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ABSTRACT 
 
 

 

JAYDEEP MOHAN KARANDIKAR. The fundamental application of decision 
analysis to manufacturing.  

(Under the direction of DR. TONY SCHMITZ) 
 
 
 

Machining models are available to predict nearly every aspect of machining 

processes. In milling, for example, models are available to relate stability, part accuracy 

(from forced vibrations during stable machining), and tool wear to the selected operating 

parameters, material and tool properties, tool geometry, and part-tool-holder-spindle-

machine dynamics. The models capture the underlying physics. However, models are 

deterministic and do not take into account the uncertainty that exists due to the model 

assumptions, model inputs, and factors that are unknown. Therefore, to enable reliable 

parameter selection using process models, uncertainty should be included in the 

formulation. This research will apply the normative mathematical framework of decision 

theory to select optical machining parameters while taking into account the inherent 

uncertainty in milling processes. The objective function will be profit because it 

(arguably) represents the decision maker's primary motivation in the manufacturing 

environment. The objective of this research is to select the optimal machining parameters 

which minimize cost while considering the uncertainty in tool life and stability for a 

given machine, tool, tool path and workpiece material. 
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CHAPTER 1: INTRODUCTION

1.1 Motivation and Research Objective

Machining models are available to predict nearly every aspect of machining pro-

cesses. In milling, for example, models are available to relate stability, part accu-

racy (from forced vibrations during stable machining), and tool wear to the selected

operating parameters, material and tool properties, tool geometry, and part-tool-

holder-spindle-machine dynamics. While these models capture the underlying process

physics, uncertainty exists due to the model assumptions, model inputs, and factors

that are unknown. For example, it has been observed in practice that stable points

may lie above or below the stability lobe diagram constructed using deterministic

models, even though every effort has been made to accurately identify the model

inputs. This is due to the uncertainties in, for example, the force model coefficients

and the dynamic response of the machine which are not considered by deterministic

models. Similarly, deterministic models for tool life are limited in application be-

cause tool life is generally considered to be stochastic due to the complex nature of

the tool wear process and tool-to-tool performance variation. Therefore, to enable

reliable parameter selection using process models, uncertainty should be included in

the formulation.

Decision analysis provides a formal and logical procedure for decision making un-

der uncertainty. The approach incorporates the state of information, preferences,

and available alternatives to select the best decision. Information is described in

terms of a joint probability distribution that captures the uncertainty about the pos-

sible outcomes for each alternative. In addition, decision analysis enables the value of



2

information (experimentation) to be calculated. While the additional information ob-

tained from experiments (e.g., tool wear or stability tests) reduces uncertainty, these

experiments require time and money. Naturally, an experiment is only worthwhile if

the value of additional information exceeds the cost of performing that experiment.

Decision analysis places a dollar value on the information gained from an experiment

prior to performing it. The primary motivation for defining the value of information

is to optimize the selection of experiments. The experimental test point should be

the one which adds the most (expected) value to the profit.

The objective of this research is to apply the normative mathematical framework

of decision theory to select optical machining parameters while taking into account the

inherent uncertainty in milling processes. The objective function will be profit because

it (arguably) represents the decision makers primary motivation in the manufacturing

environment.

1.2 Stability Lobes in Milling

High speed machining (HSM) has made significant technological advances in recent

years. Improved milling spindle designs enable speeds of 20000 rpm and higher with

powers exceeding tens of kW. High material removal rates (MRR) can be obtained by

machining at larger depths of cut and increased spindle speeds. However, a limitation

to machining at higher depths of cut is chatter or unstable cutting. In milling, relative

motion between a rotating cutter and workpiece is responsible for material removal.

As the cutter is engaged, it experiences a cutting force which causes the tool to

vibrate. The tool vibrations are imprinted on the workpiece leaving behind a wavy

surface. The wavy surface left behind by one tooth is removed by the following tooth.

Thus, surface regeneration occurs from one tooth to the next. The instantaneous chip

thickness depends on the state of vibration of the current tooth and the surface left

behind by the previous tooth and governs the cutting force. If the two surfaces are in

phase, the chip thickness varies only according to cut geometry. This gives periodic
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cutting forces and tool vibrations and provides stable cutting conditions. However,

an out of phase profile results in a variable chip thickness which affects the cutting

force and, subsequently, the tool vibrations. The resulting vibrations again affect

the chip thickness. This feedback mechanism may result in self-excited vibrations,

or chatter, in milling. The foundation for the stability in machining can be traced

to papers by Tlusty, Tobias, and Merrit [1, 2, 3, 4], which, in turn, followed earlier

work by Arnold [5]. Subsequent work involved developing modeling techniques such

as time domain simulations, frequency domain analyses, and temporal finite element

methods to predict the stability behavior in HSM [6, 7, 8, 9].

Stability lobes separate stable operating points from unstable, or chatter, points.

All operating points below the stability boundary are predicted to be stable while the

ones above are unstable. Figure 1.1 shows a typical stability lobe diagram for milling.

Figure 1.1: Typical stability lobe diagram for milling which identifies stable and
unstable (chatter) zones.

The models used to predict the stability lobes require the tool point frequency

response function (FRF), tool geometry, cutting parameters, and cutting force co-

efficients. The stability lobes are calculated at a certain radial depth of cut. The

user can select optimum operating conditions for spindle speed and axial depth of cut

based on this diagram.
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1.3 Tool Wear

Tool wear in machining is damage to the cutting edge, often in the form of tool

material loss, due to interaction with the workpiece during cutting. Tool wear can

ultimately result in catastrophic failure of the cutting edge. Tool wear is undesirable

as it affects the cutting forces and quality of the machined surface. Replacing a worn

tool requires tool changing time, which increases the cost of the product in addition

to the tool cost. Tool wear also results in increased cutting forces and temperatures.

The various mechanisms that can cause tool wear include mechanical microbreakages,

abrasion, adhesion, diffusion, and oxidation [10]. Figure 1.2 shows the various forms

of tool wear.

Figure 1.2: Various forms of tool wear A) Nose wear B) Notch and flank wear C)
Crater wear D) Plastic/breakage [11].

Flank wear is a common wear feature and can be used to monitor tool wear. Flank

wear is caused by abrasive wear of the main cutting edge against the workpiece and

occurs on the tool flank face over the length equal to axial depth of cut in zero helix

end milling. Flank wear is expressed in terms of the flank wear width (FWW ). Flank

wear increases with cutting time as shown in Figure 1.3 [10]. The tool life is based on

the time required for the maximum FWW to reach a preselected value. For milling

processes, according to ISO, the permissible average value of FWW is 0.3 mm in
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the case of uniform wear or 0.6 mm maximum in case of irregular wear for cemented

carbides [12]. The increase in flank wear width consists of three parts:

• initial rapid wear where FWW quickly increases

• uniform wear where FWW increases at a constant rate

• final accelerated wear leading to a catastrophic failure of the tool

Figure 1.3: Increase in flank wear width with cutting time. I) Initial rapid wear, II)
Uniform Wear, and III) Final wear (catastrophic failure) [10].

1.4 Decision Analysis

The term decision analysis was coined by Howard who defined it as “a logical

procedure for the balancing of the factors that influence a decision. The procedure

incorporates uncertainties, values, and preferences in a basic structure that models the

decision. Typically, it includes technical, marketing, competitive, and environmental

factors. The essence of the procedure is the construction of a structural model of the

decision in a form suitable for computation and manipulation; the realization of this

model is often a set of computer programs” [13]. See [14, 15, 16, 17] for the concepts

and early discussions in the field of decision analysis.

The approach incorporates information, preferences, and available alternatives to

derive the best decision alternative. Information is described in terms of a joint prob-

ability distribution that captures the uncertainty about the possible outcomes for
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each alternative and uses Bayesian inference to update knowledge when new infor-

mation is revealed. Bayesian inference provides a systematic and formal procedure

of updating beliefs with observational data. In Bayesian inference, a probability is

represented as a degree of belief. It provides a framework of incorporating judgment

(prior beliefs) with observational data. Let the prior distribution about an uncertain

event, A, be P(A), the likelihood of obtaining an experimental result B given that

event A occurred be P(B|A), and the probability of receiving experimental result B

(without knowing A has occurred) be P(B). Bayes’ rule is used to determine the pos-

terior belief about event A after observing the experiment results, P(A|B), as shown

in Eq. 1.1. Using Bayes’ rule, information gained through experimentation can be

combined with the prior prediction about the event to obtain a posterior distribution

[18, 19]. The Bayesian approach can incorporate data and/or existing models; this

makes it an attractive candidate to update information in experimental settings.

P (A|B) =
P (B|A)P (A)

P (B)
(1.1)

In decision theory, preferences are captured using a von Neumann-Morgenstern

utility function over monetary amounts to represent the preferences under risk [20].

Given a value model that converts parameter values in a deterministic setting into dol-

lar equivalents, a von Neumann-Morgenstern utility that captures preferences under

uncertainty can be constructed. The optimal decision is the one that maximizes the

von Neumann-Morgenstern expected utility. Decision theory also enables the value of

a decision situation given an arbitrary knowledge state to be determined. As a result,

a value, referred to as the value of information, can be assigned to gaining knowledge,

such as the outcome of an experiment [16]. With this approach, optimal experiment

design can be formulated as a sequential decision problem under uncertainty. The

type and number of experiments that maximize expected utility are selected to de-

termine the optimal sequence of experiments. The application of decision analysis to
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value oil (petroleum) properties and make decisions about new well drilling is well

documented [21, 22, 23, 24, 25, 26, 27, 28, 29].

The remainder of the dissertation is organized as follows. Chapter 2 describes the

application of Bayesian inference and decision analysis to a marble drawing exam-

ple. Chapter 3 describes milling force modeling using Bayesian inference. Chapter

4 shows optimal parameter selection considering uncertainty in stability using a ran-

dom walk approach. Chapter 5 describes process damping coefficient identification

and experimental selection in milling using Bayesian inference. Chapter 6 describes

Bayesian updating of tool life and optimal machining parameter selection considering

uncertainty in tool life. Chapter 7 describes the steps for combining uncertainty in

tool life and stability of optimal parameter selection in titanium machining. Future

scope and conclusions are listed in Chapter 8.



CHAPTER 2: INFERENCE, DECISION AND EXPERIMENTATION

To explain decision theory and Bayesian inference, a marble drawing from a jar

example is demonstrated, where the number of blue marbles in a jar containing both

red and blue marbles is considered uncertain. The probability of the number of blue

marbles in the jar is updated using Bayes’ rule and observations about the color of

the marble drawn with replacement. The problem is then framed in a decision setting

where the user has to guess the number of blue marbles based on a profit function.

Observation possibilities are evaluated for the case where the number of observations

must be decided a priori and for the case where observations follow sequentially and

can be stopped at any point.

2.1 Inference

A jar has four marbles, some of which are blue and the rest of which are red.

The exact number of blue marbles is not known and is thus uncertain. The goal

is to update the beliefs about the number of blue marbles in the jar given discrete

observations. In an observation a marble is drawn from the jar, its color is identified,

and it is replaced in the jar. For the jar problem, Bayes’ rule is given by:

P (blue|observation) =
P (observation|blue)P (blue)

P (observation)
(2.1)

where P(blue|observation) is the posterior probability of the number of blue marbles

given an observation, P(observation|blue) is the likelihood of observing a result given

the number of blue marbles, P(blue) is the prior belief of the number of blue marbles,

and P(observation) is the probability of an observation, which acts as a normalization
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constant.

2.1.1 Prior

The first step in Bayesian updating is to decide the prior probability for the

uncertain variable of interest. For the prior, it is assumed that all possible values of

the number of blue marbles (0, 1, 2, 3 or 4) were equally likely (or have an equal

probability). In Bayesian terms, this is called a uniform or a non-informative prior.

The uniform prior implies that there is no information available to prefer one value

over another. There are five possible outcomes; each outcome is assigned a probability

of 0.2. Figure 2.1 shows the prior probability of the number of blue marbles, P(blue).

Figure 2.1: Prior probability of the number of blue marbles.

2.1.2 Bayesian Updating Given Discrete Observations

According to the Bayes’ rule, the posterior probability is proportional to the prod-

uct of the prior and the likelihood. Note that the posterior probability should be

normalized so that the sum of all probabilities is equal to unity. Bayes’ rule (Eq. 2.1)

is used to calculate the posterior probability given an observation of the color of

the drawn marble. The likelihood is defined as the probability that a blue marble

is observed given the number of blue marbles. To illustrate, the likelihood that a

blue marble is observed given that there are 0 blue marbles in the jar is zero. The
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Table 2.1: Posterior probability given b = 1.

x Prior Likelihood (b = 1) Posterior (non-normalized) Posterior (normalized)
0 0.2 0 0 0
1 0.2 0.25 0.05 0.1
2 0.2 0.5 0.1 0.2
3 0.2 0.75 0.15 0.3
4 0.2 1 0.2 0.4

Σ 0.5 1

Table 2.2: Posterior probability given b = 0.

x Prior Likelihood (b = 0) Posterior (non-normalized) Posterior (normalized)
0 0.2 1 0.2 0.4
1 0.2 0.75 0.15 0.2
2 0.2 0.5 0.1 0.2
3 0.2 0.25 0.05 0.1
4 0.2 0 0 0

Σ 0.5 1

likelihood that a blue marble is observed given that there are 2 blue marbles in the

jar is 2/4 or 0.5. In general, the likelihood that a blue marble is observed given that

there are x blue marbles in the jar is x/4. On the other hand, the likelihood that a

red marble is observed given that there are x blue marbles in the jar is 1-x/4. Let b

= 1 denote that a blue marble is drawn, while b = 0 indicates that a red marble is

drawn. Table 2.1 shows the posterior probabilities given b = 1 and Table 2.2 shows

the posterior probabilities given b = 0. The posterior probabilities were normalized

so that the sum was equal to unity. To interpret the right column in Table 2.1, for

example, it is seen that by drawing a blue marble, the posterior probability of there

being no blue marbles (first row) is now zero. Figure 2.2 shows the posterior proba-

bilities of the number of blue marbles given that a blue marble is drawn (left) and a

red marble is drawn (right).
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Figure 2.2: Updated posterior probability given an observation; left, blue marble
drawn and right, red marble drawn.

If another marble is drawn, the posterior after the first update becomes the prior

for the second update and so on. Table 2.3 shows the posterior probability after two

observations, where the first is blue and the second is red. The sequence of obser-

vation does not matter; the posterior probability would be identical after multiple

observations regardless of the order in which they occurred. In addition, multiple

observations can be used to update the prior in a single calculation. The posterior

is equal to the product of the prior and the likelihood for all observations as shown

in Eq. 2.2; note that the normalizing constant is not shown. The observations, b1,

b2, . . . , bn, are independent and so Eq. 2.2 holds; the equation would not be true

for draws without replacement since subsequent observations are not independent of

each other.

P (blue|observationsb1, b2, ...bn) =

∏n
i=1 P (observationbi|blue)P (blue)

P (observationb1, b2, ...bn)
(2.2)

where b1, b2, . . . , bn are the color observations from drawn marbles and n is the number

of observations. Figure 2.3 shows the updated posterior probability for different

numbers of observations assuming all observed marbles are blue. As the number

of consecutive blue marble observations increases, there is more and more data to



12

Table 2.3: Posterior probability given b = 1 followed by b = 0

x Prior Likelihood (b = 0) Posterior (non-normalized) Posterior (normalized)
0 0 1 0.2 0
1 0.1 0.75 0.075 0.3
2 0.2 0.5 0.1 0.4
3 0.2 0.25 0.075 0.3
4 0.4 0 0 0

Σ 0.25 1

support that all the marbles in the jar are blue (see Figure 2.3). When n was very

large (>30), the probability that all the marbles in the jar are blue is approximately

equal to 1, since there is an overwhelming amount of data to support the belief that

all marbles in the jar are blue. Figure 2.4 shows the updated posterior probability

for different numbers of observations assuming that 50% of the observed marbles are

blue. Bayesian inference makes logical sense for any size of experiments as it combines

prior knowledge with observations.

2.2 Decision

In Section 2.1, the Bayesian inference method to update the probability of the

number of blue marbles in the jar was demonstrated. It was shown that the Bayesian

inference method makes as much sense for no data as for an overwhelming amount.

In this section, the situation is framed in a decision setting where a gambler has to

guess the number of blue marbles in the jar based on a profit function. The profit

function associated with the jar is defined as follows:

profit = 500− 125× (Be −Ba)
2 (2.3)

where Be is the player’s guess of the number of blue marbles in the jar and Ba is the

actual number of blue marbles in the jar. If the player guesses the number of blue
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Figure 2.3: Updated posterior probability; four consecutive blue marbles drawn (top
left), 10 consecutive blue draws (top right), and 30 consecutive blue draws (bottom
left).

marbles correctly, the profit is $500. If the guess is off by one, the profit is $375.

For a difference of two, the player would break even; higher differences would mean

that the player loses money. The profit for different values of (Be - Ba) is listed in

Table 2.4.

The first decision the player must face is whether to enter the gamble or not. It

is assumed for the purposes of this exercise that the player is risk neutral, which

implies that he/she would play if the expected profit was greater than zero. As a

first step towards making the decision to play, an influence diagram, which provides a

graphical representation of a decision situation and the corresponding uncertainties,

was developed as shown in Figure 2.5. The objective function is to maximize profit

which is represented as a value node. The uncertainty node is Ba and the decision
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Figure 2.4: Updated posterior probability; two blue draws out of four (top left), five
blue draws out of 10 (top right), and 15 blue draws out of 30 (bottom left).

node is Be. The arrows from Ba and Be nodes imply that the profit value is relevant

to the values of Ba and Be. There is uncertainty in the profit as a result of the

uncertainty in the actual number of blue marbles in the jar. The double hexagon on

the profit node denotes that the profit is no longer an uncertainty if the values of Ba

and Be are known with certainty.

Figure 2.5: Influence diagram for the decision problem.

The data in the uncertain nodes can be represented by distribution trees. The
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Table 2.4: Profit for different values of (Be - Ba).

Be - Ba Profit ($)
0 500
1 375
2 0
3 -625
4 -1500

potential outcomes associated with each uncertainty are described using probabilities

in a distribution tree. The player has five decision alternatives (Be = 0, 1, 2, 3, or 4).

For each alternative, there are five possible outcomes (Ba = 0, 1, 2, 3, or 4). Each

value of Be has an expected profit value associated with it given by the sum of the

product of the probability of each possible value of Ba and the profit associated with

each of the given alternatives. The probability of each outcome was assigned to be 0.2

by the player before any observations; recall that this is the uniform/non-informative

prior probability. The expected profit for each alternative was calculated as:

E(profit) =
n∑
i=1

P (Ba = i)× profit(Ba=i) (2.4)

To illustrate, the expected profit for Be = 0 was calculated as:

E(profit)(Be=0) = $(0.2×500+0.2×375+0.2×0+0.2×−625+0.2×−1500) = −$250

(2.5)

Figure 2.6 shows the distribution tree for the decision alternatives. Table 2.5 lists the

expected profit for all the alternatives. The expected profit was maximum for Be =

2 and the value was $250. Therefore, the player would be willing to enter the gamble

and the guess is Be = 2. The guess is based on the prior probability assigned by the

player to each outcome.

Assume that the player observed a blue marble drawn. The player updates the
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Table 2.5: Expected profit for decision alternatives.

Be - Ba Profit ($)
0 -250
1 125
2 250
3 125
4 -250

probability of each outcome based on the observation using Bayes’ rule as shown in

Section 2.1. The updated probabilities (see Table 2.1) were used to calculate the

expected profit for all the decision alternatives. To illustrate, the expected profit for

Be = 0 after a blue marble observation was calculated as:

E(profit|b = 1)(Be=0) = $(0× 500 + 0.1× 375 +

0.2× 0 + 0.3×−625 + 0.4×−1500) = −$750

The expected profit was calculated for all the decision alternatives given a blue marble

observation; see Table 2.6. The expected profit was maximum for Be = 3 and the

value was $375. Therefore, based on the observation of the blue marble, the player

guess is Be = 3 with an expected profit of $375. Similarly, if the marble drawn was

red, the expected profit for Be = 0 was calculated as (see Table 2.2 for posterior

probabilities):

E(profit|b = 0)(Be=0) = $(0.4× 500 + 0.3× 375 +

0.2× 0 + 0.1×−625 + 0×−1500) = $250

Table 2.7 lists the expected profit for the decision alternatives after a red marble

observation. In that case, the player guess is Be = 1 with an expected profit of $375.

Figure 2.7 shows the distribution tree given a blue marble observation (left) and red
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Table 2.6: Expected profit for alternatives given a blue marble observation.

Be - Ba Profit ($)
0 -750
1 -125
2 250
3 375
4 250

Table 2.7: Expected profit for alternatives given a red marble observation.

Be - Ba Profit ($)
0 250
1 375
2 250
3 -125
4 -750

marble observation (right). With each succeeding observation, the player updates the

probabilities using Bayes’ rule and determines his/her guess based on the maximum

expected profit among all alternatives.

2.3 Experimentation

In this section, observation possibilities are evaluated for the case where the num-

ber of observations must be decided a priori and for the case where observations

follow sequentially and can be stopped at any point. The player is given an opportu-

nity to purchase the right to observe draws (color of the marble) before submitting

a guess. If the player chooses to purchase any observations, it would cost him/her

$25 plus $10 per observation. This means that the first observation would cost $35;

all subsequent observations would be an additional $10. As shown in Section 2.1,

using the observations, the player updates the probabilities of the number of blue

marbles and thus increases his/her expected profit. Recall that with no observations,

the player’s expected profit was $250. However, after 1 observation (either blue or
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red), the expected profit increased to $375. Therefore, it is profitable for the player

to purchase some observations; however, purchasing too many observations would

not be worthwhile since each observation would provide an additional cost and re-

duce expected profit. The question the player has to answer is: “How many should I

purchase?”

Decision analysis combined with Bayesian inference enables a dollar value to be

placed on the information gained from an experiment prior to performing it. An

experiment is only worthwhile if the value of additional information exceeds the cost

of performing that experiment. The value of information (VOI) is defined as the

difference between expected profit after observation and expected profit before obser-

vation. Note that VOI is calculated before the observation in order to decide whether

to purchase the observation (i.e., perform the test) or not [16].

V OI = E(profit after observation)− E(profit before observation) (2.6)

Recall that in the absence of any observations, the best guess is Be = 2 with an

expected profit of $250. The maximum profit possible was $500. Therefore, the

most a player can expect to increase his/her profit is $250 for this scenario. This

places an upper bound on VOI (also called the value of perfect information or value

of clairvoyance). The value of perfect information places an upper bound on any

information gathering activity. Any observations are only worthwhile if they cost less

than the value of perfect information.

2.3.1 Fixed Size Experimentation

First, consider the case where a player has to commit to a certain number of ob-

servations beforehand. The opportunity to observe draws costs less than $250 (value

of perfect information) and is therefore worth investigating. Before observing any

draws, the player assigned an equal probability to the five outcomes (see Figure 2.1).
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From the prior probabilities, the probability of observing a blue marble was calculated

from the law of total probability as [18]:

P (blue) = P (blue | Ba = 0)× P (Ba = 0) + P (blue | Ba = 1)× P (Ba = 1)

+P (blue | Ba = 2)× P (Ba = 2) + P (blue | Ba = 3)× P (Ba = 3)

+P (blue | Ba = 4)× P (Ba = 4)

= 0× 0.2 + 0.25× 0.2 + 0.5× 0.2 + 0.75× 0.2 + 1× 0.2

= 0.5

The probability of observing a red marble, P(red) was also calculated as 0.5. Only two

outcomes are possible, the sum of P(blue) and P(red) should be equal to unity. Based

on the prior probabilities, there is a probability of 0.5 of observing a blue marble. In

this case the best decision would be to guess the number of blue marbles to be 3,

which would yield an expected profit of $375. Also, there is a probability of 0.5 of

observing a red marble. Here, the best decision would be to guess the number of

blue marbles as 1, which would also yield an expected profit of $375 (see Section 2.2).

Therefore, the expected profit after observation was calculated as:

E(profit after observation) = P (blue)× E(profit | blue observation)

+P (red)× E(profit | red observation)

= $375

The expected profit before observation was $250. The corresponding VOI for the first

test is $125. The cost of the first observation is $35. Therefore, the expected increase

in profit after the first tests is $90. After some observations, the marginal increase in

VOI would be less than the cost of observation at which point the expected increase

in profit (calculated as VOI - cost of observations) will start to decrease. The number
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of observations to be purchased should be selected so that the expected increase in

profit is maximum. Therefore, at least one observation should be purchased. The

calculation is summarized in Figure 2.8.

For the second observation, there are four possible outcomes, (blue, blue), (blue,

red), (red, blue) and (red, red). Each outcome has a probability; their sum is unity.

To illustrate, the probability of observing a blue marble in the first observation is 0.5.

If a blue marble is observed, the prior probabilities can be updated as demonstrated

in Section 2.1 (see Table 2.1). The probability of observing a blue marble in the

second observation given a blue marble in the first observation was again calculated

using the law of total probability. Note that the updated posterior probabilities are

used to determine the probability of blue marble in the second observation.

E(blue|b = 1) = 0× 0 + 0.25× 0.1 + 0.5× 0.2 + 0.75× 0.3 + 1× 0.4

= 0.75

Thus, the joint probability of observing two blue marbles in succession is 0.375. The

joint probability can also be determined using the law of total probability for both

cases combined as:

P (blue, blue) =
∑

P (blue, blue | blue)P (blue) (2.7)

Recall that P(blue) is the prior probability for number of blue marbles which was

equal to 0.2. The joint probability of observing two blue marbles is calculated as:

P (blue, blue) = 02 × 0.2 + 0.252 × 0.2 +

0.52 × 0.2 + 0.752 × 0.2 + 12 × 0.2

= 0.375
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The maximum expected profit after observing two blue marbles was calculated as

$406.25. The procedure was repeated for all possible four outcomes. The calculations

are summarized in Figure 2.9.

