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ABSTRACT

PRATIK PRASHANT GHAG. A finite element approach for calculating the wave
attenuation characteristics of epoxy polymer matrix composites. (Under the

direction of DR. ALIREZA TABARRAEI )

The macroscopic properties of a polymer composite are significantly affected by

the properties of the inclusions, size, shape, and distribution. Finite element (FE)

modeling provides a viable approach for investigating the effects of the inclusions

on the macroscopic properties of the polymer composite. In this thesis, we use the

finite element method to investigate ultrasonic wave propagation in polymer matrix

composite with a dispersed phase of inclusions. The finite element models are made

up of three phases; viz. the polymer matrix, inclusions (micro constituent), and

interphase zones between the inclusions and the polymer matrix. The interphase

zone is explicitly modeled to study the effect of the properties of the interphase

on the polymer composite. The analysis is performed on a three dimensional finite

element model and the attenuation characteristics of ultrasonic longitudinal waves in

the matrix are evaluated. The analysis is performed using the finite element code

ABAQUS. We investigate the attenuation in the polymer composite by changing the

size, volume fraction of inclusions, and interphase material properties. The effect of

interphase properties like the Young’s modulus and the thickness of the interphase

layer on the wave attenuation characteristics of the polymer composite are studied

by conducting a sensitivity analysis. The effect of loading frequency of the wave on

the attenuation characteristics are also studied by varying the frequency in the range

of 1 - 4 MHz.

Results of the test revealed that a higher volume fraction of inclusions gave higher

attenuation in the polymer composite compared to the lower volume fraction model.

Smaller size inclusions are preferred over larger sizes as they give higher wave attenu-

ation. It was found that the attenuation characteristics of the polymer composite are
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better at higher frequencies compared to lower frequencies. It is also concluded that

the arrangement of inclusions in a polymer composite plays a significant role in the

attenuation characteristics of the composite. The Young’s modulus and the thickness

of the interphase layer also play a vital role in the wave attenuation characteristics.
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CHAPTER 1: INTRODUCTION

Polymer like epoxy, polyurea have limited industrial applications on their own

as their mechanical properties are not as high as metals. However, when a different

component in the form of inclusions is added to a polymer matrix to form a composite,

the resulting polymer matrix composite can have exceptional mechanical properties.

The inclusions can be spherical or cylindrical shapes. The materials used for inclusions

are glass, carbon nanotubes, etc. The advantage of the composite material is that it

has the properties of both of it’s components. High strengths and stiffnesses, ease of

moulding complex shapes, high environmental resistances coupled with low densities,

make the resultant composite superior to metals in many applications.

The inclusions are embedded in the matrix to make the matrix stronger. The com-

posites are strong and light, for example they are often stronger than steel and weigh

much less. These properties of the composites are used by automobile manufactures

to make vehicles lighter and thus much more fuel efficient. Such desirable properties

of the polymer composites have attracted wide attention in their usage in applica-

tions such as aerospace, automobile, and shipping industries. Many applications of

the polymer composites include components which are subjected to dynamic loads

which may include automobile components like bumpers, dashboards, airplane parts

and ship components. The wide spectrum of applications makes it necessary to study

the dynamic behavior of the polymer composites.

Polymers like polyurea, epoxy have excellent attenuation properties as a results of

which they are extensively used for coating purposes which can help in absorbing the

incident waves. This property of the polymers is used to create coatings for military

applications like helmets, tanks, vehicles, police vehicles, equipments, places with high
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security risks such as bridges, chemical tanks, government buildings, storage areas,

etc.

Several studies have been performed in the past to study the mechanical properties

of polymer composites. Llorca and Segurado [1] studied three types of composite

materials: rigid spheres and spherical voids in elastic matrix and elastic spheres (glass

inclusions) in an elastic matrix (epoxy resin). Mechanical properties like elastic, shear

and bulk modulus and Poisson’s ratio were determined at different volume fractions

for the polymer composites. These were compared with the results obtained with three

classical analytical models: the Mori-Tanaka mean field analysis, the generalized self-

consistent method, and Torquato’s third order approximation. The results show an

increase in the elastic, shear, and bulk moduli as the volume fraction of the inclusions

increases which is found to be in close agreement with the classical methods at lower

volume fractions.

Wave propagation through the polymer composites is one of the important dynamic

properties for the applications mentioned earlier in this chapter as such applications

are often subjected to shock waves. The propagation of periodic and transient waves

is complicated in polymer composites as there is scattering of waves from the material

interfaces and due to dissipation in the matrix [2]. The wave propagation through

the polymer composites is greatly influenced by the addition of micro-inclusions. The

wave speed and amplitude are affected by the shape, size, and distribution of the

inclusions in the polymer matrix [2].

Biwa et al. [3] carried out numerical analyses for longitudinal wave attenuation in

a glass-epoxy composite and a rubber-particle toughened poly(methyl methacrylate)

(PMMA) blend. In the former, the attenuation is due to scattering by particles and

by absorption in the matrix; while in the latter, attenuation is additionally caused

by absorption in particles. Biwa studied the viscoelastic properties of the matrix and

their influence on the scattering characteristics and absorption of the waves. The
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results were compared with the classical Rayleigh scattering behavior. The inter-

particle distance along with the reflections from the neighboring particles play an

important role in wave attenuation at higher volume fractions. Biwa et al. studied

the influence of frequency and particle radius on the scattering, absorption and re-

sulting attenuation characteristics. The attenuation coefficients of longitudinal and

transverse waves in these polymers are shown in Fig 1.1 at different frequencies. It

is observed from the figure that the attenuation coefficients show an almost linear

dependency with frequency as is observed for solid polymers [4, 5].

Figure 1.1: Frequency-dependent attenuation co-efficients of Longitudinal (L) and
transverse (T) waves in epoxy [6], PMMA [7] and rubber (from assumed complex
moduli).

Kim [8] conducted a comparative study on eight existing theoretical models to

create some benchmark results for wave propagation in two-dimensional compos-

ite materials. The models include Waterman and Truell [9], Llyod and Berry [10],

Varadan et al. [11], Kanaun and Levin [12], Sabina and Willis [13], Kim [14], Beltzer

and Brauner [15], and Yang and Mal [16]. He conducted numerical calculations for
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Figure 1.2: Experimental setup to measure attenuation and phase velocities [17].

different composites by varying the material properties, volume concentration of the

micro-inclusions, and the loading frequency. He also discussed the effects of micro-

inclusions on the wave attenuation characteristics. In his studies he concluded that

whenever the point scattering approximation is relevant, the Llyod and Berry [10]

model was more accurate than the Waterman and Truell [9] model. He further re-

ported that the Kim [14] and Kanaun and Levin [12] models predict values close to

each other possibly because they were based on a common hypothesis and do not ex-

hibit failure in all the cases considered. He reported that as the attenuation is more

sensitive to the composite’s microstructure, the disagreements in calculation of the

wave attenuation is due to difference in the microstructures assumed in these different

models.

