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ABSTRACT 
 
 

VENKATA RAMANA DUDDU. Modeling travel demand and crashes at macroscopic 
and microscopic levels. (Under the direction of DR. SRINIVAS S. PULUGURTHA) 

 
 

Accurate travel demand / Annual Average Daily Traffic (AADT) and crash 

predictions helps planners to plan, propose and prioritize infrastructure projects for future 

improvements. Existing methods are based on demographic characteristics, socio-

economic characteristics, and on-network (includes traffic volume) characteristics. A few 

methods have considered land use characteristics but along with other predictor variables. 

A strong correlation exists between land use characteristics and these other predictor 

variables. None of the past research has attempted to directly evaluate the effect and 

influence of land use characteristics on travel demand/AADT and crashes at both area 

and link level. These land use characteristics may be easy to capture and may have better 

predictive capabilities than other variables. The primary focus of this research is to 

develop macroscopic and microscopic models to estimate travel demand and crashes with 

an emphasis on land use characteristics.  

The proposed methodology involves development of macroscopic (area level) and 

microscopic (link level) models by incorporating scientific principles, statistical and 

artificial intelligent techniques.  The microscopic models help evaluate the link level 

performance, whereas the macroscopic models help evaluate the overall performance of 

an area. The method for developing macroscopic models differs from microscopic 

models. The areas of land use characteristics were considered in developing macroscopic 

models, whereas the principle of demographic gravitation is incorporated in developing 
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microscopic models. Statistical and back-propagation neural network (BPNN) techniques 

are used in developing the models.  

The results obtained indicate that statistical and neural network models ensured 

significantly lower errors. Overall, the BPNN models yielded better results in estimating 

travel demand and crashes than any other approach considered in this research. The 

neural network approach can be particularly suitable for their better predictive capability, 

whereas the statistical models could be used for mathematical formulation or 

understanding the role of explanatory variables in estimating AADT. Results obtained 

also indicate that land use characteristics have better predictive capabilities than other 

variables considered in this research. The outcomes can be used in safety conscious 

planning, land use decisions, long range transportation plans, prioritization of projects 

(short term and long term), and, to proactively apply safety treatments.  
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CHAPTER 1: INTRODUCTION 
 
 
Road transportation being a major means of transport in transportation sector 

plays a vital role on both economy and environment. Rapid growth in population over the 

past two decades has led to an increased travel demand resulting in congestion, safety and 

environmental issues. Economic losses due to traffic congestion and crashes are 

noteworthy. According to “The 2007 Urban Mobility Report”, the cost of congestion due 

to delays and resulting fuel wastage in the year 2005 is around $78 billion. Due to 

congestion, travelers have burnt 2.9 billion gallons of gas and wasted 4.2 billion hours on 

the roads. As traffic and congestion increases with growth in population, the conflicts that 

arise because of human interaction, off- and on-network characteristics also increase. 

According to the National Highway Traffic Safety Administration (NHTSA), more than 

5.8 million reported crashes occurred in the United States during 2008 (NHTSA, 2008). 

Over 37,000 people were killed and 2.55 million people were injured in these crashes. 

Federal agencies have made reducing crashes and improving safety on roads as one of 

their top priorities (Federal Highway Administration-FHWA, 2006). Also, the present 

transportation infrastructure is inadequate to accommodate the current needs of the users, 

which are expected to worsen in the future. 

Influencing land use characteristics by considering appropriate combinations and 

percentages of various land use categories and rezoning has significant potential to effect 

trip productions and attractions, and provide better mobility on roads. Understanding the 
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causes of the congestion and crashes, identifying appropriate solutions, and, proactively 

adopting or using them at macroscopic (area) or microscopic (link) levels can affect 

travel patterns and traffic safety. Further, an accurate forecast of travel demand and crash 

prediction helps planners to plan, propose and prioritize infrastructure projects for future 

improvements.  

1.1 Problem Statement  

Data collected from the field and outputs from well calibrated traditional four-step 

planning process are potential sources of traffic volume at link level. While the data from 

field are collected based on the need or as a part of traffic count programs and are 

available for selected links / intersections, traffic volumes are available as outputs for all 

major roads from traditional four-step planning process. Resource constraints (include 

funds) often limit practitioners from collecting traffic volume data for all links / 

intersections in the transportation network but rely on outputs from calibrated traditional 

four-step planning process.  

Traffic volumes from calibrated traditional four-step planning process depend on 

estimated trip productions and trip attractions of each traffic analysis zone (TAZ) in the 

study area. TAZ is defined as an area delineated by state transportation officials to 

evaluate and tabulate trip productions and attractions for their use in transportation 

planning models. The trips produced from or attracted to a TAZ are generally estimated 

as a function of demographic / socio-economic characteristics. These demographic and 

socio-economic characteristics to estimate trip productions and trip attractions at TAZ 

level depend on land use characteristics (example, population of a TAZ depends on the 

number of dwelling / household units and the average household size of the TAZ). 
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Further, infrastructure (on-network characteristics) related decisions often depend on 

traffic characteristics which as stated above depend on socio-economic / demographic / 

land use characteristics.  

As trips produced from and attracted to a TAZ increases, the traffic volume on 

links in the TAZ increases. This is naturally expected to result in an increase in the 

number of crashes. Land use planning decisions can therefore influence demographic / 

socio-economic characteristics, and hence traffic volume and crashes both at area level 

and link level.  

Most of the studies in the past are based on the data within the vicinity of a 

location. Crash estimation models developed based on data within the vicinity of a 

location could help improve safety at the specific location. Typical location- or site- 

specific improvements are related to engineering, education and enforcement, and are 

generally short-term in nature. Aggregating the transportation system at the TAZ level 

and developing TAZ level crash estimation models as a function of land use 

characteristics helps reduce some of the difficulties caused by ‘lumpiness’ of random 

events that one see across intersections or across road segments (Washington, et al., 

2006). However, TAZ level models for estimating traffic volumes, that is, trip attractions 

and trip productions is not required as they are primarily used to evaluate link level traffic 

volumes. 

While macroscopic or area level models assist in planning for better future (new 

developments or by rezoning), microscopic or link level models assist in design and 

operational analysis. However, traffic volume data is not available for all the links in the 

network. Developing link-level travel demand and crash estimation models will help 
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evaluate the effect of design and operational related changes on mobility and safety. The 

outcomes can be proactively adopted to achieve better performance on the transportation 

network. While resource limitations restrict collecting traffic volume data for every link 

in the network, lack of link-level crash estimation models that rely on variables other 

traffic volume or travel demand is another limitation. 

It is well known in the literature that the effect of an area (land use characteristic) 

on the road link decreases with the increase in distance (Principle of Demographic 

Gravitation: Stewart, 1948). Evaluating link level traffic and hence crashes as a function 

of land use characteristics based on distance gradient method would not only improve the 

accuracy of the models in estimating travel demand but also helps better understand the 

role of safety in long range transportation planning and land use planning decisions. It 

would minimize dependence on analyzing crash data, identifying causes / solutions, and 

implementing countermeasures as an afterthought. Therefore, spatial variations of land 

use characteristics based on gradient distance method that decrease with an increase in 

distance should be incorporated in the estimation process. 

1.2 Research Goal and Objectives 

The primary goal of this research is to develop methods and assess models to 

accurately estimate travel demand and crashes at macroscopic and microscopic levels for 

transportation planning, operational and safety analysis and decision-making. Several 

objectives were identified to achieve this goal. They are: 

• Identify the characteristics that explain travel demand and crashes. 

• Investigate spatial autocorrelation to evaluate whether there is any influence of 

crashes in a TAZ on its adjacent TAZ’s. 
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• Incorporate spatial variations of land use characteristics based on gradient 

distance method that decrease with an increase in distance. 

• Develop the following models based on statistical techniques and artificial neural 

network techniques.  

• Macroscopic (TAZ) level crash estimation models with an emphasis on 

land use characteristics.  

• Microscopic (link) level travel demand and crash estimation models to 

estimate link level traffic volume and crashes incorporating the Principle 

of Demographic Gravitation.  

• Compare the performance of the statistical models with neural network models.  

• Validate outcomes and demonstrate the applicability of models to estimate travel 

demand and crashes. 

1.3 Organization of the Dissertation 

 The dissertation is organized as follows. A review of past literature, underlying 

methods and their limitations are discussed in Chapter 2.  A brief description of neural 

networks, how it effectively helps solve the problem and their applications in the area of 

transportation are discussed in Chapter 3. The proposed new research methodology and 

the databases required to incorporate it are discussed in Chapter 4. Chapter 5 and Chapter 

6 discuss the development of macroscopic and microscopic models, and also present their 

predictive performance to verify/validate the models developed. Conclusions and 

directions for future research are presented in Chapter 7. 

 

 



 
 

 
 

CHAPTER 2: LITERATURE REVIEW 
 
 
A discussion of past related literature is presented in this chapter. In Section 2.1, a 

review of various methods used in estimating crashes is discussed. In Section 2.2 and 2.3, 

a review of travel demand modeling and traditional urban transportation planning models 

is presented. In Section 2.4, a review of the studies and practices in AADT estimation is 

described. The motivation of this research is discussed in Section 2.5. 

2.1 Crash Estimation 

Researchers have examined the role of demographic / socio-economic, land use 

and on-network characteristics on crashes, and have developed crash estimation models 

in the past. Poisson models, Negative Binomial models, linear regression models, and 

empirical analyses techniques were used to develop such models. A coherent discussion 

on the effect of these characteristics on crashes and techniques used is presented next. 

Levine et al. (1995), based on data for Honolulu, Hawaii, found that most of the 

crashes occur closer to employment centers than residential areas. Crashes in rural and 

sub-urban areas are most likely to be fatal or serious injury crashes that can be related to 

night-time driving and alcohol. 

Abdel-Aty et al. (2000) studied the relationship between crashes on principal 

arterials and on-network characteristics, user characteristics (age and gender) and 

roadway geometry. The Negative Binomial model developed indicated that average 

AADT, degree of horizontal curves, and lane, shoulder and median widths play a 

significant role on the frequency of crashes. The results obtained also indicated that 
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female, younger and older drivers experience more crashes on roads with heavy traffic 

volumes and lower lane, shoulder and median widths than when compared to male 

drivers and mid-aged drivers. The tendency of younger drivers to be involved in crashes 

was observed to be higher on roadway curves and while speeding.  

Ivan et al. (2000) explained highway crash rates by predicting single-vehicle and 

multi-vehicle crashes separately using Poisson regression models. The results obtained 

indicate that daytime, volume-capacity ratio, segments with no passing zones, the 

shoulder width, the number of intersections and driveways are significant variables that 

can explain single-vehicle crashes, whereas daylight conditions, the number of 

intersections and driveways are significant variables that can explain multi-vehicle 

crashes. 

Kim et al. (2002) evaluated crash patterns based on land use characteristics using 

empirical analysis and geographical information systems (GIS). The results obtained 

indicate that residential neighborhoods, which have higher traffic volumes only during 

the peak hours tend to have higher crashes than commercial centers that have high traffic 

volumes throughout the day. 

Wood (2002) described the underlying mechanism of generalized linear crash 

models and practical resolution to address the ‘low mean value’ problem. Noland et al. 

(2003) examined road casualties in England using Negative Binomial models based on 

land use and road characteristics. The results obtained indicate that traffic casualties are 

higher in areas with higher levels of social deprivation and in areas with higher 

employment density. However, urbanized areas with high density of population tend to 

have fewer traffic casualties.  
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Greibe (2003) researched on crash estimation models for urban junctions and 

links using generalized linear modeling technique. The results obtained indicate that road 

environment variables, minor side roads, parking facilities and speed limits are 

significant variables to explain crashes on road links. Only vehicle traffic flow was found 

to be a significant variable for road junctions. 

Ladron de Guevara et al. (2004) forecasted crashes using Negative Binomial 

models and concluded that population density, intersection density, the number of 

employees and traffic volume play a significant role in predicting crashes. The study 

suggested that “planning-level safety models are feasible and may play a role in future 

planning activities”.  

Noland et al. (2004) examined that an increase in the number of lanes and road 

widths lead to increased traffic-related crashes. This study concluded that an increase in 

shoulder width may help in decreasing traffic-related crashes. The changes in vertical and 

horizontal curvatures have no statistical association with traffic safety.  

Wood (2005) explained errors that were mainly related to crash rates and 

variables using generalized linear models with logarithmic function. Aguero-Valverde et 

al. (2006) used injury and fatal crash data for Pennsylvania and compared full bayes 

hierarchical models and Negative Binomial models. The study revealed that variables that 

are highly significant in Negative Binomial models are equally significant in full bayes 

hierarchical models. However, marginally significant variables in Negative Binomial 

models are not significant in full bayes models. It was concluded that the counties with 

higher percentages of the population below the poverty line, with younger and older 
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drivers, and with increased road mileage and density have significantly increased crash 

risks.  

Kim et al. (2006) explored the relationship between land use, population, the 

employment by sector, economic output and motor vehicle crashes.  The authors indicate 

that new development or increasing the intensity or changing the nature of existing 

economic activity will have implications on safety. The results from the Negative 

Binomial models developed indicate that land use characteristics such as parks, schools 

and commercial areas are highly associated with crashes. Similarly, Kim et al. (2010) 

examined relationship between demographic, land use, and roadway accessibility 

variables and types of crashes in Honolulu, Hawaii using binomial logistic regression. 

The authors concluded that demographic variables such as job count and number of 

people living below the poverty level are significantly associated with injury crashes and 

pedestrian and bike crashes. Accessibility measures such as the number of bus stops and 

the number of intersections are associated with increases in all types of crashes. Land use 

characteristics such as Business and commercial areas are strongly associated with 

increased total as well as injury and fatal crashes. 