The expected VOI after two observations is $156.25 and the cost of two obser-

vations is $45. Therefore, the net expected increase in profit after two observations

is $111.50; it is profitable to purchase at least two observations. The procedure was

repeated up to ten observations. After each observation, the expected value of infor-

mation was calculated as demonstrated. Figure 2.10 shows the VOI, cost of obser-

vations, and the difference (VOI-cost of observations) as a function of the number of

observations. The maximum increase in expected profit occurs after five observations

and is equal to $125.10. For more than five observations, the marginal gain from the

observation is less than the cost of the observation. Therefore, the expected increase

in profit is maximum after five observations; the optimal number of observations to

be purchased is five.

2.4 Sequential Sampling

Second, consider the case where the player is given an option to observe sequential

draws and stop purchasing the right to observe whenever he/she wishes. The player

does not commit to a fixed number of observations beforehand. Again, the cost is

$25 plus $10 per observation.

As calculated in Section 2.2, the expected profit after the first draw is $375 and,

therefore, the VOI for the first test is $125 (see Figure 2.11). Thus, the first observa-

tion is purchased by the player since the VOI is greater than the cost of observation.

In the first observation, it is assumed that the drawn marble is blue. The prior

probabilities are updated as shown in Section 2.1 (see Table 2.1). The posterior prob-

abilities are again used to determine the probability of observing a blue marble and a

red marble and the expected profit for each (see Figure 2.12). The expected profit for

the second observation is calculated as $406.25. The VOI for the second observation is
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$31.25. The procedure was repeated after observing the draws each time until the VOI

of the next observation was less than $10. This means that the experiment costs more

than the expected increases in profit after observing the result. Figure 2.13 shows

the VOI as a function of the number of observations assuming all marbles drawn are

blue. Note that the VOI is not a strictly monotonic decreasing function; it depends

on the observation. Figure 2.14 shows the expected profit for each observation. The

expected profit tends to $500, which is the maximum achievable profit.

Another way to approach the problem would be to calculate explicitly the value

of the updated probability of a decision alternative in order to no longer require any

further observations and, hence, determine the possible observational results required

to obtain the desired value of the probability of the outcome. The stopping criteria

in this case would be a pre-determined confidence in the decision alternative.
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Figure 2.6: Distribution tree for decision alternatives.
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Figure 2.7: Distribution tree for decision alternatives given a blue marble observation
(left) and red marble (right).
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Figure 2.8: Expected profit for the first observation.

Figure 2.9: Expected profit after second observation

Figure 2.10: Expected increase in profit with number of observations.

Figure 2.11: VOI as a function of number of observation assuming all the marbles
drawn were blue.
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Figure 2.12: VOI as a function of number of observation assuming all the marbles
drawn were blue.

Figure 2.13: VOI as a function of number of observation assuming all the marbles
drawn were blue.

Figure 2.14: Expected profit for every observation assuming all the marbles drawn
were blue.



CHAPTER 3: APPLICATION TO MILLING FORCE MODELING

In the modeling of milling operations, a fundamental requirement is the ability to

predict the cutting force as a function of cutter angle (or time). Mechanistic force

models, that relate the cutting force to the milling parameters using empirical coeffi-

cients, are often applied. This chapter describes the application of Bayesian inference

to the identification of force coefficients in milling. Mechanistic cutting force coef-

ficients have been traditionally determined by performing a linear regression to the

mean force values measured over a range of feed per tooth values. This linear regres-

sion method, however, yields a deterministic result for each coefficient and requires

testing at several feed per tooth values to obtain a high level of confidence in the

regression analysis. Bayesian inference, on the other hand, provides a systematic and

formal way of updating beliefs when new information is available while incorporating

uncertainty. In this work, mean force data is used to update the prior probabil-

ity distributions (initial beliefs) of force coefficients using the Metropolis-Hastings

algorithm of Markov Chain Monte Carlo approach. Experiments are performed at

different radial depths of cut to determine the corresponding force coefficients using

both methods and the results are compared.

3.1 Introduction

In metal cutting operations, the cutting force can be modeled using the chip area

and empirical constants that depend on the tool-workpiece combination. In milling,

the tangential, Ft, and normal, Fn, direction force components can be described using

Eqs. 3.1 and 3.2, where b is the chip width (axial depth of cut), h is the instantaneous

chip thickness, Kt is the tangential cutting force coefficient, Kte is the tangential
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edge coefficient, Kn is the normal cutting force coefficient, and Kne is the normal

edge coefficient [30].

Ft = Ktbh+Kteb (3.1)

Fn = Knbh+Kneb (3.2)

The chip thickness is time-dependent in milling and can be approximated using the

feed per tooth, ft, and time-dependent cutter angle, φ, provided the ratio of the feed

per tooth to cutter diameter is small [31]. See Eq. 3.3.

h = ftsin(φ) (3.3)

The forces in the x (feed) and y directions, Fx and Fy, are determined by projecting

the tangential and normal force components in the x and y directions using the cutter

angle as shown in Figure 3.1. See Eqs. 3.4 and 3.5.

Fx = Ktbftsin(φ)cos(φ) +Ktebcos(φ) +Ktbftsin
2(φ) +Knebsin(φ) (3.4)

Fy = Ktbftsin
2(φ) +Ktebsin(φ)−Knbftsin(φ)cos(φ)−Knebcos(φ) (3.5)

Figure 3.1: Milling force geometry (a 50% radial immersion up milling cut using a
cutter with two teeth is depicted).



29

Expressions for the mean forces in the x and y directions, Fxm and Fym, are

provided in Eqs. 3.6 and 3.7, where Nt is the number of teeth on the cutter and φs

and φe are the cut start and exit angles, which are defined by the radial depth of cut

[30].

Fxm =

[
Ntbft

8π
(−Ktcos(2φ) +Kn(2φ− sin(2φ)))+

Ntb

2π
(Ktesin(φ)−Knecos(φ))

]φe
φs

(3.6)

Fym =

[
Ntbft

8π
(Kt(2φ− sin(2φ)) +Kncos(2φ)−

Ntb

2π
(Ktecos(φ)−Knesin(φ))

]φe
φs

(3.7)

In Eqs. 3.6 and 3.7 average force expressions, the first term, which is a function of the

feed per tooth, gives the slope of the linear regression to the average force values that

correspond to the selected feed per tooth values. The second term, which does not

include the feed per tooth, is the intercept of the linear regression. By rearranging

Eqs. 3.6 and 3.7, the four force coefficients are determined using Eqs. 3.8- 3.11, where

a1,x and a1,y are the slopes of the linear regressions to the x and y direction average

force data, and a0,x and a0,y are the intercepts.

Kt =
8π

Ntb

a1,y(2φe − 2φs + sin(2φs)− sin(2φe)) + a1,x(cos(2φs)− cos(2φe))
(2φe − 2φs + sin(2φs)− sin(2φe))2 + (cos(2φe)− cos(2φs))2

(3.8)

Kt =
8π

Ntb

a1,y(cos(2φe)− cos(2φs)) + a1,x(2φe − 2φs + sin(2φs)− sin(2φe))

(2φe − 2φs + sin(2φs)− sin(2φe))2 + (cos(2φe)− cos(2φs))2
(3.9)

Kte =
π

Ntb

a0,x(sin(φe)− sin(φs)) + a0,y(cos(phie)− cos(φs))
(1− cos(φe − φs)

(3.10)

Kne =
−π
Ntb

a0,x(cos(φe)− cos(φs)) + a0,y(sin(phie)− sin(φs))

(1− cos(φe − φs)
(3.11)
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3.2 Bayesian Inference

Bayesian inference is applied for force coefficient determination here. Bayesian

inference models are used to update beliefs about an uncertain variable when new

information becomes available. For the case of updating the four force coefficients in

Eqs. 3.8- 3.11 using experimental force data, Bayes’ rule is written as:

P (Kt, Kn, Kte, Kne | Fxm, Fym) =
P (Fxm, Fym | Kt, Kn, Kte, Kne)P (Kt, Kn, Kte, Kne)

P (Fxm, Fym)

(3.12)

where P(Kt, Kn, Kte, Kne | Fxm, Fym) is the posterior distribution of the force

coefficients given measured values of the mean forces in the x and y directions, Fxm

and Fym, P(Kt, Kn, Kte, Kne) is the prior distribution of the force coefficients, and

P(Fxm, Fym | Kt, Kn, Kte, Kne) is the likelihood of obtaining the measured mean

force values given specified values of the force coefficients. The posterior (i.e., the new

belief after updating) is proportional to the prior multiplied by the likelihood. For

multiple measurements, Bayes’ rule can incorporate all data in a single calculation.

The likelihood functions for each measurement are multiplied together to obtain a

total likelihood function. The posterior pdf is calculated by multiplying the prior and

the total likelihood function. Note that the posterior distributions must be normalized

so that a unit volume under the pdf is obtained; this is the purpose of the denominator

in Eq. 3.12.

3.3 Markov Chain Monte Carlo (MCMC) Method

The Markov chain Monte Carlo (MCMC) method is a strategy used to draw

samples, xi, from a random (known) distribution, where i is the sample (or iteration)

number. The distribution of interest is referred to as a target distribution and is

denoted as p(x). Using the MCMC method, samples are generated from the state

space, X, using a Markov chain mechanism [32]. The Metropolis-Hastings (MH)
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algorithm is the most widely used MCMC method [33, 34]. In the MH algorithm,

a candidate sample, x∗, is drawn from a proposal distribution, q(x). It is selected

given the current value of x according to q(x∗ | xi). The candidate sample is either

accepted or rejected depending on an acceptance ratio, A. The acceptance ratio is

calculated as shown in Eq. 3.13. At each iteration, the Markov chain moves to x∗ if

the sample is accepted. Otherwise, the chain remains at the current value of x. The

MH algorithm is completed over N -1 iterations as follows.

• Initialize the starting point x0.

• For i = 0 to i = N -1 iterations, complete the following four steps:

– randomly sample x∗ from the proposal pdf q(x∗ | xi).

– randomly sample u from a uniform distribution of values between 0 and 1,

U(0, 1).

– compute the acceptance ratio, A.

– if u <A, then set the new value equal to the new sample, xi+1 = x∗;

otherwise, the value remains unchanged xi+1 = xi.

A = min

(
1,
p(xi)q(xi | x∗)
p(xi)q(x∗ | xi)

)
(3.13)

3.3.1 Algorithm Demonstration

To illustrate the algorithm, consider a target pdf described by the bimodal pdf in

Eq. 3.14 [32]. Note that the normalization constant of the target pdf does not need

to be known.

For this example, a normal proposal distribution, q(x), was chosen with a mean

of xi and a standard deviation of 10, i.e., q(x) = N(xi,10). The starting point of

the chain, x0, was selected to be zero. At each iteration, i, the following steps were

completed. First, a candidate sample, x∗, was randomly drawn from N(xi, 10). The
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candidate sample was drawn given the current value of the chain, q(x∗ | xi). In other

words, the proposal distribution is conditioned on the current value of the chain. To

illustrate, consider the first iteration. The chain starting point is x0 = 0. Therefore,

x∗ is a random sample drawn from N(0, 10). Assume the randomly selected value is

x∗ = 2 and it is accepted as x1. In the second iteration, the random sample is drawn

from N(2, 10). If the sample is 12 and it is rejected, then the current value of x2

remains at 2. In the third iteration the random sample will again be drawn from N(2,

10).

In the second step, p(x∗) and p(x1) were calculated using Eq. 3.14 for the target

distribution. Third, q(x∗ | xi) and q(xi | x∗) were calculated, where q(x∗ | xi) was

the pdf value of the normal proposal distribution at x∗ given a mean equal to xi

and a standard deviation of 10. Similarly, q(xi | x∗) was the pdf value of the normal

proposal distribution at xi given a mean of x∗ with a standard deviation of 10. Fourth,

the acceptance ratio, A, was calculated. Because normal distributions were used, the

equality q(x∗ | xi) = q(xi | x∗) holds and the acceptance ratio simplified to as shown

in Eq. 3.15.

p(x) ∝ 0.3e−0.2x2 + 0.7e−0.2(x−10)2 (3.14)

A = min

(
1,
p(x∗)

p(xi)

)
(3.15)

Fifth, A was compared to a random sample, u, drawn from a uniform distribution

with a range from 0 to 1. Finally, if u was less than A, then the candidate sample

was accepted so that xi+1 = x∗. Otherwise, it was rejected and xi+1 = xi. These

steps were repeated for N -1 iterations to obtain N samples of x from the target pdf

described by Eq. 3.14.

The MH algorithm was carried out for 1×104 iterations. Figure 3.2 shows the

histogram of the 10000 samples and target distribution from Eq. 3.14 (left) and x

values for each iteration (right). It is observed that the samples approximate the
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target pdf quite well. Note that the histogram and target distribution were normalized

to obtain a unit area.

Figure 3.2: Histogram of MCMC samples and target distribution (left) and x values
for each iteration (right).

Although the MH algorithm is effective for sampling from any target distribution,

there are a number of considerations in its application. The success of the algorithm

depends on the choice of proposal distribution. In theory, the chain should converge

to the stationary target distribution for any proposal distribution [35]. However, the

proposal distribution may affect the convergence and mixing of the chain. In general,

the proposal distribution may be selected so that the sampling is convenient. For

a normal proposal distribution (that was chosen in this example), the choice of the

standard deviation can also affect the results. A larger standard deviation causes

greater jumps around the current value. Thus, the candidate sample has a higher

probability of being rejected, which yields xi+1 = xi. On the other hand, while a

smaller variance will tend to accept a higher number of random samples, it results in

slower convergence of the chain.

In practice, the initial iterations are typically discarded and the chain subsequently

settles to a stationary distribution. This is referred to as the burn-in time of the

chain. A practical way to evaluate convergence to the chain’s stationary distribution

is by observing the traces and histograms of the variables (e.g., see Figure 3.2). The
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number of iterations should be large enough to ensure convergence to the statistical

moments of the target distribution. The starting value of the chain has no effect for a

large number of iterations [35]. The convergence to the true statistical moments can

be observed by repeating the algorithm using different starting values and varying

the number of iterations. Despite these potential limitations, the MH algorithm (for

MCMC) works well and can effectively be used to draw samples from multivariate

distributions.

3.3.2 Application to Bayesian Inference

This section describes the application of MCMC to Bayesian inference. As stated,

Bayesian inference provides a formal way to update beliefs about the posterior dis-

tribution (the normalized product of the prior and the likelihood functions) using

experimental results. In the case of updating force coefficients (Eq. 3.12), the prior

is a joint pdf of the force coefficients, Kt, Kn, Kte, and Kne. As a result, the pos-

terior is also a joint pdf of the force coefficients. In Bayesian inference, the MCMC

technique can be used to sample from multivariate posterior distributions. The single-

component MH algorithm facilitates sampling from multivariate distributions without

sensitivity to the number of variables. The joint posterior pdf is the target pdf for

MCMC. The posterior, or target, pdf is the product of the prior and likelihood density

functions. Note that the normalizing constant of the posterior pdf is not required for

sampling.

The MH algorithm was detailed for a single variable in Section 3.3.1. To sample

from a joint pdf, the algorithm samples one variable at a time and then proceeds

sequentially to sample the remaining variables. The sequence of variable sampling

does not influence the convergence of the algorithm. To illustrate, consider a joint

target pdf of n variables: x1, x2, x3, · · · xn. To begin, the starting value for all the

variables is initialized, [x01, x
0
2, x

0
3, · · · x0n]. Let the algorithm proceed in the order, x1

→ x2 → x3 → · · · xn. The sampling for each variable is carried out using a univariate
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proposal distribution for that variable. The proposal distribution for each variable

can be different or the same. Since the algorithm proceeds one variable at a time, the

target and the proposal pdf for each variable is conditioned on the current values of

the other variables. For example, consider a candidate sample, x∗1, drawn from the

univariate proposal distribution for x1. The candidate sample from the joint pdf is

then [x∗1, x
0
2, x

0
3, · · · x0n]. The candidate sample, x∗1, is either accepted or rejected

given the current values of x2, x3, · · · xn. Thus, the target pdf values of x∗1 and x01 are

conditional on the current values of the other variables, x02, x
0
3, · · · x0n and are denoted

as p(x∗1 | x01, x02, · · · x0n) and p(x01 | x∗1, x02, · · · x0n). The proposal univariate pdfs are

also conditional on the current values of the chain and are denoted as q(x∗1 | x01, x02,

· · · x0n) and q(x1 | x∗1, x02, · · · x0n) for x∗1 and x1, respectively. To summarize, the

chain either stays at the current point, [x01, x
0
2, x

0
3, · · · x0n] or moves to a neighboring

point, [x∗1, x
0
2, x

0
3, · · · x0n], which differs only in one component of the current state

(x1 in this case). The procedure is repeated for all variables in each iteration. The

acceptance ratio is:

A = min

(
1,
p(x∗1 | x2, x3, · · · , xn)q(xi1 | x∗1∗, x2, x3, · · · , xn)

p(xi1 | x2, x3, · · · , xn)q(x∗1 | xi1, x2, x3, · · · , xn)

)
(3.16)

where the value of each of the four joint pdfs must each be calculated. The value

of A is compared to a random sample, u, from a uniform distribution with a range

from 0 to 1 and x∗1 is either accepted or rejected to obtain xi+1
1 . The algorithm is

repeated using the updated values of each variable continually for the next variable.

Thus, xi+1
2 is determined using xi+1

1 , xi2,· · · xin, xi+1
3 is determined using xi+1

1 , xi+1
2 ,

· · · xin, and so on for n variables. The algorithm therefore moves by a small step in

the joint pdf by sampling a single variable at a time. A single iteration updates all the

variables. The algorithm is then carried out for N iterations to obtain samples from

the joint target pdf. An alternative method is to sample from a joint proposal pdf and
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Table 3.1: Time-domain simulation parameters.

Parameter Value
Tool diameter (mm) 19.05
Radial depth (mm) 4.76
Axial depth (mm) 3.00
Spindle speed (rpm) 5000
Feed per tooth (mm/tooth) 0.03, 0.04, 0.05, 0.06 and 0.07
Number of teeth 1
Helix angle (deg) 0
Tangential coefficient (N/mm2) 2200
Normal coefficient (N/mm2) 1200
Tangential edge coefficient (N/mm) 50
Normal edge coefficient (N/mm) 50

accept or reject it using the MH algorithm. However, it is much simpler to sample

from univariate proposal distributions for each variable and is computationally less

expensive.

3.4 Bayesian Updating using the Markov Chain Monte Carlo Method

In this section, MCMC method for Bayesian updating of force coefficients is

demonstrated using a numerical example. The effects of the prior and likelihood

uncertainties are also evaluated. A milling time-domain simulation was used to ob-

tain the x and y direction mean force values [30]. The tool-material combination was

assumed to be a coated carbide tool and 1018 steel. The objective of the simulation

was to validate the MCMC method by comparing its solution to the known force coef-

ficients used to define the measured data via the simulation. The parameters used in

the down milling simulation are listed in Table 3.1. The simulation was exercised at

different feed per tooth values and the mean forces were recorded; see Table 3.2. The

mean values listed in Table 3.2 were treated as experimental results and used to up-

date the force coefficients’ prior distributions using the MCMC method for Bayesian

inference.
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Table 3.2: Mean force values obtained from the time-domain simulation.

ft (mm/tooth) Fxm (N) Fym (N)
0.03 -15.40 49.01
0.04 -17.58 54.40
0.05 -19.76 59.80
0.06 -21.94 65.19
0.07 -24.12 70.59

As described in Section 3.3.2, a single-component MH algorithm was used to

sample from the joint posterior pdf of the force coefficients, Kt, Kn, Kte, and Kne.

The posterior joint pdf was the target pdf for the MH algorithm. For this analysis, the

prior distribution of force coefficients was assumed to be a joint uniform distribution,

i.e., it was equally likely to obtain any value within the specified range. The force

coefficients were assumed to be independent for the prior. The marginal prior pdfs

of the force coefficients were specified as: Kt (N/mm2) = U(0, 3000), Kn (N/mm2)

= U(0, 3000), Kte (N/mm) = U(0, 100), and Kne (N/mm) = U(0, 100), where U

represents a uniform distribution and the parenthetical terms indicated the lower and

upper values of the range. As noted, this distribution represents a less informative

prior than a normal distribution with a mean and standard deviation. The effect of

different types of priors on the posterior distributions is discussed in Section 3.4.3.

The single-component MH algorithm proceeds as follows. First, the starting point

for the Markov chain, x0 = [K0
t K

0
n K

0
te K

0
ne] was selected to be the midpoints of the

uniform Kt, Kn, Kte, and Kne distributions, x0 = [1500 1500 25 25]. The sampling

was completed one coefficient at a time in the order Kt, Kn, Kte, and Kne. A can-

didate sample, K∗
t , was drawn from the proposal distribution of Kt. The proposal

distribution for each coefficient was selected to be normal. The posterior, or target,

pdf values, of each force coefficient were conditional on the values of the other coeffi-

cients. The posterior pdf for Kt, denoted as p(K0
t | K0

n K
0
te K

0
ne), was the product of

the prior and likelihood functions. The prior value for any coefficient was determined
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from the marginal prior distributions of each coefficient, which were selected to be

uniform. The mean force values were calculated using the current state of the chain,

[K0
t | K0

n K
0
te K

0
ne], together with Eqs. 3.6 and 3.7 for the specified cut geometry. Be-

cause there is inherent uncertainty in milling forces, the mean force values calculated

using the current state of chain and Eqs. 3.6 and 3.7 were assumed to be normally

distributed with a standard deviation of 1 N, which was based on the user’s belief

regarding experimental uncertainty in measured force values (this value could also be

specified as a percent of the nominal value, for example). The effect of the standard

deviation on the posterior pdf is discussed in Section 3.4.2. This gave a pdf for both

the x and y direction mean forces calculated using the current state of the chain. The

likelihood for the x and y directions was the value of each pdf for the experimental

mean forces (from the time-domain simulation). Therefore, the likelihood described

how likely it was to obtain the experimental mean forces given the current state of

the chain. For multiple measurement results, the total likelihood pdf was the product

of the likelihood pdfs for all measurements. The same procedure was followed to

determine the posterior pdf value for K∗
t , p(K∗

t | K0
n K

0
te K

0
ne). Since the proposal

distribution was normal, the acceptance ratio was calculated using Eq. 3.17.

A = min

(
1,
p(K∗

t | Kn, Kte, Kne)

p(Ki
t | Kn, Kte, Kne)

)
(3.17)

The acceptance ratio was compared with a random sample, u, from a uniform distri-

bution (with a range from 0 to 1) to assign the value of K1
t to be either K∗

t or K0
t .

To update the four force coefficients, Kt, Kn, Kte, and Kne, the algorithm considered

one coefficient at a time and then proceeded to sequentially update the remaining co-

efficients. The updated values for each coefficient were used continually for updating

the next coefficient. For the order Kt → Kn → Kte → Kne, K
1
t was used to update

K0
n. Next, K1

t and K1
n were used for K0

te. Finally, K1
t , K1

n, and K1
te were used for
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K0
ne. A single iteration provided samples for all the force coefficients. This sequence

was repeated for N -1 iterations giving N samples from the joint posterior pdf of the

coefficients. Note that the standard deviations of the proposal distributions affect the

convergence of the chain. The standard deviations of the force coefficients, Kt, Kn,

Kte, and Kne were 600 N/mm2, 600 N/mm2, 33 N/mm and 33 N/mm respectively.

As a rule of thumb, the standard deviation should be large enough to draw adequate

samples to explore the domain. However, a very large standard deviation leads to a

higher probability of candidate samples being rejected.

3.4.1 Results

The MH algorithm was exercised for 1×105 iterations. Figure 3.3 shows the sam-

ple traces of the force coefficients for all iterations. It is seen that there is a rapid

convergence to the true values for all coefficients. The initial burn-in time was selected

as 1×103 iterations. Figure 3.4 shows a comparison between the prior marginal pdfs

and posterior sample histograms of the force coefficients. The histograms represent

the marginal posterior pdfs of the force coefficients and were normalized to obtain a

unit area. The distributions in the force coefficients is due to the uncertainty in the

mean force values. MCMC gives samples from the joint posterior pdf of the force

coefficients, Kt, Kn, Kte, and Kne. Since the prior was assumed to be a uniform

distribution and the likelihood was normal, the posterior joint distribution was also a

joint normal distribution. The mean, µ, and standard deviation, σ, values for the four

force coefficient posterior marginal pdfs are listed in Table 3.3; the coefficient mean

values show good agreement with the true values. Note that the coefficient distribu-

tions are not independent; the correlation coefficients between the force coefficients

are listed in Table 3.4. Although the convergence to the true values as a function of

number of iterations can be evaluated, 1×105 samples was found to be adequate to

ensure convergence for this study. Table 3.4 shows that the cutting force coefficients,

Kt and Kn, as well as the edge coefficients, Kte, Kne, have a small correlation be-
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Table 3.3: Comparison of the force coefficient distributions from MCMC to the true
values using a uniform prior.

True value µ % error σ
Kt (N/mm2) 2200 2201.2 0.05 136.9
Kn (N/mm2) 1200 1207.2 0.6 139.6
Kte (N/mm) 50 50.7 1.2 3.51
Kte (N/mm) 50 49.8 -0.6 3.43

Table 3.4: Correlation coefficients between the force coefficients.

