z]).intValue();
 }
 number4 = new Integer(num1);
 list.addElement(number4);
 for (k = 0; k < IntNumContracts; k++)
 {
 decision = scrambleArray[k];
 if (decision == 0)
 {
 OffSpring[k] = Parent[k];

182

 }
 else if (decision == 1)
 {
 for (j = 0; j < IntNumContracts; j++)
 {
 index2 = Contract_Period[j];
 if (j == k)
 {
 period = index2;
 }
 }
 randNum = Rand_Number.nextDouble();
 tempz = randNum *
 ((D[period - 1] * Rand_Number.nextDouble() * .3) - 1) + 1;
 number2 = new Integer(Rounding.toString(tempz, 0)).intValue();
 if (Parent[k] > 0)
 {
 if (Parent[k] > number2)
 {
 OffSpring[k] = Parent[k] - number2;
 }
 else
 {
 OffSpring[k] = 0;
 }
 }
 }
 }
 for (i = 1; i < IntNumContracts + 1; i++)
 {
 Pool[counter][i] = OffSpring[i - 1];
 }
 counter = counter + 1;
 NumOffspring = NumOffspring + 1;
 }
 }

 private void select_next_generation()
 {
 int i;
 int j;
 int x;
 int y;
 double randNum;
 int number;
 int num1;

183

 int num2;
 Vector tabu = new Vector();
 Chromosome[0] = this.bestChromosome.clone();
 for (int a = 0; a < NumOffspring + PopSize; a++)
 {
 tabu.addElement(new Integer(a));
 }
 for (i = 1; i < PopSize; i++)
 {
 randNum = Rand_Number.nextDouble();
 randNum = randNum * (NumOffspring + PopSize - 1) + 1;
 number = new Integer(Rounding.toString(randNum, 0)).intValue();
 number = number - 1;
 num1 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 num2 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 if (Pool[num1][0] < Pool[num2][0])
 {
 for (j = 0; j < IntNumContracts + 1; j++)
 {
 Chromosome[i][j] = Pool[num1][j];
 }
 }
 else
 {
 for (j = 0; j < IntNumContracts + 1; j++)
 {
 Chromosome[i][j] = Pool[num2][j];
 }
 }
 }
 }

 public void print_Chromosome_pool_with_FV()
 {
 int start;
 int start1;
 System.out.println("Print Pool");
 for (start = 0; start < NumOffspring; start++)
 {
 for (start1 = 0; start1 < IntNumContracts; start1++)
 {
 System.out.print(Pool[start][start1] + " | ");
 }
 System.out.println("<-- PoolFitnessValue = " + Pool[start][0]);

184

 }
 System.out.println();
 }

 public void print_Chromosome_pool_withOUT_FV(int PopSize, int IntNumContracts)
 {
 int start;
 int start1;
 System.out.println("Print Pool");
 for (start = 0; start < NumOffspring; start++)
 {
 for (start1 = 0; start1 < IntNumContracts; start1++)
 {
 System.out.print(Pool[start][start1] + " | ");
 }
 System.out.println();
 }
 System.out.println();
 }

 private void check_feasibility_pool(int NumPeriods)
 {
 int k = 0;
 int i = 0;
 int j = 0;
 int temp1 = 0;
 int temp3 = 0;
 int offset;
 int index;
 int y;
 int[] Copy = new int[IntNumContracts];

 for (i = 1; i < IntNumContracts + 1; i++)
 {
 Copy[i - 1] = new Double(Pool[indexHolder][i]).intValue();
 }
 feasibilityFlagPool = 0;
 for (k = 1; k <= NumPeriods; k++)
 {
 offset = k - 1;
 index = offset;
 for (i = NumPeriods - k; i < NumPeriods; i++)
 {
 for (j = 1; j <= NumPeriods - k + 1; j++)
 {
 index = index + 1;

185

 temp1 = Copy[index - 1];
 temp3 = temp3 + temp1;
 }
 offset = offset - 1;
 index = index + offset;
 }
 if (D[k - 1] > temp3)
 {
 feasibilityFlagPool = 1;
 }
 temp3 = 0;
 }
 }

 private void repair_function_pool(int NumPeriods)
 {
 NumContracts = .5 * NumPeriods * (NumPeriods + 1);
 IntNumContracts = new Double(NumContracts).intValue();

 int k = 0;
 int i = 0;
 int j = 0;
 int temp1 = 0;
 int temp3 = 0;
 int index = 0;
 double difference = 0;
 int sizeDifference = 0;
 double[] OffSpring1 = new double[IntNumContracts + 1];
 double[] OffSpring2 = new double[IntNumContracts + 1];
 double[][] DeficitArray = new double[NumPeriods][IntNumContracts + 1];
 int[] CommonContracts = new int[IntNumContracts + 1];
 int countPeriod3 = 0;
 int k5;
 int k6;
 int holder = 0;
 int holderB = 0;
 int maxNum;
 int ConCount;
 int maxNumIndex = 0;
 double deficitAmount;
 int turns = 0;
 int numDeficit = IntNumContracts;
 int requiredRepair = 0;
 turns = 0;
 numDeficit = NumPeriods + 1;
 temp3 = 0;

186

 index = 0;
 temp1 = 0;
 difference = 0;
 sizeDifference = 0;
 countPeriod3 = 0;
 holder = 0;
 ConCount = 0;
 maxNum = 0;
 maxNum = 0;
 maxNumIndex = 0;
 deficitAmount = 0;
 holderB = 0;
 int period = 0;
 int offset_x = 0;
 int[] Copy1 = new int[IntNumContracts + 1];
 int[] Copy2 = new int[IntNumContracts + 1];
 int[] Best2 = new int[IntNumContracts + 1];

 for (i = 0; i < IntNumContracts + 1; i++)
 {
 Copy1[i] = new Double(Pool[indexHolder][i]).intValue();
 }
 requiredRepair = 0;
 while (numDeficit > 0)
 {
 requiredRepair = 0;
 numDeficit = 0;
 turns = turns + 1;
 DeficitArray = new double[NumPeriods][IntNumContracts + 1];
 CommonContracts = new int[IntNumContracts + 1];

 for (i = 0; i < IntNumContracts; i++)
 {
 CommonContracts[i] = 0;
 }

 //--------------
 // This code finds the deficit amount for each period
 //--------------

 for (k = 1; k <= NumPeriods; k++)
 {
 temp3 = 0;
 if (k == 1)
 {
 index = k - 1;

187

 for (j = 1; j <= NumPeriods; j++)
 {
 index = index + 1;
 temp1 = 0;
 temp1 = Copy1[index];
 temp3 = temp3 + temp1;
 }
 }
 if (k > 1)
 {
 index = k - 1;
 offset_x = k - 2;
 for (i = 1; i <= k; i++)
 {
 for (j = k; j <= NumPeriods; j++)
 {
 index = index + 1;
 temp1 = 0;
 temp1 = Copy1[index];
 temp3 = temp3 + temp1;
 }
 index = index + offset_x;
 offset_x = offset_x - 1;
 }
 }
 if (temp3 < D[k - 1])
 {
 numDeficit = numDeficit + 1;
 requiredRepair = 1;
 difference = D[k - 1] - temp3;
 sizeDifference = new Double(Math.ceil(difference)).intValue();
 DeficitArray[k - 1][0] = sizeDifference;
 }
 else
 {
 DeficitArray[k - 1][0] = 0;
 }
 }

//-----------------------------
// This code fills in contracts for deficit periods
//------------------------

 for (k = 1; k <= NumPeriods; k++)
 {
 if (DeficitArray[k - 1][0] != 0)

188

 {
 if (k == 1)
 {
 countPeriod3 = 0;
 index = k - 1;

 //---
 // DeficitArray: One array for every period
 // first index in every array is the deficit for that period
 // Subsequent genes list the contracts which are active for a given period
 //--

 for (j = 1; j <= NumPeriods; j++)
 {
 index = index + 1;
 countPeriod3 = countPeriod3 + 1;
 DeficitArray[k - 1][countPeriod3] = index;
 }
 }
 if (k > 1)
 {
 countPeriod3 = 0;
 index = k - 1;
 offset_x = k - 2;
 for (i = 1; i <= k; i++)
 {

 //---
 // DeficitArray: One array for every period
 // first index in every array is the deficit for that period
 // Subsequent genes list the contracts which are active for a given period
 //--

 for (j = k; j <= NumPeriods; j++)
 {
 index = index + 1;
 countPeriod3 = countPeriod3 + 1;
 DeficitArray[k - 1][countPeriod3] = index;
 }
 index = index + offset_x;
 offset_x = offset_x - 1;
 }
 }
 }
 }

189

 //--
 // This code counts, for each contract, the number of times
 // it appears in a deficit period
 //--
 int holder2 = 0;
 for (k5 = 0; k5 < NumPeriods; k5++)
 {
 if (DeficitArray[k5][0] != 0)
 {
 for (k6 = 1; k6 < IntNumContracts + 1; k6++)
 {
 // Note: holder contains a contact #, which is an index in the CommonContracts
array
 holder = new Double(DeficitArray[k5][k6]).intValue();
 if (holder != 0)
 {
 ConCount = CommonContracts[holder];
 ConCount = ConCount + 1;
 CommonContracts[holder] = ConCount;
 }
 }
 }
 }

 //--
 // NumCommonContracts = variable containing the total number of
 // contracts in periods with deficits
 //--

 CommonContracts[0] = 0;

 //-----------------------
 // The code that follows assigns the index number of the 1st contract to
 // have the highest number of occurances in a deficit period to variable
 // maxNumIndex; the highest number of occurances is stored in maxNum
 //---------------------------------------

 maxNum = 0;
 maxNumIndex = 0;
 for (k6 = 1; k6 <= IntNumContracts; k6++)
 {
 holder = CommonContracts[k6];
 if (holder >= maxNum)
 {
 maxNum = holder;
 maxNumIndex = k6;

190

 }
 }
 if (maxNumIndex > 0)
 {
 for (k5 = 0; k5 < NumPeriods; k5++)
 {
 if (DeficitArray[k5][0] != 0)
 {
 for (k6 = 1; k6 < IntNumContracts + 1; k6++)
 {
 if (maxNumIndex == DeficitArray[k5][k6])
 {
 period = k5;
 k6 = IntNumContracts + 1;
 k5 = NumPeriods;
 }
 }
 }
 }

 deficitAmount = new Double(DeficitArray[period][0]).intValue();
 DeficitArray[period][0] = 0;

 //----------------------
 // holderB = the deficitAmount for a given period divided by
 // the number of contracts of the given period
 //------------------------

 holderB = new Integer(Rounding.toString(deficitAmount, 0)).intValue();
 holder = Copy1[maxNumIndex];
 holder = holder + holderB;
 Copy1[maxNumIndex] = holder;
 }
 }
 double Total;
 double cumulativeTotal;
 int index2;
 int index3;
 double size1;

 Total = 0;
 cumulativeTotal = 0;
 for (j = 1; j <= IntNumContracts; j++)
 {
 index2 = Contract_Period[j - 1];
 index3 = Contract_Length[j - 1];

191

 size1 = Copy1[j];
 if (size1 > 0)
 {
 /**********************************/
 TCQ[j - 1] = rp_Array[index2 - 1] * ((B[0] * index3) + B[2]);
 TCX[j - 1] = rp_Array[index2 - 1] * B[1] * index3;
 Total = 0;
 Total = TCQ[j - 1] * size1 + TCX[j - 1];
 /********************************/

 cumulativeTotal = cumulativeTotal + Total;
 Copy1[0] = new Double(cumulativeTotal).intValue();
 }
 }

 for (i = 0; i < IntNumContracts + 1; i++)
 {
 OffSpring1[i] = new Integer(Copy1[i]).doubleValue();
 }
 temp1 = 0;
 temp3 = 0;
 index = 0;
 difference = 0;
 sizeDifference = 0;
 feasibilityFlagPool = 0;

 Total = 0;
 cumulativeTotal = 0;

 index3 = 0;
 // --

 for (i = 0; i < IntNumContracts + 1; i++)
 {
 CommonContracts[i] = 0;
 for (j = 0; j < NumPeriods; j++)
 {
 DeficitArray[j][i] = 0;
 }
 }

 period = 0;
 turns = turns + 1;
 temp3=0;
 for (i = 0; i < IntNumContracts + 1; i++)
 {

192

 Copy2[i] = new Double(Pool[indexHolder][i]).intValue();
 Best2[i] = new Double(Pool[indexHolder][i]).intValue();
 }
 Best2[0]=9999999;
 for(int alpha=0;alpha<20;alpha++)
 {
 for (i = 0; i < NumPeriods; i++)
 {
 for (j = 0; j <= IntNumContracts; j++)
 {
 DeficitArray[i][j] = 0;
 CommonContracts[j] = 0;
 }
 }
 numDeficit = 1;
 while (numDeficit > 0)
 {
 requiredRepair = 0;
 numDeficit = 0;
 turns = turns + 1;
 DeficitArray = new double[NumPeriods][IntNumContracts + 1];
 //--------------
 // This code finds the deficit amount for each period
 //--------------

 for (k = 1; k <= NumPeriods; k++)
 {
 temp3 = 0;
 if (k == 1)
 {
 index = k - 1;
 for (j = 1; j <= NumPeriods; j++)
 {
 index = index + 1;
 temp1 = 0;
 temp1 = Copy2[index];
 temp3 = temp3 + temp1;
 }
 }
 if (k > 1)
 {
 index = k - 1;
 offset_x = k - 2;
 for (i = 1; i <= k; i++)
 {
 for (j = k; j <= NumPeriods; j++)

193

 {
 index = index + 1;
 temp1 = 0;
 temp1 = Copy2[index];
 temp3 = temp3 + temp1;
 }
 index = index + offset_x;
 offset_x = offset_x - 1;
 }
 }
 if (temp3 < D[k - 1])
 {
 numDeficit = numDeficit + 1;
 requiredRepair = 1;
 difference = D[k - 1] - temp3;
 sizeDifference = new Double(Math.ceil(difference)).intValue();
 DeficitArray[k - 1][0] = sizeDifference;
 }
 else
 {
 DeficitArray[k - 1][0] = 0;
 }
 }
 if (numDeficit == 0)
 break;
//-----------------------------
// This code fills in contracts for deficit periods
//------------------------

 for (k = 1; k <= NumPeriods; k++)
 {
 if (DeficitArray[k - 1][0] != 0)
 {
 if (k == 1)
 {
 countPeriod3 = 0;
 index = k - 1;

 //---
 // DeficitArray: One array for every period
 // first index in every array is the deficit for that period
 // Subsequent genes list the contracts which are active for a given period
 //--

 for (j = 1; j <= NumPeriods; j++)
 {

194

 index = index + 1;
 countPeriod3 = countPeriod3 + 1;
 DeficitArray[k - 1][countPeriod3] = index;
 }
 }
 if (k > 1)
 {
 countPeriod3 = 0;
 index = k - 1;
 offset_x = k - 2;
 for (i = 1; i <= k; i++)
 {

 //---
 // DeficitArray: One array for every period
 // first index in every array is the deficit for that period
 // Subsequent genes list the contracts which are active for a given period
 //--

 for (j = k; j <= NumPeriods; j++)
 {
 index = index + 1;
 countPeriod3 = countPeriod3 + 1;
 DeficitArray[k - 1][countPeriod3] = index;
 }
 index = index + offset_x;
 offset_x = offset_x - 1;
 }
 }
 }
 }
 for (int l = NumPeriods - 1; l >= 0; l--)
 {
 if (DeficitArray[l][0] != 0)
 {
 period = l;
 break;
 }
 }
 int counter = 0;
 for (int l = 1; l < DeficitArray[period].length; l++)
 {
 if (DeficitArray[period][l] == 0)
 {
 counter = l - 1;
 break;

195

 }
 }
 int rand =1+ this.Rand_Number.nextInt(counter-1);
 int contract = new Double(DeficitArray[period][rand]).intValue();
 deficitAmount = new Double(DeficitArray[period][0]).intValue();
 DeficitArray[period][0] = 0;

 //----------------------
 // holderB = the deficitAmount for a given period divided by
 // the number of contracts of the given period
 //------------------------

 holderB = new Integer(Rounding.toString(deficitAmount, 0)).intValue();
 holder = Copy2[contract];
 holder = holder + holderB;
 Copy2[contract] = holder;
 }

 //---------------------
 Total = 0;
 cumulativeTotal = 0;
 for (j = 1; j <= IntNumContracts; j++)
 {
 index2 = Contract_Period[j - 1];
 index3 = Contract_Length[j - 1];
 size1 = Copy2[j];
 if (size1 > 0)
 {
 /**********************************/
 TCQ[j - 1] = rp_Array[index2 - 1] * ((B[0] * index3) + B[2]);
 TCX[j - 1] = rp_Array[index2 - 1] * B[1] * index3;
 Total = 0;
 Total = TCQ[j - 1] * size1 + TCX[j - 1];
 /********************************/

 cumulativeTotal = cumulativeTotal + Total;
 Copy2[0] = new Double(cumulativeTotal).intValue();
 }
 }
 if(Best2[0]>Copy2[0])
 {
 for(int beta=0;beta<this.IntNumContracts;beta++)
 {

 Best2[beta] = Copy2[beta];
 }

196

 }
 for(int m=0;m<this.IntNumContracts;m++)
 {
 Copy2[m]= new Double(Pool[indexHolder][m]).intValue();
 }
 }
 for(int beta=0;beta<this.IntNumContracts;beta++)
 {
 Copy2[beta] = Best2[beta];
 }

 for (i = 0; i < IntNumContracts + 1; i++)
 {
 OffSpring2[i] = new Integer(Copy2[i]).doubleValue();
 }

 temp1 = 0;
 temp3 = 0;
 index = 0;
 difference = 0;
 sizeDifference = 0;

 if (OffSpring1[0] < OffSpring2[0])
 {
 for (i = 0; i < IntNumContracts + 1; i++)
 {
 Pool[indexHolder][i] = OffSpring1[i];
 }
 Repair1 = Repair1 + 1;
 }

 if (OffSpring1[0] == OffSpring2[0])
 {
 for (i = 0; i < IntNumContracts + 1; i++)
 {
 Pool[indexHolder][i] = OffSpring1[i];
 }
 RepairTie = RepairTie + 1;
 }

 if (OffSpring1[0] > OffSpring2[0])
 {
 for (i = 0; i < IntNumContracts + 1; i++)
 {
 Pool[indexHolder][i] = OffSpring2[i];
 }

