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ABSTRACT

PORIPSA CHAKRABARTY. Techniques for using aggregate current measurements
to detect faults in multiple induction machines. (Under the direction of DR.

ROBERT COX)

Due to induction motor's properties of resilience, durability and cost e�ectiveness

they are the most widely used electrical transducers across all industries. Naturally,

because of these properties of ruggedness they are often selected for use in harsh

conditions increasing their risk of mechanical wear and tear. Almost 80% of all drives

across industries are induction motors [1], due to which they end up consuming almost

40% to 50% of a country's total generating capacity (power) [2]. Hence it is vital that

the induction motors run to their maximum e�ciency to avoid loss of revenue and

power. Over time, a number of methods and techniques have been developed to

monitor health of the motor and for fault diagnosis.

Usage of such methods however has led to increased cost to the industry as most

of the techniques employed need to have equipment on every motor individually to

gain valuable and necessary data. Moreover they would also require skilled man-

power to be able to correctly use these methods. Hence to mitigate the cost and

man-hours required for diagnostics of induction motors, a possible way to perform

such diagnostics on multiple motors simultaneously was inquired by EPRI (Electric

Power Research Institute).

This thesis answers the question by providing a way to perform electrical diagnostics

on multiple motors simultaneously by being able to distinguish between two motor

signals measured from a common power source(the source is split to feed the motors

in parallel). The process outlined in the thesis comprises of estimating individual

rotor eccentricity frequency of the motors and their corresponding amplitudes for

fault detection.
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CHAPTER 1: INTRODUCTION

By monitoring the health of induction motors in near real-time, many organizations

expect to be able to reduce costs, extend asset lifetime and reduce overall power

consumption. To give a sense of the importance of health monitoring, consider that

there are an estimated 700 million motors across industrialized nations [5]. The lost

lifetime resulting from voltage distortion and imbalance alone is estimated to be about

1 to 2 billion dollars per year [6]. To prevent or at least control such losses, many

di�erent health-monitoring methods have been developed over time. Most of these

methods, however, are very costly to implement. A 2013 report by NRG Systems

[7], for instance, noted that the total cost of a vibration-based monitoring system for

a typical wind turbine was about 7000$. For many small electric utilities and other

organizations, these costs can be prohibitive, especially because there is no guarantee

that the monitoring equipment will actually detect a major fault. One method that

has been developed to help reduce costs is motor current signature analysis (MCSA).

The primary concept behind this technique is the notion that tiny signals contained

in the stator current provide some indication of motor health. This technique tends

to be somewhat less costly since it allows one to detect multiple di�erent faults using

only a single sensor. This thesis examines the possibility of expanding this e�ort

even further by monitoring the health of multiple motors using only a single current

sensor measuring the aggregate current drawn at a motor control center (MCC) or

other similar location. Although such an approach cannot provide the highest level of

resolution, it can provide a low-cost means to detect the existence of faults. Dedicated,

short-term monitoring equipment can always be added to provide more information.

This chapter introduces the basic concept and necessary background for this thesis.
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The �rst section reviews some basic induction motor properties and describes some of

the most common motor failures. Section 1.2 then discusses some of the most common

methods for monitoring motor health and explains why many of these methods are

cost prohibitive or useful only for o�-line testing. Section 1.3 provides more detailed

information about motor-current signature analysis (MCSA), which is the primary

mechanism upon which the proposed monitoring technique is based. Section 1.4

describes the multi-machine monitoring approach examined in this thesis, and �nally

Section 1.5 presents a summary of the complete thesis document.

1.1 Basic Concepts

To describe the critical elements of this thesis, it is important to review some

basic principles. This section �rst presents some physical concepts about induction

machine operation. It then describes some of the critical motor failures as means

to introduce the reader to the types of faults that concern motor operators. More

detailed information can be found in various references [3].

1.1.1 Induction Machine Operating Principles

Figure 1.1: Per-phase equivalent circuit for a polyphase induction motor [3]

Figure 1.1 shows the equivalent steady-state circuit model for the three-phase, p-

pole induction motor and table 1.1 de�nes the relevant circuit parameters [3].
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Table 1.1: Key induction-motor circuit parameters

Notation Description

R1 Stator Resistance

R2 Rotor Resistance

X1 Stator Leakage Reactance

X2 Rotor Leakage Reactance

XM Magnetizing Reactance

One additional term that needs de�nition is the quantity s presented. This value

can only be understood with more information about induction-machine operation.

When a balanced three-phase voltage source having frequency ωe is applied to the

stator terminals of a machine having p magnetic poles, a rotating magnetic �eld is

produced. This �eld rotates around the air gap at a rate known as the synchronous

speed, ωs. In terms of the frequency of the voltages this speed is:-

ωs = ωe

(
2

p

)
(1.1.1)

For example, the stator-side magnetic �eld in a four-pole induction machine excited

with 60 Hz (120π rad/sec) voltages rotates at 30 Hz (60π rad/sec). When mechani-

cally loaded, this rotating �eld induces a current in the rotor and forces it to move at

a physical speed ωr. The rotor current consequently creates its own rotating magnetic

�eld that moves about the air gap at the same rate. The resulting torque depends

upon the fractional di�erence between the speeds of these two rotating �elds. This

quantity is termed slip and is de�ned as:-

s =
ωs − ωr

ωs

(1.1.2)

Note that the rotor-side resistance in Figure 1.1 is inversely proportional to this value.
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As shown in [3], this resultant torque is:-

T =
3|I2|2R2

sωs

(1.1.3)

Where I2 is the magnitude of the current �owing through the rotor-side components

shown in Figure 1.1. Further details and complete derivations are beyond the scope of

this work. The interested reader is directed to [3]. Table 1.2 summaries the notation

associated with the critical frequencies used in this section. The remainder of this

document uses this notation.

Table 1.2: Important frequencies and speeds associated with induction machines [3]

Name of Frequency or Speed Variable Name

(rad/sec)

Variable Name

(Hz)

Electrical Frequency ωe fe

Synchronous speed ωs fs

Rotor mechanical speed ωr fr

Slip s s
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Figure 1.2: Torque Speed Curve of an Induction Motor

Equation 1.1.3 describes the motor's capability to produce a given torque at a given

speed. This capability is expressed as a torque-speed curve. Figure 1.2 presents a

typical curve. As is common in the industry, this graph is shown in per-unit form,

with the torque presented as a percentage of its rated value and the speed given as

a percentage of its maximum value (i.e. ωs). Figure 1.2 de�nes several important

operating points. Instead of describing these in alphabetical order, we discuss them

in order of signi�cance as follows:

Operating point A: This is de�ned as locked-rotor torque and it is the steady-

state torque produced by the machine when it is stalled (i.e. at zero speed). At this

operating point, the rotor is not moving and the steady-state torque is de�ned as

locked-rotor torque. This is the same as the initial torque produced when an on-line

motor is �rst energized.

Operating point E: When the motor is not loaded (i.e. it does not need to overcome

any mechanical resistance), it will rotate at the same speed as the stator �ux wave.
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This no-load speed is thus ωs and no torque is produced since no torque is acting to

slow the motor down.

Operating point D: This is the rated, or full-load, condition. This is the point near

which the machine operates when producing its rated torque. Note that the speed

at which rated torque is developed typically occurs at only a few percent slip. For a

two-pole motor with a 60Hz electrical frequency, for instance, a rated speed of 58.8

Hz (i.e. 2% slip) would not be uncommon.

Operating point C: This is the maximum torque the machine can produce, and it

is typically much larger than the rated value. The machine should pass through this

operating point during the transient condition following its initial excitation.

Operating point B: The torque at this operating condition is known as pull-up

torque. This operating point is important because if the initial load torque that the

motor must overcome is above this value, the machine will not accelerate to its rated

speed. For example, if the initial load torque is equal to the pull-up torque, the

machine will only accelerate to the speed at which pull-up torque is produced. At

this low speed, the machine produces more torque than rated and consumes far more

current than its rated value [3].

Signi�cantly more information about these conditions is available in [3] and [8]. The

most important fact relevant to this thesis is the notion that most induction motors

typically operate between points E and D when in steady-state. As a result, as the

mechanical load increases from 0 to 100%, the speed �uctuates only several percent.

This fact ultimately means that induction machines with identical pole numbers tend

to operate at nearly identical speeds regardless of their size. For example, consider a

bus feeding the two motors with the nameplates given in Figure 1.3. Both operate

at a speed of 3450 RPM (i.e. 57.5Hz or 5% slip) when providing their respective

rated torques. Note, however, that the two machines have drastically di�erent rated
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conditions (i.e. 10 HP vs 1.5 HP). This issue is revisited in Section 1.4 when discussing

the key concept of this thesis.

(a) 10 HP, 2-pole motor with speed 3450 RPM (b) 1.5 HP, 2-pole motor with speed 3450 RPM

Figure 1.3: Example of motor nameplate values. Note that both motors have the
same rated speed despite their di�erent sizes.

1.1.2 Common Motor Failures

Several studies have documented the major sources of failure in large induction

motors [9] [10] [11] [12] and [13]. Table 1.3 summarizes the results from [11] and [12].