Caliendo et al. (2007) used Poisson, Negative Binomial and negative multinomial 

regression models separately to predict crashes on tangents and curves on multilane 

roads. Regression models were developed separately for total crashes, fatal crashes and 

injury crashes. Length, longitudinal slope, sight distance, curvature, side friction 

coefficient and, AADT were considered as the explanatory variables to predict crashes. 

This study concluded that length, curvature and AADT are significant variables that can 
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explain crashes on curves, whereas length, AADT and junctions are significant variables 

that can explain crashes on tangents.  

Mitra and Washington (2007) evaluated the nature of over-dispersion in crash 

estimation models. This study was motivated to corroborate the findings of Miaou and 

Lord (2003) regarding the variance structure in over-dispersed crash models. Four 

geometric factors and four traffic flow explanatory variables were considered in 

developing the crash estimation models. These models were compared using significance 

of coefficients, standard deviance, chi-square goodness of fit, and deviance information 

criteria statistics. 

Ma et al. (2008) developed multivariate Poisson lognormal regression (MVPLN) 

models using crash data for Washington State roadway segments. Crash data was used as 

a dependent variable, while roadway geometric characteristics were used as independent 

variables.     

Quddus et al. (2008) developed relationships between traffic casualties and traffic 

characteristics, road characteristics and socio-demographic characteristics using both 

non-spatial Negative Binomial models and spatial Bayesian hierarchical models. Area or 

ward (census track) level data was used to evaluate the correlations. This study concluded 

that results from both non-spatial and spatial models are quite similar in many cases. The 

Bayesian hierarchical models developed indicate that casualties increase with traffic 

flow, and households with no cars and total employment are statistically significant 

variables in all the models. 

Wier et al. (2009) developed simple bivariate models to predict the changes in 

vehicle-pedestrian injury collisions based on changes in traffic volume on highways and 
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freeways in San Francisco, California. They used street characteristics (traffic volume, 

the number of intersections, the percentage of residential streets,  the percentage of 

arterial streets without public transit, the percentage of arterial streets with public transit, 

and, the percentage of freeways and highways), land use characteristics (percentages of 

commercial, industrial,  neighborhood commercial, residential, higher density residential, 

and residential neighborhood commercial areas in square miles), population 

characteristics (employee population, resident population, the percentage of population 

age 65 and older, the percentage of population age 17 and under, the percentage of 

population living below the poverty line, the percentage of population unemployed), 

commute behavior (the percentage of workers commuting to work by walking and the 

percentage of workers commuting to work by public transit) to develop multivariate area-

level regression model for vehicle- pedestrian injury collisions from 2001-2005. Ordinary 

squares regression (OLS) was used to model the natural log of the number of vehicle-

pedestrian injury collisions over a 5-year period. Traffic volume was observed to have the 

highest adjusted partial correlation with vehicle-pedestrian collisions, followed by the 

number of employees, the proportion of neighborhood commercial area, the proportion of 

arterial streets without transit and the residential population.   

Naderan et al. (2010) have developed crash generation models for total, property 

damage, severe, injury, and fatal crashes separately using trip productions and attractions 

of each TAZ.  

Ukkusuri et al. (2011) investigated the role of built environment on pedestrian 

crash frequency at census tract level. The results from the study indicate that census tracts 

with greater fraction of industrial, commercial, and open land use types have greater 
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likelihood for pedestrian crashes while tracts with a greater fraction of residential land 

use have significantly lower likelihood of pedestrian crashes. The authors also concluded 

that as schools and transit stops are determinants of pedestrian activity, census tracts with 

greater number of schools and transit stops are more likely to have greater pedestrian 

crashes. 

A TAZ level non-parametric safety analysis by Siddiqui et al. (2012) indicated 

that the total number of intersections per TAZ, airport trip productions, light truck 

productions, total roadway segment length with 35 mph posted speed limit, total roadway 

length with 15 mph posted speed limit, total roadway length with 65 mph posted speed 

limit, and non-home based work productions are significant variables in predicting total 

crashes. Whereas, total number of intersections per TAZ, light truck productions, total 

roadway length with 35 mph posted speed limit, and total roadway length with 65 mph 

posted speed limit are identified as significant variables for severe crashes. 

2.2 Travel Demand Modeling 

Travel demand modeling means the development of mathematical formulations 

which represent travel patterns on the road links of a transportation network. Travel 

demand modeling is an integral part of the planning process which helps predict the 

traffic volumes, flows on road links of transportation network and transit patronage in the 

future by considering socio-economic characteristics, demographic characteristics, land 

use characteristics and any new developments or transportation infrastructure projects in 

a region. The basic objective of this process is to provide a comprehensive and 

continuing guidance to the Metropolitan Planning Organizations (MPO’s) for the 

development, evaluation and implementation of future transportation planning proposals, 
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policies and in prioritizing projects to allocate available funds for future investments. In 

practical terms, the purpose of travel demand modeling is to provide a tool which helps 

predict, or forecast travel patterns under various conditions which represent the state of 

transportation network at a future time.  

Presently, a majority of the MPO’s use a traditional sequential four-step model 

(FSM) to estimate and forecast traffic on the road network. Incorporated in 1950’s when 

the first transportation study was conducted in Detroit, Michigan and subsequently by 

many metropolitan areas in the United States and developed European countries, the 

FSM has progressively evolved into an established methodology for predicting and 

forecasting traffic over the past fifty to sixty years. The following section discusses 

method and models that are used in practice in the traditional sequential FSM. 

2.3 Traditional Urban Transportation Planning Models 

The traditional FSM for urban transportation planning consists of the steps: trip 

generation, trip distribution, mode split and traffic assignment. A significant amount of 

data is required for FSM to define travel and transportation systems. The data needs 

include graphical representation of the transportation network with road links and nodes. 

The travel or activity data needed for the FSM is gathered by surveys and is typically 

aggregated to a zonal level of convenient size. These zones are typically termed as traffic 

analysis zones (TAZ).  

As the level of aggregation has a significant effect on the results and ultimately 

the policy measures, defining TAZs play an important role in modeling travel demand. 

The selection of TAZ size and number depends on several factors such as socio-

economic, demographic and land use characteristics and also on the project objectives 
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and the type of study conducted. It is assumed that all the attributes of each TAZ in the 

study area are represented by its respective centroids. So, the trips originating from each 

TAZ are loaded on to the network from the centroid of the TAZ to physical links in the 

network using centroid connectors. The trips that are expected from the areas out of the 

study area are modeled as external zones or stations, which are connected to the network 

on its periphery. A brief overview of each step in the traditional FSM process is discussed 

below. 

2.3.1 Trip Generation 

The process of estimating the total number of trips produced or attracted by each 

TAZ is known as trip generation. There are two kinds of trip generation models: trip 

production model and trip attraction model.  Trip production models estimate the number 

of home-based trips to and from each TAZ and where trip makers reside. Trip attraction 

models estimate the number of home-based trips to and from each TAZ at the non-home 

end of the trip. Different production and attraction models are used for each trip purpose. 

Special generation models are used to estimate non home-based, truck, taxi, and external 

trips. As the trips produced in an origin should have a destination, all the productions in 

origin TAZs should be balanced with trip attractions in the destination TAZs to ensure 

that total trip productions and attractions are equal. The number of trips produced in a 

TAZ depends on population size and density, household size, income levels, car 

ownership, and accessibility. On the other hand, trip attractions depend on employment, 

land use type (industrial, commercial, retail, and recreational) and floor space available. 

The main problem with trip attractions is the data availability. While significant progress 

and understanding has been observed in the production models, literature documents 
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limited research for models based on trip attractions. Trip generation is generally carried 

out using two methods: linear regression analysis and the cross classification/category 

analysis (Ortuzar and Willumsen, 2001). 

2.3.2 Trip Distribution 

Trip distribution is a process of distributing the trips generated among the 

destination TAZs. Among the various to model trip distribution, the gravity model 

adapted from Newton’s gravitational law of physics is commonly used in trip distribution 

process. According to gravity method, the trip attractions between origin-destination 

TAZs diminish with an increase in the distance between the TAZs. According to Stopher 

and Meyburg (1975), growth rates observed from the historical data and experience were 

also generally applied for trip distribution. However, temporal variations of trips, special 

attractions, and future developmental attractions are not considered in the traditional 

gravity model. The gravity model need travel time matrices for inter and intra-zonal trips 

for both base year and forecast year. However, the traffic mix by mode is undefined at 

this stage to predict travel time matrices accurately (Stopher and Meyburg, 1975). The 

limitations of this step are hence transferred to the next step; “the modal split”. 

2.3.3 Mode Split 

Mode split is the process of splitting or distributing the origin destination volumes 

by available alternate modes. The model split is typically performed after trip 

distribution, though in some cases it is performed after trip generation and before 

distribution. Trip-end models used before the trip distribution and after generation are 

good in small networks for preserving characteristics of individuals. However, they are 
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not viable for large networks where different modes have various levels of influence on 

the choice of the mode (Ortuzar and Willumsen, 2001).  

2.3.4 Trip Assignment 

Trip assignment is the process of assigning the trips from a given origin to a given 

destination on a given mode obtained from the previous step to routes comprising of a set 

of links in the network. The trip assignment process is based on shortest path or minimum 

impedance (travel time) paths for a no congestion scenario. Several techniques, methods 

and market equilibrium theories are generally used in practice. Equilibrium principles 

developed by Wardrop (1952) are used for trip assignment or network assignment in 

congested networks. Wardrops’s first and second principles, the user optimal and system 

optimal principles are built on assumptions that the users do not have a choice to change 

routes to minimize cost and the entire system balances out to equilibrium (Miller and 

Shaw, 2001). Dynamic models to account for time variations, stochastic models for 

allowing user cost minimization, dynamic traffic assignment to predict and incorporate 

future traffic in the iterations and advanced variational inequality models entertained in 

the trip assignment are still left with several questions. 

2.3.5 Combined Four Step Methods  

Combined models were developed to carry out all the four steps simultaneously in 

order to reduce errors and uncertainties transferred in the traditional FSM approach. 

These include efforts by Beckman et al. (1956), Florian, Nguyen and Ferland (1975), 

Evans (1976), Florian and Nguyen (1978), Friesz (1981), Fisch (1985), Safwat and 

Magnanti (1988), Oppenheim (1995), Bar-Gera and Boyce (2003), Boyce and Bar-Gera 

(2003, 2004), Ho et al. (2006), and Hasan and Dashti (2007). 
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2.4 Estimation of AADT 

Sharma et al. (1993) developed an index of assignment effectiveness to evaluate 

the duration and frequency of control of seasonal counts. The authors concluded that a 1-

week count repeated in 4 different months was much more accurate than a 1-week count 

repeated twice. However, repetition more than 4 times would contribute little additional 

improvement. Similarly, Sharma et al. (1994) investigated the problem of determining the 

duration and timing of a seasonal count given a specified precision. As an extension to 

these studies, Sharma et al. (1996) addressed statistical accuracy of AADT estimates for 

seasonal traffic counts (STC) with statistical precision of short period traffic counts 

(SPTC) analyzed using automatic traffic recorder (ATR) data from Alberta and 

Saskatchewan provinces in Canada. AADT values were calculated using respective 

expansion factors of the ATR group by assigning SPTC sites to homogeneous ATR 

groups. Appropriateness of volume adjustment factors was expressed in terms of 

assignment effectiveness and was used to represent the degree of correctness in assigning 

the sample sites to a given ATR group. The need for effective assignment of count sites 

was discussed and found that estimates of a properly assigned 6 hour counts proved better 

than the improperly assigned 72 hour count sites. However, during the last decades, 

control counts became more and more unpopular in the United States and the newest 

edition of the Traffic Monitoring Guide (TMG, 2001) has left out the suggested use of 

control counts.  

Smith et al. (1997) focused on developing traffic volume forecasting models for 

two sites on Northern Virginia Capital Beltway. Four models such as historical average, 

time-series, neural network and nonparametric regression models were developed to 
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estimate freeway traffic flow that represents 15 minute future traffic volume. From 

Wilcoxon signed-rank test conducted, the authors reveal that the nonparametric models 

which are easy to implement and proved to be portable, experienced significantly lower 

errors that any other model tested. A similar study was done by Smith et al. (2002) to 

compare the performance of parametric and nonparametric regression models using 

seasonal autoregressive integrated moving average (ARIMA) for traffic flow forecasting. 

The results indicate that the traffic condition data is characteristically stochastic as 

opposed to chaotic. Their research concluded that larger databases would provide a better 

set of neighbors to use in producing forecasts and in addition different state definitions 

and/or distance metrics may lead to better results. 

Stamatiadis et al. (1997) studied the relationships and developed seasonal 

adjustment factors for the state of Kentucky to understand the relationship between the 

data obtained in a short-term period to those for the entire year. The preliminary analysis 

indicated that seasonal adjustment factors are essential in developing accurate estimates 

of traffic volumes for each vehicle type, and their use can improve the estimation of daily 

volumes. 

Granato (1998) presented an analysis by utilizing data from an (automatic traffic 

recording) ATR station maintained by the Iowa DOT in Cedar Rapids, Iowa. The 

analysis was to determine how much day of week/month of year factors can reduce the 

error of prediction of AADT from a short-term traffic count. Results indicate that 

continuous consecutive day count improved the estimation only by 5%. Using a single 

ATR count station data, a 25% error reduction in the AADT estimates was found with the 

application of day of week and month of the year factors when compared to using 
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continuous 24 hour. The author suggested using multi day traffic counts scattered across 

two or three weeks over consecutive-day counts. 

Mohamad et al. (1998) developed AADT prediction model for county roads. 