Kt Kn Kte Kne

Kt 1.00 -0.11 -0.95 -0.05
Kn -0.11 1.00 0.25 -0.95
Kte -0.95 0.26 1.0 -0.11
Kte -0.05 -0.95 -0.11 1.00

tween them. However, the cutting force coefficients have a strong negative correlation

with the respective edge coefficients (-0.95). The standard deviation of the posterior

distributions of the force coefficients is a function of the force uncertainty used to

determine the likelihood (1 N was assumed). The effect of the likelihood uncertainty

on the posterior distribution is discussed in Section 3.4.2.

Figure 3.3: Traces of Kt and Kn (left), Kte and Kne (right).

Using Bayesian inference, uncertainty in the force data can be propagated to

determine uncertainty in the force coefficients. Furthermore, because the Bayesian
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Figure 3.4: Posterior and prior distributions of Kt (top left), Kn (top right), Kte

(bottom left), and Kne (bottom right) using a uniform prior. Note that the area
under the histogram was normalized to unity in each case.

updating approach does not rely on a least-squares curve fit, it eliminates data col-

lection at several feed per tooth values. MCMC is computationally inexpensive and

facilitates updating of multiple variables. The posterior samples also provide informa-

tion regarding the correlation between the coefficients. These samples can be used to

propagate the force coefficient uncertainty to quantify the uncertainty in the milling

stability boundary, for example [36].

3.4.2 Effect of Likelihood Uncertainty

The standard deviations of the marginal force coefficient distributions listed in

Table 3.4 are a function of the force uncertainty level used in the likelihood calcu-

lations. To study this effect, the updating procedure was repeated with mean force

uncertainties of 0.5 N and 2 N. Figure 3.5 shows the traces of Kt and Kn with stan-



42

dard deviations of 0.5 N (left) and 2 N (right). Figure 3.6 shows the posterior and

prior pdf comparisons of Kt for the 0.5 N (left) and 2 N (right) standard deviations.

It is observed in these figures that the standard deviation of the posterior distribution

reduces with the likelihood uncertainty. Similar results were obtained for all the force

coefficients. The standard deviations of all coefficients at different force uncertainty

levels are listed in Table 3.5. Note that the mean converges to the true values in all

cases and is not affected by the likelihood uncertainty. The likelihood uncertainty

may be selected by the user based on his/her level of confidence in the experimental

data.

Figure 3.5: Traces of Kt and Kn with 0.5 N force measurement uncertainty (left) and
2 N (right).

Figure 3.6: Posterior and prior distributions of Kt with a force uncertainty of σ =
0.5 N (left) and σ = 2 N (right).
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Table 3.5: Posterior force coefficient distributions with varying uncertainty in the
force data.

.
Force uncertainty 1σ

0.5 N 1 N 2 N
Kt N(2192.2, 75.7) N(2201.2, 136.9) N(2211.2, 254.0)
Kn N(1201.2, 67.5) N(1207.2, 139.9) N(1197.2, 252.0)
Kte N(50.8, 1.9) N(50.7, 3.5) N(49.7, 6.4)
Kte N(49.8, 1.7) N(49.8, 3.4) N(50.5, 6.3)

3.4.3 Effect of the Prior Selection

In this section, the effect of the prior on the posterior distribution of force coef-

ficients is studied. For the numerical results presented in Section 3.4.1, a uniform

prior was selected. A uniform prior represents a non-informative case, where any co-

efficient value with the specified range is equally likely to be correct. To evaluate the

influence of the prior distribution on the posterior pdf, the algorithm was repeated

using normal marginal pdfs as the prior for the force coefficients. The marginal prior

pdfs were selected as:

• Kt (N/mm2) = N(2500, 300)

• Kn (N/mm2) = N(1200, 300)

• Kte (N/mm) = N(100, 33)

• Kne (N/mm) = N(100, 33)

Table 3.6 lists the mean and standard deviation for each of the four force coefficient

posterior marginal pdfs. Figure 3.7 provides a comparison between the prior marginal

pdfs and posterior sample histograms of the force coefficients. The percent errors in

Table 3.6 (normal prior) are larger than those in Table 3.3 (uniform prior). The

posterior distribution is clearly sensitive to the choice of the prior.
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Table 3.6: Comparison of the force coefficient distributions from MCMC to the true
values using a normal prior.

True value µ % error σ
Kt (N/mm2) 2200 2240.2 1.8 224.6
Kn (N/mm2) 1200 1059.6 -8.8 243.7
Kte (N/mm) 50 50.2 0.4 5.58
Kte (N/mm) 50 55.6 11.2 7.17

For a uniform prior, the posterior is the same as the likelihood and, therefore,

the posterior mean force coefficient values converge to the true value. However, for

a normal prior which includes a mean and standard deviation, the true values lie

within the range of posterior distributions. Note that the posterior pdf takes into

account the prior mean and the likelihood function. The prior represents the initial

degree of belief about the force coefficients; if the initial belief is far from the true

value, this affects the final results. The selection of the prior may be based on

previous experience, values reported in the literature, or theoretical considerations.

In general, the prior should be chosen to be as informative as possible considering

all the available information. If enough data or prior knowledge is not available, a

uniform prior may be selected. In the numerical example, the prior was chosen based

on beliefs regarding the range of values the force coefficient would most likely take

for the selected tool-material combination.

3.5 Experimental Results

This section describes the experimental setup used to perform force coefficient

measurements. Cutting tests were performed with a 19 mm diameter inserted end-

mill (one square uncoated Kennametal 107888126 C9 JC carbide insert; zero rake

and helix angles, 15 deg relief angle, 9.53 mm square x 3.18 mm). The workpiece

material was 1018 steel. The cutting force was measured using a table mounted dy-

namometer (Kistler 9257B). Figure 3.8 shows the experimental setup. The first test
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Figure 3.7: Posterior and prior distributions of Kt (top left), Kn (top right), Kte

(bottom left), and Kne (bottom right) using a normal prior.

was completed at a spindle speed, Ω, of 2500 rpm with a 3 mm axial depth of cut

and 4.7 mm radial depth of cut (25% radial immersion, RI). The force coefficients

were evaluated by performing a linear regression to the mean x (feed) and y direction

forces obtained over a range of feed per tooth values: ft = (0.03, 0.04, 0.05, 0.06, and

0.07) mm/tooth. Figure 3.9 shows the linear least squares best fit to the experimental

mean forces in the x and y directions. The mean forces show a linear increase for

both the x and y directions and the quality of fit is good (R2 = 0.99). The force

coefficients were determined using slopes and intercepts from the fit to the data. The

values of the mean forces and the force coefficients are provided in Table 3.7.

The experimental force data listed in Table 3.7 was used to perform Bayesian

updating on the force coefficients using the MCMC algorithm explained in Section 3.4.

An uncertainty of 1 N standard deviation was assumed in the (measured) mean
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Figure 3.8: Experimental setup for milling force measurement.

Figure 3.9: Linear regression to the mean forces in x (left) and y (right) direction to
determine the force coefficients at 25% radial immersion.

force data. The prior marginal pdfs of the force coefficients were taken as uniform.

Figure 3.10 shows the prior and posterior distributions of the force coefficients. The

force coefficient values obtained by the linear regression approach are identified by the

‘x’ symbols. Note that the histograms were normalized to obtain a unit area under the

curve. Figure 3.10 shows that the means of the posterior distributions for the force

coefficients agree with the values obtained from the linear regression. Table 3.8 lists

the correlation coefficients between the force coefficients obtained from the MCMC

algorithm; they are similar to the values listed in Table 3.4. The experimental force

profile at 0.05 mm/tooth was compared with the simulated force profile calculated
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Table 3.7: Experimental mean forces in x and y directions and force coefficients
obtained using linear regression at 25% radial immersion.

ft
(mm/tooth)

Mean
Fx (N)

Mean
Fy (N)

Kt

(N/mm2)
Kn

(N/mm2)
Kte

(N/mm)
Kne

(N/mm)
0.03 -11.50 40.13 2149.0 1290.1 34.7 37.1
0.04 -13.31 46.10
0.05 -14.83 50.03
0.06 -17.64 56.63
0.07 -19.10 62.06

Table 3.8: Correlation coefficients between the force coefficients at 25% radial immer-
sion.

Kt Kn Kte Kne

Kt 1.00 -0.09 -0.95 -0.08
Kn -0.09 1.00 0.23 -0.94
Kte -0.95 0.23 1.00 -0.07
Kne -0.08 -0.94 -0.07 1.00

using the posterior mean values of the force coefficients obtained from MCMC and

the least squares values. Figure 3.11 shows the force profiles for Fx (left) and Fy

(right). It is observed that the force coefficients from both methods approximate the

experimental force profile well.

A second test was completed at 50% RI with all other parameters the same.

Figure 3.12 shows the linear least squares fit to the experimental mean forces in the

x and y directions. The mean force in x direction does not show a clear linear trend

(because it is approximately zero for a 50% RI and near the noise limit) and, therefore,

the quality of fit is not good (R2 = 0.70). The least squares fit to the y direction

mean forces is very good (R2 = 0.99), however. As shown in Eqs. 3.8 - 3.11, the

cutting force coefficients, Kt and Kn, and the edge coefficients, Kte and Kte, are not

decoupled, but depend on the slopes and intercepts of the least squares fits in both

the x and y directions. Therefore, a poor fit in the x direction mean forces affects the
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Figure 3.10: Posterior and prior distributions of Kt (top left), Kn (top right), Kte

(bottom left), and Kne (bottom right). The least squares values are identified by the
‘x’ symbols.

values of all coefficients. Table 3.9 shows the mean forces in x and y directions and

the force coefficients obtained using the linear regression approach.

The mean force data listed in Table 3.9 was used to update the force coefficients

distribution by the MCMC algorithm. Figure 3.13 shows the prior and posterior

distribution of the coefficients. Table 3.10 lists the correlation coefficients between

the force coefficients from the MCMC analysis. As shown in Figure 3.13, the force

coefficient posterior distributions do not agree with the values obtained using the

linear regression. This is due to poor least square fit for the mean x direction force.

However, since the Bayesian updating does not rely on a curve fit, the posterior

distributions are not affected by the quality of the fit. Table 3.11 compares the force

coefficient posterior distributions at 25% and 50% RI for the MCMC analysis. The
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Figure 3.11: Comparison of the experimental and simulated force profiles for Fx
(left) and Fy (right). The simulation used the force coefficients determined using the
MCMC and least squares methods. Note that the oscillations in the experimental data
are due to excitation of the dynamometer dynamics by the cutting force frequency
content.

Figure 3.12: Experimental mean forces in the x and y directions and force coefficients
obtained using linear regression at 50% radial immersion.

force coefficients are insensitive to the radial immersion (as expected) for Bayesian

updating and the posterior distributions obtained at 25% and 50% RI agree closely.

Note that the variance of the posterior distribution for the 50% RI result is smaller

than for the 25% RI result. The uncertainty in the mean force was assumed to be 1

N in both cases and both the x and y direction mean forces were used for updating.

However, the mean y direction force magnitude at 50% RI is greater than 25%,

which results in a lower signal to noise ratio for the 50% RI y direction forces and

a smaller variance for the corresponding posterior distributions. Figure 3.14 shows
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Table 3.9: Experimental mean forces in x and y directions and force coefficients
obtained using linear regression at 50% radial immersion.

ft
(mm/tooth)

Mean
Fx (N)

Mean
Fy (N)

Kt

(N/mm2)
Kn

(N/mm2)
Kte

(N/mm)
Kne

(N/mm)
0.03 1.51 63.35 2504.6 1446.2 37.5 45.2
0.04 1.11 74.71
0.05 0.93 84.98
0.06 0.67 95.29
0.07 -0.54 105.51

Table 3.10: Correlation coefficients between the force coefficients at 50% radial im-
mersion.

Kt Kn Kte Kne

Kt 1.00 0.08 -0.93 -0.28
Kn 0.08 1.00 0.13 -0.94
Kte -0.93 0.13 1.00 -0.06
Kne -0.28 -0.94 -0.06 1.00

the comparison between the experimental force profile at 0.05 mm/tooth and the

simulated force profile using the posterior mean force coefficient values obtained from

the MCMC and the least squares methods. It is seen that the peak force values in the

x and y directions for the least squares force coefficient values is not in agreement with

the experimental peak values, while the mean posterior force coefficient values agree

with the experimental profile. This is because the force coefficient values obtained

using the least squares method were higher than the values determined using the

MCMC method.

Table 3.11: Comparison of the posterior force coefficient distributions at 25% and
50% radial immersions.

RI (%) Kt (N/mm2) Kn (N/mm2) Kte (N/mm) Kne (N/mm)
25 N(2116.7, 137.3) N(1284.4, 130.2) N(35.2, 3.2) N(37.4, 3.2)
50 N(2052.8, 67.8) N(1187.8, 68.9) N(30.4, 2.3) N(36.7, 2.6)



51

Figure 3.13: Posterior and prior distributions of Kt (top left), Kn (top right), Kte

(bottom left), and Kne (bottom right).

3.6 Discussion

Bayesian updating using the MCMC Bayesian inference technique to determine

force coefficients was presented. The advantage of using a Bayesian approach is that

it takes into account both initial beliefs (prior knowledge) and experimental data to

update beliefs. The Bayesian inference approach also takes into account the inherent

uncertainty in force coefficients. As a result, force coefficients are characterized by

a probability density function as opposed to a deterministic value. To validate the

posterior force coefficient distributions, five additional tests were completed at radial

immersions of 25% and 50%. Figure 3.15 shows the posterior distributions of the

force coefficients at 25% (left) and 50% (right). The figure shows that the posterior

distributions of force coefficients agree well with the least squares values at 25% RI.

However, the force coefficient values obtained by linear regression at 50% RI do not
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Figure 3.14: Comparison of the experimental and simulated force profiles for Fx (left)
and Fy (right).

agree with the posterior distributions. As shown in Figure 3.12, this is due to a poor

quality of least squares fit to the mean forces in the x direction.

Bayesian updating was performed using the mean force data from all the six tests

(one experimental and five validation tests) at 25% and 50% RI. The values of the

force coefficients obtained using the least squares method for the six tests at 25%

and 50% RI are listed in Tables 3.12 and 3.13, respectively. The posterior mean

and standard deviation value of the force coefficients at 25% and 50% using the

MCMC approach are also listed. The mean and standard deviation calculated from

the linear regression force coefficient values agree reasonably well with the posterior

mean and standard deviation of the force coefficients. However, Bayesian inference

reduces the need to perform experiments over multiple feed per tooth values, which

can be time consuming and costly, by combining prior knowledge and experimental

data. Therefore, the uncertainty in the force coefficients can be evaluated using a

single or a few experimental results.

3.7 Conclusions

Bayesian updating of the force coefficients using the Markov Chain Monte Carlo

(MCMC) method was presented. The single component Metropolis Hastings (MH)

algorithm of MCMC was used. Bayesian inference provides a formal way of belief
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Table 3.12: Force coefficient values from the five tests at 25% RI.

Test Kt (N/mm2) Kn (N/mm2) Kte (N/mm) Kne (N/mm)
Least squares results

1 2149.0 1290.1 34.7 37.1
2 2071.2 1159.3 27.1 30.7
3 1973.9 1210.0 34.4 34.7
4 2055.0 1337.5 33.3 32.3
5 2173.0 1370.6 35.1 35.8
6 1972.6 1265.5 33.5 32.0
µ 2065.8 1271.1 33.0 33.8
σ 84.5 78.6 3.0 2.5

MCMC results
N(2116.7, 137.3) N(1284.4, 130.2) N(35.5, 3.2) N(37.4, 3.2)

Table 3.13: Force coefficient values from the five tests at 50% RI.

Test Kt (N/mm2) Kn (N/mm2) Kte (N/mm) Kne (N/mm)
Least squares results

1 2504.6 1446.2 37.5 45.2
2 2496.6 1422.7 41.8 51.5
3 2396.6 1310.5 46.7 60.4
4 2025.7 1126.8 29.4 35.1
5 1987.8 1048.4 32.6 41.6
6 2052.5 1268.0 42.1 49.1
µ 2243.9 1270.4 38.3 47.1
σ 246.9 158.51 6.47 8.7

MCMC results
N(2052.8, 67.8) N(1187.8, 68.9) N(30.4, 2.3) N(36.7, 2.6)



54

updating when new experimental data is available. It gives a posterior distribution

that incorporates the uncertainty in variables as compared to traditional methods,

such as the linear regression which yields a deterministic value. By combining prior

knowledge and experimental results, Bayesian inference reduces the number of experi-

ments required for uncertainty quantification. Using Bayesian updating, a single test

can provide distributions for force coefficients. The posterior distribution samples

provide the covariance of the joint distribution as well. Experimental milling results

showed that the linear regression did not give consistent results at 50% RI due to a

poor quality of fit in the x direction mean forces, whereas Bayesian updating yielded

consistent results at both radial immersions tested. Also, since Bayesian updating

does not rely on a least squares fit, mean force data at different feed per tooth values

is not required.

Finally, the Metropolis Hastings algorithm is a powerful tool for updating multiple

variables. A grid-based method would require Nm computations, where m is the

number of variables and N is the size of the grid. To illustrate, for a joint pdf of

four variables with a grid size equal to 300, the grid-based method would require at

least 8.1×109 computations. The MH algorithm would require only approximately

1×104 iterations for the value to converge to the posterior pdf mean values. The

single component MH algorithm for MCMC facilitates updating of joint distributions

without significant computational expensive.
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Figure 3.15: Posterior distributions of force coefficients at 25% RI (left) and 50% RI
(right)



CHAPTER 4: APPLICATION TO MILLING STABILITY

Unstable cutting conditions, or chatter, limit the profitability in milling. While

analytical and numerical approaches for estimating the limiting axial depth of cut as

a function of spindle speed are available, they are generally deterministic in nature.

Because uncertainty inherently exists, a Bayesian approach that uses a random walk

strategy for establishing a stability model is implemented in this work. Bayesian infer-

ence offers several advantages: including uncertainty in the model using a probability

distribution (rather than deterministic value), updating the probability distribution

using new experimental results, and selecting the experiments such that the expected

value added by performing the experiment is maximized. Validation of the Bayesian

approach is presented.

4.1 Introduction

Discrete part production by machining is an important manufacturing capabil-

ity in many industries. In these commercial situations, the focus is naturally on

producing accurate parts in the required time under conditions of maximized profit.

Unfortunately, a number of factors can obstruct the ability to do so. Important

contributors to milling process efficiency include:

• tool and part vibrations, including chatter (self-excited vibrations) and part

geometry errors due to the cutting forces and resulting dynamic deflections

(forced vibrations)

• tool wear and the required tool changes

• coolant management and chip evacuation



57

• fixturing, including clamping/unclamping the part on the machine

• part loading/unloading from the machine

• part measurement (on-machine or post-process)

• parameter selection, such as spindle speed, depth of cut, and feed rate

• tool path planning strategies

• tooling and holder selection and

• machine accuracy, including geometric, thermal, and dynamic contributors.

A primary building block for modern machining science is Taylor’s “On the Art of

Cutting Metals” [37]. This study established an empirical basis for the relationships

between machining parameters and cutting edge wear; contemporary research efforts

still rely on variations of Taylor’s tool life model. Later, Merchant’s work provided a

mechanics-based understanding of cutting forces, as well as the corresponding stresses

and strains during material removal [38]. Within the broad view of machining encom-

passed by these and other early efforts, researchers have subsequently studied such

basic aspects of machining as chip geometry, shear stresses, friction, and cutting tem-

peratures [39]. The contributions of chip formation to milling behavior are typically

included through the force models, which effectively treat this complex behavior us-

ing “process coefficients”, or cutting force model coefficients, that relate cutting force

levels to the uncut chip area [40].

While advances in computer simulation of machining process dynamics continue,

the foundation for much of this work can be traced to papers by Tlusty, Tobias,

Polacek and Merrit [1, 2, 3, 4], which, in turn, followed earlier work by Arnold [5]

and others. Based on these efforts, an understanding of the regeneration of surface

waviness during material removal as a primary mechanism for chatter in machining
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was established. Predictions of stable/unstable operating parameter combinations

are typically organized in stability lobe diagrams. This diagram plots axial depth of

cut versus spindle speed to identify stable and unstable zones. When combined with

the effects of forced vibrations during stable cutting, the basis for exploring the role

of machining dynamics in discrete part production is established. Comprehensive

reviews of subsequent modeling and experimental efforts have been compiled and

presented in the literature (e.g., [39, 41, 42, 43, 44, 45, 46, 47]).

Although milling models are typically treated as deterministic, it is often observed

in practice that stable points may lie above or below the predicted stability boundary.

This is due to inaccuracy in the measured/modeled structural dynamics, cutting force

coefficients, and stability model approximations[48, 49]. Existing stability formula-

tions typically do not incorporate uncertainty effects, although some previous work

has been done [36]. Here the normative foundations of decision theory are imple-

mented to enable not only a belief representation that captures uncertainty, but also

provide a systematic method to select pre-machining experiments and quantify their

value. As a first step toward the goal of probabilistic stability modeling, a very basic

“model”, or initial belief, is applied that does not require knowledge of the system

dynamics or force relationships.

For milling stability, the uncertainty that exists in the true limiting axial depth

for each spindle speed is modeled using a probability distribution over a set of all

possible stability limits. The probability distribution is then updated using experi-

mental results and Bayes’ rule (see Eq. 1.1). Using Bayesian inference, the predictive

model incorporates uncertainty and updates beliefs as new information is made avail-

able (from experiments, for example). An important step in applying Bayes’ rule is

establishing the initial belief, or prior, for the stability limit. In general, this initial

prediction: 1) can be constructed from any combination of theoretical considerations,

previous experimental results, and expert opinions; and 2) should be chosen to be as
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informative as possible regarding the experimenter’s belief. In this study, the prior

is determined assuming no knowledge of the system dynamics; it is based on the as-

sumption that it is more likely to get an unstable cut as the axial depth is increased

for any spindle speed. This simple prior probability distribution of stability is then

updated using experimental results.

Bayesian inference offers several advantages. First, it takes into account the in-

herent uncertainty in the model by using a probability distribution. Second, the

uncertainty (i.e., the probability distribution) can be updated using experimental

data. Third, the combination of Bayesian inference and decision theory enables ex-

periments to be selected such that the expected value added by performing the exper-

iment is maximized, which enables the best selection of experiments. The remainder

of the chapter is organized as follows. Section 4.2 describes the Bayesian updating for

milling stability using a random walk approach. Section 4.3 describes the selection of

experimental tests points using the value of information approach. The experimen-

tal results and validation are presented in Section 4.4. Section 4.5 details additional

considerations when using the proposed method.

4.2 Bayesian Updating of Milling Stability

Bayesian inference provides a rigorous mathematical framework for updating belief

about an uncertain variable when new information becomes available. The prior belief

is captured using a probability distribution for the variable of interest, where the

prior probability distribution about the location of the stability boundary in milling,

expressed as a function of spindle speed and axial depth, is assigned by the user.

In the case of milling, a joint probability distribution characterizing the probability

of stability for all axial depths, b, and spindle speeds, Ω, is required. Since there is

a continuum of axial depths and spindle speeds, it is helpful to use some structure

in defining the joint distribution. The structure used here incorporates a random

walk methodology with a Markov structure. A Markov structure means that the
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conditional probability assignment to any future state depends only on the present

state and not on the past states.

4.2.1 Random Walk Methodology

A random walk can be described as the probabilistic path, where the change in

position at each time increment depends on the current position but is independent

of all the past positions of the path. A random walk with a normally distributed step

size in the particle position, x, is used in this study. This normally-distributed step

size in x states that the change in position at any time is a random value selected

from a normal distribution.

To illustrate, let the initial position of x be zero at time t = 0. At the next time

instant, t1, the new position of x is sampled from the normal distribution, N(µ, σ),

with a mean of µ and standard deviation of σ. Subsequently, the position of x at any

arbitrary time, ti, is the sum of the previous position and a random value:

x(t = ti) = x(t = ti − 1) +N(µ, σ). (4.1)

Note that the value at any future state depends only on the present state, but not

on any of the previous states. Figure 4.1 shows 20 sample paths of x starting at

t = 0 seconds and continuing to t = 10 seconds. The time axis was divided into

discrete increments of 0.01 seconds and the new position was sampled for each of

these increments. The position step size was normally distributed with zero mean

and standard deviation equal to 0.1, i.e. N(0, 0.1). At each time increment of 0.01

seconds, the position of x was determined by the addition of its current position and

a randomly generated x step size sampled from N(0,0.1). Thus, x(t = ti) = x(t = ti

- 0.01) + N(0,0.1).

A normally distributed step size ensures that the distribution of x at any time

instant is also normal. Additionally, since the step size distribution has zero mean,
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the mean of the distribution of x is nominally zero at all time instants. Figure 4.2

shows 5000 sample paths generated using N(0,0.1), starting from x = 0 at t = 0

seconds. Figure 4.3 shows the distribution of x at t = 5 seconds (left) and t = 10

seconds (right). As shown in the figure, the distribution of x is normal with a zero

mean. It is also observed that the variance increases with time. Since the increments

are generated independently, the variance after n steps is equal to the variance of

each increment multiplied by n. Comparing the two distributions in Figure 4.3 shows

that the uncertainty in x increases with time.

Figure 4.1: Twenty random walks with a normally-distributed position step size
described by N(0,0.1).

Figure 4.2: 5000 sample paths generated with a normally distributed step size.
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Figure 4.3: Histograms of x at 5 seconds (left) and 10 seconds (right).

4.2.2 Bayesian Inference

The random walk method can be applied to describe the prior belief about the

uncertain stability boundary (or limit) in a spindle speed-axial depth of cut domain

given knowledge of the limit at a particular point in the domain. The sample paths can

be generated in spindle speed increments (instead of time) and the position step size

is selected for the axial depth of cut. The stability boundary prediction proceeds by

generatingN sample paths, each of which may represent the actual stability boundary.