197

 Repair2 = Repair2 + 1;
 }
 }

 private void evaluation_function_pool(int NumPeriods)
 {
 int i;
 int j;
 int size1;
 int Purchased = 0;
 double cumulativeTotal = 0;
 int index2;
 int index3;
 double Total = 0;
 int[] Copy = new int[IntNumContracts];

 NumContracts = .5 * NumPeriods * (NumPeriods + 1);
 IntNumContracts = new Double(NumContracts).intValue();

 TCQ = new double[IntNumContracts];
 TCX = new double[IntNumContracts];

 for (i = 1; i < IntNumContracts + 1; i++)
 {
 Copy[i - 1] = new Double(Pool[indexHolder][i]).intValue();
 }

 Total = 0;
 cumulativeTotal = 0;
 for (j = 0; j < IntNumContracts; j++)
 {
 index2 = Contract_Period[j];
 index3 = Contract_Length[j];
 size1 = Copy[j];
 if (size1 > 0)
 {
 TCQ[j] = rp_Array[index2 - 1] * ((B[0] * index3) + B[2]);
 TCX[j] = rp_Array[index2 - 1] * B[1] * index3;

 Total = 0;
 Total = TCQ[j] * size1 + TCX[j];

 cumulativeTotal = cumulativeTotal + Total;
 Pool[indexHolder][0] = cumulativeTotal;
 }
 }

198

 for (i = 1; i < IntNumContracts + 1; i++)
 {
 Pool[indexHolder][i] = new Integer(Copy[i - 1]).doubleValue();
 }
 }

 private int record_best_chromosome_from_Pool(int NumPeriods)
 {
 int i;
 int j;
 int x;
 int y;
 int count = 0;
 Vector Best = new Vector();
 Vector Test = new Vector();
 int same = 0;

 NumContracts = .5 * NumPeriods * (NumPeriods + 1);
 IntNumContracts = new Double(NumContracts).intValue();
 change = 0;

 if (gen == 0)
 {
 for (i = 0; i < NumOffspring + this.PopSize; i++)
 {
 if (i == 0)
 {
 for (j = 0; j < IntNumContracts + 1; j++)
 {
 bestChromosome[j] = Pool[i][j];
 }
 }
 if (i > 0)
 {
 if (bestChromosome[0] > Pool[i][0])
 {
 for (j = 0; j < IntNumContracts + 1; j++)
 {
 bestChromosome[j] = Pool[i][j];
 }
 }
 else if (bestChromosome[0] == Pool[i][0])
 {
 for (j = 0; j < IntNumContracts + 1; j++)
 {
 if (bestChromosome[j] != Pool[i][j])

199

 {
 same = 1;
 change = 1;
 }
 }
 if (same == 1)
 {
 for (j = 0; j < IntNumContracts + 1; j++)
 {
 bestChromosome[j] = Pool[i][j];
 }
 }
 }
 }
 }
 }
 else if (gen > 0)
 {
 for (i = 0; i < NumOffspring; i++)
 {
 if (bestChromosome[0] > Pool[i][0])
 {
 change = 1;
 for (j = 0; j < IntNumContracts + 1; j++)
 {
 bestChromosome[j] = Pool[i][j];
 }
 }
 else if (bestChromosome[0] == Pool[i][0])
 {
 for (j = 0; j < IntNumContracts + 1; j++)
 {
 if (bestChromosome[j] != Pool[i][j])
 {
 same = 1;
 change = 1;
 }
 }
 if (same == 1)
 {
 for (j = 0; j < IntNumContracts + 1; j++)
 {
 bestChromosome[j] = Pool[i][j];
 }
 }
 }

200

 }
 }
 return change;
 }

 public void write_to_file(boolean first_time, String FileName)
 {
 int p = new Integer(Rounding.toString(gp * 10, 0)).intValue();
 int ad_d = new Integer(Rounding.toString(ad * 1, 0)).intValue();
 int d = new Integer(Rounding.toString(gd * 10, 0)).intValue();
 if (FileName.equals(""))
 {
 this.write = new WriteFile(buff, FileNum);
 if (first_time == true)
 {
 this.write.write_toFile();
 }
 else
 {
 this.write.append_toFile();
 }
 this.buff.delete(0, this.buff.length());
 this.buff = new StringBuffer();
 }
 else
 {
 this.write = new WriteFile(buff2, FileNum, FileName);
 if (first_time == true)
 {
 this.write.write_toFile();
 }
 else
 {
 this.write.append_toFile();
 }
 this.buff2.delete(0, this.buff2.length());
 this.buff2 = new StringBuffer();
 }
 }

 public void Fill_Best_Vector()
 {
 int i;
 int j;
 int k;
 int Size;

201

 double[] tempA;
 double[] tempB;
 NumContracts = .5 * NumPeriods * (NumPeriods + 1);
 IntNumContracts = new Double(NumContracts).intValue();

 tempA = new double[IntNumContracts + 1];
 tempB = new double[IntNumContracts + 1];
 int Size_of_Vector = 20;

 if (gen == 0)
 {
 for (k = 0; k < Size_of_Vector; k++)
 {
 tempB[0] = 999999999;
 Fill_Best.addElement(tempB);
 }
 }
 for (i = 0; i < (NumOffspring + PopSize); i++)
 {
 for (j = Size_of_Vector - 1; j >= 0; j--)
 {
 tempA = (double[]) Fill_Best.elementAt(j);
 if (Pool[i][0] < tempA[0])
 {
 if (j != 0)
 {
 continue;
 }
 else
 {
 Fill_Best.insertElementAt((double[]) Pool[i].clone(), 0);
 Fill_Best.removeElementAt(Fill_Best.size() - 1);
 }
 }
 else if (Pool[i][0] == tempA[0])
 {
 tempB = (double[]) Pool[i].clone();
 int p;
 for (p = 0; p < IntNumContracts + 1; p++)
 {
 if (tempA[p] != tempB[p])
 {
 p = IntNumContracts + 2;
 Fill_Best.insertElementAt((double[]) Pool[i].clone(), j + 1);
 Size = Fill_Best.size();
 if (Size > Size_of_Vector)

202

 {
 Fill_Best.removeElementAt(Fill_Best.size() - 1);
 }
 }
 }
 break;
 }
 else if (Pool[i][0] > tempA[0])
 {
 if (Size_of_Vector - 1 == j)
 {
 Fill_Best.addElement((double[]) Pool[i].clone());
 }
 else
 {
 Fill_Best.insertElementAt((double[]) Pool[i].clone(), j + 1);
 }
 Size = Fill_Best.size();
 if (Size > Size_of_Vector)
 {
 Fill_Best.removeElementAt(Fill_Best.size() - 1);
 }
 break;
 }
 }
 }
 Fill_Best.trimToSize();
 }

 //If you send the timeperiod it will return the index number of all
 // valid contracts in a Vector
 public Vector valid_contracts(int timeperiod)
 {
 Vector valid = new Vector();
 int x = this.NumPeriods;
 int y = timeperiod;
 for (int i =1;i<=timeperiod;i++)
 {
 for(int j=x;j>=y;j--)
 {
 valid.addElement(new Integer(j));
 }
 x= x+this.NumPeriods-i;
 y=y+this.NumPeriods -i;
 }
 return valid;

203

 }

 /*************** MAIN ****************/
 public static void main(String[] args)
 {
 ea ea1 = new ea();
 System.out.println("Begin EA");

 ea1.NumPeriods = 6;
 ea1.PopSize = 40;
 ea1.maxGenerations = 5000;
 int n = 0;
 int z;
 int ProblemNumber = 0;
 int x;
 int y;
 int count = 0;
 int term = 0;
 double Term_Condition;
 double prob_purchase;
 double randNum;
 int num1;
 int j, k;
 double number;
 int number2;
 int number3;
 double tempz;
 double tempzz;
 double tempy;
 double Restart = 0;
 int Restart_Counter = 0;
 int Gen_Best_Found = 0;
 long TimetoComplete = 0;
 long TimetoBest = 0;
 int Size = 1;
 double increment_gp = .1;
 double increment_gd = .1;
 int increment_n = 6;
 int increment_Size = 1;
 int x_count = 0;
 int y_count = 0;
 int z_count = 0;
 String econScale = "x";
 ea1.n_scale = 0;
 int tempRepair1 = 0;

204

 int tempRepair2 = 0;
 int tempRepairTie = 0;
 ea1.gp = .10;
 ea1.ad = 540;
 ea1.gd = .10;
 ea1.Date = 10.26;
 int i;
 int runNumber;
 int Bingo = 0;
 int numRuns;
 int remainder;
 int numProb;
 int AdjPopSize;
 int AdjMaxGen;
 int AdjInitialDemand;
 int incrementPrice = 0;

 ea1.UniformCrossoverRate = .8;
 ea1.OnePointCrossoverRate = .2;
 ea1.MutationRate2 = .6;
 ea1.MutationRate1 = .6;

 ea1.NumPeriods = 0;
 for (int x_n = 1; x_n <= 3; x_n++)
 {
 int buff_Length = ea1.buff.length();
 ea1.buff.delete(0, buff_Length);
 ea1.buff = new StringBuffer();
 ea1.NumPeriods = ea1.NumPeriods + increment_n;
 ea1.n_scale = ea1.n_scale + 1;
 ea1.NumContracts = .5 * ea1.NumPeriods * (ea1.NumPeriods + 1);
 ea1.IntNumContracts = new Double(ea1.NumContracts).intValue();
 ea1.PoolSize = ea1.PopSize * 200;
 ea1.Best_All_Runs = new double[ea1.IntNumContracts + 1];
 ea1.bestChromosome = new double[ea1.IntNumContracts + 1];
 double[] overall_Best = new double[ea1.IntNumContracts + 1];
 int[] OffSpring1 = new int[ea1.IntNumContracts];
 int[] OffSpring2 = new int[ea1.IntNumContracts];
 Size = 0;
 y_count = 0;

 for (int x_Size = 1; x_Size <= 3; x_Size++)
 {
 ea1.gen = 0;
 Size = Size + 1;
 y_count = 0;

205

 ea1.gp = .1;
 ea1.gd = .1;

 buff_Length = ea1.buff.length();
 ea1.buff.delete(0, buff_Length);
 ea1.buff = new StringBuffer();

 if (Size == 1)
 {
 //Small economies of scale
 /* */
 ea1.B1 = 13.116;
 ea1.B2 = 962.927;
 ea1.B3 = 258.526;
 econScale = "econScale-Small";
 /* */
 }
 if (Size == 2)
 {
 //Medium economies of scale
 /* */
 ea1.B1 = 6.757;
 ea1.B2 = 928.503;
 ea1.B3 = 364.989;
 econScale = "econScale-Medium";
 /* */
 }
 if (Size == 3)
 {
 //Large economies of scale
 /* */
 ea1.B1 = 0.3977;
 ea1.B2 = 894.115;
 ea1.B3 = 471.416;
 econScale = "econScale-Large";
 /* */
 }

 ea1.B[0] = ea1.B1;
 ea1.B[1] = ea1.B2;
 ea1.B[2] = ea1.B3;

 for (numProb = 1; numProb <= 9; numProb++)
 {
 ProblemNumber = ProblemNumber + 1;

206

 y_count = y_count + 1;
 ea1.gen = 0;

 ea1.NumContracts = .5 * ea1.NumPeriods * (ea1.NumPeriods + 1);
 ea1.IntNumContracts = new Double(ea1.NumContracts).intValue();

 ea1.fill_arrays();

 if (ea1.NumPeriods == 6)
 {
 if (ea1.gp == 0.1 && ea1.gd == 0.1 && Size == 1)
 {
 ea1.iLP_Opt = 268496.3;

 }
 if (ea1.gp == 0.1 && ea1.gd == 0.1 && Size == 2)
 {
 ea1.iLP_Opt = 325790.3;

 }
 if (ea1.gp == 0.1 && ea1.gd == 0.1 && Size == 3)
 {
 ea1.iLP_Opt = 383054.8;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.2 && Size == 1)
 {
 ea1.iLP_Opt = 368073.5;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.2 && Size == 2)
 {
 ea1.iLP_Opt = 454755.3;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.2 && Size == 3)
 {
 ea1.iLP_Opt = 541396.1;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.30000000000000004 && Size == 1)
 {
 ea1.iLP_Opt = 499789.2;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.30000000000000004 && Size == 2)
 {
 ea1.iLP_Opt = 627457.3;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.30000000000000004 && Size == 3)
 {

207

 ea1.iLP_Opt = 755068.4;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.1 && Size == 1)
 {
 ea1.iLP_Opt = 248062.5;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.1 && Size == 2)
 {
 ea1.iLP_Opt = 299026.1;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.1 && Size == 3)
 {
 ea1.iLP_Opt = 349963.3;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.2 && Size == 1)
 {
 ea1.iLP_Opt = 316077.6;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.2 && Size == 2)
 {
 ea1.iLP_Opt = 387101.1;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.2 && Size == 3)
 {
 ea1.iLP_Opt = 458091.6;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.30000000000000004 && Size == 1)
 {
 ea1.iLP_Opt = 405209.5;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.30000000000000004 && Size == 2)
 {
 ea1.iLP_Opt = 503271.7;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.30000000000000004 && Size == 3)
 {
 ea1.iLP_Opt = 601292.7;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.1 && Size == 1)
 {
 ea1.iLP_Opt = 231313.5;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.1 && Size == 2)
 {
 ea1.iLP_Opt = 277851.5;
 }

208

 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.1 && Size == 3)
 {
 ea1.iLP_Opt = 324363.5;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.2 && Size == 1)
 {
 ea1.iLP_Opt = 277942.6;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.2 && Size == 2)
 {
 ea1.iLP_Opt = 337816.1;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.2 && Size == 3)
 {
 ea1.iLP_Opt = 397656.8;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.30000000000000004 &&
 Size == 1)
 {
 ea1.iLP_Opt = 337080.9;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.30000000000000004 &&
 Size == 2)
 {
 ea1.iLP_Opt = 414361.3;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.30000000000000004 &&
 Size == 3)
 {
 ea1.iLP_Opt = 491600.5;
 }
 }
 if (ea1.NumPeriods == 12)
 {
 if (ea1.gp == 0.1 && ea1.gd == 0.1 && Size == 1)
 {
 ea1.iLP_Opt = 438512.7;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.1 && Size == 2)
 {
 ea1.iLP_Opt = 487799.3;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.1 && Size == 3)
 {
 ea1.iLP_Opt = 537047.3;
 }

209

 if (ea1.gp == 0.1 && ea1.gd == 0.2 && Size == 1)
 {
 ea1.iLP_Opt = 803822.1;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.2 && Size == 2)
 {
 ea1.iLP_Opt = 936621.8;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.2 && Size == 3)
 {
 ea1.iLP_Opt = 1069332.;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.30000000000000004 && Size == 1)
 {
 ea1.iLP_Opt = 1536695.;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.30000000000000004 && Size == 2)
 {
 ea1.iLP_Opt = 1859647.;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.30000000000000004 && Size == 3)
 {
 ea1.iLP_Opt = 2182392.;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.1 && Size == 1)
 {
 ea1.iLP_Opt = 351317.8;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.1 && Size == 2)
 {
 ea1.iLP_Opt = 388381.6;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.1 && Size == 3)
 {
 ea1.iLP_Opt = 420306.0;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.2 && Size == 1)
 {
 ea1.iLP_Opt = 526002.2;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.2 && Size == 2)
 {
 ea1.iLP_Opt = 598458.9;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.2 && Size == 3)
 {

210

 ea1.iLP_Opt = 664641.3;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.30000000000000004 && Size == 1)
 {
 ea1.iLP_Opt = 839560.6;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.30000000000000004 && Size == 2)
 {
 ea1.iLP_Opt = 983596.4;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.30000000000000004 && Size == 3)
 {
 ea1.iLP_Opt = 1122124.;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.1 && Size == 1)
 {
 ea1.iLP_Opt = 276257.7;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.1 && Size == 2)
 {
 ea1.iLP_Opt = 325630.2;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.1 && Size == 3)
 {
 ea1.iLP_Opt = 358465.1;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.2 && Size == 1)
 {
 ea1.iLP_Opt = 363260.8;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.2 && Size == 2)
 {
 ea1.iLP_Opt = 429939.2;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.2 && Size == 3)
 {
 ea1.iLP_Opt = 477405.9;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.30000000000000004 &&
 Size == 1)
 {
 ea1.iLP_Opt = 501702.1;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.30000000000000004 &&
 Size == 2)
 {

211

 ea1.iLP_Opt = 597692.8;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.30000000000000004 &&
 Size == 3)
 {
 ea1.iLP_Opt = 671895.9;
 }
 }
 if (ea1.NumPeriods == 18)
 {
 if (ea1.gp == 0.1 && ea1.gd == 0.1 && Size == 1)
 {
 ea1.iLP_Opt = 628844.50;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.1 && Size == 2)
 {
 ea1.iLP_Opt = 657505.92;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.1 && Size == 3)
 {
 ea1.iLP_Opt = 686122.87;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.2 && Size == 1)
 {
 ea1.iLP_Opt = 1513748.34;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.2 && Size == 2)
 {
 ea1.iLP_Opt = 1704381.20;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.2 && Size == 3)
 {
 ea1.iLP_Opt = 1894885.93;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.30000000000000004 && Size == 1)
 {
 ea1.iLP_Opt = 4187309.76;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.30000000000000004 && Size == 2)
 {
 ea1.iLP_Opt = 4993621.49;
 }
 if (ea1.gp == 0.1 && ea1.gd == 0.30000000000000004 && Size == 3)
 {
 ea1.iLP_Opt = 5799518.77;
 }