Traffic data was collected using automatic traffic counters for 40 counties out of 92 in 

Indiana State which were selected based on population, state highway mileage, per capita 

income, and the presence of interstate highways. AADT was calculated using factors and 

multiple regression analysis was conducted to develop models. County population and 

county arterial mileage, location and accessibility were found to be the significant factors 

affecting the daily traffic on paved county roads. Similarly, Xia et al. (1999) attempted to 

estimate AADT for non-state roads that do not have traffic counts in Broward County, 

Florida with more predictor variables in regression analysis. The authors used predictor 

variables such as roadway characteristics such as the number of lanes, area type and 

functional classification, socio-economic data variables such as different types of 

employment, school enrollment and hotel occupancy and accessibility to state and non-

state roads. Accessibility of non-state roads to other county roads, number of lanes, area 

type, functional class and auto ownership and service employment were found to be 

significant predictors to estimate AADT.  

Horowitz and Farmer (1999) have reviewed travel forecasting practices that were 

being undertaken by many states in the United States. The review consisted of interviews 

and documents from 45 states and articles from the past literature which included 

passenger models, freight models and time-series models. The statewide models were 

compared to intercity models and found that in spite of the inherent differences in scales, 

planning needs, and data availability, states with complete models tended to follow an 
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urban modeling framework and used software originally designed for urban travel 

forecasting.  Recommendations were provided for improved statewide travel forecasting. 

Sharma et al. (2000) proposed a neural network approach for estimating AADT 

from 48-hour coverage counts. The authors carried out a detailed comparison between the 

neural network approach and the traditional method by using data from ATR-equipped 

segments in Minnesota. The results showed that the traditional method produced better 

AADT estimates than the neural network approach for a single 48-hour coverage count 

when it was correctly assigned to a factor group. The error for two 48-hour counts using 

the neural network approach was comparable to that for only a single 48-hour count using 

the traditional method. The two 48-hour counts from different months were used by the 

neural network approach. The authors concluded that the error could be much higher for 

coverage count locations assigned incorrectly to factor groups in practice when using the 

traditional method. The neural network approach was extended to estimate AADT on 

low-volume roads by Sharma et al. (2001).  

Seaver et al. (2000) estimated traffic volumes on the rural roads using statistical 

techniques. The average daily traffic (ADT) on the rural roads was modeled based on the 

road type using the data related to 80 counties in Georgia State. Forty five variables 

related to 8 categories such as population demographics (population density, population 

percentage changes, persons per household), education, transportation (travel time to 

work, means of transportation to work, leaving time for work), income (per capita income 

and median household income), employment (types of employment, unemployment, and 

place of employment (in or out of the county or state)), farming, urbanization and 

housing are considered as the predictors of ADT. The authors have developed several 
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regression equations and suggested to classify the county and then choose an appropriate 

model to predict ADT. 

Lingras et al. (2000) applied time series analysis for predicting daily traffic 

volumes. The analysis is applied based on different types of road groups according to trip 

purpose and trip length distribution. The study involved comparison of statistical and 

neural network techniques for time series analysis in predicting daily traffic volumes. The 

authors concluded that neural network models perform better than auto regression models 

and the prediction errors for predominantly recreational roads were higher than those for 

predominantly commuter and long-distance roads supporting the fact that commuter and 

long-distance traffic patterns are relatively more stable than recreational traffic patterns. 

Zhao and Chung (2001) extended the study by Xie et al. (1999) using a larger data 

set that included all state roads in Broward County. The predictor variables were updated 

by analyzing land-use and accessibility variables more extensively. They presented four 

models with different combinations of explanatory variables considered. The authors 

examined and compared the predictive power of the models and suggested that the 

method of estimating AADT by not using traffic counts might not be adequate to meet 

the need of engineering design and planning. However, it could be used for tasks that do 

not need a high level of accuracy. 

Davis and Yang (2001) developed an algorithm for computing probability of a 

match between a short count site, and each of a set of permanent counting stations 

showing distinct trends using Bayesian decision theory. The authors attempted to 

understand the uncertainties associated with the estimation of total traffic volumes from a 

sample of daily traffic volumes based on traffic data variability equations. The median or 
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the 50th percentile of the predictive distribution using the probable ranges and their 

associate probability values were used to obtain total traffic volumes. The authors 

concluded that that for estimating mean daily traffic (MDT) by vehicle class, the samples 

should be taken between May and October, and between Tuesday and Thursday so that  

the error of Bayes estimates of classified MDT are about 10-12% on average and within 

26%, 95% of time. 

McCord et al. (2003) estimated AADTs from several air photos and satellite 

images for several highway segments in Ohio. A sequential approach of five steps was 

proposed to produce the AADT estimate from a single image: 1) obtain the vehicle 

density from the image; 2) covert the density to a volume (“t minutes”); 3) expand the t-

minute volume to an hourly volume; 4) expand the hourly volume to a daily volume; 5) 

de-seasonalize the daily volume to produce an average yearly volume. These AADTs 

were compared with the AADTs from traditional ground-based estimates. As the 

empirical errors were small enough, the study concluded that AADT estimation errors 

and ground-based sampling efforts could both be reduced by combining satellite-based 

data with traditional ground-based data.  

Tang et al. (2003) adapted time-series, neural network, non-parametric regression, 

Gaussian maximum likelihood to develop models for predicting traffic volumes by day of 

the week, by month and AADT for the entire year. Analysis was conducted based on 

Hong Kong’s historical traffic data from 1994-1998. The daily flows estimated by the 

four models were used to calculate the AADT for the year of 1999. The results from the 

four models were compared and the authors indicated that the Gaussian maximum 

likelihood model appears to be the most promising and robust of these four models for 
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extensive applications to provide the short-term traffic forecasting database for the whole 

territory of Hong Kong. 

Zhao and Park (2004) estimated AADT’s using geographic weighted regression 

(GWR) technique which allows local model parameter estimation instead of global 

parameters used in an Ordinary Least Squares (OLS) linear regression analysis. The 

authors investigated spatially variable parameter estimates and local R-Square from the 

GWR model to analyze the errors in AADT estimation. When compared with OLS 

models, the GWR models were found to be more accurate and were useful for studying 

the effects of the regressors at different locations. 

A study by Zhong et al. (2004) developed genetically designed neural network 

and regression models, factor models, and autoregressive integrated moving average 

(ARIMA) models to evaluate missing traffic counts from permanent traffic counts. The 

authors found that genetically designed regression models based on data from before and 

after the failure had the most accurate results. Average errors for refined models were 

found to be lower than 1% and the 95th percentile errors were below 2% for counts with 

stable patterns.  

Li et al (2004) identified several significant factors through regression analysis 

that contribute to seasonal traffic patterns considering land use, demographic and socio-

economic data which also include seasonal movement of seasonal residents and tourists, 

retired people between ages 65 and 75 with high income, and retail employment. The 

results indicate a possible way to directly estimate the seasonal factors for short-period 

counts based on land use variables and the possibility of assigning established seasonal 

groups to short-period counts based on similarity in land use, demographic and socio-
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economic characteristics. However, according to Li et al. (2006), typical established 

factor groupings are based on short count station proximity to permanent count station, 

functional class or engineering judgment. Based on known seasonal factors groupings of 

permanent count stations and their four land use categories, the authors developed a fuzzy 

tree construct to determine the seasonal factors category of a given portable count station. 

The land use categories used did not sufficiently represent the permanent count station 

locations and, with limited sample size, the traffic variations were not completely 

explained, due to which, ambiguity still remained in the results. 

Goel et al. (2005) developed a method that exploits the correlations between 24 

hour segment volumes. The method can be used with only two daily traffic volumes on 

the coverage count segment and is based on generalized least squares estimation of 

AADT, rather than on ordinary least squares estimation, which is traditionally used. 

Monte Carlo simulation on a small network representing intercity flows in Ohio was used 

to compare the performance of the correlation-based method with that of the traditional 

method. Results showed that the correlation-based method resulted in less error in AADT 

estimation than the traditional method when the segment volumes were highly correlated. 

However, when these segment volumes had low correlation, both the methods showed 

similar performance, providing estimates of approximately equal magnitude with 

approximately equal frequency. 

Jiang (2005) and Jiang et al. (2006) developed a method to estimate AADT by 

combining the ground-based traffic data information with in-image traffic data 

information. In this method, the weighted combination of earlier year coverage counts 

and current year image containing traffic data were is proposed for the AADT estimation. 
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An empirical study was conducted using data for 122 highway segments and single 

contemporary image for 10 year period from 1994 and 2003. The results indicate an 

increased accuracy in AADT estimation with reduction in the average error and increased 

likelihood of producing an AADT with percent error less than 10%.  

Lam et al. (2006) developed models for short-term traffic forecasting based on 

historical traffic data collected for annual traffic census in Hong Kong.  Non-parametric 

regression model and Gaussian maximum likelihood model were used for traffic 

forecasting. AADT’s were calculated from the predicted daily vehicular flows. The 

results for the prediction of models and comparison show that the non-parametric 

regression model produces better forecasts than the Gaussian maximum likelihood 

model. 

Gadda et al. (2007) quantified the level of uncertainty in AADT estimates from 

extrapolating short-term local counts over time and space by quantifying different errors 

such as factoring errors, spatial errors and temporal errors. The research also explored 

how these errors vary by day of week, month of year, area type, functional class, number 

of lanes, duration and distance to nearest SPTC station. The classification of the site by 

fine clustering, on the basis of functional class, lane count, and multiple area types may 

prove very useful for the analysis. Results obtained appeared consistent across states 

which supports the notion of their transferability to other contexts. Results from the 

quantification of spatial errors indicate an increase in the errors dramatically beyond 0.5 

miles from the count site in urban areas and 1 mile in rural areas. 

Wang and Kockelman (2009) used Kriging-based method for mining network and 

count data over time and space. The study concluded that Kriging performed far better 
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than other options for spatial extrapolation, such as assigning AADT on the basis of a 

point’s nearest sampling site. Similarly, Selby and Kockelman (2011) explored the 

application of Euclidean distance and network distance based Kriging methods for 

prediction of ADT counts across the Texas network. Universal Kriging was found to 

reduce over non-spatial regression techniques. However, errors remained quite high at the 

sites with low counts and/or in less measurement-dense areas. Results based on 

comparison indicate that the estimation of Kriging parameters by network distances 

showed no enhanced performance over Euclidean distances, which require less data and 

are much more easily computed. 

2.5 Limitations of Past Research  

Most researchers have focused on travel demand and crash estimation models 

based on demographic characteristics, socio-economic characteristics, and on-network 

(includes traffic volume) characteristics or on the effect of these variables on travel 

demand and crashes. A few researchers have considered land use characteristics but 

along with other predictor variables. A strong correlation may exist between land use 

characteristics and these other predictor variables. Further, land use characteristics may 

play a relatively stronger role on travel demand and crashes when compared to other 

predictor variables. 

Not many authors have looked at area or TAZ level crash estimation models  that 

would lower difficulties caused by ‘lumpiness’ of random events across intersections or 

across road segments (Washington, et al., 2006). Those that considered area level, spatial 

proximity or trip generation data (Naderan and Shahi, 2010; Abdel-Aty et al., 2010; An et 
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al., 2011) for safety conscious planning did not examine the direct relationship between 

land use characteristics and crashes.  

Similarly, literature documents various models in estimating crashes at link level. 

Most of those considered volume as one of the primary variable to estimate crashes at 

link level. However, these volumes are obtained from 1) traditional FSM in which 

uncertainties are transferred from the previous steps where error reduction is inevitable; 

2) combined that FSM carry all the drawbacks associated with FSM, since these models 

are developed based on the basic assumptions associated with traditional FSM; and 3) 

AADT estimation models that were developed using various methods which are limited 

in scope. These methods include, statistical models based on area type (such as urban and 

rural), non-state roads and other functional classes, time series analysis based on historic 

traffic counts using neural networks, and density based methods.  

Overall, none of the past research attempted to directly evaluate link level traffic 

and hence crashes as a function of land use characteristics. None of them have considered 

artificial intelligent (AI) techniques in directly estimating travel demand and crashes at 

both area and link level. These AI techniques and their applications in the area of 

transportation are discussed in-detail in the Chapter 3.  Moreover, none of them have 

considered distance gradient method in estimating link level traffic and crashes. There is 

a need to develop a methodology which includes spatial analytical methods, statistical 

methods, basic scientific principles and artificial intelligent techniques. The new method 

should incorporate spatial variations of land use characteristics based on gradient distance 

method that decrease with an increase in distance in the estimation process to increase the 

predictability of the models. 



 
 

 
 

CHAPTER 3: NEURAL NETWORKS 
 
 

Artificial intelligence (AI) is an ability of a system that can independently 

perform tasks normally requiring human or animal intelligence (Nilsson, 1971). It is a 

system with an ability to learn, adapt and improve. The first known AI system is “Turing 

Machine” invented by Allen Turing in 1950. In the subsequent years, the research in the 

field of AI has grown rapidly and is sub-divided into many different areas based on their 

applicability to various fields in science and technology. Some of the applications that are 

commonly used in the field of civil engineering include Expert Systems, Genetic 

Algorithms, Intelligent Agents, Neural Networks, Logic Programming, and Fuzzy Logic. 

Each of the above mentioned applications are used based on the type of problem to be 

addressed. 

Neural networks were chosen to develop the methods and models in this 

dissertation. A brief description of neural networks and how it effectively helps solve the 

problem are discussed in the following sections. 

3.1 Neural Networks 

Artificial neural networks, also called as neural networks, is a computational 

model that mimic at least partially the structure and functions of brains and nervous 

systems of living beings (Cichocki & Unbehauen, 1993). In general, a neural network is a 

computational model composed of simple processing elements called neurons or nodes, 

which are interconnected by links with weights that help perform parallel distributed 

processing in order to solve a desired problem. Neural networks have the ability to learn 
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from the environment and to adapt to it in an interactive manner similar to their 

biological counterparts.  

The interest in the neural networks has grown dramatically in the fields of science 

and engineering in the last few years. A basic neural network model consists of set of 

nodes connected by the links that has numeric weights associated with them. Each node 

has a set of input links from other nodes and a set of output links to other some nodes. 

