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ABSTRACT 
 
 

PAUL MACKNIGHT.  The Learning Facade.  (Under the direction of DIMITRIS 
PAPANIKOLAOU) 

 
 

 Despite the rising popularity and utilization of intelligent systems, much of the 

built environment, especially architecture, remains prescriptive or responsive in nature. 

Kinetic facades, especially, still rely on the analysis of historic or approximated data to 

generate a solution through the utilization of a multi-objective optimization (MOO) 

algorithm. This approach lacks the ability to adapt to the changing forces (i.e. site 

specific micro-climates or changing occupants) to which buildings are subjected for two 

reasons: 1) MOO is computationally expensive due to the immense solution space and 2) 

it can only solve for known objectives. This lack in ability for facades to adapt to 

changing conditions or be designed using actual site data has been one of the hindrances 

on the growth of the industry. 

 Kinetic facades should instead be developed as an integrated portion of an 

intelligent system that is able to unify environmental data and user input in real-time to 

create an interior environment that is comfortable, energy efficient, and able to adapt to 

any future changes. Inputs such as space volume and user preferences, then, must be 

assumed to be unknown, putting MOO at a disadvantage in intelligent systems. As such, I 

have developed a control system architecture for an intelligent facade that utilizes a 

neural network algorithm (a form of machine learning) to address the need of adaptation 

in kinetic facades. To test my method, I utilized Rhino 5, Grasshopper, and Python with a 

simulated dataset as a case study.  
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Nomenclature 
Pre-scripted Facade - Goes through certain motions based on predetermined calculations 

of environmental data only. Cheapest, but less common than and mostly outdated by 

the other types of facades with the advancement of the Internet of Things and better 

sensor technology. 

Responsive Facade - Takes input from the environmental data and data from building 

sensors to determine the best possible positioning for the panels in the system. This 

only responds to current conditions, or “lives in the moment,” and has no memory of 

past settings. Predominant type of kinetic facade used today. 

Adaptive Facade - Similar to responsive, but with an added layer of “learning” over time 

to require a steadily decreasing amount of computation, as long as it has identified a 

common pattern between its inputs. This will allow it to compare current sensor 

readings, environmental data, and possibly even user inputs with past instances and if 

it finds a close match it can use those settings rather than calculate them from scratch. 

Rhino 5 - Officially called Rhinoceros 5, this is a 3D modelling and Computer-Aided 

Design (CAD) software used across many different disciplines, including architecture 

and automotive design. 

Grasshopper - A parametric modelling software that is a plugin to Rhino 5. It allows for a 

more intuitive Graphical User Interface (GUI) and better control over script generated 

geometry in Rhino 5. Grasshopper has many additional plugins -  such as the 

Honeybee, Ladybug, and Diva 4 used in this research - that allow for extended 

functionalities in creating or analyzing parametric geometry created by Grasshopper. 
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Introduction 

1.1 Intelligent Facades 

 To understand the current state and future needs of the facade industry, we must 

first examine three things: what constitutes an intelligent system versus a smart system, 

what an intelligent facade is, and identify how it is distinguished from standard static and 

kinetic facades. After a review of literature and noting others in the field noting the same, 

“intelligent vs. smart” is an issue of ambiguity in the discourse, especially that of 

architecture. It is an understandable misconception that the two terms are 

interchangeable, after all the two are very close synonyms, but their definitions take on 

new meanings when used in reference to devices and other technology. Based on the 

overall use of the terms in the discourse and for the purposes of this paper, the term 

“smart” references a quality of interconnectedness, marked by the free ability to 

communicate with other devices in the system, while the term “intelligent” references the 

implementation of learning as an extended function of smartness. 