These results list the component that ultimately caused a complete failure. Typically,

these faults begin as various mechanical, thermal, and electrical stresses and slowly

degrade individual components. In the case of stator-related failures, for instance, the

majority are caused by degraded insulation. These sorts of failures often start as small

breaks in winding insulation, perhaps caused by vibrations. Over time, they develop

into catastrophic failures such as phase-to-ground short circuits. Similarly, most

rotor-related faults are caused by faulty squirrel cages, in which individual broken

rotor bars lead to completely cracked cages. The most frequently failed components

are bearings, which account for nearly 40% of all issues.
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Table 1.3: The most common motor failures by percentage. These are taken from
two of the most cited studies in the literature

Failed Component From [11] From [12]

Bearing 44 41

Stator 26 36

Rotor 8 9

Other 22 14

Several other studies like IEEE-IAS and EPRI have found similar results as il-

lustrated in Figure 1.4. It should be noted that bearing failures typically result in

excessive vibrations and other phenomena that can ultimately impact elements such

as the stator windings and rotor cage.

Figure 1.4: Common motor failures as a percentage of overall amount of failures
showing statistics from �rst of two surveys conducted by IEEE-IAS and EPRI
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1.2 Commonly Used Health Monitoring Schemes

Multiple methods have been developed to detect motor faults, some of which have

been used commercially and others which have only been explored in laboratory

environments. This section provides a very brief introduction to some of the most

common techniques.

1.2.1 Vibration Monitoring

Vibration signals are commonly used to detect critical motor faults, such as bear-

ing failures, structural resonances, foundational issues, mechanical imbalances, and

winding damage. Vibration measurements are provided by accelerometers and prox-

imity probes. These additional sensors and their data-acquisition systems can be very

costly, but they are known to provide a high level of detail about the early-stage devel-

opment of many catastrophic issues, particularly those related to bearings. Because

of their cost, they are typically only used in the most critical applications and for the

largest motors in major power plants and industrial facilities. Several manufacturers

provide both dedicated monitoring solutions as well as handheld instruments that can

be used for periodic spot checks [14], [15].

1.2.2 Thermal Monitoring

Thermal monitoring of electric machines can be performed in various ways, includ-

ing hand-held infrared cameras and on-board installed sensors such as thermocouples

or resistance temperature detectors. Thermal measurements can indicate the exis-

tence of overheated bearings and windings. Such issues typically arise in the latter

stages of a fault and just before a major issue is about to occur. Infrared thermogra-

phy is commonly used to perform spot checks to detect developing anomalies. Devices

such as thermocouples and resistance temperature detectors (RTDs) are embedded

into large motors for last-minute protection purposes [16].
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1.2.3 Partial Discharge Testing

Some 30 to 40% of all motor failures are caused by faulty stator windings [9]

[10] [11] [12] and [13]. These issues typically manifest as phase-to-ground or phase-

to-phase shorts, but they begin in more benign ways as winding insulation slowly

degrades. Early-stage deterioration often causes turn-to-turn faults, in which two

or more turns of a single coil are short-circuited. The current in the shorted turns

is substantially higher than the operating current and thus this additional current

increases the winding temperature to the point at which more severe damage can

occur. This is one of the primary reasons why it is believed that turn-to-turn faults

are the original precursor to many more severe issues [17]. Although thermal mon-

itoring can indicate such critical issues, the temperature typically does not increase

signi�cantly until the point at which catastrophic failure is imminent. An alternative

approach to detect early-stage issues is to use probes that can detect the existence of

so-called partial discharges that occur when dielectric breakdown happens between

windings. The existence of this discharges is an early indicator of stator insulation

failure. These methods have been found useful at voltages above 4kV, and various

commercial systems are available. For low voltage motors, no comparable method

exists [18].

1.2.4 Electrical monitoring

Electrical monitoring is one of the most attractive methods for real-time analysis

because electrical sensors, namely voltage and current transducers, are very easy

to install and are essentially required in most large motor applications. The most

powerful electrical technique is motor current signature analysis. The sections below

describe the traditional approach to MCSA as well as some modi�ed approaches that

have been developed over time.

• Traditional MCSA: Various tell-tale signals are known to exist within the stator
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current of an electric machine. For instance, various higher order electromag-

netic interactions within the motor cause e�ects such as broken rotor bars to

induce small signals within the stator current. Stator current DFT is then used

to detect abnormalities of current amplitude at particular frequencies which

correspond to faults in the motor. Section 1.2 provides more details on this

approach, which has been successfully commercialized by several manufacturers

[19].

• Extended Park's Vector Approach (EPVA): Several MCSA-variant methods ex-

ist. These methods typically include some additional pre or post-processing

approach on the measured current. In the case of EPVA, the terminal voltages

and currents are transformed into a rotating reference frame in which the cur-

rents and voltages are represented in a complex plane with a direct axis and

quadrature axis [20] [21]. The so-called Park's vector will rotate around this

plane and trace out a circle when the machine is healthy. If the pattern becomes

elliptical, a fault is believed to exist [18]. This approach is found in commercial

systems [19].

• Instantaneous Power Signature Analysis (IPSA): This, too, is a variant of tradi-

tional MCSA in which the measured voltages and currents are used to develop

an instantaneous power signal. This waveform can be examined in the frequency

domain and can potentially provide more information about faults than those

methods based solely on the current [18].

• Motor Voltage Signature Analysis (MVSA): Stator voltage has also proven to

be useful in motor health monitoring, largely because unbalanced or distorted

voltages can cause numerous other motor faults such as overheating and uneven

rotation (i.e. eccentricity). Several commercially available MCSA systems also

monitor voltage as a part of their standard o�ering [19].
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1.3 Motor Current Signature Analysis

MCSA has been discussed in the literature for many years, and several successful

commercial products have been developed to utilize it. Essentially, various non-

ideal conditions in the machine itself give rise to small signals in the air-gap �ux

that ultimately result in stator current �uctuations [18]. These signals appear at

frequencies related to various machine parameters such as the number of rotor bars or

the number of balls in the machine's rolling-element bearings. Typically, the frequency

of these signals is related to the rotor speed or to the fundamental frequency of the

applied voltage, where rotor speed �uctuates from motor to motor based on its air-gap

eccentricity. Rotor speed is given as :

f =
120 ∗ Line frequency (F )

Number of poles (P )
(1.3.1)

Following subsections brie�y reviews some of the common faults detected using

MCSA such as Air-gap Eccentricity, Broken Rotor Bars and Bearings Damage re-

spectively.

1.3.1 Air-gap Eccentricity

There are two types of air gap eccentricity: static (where the position of minimum

radial air-gap length is �xed) and dynamic(where the minimum air gap revolves with

the rotor and is a function of space and time). Static air gap eccentricity can be caused

by stator core ovality or incorrect positioning of the rotor or stator whereas dynamic

eccentricity can be caused by a non-concentric outer rotor diameter, thermal bowing

of the rotor, or bearing wear and movement. Static eccentricity causes a steady force

called unbalanced magnetic pull (UMP) on the rotor in one direction that tries to

pull the rotor even further from the stator bore center in the direction of minimum

air-gap. Dynamic eccentricity causes a force (rotating UMP) that rotates at the

rotor speed (a rotating force wave). If the levels of air-gap eccentricity are not kept
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within speci�ed limits (typically a maximum of 10 percent in three-phase induction

motors), then both types of eccentricity can cause excessive stressing of the motor

and can increase bearing wear. The radial magnetic force waves also act on the stator

core assembly and rotor cage subjecting the stator and rotor windings to potentially

harmful vibration. High UMP due to severe air-gap eccentricity can ultimately lead

to a rotor to stator rub with consequential damage to the core and stator windings

or the rotor cage. This can cause insulation failure of the stator winding or the

breaking of rotor cage bars or end rings. Frequencies which get e�ected due to air

gap eccentricity is located at [22]:

fec = fe

{
(R± nd)

(
1− s
p

)
± nωs

}
Hz (1.3.2)

Where,

fec = Frequency components that are a function of airgap eccentricity (Hz)

fe = Supply frequency (Hz)

R = Number of rotor slots

nd = ± 1

nωs = 1, 3, 5, 7

s = Slip

p = Pole-pairs

With nd = 0 in Equation 1.3.2, this gives the classical rotor slot passing frequency

(rotor speed) components. Amplitude of frequency at nd = ±1 (actually spaced at

±fr i.e rotational speed frequency, around the rotor slotting components) increases

with increase in eccentricity [23].
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1.3.2 Broken Rotor Bars

The stator winding of a motor produces a forward rotating magnetic �eld at syn-

chronous speed due to power being fed to it. Any stator winding asymmetries will

result in a backward rotating �eld as well. In reverse logic, the stator winding will

be induced with voltage and current when in a similar rotating �eld. Similarly, the

rotor winding of the motor gets induced by the forward rotating �eld around the

rotor, hence it gets induced with voltage and current at slip frequency. When broken

rotor bar/s exist in the rotor, they contribute to a magnetic �eld rotating backward

at slip frequency which in turn induce a current and voltage in the stator winding.

In 1920, Williamson and Smith mathematically derived the frequencies which get

e�ected when a motor has broken rotor bars as:

fsb = fe(1± 2s)Hz (1.3.3)

Where fsb is the side band frequency (twice slip frequency) which increase in magni-

tude when rotor bars get broken and fe is the supplied voltage frequency.