The nodes from the input links are connected to an activation function to compute the 

activation level at the next time step. Figure 3.1 shows a model of an artificial neuron. 

The inputs to the artificial neuron are given in the form individual vector components 

given as xi, for i = 1, 2, 3…, n. That is, the entire input is given as a vector signal 

x ϵ ℜn×1, where, x = [x1, x2, x3, …., xn]T. Each input neuron ‘xi’ is connected to the 

neuron ‘q’ through a link called synapse, which is associated with a synaptic weight 

‘Wqi’. The neuron ‘q’ receives an input from ‘xi’ as the product of the individual input 

vector component ‘xi’ and the weight ‘Wqi’ associated with it. Since, there are multiple 

inputs to the neuron ‘q’, all these inputs are multiplied with their respective synaptic 

weights and then summed as 𝑢𝑞 = ∑ 𝑊𝑞𝑖𝑥𝑖𝑛
𝑖=1  . The threshold or bias (-ve of threshold) 𝜃𝑞 

is externally applied, usually to lower the cumulative input to the activation function. The 

activation function shown in the Figure 3.1 helps define the output ‘yq’ for a given input 

‘uq’. From Figure 3.1, the output of the neuron ‘q’ can be written as, 𝑦𝑞 = 𝑓(𝑣𝑞) =

𝑓(𝑢𝑞 − 𝜃𝑞) = 𝑓(∑ 𝑊𝑞𝑖𝑥𝑖 − 𝜃𝑞)𝑛
𝑖=1 . For no threshold scenario, 𝑦𝑞 = 𝑓(𝑣𝑞) = 𝑓(𝑢𝑞) =

𝑓(∑ 𝑊𝑞𝑖𝑥𝑖)𝑛
𝑖=1  . The above explanation on neural networks is based on the work by Ham 

& Kostanic (2001). 
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FIGURE 3.1: Nonlinear model of an artificial neuron 

One of the most popular neural networks is a layered neural network with a back-

propagation (BP) learning algorithm where the weights are adjusted based on least mean 

square error of the output. Neural networks could also be used for prediction purposes by 

using BP architecture. The use of BP architecture in the neural networks let the network 

learn an approximation of mapping (pattern) between inputs and outputs by updating its 

synaptic weights along with error minimization in order identify the implicit rules and 

relationship between the inputs and outputs. Along with the prediction, neural networks 

can also be used for various other applications such as optimization, forecasting, 

associative memory, function approximation, clustering, data compression, speech 

recognition, non-linear system modeling and control, pattern classification, feature 

extraction, solutions to matrix algebra problems and differential equations (Ham & 

Kostanic, 2001). 

3.2 Neural Networks Applications in Transportation Area 

Over the past few years, AI techniques have played a significant role in the design 

of sophisticated traffic management systems. Few of them include, Gilmore et al. (1993) 

on applications of neural networks in traffic management, Nakatsuji et al. (1994) on 
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optimizing signal timing using AI techniques, Ledoux et al. (1995) and Yin et al. (2002) 

on modeling traffic flow using neural and fuzzy-neural networks, Hua et al. (1995) on 

intelligent traffic control systems, Smith et al. (1996), Wilde (1997), and Smith et al. 

(2002) on short-term traffic flow predictions using neural network approach, 

Ledoux(1996) on integrating neural networks and urban traffic systems, and Srinivasan et 

al. (2007) on intelligence based congestion prediction. 

 

 

  



 
 

 
 

CHAPTER 4: METHODOLOGY 
 

 
In this chapter, the databases and the methods used to evaluate the macroscopic 

relationship between land use characteristics and crashes, and microscopic relationship 

between land use characteristics and crashes / link level traffic volume are described. The 

entire methodology is divided into two parts based on macroscopic and microscopic level 

of analyses.  

4.1 Macroscopic Models 

The macroscopic models in this research are the models which help predict the 

dependent variable at an area level (TAZ level). In order to develop these models the 

database related to dependent and independent variables has to represent data at a TAZ 

level. 

4.1.1 Database to Develop Models 

The database to develop macroscopic models should contain crash data, land use 

data, street centerline network, and TAZ layer (with planning variables data, and trip 

productions and attractions) in a GIS format. 

The crash data (shapefile - points) was overlaid on the TAZ layer to extract and 

estimate the total number of crashes and the number of crashes by severity (fatal crashes, 

injury crashes, and property damage only - PDO crashes) for each TAZ in GIS 

environment. The data related to planning variables (demographic / socio-economic 

characteristics which include population, number of household units and employment), 
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trip attractions and productions for each TAZ are directly available in the GIS format. In 

case, if the data related to planning variables are obtained in the form of censes blocks in 

GIS format, the census data (shapefile – polygons) will have to be overlaid on the TAZ 

layer using “intersect” feature in GIS environment to estimate planning variables in each 

TAZ.  

The land use data (shapefile – polygons) was overlaid on the TAZ layer using 

“intersect” feature in GIS environment to estimate the area of each land use characteristic 

for each TAZ. The street centerline network (shapefile – lines) was overlaid on the TAZ 

layer using “intersect” feature in GIS environment to summarize the total length (center-

lane miles) for each TAZ. Table 4.1 briefly describes the land use characteristics 

considered in this research.  

TABLE 4.1: Description of land use variables 

Land Use Category Description 
Mixed use 
development 
(MUDEV) 

Areas with residential and compatible non-residential uses less 
than 10 acres to serve the residents of the planned community. 

Mixed use district 
(MUDIS) 

Areas with residential and compatible non-residential uses greater 
than 10 acres to serve the residents of the planned community. 

Urban residential 
(UR) 

Single-family to higher-density residential development nearer to 
the employment core. 

Industrial (IND) Areas with manufacturing, processing, and assembling of parts, 
distribution centers, and transportation terminals; specialized 
industrial. 

Business (BUS) Areas with retailing of merchandise to serve a large trade area, 
warehousing, wholesaling, etc. 

Urban residential 
commercial (URC) 

Areas with residential, retail, office, recreational, and cultural 
uses. 

Multi-family Areas with a variety of housing types; 12 to 43 dwelling units per 
acre. 

Office district (OD) Areas conducive to establishment and operation of offices, 
institutions, and commercial activities not involved in sales. 

Single-family (SF) Areas with primarily single-family housing; 3 to 8 dwelling units 
per acre. 
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Institutional (INS) Major cultural, educational, medical, governmental, religious, 
athletic, and other institutions. 

Neighborhood 
service district 
(NSD) 

Mixed-use areas focusing on neighborhood retail and service 
activities. 

Right-of-way 
(ROW) 

Right of way areas of interstates, major and minor thoroughfares 
and other roads. 

Commercial center 
(CC) 

Shopping centers and individual retail establishments larger than 
70,000 ft2 of floor area. 

Innovative (INN) Non-traditional and new type of land use. 
Planned unit 
development (PUD) 

Area with a variety of type, design, and arrangement of structures. 

Rural district 
(RURD) 

Areas rural in nature. 

Research district 
(RESD) 

Areas with high research, development and technology 
manufacturing operations and professional employment. 

Manufactured house 
(MH) 

Areas with homes manufactured in a factory, transported as a 
whole unit and used at the site to build a house. 

Residential mobile 
(RM) 

Areas with manufactured home and mobile home parks. 

 

4.1.2 Selection of TAZ’s to Develop Models 

The data obtained for all the TAZ’s in a given study area has to be consistent and 

should not contain any unknown variables or the variables with unknown values. Since 

the models are being developed at a TAZ level, incorporating the TAZs with these 

characteristics in the model may have a biased effect on the results obtained. Therefore, 

TAZs with unknown variables or variables with unknown values were excluded from the 

analysis and development of models. 

For example, considering the land use data for the City of Charlotte, it was 

observed that a few TAZs have land use characteristics with unknown type or open area. 

Incorporating the TAZs with these characteristics in the model may have a biased effect 

on the results obtained. Therefore, TAZs with open land area or unknown type of land 

use characteristics were excluded from the analysis and development of models. 
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The final database now obtained was used to develop macroscopic models in 

predicting crashes. The database with the TAZ’s that were excluded from the analysis 

and development of models are used to validate and test the models developed. 

4.1.3 Models 

The proposed methodology incorporates two different approaches in developing 

the models, modeling using statistical techniques and modeling using neural networks. 

4.1.3.1 Statistical Models 

 The traditional approach in developing a statistical model to predict a dependent 

variable involves 1) examination of spatial autocorrelation between the crashes, 2) 

examination of the correlation between the independent variables and 3) selection of 

distribution function. 

 4.1.3.1.1 Spatial Autocorrelation 

As crashes in each TAZ’s are location specific, spatial autocorrelation has to be 

investigated to evaluate whether there is any influence of crashes in a TAZ on its adjacent 

TAZ’s. Moran’s I was calculated in GIS environment to measure spatial autocorrelation, 

wherein inverse distance method is used indicating the decrease in the influence with an 

increase in the distance from crash location. The distance is calculated as Euclidean 

distance in analysis process. Along with Moron’s I value, Z-Score and P-values can also 

be calculated to evaluate the statistical significance.  

In general, Moran’s I closer to +1 indicates highly positive spatial autocorrelation, 

closer to -1 indicates highly negative spatial autocorrelation, and closer to 0 indicates 

zero spatial autocorrelation. To develop crash prediction models at zonal level, the crash 



36 
 

 

data obtained should have zero spatial autocorrelation indicating that a crash or crashes in 

a TAZ do not influence crashes in adjacent TAZs (or TAZs in close proximity). 

4.1.3.1.2 Examination of Correlation between Independent Variables  

As stated earlier, the objective of this research includes developing crash 

estimation models and travel demand models as a function of land use characteristics at 

macroscopic and microscopic levels.  

One needs to test the correlation between demographic / socio-economic 

characteristics (population, number of household units and employment), traffic 

indicators (trip productions and attractions), and on-network characteristics (center-lane 

miles by speed limit) and land use characteristics to minimize any possible bias that 

might arise due to eliminating these variables in the macroscopic models. Statistical tests 

were conducted by computing Pearson correlation coefficient to examine the correlation 

between population, number of household units, employment, trip productions, trip 

attractions, and center-lane miles in each TAZ and land use characteristics.  

Similarly, Pearson correlation coefficient was computed to examine the 

correlation between all the independent variables considered in the microscopic models.  

In this research, two variables were considered to be strongly correlated to each 

other if the computed Pearson correlation coefficient is less than -0.2 or greater than +0.2 

(significance value less than 0.01 for the considered data). It is expected that all other 

predictor variables may have a strong correlation with at least one of the land use 

characteristics (see Section 5.3) as the land use characteristics can explain all other 

predictors. 
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Therefore, omitting these variables that are correlated to land use characteristics 

will not only minimize any possible multicollinearity but help examine the direct effect 

of land use characteristics on crashes and travel demand. The rational for minimizing the 

number of variables and restricting to land use characteristics in the model is that the 

resultant model is more likely to be numerically stable and can be more easily 

generalized. 

4.1.3.1.3 Selection of Distribution Function to Develop Statistical Models 

A mathematical relationship between the dependent variable and independent 

variables is the basis of statistical modeling process. The nature of data plays a vital role 

in developing a model. As discussed in the “Literature Review” section, linear as well as 

non-linear distributions (Poisson with log-link, Negative Binomial with log-link, and log-

normal) were used to develop count based models in the past. Poisson distribution is 

generally used to model count data if the mean is equal to its variance. However, if data 

are over-dispersed, the variance will be greater than mean. In such a case, a Negative 

Binomial distribution is used in the modeling process. These Negative Binomial 

distribution models can take into account the effect of unobserved heterogeneity due to 

omitted variables or variables that were not considered among TAZs.  

Equation (4.1) shows the relation between the variance and mean in case of a 

Negative Binomial distribution. 

Variance =σ2=µ+αµ2       ... Equation (4.1) 

where, σ is the standard deviation of crashes, µ is the estimated mean number of 

crashes and α is the Negative Binomial dispersion parameter.  
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The variance has to be computed based on the dependent variable for the study 

TAZs and road links and are compared with their respective means. If data is observed to 

be over-dispersed (α greater than zero) and not spatially correlated, a Negative Binomial 

distribution will be more suitable to estimate dependent variable. Let ‘di’ represents the 

vector consisting of the independent variables data of TAZ ‘i’ and ‘ci’ represents the 

number of crashes in TAZ ‘i’. The general form of Negative Binomial model is given by 

Equation (4.2) (Miaou (1994)). 

  

𝑝(𝐶𝑞 = 𝑐𝑞) =
Γ �𝑐𝑞 + 1

𝛼�

Γ(𝑐𝑞 + 1)Γ �1
𝛼�

�
1

1 + 𝛼𝜇𝑞
�
1
𝛼
�

𝛼𝜇𝑞
1 + 𝛼𝜇𝑞

�
𝑐𝑖

 

  𝑐𝑞 = 0, 1, 2, 3 ...   …Equation (4.2) 

 

where, 

Ci is the independent variable following Negative Binomial distribution, 

𝜇𝑞 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐶𝑞 = 𝐸(𝐶𝑞) = 𝑔(𝑑𝑞) =  𝑒� 𝛽𝑜+∑ 𝑋𝑖𝑗𝛽𝑗𝑛
𝑗=1 �   

𝑗 = 1, 2, 3, … . 𝑛   ... Equation (4.3) 

n is the number of observations and 𝑔(𝑑𝑞)is the functional form of Negative 

Binomial distribution. 