212

 if (ea1.gp == 0.2 && ea1.gd == 0.1 && Size == 1)
 {
 ea1.iLP_Opt = 391171.05;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.1 && Size == 2)
 {
 ea1.iLP_Opt = 440385.34;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.1 && Size == 3)
 {
 ea1.iLP_Opt = 462806.17;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.2 && Size == 1)
 {
 ea1.iLP_Opt = 675913.15;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.2 && Size == 2)
 {
 ea1.iLP_Opt = 771270.01;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.2 && Size == 3)
 {
 ea1.iLP_Opt = 833514.47;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.30000000000000004 && Size == 1)
 {
 ea1.iLP_Opt = 1365808.49;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.30000000000000004 && Size == 2)
 {
 ea1.iLP_Opt = 1593712.59;
 }
 if (ea1.gp == 0.2 && ea1.gd == 0.30000000000000004 && Size == 3)
 {
 ea1.iLP_Opt = 1779087.80;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.1 && Size == 1)
 {
 ea1.iLP_Opt = 285071.26;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.1 && Size == 2)
 {
 ea1.iLP_Opt = 333592.52;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.1 && Size == 3)
 {

213

 ea1.iLP_Opt = 368648.84;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.2 && Size == 1)
 {
 ea1.iLP_Opt = 391247.28;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.2 && Size == 2)
 {
 ea1.iLP_Opt = 458638.36;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.2 && Size == 3)
 {
 ea1.iLP_Opt = 508518.68;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.30000000000000004 &&
 Size == 1)
 {
 ea1.iLP_Opt = 590782.49;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.30000000000000004 &&
 Size == 2)
 {
 ea1.iLP_Opt = 695741.19;
 }
 if (ea1.gp == 0.30000000000000004 && ea1.gd == 0.30000000000000004 &&
 Size == 3)
 {
 ea1.iLP_Opt = 775928.02;
 }
 }
 ea1.FileNum = ea1.FileNum + 1;

 runNumber = 0;
 int MaxRuns = 5;
 double overall_BestofRuns = 0;
 double TimetoBestofRuns = 0;
 double TimetoCompleteforAllRuns = 0;
 int Gen_BestofRuns = 0;
 double[][] runFitnessTimes = new double[MaxRuns][5];
 double TotalTimetoCompleteforAllRuns = 0;

 System.out.println("\n");
 ea1.buff.append("\n");
 System.out.println("N = " + ea1.NumPeriods + ", gp = " + ea1.gp +
 ", ad = " + ea1.ad +
 ", gd = " + ea1.gd + ", B1 = " + ea1.B1 +

214

 ", B2 = " + ea1.B2 + ", B3 = " + ea1.B3 +
 ", LP Solution = " + ea1.iLP_Opt +
 ", # best the same last value = " + count +
 ", PopSize = " + ea1.PopSize +
 ", MaxGeneration = " + ea1.maxGenerations);
 ea1.temp = "N = " + ea1.NumPeriods + ", gp = " + ea1.gp +
 ", ad = " + ea1.ad +
 ", gd = " + ea1.gd + ", B1 = " + ea1.B1 + " , B2 = " +
 ea1.B2 +
 ", B3 = " + ea1.B3 + ", LP Solution = " + ea1.iLP_Opt +
 ", # best the same last value = " + count +
 ", PopSize = " + ea1.PopSize +
 ", MaxGeneration = " + ea1.maxGenerations;
 ea1.buff.append(ea1.temp + "\r\n");

 System.out.println(econScale + ", UniformCrossoverRate = " +
 ea1.UniformCrossoverRate +
 ", OnePointCrossoverRate = " +
 ea1.OnePointCrossoverRate +
 ", MutationRate2 = " + ea1.MutationRate2 +
 ", ea1.MutationRate1 = " + ea1.MutationRate1);
 ea1.temp = econScale + ", UniformCrossoverRate = " +
 ea1.UniformCrossoverRate +
 ", OnePointCrossoverRate = " + ea1.OnePointCrossoverRate +
 ", MutationRate2 = " + ea1.MutationRate2 +
 ", ea1.MutationRate1 = " + ea1.MutationRate1;
 ea1.buff.append(ea1.temp + "\r\n");

 System.out.println("PopSize = " + ea1.PopSize +
 ", MaxGeneration = " + ea1.maxGenerations +
 ", # Restarts = " + Restart_Counter);
 ea1.temp = "PopSize = " + ea1.PopSize + ", MaxGeneration = " +
 ea1.maxGenerations;
 ea1.buff.append(ea1.temp + "\r\n");

 for (numRuns = 1; numRuns <= MaxRuns; numRuns++)
 {
 ea1.gen = 0;

 ea1.initialize_chromosomes();
 long Start = System.currentTimeMillis();

 TimetoComplete = 0;
 TimetoBest = 0;
 term = 0;
 Restart = 0;

215

 Restart_Counter = 0;
 overall_Best[0] = 999999999;
 Gen_Best_Found = 0;
 count = 0;
 runNumber = runNumber + 1;

 System.out.println(" ");
 ea1.buff.append("\n");
 System.out.println("Problem Number = " + ProblemNumber +
 ", Run Number = " + runNumber);
 ea1.temp = "Problem Number = " + ProblemNumber +
 ", Run Number = " + runNumber;
 ea1.buff.append(ea1.temp + "\r\n");
 ea1.counter = ea1.PopSize;

 for (ea1.gen = 0; ea1.gen < ea1.maxGenerations; ea1.gen++)
 {
 ea1.NumOffspring = ea1.PopSize;
 ea1.counter = ea1.PopSize;
 ea1.initialize_chromosome_pool(ea1.PopSize, ea1.IntNumContracts);

 ea1.mutation_operator();
 ea1.OnePoint_crossover_operator();
 ea1.Uniform_crossover_operator();

 ea1.Repair1 = 0;
 ea1.Repair2 = 0;
 ea1.RepairTie = 0;
 for (ea1.indexHolder = 0;
 ea1.indexHolder < (ea1.NumOffspring + ea1.PopSize);
 ea1.indexHolder++)
 {
 ea1.repair_function_pool(ea1.NumPeriods);
 tempRepair1 = tempRepair1 + ea1.Repair1;
 tempRepair2 = tempRepair2 + ea1.Repair2;
 tempRepairTie = tempRepairTie + ea1.RepairTie;
 }

 ea1.change = ea1.record_best_chromosome_from_Pool(ea1.NumPeriods);

//Pool of best 20 chromosomes found throughout each run of an EA

 ea1.Fill_Best_Vector();
 if (ea1.change == 0)
 {
 count = count + 1;

216

 }
 else if (ea1.change == 1)
 {
 count = 0;
 }
 term = ea1.gen;
 if (overall_Best[0] > ea1.bestChromosome[0])
 {
 Gen_Best_Found = ea1.gen;
 for (i = 0; i < ea1.IntNumContracts + 1; i++)
 {
 overall_Best[i] = ea1.bestChromosome[i];
 }
 long ToBest = System.currentTimeMillis();
 TimetoBest = ToBest - Start;
 }
 for (i = 0; i < ea1.PopSize; i++)
 {
 for (j = 0; j < ea1.IntNumContracts + 1; j++)
 {
 ea1.Chromosome[i][j] = 0;
 }
 }
 for (ea1.indexHolder = 0;
 ea1.indexHolder < ea1.IntNumContracts + 1;
 ea1.indexHolder++)
 {
 ea1.Chromosome[0][ea1.indexHolder] =
 ea1.bestChromosome[ea1.indexHolder];
 }

 ea1.select_next_generation();
 for (i = 0; i < ea1.PoolSize; i++)
 {
 for (j = 0; j < ea1.IntNumContracts + 1; j++)
 {
 ea1.Pool[i][j] = 0;
 }
 }
 if (count >= 100 * ea1.NumPeriods)
 {
 term = ea1.gen;
 ea1.gen = ea1.maxGenerations;
 }
 }

217

 System.out.println("Number of times Repair #1 best = " +
 tempRepair1);
 System.out.println("Number of times Repair #2 best = " +
 tempRepair2);
 System.out.println(
 "Number of times Repair #1 and Repair #2 Tied = " +
 tempRepairTie);
 ea1.temp = "Number of times Repair #1 best = " +
 tempRepair1;
 ea1.buff.append(ea1.temp + "\r\n");
 ea1.temp = "Number of times Repair #2 best = " +
 tempRepair2;
 ea1.buff.append(ea1.temp + "\r\n");
 ea1.temp = "Number of times Repair #1 and Repair #2 Tied = " +
 tempRepairTie;
 ea1.buff.append(ea1.temp + "\r\n");

 long End = System.currentTimeMillis();
 TimetoComplete = End - Start;
 System.out.println("The End!");
 ea1.temp = "The End!";
 ea1.buff.append(ea1.temp + "\r\n");

 runFitnessTimes[numRuns - 1][0] = overall_Best[0];
 runFitnessTimes[numRuns - 1][1] = Gen_Best_Found;
 runFitnessTimes[numRuns - 1][2] = TimetoBest;
 runFitnessTimes[numRuns - 1][3] = TimetoComplete;

 if (numRuns == 1)
 {
 overall_BestofRuns = runFitnessTimes[numRuns - 1][0];
 Gen_BestofRuns = new Double(runFitnessTimes[numRuns - 1][1]).
 intValue();
 TotalTimetoCompleteforAllRuns = TimetoComplete;
 TimetoBestofRuns = runFitnessTimes[numRuns - 1][2];

 for (z = 0; z < ea1.IntNumContracts + 1; z++)
 {
 ea1.Best_All_Runs[z] = ea1.bestChromosome[z];
 }
 }
 else
 {
 if (runFitnessTimes[numRuns - 2][0] >
 runFitnessTimes[numRuns - 1][0])
 {

218

 overall_BestofRuns = runFitnessTimes[numRuns - 1][0];
 Gen_BestofRuns = new Double(runFitnessTimes[numRuns - 1][1]).
 intValue();
 TimetoBestofRuns = runFitnessTimes[numRuns - 1][2];
 for (j = 0; j < ea1.IntNumContracts + 1; j++)
 {
 ea1.Best_All_Runs[j] = ea1.bestChromosome[j];
 }
 }
 else
 {
 if (runFitnessTimes[numRuns - 2][0] ==
 runFitnessTimes[numRuns - 1][0] &&
 runFitnessTimes[numRuns - 2][1] >
 runFitnessTimes[numRuns - 1][1])
 {
 overall_BestofRuns = runFitnessTimes[numRuns - 1][0];
 Gen_BestofRuns = new Double(runFitnessTimes[numRuns - 1][1]).
 intValue();
 TimetoBestofRuns = runFitnessTimes[numRuns - 1][2];
 for (j = 0; j < ea1.IntNumContracts + 1; j++)
 {
 ea1.Best_All_Runs[j] = ea1.bestChromosome[j];
 }
 }
 }
 TotalTimetoCompleteforAllRuns = TotalTimetoCompleteforAllRuns +
 TimetoComplete;
 }
 System.out.println("Gen # Run terminated = " + term);
 ea1.temp = "Gen # Run terminated = " + term;
 ea1.buff.append(ea1.temp + "\r\n");
 System.out.println("Gen to find Best Chromosome this run = " +
 runFitnessTimes[numRuns - 1][1]);
 ea1.temp = "Gen to find Best Chromosome this run = " +
 runFitnessTimes[numRuns - 1][1];
 ea1.buff.append(ea1.temp + "\r\n");
 System.out.println("Time to find Best Chromosome = " +
 runFitnessTimes[numRuns - 1][2] +
 " milliseconds; i.e., " +
 (runFitnessTimes[numRuns - 1][2] / 1000) +
 " seconds");
 ea1.temp = "Time to find Best Chromosome = " +
 runFitnessTimes[numRuns - 1][2] + " milliseconds; i.e., " +
 (runFitnessTimes[numRuns - 1][2] / 1000) + " seconds";
 ea1.buff.append(ea1.temp + "\r\n");

219

 System.out.println("Time to Complete EA run = " +
 runFitnessTimes[numRuns - 1][3] +
 " milliseconds; i.e., " +
 (runFitnessTimes[numRuns - 1][3] / 1000) +
 " seconds");
 ea1.temp = "Time to Complete EA run = " +
 runFitnessTimes[numRuns - 1][3] + " milliseconds; i.e., " +
 (runFitnessTimes[numRuns - 1][3] / 1000) + " seconds";
 ea1.buff.append(ea1.temp + "\r\n");
 System.out.println(" ");
 System.out.println("EA Solution - LP Solution = " +
 (overall_BestofRuns -
 ea1.iLP_Opt));
 ea1.temp = "EA Solution - LP Solution = " +
 (overall_BestofRuns - ea1.iLP_Opt);
 ea1.buff.append(ea1.temp + "\r\n");
 System.out.println("Precent Error = " +
 (((overall_BestofRuns -
 ea1.iLP_Opt) / ea1.iLP_Opt) * 100));
 ea1.temp = "Precent Error = " +
 (((overall_BestofRuns - ea1.iLP_Opt) /
 ea1.iLP_Opt) * 100);
 ea1.buff.append(ea1.temp + "\r\n\r\n");
 runFitnessTimes[numRuns -
 1][4] = (((overall_BestofRuns - ea1.iLP_Opt) / ea1.iLP_Opt) *
 100);
 System.out.println(" ");
 ea1.buff.append("\r\n");
 System.out.print("Run #" + numRuns + ". ");
 ea1.temp = "Run #" + numRuns + "). ";
 ea1.buff.append(ea1.temp);
 for (y = 0; y < 5; y++)
 {
 System.out.print(runFitnessTimes[numRuns - 1][y] + " | ");
 ea1.temp = runFitnessTimes[numRuns - 1][y] + " | ";
 ea1.buff.append(ea1.temp);
 }
 System.out.println(" ");
 ea1.buff.append("\r\n");
 System.out.println("(1: best fitness value, 2: gen best found, 3: time to best
(msec), 4: time to complete (msec), 5:% error)");
 ea1.buff.append("\r\n");
 System.out.println(" ");
 ea1.buff.append("\r\n");
 System.out.print("Best All Runs: ");
 ea1.temp = "Best All Runs: ";

220

 ea1.buff.append(ea1.temp + "\r\n");
 System.out.println("Best Chromosome for Run Number #" + numRuns +
 ": ");
 ea1.temp = "Best Chromosome for Run Number #" + numRuns + ": ";
 ea1.buff.append(ea1.temp + "\r\n");
 for (j = 0; j < ea1.IntNumContracts + 1; j++)
 {
 System.out.print(ea1.bestChromosome[j] + " | ");
 ea1.temp = ea1.bestChromosome[j] + " | ";
 ea1.buff.append(ea1.temp);
 }
 System.out.println(" ");
 ea1.buff.append("\r\n");
 System.out.println("Best 20 chromosomes from EA run #" + numRuns +
 " for Problem # " + ea1.FileNum);
 ea1.buff2.append("Best 20 chromosomes from EA run \r\n");

 double[] tempA;

 for (i = 0; i < 20; i++)
 {
 tempA = (double[]) ea1.Fill_Best.elementAt(i);
 for (j = 0; j < tempA.length; j++)
 {
 ea1.temp2 = new Double(tempA[j]).toString() + " | ";
 ea1.buff2.append(ea1.temp2);
 }
 ea1.buff2.append("\r\n");
 }
 ea1.buff2.append("\r\n");
 ea1.Fill_Best.removeAllElements();
 if (numRuns == 1)
 {
 ea1.write_to_file(true, "Best Chromosomes ");
 }
 else
 {
 ea1.write_to_file(false, "Best Chromosomes ");
 }
 System.out.println(" ");
 ea1.buff.append("\r\n");
 }
 System.out.println(" ");
 ea1.buff.append("\r\n");
 System.out.println("Total Time to Complete " + MaxRuns +
 " EA runs = " +

221

 TimetoCompleteforAllRuns +
 " milliseconds; i.e., " +
 (TimetoCompleteforAllRuns / 1000) + " seconds");
 ea1.temp = "Total Time to Complete " + MaxRuns + " EA runs = " +
 TimetoCompleteforAllRuns + " milliseconds; i.e., " +
 (TimetoCompleteforAllRuns / 1000) + " seconds";
 ea1.buff.append(ea1.temp + "\r\n");
 System.out.println("Average Total Time to Complete " + MaxRuns +
 " EA runs = " +
 (TimetoCompleteforAllRuns / MaxRuns) +
 " milliseconds; i.e., " +
 (TimetoCompleteforAllRuns / MaxRuns / 1000) +
 " seconds");
 ea1.temp = "Average Total Time to Complete " + MaxRuns +
 " EA runs = " +
 (TimetoCompleteforAllRuns / MaxRuns) + " milliseconds; i.e., " +
 (TimetoCompleteforAllRuns / MaxRuns / 1000) + " seconds";
 ea1.buff.append(ea1.temp + "\r\n");
 System.out.println("Best Fitness Value found during " + MaxRuns +
 " EA runs = " +
 overall_BestofRuns);
 ea1.temp = "Best Fitness Value found during " + MaxRuns +
 " EA runs = " +
 overall_BestofRuns;
 ea1.buff.append(ea1.temp + "\r\n");

 for (x = 1; x <= MaxRuns; x++)
 {
 System.out.print("Run #" + x + ". ");
 ea1.temp = "Run #" + x + "). ";
 ea1.buff.append(ea1.temp + "\r\n");
 for (y = 0; y < 5; y++)
 {
 System.out.print(runFitnessTimes[x - 1][y] + " | ");
 ea1.temp = runFitnessTimes[x - 1][y] + " | ";
 ea1.buff.append(ea1.temp);
 }
 System.out.println(" ");
 ea1.buff.append("\r\n");
 }
 System.out.println(" ");
 ea1.buff.append("\r\n");
 System.out.print("Best All Runs: ");
 ea1.temp = "Best All Runs: ";
 ea1.buff.append(ea1.temp + "\r\n");
 for (j = 0; j < ea1.IntNumContracts + 1; j++)

222

 {
 System.out.print(ea1.Best_All_Runs[j] + " | ");
 ea1.temp = ea1.Best_All_Runs[j] + " | ";
 ea1.buff.append(ea1.temp);
 }
 System.out.println("\n ");
 ea1.buff.append("\r\n\n");
 System.out.println("Total Time to Complete All " + numRuns + "Runs: " +
 TotalTimetoCompleteforAllRuns);
 ea1.temp = "Total Time to Complete All " + numRuns + "Runs: " +
 TotalTimetoCompleteforAllRuns;
 ea1.buff.append("\r\n");
 System.out.println("D Array: ");
 ea1.buff.append("D Array: ");
 ea1.buff.append("\r\n");
 for (j = 0; j < ea1.NumPeriods; j++)
 {
 System.out.println(ea1.D[j]);
 ea1.temp = ea1.D[j] + "\n";
 ea1.buff.append(ea1.temp + "\r\n");
 }
 System.out.println("\n ");
 ea1.buff.append("\r\n");
 if (numRuns == 1)
 {
 ea1.write_to_file(true, "");
 }
 else
 {
 ea1.write_to_file(false, "");
 }
 Bingo = 0;

 if (ea1.gd >= .3)
 {
 if (z_count <= 2)
 {
 ea1.gp = ea1.gp + increment_gp;
 ea1.gd = 0;
 z_count = z_count + 1;
 }
 if (z_count > 2)
 {
 z_count = 0;
 ea1.gp = .1;
 ea1.gd = 0;