1.3.3 Bearings Damage

Forcing a bearing into shaft inappropriately may lead to brinelling (indentation

damage caused by impact where metal is displaced usually by the rolling element

striking the raceway surface) and false brinelling (rubbing action of metal to metal

contact). Since ball bearings support the rotor, any bearing defect will produce a

radial motion between the rotor and stator of the machine. The mechanical dis-

placement resulting from damaged bearing causes the machine air gap to vary in a

manner that can be described by a combination of rotating eccentricities moving in

both directions. These defects produce vibrations at distinct frequencies. Depending

upon the location of the defect, these are known as the cage fault frequency (fCF ),

the ball-pass inner raceway fault frequency (fIRF ), the ball-pass outer raceway fault
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frequency (fORF ), and the ball fault rotational frequency (fBF ). As derived in [24],

the vibration signals generated at these frequencies depend upon various machine and

bearing parameters. These frequencies are

fCF =
1

2
fr(1−

DBcosθ

Dp

) (1.3.4)

fORF =
NB

2
fr(1−

DBcosθ

Dp

) (1.3.5)

fIRF =
NB

2
fr(1 +

DBcosθ

Dp

) (1.3.6)

and

fBF =
Dp

2dB
fr(1−

D2
Bcos

2θ

D2
p

) (1.3.7)

In these equations,fr is the mechanical speed of the rotor,NB is the number of balls,

DB is the ball diameter, Dp is the ball pitch diameter, and θ is the ball contact angle.

Figure 1.6 provides a diagram de�ning these geometric constants.

Figure 1.5: Roller bearing diagram showing the critical dimensions for the single-
point failures. Note that the ball contact frequency is, where θ is the angle between
the centerline of the bearing and FB, indicates the direction of the force exerted by
the ball on the outer race [4].

Any vibrations occurring at these frequencies are transmitted through the bearing
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housing and may appear in the stator current. Such signals can appear as amplitude

modulated signals in the current, in which case they occur at the frequencies:

fBE = |fs ±mfv| (1.3.8)

where fs is the frequency of the stator voltage, m is an integer, and fv is one of

the characteristic fault frequencies de�ned above [25] [26].

1.3.4 Unbalanced Load

When an electrical load is unbalanced it results in variation in the torque required

to overcome the weighted portion of the load. This leads to rotor speed �uctuation

which manifests as harmonics in stator current due to induction of stator windings.

The stator current already has a line frequency component which is present from the

non-varying speed component of the rotor. The other terms are symmetric sidebands

which arise from the shaft speed variation. These shaft speed oscillation harmonics

are expressed by :

fsso = f

[
k

(
1− s
p

)
± 1

]
Hz (1.3.9)

where s is per unit slip, k=0,1,2.. and p is the number of pole pairs [27].

1.4 Using Motor Current Signature Analysis to Monitor Condition of Multiple

Motors

Although e�ective methods clearly exist for monitoring the health of individual

induction machines, the cost associated with such systems is high enough such that

many utilities cannot a�ord to deploy them. This thesis examines an alternative

approach such as the one shown in Figure 1.6. In this approach, a single set of

current transducers measures the aggregate current �owing to a bank of motors fed

from a motor control center (MCC). For the sake of redundant design, these MCCs

typically feature at least two motors used in the same application. For example,
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motors 1A and 1B in Figure 1.6 might represent two fan motors and motors 2A and

2B might represent two pump motors. Consider a simple case with two sets of near

identical motors.

Figure 1.6: Two identical sets of motors

Imagine that only Motor 1A and Motor 1B are operating. If the source is balanced

and not distorted, the aggregate current in phase A might be of the form:

iS(t) = I1A cos(ωet+ φ1A) + I1B cos(ωet+ φ1B) + ihealth(t). (1.4.1)

The �rst two terms represent the fundamental load current drawn by each motor.

The latter term, referred to as ihealth(t), represents non-fundamental, health-related

signals such as the ones described in the previous section. These signals could be

caused by any number of phenomena, and most likely any functional motor would

contain multiple such signals. In this context, we can think of each motor as a set

of parallel-connected current sources, each drawing a current related to its individual

fault. Given that these sources are in parallel, we can use superposition to examine

each separately. For illustrative purposes, let's consider that both machines have

some slight amount of static and dynamic eccentricity [18]. As a result, both will

draw currents having frequencies related to the rotational speed, i.e

f1 = |fe ± kfr| (1.4.2)
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where k=1,2,3,...

Now, Considering only k=1, ihealth(t) might be of the form:

ihealth(t) = Ih,1A cos((ωe + ωr,1A)t) + Ih,1B cos((ωe + ωr,1B)t). (1.4.3)

where ωr,1A and ωr,1B are the respective rotational speeds of the two motors and the

amplitudes Ih,1A and Ih,1B are harmonics and several orders of magnitude smaller

than the magnitude of the fundamental currents I1A and I1B.

In a traditional MCSA application, a technique such as the Discrete Fourier Trans-

form (DFT) would be applied to analyze the individual currents �owing to each motor.

The goal would be to track the amplitudes Ih,1A and Ih,1B. Growing amplitudes would

suggest that the rotation is becoming more eccentric. In this problem, our goal is

to track the same two amplitudes using a single CT measuring the complete current

iS(t). Given that the two motors are employed for the same application, it is rea-

sonable to expect that they might operate at nearly the same load. As an example,

consider the 4160V, 1000kW motor with the parameters provided in Table 1.4.

Table 1.4: Parameters for an example 3-phase, 4160V, 60Hz, 1000kW, 8-pole machine
[3]

Parameter Value

R1 0.220Ω

R2 0.207Ω

X1 1.95Ω

X2 2.42Ω

XM 45.7Ω

Consider two of these machines operating in parallel, with one providing rated

power and the other providing 90% of rated power (900kW). Figure 1.7 shows the

mechanical output power of this machine as a function of speed. Note how steep the
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curve becomes near the rated operating point. As shown in the zoomed version in

Figure 1.8, a 10% di�erence in output power represents less than a 2RPM change in

speed. Despite a 100kW di�erence in power, the speed di�erence is small enough that

the health signals mentioned above are separated only by 0.033Hz or 0.2094rad/sec.

Figure 1.7: Power vs. speed curve for the motor with the parameters provided in
Table 1.4

Figure 1.8: Zoomed-in values of power vs. speed curve for the motor with the pa-
rameters provided in Table 1.4

This example helps to frame the challenges associated with this project. Speci�-

cally, the two signals in Eq.1.4.3 need to be individually resolved even though they

may be separated by less than 0.01Hz. The DFT can theoretically detect such close

frequencies, but there are several practical challenges that must be addressed. These

issues are explored more explicitly in the next chapter.
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In addition to potential signal-processing challenges, it is unlikely that any motor

remains at a constant speed for any appreciable amount of time. Voltage �uctuations,

parameter dependence upon temperature, and short-term load variations can easily

cause speeds to change by more than the di�erence noted here [8]. Given that so

many health-related signals depend upon motor speed, this issue must be thoroughly

addressed. The processes for tracking such small di�erences in frequency are the

primary topic of this work.

1.5 Objective

The objective of this thesis is to explore techniques that will make it possible to

address the issues pertaining to speed related faults in induction motors.

1.6 Outline

This chapter has shown that many of the signals essential for MCSA, whether

they be for detecting eccentricity, broken rotor bars, or faulty bearings, depend upon

motor speed. In addition, it has demonstrated that two di�erent motors connected

to the same bus can easily have nearly the same speed and that these speeds can

easily �uctuate over time. Since so many of the signals necessary for MCSA depend

upon speed, these issues must be addressed. Chapter 2 analyzes the inherent signal

processing challenges associated with tracking these frequencies. Chapter 3 then

describes the measurement process developed to overcome these challenges. Chapter

4 then presents experimental results demonstrating that this approach can detect

small signals generated by two similar motors operating at nearly identical speeds.

Finally, Chapter 5 presents conclusions and directions for future research.



CHAPTER 2: ANALYSIS OF THE PROBLEM AND ITS APPROACH

The previous chapter noted the di�culty in monitoring the behavior of multiple

motors using only measurements of aggregate current. This chapter closely examines

the technical challenges by considering some explicit examples. The �rst section

examines the di�culty inherent in utilizing the Fourier transform to monitor the

health of two motors that operate at nearly similar speeds. Section 2.2 considers the

challenge of distinguishing between two signals with frequencies that are very close

in value without the fundamental frequency in the signal. Section 2.3 discusses a

methodology that can be used to help distinguish such nearby frequencies.