Independent variables with Wald Chi-Square value less than 1 or the level of 

significance greater than 0.05 (95 percent confidence level) were considered to have a 

statistically insignificant effect on dependent variables. These parameters were examined 

for each independent variable to eliminate those that have a statistically insignificant 

effect on dependent variable.  
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The quasi-likelihood under independence model criterion, QIC, (to select the 

model with best working correlation structure) and the corrected version of quasi-

likelihood under independence model criterion, QICC, (to choose the best subset of 

predictors) were used to assess the goodness of fit. The lower the QIC and QICC, the 

better is the goodness of fit. Also, the difference between QIC and QICC should be 

generally low for a good model. 

Depending on the data and its distribution function, macroscopic crash estimation 

were developed with land use characteristics as independent variables. The models 

developed were validated using the test database that was not used in the development of 

models.  

4.1.4 Back-propagation Neural Network Model 

A multi-layer feed-forward back-propagation network using back-propagation 

(BP) learning algorithm, which can also be referred as Back-propagation Neural Network 

(BPNN) model, was developed. Typically, a BPNN model consists of three layers: input 

layer, hidden layer and output layer. The databases used to develop statistical models 

were used to develop BPNN model to maintain consistency for performance evaluation.  

The independent variables used in the statistical models have to be given as the 

input vector to the network. So, the input layer has the number of neurons each of which 

corresponds to an independent variable in the model. The output layer has the number of 

neurons equal to number of outputs. For example, the output layer of macroscopic crash 

prediction model has three neurons each corresponding to the total number of crashes, the 

total number of injury crashes and the total number of PDO crashes as the dependent 

variables. Tangent sigmoid function and purelin function are used as transfer functions 



40 
 

 

for hidden layer and output layer with Bayesian-Regulation Back-propagation function as 

training function.  

The Bayesian regularization minimizes a linear combination of squared errors and 

weights. It also modifies the linear combination so that at the end of training the resulting 

network has good generalization qualities. One can avoid costly cross validation by using 

Bayesian regularization. It is particularly useful in this scenario where a part of the 

available data is reserved for validation. Regularization also reduces/eliminates the need 

for testing different number of hidden neurons for a problem. This Bayesian 

regularization takes place within the Levenberg-Marquardt algorithm. BP is used to 

calculate the Jacobian ‘J’. Each variable is adjusted according to Levenberg-Marquardt as 

follows (MATLAB, 2012): 

Error (𝐸) = 1
𝑛
∑ (ĉ𝑞 − 𝑐𝑞)2𝑛
𝑞=1       ... Equation (4.4) 

Error gradient (𝑔) = 𝐽𝑡𝐸      ... Equation (4.5) 

Hessian Matrix (𝐻) = 𝐽𝑡𝐽      ... Equation (4.6) 

Cost Function (𝐶) = 𝛽 ∗ 𝐸𝑑 + 𝛼 ∗ 𝐸𝑤    ... Equation (4.7) 

where, Ed and Ew are sum-squared errors and sum-squared weights respectively. 

(𝐻 + 𝜆Ι)𝛿 = 𝑔      ... Equation (4.8) 

where, ĉ𝑞  and 𝑐𝑞 are predicted and observed crashes, ‘I’ is an identity matrix and λ 

is the damping factor and is adjusted based on sum-squared errors.  

The Equation (4.8) is solved to calculate ‘δ’ and the weights are updated based on 

the value of ‘δ’. MATLAB was used to build the BPNN and train the network. The 

BPNN was trained such that the error term shown in Equation (4.4) and the cost function 

shown in Equation (4.7) are minimized. The readers can refer to Liang (2003), Liang 
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(2005), MATLAB (2012) and Xie et al. (2007) for more detailed description of Bayesian 

regularization, Levenberg-Marquardt algorithm, and BPNN. The BPNN was trained 

using the same database that was used to develop statistical models and validated using 

the same test database. 

The performance of the network was evaluated by calculating mean square errors. 

The number of neurons in the hidden layer is not limited to a fixed number. So, 

appropriate number of neurons was evaluated by changing the number of neurons in the 

hidden layer until the network performs well after training. 

4.2 Microscopic Models 

The microscopic models in this research are the models which help predict the 

dependent variable (link volume or crashes) at a link level. In order to develop these 

models the database related to dependent and independent variables has to represent data 

at a link level. 

4.2.1 Database to Develop Models 

The database to develop microscopic models should contain crash data, land use 

data and street centerline network, and traffic counts obtained from the permanent traffic 

count stations in a GIS format. 

The permanent traffic counts may not be available for all the links in the network. 

So, the permanent traffic count data layer was overlaid on street centerline network layer 

to extracts the links with their respective traffic counts. The land use layer was then 

overlaid on the links which have permanent traffic counts. Spatial proximity tools in GIS 

environment were used to calculate the distance from all land use polygons to the count 

stations. For example, if the study area has permanent traffic counts for ‘N’ links and the 
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study area is divided into ‘M’ number of land use polygons, a distance matrix of size ‘N x 

M’ is obtained. Each cell in the matrix indicates the distance between corresponding road 

link and the land use polygon.  As the influence of land use characteristic on the road link 

is inversely proportional to the square of distance (Stewart (1948)), the areas of land use 

characteristics are divided by the square of distance and the respective land use 

characteristics summed together to evaluate the influence of each type of land use 

characteristic in the entire study area on the given road link. This is mathematically 

represented using Equation (4.2).  

𝐴𝑞𝑐 = ∑ 𝑎𝑗𝑖
𝑑𝑗𝑐2

𝑛
𝑗=1       ... Equation (4.2) 

where, 𝐴𝑞𝑐 is the total area of influence of land use characteristic of type ‘i’ on the 

road link ‘c’, n is the total number of land use polygons of type ‘i’ in study area, 𝑎𝑗𝑞 is the 

area of each individual land use polygon ‘j’ of type ‘i’ and 𝑑𝑗𝑐 is the distance between 

road link ‘c’ and the land use polygon ‘j’ of type ‘i’. Figure 4.1 shows the influence of 

each land use polygon on a given point on the road link represented by the darkness of 

the color.  

The crash data was then overlaid on the street network layer with permanent 

counts. Spatial analysis tools in GIS environment were used to evaluate the total number 

of crashes based on crash type on each road link which have permanent counts.  
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FIGURE 4.1: Spatial representation of the influence of land use polygons on a given road 
link 
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4.2.2 Statistical and Neural Network Model 

Since the nature of the data is same as that of macroscopic models, the following 

statistical and BPNN models were developed by implementing the same procedure to 

develop macroscopic models. 

• Statistical model to predict crashes at link level with areas of influence of each 

type of land use characteristics on a link as independent variables and the number 

of crashes on respective links as dependent variable. 

• BPNN model to predict crashes at link level with areas of influence of each type 

of land use characteristics on a link as input vector and the number of crashes on 

respective links as output vector. 

• Statistical model to predict link level travel demand with areas of influence of 

each type of land use characteristics on a link as independent variables and traffic 

counts on respective links as dependent variable. 

• BPNN model to predict link level travel demand with areas of influence of each 

type of land use characteristics on a link as input vector and traffic counts on 

respective links as output vector. 

 

 

 

  



 

 
 

CHAPTER 5: MACROSCOPIC MODELS 
 
 
The City of Charlotte, Mecklenburg County, North Carolina was considered as 

the study area. Crash data, land use data, street centerline network and TAZ layer (with 

planning variables that are used to estimate trip productions/attractions) for the year 2005 

was obtained in a GIS format from the City of Charlotte Department of Transportation 

(CDOT). 

5.1 Spatial analysis and autocorrelation 

As crashes in each TAZ are location specific, spatial autocorrelation was 

investigated to evaluate whether there is any influence of crashes in a TAZ on its adjacent 

TAZ’s. Moran’s I was calculated in GIS environment to measure spatial autocorrelation, 

where inverse distance method was used indicating the decrease in the influence with 

increase in the distance from crash location. The distance was calculated as Euclidean 

distance in analysis process. The Moran’s I value was observed to be 0.07 (very low) 

with a Z-Score of 48.38 and a P-Value less than 0.01. In general, Moran’s I closer to +1 

indicates highly positive spatial autocorrelation, closer to -1 indicates highly negative 

spatial autocorrelation, and closer to 0 indicates zero spatial autocorrelation. Data 

considered in this research shows that crashes in a TAZ does not influence crashes in 

adjacent TAZs (or TAZs in close proximity).  
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5.2 Selection of TAZs 

Data obtained showed that there were 1,057 TAZs in the study area. A total of 

10,726 reported crashes occurred in these TAZs during the year 2005. It was observed 

that there were 24 fatal crashes, 3,522 injury crashes and 7,180 PDO crashes in the study 

area during the year 2005. As an example, Figure 5.1 shows the number of crashes in 

each TAZ during the year 2005 in the study area.  

 

FIGURE 5.1: Spatial extent of total crashes per TAZ in Charlotte, North Carolina 

Data for 765 TAZs with a total of 9,799 crashes (includes 20 fatal crashes, 3,227 

injury crashes and 6,552 PDO crashes) were selected for the analysis and development of 

models, while data for 268 randomly selected TAZs (~35% when compared to 765 
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TAZs) was used to validate the models developed. A summary of land use characteristics 

considered in this research is shown in Table 5.1. The table also summarizes dependent 

and independent variables for the selected TAZs. The computed minimum, maximum, 

mean and standard deviation values using data for TAZs are also shown in the table. 

TABLE 5.1: Summary of land use characteristics 

Variable Description N Minimum Maximum Mean Standard 
deviation 

TAZ Number of TAZs 765     
Dependent variables 

TC Total number of 
crashes 765 0.000 113.000 12.809 14.726 

IC Number of injury 
crashes 765 0.000 37.000 5.100 4.218 

PDO Property damage 
only crashes 765 0.000 76.000 10.127 8.565 

Independent variables (in square miles) 

MUDEV Mixed use 
development 765 0.000 0.221 0.002 0.011 

MUDIS Mixed use district 765 0.000 1.386 0.019 0.100 
UR Urban residential 765 0.000 0.155 0.001 0.009 
IND Industrial 765 0.000 3.658 0.057 0.181 
BUS Business 765 0.000 0.660 0.018 0.042 

URC Urban residential 
commercial 765 0.000 0.023 0.000 0.001 

MF Multi-family 765 0.000 0.328 0.029 0.050 
OD Office district 765 0.000 0.178 0.008 0.022 
SF Single family 765 0.000 1.919 0.256 0.297 
INS Institutional 765 0.000 0.882 0.006 0.041 

NSD Neighborhood 
service district 765 0.000 0.048 0.001 0.004 

ROW Right-of-way 765 0.000 0.086 0.001 0.006 
CC Commercial center 765 0.000 0.315 0.005 0.027 
INNOV Innovative 765 0.000 0.118 0.002 0.011 

PUD Planned unit 
development 765 0.000 0.472 0.008 0.046 

RURD Rural district 765 0.000 0.005 0.000 0.000 
RESD Research district 765 0.000 0.904 0.004 0.048 

MH Manufactured 
house 765 0.000 0.004 0.000 0.000 
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5.3 Examination of correlation between independent variables  

As stated earlier, the primary focus of this step is to develop crash estimation 

models as a function of land use characteristics at a TAZ level. One needs to test the 

correlation between demographic / socio-economic characteristics (population, number of 

households and employment), trip productions and attractions, and network 

characteristics (centerline miles by speed limit) and land use characteristics to minimize 

any possible bias that might arise due to eliminating these variables. Statistical tests were 

therefore conducted by computing Pearson correlation coefficient to examine the 

correlation between population, number of households, employment, trip productions, 

trip attractions, and street centerlane miles in each TAZ and land use characteristics. In 

this research, two variables were considered to be strongly correlated to each other if the 

computed Pearson correlation coefficient is less than -0.2 or greater than +0.2 

(significance value less than 0.01 for considered data). 

Table 5.2 summarizes computed Pearson correlation coefficients between all the 

selected independent variables. Population of a TAZ was observed to be significantly 

correlated to single-family (SF) residential, multi-family (MF) residential, planned unit 

development (PUD) and innovative (INN) land use areas. The total number of household 

units in a TAZ was observed to be significantly correlated to single-family (SF) 

residential, multi-family (MF) residential and innovative (INN) land use areas. 

Employment or job count was observed to be significantly correlated to industrial (IND), 

office district (OD), mixed use development (MUDEV) and research district (RESD) 

land use areas. 
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Trips productions from and trip attraction to a TAZ were observed to be 

significantly correlated to industrial (IND), multi-family (MF) residential, office district 

(OD) and institutional (INS) land use areas. 

The total number of centerlane miles was observed to be significantly correlated 

to mixed use district (MUDIS), single-family (SF) residential, multi-family (MF) 

residential and planned unit development (PUD) land use areas. The total number of 

centerlane miles with minor roads (local and collector roads with speed limit equal to 25 

mph or 35 mph) was observed to be significantly correlated to mixed use district 

(MUDIS), single-family (SF) residential, multi-family (MF) residential and planned unit 

development (PUD) land use areas, while major roads (arterials and expressways with 

speed limit greater than or equal to 40 mph but less than 60 mph) was observed to be 

significantly  correlated to business (BUS) land use. In general, total centerlane miles of 

major roads were found to be highly correlated to total centerlane miles of all roads. 

The urban residential commercial (URC), rural district (RURD) and mixed use 

district (MUDIS) land use variables were observed to be significantly correlated to urban 

residential (UR), planned unit development (PUD) and single-family (SF) land use 

variables, respectively. 

Therefore, omitting demographic, socio-economic and network characteristics as 

well as urban residential commercial (URC), rural district (RURD) and mixed use district 

(MUDIS) land use variables will not only minimize any possible multicollinearity but 

will help examine the direct effect of selected land use characteristics on crashes. 
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5.4 Negative Binomial Model 

Crash estimation models were developed separately considering the total number 

of crashes, the total number of injury crashes and the total number of PDO crashes as the 

dependent variable using SPSSv16 (SPSS (2008)). It was observed that the 765 TAZs 

data considered for modeling have only 20 fatal crashes (out of 9,799 crashes). Also, only 

2.61% of all the TAZ’s considered have fatal crashes. This percent is too low to even test 

zero-inflated models. So, a crash estimation model for fatal crashes was not developed 

due to fewer numbers of fatal crashes and statistically insignificant sample size observed 

in the study TAZs.  

