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ABSTRACT

MOHAMMED NORADEN ALSALEH. Formal Techniques for Cyber Resilience:
Modeling, Synthesis, and Verification. (Under the direction of DR. EHAB

AL-SHAER)

As cyber vulnerability and complexity increases, cyber-attacks become highly so-

phisticated and inevitable. Therefore, cyber resilience is necessary to make cyber

capable of misleading attackers in reaching their goals, resisting their progress, and

mitigating the consequences by timely responding to attack activities and preserv-

ing the mission integrity. Cyber resilience includes various techniques such as isola-

tion/segmentation, diversity, deception, adaptive response, and others. This disser-

tation focuses on addressing many challenges that limit the effectiveness and deploy-

ment of these four key resilience techniques. First, the lack of theoretical foundations

that allow for formulating and integrating isolation and diversity limits the capability

of optimizing resilience by composition. Second, the initiation of many mitigation

actions simultaneously requires techniques to support safe and efficient courses of ac-

tion (CoA) orchestration to guarantee correct and consistent defense actuation while

allowing for the maximum concurrency. Third, the lack of automated planning tech-

niques for cyber deterrence and deception based on malware code significantly limits

the effective deployment of these techniques against such innovative attacks. In this

thesis, we address each of these challenges in three chapters as will be described below.

In the second chapter of this dissertation, we provide a formal synthesis framework

that automatically generates a resilient network configuration, integrating available

software diversity and isolation measures to meet user-defined cyber risk and bud-

get constraints. We provide a formal specification for two key resilience techniques:

isolation that defines the network access control and countermeasures between ser-

vices, and diversity that assigns many software variants to network services. In our

model, we consider the interdependence between isolation and diversity to maximize
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the impedance of the attack propagation and optimize cyber resilience. The isolation

and diversity configurations are computed according to estimated risk after consider-

ing all possible attack paths to network assets, and all potential software variants and

countermeasures in each path. To make our approach scalable to large network sizes,

we developed model reduction and network decomposition techniques and evaluated

our framework using networks of thousands of nodes.

In the third chapter, we address the safety and efficiency of Active Cyber Defense

(ACD) policies that initiate courses of investigation and configuration actions to mit-

igate attacks automatically. We present a formal specification for ACD policies and

develop formal techniques and algorithms to maximize concurrency of action exe-

cution while guaranteeing that defense actions are conflict-free, executed correctly,

and satisfying the mission requirements. We model and verify the CoA orchestration

using satisfiability modulo theories, and bounded model checking.

In the fourth chapter, we present a new analytical framework to analyze the mal-

ware behavior and extract the agility parameters using symbolic execution to enable

automated planning of deterrence and deception. The agility parameters are system

variables on which attackers depend to discover the target system and reach their

goals; Yet, they can be reconfigured or misrepresented by the defender in the cyber

environment to mislead attackers or significantly increase the attack cost. We first

develop a symbolic execution engine to execute Microsoft Windows malware and char-

acterize their attack behavior based on their interactions with the environment. We

then analyze the attack behavior to extract the set of agility parameters that can de-

liver effective deterrence and deception based on well-defined criteria. Our analysis of

many recent malware instances shows that our framework has successfully identified

various critical parameters that are effective for cyber deterrence and deception.
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CHAPTER 1: INTRODUCTION

The recent incidents of data breaches, such as the attacks on SnapChat, Yahoo,

the SWIFT system, and others reported in Verizon Data Breach Investigation Re-

ports [1, 2] emphasize the fact that cyber breaches have become inevitable. This

requires high assurance of resilient defense techniques that go beyond the attack de-

tection and prevention to include mitigating attacks and managing their consequences

after being partially or entirely successful. In addition to fortifying the system assets,

this includes cyber deception, incident response, and recovery mechanisms. Many dif-

ferent techniques have been proposed to accomplish this and enforce cyber resilience.

However, the lack of formal modeling and analysis to compose, verify, and synthesize

cyber techniques limits their effectiveness significantly.

1.1 Cyber Resilience

The concept of resilience has been adopted by and extended to various domains,

including systems engineering [3, 4, 5, 6], software engineering [7, 8, 9, 10], and recently

cyber security domain [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. As a result, it has

been defined in various ways based on the domain and what needs to be resilient.

The word “Resilience” is defined as “an ability to recover from or adjust easily to

misfortune or change” by Merriam Webster dictionary. In control systems, a system

is resilient if it “maintains state awareness and an acceptable level of operational

normalcy in response to disturbances including threats of an unexpected and malicious

nature” [21, 22]. In [12], the resiliency of networks is defined based on the University

of Kansas ResiliNets project as “the ability to provide and maintain an acceptable level

of service in the face of faults and challenges to normal operation.” The resiliency of
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a cyber infrastructure system is defined in [11] as “the ability of the system to recover

from a cyber intrusion and to assume close to normal operations within an acceptable

time and at an acceptable total encompassing cost.”

The scope of this dissertation covers cyber networks and we follow MITRE’s defi-

nition [23], which defines Cyber Resilience as “The ability of a nation, organization,

or mission or business process to anticipate, withstand, recover from, and evolve to

improve capabilities in the face of, adverse conditions, stresses, or attacks on the sup-

porting cyber resources it needs to function.”. This definition broadly incorporates

the four goals of cyber resilience: anticipate (i.e., to maintain a state of informed

preparedness in order to forestall compromises of mission functions from adversary

attacks), withstand (i.e., to continue essential mission functions despite successful

execution of an attack by an adversary), recover (i.e., to restore mission functions

to the maximum extent possible subsequent to successful execution of an attack),

and evolve (i.e., to change mission functions and the supporting cyber capabilities,

so as to minimize adverse impacts from attacks). In this dissertation, we investigate

the resilience techniques related to the goals of withstand and recover in the face of

cyber-attacks.

There is a wide spectrum of resilience techniques that can contribute to one or more

of the cyber resilience goals. These techniques have been categorized by MITRE [12,

23] into the following major categories:

• Isolation/Segmentation. The isolation technique aims at separating the dubi-

ous components from the critical ones in a cyber network to reduce the ex-

posure of the system’s critical assets and limit the damage from potential ex-

ploits [24, 25, 26, 27, 28]. The isolation might be performed on different layers

of network components, either by physically isolating network assets, creat-

ing virtual islands for conducting sensitive operations through well-established

virtualization technologies, or providing appropriate access control and attack
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countermeasures, such as firewalls, intrusion detection and prevention systems,

and VPN gateways, in the networking infrastructure.

• Diversity. The diversity technique is implemented by using heterogeneous tech-

nologies for the different components, such as firmware, operating systems, and

software programs, instead of using the same technology [29, 30, 31, 32]. Di-

versity is a well-known practice for resilience [12, 33] that is used to limit the

impact of known exploits and disrupt the attackers by forcing them to learn

new exploits and attack multiple technologies.

• Adaptive Response. The adaptive response is the practice of taking cyber ac-

tions in response to security events that reflect ongoing attacks in the cyber net-

work. This technique requires self-awareness of the system’s operational state

and potential attack indications. The objectives of the adaptive response in-

clude containing the damage, maintaining the critical services in the system, and

recovering to an acceptable state. This process is normally governed by Active

Cyber Defense (ACD) policies that select and execute the appropriate Course

of Action (CoA) based on the received security event [34, 35, 36, 37, 38, 39, 40].

• Coordinated Defense. Practicing this technique requires managing and coor-

dinating multiple defense mechanisms against different attack activities, such

as multi-layer defense systems and reactive policies [35, 37, 41]. There are two

objectives for these techniques. First, it covers different attack activities and

potential attack patterns, which makes it harder for the attacker to successfully

attack critical assets because she needs to defeat multiple defense mechanisms.

Second, it ensures that one defense mechanism does not introduce adverse con-

sequences by interfering and conflicting with another mechanism.

• Deception. Deception techniques misrepresent the network configuration and

parameters to confuse the attacker. Deception can be used for various objec-
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tives: distorting the attacker’s reconnaissance process and making her uncertain

about the network assets, depleting her time and resources pursuing false in-

formation or exploiting decoy assets, and discovering her attack tactics and

techniques and, potentially, her identity and attack intents. Examples of de-

ception techniques in literature include honey-nets and honeypots [42, 43, 44],

mimicking and decoy technologies [45, 46].

• Deterrence using Dynamic Positioning. This technique dynamically mutates

network configuration and relocates critical assets promptly to make it hard for

the attackers to locate them, introduce uncertainty about the targeted system,

and force the attacker to spend more time and effort understanding the envi-

ronment and locating critical assets [47, 48, 49, 50]. It is essential for these

techniques to apply randomness, such that it is hard for attackers to discover

mutation patterns and anticipate the new locations.

• Other Techniques. There are many other techniques to achieve resilience ob-

jectives [23], including redundancy [51, 52, 53], Non-Persistence [54, 55, 56],

Substantiated Integrity [57, 58, 59], and Privilege Restriction [60, 61]. These

techniques are outside the scope of this dissertation, and we will only define

them briefly. Redundancy techniques introduce back up components for critical

services to maintain their operation if the original ones are disrupted. Non-

Persistence techniques refresh the critical information and services periodically,

such that if they are exploited, attackers cannot establish persistent foothold.

Substantiated Integrity techniques continuously verify that critical information

and services are not corrupted by performing integrity checks. Finally, Privilege

Restriction (i.e., least privilege) minimize the exposure of critical assets using

fine-grained access control and trust-based privilege assignments.

In this dissertation, we directly address many challenges that limit the effectiveness
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Table 1.1: Mapping Resilience Techniques to Broad Attack Phases

Resiliency Technique Pre-Attack During-Attack Post-Attack

Isolation/Segmentation F
Diversity F
Adaptive Response F F F
Coordinated Defense F
Deception F F
Deterrence (Dynamic Positioning) F F

and deployment of isolation, diversity, adaptive response, deception, deterrence using

dynamic positioning, and we touch base on coordinated defense as will be shown in

the following chapters. These techniques serve multiple resiliency goals, and they

can be effectual during multiple phases of attack kill-chain [62]. We classify these

techniques based on the attack phases, at which they can be effective, into the three

broad phases: pre-attack, during-attack, and post-attack. Our classification is shown

in Table 1.1.

1.2 Motivation: Cyber Resilience Challenges

Cyber resilience techniques objectives include misleading attackers in reaching their

goals, resisting their progress, and mitigating the consequences by timely responding

to attack activities and preserving the mission integrity. However, there are many key

challenges that limit their effectiveness and deployment. We discuss these challenges

in the following:

• Lack of formal frameworks for cohesive integration and composition of isolation

and diversity resilience techniques. Although there has been a significant body

of research for automated synthesis of isolation and diversity techniques, exist-

ing works study each technique independently and not as an integrated defense

system. Therefore, they do not provide the necessary modeling and specifica-

tion to characterize the interdependence between them. To devise cost-efficient

resilient configurations integrating both diversity and isolation, we need a uni-
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fied model to assess their decisions and impacts with respect to overall resilience

of the system against cyber-attacks.

• Adaptive response can jeopardize the network mission. Automation of Ac-

tive Cyber Defense (ACD) policies and techniques poses serious problems that

might jeopardize its effectiveness. Active cyber defense techniques execute cer-

tain courses of action in response to security events and incidents. As a result,

multiple courses of action, which operate on shared or interdependent cyber

resources, may be triggered and executed concurrently. This can lead to con-

flicting actions competing over the same resources. Besides, ACD actions can

change the network configuration state, possibly after each action. It is crucial

to ensure that the network mission requirements are not violated during, as

well as, after the complete execution of CoA. Thus, there is a need for provable

orchestration models that can execute the ACD courses of action safely and

efficiently, without posing high processing overhead.

• Lack of frameworks for automated deterrence and deception planning. Cyber

deterrence and deception require careful planning to be effective because they

are highly dependent on the attacker’s intents and strategies. Deception tech-

niques that are effective against specific attacks can be ineffective against others.

Hence, these dynamic techniques need to be planned and dynamically adapted

based on the attack behaviors. Due to the large number of malware captured

every day, reliance on manual effort and human intelligence in planning and de-

veloping deterrence and deception techniques can dramatically slow down the

response and limit its effectiveness. There is a need for automated tools that can

analyze real malware instances and devise appropriate and effective deception

and deterrence techniques.
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1.3 Work Objectives

The broad objective of this dissertation is to ensure safe and effective planning,

integration, and implementation of cyber resilience techniques. We model various

types of resilience techniques, measure their effectiveness against cyber threats, and

address their implementation challenges in order to accomplish the following specific

objectives:

• Risk-aware Composition of Isolation and Diversity. We discussed in the previous

sections the isolation and diversity techniques, which are typically planned and

implemented independently. Isolation determines the placement of countermea-

sures in the network infrastructure, where diversity determines the assignments

of software variants at the end-points (i.e., services). Hence, these two tech-

niques are fundamentally interdependent and must be consistent for both the

correct operation and the resilience of the network. If these two techniques are

integrated correctly, they can provide multi-layer defense systems. The first

objective of this dissertation is to answer the question of how isolation and

diversity can be combined and how we can make the interdependence and cor-

relation between them a leverage, rather than a liability, to provide the optimal

resilience against propagating cyber-attacks.

• Efficient and Provably Safe Active Cyber Defense. Multiple active cyber defense

strategies may take place in the same enterprise and execute concurrent courses

of action on the same system. A naive implementation of such strategies can

create conflicts that inhibit the proper response to security events or violate the

network mission invariants. The second objective of this dissertation is to or-

chestrate the implementation of concurrent courses of action in such a way that

(1) avoids the conflicts between the actions that might simultaneously operate

on shared system resources, (2) ensures that one action does not invalidate the
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conditions required to execute the others successfully, (3) fulfills the require-

ments of the network mission, and (4) minimizes the total time of executing the

courses of action.

• Extraction of Critical Parameters for Agility Planning. Resilience through de-

terrence and deception requires effective planning of a sequence of mutations

or misrepresentations of system parameters to steer the adversary according to

the desired defense goals. Implementing such techniques depends on the accu-

rate identification of the most appropriate parameters against specific attacks.

The third objective of this dissertation is to provide a systematic framework

that can automatically analyze given attack binaries and identify the system

configuration parameters that can manipulate the decisions of the attacker for

effective deception and deterrence.

• Cost-effective Cyber Resilience. This is the fourth objective of this dissertation

and it goes along the three previous objectives as we explain in the following.

First, a cost-effective composition of isolation and diversity takes into consid-

eration the costs of software variants and isolation countermeasures to reduce

the total composition cost while meeting the risk-reduction objectives. Sec-

ond, cost-efficient ACD orchestration must minimize the total execution time

of concurrent courses of action. Third, agility parameters extraction must con-

sider the cost of using each available configuration parameter in deterrence or

deception and select the ones that minimize the cost.

1.4 Research Challenges

To fulfill our research objectives, we need to address many research challenges. The

major challenges are as follows:

• Modeling the interdependence between isolation and diversity. Isolation and

diversity operate on different layers of network components, namely application-
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level software and networking infrastructure configuration. Despite that, it is

crucial for a consistent resilient configuration to model the interdependence

between them and how the decisions of one technique can influence the decisions

of the other. The major challenge in this regard is to find a common basis and

a metric that can quantify the impact of these different techniques to weigh and

priorities their decisions.

• Modeling advanced multi-step and multi-path cyber-attacks. As resilience tech-

niques are more about managing cyber-attacks and their consequences after the

initial breaches, we need to model multi-step attack behaviors, over multiple net-

work paths, in order to generate an effective resilient configuration that takes

into account all possible attack scenarios to critical network assets and evaluate

the aggregate effect of isolation and diversity for each of these scenarios.

• Courses of action interdependence. Active cyber defense policies and techniques

are not guaranteed to be independent. They might react to the same set of

events and update a shared set of configuration and control variables. Moreover,

there is no specific order of executing their actions, which makes it challenging

to analyze them under multiple levels of dependencies.

• Model checking with arithmetic constraints. To model and verify QoS con-

straints as part of the network mission requirements, we need to develop a

model checking approach that supports arithmetic theories. Arithmetic con-

straints can represent infinite sets, which makes traditional symbolic model

checking approaches, such as Binary Decision Diagrams and SAT solvers insuf-

ficient to support them.

• Scalability. Networks may consist of thousands of interdependent devices and

services. Therefore, it is challenging to model the complete configuration of such

large-scale complex networks to synthesize resilient configuration or verify the
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mission’s requirements. For resilient diversity and isolation configuration syn-

thesis, we need to model all the paths between connected devices and consider

all possible combinations of diversity and isolation decisions. For the bounded

model checking verification of the mission requirements with QoS and security

constraints, we need to model new variables and track the satisfaction of these

constraints in all possible paths between communicating devices.

• Customization of Dynamic Malware Analysis Tools. To identify the agility

parameters for effective deterrence and deception techniques, we need to analyze

attack binaries (i.e., malware). Malware developers use multiple programming

strategies to evade detection and prevention techniques and avoid static and

dynamic code analyses. The first challenge in this regard is selecting the tool-

set and the analysis environment that are appropriate for our agility-oriented

malware analysis. The second challenge is extending these tools to intercept

relevant interactions between the attacker and the system, study its dependency

on the system parameters, and analyze the complete set of execution paths

given the attack binaries without high-level specification or the source code of

the attack. The third challenge is selecting the set of interactions that can

successfully influence the decisions of the attacker to reveal her dependency on

the environment and her perception of the targeted system.

1.5 Contributions

The key contribution of this dissertation is developing novel formal techniques and

tools that can address the limitations in composing resilience techniques, orchestrating

active cyber defense actions, and systematic planning of deception and deterrence

schemes for resilient cyber systems. We address the research challenges mentioned

above and contribute to the efforts of cybersecurity to become cyber resilient through

the following specific contributions:



11

• Automated configuration synthesis for composing isolation and diversity tech-

niques. We develop a new formal synthesis framework to generate a consistent

configuration for a given cyber network that employs both diversity and isola-

tion resilience techniques. We model the interdependence between all possible

decisions and find a configuration exhibiting harmony of software diversity and

isolation countermeasures that reduces the risk of spreading cyber-attacks with-

out exceeding certain budget constraints.

• Model reduction to improve the scalability of isolation and diversity composi-

tion. Given the increasing complexity of cyber networks, which makes formal

configuration synthesis a challenge, we developed two model reduction tech-

niques to scale our synthesis framework for large networks. In one technique

we leverage the fact that some isolation countermeasures are bidirectional in

reducing the decision space because the same decision will be applied to traffic

flowing in both directions between a pair of communicating services. In the

other technique, we decompose the network and synthesis a resilient configura-

tion for the smaller sub-networks. We then combine them into one configuration

and prove that it is a valid resilient configuration for the whole original network.

• Formal modeling for active cyber defense policies. We present a formal model

for ACD policies that describes the organization and execution modes (i.e., con-

current or sequential) of ACD courses of action and the fine-grained components

of their cyber actions.

• Safe and Efficient CoA orchestration. We define a set of formal properties

that guarantee conflict-free execution of concurrent courses of action. Then, we

develop a novel formal synthesis framework that enforces these properties and

orchestrates the implementation of CoAs, such that all the actions are executed

successfully in the minimum possible time.
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• Model checking for mission requirements verification in OpenFlow-based Soft-

ware Defined Networks. We provide a bounded model checking framework to

verify that network data plane updates caused by the CoAs of ACD policies do

not violate the network mission requirements at any point during their execu-

tion.

• Agility-oriented dynamic malware analysis. We develop a dynamic analysis

framework based on symbolic execution engine to execute malware, intercept

its interactions with the environment, and analyze the execution traces to ex-

tract the environment parameters that can invalidate the attacker’s assump-

tions and perceptions of the system and mislead her according to deterrence

and deception goals. We then select the agility parameters that constitute con-

sistent, resilient, and cost-efficient deterrence or deception. That is, it does

not reveal the deterrence or deception scheme by neglecting interdependence

between system parameters, covers all possible execution paths and potential

evasion maneuvers of the attacker, and minimizes the changes and investments

required at the defender side, respectively.

1.6 Background

1.6.1 Satisfiability Modulo Theories (SMT)

In the past decade, Boolean formal methods (e.g., SAT and Binary Decision Di-

agrams [63, 64, 65, 66, 67, 68, 69]) has been used successfully in network security

analysis, especially for verifying security policy, which is defined as a sequence of

propositional logical constraints. However, due to the increasing complexity of net-

work security and business requirements, Boolean propositional logic constraints are

not suitable to develop security and resiliency analytics that requires verifying com-

plex arithmetic properties. SMT has been developed to overcome this shortcoming by

offering various theories that efficiently deal with integers, real numbers, arrays, un-
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interpreted functions, linear and non-linear arithmetic, etc. In addition, SMT solvers

provide a much richer formal modeling platform compared to SAT solvers.

SMT solvers have been shown to be powerful tools in solving constraint satis-

faction problems that arise in many diverse areas including software and hardware

verification, type inference, extended static checking, test-case generation, scheduling,

planning, graph problems, etc. [70, 71, 72, 73, 74]. An SMT instance is a formula in

first-order logic, where some functions and predicate symbols have additional inter-

pretations according to the background theories. SMT is the problem of determining

whether a formula is satisfied or not. SMT solvers are efficiently applied in solving

large and complex problems. It has been shown that modern SMT solvers can check

formulas with hundreds of thousands of variables, and millions of clauses [75]. In this

research, we primarily use theories of integers, real numbers, and linear and non-linear

arithmetic for modeling, and we find that our models are highly efficient in verifying

resiliency metrics and techniques.

1.6.2 Bounded Model Checking

The Model Checking is the problem of deciding whether a certain property φ holds

on all the paths of a transition system that is normally specified as the Kripke struc-

ture M (formally, M |= Aφ). Looking from a different perspective, systems can be

verified by checking the existential problem M |= E¬φ, which decides on the exis-

tence of a path in which the property φ does not hold. The existence of such path

means that the system does not satisfy the property (i.e., M |= E¬φ→M 2 Aφ).

In bounded model checking, we look for property violations in a bounded ver-

sion of the system (i.e., Mk |= E¬φ). In the bounded system Mk, only execution

paths with at most k transitions are considered. If a violation is discovered in the

bounded version, this also proves that a violation exists in the complete system (i.e.,

Mk |= E¬φ → M |= E¬φ). The bounded existential problem can be reduced to a

satisfaction problem by encoding the system along with the property as a quantifier
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free formula that is satisfied if a violation exists within the bounded model. The

satisfiability of the quantifier free formula can be determined using state of the art

SMT solvers, such as Z3 [76], YICES [77], or CVC4 [78].

1.6.3 Symbolic Execution with S2E Platform

Many threat analysis techniques are used to analyze and detect potential threats by

understanding the attack behavior based on formal attack description [79, 80, 81, 82].

Static analysis tools study the source code or the binary execution files of the attack.

However, in many cases, the source code may not be available, and attackers often

use some binary obfuscation techniques [83] to hide the malicious behavior, which

makes it hard to detect them statically. To overcome these challenges, other malware

analysis techniques use dynamic analysis by running the attack executable files in a

controlled environment and capturing the execution traces [84, 85, 86]. The traces are

then analyzed to look for patterns of malicious behaviors. Both static and dynamic

malware analyses have been traditionally used to build behavioral profiles for malware,

often represented by system call graphs, to detect new malware that is likely to exhibit

the same behavior.

The idea of symbolic execution was first introduced in [87] as a means for program

testing and debugging. The intuition of the symbolic execution is to use symbolic

values for the program inputs instead of their actual values. As a result, the program’s

internal variables will be described as symbolic expressions in terms of the symbolic

inputs. The symbolic execution platforms keep track of logical expressions for all the

possible execution paths in a program, often referred to by path constraints. The

path constraints are conditions in terms of symbolic inputs that need to hold for the

execution to follow the corresponding path. A new execution path is forked for each

outcome of the conditional statements in terms of the symbolic inputs.

The Selective Symbolic Execution (S2E) [88] is one open-source platform that can

be used for symbolic execution, and it allows developers to write tools for analyzing
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the behavior of software systems. It provides the means to install software systems

in controlled environments, symbolically execute them, and analyze their execution

traces. S2E utilizes the idea of selective symbolic execution, which automatically

minimizes the amount of code that must be executed symbolically given a target

analysis. This enables the simultaneous analysis of entire families of execution paths,

instead of just one execution path at a time. S2E provides multiple ways to define

symbolic inputs and variables based on the targeted software. If the source code of

the software is available, the code can be instrumented using a particular API to

mark symbolic variables programmatically. If the code is not available, S2E provides

a plugin that can be used to mark specific memory locations or CPU registers as

symbolic at execution time.

1.7 Overview of the Technical Approach

We present in this section a high-level description of our technical approaches to

pursue our research objectives.

1.7.1 Automated Synthesis of Isolation and Diversity Configuration Composition

The automated generation of resilient network configuration requires accurate and

precise modeling of the isolation and diversity resilience techniques. In this work,

we model the network as a set of services connected by virtual links. A virtual link

between any two services may consist of multiple physical links in the underlying

networking infrastructure (i.e., between hosts, switches, and routers). Multiple soft-

ware variants can fulfill each service. Software variants of the same service may be

different software (e.g., developed by different vendors) or different implementations

of the same software. Different software variants have different attack surfaces or ex-

ploitability scores [89, 90, 91, 92, 93, 94] and different costs. We assume that multiple

isolation countermeasures, such as firewalls and intrusion detection systems, can be

placed at any virtual link in the network. The countermeasures may have different
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effectiveness for different software variants. This means that the effectiveness of the

same countermeasure may vary based on the software variant selected for the targeted

service. Besides, different countermeasures usually have different costs.