2.1 Challenges in Resolving Two Signals with Nearly Identical Frequencies

Equation 2.1.1 provides an example of current waveform that might be drawn by

two motors connected in parallel operating at nearly same speed. The two individual

load currents could be combined into one sinusoid to yield a total current of the form

iS(t) = I1 cos(ωet+ φ1) + ihealth(t) (2.1.1)

If we again focus on the eccentricity-related harmonics discussed previously, we can

view ihealth(t) to be of the form given in Equation 1.4.3. This yields a total current

of the form

iS(t) = I1 cos(ωet+φ1)+Ih,1A cos((ωe+ωr,1A)t)+Ih,1B cos((ωe+ωr,1B)t)+iX(t) (2.1.2)

The term iX(t) represents all other signals that might appear in the current wave-

form, such as those related to broken rotor bars or bearings. In this case, we focus
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speci�cally on the main load current (i.e. the component with frequency ωe) and the

eccentricity-related signals with frequencies (ωe + ωr,1A) and (ωe + ωr,1B). As noted

in Chapter 2, there are two key challenges:

• Challenge 1: I1 � Ih,1A, Ih,1B

• Challenge 2: ωr,1A ≈ ωr,1B

To understand the impact of these issues, we will separately examine how they impose

constraints upon the use of the Discrete Fourier Transform, which is the typical ana-

lytical tool for MCSA. We �rst consider the case in which the fundamental frequency

component has been removed from the overall waveform and we must simply resolve

two nearby signals. We then consider the case in which the fundamental frequency

remains as a part of the signal.

2.2 Resolving Two Nearby Signals with No Fundamental Component

We begin by considering a general signal of the form

x(t) = A0 cos(ωA0t+ φ0) + A1 cos(ωA1t+ φ1) (2.2.1)

with ωA0 ≈ ωA1 and A0 ≈ A1. Assuming ideal sampling with no quantization error,

the corresponding discrete-time signal will be as follows:

x[n] = A0 cos(ωD0n+ φ0) + A1 cos(ωD1n+ φ1) (2.2.2)

Where, if we sample at frequency fs = 1/Ts, the corresponding discrete time fre-

quencies are:

ω0 = ωA0Ts (2.2.3)

and

ω1 = ωA1Ts (2.2.4)
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respectively. Note discrete-time frequencies vary cyclically from −π to π. When x[n]

has the form shown in Eq.2.2.2, the corresponding Discrete Time Fourier Transform

(DTFT) will appear as shown in Figure 2.1. Note that the DTFT has distinct impulses

at the frequencies ±ω0 and ±ω1. Note also that the DTFT is periodic with frequency

2π, so similar impulses would be located at frequencies ω = 2nπ ± ω0 for all integer

values of n [28].

Figure 2.1: DTFT of agrregate signal

Figure 2.2: Sampling x[n] for only a �nite time window can be viewed as modulation
by a �nite-duration window function w[n]

Figure 2.1 shows the DTFT of x[n], which includes two signals that theoretically

have in�nite support (i.e. they are de�ned for −∞ < n < ∞). In reality, one only

measures the signal x(t) for a �nite time and as a result the measured discrete-time

signal has only �nite support. Figure 2.2 shows one way to view this �nite sampling

window. If we measure only L samples of the sequence x[n], then we can view this as

modulating x[n] by an L-point sequence w[n]. The resulting signal is:-

v[n] = x[n]w[n] = A0w[n]cos(ω0n+ φ0) + A1w[n]cos(ω1n+ φ1) (2.2.5)
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This windowed signal is 0 outside the window from n=0 to n=L-1. When taking

the DTFT of v[n], we note that we are taking the transform of the product of two

signals. By de�nition, the DTFT of x1[n]x2[n] is X1(e
jω) ∗ X2(e

jω). When taking

the DTFT of Eq. 2.2.5, we note that the DTFT of two modulated signals is their

convolution in frequency domain.
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Figure 2.3: DFT of rectangular window of 1 minute length
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Figure 2.4: DFT of Hann Window of 1 minute length
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Figure 2.5: DFT of V [k] having 4 minute window length with 0.001 Hz/line resolution
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Figure 2.6: DFT of V [k] having 6 minute window length with 0.001 Hz/line resolution
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Figure 2.7: DFT of V [k] having 8 minute window length with 0.001 Hz/line resolution
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Figure 2.8: DFT of V [k] having 8 minute window length with 0.0001 Hz/line resolu-
tion

Figures 2.5 to 2.8 illustrates the importance of frequency resolution and signal

length when two frequencies which are extremely close need to be distinguished.

Frequency resolution is the distance between two adjacent data points in the DFT.

However, by taking FFT over an increased number of bins, a resolution increase simply

takes more number of discrete samples than the length of the data i.e frequency axis

will span more values, they will be spaced less distance from each other while keeping

the same sampling frequency. Hence the resolution of the transform is increased

without an increase of actual sampling rate. Resolution can also be increased by

increasing the signal length (lower value of resolution indicates the distance between

two bins is smaller) as is evident from Equation 2.18. It is well established that only

spectral components separated by a frequency larger than the frequency resolution

will be resolved. Frequency resolution and signal length correspond as:

Resolution =
Sampling Frequency (Fs)

Length of signal(N)
(2.2.6)
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2.3 Resolving Two Nearby Signals with Fundamental Component

This thesis approaches the problem of having two signals very close to each other

with the fundamental component present in the aggregate signal in two steps:-

1. Zoom FFT of fundamental component and its harmonics (section 2.2.1)

2. Synchronous Detection of the nearby signals (section 2.2.2)

When the current signal consisting of nearby signals of interest and fundamental

component is fourier transformed by DFT in low sampling rate, the nearby signals

cannot be resolved. They appear as Figure 2.5, meshed together. Figure 2.5 had a 4

minute signal length with 0.001 Hz/line resolution and 120 Hz sampling rate, e�ec-

tively having 480,000 (4*120*1/0.001) data points (DFT bins). When this resolution

is increased both by line resolution of 0.0001 Hz/line and signal length of 8 minute,

number of DFT bins increases to huge value of 9,600,000. However we do not really

need the resolution of the entire signal to be increased as our two nearby points being

rotor eccentricity frequency of the two motors lie around the �rst fundamental fre-

quency harmonic. Hence a very selective resolution increase has to be performed to

limit the data required. This procedure is performed by Zoom FFT algorithm (used

by the preprocessor algorithm in this thesis) which is explained further in Section 3.1.

After Zoom FFT is performed to extract signals at fundamental frequency and its

harmonics, synchronous detection technique is employed to extract the two nearby

frequencies. Synchronous detection is explained in section 3.2.

2.3.1 Zoom FFT

The two nearby frequencies corresponds to rotor eccentricity frequencies of Motor

1 and Motor 2 and the fundamental component corresponds to line frequency of 60

Hz. Consider the following Figure 2.9:
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Figure 2.9: Zoom FFT principle

Here, x(t) is the current signal which comprises of fundamental frequency and two

nearby frequency

x(t) = A cos(2πfF t) + A1 cos(2πf1t) + A2 cos(2πf2t) (2.3.1)

where, fF is the fundamental frequency, A, A1 and A2 are amplitudes of fundamental

and two nearby signals respectively having f1 and f2 frequencies near �rst harmonics

of fF . Multiplication of x(t) shifts area around fF to baseband. Then a low-pass

�lter is applied to extract a small band near the base of width ∆f . This process can

be done is various ways, the most obvious one being having a bandpass �lter around

fundamental frequency fF of width ∆f . Next, the signal is downsampled so higher

frequencies are not represented. This procedure gives a narrow band of frequencies

whose resolution can then be increased without overhead of large data length. Zoom

FFT concept is further explored in section 3.1 as preprocessor used in this thesis.

2.3.2 Synchronous Detection

After Zoom FFT provides a higher resolution around the desired band of frequen-

cies, the nearby frequencies are then determined using synchronous detection and

frequency mixer principle as shown in �gure 2.10:
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Figure 2.10: Synchronous Detection

To �nd one of the frequencies of nearby signals (for example f1 from Eq. 2.2.1),

x(t) is multiplied like in the previous section 2.2.1. However instead of multiplying

with a sinusoid at fundamental frequency, it is instead multiplied with a range of

frequency fx till one of them equal f1. The signals then multiply using the following

trigonometry identity:-

cos2A =
1 + cos2ωA

2

Hence at fx = f1,

y(t) = A1 cosωA ∗ cos(2πf1t) = A1cos
2ωA =

A1(1 + cos2ωA)

2
=
A1

2
+
A1cos2ωA

2

where ωA = (2πf1t).

The low-pass �lter then e�ectively blocks the higher frequency content at cos 2ωA

leaving half the signal amplitude A1/2 resulting from the mixer or multiplication.

When a range of frequencies are looped through and multiplied, the only frequency

which gives this half amplitude result is the frequency which matches that of the

nearby signal (A) and then can be identi�ed. This signal detection and selection

is elaborated in section 3.2 and 3.3. Once frequency is established, phase φ can

be detected using the same principle by keeping the selected frequency and looping

through a range of phase vales.



CHAPTER 3: SIGNAL PARAMETER ESTIMATION

Accurate procurement of data needed for this (and any) experiment is vital to its

success. As extremely low frequency signals were needed to be measured, it was essen-

tial that the data was preprocessed to zoom in on these signals with low magnitude.