 In the realm of architecture, use of these two terms has most notably materialized 

in the form of smart homes. The idea that things should be as convenient for the user as 

possible has driven the Internet of Things to become partly physical in its 

implementation, spanning from home assistants such as Google or Alexa to smart locks 

to smart thermostats. These devices create a sort of web of free use that allows the user to 

control any part of their house either presently through voice commands or remotely 

through their smart phones. While there are some aspects of learning, such as Alexa 

being trained to recognize specific user voices, the vast majority of these devices are 
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purely responsive in nature, leaving it up to more advanced users or researchers to 

implement a level of intelligence that allows a predictive nature to arise. Nest, a brand of 

smart thermostats, is likely the closest commercially available product to an intelligent 

system we have due to its ability to learn a family’s preferences and schedules with 

minimal input and only basic use of the temperature settings. Another thing to note 

moving forward is that all of these systems are user centric. That is, they focus on a 

single or small group of user(s) as their target with all other aspects, such as energy 

efficient HVAC use for the Nest, taking a back seat. 

 For smart and intelligent architecture, the stakes are higher. Building performance 

plays a huge role in the design of the building, while users take a back seat. As such, 

smart architecture is just as much about the design of the building as it is the clever use of 

smart systems and sensors throughout. This means both static and kinetic facades can be 

smart, with their respective design objectives optimizing for a particular facade issue, 

particularly thermal gain and daylighting. This creates the need for sensors to 

communicate information back to the building control system to better aid the localized 

use of lighting fixtures and HVAC. Kinetic facades are the more popular solution for this 

level of smartness due to their ability to address a wider range of environmental 

conditions while still achieving the optimal solution. Intelligent facades, then, must 

address all aspects of the building during its lifetime and have the ability to adapt to any 

changes in the external and internal environments, which can only mean more complex 

sensor arrays and control systems. 
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1.2 Control Systems 

 Developing the control system for these facade systems is likewise no small feat. 

Many different methods for controlling a kinetic facade have been attempted, but they 

can all be categorized into two main categories of systems: centralized and decentralized. 

These two control systems stem from the ideas of centralized and decentralized 

computing. Centralized computing consists of a single “master” subsystem, or brain, that 

contains most or all of the functions for the system tasks and many “slave” subsystems, 

or subordinates, through which access to the master subsystem is restricted. A common 

implementation of this is cloud rendering, a type of cloud computing. This structure 

allows a centralized control system to contain one algorithm to interpret senor data and 

adjust single or clusters of panels accordingly, as well as integrate with the other building 

control systems more seamlessly. 

Decentralized computing, decentralizes the master subsystem throughout all other 

subsystems, resulting in a more even spread of software and hardware required for the 

tasks of the system. The result is an autonomy of subsystems and a redundancy for 

system tasks. A common implementation is the hardware in the facility for cloud 

computing, the practice of using remote servers to store, manage, or process large 

amounts of data. The facility can handle many different models at any given time, 

requiring the facility to house many equivalent rendering machines to spread out the 

workload across many machines, which also allows some machines to pick up the slack 

should another machine fail and need repairs. A decentralized control system would 

mimic this structure by housing all the computation for the system within each kinetic 
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panel, effectively localizing panel calculations to its own sensors and the output of its 

neighbors. This reduced computational load combined with the lack of any central 

information hub make this system ideal for quick responses, but also prevented any 

facade with this control system in its ability to become more than purely responsive. 

1.3 Problem Statement 

 What does this mean for designers of kinetic facades? Currently, there is a 

disconnect between the design and operation of a kinetic facade. The design process 

utilizes a parametric modelling software, such as Grasshopper, to generate geometry and 

subsequently simulate the functionality of the facade. The operation is the design and 

implementation of the control system which mimics the designed functionality. Designers 

typically lack an understanding of the latter, which can lead to an underutilization of the 

capabilities of the control system. This in conjunction with the frequent inability to 

acquire a list of users that will occupy the building cause designers to largely ignore user 

preferences during the design process in favor of standardized optimizations for light 

levels, temperature settings, etc. The resulting building leaves users feeling the need to 

manipulate system settings to match their environment to their preferences, which could 

undermine or entirely counteract the intent of the kinetic facade. In order to better 

accommodate user input as well as external and internal changes a building faces 

throughout its lifetime, two things must occur: an increase in transparency of operation 

for designers and the control system of the facade gaining the ability to learn patterns 

between user preferences and environmental conditions. 
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Background 