Our objective is to find the optimal software variants assignments (i.e., which soft-

ware variants are assigned to services) and isolation countermeasures placements (i.e.,

which isolation countermeasures are assigned to virtual links), such that certain cyber

risk and budget thresholds are not exceeded. The total cost is merely the sum of all

the selected software variants and isolation countermeasures. We define a metric to

measure the cyber risk of the propagating attacks to drive our resilient configuration

synthesis. We model the risk imposed on a target service considering the following

criteria: the exploitability score of the selected software variant for the target service,

the similarity between the software variants of the target and the source services,

and the effectiveness of the isolation countermeasure implemented in between. We

consider the similarity between their software variants a factor of risk because sim-

ilar variants are likely to exhibit the same vulnerabilities. Hence, attackers might

learn vulnerabilities of one software variant by exploiting another. Our risk model

considers all the attack paths that lead to network services. If different attack paths

impose different risks on the service, we take the most conservative option and make

our decisions based on the one of the maximum risk (i.e., least attacking effort [95]).

Moreover, we consider direct and indirect reachability, such that an attack path con-

sists of a sequence of attack hops, where different software variants are selected for

different hops and different isolation countermeasures are deployed at each attack

step.

We formalize the problem of software variants assignment and isolation counter-

measures placements as a constraints satisfaction problem. The decision variables

of the problem determine which software variant should be selected for each service

and which countermeasure should be placed at each virtual link. Based on that, we
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encode the constraints required to calculate the risk imposed at each service based

on diversity and isolation decision variables. In addition, we encode the constraints

to calculate the cumulative risk and cost for each possible configuration. We imple-

mented this problem utilizing the Z3 SMT solver that will select the configuration

that satisfies the given risk and budget constraints. We evaluated our solution for

networks of up to 600 services and attack paths of 8 hobs. However, we experienced

insufficient memory space problems when exceeding these number. To solve this scal-

ability issue, we developed model reduction and network decomposition algorithms.

In the model reduction algorithm, we leverage the fact that some countermeasures are

bidirectional. Hence, if a bidirectional countermeasure is selected for one direction of

communication between a pair of services, we do not need to consider the other pos-

sible countermeasures for the opposite direction of communication. This reduces the

number of possible solutions and enhances the performance of our framework. In the

network decomposition algorithm, we split the network into two portions, where we

ensure that this decomposition does not invalidate our assumptions and requirements

to calculate accurate risk scores. We present a proof that a solution to the problem

after decomposition is also a solution to the original problem if the whole network

is considered as one unit. This improves the scalability of our synthesis approach to

accommodate networks in the order of thousands of nodes.

1.7.2 Provably Safe and Efficient Course of Action Orchestration for Active Cyber

Defense Policies

For safe and efficient deployment of Active Cyber Defense (ACD) policies, we

present a formal specification for them, and we develop formal techniques and al-

gorithms to maximize concurrency of actions execution while guaranteeing that they

are conflict-free, executed correctly, and do not violate the mission requirements.

The ACD policies consist of rules that associate specific security events and incidents

(e.g., infected hosts, flooded links, and detecting untrusted communication sessions)
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to courses of configuration and investigation actions that mitigate the potential con-

sequences of the events. A Course of Action (CoA) is an ordered set of cyber actions

(commands) organized for parallel or sequential execution. Each action specifies a

cyber command (e.g., block traffic, migrate a virtual machine), an actuator that will

carry the execution of the action (e.g., a switch or a virtualization controller), an

object (e.g., particular traffic flows or virtual machines), and it can optionally have

pre- and post-conditions that are expressed as arithmetic logic formulas in terms of

control variables. The values of the control variables represent the dynamic state

of the network attributes, such as servers’ capacities or links utilization. Thus, the

pre-condition describes the system’s dynamic states that can lead to the successful

execution of the action, such as whether sufficient capacity exists to migrate a VM.

The post-condition reflects the system’s dynamic state after performing the action

(e.g., only 50 GB remain in the desk space of the destination server).

Since CoAs are interdependent and can influence the execution of each other due

to sharing and operating the same set of objects or control variables, we identify a set

of conflicts that might prevent the actions from being executed successfully within

an acceptable time. We define formal properties to guarantee conflict-free, complete,

and efficient execution of CoAs. The first property ensures that concurrent actions

that share objects or control variables be executed sequentially. The second property

ensures that cyber actions whose pre- and post-conditions overlap are composed such

that the pre-condition of one action is satisfied by the post-conditions of the prior

actions. The third property ensures the minimum execution time for all action of the

actively scheduled CoAs. We developed an orchestrator that takes a set of CoAs and

finds a Global Orchestrated CoA Workflow (GOAL) that determines the optimal time

to execute each action to satisfy the three properties defined above. We leverage the

optimization problems modulo theories provided in Z3 to implement our orchestrator.

We evaluated the performance of the orchestrator, and we managed to orchestrate up
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to 500 concurrent actions within 90 seconds.

While the orchestrator guarantees conflict-free, complete, and efficient execution

of the actions, the CoA orchestration will not be safe without verifying that the

network mission requirements are also satisfied during the execution of the ACD

policy. For this purpose, we develop a specification language to define the network

mission requirements as reachability, QoS, and security requirements. Then, we model

the network data plane configuration along with the network mission requirements as

SMT constraints and verify the satisfaction of the requirements using bounded model

checking. We track the configuration updates after each action in the ACD policy

and efficiently verify the satisfaction of the network mission requirements.

1.7.3 Automated Extraction of Agility Parameters for Cyber Deterrence and

Deception Planning

For the automated creation of deception and deterrence resilience techniques, we

analyze the malware behavior and extract candidate agility parameters that are nec-

essary for planning effective deterrence and deception techniques. To execute the

malware symbolically, we used a tool called Selective Symbolic Execution (S2E) en-

gine. S2E provides a controlled environment to run binary code symbolically and

supports a basic set of features, such as monitoring certain functions and tracing the

execution, with the ability to develop custom plugins for various analysis objectives.

Since our objective is to discover the attacker’s dependence on the system parameters

and since malware interacts with its environment through system and library API

calls, we configured the (S2E) through special scripts, written in LUA language [96],

to intercept API invocations and mark the relevant output information as symbolic.

Marking the symbolic information is crucial for the correctness of symbolic execu-

tion because they determine how the malware will follow different execution paths

based on the decisions taken in terms of the symbolic information. We have selected

more than 130 APIs that are commonly used by Malware, and we mark their return
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and output arguments as symbolic. Further, we mapped these APIs to the system

parameters that determine or influence the values returned by the APIs.

After instrumenting S2E with the appropriate scripts and plugins required for our

agility analysis, we run the malware to build an attack behavior model that captures

all the invoked APIs and the control and data dependency between them. We analyze

this behavior model with respect to deception and deterrence by (1) identifying the

execution paths that are relevant to the desired resilience technique (i.e., the path that

can mislead the attacker for successful deterrence or deception), and (2) eliminating

parameters that do not influence the attacker with respect to the desired technique.

We end up with a set of relevant paths, each of which is populated with system

parameters that represent the necessary conditions for the attacker to follow the

path. We select a subset of those parameters that are consistent to preserve the

integrity of the deterrence and deception from the attacker’s point of view, resilient

to provide deterrence and deception in all possible execution paths that lead to the

desired goals, and cost-efficient to mutate or misrepresent with the minimal cost.

In the evaluation, we present case studies for four major malware families: Worms,

Cryptocurrency-mining malware, Ransomware, and Credential-stealing malware. For

each case study, we modeled its behavior, extracted candidate deception parameters,

and show how they can be used to design different deception schemes for different

goals.

1.8 Organization

The rest of the dissertation is organized as follows. Chapter 2 presents our au-

tomated formal framework for synthesizing the diversity and isolation configuration.

We present a risk metric to assess the quality of both isolation and diversity decisions,

formalize the problem as a constraint satisfaction problem given risk and budget con-

straints, and we implement our solution using the Z3 SMT solver. In Chapter 3,

we present our solution for active cyber defense orchestration and verification as a
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way to implement a resilient adaptive response. Chapter 4 presents our automated

agility-oriented malware analysis framework and demonstrates its effectiveness using

real malware case studies. We discuss our technical approach for symbolically execut-

ing malware and analyzing the execution results with respect to concrete properties

for resilient deception and deterrence. In Chapter 5, we present the summary of this

dissertation, emphasizing the contributions and evaluation results, and we close this

dissertation with some directions for future work.



CHAPTER 2: AUTOMATED SYNTHESIS OF ISOLATION AND DIVERSITY

CONFIGURATION COMPOSITION

The rapidly increasing rate of cyber-attacks against computers and critical infras-

tructure mandates cyber defense strategies that go beyond preventing attacks on the

network perimeter. Resilient defense strategies should be put in place to resist on-

going attacks and contain their propagation. Isolation and Diversity are resilience

techniques that can proactively accomplish this objective.

Isolation is used to separate critical assets in the network from untrusted compo-

nents by hardening the network configuration through the use of security countermea-

sures, such as firewalls and intrusion detection systems. This reduces the exposure of

the critical assets to potential threat sources, resists the propagation of cyber-attacks,

and guarantees that the critical functions of the network remain operational even if

some nodes in the network are compromised [97, 98, 99, 25, 26]. Diversity techniques

refer to the informed selection of software variants for the different services in the

network to place heterogeneous software in potential attack paths. This includes,

the selection of operating systems, software applications, and third-party libraries

[95, 100, 29, 30, 31, 32] to variegate the software attack surface over attack paths.

Software diversity limits the impact of discovered exploits and disrupt the attackers

by forcing them to learn new exploits and attack multiple software programs. Both

isolation and diversity techniques can increase the system’s resistance by disrupting

the propagation of sophisticated attacks through the network. However, the question

that still stands is "how can these techniques be combined together to provide the

optimal resilience against attacks?".
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2.1 Motivation

Isolation and diversity are highly correlated techniques because one controls the net-

work infrastructure where the other manages the software at the end-points. Nonethe-

less, their correlation represents an opportunity and a challenge at the same time. It

is an opportunity because they can complement each other to provide complete pro-

tection against attack propagation at different layers of the network. It is a challenge

because they operate on different interdependent layers and they must be consistent

to guarantee the correct operation of the network. To take advantage of the oppor-

tunity and address the challenge, we need to find a safe and effective composition

that weighs the different decisions of both techniques, especially under a limited bud-

get and finds a consistent configuration that reduces the risk of attack propagation.

A few shy attempts have been made for the optimal composition of isolation and

diversity [95, 101]. However, it was made not clear how isolation and diversity con-

tribute to the overall resilience of the network. They calculated the overall resilience

of the network as the weighted sum of diversity and isolation metrics, where arbitrary

weights are given to both the diversity and isolation. There are no scientific bases for

selecting the optimal weights that maximize the overall network resilience.

In this work, we evaluate both the diversity and isolation techniques using the

same metric; that is, the reduction in the likelihood of cyber-attack. We link each

possible diversity or isolation action to a change in the attack likelihood and select the

appropriate actions accordingly. The following key observations inspire our approach.

First, diversity decisions are more effective if taken based on path-oriented analysis

rather than pairwise or entropy-based approaches [100, 102, 103, 104]. Let us assume

that we have two software variants that are completely different software programs

(i.e., developed by different vendors), A and B. If we only consider the pairwise

diversity between connected pairs of assets in the network, then the attack path that

exhibits the software variants’ pattern A→ B → A→ B is considered a secure path
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since each asset has a completely different software variant from the preceding and

following assets it in the path. However, if we follow a path-oriented approach, this

path does not provide sufficient diversity because the third asset is the same as the

first. Once the attacker exploits the first two assets, she will learn the vulnerabilities

of both software variants A and B, and she can exploit the remaining two. Second, a

specific isolation countermeasure might have different effectiveness scores for different

variants of software. This implies that there is dependency between diversity and

isolation decisions with respect to their effectiveness in reducing the cyber risk in

the network. Placing a particular software variant in one asset (diversity action) in

the network mandates a specific set of countermeasures (isolation actions) that are

effective against the exploits directed towards that variant.

2.2 Related Work

The problem of automated synthesis of isolation and diversity configuration has

attracted many researchers, who developed metrics and synthesis techniques to find

the optimal deployment of these techniques. However, most of the existing works

focus only on either isolation or diversity independently.

There are two lines of work related to our diversity model: the automated genera-

tion and assignment of diverse software implementations. For automatic generation

of diverse software, researchers developed frameworks that can produce multiple im-

plementations of the same software program, but with different attack surface. The

idea behind this line of work is to randomize different aspects of software implemen-

tation to produce multiple and different instances while each instance implements

the desired functionality of the software. This includes instructions substitution

and reordering [105, 106, 107, 108], basic block shuffling and control flow flatten-

ing [109, 110, 111], and stack layout and functions randomization [112, 113, 114, 115]

among others. The output of these automated diversity techniques is the input for

our work in this chapter. We take the diverse software instances and assign them
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to the services in the network, considering the available isolation countermeasures

to reduce the risk and increase the network resilience. In the other line of work re-

lated to diversity, researchers provided diversity metrics and software assignments

techniques to network services. In [95], the authors presented a metric to measure

the diversity of a network, based on the least attacking effort, and they discussed

how it could be applied in instantiating network diversity models. Other metrics,

such as [116, 117], have been introduced to calculate the attack likelihood, consid-

ering the diversity of network components. The diversity principle has been used

for implementing intrusion-tolerant web servers in [118]. Authors in [29, 30, 31, 32]

investigated different typologies and architectures for cyber networks that counteract

malware and worm attacks employing the diversity principle. These works focus only

on diversity, and they do not consider the interdependence between software variants

with the isolation countermeasures.

Isolation and segmentation is also a well-known technique for resilience. It has

been widely adopted in the networked control systems as a means for fault isola-

tion [119, 120, 121, 122]. Besides, researchers provided metrics that quantify the risk

imposed of cyber-attacks, considering isolation and segmentation techniques [24, 25,

26, 27, 28]. In [97], the authors proposed a framework that automatically generates

isolation configuration in terms of access control policies based on given usability and

cost constraints. In [123, 124], the authors used attack countermeasures trees, one

variant of attack graphs, that takes into account the attack actions as well as coun-

termeasures and finds the optimal placement of countermeasures to block the critical

attack paths. These isolation techniques only consider the isolation actions, and they

do not evaluate the effectiveness of these countermeasures with respect to different

software variants.

A few shy attempts have been made for the fine-grained composition of isolation

and diversity. In [101], the authors presented a framework to synthesize network
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resilience configuration considering variations of diversity and isolation configurations.

However, it was made not clear how isolation and diversity contribute to the overall

resilience of the network. They calculated the overall resilience of the network as the

weighted sum of diversity and isolation metrics, where arbitrary weights are given to

both the diversity and isolation. There are no scientific bases for selecting the optimal

weights that maximize the overall network resilience. In our previous work [125], we

developed a framework to verify the effectiveness of isolation and diversity techniques

in OpenFlow-based SDN. However, the framework can only be used for verification,

not synthesis, and the user must provide separate properties for each of diversity and

isolation. In this chapter, we use the effectiveness of both isolation and diversity

configurations in reducing the risk in the network as a unified measure for both of

these techniques. Also, we compute the risk considering all the possible paths that

lead to the network’s critical assets, and we evaluate all the possible diversity and

isolation actions in all the paths.

2.3 Problem Statement and Contributions

This chapter addresses the problem of automatic synthesis of isolation and diversity

configuration to proactively achieve network resilience. Given the network Topology,

network services placement (which services run on which hosts for a successful oper-

ation), available software diversity options (which software variants can be used for

each service along with the variants costs and exploitability scores), available isola-

tion options (attack countermeasures along with their costs and effectiveness scores

against attacks), and a certain financial budget, the problem is to find appropriate

(1) software variants assignments and (2) isolation countermeasures placement in the

network, such that the global and local cyber risk, against multi-step cyber-attacks,

is bounded within by a certain threshold.

To accomplish this, we first develop a metric for measuring the risk of multi-step

persistent cyber-attacks in the network. Then, we use the risk metric to formalize
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the selection of software variants and the placement of isolation countermeasures as

a constraints satisfaction problem and solve it using the Z3 SMT solver [126] to find

a satisfiable resilience configuration. We summarize our contributions in this chapter

as follows:

• We model the isolation and diversity resilience techniques and define their ef-

fectiveness as a composite measure that represents the reduction in the attack

likelihood, and the resulting network risk.

• We develop an SMT-based formal synthesis framework that generates a resilient

network configuration, which includes the diversity and isolation configurations

to satisfy the risk and budged constraints.

• We develop two optimization techniques to improve the scalability of our ap-

proach: a model reduction heuristic and a network decomposition algorithm.

We consider the global impacts of all diversity and isolation decisions as several at-

tack paths might share a single decision and affects the risk of various assets in the

network. Since we have budget constraints and it may not be feasible to select all the

recommended isolation and diversity configurations, we find a balance between them

with respect to the global risk.

2.4 Network Model

The scope of this work encompasses the configuration of the network infrastructure

and the software variants of the services running in the network. To capture the im-

pacts of isolation and diversity techniques in the network infrastructure and software,

we first present abstract models for the network infrastructure configuration, isola-

tion, and diversity. Then, we integrate them together in one model that represents

the network augmenting isolation and diversity actions. This final model is used later

to assess the risk and devise appropriate diversity and isolation configurations.
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In the abstract model, a cyber network consists of a set of services connected

through end-to-end communication links and is represented as the graphG = (H,S, θ, E),

where H is a set of hosts, S is a set of services hosted in the network, θ(.) is a mapping

function that maps each service to one host, and E = {〈si, sj〉 | si ∈ S, sj ∈ S, i 6= j}

is the set of edges that represent the required end-end connections between services

in the network (i.e., the reachability requirements). Note that we define E to model

the end-to-end connections rather than physical links. An end-to-end connection is

practically a path that may be composed of multiple physical links. For example, if

the traffic from service a needs to go through a router in order to reach service b. The

set E will include only one edge that abstractly represents the complete path from a

to b, which is composed of two physical links in this case: a physical link from service

a to the router and another from the router to service b.

2.4.1 Software Diversity Model

To increase uncertainty to stepping stone adversaries, who move from one machine

in the network to another, organizations can use heterogeneous software variants,

which exhibit different attack surfaces, for network services so that attackers cannot

reuse that same exploits for different services in an attack path. Two different software

programs are considered variants of a service when they have different implementa-

tions but can fulfill the functions of that service. On the one hand, software variants

can be completely different software programs developed by different vendors. For

example, Apache HTTP Server, Internet Information Services (IIS), and H2O HTTP

server are all valid software variants for an HTTP web service. In addition, there

exists artificial and automated software diversity techniques that take a program as

an input and produce multiple variants whose implementations are different from the

original program [127, 128, 129, 130]. The new variants are generated by randomizing

implementation aspects, such as the code layout, in a way that is not predictable by

the attacker. Examples of software implementation aspects that can be randomized
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include code layout, address space layout, stack layout, register allocation, and sys-

tem call mapping. This randomization process can change the location and/or the

representation of the potential software flaws and significantly reduces the chance of

reusing the same exploits again by the attackers.

The generation of software randomized implementations is out of the scope of this

work. We assume that several software variants are given for each service regardless

of whether they are completely different software programs or randomized implemen-

tations of the same program. In addition, we assume that a cost for each software

variant is given, and the similarity score between any two software variants can be

estimated. In Definition 1, we define the Diversity Space, which captures the software

variants, their costs, and similarity scores.

Definition 1. (Diversity Space) We define the diversity space of a cyber network

as the tuple (V, σ, ε, ρ, δ), where:

• V is the set of all software variants that are available to be used for all the

services in the network.

• σ(.) : S → 2V is a function that determines which software variants are available

for a particular service. Recall that S is the set of services in the network.

• ε(.) : V → [0, 1] is the exploitability function that returns the intrinsic likelihood

of exploiting software variants.

• ρ(.) : V × V → [0, 1] is the similarity function that determines the similarity

between any two software variants, where a value of 1 means that they are

completely similar and a value of 0 means they are completely different from

each other.

• δ(.) : V → Z∗ is the cost function that determines the cost of each software

variant, where Z∗ is the set of non-negative integers.
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The exploitability function, ε(.), reflects the ease and technical means by which

the software variant can be exploited. Its value is estimated based on the CVSS

scores [89] of the variant’s known vulnerabilities. The similarity, represented by the

function ρ(.), with respect to the attack surface, between a pair of software vari-

ants is a measure of the common security weaknesses among them. It is obvious

that randomized implementations of the same software program are likely to have a

high degree of similarity since they may share a significant portion of code. How-

ever, it is also possible to have a high degree of similarity between different software

programs due to modular programming, software reuse, iterative development, and

open-source packages. One technique that can be used for similarity estimation is to

compute the share gadgets between software variants. Gadgets are short instruction

sequences from various library functions that can be leveraged by attackers to perform

malicious actions [131, 132]. The cost, δ(.), is an important factor for selecting an ap-

propriate combination of software variants that meets the budget constraints. Note

that randomized implementations of the same software program are likely to have

the same costs. However, the software variants of each service may be completely

different software programs, which will have different costs.

2.4.2 Isolation Model

Isolation is achieved by deploying appropriate attack countermeasures, such as

firewalls, VPN gateways, and intrusion detection systems, in the potential attack

paths from threat sources to critical network assets. Traffic inspection, encryption,

and access control actions are examples of countermeasures actions. In this work, we

do not restrict the type or the number of countermeasures that can be considered

in our framework. However, we assume that the effectiveness of countermeasures for

resisting attacks with respect to particular services can be estimated. Specifically, the

effectiveness is measured by the probability of the countermeasure to prevent exploits

directed towards particular services. This measure can be measured statistically from
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previous incidents. In addition, each attack countermeasure is assigned a cost that

reflects both the operational cost of deploying the countermeasure and the usability

cost that is incurred due to the service interruptions that might be experienced during

and after deploying it. In Definition 2, we define the Isolation Space, which captures

all the available countermeasures, their costs, and effectiveness scores.

Definition 2. (Isolation Space) We define the isolation space of a cyber network

as the tuple (C, η, δ), where:

• C is the set of all countermeasures that can be deployed in the network.

• η(.) : C × V → [0, 1] is the effectiveness function that determines the effective-

ness of each countermeasure with respect to software variants, V .

• δ(.) : C → Z∗ is the cost function that determines the cost of each countermea-

sure, where Z∗ is the set of non-negative integers.

The effectiveness function, η(.), returns the effectiveness of each isolation coun-

termeasure with respect to a software variant. Note that it is a function of both

the countermeasure and the software variants because we assume that countermea-

sures will have different effectiveness scores for different software variants based on

its attack surface. For example, intrusion detection systems may be effective against

exploits related to improper input validation weaknesses, while they may not be ef-

fective against exploits related to inadequate encryption. This shows the dependency

between isolation and diversity decisions that we need to consider simultaneously

to optimize the network resilience. Both software variants and isolation countermea-

sures should be selected such that we gain the maximum effectiveness against software

exploits and decrease the risk as will be shown in the following sections.

2.4.3 Resilient Network Model

Within the context of isolation and diversity as attack resistance techniques, the

resilient network configuration is the one that implements the optimal composition of
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isolation (i.e., countermeasures placement) and diversity (software variants selection).

In the following definition, Definition 3, we extend the network abstract model to

include the isolation and diversity configurations.

Definition 3. (Resilient Network Configuration) We model a cyber network as

the graph G = (H,S, θ, E , µ, λ), where:

• H = {h1, h2, ..., hn} is a set of hosts.

• S = {s1, s2, ..., sm} is a set of services hosted in the network.

• θ(.) : S → H is a mapping function that maps services to hosts. Each host may

run up to |S| services.

• E = {〈si, sj〉 | si ∈ S, sj ∈ S, i 6= j} is the set of edges that represent the

required end-to-end communication links between services in the network.

• µ(.) : S → V is the diversity function that determines which software variant

is selected for a particular service in a particular host. V is the complete set of

software variants.

• λ(.) : E → C is the isolation function that determines which countermeasure

is applied at each end-to-end communication link. C is the complete set of

countermeasures.

Based on this definition, the problem we are addressing in this work is finding the

diversity and isolation functions, µ(.) and λ(.), that reduces the risk of propagating

cyber-attacks. Note that the diversity function selects a software variant for each

particular service located in a particular host. This means that if two different hosts

in different locations in the network run the same type of service, web service for

example, it is possible to select a different software variant for each of them based on

the attack paths that can reach them.
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2.5 Risk Assessment Under Isolation and Diversity Configurations

In this section, we present a metric that measures the residual risk in the network for

given isolation and diversity configurations. The risk metric considers the propagation

of cyber-attacks through lateral movement in a chain of stepping stones, and the

effectiveness of the isolation and diversity configurations at each chain link to obstruct

the propagation. Before presenting the risk metric formally, we discuss the attack

propagation model.

2.5.1 Attack Propagation Model

We present in the following our main assumptions about the attack propagation

and its relation to the isolation and diversity configurations.

• Attacks can propagate from one victim service to another target only if (1)

they are connected through an end-to-end connection, (2) the isolation coun-

termeasures that is deployed in the connection are not sufficient to obstruct the

propagation, and (3) the attacker can exploit the vulnerabilities in the target

service (i.e., she possesses the required knowledge and skills).

• Compromising a service increases the attacker’s capability of exploiting other

services that use similar software variants. That is because compromising a

service indicates that the attacker is familiar with its weaknesses and increases

her knowledge and experience, which makes it easier to exploit similar ones.