The following �ow chart explains how this process was done:-

Figure 3.1: Block Diagram of Algorithm

The chapter is divided in three sections as the three blocks in �gure 3.1. The

�rst section explaining signal preprocessor to zoom in to 60 Hz frequency, the second

details the detection algorithm and the next section illustrates the process of selection

of rotor frequency and phase from others frequencies in the signal.
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3.1 Preprocessor

The preprocessor comprises of a script developed by Professor Steven R. Shaw of

the Montana State University [29] which takes in the measured stator current and

voltage of the signal from PCI1710. This preprocessor was expressly used to compute

current-harmonics of the common power source in this thesis. The preprocessor in

fundamental terms, computes the Fourier coe�cients of the signal (over a window)

upto its 7th odd harmonic by integrating the product of the measured current wave-

form with a basis function line-locked to the measured voltage waveform over some

�nite interval (typically one or more periods of the fundamental frequency) [30]. It is

essentially a homodyne detector(for amplitude demodulation of signal with frequency

of interest i.e line frequency of 60 Hz) followed by low-pass �lter(integrator).

The basis functions are typically sinusoids (having frequency equal to frequency of

interest or carrier frequency) as motors consists of both resistive and reactive loads,

the subsequent current drawn will have both sine and cosine terms. Cosine terms from

resistive elements have zero degree phase and sine terms from reactive components

have ±90◦ phases where pure inductive component changes the phase by -90 and a

pure capacitive component changes it by +90. This when related to steady state

power drawn can be represented by in-phase and quadrature elements. Hence, the

current drawn in an induction motor can be represented from Eq.2.2.1 as:

x(t) = A1cos(φ0)cos(ω0t)−A0sin(φ0)sin(ωt)+A1cos(φ1)cos(ω1t)−A1sin(φ1)sin(ω1t)+...

(3.1.1)

Modi�ed (by multiplication of voltage for power), the Fourier coe�cients also repre-

sent in-phase and quadrature components and real and reactive power for its cosine

an and sine bn co-e�cients respectively. The in-phase or real or resistive elements of
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the current signal is computed using the following formula:-

an =
Pn

V
=

1

T

∫
T

x(t) ∗ cos(nωt)dt

Whereas the quadrature or reactive elements are computed as:-

bn =
Qn

V
=

1

T

∫
T

x(t) ∗ sin(nωt)dt

When substituting for the �rst harmonic (n=1) in equation 3.1.1 the above equations

simpli�es to [31]:-

P1 =
V

T

∫
T

A0cos(φ0)cos
2(ωt)dt =

V A0cos(φ1)

2

and

Q1 =
V

T

∫
T

A1sin(φ1)sin
2(ωt)dt =

−V A0sin(φ0)

2

Similarly, the preprocessor can compute other odd harmonics of the signal. As shown

above the output from both phase locked in-phase and quadrature components results

in accurate measurement of magnitude and phase of the carrier signal sans noise.

The preprocessor computes the coe�cients an and bn over a moving window. This

window, which is synchronized to the measured line voltage, is advanced every half-

cycle. Thus,new coe�cients are produced at twice the line frequency. For a 60Hz

cycle, this implies that power estimates are produced at 120Hz [31].

3.2 Detection algorithm

The core of this thesis comprises of accurately detecting the frequency, phase and

magnitude of the signal which emulates the speed of the individual induction motor.

As the motors used in this thesis are 3-phase 4-pole induction motors, the frequency

spectrum taken of their indivisual stator current correctly shows an amplitude spike
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at around a maximum of 30Hz, i.e 1800 rpm. This maximum speed is calculated

using the formula:

f =
120 ∗ Line frequency (F )

Number of poles (P )

The line frequency being 60Hz and number of poles being 4, this theoretical value

comes out to be 30Hz which is the synchronous speed of the motor. When constrained

with slip this speed drops depending on load and is referred as rotor frequency of the

motor. The rotor eccentricity frequency is then half this value at 15Hz from Eq 1.3.2.

However as the sampling frequency for all the experiments performed in this thesis is

120 Hz, the rotor eccentricity frequency now exists at 30 Hz.

When an aggregate measurement in taken, it comprises of signals of both the mo-

tors. Hence, �rst the frequency of one of the rotor eccentricity signal is determined

using synchronous detection principle explained in section 2.3.2. To �nd this fre-

quency, a range of frequencies (fc) from 29 to 30 Hz (rotor frequency estimate) were

converted to time domain signals (cos(2πfct)) with signal length being 1 minute and

multiplied with the original signal. A 'for loop' is used in the Matlab code which

loops through frequencies from 29 to 30 Hz in increments of 0.001 (i.e the resolution),

as it was experimentally found the highest rotor eccentricity frequency which was the

rotor eccentricity frequency under no-load condition was 29.99 Hz and the lowest (due

to a load of 1 HP) was 29.4 Hz.

The low pass �lter was modeled by a simple 'mean' operation in Matlab, which

can be thought of as an integrator. The �lter e�ectively blocks the high frequencies

resulting from the mixer or multiplication as explained in section 2.3.2. As di�erent

values of fc were looped through in cos(2πfct), the dot product of this term and

the signal resulted in one value at each loop. This value was the amplitude which

maximized (largest of all values) when fc equaled frequency of rotor eccentricity.

Section 3.3 describes how the fc which gives the maximum of these values is the rotor

eccentricity frequency.
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3.3 Selection Algorithm

Now, the result of the loop gave a range of values from among which the value

that corresponds to rotor eccentricity frequency has to be selected. This objective

is attained by using maximum-likelihood estimation principle [32]. This principle is

used in signal detection theory where extracting a small signal embedded in noise

is required. Although here the small signal is considered as rotor eccentricity signal

whose frequency needs to be estimated. In conventional signal-detection theory the

two signals, the noise and the low strength signal are identi�ed as two hypotheses, H1

and H2. The main aggregate signal i(t) (x(t) in previous sections) can be written as:

i(t) = ii(t) + ic(t) + n(t)

where ii(t) is a signal consisting of all of the other components excluding ic(t) (the

signal of interest) and n(t), the random noise. In this context however we identify ic(t)

as signal having rotor frequency fc of motor 1(say). The mathematical hypotheses,

H1 and H2 are:

H1 : i(t) = ii(t) + n(t)

H2 : i(t) = ii(t) + ic(t) + n(t)

Here, H1 is the null condition and thus assumes that ic(t) has not been transmitted

and hypothesis H2 assumes that it has.

In detection theory, a decision rule for a particular hypothesis, using the probability

densities p1(i) and p2(i) of H1 and H2 over the interval (0:Tm), is developed to �nd

which of hypothesis to be true. The probability densities are de�ned as:

p1(i) = Fexp[−(1/N0)

Tm∫
0

(r(t)− ii(t))2dt]
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and

p2(i) = Fexp[−(1/N0)

Tm∫
0

(r(t)− (ii(t) + ic(t)))
2dt]

This decision is made by using maximum-likelihood estimation where the generalized

likelihood ratio (GLR) is computed as:

λi =
maxparam2[p2(i|param2)]

maxparam1[p1(i|param1)]

We then �nd the value of param1, i.e parameter 1, that maximizes probability density

p1, and similarly we �nd the parameters (param2) which maximize probability p2. The

probability density de�nitions can be substituted in the above equation and the GLR

can be written as:

λi =

Fexp[−(1/N0)
Tm∫
0

(r(t)− (ii(t) + ic(t)))
2dt]

Fexp[−(1/N0)
Tm∫
0

(r(t)− ii(t))2dt]

Simplifying the above equation gives:

λi = exp[−(1/N0)

Tm∫
0

[−2r(t)ic(t) + 2ii(t)ic(t) + 2i2c(t)dt]

Further, ii(t)ic(t) is i(t) which cancels over interval Tm and ic(t) can be written in

the form:

ic(t) = Icsin(2πfct+ φc)

which when squared gives,

i2c(t) = I2c (Tm/2)
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Substituting the above terms in equation and simplifying gives:

λi = exp(
−I2cTm

2N0

) ∗ exp( Ic
N0

Tm∫
0

2r(t)sin(2πfct+ φc)dt)

Estimates for Ic (mag), fc, and phc are obtained by maximizing the above equation.

For a given Ic the equation maximizes when the integral term maximizes. We thus

analyze this term separately [32]:-

Tm∫
0

2r(t)sin(2πfct+ φc)dt = s(fc)

s(fc) can be rewritten as:

s2(fc) = p2(fc) + q2(fc) = [

Tm∫
0

2r(t)sin(2πfct)dt]
2 + [

Tm∫
0

2r(t)sin(2πfct)dt]
2

where,

p(fc) = s(fc)cosφc =

Tm∫
0

2r(t)sin(2πfct)dt

and

q(fc) = s(fc)sinφc =

Tm∫
0

2r(t)cos(2πfct)dt

Hence when the above equation of s2(fc) is used for (fc) ranging from 29 to 30 Hz,

the maximum of all the values of (fc) is the highest frequency component in the range

of 29 to 30, i.e the rotor eccentricity frequency.

Next, the phase of the rotor signal is calculated using similar equation for �nding

fc but where the equation maximizes further when phase is matched:

s(fc) =

Tm∫
0

2r(t)sin(2πfct+ φc)dt
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In the above equation the previously computed value of fc is used. φc is looped from

-180 to +180 degrees and the phase which maximizes s(fc) is the phase of the rotor

eccentricity signal.