 Finding a balancing point between several environmental aspects is difficult 

enough due to conflicting inputs, such as daylighting and incident solar radiation, and the 

adding of user preferences only further muddles the issue. The current approaches for 

optimizing a kinetic facade for its inputs have many weaknesses that the act of “learning” 

with an intelligent system could solve. This section will discuss previous solutions to 

portions of this issue and the specific weaknesses of the current approach. 

2.1 Case Studies 

The idea of implementing smart and intelligent systems in an architectural setting 

is by no means recent. For decades, researchers and designers alike have been developing 

ways with which to create ever increasing levels of optimal energy efficiency or 

incorporating user preferences into the functions of a building. But many of these fall 

short in scope for achieving anything other than relative user convenience or minor 

increases in efficiency that rely on a lack of user adjustments. The following previous 

works will provide an overview for how this field has evolved and its current state. 

2.1.1 Adaptive House Project 

In 1998, M. C. Mozer wrote a dissertation titled The neural network house: an 

environment that adapts to its inhabitants, which presented his ideas and experimental 

house, Adaptive House Project. The goal of the project was to create a house-wide 

system that could program itself, or learn, based on a variety of occupant activity and 

input. The actual house, located in Boulder, Colorado, was equipped with more than 

seventy five sensors that could record anything that either directly affected user comfort 
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or were evidence of user activity and desired settings, including ambient light, 

temperature, motion, door and window positions, and weather. The system used this 

information to control actuators that managed the heating systems, water heating, fans, 

lighting, speakers, and ventilation. 

Mozer implemented two machine learning algorithms to create the intelligent 

behavior of the house. The first algorithm learned and predicted where the occupants 

were within the house based on motion sensor readings and a statistical analysis of 

environmental data for a given period of time. The second algorithm determined which 

actions needed to occur based on a calculation of discomfort costs and energy costs for a 

given predicted location of the occupants. 

While comprehensive and logically applicable to the issue of balancing energy 

efficiency with user preferences in office buildings, the very nature of the context (a 

residential building) is not compatible with an office setting. Furthermore, much of the 

internal workings of the system were hidden from the user, preventing them from 

learning about the system and possibly even customizing it. Despite the system allowing 

for an override of any aspect of the home, the system used standardized values and 

calculations to determine what would be optimal with little room for more intricate 

settings provided by the user. 

2.1.2 Changing Spaces / House n 

Others, such as Stephen Intille and Kent Larson, were more interested in how to 

use a similar system to inform the user of which changes should occur through 

unobtrusive notifications. Their project, Changing Spaces / House n, was a full-scale 
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single-family home with an integrated and ubiquitous sensor architecture, as a model 

home for the future that would help its occupants learn how to control the environment 

on their own (Intille 2002). Using similar calculations to Mozer, the computer control 

systems would read sensor data and calculate which changes, if any, needed to be enacted 

to minimize discomfort and energy costs, and then alert the occupant of what should be 

done. The occupant could then decide whether to perform the action, and the system 

would update with the result to better build a preference model. 

This novel approach loses its grounding when moved outside of the residential 

sector, where users are more preoccupied with and concerned about completing their 

tasks. places of employment also typically have large spaces with high heating and 

cooling demands, which take too long to alter for anything other than a predictive, 

automated system to handle in a similar fashion. The system itself, also, has the flaw of 

inscrutability. Just as with the Adaptive House Project, the recommended settings were 

defined by the system designers, and not manipulable by the user. 

2.1.3 Media House Project 

Further still is the idea that the building itself is something to be manipulated 

through an automated process while maintaining a level of transparency to the user. 