All land use characteristics shown in Table 5.1, excluding urban residential 

commercial (URC), rural district (RURD) and mixed use district (MUDIS), were 

considered as the independent variables. Though data was observed to be over-dispersed, 

linear, Poisson with log-link and log-normal distributions were also tested in addition to 

Negative Binomial with log-link distribution. QIC and QICC obtained for Negative 

Binomial with log-link distribution based models were observed to be the lowest 

implying that these models would result in lower specification errors than when 

compared to other models tested in this research. Therefore, results obtained considering 

Negative Binomial with log-link are only discussed in this report.  

The statistical parameters along with the coefficient, Wald Chi-square and 

significance value for each variable in the preliminary model to estimate the total number 

of crashes per year in a TAZ are shown in Table 5.3. It was observed that a few land use 

characteristics have a significance value greater than 0.05 (at a 95 percent confidence 
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level). In other words, these land use characteristics do not have a statistically significant 

effect on the total number of crashes in a TAZ.  

The land use characteristics with a significance value greater than 0.05 were 

omitted and the model was re-run. The statistical parameters along with the coefficient, 

Wald Chi-square and significance value for each variable in the final model with only 

land use characteristics that have statistically significant effect on the total number of 

crashes are shown in Table 5.4. Similarly, crash estimation models were developed to 

predict injury and PDO crashes in a TAZ. Results obtained are also summarized and 

shown in Table 5.4. 

The coefficient for all the land use characteristics other than single-family (SF) 

residential is positive for the models to estimate total number of crashes and PDO 

crashes. This implies that an increase in the area of these land use characteristics will lead 

to an increase in the total number of crashes. An increase in single-family (SF) residential 

land use area will result in a decrease in the total number of crashes and PDO crashes.  

The coefficient for all the land use characteristics other than single-family (SF) 

residential and industrial (IND) is positive for the model to estimate the number of injury 

crashes in a TAZ. This implies that an increase in the area of these land use 

characteristics will lead to an increase in the number of injury crashes. An increase in 

single-family (SF) residential and industrial (IND) land use areas will result in a decrease 

in the number of injury crashes.  

The institutional (INS), industrial (IND) and research district (RESD) land use 

characteristics have a significant effect in estimating the total number of crashes and/or 
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injury crashes but not PDO crashes. This shows that, the presence of these characteristics 

in a TAZ might contribute to an increase in the severity of a crash (more injury crashes). 

TABLE 5.3: Preliminary model parameters to estimate the total number of crashes in a 
TAZ. 

Variable Coefficient Wald Chi-
square 

Significance 
value 

(Intercept) 2.223 914.34 <0.001 
Mixed use development (MUDEV) 8.213 9.41 0.002 
Urban residential (UR) 3.813 3.82 0.051 
Industrial (IND) 0.005 0.01 0.936 
Business (BUS) 7.670 1,325.03 <0.001 
Multi-family (MF) 4.038 99.92 <0.001 
Office district (OD) 7.123 102.04 <0.001 
Single family (SF) -0.426 23.13 <0.001 
Institutional (INS) 0.256 4.10 0.043 
Neighborhood service development 
(NSD) 0.114 0.00 0.972 

Right-of-way (ROW) 6.537 657.24 <0.001 
Commercial center (CC) -0.665 1.09 0.296 
Innovative (INN) 0.457 1.08 0.298 
Planned unit development (PUD) 0.403 48.89 <0.001 
Research district (RESD) 0.334 4.05 0.044 
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TABLE 5.4: Summary of parameter estimates of the models 

Variable Coefficient Std. error Wald Chi-
square 

Significance 
value 

Model to estimate the total number of crashes in a TAZ 
(Intercept) 2.227 0.071 981.128 <0.001 
Mixed use development (MUDEV) 9.035 2.778 10.573 0.001 
Urban residential (UR) 8.484 2.905 8.531 <0.001 
Business (BUS) 7.590 0.242 987.116 <0.001 
Multi-family (MF) 3.979 0.441 81.371 <0.001 
Office district (OD) 7.016 0.701 100.280 <0.001 
Single-family (SF) -0.415 0.077 29.208 <0.001 
Institutional (INS) 0.262 0.124 4.487 0.03 
Right-of-way (ROW) 6.404 0.293 478.605 <0.001 
Planned unit development (PUD) 0.401 0.082 23.889 <0.001 
Research district (RESD) 0.311 0.175 3.164 0.07 
Dispersion Parameter α = 1.24 
Quasi Likelihood under Independence Model Criterion (QIC) = 874.97 
Corrected Quasi Likelihood under Independence Model Criterion (QICC) = 891.19 

Model to estimate the number of injury crashes in a TAZ 
(Intercept) 1.124 0.067 279.521 <0.001 
Mixed use development (MUDEV) 7.700 2.703 8.114 <0.001 
Urban residential (UR) 9.525 2.717 12.294 <0.001 
Industrial (IND) -0.149 0.068 4.826 0.028 
Business (BUS) 7.456 0.264 796.941 <0.001 
Multi-family (MF) 4.378 0.362 146.420 <0.001 
Office district (OD) 6.068 0.636 91.107 <0.001 
Single-family (SF) -0.430 0.075 32.690 <0.001 
Institutional (INS) 0.477 0.104 21.040 <0.001 
Right-of-way (ROW) 7.168 0.311 530.793 <0.001 
Research district (RESD) 0.568 0.110 26.442 <0.001 
Dispersion Parameter α = 0.48 
Quasi Likelihood under Independence Model Criterion (QIC) = 874.39 
Corrected Quasi Likelihood under Independence Model Criterion (QICC) = 891.69 

Model to estimate the number of PDO crashes in a TAZ 
(Intercept) 1.844 0.075 606.170 <0.001 
Mixed use development (MUDEV) 9.588 2.800 11.725 0.001 
Urban residential  (UR) 7.376 3.180 5.379 0.02 
Business (BUS) 7.276 0.232 987.177 <0.001 
Multi-family (MF) 3.651 0.472 59.866 <0.001 
Office district (OD) 7.309 0.780 87.848 <0.001 
Single-family (SF) -0.426 0.079 28.931 <0.001 
Right-of-way (ROW) 6.098 0.359 289.195 <0.001 
Innovative (INN) 0.966 0.584 2.736 0.09 
Planned unit development (PUD) 0.586 0.068 74.950 <0.001 
Dispersion Parameter α = 0.61 
Quasi Likelihood under Independence Model Criterion (QIC) = 875.03 
Corrected Quasi Likelihood under Independence Model Criterion (QICC) = 888.91 
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The Negative Binomial dispersion parameter value (α) was lower for the model to 

estimate the number of injury crashes than when compared to the models to estimate the 

total number of crashes and the number of PDO crashes. This indicates that injury 

crashes are less dispersed when compared to the total number of crashes and PDO 

crashes. QIC and QICC were reasonably close for all the three final models. 

5.5 BPNN Model 

The BPNN models are built and trained using MATLAB Neural Network 

Toolbox (MATLAB, 2012). Default settings were used for all the parameters except for 

the number of epoch (set to 1000 iterations) and learning rate (set to 0.05). To evaluate 

the best number of neurons in the hidden layer and also the performance ratio, BPNN 

models with hidden neurons = 10, 11, 12…..34, 35, 36 with performance ratio’s = 0.05, 

0.15, 0.25….0.95 were tried. Tangent sigmoid function and purelin function are used as a 

transfer functions for both hidden layer and output layer respectively with ‘trainlm’ as 

training function which updates weight and bias values according to Levenberg-

Marquardt optimization.. The network was trained using the database that was used to 

develop statistical models and validated using the test database. The performance of the 

network was evaluated by calculating errors. It is observed that, the BPNN with 

performance ratio of 0.95 and hidden layer with 10, 13, 17, 20 and 30 neurons performed 

well after training. 

5.6 Comparison of Predictive Performance 

To compare the predictive performance of the models developed, the data for the 

268 TAZs that were randomly selected for validation are used. Four different criteria 

were used to evaluate the predictive performance of the models developed. They are: 
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• Average Error or Mean Absolute Deviation (MAD) 

𝑀𝐴𝐷 =  
1
𝑛
�|ĉ𝑞 − 𝑐𝑞|
𝑛

𝑞=1

 

• 50th Percentile Error = An error value below which 50% of the observations fall 

• 85th Percentile Error = An error value below which 85% of the observations fall 

• Root Mean Squared Error (RMSE) 

𝑅𝑀𝑆𝐸 =  �
1
𝑛
�(ĉ𝑞 − 𝑐𝑞)2
𝑛

𝑞=1

 

where, ‘n’ is the sample size, ĉi and ci are predicted and observed number of 

crashes respectively.  

For all the four evaluation criteria (MAD, 50th percentile error, 85th percentile 

error and RMSE), the values closer to zero indicate better model performance in 

prediction.  

The predictive performances of Negative Binomial models and BPNN models in 

predicting total, injury and PDO crashes are summarized in Table 5.5. For all the three 

different types of crash prediction models (total, injury and PDO), the BPNN models 

outperformed Negative Binomial models. It was observed that, no single BPNN model 

outperformed other BPNN models when all the four performance evaluation criteria were 

considered. So, to evaluate a single best model, the average of the performance criteria 

are calculated and the BPNN model with lower average value was considered as the best 

model in predicting crashes at TAZ level. 

From Table 5.5, the performance criteria of the models to predict total crashes i.e. 

MAD, 50th percentile error, 85th percentile error and RMSE are observed to be lower for 
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BPNN30 (30 neurons in the hidden layer) model (3.30, 1.28, 5.89 and 6.46 respectively) 

when compared to the Negative Binomial model  (9.52, 9.27, 9.27 and 16.16). The 

performance criteria of the models to predict injury crashes are observed to be lower for 

BPNN13 (13 neurons in the hidden layer) model (1.02, 0.00, 2.13 and 2.28) when 

compared the Negative Binomial model (3.28, 3.08, 3.10 and 5.07). Similarly, the 

performance criteria of the models to predict PDO crashes are observed to be lower for 

BPNN20 (20 neurons in the hidden layer) model (2.31, 0.65, 4.35 and 4.75) when 

compared the Negative Binomial model (6.36, 6.32, 6.32 and 9.99). 

The above observations clearly indicate that the BPNN30 model, BPNN 13 model 

and BPNN20 model have better performance in predicting total, injury and PDO crashes, 

respectively in a TAZ when compared to Negative Binomial and other BPNN models.  

Unlike Negative Binomial models, in the case of BPNN models, three different 

models are not required to predict total, injury and PDO crashes. The BPNN models are 

designed such that a single model would predict all the three types of crashes. Overall, to 

evaluate a best model in predicting total, injury and PDO crashes, from the above 

observations, the average of the performance criteria was considered and it is observed 

that the BPNN20 model performed well when compared to any other model developed. 

This means that the BPNN20 model has the best performance in predicting crashes in a 

TAZ. 
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TABLE 5.5: Performance criteria comparison for Negative Binomial and BPNN models 
(Macroscopic) 

Total Crashes 

Model MAD 50th Percentile 
Error 

85th Percentile 
Error RMSE Average 

Negative Binomial 9.52 9.27 9.27 16.16 11.06 
BPNN10 4.32 3.17 5.28 6.76 4.88 
BPNN13 4.14 2.39 7.10 6.41 5.01 
BPNN17 3.75 2.20 6.00 6.37 4.58 
BPNN20 3.55 0.82 6.04 7.36 4.44 
BPNN30 3.30 1.28 5.89 6.46 4.23 

Injury Crashes 

Model MAD 50th Percentile 
Error 

85th Percentile 
Error RMSE Average 

Negative Binomial 3.24 3.08 3.10 5.07 3.62 
BPNN10 1.45 0.99 1.70 2.37 1.63 
BPNN13 1.02 0.00 2.13 2.28 1.36 
BPNN17 1.92 1.68 1.89 2.51 2.00 
BPNN20 1.21 0.56 1.93 2.25 1.49 
BPNN30 3.19 3.45 3.45 3.58 3.42 

PDO Crashes 

Model MAD 50th Percentile 
Error 

85th Percentile 
Error RMSE Average 

Negative Binomial 6.36 6.32 6.32 9.99 7.25 
BPNN10 2.98 2.20 3.40 4.67 3.31 
BPNN13 2.59 1.21 4.95 4.30 3.26 
BPNN17 2.74 2.22 2.82 4.34 3.03 
BPNN20 2.31 0.65 4.35 4.75 3.02 
BPNN30 2.60 1.55 3.55 4.59 3.07 

 

5.7 Summary: Macroscopic Models 

 Results obtained from Negative Binomial macroscopic models show that mixed 

use development area, urban residential area, single-family residential area, multi-family 

residential area, business area and office district area are strongly associated with crashes 

in a TAZ. These land uses are generally high activity generators.  
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Land use characteristics such as institutional area (with major cultural, 

educational, medical, governmental, religious, athletic and other institutions), industrial 

area (with manufacturing, processing, and assembling of parts, distribution centers, and 

transportation terminals) and research district area (with high research, development and 

technology manufacturing operations and professional employment) were observed to 

play a statistically significant role only in estimating the total number of crashes and the 

number of injury crashes in a TAZ.  From the results obtained, it can be inferred that 

these land use characteristics in a TAZ are strongly associated with an increase in severe 

crashes. 

The coefficient of all the land use characteristics excluding single-family 

residential area is positive in the final model for total number of crashes in a TAZ. An 

increase in the area of single-family residential land use tends to lower the total number 

of crashes in a TAZ. While the presence of single-family residential area and industrial 

area tends to lower the number of injury crashes in a TAZ, the presence of single-family 

residential area only tends to lower the number of PDO crashes in a TAZ. It can, 

therefore, be inferred that presence of single-family residential area may have a 

neutralizing effect, possibly due to different behaviors adopted by drivers (such as 

cautious driving) or lower travel speed in these areas. 