The probability that each sample path is the true stability limit based on this model

is 1/N . These sample paths are used as the prior in applying Bayesian inference.

This prior shows that the uncertainty in the location of the stability limit increases

when moving further away from a point (i.e., a combination of spindle speed and

axial depth) where the stability limit is known. The prior probability is then updated

by experimental results using Bayes’ rule. For each sample path, Bayes’ rule can be

written as shown in Eq. 4.2.

P(path = true stability limit |test result) ∝

P(test result |path = true stability limit)P(path = true stability limit)
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Here P(path = true stability limit) is the prior probability which, before any testing,

is equal to 1/N for any sample path and P(test result | path = true stability limit)

is the likelihood of obtaining the test result given the true stability limit. Their

products yields the posterior stability limit probability given the test result, P(path

= true stability limit | test result). In practice, the probability of the test result,

P(test result), may be used to normalize the posterior probability (by dividing the

right hand side of Eq. 4.2 by this value).

4.2.3 Constructing the Prior Distribution

In Bayesian inference, the prior probability represents the initial degree of belief

regarding the stability limit. The sample paths generated using the random walks

are used to define a prior probability of stability. To construct the prior, a spindle

speed-axial depth of cut domain was first defined. For demonstration purposes, the

operating spindle speed was arbitrarily selected to be between 4000 rpm and 10000

rpm. It was assumed that for all spindle speeds within the operating range, the

stability limit is between 0 and the maximal axial depth defined by the flute length

(selected to be 10 mm). Following the same procedure described in Section 4.2.1,

random walks were generated. The starting point was the midpoint of the axial

depth range (5 mm). The sample paths were started from Ω = 0 rpm to allow the

paths to cross the maximum axial depth of 10 mm by 4000 rpm and continued to

Ω = 15000 rpm. The step size in mm was described by N(0,0.5). Figure 4.4 shows

many sample paths.

Each sample path represents the true stability limit with some probability. To

illustrate how we can incorporate our prior information this way, suppose we would

like to confine the stability limit within the spindle speed range 4000 rpm and 10000

rpm to be between within the axial depths 0 and 10 mm. This implies that the paths

which cross outside 0 or 10 mm within the spindle speed range of 4000 rpm to 10000

rpm have a zero probability of being the true stability limit since they are outside
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Figure 4.4: Many sample paths generated in the spindle speed-axial depth domain.

the pre-defined stability domain. These sample paths are filtered out or multiplied

by zero. The probability that the remaining paths represent the true stability limit is

now 1/N , where N is the number of remaining paths. Figure 4.5 shows 10000 sample

paths which have the axial depth within 0 to 10 mm in the spindle speed range of

4000 rpm to 10000 rpm.

Figure 4.6 shows the histogram of axial depths at 4000 rpm at 10000 rpm. Note

that the axial depth histograms are confined within 0 mm and 10 mm due to path

filtering. The mean is 5 mm at all spindle speeds since the starting point of the walks

was selected as 5 mm.

Figure 4.5: 10000 sample paths after filtering. The paths that cross 0 or 10 mm in
the spindle speed range of 4000 rpm to 10000 rpm have been removed.
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Figure 4.6: Histograms of axial depths at 4000 rpm (left) and 10000 rpm (right).

The cumulative distribution function (cdf) is then calculated at each spindle speed

within the domain using the histograms. Figure 4.7 shows the complementary cdf for

the axial depth, which is initially the same at each spindle speed. The complementary

cdf gives the probability that an axial depth will be stable. As shown in Figure 4.7,

the probability is 0 that an axial depth greater than 10 mm will be stable and the

probability that an axial depth greater than 5 mm will be stable is 0.5. The cdf

therefore states that the probability of obtaining a stable cut increases as the axial

depth of cut is reduced. Since machining is not possible at an axial depth of 0, the

minimum axial depth is taken to be 0.01 mm. Figure 4.8 shows the complementary

cdf over the spindle speed domain. It represents the prior or initial belief, about the

stability boundary. In this case, the prior was only based on the assumption that the

probability of obtaining a stable cut decreases with higher axial depths.

4.2.4 Updating using Experimental Stability Results

In the case of stability testing, if the true stability limit was known, then it would

be known with certainty whether the result of a test would be stable or unstable. The

test would be stable with a probability of 1 if the test point was below the stability

limit and stable with a probability of 0 (unstable with a probability of 1) if the test

point was above the stability limit. For the random walk approach, recall that each
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Figure 4.7: Complementary cdf of stability at axial depths from 0 to 10 mm. The
probability of stability decreases with increasing axial depth.

Figure 4.8: Prior cdf for stability in the spindle speed-axial depth domain. The
probability of stability is 0 at an axial depth of 10 mm.

sample path represents the true stability limit with a probability of 1/N . Suppose

a test is performed at some spindle speed-axial depth combination and the result

is stable. This implies that all paths with axial depths below the test point at the

selected spindle speed cannot be the true stability limit (according to linear stability

theory and the traditional Hopf bifurcation behavior [1, 2, 3, 4, 7]. Similarly, for

an unstable test result, all paths with a higher axial depth at the test spindle speed

cannot be the true stability limit. Therefore, for a stable test, the likelihood for each

path with a higher axial depth than the test point is 1 and the likelihood for each

path with a lower axial depth is 0. Similarly, for an unstable test, the likelihood for
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each path with a higher axial depth is 0 and the likelihood for each path with a lower

axial depth than the test point is 1.

Because the likelihood for every path is always either 0 or 1, the updating pro-

cedure proceeds by filtering out paths after each test result. After any number of

tests, all paths which have not been filtered out (i.e., multiplied by a likelihood of

0) will have a probability equal to the reciprocal of the remaining number of paths.

When updating the prior using a test result, the paths which do not agree with the

test result are filtered out and the remaining paths represent the updated stability

prediction.

To illustrate, consider a stability test completed at Ω = 7000 rpm and b = 5 mm.

A stable test implies that all axial depths below 5 mm would be stable at Ω = 7000

rpm. As a result, the likelihood that any path that with an axial depth less than 5

mm at Ω = 7000 rpm is the true stability limit is zero. All such paths are filtered

out, or multiplied by zero, to obtain the updated prediction. Similarly, if the test at

Ω = 7000 rpm and b = 5 mm was unstable, the likelihood that any path with an axial

depth greater than 5 mm at Ω = 7000 rpm is the true stability limit is zero and all

such paths are filtered out. Figure 4.9 shows the remaining paths after filtering given

a stable test result (left) and an unstable test result (right). As seen in Figure 4.9,

all paths that are below 5 mm at 7000 rpm are filtered out for a stable test result

while the paths above 5 mm at 7000 rpm are filtered out for an unstable test result.

Note that Figure 4.9 only shows the path in the spindle speed range from 4000 rpm

to 10000 rpm.

The updated probability distributions can then be calculated using the data from

the histograms of axial depths at each spindle speed within the domain. As noted,

all paths which have not been filtered out (those with a likelihood of 1) will have a

probability equal to the reciprocal of the remaining number of paths. For a stable

result at Ω = 7000 rpm and b = 5 mm, the remaining number of paths is 4970 while
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Figure 4.9: Sample paths remaining after filtering given a stable test result (left) and
an unstable test result (right) at and axial depth of 5 mm and spindle speed of 7000
rpm.

an unstable result gives 5030 remaining paths for this example. Figure 4.10 shows

the updated complementary cdf at the test speed given a stable result (left) and

an unstable result (right). Figure 4.11 shows the updated posterior cdf of stability

given a stable (left) and unstable (right) result at Ω = 7000 rpm and b = 5 mm.

As seen from the posterior cdf, the single test updates the distribution at all spindle

speeds. The extent to which a test at one spindle speed updates the distribution at

all speeds depends on the standard deviation of the step size for the random walk.

This dependence is evaluated in Section 4.5.

Figure 4.10: Updated cdf at 7000 rpm given a stable test result (left) and an unstable
test result (right) at a test axial depth of 5 mm.



69

Figure 4.11: Posterior cdf for milling stability given a stable test result (left) and an
unstable test result (right) at an axial depth of 5 mm and spindle speed of 7000 rpm.

4.3 Value of Information for Experiment Selection

Bayesian inference combined with decision analysis models enables a dollar value

to be placed on the information gained from an experiment prior to performing it.

This value is referred to as the value of information. It may be defined as the expected

profit before testing minus the profit after testing or, in terms of cost, the expected

cost prior to testing minus the cost after testing. Note that while the value of infor-

mation uses expected value after testing, it is calculated before actually performing

the test.

The primary motivation for defining the value of information is to optimize the

selection of experiments. The experimental test point is selected which adds the

most (expected) value to the profit. In addition, if the expected cost of performing

an experiment is more than the expected value gained from the experiment, it is

not recommended that the experiment be completed. This is a major advantage over

statistical design of experiments, which typically does not consider profit in test point

selection. In the value of information approach to milling stability modeling, a test is

performed at a point where the maximum information/value about the stability limit

is obtained.

To illustrate this point, consider a simple situation where only three spindle speed-
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axial depth combinations are available (A, B, and C). Suppose it is initially predicted

that A is definitely stable, while B and C each have a 50% chance of being stable. In

addition, suppose that the cost of machining (assuming the cut is stable) is $100 using

A, $50 using B, and $30 using C and that only stable operating points will be used

(based on the assumption that the cost of performing an unstable cut is very large

due to the subsequent rework or scrap). Prior to performing the stability test, only

A can be chosen as the operating point and, therefore, if no testing is performed the

cost of machining will be $100. However, suppose the option of performing a single

stability test at either A, B, or C was given. How can the proper test be selected?

Because it is already known that a test at A will have a stable result, no test should

be completed at A because no new information will be obtained. However, if it was

possible to test at B, there is a 50% chance that the result is unstable, in which case

the choice will still be A and the cost will be $100. On the other hand, there is also a

50% chance that the test will be stable, in which case B will be selected and the cost

will only be $50. The expected cost of machining given the result of a test at B is

therefore $75. The value gained by testing at B (defined as the cost prior to testing

minus the expected cost after testing) is $25. Similarly, the value gained by testing at

C can also be calculated. There is a 50% chance that the result will be unstable, in

which case machining will be completed at A and the cost will be $100. There is also

a 50% chance that the test will be stable and then machining will be completed at C

and the cost is only $30. Thus, the expected cost given the result of a test at C is $65

and the value gained by testing at C is $35. Now (assuming the goal is to maximize

profit), the question of which test to perform has a straightforward answer: choose

the test which adds the most value. For this example, testing would be completed at

C.
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4.3.1 Cost Formulation

Before calculating the value of information, it is necessary to determine the cost

of performing the operation given the selected operating conditions. To calculate the

cost, a the feature to be machined was specified as a pocket with dimensions of 150

mm in the x direction, 100 mm in the y direction, and 25 mm deep. The tool path is

shown in Figure 4.12.

Figure 4.12: Tool path for pocket milling.

The cost function does not include the effects of tool wear; it was neglected for the

6061-T6 workpiece/TiCN-coated carbide tool combination considered in this study.

The simplified cost, C, shown in Eq. 4.2 is based on the machining cost per minute,

rm = $2, and machining time, tm, which depends on the part path geometry and

machining parameters. The parameters used to calculate the cost for machining the

pocket are listed in Table 4.1. Due to the nature of the part path, for any selected

spindle speed the cost function is stepped; see Figure 4.13. These steps occur at an

integer fraction of the pocket depth.

C = tmrm (4.2)
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Table 4.1: Parameters used to determine the reference stability limit for the simulated
testing scenario.

Parameter Value Units
Radial depth 19.0 mm
Feed per tooth 0.06 mm/tooth
Tool radius 9.5 mm
Number of teeth 1 teeth
Helix angle 0 deg

Figure 4.13: Cost of machining at axial depth-spindle speed combinations given that
the resultant cut is stable. Notice the steps in the cost function at integer fractions
of the pocket depth.

4.3.2 Selecting the Test Points

The revenue generated by machining the selected pocket is assumed to be $2000

for this example. Profit is defined as the revenue generated minus the machining

cost. For constant revenue (generated in machining the feature), maximizing profit

is equivalent to minimizing the expected cost. Since each point has a probability of

stability, the expected profit a given pair of operating parameters, (Ωop, bop), is given

by:

Vprior(Ωop, bop) = Pstable(Ωop, bop)Vstable(Ωop, bop)+

(1− Pstable)(Ωop, bop)Vunstable(Ωop, bop)

(4.3)
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where the subscript op denotes operating point, Pstable is the prior probability of

stability at the operating point (see Figure 4.7), Vstable is the profit given that the

cut is stable, Vunstable is the profit given that the cut is unstable, and Vprior is the

expected profit for machining the pocket at (Ωop, bop) prior to performing any further

test. Unstable operating points are considered infeasible since it is assumed that the

cost added by reworking the part and the cost associated with potential damage to

tooling are substantially higher than the revenue generated in machining the pocket.

Thus, the operating point would be the one which is stable with certainty (Pstable =

1) and provides the highest profit within the domain (according to Eq. 4.3). This

implies that the cost of instability is negative infinity. Recall that it was assumed that

a 0.01 mm axial depth is stable at all spindle speeds within the domain. Therefore,

before performing any test, the profit would be highest at an axial depth of 0.01 mm

and spindle speed of 10000 rpm since the machining time would be minimized at the

maximum spindle speed. The maximum profit before performing any test, V ∗
prior, is

therefore the profit at (10000, 0.01).

The expected value of performing a test at any point (Ωtest, btest) is calculated as

follows (the subscript test indicates a test point). Each test is assumed to be either

stable or unstable. The resultant posterior cdf is different for a stable result at the

test point than it is for an unstable result (see Figure 4.11). Subsequently, the profit

after the test, calculated using the posterior cdf, is also different for a stable test than

for an unstable test. Assume that a test at (Ωtest, btest) is stable. The maximum

profit would be at (Ωtest, btest), since that operating point is known to be stable with

certainty. The maximum profit would be equal to Vstable (Ωtest, btest). However, if the

cut is unstable, the maximum expected profit would be equal to the maximum profit

before performing the test, V ∗
prior. This is the case because with an unstable test cut,

no additional point is known to be stable with certainty and the cost of an unstable

cut is negative infinity. Thus, the expected profit, Vtest, after performing a test at
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any (Ωtest, btest) is given by Eq. 4.4.

Vtest(Ωtest, btest) = Pstable(Ωtest, btest)Vstable(Ωtest, btest)+

(1− Pstable)(Ωtest, btest)V
∗
prior)

(4.4)

The value of information, or the value obtained by performing an experiment, is

defined, for an expected value maximize, as the expected profit given the test results

minus the profit before testing as shown in Eq. 4.5.

VOI = Vtest(Ωtest, btest)− V ∗
prior

= Pstable(Ωtest, btest)Vstable(Ωtest, btest)

= Pstable(Ωtest, btest)Vstable(Ωtest, btest)− V ∗
prior

(4.5)

A test is only performed where the value of information is the highest. Therefore, the

test parameters are selected using Eq. 4.6.

(Ωtest, btest) = max(Pstable(Ωtest, btest)Vstable(Ωtest, btest)− V ∗
prior) (4.6)

The expected value of the test is based on the prior probability of stability. After

a test is performed, the prior cdf is updated using the test result. This updated

posterior distribution is the prior distribution used to determine the next test point.

This process is repeated for a selected number of tests. Once a stable result from a

test is obtained (and for all further stable test results), V ∗
prior is the maximum profit

from all points known to be stable with certainty.

4.4 Experimental Results

Using the value of information approach, a sequence of 20 tests was completed.

The operating conditions for each test point were selected to maximize the value of

information at that time. Note that when using this value of information approach,
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Table 4.2: Experimental test point and results

Test number Spindle speed (rpm) Axial depth (mm) Stability result
1 10000 0.54 stable
2 10000 2.51 stable
3 10000 4.18 stable
4 10000 6.25 stable
5 10000 8.36 unstable
6 9819 8.36 unstable
7 9639 8.36 unstable
8 9920 8.36 unstable
9 9398 8.36 unstable
10 9117 8.36 unstable
11 9719 8.36 unstable
12 8916 8.36 unstable
13 9960 8.36 unstable
14 8595 8.36 unstable
15 9498 8.36 unstable
16 9880 8.36 unstable
17 9278 8.36 unstable
18 8294 8.36 unstable
19 9779 8.36 unstable
20 8776 8.36 unstable

each test is treated separately. For multiple tests, each test point is selected assuming

that no additional tests will be completed. The random walk prior for this example

was composed of 1×105 sample paths. Figure 4.14 shows the test points selected

using the value of information approach, where stable test results are marked as ‘o’

and unstable as ‘x’. The results are also summarized in Table 4.2.

The stability was evaluated by observing the frequency content of the acceleration

signal obtained by attaching a low-mass accelerometer to the flexure test platform; see

Figure 4.15. The sidewall surface was also used to identify unstable cuts. Figure 4.16

shows the frequency content of the acceleration signal and the machined surface for

a test cut at (10000 rpm, 6.25 mm). For this stable result, content is observed only

at the tooth passing frequency (166.66 Hz) and its harmonics and the surface is
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Figure 4.14: Stability results for the value of information testing.

smooth. Figure 4.17 provides the same information for a cut at 8294 rpm, 8.34 mm.

Frequency content exists at frequencies other than the tooth passing frequency and

its harmonics. Also, the surface has distinctive chatter marks indicating an unstable

cut. Figure 4.18 shows the posterior stability cdf of stability after the 20 tests. Based

on these results, the optimum operating point is (10000 rpm, 6.25 mm) with a profit

of $1206.50 per part.

Figure 4.15: Experimental setup for stability testing.

To validate the performance of the algorithm, the analytical stability boundary

was evaluated using a frequency-domain analytical approach [30]. The force model

coefficients and the frequency response function (FRF) of the flexure on which the

tests were performed were measured. The force model coefficients for the 6061-T6
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Figure 4.16: Frequency content of the acceleration signal (left) and the machined
surface (right) at 10000 rpm, 6.25 mm. Content is seen only at the tooth passing
frequency (167 Hz) and its harmonics.

Figure 4.17: Frequency content of the acceleration signal (left) and the machined
surface (right) at 8294 rpm, 8.34 mm. This unstable cut exhibits content other than
tooth passing frequency and its harmonics (left) and chatter marks are observed
(right).

workpiece material-tool combination were calculated using a linear regression to the

mean values of x (feed) and y direction cutting forces measured over a range of feed

per tooth values [30]. The FRFs of the flexure in the x (feed) and the y directions

were also measured using impact testing; see Figure 4.19. The force coefficients are

listed in Table 4.3. Figure 4.20 shows the stability lobes calculated along with the

test points.

Note that from the analytical stability boundary, the optimum operating point is

(7870 rpm, 8.34 mm) with a profit of $1220.00 per part. The operating point (10000
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Figure 4.18: Posterior stability cdf after 20 tests.

Table 4.3: Parameters used to determine the reference stability limit for the simulated
testing scenario.

Parameter Value Units
Tangential coefficient 853.0 N/mm2

Normal coefficient 310.0 N/mm2

Tangential edge coefficient 10.0 N/mm
Normal edge coefficient 8.0 N/mm

rpm, 6.25), which gives a profit of $1206.5, would not have been chosen based on the

analytical boundary. However, the stability boundary obtained using the analytical

is deterministic and uncertainty exists in the measured cutting force coefficients and

FRFs, so some disagreement with experiment is anticipated. Even without knowledge

of the system dynamics, the value of information approach was successful in locating

the optimal operating point. The analytical stability lobes shown in Figure 4.20 were

also validated experimentally. Figure 4.21 shows the analytical prediction and the

test results, where ‘o’ denotes a stable cut and ‘x’ denotes an unstable cut. The

testing locations were selected only to verify the lobe shape; the value of information

approach was not applied.
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Figure 4.19: FRFs for the flexure in the x (left) and the y (right) directions used in
the experiments. Note that the dynamic stiffness is an order of magnitude higher in
the y direction.

Figure 4.20: Test point selections compared with the analytical stability lobes.

4.5 Discussion

In this section, the effect of the standard deviation for the random walk step

size on the posterior cdf and the test points is evaluated. The effect of the spindle

speed-axial depth of cut domain on the posterior stability and test points is also

explored.

Using the random walk approach, a test at any spindle speed updates the distri-

bution at all spindle speeds. The extent to which a test at a spindle speed updates

the distribution at spindle speeds other than the test speed depends on the standard

deviation of the step size. To evaluate this dependence, random walks were generated
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Figure 4.21: Experimental validation of the stability lobes.

using a normally distributed step size with zero mean and a standard deviation equal

to 0.25 mm, N(0,0.25). The random walks in Section 4.2 were generated using a

standard deviation equal to 0.5 mm, N(0,0.5). Consider that the updating was per-

formed based on a stable test result at 7000 rpm and 5 mm. Figure 4.22 shows the

updated cdf at 6500 rpm for both the standard deviations. As shown in the figure,

the selected test does not affect the cdf at 6500 rpm for a standard deviation equal

to 0.5 mm. The cdf is the same as the prior cdf as shown in Figure 4.8. However,

for the standard deviation of 0.25 mm, the cdf at 6500 rpm shows a probability of

stability equal to unity at 2 mm. Figure 4.23 shows the updated posterior cdf given a

stable test result at 7000 rpm, 5 mm using random walks generated using a standard

deviation of 0.5 mm (left) and 0.25 mm (right). The algorithm for selection of test

points was repeated using the random walks generated with a standard deviation of

0.25 mm. Figure 4.24 shows a comparison of the updated posterior cdf after 20 tests

for both cases. The algorithm converges to the same optimum operating point in

both instances.

A specific criterion for selecting the standard deviation of the step size is not

presented here. However, trends have been observed. A higher standard deviation

yields walks that are more volatile in the domain. This increases the number of

remaining walks after each update (i.e., path filtering) using a test result and reduces
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the extent to which a test affects the cdf at all speeds in the domain. As shown in

Figure 4.22, a standard deviation of 0.5 mm does not change the cdf at 6500 rpm

given a stable test at (7000 rpm, 5 mm). Therefore, a higher standard deviation

provides a more conservative representation of the stability boundary.

Figure 4.22: The updated cdf at 6500 rpm given a stable test at 7000 rpm, 5 mmwith
standard deviations of 0.5 mm and 0.25 mm for the random walk generation.

Figure 4.23: Updated posterior cdf given a stable test result at 7000 rpm, 5 mm
for random walks generated using standard deviations of 0.5 mm (left) and 0.25 mm
(right).

The effect of the spindle speed-axial depth domain on the test point selection was

also evaluated. The Bayesian updating procedure using random walks was repeated

with a spindle speed domain from 4000 rpm to 8000 rpm. The test point selection was

based on the value of information approach. Eight experiments were performed and
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Figure 4.24: Updated posterior cdf after 20 tests using random walks generated with
standard deviations of 0.5 mm (left) and 0.25 mm (right).

the test result, stable or unstable, was determined based on the analytical stability

lobe shown in Figure 4.21. Table 4.4 shows the test points determined using the

value of information approach. Figure 4.25 shows the test point selection and the

analytical stability lobes; ‘o’ represents a stable cut and ‘x’ represents an unstable

cut. Figure 4.26 shows the updated posterior cdf after eight tests. Using the value

of information approach, the random walk method is robust and insensitive to the

selected spindle speed - axial depth of cut domain. Although the nature of cdf is

discrete, it does not affect the optimal operating point selection. Note that the

optimal operating point was decided as the one which is known to be stable with

certainty and the profit is the highest.

Figure 4.25: Test point selection compared with the analytical stability lobes.
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Table 4.4: Experimental test points and results for spindle speed range of 4000 rpm
to 8000 rpm.

Test number Spindle speed (rpm) Axial depth (mm) Stability result
1 8000 0.54 stable
2 8000 5.01 unstable
3 7197 5.01 stable
4 7197 6.25 stable
5 7250 8.36 stable
6 7334 8.36 stable
7 7571 8.36 stable
8 7665 8.36 stable

Figure 4.26: Posterior cdf of stability after eight tests at a spindle speed range of
4000 rpm to 8000 rpm.

4.6 Conclusions

Bayesian inference using a random walk approach for stability prediction in milling

was presented. The optimal test point selection was based on the value of informa-

tion method. The motivation for implementing a Bayesian inference model was: 1)

a Bayesian inference model enables a prediction which considers both theory and

experimental results; and 2) when using a Bayesian inference model, experiments

can be chosen such that the expected value added by performing the experiment is

maximized.
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For the study presented here, no prior knowledge of the machining dynamics was

assumed. Only stability test results were considered and the optimal experimental

test point was selected using the value of information approach. Bayesian inference

combined with decision analysis enables a dollar value to be placed on the informa-

tion gained from an experiment prior to performing it. The stability updating was

completed using random walks generated in the spindle speed - axial depth of cut

domain. The feature to be machined was taken to be a pocket. The value of in-

formation approach selects a test point which adds maximum value to profit taking

into account the cost of machining the selected feature. The test points converged

to the optimal operating point even without knowledge of the system dynamics. The

approach is robust and insensitive to the spindle speed - axial depth of cut domain.



CHAPTER 5: APPLICATION TO PROCESS DAMPING IN MILLING

This chapter describes a value of information-based experimental design method

that uses Bayesian inference for belief updating. The application is process damping

coefficient identification in milling. An analytical process damping algorithm is used

to model the prior distribution of the stability boundary (between stable and unsta-

ble cutting conditions). The prior distribution is updated using experimental results

via Bayesian inference. The updated distribution of the stability boundary is used

to determine the posterior process damping coefficient value. A value of information

approach for experimental test point selection is then demonstrated which minimizes

the number of experiments required to determine the process damping coefficient.