The amplitude of the signal is computed as:

mag =
2
√

(p|fc, φc)2 + (q|fc, φc)2

Length of signal

Using the above estimates of frequency, phase and magnitude a signal with rotor

eccentricity frequency and its corresponding time domain phase and magnitude can

be generated. This time domain signal is then subtracted from the main signal which

is then transformed to frequency domain to recover the rotor eccentricity frequency

of the second motor. The precise estimation of signal parameters is key. It is unlikely

that any two motors having the same load will have the exact rotor eccentricity

frequency upto three decimals.

After subtraction of Motor 1 rotor eccentricity signal, the signal is then looped

through frequency estimation part of the code again, which then estimates the rotor

eccentricity frequency of Motor 2. The following chapter showcases matlab results of

the two motors given di�erent loads.



CHAPTER 4: EXPERIMENTAL RESULTS

This chapter illustrates how the experiment was setup, how the data was procured

as well as the results of the experiment. It is divided into three sections. The �rst

elaborates the experiment setup and equipment. The second, results of the experiment

without any motor defects and third with a defected motor.

4.1 Experimental Setup

The experiment involves having two motors fed 3-phase power in parallel. The

switch box consists of switches which splits the feed. Current transducers present on

these channels (before and after the line was split) measure the current drawn by the

motors. The sensor interface box then collects this data and enables connection to

the computer via a SCSI cable. Figure 4.1 illustrates this process:-

Figure 4.1: Block Diagram of experiment setup

The sensor interface box collects voltage and current measurements of the motors

using voltage and current transformers respectively. The voltage transformer mea-

sures the input supply to the motor from two phases of the 3-phase supply. The �rst

of the 3 current transformers, is placed on the supply line before it's split to be fed
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in parallel to the motors, the second and third placed on each individual split lines

fed to the two motors. A circuit diagram of this connection is given in �gure 4.2:-

Figure 4.2: Circuit Diagram of experiment setup

The various equipment as well as boards used in this experiment are listed below:-

1. Power Supply: To obtain less noisy signal a three phase signal generator was

used as input to the motors. This ensured the motor signal were not disturbed

by stray grid frequencies or �uctuating grid voltages.

Figure 4.3: Power Supply to the Motors

2. The power from the generator was fed to the two motors in parallel. Figure 4.4
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shows the three phase switches which split the incoming single line from the

power supply into two.

Figure 4.4: Three phase switches splitting the line for parallel connection to the
motors

3. Motor 1 supplied by switch 1 is set up to the dynamometer as shown in Figure

4.5.

Figure 4.5: Motor 1 coupled to dyanamometer

4. The dynamometer is controlled by a controller wherein the load is regulated as

required.
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Figure 4.6: Controller for the dyanamomter, amount of torque generated by the load
is controlled.

5. Motor 2 is coupled to a static load. However this load can be unbalanced to

mimic a faulty set-up.

Figure 4.7: Motor 2 coupled to external load

6. Current and Voltage transducers were used to detect current and voltage re-

spectively drawn by the motors and were the main data acquisition component.

Figure 4.8 below illustrates the speci�cations of the transducers:-
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(a) Current transducer used in this thesis (b) Voltage transducer used in this thesis

Figure 4.8: Current and Voltage transducers used in the experiment and their speci-
�cations

7. A SCSI cable was used to transfer the stator current signals from the motors

to the computer. An AC to DC converter gives DC power supply to the board

for the voltage transducers. The circuit board is pictured in Figure 4.9:-

Figure 4.9: Main data acquisition board
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8. The PCI-1710 card in the computer samples the analog signal at 50000 hz

divided across all channels (Number of channels being 6: 3 current and 3 voltage

channels for 3 current transducers and 3 voltage transducers respectively). The

frequency as well as the number of channels to be considered is set by NILM

(non-intrusive load monitor) software.

9. The data is further processed by the preprocessor software in NILM.

4.2 Initial Motor Results

To test the e�ectiveness of the algorithm, both motors were operated simultane-

ously under varying load conditions. Motor 2, which is located on the test bench,

operates with an approximately constant 120W load and thus its speed was approxi-

mately constant. Since motor speed is related to load, we changed the speed of Motor

1 by adjusting the load on the dynamometer attached to it. Initially, Motor 1 was

loaded at 50W and the load was gradually increased in 5W steps until the load on the

two motors became approximately equal at 120W. The load was then more rapidly

increased until 600W. Since the two motors are the same model, we thus expect the

speed of Motor 1 to initially be higher than that of Motor 2 and eventually become

slightly lower as the load passes above 120W.

Tests were performed to compare the results of the proposed algorithm to those of

a more standard DFT-based approach. We thus analyzed the data using two di�erent

methods:

1. Method 1: Initial 60Hz zoom followed by the DFT

2. Method 2: Proposed tracking algorithm (Chapter 3)

Analysis was performed using both methods at each of the load levels identi�ed

in Table 4.1. The DFT of the individual CT signal was used to verify the speed of

the two machines. Data was initially recorded for both one minute and two minute

intervals at each load level.
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Table 4.1: Table of power values given to dyanamometer on Motor 1 and the torque
generated by Motor 1 to overcome this load.

Test No. Electrical Load

Generated (W)

Motor Torque (Nm)

1 50W 0.268 Nm

2 55W 0.295 Nm

3 60W 0.320 Nm

4 65W 0.350 Nm

5 70W 0.375 Nm

6 75W 0.400 Nm

7 80W 0.427 Nm

8 85W 0.452 Nm

9 90W 0.480 Nm

10 95W 0.508 Nm

11 100W 0.533 Nm

12 120W 0.640 Nm

13 150W 0.800 Nm

14 170W 0.906 Nm

15 200W 1.068 Nm

16 300W 1.603 Nm

17 600W 3.230 Nm

With both Method 1 and Method 2, an initial zoom was performed using the

preprocessor algorithm described in Chapter 3. The e�ect of this can be seen by

examining the aggregate current given previously in Equation 2.1.2. For simplicity,

we neglect the additional term iX(t) (where iX(t) is all other signals in the current
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waveform) and write this as:-

iS(t) = I1 cos(ωet+ φ1) + Ih,1A cos((ωe + ωr,1A)t) + Ih,1B cos((ωe + ωr,1B)t)

After applying the zoom, the initial coe�cient a1(t) will have the form

a1(t) = I1 cos(φ1) + Ih,1A cos(ωr,1A) + Ih,1B cos(ωr,1B) (4.2.1)

This allows the initial 8kHz data to be downsampled to 120Hz, which simpli�es o�-line

data analysis. Note that the use of the preprocessor demodulates the current signal

and thus relocates the eccentricity-related signals to a lower frequency. For the 4-pole

motor selected here, this means that the two speed signals should be located slightly

below 30Hz in a1(t). As an example, consider the results shown in Figure 4.10. These

two graphs show the DFT of the preprocessed signal a(t) for the two individual CTs.

Note that the eccentricity-related signals are located just below 30Hz as expected.

Measurement with a tachometer veri�ed that these frequencies matched the actual

motor speeds. Throughout the remainder of this section, we report the actual motor

speed using the DFT of the individual CT signals. A table associating motors to

their corresponding Current transformer is given as follows:-

Table 4.2: Motor number and their corresponding CT

Source Current

Transformer

Aggregate Current CTm

Motor 1 Current CT1

Motor 2 Current CT2
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(a) DFT of data from CT1 showing rotor eccentricity frequency of motor 1 with 50W load.
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(b) DFT of data from CT2 showing rotor eccentricity frequency of motor 2 with a constant

load of 120W

Figure 4.10: DFT of individual CT signals showing frequency of rotor eccentricity
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4.2.1 50W Load Condition Results

Table 4.2 shows the measured speed of the two motors during the 50W test as

shown in Figure 4.10 above. As expected, Motor 1 runs with a slightly higher speed

than Motor 2 due to smaller load. Figure 4.11 shows the corresponding DFT obtained

using Method 1. Note that several distinct peaks are observed. As expected, two of

these peaks are located at the measured motor speeds. In addition, however, there

are also peaks at other frequencies above 30Hz. Note that we know to ignore these

signals since it is not possible for a four-pole motor connected to a 60Hz supply to spin

above 30Hz. In this case, the peak caused by Motor 2 (i.e. the one at 29.922Hz) is

much smaller than the one caused by Motor 1. This is likely because it naturally has

slightly more eccentricity than Motor 2. Such di�erences are to be expected between

two di�erent motors of the same make and model.

Table 4.3: Rotor eccentricity frequency of individual motors for 50W load

Rotor Frequency for 50W load Frequency(Hz)

Motor 1 29.974

Motor 2 29.926
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Figure 4.11: FFT of Current from main CTm

When using Method 2, we �rst apply the FFT zoom and the use the detection

algorithm to obtain one of the motor peaks. Recall that we then subtract this signal

from a1(t) and then attempt to apply the detection algorithm a second time to obtain

the other motor peak. Figure 4.12 shows the results after the �rst signal has been

subtracted from the aggregate. If we thus compare Figure 4.11 to Figure 4.12, we see

that large peak from Motor 1 at 29.974 Hz has been drastically reduced because of

the subtraction. Now, we can clearly see the signal at 29.925Hz, which is taken as

the eccentricity-related signal generated by Motor 2. Figure 4.13 shows the resulting

MATLAB output from the tracking algorithm code. Note that the two frequencies

of interest have been obtained.
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Figure 4.12: FFT of data from CT1 after rotor frequency of motor 1 has been sub-
tracted.