Kinra et al. [17] studied ultrasonic wave propagation through an epoxy-glass com-

posite by conducting experiments in a frequency range of 0.3 - 5 MHz by varying the

volume fraction of glass from 8.6 % to 53 %. The composite studied in the experi-

ment consists of spheres of glass dispersed in a random homogeneous manner in an
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epoxy. He measured the longitudinal and shear wave phase velocities and the attenu-

ation of the longitudinal waves over the specified frequency. The experimental setup

is shown in Fig 1.2. An ultrasonic pulse is applied using the pulse generator which

when fed to the function generator produces a tone burst of the desired frequency.

This frequency and given to the transmitting transducer. The specimen is stored in a

distilled water bath. The ultrasonic sound is applied through the water coupling, and

the output wave is collected by the receiving transducer which is then displayed on

the oscilloscope. The results of the experiments show that the attenuation increases

as the frequency of the wave is increased. Kinra reported higher volume fractions of

the inclusion yields better attenuation at lower frequencies.

The disadvantage of using an experiment is the lack of flexibility in the test models

as a large number of specimens are to be generated to study the effect of different sizes,

shapes and volume fraction of the inclusions which can be difficult to manufacture.

The finite element technique provides another technique to study the attenuation

characteristics of the polymer composite.

Liu et al. [2] studied the wave propagation in polymer composite using the extended

finite element method (XFEM). They studied the effect of volume fraction and loading

frequency on the wave attenuation characteristics of the polymer composite with

spherical and cylindrical inclusions. The wave attenuation characteristics are studied

for two volume fractions and three orientations in the case of cylindrical inclusions.

The results are compared to the theoretical and experimental results in the frequency

range of 1 - 4 MHz. In the case of spherical inclusions, the results were in good

agreement with the experimental and analytical results for lower volume fractions,

while at higher volume fractions only at lower frequencies. In the case of cylindrical

inclusions, results showed maximum attenuation when the inclusions were oriented in

the direction of loading. They also reported an increase in attenuation as the loading

frequency is increased.
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Another important aspect that plays a vital role in the wave attenuation character-

istics of the polymer composite is the interphase region. Interphase region is formed

due to cross-linking or crystallization between the polymer matrix and the inclusion.

Interphase region can be formed due to mechanical imperfections, unreacted polymer

components, fiber treatments, restricted macromolecular mobility due to the fiber

surface, and other inconsistencies [18–20]. The interphase region is depicted in Fig

2.3. The thickness of the interphase region depends upon the material bonding prop-

erties [21]. Many efforts have been made to study the characteristics of the interphase.

Techniques like nanoindentation, nano-scratch and Atomic Force microscopy (AFM)

are used to study the properties and thickness of the interphase. An explicit study of

the interphase region is essential as the region is considered to be one of the weakest

regions in the polymer composite. It has been reported that the structural integrity

and modes of failure for the polymer composites is dependent on the properties and

the thickness of the interphase [21].

In this thesis, we study the attenuation characteristics of a polymer composite

by using finite element modeling. Elastic inclusions are randomly dispersed in a

polymer matrix with linear viscoelastic material properties. The effect of interphase

properties on the wave attenuation characteristics is studied. Interphase is a region

which has been ignored in the studies that have been conducted on this material in

the past. The modeling of the interphase is very difficult as the thickness is very

thin and the material properties lie with the properties of the polymer matrix and

the inclusions. As a result of the uncertainty of the material properties, sensitivity

analysis is performed to take into account the effect on the attenuation characteristics

of the polymer composite. The impact of size and volume fraction of the inclusion

and loading frequencies on wave attenuation is investigated. In Chapter 2, the thesis

problem and the approach used to solve the problem is described. The details about

the finite element model and various algorithms used to define the finite element
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model are described in Chapter 3. The description of the material model and their

constitutive models for three phases, viz. the polymer matrix, inclusions, and the

interphase, are presented in Chapter 4. The results of the analysis and their discussion

are found in Chapter 5. Chapter 6 concludes the thesis and presents the scope for

future work.



CHAPTER 2: THESIS PROBLEM AND APPROACH

In this chapter, the thesis problem and the approach used to solve the problem are

presented.

2.1 Thesis Problem

In this thesis, we use the finite element method to investigate the ultrasonic wave

propagation in polymer matrix composite (PMC). The polymer composite has a dis-

persed phase of inclusions intended to improve the mechanical properties. Since the

macroscopic properties of a composite are affected by the inclusion size, shape and

distribution, we evaluate the effect these parameters on the wave attenuation char-

acteristics of polymer composite. Furthermore, we investigate the role of interphase

and loading frequency on the attenuation of waves in polymer composite. The goal is

to gain fundamental insights on designing polymer composite with high attenuation

capabilities.

2.2 Approach

This study is conducted using commercial finite element code ABAQUS (Dassault

Systèmes, Inc). The finite element analysis are conducted using three dimensional

finite element models. The inclusions are dispersed randomly in the polymer matrix.

A viscoelastic material model is used to model the polymer matrix and linear elastic

material model is used for inclusions. The details of the finite element model and

material model are given in chapters 3 and 4, respectively.

A schematic diagram of the model used in the analysis is shown in Figure 2.1. As

shown, a uniform sinusoidal pressure with amplitude Po = 10 MPa, and frequency

of f = 1-4 MHz is applied at the surface at z = 2.0 mm along the Z direction. The
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Figure 2.1: Schematic of the finite element model.

surface at z = 0.0 is free while a one-dimensional impact is stimulated by fixing the

other surfaces in the X and Y directions.

The element data for all the time steps are recorded for all the simulations at z =

2.0 mm and z = 0.5 mm as shown in the Figure 2.2. The time history plot for stress

σzz (in the loading direction) is generated using the history data at these surfaces.

The surface at z = 2.0 mm is expected to give the same stress amplitude as the input

wave, i.e. 10 MPa. The amplitude of the wave reduces as it travels through the

matrix due to scattering and reflections from the inclusions and material damping of

the polymer matrix. The attenuation coefficient (α) is calculated using [2]

α =
ln(S1

S2
)

(z1 − z2)
(2.1)

Where,

z1 = 2 mm,

z2 = 0.5 mm,

S1 - Stress at z1 (MPa) and

S2 - Stress at z2 (MPa).
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Figure 2.2: Schematic of the surfaces where the results are recorded.

2.3 Design Parameters to study

In this thesis, the impact of shape, size and distribution of inclusions on the at-

tenuation characteristics of polymer composite are studied. The details of the finite

element models used to study the effect of each of these parameters are provided.