Hence, the software weaknesses that an be exploited belong to two independent

classes: (1) known vulnerabilities that are being scored in public scoring systems

like CVSS [89] and (2) vulnerabilities that are learned by compromising similar

software variants. We assume that these two classes are disjoint.

• The attacker’s capability of exploiting a service can be estimated based on the

intrinsic exploitability scores of the selected software variant and its similarity
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with all the software variants that the attacker encountered in the previous

stepping stones in the attack path.

Based on this attack propagation model, isolation and diversity configurations are

tightly coupled with the conditions of attack propagation. Effective isolation can

obstruct the propagation by deploying appropriate countermeasures between services,

and effective diversity can limit the capability of attackers to exploit services by

selecting software variants with the least possible similarity.

2.5.2 Risk Metric

The risk imposed on a particular service in the network depends on the likelihood

of compromising it and its asset’s monetary value. We follow an attack path-oriented

approach to calculate the risk, in which there might be multiple paths an attacker can

use to reach network services. We consider all possible attack paths and we calculate

the risk based on the weakest path (i.e., the path in which the service is more likely

to be compromised).

To calculate the risk imposed on a particular service s in the network, we first

build a set of cycle-free paths. Each path is represented by a sequence of services

that starts at a service that can directly or indirectly reach the service s and ends at

s. We build this set using a depth first search algorithm for a network configuration

modeled according to Definition 3. The depth of the search is bounded by a given

limit, k. Then, we compute the likelihood of compromising the service over each

path. If there are multiple paths to reach a particular service, we select the one that

has the maximum likelihood of compromise because it is the weakest path posing

the maximum risk. Formally, let Qs be the set of all possible attack of the service s

and let pQ(s) denote the likelihood of compromising the service s through the path

Q ∈ Qs. Further, let ν(.) : S → Z∗ be the value function that maps each service to
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its asset value. Then, the risk, Rs, imposed on the service s is computed as follows:

Rs = ν(s)× max
Q∈Qs

{pQ(s)} (2.1)

The path Q ∈ Qs can be defined as Q = {q1, q2, ..., qk} where ∀i∈[1,k−1] : {qi ∈

S, 〈qi, qi+1〉 ∈ E}, and qk = s since all the paths in Qs end at service s. We compute

the likelihood of compromising any service qi in the path Q recursively as follows:

pQ(qi) =


ε(µ(qi)) i = 1

pQ(qi−1)× g(qi | qi−1) i > 1

(2.2)

Recall that µ(qi) returns the software variant of the service qi and ε(.) is the ex-

ploitability function defined in Definition 1. Hence, for the first service in the sequence

(i.e., when i = 1), the likelihood of compromise is simply its intrinsic exploitable score,

ε(µ(qi)). For the following services, g(qi | qi−1) represents the probability of compro-

mising qi given that its predecessor in the sequence, qi−1, is already compromised.

According to our attack propagation model, g(.) depends on the effectiveness of the

countermeasure, between qi and its predecessor, and the ability of the attacker to

exploit qi. Formally,

g(qi | qi−1) = (1− η(λ(〈qi−1, qi〉), µ(qi)))×
(
ε(µ(qi)) + max

j∈[1,q−1]
ρ(µ(qi), µ(qj))

)
(2.3)

where λ(〈qi−1, qi〉) is the isolation countermeasure deployed over the end-to-end con-

nection from qi−1 to qi, and η(.) is the effectiveness of that countermeasure with

respect to the software variant used for the service qi (i.e., µ(qi)). Note that we

subtract the effectiveness of the countermeasure from 1 since what we calculate here

is the likelihood of the attacker bypassing the countermeasure, the opposite of the

effectiveness. The ability of exploiting qi is computed as the sum of two values: the
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intrinsic exploitability of the software variant, ε(µ(qi)), and the maximum similarity

of the software variant of qi to all software variants preceding it in the path Q. In our

attack propagation model, we assumed that the set of known vulnerabilities, which

is used to compute the exploitability score of a specific software variant, is disjoint

from the vulnerabilities learned by compromising other software variants. Hence, the

sum of a software variant’s exploitability score and its similarity with the preceding

software variants will lie in the interval [0, 1] since they are disjoint. Moreover, we

assume that the probability of exploiting a service is proportional to the similarity of

its software variants with the previously compromised services. Thus, for simplicity,

we assume in this formalization that they are equal, and we use the similarity as the

probability of exploit.

Since the service s is the last service in the sequence Q (i.e., qk = s), the likelihood

of compromising s through the sequence Q is equal to pQ(qk). We compute the risk

of each service in the network according to Equation 2.1 and we compute the global

risk of the entire network, RG, as follows:

RG =
∑
s∈S

Rs (2.4)

Constraining the global risk, RG, is our objective in the following formal resilient

configuration synthesis problem.

2.6 Resilient Configuration Synthesis

In this section, we formalize the problem of diversity and isolation configurations

synthesis as a constraint satisfaction problem. We show how we encode the network

configuration and the risk metric as SMT constraints in order to find a satisfiable

resilient configuration within budget constraints.
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2.6.1 Decision Variables

We first define the decision variables, whose values represent the output of the

synthesis problem. Our objective is to find the selection of software variants for the

network services and the placement of attack countermeasures. Hence, we define two

sets of decision variables as follows:

V = {v1, v2, ..., vm} ∀i∈[1,m] : vi ∈ V

C = {cij | for each connection 〈si, sj〉 ∈ E} ∀i,j∈[1,m] : cij ∈ C

where m is the number of services in the system. We define a variable in V for each

service in S, whose value is the index of the software variant that is recommended to

be used for the service (i.e., ∀i∈[1,m] : µ(si) = vi, where µ(.) is the diversity function

in Definition 3). Similarly, we define a variable in C for each service end-to-end

connection in E , whose value is the index of the countermeasure that is recommended

to be used over the connection (i.e., ∀i,j∈[1,m] : λ(〈si, sj〉) = cij, where λ(.) is the

isolation function in Definition 3).

2.6.2 Risk Computation

Now, we show how we encode the appropriate assertions that will calculate the risk

imposed on each service in the network based on our risk metric, with respect to the

decision variables. First, we define a variable ei, where i ∈ [1,m], for each service

in the system to hold its intrinsic exploitability score. Note that the exploitability

depends on the software variant that is selected for the service. Hence, we assign

a value for this variable based on the corresponding decision variable in vi ∈ V as

follows:

∀i∈[1,m] : ∀j∈σ(si) : (vi = j)→ (ei = ε(j)) (2.5)
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where σ(.) is the mapping function defined in Definition 1 to determine the alterna-

tive software variants for each service si. The function ε(.) returns the fixed intrinsic

exploitability score of a particular software variant (denoted by j in the equation).

The intrinsic exploitability, ei, of the service si is fixed regardless of the attack path(s)

it resides in. Hence, one variable per service is sufficient to model its intrinsic ex-

ploitability.

Next, we add the variables to calculate the likelihood of compromise for each service

over all possible attack paths. Since the same encoding is used for all the paths, we

will show how to do this in detail for one path only. Let us consider the attack path

Q = {q1, q2, ..., qu}, we define a variable, denoted by pQi for the i-th service in the

attack path Q, which represents the likelihood of compromising that service over that

particular path. Based on our risk metric, the likelihood of compromising the first

service in a path depends only on its intrinsic exploitability. Hence, we need to encode

only the following assertion:

pQ1 = ej , where q1 = sj (2.6)

For the following services in the attack path, it is more complicated since the calcu-

lation of their likelihood of compromise must consider all the isolation and diversity

decision variables along the path. For each service qi in the path, where i > 1, we de-

fine the variable ti−1,i that represents the effectiveness of the countermeasure deployed

between qi−1 and qi. Let c represents the decision variable in C that corresponds to

the isolation countermeasure between qi−1 and qi and let vi be the diversity decision

variable for the software variant of the service qi. Then, the value of ti−1,i is assigned

according to the following expression:

∀
j∈C

: ∀
l∈σ(qi)

: (c = j) ∧ (vi = l)→ (ti−1,i = η(j, l)) (2.7)
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where η(c, l) is the effectiveness function that returns the effectiveness of the coun-

termeasure c with respect to the software variant l. This constraint assigns the value

η(c, l) to the variable ti−1,i if the countermeasure j is deployed between qi−1 and qi

and if the software variant l is selected for the service qi.

Next, we define the variable gQi to represent the likelihood of exploiting any service

qi in the path Q due to its similarity with all the services preceding it in the path.

Note that this depends not only on the software variant selected for qi, but also on

the software variants selected for all services {q1, q2, ..., qi−1}. To model this, let the

variables {v1, v2, ..., vi} represent the software variants of all the services {q1, q2, ..., qi},

where ∀k∈[1,i] : vk ∈ σ(qk). We compute the set O of all the possible permutations,

where each permutation O ∈ O = {o1, o2, ..., oi} is a vector of assignments for all

the variables in {v1, v2, ..., vi}. The variable gQi is then assigned a value based on the

following expression:

∀
O∈O

:

 ∧
k∈[1,i]

vk = ok

→ (
gQi = max

k∈[1,i−1]
ρ(oi, ok)

)
(2.8)

where ρ(vi, vk) is the similarity function that returns the similarity between the the

two software variants vi and vk. This assertion will evaluate the similarity between

the service qi to all the individual services preceding it in the path {q1, ..., qi−1} and

assign the maximum similarity to the variable gQi .

Now that we have computed the values of ti−1,i, ei, and gQi for each service qi in

the attack path Q, we add an assertion for each of the services in {q2, q3, ..., qu} that

represents its likelihood of compromise according to the formula that is defined in

Equation 2.2 as shown in the following:

∀
i∈[2,u]

: pQi = pQi−1 × (1− ti−1,i)×
(
ei + gQi

)
(2.9)
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We start from i = 2 because we have calculated pQ1 of the first service in the path in

Equation 2.6. This assertion calculates the likelihood of compromise recursively for

each service in the path Q based on the decision variables and according to Equa-

tion 2.2 in our risk model.

Based on this encoding, the variable pQu holds the likelihood of compromising the

target service qu since it is the last service in the attack path Q. We now define a

variable, ri, to represent the risk for each service si in the network based on the values

of the isolation and diversity decision variables.

∀
i∈[1,m]

: ri = ν(si)× max
Q∈Qsi

pQ|Q| (2.10)

Where ν(si) is a constant that represents the asset’s monetary value of the service si

and Qsi is the set of possible attack paths that lead to si. We use pQ|Q| to represent

the likelihood of compromising the last service in the attack path Q. Note that if

there are more than one path leading to the service si (i.e., |Qsi| > 1), we calculate

the risk based on the weakest one (i.e., the one having the maximum likelihood of

compromise).

2.6.3 Constraints

The generation of effective isolation and diversity configurations is driven by a spe-

cific set of constraints on the global risk and cost of recommended configurations.

To define these constraints, we define the variables RISK and COST that hold the

global risk and the total cost of implementing recommended configurations, respec-

tively. Since we defined the set of variables {r1, r2, ..., rm} that represent the risk of

individual services in the network. The COST is computed in terms of those variables

calculated based on Equation 2.4 in our risk model as follows:

RISK =
∑
i∈[1,m]

ri (2.11)
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To calculate the cost of diversity decisions, we define the variables {d1, d2, ..., dm}

that represent the costs of the software variants selected for the services in the net-

work. The values of those variables are calculated based on the diversity decision

variables, V, as follows:

∀
i∈[1,m]

: ∀
j∈σ(si)

: (vi = j)→ (di = δ(j)) (2.12)

Similarly, we define a set of variables to hold the cost of the recommended isolation

measures. For each end-to-end link 〈si, sj〉 ∈ E , let aij represent the cost of the

isolation measure that is recommended for that link. The values of those variables

are computed based on the isolation decision variables, C, as follows:

∀
〈si,sj〉∈E

: ∀
l∈C

: (cij = l)→ (aij = δ(l)) (2.13)

Finally, we compute the total cost of all the isolation and diversity decisions as follows:

COST =
∑
i∈[1,m]

di +
∑

〈si,sj〉∈E

aij (2.14)

The risk and cost thresholds that constrain our configuration synthesis can now be

defined in terms of the RISK and COST variables. Let us assume that we have the

risk and cost thresholds, τR and τC , respectively. We add the following constraints to

our constraints satisfaction problem:

RISK ≤ τR (2.15)

COST ≤ τC (2.16)

We add another set of operational constraints that are related to the consistency

between the different software variants. Different software variants may have different
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requirements for the Hardware and Software Platform running them. Since a single

host in our network can run multiple services, all the selected software variants that

are selected for its service should be able to operate on the same platform. To encode

these operational constraints, we first build a set of neighbors for each service in the

network. The neighbors of a service are the services that are co-located with it in

the same host. Formally, for each service si ∈ S, we define the set of neighbors

Ni = {j | sj ∈ S, sj 6= si, θ(sj) = θ(si)}, where θ(.) is defined in our network model as

the mapping function that returns the host running a specific service. In addition, for

each software variant i ∈ V , we define a set of compatible variants as Wi ⊂ V . This

set is static and is provided as input along with the diversity space of the network.

Based on this, the operational constraints are encoded as the following assertions:

∀
i∈[1,m]

: ∀
j∈σ(si)

: (vi = j)→
∧
n∈Ni

 ∨
w∈Wj

(vn = w)

 (2.17)

This constraint intuitively specifies that for any service in the network, its software

variant is compatible with the software variants selected for the other services that

exist on the same host.

2.7 Implementation and Evaluation

We have implemented our framework using the Z3 SMT solver 4.5.0. We used the

Z3 C++ API to build the assertions required to model the network configuration and

the constraint. The configurations generated using our formal synthesis framework are

proven resilient by construction against any attack that follows our attack propagation

model. In this section, we present our scalability evaluation for networks of various

parameters, such as network size, the depth of attack paths, and the number of

software variants and isolation countermeasures. We generated a number of synthetic

networks of up to 600 hosts and evaluated the time required by our framework to

generate a resilient configuration.
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2.7.1 Evaluation Results

To generate the synthetic networks, we used aSHIIP [133], a random topology gen-

erator that allows one to generate networks using various generation models. The

authors in [133] show that the general linear preference model (GLP), with certain

parameters, generates topologies, which most appropriately represent the Internet

based on the internet topologies gathered by the Center for Applied Internet Data

Analysis (Caida) [134]. We used the GLP model with the recommended parameters

(the probability parameter set to 0.55 and the parameter responsible for the choice of

attachment nodes for edges set to 0.75) to generate all the networks for the following

experiments. All experiments were conducted on a standard PC with an Intel Core

i7 CPU and 16 GB of RAM.
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The Impact of Network Size. We generated a number of networks of sizes that

ranged from 100 to 600 nodes and we evaluated our framework for attack paths of up

to 8 intermediate nodes. The results are shown in Figure 2.1. For networks beyond

600 nodes and a depth of 8 or greater, our synthesis engine does not return a result

because of insufficient memory. As shown in the figure, the time required to generate

resilient configuration exhibits quadratic growth with respect to the network size.

The Impact of Attack Path Depth. In this experiment, we evaluated our frame-

work using two networks of sizes 300 and 500 nodes, but with varying attack path

depth. As depicted in Figure 2.2, the depth varies between 3 and 8 intermediate

nodes. The synthesis time exhibits exponential growth in terms of the attack path

depth. We believe that an attack depth of 8 intermediate nodes is feasible. Conse-

quently, our framework will run for networks of up 600 hosts under this configuration.

The Impact of Number of Software Variants. In this experiment, we evaluated

our framework using two networks of sizes 300 and 500 nodes under a fixed attack

depth of 6, but with varying number of software variants for each service. As de-

picted in Figure 2.3, the number of software variants is between 2 and 15 variants per

service. The synthesis time also exhibits exponential growth, but the growth rate is

slow compared to the growth rate with respect to the attack path depth. This growth

is a result of considering the similarity between each software variant in an attack

path with all the software variants preceding it in the path. Increasing the number

of software variants significantly increases the number of permutations we need to

consider (Equation 2.8), which increases the solve time exponentially.

The Impact of Number of Isolation Countermeasures. We evaluated our
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framework using the same networks from the previous experiment with respect to

the number of possible countermeasures for each end-end link in the network. As

depicted in Figure 2.4, the number of countermeasures was increased from 5 to 50.

The results show a minor impact on the synthesis time with respect to increasing

number of countermeasures. The number of countermeasures will only increase the

possible values for the isolation decision variables, and it affects how we compute the

effectiveness of each isolation decision in the network, this is reflected in Equation 2.7.

However, increasing this number does not require adding new variables or additional

nonlinear computations.

2.7.2 Discussion

The evaluation results display that our framework is not affected by the number

of countermeasures and it can consider a reasonable number of 15 software variants

per service. Moreover, it can scale to large networks considering short attack paths.

However, the time complexity is very sensitive to the attack depth as shown in Fig-

ures 2.1 and 2.2, where it takes around one hour for a network of 600 nodes compared

to less than a minute for the same network with an attack path depth of 6. This

high complexity limits the applicability of our framework for large-scale networks. To

overcome this challenge, we provide two heuristics that make our framework scale to

large networks.

2.8 Model Reduction and Network Decomposition for Scalable Synthesis

In this section, we present two heuristics to enhance the scalability of our synthesis

framework. These solutions are inspired by the two observations that are depicted in

Figure 2.5 and discussed in the following sections.
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2.8.1 Model Reduction

Based on our risk model, we enumerate all possible attack paths that lead to each

service in the network. Then, during the synthesis process, we define variables for each

end-to-end link that assign an appropriate countermeasure to each end-to-end link.

However, as depicted in Figure 2.5a, we may have the case in which a bidirectional

end-to-end link is shared among multiple attack paths. The red dashed lines in

Figure 2.5a represent two attack paths that consists of the same nodes and share the

bi-directional end-to-end link connecting nodes A and B.

We leverage this observation to reduce the number of variables needed to model

our risk metrics (Equation 2.7) and reduce the synthesis time as a result. Both the

attack paths shown in the figure consist of the same services, but with different order.

From the diversity point of view, both paths are identical because the attacker will

encounter the same number of distinct software variants on both paths regardless of

the order. However, from the isolation point of view, the paths are different because

the isolation countermeasure that is required on one direction may be different than

the one required on the opposite direction. Since some of the isolation measures may

be bi-directional (e.g., if a firewall denies communication from client x to the web,

it is unlikely that it will allow the web to connect to the client x), it is sufficient to

consider only one direction and use the same set of variables for both directions.
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We implemented this reduction technique and evaluated the performance of our

synthesis framework with and without it. The exact times for solving the synthesis

problems for network of variants size are shown in Figure 2.7. Roughly, this technique

reduces the time requirements by 30%.

2.8.2 Network Decomposition

Our risk metric considers the exposure of network services to potential threat

sources within attack paths of a bounded depth. As depicted in Figure 2.5b, the

threat sources that are further than the attack path depth from a particular victim

have no effect on its risk, which implies that they can be in a completely separate

sub-network without affecting our risk calculations. Based on this observation, we

decompose the network into two or multiple sub-networks, solve them separately, and

then combine the results to have one resilient configuration that satisfies the risk and

budget constraints.

To decompose a network into two sub-networks, we developed Algorithm 1 (a visual
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decomposition (for large networks).

demonstration for the decomposition process is provided in Figure 2.6). The input

of this algorithm is the original network represented as the graph g = (S, E). The

algorithm consists of two steps. First, we leverage an existing heuristic algorithm for

finding partitions of graphs, known as Kernighan–Lin [135], to split the network into

two disjoint sub-graphs of equal, or nearly equal, sizes (Line 1 in Algorithm 1). The

Kernighan–Lin algorithm will find an edge cut-set that splits the network evenly into

the two sub-graphs g1 and g2. In addition to the sub-graphs themselves, we record two

sets of nodes, b1 and b2 that contain the border nodes in both sub-graphs (i.e., those

nodes that were originally connected to the edge cut-set and they are represented

as the dark circles in Figure 2.6). Second, taking each sub-graph separately, we run

a depth first search starting from each of the border nodes to enumerate all nodes
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Algorithm 1: Network Decomposition Algorithm
Input : graph g and the depth k
Output: graphs g1, g2

1 g1, g2, b1, b2 = Kernighan_lin(g)
2 foreach node n in b1 do
3 e = find_foreign_end(n)
4 f1 = DFS(g2, e, k − 1)
5 append_subgraph(g1, f1, n, e)
6 end
7 foreach node n in b2 do
8 e = find_foreign_end(n)
9 f2 = DFS(g1, e, k − 1)

10 append_subgraph(g2, f2, n, e)
11 end
12 return g1, g2

that can be reached within the attack path depth k from the border nodes. We add

those nodes to the other sub-graph. This step will create an overlap between the

two sub-graphs, but it is required to preserve the soundness of our risk calculations.

Since the risk imposed on a particular service depends on all the other services that

can reach it within the depth k, this overlap guarantees that all the relevant threat

sources of each service exist in the same sub-graph. This step is implemented by the

lines 2-11 in Algorithm 1. The function find_foreign_end(n) returns the other end of

the cut-edge that is connected to the border node n. The depth first search function,

DFS(gi, e, k − 1), starts from node e and traverses the sub-graph gi to enumerate

all nodes that can be reached within k − 1 steps. We use k − 1 because we have

already called find_foreign_end(n) once, which means there are k− 1 out of k steps

remaining. The function append_subgraph(gi, fi, n) appends the sub-graph fi to gi

and adds an edge between the node n in gi and e.

We evaluated Algorithm 1 with respect to the reduction in the network size and

the time it takes to decompose networks of up to 10, 000 nodes. The reduction in

the network size is simply the difference between the size of the resulted sub-graph

and the size of the original graph divided by the size of the original graph. As shown
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in Figure 2.8, the algorithm reduces the size of the network by at least 36%. The

segmentation time grows exponentially with respect to the network size, but it takes

a shorter time compared to the time required to solve the original network without

segmentation, as will be shown later.

Decomposing a network based on Algorithm 1 results in two sub-network that can

be solved separately. Although we have two separate sub-networks, the risk and cost

thresholds are set for the entire original network and not for each segment separately

and the cumulative risk and cost of both solutions must meet these thresholds. We

have developed Algorithm 2 that can consider multiple solutions the sub-networks

until it finds a pair of solutions that satisfies the global risk and cost constraints.

Algorithm 2: Synthesis
Input : graphs g1, g2 and the thresholds R,C
Output: solution for sg

1 msub = solve(g1, R, C)
2 while msub.hasMoreSolutions() do
3 ssub = msub.getSolution()
4 r = R− ssub.eval(RISK)
5 c = C − ssub.eval(COST )
6 m2 = solve(g2|ssub , r, c)
7 if m2.hasMoreSolutions() then
8 return ssub ∪m2.getSolution()
9 end

10 end
11 return null

The inputs of Algorithm 2 are the two sub-networks generated by Algorithm 1 along

with the global risk and cost constraints and the output is a solution for the whole

original network, sg. In line 1 of the algorithm, we solve the first sub-network g1 with

the global risk and cost constraints. If no satisfying solution exists given the global

risk and cost constraints, then there is no solution for the entire original network. If

solutions are found for the sub-network g1, we start enumerating them one by one

(Line 3) and evaluating the actual risk and cost of implementing each on the first sub-
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network. Recall that RISK and COST are two variables defined to hold the global

risk and configuration cost according to equations 2.11 and 2.14. The actual risk and

cost of a solution, RISK and COST , may be less than or equal to the global risk

and cost thresholds, R and C, respectively. We calculate the remaining risk and cost

by subtracting the actual ones from the global risk and cost thresholds (Lines 4 and

5). The remaining risk and cost, r and c, represent the local risk and cost thresholds

for the other sub-network. Hence, we attempt to solve sub-network g2 given those

thresholds (Line 6). The existence of a solution for the second sub-network, g2, given

the local risk and cost constraints, means that we found a solution for the whole

original network, which is the union of the two solutions of the individual segments.

If no solution is found for the second sub-network at Line 6, we loop through all

other possible solutions of the first sub-network until a solution is found. If the loop

finishes without finding a solution, this means that no solution is possible for the

whole original network.

Since the two sub-networks may have overlap, the final solution must select one

countermeasure for the overlapped links and one software variant for the overlapped

service. We guarantee this by restricting the values of the decision variables that are

associated to the overlapped links and hosts in the second sub-network to their values

in the solution found for the first sub-network. In Line 6 of Algorithm 1, the first

input to solve is g2|msub
, which denotes the second sub-network g2 restricted by the

solution of the first sub-network, msub.

Theorem 1. Any solution for the two sub-networks returned by Algorithm 1 is a

valid solution for the entire original network.

Proof Sketch. The risk of any service in the network depends on all other services

that can reach it within a path of k steps. For any service i ∈ S in the original network,

its risk depends on the set Si. After the initial decomposition (Line 1 in Algorithm 1)

of the original network g into two sub-networks g1 and g2, the service i ends up in
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either g1 or g2. Let N1 and N2 denote the set of services in the initial sub-networks g1

and g2, respectively. If i ∈ N1, then for any service j, such that (j ∈ Si) ∧ (j ∈ N1)),

j will be in the same graph and it will be considered in calculating the risk of i. For

any service l, such that (l ∈ Si) ∧ (l /∈ N1), it will be consider as an overlapped node

and appended to the sub-network g1 (Line 5 in Algorithm 1). As a result, Si ⊂ g1.

The same applies if i ∈ N2. This will result in equal risk values for each service i in

both cases if we solve the entire network in one shot or if we decompose and solve

every sub-network separately.