Figure 4.13: Results of Zoom FFT algorithm where fc1 is rotor frequency of motor 1
and fc2 of motor 2, ph1 and mag1 is phase and magnitude of motor 1 used to form
time domain signal to subtract from CT1 data.
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4.2.2 70W Load Condition Results

Table 4.2 shows the measured speed of the two motors during the 70W test. As

expected, the two motor speeds have moved closer. Figure XXX shows the corre-

sponding DFT obtained using Method 1 with one-minute of measured data. Note

that the signal generated by Motor 1 has become so close to that of Motor 2 that

we can no longer safely distinguish between the signals using the DFT. If we apply

Method 1 to two minutes of measured data, however, we obtain the results shown Fig-

ure 4.14 (b). Note that with more data, the e�ects of windowing have been reduced

and thus the two frequencies are more clearly distinguishable. In practice, the use of

additional data is not always a feasible solution. As the load on Motor 1 increased

above 70W toward 120W, it was no longer possible to use Method 1 to distinguish

between the two motors when using 1 minute of data. The issue about data length

is discussed further in later sections.

Table 4.4: Rotor eccentricity frequency of individual motors for 70W load

Rotor Frequency for 70W load Frequency(Hz)

Motor 1 29.962

Motor 2 29.929

Although Method 1 could not uniquely distinguish the two peaks when Motor 1

was operating at 70W, Method 2 was able to do so. The following �gure shows rotor

eccentricity frequencies of two motors merging into each other from DFT of main CT

(CTm) signal.
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(a) DFT of main CT (CTm) signal for 70W load run for 1 minute
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(b) DFT of main CT (CTm) signal for 70W load run for 2 minute

Figure 4.14: DFT of data from CTm at 70W showing more distinct Motor 2 eccen-
tricity frequency for 2 minute
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Figure 4.15 shows the DFT of a1(t) once the signal from Motor 1 has been sub-

tracted. Once again, note that the signal generated by Motor 1 has been signi�cantly

reduced and the signal for Motor 2 at 29.929Hz is clearly visible.
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Figure 4.15: FFT of data from CT1 after rotor frequency of motor 1 has been sub-
tracted.

Results of proposed tracking algorithm:-
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Figure 4.16: Results of Proposed tracking algorithm where fc1 is rotor frequency of
motor 1 and fc2 of motor 2

4.2.3 120W Load Condition Results

Table 4.4 shows the measured speed of the two motors for a load of 120W. Note

that the constant load on Motor 2 is 120W as well. This particular load condition

is therefore selected to be displayed as both loads are almost equal, with motors

speeds within 0.002 Hz frequency di�erence. As can be seen in Figure 4.17, the two

frequencies marked overlap as well, concealing the plot below. Hence the �gure is

zoomed in further in 4.17 (b).

Table 4.5: Rotor eccentricity frequency of individual motors for 120W load

Rotor Eccentricity Frequency

for 120W load 1 min data

Frequency(Hz)

Motor 1 29.929

Motor 2 29.931
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(a) DFT of data from CTm for 120W load run for 1 minute
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(b) Zoomed-in image of the above �gure

Figure 4.17: DFT of data from CTm at 120W marking where rotor-eccentricity fre-
quencies should be for Motor 2
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The proposed tracking algorithm is also unable to detect the correct rotor eccen-

tricity frequency using 1 minute of data because subtracting Motor 1 signal results in

Motor 2 signal also getting subtracted. This can be thought of as not having enough

data in the main signal for separate motor frequencies and they instead combine to

form one. Figure 4.18 shows the subtracted signal and Figure 4.19 the output of

tracking algorithm.
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Figure 4.18: DFT of subtracted signal for 120W load of 1 minute data length

Figure 4.19: Results of tracking algorithm for 120W load where fc1 is rotor frequency
of motor 1 and fc2 of motor 2. Here, fc2 should be 29.931
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Increasing the data length to two minutes does not add any considerable distin-

guishing feature to the DFT obtained using Method 1 as shown in Figure 4.20, how-

ever Method 2 now gives the Motor 2 eccentricity frequency. Figure 4.21 shows the

correctly subtracted signal displaying peak at 29.936, quite close to actual frequency

of 29.935 for 2 minute data.

Table 4.6: Rotor eccentricity frequency of individual motors for 120W load run for 2
minutes

Rotor Eccentricity Frequency

for 120W load 2 min data

Frequency(Hz)

Motor 1 29.927

Motor 2 29.935
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Figure 4.20: DFT of CTm at 120W load for 2 minute
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Figure 4.21: DFT of signal after Motor 1 rotor eccentricity signal has been subtracted

Figure 4.22: Output of tracking algorithm where fc1 is rotor eccentricity frequency
of Motor 1 and fc2 of Motor 2

The following tables list Rotor speeds for all load conditions. Table 4.6 lists the

speed results for both motors run for 1 minute with a load condition. Here, second

columns shows the load value, third displays the measured speed of the Motor 1 by

individual CT, fourth column of "FFT Est. Speed" gives DFT of main CT (CTm)

and displays the result of motor speed from its graph, the next column "Code Est
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Speed" gives the result of tracking algorithm. Motor 2 speeds are displayed in the

next three columns.

Table 4.7: This table contains results of the experiment with 1 min data

Test Load Motor 1 Motor 2

Number (Watt) Measured

Speed

(Hz)

FFT

Est.

Speed

(Hz)

Code

Est.

Speed

(Hz)

Measured

Speed

(Hz)

FFT

Est.

Speed

(Hz)

Code

Est.

Speed

(Hz)

1 50 29.974 29.974 29.974 29.925 29.925 29.925

2 55 29.971 29.971 29.971 29.927 29.930 29.928

3 60 29.968 29.968 29.968 29.968 29.929 29.929

4 65 29.965 29.965 29.965 29.928 n/a 29.928

5 70 29.961 29.961 29.962 29.929 n/a 29.929

6 75 29.959 29.958 29.959 29.937 n/a 29.931

7 80 29.955 29.956 29.955 29.938 29.92 29.932

8 85 29.952 29.951 29.952 29.930 n/a 29.932

9 90 29.948 29.946 29.948 29.932 n/a 29.931

10 95 29.942 29.943 29.943 29.936 n/a 29.928

11 100 29.942 29.942 29.942 29.945 n/a 29.927

12 120 29.929 29.929 29.929 29.931 n/a n/a

13 150 29.909 29.908 29.908 29.933 n/a 29.928

14 170 29.895 29.895 29.895 29.935 n/a 29.927

15 200 29.874 29.873 29.873 29.931 29.931 29.931

16 300 29.804 29.804 29.804 29.803 29.931 29.931

17 600 29.578 29.578 29.578 29.938 29.938 29.938

Table 4.7 lists the motor speeds when run for 2 minutes with the same load.
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Table 4.8: This table contains results of the experiment with 2 min data

Test Load Motor 1 Motor 2

Number (Watt) Measured

Speed

(Hz)

FFT

Est.

Speed

(Hz)

Code

Est.

Speed

(Hz)

Measured

Speed

(Hz)

FFT

Est.

Speed

(Hz)

Code

Est.

Speed

(Hz)

1 50 29.973 29.973 29.973 29.938 29.937 29.938

2 55 29.970 29.970 29.970 29.938 29.939 29.938

3 60 29.967 29.967 29.967 29.939 29.939 29.938

4 65 29.963 29.963 29.963 29.939 29.938 29.939

5 70 29.960 29.960 29.960 29.939 29.938 29.939

6 75 29.956 29.956 29.957 29.939 n/a 29.945

7 80 29.953 29.953 29.953 29.938 29.934 29.940

8 90 29.947 29.945 29.946 29.940 n/a 29.938

9 95 29.941 29.943 29.943 29.940 n/a 29.936

10 100 29.940 29.940 29.940 29.938 n/a 29.934

11 120 29.927 29.926 29.927 29.935 n/a 29.936

12 150 29.906 29.906 29.906 29.939 29.937 29.939

13 170 29.892 29.892 28.892 29.939 29.939 29.939

14 200 29.871 29.871 29.871 29.939 29.939 29.939

15 300 29.801 29.801 29.801 29.939 29.939 29.939

16 600 29.578 29.578 29.578 29.939 29.939 29.939

4.3 Faulted Motor Results

This section documents the results when Motor 2 load is radially unbalanced to

induce eccentricity. Recall that Motor 2 is placed on a test bench having constant
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load. This load can be unbalanced by inserting weights on one side of the load. Figure

4.23 shows how this was achieved in the lab.

Figure 4.23: Induced fault in Motor 2

As discussed in section 3.2 air-gap eccentricity frequencies always exist in any

motor. Manufacturers tend to keep eccentricity as low as possible with maximum

permissible limit of 10% of nominal radial airgap length [22]. To study the e�cacy

of the tracking algorithm at high air-gap eccentricity the same load conditions are

re-run for Motor 1, however Motor 2 now has induced eccentricity.

These eccentricity signals of Motor 2 now have increased magnitude as its rotor

vibrates with the eccentric load and hence draws more current. Taking a simple

example, we test this theory by having same load condition for Motor 1 whereas

Motor 2 �rst has a constant load and then eccentricity induced load. DFT of aggregate

current is shown in Figure 4.24 (Motor 2 without induced eccentricity) and Figure

4.25 (Motor 2 with induced eccentricity).