The coefficient for urban residential land use area and mixed use development 

land use area was observed to be the highest than when compared to any other land use 

characteristic area in case of all the models developed. This indicates that urban 

residential and mixed use development land use areas are strongly associated with the 

number of crashes in a TAZ. These land use areas are generally followed by business and 
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office activity generators as areas that are strongly associated with higher number of 

crashes. TAZs with these mixed land use areas, which produce as well as attract trips of 

different modes of transportation throughout the day, need additional emphasis at 

planning and project implementation level to enhance traffic safety.  

Validation data (data for 268 TAZ’s) were used to validate and compare the 

performance of the models developed. Both Negative Binomial and BPNN models 

performed well in predicting the crashes (total, injury and PDO). When MAD, 50th 

percentile error, 85th percentile error and RMSE are considered for performance 

evaluation, BPNN30, BPNN13 and BPNN20 models performed better in predicting total 

crashes, injury crashes and PDO crashes, respectively. As the performance criteria for the 

BPNN20 model are observed to be lower than any other model, one can infer that 

BPNN20 model has outperformed all other models in predicting crashes (total, injury and 

PDO) in a TAZ. 

 

 

 



 
 

 
 

 

CHAPTER 6: MICROSCOPIC MODELS 
 
 
The City of Charlotte, Mecklenburg County, North Carolina was considered as 

the study area. Crash data, land use data, street centerline network and permanent traffic 

count data for the year 2005 was obtained in a GIS format from the City of Charlotte 

Department of Transportation (CDOT). 

6.1 Data Description 

Data obtained showed that the permanent counts are available for 345 road links 

in the network. Data was extracted and gathered for each of these links. Of  the 345 road 

links, data for 315 road randomly selected links was used for development of models 

while data for the remaining 30 randomly selected road links were used for validation and 

performance evaluation. 

Along with the land use characteristics, as the traffic volume and crash severity 

may vary based on network characteristics, characteristics such as speed limit, presence 

of median, the number of lanes and functional classification were also considered in 

modeling process. The road links were divided into four different functional classes with 

volumes ‘<5,000’ as ‘1’, ‘5,001-10,000’ as ‘2’, ’10,001-20,000’ as ‘3’ and ‘>20,000’ as 

‘4’.  

A total of 25 independent variables were considered in developing crash 

prediction models, whereas, 24 variables were considered in developing travel demand 
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models. Table 6.1 summarizes the minimum, maximum and mean value of traffic volumes, 

crashes and independent variables by links considered to develop microscopic models. 

TABLE 6.1: Summary of Independent Variables 

Variable Description N Minimum Maximum Mean Standard 
Deviation 

Permanent 
Counts # Counts 315         

Dependent Variables 

AADT Annual Average daily 
Traffic 315 2,030.00 56,100.00 19,432.48 10,904.00 

TC Total number of crashes 310 0.000 39.000 8.797 8.208 
IC Number of injury crashes 310 0.000 14.000 2.803 2.878 

PDO Property damage only 
crashes 310 0.000 29.000 5.987 5.906 

Independent Variables 
NL Number of Lane 315 2.00 6.00 3.34 1.10 
SL Speed Limit (mph) 315 25.00 45.00 36.78 4.86 

MEDIAN Median 315 0.00 1.00 0.40 0.49 
FC Functional Class 315 1.00 4.00 3.13 0.91 

MUDEV Mixed Use Development 
(Influence) 315 0.01 11.09 0.44 1.20 

MUDIS Mixed Use District 
(Influence) 315 0.13 18.34 0.82 1.81 

UR Urban Residential 
(Influence) 315 0.01 4.40 0.19 0.50 

IND Industrial (Influence) 315 0.20 3,294.90 22.65 221.49 
BUS Business (Influence) 315 0.00 0.24 0.01 0.03 

URC Urban Residential 
Commercial (Influence) 315 0.30 130.24 4.16 8.87 

MF Multi Family (Influence) 315 0.05 136.09 1.96 8.21 
OD Office District (Influence) 315 4.05 2,486.69 20.94 142.77 
SF Single Family (Influence) 315 0.06 4.15 0.41 0.57 
INS Institutional (Influence) 315 0.01 4.91 0.13 0.47 

NSD Neighborhood Service 
District (Influence) 315 0.00 0.25 0.02 0.03 

ROW Right of Way (Influence) 315 0.31 560.76 5.35 31.60 

CC Commercial Center 
(Influence) 315 0.05 30.05 0.46 1.85 

INNOV Innovative (Influence) 315 0.01 5.74 0.13 0.40 

PUD Planned Unit Development 
(Influence) 315 0.06 88.56 0.56 5.00 

RURD Rural District (Influence) 315 0.00 0.04 0.00 0.00 
RESD Research District (Influence) 315 0.01 6.16 0.14 0.49 

MH Manufactured House 
(Overlay) (Influence) 315 0.00 0.00 0.00 0.00 

RM Residential Mobile 
(Influence) 315 0.01 1.85 0.10 0.19 

UNKNOWN Unknown (Influence) 315 0.63 4.63 1.34 0.67 
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6.2 Microscopic Crash Prediction Models 

Two different techniques were incorporated in developing the models to predict 

link level crashes on the urban streets. When the count data exhibit over dispersion, 

Negative Binomial regression model remains the most widely used statistical model. In 

conjunction with the Negative Binomial model, a back-propagation neural network 

(BPNN) model was also developed using the same dataset. Both the models were 

compared for performance evaluation. The following sections briefly describe the 

Negative Binomial and neural network models developed in this research. 

6.2.1 Negative Binomial Model  

The Negative Binomial models were developed using SPSSv16 (SPSS (2008)). 

Before developing the models, one needs to test the correlation between independent 

variables to minimize any possible bias that might arise due to eliminating these variables 

in the development of models. Statistical tests were conducted by computing Pearson 

correlation coefficient to examine the correlation between the independent variables. 

Table 6.2 summarizes the Pearson correlation coefficients between each independent 

variable.  In this research, two variables were considered to be strongly correlated to each 

other if the computed Pearson correlation coefficient is less than -0.3 or greater than +0.3 

(significance value less than 0.01 for the considered data). The predictor variables that 

exhibited a strong correction with other predictor variables were omitted from the 

modeling process to minimize any possible multicollinearity.  

In the modeling process, independent variables with Wald Chi-Square value less 

than 1 or the level of significance greater than 0.05 (95 percent confidence level) were 

considered to have a statistically insignificant effect on dependent variables. These 
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parameters were examined for each independent variable to eliminate those that have a 

statistically insignificant effect on the dependent variable. Table 6.3 shows the parameter 

estimates of the Negative Binomial models developed to predict TC, IC and PDO crashes 

on urban road links. It can be observed from the Table 6.3 that the statistically significant 

independent variables at 95% confidence interval varied between the different models 

developed based on TC, IC and PDO models. These variations observed can be 

concomitant with the severity involved in the crash.  
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TABLE 6.3: Summary of parameter estimates of Negative Binomial models 

Parameter Estimates for Predicting Total Crashes 

Parameter B Std. 
Error 

95% Wald 
Confidence Interval Hypothesis Test Goodness of Fit 

Lower Upper 
Wald 
Chi-

Square 
Sig. QIC QICC 

(Intercept) 1.6479 0.1738 1.3073 1.9885 89.91 <0.01 

285.268 300.053 

NL 0.1559 0.0456 0.0665 0.2453 11.67 <0.01 
BUS -0.0003 0.0001 -0.0005 -0.0001 5.93 0.01 
CC 0.0393 0.0076 0.0245 0.0541 26.99 <0.01 
IND -0.0013 0.0003 -0.0019 -0.0006 14.08 <0.01 

INNOV -0.1315 0.0608 -0.2506 -0.0123 4.67 0.03 
MF 0.0100 0.0019 0.0062 0.0138 26.30 <0.01 

PUD -0.0059 0.0017 -0.0092 -0.0026 12.27 <0.01 
RM -0.4794 0.2602 -0.9894 0.0306 3.39 0.07 
SF -0.0001 0.0000 -0.0002 0.0000 11.36 <0.01 

Parameter Estimates for Predicting Injury Crashes 
(Intercept) 0.9482 0.0859 0.7799 1.1164 121.97 <0.01 

301.02 310.308 

MEDIAN 0.2830 0.1164 0.0549 0.5112 5.91 0.02 
BUS -0.0019 0.0005 -0.0029 -0.0008 12.17 <0.01 

INNOV -0.2259 0.0967 -0.4155 -0.0364 5.46 0.02 
MF 0.0077 0.0024 0.0030 0.0125 10.28 <0.01 
OD -0.0137 0.0071 -0.0277 0.0003 3.69 0.05 

PUD -0.0068 0.0023 -0.0113 -0.0022 8.58 <0.01 
Parameter Estimates for Predicting PDO Crashes 

(Intercept) 1.2319 0.1841 0.8711 1.5928 44.77 <0.01 

289.606 300.954 

NL 0.1578 0.0483 0.0631 0.2524 10.68 <0.01 
CC 0.0475 0.0080 0.0319 0.0631 35.68 <0.01 
IND -0.0022 0.0006 -0.0033 -0.0011 15.56 <0.01 
MF 0.0112 0.0019 0.0075 0.0149 35.75 <0.01 

PUD -0.0064 0.0018 -0.0100 -0.0029 12.49 <0.01 
RM -0.5572 0.2605 -1.0679 -0.0465 4.57 0.03 
SF -0.0002 0.0001 -0.0003 -0.0001 13.66 <0.01 

 

6.2.2 BPNN Model 

The BPNN models were built and trained using MATLAB Neural Network 

Toolbox (MATLAB, 2012). Default settings were used for all the parameters except for 
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the number of epoch (set to 5000 iterations) and learning rate (set to 0.05). To evaluate 

the best number of neurons in the hidden layer and also the performance ratio, BPNN 

models with hidden neurons = 14, 15, 16…..48, 49, 50 with performance ratio’s = 0.05, 

0.15, 0.25….0.95 were tried. Tangent sigmoid function and purelin function were used as 

transfer functions for both hidden layer and output layer, respectively with Bayesian-

Regulation Back-propagation function as training function. The network was trained 

using the database that was used to develop statistical models and validated using the test 

database. The performance of the network was evaluated by calculating errors. It was 

observed that the BPNN with performance ratio of 0.95 and hidden layer with 18, 22, 32, 

33 and 50 neurons performed well after training. 

6.2.3 Comparison of Predictive Performance 

To compare the predictive performance of the models developed, the data for the 

30 road links that was randomly selected for validation are used. Four different criteria 

were used to evaluate the predictive performance of the models developed. They are:  

• Average Error or Mean Absolute Deviation (MAD) 

𝑀𝐴𝐷 =  
1
𝑛
�|ĉ𝑞 − 𝑐𝑞|
𝑛

𝑞=1

 

• 50th Percentile Error = An error value below which 50% of the observations fall 

• 85th Percentile Error = An error value below which 85% of the observations fall 

• Root Mean Squared Error (RMSE) 

𝑅𝑀𝑆𝐸 =  �
1
𝑛
�(ĉ𝑞 − 𝑐𝑞)2
𝑛

𝑞=1
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 where, ‘n’ is the sample size, ĉ𝑞  and 𝑐𝑞 are predicted and observed number of 

crashes respectively.  

For all the four evaluation criteria MAD, 50th percentile error, 85th percentile error 

and RMSE, the values closer to zero indicate better model performance in prediction.  

The predictive performances of Negative Binomial models and BPNN models in 

predicting total, injury and PDO crashes are summarized in Table 6.4. For all the three 

different types of crash prediction models (total, injury and PDO), the BPNN models 

performed well compared to the Negative Binomial models.  

From Table 6.4, the performance criteria of the models to predict total crashes i.e., 

MAD, 50th percentile error, 85th percentile error and RMSE are observed to be lower for 

BPNN33 (33 neurons in the hidden layer) model (4.02, 3.39, 6.53 and 4.86 respectively) 

when compared the Negative Binomial model  (4.31, 4.17, 7.00 and 5.10) and also other 

BPNN models developed. The performance criteria of the models to predict injury 

crashes are observed to be lower for BPNN18 (18 neurons in the hidden layer) model 

(1.62, 1.24, 2.45 and 2.05) when compared the Negative Binomial model (1.73, 1.56, 

2.58 and 2.23) and also other BPNN models developed. Similarly, the performance 

criteria of the models to predict PDO crashes are observed to be lower for BPNN50 (50 

neurons in the hidden layer) model (2.96, 2.96, 4.44 and 3.38) when compared the 

Negative Binomial model (3.18, 2.96, 4.44 and 3.38) and also other BPNN models 

developed. 

The above observations clearly indicate that the BPNN33 model, BPNN 18 model 

and BPNN50 model have better performance in predicting total, injury and PDO crashes, 

respectively when compared to Negative Binomial and other BPNN models.  



69 
 

 

From Table 6.4, The MAD/average errors in predicting total, injury and PDO 

crashes using Negative Binomial models are 4.31, 1.73 and 3.18, respectively when 

compared to 4.02, 1.62 and 2.86 for BPNN33 (with 33 neurons in hidden layer) model.  

The 50th percentile errors in predicting total, injury and PDO crashes using Negative 

Binomial models are 4.17, 1.56 and 3.38, respectively when compared to 3.39, 1.22 and 

2.74 for BPNN33 model.  The 85th percentile errors in predicting total, injury and PDO 

crashes using Negative Binomial models are 7.00, 2.58 and 4.53, respectively when 

compared to 6.30, 2.47 and 2.44 for BPNN50 model. The RMSE in predicting total, 

injury and PDO crashes using Negative Binomial models are 5.10, 2.23, 3.54, 

respectively when compared to 4.86, 2.06 and 3.34 for BPNN33 model.  