2.3.1 Effect of the volume fraction

The volume fraction is defined as the ratio of the volume of the inclusions to the

total volume of the composite. In this study, we build several finite element models

of polymer composites with various inclusion volume fractions. The finite element

simulations are carried out at constant radii of the spherical inclusions, polymer

matrix dimensions and interphase size. The simulations are conducted to evaluate

the effect of the volume fraction on the attenuation of the wave. The details of the

composite configuration used are shown in Table 2.1, Table 2.2 and Table 2.3.

2.3.2 Effect of the loading frequency

The finite element simulations are conducted to evaluate the effect of the loading

frequency on the attenuation characteristics of the polymer composite. The loading
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Table 2.1: Finite element models to evaluate the effect of volume fraction of spherical
inclusions with radius 120µm on wave attenuation.

Finite element
model

Radius of
inclusion(µm)

Volume
fraction(%)

Number of
inclusions

1 120 5 10
2 120 8.6 18
3 120 12 25
4 120 15 31
5 120 20 41

Table 2.2: Finite element models to evaluate the effect of volume fraction of spherical
inclusions with radius 150µm on wave attenuation.

Finite element
model

Radius of
inclusion(µm)

Volume
fraction(%)

Number of
inclusions

1 150 5 5
2 150 8.6 9
3 150 12 13
4 150 15 16
5 150 20 21

Table 2.3: Finite element models to evaluate the effect of volume fraction of spherical
inclusions with radius 180µm on wave attenuation.

Finite element
model

Radius of
inclusion(µm)

Volume
fraction(%)

Number of
inclusions

1 180 5 3
2 180 8.6 5
3 180 12 7
4 180 15 9
5 180 20 12

frequency is varied in the range of 1-4 MHz while all the other design parameters

remain constant throughout the simulations.

2.3.3 Effect of the size of inclusions

For this study we built finite element models with different radii of spherical in-

clusions, while other parameters like polymer matrix dimensions, volume fraction,

and interphase size are kept constant. The loading frequency is varied in the range

between 1-4 MHz. The details of the study are shown in the Table 2.4.
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Table 2.4: Finite element models to evaluate the effect of size of spherical inclusions
on wave attenuation.

Finite element
model

Radius of
inclusion(µm)

Volume
fraction(%)

Number of
inclusions

1 120 5 10
2 150 5 5
3 180 5 3
4 120 8.6 18
5 150 8.6 9
6 180 8.6 5
7 120 12 25
8 150 12 13
9 180 12 7
10 120 15 31
11 150 15 16
12 180 15 9
13 120 20 41
14 150 20 21
15 180 20 12

2.3.4 Effect of the interphase properties

The molecular layers responsible for the adhesion between the inclusion and poly-

mer matrix is defined as the interphase. Interphase layer in the polymer composite is

shown in Figure 2.3. Interphases play a significant role in the global properties of the

nanocomposites [22–25]. In this study, we analyze the effect of stiffness and thickness

of the interphase region on the attenuation characteristics of the polymer composite.

The stiffness of the interphase is varied between the stiffness of the polymer matrix

and the stiffness of the inclusions. The polymer matrix dimensions, size of inclusions,

and volume fraction are kept constant in these simulations.

2.3.5 Effect of arrangement of inclusions

The arrangement of inclusions also affect the attenuation characteristics of the

wave in polymer composite. The effect of arrangement of the inclusions is studied

by conducting simulations of the finite element models with different arrangement
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Figure 2.3: Schematic illustration of the PMC with interphase layer.

of inclusions which is achieved with the help of randomization by Python scripting

[26]. A detailed description of the arrangement of inclusions with Python scripting is

provided in Chapter 3. A number of iterations are carried out at the same conditions

to evaluate the effect of arrangement of inclusions within the polymer matrix.



CHAPTER 3: FINITE ELEMENT MODELING

In this study, we carry out finite element analysis (FEA) on polymer composite

by considering a simple cuboid geometry. The inclusions are randomly dispersed in

the matrix and separated by some minimum distance from each other. The details of

the geometry, forces, constraints and finite element model are given in the following

sections.

3.1 Finite element model generation algorithm

There are number of techniques which are used for the generation of computa-

tional finite element models. Random sequential absorption (RSA) algorithm [27–30]

prevents the occurrence of overlapping inclusions by requiring that any new poten-

tial candidate inclusion does not overlap with previously accepted inclusions. This

is done by random generation of size, location and orientation of the inclusions. In

this process, the current volume is updated continuously as each new inclusion gets

added, and the process continues till the desired volume fraction is achieved or the

number of attempts exceeds the predefined limit. The technique has limitation in

achieving high volume fractions (>50%) due to jamming issue. Another method of

finite element model generation is the Monte Carlo (MC) [31–33] technique which is a

two-step scheme. In the first step all the filler particles or the inclusions are deposited

in the simulation box then in the second step the location and orientation of the inclu-

sions is changed randomly until the desired volume fraction is achieved. The removal

of overlaps is slow in the MC technique as the movements are random. Molecular

dynamic based process [34,35] are used to accelerate the removal of overlaps.

For the purpose of this research a modified version of RSA algorithm is used for the
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Figure 3.1: Flowchart for finite element model generation algorithm.

generation of inclusions by employing Python scripting in Abaqus [26]. We specify

the number of inclusions required to achieve the desired volume fraction. The volume

fraction is defined as the ratio of the volume of the inclusions to the total volume of

the composite. The volume fraction c is varied between 5% to 20% to study its effect

on attenuation characteristics of polymer matrix. For this study, the inclusions are

dispersed only in the geometry of 1 × 1 × 1.5 mm3 since we are recording the data

at z = 0.5 mm as shown in the Figure 2.2. The number of inclusions n required to
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Figure 3.2: Distance between any two inclusions at any given time.

achieve the desired volume fraction is determined as follows:

n ≈ c× V
v

(3.1)

Where,

n - Number of inclusions,

c - Volume fraction,

V - Total volume and

v - Volume of the inclusion.

Location of the inclusion is generated by random number generation in Python.

The point generated in Python serves as the center point of the inclusion. The

distance of this point is checked with any point previously accepted by the algorithm

to ensure there is no overlap between the inclusions. The distance d between any two

inclusions is shown in Figure 3.2. The distance between the two points is determined

as follows:

d =
√

(x− x1)2 + (y − y1)2 + (z − z1)2 (3.2)

Where,

d - Distance between two points,
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x - X coordinate of the accepted inclusion,

y - Y coordinate of the accepted inclusion,

z - Z coordinate of the accepted inclusion,

x1 - X coordinate of the candidate inclusion,

y1 - Y coordinate of the candidate inclusion and

z1 - Z coordinate of the candidate inclusion.