We evaluated the performance of our synthesis framework with decomposition. In

Figure 2.9, we show the time requirements to synthesis resilient configuration for the

same networks we evaluated earlier (Figure 2.1), decomposing the each network into

two sub-networks. In Figure 2.10, we show the required time to solve large networks of

up to 5000 hosts. It was impossible to solve the problem for those networks without

using our decomposition algorithm because we ran out of memory. Note that for

networks larger than 1000 hosts, we used multi-layer decomposition. That is, we

fist decompose into two sub-networks, then each sub-network is decomposed into two

smaller sub-networks, and so on, until we reach sub-networks of sizes less than 500

nodes.



CHAPTER 3: PROVABLY SAFE AND EFFICIENT COURSE OF ACTION

ORCHESTRATION FOR ACTIVE CYBER DEFENSE POLICIES

In addition to the proactive resilience techniques that we presented in the first

chapter, ensuring the resilience of computer networks against dynamic cyber-attacks

requires active defense strategies for attack prevention, mitigation, or recovery. These

dynamic defenses may change the network configuration according to high-level policy,

in response to specific security events. In this chapter, we present a formal framework

to model such policies, and orchestrate the attack prevention, mitigation, and recovery

procedures to act in an effective and safe manner that does not break the network

mission.

3.1 Motivation

To cope with numerous potential incidents and security events in real-time under

dynamically changing environments, cyber often adopts special processes and tools

for an automatic and fast response. These processes and tools are governed by a pol-

icy that determines the appropriate course of action in response to particular security

events. We refer to such policy by the “Active Cyber Defense (ACD) Policy”. Mul-

tiple security incident response and handling platforms provide the means to define

and manage ACD policies, such as Phantom Security Automation and Orchestration

Platform [40], IBM Resilient [38], AlientVault USM Anywhere [39], and Security In-

cident Response Orchestration by ServiceNow [136]. These platforms, among others,

provide some interface to define security events and link them to the desired courses of

action. Thus, a Course of Action (CoA) is an ordered set of cyber actions (commands)

that are triggered and executed in response to a particular security event.
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The ACD policy may consist of several rules that modify different, yet interdepen-

dent, layers of network elements, including the configuration of hosts, the services

hosted by them, the virtualization servers and data centers, and the networking

infrastructure configuration. Moreover, multiple rules, which might have different

competing actions, might be triggered and executed simultaneously. For such diverse

reactions to preserve and enrich the resilience of the network, they must satisfy the

following two properties:

• Effectiveness. This property requires that the different policy rules, which might

be executed concurrently, implement the desired responses successfully without

conflicting with each other.

• Safety. This property requires that the policy rules, whether they are executed

concurrently or sequentially, do not introduce violations to the high-level net-

work mission.

Meeting these properties in complex and dynamic networks is challenging due to

the following reasons. First, the successful execution of a cyber action that belongs

to a CoA within the ACD policy may require changing various resources in the net-

work. In this work, we consider three types of resources: actuators, objects, and

control variables. The actuators are network entities that perform the actions, such

as OpenFlow controller, virtualization server, and service managers. The objects are

the network entities controlled by the actions, such as the traffic transmitted in the

network infrastructure, the virtual machines hosted in a data center, and the services

running on top of hosts. The control variables are the dynamic system attributes,

which the execution of the actions depends on or affects, such as links utilization,

servers’ availability, space capacity, and CPU utilization. Since the CoAs in the re-

active policy are not mutually exclusive, multiple actions might operate on the same

set of resources simultaneously, which might cause access conflicts and, as a result,
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execution failures. Second, even if cyber actions are not executed simultaneously,

they might still be interdependent and affect the execution of each other if they rely

on the same system attributes (control variables). For example, you cannot migrate

a virtual machine to a server unless it does have the appropriate capacity to accom-

modate the virtual machine. However, the capacity of the server is a control variable

that can be affected by the preceding migrate actions, which indicates a dependency

between the consecutive migrate actions or any other type of actions that influence

the capacity of servers. Third, the cyber actions can change the network data plane

configuration in a way that violates the high-level network mission requirements. The

network data plane configuration includes the access lists that reside in switches and

firewalls, and control the flow of traffic in the network. The network mission require-

ments are logical properties that describe the network reachability, QoS, and security

requirements for accomplishing the mission.

In the current practice, there are no guarantees that the reactive policy is composed

and executed in a way that satisfies both the effectiveness and the safety properties.

In this chapter, we address this gap through our automated ACD policy orchestration

and verification framework that is presented in the following sections.

3.2 Related Work

In this section, we discuss the works related to two research directions: the ACD

policy specification and conflicts resolutions, and the network requirements verifica-

tion.

3.2.1 Active Cyber Defense Policies and Conflicts Resolution

With the current complexity of cyber networks and the increasing number and

severity of security incidents, it becomes mandatory to automate the cybersecurity

incident response and attack mitigation through ACD. Multiple proprietary incident

response and handling platforms [38, 40, 39, 136] provide the tools and processes to
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accomplish this, but they do not provide any formal specification or analysis tech-

niques to resolve potential conflicts and ensure safe implementation of CoAs.

There have been a few recent attempts in research literature that define high-level

formal specification languages to describe verifiable CoAs and ACD policies, such as

Nettle, Pyretic, Procera, and Kinetic [137, 138, 36, 37]. Procera [36] is a high-level

network control language for writing high-level policies, which is based on Functional

Reactive Programming [139]. Procera at the policy layer provides simple constructs

to direct the network controller’s responses to signals and network events. Procera

allows operations for filtering, merging, transforming, and joining event streams by

providing event algebra. While Procera provides a rich set of operations to aggregate

the events that will trigger the reactions, it has limited options for the reactions that

are specific to the SDN networks. The Pyretic [138] language, from the Frenetic [140]

family, is another network programming language that allows network programmers

to describe flow entries for OpenFlow switches dynamically. It provides the constructs

to specify a packet forwarding policy that will govern the operation of the network

controller. However, it does not provide the ability to describe CoAs. In other words,

it can describe how the traffic flows should be forwarded through the network, but it

cannot describe the required changes in the network due to specific events. kinetic [37],

which is an extension of pyretic, is the latest network programming language that is

targeting reactive and ACD polices. In Kinetic, dynamic policies are described using

state machines, where several parallel policies can run throughout the system life

cycle. Kinetic also provides the means to verify the correctness of the reactive policy

using model checking. The CTL language is used to write the desired property, and

the NuSMV model checker is used to model and verify the system. The verification in

Kinetic is limited to the correctness of the reactive programs themselves. It does not

provide the constructs to verify the satisfaction of the network mission requirements

under multiple reactive policies. In this work, we model the operation of the complete
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system and verify the fulfillment of the network mission requirements.

3.2.1.1 Tools for Network Invariants Verification Under ACD

In another line of research, a substantial body of research has been conducted in the

area of network invariants verification for both enterprise and software defined net-

works. We classify the related work in this section into two groups: static verification

tools and real-time verification tools.

FlowChecker [67], HSA [141], and FLOVER [142] are static verification tools for

software defined networks. FlowChecker encodes the OpenFlow flow tables using

Binary Decision Diagrams (BDD) to verify security properties. HSA verifies the data

plane configuration correctness by modeling the network as a geometric model to

discover violations in reachability and traffic isolation. FLOVER [142] is another

model checker that checks the OpenFlow configuration for security violations using

Yices SMT solver. ConfigChecker [68], Anteater [65], and SecGuru [143] are also

static verification tools for enterprise networks. ConfigChecker and Anteater use

model checking to verify network requirements expressed in temporal logics. These

works targets only traditional enterprise networks configuration and they use binary

analysis platforms (BDD and SAT), which make it hard to verify properties with

arithmetic constraints. SecGuru is another tool that is based on the bit-vectors

theory in the Z3 solver for checking network invariants.

VeriFlow [144], NetPlumber [145], and FlowGuard [146] are real-time verification

tools for software defined networks that verify the satisfaction of specific properties

after each configuration update control messages. VeriFlow proposes to slice the OF

network into equivalence classes to efficiently check for reachability violations. Net-

Plumber is a real-time policy checking tool that utilizes a dependency graph between

flow entries to incrementally check for loops, black holes, and reachability properties.

FlowGuard examines dynamic flow updates to detect firewall policy violations, and

it provides violation resolution approaches. Although these works can check the com-
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pliance of OpenFlow network updates with specific invariants, their applications are

limited to reachability or related analyses in VeriFlow and NetPlumber and firewall

policy verification in FlowGuard.

While these works provide multiple platforms to verify the end-to-end reachability

in enterprise and software defined networks, they do not consider a dynamic environ-

ment under multiple CoAs. Even the real-time verification tools, such as VeriFlow

and NetPlumber, they verify invariants against one update at a time, and they do not

consider multi-step strategies. They also have limited support for QoS requirements

except for NetPlumber that provides path length constraints. In this work, extend

our previous work [34] and provide the ability to verify complete ACD techniques

and we utilize the arithmetic theory in SMT to verify quantitative QoS in addition

to reachability and security requirements.

3.3 Active Cyber Defense Policy Specification

As we mentioned earlier, multiple existing security incident response and handling

platforms provide interfaces to define ACD policies. Although their interfaces are

different, they all allow users to define ACD policies that associate security events

with courses of actions, which can mitigate potential threats and recover from their

potential consequences. For the purposes of this chapter, we do not dictate a specific

language, but we assume that the ACD specification language meets the following

criteria:

• The ACD policy can include multiple rules to respond to different security

events, where each rule associates an event with a CoA.

• Actions within a single CoA can be organized sequentially, in parallel, or we

can select between two CoAs based on some conditions on the dynamic state of

the system.

• A CoA can be composed of two types of actions: configuration actions and
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Policy Π ::= {〈event〉� Λ}
CoA Λ ::= α | Λ ; Λ | Λ ‖ Λ | ψ ? Λ : Λ

Action α ::= [A ψ]DO f ({b = 〈number〉}) BY u ON o [G ψ]

Expression ψ ::= v [′] | v [′] ./ 〈number〉 | v [′] ./ ψ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ
Operator ./::= == | > | < | ≤ | ≥ | + | − | × | /
Command f ::= π | τ

Configuration π ::= block | forward | limit | inspect | encrypt | tunnel |
enable | disable | migrate | reroute | 〈other〉

Investigation τ ::= SNMPGet | LogAudit | SplunkActions |
MITRE-ATT&CK/CWE/CAPEC-InvActions | 〈other〉

Argument b ::= portno | threshold | ccuid | 〈other〉
Actuator u ::= 〈list of unique actuators〉

Object o ::= 〈list of unique objects〉
Variable v ::= capacity | bandwidth | resource utilization | 〈other〉

Figure 3.1: ACD Policy Language Syntax.

investigation actions. Configuration actions dictate direct cyber commands to

be performed by specific actuators (e.g., firewalls, virtualization servers, and

SDN Controllers) on specific objects in the network (e.g., traffic flows, virtual

machine, ports/queues in SDN switches). Investigation actions query and return

particular information about the system’s dynamic state.

• Actions can be associated with pre- and post-conditions (also known as assump-

tions and guarantees in other formal platforms [147, 148], respectively). The

pre-condition must be satisfied for the correct execution of an action, and the

post-condition is guaranteed to be satisfied after the action is executed correctly.

We use a language called CLIPS, which has been developed by our research group

to describe ACD policies. The syntax of CLIPS is shown in Figure 3.1. The reactive

policy Π according to this syntax consists of a set of ACD rules, where each rule

associates an event 〈event〉 to a CoA (denoted by Λ).

The CoA is represented as a process that executes single or multiple actions com-

posed in different modes. A CoA can be one action, multiple consecutive actions using
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the sequential composition operator (;), multiple parallel actions using the parallel

composition operator (‖), or a conditional statement (ψ ? Λ1 : Λ2), which executes

Λ1 if the condition ψ evaluates to true, otherwise, it executes Λ2. Cyber actions

denoted by α are the basic building blocks, where each cyber action specifies that a

command (f ) (e.g., blocking or forwarding packets, migrating virtual machines, and

disabling/enabling services in the network) be executed by a certain actuator (u)

(e.g., a firewall, an SDN switch, a virtualization server or controller) on a specific

object (o) (e.g., a specific traffic flow or a virtual machine). In Figure 3.1, we list

only a subset of the commands, actuators, and objects and we leave it to the users

to define their own. Each command f can also take a set of arguments, if needed, in

the format (argument name = value). Examples of these arguments include the out-

put port number of the forward commands and the destination server of the migrate

command.

CLIPS allows cyber actions to have optional pre-conditions (denoted by the expres-

sion ψ following the A keyword in the syntax) and post-conditions (denoted by the

expression ψ following the G keyword). The pre- and post-conditions are arithmetic

logic expressions in terms of a set of control variables V = {v1, v2, ...}. Let us assume

that we have the control variables va ∈ {true, false} that represents the availability

of a particular server, and the variables vc, vp ∈ Z∗ that represent the capacities of two

servers in the system. A pre- or a post-condition can simply be whether a Boolean

control variable evaluates to true or false (e.g., ψ = va) or it can be a comparison

between a control variable and a constant number (e.g., ψ = vc ≥ 500). It can be

also expressed as a comparison between a variable and another arithmetic expression

in terms of one or multiple other variables (e.g., ψ = vc ≥ vp + 500). In addition,

an arithmetic expression can consist of other expressions linked using the negation,

conjunction, and disjunction operators (e.g., ψ = (vc ≥ 500)∨ (vp ≥ 500)). Moreover,

we add the ability to express the post-conditions in terms of the previous values of the
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control variables because the post-conditions can be used to describe the changes and

effects of the cyber actions. For example, migrating a virtual machine to a server will

decrease its capacity (represented by vc) by a specific value (e.g., 500). Since it is not

likely to know the absolute available capacity in advance, we allow the post-condition

to be specified as ψ = (vc == v ′c+500), where the primed variable v ′c denotes the pre-

vious value of the capacity before executing the action. Hence, the syntax of CLIPS

allows us to optionally use the prime symbol with each control variable to represent

its previous value.

3.4 Problem Statement and Contributions

This chapter addresses the need for automated orchestration and verification of

ACD policies. Given a set of CoAs that belong to an ACD policy, the current state

of the dynamic system attributes (represented by the control variables), the current

state of the network data plane configuration, and the network mission requirements,

our objective is to find a Global Orchestrated CoA workflow (GOAL) that satisfies

the following properties:

• Resource Integrity. No resource conflicts between concurrently executed actions

due to simultaneous access to shared resources (i.e., actuators, objects, and

control variables).

• Action Integrity. Every action will be executed correctly (i.e., its pre-condition

is not violated by a previously executed interdependent action).

• Mission Integrity. No violations for the network mission requirements are intro-

duced during the GOAL execution.

• CoA Concurrency. The total execution time is minimized by safely maximizing

the concurrency in executing the cyber actions while preserving the temporal

order between actions that belong to the same CoAs.
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The ACD policy is specified according to the CLIPS language discussed in the

previous section and it clearly specifies all the CoAs, including the organization of

actions within each CoA, their commands, actuators, objects, and pre- and post-

conditions. The network data plane configuration is realized through the flow tables

in an OpenFlow-based Software Defined Network. The mission requirements include

reachability requirements (i.e., which hosts and services must be connected to each

other), performance and QoS guarantees on particular flows, and security require-

ments to preserve the confidentiality, availability, and the integrity of specific critical

assets in the network. The performance and QoS requirements are typically described

in the Service Level Agreement (SLA) and translated to the QoS parameters of the

networking infrastructure in terms of bandwidth, transmission data rates, delays,

jitter, etc.

To solve this problem, we have made the following contributions in this chapter:

• We present a formal specification for ACD policies as a set of heterogeneous

CoAs and we develop formal properties that are required for safe and effective

execution of these CoAs.

• We develop a formal CoA orchestration framework that digests a set of CoAs

and produces a global orchestrated CoA workflow (GOAL) that determines

the best time to execute each cyber action, such that the properties of safe

and effective execution are satisfied. We model this problem as a constraints

optimization problem and solve it using the Z3 SMT solver.

• We model the complete data plane configuration of OpenFlow-based software

defined networks and provide a model checking approach to verify the satis-

faction of the network mission requirements during the CoAs execution. Our

model considers the configuration of middle-boxes and the QoS parameters of

the networking infrastructure, such as the data rates and of the forwarding
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queues, to verify a variety of QoS and security requirements in addition to basic

reachability.

3.5 Framework Overview

To orchestrate a safe and efficient CoA execution workflow, we follow the two-step

approach depicted in Figure 3.2. The input for our approach is a set of CoAs that

belong to multiple rules in the system’s ACD policy. These CoAs are triggered as a

result of specific security events, and they are set to be executed simultaneously by

the different control agents that exist in the system. As illustrated in the figure, the

CoAs are expressed using the CLIPS language discussed earlier.

The first step in our approach takes multiple CoAs and produces a single global

orchestrated CoA workflow (GOAL). Recall that the GOAL determines the execution

time for each of the input actions. The produced GOAL is provably safe because it is

synthesized formally to ensure the Resource Integrity, Action Integrity, and CoA Con-

currency properties that guarantee a conflict-free and fast execution of the different

and interdependent input actions. We designed and implemented our orchestrator

as a constraints optimization problem utilizing the optimization problems modulo

theories in Z3 [126]. The actions in the output GOAL will then be executed by the

appropriate control agents, each at its specific time. We do not enforce a particu-

lar set of control agents, but we assume that if an action is included in the ACD

policy, there is a mechanism and designated control agent that can execute it. Ex-

amples of control agents include generic SDN controllers, such as Floodlight [149],

special-purpose SDN controllers, such as ActiveSDN [150], generic enterprise network

middle-boxes, such as firewalls and intrusion prevention systems, and virtualization

server and data centers controllers. In addition to being safe, the produced GOAL is

optimized to have the minimum possible execution time.

The second step in our approach is to verify the satisfaction of network mission

requirements during and after the execution of the GOAL produced in the first step.
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Control Messages and Configuration Updates

GOAL

CoA CoA CoA

Provably Safe Orchestrator
(Scheduling Actions Execution)

Control Agents

Network Data Plane

ActiveSDN Virtual Servers Service Managers …

CoA

CLIPS Policy Interface

Step II
Verify the Mission 
Integrity with 
respect to Network 
Mission 
Requirements

Step I
Find a GOAL 
preserving 
Resource, Action, 
and CoA Integrity

ACL Forwarding Flow Tables Transformation

Figure 3.2: Overview of the CoA orchestration and verification framework

While the previous step ensures that the actions within a GOAL do not conflict

with each other, it cannot guarantee that the configuration updates, which result

from the actions’ execution, do not introduce any violations to the network mission

requirements. Starting from an initial state, the network data plane configuration will

be updated incrementally according to the actions in the GOAL. We use a bounded

model checking approach to model the entire data plane configuration and track the

changes during the execution of the GOAL. After each configuration update, we verify

that the new configuration state satisfies all the network mission requirements (i.e.,

the reachability, QoS, and security requirements).

3.6 Course of Action Orchestration Safety Properties

In this section, we present the formal models of the reactive policies and the global

orchestrated CoA workflows (GOAL). We also define, formally, the properties that
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need to be satisfied in the automatically generated GOAL in order to achieve effective

and safe CoA execution. We start by defining the CoAs as follows:

Definition 4 (CoA). We define a CoA as the 7-tuple 〈A, E , θ, σ, ε, ρ, %〉, where:

• A is a set of nodes representing the cyber actions. Each action will be associated

with a command, actuator, object, pre-, and p|ost-conditions.

• E ⊆ A ×A is the precedence relation, that if eij = (ai, aj) ∈ E, then the action

ai must be executed before the action aj.

• θ(.) : A → Σ associates each action in A to a command from the pre-defined

set of commands, Σ.

• σ(.) : A → U associates each action in A to a unique actuator from the pre-

defined set of actuators, U .

• ε(.) : A → O associates each action in A to a unique object from the pre-defined

set of objects, O.

• ρ(.) : A → LV associates each action in A to a pre-condition expressed in the

arithmetic logic LV , where V is the set of control variables that can appear in

formulas of this logic.

• %(.) : A → LV associates each action in A to a post-condition expressed in the

arithmetic logic LV .

Since the first objective of this work is to find a GOAL given a set of CoAs, we define

the GOAL in Definition 5. Intuitively, the GOAL is a schedule that determines when

to execute the actions in the given set of CoAs, where actions are set to be executed

in parallel whenever it is safe. Formally, we define a GOAL as follows:

Definition 5 (GOAL). For any set of CoAs W = {w1, ...,wn}, a GOAL can be

defined as the 2-tuple 〈G, τ〉, where:
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• G =
⋃

wi∈W Ai is the complete set of actions in all the CoAs. The set Ai is the

set of actions in the CoA wi.

• τ(.) : G → Z∗ is the timing function (i.e., execution schedule) that maps each

action in G to its execution starting time.

In the following discussion, we will frequently reference actions in G using two

subscripts, where the first subscript represents the CoA, to which the action belongs,

and the second subscript represents the index of the action within its original CoA

(i.e., aik denote the k-th action in the set Ai of the i-th CoA, wi).

Based on Definition 5, we can have multiple GOALs for the same set of CoAs with

different timing functions (τ). However, not all GOALs are safe and effective. We

discuss in the following the properties that need to be met in a GOAL in order to be

safe and effective with respect to a given set of CoAs.

3.6.1 Resource Integrity

We identify the following three cases in which the integrity of the resources in the

network can be violated due to the concurrent execution of actions that share the

same resources (i.e., control variables, objects, and actuators).

• Case I: concurrent modifications to the same control variables, which represent

the dynamic system attributes, by different actions that belong to the same

or different CoAs may result in access violations and cause some actions to

fail. For example, two actions simultaneously migrate two virtual machines to

the same server and modifying the control variable related to the destination

server’s capacity or two actions simultaneously rerouting different flows to the

same link modifying the control variable that represents the link’s utilization.

• Case II: concurrent actions taken on the same objects can result in conflicting

commands, which might cause failures or non-deterministic outcomes. For ex-
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ample, two simultaneous actions disable and enable the same service or block

and forward the same traffic flows.

• Case III: concurrent actions taken by the same actuator may also result in

failures if the actuator is not capable of handling concurrent actions. Actuators

may have a limit on the number of simultaneous commands (i.e., requests) that

they can handle. For example, two or more actions send control messages to

the same OpenFlow switch simultaneously while the switch cannot handle more

than one control message at a time.

In order to preserve the resource integrity, the CoAs must be executed in a way

that prevents any of these cases. To formally define this property, let us define the

function ε(.) : G → 2V , which maps each action to a set of control variables in V , such

that the control variable v ∈ ε(aik) if v appears in the post-condition of the action

aik (i.e., if the action modifies the value of that control variable). This function can

be constructed statically since the post-conditions of the actions are specified in the

action definition as part of the reactive policy and they do not change during the

execution. For simplicity, we will also assume the function δ(.) that represents the

execution finishing time of each action. Note that this function is derived from the

timing function τ(.) as follows:

∀
aik∈G

: δ(aik) = τ(aik) + dik

where dik is the constant time period that is required to execute the action aik.

Further, we assume that actuators in the network can handle a limited number of

actions concurrently. We call this constant number the Actuation Threshold. Based

on this, we define the Resource Integrity property as follows:

Property 1 (Resource Integrity). The GOAL 〈G, τ〉 satisfies the resource integrity

property if the following conditions hold:
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• There is no pair of actions that are executed simultaneously and share a control

variable or an object. Formally:

∀
aik,ajl∈G

: (εi(aik) = εj(ajl))→ ([τ(aik), δ(aik)) ∩ [τ(ajl), δ(ajl)) = ∅) (3.1)

∀
aik,ajl∈G

: (εi(aik) ∩ εj(ajl) 6= ∅)→ ([τ(aik), δ(aik)) ∩ [τ(ajl), δ(ajl)) = ∅) (3.2)

• At any point of time, no actuator is executing more actions than its actuation

threshold. Formally, let hu be the actuation threshold for the actuator u ∈ U ,

then:

∀
u⊆U

: @
b⊆G

:

(
∀

aik∈b
: σ(aik) = u

)
∧

( ⋂
aik∈b

[τ(aik), δ(aik)) 6= ∅

)
∧ (|b| > hu) (3.3)

The first condition in Property 1 guarantees that if any two actions, aik and ajl,

share the same object (i.e., εi(aik) = εj(ajl)) or any control variable (i.e., εi(aik) ∩

εj(ajl) 6= ∅), their execution intervals will never coincide with each other. Recall that

ε(.) returns the objects of actions and ε(.) maps an action to a set of control variables

and any two intervals [a, b) and [x, y) coincide if [a, b) ∩ [x, y) 6= ∅. For any action

aik ∈ G, the interval [τ(aik), δ(aik)) represents its execution interval because τ(aik)

represents its execution starting time and δ(aik) represents its execution end time.

The second condition guarantees that for each actuator u in the system, we will never

have any set of actions that has a length greater than u’s actuation threshold and the

execution intervals of all its actions coincide at any point of time.

3.6.2 Action Integrity

The action integrity property is related to the potential interdependence between

the consecutive actions. Recall that actions are associated with pre- and post-

conditions. If two actions are executed sequential, and the earlier action invalidates

the pre-condition of the later, this will cause the later action to fail. Our objective
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is to find an execution order for such interdependent actions, if possible, such that

their pre-conditions are valid at the time of their execution. A GOAL that satisfies

the Action Integrity property can achieve that objective. We define this property as

follows:

Property 2 (Action Integrity). The GOAL 〈G, τ〉 satisfies the Action Integrity prop-

erty if for any action in G, its pre-condition is satisfied at the time in which its

execution starts. Formally, let St represents the state of the control variables at time

t and let T be the total execution time of the GOAL, then:

∀
aik∈G
t∈[1,T ]

: (τ(aik) = t)→
(
St |= ρi(aik)

)
(3.4)

The expression in Property 2 means that for any action aik, if it is selected to be

executed at time t, the state of the control variables at that point of time, St, satisfies

the action’s pre-condition given by ρi(aik).