Media House Project, developed by directors Vicente Guallart, Enric Ruiz-Geli, Willy 

Müller, and a team of over 100 collaborators and consultants, envisioned the house as a 

computer, its structure as an information network. The integrated structure and 

infrastructure of the house allowed for a more temporal nature while simultaneously  
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achieving quick and easy access to any system and piece of information from anywhere 

in the house. 

The key to achieving this dynamic nature was a system coined Internet Zero by its 

creator, Neil Gershenfield. Internet Zero relied on every connected device receiving an 

embedded computer for control and housing an IP address, allowing even a simple 

lightbulb to be located in both physical and digital spaces. The operating system of the 

house, budded DOMOS, effectively decentralized the use and control of the house by 

"[monitoring and controlling] both the physical elements that the house contains (in terms 

of comfort, media players, accesses, conditions, etc.) and the information that directly or 

indirectly affects the house (media, communication, files, Web sites, etc.)" (Guallart, 

2004). Several screens throughout the house allowed for the system interface to recognize 

users and receive their input into the system. The functionality of the project is not easily 

translated into an office environment, due to the focus of the project being the media, 

physical and digital, that is consumed by the occupants. Unlike the limitations of 

previous works, however, the method for interfacing with the system could be altered and 

developed for a more seamless interaction in an office environment. 

2.1.4 Personalized Intelligent Comfort Control 

In order to reframe the above work into an office context, Andrew Payne 

developed a method and control system for sensing environmental conditions, receiving 

user input, and controlling an integrated network of personal desk devices and building 

systems. The goal of his dissertation, Personalized Intelligent Comfort Control for Office 

Spaces, was to “develop a novel localized building control strategy which can learn and 
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adapt over time to improve both user satisfaction and energy efficiency” (Payne, 2014). 

His work outlines the design of several sensors, personal desk devices, and controllers 

that are used in conjunction with a neural network to adapt a localized area of an office 

building to the user. The system was designed to be highly scrutable and manipulable by 

the user with very little system designer influence over the level of each form of comfort 

(light, thermal, audible, etc.). To achieve this, Payne developed a dashboard through 

which a schedule could be set, different device controls could be manipulated, and a 

survey for preferred relative comfort levels could be completed. These inputs coupled 

with this control method allowed the system to understand and build an optimal 

experience for the user without sacrificing energy efficiency. 

2.2 Current Approach and its Weaknesses 

To date, all research has been focused on a small user group for comfort control, 

even Payne’s research due to localization of comfort zones. However, in order to achieve 

a more global comfort and environmental optimization for an office building, a more 

robust, intelligent system must be implemented. Currently, all calculations for facade 

optimization take place during the design phase in the form of a statistical analysis on 

weather data, which is in turn used in a multi-objective optimization (MOO) algorithm to 

determine optimal system actions for a variety of different instances of environmental 

inputs. This approach inherently limits the ability for the facade to interface with other 

systems (such as Payne’s), prevents any scrutability of the system by the user, and only 

holds regard for the standardized optimizations for interior environment based on 
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guidelines such as ASHRAE. The following subsections cover how MOO and weather 

data are used and the inherent flaws related to those uses. 

2.2.1 Multi-Objective Optimization 

MOO is a process through which a set of optimal solutions are derived from a 

collection of input criteria, or objective vectors, such as daylighting and incident solar 

radiation. These objective vectors are then put through an analysis algorithm that tests 

many different possible inputs and maps the overall success of the system in relation to 

each objective vector. The results are then mapped to determine if and where there is a 

Pareto front. A Pareto front, or more commonly Pareto efficiency, refers to a state of 

allocation of resources such that it is impossible to reallocate resources to benefit one 

criterion without negatively affecting at least one other criterion. Pareto fronts can take 

on various forms depending on the tests or objective vectors, as shown in Figures 1a and 