Subsequent experimental parameters are selected such that the percent reduction in

the standard deviation of the process damping coefficient is maximized. The method

is validated by comparing the process damping posterior values to residual sum of

squares results using a grid-based experimental design approach. Results show a

significant reduction in the number of experiments required for process damping co-

efficient parameter determination. The advantages of using the value of information

approach over the traditional design of experimental methods are discussed.

5.1 Introduction

Traditional design of experiment (DOE) approaches, such as factorial design, re-

sponse surface methodology, and Taguchi orthogonal arrays, find widespread appli-

cations in engineering testing. DOE is used to reduce input parameter uncertainty,

evaluate the effects and interactions of input parameters on the output, and test

hypotheses [50, 51]. The goal is to optimize the number of experiments required
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to achieve a desired output. In this chapter, a value of information method for ex-

perimental selection using Bayesian inference is described to reduce input parameter

uncertainty. The selected application is experimental identification of the process

damping coefficient in milling. Value of information is defined as the expected profit

before testing minus the profit after testing or, in terms of cost, the cost prior to

testing minus the expected cost after testing.

The fundamental principle governing the value of information method is that an

experiment is only worthwhile if the value gained from the experiment is more than

the cost of performing the experiment [16]. Therefore, the experimental test point is

selected which adds the most (expected) value. Note that, while the value of infor-

mation uses expected value after testing, it is calculated before actually performing

the test. The approach considers the importance of uncertainty reduction to the de-

cision maker by assigning a value to the information gained from an experiment [17].

Experimental design using value of information takes into account the probabilistic

nature of the uncertainties along with their effect on the output [13].

In this study, the value of information method is used to design experiments

for model parameter uncertainty reduction. Therefore, the value of information is

modified as parameter uncertainty, expressed in terms of the standard deviation,

before testing minus the expected uncertainty after testing. Note that the value after

testing calculation depends on the current state of information. Therefore, the value

of information cannot be determined by any method which does not explicitly take

into account the state of information [16]. To this effect, Bayesian inference is a formal

and normative method of combining experimental evidence with the current state of

information to determine updated beliefs regarding an uncertain variable. Coupling

Bayesian inference with models enables a value to be placed on the information gained

from an experiment prior to performing it.

The value of information method for experimental design has two distinct advan-
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tages over the traditional (statistical) DOE. First, statistical DOE does not consider

the value of uncertainty reduction in experimental point selection. As noted, the

experimental design can be optimized based on maximum value added to the current

state of information. Second, the value of information can be used as a stopping

criterion for performing additional experiments. If the expected cost of performing

an experiment is more than the expected value to be gained from the experiment, it

is not recommended that the experiment be completed. For example, the user can

decide that an experiment is worthwhile only if there is at least a 10% reduction in

the standard deviation of the input parameter, which is the cost of performing the

experiment. This implies that if the value of information for an experiment is less

than 10%, it is not worthwhile to perform the experiment. Traditional DOE typically

requires a fixed number of experiments which are decided prior to any testing.

The remainder of the chapter is organized as follows. Section 5.2 describes the

process damping phenomenon in milling. Section 5.3 summarizes a grid-based exper-

imental design approach to identify the process damping coefficient using a residual

sum of squares (RSS) method. The experimental setup and results are provided.

Section 5.4 describes the contrasting Bayesian inference procedure for updating pro-

cess damping coefficient distributions. Section 5.5 describes the value of information

method for experimental design. Section 5.6 provides conclusions.

5.2 Process Damping in Machining Stability Analysis

The analytical stability lobe diagram offers an effective predictive capability for

selecting stable chip width-spindle speed combinations in machining operations [1, 2,

52, 53]. However, the increase in allowable chip width provided at spindle speeds near

integer fractions of the system’s dominant natural frequency is diminished substan-

tially at low spindle speeds where the stability lobes are closely spaced. For these low

speeds, the process damping effect can serve to increase the chatter-free chip widths.

This increased stability at low spindle speeds is particularly important for hard-to-
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machine materials that cannot take advantage of the higher speed stability zones due

to prohibitive tool wear at high cutting speeds. Many researchers have investigated

process damping in turning and milling operations. Seminal studies were carried out

by Wallace and Andrew [54], Sisson and Kegg [55], Peters et al. [56], and Tlusty

[41]. It was suggested by this early work that interference contact between the flank

of the cutting tool and wavy cutting surface contributes to the process damping phe-

nomenon. The increased use of hard-to-machine alloys has driven recent efforts to

accurately predict process damping behavior. Wu developed a model in which plow-

ing forces present during the tool-workpiece contact are assumed to be proportional

to the volume of interference between the cutter flank face and undulations on the

workpiece surface in turning [57]. Elbestawi and Ismail [58], Lee et al. [59], Huang

and Wang [60], and Ahmadi and Ismail [61] extended Wu’s force model to milling

operations. Budak and Tunc [62] and Altintas et al. [63] experimentally identified

different dynamic cutting force models to include process nonlinearities and incorpo-

rate process damping. Tyler and Schmitz [64] described an analytical approach to

establish the stability boundary that includes process damping effects in turning and

milling operations using a single process damping coefficient. These studies described

process damping as energy dissipation due to interference between the cutting tool

clearance face and machined surface during relative vibrations between the tool and

workpiece. It was shown that, given fixed system dynamics, the influence of process

damping increases at low spindle speeds because the number of undulations on the

machined surface between revolutions/teeth increases, which also increases the local

slope of the wavy surface. This, in turn, leads to increased interference and additional

energy dissipation.

5.2.1 Process Damping Description

To describe the physical mechanism for process damping, consider a tool moving

on a sine wave while shearing away the chip [10]; see Figure 5.1. Four locations are
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identified: 1) the clearance angle, γ, between the flank face of the tool and the work

surface tangent is equal to the nominal relief angle for the tool; 2) γ is significantly

decreased and can become negative (which leads to interference between the tool’s

relief face and surface); 3) γ is again equal to the nominal relief angle; and 4) γ is

significantly larger than the nominal value.

Figure 5.1: Physical description of process damping. The clearance angle varies
with the instantaneous surface tangent as the tool removes material on the sinusoidal
surface.

At points 1 and 3 in Figure 5.1, the clearance angle is equal to the nominal value

so there is no effect due to cutting on the sinusoidal path. However, at point 2

the clearance angle is small (or negative) and the thrust force in the surface normal

direction is increased. At point 4, on the other hand, the clearance angle is larger than

the nominal and the thrust force is decreased. Because the change in force caused

by the sinusoidal path is 90 degree out of phase with the displacement and has the

opposite sign from velocity, it is considered to be a viscous damping force (i.e., a

force that is proportional to velocity). Given the preceding description, the process

damping force, Fd, in the y direction can be expressed as a function of velocity, ẏ ,

chip width, b, cutting speed, V , and a process damping constant C [64]. See Eq. 5.1

Fd = −C b

V
ẏ (5.1)

Because the new damping value is a function of both the spindle speed-dependent

limiting chip width and the cutting speed, the b and Ω vectors must be known in order
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to implement the new damping value. This leads to a converging stability analysis

that incorporates process damping. The following steps are completed for each lobe

in the stability lobe diagram:

• the analytical stability boundary is calculated with no process damping (C =

0) to identify initial b and Ω vectors

• these vectors are used to determine the corresponding new damping coefficient

vector (which includes both the structural damping and process damping, C 6=

0)

• the stability analysis is repeated with the new damping coefficient vector to

determine the updated b and Ω vectors

• the process is repeated until the stability boundary converges.

The automated algorithm description and validation are described in [64]. Fig-

ure 5.2 illustrates a comparison between stability lobes diagrams developed with and

without process damping for a selected C value.

Figure 5.2: Comparison between stability lobes with and without process damping.
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5.3 Grid-based Experimental Design

As a first step in this study, the objective was to determine the process damping

coefficient for milling with a particular tool-workpiece pair. Note that the experi-

mental results were binary in nature; an experiment at an axial depth-spindle speed

combination were either stable or unstable. Based on the stable/unstable cutting

test results, a single variable residual sum of squares (RSS) estimation was applied

to identify the process damping coefficient that best represented the experimental

limiting axial depth of cut, blim. The spindle-speed dependent experimental stability

limit, bi, was selected to be the midpoint between the stable and unstable points at

the selected spindle speed. The sum of squares of residuals is given by Eq. 5.2, where

f(Ωi) is the analytical stability boundary and j is the number of test points. A range

of process damping coefficients was selected and the RSS value was calculated for

each corresponding stability limit. The C value that corresponded to the minimum

RSS value was selected to identify the final stability boundary for all test conditions

[64].

RSS =

j∑
i=1

(bi − f(Ωi))
2 (5.2)

A first step in traditional DOE is to select the factors and number of levels. The

factors influencing stability are axial depth and spindle speed for a given radial depth

of cut. The process damping zone is identified here as the region where spindle speed

is less than 1200 rpm. The spindle speed range extended from 200 rpm to 1100 rpm

and was divided into 10 levels. The axial depth range for experiments was divided

in five levels from 1 mm to 3 mm. Therefore, a grid of test points at low spindle

speeds was selected to investigate the process damping behavior. The experimental

design used here was full factorial; an experiment was performed at every grid point

(for a total of 50 experiments). Note that alternative methods, such as randomized

or Latin hypercube experimental design, will not work in this case because the RSS
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method requires both a stable and unstable result at each spindle speed. The number

of experiments can be reduced by decreasing the number of levels in the spindle speed

and axial depth range. However, since the process damping behavior in the range

selected is not known, the preselected levels were deemed appropriate.

5.3.1 Results

In order to provide convenient control of the system dynamics, a single degree-of-

freedom, parallelogram leaf-type flexure was constructed to provide a flexible foun-

dation for individual AISI 1018 steel workpieces; see Figure 5.3. Because the flexure

compliance was much higher than the tool-holder-spindle-machine, the stability anal-

ysis was completed using only the flexure’s dynamic properties. A radial immersion of

50% and a feed per tooth of 0.05 mm/tooth was used for all conventional (up) milling

tests. An accelerometer (PCB Piezotronics model 352B10) was used to measure the

flexure’s vibration during cutting. The frequency content of the accelerometer signal

was used in combination with the machined surface finish to establish stable/unstable

performance, i.e., cuts that exhibited significant frequency content at the flexure’s

compliant direction natural frequency, rather than the tooth passing frequency and

its harmonics, were considered to be unstable.

Figure 5.3: Setup for milling stability tests. An accelerometer was used to measure
the vibration signal during cutting.
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Table 5.1: Comparison of process damping and cutting force coefficients for different
relief angle cutters.

Releif angle (degree) C N/m Kt N/mm2 Kn N/mm2

11 2.5×105 2111.2 1052.6
15 3.3×105 2234.9 1188.2

As noted, stability tests were performed at all 50 grid points. The results of the

coefficient identification method are depicted in Figure 5.4 for an 18.54 mm diameter,

single-tooth inserted endmill with a 15 degree relief angle. For the same milling

conditions and system dynamics, the process was repeated for a 19.05 mm diameter,

single-tooth inserted endmill with an 11 degree relief angle. The stability boundary

for this experiment is provided in Figure 5.5. The corresponding process damping

coefficients and cutting force coefficients in the tangential, t, and normal, n, directions

(as defined in [10]) are provided in Table 5.1.

The cutting force coefficients were identified using a linear regression on the mean

forces in the x (feed) and y directions at different feed per tooth values. The cutting

force was measured under stable cutting conditions using a cutting force dynamometer

(Kistler model 9257B). For these tests, the insert wear was monitored using in-process

optical flank wear measurements and the insert was replaced if the wear exceeded a

predetermined value. From Figures 5.4 and 5.5 it can be observed that numerous cut-

ting tests were used to identify the process damping coefficient for a particular cutting

operation. This can be costly if there are multiple cutter geometries or workpiece ma-

terials for which stability boundaries need to be constructed. The following section

details a Bayesian updating method for optimizing the experimental test selection

and determining the process damping coefficient more efficiently.
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Figure 5.4: Up milling stability boundary for 50% radial immersion, 18.54 mm diam-
eter, 15 degree relief angle, low wear milling tests using the 228 Hz flexure setup (C
= 2.5× 105 N/m).

Figure 5.5: Up milling stability boundary for 50% radial immersion, 19.05 mm di-
ameter, 11 degree relief angle, low wear milling tests using the 228 Hz flexure setup
(C = 3.3× 105 N/m).

5.4 Bayesian Updating of the Process Damping Coefficient

This section describes the Bayesian updating method for process damping coef-

ficient identification. The updating was performed using the experimental results

shown in Figures 5.4 and 5.5. In these figures, uncertainty exists in the true location

of the stability boundary due to the uncertainties/assumptions in the process damp-

ing model and its parameters as well as factors that are not known. Therefore, the

stability boundary may be modeled as a cumulative probability distribution rather

than a deterministic boundary. From a Bayesian standpoint, an uncertain variable
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is treated as random and is characterized by a probability distribution. Bayesian

inference is a normative and formal method of belief updating when new informa-

tion (e.g., experimental stability results) is made available. The stability boundary

prediction proceeds by generating n sample paths, each of which may represent the

actual stability boundary with some probability. For the prior (or initial belief), each

path is assumed to be equally likely to be the true stability limit. Therefore, the

probability that each sample path is the true stability limit is 1/n. These sample

paths are used as the prior in applying Bayesian inference. Bayesian updating was

used to update the prior probability of sample paths given experimental result, and

therefore, the process damping coefficient distribution. The entire methodology is

defined as Bayesian updating using a random walk approach. Bayes’ rule is given by

Eq. 5.3.

P(path = true stability limit |test result) ∝

P(test result |path = true stability limit)P(path = true stability limit)

Here P(path = true stability limit) is the prior probability which, before any testing,

is equal to 1/N for any sample path and P(test result | path = true stability limit)

is the likelihood of obtaining the test result given the true stability limit. Their

products yields the posterior stability limit probability given the test result, P(path

= true stability limit | test result). In practice, the probability of the test result,

P(test result), may be used to normalize the posterior probability (by dividing the

right hand side of Eq. 5.3 by this value). The sample paths are generated by randomly

sampling from the prior distributions of the Kt, Kn, and C values and calculating a

stability boundary for each set.
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5.4.1 Establishing the Prior

The random sample stability limits were generated by sampling from the prior

distributions ofKt, Kn, and C. To demonstrate the approach, the 18.54 mm diameter,

11 degree relief angle tool is considered. The distribution of C is not known and has to

be determined. The prior marginal distribution of C was selected to be the uniform

distribution U(0.5×105, 10×105) N/m, where the values in the parenthesis specify

the lower and upper limits on C, respectively. A uniform distribution denotes that

it is equally likely for the value of C to take any value between 0.5×105 N/m and

10×105 N/m and represents a non-informative case where little prior knowledge of

the variable is available. Recall that the value of C for the 18.54 mm diameter, 15

degree relief angle tool was found to be 2.5×105 N/m using the RSS method (see

Figure 5.4). The values of Kt and Kn were calculated using a linear least squares fit

to the mean forces in the x (feed) and y directions at different feed per tooth values.

The mean and standard deviation of the force coefficients were calculated from three

measurement sets. Based on this data, the marginal prior distributions of the force

coefficients were Kt = N(2111.2, 78.3) N/mm2 and Kn = N(1052.6, 27.9) N/mm2,

where N denotes a normal distribution and the terms in parenthesis specify the mean

and standard deviation, respectively. The prior distributions of Kt, Kn, and C were

assumed to be independent of each other. Although, Kt and Kn are most likely

correlated, an independent assumption is chosen because it is conservative. Random

samples (1×104) are drawn from the prior distributions and the stability limit was

calculated for each sample. The probability that each sample stability limit is the true

stability limit is 1×10−4. Recall that for the prior, each stability limit was assumed

to be equally likely to be the true limit. Figure 5.6 shows the prior cumulative

distribution function (cdf) for probability of stability. The maximum possible axial

depth of cut possible was defined as 7.5 mm based on the tool’s cutting edge length.

Figure 5.7 and 5.8 show the probability of stability, p(stability), as a function of
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axial depth at 400 rpm and 1000 rpm, respectively. As expected, the probability of

stability decreases at higher axial depths at a given spindle speed. For example, the

probability of stability at 1 mm is 1 at both speeds, while the probability of stability

for an axial depth of 4 mm is 0.7 at 400 rpm and only 0.25 at 1000 rpm.

Figure 5.6: Prior cdf of stability. The gray color scale represents the probability of
stability for any spindle speed, axial depth combination (1/white is likely to be stable,
while 0/black is unlikely to be stable).

Figure 5.7: Probability of stability at 400 rpm.

5.4.2 Likelihood Function

The likelihood function describes how likely the test result is given that the sample

path is the true stability limit. The likelihood function incorporates the uncertainty
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Figure 5.8: Probability of stability at 1000 rpm.

in the process damping model and, therefore, the stability boundary. To illustrate,

consider an experiment completed at a spindle speed of 1000 rpm and an axial depth

of 3 mm. A stable result indicates that the test result is equally likely for all paths that

have an axial depth greater than 3 mm at 1000 rpm; they are assigned a likelihood

of unity. On the other hand, a stable result at 3 mm is unlikely for all paths with an

axial depth less than 3 mm at 1000 rpm. Note that the stable result is unlikely, but

not impossible for such paths, giving a nonzero likelihood. As shown in Figures 5.4

and 5.5, stable points may lie above the boundary and unstable points may lie below

the boundary since there is uncertainty in the stability boundary location. Note that

the test result is increasingly unlikely for values less than 3 mm at 1000 rpm. For

example, the test result is more unlikely for a path that has a value of 1 mm at

1000 rpm relative to a path that has a value of 2.5 mm at 1000 rpm. Therefore,

the likelihood is a one-sided function. The likelihood function for a stable result is

described by Eq. 5.4.2.

l =


e

−(b−btest)
2

k b < btest

1 b ≥ btest

The likelihood function is expressed as a non-normalized normal distribution,
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where the parameter k = 2σ2 and σ is the standard deviation in the axial depth due

to the model uncertainty. The value of σ was taken to be 0.5 mm. Similarly, an

unstable cut indicates that test result is likely for all paths that have an axial depth

value less than 3 mm at 1000 rpm, while it is unlikely for all paths that have a value

greater than 3 mm. Although a Gaussian kernel is used in this study, it can be any

function defined by the user based on his/her beliefs. The likelihood function for an

unstable result is provided in Eq. 5.4.2. Figure 5.9 displays the likelihood function for

a stable result at 3 mm and Figure 5.10 shows the likelihood for an unstable result.

l =


e

−(b−btest)
2

k b ≥ btest

1 b < btest

Figure 5.9: Likelihood given a stable result at 3 mm.

5.4.3 Bayesian Updating

The posterior probability of each path is obtained by multiplying the prior and

likelihood and normalizing such that the sum of all probabilities is equal to unity. The

posterior probabilities of sample paths are used to calculate the posterior distribution

of the process damping and cutting force coefficients. The experimental results shown

in Figure 5.4 were used to update the prior cdf of stability. For each experiment, the
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Figure 5.10: Likelihood given a unstable result at 3 mm.

likelihood function was calculated using Eqs. 5.4.2 and 5.4.2 for a stable and unstable

result, respectively. For multiple updates, the prior after the first update becomes the

posterior after the second update and so on. Figure 5.11 shows the posterior cdf given

the experimental results. Stable results are denoted as ‘o’ and unstable results as ‘o’.

Figure 5.12 and Figure 5.13 shows the prior and posterior probability of stability at

400 rpm and 1000 rpm, respectively.

Figure 5.11: Posterior cdf of stability. Stable results are denoted as ‘o’ and unstable
results as ‘x’.

After each update, the posterior mean and standard deviation of C was calculated

using Eqs. 5.3 and 5.4.

µC =
∑

CP (C) (5.3)
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Figure 5.12: Prior and posterior probability of stability at 400 rpm.

Figure 5.13: Prior and posterior probability of stability at 1000 rpm.

σC =
∑

(C − µC)2P (C) (5.4)

In these equations, µC and σC are the mean and standard deviation of C, respectively,

and P(C) is the probability of the sample stability limit. Recall that each sample

stability limit is generated from a sample of (Kt, Kn, C). The probability of a sample

stability limit is equal to the probability that the sample corresponds to the true

limit.

For the prior, each sample stability limit was assumed to be equally likely to be the

true limit; this implies that each (Kt, Kn, C) sample was equally likely to be the true

combination. The updated probability of each sample stability limit gives the updated

probability of the underlying (Kt, Kn, C) sample to be the true combination. The
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updated posterior probabilities of sample paths were used to calculate the posterior

mean and standard deviation of C using Eqs. 5.3 and 5.4, respectively. Figures 5.14

and 5.15 show the progression of µC and σC as a function of the number of tests. The

µC and σC values after 50 tests were 2.49×105 N/m and 0.30×105 N/m, respectively.

The value of C from the RSS method was 2.5×105 N/m. Figures 5.14 and 5.15 show

a convergence in µC and σC to the final values after the 18th test. The µC and σC

values after the 18th test were 2.41×105 N/m and 0.34×105 N/m, respectively. This

is due to the first unstable result at 400 rpm, 3 mm axial depth preceded by a stable

result at 400 rpm, 2.5 mm axial depth. A stable result at a 2.5 mm axial depth and

an unstable result at a 3 mm axial depth imply that there is a high probability that

the true stability limit is between the two values. Also, note that the values remain

approximately constant after subsequent updates.

Figure 5.14: µC as a function of the number of tests.

The updating procedure was repeated for the 19.05 mm diameter, 11 degree re-

lief angle tool. The prior marginal distribution of the force coefficients were Kt =

N(2234.9, 107.0) N/mm2 and Kn = N(1188.2, 40.5) N/mm2. The prior marginal

distribution of C was again selected to be uniform, U(0.5×105, 10×105) N/m, and

the coefficients were assumed to be independent of each other. The updating proce-

dure was performed using the experimental results shown in Figure 5.5. Figure 5.16
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Figure 5.15: σC as a function of the number of tests.

shows the posterior cdf given experimental results. Figures 5.17 and 5.18 show the

progression of µC and σC as a function of the number of tests. The µC and σC values

after 55 tests were 3.63×105 N/m and 0.38×105N/m, respectively. The C value from

the RSS method was 3.3×105 N/m. These results show good agreement between the

posterior mean C and the value obtained using the RSS method. The advantage of

using Bayesian inference over RSS is that the uncertainty in C can also be calculated.

As a result, the stability boundary is not deterministic, but characterized by a cu-

mulative probability distribution. In addition, Bayesian inference enables the value

to be gained from performing an experiment to be calculated; this is described in the

next section.

5.5 Experimental Design using a Value of Information Approach

Bayesian updating of the probability of stability and the process damping coeffi-

cient was demonstrated. Using experimental results, the probability of each sample

stability limit being the true limit was updated. These probabilities were, in turn,

used to determine the posterior distribution of the process damping coefficient. The

posterior mean agreed with the deterministic value calculated using the RSS method.

Note that additional experimental results reduce the uncertainty (or the standard

deviation) in the C value. This section describes a value of information approach
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Figure 5.16: Posterior cdf of stability. Stable results are denoted as ‘o’ and unstable
results as ’x’.

Figure 5.17: µC as a function of the number of tests.

for optimal experimental parameter selection. The objective of the experiments is to

reduce the uncertainty in the C value. Note that no new information (or reduction in

uncertainty) is achieved by obtaining a stable result at a spindle speed, axial depth

combination which has a prior probability of stability equal to one. A probability

of stability equal to one indicates that all sample paths have a value of axial depth

greater than the test axial depth at the test spindle speed. A stable result assigns a

likelihood of one to all the sample stability limits, which results in no reduction in

the value of σC . This is observed in Figures 5.15 and 5.18 for the first five tests. On

the other hand, a test at a combination which has a non-zero probability of stability
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Figure 5.18: σC as a function of the number of tests.

will cause a reduction in σC due to the small likelihood value assigned to some sample

paths.

The information from a test is characterized as an expected percent reduction in

the value of σC . The experimental parameters are selected where the expected per-

cent reduction in σC is maximum. To illustrate, consider four possible experimental

(spindle speed, axial depth) combinations: A = (400 rpm, 1.28 mm), B = (1000 rpm,

2.68 mm), C = (1500 rpm, 2.04 mm) and D = (2000 rpm, 1.36 mm). The probability

of stability for test points A, B, C and D are 0.9, 0.5, 0.1, and 0.52, respectively (see

Figure 5.18).

Figure 5.19: Four possible test points.
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Table 5.2: Expected percent reduction at test points.

Test p(stability) Expected reduction in σC
A 0.9 13.8
B 0.51 45.6
C 0.1 14.6
D 0.52 24.9

Consider test point A. Given a stable or unstable result at point A, the posterior

probabilities of the sample stability limits is updated using the procedure described

previously. The posterior probabilities are used to calculate the values of µC of and

σC via Eqs. 5.3 and 5.4. If the result at point A is stable, the value of σC would

be 2.72×105 N/m. Note that the value of σC before any testing was 2.87×105 N/m.

Therefore, the percent reduction in σC would be 5.60. On the other hand, if the result

at point A was unstable, the value of σC would be 3.47×104 N/m giving a percent

reduction of 87.9. Recall that point A has a 0.9 probability of being stable. The

expected percent reduction in σC for point A is calculated as:

(% reduction in σC)A = 0.9×5.60 + 0.1×87.9 = 13.8.