3.6.3 CoA Concurrency

The CoA Concurrency property is related to the total execution time of the GOAL

and it guarantees effective and fast GOAL execution. Given that both the Resource

Integrity and the Action Integrity properties are preserved, an effective GOAL must

maximize the parallelism in executing the actions. To formally define this property,

we first introduce the definition of the Latest End Time of a GOAL according to

Definition 6.

Definition 6 (Latest-End-Time). Given the GOAL 〈G, τ〉, its latest end time, de-

noted by τ̂ is the time at which the execution of all the actions in G ends. Formally:

τ̂ = max
aik∈G

δ(aik) (3.5)

where δ(aik) is the execution end time of the action aik.
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Given the definition of the Latest-End-Time, we define the CoA Concurrency prop-

erty as follows:

Property 3 (CoA Concurrency). The GOAL 〈G, τ〉 satisfies the CoA Concurrency

if there is no other possible GOAL for the same set of CoAs, 〈G, µ〉, that satisfies both

the Resource Integrity and the Action Integrity properties and its Latest-End-Time,

µ̂, is less than τ̂ (i.e., µ̂ < τ̂).

3.6.4 Mission Integrity

The network mission requirements include reachability, QoS, and security require-

ments. To formally specify the mission requirements, we provide the language shown

in Figure 3.3. According to this syntax, a mission requirement, R, can be specified

in terms of the two constructs CanReach and Protect. CanReach is used to specify

reachability with optional QoS constraints between pairs of locations in the network.

The QoS Constraints are composed as a set of conditions on the aggregate values of

the network infrastructure QoS parameters. The aggregate functions max, min, sum,

and avg calculate the maximum, the minimum, the sum, and the average values of

the parameter κ in each possible path between the specified locations. For example,

let the set N be a set of clients in an organization that need to access a particular

service s. And let P be a pool of servers that are running that service. Let us assume

that the mission of this organization requires that: (1) “each client should be able to

reach at least one server with a data rate greater than or equal to hdr” and (2) “the

response from any server to any client should not be delayed more that hdl”. These

requirements can be represented using our language as follows:

∧
n∈N

∨
p∈P

CanReach(n, p : s,min(D_RATE) ≥ hdr)

∧
p∈P

∧
n∈N

CanReach(p : s, n, sum(DELAY ) ≤ hdl)
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QoS Param κ ::= BW | D_RATE | DELAY | . . .
Operator ./::= > | < | ≥ | ≤ | ==

predicate Φ ::= κ | Z+ | max (κ) | min(κ) | sum(κ) | avg(κ)

QoSCond Ψ ::= Φ ./ Φ | Ψ ∧Ψ | Ψ ∨Ψ

Location L ::= < (ip:port) >
Requirement R ::= CanReach(L, L, Ψ) | Protect(L,L) | R ∨R | R ∧R

Figure 3.3: Mission Specification Language Syntax. Z+ is the set of positive integers.

The construct Protect is the opposite of the CanReach, and it is used to specify

that a threat source should never reach a critical asset, those that if compromised, the

system mission will be in jeopardy and they should only be reached from particular

trusted locations in the network. Thus, it takes two arguments, the first one is a

location that is not trusted and can be considered as a threat source and the second

argument is a location that represents a critical asset or service.

The actions of the CoAs make changes to the network data plane as they are

executed over time. However, there are no guarantees that these changes will not

cause violations to the network mission requirements. Hence, we define the Mission

Integrity property, which must be met by a GOAL to be considered a safe GOAL. To

formally define this property, let {C1, ..., CT} represent the data plane configuration

states at each time unit in the interval [1, T ] and let R represent a set of network

mission requirements, the Mission Integrity property is defined as follows:

Property 4 (Mission Integrity). The GOAL 〈G, τ〉 satisfies the mission integrity

property if all the network mission requirements are satisfied in all the intermediate

and the final configuration states during and after the GOAL execution. Formally:

∀
t∈[1,T ]

:
∧
r∈R

(
Ct |= r

)
(3.6)

In section 3.8, we show how we model the complete data plane configuration using

bounded model checking and verify the network mission requirements.
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3.7 Safe Course of Action Orchestration Synthesis

In this section, we formalize the problem of CoA safe orchestration as a constraint

optimization problem. We show how we encode the CoAs and the safe orchestration

properties we presented before as SMT constraints in order to orchestrate an effective

and safe GOAL.

3.7.1 Formalization of the Course of Action Orchestration

Given a set of cyber actions that belong to a set of CoAs, the problem we formalize

in this section is to find the execution starting time for each action, such that the

Resource Integrity, the Action Integrity, and the CoA Concurrency properties are

satisfied.

Decision Variables. We start our formalization by defining the decision variables,

whose values represent the output of this synthesis problem. Since our objective is

to find a single value for each action, which represents the action’s execution starting

time, we define the set T of integer decision variables. Let G be a set of cyber actions

that encompasses the cyber actions in the set of CoAs, W , we define T as follows:

T = {tik | for each action aik ∈ G}

We follow the same notation we used in Section 3.6, where aik is the k-th action

in the i-th CoA in W . Since the Latest-End-Time of the synthesized GOAL cannot

be known until a solution is found, the range of the elements in T is between 1 and

the maximum possible time (i.e., the worst case). The maximum possible time is

simply the cumulative sum of the durations of all the actions in G because in the

worst case, all the actions will be executed sequentially. In the following, we denote

the maximum possible time by the value T .
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Additional Variables. In addition to the set T, we define additional variables that

will be used in formalizing our constraints as follows:

• For each action aik in G, we define: dik to represent the action’s expected

duration, uik to represent its actuator, and oik to represent its object. Note

that dik is a constant value for each action, and uik and oik are mapped through

the functions σi(.) and εi(.) of the corresponding CoA, respectively. Note that

for each action aik, we use σi(.) and εi(.), subscripted by i, that belong to its

CoA wi to retrieve its actuator and object.

• For each actuator u in the system, we define the integer variable hu that repre-

sents its actuation threshold.

• We define the matrixM, with a row and a column for each aik ∈ G to determine

the existence of shared control variables between actions. Note that this matrix

is static, and we can build it in advanced based on the ε(.) function that we

defined before to associate each action to the set of control variables that appear

in its post-condition. The values ofM are calculated as follows:

∀
aik,ajl∈G

:M[aik, ajl] =


1, ε(aik) ∩ ε(ajl) 6= ∅

0, ε(aik) ∩ ε(ajl) = ∅
(3.7)

• To encode the control variables in the system, we define the set of variables

V = {v1, ..., vm} that capture the values of the control variables in V . Since

the values of the control variables are expected to change over time due to

executing cyber actions, one set of variables is not enough to capture all the

transient states of the control variables over time. Hence, we define a set of

variables for each time (i.e., {V1,V2, ...,VT}, where Vt represents the state of

the control variables at time t).
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.

Precedent Constraints. Having the variables defined, we define the first set of con-

straints that are related to the order of the cyber actions inside each individual CoA.

According to Definition 4, the actions of a CoA are ordered based on the precedence

relation Ei for each wi ∈ W . This relation simply entails that if an edge (aik, ail)

exists in Ei, the action aik must finish before starting the action ail. The precedence

constraints of all the CoAs are encoded as follows:

∀
wi∈W

: ∀
(aik,ail)∈Ei

: til ≥ (tik + dik) (3.8)

This set of constraints in terms of the decision variables ensures that each action

is not executed until its predecessor is finished. Note that we calculate the execution

end time by adding the action duration to its starting time.

Mutual Exclusion Constraints. This set of constraints is required to ensure that

the execution intervals of actions that share control variables or objects never coincide

in order to satisfy the Resource Integrity property. The mutual exclusion constraints

are defined as follows:

∀
(aik,ajl)∈G

: (oik = ojl)→ (( tjl ≥ tik + dik )∨( tik ≥ tjl + djl )) (3.9)

∀
(aik,ajl)∈G

:M [aik, ajl]→ (( tjl ≥ tik + dik )∨( tik ≥ tjl + djl )) (3.10)

The first constraint handles the case when two actions share an object. In that

case, one of the actions should finish before the other one starts. The same goes for

the case of shared control variables in the second constraint, in which we make use of

the matrixM we defined earlier to determine which actions share control variables. If

a shared control variable exists (i.e.,M [aik, ajl] = 1), the actions’ execution intervals
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should never coincide.

Actuation Limits Constraints. These constraints are related to the maximum

number of actions that can be handled by each actuator in the system. According to

our definition of Resource Integrity property, exceeding this limit causes a violation

for this property. We formalize a constraint for each actuator to ensure that at each

point of time, not more actions than its actuation threshold are being executed. These

constraints are encoded as follows:

∀
u∈U
t∈[1,T ]

:

(∑
aik∈G

((uik = u) ∧ (t ≥ tik) ∧ (t < tik + dik)) ? 1 : 0

)
≥ hu (3.11)

To encode this constraint, we use the if-then-else operator, denoted by the notation

(ψ ? v1 : v2), which evaluates to the value v1 if the condition ψ is true, and to the

value v2 if ψ is false. The constraint intuitively counts the number of active actions

for each actuator u at each time unit t, those actions whose actuator is u, their

execution started at t or before, and their execution will finish after t. We enforce

that the number of such actions is less than the actuation threshold of the actuator,

hu .

Action Integrity Constraints. To enforce the Action Integrity property, we encode

the constraints that keep track of the control variables’ changes over time. We have

earlier defined the function ε(.) to associate each action with a set of control variables

it affects. Now, we define another similar function, ω(.) : V → 2G, that associates

each variable with the actions affecting it. Similar to ε(.), this association is static

and can be computed in advance. Although we can encode the Action Integrity

constraints without building this function, having it will make the constraints more

concise. Note that the mutual exclusion constraints guarantee that a control variable
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cannot be modified by more than one action at each time. Thus, for each control

variable v , only one of the actions in ω(v) will change its value at each possible time.

We encode the constraints that update the values of control variables as follows:

∀
v∈V

: ∀
aik∈ω(v)
t∈[1,T ]

: (t = (tik + dik))→ %(aik)[V
t/V ] (3.12)

We use the substitution notation, %(aik)[V
t/V ], in Equation 3.12 to substitute the

variables of Vt (i.e., the set of variables that represents the state of control variables

at time t) for all the occurrences of the corresponding variables in V in the expression

%(aik), where %(aik) is the post-condition of aik and it is originally expressed in terms

of the variables of V . The complete constraint will check which action finishes at each

time unit and performs its post-condition in terms of the appropriate state variables.

If no action belongs to the the set ω(v) finishes at that time, the value of the variable

at the previous time unit is copied as is.

The previous set of constraints will take care of keeping the values of the control

variables up to date over the execution time, all we need to do now is to enforce that

the pre-conditions of the actions are satisfied at the time their execution starts. This

can be encoded by the following constraints:

∀
aik∈ω(v)
t∈[1,T ]

: (t = tik)→ ρ(aik)[V
t/V ] (3.13)

where ρ(aik) is the expression that represents the pre-condition of aik that is origi-

nally expressed in terms of the variables of V . As indicated through the substitution

notation, we substitute the variables of V by the corresponding variables that belong

to the appropriate time unit, Vt.

Execution Time Optimization. The optimization objective of our safe orchestra-
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tion is to minimize the total execution time, which is represented by the Latest-End-

Time according to Definition 6. We first encode the calculation of the Latest-End-

Time utilizing a chain of if-then-else expressions, denoted by (ψ ? v1 : v2), which

evaluates to the value v1 if the condition ψ is true, and to the value v2 if ψ is false.

We define the variable tmax to hold the Latest-End-Time that is calculated based on

the decision variables. To clarify this encoding, let r = |G| represent the length of the

set of actions G, we define the set of intermediate variables {m1,m2, ...,mr}, where

mi will hold the Latest-End-Time among all the actions from the i-th element of the

set G till the end of the set. For simplicity and for the purposes of calculating tmax

only, we will abandon our double subscript indexing of the actions in G to use a single

subscript, where ti represent the time variable of the i-th action in G and di represent

the duration of the same action. We calculate the values of the intermediate variables

recursively as follows:

mr = tr + dr (3.14)

∀
i∈[1,r−1]

: mi = ((ti + di) > mi+1) ? (ti + di) : mi+1 (3.15)

The first equation calculates the execution end time of the last action in the list

ar ∈ G as the sum of its starting time and duration. Note that this represents the base

case of the recursion. For each preceding actions ai, where 1 ≤ i < r, we compare its

execution end time with the highest execution end time among the actions following it

in the list G, represented by mi+1. If the execution end time of the action ai is greater

than mi+1, the intermediate variable mi, will be set to ai’s end time. Otherwise, it

will be set to mi+1, which means there is another action in the set {ai+1, ..., ar} that

will end after ai. Based on this encoding, the final Latest-End-Time of the entire

GOAL will be equal to m1, which is the cumulative max among all the end times of

all the actions in G (i.e., tmax = m1).
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After calculating our objective value, tmax, we direct Z3 to find the solution that

minimizes it using special instructions provided by the optimization problems modulo

theories in Z3 (minimize(tmax)). The solution will be the values of the decision

variables T that ensure the satisfaction of the Resource Integrity, the Action Integrity,

and the CoA Concurrency properties.

3.7.2 Evaluation of the Course of Action Orchestration

We evaluated the performance of our orchestration synthesis framework in terms

of the time required to generate the optimal GOAL that satisfies the Resource In-

tegrity, the Action Integrity, and the CoA Concurrency properties. We evaluated the

performance with respect to the total number of actions and the number of control

variables. We show and discuss the results in the following.

The impact of the number of actions. In this experiment, we evaluated the

performance of our orchestration framework with respect to the number of actions.

We generated random sets of actions that represent multiple CoAs and synthesized the

optimal GOAL for each set. The size of the sets was up to 500 actions. In addition,

we generated a set of precedence and mutual exclusion relations. The precedence

relations emulate the ordered actions within single CoAs. The mutual exclusion
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relations emulate the actions that share control and objects and will not be executed

concurrently according to the properties we defined for the GOAL. Since we study

the impact of the number of actions in this experiment, we added only one control

variable to the model.

We ran our framework for more than 60 sets of actions, and the results are depicted

in Figure 3.4. For up to 500 actions, the processing time was within 2 minutes,

and it exhibits a polynomial growth rate. We believe that the performance of our

framework with respect to the number of actions is reasonable since this processing

time is required to find the optimal GOAL that is guaranteed to complete at the

minimum execution time. However, when this framework is put in practice, the

number of actions that should be orchestrated at the same time might be tuned for

better performance. For example, if we consider only 100 actions at a time instead

of 500, the optimal GOAL can be computed in less than 5 seconds.

The impact of the number of control variables. We define a set of variables

in our SMT model to capture the values of the control variables at each possible

time during the GOAL execution. Hence, the number of control variables can affect

the space and time required to syntheses the optimal GOAL. In this experiment, we

study the impact of the number of control variables for a fixed set of 100 actions. We

changed the number of control variables from 1 to 80.

The processing time with respect to the number of control variables is depicted in

Figure 3.5. We can see that the processing time is very sensitive to the number of

control variables and it exhibits exponential growth. However, it is not likely that all

the CoAs in an ACD policy are triggered and executed simultaneously. In this case,

we need to model only the control variables that belong to the active subset of CoAs.

We plan to investigate other modeling techniques and potential heuristics that will

help us in tracking the control variables updates more efficiently and scale to support
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Table 3.1: State Variables.

Location Variables

loc The unique switch ID
tab The number of the flow table in a switch
Match Fields Variables (F)

in_port Ingress port: A physical or logical port.
eth_dst Ethernet destination MAC address.
eth_src Ethernet source MAC address.
eth_type Ethernet type of the OF packet payload.
vlan_id VLAN-ID from 802.1Q header.
vlan_pcp VLAN-PCP from 802.1Q header.
ip_prot IP protocol number.
ip_src IPv4 source address.
ip_dst IPv4 destination address.
src_port Source port number.
dst_port Destination port number.
ip_dscp Diff Serv Code Point (DSCP).
ip_ecn ECN bits of the IP header.
Action Set Variables (A)

as_pop_vlan Pop the outer-most VLAN header.
as_push_vlan Push a new VLAN header.
as_set_<Var> Set the value of Var (Var ∈ F).
as_set_queue Set the output queue to a specific value.
as_out Forward the packet to a specific port.

more variables.

3.8 Mission Integrity Verification

In this section, we first present SDNChecker, a bounded model checker that encodes

the entire data plane configuration of an OpenFlow-based SDN and verifies properties

expressed using the generic LTL language. Then, we show how we translate the

mission requirements to LTL expressions and verify them using SDNChecker in order

to ensure that a give GOAL satisfies the Mission Integrity property.
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3.8.1 Network Data Plane Configuration Model

We model the network data plane configuration as a transition system to track

the transformations of traffic flows inside the OpenFlow network. The transition

system consists of states, which are defined over a set of state variables, connected

by transitions, which capture the changes in the state variables based on the actions

taken by the networking switches.

States. In our model, the state of the network is determined by the different flows,

represented by the flow match fields, that can be transferred through the network

and their possible locations. Besides, our model provides the ability to incorporate

special-purpose variables for particular mission invariants, such as QoS guarantees.

Therefore, the state of the network is modeled by four groups of variables: the location

variables, the match fields variables F, the Action Set variables A, and the special-

purpose variables L. Formally, the state is encoded by the following characteristic

function:

σ : loc× tab× F×A× L→ {true, false} (3.16)

Table 3.1 shows a list of the location, match fields, and action set variables along with

their meanings. In OpenFlow architecture, the Action Set contains a set of actions

carried between the flow tables during the pipeline processing. Since the instructions

of flow entries can modify the Action Set by inserting or removing actions, we need

to keep track of its content during the transitions. The actions in the Action Set are

executed when the instruction set of the matching flow entry does not contain a Goto

instruction. Based on OpenFlow specification, the Action Set includes a maximum

of one action of each type. We define a variable for each possible action in the Action

Set. If the value of that variable is null, the associated action is not part of the Action

Set.
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Transitions. Transitions are built based on packet transformations across flow

tables. We add a transition if we encounter an Output action (a transition to a new

OF switch) or a Goto instruction (a transition to a new table in the same OF switch).

Multiple transitions may be associated with the same flow rule. Let us consider the

rule ri that belongs to the table t in the OF switch s. Let Ri be the set of values

specified in the rule ri for the match fields indexed by the variables’ names (i.e., Ri[F ]

is the value of the field F in the rule ri). The transitions of the rule ri are calculated

as follows:

Si = (loc = s) ∧ (tab = t) ∧
∧
F∈F

(F = Ri[F ]) ∧¬S−i (3.17)

S ′i,a =
∨
k∈O

(loc′ = ktar) ∧ (tab′ = 0)

∧
∧
F∈F

(F ′ = R′i[F ])

 ∧ ∧
A∈A

(A′ = 0) (3.18)

S ′i,g = (loc′ = loc) ∧ (tab′ = new_table) ∧∧
F∈F

(F ′ = R′i[F ]) ∧
∧
A∈A

(A′ = R′i[A])
(3.19)

S ′i,as = R′i[AS_OUT ]→ [(loc′ = R′i[AS_OUT ])∧

(tab′ = 0) ∧
∧
F∈F

Exp[F ] ∧
∧
A∈A

(A′ = 0)]
(3.20)

In equation 3.17, we calculate the flow space Si of the rule (i.e., all the flows that

match the values in the rule ri and do not match another rule with higher priority).

The expression S−i captures the flow space for all the rules that have higher priority

in the same flow table.

The flow space calculated in Equation 3.17 encodes the current state of the tran-

sitions associated with the rule ri. To encode the next state(s), we use the primed

variable F ′ to represent the next state variable of the field F . We also define the set

R′i that keeps the values of the next state variables during the execution of the rule’s
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instructions list. Initially, the next state variables have the same values as the current

state ones (i.e., ∀F∈F : R′[F ] = F). There are three sources of transitions in a flow en-

try: (1) The Output action(s) in the Apply-Actions instruction’s actions list, (2) The

Goto instruction, which transfers packets processing from one flow table to another

in the same OpenFlow switch, and (3) The Output action in the packet’s Action Set.

If the instructions list of a flow entry does not contain a Goto instruction, the actions

in the packet’s Action Set are executed, where the Output action is executed last. If

no Output action exists in the Action Set, the packet is dropped. The next states of

the three cases are encoded in equations 3.18, 3.19, and 3.20, respectively. The set

O of Equation 3.18 includes the Output actions in the Apply-Actions instruction’s

actions list, where ktar is the target switch of the Output action at index k. Note that

in equations 3.18 and 3.20, the packet is transferred to another switch; hence, the

Action Set’s variables (A) need to be cleared. The Exp set in Equation 3.20 captures

the effects of Set actions in the Action Set. For example, the final value of the next

state variable ip_src’ depends on the value of the Action Set variable as_set_ip_src’.

Exp[ip_src] captures the conditional statement shown in Equation 3.21 that encodes

the value of the variable ip_src’ depending on the value of as_set_ip_src’ using the

notation (ψ ? v1 : v2) that represents the if-then-else operator.

ip_src’ = R′i[as_set_ip_src] ? R′i[as_set_ip_src] : R′i[ip_src] (3.21)

The complete transition relation of the rule ri based on Equations 3.17 to 3.20 is

represented as

T (ri) = Si ∧ (S ′i,a ∨ S ′i,g ∨ S ′i,as) (3.22)

Global Transition Relation. The global transition relation is the disjunction of

the transition relations of all the rules. For the network N that has S switches, the



84

global transition relation Tg(N) is calculated as

Tg(N) =

∨
s∈S

len(s)∨
t=1

len(t)∨
i=1

T (rs,t,i)

 ∧ ∧
L∈L

f(L,L′) (3.23)

Where len(s) is the number of flow tables in the switch s, len(t) is the number of

rules in the flow table t and rs,t,i is the rule i in the flow table t that belongs to the

switch s. T (rs,t,i) is calculated according to Equation 3.22. L is the set of special-

purpose variables that will be defined later based on the desired verification along with

their transition relation, where f(L,L′) denotes the transition of the special-purpose

variable L expressed in arithmetic logic.

3.8.2 SMT-based Bounded Model Checking

Encoding the network data plane configuration model as an SMT-based satisfaction

formula is done by unfolding the model for k steps starting from the initial states S0.

Let V = F ∪ A ∪ L ∪ {loc, tab} be the set of variables that represent a state in

the system, and let Vi denote the set of variables that represent the state i. We

use I(Vi) to represent a relation in terms of the variables Vi. The global transition

relation computed in Equation 3.23 is expressed in terms of the current and next

state variables as T (Vi, Vj) for a transition from state i to state j. The network

properties are encoded as a relation in terms of the variables {V0, V1 . . . Vk}. The

formula representing the unfolded system Mk can be represented as:

Mk = I(V0) ∧

(
k∧
i=1

T (Vi−1, Vi)

)
∧ I(V0, V1, . . . Vk) (3.24)

The transition relation is unfolded starting from the base transition relation com-

puted in Equation 3.23 as follows: given the base transition T (V, V ′) and a bound k,

(1) we define the variables set V0, (2) we initialize i to 1, and we repeat the following

three steps for all i ≤ k, (3) we define the new variables set Vi, (4) we construct a
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[q]ki ⇔ Ψi

[¬q]ki ⇔ ¬[q]ki

[q1 ∧ q2]ki ⇔ [q1]ki ∧ [q2]ki

[q1 ∨ q2]ki ⇔ [q1]ki ∨ [q2]ki

[X q]ki ⇔ [q]ki+1 if i < k , and ⊥ otherwise

[F q]ki ⇔
∨
j∈[i,k]

[q]kj

[G q]ki ⇔ [q U (loc = sink)]ki

[q1 U q2]ki ⇔
∨
j∈[i,k]

[q2]kj ∧
∧
l∈[i,j)

[q1]kl


[q1 R q2]ki ⇔

∧
j∈[i,k]

[q2]kj ∨
∨
l∈[i,j)

[q1]kl


Figure 3.6: Property Encoding.

new formula T (Vi−1, Vi) by replacing all variables of V and V ′ with the corresponding

variables from Vi−1 and Vi, (5) we sdd the new transition formula to the model as an

assertion.

The network properties need to be translated to SMT expressions as well. We use

the standard LTL specification language as generic means to specify system proper-

ties. A property in LTL can contain the temporal connectives: next (X), eventually

(F), global (G), until (U) and release (R) operators. Let Ψi be a constraint in the

property q expressed in terms of the i-th state variables (Vi); we denote the SMT ex-

pression of a property q at point i on a path given a bound of k as [q]ki . Based on this

notation, the property encoding as SMT formula can be recursively defined as shown

in Figure 3.6. The translation is based on the standard semantics of LTL operators

except for the G operator. To encode the G operator, we forward the packets that

are dropped or have reached their destinations to a designated node called sink. If

a packet reaches the sink node then the path is terminated. The property [G q] is

simplified to [q U (loc = sink)] in our model, which means that q holds until the
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Table 3.2: Examples of Mission Requirements

Property LTL Property Expression

1. CanReach(s, d, _) P1 = (loc == s) ∧ (IP_SRC == s) ∧ (IP_DST == d) →
F [(loc == d) ∧ (IP_DST == d)]

2. CanReach(s, dc,
min(DR) ≥ τ)

def DR = map (loc) {{1, 512}, {2, 1024} . . . }
P2 = (loc == s) ∧ (IP_DST == dc) →
F [(min(DR) < τ) ∧ (loc == dc))]

3. Protect(ts, cd) P3 = (IP_DST == cd)→ ([loc 6= ts] U [loc == cd])

path is terminated.