A minimum gap of 12.5 % of radius is maintained between the inclusions to ensure

proper meshing of the finite element model. This distance is utilized in the finite

element model only to ensure proper meshing of the model as in reality the inclusions

can be in contact or very close with one another . But as this would create difficulty

in meshing the finite element model a minimum distance separating the inclusions

was used in the algorithm. Figure 3.1 shows the graphical representation of the RSA

algorithm in the form of a flow-chart. The process continues until the required number

of inclusions to satisfy the volume fraction are achieved.

3.2 Finite element model

We conduct simulations on three-dimensional polymer composites with spherical

inclusions. An example of three-dimensional finite element model is shown is Figure

3.3.

The geometry of the specimen used in the simulation is a 1 × 1 × 2 mm3 cuboid

as shown in Figure 3.3, the inclusions are generated by the modified RSA algorithm

as described in Section 3.1. The inclusions are modeled as solid spheres. The radius

of the inclusions varies from 120µm to 180µm as specified in Section 2.3.3.

The polymer matrix is meshed using tetrahedral elements with an average size of

0.05 mm. The inclusions are meshed using hexahedral elements with a mesh size of

0.05 mm. In the case of studies involving the interphase the inclusions as well as

the interphase are meshed with tetrahedral elements with a mesh size of 0.025 mm

and the polymer matrix is meshed with tetrahedral elements with a mesh size of 0.05
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Figure 3.3: Representation of finite element model with spherical inclusions.

Figure 3.4: Representation of meshed finite element model for 12% volume fraction.

mm. A node to node connectivity is maintained in all phases of the model. Figure 3.4

shows the meshed model for PMC with inclusions as well as the interphase. From the

Abaqus element library tetrahedral C3D10 elements and hexahedral C3D20 elements

are used for the finite element simulations.

To increase the accuracy of the simulations, full integration method is used for both

of the element types. The elements and their integration points are shown in Figure
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Figure 3.6: C3D10 element with nodes and integration points [26].

5.18.

3.3 Forces and Constraints

Linear displacement boundary conditions, uniform traction boundary conditions

and periodic boundary conditions are some of the boundary conditions which are

used in computational mechanics procedures [36]. For the purpose of this study

we use linear displacement boundary conditions. A uniform sinusoidal compressive

pressure with Po = 10 MPa is applied at the surface z = 2 mm as shown in Figure

2.1. All other surfaces are constrained in two translational degrees of freedom in the
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Figure 3.7: Sinusoidal loading curve for frequency = 1 MHz.

X and Y direction. Translational motion is allowed in the direction of loading i.e.

the Z direction. A node set is created on a plane at z = 0.5 mm where the readings

for output are recorded. The sinusoidal pressure P is given as follows:

P = Po sin(2πft) (3.3)

Where,

Po = 10 MPa,

f - Frequency (MHz) and

t - Time (ms).

The load verses time curve for 1 MHz frequency loading is shown in Figure 3.7.

For the purpose of this study the frequency is varied between 1 MHz to 4 MHz while

the force amplitude Po remains the same for all finite element solutions.



CHAPTER 4: CONSTITUTIVE MATERIAL MODELS

Constitutive models play a vital role in the accuracy of the finite element analysis.

In physics and engineering, a constitutive equation is a relation between any two

parameters or physical quantities which helps to predict the material behavior when

it is subjected to external forces. A very good example of the constitutive equation

would be the Hooke’s law (stress-strain relation). Most metals exhibit linearly elastic

behavior and the Hooke’s law can be used to predict the material behavior.

In this study, the glass spheres (inclusions) and the interphase are considered linear

elastic while a linear viscoelastic material model is chosen for the epoxy matrix. The

material models are studied in detail in the subsequent sections.

4.1 Polymer matrix (Epoxy)

The polymer matrix considered in this thesis is an epoxy. There are many applica-

tions for epoxy-based materials which includes coatings, adhesives and composite ma-

terials such as those involving carbon fiber and fiberglass reinforcements. The cured

polymers can be produced with a wide range of properties because of the chemistry

of the epoxies and range of commercially available variations. Epoxy is known for its

excellent adhesion, chemical and thermal resistance, good mechanical properties and

very good electrical insulating properties.

Epoxy is used in paints and coatings which are often used in industrial and automo-

tive applications since they are more heat resistant than latex-based and alkyd-based

paints. Epoxy adhesives are high-performance adhesives of a part of the class of

adhesives called "structural adhesives" or "engineering adhesives" which are used in

the construction of aircrafts, bicycles, boats, skis, snowboards, and other applications
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which involve high strength bonds.

The concept of viscoelasticity, the constitutive viscoelastic model for the polymer

matrix and the material parameters are described in the following sections.

4.1.1 Viscoelasticity

Viscoelasticity is the property of materials which exhibit both viscous and elastic

characteristics when undergoing deformation. Whenever a material is subjected to

an external force, internal forces are created in the material to resist the force due

to distortion in the physical structure. The nature of the internal forces depend on

the type of the material on which the external force is applied. For example, in the

case of metals, the internal forces are created due the inter-atomic forces while in

the case of fluids like oil or air, the internal forces are due to rapid movement of the

molecules in the medium [37]. Viscoelastic materials exhibit a combined behavior

of these elastic and viscous materials. Combination of such behavior is observed in

materials like soil, polymers, concrete, and biological tissues [37].

Viscoelastic materials can be modeled in order to determine their stress and strain

or force and displacement interactions. Viscoelastic behavior has elastic and viscous

components modeled as linear combinations of spring and dampers which can be

combined in a variety of arrangements to produce a simulated viscoelastic response

[38]. An example of these models would be the Maxwell fluid model and the Kelvin

solid model. The models are explained in detail later in the chapter. The two types

of responses which are observed in viscoelastic materials are the stress relaxation and

creep. Stress relaxation is the reduction in stress at a constant strain. The creep is

increase in strain at a constant stress [38]. The stress relaxation response will thus be

useful for us to define the viscoelastic response because strains will be calculated in

finite element analysis from the nodal displacements which can be used for evaluation

of stress using the stress relaxation equation.
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4.1.1.1 Maxwell fluid model

Consider the Maxwell fluid model shown in Figure 4.1. An equation between stress

and strain can be obtained for any mechanical model using equilibrium and kinematic

equations for the system and constitutive equations for the elements. For the model,

equilibrium gives,

σ = σs = σd (4.1)

where σ is the applied stress, σs is the stress in the spring and σd is the stress in the

damper. From the kinematic condition, we have,

ε = εs + εd (4.2)

where ε is the total strain in the Maxwell element, εs is the strain in the spring while

εd is the strain in the damper. The constitutive equations are,

σs = Eεs = σ (4.3)

differentiating,

σ̇ = Eε̇s (4.4)

and

σd = µ
dεd
dt

= µε̇d = σ (4.5)

Differentiating Eq 4.2, we have,

ε̇ = ε̇s + ε̇d (4.6)
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Figure 4.1: Maxwell fluid model.