In Figure 4.24, Motor 2 eccentricity frequency in the DFT of aggregate current

has an amplitude of 0.0006 A whereas in Figure 4.25 this amplitude has increased to

0.02243 A. It should be noted that Motor 1's amplitude of rotor eccentricity did not

signi�cantly change.
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Figure 4.24: DFT of aggregate current for 50W load on Motor 1 and 120W constant
load on Motor 2
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Figure 4.25: DFT of aggregate current for 50W load on Motor 1 and 120W faulted
load on Motor 2

As can be seen from the above �gures, frequency of the motors could be tracked
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pretty e�ciently by both Method 1 (where it detects Motor 2 frequencies, refer Table

4.7) and Method 2. However to e�ectively detect rotor eccentricity signal, its am-

plitude needs to be identi�ed as well. Tracking amplitudes does not give consistent

results as rotor eccentricity signal is seldom a sinusoid and varies with rotor oscilla-

tion. However amplitude tracked by Method 2, i.e the proposed algorithm is seen to

be in close vicinity of individual motor rotor eccentricity signal amplitude.

Figure 4.26 shows result of detection of magnitude of Motor 2 eccentricity frequency

(from aggregate current) with loads from 50 W to 170 W (10 W interval) run for 2

minutes in blue. The red plot in Figure 4.26 indicates DFT of the same loading and

time conditions of Motor 2 from its individual CT (CT2). Note that here Motor 2

does not have an induced fault.
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Figure 4.26: Blue: Amplitude detected by proposed algorithm using aggregate cur-
rent. Red: DFT of Motor 2 eccentricity signal from individual CT1.
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As can be seen from the above �gure, both the methods have detected amplitude

values to be between 0 and 0.01. Figure 4.27 plots amplitude values for Motor 2 with

induced fault. Here as well blue plot re�ects results of the tracking algorithm and

red results of DFT of Motor 2 (data length is 1 minute). Expectedly, the amplitudes

are now higher and range between 0.02 to 0.05. Proposed algorithm tracks the DFT

signi�cantly better than Motor 2 when it had no induced faults.
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Figure 4.27: Blue: Amplitude detected by proposed algorithm using aggregate current
of fault induced Motor 2. Red: DFT of Motor 2 eccentricity signal from individual
CT1.



CHAPTER 5: CONCLUSION

Although the tracking algorithm developed in this thesis gives better results where

DFT of the signal cannot distinguish two rotor eccentricities there are some load

cases where the results of the algorithm deviate by 0.01 Hz. However even with this

deviation the two motor eccentricities can be easily distinguished by the algorithm.

It should be noted that when MCSA is employed to �nd faults in a motor, exact

amplitude limits are not utilized. The fault amplitude limits are de�ned as a percent-

age of healthy motor amplitude. Hence a rough estimation (amplitudes measured by

the algorithm is within 0.01 Amperes) should be su�cient to identify faults in the

motor.

When loads are nearly identical as well, the tracking algorithm is able to identify

two di�erent rotor eccentricity frequencies and their amplitudes belonging to Motor

1 and Motor 2. This experiment was done for 1 minute and 2 minutes of motor

data length, however the tracking algorithm can be exploited to run continuously

on a slight lag (i.e the algorithm displays results x minutes after the input, albeit

continuously) for on-line monitoring of motors.

Further testing of the algorithm will be done in an operational power plant to

observe if the tracking algorithm measured amplitude and frequency is precise enough

to clearly distinguish faults of two identical motors. However when the algorithm is

pushed to detect multiple motor faults, initial measurement of their fault frequencies

may be required to tie these frequencies with individual motors. Arti�cial intelligence

and neural networks can then be employed to help distinguish multiple motors better

and to identify fault frequencies and their amplitudes even when they deviate due to

heat or other external factors, a condition which is not explored in this thesis.
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APPENDIX A: MATLAB CODE OF PROPOSED ALGORITHM

c l e a r ;

f s = 120 ;

s c a l e = 2.7023 e−04;

x = load ( ' f i le_number . prep ' ) ;

i 0x = x ( : , 1 )∗ ( 1/64 )∗ ( 1 . 25/2^12 )

∗(1/110)∗1000∗(1/ sq r t ( 2 ) ) ;

i 0 = i0x − mean( i0x ) ;

N = f s /0 . 0 01 ;

iw = hanning ( l ength ( i 0 ) ) . ∗ i 0 ;

X = f f t ( iw ,N) ;

X = X( 1 :N/2 ) ;

X = X∗ s c a l e ; %∗(mean( i0x )/max( abs (X) ) ) ;

f r e q = ( 0 :N/2−1)∗( f s /N) ; %f s / l ength=del ta_f

f i gu r e , p l o t ( f r eq , abs (X) ) ;

x l ab e l ( ' Frequency (Hz ) ' , ' FontSize ' , 1 4 ) ;

y l ab e l ( ' | I_{A} | (Amp) ' , ' FontSize ' , 1 4 ) ;

L = s i z e ( i0 , 1 ) ;

t = ( 0 :L−1)∗(1/ f s ) ;

f i =0;

f o r f = 2 9 . 9 : 0 . 0 0 1 : 3 0

f i= f i +1;

p( f i ) = mean( cos (2∗ pi ∗ f ∗ t )∗ i 0 ) ;
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q ( f i ) = mean( s i n (2∗ pi ∗ f ∗ t )∗ i 0 ) ;

s ( f i ) = p( f i )^2+q( f i )^2 ;

end

fk = 2 9 . 9 : 0 . 0 0 1 : 3 0 ;

%f i gu r e , p l o t ( fk , s ) ;

[ms , indx f ] = max( s ) ;

f c 1 = fk ( indx f )

mq = mean( s i n (2∗ pi ∗ f c 1 ∗ t )∗ i 0 ) ;

f i =0;

f i 2 =0;

f o r ph = −pi : 0 . 0 0 1 : p i

f i= f i +1;

%r ( f i ) = cos (2∗ pi ∗ f c ∗ t+ph)∗ i0 ' ;

r ( f i ) = mean( cos (2∗ pi ∗ f c 1 ∗ t+ph)∗ i 0 ) ;

%u( f i ) = mean( s i n (2∗ pi ∗ f c ∗ t+ph)∗ i 0 ) ;

end

ph = −pi : 0 . 0 0 1 : p i ;

%f i gu r e , p l o t (ph , r ) ;

[mr , indxr ] = max( r ) ;

ph1 = ph( indxr ) ;

mu = mean( s i n (2∗ pi ∗ f c 1 ∗ t+ph1 )∗ i 0 ) ;

%[mu, indxu ] = max(u ) ;

mag1 = 2∗( s q r t (mr^2+mu^2))/L

i 0 f c = mag1∗ cos (2∗ pi ∗ f c 1 ∗ t+ph1 ) ;

i 0 f = i 0 f c ' ;
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i0n = i0−i 0 f ;

N = f s /0 . 0 01 ;

iw = hanning ( l ength ( i0n ) ) . ∗ i0n ;

X = f f t ( iw ,N) ;

X = X( 1 :N/2 ) ;

f r e q = ( 0 :N/2−1)∗( f s /N) ; %f s / l ength=del ta_f

f i gu r e , p l o t ( f r eq , abs (2∗X/N) ) ;

x l ab e l ( ' Frequency (Hz ) ' , ' FontSize ' , 1 4 ) ;

y l ab e l ( ' | I_{A} | (Amp) ' , ' FontSize ' , 1 4 ) ;

f i n= 0 ;

f o r fn = 29 . 9 : 0 . 0 0 1 : 3 0

f i n= f i n +1;

pn( f i n ) = mean( cos (2∗ pi ∗ fn ∗ t )∗ iw ) ;

qn ( f i n ) = mean( s i n (2∗ pi ∗ fn ∗ t )∗ iw ) ;

sn ( f i n ) = pn( f i n )^2+qn ( f i n )^2 ;

end

fkn = 2 9 . 9 : 0 . 0 0 1 : 3 0 ;

%f i gu r e , p l o t ( fkn , sn ) ;

[ms , indxfn ] = max( sn ) ;

f c 2 = fkn ( indxfn )

f o r ph2 = −pi : 0 . 0 0 1 : p i

f i 2= f i 2 +1;

%r ( f i ) = cos (2∗ pi ∗ f c ∗ t+ph)∗ i0 ' ;

r2 ( f i 2 ) = mean( cos (2∗ pi ∗ f c 2 ∗ t+ph2 )∗ i 0 ) ;

%u( f i ) = mean( s i n (2∗ pi ∗ f c ∗ t+ph)∗ i 0 ) ;

end
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ph2 = −pi : 0 . 0 0 1 : p i ;

%f i gu r e , p l o t (ph , r ) ;

[ mr2 , indxr2 ] = max( r2 ) ;

phc2 = ph2 ( indxr2 ) ;

mu2 = mean( s i n (2∗ pi ∗ f c 2 ∗ t+phc2 )∗ i 0 ) ;

mag2= 2∗( s q r t (mr2^2+mu2^2))/L