223

 }
 }
 ea1.gd = ea1.gd + increment_gd;
 }
 }
 }
 }

 private void jbInit()
 throws Exception
 {
 }
}

224

APPENDIX B: SOURCE CODE FOR SBCP-EA

Training

Start.java

package sim_ea;
import java.util.*;
import java.lang.*;
import java.lang.Math.*;

public class start
{
 /** initialize variables **/
 /************SIM VARIABLES**************************************/
 public sim sim1;
 public double sim_demand[][];
 public double sim_price[][];
 public double[][] sim_chromosome_value;
 public int sim_instances;

/***/
 int NumPeriods;
 int PopSize;
 int maxGenerations;
 double OnePointCrossoverRate;
 double UniformCrossoverRate;
 double MutationRate1;
 double MutationRate2;
 int gen;
 double[][] Chromosome;
 Random Rand_Number;
 ReadFile read;
 WriteFile write;
 double NumContracts;
 int n_scale;
 int IntNumContracts;
 double[] B = new double[3];
 String temp;
 String temp2;
 StringBuffer buff;
 StringBuffer buff2;
 double rp;
 double rd;
 double gp;

225

 double ad;
 double gd;
 double B1;
 double B2;
 double B3;
 double iLP_Opt;
 double[] rp_Array;
 double[] rd_Array;
 double[] D;
 int[] Contract_Length;
 double[] TCQ;
 double[] TCX;
 int[] Contract_Period;
 int[] NumContracts_EachPeriod;
 int feasibilityFlag = 0;
 int feasibilityFlagPool = 0;
 int indexHolder;
 double[] bestChromosome;
 double[][] Pool;
 int PoolSize;
 int counter;
 int NumOffspring;
 double Date;
 int FileNum = 0;
 int change;
 double[] Best_All_Runs;
 int Repair1;
 int Repair2;
 int RepairTie;
 int AlreadyDone = 0;
 Vector Fill_Best = new Vector();

 public start()
 {
 this.Rand_Number = new Random();
 this.read = new ReadFile("input.txt");
 this.buff = new StringBuffer();
 this.buff2 = new StringBuffer();
 }

 private void read_input_file()
 {
 System.out.println("DATE: " + Date);
 temp = "DATE: " + Date;
 buff.append(temp + "\r\n");
 System.out.println("N = " + NumPeriods + ", gp = " + gp + ", ad = " + ad +

226

 ", gd = " + gd + ", B1 = " + B1 + " , B2 = " + B2 +
 ", B3 = " + B3);
 temp = "N = " + NumPeriods + ", gp = " + gp + ", ad = " + ad + ", gd = " +
 gd + ", B1 = " + B1 + " , B2 = " + B2 + ", B3 = " + B3;
 buff.append(temp + "\r\n");

 NumContracts = .5 * NumPeriods * (NumPeriods + 1);
 IntNumContracts = new Double(NumContracts).intValue();

 System.out.println("Number of contracts =" + IntNumContracts +
 ", NumPeriods = " + NumPeriods);
 temp = "!Number of contracts =" + IntNumContracts;
 buff.append(temp + "\r\n");

 System.out.println("LP Optimal =" + iLP_Opt);
 temp = "LP Optimal =" + iLP_Opt;
 buff.append(temp + "\r\n");
 }

 private void fill_arrays()
 {
 double product = 1;
 int count;
 int i;
 int j;
 int index1;
 int enumerate1;
 int enumerate2;
 Contract_Period = new int[IntNumContracts];
 Contract_Length = new int[IntNumContracts];
 Pool = new double[PoolSize][IntNumContracts + 1];
 int p = new Integer(Rounding.toString(gp * 10, 0)).intValue();
 int ad_d = new Integer(Rounding.toString(ad * 1, 0)).intValue();
 int d = new Integer(Rounding.toString(gd * 10, 0)).intValue();
 rp = 1 - gp;
 rd = 1 + gd;
 rp_Array = new double[NumPeriods];
 rd_Array = new double[NumPeriods];
 D = new double[NumPeriods];
 NumContracts_EachPeriod = new int[NumPeriods];

 rp_Array[0] = 1;
 for (count = 1; count < NumPeriods; count++)
 {
 product = product * rp;
 rp_Array[count] = product;

227

 }
 product = 1;
 rd_Array[0] = 1;
 for (count = 1; count < NumPeriods; count++)
 {
 product = product * rd;
 rd_Array[count] = product;
 }
 D[0] = ad;
 for (count = 1; count < NumPeriods; count++)
 {
 D[count] = new Double(Math.ceil(ad * rd_Array[count])).intValue();
 }
 for (i = 0; i < NumPeriods; i++)
 {
 NumContracts_EachPeriod[i] = (NumPeriods - (i)) * (i + 1);
 }
 index1 = 0;
 for (enumerate1 = 0; enumerate1 <= NumPeriods; enumerate1++)
 {
 for (enumerate2 = 1; enumerate2 <= NumPeriods - enumerate1;
 enumerate2++)
 {
 Contract_Length[index1] = enumerate2;
 index1 = index1 + 1;
 }
 }
 count = 0;
 for (i = 1; i < NumPeriods + 1; i++)
 {
 for (j = 1; j < NumPeriods + 2 - i; j++)
 {
 Contract_Period[count] = i;
 count = count + 1;
 }
 }
 }

 private void initialize_chromosomes()
 {
 double prob_purchase = .5;
 double Num_Contracts = NumPeriods * .5 * (NumPeriods + 1);
 Chromosome = new double[PopSize][IntNumContracts + 1];
 int j;
 int k;
 double number;

228

 double tempz;
 double tempzz;
 double tempy;
 int number2;
 int x;
 int y;

 for (k = 0; k < PopSize; k++)
 {
 Chromosome[k][0] = 999999;
 for (j = 1; j <= IntNumContracts; j++)
 {
 number = Rand_Number.nextDouble();
 if (number <= prob_purchase)
 {
 tempz = Rand_Number.nextDouble() * 100;
 tempzz = Rand_Number.nextDouble() * 10;
 tempy = (tempz * tempzz) / 2;
 number2 = new Integer(Rounding.toString(tempy, 0)).intValue();
 Chromosome[k][j] = number2;
 }
 else
 {
 Chromosome[k][j] = 0;
 }
 }
 }
 }

 public void print_Chromosome()
 {
 int start;
 int start1;
 System.out.println("Print Pool");
 for (start = 0; start < PopSize; start++)
 {
 for (start1 = 0; start1 < IntNumContracts; start1++)
 {
 System.out.print(Chromosome[start][start1] + " , ");
 }
 System.out.println();
 }
 System.out.println();

 }

229

 public void print_Chromosome(int indexHolder)
 {
 System.out.println("Repaired Chromosome: ");
 for (int k5 = 0; k5 < this.IntNumContracts; k5++)
 {
 System.out.print(this.Pool[indexHolder][k5] + " , ");
 }
 System.out.println("\n");
 }

 private void initialize_chromosome_pool(int PopSize, int IntNumContracts)
 {
 int i;
 int j;
 for (i = 0; i < PopSize; i++)
 {
 for (j = 0; j < IntNumContracts + 1; j++)
 {
 Pool[i][j] = Chromosome[i][j];
 }
 }
 }

 private void OnePoint_crossover_operator()
 {
 double randNum;
 int cutPoint;
 int[] OffSpringOne = new int[IntNumContracts];
 int[] OffSpringTwo = new int[IntNumContracts];
 int[] ParentOne = new int[IntNumContracts];
 int[] ParentTwo = new int[IntNumContracts];
 int i;
 int j;
 int x;
 int z;
 int num1;
 int num2;
 Vector tabu = new Vector();
 for (int a = 0; a < PopSize; a++)
 {
 tabu.addElement(new Integer(a));
 }

 for (x = 0; x < PopSize / 2; x++)
 {
 randNum = Rand_Number.nextDouble();

230

 if (randNum < OnePointCrossoverRate)
 {
 randNum = Rand_Number.nextDouble();
 randNum = randNum * (IntNumContracts - 1) + 1;
 cutPoint = new Integer(Rounding.toString(randNum, 0)).intValue();
 cutPoint = cutPoint - 1;
 num1 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 num2 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 if (Pool[num1][0] > Pool[num2][0])
 {
 for (z = 1; z < IntNumContracts + 1; z++)
 {
 ParentOne[z - 1] = new Double(Pool[num2][z]).intValue();
 }
 }
 else
 {
 for (z = 1; z < IntNumContracts + 1; z++)
 {
 ParentOne[z - 1] = new Double(Pool[num1][z]).intValue();
 }
 }
 num1 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 num2 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 if (Pool[num1][0] > Pool[num2][0])
 {
 for (z = 1; z < IntNumContracts + 1; z++)
 {
 ParentTwo[z - 1] = new Double(Pool[num2][z]).intValue();
 }
 }
 else
 {
 for (z = 1; z < IntNumContracts + 1; z++)
 {
 ParentTwo[z - 1] = new Double(Pool[num1][z]).intValue();
 }
 }
 for (i = 0; i < cutPoint; i++)
 {
 OffSpringOne[i] = ParentOne[i];
 OffSpringTwo[i] = ParentTwo[i];

231

 }
 for (i = cutPoint; i < IntNumContracts; i++)
 {
 OffSpringOne[i] = ParentTwo[i];
 OffSpringTwo[i] = ParentOne[i];
 }
 //*****************
 for (i = 1; i < IntNumContracts + 1; i++)
 {
 Pool[counter][i] = OffSpringOne[i - 1];
 Pool[counter + 1][i] = OffSpringTwo[i - 1];
 }
 counter = counter + 2;
 NumOffspring = NumOffspring + 2;
 }
 }
 }

 private void Uniform_crossover_operator()
 {
 int i;
 int j;
 int k;
 int x;
 int z;
 double randNum;
 int decisionVariable;
 int[] scrambleArray = new int[IntNumContracts];
 int[] OffSpringOne = new int[IntNumContracts];
 int[] OffSpringTwo = new int[IntNumContracts];
 int[] ParentOne = new int[IntNumContracts];
 int[] ParentTwo = new int[IntNumContracts];
 int decision;
 int num1;
 int num2;
 Vector tabu = new Vector();

 for (int a = 0; a < PopSize; a++)
 {
 tabu.addElement(new Integer(a));
 }
 for (x = 0; x < PopSize / 2; x++)
 {
 for (i = 0; i < IntNumContracts; i++)
 {
 randNum = Rand_Number.nextDouble();

232

 if (randNum < UniformCrossoverRate)
 {
 scrambleArray[i] = 1;
 }
 else
 {
 scrambleArray[i] = 0;
 }
 }
 num1 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 num2 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 if (Pool[num1][0] > Pool[num2][0])
 {
 for (z = 1; z < IntNumContracts + 1; z++)
 {
 ParentOne[z - 1] = new Double(Pool[num2][z]).intValue();
 }
 }
 else
 {
 for (z = 1; z < IntNumContracts + 1; z++)
 {
 ParentOne[z - 1] = new Double(Pool[num1][z]).intValue();
 }
 }
 num1 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 num2 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 if (Pool[num1][0] > Pool[num2][0])
 {
 for (z = 1; z < IntNumContracts + 1; z++)
 {
 ParentTwo[z - 1] = new Double(Pool[num2][z]).intValue();
 }
 }
 else
 {
 for (z = 1; z < IntNumContracts + 1; z++)
 {
 ParentTwo[z - 1] = new Double(Pool[num1][z]).intValue();
 }
 }
 for (k = 0; k < IntNumContracts; k++)

233

 {
 decision = scrambleArray[k];
 if (decision == 0)
 {
 OffSpringOne[k] = ParentOne[k];
 OffSpringTwo[k] = ParentTwo[k];
 }
 else if (decision == 1)
 {
 OffSpringOne[k] = ParentTwo[k];
 OffSpringTwo[k] = ParentOne[k];
 }
 }
 //*****************

 for (i = 1; i < IntNumContracts + 1; i++)
 {
 Pool[counter][i] = OffSpringOne[i - 1];
 Pool[counter + 1][i] = OffSpringTwo[i - 1];
 }
 counter = counter + 2;
 NumOffspring = NumOffspring + 2;
 }
 }

 private void mutation_operator()
 {
//Mutation #2: Local Seach with Tabu List
 int x;
 int z;
 int i;
 int j;
 int k;
 double randNum;
 int decisionVariable;
 int[] scrambleArray = new int[IntNumContracts];
 int[] OffSpring = new int[IntNumContracts];
 int[] Parent = new int[IntNumContracts];
 int decision;
 int num1;
 int num2;
 int P1 = 999;
 double tempz = 0;
 double tempzz;
 int number2;
 int number3;

234

 Integer number4;
 int listSize;
 int redo_flag = 0;

 Vector list = new Vector();
 Vector tabu = new Vector();

 for (int a = 0; a < PopSize; a++)
 {
 tabu.addElement(new Integer(a));
 }
 for (x = 0; x < PopSize; x++)
 {
 for (i = 0; i < IntNumContracts; i++)
 {
 randNum = Rand_Number.nextDouble();
 if (randNum < MutationRate2)
 {
 scrambleArray[i] = 1;
 }
 else
 {
 scrambleArray[i] = 0;
 }
 }

//___

 randNum = Rand_Number.nextInt(tabu.size());
 int temp = new Double(randNum).intValue();
 num1 = ((Integer) tabu.elementAt(temp)).intValue();

for (z = 1; z < IntNumContracts + 1; z++)
 {
 Parent[z - 1] = new Double(Pool[num1][z]).intValue();
 OffSpring[z - 1] = new Double(Pool[num1][z]).intValue();
 }
 number4 = new Integer(num1);
 list.addElement(number4);
 for (k = 0; k < IntNumContracts; k++)
 {
 decision = scrambleArray[k];
 if (decision == 0)
 {
 OffSpring[k] = Parent[k];
 }

235

 else if (decision == 1)
 {

 int size1;
 int Purchased = 0;
 double cumulativeTotal = 0;
 int index2;
 int period = 0;
 int index3;
 double Total;
 double tempy1;
 double tempy2;
 double tempy3;
 int turns;
 int numx;

 TCQ = new double[IntNumContracts];
 TCX = new double[IntNumContracts];
 for (j = 0; j < IntNumContracts; j++)
 {

 index2 = Contract_Period[j];
 if (j == k)
 {
 period = index2;
 }
 index3 = Contract_Length[j];
 size1 = OffSpring[j];
 TCQ[j] = rp_Array[index2 - 1] * ((B[0] * index3) + B[2]);
 if (size1 > 0)
 {
 Purchased = 1;
 }
 else
 {
 Purchased = 0;
 }
 TCX[j] = rp_Array[index2 - 1] * B[1] * index3;

 Total = 0;
 Total = TCQ[j] * size1 + TCX[j] * Purchased;

 cumulativeTotal = cumulativeTotal + Total;
 }

 tempy1 = cumulativeTotal;

236

 tempy3 = tempy1;
 tempy2 = 0;
 turns = 0;
 while (tempy2 < tempy1)
 {
 cumulativeTotal = 0;
 tempy1 = tempy3;
 turns = turns + 1;
 randNum = Rand_Number.nextDouble();
 randNum = randNum *
 ((D[period - 1] * Rand_Number.nextDouble() * .3) - 1) + 1;
 numx = new Integer(Rounding.toString(randNum, 0)).intValue();
 numx = numx - 1;
 randNum = Rand_Number.nextDouble();
 if (Parent[k] > 0)
 {
 if (randNum <= .8)
 {
 tempz = Parent[k] + (numx * -1);
 if (tempz < 0)
 {
 tempz = 0;
 }
 }

 number2 = new Integer(Rounding.toString(tempz, 0)).intValue();
 OffSpring[k] = number2;
 }

 TCQ = new double[IntNumContracts];
 TCX = new double[IntNumContracts];

 for (j = 0; j < IntNumContracts; j++)
 {
 index2 = Contract_Period[j];
 index3 = Contract_Length[j];
 size1 = OffSpring[j];
 TCQ[j] = rp_Array[index2 -
 1] * ((B[0] * index3) + B[2]);
 if (size1 > 0)
 {
 Purchased = 1;
 }
 else
 {
 Purchased = 0;

237

 }
 TCX[j] = rp_Array[index2 - 1] * B[1] * index3;

 Total = 0;
 Total = TCQ[j] * size1 + TCX[j] * Purchased;
 cumulativeTotal = cumulativeTotal + Total;
 }
 tempy2 = cumulativeTotal;
 tempy3 = tempy2;
 if (turns == 20)
 {
 OffSpring[k] = Parent[k];
 tempy1 = 0;
 }
 }
 turns = 0;
 }
 }
 //*****************

 for (i = 1; i < IntNumContracts + 1; i++)
 {
 Pool[counter][i] = OffSpring[i - 1];
 }
 counter = counter + 1;
 NumOffspring = NumOffspring + 1;
 }
 }

 private void mutation_operator_original()
 {
 //Mutation #1: Tabu List with decreases in randomly selected genes *Not Used
 int x;
 int z;
 int i;
 int j;
 int k;
 double randNum;
 int decisionVariable;
 int[] scrambleArray = new int[IntNumContracts];
 int[] OffSpring = new int[IntNumContracts];
 int[] Parent = new int[IntNumContracts];
 int decision;
 int num1;
 int num2;
 int P1 = 999;

238

 double tempz;
 double tempzz;
 double tempy;
 int number2;
 int number3;
 Integer number4;
 int listSize;
 int redo_flag = 0;
 int index2;
 int period = 0;