The procedure was repeated for points B, C and D. The results are summarized in

Table 5.2. As noted, points A and C have a high prior probability of being stable and

unstable, respectively. As a result, the expected percent reduction in σC for testing

at these points is low. On the other hand, points B and D have maximum uncertainty

regarding the result, p(stability) 0.5. Also, the distribution (or the uncertainty) in

axial depth at point B (1000 rpm) is higher as compared to point D (200 rpm) as seen

from Figure 5.19. Therefore, the expected percent reduction is greater for testing at

point B than point D.

The (spindle speed, axial depth) domain was divided into a grid with increments

of 50 rpm and 0.15 mm. The expected percent reduction in σC was calculated at all

grid points using the procedure described. The maximum expected percent reduction
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was 49.6 at (550 rpm, 7.5 mm) with a probability of stability equal to 0.51. The test

result was selected to be unstable based on the stability limit displayed in Figure 5.4.

The purpose of using the stability limit in Figure 5.4 to determine the test result

was to validate the convergence of the posterior mean and standard deviation of C to

the values determined using the original 50 tests. The values of µC and σC after the

first update were 2.53×105 N/m and 1.42×105 N/m, respectively. The posterior after

the first update becomes the prior for the second update. The procedure to calculate

value of information was repeated for the second test. The maximum expected percent

reduction was 48.3 at (550 rpm, 3.0 mm) with a probability of stability equal to 0.54.

The values of µC and σC after the second update were 3.63×105 N/m and 0.79×105

N/m, respectively. With each update using experimental result, there is reduction in

the σC values as seen from the first two experimental results. Therefore, the maximum

expected reduction in σC will also reduce for every subsequent test. The maximum

percentage reduction in the process damping coefficient uncertainty was used as a

stopping criterion for doing experiments. It was decided that an experiment is only

worthwhile if the expected reduction in σC is at least 10.

The procedure was repeated till the maximum expected reduction in σC was less

than 10. The test results were all based on the stability limit shown in Figure 5.4. As

noted, the test points were selected where the expected percent reduction in C was

maximum. Figure 5.20 shows the maximum expected percent reduction in C for each

test. As seen in the figure, the percent reduction in σC is 8.3 for the seventh test. The

seventh experiment was performed and the procedure was terminated. Figure 5.21

shows the posterior cdf after seven updates. Stable results are denoted as ‘o’ and

unstable results as ’x’. Table 5.3 lists the experimental test points and the stability

results for all seven tests. Figure 5.22 and Figure 5.23 show the progression of µC and

σC as a function of the number of tests. Note that the mean converges to 2.5×105 N/m

in seven tests as compared to 50 tests as shown in Figure 5.14. An alternate criterion
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for stopping is to calculate the percentage reduction in σC from the prior (before any

testing) value. If the location of the boundary was known with certainty, the value

of σC would be zero. Therefore, the maximum percentage reduction in σC achievable

by testing is 100. This value is also referred to as the value of perfect information.

The value of perfect information implies that any experimentation is not worthwhile

if the cost of experiments exceeds the value of perfect information [16, 17]. The value

of perfect information can be calculated a priori to decide if any experiments should

be performed. However, the user can decide that no additional experimentation is

required after a certain percentage reduction in the prior σC value (such as 90) is

achieved. Figure 5.24 shows the percentage reduction in σC from the before testing

value as a function of number of tests.

Figure 5.20: Maximum expected percent reduction for each test.

The experimental selection procedure was repeated for the 19.05 mm diameter,

11 degree relief angle tool. Seven tests were performed at points where the expected

percent reduction in σC was maximum. Figure 5.25 shows the posterior cdf. Stable

results are denoted as ‘o’ and unstable results as ’x’. Figures 5.26 and 5.27 display

the progression of µC and σC as a function of the number of tests. Note that the

mean converges to 3.6×105 N/m in seven tests.
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Figure 5.21: Posterior cdf of stability. Stable results are denoted as ‘o’ and unstable
results as ’x’.

Table 5.3: Experimental results

Spindle speed (rpm) Axial depth (mm) Result
550 7.5 unstable
300 7.5 stable
400 7.5 unstable
350 6.9 unstable
350 4.65 unstable
350 3.9 unstable
350 3.6 unstable

5.6 Conclusions

A random walk method of Bayesian updating was demonstrated for process damp-

ing coefficient identification. The prior sample paths were generated using an ana-

lytical process damping algorithm. For the prior, each sample stability limit was

assumed to be equally likely to be the true stability limit. The probability of the

sample stability limit was then updated using experimental results. The updated

probabilities of the sample paths were used to determine the posterior process damp-

ing coefficient distribution. A value of information was used to select experimental

test points which maximized the expected reduction in the process damping coeffi-

cient uncertainty. Results show a significant decrease in the number of tests required.
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Figure 5.22: µC as a function of the number of tests.

Figure 5.23: σC as a function of the number of tests.

The value of information considers the value on uncertainty reduction in selecting the

experimental parameters, in addition to serving as a stopping criterion for additional

testing.
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Figure 5.24: Percent reduction in σC from the prior value.

Figure 5.25: Posterior cdf of stability. Stable results are denoted as ‘o’ and unstable
results as ’x’.

Figure 5.26: µC as a function of the number of tests.
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Figure 5.27: σC as a function of the number of tests.



CHAPTER 6: APPLICATION TO TOOL LIFE PREDICTIONS

According to the Taylor tool life equation, tool life reduces with increasing cutting

speed. The influence of additional factors, such as feed, can also be incorporated

in deterministic models. However, tool wear is generally considered a stochastic

process with uncertainty in the model empirical constants. In this chapter, Bayesian

inference is applied to predict tool life for milling/turning operations using the random

walk/random surface methods. For milling, Bayesian inference using a random walk

approach is applied to the Taylor tool life model. Tool wear tests are performed using

an uncoated carbide tool and AISI 1018 steel work material. Test results are used to

update the probability distribution of tool life. The updated beliefs are then applied

to predict tool life using a probability distribution. For turning, an extended form

of the Taylor tool life equation is implemented that includes the dependence on both

cutting speed and feed. Bayesian updating is performed using the random surface

technique. Turning tests are completed using a carbide tool and AISI 4137 chrome

alloy steel work material. The test results are again applied to update the probability

distribution of tool life and the updated beliefs are used to predict tool life.

6.1 Introduction

Tool wear can impose a significant limitation on machining productivity, particu-

larly for hard-to-machine materials. Taylor (1906) first defined an empirical relation-

ship between tool life and cutting speed using the power law [37]:

V T n = C (6.1)
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where V is the cutting speed in m/min, T is the tool life in minutes, and n and C

are constants which depend on the tool-workpiece combination. The constant C is

defined as the cutting speed required to obtain a tool life of 1 minute. Tool life is

typically defined as the time required to reach a predefined level of wear for a selected

feature, such as flank wear width, crater depth, or notch depth depending on the

nature of the tool wear. The Taylor tool life equation can be modified to include

other effects, such as feed rate [10]:

V pf qrC = T (6.2)

where fr is the feed per revolution in mm/rev for turning and C, p, and q are con-

stants which depend on the tool-workpiece combination. The Taylor tool life model

is deterministic in nature, but uncertainty exists due to: 1) factors that are unknown

or not included in the model; and 2) tool-to-tool performance variation. For these

reasons, tool wear is often considered to be a stochastic and complex process and,

therefore, difficult to predict.

The remainder of the chapter is organized as follows. Section 6.2 describes Bayesian

updating of tool life in milling using the random walk method for the Taylor tool life

model given by Eq. 6.1. The experimental setup and tool life predictions are also pro-

vided. Section 6.3 describes the random surface method of Bayesian updating for tool

life in turning using the Taylor-type tool life model defined by Eq. 6.2. Section 6.4

discusses the influence of the prior and likelihood on tool life predictions. Conclusions

are provided in Section 6.6.

6.2 Bayesian Inference of the Taylor Tool Life Model

Bayesian inference provides a rigorous mathematical framework of belief updating

about an unknown variable when new information becomes available. In the Taylor

tool life model (Eq. 6.1), there is uncertainty in the values of the exponent, n, and



115

the constant, C. Subsequently, there is uncertainty in the tool life, T . The Taylor

tool life curve can be predicted by generating N sample tool life curves, or sample

paths, each representing the true tool life curve with an equal probability of 1/N . The

sample paths generated in this way may be used as the prior for Bayesian inference.

The prior can then be updated by applying Bayes’ rule to experimental test results.

For each sample path, Bayes’ rule can be written as the following product.

P(path = true tool life curve|test result) ∝

P(test result |path = true tool life curve)P(path = true tool life curve)

Here P(path = true tool life curve) is the prior probability which, before any testing,

is equal to 1/N for any sample path and P(test result | path = true tool life curve) is

the likelihood of obtaining the test result given the true stability limit. Their products

yields the posterior stability limit probability given the test result, P(path = true tool

life curve | test result). In practice, the probability of the test result, P(test result),

may be used to normalize the posterior probability (by dividing the right hand side

of Eq. 6.1 by this value). In this study, the prior sample paths were generated using

random samples from an (n, C) joint probability density function (pdf). The initial

(prior) n and C distributions were selected based on a literature review. In general,

the decision maker should try to use all available information to generate the sample

paths. Bayes’ rule was then used together with experimental results to update the

probability that each sample path was the true tool life curve.

According to Bayes’ rule, the posterior distribution is proportional to the (nor-

malized) product of the prior and the likelihood. For multiple experimental results,

the posterior after the first update becomes the prior for the second update and so

on, where the posterior probabilities of each sample path must be normalized so that

the sum of the probabilities for all paths is one. In a milling operation, other factors,

such as feed rate and axial/radial depths of cut, may also affect tool life in addition
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to the cutting speed. However, since cutting speed is typically the strongest factor,

Bayesian updating was performed using Eq. 6.1.

6.2.1 Establishing the Prior

Tool wear experiments were performed using an uncoated carbide (inserted) tool

to mill AISI 1018 steel. As noted, a literature review was completed to determine

the prior distributions of the Taylor tool life model values, n and C. Stephenson and

Agapiou reported the value of n to be in the range of 0.2 to 0.25 for uncoated carbide

tools and C to be around 100 m/min for rough finishing of low carbon steels [65].

Kronenberg (1966) reported values of n and C to be in the range of 0.3 to 0.5 and

160 m/min to 200 m/min, respectively, for machining steel with a carbide tool [66].

Creese (1999) reported typical n and C values for machining medium carbon steel

with a carbide tool to be 0.32 and 240 m/min, respectively [67]. Cui et al. (2009)

performed wear experiments using a carbide insert and 1018 steel workpiece. Values

of n and C were reported to be 0.3 and 341 m/min, respectively [68]. In a separate

study conducted by the authors, the mean n and C values for the given tool-work

piece combination were found to be 0.33 and 600 m/min [69].

Based on these values, the priors for n and C were selected to be uniform distri-

butions with minimum values of 0.3 and 400, respectively, and maximum values of

0.35 and 700, respectively. A uniform distribution implies that it is equally likely for

the true n and C value to be anywhere in the selected range. This is expressed as:

n = U(0.3,0.35) and C = U(400,700),

where U denotes a uniform distribution and the values in the parentheses identify

the minimum and maximum values, respectively.

The relatively large prior distributions of n and C were chosen to improve the

probability that the true tool life curve existed within the prior sample paths. The

prior n and C distributions were taken as a joint pdf, where the two constants were

independent of each other. Random samples were drawn from the prior joint pdf
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of n and C and the Taylor tool life curve was calculated for each (n, C) pair; this

exercise was repeated 1×105 times. The cutting speed was calculated using V = πdΩ,

where d is the tool diameter (19.05 mm for this study) and Ω is the spindle speed in

rev/min (a range of 1500 rpm to 7500 rpm was selected). The prior probability that

any sample paths is the true tool life curve for this case is 1×10−5. The collection of

prior sample paths could then be used to determine the cumulative density function

(cdf) of tool life at any spindle speed in the domain.

To demonstrate the approach, consider a scenario where the (n, C) values can

take only 10 different combinations (see Table 6.1). For the prior, it is assumed that

any combination is equally likely to be the true combination. This gives a probability

of 0.1 for each (n, C) pair since there are 10 possible pairs. The Taylor tool life values

are calculated for all spindle speeds in the domain for the 10 (n, C) pairs. Figure 6.1

shows the 10 tool life curves. These are the sample paths or random walks, each

generated using a different (n, C) sample. Table 6.1 includes the tool life values for

each (n, C) sample at 2500 rpm, 5000 rpm, and 7500 rpm. Figure 6.2 displays the

discrete tool life cdf at the three spindle speeds. These cdfs give the probability of

tool failure as a function of tool life, p(T ). For example, the probability of tool failure

for a required tool life of 10 min is effectively zero at 2500 rpm, it is approximately

0.9 at 5000 rpm, and 1 for 7500 rpm. These results match the trend of reduced tool

life with increased cutting speed

This procedure was completed for 1×105 sample paths that were generated by

drawing random samples from the prior joint (n, C) distribution. Figure 6.3 shows

the prior cumulative distribution of tool life as a function of spindle speed. The color

bar gives the probability of tool failure at a selected tool life for any spindle speed in

the domain. As expected, the probability of failure decreases with spindle speed for

a particular tool life value.
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Table 6.1: Prior probabilities and tool life for sample (n, C) pairs.

Sample (n, C) T (2500
rpm)
(min)

T (5000
rpm)
(min)

T (7500
rpm)
(min)

Prior

1 (0.3, 500) 55.8 5.5 1.4 0.1
2 (0.3, 525) 65.7 6.5 1.7 0.1
3 (0.3, 550) 76.7 7.6 2.0 0.1
4 (0.3, 575) 88.9 8.8 2.3 0.1
5 (0.3, 600) 102.5 10.2 2.6 0.1
6 (0.35, 500) 31.4 4.3 1.4 0.1
7 (0.35, 525) 36.1 5.0 1.6 0.1
8 (0.35, 550) 41.2 5.7 1.8 0.1
9 (0.35, 575) 46.8 6.5 2.0 0.1
10 (0.35, 600) 52.9 7.3 2.3 0.1

Figure 6.1: Sample tool life curves for the (n, C) pairs listed in Table 6.1.

6.2.2 Likelihood Function

Tool life is generally considered to be stochastic in nature. If a tool life experiment

is repeated under the same conditions, it is unlikely that exactly the same tool life

would be obtained over multiple trials. The likelihood function is designed to account

for this behavior. To illustrate, consider that a tool life of 55.8 min was obtained at

2500 rpm. The user might believe that a tool life between 45 min and 65 min is

therefore very likely if the experiment was to be repeated. The user may also believe

that it is not very likely that the tool will last less than 35 min or greater than 75 min



119

Figure 6.2: Prior cdf of tool life at 2500 rpm (top left), 5000 rpm (top right) and 7500
rpm (bottom left).

based on the initial result. This information is taken into account using the likelihood

function provided in Eq. 6.3:

l = e
−(T−Tm)2

k (6.3)

where l is the likelihood function, Tm is the measured tool life, T is the tool life

value for a sample curve at the experimental spindle speed, and k depends on the

tool life distribution. The likelihood function is expressed as a non-normalized normal

distribution, where k = 2σ2 and σ is the standard deviation of tool life. This likelihood

function describes how likely is the measurement result at a particular spindle speed

given that the sample tool life curve is the correct curve. If the tool life curve value

is near the measurement result, then the likelihood value is high. Otherwise, it is

low. The likelihood function defined in Eq. 6.3 does not completely reject paths

which differ significantly from the experimental result; it simply yields a small value
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Figure 6.3: Prior cumulative distribution of tool life as a function of spindle speed.

for these paths. To illustrate, again consider the 10 possible (n, C) pairs listed in

Table 6.1. Assume an experimental tool life of 55.8 min was obtained at 2500 rpm. At

2500 rpm, each sample tool life curve will have a value of tool life value depending on

the (n, C) combination used to generate that sample path. The likelihood function

can be interpreted as assigning weights to sample paths from zero to unity, where zero

indicates that the selected combination is not likely at all and unity identifies the most

likely combination. The likelihood for each sample tool life curve was calculated using

Eq. 6.3 with a measured tool life of 55.8 min. The parameter T in the equation is the

tool life at the experimental spindle speed (in this example, 2500 rpm) for a particular

sample tool life curve. The value of k is selected by the user based on his/her beliefs

about the experimental uncertainty. For this study, the standard deviation for an

experimental result was assumed to be 20% of the measured value. Table 6.2 lists

the likelihood values for each possible (n, C) pair. The likelihood values listed in

Table 6.2 imply that 0.30,500 is most likely to be the correct (n, C) combination,

whereas (0.30,600) is the least likely. Figure 6.4 shows the likelihood function for Tm

= 55.8 min at 2500 rpm for different σ values (and, therefore, k values). As seen

in the figure, increased uncertainty (higher σ) widens the likelihood function so that

comparatively higher weights are assigned to sample curves far from the experimental
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Table 6.2: Likelihood probabilities for sample (n, C) pairs given experimental tool
life of 55.8 min at 2500 rpm. The likelihood values are rounded to three significant
digits.

Sample (n,C) T (2500
rpm)
(min)

T (5000
rpm)
(min)

T (7500
rpm)
(min)

Prior Likelihood

1 (0.3, 500) 55.8 5.5 1.4 0.1 1.000
2 (0.3, 525) 65.7 6.5 1.7 0.1 0.677
3 (0.3, 550) 76.7 7.6 2.0 0.1 0.174
4 (0.3, 575) 88.9 8.8 2.3 0.1 0.012
5 (0.3, 600) 102.5 10.2 2.6 0.1 0.000
6 (0.35, 500) 31.4 4.3 1.4 0.1 0.009
7 (0.35, 525) 36.1 5.0 1.6 0.1 0.211
8 (0.35, 550) 41.2 5.7 1.8 0.1 0.427
9 (0.35, 575) 46.8 6.5 2.0 0.1 0.724
10 (0.35, 600) 52.9 7.3 2.3 0.1 0.966

result. Subsequently, larger uncertainty yields a more conservative estimate of tool

life. Although the value of σ is considered constant in this study, it could also be

expressed as a function of spindle speed.

Figure 6.4: Likelihood for various uncertainty levels based on a measured tool life of
55.8 min at 2500 rpm.
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6.2.3 Bayesian Updating

As noted, the likelihood function (Eq. 6.3) describes how likely it is that that

the sample tool life curve is the correct curve given the measurement result at a

particular spindle speed. The prior probability for each path is 1/N , where N is

the number of sample paths. According to Bayes’ rule, the posterior distribution is

obtained from the product of the prior and the likelihood. The posterior probability

for each path is then normalized so that the sum is equal to unity (see Table 6.3).

At each spindle speed, the updated probabilities of sample tool life curves provide an

updated distribution of tool life. Thus, a tool life experiment at any spindle speed

updates the tool life distribution at all spindle speeds. Figure 6.5 displays updated

posterior distributions at 2500 rpm, 5000 rpm, and 7500 rpm given an experimental

result of Tm = 55.8 min at 2500 rpm. Figure 6.5 also shows the prior tool life cdfs for

comparison. For the posterior cdf calculation, the updated probabilities, or weights,

of the sample paths must be considered.

For multiple experimental results, the posterior after the first update becomes the

prior for the second update and so on. For example, consider a second experimental

tool life of 5 min at 5000 rpm. The posterior probabilities of the sample paths shown

in Table 6.3 are now the prior probabilities for the second update. The updating

procedure is repeated to obtain the posterior probabilities of the sample pairs (see

Tables 6.4 and 6.5). Figure 6.6 displays updated posterior distribution at 2500 rpm,

5000 rpm, and 7500 rpm after the second update. The mean, standard deviation,

and correlation coefficient can be determined from the posterior probabilities using

the following relations.

µn =
∑

nP (n) (6.4)

µC =
∑

CP (C) (6.5)

σn =
∑

(n− µn)2P (n) (6.6)
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Table 6.3: Posterior probabilities for sample (n, C) pairs after the first update.

Sample (n, C) Prior Likelihood Posterior
(non-
normalized)

Posterior
(normal-
ized)

1 (0.3, 500) 0.1 1.000 0.1 0.233
2 (0.3, 525) 0.1 0.677 0.068 0.158
3 (0.3, 550) 0.1 0.174 0.017 0.041
4 (0.3, 575) 0.1 0.012 0.001 0.003
5 (0.3, 600) 0.1 0.000 0.000 0.000
6 (0.35, 500) 0.1 0.092 0.009 0.021
7 (0.35, 525) 0.1 0.211 0.021 0.049
8 (0.35, 550) 0.1 0.427 0.043 0.100
9 (0.35, 575) 0.1 0.724 0.072 0.169
10 (0.35, 600) 0.1 0.966 0.097 0.226∑

0.428 1.000

σC =
∑

(C − µC)2P (C) (6.7)

ρn,C =
nCP (n,C)− µnµC

σnσC
(6.8)

In these equations, the summations are carried out over all N samples; P(n),

P(C), and P(n, C) are the posterior probabilities for n, C, and the (n, C) pairs,

respectively; µn and µC are the mean values of n and C, respectively; σn and σC are

the standard deviations of n and C, respectively; and ρn,C is the correlation coefficient

between n and C.

6.2.4 Experimental Setup

The experimental steps followed to collect tool life data are described in this

section. Down-milling tool wear tests were completed using a 19.05 mm diameter

single-insert Kennametal endmill (KICR073SD30333C). The workpiece material was

AISI 1018 steel. The insert was a 9.53 mm square uncoated carbide Kennametal

insert (107888126 C9 JC) with zero rake and helix angles and a 15 deg relief angle.

The first test was performed at a spindle speed of 1500 rpm (V = 89.8 m/min).
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Table 6.4: Likelihood probabilities for sample (n, C) pairs given experimental tool
life of 5.0min at 5000 rpm.

Sample (n, C) T (2500
rpm)
(min)

T (5000
rpm)
(min)

T (7500
rpm)
(min)

Prior Likelihood

1 (0.3, 500) 55.8 5.5 1.4 0.233 0.866
2 (0.3, 525) 65.7 6.5 1.7 0.158 0.318
3 (0.3, 550) 76.7 7.6 2.0 0.041 0.034
4 (0.3, 575) 88.9 8.8 2.3 0.003 0.001
5 (0.3, 600) 102.5 10.2 2.6 0.000 0.000
6 (0.35, 500) 31.4 4.3 1.4 0.021 0.8.02
7 (0.35, 525) 36.1 5.0 1.6 0.049 1.000
8 (0.35, 550) 41.2 5.7 1.8 0.100 0.787
9 (0.35, 575) 46.8 6.5 2.0 0.169 0.343
10 (0.35, 600) 52.9 7.3 2.3 0.221 0.071

Table 6.5: Posterior probabilities for sample (n, C) pairs after the second update.

Sample (n,C) Prior Likelihood Posterior
(non-
normalized)

Posterior
(normal-
ized)

1 (0.3, 500) 0.233 0.866 0.202 0.428
2 (0.3, 525) 0.158 0.318 0.050 0.106
3 (0.3, 550) 0.041 0.034 0.001 0.003
4 (0.3, 575) 0.003 0.001 0.000 0.000
5 (0.3, 600) 0.000 0.000 0.000 0.000
6 (0.35, 500) 0.021 0.802 0.017 0.036
7 (0.35, 525) 0.049 1.000 0.049 0.104
8 (0.35, 550) 0.100 0.787 0.078 0.166
9 (0.35, 575) 0.169 0.343 0.058 0.123
10 (0.35, 600) 0.226 0.071 0.016 0.034∑

0.471 1.000
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Figure 6.5: Posterior and prior tool life cdfs at 2500 rpm (top left), 5000 rpm (top
right), and 7500 rpm (bottom left).

The feed per tooth was 0.06 mm/tooth and the axial and radial depths of cut were

3.0 mm and 4.7 mm (25% radial immersion), respectively. To avoid removing the

insert/tool from the spindle, a portable microscope (60x magnification) was used to

record digital images of the rake and flank surfaces at regular intervals. Tool life,

T , was defined as the time required for the insert to reach a FWW of 0.3 mm (no

crater wear was observed in these tests). Figure 6.7 shows the microscope setup for

recording the flank surface. The calibrated digital images were then used to identify

the FWW . Figure 6.8 shows the variation of FWW with cutting time for tests at

1500 rpm. Microscopic images of the relief face for selected cutting times are displayed

in Figure 6.9.

As seen in Figure 6.8, the time to reach a FWW of 0.3 mm was 255.3 min for

testing at 1500 rpm. Additional tests were also completed at 3750 rpm and 6250
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Figure 6.6: Posterior and prior cdf of tool life at 2500 rpm (top left), 5000 rpm (top
right), and 7500 rpm (bottom left).

rpm. The variation in FWW with cutting time for spindle speeds is displayed in

Figure 6.10. The ’o’ symbols denote the intervals at which FWW was recorded. To

establish the tool life for each test, linear interpolation was applied between adjacent

measurement points if the FWW exceeded 0.3 mm for the final measurement interval.

As expected, the tool life reduced with increasing spindle speed. These experimental

results were then used to update the prior distributions of tool life over a range of

spindle speeds. Table 6.6 summarizes the experimental results used for updating.

6.2.5 Tool Life Predictions

The experimental tool life results were used to update the tool life distribution.

The procedure is as follows.

• For each experimental result, a likelihood value was calculated for each sample
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Figure 6.7: Setup for interrupted FWW measurements.

Figure 6.8: Increase in FWW with cutting time at 1500 rpm.

path from Eq. 6.3. The prior probability of each sample path was 1×10−5.

• The posterior probability of each sample path was calculated as the product of

the prior probability and the likelihood.

• The posterior probabilities were normalized so that the sum was equal to unity.

• For multiple experimental results, the posterior probabilities after the first up-

date became the prior probabilities for the second and so on.

Figure 6.11 shows the posterior tool life cdf. The posterior probabilities of sample

paths were used to determine the mean, standard deviation, and the correlation
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Figure 6.9: Images of FWW at 60X magnification for 1500 rpm tests. The cutting
times from left to right are (0, 78.5, 166.4, and 255.3) min.