Now, subsituting Eq 4.4 and 4.5 into Eq 4.6, we have,

σ̇ +
E

µ
σ = Eε̇ (4.7)

Rearranging, we have,

σ +
µ

E
σ̇ = µε̇ (4.8)

or

σ + p1σ̇ = q1ε̇ (4.9)

The relaxation time is defined as the inverse of the co-efficient of the stress rate,

τ =
µ

E
(4.10)

As described in section 4.1.1, for the case of creep, the applied stress is constant and

can be written as,

σ(t) = σ0M(t) (4.11)

where M(t) is the Heavyside function and is defined as,

M(t) = 1 for t > 0

M(t) = 0 for t < 0

(4.12)
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M(t) = 1 for t > 0

M(t) = 0 for t < 0

(4.13)

Thus, the stress is constant for time greater than zero. Now, the Eq 4.7 for the case

of creep, the solution is,

ε(t) = σ0

(
1

E
+

1

µ

)
(4.14)

or

ε(t) = σ0Q(t) (4.15)

where

Q(t) =

(
1

E
+

1

µ

)
(4.16)

is the creep compliance.

The creep and creep recovery behavior for a Maxwell fluid is shown in Fig 4.2. In

the creep test, the model is subjected to a constant stress as described earlier. Then

as a result of the free spring, the model would have a sudden increase in strain as

shown in the Fig 4.2. An equally important facet of the constant stress test is to

evaluate the strain variation when the stress is removed. This is known as the creep

recovery test and is also shown in the Fig 4.2. As seen in the figure once the stress is

removed the strain falls to a value εp remaining constant there after.

In the stress relaxation test as discussed in section 4.1.1, the stress is studied at a

constant strain. The solution for Eq. 4.7 for relaxation is obtained using a step input

in strain,

ε(t) = ε0M(t) (4.17)

with a resulting stress output of,

σ(t) = ε0Ee
−t
τ (4.18)
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Figure 4.2: Creep, creep recovery and relaxation response of Maxwell fluid.

where

E(t) = Ee
−t
τ (4.19)

is the relaxation modulus. The relaxation behavior for the Maxwell fluid is shown in

Fig 4.2. As seen in the figure for a constant strain, the stress gradually decreases as

less stress is required to maintain the strain.

The deformation mechanisms associated with relaxation and creep are related to

the long chain molecular structure of the polymer. In creep, the continuous loading

gradually induces strain accumulation as the polymer molecules rotate and unwind

to accommodate the load. Similarly, during relaxation at a constant strain, the

initial sudden strain occurs more rapidly than can be accommodated by the molecular

structure. The molecules will again rotate and unwind as a result of which less stress

is needed to maintain the same strain level [38].

4.1.1.2 Kelvin solid model

The Kelvin solid model is shown in Fig 4.3. The equilibrium equation is,
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Figure 4.3: Kelvin solid model.

σ = σs + σd (4.20)

and the kinematic condition is,

ε = εs = εd (4.21)

The constitutive equations are,

σs = Eεs

σd = µε̇d

(4.22)

and the differential equation becomes,

σ = Eε+ µε̇ (4.23)

Under the creep loading the solution becomes,

ε(t) =
σ0
E

(
1− e

−t
τ

)
(4.24)
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Figure 4.4: Creep of a Kelvin solid model.

and the creep compliance is,

Q(t) =
1

E

(
1− e

−t
τ

)
(4.25)

The creep response of the Kelvin solid model is illustrated in Fig 4.4.

As the damper only allows the spring to move slowly with time, there is no initial

elasticity and the model is not useful in understanding the relaxation response of

materials as the damper does nor allow the spring to move instantaneously [38].

4.1.2 Material Parameters for Epoxy matrix

The stress relaxation modulus G(t) is defined by a Prony series expansion,

G(t) = G0

(
1−

n∑
i=1

gi

(
1− e

−t
τi

))
(4.26)

where G0 is the instantaneous shear modulus and gi and τi are material constants

defined in Table 4.1 taken from [2]. The temperature effects were not considered for

defining the model. The viscosity of the bulk modulus κ is neglected.
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Table 4.1: Prony series parameters for Epoxy matrix

gi τi

0.0738 463.4

0.1470 0.06407

0.3134 0.0001163

0.3786 7.321e-7

Table 4.2: Material parameters for Epoxy matrix

G0 (MPa) 1481.80

E0 (MPa) 4060.11

κ (MPa) 5205.00

ρ (g/cm3) 1.18

ν 0.37

The other input parameters for this material like G0, instantaneous Young’s mod-

ulus E0, κ, density ρ and poisson’s ratio ν are given in Table 4.2.

4.2 Inclusions (Glass)

The inclusions for the study are made from glass. The glass inclusions are much

stiffer and stronger than the polymer matrix. A linear elastic model is used for

modeling the inclusions whose response can be defined using Hooke’s law which is

given by,

σij = Cijklεkl (4.27)

where, Cijkl is the elastic modulus.

The material is assumed to be isotropic i.e. the material properties are constant in

all the directions. The glass inclusions are assumed to have a Young’s modulus E of

64890.0 MPa, Poisson’s ratio ν of 0.249 and a density ρ of 2.47 g/cm3.

4.3 Interphase

The interphase is modeled as a linear elastic material. In reality the interphase

should be modeled as a linear viscoelastic material. But the material parameters for
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the viscoelasticity were not available for the interphase and hence, a linear elastic

material was chosen. The objective being to study the attenuation due to scattering

from the surfaces of the inclusions and not due dissipation due to viscoelastic nature

of the interphase. The research aims to study the elastic moduli of the interphase and

its effect on the wave attenuation of the polymer composite. A sensitivity analysis

(SA) is performed to evaluate the effect on the wave attenuation characteristics due

to uncertainty in the input parameters for the interphase. The focus for this part

of the study was to evaluate the effect of thickness and the Young’s modulus of the

interphase on the wave attenuation characteristics of the polymer composite. Hence,

the thickness and Young’s modulus of the interphase were considered as the stochastic

inputs for the study. The Poisson’s ratio is assumed to be 0.249 and the density ρ of

the interphase is assumed to be 1.18 g/cm3 which is the mean of the densities for the

inclusion and the polymer matrix.