1b. The designer or curator of the MOO then selects from the solutions along the Pareto 

front the solution(s) for implementation. 
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  Despite being a powerful way of optimizing between non-coincident 

objectives, there are some downsides to using MOO. The first and most prevalent is the 

time required to complete the analysis process. Due to the high volume of possible 

combinations of inputs for a facade with all the possible objectives being solved for, the 

solution space is vast. The other issue, which brings up an earlier point about the 

deficiency in designing for user preferences, is that MOO can only solve for defined 

objective vectors. Thus, designers who want to design for occupant preferences currently 

must rely on standardized values. This is an issue because, as noted from a study 

published by the Center for the Built Environment (CBE) which surveyed 52,980 

occupants in 351 office buildings over the course of ten years, there is no universally 

acceptable personal comfort set point (Frontczak et al., 2012). 

  

Figure 1a: (Left) Multi-Objective Optimzation. 

Figure 1b: (Right) Pareto front for divergent crietria. 

Examples of a mapped Multi-Objective Optimization result for two objective 
vectors. 
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2.2.2 Weather Data 

One of the inputs for MOO is weather data in the form of EnergyPlus Weather 

(EPW) or Typical Meteorological Year (TMY) files; most notably ambient light levels, 

cloud coverage, and sun position (angle and azimuth). While sun position is well 

documented for any given coordinate on Earth, all other aspects of weather are variable 

with imperfect collection methods. Weather stations and other in situ data collection sites 

are spread across the globe and measure most or all weather data, but the most precise 

this recording system can be is regional. For example, the state of Oklahoma’s Mesonet, 

an array of environmental monitoring stations, consists of 121 stations, with at least one 

station in each of its 77 counties (See Figure 2). Across Oklahoma’s 69,960 mi² area, that 

puts an average of ≈578 mi² per station. This density of data collection has difficulty 

capturing the location of anomalous weather patterns and micro-climates, and certainly 

fails to capture site specific environmental conditions. As a result, MOO is fed an 

estimation of what the site’s weather should be rather than what the exact conditions are. 

 

 

  

Figure 2: Oklahoma Mesonet. Map of in situ sites for the 
mesoscale network for weather data collection. 
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Methodology 

My contribution is a system control architecture for controlling intelligent kinetic 

facades and integrating them with a building’s HVAC system. The content of this section 

will outline the logic design I have developed to describe the system (visualized in Figure 

3 on the following page). The three driving assumptions for unknown factors for this 

system are as follows: 

1. User preference data (it is unknown during design and may change as 

occupants move to a different floor or leave the company) 

2. Interior space volume (due to possible renovations) 

3. Exterior environmental data (due to site specific microclimates) 

Without this data, it is impossible to use MOO. Furthermore, allowing the system to learn 

the relationships between these difference inputs will allow for more accurate responses 

after a brief teaching period. Additionally, it should reduce analysis time during the 

design phase and prevent the need to design a brand new control system for each new 

facade. Here, I explain the details for how the included flowchart (Figure 3) that shows 

the logic for the system works. 
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3.1 Inputs 

 
 

There are five inputs to the system: 

1. oLight - light value (in lux) of outside at each facade 

2. pLight - user preferred light value (in lux) 

3. oTemp - outside temperature 

4. iTemp - inside temperature 

5. pTemp - user preferred temperature (weighted average) 

These inputs are used two times in my system. The first is in the calculation of several 

intermediate steps of my control system, as follows: 

1. Calculate the temperature change 

a. Rough approximation of the conversion of light energy into a unit of heat 

b. Difference between current and desired temperatures 

c. Approximated thermal gain/loss through convection 

2. Determine difference between interior and exterior lux values 

3. Determine panel position for lighting needs 

Figure 4: Flowchart Inputs 
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4. Alter panel position to increase or decrease incident solar radiation 

5. Output recommended temperature value for HVAC system 

User preference towards lighting or thermal comfort will not need to be explicitly 

acquired due to the collection method of inputs, as higher preferred lux values will result 

in a skew towards lighting comfort and lower preferred lux values will result in a skew 

towards thermal comfort. For example, if the user preference for light equates to 400 lux 

and the panels need to be fully opened to allow that light value in, but the temperature 

gain from the facade dictates a 20% reduction of that openness (process for this explained 

in detail in section 3.4), then the incoming daylighting would be similarly reduced. If the 

user wants to create a preference for daylighting in this situation, then their feedback to 

the system of “prefer brighter” might increase their preference to 500 lux for those same 

environmental conditions, which would translate into 400 lux for that same reduction. 