 Vector list = new Vector();
 Vector tabu = new Vector();

 for (int a = 0; a < PopSize; a++)
 {
 tabu.addElement(new Integer(a));
 }
 for (x = 0; x < PopSize; x++)
 {
 for (i = 0; i < IntNumContracts; i++)
 {
 randNum = Rand_Number.nextDouble();
 if (randNum < MutationRate1)
 {
 scrambleArray[i] = 1;
 }
 else
 {
 scrambleArray[i] = 0;
 }
 }
 //___

 randNum = Rand_Number.nextInt(tabu.size());
 int temp = new Double(randNum).intValue();
 num1 = ((Integer) tabu.elementAt(temp)).intValue();

 for (z = 1; z < IntNumContracts + 1; z++)
 {
 Parent[z - 1] = new Double(Pool[num1][z]).intValue();
 OffSpring[z - 1] = new Double(Pool[num1][z]).intValue();
 }
 number4 = new Integer(num1);
 list.addElement(number4);
 for (k = 0; k < IntNumContracts; k++)

239

 {
 decision = scrambleArray[k];
 if (decision == 0)
 {
 OffSpring[k] = Parent[k];
 }
 else if (decision == 1)
 {
 for (j = 0; j < IntNumContracts; j++)
 {
 index2 = Contract_Period[j];
 if (j == k)
 {
 period = index2;
 }
 }
 randNum = Rand_Number.nextDouble();
 tempz = randNum *
 ((D[period - 1] * Rand_Number.nextDouble() * .3) - 1) + 1;
 number2 = new Integer(Rounding.toString(tempz, 0)).intValue();
 if (Parent[k] > 0)
 {
 if (Parent[k] > number2)
 {
 OffSpring[k] = Parent[k] - number2;
 }
 else
 {
 OffSpring[k] = 0;
 }
 }
 }
 }
 for (i = 1; i < IntNumContracts + 1; i++)
 {
 Pool[counter][i] = OffSpring[i - 1];
 }
 counter = counter + 1;
 NumOffspring = NumOffspring + 1;
 }
 }

 private void select_next_generation()
 {
 int i;
 int j;

240

 int x;
 int y;
 double randNum;
 int number;
 int num1;
 int num2;
 Vector tabu = new Vector();
 Chromosome[0] = this.bestChromosome.clone();
 for (int a = 0; a < NumOffspring + PopSize; a++)
 {
 tabu.addElement(new Integer(a));
 }
 for (i = 1; i < PopSize; i++)
 {
 randNum = Rand_Number.nextDouble();
 randNum = randNum * (NumOffspring + PopSize - 1) + 1;
 number = new Integer(Rounding.toString(randNum, 0)).intValue();
 number = number - 1;
 num1 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 num2 = ((Integer) tabu.elementAt(Rand_Number.nextInt(tabu.size()))).
 intValue();
 if (Pool[num1][0] < Pool[num2][0])
 {
 for (j = 0; j < IntNumContracts + 1; j++)
 {
 Chromosome[i][j] = Pool[num1][j];
 }
 }
 else
 {
 for (j = 0; j < IntNumContracts + 1; j++)
 {
 Chromosome[i][j] = Pool[num2][j];
 }
 }
 }
 }

 public void print_Chromosome_pool_with_FV()
 {
 int start;
 int start1;
 System.out.println("Print Pool");
 for (start = 0; start < NumOffspring; start++)
 {

241

 for (start1 = 0; start1 < IntNumContracts; start1++)
 {
 System.out.print(Pool[start][start1] + " | ");
 }
 System.out.println("<-- PoolFitnessValue = " + Pool[start][0]);
 }
 System.out.println();
 }

 public void print_Chromosome_pool_withOUT_FV(int PopSize, int IntNumContracts)
 {
 int start;
 int start1;
 System.out.println("Print Pool");
 for (start = 0; start < NumOffspring; start++)
 {
 for (start1 = 0; start1 < IntNumContracts; start1++)
 {
 System.out.print(Pool[start][start1] + " | ");
 }
 System.out.println();
 }
 System.out.println();
 }

 private void check_feasibility_pool(int NumPeriods)
 {
 int k = 0;
 int i = 0;
 int j = 0;
 int temp1 = 0;
 int temp3 = 0;
 int offset;
 int index;
 int y;
 int[] Copy = new int[IntNumContracts];

 for (i = 1; i < IntNumContracts + 1; i++)
 {
 Copy[i - 1] = new Double(Pool[indexHolder][i]).intValue();
 }
 feasibilityFlagPool = 0;
 for (k = 1; k <= NumPeriods; k++)
 {
 offset = k - 1;
 index = offset;

242

 for (i = NumPeriods - k; i < NumPeriods; i++)
 {
 for (j = 1; j <= NumPeriods - k + 1; j++)
 {
 index = index + 1;
 temp1 = Copy[index - 1];
 temp3 = temp3 + temp1;
 }
 offset = offset - 1;
 index = index + offset;
 }
 if (D[k - 1] > temp3)
 {
 feasibilityFlagPool = 1;
 }
 temp3 = 0;
 }
 }

 private void repair_function_pool(int NumPeriods)
 {
 NumContracts = .5 * NumPeriods * (NumPeriods + 1);
 IntNumContracts = new Double(NumContracts).intValue();

 int k = 0;
 int i = 0;
 int j = 0;
 int temp1 = 0;
 int temp3 = 0;
 int index = 0;
 double difference = 0;
 int sizeDifference = 0;
 double[] OffSpring1 = new double[IntNumContracts + 1];
 double[] OffSpring2 = new double[IntNumContracts + 1];
 double[][] DeficitArray = new double[NumPeriods][IntNumContracts + 1];
 int[] CommonContracts = new int[IntNumContracts + 1];
 int countPeriod3 = 0;
 int k5;
 int k6;
 int holder = 0;
 int holderB = 0;
 int maxNum;
 int ConCount;
 int maxNumIndex = 0;
 double deficitAmount;
 int turns = 0;

243

 int numDeficit = IntNumContracts;
 int requiredRepair = 0;
 turns = 0;
 numDeficit = NumPeriods + 1;
 temp3 = 0;
 index = 0;
 temp1 = 0;
 difference = 0;
 sizeDifference = 0;
 countPeriod3 = 0;
 holder = 0;
 ConCount = 0;
 maxNum = 0;
 maxNum = 0;
 maxNumIndex = 0;
 deficitAmount = 0;
 holderB = 0;
 int period = 0;
 int offset_x = 0;
 int[] Copy1 = new int[IntNumContracts + 1];
 int[] Copy2 = new int[IntNumContracts + 1];
 int[] Best2 = new int[IntNumContracts + 1];

 for (i = 0; i < IntNumContracts + 1; i++)
 {
 Copy1[i] = new Double(Pool[indexHolder][i]).intValue();
 }
 requiredRepair = 0;
 while (numDeficit > 0)
 {
 requiredRepair = 0;
 numDeficit = 0;
 turns = turns + 1;
 DeficitArray = new double[NumPeriods][IntNumContracts + 1];
 CommonContracts = new int[IntNumContracts + 1];

 for (i = 0; i < IntNumContracts; i++)
 {
 CommonContracts[i] = 0;
 }

 //--------------
 // This code finds the deficit amount for each period
 //--------------

 for (k = 1; k <= NumPeriods; k++)

244

 {
 temp3 = 0;
 if (k == 1)
 {
 index = k - 1;
 for (j = 1; j <= NumPeriods; j++)
 {
 index = index + 1;
 temp1 = 0;
 temp1 = Copy1[index];
 temp3 = temp3 + temp1;
 }
 }
 if (k > 1)
 {
 index = k - 1;
 offset_x = k - 2;
 for (i = 1; i <= k; i++)
 {
 for (j = k; j <= NumPeriods; j++)
 {
 index = index + 1;
 temp1 = 0;
 temp1 = Copy1[index];
 temp3 = temp3 + temp1;
 }
 index = index + offset_x;
 offset_x = offset_x - 1;
 }
 }
 if (temp3 < D[k - 1])
 {
 numDeficit = numDeficit + 1;
 requiredRepair = 1;
 difference = D[k - 1] - temp3;
 sizeDifference = new Double(Math.ceil(difference)).intValue();
 DeficitArray[k - 1][0] = sizeDifference;
 }
 else
 {
 DeficitArray[k - 1][0] = 0;
 }
 }

//-----------------------------
// This code fills in contracts for deficit periods

245

//------------------------

 for (k = 1; k <= NumPeriods; k++)
 {
 if (DeficitArray[k - 1][0] != 0)
 {
 if (k == 1)
 {
 countPeriod3 = 0;
 index = k - 1;

 //---
 // DeficitArray: One array for every period
 // first index in every array is the deficit for that period
 // Subsequent genes list the contracts which are active for a given period
 //--

 for (j = 1; j <= NumPeriods; j++)
 {
 index = index + 1;
 countPeriod3 = countPeriod3 + 1;
 DeficitArray[k - 1][countPeriod3] = index;
 }
 }
 if (k > 1)
 {
 countPeriod3 = 0;
 index = k - 1;
 offset_x = k - 2;
 for (i = 1; i <= k; i++)
 {

 //---
 // DeficitArray: One array for every period
 // first index in every array is the deficit for that period
 // Subsequent genes list the contracts which are active for a given period
 //--

 for (j = k; j <= NumPeriods; j++)
 {
 index = index + 1;
 countPeriod3 = countPeriod3 + 1;
 DeficitArray[k - 1][countPeriod3] = index;
 }
 index = index + offset_x;
 offset_x = offset_x - 1;

246

 }
 }
 }
 }

 //--
 // This code counts, for each contract, the number of times
 // it appears in a deficit period
 //--
 int holder2 = 0;
 for (k5 = 0; k5 < NumPeriods; k5++)
 {
 if (DeficitArray[k5][0] != 0)
 {
 for (k6 = 1; k6 < IntNumContracts + 1; k6++)
 {
 holder = new Double(DeficitArray[k5][k6]).intValue();
 if (holder != 0)
 {
 ConCount = CommonContracts[holder];
 ConCount = ConCount + 1;
 CommonContracts[holder] = ConCount;
 }
 }
 }
 }

 //--
 // NumCommonContracts = variable containing the total number of
 // contracts in periods with deficits
 //--

 CommonContracts[0] = 0;

 //-----------------------
 // The code that follows assigns the index number of the 1st contract to
 // have the highest number of occurances in a deficit period to variable
 // maxNumIndex; the highest number of occurances is stored in maxNum
 //---------------------------------------

 maxNum = 0;
 maxNumIndex = 0;
 for (k6 = 1; k6 <= IntNumContracts; k6++)
 {
 holder = CommonContracts[k6];
 if (holder >= maxNum)

247

 {
 maxNum = holder;
 maxNumIndex = k6;
 }
 }
 if (maxNumIndex > 0)
 {
 for (k5 = 0; k5 < NumPeriods; k5++)
 {
 if (DeficitArray[k5][0] != 0)
 {
 for (k6 = 1; k6 < IntNumContracts + 1; k6++)
 {
 if (maxNumIndex == DeficitArray[k5][k6])
 {
 period = k5;
 k6 = IntNumContracts + 1;
 k5 = NumPeriods;
 }
 }
 }
 }

 deficitAmount = new Double(DeficitArray[period][0]).intValue();
 DeficitArray[period][0] = 0;

 //----------------------
 // holderB = the deficitAmount for a given period divided by
 // the number of contracts of the given period
 //------------------------

 holderB = new Integer(Rounding.toString(deficitAmount, 0)).intValue();
 holder = Copy1[maxNumIndex];
 holder = holder + holderB;
 Copy1[maxNumIndex] = holder;
 }
 }

 double Total;
 double cumulativeTotal;
 int index2;
 int index3;
 double size1;

 Total = 0;
 cumulativeTotal = 0;

248

 for (j = 1; j <= IntNumContracts; j++)
 {
 index2 = Contract_Period[j - 1];
 index3 = Contract_Length[j - 1];
 size1 = Copy1[j];
 if (size1 > 0)
 {
 /**********************************/
 TCQ[j - 1] = rp_Array[index2 - 1] * ((B[0] * index3) + B[2]);
 TCX[j - 1] = rp_Array[index2 - 1] * B[1] * index3;
 Total = 0;
 Total = TCQ[j - 1] * size1 + TCX[j - 1];
 /********************************/

 cumulativeTotal = cumulativeTotal + Total;
 Copy1[0] = new Double(cumulativeTotal).intValue();
 }
 }

 for (i = 0; i < IntNumContracts + 1; i++)
 {
 OffSpring1[i] = new Integer(Copy1[i]).doubleValue();
 }
 temp1 = 0;
 temp3 = 0;
 index = 0;
 difference = 0;
 sizeDifference = 0;
 feasibilityFlagPool = 0;

 Total = 0;
 cumulativeTotal = 0;

 index3 = 0;
 for (i = 0; i < IntNumContracts + 1; i++)
 {
 CommonContracts[i] = 0;
 for (j = 0; j < NumPeriods; j++)
 {
 DeficitArray[j][i] = 0;
 }
 }

 period = 0;
 turns = turns + 1;
 temp3=0;

249

 for (i = 0; i < IntNumContracts + 1; i++)
 {
 Copy2[i] = new Double(Pool[indexHolder][i]).intValue();
 Best2[i] = new Double(Pool[indexHolder][i]).intValue();
 }
 Best2[0]=9999999;
 for(int alpha=0;alpha<20;alpha++)
 {
 for (i = 0; i < NumPeriods; i++)
 {
 for (j = 0; j <= IntNumContracts; j++)
 {
 DeficitArray[i][j] = 0;
 CommonContracts[j] = 0;
 }
 }
 numDeficit = 1;
 while (numDeficit > 0)
 {
 requiredRepair = 0;
 numDeficit = 0;
 turns = turns + 1;
 DeficitArray = new double[NumPeriods][IntNumContracts + 1];
 //--------------
 // This code finds the deficit amount for each period
 //--------------

 for (k = 1; k <= NumPeriods; k++)
 {
 temp3 = 0;
 if (k == 1)
 {
 index = k - 1;
 for (j = 1; j <= NumPeriods; j++)
 {
 index = index + 1;
 temp1 = 0;
 temp1 = Copy2[index];
 temp3 = temp3 + temp1;
 }
 }
 if (k > 1)
 {
 index = k - 1;
 offset_x = k - 2;

250

 for (i = 1; i <= k; i++)
 {
 for (j = k; j <= NumPeriods; j++)
 {
 index = index + 1;
 temp1 = 0;
 temp1 = Copy2[index];
 temp3 = temp3 + temp1;
 }
 index = index + offset_x;
 offset_x = offset_x - 1;
 }
 }
 if (temp3 < D[k - 1])
 {
 numDeficit = numDeficit + 1;
 requiredRepair = 1;
 difference = D[k - 1] - temp3;
 sizeDifference = new Double(Math.ceil(difference)).intValue();
 DeficitArray[k - 1][0] = sizeDifference;
 }
 else
 {
 DeficitArray[k - 1][0] = 0;
 }
 }
 if (numDeficit == 0)
 break;
//-----------------------------
// This code fills in contracts for deficit periods
//------------------------

 for (k = 1; k <= NumPeriods; k++)
 {
 if (DeficitArray[k - 1][0] != 0)
 {
 if (k == 1)
 {
 countPeriod3 = 0;
 index = k - 1;

 //---
 // DeficitArray: One array for every period
 // first index in every array is the deficit for that period
 // Subsequent genes list the contracts which are active for a given period
 //--

251

 for (j = 1; j <= NumPeriods; j++)
 {
 index = index + 1;
 countPeriod3 = countPeriod3 + 1;
 DeficitArray[k - 1][countPeriod3] = index;
 }
 }
 if (k > 1)
 {
 countPeriod3 = 0;
 index = k - 1;
 offset_x = k - 2;
 for (i = 1; i <= k; i++)
 {

 //---
 // DeficitArray: One array for every period
 // first index in every array is the deficit for that period
 // Subsequent genes list the contracts which are active for a given period
 //--

 for (j = k; j <= NumPeriods; j++)
 {
 index = index + 1;
 countPeriod3 = countPeriod3 + 1;
 DeficitArray[k - 1][countPeriod3] = index;
 }
 index = index + offset_x;
 offset_x = offset_x - 1;
 }
 }
 }
 }

 for (int l = NumPeriods - 1; l >= 0; l--)
 {
 if (DeficitArray[l][0] != 0)
 {
 period = l;
 break;
 }
 }
 int counter = 0;
 for (int l = 1; l < DeficitArray[period].length; l++)
 {

252

 if (DeficitArray[period][l] == 0)
 {
 counter = l - 1;
 break;
 }
 }
 int rand =1+ this.Rand_Number.nextInt(counter-1);

 int contract = new Double(DeficitArray[period][rand]).intValue();
 deficitAmount = new Double(DeficitArray[period][0]).intValue();
 DeficitArray[period][0] = 0;

 //----------------------
 // holderB = the deficitAmount for a given period divided by
 // the number of contracts of the given period
 //------------------------

 holderB = new Integer(Rounding.toString(deficitAmount, 0)).intValue();
 holder = Copy2[contract];
 holder = holder + holderB;
 Copy2[contract] = holder;
 }

 Total = 0;
 cumulativeTotal = 0;
 for (j = 1; j <= IntNumContracts; j++)
 {
 index2 = Contract_Period[j - 1];
 index3 = Contract_Length[j - 1];
 size1 = Copy2[j];
 if (size1 > 0)
 {
 /**********************************/
 TCQ[j - 1] = rp_Array[index2 - 1] * ((B[0] * index3) + B[2]);
 TCX[j - 1] = rp_Array[index2 - 1] * B[1] * index3;
 Total = 0;
 Total = TCQ[j - 1] * size1 + TCX[j - 1];
 /********************************/

 cumulativeTotal = cumulativeTotal + Total;
 Copy2[0] = new Double(cumulativeTotal).intValue();
 }
 }
 if(Best2[0]>Copy2[0])
 {
 for(int beta=0;beta<this.IntNumContracts;beta++)