Figure 6.10: Increase in FWW with cutting time at three spindle speeds.

coefficient of the posterior (n, C) distribution using Eqs. 6.4 through 6.8. The

values were (0.342, 0.0075) for n and (649.7, 33.74) for C, where the first term in

the parenthesis represents the mean and the second term represents the standard

deviation. The correlation coefficient between n and C was 0.67. Recall that the

prior (n, C) distribution was taken as uniform.

The posterior (updated) tool life distribution was next used to predict tool life at

spindle speeds other than the ones at which the tool wear experiments were performed.

Table 6.6: Experimental tool life results used for updating.

Test Spindle seed (rpm) Cutting speed (m/min) Tool life (min)
1 1500 89.8 255.3
2 3750 224.4 35.5
3 6250 374.0 8.5
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The posterior distribution was used to predict tool life at 2500, 5000, and 7500 rpm.

Three tests were performed at each spindle speed to identify the non-repeatability.

The tests were performed using the same parameters (other than spindle speed) as

stated previously and the same procedure was followed to measure tool life. As before,

tool life was set to be the time to reach a FWW of 0.3 mm. Table 6.7 shows the

experimental tool life values observed from the nine tests.

The experimental tool life was compared to the predicted posterior distributions

of tool life, T , at the corresponding spindle speeds. Additionally, a least squares

curve fit of the Taylor tool life equation was completed using the results provided

in Table 6.6. The values of n and C obtained from the least square fit were 0.4553

and 1120 m/min, respectively. Using this deterministic model, the tool life values

were also predicted and compared with experiment. Figures 6.12, 6.13, and 6.14

display the posterior distributions of tool life at 2500 rpm, 5000 rpm, and 7500 rpm,

respectively. The experimental results are marked using the ’x’ symbols and the

least squares prediction by the ’o’ symbols on the graphs. As seen from the figures,

the predicted posterior distributions provide good agreement with the experimental

results, while the least squares predictions are less accurate at higher spindle speeds.

Although the least squares fit was good (R2 = 0.9998), the fit parameters were not

reliable at higher spindle speeds. The 95% confidence bounds for n and C were

determined using MATLABs curve fitting toolbox; the values were (0.232,0.6786) for

n and (-258,2499) for C. One explanation for the poor performance of the curve

fit is that statistical curve fits generally require a large amount of data to achieve

confidence in the fit parameters and extrapolation of the prediction outside the test

range is often not recommended.

6.3 Bayesian Inference of the Taylor-Type Tool Life Model

In this section, Bayesian inference of the Taylor-type tool life model (Eq. 4.4)

using the random surface method is described. In Eq. 4.4, there is uncertainty in the
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Figure 6.11: Posterior cdf of tool life.

Figure 6.12: Posterior tool life cdf at 2500 rpm.

exponents, p and q, and the constant, C. As a result, there is uncertainty in the tool

life. Note that tool life is dependent on both cutting speed and feed rate according

to Eq. 4.4. For given values of p and q, and C, tool life may be described using a

three-dimensional surface that is a function of cutting speed and feed rate. Therefore,

the tool life surface was predicted by generating N tool life (sample) surfaces, each

representing the true tool life surface with equal probability. As before, the prior

probability that any sample surface is the true tool life surface is 1/N . For this case,
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Figure 6.13: Posterior tool life cdf at 5000 rpm.

Figure 6.14: Posterior tool life cdf at 7500 rpm.

Bayes’ rule can be written as the following product.

P(surface = true tool life surface|test result) ∝

P(test result |surface = true tool life surface)P(surface = true tool life surface)

Here, P(surface = true tool life surface) is the prior probability that a given path

is the true tool life surface. Also, P(test result | surface = true tool life surface) is

referred to as the likelihood, P(test result) is a normalization constant, and P(surface

= true tool life surface | test result) is the posterior probability of the sample tool

life surface given a test result. The prior sample paths were generated using random
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Table 6.7: Experimental values of tool life for comparison to predictions.

Test Spindle seed (rpm) Cutting speed (m/min) Tool life (min)
1 2500 149.6 50.1
2 2500 149.6 68.5
3 2500 149.6 72.0
4 5000 299.2 11.5
5 5000 299.2 9.5
6 5000 299.2 8.5
7 7500 448.8 2.6
8 7500 448.8 3.3
9 7500 448.8 3.2

samples from (p, q, C) joint pdf. The prior (initial) p, q, and C distributions were

selected based on a literature review.

6.3.1 Establishing the Prior

As noted, the first step in applying Bayesian inference is to determine the prior

distribution. The cutting tool used for wear testing was a coated carbide insert and

the workpiece material was a forged chrome alloy steel. The turning experiments

were performed on an Okuma LC-40 CNC lathe. In this case, the prior was a joint

probability distribution for the Taylor-type tool life constants, p, q, and C. The initial

beliefs were:

• in general, the value of the exponent p is greater than the exponent q due

to a stronger influence of cutting speed on tool wear, but this is not a strict

requirement.

• the value of p is between 2 and 6 and q is between 1.5 and 3 [10].

• the value of C is sensitive to the values of p and q due to the nature of the tool

life equation and is in the range of 1×106 m/min to 1×108 m/min.

In this case, information was available to supply only a general range of p, q, and

C. Therefore, the prior was assumed to be joint uniform distribution, i.e., it was
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equally likely to obtain any value within the specified range. The constants were

assumed to be independent of each other for the prior. In cases where experimental

data using the same tool-material combination is available, a more informative prior

(such as a normal distribution) can be selected. For this study, the marginal prior

pdfs of the constants were specified as: p = U(2, 6), q = U(1, 5), and C = U(1×106,

1×108).

Random samples were drawn from the prior joint pdf of p, q, and C and the Taylor-

type tool life surface was calculated for each (p, q, C) triplet. In total, 1×105 tool life

surfaces were generated. The range of cutting speed was taken from 150 m/min to

250 m/min and feed rate from 0.5 mm/rev to 0.6 mm/rev. The prior probability that

any sample surface is the true tool life surface for this case is 1×10−5. The updating

procedure is the same as for the random walk approach. The only difference is that

the random samples form three-dimensional surfaces, rather than two-dimensional

paths. To demonstrate the procedure, again consider 10 possible combinations of (p,

q, C); see Table 6.8. The prior assumes that any combination is equally likely to be

the true combination, so each (p, q, C) triplet was assigned a probability of 0.1. The

Taylor-type tool life values were calculated for all cutting speeds and feed rates in the

domain for the 10 (p, q, C) triplets. Figure 6.15 shows the sample tool life surfaces.

Table 6.8 also provides the tool life values for all (p, q, C) combinations at cutting

conditions of 150 m/min, 0.5 mm/rev, 150 m/min, 0.6 mm/rev, and 200 m/min, 0.5

mm/rev. Figure 6.16 shows the discrete cdf of tool life at the same cutting conditions.

The cdf gives the probability of tool failure as a function of tool life.

The procedure was completed for 1×105 sample surfaces generated by drawing

random samples from the prior (p, q, C) distribution. Since tool life depends on

cutting speed as well as feed rate, the prior cdf as a function of cutting speed is

conditioned on the feed rate value. Figure 6.17 shows the prior cdf of tool life as a

function of cutting speed for a selected feed rate value. There is large uncertainty in
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Table 6.8: Prior probabilities for sample (p, q, C) triplets.

Sample (p, q, C) T (150
m/min, 0.5
mm/rev)
(min)

T (200
m/min, 0.5
mm/rev)
(min)

T (150
m/min, 0.6
mm/rev)
(min)

Prior

1 (2.50, 2.50, 1×107) 205.3 100.0 130.1 0.1
2 (2.75, 2.50, 1×107) 58.7 26.6 37.2 0.1
3 (2.50, 2.25, 1×107) 172.6 84.1 114.5 0.1
4 (2.75, 2.25, 1×106) 49.3 22.4 32.7 0.1
5 (2.50, 2.50, 5×106) 102.6 50.0 65.1 0.1
6 (2.75, 2.50, 5×106) 29.3 13.3 18.6 0.1
7 (2.50, 2.25, 5×106) 86.3 42.0 57.3 0.1
8 (2.75, 2.25, 5×106) 24.7 11.2 16.4 0.1
9 (2.50, 2.25, 7.5×106) 129.5 63.1 85.9 0.1
10 (2.75, 2.25, 7.5×106) 37.0 16.8 24.5 0.1

the tool life due to the wide (uniform) prior distribution assumed for p, q, and C.

The color bar in Figure 6.17 gives the probability of tool failure at a selected tool

life for any spindle speed in the domain. From the prior distribution of p, q, and

C, approximately 50% of the tool life values are less than 1 min and 15% are more

than 400 min at 150 m/min, 0.5 mm/rev; therefore, the probability of tool failure in

Figure 6.17 is scaled from 0.5 to 0.85 for plotting purposes.

Figure 6.15: Sample tool life surfaces for (p, q, C) triplets provided in Table 6.8.
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Figure 6.16: Prior cdf of tool life at (150 m/min, 0.5 mm/rev) (top left), (200 m/min,
0.5 mm/rev) (top right), and (150 m/min, 0.6 mm/rev) (bottom left).

6.3.2 Bayesian Updating

The likelihood function describes how likely it is that that the sample tool life

surface is the correct surface given a measurement result at a particular cutting speed

and feed. As noted, the likelihood function can be interpreted as assigning weights to

sample surfaces from zero to unity, where zero indicates that the selected combination

is not likely at all and unity identifies the most likely combination. The likelihood

function defined in Eq. 6.3 was applied. To illustrate, again consider the 10 possible

(p, q, C) triples listed in Table 6.8. Assume that an experimental tool life of 102.6

min was obtained at 150 m/min, 0.5 mm/rev and a tool life of 42.0 min was obtained

at 200 m/min, 0.5 mm/rev. A likelihood value for each sample tool life surface

was calculated using Eq. 6.3. The posterior probability calculations are shown in

Tables 6.9 and 6.10. Note that these posterior probabilities are normalized and have
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Figure 6.17: Prior cdf of tool life at 0.5 mm/rev (left) and 0.6 mm/rev (right). Note
that the reduced tool life for the 0.6 mm/rev feed results in approximately 10% of
the values being more than 400 min as compared to 15% at 0.5 mm/rev. The color
bar scaling therefore differs.

been rounded to three significant digits. Figure 6.18 shows the posterior and prior cdf

at 150 m/min, 0.5 mm/rev, 200 m/min, 0.5 mm/rev, and 150 m/min, 0.6 mm/rev.

6.3.3 Experimental Setup and Results

This section describes the experimental steps following to collect turning tool life

data. The cutting tool used for wear testing was a coated carbide insert (Kennametal

KC9110) and the workpiece material was forged AISI 4137 chrome alloy steel. The

initial outer diameter of the steel workpiece was 174.6 mm. The spindle speed was

varied to maintain constant cutting speed with reducing workpiece diameter as addi-

tional cuts were completed. The depth of cut was 4.1 mm and the length of cut for a

single pass was 139.7 mm with a chamfer of 63.4 deg at the end of each cut. The flank

and rake surfaces were recorded using a portable digital microscope (60X magnifica-

tion) without removing the insert from the tool holder during the wear testing. The

wear status of the tool was recorded after each pass and the calibrated digital images

were used to identify the flank wear width (FWW ). Tool life was defined as the time

required for the FWW to reach 0.4 mm. The first test was completed using a cutting

speed of 153.6 m/min and a feed per revolution of 0.51 mm/rev. Figure 6.19 shows
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Table 6.9: Likelihood and posterior probabilities for sample (p, q, C) triplets given
an experimental tool life of 102.6 min at (150 m/min, 0.5 mm/rev)
.

Sample (p, q, C) Prior Likelihood Posterior
1 (2.50, 2.50, 1×107) 0.1 0.000 0.000
2 (2.75, 2.50, 1×107) 0.1 0.101 0.044
3 (2.50, 2.25, 1×107) 0.1 0.003 0.001
4 (2.75, 2.25, 1×107) 0.1 0.034 0.015
5 (2.50, 2.50, 5×106) 0.1 1.000 0.435
6 (2.75, 2.50, 5×106) 0.1 0.002 0.001
7 (2.50, 2.25, 5×106) 0.1 0.730 0.317
8 (2.75, 2.25, 5×106) 0.1 0.001 0.000
9 (2.50, 2.25, 7.5×106) 0.1 0.424 0.184
10 (2.75, 2.25, 7.5×106) 0.1 0.006 0.003∑

1.000

Table 6.10: Likelihood and posterior probabilities for sample (p, q, C) triplets given
an experimental tool life of 42.0 min at (200 m/min, 0.5 mm/rev)

Sample (p, q, C) Prior Likelihood Posterior
1 (2.50, 2.50,1×107) 0.000 0.000 0.000
2 (2.75, 2.50, 1×107) 0.044 0.186 0.013
3 (2.50, 2.25, 1×107) 0.001 0.000 0.000
4 (2.75, 2.25, 1×107) 0.015 0.065 0.002
5 (2.50, 2.50, 5×106) 0.435 0.635 0.452
6 (2.75, 2.50, 5×106) 0.001 0.003 0.000
7 (2.50, 2.25, 5×106) 0.317 1.000 0.52
8 (2.75, 2.25, 5×106) 0.1 0.000 0.000
9 (2.50, 2.25, 7.5×106) 0.184 0.043 0.013
10 (2.75, 2.25, 7.5×106) 0.003 0.011 0.000∑

1.000



138

Figure 6.18: Posterior and prior cdf of tool life at (150 m/min, 0.5 mm/rev) (top
left), (200 m/min, 0.5 mm/rev) (top right), and (150 m/min, 0.6 mm/rev) (bottom
left).

the variation of FWW with cutting time. The time to reach a FWW of 0.4 mm was

22.5 min. Figure 6.20 shows images of the relief face at selected cutting times.

Two additional tests were performed at (V = 192.0 m/min, fr = 0.61 mm/rev)

and (V = 230.4 m/min, fr = 0.51 mm/rev). Figure 6.21 shows the growth in FWW

for all three test conditions. The ‘o’ symbols denote the intervals at which the FWW

was recorded. The tool life was determined by linear interpolation between adjacent

intervals if it exceeded 0.4 mm at the final measurement interval. The results of

the three tests are summarized in Table 6.11. As expected, tool life reduced with

increased cutting speed and feed rate.
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Figure 6.19: Increase in FWW with cutting time at V = 153.6 m/min and fr = 0.51
mm/rev.

Figure 6.20: Images of FWW at 60X magnification. The cutting times from top to
bottom are (6.8, 15.5, and 22.4) min.

6.3.4 Tool Life Predictions

The experimental tool life results were used to update the prior tool life distri-

bution using the random surface method. As noted, 1×105 sample surfaces were

generated by sampling from the prior (p, q, C) distribution. The likelihood for each

test result was calculated using Eq. 6.3. The prior probabilities of the sample surfaces

were updated using the experimental result following the procedure described. The

posterior probability of each sample surface was calculated as the product of the prior

probability and the likelihood. The posterior probabilities were normalized so that
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Figure 6.21: Variation of FWW with cutting time at various test conditions.

Table 6.11: Experimental tool life results used for updating.

Test Cutting
speed
(m/min)

Feed
(mm/rev)

Tool life
(min)

1 153.6 0.51 22.5
2 192.0 0.61 6.5
3 230.4 0.51 5.6

the sum was equal to unity. Figure 6.22 shows the posterior cumulative distribution

of tool life as a function of cutting speed conditioned on the feed rate value. The mean

and standard deviation, for the posterior (p, q, C) distributions were (3.25, 0.19) for

p, (2.81, 0.99) for q, and (5.2×107, 2.85×107) m/min for C, where the first term is

the mean and the second is the standard deviation. The correlation coefficients were

0.64 between p and q, 0.71 between p and C, and 0.032 between q and C.

The posterior tool life distributions can be used to predict tool life at cutting

conditions other than the ones at which the tool wear experiments were performed.

The posterior distribution was used to predict tool life for two new test conditions:

(V =192.0 /min, fr = 0.51 mm/rev) and (V = 230.4 m/min, fr = 0.61 mm/rev).

Two tests were performed for each parameter combination. Other conditions were

maintained constant and the same procedure was followed to measure tool life. As
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before, tool life was selected to be the time for the tool to reach a FWW of 0.4 mm.

Table 6.12 shows the experimental tool life values observed from the four additional

tests.

The deterministic Taylor-type tool life constants were calculated using a least

squares best fit to the experimental tool life data listed in Table 6.11. The p, q, and

C values were 3.39, 2.63, and 9.83×107 m/min, respectively. Figure 6.23 shows the

experimental values at V = 192.0 m/min and fr = 0.51 mm/rev (denoted by ‘x’),

the posterior distribution after updating, and the deterministic tool life predictions

(denoted by ‘o’). Figure 6.24 shows the results for V = 230.4 m/min and fr =

0.61 mm/rev. As seen in Figure 6.23, the observed tool life values agree with both

the predicted posterior distribution and the deterministic predictions at V = 192.02

m/min, fr = 0.51 mm/rev. In Figure 6.24, both predictions slightly overestimate

the tool life. A significant difference between the two techniques, however, is that

Bayesian inference assigns a probability distribution to tool life, while deterministic

methods (such as curve fitting) predict a single value.

Figure 6.22: Posterior cdf of tool life at 0.5 mm/rev (left) and 0.6 mm/rev (right).

6.4 Discussion

In Bayesian inference, the posterior probability is the product of the prior and

the likelihood distributions. Clearly, the posterior probabilities of the random sample
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Figure 6.23: Posterior tool life cdf at V = 192.02 m/min, fr = 0.51 mm/rev.

Figure 6.24: Posterior tool life cdf at V = 230.42 m/min, fr = 0.61 mm/rev.

paths/surfaces depend on the selection of the prior and the likelihood distributions.

In this section, the influence of the prior distribution and likelihood uncertainty on

the posterior is evaluated. First, the influence of the likelihood uncertainty on the

posterior tool life cdf is examined. In the initial analysis, a likelihood uncertainty of

20% of the experimental tool life was assumed. Here, Bayesian updating was repeated

for both the milling and turning tool life models using likelihood uncertainties of 5%

and 10%. Figure 6.25 displays the milling posterior tool life predictions at 2500 rpm

for different likelihood uncertainties. The experimental values are denoted as ‘x’ and

the deterministic prediction as ‘o’. Table 6.13 lists the mean, standard deviation,

and the correlation coefficient for the corresponding posterior n and C distributions.
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Table 6.12: Experimental values of tool life for additional turning tests.

Test Cutting
speed
(m/min)

Feed
(mm/rev)

Tool life
(min)

1 192.0 0.51 11.5
2 192.0 0.51 10.3
3 230.4 0.61 2.2
3 230.4 0.61 2.6

As seen from Figure 6.25 and the standard deviation values listed in Table 6.13,

the likelihood uncertainty affects the spread of the posterior tool life distribution.

A smaller likelihood uncertainty narrows the distribution. Also, as the likelihood

uncertainty tends to zero, the posterior tool life cdf approaches the least squares

prediction. Similar results are obtained for the turning tool life model as shown in

Figure 6.26.

The influence of the prior distribution on the posterior distribution was also ex-

amined. As stated, a uniform prior was selected for (n, C) in the milling model to

generate the random sample paths. To evaluate the influence of the prior distribution,

a normal distribution was selected for the prior (n, C) distribution. The distribution

was selected to be:

n = N(0.3, 0.03) and C = N(250, 50),

where N denotes a normal distribution and the values in the parentheses identify

the mean and standard deviation, respectively. The n and C random samples were

assumed to be independent. The mean values of the normal (n, C) prior distribution

were deliberately selected to be lower than the posterior mean values determined

in Section 6.2. Random samples were drawn from the distribution and the sample

tool life curves were calculated for each. Figure 6.27 shows the new (normal) prior

distribution. Bayesian updating was completed using the experimental results listed

in Table 6.6. Figure 6.28 shows the posterior tool life cdf for the normal prior.
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The posterior cdf for the uniform prior is also included for comparison. Table 6.14

compares the posterior means, standard deviations, and correlation coefficients for

the two priors. As seen in Figure 6.28, the posterior tool life prediction is more

conservative for the normal (n, C) prior, which may be a preferred result in machining

operations where a tool failure can lead to significant expense and lost time. A normal

prior represents a more informative case where knowledge of the distribution in (n, C)

values is available. A more informative prior reflects the most likely values. Because

the prior represents the initial degree of belief about the constants, if the initial

belief is far from the true value, then the final results are affected. In general, the

prior should be chosen to be as informative as possible considering all the available

information. If enough data or prior knowledge is not available, a uniform prior may

be selected.

Figure 6.25: Posterior cdf at 2500 rpm for different likelihood uncertainties assumed.

6.5 Experimental Speed Selection using Value of Information

The combination of Bayesian inference and decision analysis enables a dollar value

to be placed on the information gained from an experiment prior to performing it.

The value of information, VOI, may be defined as the difference between the expected

profit before testing and the expected profit after testing. For a fixed sales price,

VOI is the expected cost prior to testing minus the expected cost after testing. In
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Table 6.13: Posterior (n, C) distribution for different likelihood uncertainties in
milling.

Parameters
Likelihood uncertainty

20% 10% 5%
(µn,σn) (0.34, 0.0075) (0.35, 0.0023) (0.35, 0.0006)
(µC ,σC) (649.7, 33.7) (676.3, 14.1) (685.2, 7.1)
ρn,C 0.67 0.45 0.28

Figure 6.26: Posterior tool life cdf at V = 192.02 m/min, fr = 0.51 mm/rev for
different likelihood uncertainties.

simple terms, VOI identifies the monetary gain from performing an experiment. Note

that the value of information is the expected value obtained after an experiment; it is

actually calculated before performing the test. The primary motivation for calculating

VOI is to design the experimental study. The experimental test point is chosen which

adds the most (expected) value to the profit. In addition, if the expected cost of

Table 6.14: Posterior (n, C) distribution for normal and uniform prior.

Parameters
Likelihood uncertainty

Uniform Normal
(µn, σn) (0.342, 0.001) (0.2661,0.02)
(µC ,σC) (649.7,33.7) (378.1,20.6)
ρn,C 0.67 0.65
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Figure 6.27: Prior cumulative distribution of tool life for the normal (n, C) prior.

Figure 6.28: Posterior tool life cdf at 2500 rpm for different priors.

performing an experiment is greater than VOI, it is probably not a good idea to

experiment at all.

6.5.1 Determining the Cost

Before calculating the value of information, it is necessary to determine the cost

of performing the test given the selected operating conditions. In this study, it was

assumed that a pocket was to be machined. The volume of material to be removed,

V ol, was assumed to be 1×105 mm3. The machining cost, Cm, is shown in Eq. 6.9.

C = tmrm +
(tmrm + Cte)tc

T
(6.9)
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The machining time is calculated from the material removal rate, MRR, and the

volume to be removed. See Eqs. 6.10 and 6.11:

MRR = NtΩftab (6.10)

tm =
V

MRR
(6.11)

Because tool life has a probability of failure associated with it (see Figure 6.11), the

machining cost is modified to be an expected cost. This requires that a user-defined

cost of tool failure, L, be included in the cost expression, where tool failure denotes

that the worn tool has exceeded the permissible wear limit (for example, maximum

FWW ) and a tool failure results in additional cost. This may be due to loss of

machining time, reduced productivity, cost of reworking the part, or discarding the

part altogether. The term L takes into account all the costs associated with a tool

failure. The value of L need not be determined accurately; L can be interpreted

as the value that must be paid to the user that will make him/her indifferent to a

tool failure. The expected machining cost at any spindle speed, E(Cm), is given by

Eq. 6.12, where p is the probability of tool failure (obtained from the posterior cdf as

shown in Figure 6.11, for example). The best spindle speed for testing corresponds to

the lowest expected cost from Eq. 6.12. To demonstrate the concept of expected cost,

let the cost of machining at some spindle speed be $10. Let the probability of tool

failure be 0.1 and let L also be equal to $10. For a production run of 100 parts, there

will be (on average) ten tool failures because p = 0.1. This will incur an additional

cost of $10 for each of the 10 tool failures. Thus, the expected total cost of machining

100 parts is $100×10 + $10×10 = $1100. The expected machining cost of a single

part is then $11. The values of the variables used to calculate machining cost for this

study are listed in Table 6.15.
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Table 6.15: Cost variables and values.

Variable Value Unit
d 19.05 mm
ft 0.06 mm/tooth
a 4.76 mm
b 3 mm
Nt 1 -
rm 10 $/min
V 1×105 mm3

Cte 10 $
tch 2 min
L 1000 $

C = (1− p)(tmrm +
(tmrm + Cte)tc

T
) + p(tmrm +

(tmrm + Cte)tc
T

+ L)

= (tmrm +
(tmrm + Cte)tc

T
) + pL

To illustrate the approach, consider the prior cdf shown in Figure 6.3. Assume

that an experimental tool life of 7 minutes at 5000 rpm for this example. The prior

cdf was updated using the procedure described in Section 6.2. Each tool life at 5000

rpm has a probability of failure associated with it. The tool life values, T , and the

corresponding probability of tool failure, p, were used to calculate the expected cost

for each 5000 rpm tool life by Eq. 6.12. Figure 6.29 shows the prior cost of machining

at 5000 rpm as a function of tool life. At higher tool life values (T > 9 min), the term

pL dominates the cost equation. At small values of tool life (T < 3 min), the value

of p is close to zero. Also, at small tool life values, where a higher number of tool

changes is required, the second part of Eq. 6.12 dominates the cost equation. From the

prior, the minimum machining cost for a spindle speed of 5000 rpm is $526.70 at 2.51

minutes with a probability of failure equal to 0.015. Figure 6.30 shows the posterior

cost at 5000 rpm. The minimum machining cost is $431.10 at 4.13 minutes with
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Table 6.16: Optimum machining cost and tool life for prior and posterior distributions.