After unfolding the transition relation and the LTL properties, the complete SMT

formula Mk that is calculated based on Equation 3.24 is fed to Z3 SMT solver, which

determines if the formula is satisfiable or not.

3.8.3 Verifying the Satisfaction of Mission Requirements in a Data Plane

Configuration Snapshot

In this section, we show the steps we follow to translate the mission requirements

to LTL properties and verify them using our model checker given a snapshot of the

network data plane configuration.

The CanReach construct that we defined in the mission requirements specification

language can specify reachability requirements with and without any constraints on

the QoS the QoS between sources and destinations in the network. The first example

in Table 3.2 represents a basic reachability requirement without QoS constraints. The

corresponding LTL expression, P1, is satisfied if packets that are initially located at

location s will be located at the destination d at any future state. If the CanReach

construct specifies a QoS constraint, the source should be able to reach the destination

and the QoS, in terms of the QoS parameters, should meet particular thresholds. In

this case, we follow the following steps to translate such requirements to LTL:

• The QoS parameters such as bandwidth, data rate, and delay are defined as

special-purpose variables and encoded using the special keywords def and map.
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We assume that every device/port in the network will have a value for each

quality of service parameter. We use def to declare a new special-purpose

variable that is not part of the basic state variables. Any variable defined in

this way can be used anywhere in the LTL properties. The map construct is

used to assign values to the special-purpose variables based on the values of

other basic state variables. For example, in the second property in Table 3.2,

we define a special-purpose called DR using the def keyword to hold the data

rate of transmission queues inside OpenFlow switches. Then, we use the map

keyword to assign values to this variable based on the variable loc. At any state,

we check the value of the queue and assign a value to DR accordingly (i.e., if

loc = 1 then DR = 512, if loc = 2 then DR = 1024, ...).

• If any aggregate functions are used, they will also be encoded as special-purpose

variables and their values are computed accumulatively at each transition. The

use of SMT allows us to compute their commutative values utilizing the basic

arithmetic and conditional operators.

• Since the QoS parameters and the aggregate values are defined as special-

purpose variables, the QoS constraints are encoded directly into SMT by re-

placing the QoS parameters defined in the constraints with the corresponding

special-purpose variables.

The second property in Table 3.2 is an example of a mission requirement, at which

the traffic from a particular server s to the data center dc does not pass through a

location that has a data rate less than a specific threshold τ . Such a requirement

is crucial in several solutions that have proposed techniques for task scheduling in

MapReduce architectures [151]. Since this requirement depends only on one QoS

parameter, data rate, we define the DR parameter and assign its value using a map

between the OpenFlow switch ID and the data rate of that particular queue. Next, we
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express the requirement as an LTL expression that contains a constraint in terms of

the new special-purpose variable DR and the aggregate function min that is satisfied

if the data rate in all the paths between the source and the destination does not drop

below the given threshold.

The Protect requirements specify that particular untrusted locations should never

reach other critical assets or services in the network. We write LTL expressions that

will be satisfied if all the traffic destined to the critical locations in the network, it

should never be originated or passes through the untrusted locations before reaching

the critical locations. The third property, P3 in Table 3.2, shows how we represent

the Protect properties using the Until LTL operator. In this example, traffic reaching

the critical location cd can be at any location except the untrusted locations ts.

3.8.4 GOAL Verification

We show in the previous section how we model a snapshot of the network data plane

configuration and verify that it satisfies the network mission requirements. However,

the Mission Integrity property requires the satisfaction of the mission requirements

at any transient state of the data plane configuration during the GOAL execution

because the cyber actions may frequently change the configuration. To accomplish

this, we need to verify the network mission requirements after each configuration

update incrementally.

We follow the following procedure to verify the Mission Integrity property with

respect to the GOAL 〈G, τ〉. We use Ct to represent the network data plane configu-

ration snapshot at time t.

1. We start from the initial configuration snapshot C1 at t = 1.

2. We increment the time t and enumerate the subset of actions g ⊂ G that end at

time t. Note that due to the concurrency in actions’ execution, we might have

more than one action finishing at the same time.



89

𝐶1 𝐶2 𝐶3 𝐶4
Time

CoA-1

CoA-2

𝑎11

𝑎21

𝑎12

𝑎22

Figure 3.7: Incremental Verification of Network Mission Requirements.

3. We generate a new incremental snapshot of the network data plane configuration

Ct by implementing the changes dictated by all the actions whose execution ends

at time t .

4. We verify that Ct satisfies all the mission requirements according to the ap-

proach discussed in Section 3.8.3. If Ct violates any of the mission requirements,

then the 〈G, τ〉 does not satisfy the Mission Integrity property.

5. We return to step 2 and repeat as long as t lies within the interval [1, τ̂ ], where

τ̂ is the Latest-End-Time of the GOAL 〈G, τ〉.

We illustrate this process by the example shown in Figure 3.7. We see in the

figure two CoAs, where each consists of two actions. The GOAL determines that

both actions a11 and a21 will start together because they do not operate on shared

resources. However, the action a12 cannot be executed at the same time with a22,

which means that we need to wait until the execution of a12 finishes to start executing

a22. The actions a11 and a21 have the same duration, and they will end at the same

time causing the data plane configuration to transform from state C1 to state C2.

Then, the action a12 will change the data plane configuration to the state C3. And

finally, the last state C4 will be generated after executing the action a22 on the

state C3. The states {C1, C2, C3, C4} represent different snapshots of the network

data plane configuration, and we verify the network mission requirements at each

snapshot.



90

0

1000

2000

3000

4000

5000

6000

0

50

100

150

200

250

300

350

400

0 300 600 900 1200 1500 1800 2100

M
em

o
ry

 (
M

B
)

Ti
m

e 
(s

ec
)

Network Size

Memory (Varying Bound)

Memory (Fixed Bound)

Time (Varying Bound)

Time (Fixed Bound)

Poly Trendline (Varying Bound)

Linear Trendline (Fixed Bound)

Figure 3.8: The impact of network size.

-100

300

700

1100

1500

0

20

40

60

14 54 94 134 174 214 254 294 334

M
em

o
ry

 (
M

B
)

Ti
m

e 
(s

ec
)

Total number of rules (hundred)

Verification Time

Memory

Logarithmic Trendline

Figure 3.9: The impact of the table size.

0

50

100

150

200

250

300

350

0

1

2

3

4

0 1000 2000 3000 4000

M
em

o
ry

 (
M

B
)

Ti
m

e 
(s

ec
)

Special-purpose Variables (QoS Parameters)

Time (simple)

Time (complex)

Memory (simple)

Memory (complex)

Figure 3.10: The impact of the number
of QoS Parameters.

0

350

700

1050

1400

1750

2100

2450

0

20

40

60

80

100

120

140

160

50 150 250 350 450 550

M
em

o
ry

 (
M

B
)

Ti
m

e 
(s

ec
)

Bound (k)

Time - Network 1

Time - Network 2

Memory - Network 1

Memory - Network 2

Figure 3.11: The impact of the bound.

3.8.5 Evaluation of Mission Requirements Verification

We implemented a tool using C#.NET that automatically reads the complete data

plane of an OpenFlow network and provides a GUI for the user to specify the mission

requirements, the resistance techniques specification, and the resistance properties.

This tool uses the Z3 .NET API to compose the proper SMT expressions and generate

an SMT file that contains the complete problem encoded as SMT assertions. We then

feed this file to the Z3 SMT solver. We ran all experiments on a standard PC with

3.4 GHz Intel Core i7 CPU and 16 GB of RAM.

To evaluate the performance and the scalability of our framework, we measure the

time required to solve the satisfaction problem with respect to multiple parameters,

such as the network size, the sizes of flow tables, the number of special-purpose
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variables, and the complexity of the mission requirements and isolation specifications.

The scalability of model checking tools depends on the size of the problem in terms

of the state space and the number of transitions. In our case, the size of the problem

depends on multiple network parameters, such as the network size and the length of

flow tables. Due to the lack of real large-scale networks configurations, we synthesized

a number of network instances with given parameters based on tree topology, where

the leaves are hosts, and the inner nodes are OF switches. In all the generated

networks, the core switches do not constitute more than 15% of the total nodes in the

network. We then generate the constraints satisfaction problem and solve it using the

Z3 SMT solver. We record the time and memory required to solve the problem. As

presented earlier, the network mission requirements are translated to LTL expression

with the support of special-purpose variables. Hence, the following evaluation applies

for all the types of mission requirements.

The impact of network size. In this experiment, we study the impact of the

overall number of network nodes. We generated many networks whose sizes varied

from 75 to 2100 nodes. For each of them, we report the average time and space of

verifying 20 reachability properties between random pairs of hosts. We experimented

with two different settings of the bound k. In one setting, the bound k varies based

on the number of flow tables. It was set to a constant value in the other setting

regardless of the network size. Each switch in these experiments contains up to two

flow tables with an average length of 50 flow rules. Figure 3.8 shows the results of

this experiment. We can see that in the case of a fixed bound, the time and space

requirements are linear with respect to the network size. However, in the case of

varying bound, the performance is affected by both: the network size and the bound.

The growth rate with respect to the network size is best described by a quadratic

polynomial function.
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The impact of the flow table size. In this experiment, we generated various

networks with the same number of nodes (300 nodes), but with varying flow table

sizes measured by the number of rules. All the rules have the same structure (i.e.,

the same number of instructions and the same length of actions lists). As reported

in Figure 3.9, the total number of rules ranged from 1.4 to 33.5 thousand rules. The

results show that the growth in time and space tends to stabilize after a threshold

(i.e., increasing the flow table size does not significantly increase the requirements).

We believe this behavior is due to the compact representation of assertions in Z3 that

merges similar expressions.

The impact of the bound k. The bound determines the number of steps to

consider in the bounded model. For each step, a new set of variables and a replica of

the transition relation is added. To study the impact of the bound value, we generated

two networks: Network 1 that consists of 300 nodes and Network 2 that consists of

600 nodes. Each switch in the network has up to 2 tables and an average of 50 flow

rules per table. For each network, we ran our experiment multiple times, selecting

a different bound each time. The bounds ranged from 50 to 600. Figure 3.11 shows

that in both networks the time and space requirements increase linearly with respect

to the bound.

The impact of special-purpose variables. We conducted an experiment to study

the impact of special-purpose variables, which depends on the QoS parameters, di-

versity attributes, and the number of countermeasures. For this purpose, we ran our

framework against a network of 300 nodes with a varying number of special-purpose

variables that ranged from zero to 5000. Moreover, we defined two types of special-

purpose variables, namely simple and complex. The simple variables were defined
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as additive operations (e.g., sum of delays over a path), while the complex includes

non-linear multiplication. Figure 3.10 reports the time and space for both types. We

can see that the number of special-purpose variables of both types has a minor impact

on the time and space requirements. They remain almost constant even with a large

number of special-purpose variables.

Discussion. The evaluation of mission requirements verification using bounded model

checking shows that it takes a considerable amount of time to verify requirements for

large-scale networks, which makes it inappropriate for real-time verification. This is

due to the fact that the required incremental updates for the network configuration

state after each action execution can lead to a significant delay in the execution.

We have investigated a solution to this problem by considering all the actions in

the GOAL and introducing state-update activation variables in our model checking

approach. These activation variables will activate and deactivate the appropriate

state changes based on the execution order of the actions. As a result, our network

configuration model will capture all the possible updates in the system with respect

to a bounded set of actions, which eliminates the need to reconstruct the model after

each update. This technique makes our model checker more efficient for real-time

incremental verification.



CHAPTER 4: AUTOMATED EXTRACTION OF AGILITY PARAMETERS FOR

CYBER DETERRENCE AND DECEPTION PLANNING

Malware attacks have evolved to be highly evasive against prevention and detec-

tion techniques. It has been reported that at least 360, 000 new malicious files were

detected every day and one ransomware attack was reported every 40 seconds in

2017 [152]. This reveals severe limitations in prevention and detection technologies,

such as anti-virus, perimeter firewalls, and intrusion detection systems. Cyber deter-

rence and deception have emerged as effective defenses for cyber resilience [99] that

can corrupt and steer adversaries’ decisions to (1) deflect them to false targets, (2)

distort their perception about the environment, (3) deplete their resources, and (4)

discover their motives, tactics, and techniques [153, 154].

4.1 Motivation

Advanced cyber threats often start with intensive reconnaissance by interacting

with cyber systems to learn the true values of its parameters, such as keyboard

layout, geolocation, hardware ID, IP address, service type, OS/platform type, and

registry keys to discover vulnerable targets and execute their objectives. We call

such parameters “Critical Parameters". Cyber agility can be particularly effective

during this phase by providing false perceptions about the configuration of the cyber

environment to achieve the deterrence and deception goals [154]. There are two key

mechanisms to accomplish this: (1) parameter mutation, to frequently change the

ground truth (i.e., the real value of the system parameter) of the cyber configuration,

such as IP address [155] or route [156], or (2) parameter misrepresentation, to change

only the value returned to the attacker (i.e., the ground truth is intact). We call such
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Figure 4.1: Attacker’s Dependency on System Parameters.

critical parameters that can be feasibly and cost-effectively mutated or misrepresented

the “Agility Parameters". Figure 4.1 shows these two mechanisms with respect to

the environment parameter p. It shows that the adversary knowledge about p was

falsified by either changing p to a new value (mutation) or by lying about its true

value (misrepresentation). Both mechanisms are needed in cyber agility because

mutation can be infeasible or uneconomical, and misrepresentation can sometimes be

uncovered.

An effective planning of cyber deterrence and deception requires a sequence of

mutations and/or misrepresentations of agility parameters in order to steer the ad-

versary to the desired goals. The key challenge that we address in this research is

to identify the most appropriate agility parameters against any arbitrary malware by

symbolically executing and analyzing the malware binary.

While some previous work, such as Moving Target Defense (MTD) [157, 49, 50,

158, 156, 159, 160] and decoy technologies [42, 44, 46] attempt to invalidate attackers’

perceptions, the agility parameters and techniques were engineered manually, which

significantly limits the ability for creating deterrence and deception actions automat-

ically against novel malware. The ultimate goal of this research is to automate cyber

agility planning against novel malware attacks. Thus, unlike IPS/IDS, our objective

is to deter and deceive, rather than detect and block, by enabling the malware to
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execute in a real or virtual environment configured based on the extracted agility

parameters. To the best of our knowledge, this is the first work that uses automated

reasoning to infer effective agility parameters based on malware analysis.

Our framework can be incorporated in the production systems to automatically

analyze, deter, and deceive malware without human intervention. Although there are

various techniques to trigger the detection of malware such as signature analysis [161],

behavior analysis [162], decoy software [46] and decoy bugs [42], the focus of this

research is on extracting the agility parameters to automate creating deterrence and

deception schemes.

4.2 Related Work

In this section, we review the recent research conducted on malware analysis and

symbolic execution, highlighting the significant objectives and motivations for using

malware analysis. Besides, we discuss the latest research on automated design and

synthesis of cyber agility and moving target defense.

Analyzing and exposing behaviors of malware has been extensively discussed in the

literature [163, 164, 165, 166, 167, 168]. Forced execution [169] and X-Force [170] were

designed for brute-force exhausting path space without providing semantics informa-

tion for each path’s trigger condition. To discover the trigger conditions, Brumley et

al. [171] applied taint analysis and symbolic execution to derive the condition of mal-

ware’s hidden behavior. Moser [172] introduced a snapshot based approach that could

be applied to expose malware’s environment-sensitive behaviors. Hasten [173] was

proposed as an automatic tool to identify and skip malware’s stalling code. In [174],

Kolbitsch et al. proposed a multipath execution scheme for Java-script-based mal-

ware. Other research [175, 169] proposed techniques to force the execution of different

malware functionalities.

While we need to analyze malware in this work, we have a different goal: to au-

tomatically discover system parameters that can be mutated or misrepresented to
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deceive malware, rather than detect it. We can benefit from all existing malware

analysis techniques, and in this work, we choose symbolic execution in particular.

In another direction of research, randomization and moving target defense are well-

investigated techniques toward agile cyber that can proactively disrupt advanced

attacks. Randomization techniques, such as instruction set randomization [176],

compiler-generated software diversity [177] and address space layout randomization [159],

introduce unpredictability to confuse the attackers and invalidate their assumptions

about the system. Moving target defense techniques, such as [157, 178, 179, 49, 50,

180, 156], mutate specific static system parameters proactively over time. For exam-

ple, NASR [181] randomizes IP addresses based on DHCP over time. Similarly, the

authors in [50] propose to periodically migrate VMs to make it harder for adversaries

to locate targeted VMs. In another direction, deception techniques, such as honeynets

and honeypots [42, 43, 44, 46], divert attackers away from their targets to consume

their resources and protract their reconnaissance. Although these techniques and

many other similar ones have been successful, within acceptable performance over-

heads, in deterring and deceiving the targeted attacks, they were designed in an ad-hoc

manner to counteract specific attacks. Our proposed analytic framework makes this

process systematic and decreases the need for manual intervention and the reliance

on human intelligence to design effective active cyber deception schemes.

4.3 Problem Statement and Contributions

This chapter addresses the problem of automatic extraction of the agility parame-

ters, whose value mutation or misrepresentation can invalidate the attacker’s percep-

tion about the system in order to achieve deterrence and deception goals. Given the

attack binary code and sufficient understanding of common system and library APIs

through which the malware communicates with the environment, our objectives are

to identify (1) “what” agility parameters are the most appropriate to accomplish the

deterrence and deception goals and (2) “how” to effectively mutate or misrepresent
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their values.

To accomplish this, we present a systematic approach and an automated tool to

analyze any malware binary code and extract the agility parameters. This requires

an agility-oriented analysis of malware behaviors that goes beyond existing dynamic

analyses, which are usually tailored towards attack detection and prevention. Thus,

we extended the existing dynamic analysis and symbolic execution frameworks to

track the execution of malware symbolically and analyze system and library API

calls that particularly entail interactions with the cyber environment. We then, iden-

tify the agility parameters that can impact the malware decision-making. Since these

parameters can be inter-dependent and may exhibit varying effectiveness and cost,

our analysis guarantees the selection of consistent sets of parameters that can ob-

tain resilient and cost-effective deterrence and deception plans. We summarize our

contributions as follows:

• We present gExtractor, an agility-oriented malware symbolic execution analysis

tool that intercepts and tracks the malware interactions with the environment,

and maps them to specific agility parameters.

• We developed formal constraints to extract agility parameters that constitute

consistent, resilient, and cost-effective deterrence and deception.

• We implemented gExtractor and evaluated it using various types of malware

codes. Our evaluation demonstrates the ability of gExtractor to extract effective

agility parameters, as manually verified by experts.

To demonstrate the value of our approach, we used gExtractor to analyze over fifty

recent malware instances. We present in the evaluation section representatives of

four major malware families: Worms, Cryptocurrency-mining malware, Ransomware,

and Credential-stealing malware. For each representative, we modeled its behavior,

extracted candidate agility parameters, and showed how they can be used to design
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Figure 4.2: Agility Parameters Extraction Framework Overview.

different deception schemes for different goals. Our case studies presented in this

chapter show that our approach can discover effective agility parameters. For ex-

ample, the bitcoin miner case study reveals multiple parameters including Windows

Script Host engine, win32_processor WMI (Windows Management Instrumentation)

class that can be used to deflect the malware by misinforming false platform types,

and the bitcoin hashing results that can be used to corrupt the results in the mining

pool and deplete the adversary’s resources (i.e., score).

4.4 Framework Overview

To analyze the attacker behavior and infer its dependence on the system parame-

ters, we follow the approach depicted in Figure 4.2. Since every interaction between

the attack binary and its environment, such as accessing the file system, sending a

packet over the network, or launching other programs, requires the attack binary

to make use of one or more of the operating system or user library APIs, our ap-

proach intercepts those interactions. The knowledge that the attacker gains about

the environment is transferred through the output arguments of these APIs. Thus,

we construct an attack behavior model based on the intercepted calls, the informa-
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tion flow between them, and the decisions taken by the attack binary based on that

information. Then, we refine the attack behavior model to prune out any information

that is irrelevant to the desired deterrence and deception goals. We use the refined

model to extract candidate sets of agility parameters that can be utilized in different

deterrence and deception schemes.

We implement this approach through gExtractor on top of the Selective Symbolic

Execution engine (S2E) [88]. Specifically, gExtractor takes three inputs: the attack

binary code, a specification of the desired deterrence and deception goals, and se-

lected system and user library APIs. With the assistance of our custom S2E plugins,

gExtractor executes the attack binary in a real controlled environment, intercepts the

system and library API calls, marks the relevant symbolic information, guides the

path exploration of the symbolic execution (e.g., pruning back edges and limiting the

number of times a loop body is executed), and collects textual logs. This facilitates

the construction of a comprehensive malware behavior model, which is refined by

(1) pruning out execution paths that are not relevant to the desired deterrence and

deception goals and (2) eliminating the don’t-care symbolic variables that have no

impact on the goals. We use the remaining parameters after the refinement process to

construct a constraints optimization problem, and we solve it using the Z3 solver [126]

to find an optimal set of parameters that satisfies our agility criteria.

We discuss in the following our broad design decisions we have taken in this work

and the motivations behind them:

• Binary files over the source code. Although static analysis of the source code

provides a complete understanding of attack behavior, the source code is not

available for most attacks. Hence, we chose to analyze malware binaries. There

are many public repositories, such as VirusSign [182], that collect hundreds of

thousands of malware samples from different malware families. Our approach

can take any malware binary, even if it has previously not been investigated or
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indexed in malware repositories before. Thus, our approach does not require

any form of high-level specification or analysis reports.

• Symbolic execution over pure static and dynamic analyses. Different static and

dynamic malware analyses have been proposed and used in literature. However,

each of them has some limitations. In principle, dynamic techniques cannot

guarantee complete coverage of execution, while code obfuscation and process

injection [183] can evade static techniques. The focus of this work is how we

can leverage the outcome of attack binary analysis for deterrence and decep-

tion. Hence, we used symbolic execution, which can cover all execution paths,

given that symbolic variables are marked correctly. In addition, the code is

executed in a real controlled environment, which makes evasion harder. We

acknowledge that symbolic execution can suffer from scalability issues and we

are investigating techniques to overcome this in our research.

4.5 Attack Behavior Model

The attack behavior model describes how the attack behaves based on the results

of its interaction with the environment. The malware interacts with its environment

through system and user library APIs characterized by their input and output ar-

guments. Some of these arguments may be attacker-specific variables and cannot be

controlled by the environment, while other parameters can be reconfigured or mis-

represented. We assume that mapping between the selected system or library APIs’

arguments and the corresponding parameters in the environment, which include files,

registry entries, system time, processes, keyboard layout, geolocations, hardware ID,

C&C, Internet connection, IP address or host name, and communication protocols,

is given. For example, the from argument of the recvfrom API can be mapped to a

system parameter that represents the IP address of the sender machine. Currently,

the mapping of arguments to system parameters is performed manually.
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Figure 4.3: Example of Attack Behavior Model

We define the attack behavior model as a graph of Points of Interaction (PoI) nodes

and Fork nodes. The PoIs refer to the points in the malware control flow at which

the malware interacts with the environment by invoking system or library APIs. For

example, node 1 in Figure 4.3 represents a PoI that corresponds to an invocation of a

Winsock library API named send, whose input arguments include a socket handle and

a pointer to a buffer containing the data to be transmitted. The fork nodes represent

the points in the control flow at which the malware makes a control decision based

on the results of its interactions with the environment, for example, nodes 2 and 5 in

Figure 4.3.

To formally model the attack behavior, let Γ be the set of selected System and

Library APIs, where each γ ∈ Γ takes a fixed number of input augments (Iγ =

{i1, ..., in}) and returns a fixed number of output arguments (Oγ = {o1, ..., om}). We

model the attack behavior as the directed graph G = (P, µ,E, ν), where:
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• P is a set of nodes that represent the PoI and Fork nodes. The type function

µ : P → {PoI,F ork} × (Γ ∪ ∅) associates nodes with their types. If the node

represents a PoI, µ further maps it to the appropriate system and library API

from the set Γ.

• E ⊆ P × P is the set of edges that represents the dependency between the

nodes in P . A directed edge e = (pi, pj) is added from node pi to node pj if

there is a control or data dependency between them. The dependency function

ν : E → LO associates each edge to a constraint expressed as a logic formula in

the logic LO with support for quantifier-free integer, real, and bit-vector linear

arithmetic. Expressions in LO are defined over the set of output arguments

O =
⋃
γ∈Γ

Oγ.

In Figure 4.3, we show an example of attack behavior model that represents a

portion of the Blaster worm that delivers a copy of the worm to an exploited victim.

Round nodes represent PoIs, and square nodes represent fork points. The solid edges

represent control dependency, while dashed ones represent data dependency. In this

model, the worm first sends an instruction to a remote command shell process running

on the exploited victim through the send library API, then it waits for a download

request through the recvfrom API call. The attack code checks if these operations

are executed successfully and terminates otherwise as depicted through the conditions

shown on the outbound edges from the fork nodes 2 and 5. At node 7, the worm

starts reading its executable file from the disk into a memory buffer, through fread,

and sending the content of the buffer to the remote victim, through the sendto API.