253

 {

 Best2[beta] = Copy2[beta];
 }
 }
 for(int m=0;m<this.IntNumContracts;m++)
 {
 Copy2[m]= new Double(Pool[indexHolder][m]).intValue();
 }
 }
 for(int beta=0;beta<this.IntNumContracts;beta++)
 {
 Copy2[beta] = Best2[beta];
 }

 for (i = 0; i < IntNumContracts + 1; i++)
 {
 OffSpring2[i] = new Integer(Copy2[i]).doubleValue();
 }

 temp1 = 0;
 temp3 = 0;
 index = 0;
 difference = 0;
 sizeDifference = 0;

 if (OffSpring1[0] < OffSpring2[0])
 {
 for (i = 0; i < IntNumContracts + 1; i++)
 {
 Pool[indexHolder][i] = OffSpring1[i];
 }
 Repair1 = Repair1 + 1;
 }

 if (OffSpring1[0] == OffSpring2[0])
 {
 for (i = 0; i < IntNumContracts + 1; i++)
 {
 Pool[indexHolder][i] = OffSpring1[i];
 }
 RepairTie = RepairTie + 1;
 }

 if (OffSpring1[0] > OffSpring2[0])
 {

254

 for (i = 0; i < IntNumContracts + 1; i++)
 {
 Pool[indexHolder][i] = OffSpring2[i];
 }
 Repair2 = Repair2 + 1;
 }
 }

 private int record_best_chromosome_from_Pool(int NumPeriods)
 {
 int i;
 int j;
 int x;
 int y;
 int count = 0;
 Vector Best = new Vector();
 Vector Test = new Vector();
 int same = 0;

 NumContracts = .5 * NumPeriods * (NumPeriods + 1);
 IntNumContracts = new Double(NumContracts).intValue();
 change = 0;

 if (gen == 0)
 {
 for (i = 0; i < NumOffspring + this.PopSize; i++)
 {
 if (i == 0)
 {
 for (j = 0; j < IntNumContracts + 1; j++)
 {
 bestChromosome[j] = Pool[i][j];
 }
 }
 if (i > 0)
 {
 if (bestChromosome[0] > Pool[i][0])
 {
 for (j = 0; j < IntNumContracts + 1; j++)
 {
 bestChromosome[j] = Pool[i][j];
 }
 }
 else if (bestChromosome[0] == Pool[i][0])
 {
 for (j = 0; j < IntNumContracts + 1; j++)

255

 {
 if (bestChromosome[j] != Pool[i][j])
 {
 same = 1;
 change = 1;
 }
 }
 if (same == 1)
 {
 for (j = 0; j < IntNumContracts + 1; j++)
 {
 bestChromosome[j] = Pool[i][j];
 }
 }
 }
 }
 }
 }
 else if (gen > 0)
 {
 for (i = 0; i < NumOffspring; i++)
 {
 if (bestChromosome[0] > Pool[i][0])
 {
 change = 1;
 for (j = 0; j < IntNumContracts + 1; j++)
 {
 bestChromosome[j] = Pool[i][j];
 }
 }
 else if (bestChromosome[0] == Pool[i][0])
 {
 for (j = 0; j < IntNumContracts + 1; j++)
 {
 if (bestChromosome[j] != Pool[i][j])
 {
 same = 1;
 change = 1;
 }
 }
 if (same == 1)
 {
 for (j = 0; j < IntNumContracts + 1; j++)
 {
 bestChromosome[j] = Pool[i][j];
 }

256

 }
 }
 }
 }
 return change;
 }

 public void write_to_file(boolean first_time, String FileName)
 {
 int p = new Integer(Rounding.toString(gp * 10, 0)).intValue();
 int ad_d = new Integer(Rounding.toString(ad * 1, 0)).intValue();
 int d = new Integer(Rounding.toString(gd * 10, 0)).intValue();
 if (FileName.equals(""))
 {
 this.write = new WriteFile(buff, FileNum);
 if (first_time == true)
 {
 this.write.write_toFile();
 }
 else
 {
 this.write.append_toFile();
 }
 this.buff.delete(0, this.buff.length());
 this.buff = new StringBuffer();
 }
 else
 {
 this.write = new WriteFile(buff2, FileNum, FileName);
 if (first_time == true)
 {
 this.write.write_toFile();
 }
 else
 {
 this.write.append_toFile();
 }
 this.buff2.delete(0, this.buff2.length());
 this.buff2 = new StringBuffer();
 }
 }

 public void Fill_Best_Vector()
 {
 int i;
 int j;

257

 int k;
 int Size;
 double[] tempA;
 double[] tempB;
 NumContracts = .5 * NumPeriods * (NumPeriods + 1);
 IntNumContracts = new Double(NumContracts).intValue();

 tempA = new double[IntNumContracts + 1];
 tempB = new double[IntNumContracts + 1];
 int Size_of_Vector = 20;

 if (gen == 0)
 {
 for (k = 0; k < Size_of_Vector; k++)
 {
 tempB[0] = 999999999;
 Fill_Best.addElement(tempB);
 }
 }
 for (i = 0; i < (NumOffspring + PopSize); i++)
 {
 for (j = Size_of_Vector - 1; j >= 0; j--)
 {
 tempA = (double[]) Fill_Best.elementAt(j);
 if (Pool[i][0] < tempA[0])
 {
 if (j != 0)
 {
 continue;
 }
 else
 {
 Fill_Best.insertElementAt((double[]) Pool[i].clone(), 0);
 Fill_Best.removeElementAt(Fill_Best.size() - 1);
 }
 }
 else if (Pool[i][0] == tempA[0])
 {
 tempB = (double[]) Pool[i].clone();
 int p;
 for (p = 0; p < IntNumContracts + 1; p++)
 {
 if (tempA[p] != tempB[p])
 {
 p = IntNumContracts + 2;
 Fill_Best.insertElementAt((double[]) Pool[i].clone(), j + 1);

258

 Size = Fill_Best.size();
 if (Size > Size_of_Vector)
 {
 Fill_Best.removeElementAt(Fill_Best.size() - 1);
 }
 }
 }
 break;
 }
 else if (Pool[i][0] > tempA[0])
 {
 if (Size_of_Vector - 1 == j)
 {
 Fill_Best.addElement((double[]) Pool[i].clone());
 }
 else
 {
 Fill_Best.insertElementAt((double[]) Pool[i].clone(), j + 1);
 }
 Size = Fill_Best.size();
 if (Size > Size_of_Vector)
 {
 Fill_Best.removeElementAt(Fill_Best.size() - 1);
 }
 break;
 }
 }
 }
 Fill_Best.trimToSize();
 }

 //If you send the timeperiod it will return the index number of all
 // valid contracts in a Vector
 public Vector valid_contracts(int timeperiod)
 {
 Vector valid = new Vector();
 int x = this.NumPeriods;
 int y = timeperiod;
 for (int i =1;i<=timeperiod;i++)
 {
 for(int j=x;j>=y;j--)
 {
 valid.addElement(new Integer(j));
 }
 x= x+this.NumPeriods-i;
 y=y+this.NumPeriods -i;

259

 }
 valid.trimToSize();
 return valid;
 }

/**/
/********************START SIMULATION FUNCTIONS*******************/
/**/
/*Updating demand array with average demand from simulation*******************/
 public void sim_update_demand(double[][] demand)
 {
 double value = 0;
 for(int i=0;i<this.NumPeriods;i++)
 {
 int x = demand[i].length;
 for(int j=0;j<demand[i].length;j++)
 {
 value = value + demand[i][j];
 }
 this.D[i] = value/demand[i].length;
 value=0;
 }
 }
/*Updating price array with average price from simulation********************/
 public void sim_update_price(double[][] price)
 {
 double value = 0;
 for(int i=0;i<this.NumPeriods;i++)
 {
 for(int j=0;j<price[i].length;j++)
 {
 value = value + price[i][j];
 }
 this.rp_Array[i] = value/price[i].length;
 value=0;
 }
 }

 public double find_deficit(double[] chromosome, int Period, int instance)
 {
 double deficit = 0;
 double contract_amount = 0;
 Vector temp = this.valid_contracts(Period+1);
 for(int i =0;i<temp.size();i++)
 {
 int index = ((Integer)temp.elementAt(i)).intValue();

260

 contract_amount = contract_amount+chromosome[index];
 }
 if(instance >=0)
 {
 deficit = this.sim_demand[Period][instance] - contract_amount;
 }
 else
 {
 deficit = this.D[Period] - contract_amount;
 }
 if(deficit<0)
 deficit = 0;
 return deficit;
 }

 public double[] sim_evaluate_chromosome(double[] chromosome, int
chromosome_index)
 {
 this.NumContracts = .5 * this.NumPeriods * (this.NumPeriods + 1);
 this.IntNumContracts = new Double(NumContracts).intValue();
 double [] sim_evaluation = new double[this.sim_instances];
 double avgTotal = 0;
 for(int i=0;i<this.NumPeriods;i++)
 {
 for(int j=0;j<this.sim_instances;j++)
 {
 double deficit = this.find_deficit(chromosome,i,j);
 if (deficit !=0)
 {
 sim_evaluation[j]=sim_evaluation[j]+deficit*(this.sim_price[i][j]*
 B[0]*1+B[2])+this.sim_price[i][j]*
 B[1]*1;
 }
 }
 }
 for (int i=0;i<this.IntNumContracts;i++)
 {
 int contract_period = this.Contract_Period[i];
 int contract_length = this.Contract_Length[i];
 double contract_amount = chromosome[i+1];
 for(int j =0;j<this.sim_instances;j++)
 {
 if(contract_amount != 0)
 {

261

sim_evaluation[j]=sim_evaluation[j]+contract_amount*(this.sim_price[contract_period-
1][j]*
 B[0]*contract_length+B[2])+this.sim_price[contract_period-1][j]*
 B[1]*contract_length;
 }
 }
 }
 this.sim_chromosome_value[chromosome_index]= sim_evaluation.clone();
 for(int i =0;i<this.sim_instances;i++)
 {
 avgTotal = avgTotal + sim_evaluation[i];
 }
 avgTotal = avgTotal/this.sim_instances;
 chromosome[0]= avgTotal;
 return chromosome;
 }

 public double [] training_results(double[] chromosome, int chromosome_index)
 {
 this.NumContracts = .5 * this.NumPeriods * (this.NumPeriods + 1);
 this.IntNumContracts = new Double(NumContracts).intValue();
 double [] sim_evaluation = new double[this.sim_instances];
 double avgTotal = 0;
 for(int i=0;i<this.NumPeriods;i++)
 {
 for(int j=0;j<this.sim_instances;j++)
 {
 double deficit = this.find_deficit(chromosome,i,j);
 if (deficit !=0)
 {
 sim_evaluation[j]=sim_evaluation[j]+deficit*this.sim_price[i][j]*
 (B[0]*1+B[2])+this.sim_price[i][j]*
 B[1]*1;
 }
 }
 }
 for (int i=0;i<this.IntNumContracts;i++)
 {
 int contract_period = this.Contract_Period[i];
 int contract_length = this.Contract_Length[i];
 double contract_amount = chromosome[i+1];
 for(int j =0;j<this.sim_instances;j++)
 {
 if(contract_amount != 0)
 {

262

sim_evaluation[j]=sim_evaluation[j]+contract_amount*this.sim_price[contract_period-
1][j]*
 (B[0]*contract_length+B[2])+this.sim_price[contract_period-1][j]*
 B[1]*contract_length;
 }
 }
 }
 return sim_evaluation;
 }

/**/
/************************END SIMULATION FUNCTIONS******************/
/**/

 /*************** MAIN ****************/
 public static void main(String[] args)
 {
 start ea1 = new start();
 System.out.println("Begin EA");
 ea1.NumPeriods = 6;
 ea1.PopSize = 40;
 ea1.maxGenerations = 500;
 int n = 0;
 int z;
 int ProblemNumber = 0;
 int x;
 int y;
 int count = 0;
 int term = 0;
 double Term_Condition;
 double prob_purchase;
 double randNum;
 int num1;
 int j, k;
 double number;
 int number2;
 int number3;
 double tempz;
 double tempzz;
 double tempy;
 double Restart = 0;
 int Restart_Counter = 0;
 int Gen_Best_Found = 0;
 long TimetoComplete = 0;
 long TimetoBest = 0;

263

 int Size = 1;
 double increment_gp = .02;
 double increment_gd = .02;
 int increment_n = 6;
 int increment_Size = 1;
 int x_count = 0;
 int y_count = 0;
 int z_count = 0;
 String econScale = "x";
 ea1.n_scale = 0;
 int tempRepair1 = 0;
 int tempRepair2 = 0;
 int tempRepairTie = 0;
 ea1.gp = .05;
 ea1.ad = 540;
 ea1.gd = .05;
 ea1.Date = 10.26;
 int i;
 int runNumber;
 int Bingo = 0;
 int numRuns;
 int remainder;
 int numProb;
 int AdjPopSize;
 int AdjMaxGen;
 int AdjInitialDemand;
 int incrementPrice = 0;

 ea1.UniformCrossoverRate = .8;
 ea1.OnePointCrossoverRate = .2;
 ea1.MutationRate2 = .6;
 ea1.MutationRate1 = .6;

 ea1.NumPeriods = 0;
 for (int x_n = 1; x_n <= 3; x_n
 {
 int buff_Length = ea1.buff.length();
 ea1.buff.delete(0, buff_Length);
 ea1.buff = new StringBuffer();
 if (x_n==1)
 {
 ea1.NumPeriods=6;
 }
 else if (x_n==2)
 {
 ea1.NumPeriods=12;

264

 }
 else if(x_n==3)
 {
 ea1.NumPeriods=18;
 }
 else
 {
 System.exit(0);
 }
 ea1.n_scale = ea1.n_scale + 1;
 ea1.NumContracts = .5 * ea1.NumPeriods * (ea1.NumPeriods + 1);
 ea1.IntNumContracts = new Double(ea1.NumContracts).intValue();
 ea1.PoolSize = ea1.PopSize * 200;
 ea1.Best_All_Runs = new double[ea1.IntNumContracts + 1];
 ea1.bestChromosome = new double[ea1.IntNumContracts + 1];
 double[] overall_Best = new double[ea1.IntNumContracts + 1];
 int[] OffSpring1 = new int[ea1.IntNumContracts];
 int[] OffSpring2 = new int[ea1.IntNumContracts];
 Size = 0;
 y_count = 0;

 for (int x_Size = 1; x_Size <= 3; x_Size++)
 {
 ea1.gen = 0;
 Size = Size + 1;
 y_count = 0;
 ea1.gp = .05;
 ea1.gd = .05;

 buff_Length = ea1.buff.length();
 ea1.buff.delete(0, buff_Length);
 ea1.buff = new StringBuffer();

 if (Size == 1)
 {
 //Small economies of scale
 /* */
 ea1.B1 = 13.116;
 ea1.B2 = 962.927;
 ea1.B3 = 258.526;
 econScale = "econScale-Small";
 /* */
 }
 if (Size == 2)
 {
 //Medium economies of scale

265

 /* */
 ea1.B1 = 6.757;
 ea1.B2 = 928.503;
 ea1.B3 = 364.989;
 econScale = "econScale-Medium";
 /* */
 }
 if (Size == 3)
 {
 //Large economies of scale
 /* */
 ea1.B1 = 0.3977;
 ea1.B2 = 894.115;
 ea1.B3 = 471.416;
 econScale = "econScale-Large";
 /* */
 }

 ea1.B[0] = ea1.B1;
 ea1.B[1] = ea1.B2;
 ea1.B[2] = ea1.B3;

 for (numProb = 1; numProb <= 9; numProb++)
 {
 ProblemNumber = ProblemNumber + 1;
 y_count = y_count + 1;
 ea1.gen = 0;
 ea1.NumContracts = .5 * ea1.NumPeriods * (ea1.NumPeriods + 1);
 ea1.IntNumContracts = new Double(ea1.NumContracts).intValue();
 ea1.fill_arrays();
 ea1.FileNum = ea1.FileNum + 1;
 runNumber = 0;
 int MaxRuns = 1;
 double overall_BestofRuns = 0;
 double TimetoBestofRuns = 0;
 double TimetoCompleteforAllRuns = 0;
 int Gen_BestofRuns = 0;
 double[][] runFitnessTimes = new double[MaxRuns][5];
 double TotalTimetoCompleteforAllRuns = 0;
/**/
/************************SIMULATION CODE****************************/
/**/
 ea1.sim1 = new sim(ea1.NumPeriods,ea1.B, false, false,ProblemNumber);
 int distribution = 1;//1 for Uniform, 2 for Normal, 3 for Exponential
 double d_spread = 0.1;// This gives the width for Uniform and std dev for Normal
distribution (< 1)

266

 double p_spread = 0.1;

 if(ea1.gd == 0.05)
 {
 d_spread = 0.1;
 }
 else if (ea1.gd == 0.07)
 {
 d_spread = 0.06;
 }
 else if (ea1.gd == 0.09)
 {
 d_spread = 0.02;
 }
 if(ea1.gp == 0.05)
 {
 p_spread = 0.1;
 }
 else if (ea1.gp == 0.07)
 {
 p_spread = 0.06;
 }
 else if (ea1.gp == 0.09)
 {
 p_spread = 0.02;
 }
 ea1.sim1.populate(distribution,ea1.gp,ea1.gd,d_spread, p_spread);
 ea1.sim_price = ea1.sim1.price.clone();
 ea1.sim_demand = ea1.sim1.demand.clone();
 ea1.sim_update_demand(ea1.sim_demand);
 ea1.sim_update_price(ea1.sim_price);
 ea1.sim_instances = ea1.sim1.NumSim;
/**/
 System.out.println("Solving Problem Number " + ProblemNumber);
 System.out.println("N = " + ea1.NumPeriods + ", gp = " + ea1.gp +
 ", ad = " + ea1.ad + ", d_spread = "+ d_spread +
 ", p_spread = "+ p_spread +
 ", gd = " + ea1.gd + ", B1 = " + ea1.B1 +
 ", B2 = " + ea1.B2 + ", B3 = " + ea1.B3 +
 ", # best the same last value = " + count +
 ", PopSize = " + ea1.PopSize +
 ", MaxGeneration = " + ea1.maxGenerations);
 System.out.println(econScale + ", UniformCrossoverRate = " +
 ea1.UniformCrossoverRate +
 ", OnePointCrossoverRate = " +
 ea1.OnePointCrossoverRate +