Unlike Negative Binomial models, in the case of BPNN models, three different 

models are not required to predict total, injury and PDO crashes, the BPNN models are 

designed such that a single model would predict all the three types of crashes. Overall, 

the performance criteria for the BPNN33 model are lower than any other model except 

for the 85th percentile error. This means that the BPNN33 has the best performance in 

predicting crashes. 
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TABLE 6.4: Performance criteria comparison for Negative Binomial and BPNN models 
(Microscopic) 

Total Crashes 

Model MAD 50th Percentile 
Error 

85th Percentile 
Error RMSE 

Negative Binomial 4.31 4.17 7.00 5.10 
BPNN18 4.02 3.92 6.79 4.92 
BPNN22 4.01 4.05 6.44 4.91 
BPNN32 4.00 3.54 6.78 4.99 
BPNN33 4.02 3.39 6.53 4.86 
BPNN50 4.00 4.22 6.30 4.86 

Injury Crashes 

Model MAD 50th Percentile 
Error 

85th Percentile 
Error RMSE 

Negative Binomial 1.73 1.56 2.58 2.23 
BPNN18 1.62 1.24 2.45 2.05 
BPNN22 1.64 1.37 2.48 2.09 
BPNN32 1.72 1.55 2.62 2.13 
BPNN33 1.62 1.22 2.48 2.06 
BPNN50 1.66 1.46 2.47 2.06 

PDO Crashes 

Model MAD 50th Percentile 
Error 

85th Percentile 
Error RMSE 

Negative Binomial 3.18 3.38 4.53 3.54 
BPNN18 2.92 3.34 4.80 3.44 
BPNN22 2.89 2.76 4.86 3.39 
BPNN32 2.88 2.87 4.89 3.39 
BPNN33 2.86 2.74 4.64 3.34 
BPNN50 2.96 2.96 4.44 3.38 

 

6.2.4 Summary: Microscopic Crash Prediction Models 

Analysis of microscopic crash prediction models showed that number of lanes and 

land use characteristics such as commercial centers and multi-family residential are 

positively correlated to the total number of crashes and PDO crashes on road links. 

Whereas, the influence of land use characteristics such as industrial, planned unit 

development, residential mobile and single family residential  are negatively correlated to 
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both total number of crashes and PDO crashes on road links, indicating that an increase in 

the influence of these characteristics tends to lower the PDO crashes there by reducing 

total number of crashes. Similarly, the presence of median and influence of multi-family 

residential land use are positively correlated to injury crashes. Whereas, the influence of 

land use characteristics such as business districts, innovative centers, office district and 

planned unit development are negatively correlated to injury crashes on road links. 

Validation data (data for 30 road links) were used to validate and compare the 

performance of the models developed. Both Negative Binomial and BPNN models 

performed well in predicting the crashes (total, injury and PDO crashes). When MAD, 

50th percentile error, 85th percentile error and RMSE are considered for performance 

evaluation, BPNN33, BPNN18 and BPNN50 models performed better in predicting total 

crashes, injury crashes and PDO crashes, respectively. As the performance criteria for the 

BPNN33 model are lower than any other model except for the 85th percentile error, one 

can infer that BPNN33 model has outperformed all other models in predicting crashes 

(total, injury and PDO). 

6.3 Microscopic Travel Demand/AADT Estimation Models 

Two different techniques were incorporated in developing the models to predict 

AADT on the urban streets. The variance has to be computed based on the dependent 

variable for the road links and are compared with their respective means. If data is 

observed to be over-dispersed (α greater than zero) and not spatially correlated, a 

Negative Binomial distribution will be more suitable to estimate dependent variable. The 

dispersion parameter ‘α’ for the AADT’s was observed to be 6,146. Therefore, Negative 

Binomial distribution was used to model AADT’s. In conjunction with the Negative 
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Binomial model, a neural network model was also developed using the same dataset. 

Both the models are compared for performance evaluation. The following sections briefly 

describe the Negative Binomial and neural network models developed in this research. 

6.3.1 Negative Binomial Model  

 Since the nature of the data is same as that of microscopic crash prediction 

models, the Pearson correlation coefficients to examine the correlation between 

independent variables to predict AADT will be no different to the Pearson correlation 

coefficients summarized in Table 6.2. Independent variables with Wald Chi-Square value 

less than 1 or the level of significance greater than 0.05 (95 percent confidence level) 

were considered to have a statistically insignificant effect on the dependent variable 

(AADT or link volume). These parameters were examined for each independent variable 

to eliminate those that have a statistically insignificant effect on the dependent variable.  

The statistical parameters for the model to estimate AADT on a given road link 

are shown in Table 6.5. The QIC and QICC were used to assess the goodness of fit.  

TABLE 6.5: Final model parameters to estimate the AADT’s on road links 

Variable Coefficient 
Hypothesis Test 

Wald Chi-Square Significance 
(Intercept) 7.67666 41,535.95 <0.01 
FC 0.65295 2,715.13 <0.01 
BUS -0.00010 55.82 <0.01 
CC 0.02077 8.49 <0.01 
NSD -0.05417 15.34 <0.01 
PUD 0.00126 14.32 <0.01 
RURD 6.14833 19.89 <0.01 
SF 0.00007 5.98 0.01 
UR -0.04765 4.45 0.03 
Quasi Likelihood under Independence Model Criterion (QIC) = 13.20 

Corrected Quasi Likelihood under Independence Model Criterion (QICC) = 30.80 
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6.3.2 BPNN Model 

The BPNN models are built and trained using MATLAB Neural Network 

Toolbox (MATLAB, 2012). Default settings were used for all the parameters except for 

the number of epoch (set to 5000 iterations) and learning rate (set to 0.05). To evaluate 

the best number of neurons in the hidden layer and also the performance ratio, BPNN 

models with hidden neurons = 14, 15, 16…..48, 49, 50 with performance ratio’s = 0.05, 

0.15, 0.25….0.95 were tried. The database used to develop Negative Binomial models 

was used to develop BPNN model to maintain consistency for performance evaluation.  

All the 24 independent variables are given as the input vector to the network. So, 

the input layer has the number of neurons each of which corresponds to an independent 

variable in the model. The output layer has the number of neurons equal to number of 

outputs, which is equal to one (i.e. AADT). Tangent sigmoid function was used as a 

transfer function for both the hidden layer and the output layer with Bayesian-Regulation 

BP function as training function. The network was trained using the database that was 

used to develop statistical models and validated using the test database. The performance 

of the network was evaluated by calculating errors. The number of neurons in the hidden 

layer is not limited to a fixed number. So, appropriate number of neurons was evaluated 

by changing the number of neurons in the hidden layer until the network performed well 

after training. It was observed that the hidden layer with 14, 18 and 36 neurons performed 

well after training. 

6.3.3 Validation and Performance Evaluation 

The validation data (30 counts) are used to calculate outputs from both statistical 

model and neural network models. Similarly, AADT’s were also calculated using the 
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traditional four-step method for these 30 road links. Assuming that the weekend traffic is 

25% less than the weekday traffic, the outputs from the four-step method, i.e., Annual 

Average Weekday Traffic (AAWT) are multiplied with 0.92 to evaluate AADT’s. The 

predicted AADT outputs obtained from all the models developed, including four-step 

method, are compared with the observed counts to calculate errors. The percent error in 

estimation was calculated using the following Equation (6.1). Figure 6.1 represents the 

frequency of percent errors from the outputs of all the models in estimating AADT’s.  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 = 𝑀𝑜𝑑𝑒𝑙 𝑉𝑜𝑙𝑢𝑚𝑒−𝑉𝑜𝑙𝑢𝑚𝑒 𝑓𝑟𝑜𝑚 𝐶𝑜𝑢𝑛𝑡𝑠
𝑉𝑜𝑙𝑢𝑚𝑒 𝑓𝑟𝑜𝑚 𝐶𝑜𝑢𝑛𝑡𝑠

∗ 100           ...Equation (6.1) 

 

FIGURE 6.1: Frequency of percent errors 

The percent error in predicting AADT’s using statistical model developed vary 

from 0.19% to 45.14%. It was observed also that most of the largest errors in predicting 

AADT have occurred for the road links which had higher influence of business district 

land use. Similarly, for the BPNN14, BPNN18 and BPNN36 models, the percent errors 

range from 0.41% to 34.12%, 0.09% to 28.37% and 1.04% to 54.31%, respectively. 

However, when these ranges are compared with four-step method, 0.18% to 196.22%, the 
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percent error range for four-step method was observed to be much higher than all the 

models developed for predicting AADT in this research. 

TABLE 6.6: Summary of AADT estimation errors 

Model 
Percent Error in Estimating AADT 

Average 50th Percentile  70th Percentile 95th Percentile 
Statistical Model 16.70% 15.79% 22.10% 37.75% 
ANN (14) 12.87% 10.91% 18.01% 26.95% 
ANN (18) 13.25% 11.40% 17.37% 23.74% 
ANN (36) 15.94% 12.56% 17.46% 41.13% 
AADT (four step) 33.03% 32.13% 45.74% 66.68% 

 

6.3.4 Summary: Microscopic Travel Demand/AADT Estimation Models 

Analysis of microscopic travel demand/AADT estimation models showed that 

lane type and land use characteristics such as business district, commercial centers, 

neighborhood service district, planned unit district, rural district, single family residential 

and urban residential play a statistically significant role in estimating AADT’s. Results 

indicate that the influence of business district, neighborhood service district and urban 

residential are negatively correlated to AADT, indicating a higher influence of these 

characteristics on a road link would result in lower traffic volume.  

Permanent counts on 30 roads were used to validate the models developed and are 

also compared with traditional four-step method outputs. ANN 14 model performed 

better in estimating AADT when compared with any other model with a very low average 

error (12.87%) and 50th percentile error (10.91%). However, when 70th percentile and 

95th percentile errors were considered in performance evaluation, ANN 18 model 

(17.37% & 23.74%) outperformed all other models. 
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The 95th percentile error values for statistical and ANN (14 & 18) models are 

around 38% and 25%, respectively when compared with 67% for four-step method. From 

the observed magnitude of the errors, one can infer that the proposed methodology that 

incorporated principle of demographic gravitation would yield better results in estimating 

AADT when compared to the traditional methods. 

 



 
 

 
 

 

CHAPTER 7: CONCLUSIONS 
 
 
In this research, macroscopic and microscopic models were developed with 

emphasis on land use characteristics to estimate travel demand and crashes. The 

microscopic models help evaluate the link level performance, whereas the macroscopic 

models help evaluate the overall performance of an area. The microscopic models can 

assist in design and operational analysis while macroscopic models can assist in planning 

(future developments and/or rezoning).  

The proposed methodology involved scientific principles, statistical and artificial 

intelligent techniques.  The method for developing macroscopic models differs from 

microscopic models. The areas of land use characteristics were considered in developing 

macroscopic models, whereas the principle of demographic gravitation has been 

incorporated in developing microscopic models. Statistical and back-propagation neural 

network techniques were used in developing models and are compared for performance 

evaluation. 

Results obtained indicate that models based on Negative Binomial distribution 

yield better travel demand and crash estimates as the count data used in this research is 

observed to be over-dispersed. However, results from validation and performance 

evaluation indicate that neural network models yielded better results in estimating both 

crashes and travel demand (microscopic and macroscopic level) than any other method 

considered in this research and much better results are likely with larger data sets.   
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From the analysis of macroscopic crash prediction models, it can be concluded 

that strong associations could be established from crash estimation models developed 

based on land use characteristics to estimate the total number of crashes, the number of 

injury crashes and the number of property damage only crashes in a TAZ at a 95 percent 

confidence level. Maintaining a delicate balance between different land uses in a TAZ or 

area based on outcomes from this research would improve safety and maximize derived 

benefits.  

From the analysis of microscopic models, it can be concluded that the proposed 

methodology that incorporated principle of demographic gravitation would yield better 

results in estimating travel demand/AADT and crashes when compared to the traditional 

methods. The neural network model yielded better results in estimating travel 

demand/AADT and crashes than any other method considered in this research and much 

better results are likely with larger data sets. The neural networks are fast and do not need 

any formulas or conditions. Their adaptive nature helps them adapt to the data variations 

and learn input characteristics yielding better results. However, unlike statistical models 

and traditional four-step method in case of estimating AADT, the neural network model 

is a black box model which has a predictive value solely based on observations but does 

not provide any explanation. Therefore, statistical models or a traditional four-step 

method are more appropriate when one wants to understand the role of explanatory 

variables.  

Overall, from the results and observed magnitude of errors in estimating crashes, 

it can be concluded that the proposed methodology that incorporated the principle of 

demographic gravitation in estimating crashes not only yield better results, but also helps 
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evaluate the influence of land use characteristics on AADT and crashes on the urban road 

links. Land use characteristics were found to have better predictive capability than other 

demographic, socio-economic or on-network characteristics considering in this research. 

The developed methodology and results can be used to incorporate safety into 

long range transportation plans and land use decisions so as to minimize anticipated 

crashes in the future.  The neural network application can be used for better predictions, 

whereas the statistical models could be used for mathematical formulation or explanation. 

The models developed using the methodology can also be used to examine the effect of 

changes in land use characteristics (new development or re-zoning) on safety, identify 

appropriate solutions to improve travel patterns and traffic safety, and also help planners 

to plan, propose and prioritize infrastructure projects for future improvements. 

In travel demand models at microscopic level, the effect of mode choice was not 

considered in this research. The presence or access to public transportation systems could 

play a vital role in estimating travel demand, which needs an investigation. Further, 

research needs to be carried out to determine the correlation between the macroscopic 

and microscopic models that were developed in this research. 
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