4.3.1 Design of Experiments (DoE)

A number of schemes like the deterministic sampling, random sampling, strati-

fied sampling have been devised in the past to scan the design space of the input

variables [39–41]. Deterministic sampling involves samples at regular intervals which

usually increases the number samples exponentially with increasing dimension which

is not efficient when the cost of each realisation is high. An alternative to this would

be the random sampling which overcomes the disadvantage. Mont Carlo Simulation

(MCS) is a common approach based on random independent sampling in the given

design space. The disadvantage of MCS is that the approach can lead to artificial cor-

relations in the input and output parameters [39]. To overcome the issue of undesired

correlations, stratified sampling has been developed. In this method, the sampling

space is divided into number of separate groups called strata and random samples are

picked from each strata. This is further improved with Latin Hypercube sampling

(LHS) in which range of each variable is divided into equal intervals and a sample
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is selected from each interval [41]. In this study, LHS is used to generate random

values for Young’s Modulus and thickness of the interphase to overcome undesired

correlations between input parameters.

4.3.2 Sensitivity Analysis

The sensitivity analysis is conducted by preparing finite element models with dif-

ferent material properties. For each volume fraction 25 samples for 2 variables were

generated using lhsdesign function of MATLAB [42] and for each sample 25 finite

element models are generated to take into account the effect of randomness of the

positioning of the inclusions. The Young’s modulus of the interphase is chosen in the

range of 14.0 GPa to 51.0 GPa and the thickness is chosen in the range of 15 µm to

30 µm.



CHAPTER 5: RESULTS AND DISCUSSION

In this section we compute results for parameters affecting the mechanical proper-

ties of the polymer matrix composites. The analysis results were post processed using

commercial finite element post processing tool ABAQUS (Dassault Systèmes, Inc).

Time history data for stress σzz values was collected at planes specified in section 2.2

and was plotted against time to study the stress wave propagation. Then the wave

attenuation co-efficient is calculated using Eq 2.1 by considering the peak value of

the stresses on both the planes as specified above. For the case of this study the

following parameters are evaluated as specified in section 2.3 and the results of each

of the these parameters are discussed in the subsequent sections:

1. Effect of volume fraction

2. Effect of loading frequency

3. Effect of size of inclusions

4. Effect of interphase material properties.

5.1 Validation

To validate that the procedure for this research, the results from the FEM were

plotted in Figure 5.1 with published theoretical predictions [3] and results obtained

using extended finite element method (XFEM) [2]. As can be seen from the figure the

FEM results are very close to the Analytical and XFEM results. Simulations were

also performed in which the matrix material was replaced by the inclusion material

(glass) without any inclusions to see the effect of elastic material on the wave atten-

uation of the polymer composite. No attenuation was observed in these simulations

which proves that the attenuation occurs only by scattering from the surface of the
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Figure 5.1: Attenuation in the particulate composite with volume fraction 0.086 vs
frequency.

inclusions.

5.2 Ensemble averaging

The process used to generate finite element model has been described in detail in

section 3.1. As specified in the section, the location of the inclusions is achieved by

random number generation using Python scripting. As the position of the inclusion

plays an important role in determining the mechanical properties of polymer matrix

composite, ensemble averaging was performed to remove the effect of randomness of

the positioning of the inclusions. Accordingly, the following saturation criteria should

be met:

∣∣∣∣∣〈α〉2J − 〈α〉J〈α〉2J

∣∣∣∣∣ < Tol (5.1)

where 〈 〉J implies an ensemble average using j realisations, and 〈 〉2J represent

the same quantity obtained using twice this number of realisations. The accuracy

of the operation is determined by the convergence tolerance for ensemble averaging

specified by Tol in the above equation. A 5% polymer matrix composite was used to
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conduct ensemble averaging test for simplification of the procedure. Figure 5.2 shows

the ensemble averaging test conducted for 5% polymer matrix composite against the

number of realisations. It can be deduced from the figure that convergence would be

guaranteed for 50 realisations with a convergence error of less that 0.7 %. As a result

of this test, 50 iterations where performed for each design parameter mentioned in

section 2.3 to remove the effect of randomness of the positioning of the inclusions.

Figure 5.2: The average of the attenuation co-efficient (α) for 5% PMC verses the
realization number.

5.3 Effect of volume fraction

Volume fraction is one of the vital factors which affects the properties and behavior

of the polymer matrix composite. To evaluate the effect of volume fraction on the

wave attenuation a number of finite element simulations where performed by changing

the number of inclusions while keeping the radius of the inclusion constant. These

simulations were performed with parameters mentioned in section 2.3.1.

Figures 5.3, 5.4 and 5.5 show the effect on attenuation of the wave due to change

in volume fraction when the radius of the inclusion is 120 µm, 150 µm and 180 µm

respectively for frequencies ranging from 1 MHz to 4 MHz. As can be seen from the
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Figure 5.3: Attenuation Coefficient v/s Volume fraction for inclusion radius 120 µm
for different frequencies.

Figure 5.4: Attenuation Coefficient v/s Volume fraction for inclusion radius 150 µm
for different frequencies.

figures, the attenuation of the wave increases as the volume fraction increases. Due to

higher number of inclusions in higher volume fractions the scattering of the waves are

higher. The stress dissipation is higher because of more scattering at higher volume

fractions resulting in more attenuation. It is also observed from the figures that
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Figure 5.5: Attenuation Coefficient v/s Volume fraction for inclusion radius 180 µm
for different frequencies.

the attenuation improves substantially for higher frequencies as the volume fraction

increases.

5.4 Effect of loading frequency

The attenuation characteristics are observed to change with change in frequency.

To study this, finite element simulations were performed with change in frequency

from 1 MHz to 4 MHz with all other parameters remaining constant. The simulations

were conducted on radius ranging from 120 µm to 180 µm with volume fraction from

5% to 20%. The time history of surface averaged stress σzz at surfaces z = 2 mm and

z = 0.5 mm are shown in Figure 5.6 for 5% volume fraction. We can find peaks of

the stress σzz at z = 0.5 mm decrease compared to that at z = 2 mm. This is a result

of scattering by by the inclusions and absorption by the matrix. It is also observed

that the decrease grows strongly with increasing of frequency [2].

Figures 5.7, 5.8 and 5.9 show the effect on loading frequency on the wave attenua-

tion for radius 120 µm, 150 µm and 180 µm respectively for volume fraction ranging

from 5% to 20%. It also shows the attenuation characteristics for the epoxy matrix
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in the absence of inclusions.

From the results, it can be seen that the attenuation co-efficients at lower fre-

quencies are far less sensitive to the volume fraction, and close to that of the epoxy

matrix [2]. It is also observed that at frequencies greater than 2 MHz, at higher

volume fractions the curves get separated from each other i.e. the attenuation co-

efficients are sensitive to the volume fraction. So, higher the volume fraction (number

of inclusions) higher is the attenuation observed.