267

 ", MutationRate2 = " + ea1.MutationRate2 +
 ", ea1.MutationRate1 = " + ea1.MutationRate1);
 System.out.println("PopSize = " + ea1.PopSize +
 ", MaxGeneration = " + ea1.maxGenerations +
 ", # Restarts = " + Restart_Counter);
 ea1.temp = "N = "+ea1.NumPeriods+", gp = "+ea1.gp+", ad = "+ea1.ad
 +", gd = "+ea1.gd+", d_spread = "+ d_spread+", p_spread = "+
 p_spread +", B1 = "+ea1.B1+" , B2 = "+ea1.B2+", B3 = "
 +ea1.B3+", PopSize = "+ea1.PopSize+", MaxGeneration = "+
 ea1.maxGenerations;
 ea1.buff.append(ea1.temp + "\r\n");
 ea1.temp = econScale + ", UniformCrossoverRate = " +
 ea1.UniformCrossoverRate +
 ", OnePointCrossoverRate = " + ea1.OnePointCrossoverRate +
 ", MutationRate2 = " + ea1.MutationRate2 +
 ", ea1.MutationRate1 = " + ea1.MutationRate1;
 ea1.buff.append(ea1.temp + "\r\n");
 ea1.temp = "PopSize = " + ea1.PopSize + ", MaxGeneration = " +
 ea1.maxGenerations;
 ea1.buff.append(ea1.temp + "\r\n");

 for (numRuns = 1; numRuns <= MaxRuns; numRuns++)
 {
 ea1.gen = 0;
 ea1.initialize_chromosomes();
 long Start = System.currentTimeMillis();
 TimetoComplete = 0;
 TimetoBest = 0;
 term = 0;
 Restart = 0;
 Restart_Counter = 0;
 overall_Best[0] = 999999999;
 Gen_Best_Found = 0;
 count = 0;
 runNumber = runNumber + 1;
 System.out.println(" ");
 ea1.buff.append("\n");
 System.out.println("Problem Number = " + ProblemNumber +
 ", Run Number = " + runNumber);
 ea1.temp = "Problem Number = " + ProblemNumber +
 ", Run Number = " + runNumber;
 ea1.buff.append(ea1.temp + "\r\n");
 ea1.counter = ea1.PopSize;
 for (ea1.gen = 0; ea1.gen <= ea1.maxGenerations; ea1.gen++)
 {
 ea1.NumOffspring = ea1.PopSize;

268

 ea1.counter = ea1.PopSize;
 ea1.initialize_chromosome_pool(ea1.PopSize, ea1.IntNumContracts);
 ea1.mutation_operator();
 ea1.OnePoint_crossover_operator();
 ea1.Uniform_crossover_operator();
 ea1.Repair1 = 0;
 ea1.Repair2 = 0;
 ea1.RepairTie = 0;
 for (ea1.indexHolder = 0;
 ea1.indexHolder < (ea1.NumOffspring + ea1.PopSize);
 ea1.indexHolder++)
 {
 ea1.repair_function_pool(ea1.NumPeriods);
 tempRepair1 = tempRepair1 + ea1.Repair1;
 tempRepair2 = tempRepair2 + ea1.Repair2;
 tempRepairTie = tempRepairTie + ea1.RepairTie;
 }
/**/
/******************SIM CODING**/
/**/
 ea1.sim_chromosome_value = new double[ea1.NumOffspring +
ea1.PopSize][ea1.sim_instances];
 for(i =0;i<(ea1.NumOffspring + ea1.PopSize);i++)
 {
 double[] chromosome = ea1.sim_evaluate_chromosome(ea1.Pool[i],i);
 ea1.Pool[i] = chromosome.clone();
 }
/**/

 ea1.change = ea1.record_best_chromosome_from_Pool(ea1.NumPeriods);
 ea1.Fill_Best_Vector();
 if (ea1.change == 0)
 {
 count = count + 1;
 }
 else if (ea1.change == 1)
 {
 count = 0;
 }
 term = ea1.gen;
 if (overall_Best[0] > ea1.bestChromosome[0])
 {
 Gen_Best_Found = ea1.gen;
 for (i = 0; i < ea1.IntNumContracts + 1; i++)
 {
 overall_Best[i] = ea1.bestChromosome[i];

269

 }
 long ToBest = System.currentTimeMillis();
 TimetoBest = ToBest - Start;
 }
 for (i = 0; i < ea1.PopSize; i++)
 {
 for (j = 0; j < ea1.IntNumContracts + 1; j++)
 {
 ea1.Chromosome[i][j] = 0;
 }
 }
 for (ea1.indexHolder = 0;
 ea1.indexHolder < ea1.IntNumContracts + 1;
 ea1.indexHolder++)
 {
 ea1.Chromosome[0][ea1.indexHolder] =
 ea1.bestChromosome[ea1.indexHolder];
 }

 ea1.select_next_generation();
 for (i = 0; i < ea1.PoolSize; i++)
 {
 for (j = 0; j < ea1.IntNumContracts + 1; j++)
 {
 ea1.Pool[i][j] = 0;
 }
 }
 if (count >= 100 * ea1.NumPeriods)
 {
 term = ea1.gen;
 ea1.gen = ea1.maxGenerations;
 }
 }

 long End = System.currentTimeMillis();
 TimetoComplete = End - Start;
 runFitnessTimes[numRuns - 1][0] = overall_Best[0];
 runFitnessTimes[numRuns - 1][1] = Gen_Best_Found;
 runFitnessTimes[numRuns - 1][2] = TimetoBest;
 runFitnessTimes[numRuns - 1][3] = TimetoComplete;

 if (numRuns == 1)
 {
 overall_BestofRuns = runFitnessTimes[numRuns - 1][0];
 Gen_BestofRuns = new Double(runFitnessTimes[numRuns - 1][1]).
 intValue();

270

 TotalTimetoCompleteforAllRuns = TimetoComplete;
 TimetoBestofRuns = runFitnessTimes[numRuns - 1][2];

 for (z = 0; z < ea1.IntNumContracts + 1; z++)
 {
 ea1.Best_All_Runs[z] = ea1.bestChromosome[z];
 }
 }
 else
 {
 if (runFitnessTimes[numRuns - 2][0] >
 runFitnessTimes[numRuns - 1][0])
 {
 overall_BestofRuns = runFitnessTimes[numRuns - 1][0];
 Gen_BestofRuns = new Double(runFitnessTimes[numRuns - 1][1]).
 intValue();
 TimetoBestofRuns = runFitnessTimes[numRuns - 1][2];
 for (j = 0; j < ea1.IntNumContracts + 1; j++)
 {
 ea1.Best_All_Runs[j] = ea1.bestChromosome[j];
 }
 }
 else
 {
 if (runFitnessTimes[numRuns - 2][0] ==
 runFitnessTimes[numRuns - 1][0] &&
 runFitnessTimes[numRuns - 2][1] >
 runFitnessTimes[numRuns - 1][1])
 {
 overall_BestofRuns = runFitnessTimes[numRuns - 1][0];
 Gen_BestofRuns = new Double(runFitnessTimes[numRuns - 1][1]).
 intValue();
 TimetoBestofRuns = runFitnessTimes[numRuns - 1][2];
 for (j = 0; j < ea1.IntNumContracts + 1; j++)
 {
 ea1.Best_All_Runs[j] = ea1.bestChromosome[j];
 }
 }
 }
 TotalTimetoCompleteforAllRuns = TotalTimetoCompleteforAllRuns +
 TimetoComplete;
 }
 System.out.println("Gen # Run terminated = " + term);
 ea1.temp = "Gen # Run terminated = " + term;
 ea1.buff.append(ea1.temp + "\r\n");
 System.out.println("Gen to find Best Chromosome this run = " +

271

 runFitnessTimes[numRuns - 1][1]);
 ea1.temp = "Gen to find Best Chromosome this run = " +
 runFitnessTimes[numRuns - 1][1];
 ea1.buff.append(ea1.temp + "\r\n");
 System.out.println("Time to find Best Chromosome = " +
 runFitnessTimes[numRuns - 1][2] +
 " milliseconds; i.e., " +
 (runFitnessTimes[numRuns - 1][2] / 1000) +
 " seconds");
 ea1.temp = "Time to find Best Chromosome = " +
 runFitnessTimes[numRuns - 1][2] + " milliseconds; i.e., " +
 (runFitnessTimes[numRuns - 1][2] / 1000) + " seconds";
 ea1.buff.append(ea1.temp + "\r\n");
 System.out.println("Time to Complete EA run = " +
 runFitnessTimes[numRuns - 1][3] +
 " milliseconds; i.e., " +
 (runFitnessTimes[numRuns - 1][3] / 1000) +
 " seconds");
 ea1.temp = "Time to Complete EA run = " +
 runFitnessTimes[numRuns - 1][3] + " milliseconds; i.e., " +
 (runFitnessTimes[numRuns - 1][3] / 1000) + " seconds";
 ea1.buff.append(ea1.temp + "\r\n");
 System.out.println(" ");
 ea1.buff.append(ea1.temp + "\r\n\r\n");
 runFitnessTimes[numRuns -
 1][4] = (((overall_BestofRuns - ea1.iLP_Opt) / ea1.iLP_Opt) *
 100);
 System.out.println(" ");
 ea1.buff.append("\r\n");
 System.out.print("Run #" + numRuns + ". ");
 ea1.temp = "Run #" + numRuns + "). ";
 ea1.buff.append(ea1.temp);
 for (y = 0; y < 5; y++)
 {
 System.out.print(runFitnessTimes[numRuns - 1][y] + " | ");
 ea1.temp = runFitnessTimes[numRuns - 1][y] + " | ";
 ea1.buff.append(ea1.temp);
 }
 System.out.println(" ");
 ea1.buff.append("\r\n");
 System.out.println("(1: best fitness value, 2: gen best found, 3: time to best
(msec), 4: time to complete (msec), 5:% error)");
 ea1.buff.append("\r\n");
 System.out.println(" ");
 ea1.buff.append("\r\n");
 System.out.print("Best All Runs: ");

272

 ea1.temp = "Best All Runs: ";
 ea1.buff.append(ea1.temp + "\r\n");
 System.out.println("Best Chromosome for Run Number #" + numRuns +
 ": ");
 ea1.temp = "Best Chromosome for Run Number #" + numRuns + ": ";
 ea1.buff.append(ea1.temp + "\r\n");
 for (j = 0; j < ea1.IntNumContracts + 1; j++)
 {
 System.out.print(ea1.bestChromosome[j] + " | ");
 ea1.temp = ea1.bestChromosome[j] + " | ";
 ea1.buff.append(ea1.temp);
 }
 System.out.println(" ");
 ea1.buff.append("\r\n");
 System.out.println("Best 20 chromosomes from EA run #" + numRuns +
 " for Problem # " + ea1.FileNum);
 ea1.buff2.append("Best 20 chromosomes from EA run \r\n");

 double[][] tempA1 = new double[20][100];
 StringBuffer sim_buff = new StringBuffer();
 for(i=0;i<20;i++)
 {
 tempA1[i]=ea1.training_results((double[]) ea1.Fill_Best.elementAt(i),i);
 }
 StringBuffer buff1 = new StringBuffer();
 for(i=0;i<20;i++)
 {
 for(k=0;k<100;k++)
 {
 buff1.append(tempA1[i][k]+",");
 }
 buff1.append("\r\n");
 }
 WriteFile sim_write = new WriteFile(buff1,ProblemNumber,"train_res");
 sim_write.write_toFile();
 double [] tempA = new double[ea1.IntNumContracts];
 for (i = 0; i < 20; i++)
 {
 tempA = (double[]) ea1.Fill_Best.elementAt(i);
 for (j = 0; j < tempA.length; j++)
 {
 ea1.temp2 = new Double(tempA[j]).toString() + " , ";
 ea1.buff2.append(ea1.temp2);
 }
 ea1.buff2.append("\r\n");
 }

273

 ea1.buff2.append("\r\n");
 ea1.Fill_Best.removeAllElements();
 if (numRuns == 1)
 {
 ea1.write_to_file(true, "Best Chromosomes ");
 }
 else
 {
 ea1.write_to_file(false, "Best Chromosomes ");
 }
 System.out.println(" ");
 ea1.buff.append("\r\n");
 }
 System.out.println(" ");
 ea1.buff.append("\r\n");
 System.out.println("Total Time to Complete " + MaxRuns +
 " EA runs = " +
 TimetoCompleteforAllRuns +
 " milliseconds; i.e., " +
 (TimetoCompleteforAllRuns / 1000) + " seconds");
 ea1.temp = "Total Time to Complete " + MaxRuns + " EA runs = " +
 TimetoCompleteforAllRuns + " milliseconds; i.e., " +
 (TimetoCompleteforAllRuns / 1000) + " seconds";
 ea1.buff.append(ea1.temp + "\r\n");
 System.out.println("Average Total Time to Complete " + MaxRuns +
 " EA runs = " +
 (TimetoCompleteforAllRuns / MaxRuns) +
 " milliseconds; i.e., " +
 (TimetoCompleteforAllRuns / MaxRuns / 1000) +
 " seconds");
 ea1.temp = "Average Total Time to Complete " + MaxRuns +
 " EA runs = " +
 (TimetoCompleteforAllRuns / MaxRuns) + " milliseconds; i.e., " +
 (TimetoCompleteforAllRuns / MaxRuns / 1000) + " seconds";
 ea1.buff.append(ea1.temp + "\r\n");
 System.out.println("Best Fitness Value found during " + MaxRuns +
 " EA runs = " +
 overall_BestofRuns);
 ea1.temp = "Best Fitness Value found during " + MaxRuns +
 " EA runs = " +
 overall_BestofRuns;
 ea1.buff.append(ea1.temp + "\r\n");

 for (x = 1; x <= MaxRuns; x++)
 {
 System.out.print("Run #" + x + ". ");

274

 ea1.temp = "Run #" + x + "). ";
 ea1.buff.append(ea1.temp + "\r\n");
 for (y = 0; y < 5; y++)
 {
 System.out.print(runFitnessTimes[x - 1][y] + " | ");
 ea1.temp = runFitnessTimes[x - 1][y] + " | ";
 ea1.buff.append(ea1.temp);
 }
 System.out.println(" ");
 ea1.buff.append("\r\n");
 }
 System.out.println(" ");
 ea1.buff.append("\r\n");
 System.out.print("Best All Runs: ");
 ea1.temp = "Best All Runs: ";
 ea1.buff.append(ea1.temp + "\r\n");
 for (j = 0; j < ea1.IntNumContracts + 1; j++)
 {
 System.out.print(ea1.Best_All_Runs[j] + " | ");
 ea1.temp = ea1.Best_All_Runs[j] + " | ";
 ea1.buff.append(ea1.temp);
 }
 System.out.println("\n ");
 ea1.buff.append("\r\n\n");
 System.out.println("Total Time to Complete All " + numRuns + "Runs: " +
 TotalTimetoCompleteforAllRuns);
 ea1.temp = "Total Time to Complete All " + numRuns + "Runs: " +
 TotalTimetoCompleteforAllRuns;
 ea1.buff.append("\r\n");
 System.out.println("D Array: ");
 ea1.buff.append("D Array: ");
 ea1.buff.append("\r\n");
 for (j = 0; j < ea1.NumPeriods; j++)
 {
 System.out.println(ea1.D[j]);
 ea1.temp = ea1.D[j] + "\n";
 ea1.buff.append(ea1.temp + "\r\n");
 }
 System.out.println("\n ");
 ea1.buff.append("\r\n");

 if (numRuns == 1)
 {
 ea1.write_to_file(true, "");
 }

275

 else
 {
 ea1.write_to_file(false, "");
 }
 Bingo = 0;

 if (ea1.gd >= .09)
 {
 if (z_count < 2)
 {
 ea1.gp = ea1.gp + increment_gp;
 ea1.gd = 0.03;
 z_count = z_count + 1;
 }
 else if (z_count >= 2)
 {
 z_count = 0;
 ea1.gp = 0.05;
 ea1.gd = 0.03;
 }
 }
 ea1.gd = ea1.gd + increment_gd;
 ea1.gd= new Double(Rounding.toString(ea1.gd,2)).doubleValue();
 ea1.gp = new Double(Rounding.toString(ea1.gp,2)).doubleValue();
 }
 }
 }
 }
}

Sim.java
package sim_ea;

import java.util.Random;
import java.math.*;

public class sim
{
 public Random random;
 public double demand[][];
 public double price[][];
 public double dem_prob []; //Probability of Demand Increase happening
 public double price_prob []; //Probability of Price Increase happening
 public int NumPeriod; //Number of Periods
 public int NumSim; //Number of Simulations
 public double B[]; //Beta weights to calculate price

276

 public boolean dem_iid; //True demand increase is independent
 public boolean price_iid; //True price decrease in independent
 public boolean did_dem_increase[]; //For each instance did demand increase or decrease
in the previous period
 public boolean did_price_decrease[]; //For each instance did price decrease in the
previous period
 public int Problem_Number;

 public sim(int NumPeriod, double[] B, boolean dem_iid, boolean price_iid, int
ProblemNumber)
 {
 this.Problem_Number = ProblemNumber;
 this.price_iid = price_iid;
 this.dem_iid = dem_iid;
 this.NumPeriod = NumPeriod;
 this.B = B.clone();
 this.NumSim=500;
 this.random = new Random();
 this.demand = new double[this.NumPeriod][this.NumSim];
 this.price= new double [this.NumPeriod][this.NumSim];
 this.dem_prob = new double[this.NumSim];
 this.price_prob = new double[this.NumSim];
 this.did_dem_increase = new boolean[this.NumSim];
 this.did_price_decrease = new boolean[this.NumSim];
 for(int i = 0; i<this.NumSim;i++)
 {
 this.dem_prob[i]=0.5;
 this.price_prob[i]=0.5;
 this.did_dem_increase[i] = false;
 this.did_price_decrease[i] = false;
 }
 }

 public boolean bernoulli(double value)
 {
 boolean result = false;
 if(this.random.nextDouble()<value)
 {
 result = true;
 }
 return result;
 }

 public double exponential(double mean)
 {
 double value = 0;