There is a data dependence between the third argument of the sendto call, which

represents the number of bytes to transmit, and the return value of the fread call,

which represents the number of bytes read from the worm file.
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4.6 Modeling Attack Behavior using Binary Symbolic Execution

To extract the complete behavior of a cyber-attack, we execute its binaries (i.e.,

malware) symbolically and build a model that represents its behavior with respect to

selected system parameters. Given that the correct set of system parameters is se-

lected, symbolic execution can cover all relevant execution paths. We utilize the S2E

engine to execute malware binaries symbolically. The path coverage and the progress

of the executed program depends on the correct marking of symbolic variables. Since

we are interested in the interactions of the malware with its environment through the

selected system and library APIs, we intercept these calls and mark their output ar-

guments as symbolic. This allows us to capture the malware decisions based on those

arguments and track the corresponding execution paths. In the current version of our

implementation, we select about 130 APIs that cover activities related to networking,

file system and registry manipulation, system information and configuration, system

services control, and UI operations. We list the complete set of APIs in Appendix A.

We have investigated two approaches to intercept the selected system and library

APIs and mark the symbolic variables. First, the use of dynamic binary instrumen-

tation tools, specifically, Pin [184] by Intel. Pin is a dynamic instrumentation tool

for IA-32 and x86-64 instruction-set architectures. It provides the means to write

special purpose tools that intercept instructions and system calls for further dynamic

analysis. It features an API that intercepts the system calls and reads/writes their

arguments, which was appropriate for our symbolic variables selection. Second, the

annotation plugin provided by the S2E engine, which combines monitoring and in-

strumentation capabilities to let users annotate single machine instructions or entire

function calls. It executes predefined scripts at runtime when the annotated instruc-

tion or function call is encountered in any execution path. Although Pin API provides

a special function to intercept system calls, it does not provide the same for library

APIs, which makes it inadequate to support our parameter extraction. Moreover, it
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runs the executable in some sandbox, which adds one layer of indirection between

the executable being analyzed and the symbolic execution engine, making it difficult

to understand the result of the symbolic execution. Hence, we used the annotation

plugin to implement our framework. The details of the steps required to accomplish

that are presented in the following.

4.6.1 Marking Symbolic Variables

To intercept system and library API calls and mark the appropriate symbolic vari-

ables, we take advantage of the Annotation plugin provided by S2E, which combines

monitoring and instrumentation capabilities and executes user-supplied scripts, writ-

ten in LUA language, at runtime when a specific annotated instruction or function

call is encountered. We define an annotation entry for each API. The annotation entry

consists of the module name, the address of the API within the module, and the anno-

tation function. We identified the module names and addresses using static/dynamic

code analysis tools, such as IDA and Ollydbg.

The annotation function is executed at the exit of the intercepted call. It reads the

addresses of the return and output arguments of the call and marks the appropriate

memory locations and registers as symbolic. To read the values of the output argu-

ments inside the annotation function, we call a curState:readParameter(param_no),

which is provided by the Annotation plug-in, where curState represents the current ex-

ecution state (i.e., path). We then call the function curState:writeMemorySymb(sym_label,

address, size) to set the memory block of size bytes starting at address as symbolic.

The address is the value of the output parameter and the sym_label is a name of

the resultant symbolic variable. Note that output arguments may have varied sizes

and structures. Hence, custom scripts are needed to mark each individual output

argument of the intercepted APIs. The return values of APIs are typically held in

the EAX register and we use a special method provided by S2E to mark its value

as symbolic. It should be noted that system calls and user library APIs are invoked
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Listing 4.1: Example of Annotation Functions
1 function annotation_recvfrom(state, plg)
2 if (plg:isReturn()) then

-- Mark the returned buffer as symbolic
3 buf = state:readParameter(2)
4 buflen = state:readParameter(3)
5 make_memblock_symbolic(state, "c-recvfrom-a2", buf, buflen)

-- Mark the return value as symbolic
6 state:writeRegisterSymb("eax", string.format("c-recvfrom-ret"))
7 else
8 writeLibCallLog(state, plg, "recvfrom")
9 end
10 end

by all applications in the environment, not only the malware process. Therefore, our

annotation functions check the name of the process that invokes them and ignore calls

from irrelevant processes. More specifically, our scripts first retrieve the address of

the current PEB (Process Environment Block) from FS:[0x30] in the guest VM and

traverse this data structure to obtain the image path name; then they compare this

name with a list of names relevant to the malware.

In Listing 4.1, we show the annotation functions annotation_recvfrom, which is

called whenever the API recvfrom of the ws2_32.dll is invoked. The if-else statement

at line 2 checks whether this annotation is invoked upon the entry (plg.isReturn()==false)

or the exit point (plg.isReturn()==true) of the annotated API. On the entry point,

at line 8, we only log the invocation information, which include the API name,

its arguments, and the call stack. On the exit point, we read the output buffer

(line 3) and its length (line 4) and we define a symbolic variable of the specified

length by calling the function make_memblock_symbolic at line 5. The function

make_memblock_symbolic is an alternative for curState:writeMemorySymb that we

use in the cases where the buffer size is not known in advance. The string “c-recvfrom-

a2” represents the name of the new symbolic variable, which indicates that it corre-

sponds to the second argument of a call to the recvfrom API. Then, we declare the
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return value, which is held in the register EAX, as another symbolic variable named

“c-recvfrom-ret” at line 6.

4.6.2 Building the Attack Behavior Model

After preparing the appropriate annotation entries, we execute the malware using

S2E to collect the execution traces. We configured the annotation functions to record

the arguments, the call stack, and other meta-data, such as the time-stamp and the

execution path number for each intercepted system and library call. By design, S2E

intercepts branch statements whose conditions are based on symbolic variables and

forks new states of the program for each possible branch. We collect the traces and

branching conditions of all execution paths and build the attack behavior model as

follows:

• We create a PoI node for each system or library API call logged by our annota-

tion functions. Similarly, the traces contain special log entries for state forking

operations. Those are used to create the Fork nodes in our model.

• For each node in the model, we add a control dependency edge from the node

preceding it in the execution path. If the preceding node is a Fork node, the

edge will be associated with a branching condition in terms of the symbolic

variables.

• To capture the data dependency, we check the values of all the input arguments

upon the entry of each API call. If the value is a symbolic expression, this

implies that it is a transformation of previously created symbolic variables.

Hence, we add a data dependency edge from the PoI nodes in which the symbols

of the expression were created.

4.7 Agility Parameters Extraction

Given the attack behavior model generated through symbolic execution, we extract

a set of system parameters that help in designing effective deterrence and deception
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schemes to meet particular goals. Recall that the attack behavior model describes the

complete behavior of malware with respect to selected system parameters. However,

that does not mean that every parameter in the attack behavior model is a feasible

candidate for deterrence or deception. That is, mutating or misrepresenting its value

may not be sufficient to deter or deceive the attacker successfully. We analyze the

attack behavior model to select the appropriate set(s) of agility parameters that can

help in designing deterrence and deception schemes without dictating particular ones.

We present the following four criteria (C1 - C4) that must be considered to decide

on which parameters are appropriate for effective deterrence and deception and which

are not:

• C1 (Goal Dependency): the selected agility parameters can directly or indirectly

affect the outcomes of the attack in terms of whether the attacker can reach

their goal. Hence, parameters that are used only in execution paths that do not

lead to particular goals might be excluded.

• C2 (Resilience): in cases where multiple attack paths lead to particular goals,

selected parameters must provide deterrence or deception in all the paths, not

on one path only.

• C3 (Consistency): the selected agility parameters must preserve the integrity of

the environment from the attacker’s point of view. As system parameters may

be interdependent, deterrence and deception schemes must take this into con-

sideration, such that misrepresenting one parameter without misrepresenting

its dependents accordingly does not disclose the deterrence or deception plans.

For example, 32-bit architectures are limited to addressing a maximum of four

gigabytes of memory. Hence, if in one particular execution path, we misrepre-

sented our 64-bit architecture to appear as 32-bit for the attacker, we must also

misrepresent the available memory if the attacker inquires about it later in the
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execution path.

• C4 (Cost-Effectiveness): although multiple parameters may exist in the exe-

cution paths leading to particular goals, mutating or misrepresenting different

parameters may require different costs and provide various benefits from the

defender’s point of view. Defenders must select the most cost-effective set of

parameters for deterrence and deception.

To extract the parameters that satisfy the four criteria, we follow two steps. First,

we refine the attack behavior model to eliminate irrelevant execution paths and sym-

bolic variables to ensure that the refined model contains only the agility parameters

that satisfy C1. Second, we construct a constraints optimization problem based on

the refined model. We add the appropriate constraints to extract the parameters

that satisfy C2 and C3. Further, we encode the estimated costs of using the candidate

deception parameters to select the most cost-effective set that complies with C4.

4.7.1 Refining the Attack Behavior Model

The complete attack behavior model contains many execution paths that may not

be relevant to our agility analysis. In this refinement step, we (1) identify the set

of execution paths that are relevant to deterrence or deception and (2) eliminate the

don’t-care symbolic variables.

Identifying the Relevant Paths. Recall that deterrence and deception are not

about blocking attacks, rather, it is about misleading and forcing them to follow

particular paths that serve the desired goals. Hence, the selection of relevant execution

paths from the attack behavior model depends on the deterrence or deception goal.

For example, if our goal is distortion, the relevant paths are those that keep the

malware misinformed about the environment to slow down the attack and force it

to make additional environment checks. This is reflected in the paths that exhibit
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aggressive interactions and queries with and about the environment. On the other

hand, the relevant paths for depletion and discovery are those that lead the malware

to interact with the remote master or adversaries, while paths in which the malware

loses interest and abandons the system are more relevant to the deflection goal.

Definition 7 (Relevant Paths). A relevant path with respect to a particular deterrence

or deception goal is an execution path that exhibits particular patterns of interactions

with the environment that can be leveraged by the defender to achieve the goal.

Regardless of which deterrence or deception goal is desired, it can be represented

as a single call or a sequence of calls to system and library APIs leveraging existing

tools that identify specific behaviors through patterns of call sequences, such as [185,

186, 187]. Then, the PoI nodes in our attack behavior model will be used to identify

the execution paths that exhibit that particular sequence of calls. By pruning out

all other paths that do not exhibit the desired sequence, we end up with a portion

of the original behavior model that contains only the paths relevant to the desired

goal(s). In Figure 4.4a, we show a simple example of an attack behavior model that

has two paths, one leading to the desired goal and the other to the attack termination.

In this case, the left path is considered irrelevant, and it will be eliminated. For a

concrete real-world example, in order to deceive the FTP Credential Stealer malware

in Section 4.8.3 with honey FTP passwords, the environment must not run OllyDbg

because otherwise, the malware would follow an execution path irrelevant to the

deception goal.

Eliminating the Don’t-Care Variables. To clarify this step, we need first to define

the execution path constraints. A path constraint is a logical expression that captures

the conditions on the selected symbolic variables that need to be met in order for the

execution to follow that particular path. Recall that we associate a set of symbolic

variables to each PoI node p in the attack behavior model (p ∈ P, µ(p) = PoI), which
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Figure 4.4: Attack Behavior Model Refinement.

correspond to its output arguments. Later in the execution, an expression will be

generated for each branch at the following forking nodes in terms of the symbolic

variables causing the fork. Those expressions are captured in the resulting edges of

the fork nodes and mapped through the dependency function ν(.).

The constraint of an entire path in our attack behavior model is simply the con-

junction of the logical expressions associated with all the edges that belong to the

path. Formally, let P = {p1, p2, ..., pn}, where (∀i∈[1,n] : pi ∈ P ), represents a node

path in the attack behavior model. Further, let ei,j ∈ E denote the edge between the

nodes pi ∈ P and pj ∈ P . The path constraint of the execution path represented by

P can be computed as
∧
i∈[1,n−1] µ(ei,i+1), where µ(ei,i+1) is the expression of the edge

ei,i+1. We define the don’t-care symbolic variables as follows.

Definition 8 (Don’t-Care Variables). A don’t-care variable with respect to particular

deterrence or deception goal is a symbolic variable that is part of one or multiple

execution path constraints and its value is irrelevant to the desired goal.

As Figure 4.4b illustrates, although there is a decision taken based on the symbolic

variable v1, the desired goal will be reached regardless of the variable’s value. This

makes v1 a don’t-care variable with respect to the desired goal. Consequently, it can

be excluded from further deception analysis.
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Figure 4.5: Deception Parameters Selection.

After eliminating the irrelevant paths and the don’t-care variables, we end up with

refined path constraints for the relevant paths. Any parameter extracted based on

this refined model complies with C1 criteria.

4.7.2 Selecting Agility Parameters

In this step, we define a constraints optimization problem based on the refined

attack behavior model to find an optimal set of agility parameters. Each PoI node in

the refined attack behavior model is associated with a set of symbolic variables, which

represent the output arguments of the malware interactions with the environment.

Although, the symbolic variables augment the attacker’s perception about the en-

vironment, extracting the agility parameters out of them is not a trivial process due

to the following. First, there is not necessarily a one-to-one mapping between the

symbolic variables and the system parameters because the output of one interaction

may be determined by multiple system parameters. Hence, we need to map the sym-

bolic variables to the appropriate system parameters utilizing expert knowledge of

the system and the system and library APIs. The documentation of the APIs can

also be used to extract this mapping as it normally specifies the possible outputs

of APIs and the cases in which each value is returned based on the system and the

environment states. Second, multiple candidate sets of agility parameters may exist
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in the model. As illustrated in Figure 4.5a, selecting either {v1} or {v2, v3} satisfies

C2 criteria, but they might be associated with different costs. Third, the interdepen-

dence between system parameters mandates selecting additional parameters to satisfy

C3, which increases the cost of deterrence or deception. For example, in Figure 4.5b,

although selecting {v1} is sufficient to satisfy C2, we also need to select {v3} to satisfy

C3 because of the dependency of v3 on v1. To satisfy C4, our selection must consider

all possible candidate sets to find the most cost-effective one.

To formalize the problem of selecting the optimal set of agility parameters, let V be

the set of system parameters and let S be the set of symbolic variables in the refined

attack behavior model. We define the following mapping functions:

• θ(.) : S → 2V is the parameters assignment function that maps each symbolic

variable in the path constraints to the corresponding system parameter(s).

• δ(.) : V → Z∗ is the cost function that determines the cost of deterrence

or deception through each system parameter. Z∗ is the set of non-negative

integers.

Based on these assumptions, the agility parameters selection is defined as the problem

of selecting a set of system parameters, such that (1) at least one parameter is selected

for each relevant path (to comply with C2), (2) if a parameter is selected, all its

dependents are also selected (to comply with C3), and (3) the selected parameters

incur the minimum cost on the defender (to comply with C4).

To model this problem, we define the set of Boolean variables {d1, d2, ..., dm} with

a variable for each system parameter in V . This set represents the decision variables

of the constraints optimization problem, where di is set to 1 if the i-th parameter

in V is selected for deterrence or deception and di is set to 0 otherwise. Then, we

unfold the refined attack behavior model into the set T of paths, where each t ∈ T is

a sequence of symbolic variables (t ⊆ S). The first constraint that at least one agility
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parameter is selected for each path is expressed as follows:

∧
t∈T

∨
s∈t

∨
i∈θ(s)

di

 (4.1)

where θ(s) is the parameters assignment function that returns the indices of the

system parameters associated with the symbolic variable s. To calculate the total

deterrence or deception cost, we compute the value C that represents the cumulative

cost of all the selected agility parameters.

C =
∑
i∈[1,m]

(di ? δ(vi) : 0) (4.2)

where vi is the i-th element in the set V of system parameters and the notation

(ψ ? v1 : v2) represents the if-then-else construct that evaluates to the value v1 if ψ is

true, and to the value v2 if ψ is false. We add another set of constraints to capture the

dependency between the system parameters. If a parameter is selected for deterrence

or deception, all the dependent parameters must also be selected. To capture this set

of constraints, let ε(.) : V → 2V be a dependency function that maps each system

parameter to a set of dependent parameters. Then, we represent the dependency

constraints as follows: ∧
vi∈V

di → ∧
j∈ε(vi)

dj

 (4.3)

After adding the constraints, we solve the constraints optimization problems using

the Z3 solver. The optimization objective in this problem is to minimize the aggregate

deterrence or deception cost denoted by the variable C in Equation 4.2. The result

will be a set of system parameters that satisfies our four criteria to provide resilient,

consistent, and cost-effective deterrence and deception.
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4.8 Evaluation

We analyzed over 50 recent malware variants using gExtractor and extracted candi-

date agility parameters for each of them. The variants we analyzed represent the most

common types of malware, including Cryptocurrency-mining malware, ransomware,

worms, spyware, and Credential-stealing malware. To demonstrate that our system-

atic approach can indeed extract effective agility parameters, we selected six of the

most prevalent malware, namely, W32.Blaster worm, Bitcoin Miner, FTP Credential-

Stealer, and three instances of ransomware (Cerber, Locky, and Gandcrab). We dis-

cuss in detail the process of building the attack behavior model, extracting the agility

parameters, and we suggest deterrence and deception schemes utilizing them.

4.8.1 Case Study I: W32.Blaster Worm

In this case study, we analyze a real worm called W32.Blaster. Although this

worm is old (first discovered in 2003), we selected it since its source code is avail-

able [188], which provides the ground truth to validate the results we learn through

our automated framework. In addition, it is using various attack techniques that are

commonly used by old and recent malware, such as reconnaissance, Denial of Service

(DoS), and malware propagation.

Malware Behavior. We constructed the behavior model of this malware using our

framework and we show a simplified version in Figure 4.6. W32.Blaster consists of

two modules: spreading and flooding. The spreading module replicates the worm in

the vulnerable machines by exploiting a known vulnerability in Microsoft’s DCOM

RPC [189]. The flooding module conducts a SYN flood attack on the windows update

server at specific times of the year. Before starting the malicious modules, Blaster

goes through an initialization phase, which set some registry keys to ensure persistence

and checks for infection markers. The spreading module scans blocks of 20 sequential

IP addresses simultaneously. Once an active IP is found, the spreading continues as
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Table 4.1: Major Intercepted APIs in the Blaster Worm

Module API

ntdll.dll NtCreateKey(KeyHandle, Access, Attributes, TitleIndex, Class,
eOptions, Disposition)

ntdll.dll NtSetValueKey(KeyHandle, ValueName, TitleIndex, Type, Data, DataSize)
ntdll.dll NtCreateMutant(MutantHandle, DesiredAccess, ObjectAttributes, InitialOwner)
ntdll.dll GetLastError()
wininet.dll InternetGetConnectedState(lpdwFlags, dwReserved)
ws2_32.dll WSAStartup(wVersionRequested, lpWSAData)
ws2_32.dll sendto(socket, buf, len, flags, to, tolen)
ws2_32.dll recvfrom(socket, buf, len, flags, from, fromlen)
ws2_32.dll send(socket, buf, len, flags)
ws2_32.dll bind(socket, name, namelen)
ws2_32.dll select(nfds, readfds, writefds, exceptfds, timeout)
ws2_32.dll connect(socket, name, namelen)
msvcr90.dll fread(ptr, size, nmemb, stream)

follows. First, it initiates a connection to the IP address over the TCP port 135, which

is the port used for RPC/DCOM. If the connection is established, the worm sends

an exploit payload that, if successful, will establish a remote command shell process

listening to the TCP port 4444 on the victim’s machine. This allows the attacker to

send and execute commands remotely. Second, W32.Blaster sends a command to the

remote shell to use a Trivial File Transfer Protocol (TFTP) client that will download

the worm binary to the remote victim. At the same time, W32.Blaster starts waiting

for TFTP requests from the victim. Once a request is received, the binary file is sent

to the victim. Finally, W32.Blaster sends a command to execute the worm replica

on the victim’s machine remotely.

Agility Parameters. We analyzed the behavior of W32.Blaster with respect to the

goal of successful replication on the remote victim machine. We identified the critical

parameters on which the goal depends using our framework. Table 4.1 shows the

major interactions that we intercepted and in Table 4.2 we summarize their critical

arguments along with the system parameters that can influence their values. We use

foo.ret to denote the return value of the system call or user library API foo.

Deterrence Schemes. During the initialization phase, the Blaster worm creates a
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Figure 4.6: Simplified Behavior Model of the W32.Blaster Worm.

registry key/value, to ensure persistence, and creates a mutex as an infection marker.

The name of the registry subkey “SOFTWARE\Microsoft\Windows\CurrentVersion

\Run” is hardcoded in the worm. This registry subkey has a fixed meaning in Windows

OS and is used to record all programs that should be launched automatically at boot

time. Although changing this registry subkey (i.e., Windows will use a different

subkey to locate auto-start programs) may break the persistence of this worm, the

Blaster sample that we investigated does not check if this step is successful. This

means that the worm will continue running regardless of the result of the registry

key operation. Next, the malware invokes NTCreateMutant to create a mutex named

BILLY, and if the result of the system call is equal to ERROR_ALREADY_EXIST,

the malware will terminate its execution. Hence, the malware’s goal depends on
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Table 4.2: Critical Parameters of the Blaster Worm

Argument Meaning System Parameter

NTCreateMutant.ret Mutant found or not? Mutant Name
WSAStartup.ret Socket library initialized? Socket Library
InternetGetConnectedState.ret Internet connected? Connection State
select.ret Remote party available? IP Address, Port Number
send.ret Session established? Communication Sessions
connect.ret Connection established? IP Address, Port Number
bind.ret TFTP port available? Available Ports
recvfrom.ret Remote party alive? IP Address, Port Number
recvfrom.buf Request content. Communication Messages
fread.ret Bytes read. File Names, File Content
sendto.ret Attack commands are sent? IP Address, Port Number

whether a mutex named BILLY exists. The initialization phase continues by verifying

the version of the socket API through calling WSAStartup. As shown in Table 4.2,

the two arguments NTCreateMutant.ret and WSAStartup.ret are critical parameters

in the initialization phase because their values can determine whether the execution

continues or not.

After successful initialization, the interaction of Blaster with its environment is

mostly related to the network communication with the victim. The worm calls multi-

ple networking APIs, such as connect, send and recvfrom, to exploit the RPC/DCOM

service on the victim’s machine and deliver a replica of itself. All the parameters that

are shown in Table 4.2 and related to networking are guaranteed to prevent the worm

from reaching its goal if their values mismatch the ground truth in the environment.

For example, the IP address, one of the well-studied agility parameters, is discovered

using our analysis. Specifically, the malware sends an exploit payload to a target

machine. Then the malware verifies if the exploit has been successful by trying to

establish a new TCP connection to the target machine over port 4444. Between

these two steps, the malware assumes that the target machine’s IP address stays the

same. Therefore, mutating the IP address of the target machine, even after the initial

exploit, will make the worm unable to reach it and deliver the worm replica.
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Deception Schemes. The rest of the parameters shown in Table 4.2, such as the

Mutant Name, Socket Library, Internet Connection State, and the Communication

Messages, are valid candidates for deception because the attacker decides whether

to go forward or not based on their values. However, they are not candidates for

mutation because the attacker does not use their values again in the following attack

phases. On another hand, Port Number and File Names may be candidates for

deterrence. The attacker first discovers if the IP Address/Port number are active,

then she uses them to send the exploits and further commands. In the same way, the

attacker first discovers the file name of the worm, and then she uses the file name to

read its content.

4.8.2 Case Study II: Bitcoin Miner

We analyzed a recent bitcoin mining malware (MD5: efd1326e5289a9359195120fd6

c55290) that works in several stages. First, it drops and runs a Visual Basic (VB)

script. Second, the script queries the Windows Management Instrumentation (WMI)

service for the processor’s information, such as the availability of GPU and the sys-

tem architecture (32-bit or 64-bit), to download the right executable file for the tar-

get system from an external distribution website, winxcheats.tk. Third, the down-

loaded executable (csrs.exe) downloads yet another executable (AudioHD.exe) from

getsoed9.beget.tech. The last program (AudioHD.exe) interacts with a bitcoin mining

pool server at xmr.pool.minergate.com to perform the mining on behalf of an account,

which is hard-coded in the executable.

Malware Behavior. Using gExtractor, we construct the behavior model of this

malware (see the simplified version in Figure 4.7), which covers the malware execution

stages. We use common patterns of API calls to recognize significant malware activity.

For example, the use of APIs that create new processes (e.g., ShellExecuteExA and

WshShell.Run), indicates the beginnings of consecutive malware stages. Moreover,

interacting with a well-known bitcoin mining pool server through networking and
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Figure 4.7: Simplified Behavior Model of the Bitcoin Miner

HTTP APIs reveals that one goal of this malware is to use the victim machine to

perform bitcoin mining on behalf of the attacker. Therefore, we refine the malware

behavior model by recognizing the relevant paths that lead to that goal and design

deterrence and deception schemes around it. After mapping the symbolic variables

of the relevant paths’ constraints to the system parameters, our analysis reveals the

following necessary conditions for successful mining:

1. The file C:\Windows\system32\wscript.exe exists.

2. Windows Script Host (WSH ) engine is enabled to run Visual Basic scripts [190].

3. WMI service and Microsoft Win32 WMI provider are running.

4. win32_processor WMI class reports the correct processor information.

5. The distribution website (http://winxcheats.tk) is available and hosts the exe-
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cutable file (under /miners/3/csrs.exe).

6. The second distribution site (getsoed9.beget.tech) is available and hosts the sec-

ond executable file (AudioHD.exe).

7. The bitcoin mining pool server (xmr.pool.minergate.

com) is still running correctly.

8. The hard-coded account (iden1930@mail.ru) is authenticated successfully at

the mining pool server.