Machining
cost ($)

Tool life
(min)

Spindle
speed
(min)

Probability
of tool fail-
ure

Prior 482.6 5.75 3740 0.008
Posterior 422.6 6.31 4292 0.021

a probability of failure equal to 0.028. This procedure was repeated at all spindle

speeds. Figure 6.31 shows the minimum cost as a function of spindle speed based

on the prior and the posterior distributions of tool life. Table 6.16 summarizes the

smallest value from the minimum cost curve and optimum tool life based on the prior

and posterior. Risk neutrality of the user was assumed in this study. However, for a

risk averse user, an acceptable threshold value of p can be set. This means that a risk

averse user can say that he/she is not willing to operate at any spindle speed where

a threshold value of p is exceeded. In that case, the expected cost at a spindle speed

would be calculated using tool life values with p values less than the user defined

threshold. Risk aversion leads to a conservative estimate of optimum tool life and the

corresponding spindle speed.

Figure 6.29: Machining cost based on the prior at 5000 rpm as a function of tool life.
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Figure 6.30: Machining cost based on the posterior at 5000 rpm as a function of tool
life.

Figure 6.31: Minimum machining cost based on prior and posterior tool life distribu-
tions.

6.5.2 Selection the Best Spindle Speed

To determine an optimum test spindle speed, the test spindle speed range was

divided into discrete intervals (50 rpm increments were used here). As a heuristic, it

was assumed that a test at a selected spindle speed gives the expected tool life at that

speed. (Recall that the value of information is determined before actually performing

the test.) The uncertainty in the experimental tool life was assumed to be 20%. It

was also assumed that 1000 pockets need to be machined. The value of information

is then given by Eq. 2.6.

Note that there is some cost associated with performing a tool life experiment. If



151

the cost of performing the experiment exceeds the VOI, it suggests that no additional

testing is necessary. The procedure to calculate VOI follows. First, the expected

cost before testing is calculated from the prior distribution (see Figure 6.3). Second,

at each test spindle speed, the prior is updated using the expected tool life at that

speed from the prior distribution. Third, the expected cost after testing is calculated

using the updated posterior cdf. As shown in Eq. 6.12, the expected cost of perform-

ing a test, E(Ct), is calculated as the sum of the expected cost for the experiment

(the product of the expected tool life and rate of machining), the tool cost, and the

expected material cost. The material cost is the product of the expected tool life,

material removal rate, and the cost per unit volume of the material. The cost per

unit volume of AISI 1018 steel was taken as 6×10−5 $/mm3. Note that the material

removal rate is dependent on spindle speed (the number of teeth, feed per tooth, and

axial/radial depths were assumed to be fixed in this study).

E(Ct) = E(T )rm + Cte + 6× 10−5E(T )MRR (6.12)

To illustrate, consider three test speeds, 1500 rpm, 5000 rpm and 7500 rpm. If a test

was to be performed at these speeds, it was assumed that the measured tool life would

be equal to the expected tool life at those speeds. The expected tool life (determined

from the prior) at 1500 rpm, 5000 rpm, and 7500 rpm is 302 minutes, 7 minutes,

and 2 minutes, respectively. Table 6.16 shows the prior and posterior minimum cost

given a measured tool life of 7 minutes at 5000 rpm. The same procedure is followed

to calculate the posterior cost given an experimental result of 302 minutes at 1500

rpm and 2 minutes at 7500 rpm. The posterior minimum cost after testing was then

used to calculate VOI. Note that it costs more to perform a test at 1500 rpm than at

7500 rpm because the tool generally lasts longer at lower cutting speeds. Table 6.17

summarizes the three results. It is observed that it is most profitable to complete a
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Table 6.17: Value of information for different spindle speeds

Test speed
(rpm)

Prior cost
($)

E(T)(min) Posterior
cost ($)

Test
cost($)

VOI ($)

1500 482.6 302.0 413.3 3056.8 82410
5000 482.6 7.0 422.2 83.4 79660
7500 482.6 2.0 421.4 31.2 78740

test at 1500 rpm. The procedure was repeated at all speeds from 1500 rpm to 7500

rpm with an interval of 50 rpm. Figure 6.32 shows VOI as a function of spindle speed.

It is seen that VOI is highest at 1900 rpm. Therefore, the best test speed is 1900

rpm.

Figure 6.32: Value of information for the first test. The maximum value of information
is obtained at 1900 rpm.

A test was performed at 1900 rpm using the procedure describes in Section 6.2.4.

Figure 6.33 shows the variation of FWW with cutting time for tests at 1900 rpm. .

The tool life was linearly interpolated between adjacent intervals if it exceeded 0.3 mm

at the final measurement interval. The time to reach a FWW of 0.3 mm was equal

to 164 min for testing at 1900 rpm. The prior cdf was updated using the procedure

described in Section 6.2 using the experimental result. The VOI calculation procedure

was repeated to find the next test speed. After the first update, the posterior was

used as the new prior. Again, before performing the tests, it was assumed that a
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test at any speed would yield the expected tool life at that speed. Figure 6.34 shows

the value of information for the second test. According to this figure, the best test

speed for the second test is 7500 rpm. A test was performed at 7500 rpm and a tool

life of 3.2 min was obtained. The prior (which is the posterior after the first update)

was again updated using the measured result. The procedure was repeated a third

time to determine the next spindle speed for testing. Figure 6.35 shows the value of

information for the third test. The test speed was 7100 rpm and the measured tool

life was 3.7 min. Table 6.18 summarizes the results.

Figure 6.33: Increase in FWW with cutting time at 1900 rpm.

Figure 6.34: Value of information for the third test. The maximum value of informa-
tion is obtained at 7100 rpm.



154

Figure 6.35: Value of information for the third test. The maximum value of informa-
tion is obtained at 7500 rpm.

Table 6.18: Value of information for different spindle speeds

Test number Test speed
(rpm)

VOI ($) Tool life
(min)

1 1900 78847 164
2 7500 116730 3.2
3 7100 41777 3.7

6.6 Conclusions

A Bayesian inference approach to tool life prediction was demonstrated using a

random walk method. In Bayesian inference, tool life is characterized by a probabil-

ity distribution and the distribution is updated when new information is available.

When new information in the form of experimental results is obtained, uncertainty in

the prior distribution can be reduced. Bayesian inference therefore provides a way to

combine prior data with experimental values to update beliefs about uncertain vari-

ables. Using the random walk approach for milling, the prior probability of tool life

was generated using sample tool life curves, where each path potentially represented

the true tool life curve. The probability that each sample path represented the true

Taylor tool life curve was updated using Bayesian inference. A likelihood function

was defined to describe how likely it was that that the sample tool life curve was
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the correct choice given the measurement result at a particular spindle speed. An

uncertainty of 20% was assumed for the measured tool life. The posterior tool life

distribution was then used to predict the values of tool life at different spindle speeds

and the results were compared to experiment. The same procedure was repeated

using an extended form of the Taylor tool life equation to incorporate the effects of

both cutting speed and feed in turning. In this case, sample tool life surfaces were

generated. The probability that a sample surface was the true tool life surface was

updated using Bayesian inference. The posterior tool life distribution agreed with the

experimental results in both cases. Comparisons were also made to deterministic pre-

dictions using a least squares best fit to identify the Taylor tool life model empirical

constants.

A value of information approach was implemented to select the best experimental

test speed(s). The value of information was defined as the expected cost prior to

testing minus the expected cost after testing. The experimental test point was then

chosen which added the most (expected) value to the profit. This approach combined

Bayesian inference with decision analysis.



CHAPTER 7: OPTIMAL PARAMETER DECISION: TITANIUM MILLING

7.1 Research Plan and Scope

The objective of this chapter is to apply the fundamental principles of decision

analysis to optimal machining parameter selection in milling, while considering the

uncertainty in both tool wear and stability. As a first step towards defining the

milling problem, an influence diagram, which provides a graphical representation of a

decision situation and the corresponding uncertainties, is provided in Figure 7.1. An

influence diagram consists of several nodes with arrows connecting them. The nodes

include: decision (rectangle), uncertainty (oval), value (hexagon), and deterministic

(double oval) types. The arrows represent relevance between the nodes. In the figure,

the objective function is profit which is represented as a value node. For constant

revenue, minimizing the machining cost leads to maximized profit. The machining

cost can be expressed as:

C = tmrm +
(tmrm + Cte)tc

T
(7.1)

where tm is the total machining time in minutes, rm is the rate (cost per unit time)

for operating the machine in $/min, tch is the tool changing time in minutes, Cte is

the cost of the tool in $, tc is the cutting time in minutes, and T is the tool life in

minutes. The machining and cutting times are dependent on the tool path, which, in

turn, depends on the machining parameters, including spindle speed, Ω, feed rate, fr,

axial depth of cut, b, and the radial depth of cut, a. The tool life is also dependent

on the machining parameters. The cost per unit time and tool changing time depend
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on the selected machine.

The machining parameters, Ω, fr, b, and a and the tool path are selected by the

user and represent the decision nodes. However, there is uncertainty in the machining

cost as a result of uncertainty in stability and tool life, which both depend on the

selection of the machine, tool, part material, and machining parameters. The objec-

tive of this research is to select the optimal machining parameters which minimize

cost while considering the uncertainty in tool life, and stability, for a given machine,

tool, tool path and workpiece material. A titanium alloy has been selected due to its

commercial relevance and low machinability.

Figure 7.1: Influence diagram for milling optimization in the presence of uncertainty
in stability and tool life. The design is assumed to include the part model/design
drawings, dimensions and tolerances, and desired functionality.

The data in the uncertain nodes can be represented by distribution trees. The

potential outcomes associated with each uncertainty are described using probabilities

in a distribution tree (see Figure 7.2). In Figure 7.2, ps denotes the probability of

stability for a given parameter combination and pt denotes the probability of tool

failure for a given tool life at a given parameter combination. For a selected set of
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machining parameters, defined in the corresponding decision node, the uncertainties

in stability and tool life (uncertain) nodes are quantified in the process distribution

tree.

Figure 7.2: Probability tree of stability (left) and tool wear (right)

The uncertainty node probability trees shown in Figure 7.2 are combined to con-

struct the process probability tree. The probability tree represents all possible com-

binations of outcomes and their probabilities. Figure 7.3 displays the probability tree

for milling parameter selection. The probability of each path through the tree is the

product of the probabilities at the branches, which is the joint probability of the out-

comes. For example, at selected machining parameters, the probability of obtaining:

1) stable cutting conditions; and 2) a tool life greater than the selected tool life value

is the product: ps(1- pt). Note that the sum of all the joint probabilities must be

unity since the outcomes are mutually exclusive and collectively exhaustive.

Each path has a corresponding machining cost associated with it. The total

machining cost for the selected machining parameters and tool path also depends on

the stability of the operating conditions, the tool life, and the final part accuracy.

For example, if the tool fails before the tool change time, there is additional cost

incurred due to the loss of machining time and subsequent reworking (or scrapping)

of the part. Similarly, if the final machined surface is undercut (i.e., less material is

removed than commanded due to forced vibrations during cutting), additional cost

is required to rework the part. If it is overcut (i.e., more material is removed than

commanded), however, the part may need to be scrapped and machined again unless

material can be added back (by welding, for example) prior to re-machining. These
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costs are incorporated in the machining costs as follows. Let U be the additional cost

associated with unstable cutting conditions, and L be the additional cost associated

with tool failure. Let C be the cost of machining the part under stable cutting

conditions given by Eq 7.1. The values U and L need not be determined accurately;

they can be based on subjective assessment of the user depending on the cost of

the part and the tool. In this way, the cost associated of machining the part under

stable cutting conditions and having a tool failure is C + L, since, in addition to

the machining cost, extra cost is required to address the tool failure. Figure 7.3 also

shows the machining costs associated with each path of the probability tree. Each

selected (Ω, ft, b, a) combination will have an expected machining cost which is equal

to the product of the probability of the path and the cost associated with the path.

(Recall that the value of pt is dependent on T .) For a selected set of machining

parameters, T can be chosen such that the expected machining cost is minimum. For

a risk neutral user, the optimum combination of machining parameters will be the

one with the lowest expected machining cost.

Figure 7.3: Probability tree for the decision problem with machining cost for each
path.
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7.2 Application

The procedure for optimal machining parameter was completed for machining

a Ti-6Al-4V part. Titanium and titanium alloys find widespread application due

to excellent corrosion resistance, high strength-to-weight ratio, and the ability to

maintain their properties at high temperatures. However, titanium has a low thermal

conductivity which results in reduced tool life at high speed and feed rates. As a

result, titanium machining is traditionally restricted to low cutting speeds (v = 30

m/min - 50 m/min) [70, 71, 72]. Improving titanium machining productivity remains

a challenge and, therefore, titanium was selected for this study. The objective is

to find the optimal parameters for machining titanium considering uncertainty in

stability and tool wear. As shown in Chapter 5, there is increased stability at low

spindle speeds ( 1000 rpm) due to the process damping phenomenon. The goal is to

find the optimum among the stable operating points considering the cost of tool, tool

life and the cost of tool failure. For titanium, note that there is a trade-off between

higher speeds and tool life. Higher cutting speeds enable higher material removal

rates, but the tool life decreases exponentially at higher speeds which increases the

cost.

Figure 7.4 shows the demonstration part, an I-section that was selected to model

common aerospace components. The dimensions of the initial block are 152.4 mm ×

80 mm × 76.2 mm. The thickness of the flanges and the ribs is 12.7 mm with a depth

of 12.7 mm. The total volume to be removed by machining was calculated as 1.063 ×

105 mm3. The machining center was a three-axis CNC Haas TM-1 milling machine. A

single-tooth indexable square end mill, 18.54 mm diameter (Kennametal model KICR-

0.73-SD3-033.3C) was used. The inserts were coated carbide with a 15 degree relief

angle, 0 degree rake angle, and no edge preparation and TiCN coating(Kennametal

KC725M). Note that the selection of the machine, tool, and tool path were not

considered in the decision framework (see Figure 7.1)
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Figure 7.4: Solid model for the titanium I-section.

The next step was to decide the range of possible values for the machining pa-

rameters: spindle speed, axial depth, feed per tooth, and radial depth. For the Hass

machine and tool selected, the maximum permissible spindle speed and axial depth

values were 4000 rpm and 7 mm, respectively. The following ranges were selected for

the machining parameters: 1) Ω: 200 rpm to 4000 rpm; 2) b: 0.5 mm to 7 mm; 3) ft:

0.05 mm/tooth to 0.1 mm/tooth. For this work, the radial depth was kept constant

at 9.27 mm (50% radial immersion). The ranges for Ω, b, and ft were divided into

discrete intervals of 100 rpm, 0.5 mm, and 0.025 mm/tooth, respectively, resulting in

a total of 30861 possible parameter combinations. As stated, the optimal parameter

combination is where the expected machining cost is the lowest. To calculate the

expected machining cost, the first step was to determine the probability of stability,

ps, and the probability of tool failure as a function of tool life, pt, for every parameter

combination.

7.2.1 Stability Assessments

Each parameter combination selected has some probability of being stable, de-

noted by ps, and a related probability of being unstable, (1- ps). As shown in Chap-

ter 4, the probability of stability can be modeled as a random walk in the absence
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of knowledge of the system dynamics. The method is non-informative; it does not

consider the underlying dynamics of the system. In this chapter, the probability

of stability was assessed by performing a Monte Carlo simulation using the process

damping stability model assuming uncertainty in the cutting force and process damp-

ing coefficients. The method is described in Chapter 5. The method takes advantage

of the model and the system dynamics. In this case, the tool point frequency re-

sponse function (FRF) of the system were measured and used in the process damping

stability model. Figure 7.5 shows the FRFs for the machine’s x (left) and y (right)

direction. Note that no uncertainty is assumed in the measured FRFs.

Figure 7.5: FRFs in the x (left) and y (right) directions.

The cutting force coefficients were identified using a linear regression on the mean

forces in the x and y directions at different feed per tooth values. The cutting force

was measured under stable cutting conditions using a cutting force dynamometer

(Kistler model 9257B). For these tests, the insert wear was monitored using in-process

optical flank wear measurements and the insert was replaced if the wear exceeded

a predetermined value. The mean and standard deviation of the force coefficients

were calculated from three measurements. The marginal prior distributions of the

force coefficients were: Kt = N(2111.2, 78.3) N/mm2 and Kn = N(1052.6, 27.9)

N/mm2, where N denotes a normal distribution and the terms in parenthesis provide

the mean and standard deviation, respectively. The prior marginal distribution of
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C was decided to be uniform, U(1.2×105, 0.1×105) N/m, where the values in the

parenthesis denotes the lower limit and the upper limit, respectively [73]. The prior

distributions of Kt, Kn, and C were assumed to be independent of each other. Note

that, in practice, the coefficients may be correlated to each other; however, since

no data regarding the correlation value was available, an independent assumption is

appropriate since it is conservative. Random samples (1×105) were drawn from the

prior distributions of and the stability limit was calculated for each sample. Figure 7.6

shows the prior cumulative distribution function (cdf) of stability. Figure 7.7 show

the probability of stability, p(stability), as a function of axial depth at 1500 rpm (left)

and 4000 rpm (right), respectively. As expected, the probability of stability decreases

at higher axial depths at a given spindle speed.

Figure 7.6: Prior cdf of stability.

7.2.2 Tool Life Assessments

Tool wear can impose a significant limitation on machining productivity, particu-

larly for titanium alloys. In this study, the dependence of tool life on spindle speed,

feed per tooth and axial depth was considered. An extended Taylor-type tool life

equation was used as shown in Eq. 7.2.

Ωpf qt b
rT = C (7.2)
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Figure 7.7: Probability of stability at 1500 rpm (left) and 4000 rpm (right).

where p, q, r, and C are the Taylor tool life constants. Note that the value of

tool life at a given (Ω, ft, b) combination is more sensitive to the exponents, p, q,

and r, than the constant C. The dependence of tool life on radial depth was not

considered [10]. As noted, the Taylor-type tool life constants are uncertain; the first

step is to determine their distributions.

Tyler et al. performed tool wear tests using the same Kennametal insert and

Ti-6Al-4V work material [73]. Figure 7.8 shows the tool life values as a function of

spindle speed [73]. Based on the experimental results, the distributions of the Taylor

tool life constants were calculated as: 1) p = N(1.05, 0.01); 2) q = N(1.00, 0.01); 3) r

= N(1.00, 0.01); and 4) C = N(267, 10). The distribution of the coefficients was based

on the experimental results reported in [73] and the user’s beliefs regarding tool life

distributions at different feeds and speeds. N here denotes a normal distribution and

the terms in the parenthesis denote the mean and standard deviation, respectively.

The exponent p has a mean value higher than the exponent‘s q and r, implying a

stronger dependence on spindle speed than feed per tooth and axial depth.

A Monte Carlo simulation was performed to determine the distribution of tool life.

Random samples were drawn from the prior distributions of the Taylor constants and

the tool life was calculated for each (Ω, ft, b) combination. The prior distributions of

the constants were assumed to be independent of each other. To illustrate, Figure 7.9
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shows the histogram of tool life at 500 rpm, 1000 rpm, and 3000 rpm. The feed per

tooth value was 0.05 mm/tooth and the axial depth was 2 mm. The experimental

values reported in [73] are denoted by ‘x’. Figure 7.10 shows the mean tool life

as a function of spindle speed and axial depth at 0.05 mm/tooth (top left), 0.075

mm/tooth (top right) and 0.01 mm/tooth (bottom right). The tool life samples were

used to calculate the cdf of tool life for each (Ω, ft, b) combination. To illustrate,

Figure 7.11 shows the cdf of tool life at different spindle speeds; the vertical axis

denotes the probability of tool failure, pt.

Figure 7.8: Experimental tool life values reported in [ref].

7.3 Results

The probability of stability and probability of tool life were used to calculate the

expected cost for each machining parameter combination; see Figure 7.1. Note that

for a selected (Ω, ft, b) combination, the probability of tool failure is a function of

the selected tool life value. Therefore, the expected cost calculation is performed at

every possible tool life value with a probability of tool failure from zero to unity.

The optimum tool life value for a certain (Ω, ft, b) combination is selected as the

value which minimizes expected cost; see the cost calculation procedure described in

Chapter 6. The cost associated with the tool failure was taken as $1000. The cost

of an unstable cut was assumed to be negative infinity due to the potential damage
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Figure 7.9: Histogram of tool life at 500 rpm (top left), 100 rpm (top right), and 3000
rpm (bottom left).

to the part and spindle. This specification implies that machining is not feasible at

unstable cutting conditions. Therefore, machining parameter combinations which are

known to be stable with certainty a priori are considered for the optimal calculation.

The parameters used for cost calculations are summarized in Table 7.1.

The procedure is repeated at every (Ω, ft, b) combination; Table 7.2 summarizes

the optimum parameters for milling the part. The time required for machining was

6.74 minutes with an expected cost of $191. The tool path was generated using Mas-

terCam; the actual machining time was measured to be as 7.27 minutes. Figure 7.12

shows the final machined surface. The machining of the I-section was stable; as noted,

the probability of stability was equal to unity at the optimum machining parameters.

Table 7.2 also lists the manufacturer/handbook recommended feed and speed values

for the given tool-workpiece combination [72, 74]. The recommended parameters do
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Figure 7.10: Mean tool life as a function of spindle speed and axial depth at 0.05
mm/tooth (top left), 0.075 mm/tooth (top right) and 0.01 mm/tooth (bottom left).

not take into account the dynamics and stability of the system and the probabilis-

tic nature of tool life and are therefore conservative. As observed, there is a 90%

reduction in the cost to machine the part.

As shown, the probability distributions of stability and tool life can be updated

using experimental results and Bayes’ rule. The procedure is as follows. The random

walk method for Bayesian updating can be used to update the probability that each

sample path is the true path using experimental results. For a particular machining

parameter combination, an experimental result provides stable/unstable and tool

life. The procedure is described in detail for application to stability and tool life in

Chapter 4/Chapter 5 and Chapter 6, respectively. Note that for tool life, the sample

paths will be modified to sample volumes since the dependence of tool life on axial

depth is considered along with feed and speed. However, depending on the prior
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Table 7.1: Parameters for cost calculations

Parameter Value Unit
rm 10 $/min
tch 2 min
Cte 10 $
L 1000 $
U −∞ $

Table 7.2: Optimum machining parameters for the part.

Parameter
Optimum Recommended

Value Unit Value Unit
Ω 3900 rpm 1000 rpm
ft 0.1 mm/tooth 0.05 mm/tooth
a 9.27 mm 9.27 mm
b 4 mm 2 mm
T 1.68 min 5 min
ps 0.003 -
pt 1 -
Cost 191 $ 1834 $
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Figure 7.11: Probability of tool failure as a function of spindle speed.

Figure 7.12: Machined I-section.

beliefs, additional experimentation may not be worthwhile. Therefore, the value of

experimentation method should be used to determine if additional testing is necessary

and at which parameters the tests should be performed. The procedure to calculate

value of information is also described in Chapters 4 - Chapter 6.

7.4 Conclusions

A decision analytic framework for optimal machining parameter selection in tita-

nium milling was described in this chapter. The objective was to minimize expected

machining cost, considering uncertainty in stability and tool life. The data in the

uncertain stability and tool life nodes were represented by distribution trees and com-
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bined to form a process probability tree. Here, ps denoted the probability of stability

for a given parameter combination and pt denoted the probability of tool failure for

a given tool life at a given parameter combination. For a machining parameter com-

bination, the outcomes in stability (stable/unstable) and tool life (failure/no failure)

have a probability and a cost associated with them. The expected cost was calculated

as a product of the probabilities and the cost. The optimal machining parameters

were selected to minimize the expected machining cost.



CHAPTER 8: CONCLUSIONS AND FUTURE SCOPE

The research is this dissertation focuses on optimal machining parameter selec-

tion in milling, while considering uncertainty in tool life and machining stability. The

research was divided into three steps: 1) consider uncertainty in stability neglecting

tool wear; 2) consider uncertainty in tool life assuming stable cutting conditions; and

3) combine uncertainty in both stability and tool wear. In the first step, stability

was characterized as a probability distribution instead of a deterministic boundary.

The distribution of stability was updated using experimental results. Two approaches

were considered: 1) the prior distribution of stability was modeled using a random

walk method assuming no underlying model; and 2) a process damping model was

used to model stability distributions. A value of information method was used for

selecting test points and the method converged to optimum machining parameters

by maximizing the value gained from the test. The proposed method has many ad-

vantages over traditional design of experiments techniques, such as response surface

methodology and Taguchi orthogonal arrays. In the second step, tool life was mod-

eled using a probability distribution which was updated using experimental results.

The method was used for pre-process selection of optimal spindle speed and corre-

sponding tool life value. In the final approach, uncertainties in stability and tool life

were combined. The optimal parameter selection was based on minimizing the ex-

pected machining cost. Results showed a 90% decrease in cost for milling a particular

titanium part compared to the manufacturer/handbook recommended parameters.

The future scope of the research is to work on a generalized probabilistic and

decision theory-based approach for dealing with uncertainty in manufacturing. A
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preliminary objective is to develop a unified approach for selecting optimal machining

parameters considering uncertainties in stability, tool wear, surface location error, and

surface roughness. In addition, a decision framework methodology could be developed

to include decisions such as selecting the best manufacturing process, tool, and tool

path. Additional studies in the manufacturing domain will focus on uncertainty

quantification and analysis concerning free-form surface metrology and tool condition

monitoring.
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