277

 value = - mean * Math.log(1-this.random.nextDouble());
 return value;
 }

 public double uniform(double min, double max)
 {
 double value = this.random.nextDouble();
 value = min + (max - min)*value;
 return value;
 }

 public double normal (double mean, double stdev)
 {
 double value = 0;
 value = mean + stdev*this.random.nextGaussian();
 return value;
 }

 public void write(int distribution)
 {
 StringBuffer dem_buff = new StringBuffer();
 StringBuffer price_buff = new StringBuffer();
 for(int i=0;i<this.NumPeriod;i++)
 {
 for (int j = 0; j < this.NumSim; j++)
 {
 dem_buff.append(Rounding.toString(this.demand[i][j],0)+",");
 price_buff.append(Rounding.toString(this.price[i][j],4)+",");
 }
 dem_buff.append("\r\n");
 price_buff.append("\r\n");
 }
 WriteFile dem_write = new WriteFile(dem_buff, this.Problem_Number,"Demand-
"+distribution+"-");
 dem_write.write_toFile();
 WriteFile price_write = new WriteFile(price_buff, this.Problem_Number,"Price-
"+distribution+"-");
 price_write.write_toFile();
 }

 public void populate(int distribution, double gp, double gd, double d_spread, double
p_spread)
 {
 for(int i=0;i<this.NumPeriod;i++)
 {
 for(int j=0;j<this.NumSim;j++)

278

 {
 if(i==0)
 {
 this.demand[0][j]=540;
 this.price[0][j]=1;
 this.did_price_decrease[j] = false;
 this.did_dem_increase[j]=false;
 continue;
 }
 if(this.dem_iid==false)
 {
 if (this.did_dem_increase[j] == true)
 {
 this.dem_prob[j] = this.dem_prob[j];
 }
 else
 {
 this.dem_prob[j] = this.dem_prob[j] + 0.05;
 }
 }
 boolean dem_increase = this.bernoulli(this.dem_prob[j]);
 if (dem_increase == true)
 {
 if(distribution == 1)//1 for Uniform, 2 for Normal, 3 for Exponential
 {
 this.demand[i][j]=this.demand[i-1][j]*(1+this.uniform(gd,gd+d_spread));
 }
 else if (distribution == 2)
 {
 this.demand[i][j]=this.demand[i-1][j]*(1+this.normal(gd,d_spread));
 }
 else if (distribution ==3)
 {
 this.demand[i][j]=this.demand[i-1][j]*(1+this.exponential(gd));
 }
 this.did_dem_increase[i] = true;
 }
 else
 {
 this.demand[i][j]=this.demand[i-1][j];
 this.did_dem_increase[j] = false;
 }
 if(this.price_iid==false)
 {
 if (this.did_price_decrease[j] == true)
 {

279

 this.price_prob[j] = this.price_prob[j];
 }
 else
 {
 this.price_prob[j] = this.price_prob[j] + 0.05;
 }
 }
 boolean price_decrease = this.bernoulli(this.price_prob[j]);
 if (price_decrease == true)
 {
 if(distribution == 1)//1 for Uniform, 2 for Normal, 3 for Exponential
 {
 this.price[i][j]=this.price[i-1][j]*(1-this.uniform(gp,gp+p_spread));
 }
 else if (distribution == 2)
 {
 this.price[i][j]=this.price[i-1][j]*(1-this.normal(gp,p_spread));
 }
 else if (distribution ==3)
 {
 this.price[i][j]=this.price[i-1][j]*(1-this.exponential(gp));
 }
 this.did_price_decrease[i] = true;
 }
 else
 {
 this.price[i][j]=this.price[i-1][j];
 this.did_price_decrease[j] = false;
 }
 }

 }
 this.write(distribution);
 }
}

Testing

Start.java
package sim_contract;
import java.util.StringTokenizer;
import java.util.Vector;
public class start
{

280

 public ReadFile read;
 public WriteFile write;
 public int NumPeriods;
 public int NumContracts;
 public int ProblemNumber;
 public double[] B;
 public double [] D;
 public double [] rp_Array;
 public double [] rd_Array;
 public double gp;
 public double gd;
 public sim sim1;
 public Vector solution;
 public int [] Contract_Period;
 public int [] Contract_Length;
 /************SIM VARIABLES***/
 public double sim_demand[][];
 public double sim_price[][];
 public double[][] sim_chromosome_value;
 public int sim_instances;

/**/

 public start ()
 {
 this.B = new double[3];
 this.solution = new Vector();
 }

 /*Updating demand array with average demand from simulation******************/
 public void sim_update_demand(double[][] demand)
 {
 double value = 0;
 for(int i=0;i<this.NumPeriods;i++)
 {
 for(int j=0;j<demand[i].length;j++)
 {
 value = value + demand[i][j];
 }
 this.D[i] = value/demand[i].length;
 value=0;
 }
 }
 /*Updating price array with average price from simulation********************/
 public void sim_update_price(double[][] price)
 {

281

 double value = 0;
 for(int i=0;i<this.NumPeriods;i++)
 {
 for(int j=0;j<price[i].length;j++)
 {
 value = value + price[i][j];
 }
 this.rp_Array[i] = value/price[i].length;
 value=0;
 }
 }

 public void initialize_globalvariables()
 {
 this.D = new double[this.NumPeriods];
 this.rp_Array = new double[this.NumPeriods];
 this.rd_Array = new double[this.NumPeriods];
 this.NumContracts=this.NumPeriods*(this.NumPeriods+1)/2;
 this.Contract_Length = new int[this.NumContracts];
 this.Contract_Period= new int[this.NumContracts];
 int index = 0;
 for (int i = 0; i <= NumPeriods; i++)
 {
 for (int j = 1; j <= NumPeriods - i; j++)
 {
 Contract_Length[index] = j;
 index = index + 1;
 }
 }
 int count = 0;
 for (int i = 1; i < this.NumPeriods + 1; i++)
 {
 for (int j = 1; j < this.NumPeriods + 2 - i; j++)
 {
 this.Contract_Period[count] = i;
 count = count + 1;
 }
 }
 }

 public void parse_input()
 {
 StringTokenizer token = new StringTokenizer(this.read.buf.toString(),",");
 StringBuffer buff = new StringBuffer();
 double[] chromosome = new double[this.NumContracts + 1];
 for(int i=0;i<20;i++)

282

 {
 for(int j=0;j<=this.NumContracts;j++)
 {
 chromosome[j]=new Double(token.nextToken()).doubleValue();
 }
 buff.append(chromosome[0]+"\r\n");
 this.solution.addElement((double[])chromosome.clone());
 }
 WriteFile write = new WriteFile(buff,1,"Det-fitness");
 try
 {
 write.append_toFile();
 }
 catch(Exception ex)
 {
 System.out.println(ex);
 }
 }

 public Vector valid_contracts(int timeperiod)
 {
 Vector valid = new Vector();
 int x = this.NumPeriods;
 int y = timeperiod;
 for (int i =1;i<=timeperiod;i++)
 {
 for(int j=x;j>=y;j--)
 {
 valid.addElement(new Integer(j));
 }
 x= x+this.NumPeriods-i;
 y=y+this.NumPeriods -i;
 }
 valid.trimToSize();
 return valid;
 }

 public double find_deficit(double[] chromosome, int Period, int instance)
 {
 double deficit = 0;
 double contract_amount = 0;
 Vector temp = this.valid_contracts(Period+1);
 for(int i =0;i<temp.size();i++)
 {
 int index = ((Integer)temp.elementAt(i)).intValue();
 contract_amount = contract_amount+chromosome[index];

283

 }
 if(instance >=0)
 {
 deficit = this.sim_demand[Period][instance] - contract_amount;
 }
 else
 {
 deficit = this.D[Period] - contract_amount;
 }
 if(deficit<0)
 deficit = 0;
 return deficit;
 }
 public double [] training_results(double[] chromosome, int chromosome_index)
 {
 int IntNumContracts = NumContracts;
 double [] sim_evaluation = new double[this.sim_instances];
 double avgTotal = 0;
 for(int i=0;i<this.NumPeriods;i++)
 {
 for(int j=0;j<this.sim_instances;j++)
 {
 double deficit = this.find_deficit(chromosome,i,j);
 if (deficit !=0)
 {
 sim_evaluation[j]=sim_evaluation[j]+deficit*(this.sim_price[i][j]*
 B[0]*1+B[2])+this.sim_price[i][j]*
 B[1]*1;
 }
 }

 }
 for (int i=0;i<IntNumContracts;i++)
 {
 int contract_period = this.Contract_Period[i];
 int contract_length = this.Contract_Length[i];
 double contract_amount = chromosome[i+1];
 for(int j =0;j<this.sim_instances;j++)
 {
 if(contract_amount != 0)
 {

sim_evaluation[j]=sim_evaluation[j]+contract_amount*(this.sim_price[contract_period-
1][j]*
 B[0]*contract_length+B[2])+this.sim_price[contract_period-1][j]*
 B[1]*contract_length;

284

 }
 }
 }
 return sim_evaluation;
 }

 public static void main (String[] args)
 {
 start start1 = new start () ;
 for (int x_n = 1; x_n <= 3; x_n++)
 {
 if (x_n==1)
 {
 start1.NumPeriods=6;
 }
 else if (x_n==2)
 {
 start1.NumPeriods=12;
 }
 else if(x_n==3)
 {
 start1.NumPeriods=18;
 }
 else
 {
 System.exit(0);
 }
 start1.initialize_globalvariables();
 for (int x_Size = 1; x_Size <= 3; x_Size++)
 {
 start1.gp = .05;
 start1.gd = .05;
 //Commented for testing deterministic sol

 if (x_Size == 1)
 {
 //Small economies of scale
 /* */
 start1.B[0] = 13.116;
 start1.B[1] = 962.927;
 start1.B[2] = 258.526;
 //econScale = "econScale-Small";
 /* */
 }

285

 if (x_Size == 2)
 {
 //Medium economies of scale
 /* */
 start1.B[0] = 6.757;
 start1.B[1] = 928.503;
 start1.B[2] = 364.989;
 //econScale = "econScale-Medium";
 /* */
 }
 if (x_Size == 3)
 {
 //Large economies of scale
 /* */
 start1.B[0] = 0.3977;
 start1.B[1] = 894.115;
 start1.B[2] = 471.416;
 //econScale = "econScale-Large";
 /* */
 }
 int counter =0;
 for (int numProb = 1; numProb <= 9; numProb++)
 {
 start1.solution = new Vector();
 start1.ProblemNumber++;

/***/
/***********************SIMULATION CODE***************************/

/***/
 start1.sim1 = new sim(start1.NumPeriods,start1.B, false,
false,start1.ProblemNumber);
 int distribution = 1;//1 for Uniform, 2 for Normal, 3 for Exponential
 double d_spread = 0.1;// This gives the width for Uniform and std dev for Normal
distribution (< 1)
 double p_spread = 0.1;

 if(start1.gd == 0.05)
 {
 d_spread = 0.1;
 }
 else if (start1.gd == 0.07)
 {
 d_spread = 0.06;
 }
 else if (start1.gd == 0.09)

286

 {
 d_spread = 0.02;
 }
 if(start1.gp == 0.05)
 {
 p_spread = 0.1;
 }
 else if (start1.gp == 0.07)
 {
 p_spread = 0.06;
 }
 else if (start1.gp == 0.09)
 {
 p_spread = 0.02;
 }
 start1.sim1.populate(distribution,start1.gp,start1.gd,d_spread, p_spread);
 start1.sim_price = start1.sim1.price.clone();
 start1.sim_demand = start1.sim1.demand.clone();
 start1.sim_update_demand(start1.sim_demand);
 start1.sim_update_price(start1.sim_price);
 start1.sim_instances = start1.sim1.NumSim;

/**/
 start1.read = new ReadFile("Best Chromosomes "+start1.ProblemNumber+".txt");
 try
 {
 start1.read.read_input();
 }
 catch(Exception ex)
 {
 System.out.println(ex);
 }
 start1.parse_input();
 System.out.println("Best Chromosomes "+start1.ProblemNumber+".txt "+
 "gd="+start1.gd+" gp="+start1.gp+" d_spread="+d_spread+"
p_spread="+p_spread);
 double[][] tempA = new double[20][100];
 StringBuffer sim_buff = new StringBuffer();
 for(int i=0;i<20;i++)
 {
 double[] temp =(double[]) start1.solution.elementAt(i);
 tempA[i]=start1.training_results(temp,i);
 }
 StringBuffer buff1 = new StringBuffer();
 for(int i=0;i<20;i++)
 {

287

 for(int j=0;j<100;j++)
 {
 buff1.append(tempA[i][j]+",");
 }
 buff1.append("\r\n");
 }
 WriteFile sim_write = new WriteFile(buff1,start1.ProblemNumber,"test_res");
 sim_write.write_toFile();
 start1.gd=new Double(Rounding.toString(start1.gd+0.02,2)).doubleValue();
 counter++;
 if(counter > 2)
 {
 start1.gd=0.05;
 start1.gp=new Double(Rounding.toString(start1.gp+0.02,2)).doubleValue();
 counter =0;
 }
 }
 }
 }
 }
 }

Sim.java
package sim_contract;
import java.util.Random;
import java.math.*;

public class sim
{
 public Random random;
 public double demand[][];
 public double price[][];
 public double dem_prob []; //Probability of Demand Increase happening
 public double price_prob []; //Probability of Price Increase happening
 public int NumPeriod; //Number of Periods
 public int NumSim; //Number of Simulations
 public double B[]; //Beta weights to calculate price
 public boolean dem_iid; //True demand increase is independent
 public boolean price_iid; //True price decrease in independent
 public boolean did_dem_increase[]; //For each instance did demand increase or decrease
in the previous period
 public boolean did_price_decrease[]; //For each instance did price decrease in the
previous period
 public int Problem_Number;

288

 public sim(int NumPeriod, double[] B, boolean dem_iid, boolean price_iid, int
ProblemNumber)
 {
 this.Problem_Number = ProblemNumber;
 this.price_iid = price_iid;
 this.dem_iid = dem_iid;
 this.NumPeriod = NumPeriod;
 this.B = B.clone();
 this.NumSim=100;
 this.random = new Random();
 this.demand = new double[this.NumPeriod][this.NumSim];
 this.price= new double [this.NumPeriod][this.NumSim];
 this.dem_prob = new double[this.NumSim];
 this.price_prob = new double[this.NumSim];
 this.did_dem_increase = new boolean[this.NumSim];
 this.did_price_decrease = new boolean[this.NumSim];
 for(int i = 0; i<this.NumSim;i++)
 {
 this.dem_prob[i]=1;
 this.price_prob[i]=1;
 this.did_dem_increase[i] = false;
 this.did_price_decrease[i] = false;
 }
 }

 public boolean bernoulli(double value)
 {
 boolean result = false;
 if(this.random.nextDouble()<value)
 {
 result = true;
 }
 return result;
 }

 public double exponential(double mean)
 {
 double value = 0;
 value = - mean * Math.log(1-this.random.nextDouble());
 return value;
 }

 public double uniform(double min, double max)
 {
 double value = this.random.nextDouble();
 value = min + (max - min)*value;

289

 return value;
 }

 public double normal (double mean, double stdev)
 {
 double value = 0;
 value = mean + stdev*this.random.nextGaussian();
 return value;
 }

 public void write(int distribution)
 {
 StringBuffer dem_buff = new StringBuffer();
 StringBuffer price_buff = new StringBuffer();
 for(int i=0;i<this.NumPeriod;i++)
 {
 for (int j = 0; j < this.NumSim; j++)
 {
 dem_buff.append(Rounding.toString(this.demand[i][j],0)+",");
 price_buff.append(Rounding.toString(this.price[i][j],4)+",");
 }
 dem_buff.append("\r\n");
 price_buff.append("\r\n");
 }
 WriteFile dem_write = new WriteFile(dem_buff, this.Problem_Number,"Demand-
"+distribution+"-");
 dem_write.write_toFile();
 WriteFile price_write = new WriteFile(price_buff, this.Problem_Number,"Price-
"+distribution+"-");
 price_write.write_toFile();
 }

 public void populate(int distribution, double gp, double gd, double d_spread, double
p_spread)
 {
 for(int i=0;i<this.NumPeriod;i++)
 {
 for(int j=0;j<this.NumSim;j++)
 {
 if(i==0)
 {
 this.demand[0][j]=540;
 this.price[0][j]=1;
 this.did_price_decrease[j] = false;
 this.did_dem_increase[j]=false;
 continue;

290

 }
 if(this.dem_iid==false)
 {
 if (this.did_dem_increase[j] == true)
 {
 this.dem_prob[j] = this.dem_prob[j];
 }
 else
 {
 this.dem_prob[j] = this.dem_prob[j] + 0.05;
 }
 }
 boolean dem_increase = this.bernoulli(this.dem_prob[j]);
 if (dem_increase == true)
 {
 if(distribution == 1)//1 for Uniform, 2 for Normal, 3 for Exponential
 {
 this.demand[i][j]=this.demand[i-1][j]*(1+this.uniform(gd,gd+d_spread));
 }
 else if (distribution == 2)
 {
 this.demand[i][j]=this.demand[i-1][j]*(1+this.normal(gd,d_spread));
 }
 else if (distribution ==3)
 {
 this.demand[i][j]=this.demand[i-1][j]*(1+this.exponential(gd));
 }
 this.did_dem_increase[i] = true;
 }
 else
 {
 this.demand[i][j]=this.demand[i-1][j];
 this.did_dem_increase[j] = false;
 }
 if(this.price_iid==false)
 {
 if (this.did_price_decrease[j] == true)
 {
 this.price_prob[j] = this.price_prob[j];
 }
 else
 {
 this.price_prob[j] = this.price_prob[j] + 0.05;
 }
 }
 boolean price_decrease = this.bernoulli(this.price_prob[j]);

291

 if (price_decrease == true)
 {
 if(distribution == 1)//1 for Uniform, 2 for Normal, 3 for Exponential
 {
 this.price[i][j]=this.price[i-1][j]*(1-this.uniform(gp,gp+p_spread));
 }
 else if (distribution == 2)
 {
 this.price[i][j]=this.price[i-1][j]*(1-this.normal(gp,p_spread));
 }
 else if (distribution ==3)
 {
 this.price[i][j]=this.price[i-1][j]*(1-this.exponential(gp));
 }
 this.did_price_decrease[i] = true;
 }
 else
 {
 this.price[i][j]=this.price[i-1][j];
 this.did_price_decrease[j] = false;
 }
 }
 }
 this.write(distribution);
 }
}