Regarding the collection of the system inputs, there are two primary methods: 

sensor arrays and user polls. The sensor arrays will consist of light and temperature 

sensors on the facade of the building and acquire the interior temperature either from 

interior sensors or the localized thermostat within the space. User preference data will be 

collected through a polling system, the design of which is outside the scope of this thesis, 

but whose output would provide explicit temperature and lux values for user preferences 

at time intervals throughout the day. Presumably, this polling system will ask the user for 

their explicit temperature preference and relative lighting preference (brighter/dimmer). 

The lighting preference collection method then uses interior lighting sensors to determine 
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a relative increased or decreased value of the space’s current lux value. This, along with 

the explicit temperature value, are passed to the facade control system. 

3.2 Neural Network 

 

 

 

 

The second time these inputs are used is in the refining of the historical data for 

the neural network I developed for testing. The historical data consists of all inputs paired 

with the recorded temperature change time, panel position, and recommended 

temperature to the HVAC system. 

Neural networks (NN), or more commonly artificial neural networks, are a form 

of machine learning that excels in pattern recognition and solving prediction problems 

where the inputs are too numerous for the programmer or their relationship is not able to 

be expressed in a linear or structural equation. Due to their pattern recognition 

capabilities, NNs are frequently in real-time data interpretation, such as image 

recognition (Figure 6). Collected data and its outputs are then added to the dataset to 

refine output. This is possible through the use of backpropagation, or the backward 

propagation of errors, an algorithm for supervised learning using a gradient descent, or an 

iterative optimization algorithm for finding the minimum of a function. Here, supervised 

learning refers to the task of teaching the system a function through a series of example 

input/output pairs, or in my case user and environmental data with resulting outputs. 

Figure 5: Flowchart Neural Network 
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Thus, backpropagation takes an example dataset and generates weights inside of hidden 

layers that act as the decision-making neurons of the system. In short, “artificial neural 

networks provide a computational framework for incorporating individual feedback such 

that the objectives of the system can change over time – making it ideally suited for the 

current task” (Payne, 2014). 

If a large enough buffer of historical data exists (such as more than 7 days, as 

show in the flowchart), the NN then uses this collected data paired with the resulting 

outputs to form the example dataset to create a model of use for the building. Once the 

NN is trained from these input/output pairs, the system takes inputs from sensors and 

historical information for user preferences at given time intervals and runs them through 

the NN to determine what to output (temp. change time, panel position, and 

recommended temp) and when to start (desired time for result – temp. change time). 

Determining the amount of time needed for a particular building to have sufficient 

historical data requires some minor testing, though the range of seven to twenty-one days 

appears to be a sufficient minimum requirement based on testing a series of different 

spaces. Of course more example data will only refine the initial function, but anything 

beyond twenty-one days did not noticeably impact the amount of iterations needed to 

Figure 6: Image Recognition 
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train the neural network. Should the historical data not exceed the required amount of 

time, however, the system goes through the additional calculations mentioned earlier, as 

outlined in the following sections. 