9. The target system can run the file AudioHD.exe successfully.

To clarify how gExtractor facilitates the detection of such conditions, let us take

condition 2 as an example. We mark the output parameter “Buffer” of the RegQuery-

ValueExW API call, which is required to successfully complete the second stage of

the malware, as symbolic. The API’s input parameter, hKey, refers to the registry

key “HKLM\SOFTWARE\Microsoft\Windows Script Host\Settings\” and the other

input parameter “ValueName” is set to “Enabled”. Then we observe that “Buffer”

is used in a conditional jump, and in one path the message “Windows Script Host

access is disabled on this machine” is displayed before the process terminates, while

in another path we do not see this message. Alternatively, we see multiple queries

to the WMI service. The first path will be regarded as irrelevant and pruned out by

gExtractor and we will only consider the later. Similarly, gExtractor can detect the

dependence of this malware on the remaining conditions by tracking the decisions

taken based on the associated symbolic variables and refining the behavior model.

Agility Parameters. We analyzed the refined bitcoin miner behavior model with

respect to different deception goals: deflection, distortion, depletion, and discovery.

We identified the major agility parameter that satisfies our criteria defined in Sec-

tion 4.7.2 and can be utilized to achieve each goal. In the following, we discuss a
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Table 4.3: Deception Schemes Against the Bitcoin Mining Malware

Parameter Goal Deception Action Estimated Cost

wscript.exe Deflection
Replace it with a version that
rewrites the input VB script for
better protection

No CC; High OC; High
DC

WSH engine Discovery Enable its capability to run VB
scripts Low CC; No OC; No DC

WMI class Distortion
Change the way that it handles re-
quests (e.g., returning misinforma-
tion about processors)

No CC; Low OC if used
on a honeypot; Medium
DC

The resulting hash Depletion Corrupt the resulting hash No CC; No OC; High DC

(CC: configuration cost, OC: operation cost, DC: development cost)

number of recommended deception schemes based on these parameters, and we pro-

vide a summary with the estimated deception costs in Table 4.3.

Deflection Schemes. For this purpose, we can enhance the designated script host

C:\Windows\system32\wscript.exe. If the malicious VB script initiates a connection

to a critical server, the enhanced wscript.exe can rewrite the VB script statement so

that it connects to a honey server instead. This scheme could have high development

cost because it requires a change to a Windows system utility, for which we do not

have a source code. In terms of operation cost, this scheme can have a high cost

because it can confuse benign applications that need to run VB scripts, even if this is

on a honeypot. However, it has little configuration cost because the current Windows

OS does not have a configuration option to replace wscript.exe with an alternative

version.

Discovery Schemes. We can use the Windows Script Host (WSH) engine to con-

struct a discovery strategy against malware that needs to run VB scripts. The WSH

enables applications to run VB scripts and JScripts, and it provides a configuration

option (via Windows registry) to enable/disable the VB script support. By enabling

it, we can observe malware behavior through its VB scripts and have a better under-

standing of the malware. This strategy incurs only a low configuration cost.
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Distortion Schemes. Through the “win32_processor WMI class” parameter, we

can construct a distortion scheme that returns misinformation about the system’s

architecture in order to confuse the malware (or the attacker behind the malware)

who queries the win32_processor class interface. This strategy requires a change

to the implementation of the win32_processor class interface, so there can be some

development cost, and it can have a low operation cost if it is used on a honeypot.

Depletion Schemes. The last parameter in Table 4.3 is the resulting hash, which the

malware sends reliably to the mining pool server. We can create a depletion scheme

by corrupting the results so that they become invalid. Deceiving the malware by

sending excessive invalid results damages the attacker’s reputation or cause financial

losses (e.g., the mining pool server bans her account, freezes her mining wallet, or

applies a penalty to her account). This scheme requires writing code to carry out

the scheme, so it has some development costs. It has no operation cost because it

modifies only the data of the malware.

We have experimentally confirmed the feasibility of depleting the attacker by cor-

rupting the resulting hashes. To profit from mining on a victim machine, the attacker

communicates with the mining pool server under the mining username to receive the

credit. Therefore, at the mining time, the attacker username must be present on

the victim machine. We leveraged this fundamental “vulnerability” of this malware

(i.e., revealing the mining username) for an effective deception. Based on a study

of multiple mining pools, they establish various penalty policies for participants who

submit invalid hashes. Misbehaving users are often banned (for a particular period

of time), and their wallets can even be locked. In some servers, such as minergate,

the balance will be reduced to penalize this behavior.

In a parallel work by our group, we built a tool that deliberately sends invalid hashes
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Figure 4.8: Simplified Model of the FTP Credential-Stealer

on behalf of a particular user to prove the effectiveness of this depletion scheme. As

different mining pool servers may implement distinct protocols to authorize jobs and

submit resulting hashes, we obtain the required settings and methods to communicate

with the mining pools by analyzing the mining malware. Then, we submit a login

request to the pool server. In response, the pool server returns a job and an ID that

corresponds to the username. At that point, our tool will generate and send a random

hashing result, which will most likely be recognized as an invalid hash by the pool

server.

4.8.3 Case Study III: FTP Credential-Stealer

In this case study, we analyze a recent malware (MD5: 7572fb188134-d141eac175

1b19b79a70) that scans the victim system for sensitive information, such as FTP
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login passwords and then sends the stolen information to a remote server.

Malware Behavior. This malware consists of two processes. The first process

employs multiple methods to check whether the malware is being analyzed, then

terminates immediately if the checking result is positive. If no signs of analysis are

detected, the first process drops and launches another piece of malware, which collects

sensitive information from the victim system and sends it to a remote server under

the adversary’s control. A simplified version of the behavior model of this malware,

generated by gExtractor, is shown in Figure 4.8.

The first malware process is heavily obfuscated and employs multiple tricks to

evade analysis and ensure a safe execution environment: (1) it tests whether the

executable file’s name (via the API GetModuleFileNameA) contains any of the strings

“sandbox”, “malware”, “virus”, or “self ”; (2) it scans the list of running processes

(via the APIs CreateToolhelp32Snapshot, Process32FirstW, and Process32NextW )

for known dynamic analysis tools, such as procmon.exe, procmon64.exe, procexp.exe,

ollydbg.exe, and windbg.exe; (3) it checks the BeingDebugged flag in its PEB (Process

Environment Block) [191] at multiple places of its code section; (4) it checks whether

it is running inside a virtual machine by matching the result of the CPUID instruction

with “KVMKVM”, “XenVMM”, “Microsoft Hv”, and “pri hyperv”; (5) it extracts the

second malware binary from its resource section, decrypts it, and then uses process

injection to launch it in a second process. If any sign of malware analysis is detected,

the malware immediately terminates.

In the second process, the malware collects sensitive information from the Win-

dows registry and the local file system and sends it to a remote site as follows.

First, it searches certain Windows registry keys, which correspond to a specific list

of FTP clients, for saved login credentials. For example, to steal information related

to WinSCP, it searches for the key “Software\Martin Prikryl”. If the key is found, it
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Table 4.4: Defense Strategies against FTP Credential-Stealing Malware

Parameter Goal Deception Action Cost

Malware file name Discovery
Avoid naming the malware “sand-
box.exe”, “malware.exe”,“virus.exe”,
or “self.exe”

Low CC;
no OC

Dynamic Analysis tools Discovery Rename the dynamic analysis tools Low CC;
no OC

CPUID result Discovery
Deny that the true result is one of
“KVMKVM”,“XenVMM”, “Microsoft
Hv”, and “pri hyperv”

Low CC;
High OC;
High DC

WinSCP registry entries Depletion

Plant encrypted and invalid FTP
passwords to waste the energy of the
attacker who tries to decrypt and use
those invalid passwords

Low CC;
Low OC;
No DC

WinSCP registry entries Discovery
Plant honey FTP passwords to entice
the attacker to login to a honey FTP
server

Med CC;
Low OC;
No DC

Registry entries of appli-
cations that maintain lo-
gin credentials

Depletion Plant encrypted and invalid login
credentials

Low CC;
High OC;
High DC

Registry entries of appli-
cations that maintain lo-
gin credentials

Discovery Plant honey login credentials
Med CC;
Low OC;
No DC

Files that contain sensi-
tive information

Depletion

Plant Honey files with seemingly sen-
sitive information to waste the en-
ergy of the attacker who tries to act
upon the content of the files

Low CC;
Low OC;
No DC

Files that contain sensi-
tive information

Deflection
Distortion
Discovery

Depending on the meaning of the file
content, plant crafted content that
can help the defender achieve Deflec-
tion / Distortion / Discovery goals

Var CC;
Low OC;
No DC

(CC: configuration cost, OC: operation cost, DC: development cost)
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recursively enumerates the subkeys with the names “HostName”, “UserName”, “Pass-

word”, “RemoteDirectory”, and “PortNumber”, read their values, and stores them

in a stream object for later exfiltration. Strings such as “Software\Martin Prikryl”

and “HostName” are hard-coded in the malware. Second, it looks up files whose

path contains particular patterns (e.g., “WS_FTP”, “LastSessionFile”, “FTPRush”,

“Quick.dat”, and “History.dat”), and if any such file exists, it stores the file’s path and

content in the stream object. To optimize the search, it focuses on known folders,

identified by their Constant Special Item ID List (CSIDL) values, such as the users’

public documents, desktop, and local settings. It also searches the folders of installed

applications discovered by their “UninstallString” registry values under the registry

key HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall.

After collecting the targeted information, the malware extracts the data from the

stream object (via the API call sequence {GetHGlobalFromStream, GlobalLock}), then

it constructs and sends a HTTP POST message to “http://www.luxzar.com/drake/

november/omg/hot/ gate.php”. The HTTP communication is conducted by the API

call sequence {InternetCrackUrlA, ObtainUserAgentString, socket, connect, setsocke-

topt, send, closesocket}.

Agility Parameters. We employ the methods discussed in Section 4.7 to the be-

havior model we obtain from the above analysis. We recognize a number of agility

parameters that enable different deception schemes, as summarized in Table 4.4.

Discovery Schemes. Since the malware applies many checks to evade analysis,

these checks can be used to inspire effective discovery schemes that encourage the

malware to run normally. Specifically, we can rename common analysis tools if we

must run them and modify the behavior of the CPUID instruction so that it gives

an impression that the environment is not a virtual machine, which is commonly the
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case for malware analysis. The cost of renaming common dynamic analysis tools is

low. However, the cost of manipulating the result of the CPUID instruction can

be high: it is cheap if the environment has a way to intercept CPUID instructions

in software (e.g., on top of QEMU), but it is infeasible otherwise. Alternatively,

the registry entries of the FTP clients, such as WinSCP, can be leveraged to lure the

attacker to honeypots so we can learn more about its capabilities and intents. We can

create honey FTP accounts, save the honey login credentials in WinSCP, and run the

malware, so it delivers the honey login credentials to the attacker. The configuration

cost of this kind of scheme is medium because it is necessary to set up the honey FTP

server and deploy monitoring tools.

Depletion Schemes. The registry entries of the FTP clients can also be leveraged

to feed the attacker fake login credential and deplete her resources and effort. For

example, we can install WinSCP in the environment and save many sessions with fake

values for the information targeted by the attacker (e.g., username and password)

decreasing the likelihood of her landing on legitimate victims. An even better scheme

is to create an encrypted version of an invalid password and save it in the Windows

registry entry for WinSCP, which will give the attacker an additional burden to

decrypt the password, thus further depleting the attacker’s resources.

Deception Schemes using the File System. Similar to registry entries, files that

contain sensitive information are useful parameters for multiple goals: depletion,

deflection, distortion, and discovery. For example, we can plant honey files with

seemingly sensitive but useless information to waste the energy of the attacker who

tries to act upon the content of the honey files. Although the general idea is well

known, the specific details as to which files should be planted can be greatly informed

by analyzing the malware decisions. The cost of carrying out these kinds of strategies
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can vary depending on the purposes of the files: it may require simple editing of a file

on one hand, or development of tools to create the files on the other; the operation

cost may also vary depending on the purpose of the files: if they are used only by

attackers, the cost is low, but if they are used by benign users, the cost can be quite

steep, since the honey content can confuse benign users.

4.8.4 Case Study IV: Cerber, Locky, and Gandcrab

Ransomware has moved from the 22nd most common variety of malware in the

2014 data breach investigations report to the fifth most common in 2017’s report [2].

We analyzed three instances of this family using gExtractor : Cerber, Locky, and

Gandcrab and we summarize the analysis in the following. Since these instances

encrypt files on the compromised computers, one can expect that their functionality

relies heavily on file-related interactions. However, they share some functionality with

traditional other types of malware. First, during the initialization, they access the

system registry to set up the keys that guarantee persistence, and they use mutant-

based infection markers. Second, they communicate with a C&C server for key sharing

and reporting. However, the communication is limited to information sharing, and

the server commands do not normally change the primary goal of those malware.

Agility Parameters. In Table 4.5, we highlight the major interactions with the file

system, and we map them to system parameters. Note that some interactions depend

on multiple parameters. For example, GetFileSize will fail if the file no longer exists

and if it does, it will return the file size. Hence, it depends on both the existence of the

file and its size. The persistence registry keys and the mutant infection markers, the

common folders (e.g., temp and system directory), and the parameters in Table 4.5

(e.g., files names, sizes, and attributes) were all part of the relevant paths that lead

to the goal and can be candidates for deterrence or deception. In addition, after

refining the behavior models, we observed a difference between Cerber and the Locky
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Table 4.5: Selected File-Related Interactions

Interaction System Parameter(s)

GetSystemDirectory System Directory Path
SearchPath File Existence
FindFirstFile File Existence
NtQueryInformationFile File Existence/Info
GetFileAttributes File Existence/Attributes
GetFileSize File Existence/Size
NtReadFile File Content
NtWriteFile File Content

that confirms others’ manual observations. Although Cerber called the sendto API

to communicate with the C&C server, the encryption process starts regardless of

the success of the communication. This means that the success of the sendto call,

manifested as a symbolic variable, was not part of the conditions to reach the goal

and it was pruned out. However, successful communication was a condition to start

encryption in the Locky instance we evaluated.

Depletion Schemes. We developed a depletion scheme against the adversary behind

ransomware, specifically Gandcrab (MD5: 8a45b0941ec2af89bfd9ed3-3dae2053f). The

malware sends encrypted information about the victim to the C&C server, then re-

ceives a response message derived from the message sent, which implies that the C&C

server has to process the message from the malware. Therefore, we can overwhelm

the C&C server by sending a substantial number of messages to it in a brief period.

We have experimentally verified that (1) it is possible to replay the same message

many times while the C&C server responds to each individual message; (2) if we

intentionally send a corrupted encrypted message, the C&C server responds with an

error, which implies that it tries to decrypt the message but fails. Both confirm the

feasibility of our deception scheme.
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4.8.5 Challenges and Future Work

Through our case studies, we recognized a few technical challenges with respect to

our approach. First, it is non-trivial to build a general agility parameter extraction

technique due to inherent limitations of symbolic execution. For example, to avoid

following back edges in a loop, we have to supply the exact addresses of the source

and destination instructions, which is, unfortunately, malware specific. One solution

would be to recognize back edges automatically. Second, the naive use of symbolic

execution cannot effectively discover interesting malware dependency on the envi-

ronment because the execution can slip into paths leading to other than the desired

goals, such as getting stuck in loops. We plan to develop new plugins that would guide

the symbolic execution engine towards more meaningful paths leveraging existing ap-

proaches that were previously proposed to address similar challenges in dynamic taint

analysis and mixed concrete and symbolic execution [192, 193].



CHAPTER 5: SUMMARY AND FUTURE WORK

In this dissertation, we address key challenges to improve the effectiveness and

deployment of several resilience techniques: isolation, diversity, adaptive response,

coordinated defenses, deception, and deterrence (or dynamic positioning). Our re-

search has three primary objectives: (1) enabling effective isolation and diversity

composition to improve the cyber resilience significantly, (2) developing provably safe

and efficient refinement of adaptive response policies, and (3) automated extraction of

agility parameters from malware binary code to construct effective deception and de-

terrence plans. We achieve these objectives in three research thrusts discussed in the

previous chapters in detail. In this chapter, we summarize our contributions, and we

outline the significant findings and evaluation results in each research thrust. Along-

side, we propose future work as new directions or extensions based on our research in

this dissertation.

5.1 Automated Synthesis of Isolation and Diversity Configuration Composition

In Chapter 2, we presented two major contributions towards effective composition

of resilience techniques. We presented a formal framework that models the speci-

fication and quantifies the effectiveness of isolation and diversity in the context of

network connectivity, and synthesizes a cost-effective resilient configuration that in-

tegrates both techniques. Our model quantifies the effectiveness of isolation and

diversity decisions in terms of cyber risk reduction and the optimal isolation-diversity

composition under connectivity and budget constraints. Since resilience is about man-

aging attacks consequences rather than only preventing them, our model considers

all possible attack paths that attackers use as a stepping-stone to reach their targets.
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Our framework synthesizes the appropriate software program diversity and isolation

countermeasure configurations to counter attacks in each step in the attack path.

Our second contribution is the development of network decomposition algorithms to

improve the scalability of our synthesis approach significantly.

Since we used formal synthesis and we model all possible isolation and diversity

decisions with respect to all possible attack paths, the obtained solution is correct-

by-construction [194, 195] as it inherently guarantees the cyber risk and budget con-

straints for any multi-step attack. Hence, we focus on evaluating the scalability of

our approach. We have shown that without using our decomposition and model re-

duction techniques, we can synthesize resilient configuration for networks of up to

600 connected services, considering attacks of 8 steps (i.e., intermediate hops), with

a polynomial growth rate of the processing time with respect to the network size.

However, using the network decomposition approach, we show that our synthesis can

support networks of several thousands of nodes.

Future Work: First, further research should be undertaken to explore how we can

effectively integrate more resilience techniques into one unified synthesis framework.

We believe that the challenge is in modeling the interdependence between them and

how they can influence each other. Second, we also plan to investigate efficient opti-

mization solutions to transform our solution from constraints satisfaction to constraint

optimization. Third, currently, the objective of our work is to find a configuration

that brings the risk below a certain threshold. It would be more practical to reduce

the risk to the minimum, instead. This might be challenging due to the complexity

and the scale of current networks. Thus, further research is needed to develop new

techniques for scalability optimization under these new constraints.
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5.2 Provably Safe and Efficient Course of Action Orchestration for Active Cyber

Defense Policies

In Chapter 3, we presented a specification of Active Cyber Defense (ACD) policy

that initiates a course of investigation and configuration actions (called CoA) to re-

spond to security events and incidents. However, initiating such CoAs can lead to

unsafe orchestration due to accessing shared cyber resources including objects such

as flows and files and actuators such as firewalls and servers. We identified and for-

malized the sources of potential conflicts between actions that cause the ACD to fail,

and we designed a formal framework that can schedule a safe CoA orchestration to

avoid these conflicts. Our safe orchestration framework will ensure that (1) actions

that operate on shared resources are not executed simultaneously, (2) interdependent

actions are scheduled for execution such that the pre-condition of the executed ac-

tion is satisfied by the dynamic system state as a result of the post-condition of the

previously executed actions, (3) the executed CoA do not violate the mission require-

ments. Otherwise, actions are executed concurrently whenever it is safe to minimize

the total execution time. To satisfy the cyber mission requirements, we develop a

model checking framework to verify that configuration updates by the CoAs do not

violate the network mission in terms of reachability, QoS, and security requirements.

We evaluated two major aspects of our framework. First, we assessed the perfor-

mance of our orchestrator in terms of the processing time required to synthesize the

optimal execution workflow. The results show that we can guarantee the safety and

efficiency of up to 500 actions within an average overhead of 60 seconds. Second,

we evaluated the performance of our model checker in verifying the satisfaction of

network mission requirement given a snapshot of the network data plane configura-

tion. Our verification takes less than a minute to verify the mission requirements for

a network of 1000 nodes and the required time increases in polynomial time for more

extensive networks.
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The aim of the present work in this direction is to examine the feasibility of au-

tomated orchestration of ACD CoAs. However, to deploy this in a real production

environment, further research should be done to explore the complete set of cyber

actions and system dynamic attributes that are used in practice. This study is cru-

cial to identify additional constraints required for efficient CoA orchestration. Our

evaluation also suggests high computation complexity with respect to the number of

control variables. We plan to investigate model reduction heuristics or alternative

models to make our orchestration more scalable.

5.3 Automated Extraction of Agility Parameters for Cyber Deterrence and

Deception Planning

In Chapter 4, we presented the first analytic framework towards automated creation

of deterrence and deception techniques schemes based on symbolic malware binary

code execution and automated reasoning of attack behaviors and decision-making

process. We have implemented a framework that leverages a powerful symbolic ex-

ecution, S2E that provide a customizable environment for running and monitoring

malware. We developed plugins and scripts and instrumented S2E to (1) intercept

system and library calls and mark relevant information as symbolic, (2) guide the

path exploration of the symbolic execution, and (3) collect the appropriate logs and

execution traces to construct the complete behavior model for the malware. We

then analyze the malware behavior model and identify the system parameters that

can influence the decisions of the malware and steer its execution towards the de-

sired deception and deterrence goals. Since multiple parameters may be identified as

candidates for deterrence and deception, we formalized a set of properties and formal

constraints to select the optimal set of parameters that can deliver effective deterrence

and deception. We analyzed many recent malware and demonstrated through four

detailed case studies how our agility-oriented analysis can lead to effective deception

and deterrence schemes against major malware types: worms, cryptocurrency mining
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malware, credential-stealing malware, and ransomware. We recommended multiple

deception and deterrence techniques for each of these malware families based on our

findings.

From our experience in developing this agility-oriented symbolic execution frame-

work, we have found various potentially challenging problems for future research.

First, we will run an extensive evaluation of thousands of malware instances and

identify the most common agility parameters. This can be useful in designing proac-

tive deception mechanisms that are active all the time and can be effective against

the majority of current and new malware. In addition, we plan to extend the set of

intercepted APIs. Although we currently intercept the most commonly used API, the

behavior analysis cannot be perforce without considering all possible APIs. We have

also experienced some technical challenges dealing with different implementation and

evasion techniques used by malware developer. Further research needs to examine

more closely these techniques and address them using special scripts and plugins.
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APPENDIX A: Intercepted APIs

Table A.1 shows the complete list of the APIs we intercept and mark their output

arguments as symbolic. The output arguments have different structures and formats.

Hence, we carefully mark the appropriate registers and memory blocks based on com-

plete understanding of the APIs and their arguments to avoid any access violations.

Table A.1: The complete list of APIs Intercepted by gExtractor

API API

kernel32.dll ntdll.dll
GetComputerNameA NtQueryAttributesFile
GetComputerNameW NtQueryFullAttributesFile
GetTimeZoneInformation NtOpenFile
GetDiskFreeSpaceW NtReadFile
GetDiskFreeSpaceExW NtWriteFile
GetSystemTime NtQuerySystemInformation
GetSystemTimeAsFileTime NtQueryMultipleValueKey
GetTickCount version.dll
GetFileAttributesExW GetFileVersionInfoW
SearchPathW GetFileVersionInfoExW
GetSystemDirectoryW GetFileVersionInfoSizeExW
SetFileTime GetFileVersionInfoSizeW
GetTempPathW user32.dll
GetFileType GetSystemMetrics
CreateDirectoryW RegisterHotKey
GetSystemDirectoryA EnumWindows
SetFileInformationByHandle FindWindowExA
GetFileInformationByHandleEx GetKeyboardState
CopyFileW UnhookWindowsHookEx
SetFilePointer GetKeyState
CopyFileA GetForegroundWindow
GetSystemWindowsDirectoryW LoadStringA
SetFilePointerEx DrawTextExW
CopyFileExW FindWindowW
SetFileAttributesW LoadStringW
CreateDirectoryExW FindWindowExW
GetFileSize FindWindowA
GetSystemWindowsDirectoryA DrawTextExA
DeleteFileWGetFileInformationByHandle GetAsyncKeyState
GetFileAttributesW SetWindowsHookExA
RemoveDirectoryW SetWindowsHookExW
FindFirstFileExA
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API API

MoveFileWithProgressW netapi32.dll
kernel32.dll CreateServiceW
SetEndOfFile EnumServicesStatusA
RemoveDirectoryA LookupPrivilegeValueW
FindFirstFileExW NetUserGetLocalGroups
GetFileSizeEx NetUserGetInfo
GetSystemInfo NetShareEnum
GetNativeSystemInfo GetUserNameW
SetErrorMode GetUserNameA

crypt32.dll LookupAccountSidW
CertControlStore EnumServicesStatusW
CertOpenSystemStoreA StartServiceW
CertOpenStore OpenServiceA
CertCreateCertificateContext CreateServiceA
CertOpenSystemStoreW OpenSCManagerW

srvcli.dll OpenServiceW
NetShareEnum ControlService

wininet.dll StartServiceA
InternetGetConnectedState DeleteService
InternetReadFile OpenSCManagerA
InternetOpen RegEnumKeyExA
InternetConnect RegQueryInfoKeyA
HttpOpenRequest RegQueryValueExW
HttpSendRequest RegCreateKeyExW
InternetQueryOption RegDeleteKeyA
InternetSetOption RegEnumValueW
HttpQueryInfo RegCloseKey
InternetQueryDataAvailable RegCreateKeyExA

ws2_32.dll RegSetValueExW
WSAStartup RegQueryInfoKeyW
sendto RegQueryValueExA
recvfrom RegEnumKeyExW
send RegOpenKeyExW
bind RegSetValueExA
select RegDeleteValueW
connect RegEnumValueA

secur32.dll RegEnumKeyW
GetUserNameExW RegDeleteKeyW
GetUserNameExA RegOpenKeyExA

RegDeleteValueA