Figure 5.6: Time history of surface averaged stress σzz at z = 2 mm and z = 0.5 mm
at different frequencies.
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Figure 5.7: Effect of loading frequency on attenuation for a radius of 120 µm for
different volume fractions.

Figure 5.8: Effect of loading frequency on attenuation for a radius of 150 µm for
different volume fractions.
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Figure 5.9: Effect of loading frequency on attenuation for a radius of 180 µm for
different volume fractions.

Table 5.1: Number of inclusions required at various radii to satisfy the 12% volume
fraction.

Radius (µm) Number of inclusions

120 25
150 13
180 7

5.5 Effect of size of inclusions

Finite element simulations were performed to study the effect of size of inclusions.

For this study, finite element models were generated by varying the radius of the

inclusions for the same volume fraction. The simulations are carried for inclusions

with radius 120 µm, 150 µm, and 180 µm respectively.

The surface area of the inclusions for the finite element models with smaller radius

is more as more number of inclusions will be required to achieve the required volume

fraction as compared to the number of inclusions required for a model with larger
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radius of inclusions as shown in Table 5.1. This increase in surface area results in

more scattering of the wave. These scattering will affect the input wave amplitude

because more stresses will be dissipated giving rise to more wave attenuation.

The results for this study are shown in Figure 5.10. It can be seen that as the

radius of inclusion increases the attenuation characteristics of the polymer composite

decreases. The effect gets more pronounced at higher volume fractions as less number

of inclusions are required for larger radius of inclusions. This proves that the number

of inclusions play an important role in improving the attenuation characteristics of

the polymer composite.

5.6 Effect of interphase properties

Interphase properties play an important role in the wave attenuation characteristics

of a polymer composite. In order to quantify the effect of the interphase layer on the

wave attenuation characteristics of the polymer composite, the sensitivity analysis

was performed as described in Section 4.3.2.

Figure 5.10: Effect of size of inclusions on attenuation characteristics of a polymer
composite.
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Polynomial regression is a type of regression analysis in which the relationship

between the independent variable x and the dependent variable y is modeled as an

nth degree polynomial in x. Considering a linear regression, the estimated regression

line is defined as [43]:

ŷ = β̂0 + β̂1x (5.2)

where β̂0 and β̂1 defined as:

β̂0 = ȳ − β̂1x̄, β̂1 =
Sxy

Sxx

, Sxx =
n∑

i=1

x2i − nx̄2, Sxy =
n∑

i=1

yixi − nx̄ȳ (5.3)

In Eq 5.3, xi and yi are inputs and outputs, x̄ and ȳ are mean values of the inputs and

outputs and n is the number of observations. Coefficients β̂0 and β̂1 are the intercept

and the slope of the regression line respectively. The linear regression model was used

to compute the intercept (β̂0) and slope (β̂1) of regression line for different frequencies

and volume fractions. The intercept and the slope for the linear regression model are

listed in Table 5.2 and 5.3 respectively for 5% volume fraction. The intercept and

the slope values for the linear regression model for 8.6% volume fraction are listed in

Table 5.4 and 5.5 respectively.

The results for 5% volume fraction from the Table 5.2 show that the slope and the

intercept of the linear regression model increase as the loading frequency increases and

the slope always remains positive. This shows that for higher frequencies, composites

having stiffer interphases exhibit higher attenuation characteristics. The intercept

also increases confirming that at higher frequencies the attenuation characteristics of

the polymer composite are better than those at lower frequencies. Similar results are

observed for 8.6% volume fraction which are shown in Table 5.4.

In a similar manner, the results for 5% volume fraction from the Table 5.3 show that

both the intercept and slope of the linear regression model increase as the frequency

increases and the slope always remains positive. It can be inferred from these results
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Table 5.2: The intercept and slope of linear regression models for attenuation coef-
ficient (α) of polymer composite versus Young’s modulus of the interphase for 5 %
volume fraction.

Loading frequency (MHz) 1 2 3 4

Intercept (β̂0) 0.0699 0.1591 0.2443 0.3804

Slope ×10−7 (β̂1) 0.3287 1.2079 1.5012 4.2883

Table 5.3: The intercept and slope of linear regression model for attenuation coef-
ficient (α) of polymer composite versus thickness of the interphase for 5 % volume
fraction.

Loading frequency (MHz) 1 2 3 4

Intercept (β̂0) 0.0568 0.1227 0.1647 0.2703

Slope (β̂1) 0.6299 1.7898 3.7514 5.5106

Table 5.4: The intercept and slope of linear regression models for attenuation coef-
ficient (α) of polymer composite versus Young’s modulus of the interphase for 8.6%
volume fraction.

Loading frequency (MHz) 1 2 3 4

Intercept (β̂0) 0.1057 0.2324 0.3943 0.5858

Slope ×10−7 (β̂1) 0.7348 1.5631 4.2142 8.8130

Table 5.5: The intercept and slope of linear regression model for attenuation coef-
ficient (α) of polymer composite versus thickness of the interphase for 8.6% volume
fraction.

Loading frequency (MHz) 1 2 3 4

Intercept (β̂0) 0.0907 0.1791 0.2768 0.4547

Slope (β̂1) 0.7720 2.5951 5.8269 7.0916

that for a given thickness of the interphase, the polymer composite shows higher

attenuation characteristics at higher frequencies than that at lower frequencies. The

increase in the value of the intercept confirms that the attenuation characteristics

are better at higher frequencies than that at lower frequencies. Similar results are

obtained for 8.6% volume fraction which can be seen in Table 5.5.

Figures 5.11 - 5.14 show the scatter plot of the attenuation coefficient (α) versus
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the (a) Young’s modulus of the interphase region and (b) the interphase thickness

for 5% volume fraction and Figures 5.15 - 5.18 show the same scatter plot for 8.6%

volume fraction. The x-axis is used to show the scale of two independent variables,

the Young’s modulus (Ei) of the interphase region and the interphase thickness (ti)

and y-axis measure the attenuation coefficient (α) as the dependent variable. The

figures also show the regions with 95% Confidence Intervals (CIs) and 95% Prediction

Intervals (PIs). The area which lies between the red lines depicts the 95% CIs while

the 95% PIs are depicted by the area between the magenta lines. The bounds of the

regression function that can be expected are depicted by the confidence interval lines,

while the width of the confidence interval provides an indication of the quality of the

fitted regression function. The likely location of the true population parameter can be

inferred from the CIs, while the PIs can be used to determine the distribution of values

and where the next data point can be expected. The width of the prediction interval

is always wider than the CIs as the PIs takes into consideration the uncertainty in

knowing te value of the population as well as the data scatter.

5.6.1 Comparison of results for with and without interphase

The Figure 5.19 shows the wave attenuation characteristics of a polymer composite

with radius of inclusion 150µm for two cases, (a) no interphase between the inclusion

and the polymer matrix and (b) interphase between the inclusion and the polymer

matrix. The results are shown for 5% and 8.6% volume fraction for both the cases

respectively. The results for the case (b) are plotted using Young’s modulus as 33.003

GPa and thickness as 12.5% of radius. As can be seen from the Figure 5.19 the pres-

ence of interphase affects the attenuation characteristics of the wave. The difference

between the two cases are minimal at lower frequencies while a considerable difference

is seen at higher frequencies. Thus, we can conclude that interphase properties play

an important role in the attenuation characteristics of the polymer composite and

should be considered for studies involving attenuation characteristics for the polymer
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(a)

(b)

Figure 5.11: The attenuation co-efficient (α) of 5 % glass-epoxy composite versus (a)
Young’s Modulus and (b) thickness of interphase region for loading frequency 1 MHz.
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(a)

(b)

Figure 5.12: The attenuation co-efficient (α) of 5 % glass-epoxy composite versus (a)
Young’s Modulus and (b) thickness of interphase region for loading frequency 2 MHz.
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(a)

(b)

Figure 5.13: The attenuation co-efficient (α) of 5 % glass-epoxy composite versus (a)
Young’s Modulus and (b) thickness of interphase region for loading frequency 3 MHz.
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(a)

(b)

Figure 5.14: The attenuation co-efficient (α) of 5 % glass-epoxy composite versus (a)
Young’s Modulus and (b) thickness of interphase region for loading frequency 4 MHz.
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(a)

(b)

Figure 5.15: The attenuation co-efficient (α) of 8.6 % glass-epoxy composite versus
(a) Young’s Modulus and (b) thickness of interphase region for loading frequency 1
MHz.
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(a)

(b)

Figure 5.16: The attenuation co-efficient (α) of 8.6 % glass-epoxy composite versus
(a) Young’s Modulus and (b) thickness of interphase region for loading frequency 2
MHz.
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(a)

(b)

Figure 5.17: The attenuation co-efficient (α) of 8.6 % glass-epoxy composite versus
(a) Young’s Modulus and (b) thickness of interphase region for loading frequency 3
MHz.
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(a)

(b)

Figure 5.18: The attenuation co-efficient (α) of 8.6 % glass-epoxy composite versus
(a) Young’s Modulus and (b) thickness of interphase region for loading frequency 4
MHz.
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composite.

Figure 5.19: Comparison of results for a polymer composite with and without inter-
phase for the inclusions.

5.6.2 Comparison of results for different volume fractions

Figures 5.20 and 5.21 show the attenuation coefficient at 5% and 8.6% volume

fraction against the Young’s modulus of the interphase. As can be seen from Table

Table 5.6: Comparison of attenuation coefficient at 5% and 8.6% volume fraction
against the Young’s Modulus of the interphase for loading frequency of 1 MHz.

Volume Fraction (%) 5 8.6

Intercept (β̂0) 0.0699 0.1057

Slope ×10−7 (β̂1) 0.3287 0.7348

Table 5.7: Comparison of attenuation coefficient at 5% and 8.6% volume fraction
against the Young’s Modulus of the interphase for loading frequency of 4 MHz.

Volume Fraction (%) 5 8.6

Intercept (β̂0) 0.3804 0.5858

Slope ×10−7 (β̂1) 4.2883 8.8130
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5.6 as the volume fraction is increased the slope of the regression line also increases

indicating that at higher volume fraction higher attenuation is observed. Similar

results are observed for when the loading frequency is 4 MHz as shown in Table 5.7.

This holds true as for higher volume fraction there are more number of inclusions and

hence more surface area resulting in more attenuation.

Figure 5.20: Comparison of results for 5% and 8.6% volume fraction for loading
frequency of 1 MHz.

Figure 5.21: Comparison of results for 5% and 8.6% volume fraction for loading
frequency of 4 MHz.



CHAPTER 6: CONCLUSION

From the results and discussions from the preceding chapters we have seen that

the addition of small sized glass inclusions in the epoxy matrix can significantly

alter the attenuation characteristics of the polymer matrix composite. The volume

fraction and the size of the inclusions also have an important role in the attenuation

characteristics of the polymer composite. Other factors which play an important role

in the attenuation characteristics of the polymer composites are the loading frequency,

properties of the interphase between the inclusions and the polymer matrix.

We have shown that the finite element technique can be used to evaluate the

attenuation characteristics of the polymer composite with spherical inclusions. A

viscoelastic model was used for the polymer matrix as it would consider the time and

strain rate dependence of the properties of polymer matrix as compared to any other

constitutive model. Prony series expansion terms can be used to define the stress

relaxation for this type of material.

We see that the position of the inclusions in a polymer composite plays an important

role in the attenuation characteristics. Thus, ensemble averaging was used to remove

the effect of randomness caused by the positioning of the inclusions.

We see that there is a direct relationship between the volume fraction of the in-

clusions and the attenuation characteristics of the polymer composite. It is observed

that as the volume fraction increases the attenuation in the polymer composite also

increases. There is negligible attenuation observed in a polymer matrix with no in-

clusions which infers that the attenuation characteristics depend on the presence of

inclusions in the matrix. As the volume fractions increases, the number of inclusions

of the same size also increases resulting in more attenuation by scattering of waves
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off the inclusion surfaces.

The loading frequency plays an important role in the attenuation characteristics of

the polymer composites. It is observed from the results that as the loading frequency

was increased there was an increase in the attenuation characteristics of the polymer

matrix which was observed more at higher volume fraction of the inclusions.

We also observed that the size of inclusions is a major factor in the attenuation

characteristics of a polymer composite. The surface area of the inclusions increases as

the volume fraction is increased as more inclusions are added to achieve the volume

fraction. This results in more scattering from the surface of the inclusions thereby

improving the attenuation characteristics of the polymer composite. But higher num-

ber of large inclusions will increase the volume fraction and in turn the weight of the

polymer composite as the inclusions are denser than the polymer matrix. Thus,

smaller inclusions with high volume fraction would significantly improve the attenu-

ation characteristics of the polymer composite.

We have also seen that the interphase properties like the Young’s modulus and the

thickness of the interphase have considerable effect on the wave attenuation charac-

teristics of the polymer composites. We compared two cases one in which interphase

was studied and the other in which there was no interphase in polymer composite.

It was found that the interphase properties do alter the attenuation characteristics

of the polymer composites and hence a comprehensive study should be done before

they can be used in any applications.

In regards to future work, the scope if this study should be validation by exper-

iments. Studies can also be done by changing the shape of the inclusions like a

cylindrical inclusion and evaluate it’s effect on the attenuation characteristics of the

polymer composite.
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