3.3 Temperature Calculation 

 
Figure 7: Flowchart Temperature Calculation 

First, we will look at how temperature values are utilized. The primary 

components of temperature for a facade are incident solar radiation (sGain) and thermal 

conduction (cGain), which are based on two separate calculations. Incident solar 

radiation refers the heat component of light energy that enters the building, while thermal 

conduction refers to the property of all materials (in this case, the facade) to transmit heat 

energy through direct contact. For the purposes of this thesis, I used more general and 

simplified calculations for these values as a proof of concept. Each of these calculations 

is heavily reliant on the specifications, primarily the U-value (thermal transmittance 

property, an inverse of the R-value, or insulation factor of a material) and light 

transmittance (the ability of the glass to transmit all aspects of light energy into the 

interior space), of the glass facade being used in the project, and should be refined 

accordingly upon selection of that component of the project. As it stands, the calculation 
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for thermal conductivity is as follows, using the U-value of a higher rating curtain wall 

system: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = (𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) ∗ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

This provides a rough estimate for the amount of conductive heat gain or loss through the 

facade. Because this calculation informs the amount needed to heat or cool the space, the 

positivity of cGain is inverse to what would be expected. That is, a positive cGain value 

indicates heat loss through the facade, which translates into a heating requirement from 

the sGain and HVAC, and vice versa for a negative value. 

 sGain must also be refined upon the selection of the curtain wall system and 

interior materials that would translate light energy into heat. Currently, sGain is simply a 

factor of the light energy received by the facade translated into a temperature value. Here, 

the amount of light is highly variable, as it depends on exterior light values and the 

openness of the facade panels. oLight, read from the exterior light sensors, is factored by 

the current panel settings (oPanel), a system variable that is read at this point. 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑡𝑡 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

The resulting value, a consistently positive value since incident solar radiation always 

adds heat, is added to cGain to determine the total heating or cooling requirement from 

external loads (tGain). 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

Should tGain be a negative value, indicating a cooling requirement, the panel openness 

(calculation explained more in section 3.4) may be reduced by up to 50%, depending on 

the value of tGain. 
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 Finally, to finish understanding the heating/cooling needs of the space, the 

difference between current interior temperature and the next user preferred temperature 

(dTemp) is taken, where: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

The output of this calculation closely resembles that of cGain, in regards the positivity of 

the values. The value of dTemp is then used to determine dTime: the time required to 

heat the space (based on the calculation for a thermally independent system). This 

calculation requires the volume of the space. Since the volume is assumed to be unknown 

and thus not collected after the training period, a simple approximation of the space’s 

initial volume is needed for this calculation. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

Once an initial value for dTime is determined, it is then used to determine how much 

thermal gain/loss is acquired at the rate of tGain during dTime, which will be stored in 

t’Gain. 

𝑡𝑡′𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

This value is then used to in the same calculation used to acquire dTime, with the output 

of d’Time. 

𝑑𝑑′𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑡𝑡′𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
 

The value of d’Time is added to dTime to get an estimated overall time (ΔTime) needed 

for temperature to change for a given space behind the facade.  

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑑𝑑′𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
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This value, ΔTime, is used to calculate when the panels should move and trigger the 

HVAC system to match the interior temperature with the pTemp for a given hourly 

interval. During the process of calculating dTime, the total temperature difference needed 

to be addressed by the HVAC will be summed and passed to that system. 

3.4 Lighting Calculation and Panel Adjustment 

 
Figure 8: Flowchart Lighting Calculation 

To determine the next facade panel position needed for lighting and thermal gain 

reduction, a simpler process is followed. First, the ratio between exterior and preferred 

interior light levels must be found. This value, we will call dLight, is the ratio found by 

dividing pLight (preferred light level) by oLight (outside light level): 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑡𝑡 =
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑡𝑡
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑡𝑡

 

The logic here is that if oLight ≤ pLight, then the maximum amount of natural light must 

be let into the space through the facade (at a maximum ratio of 1, or full openness), while 

if oLight > pLight, then the amount of transmitted light must be reduced to match user 

preferences and attempt to prevent glare. This ratio, dLight, is applied as the value for the 

panels’ percentage of openness. As mentioned previously in regards to cGain, however, it 

may be necessary to reduce the amount of incoming light in order to minimize heat gain 
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at the facade. For this, any positive value of cGain that would result in a thermal gain of 

up to 5°F during a 30 minute time period is remapped to percentage values from 100% - 

50% in an inverse relationship, resulting in a factor value we will call cLight. Multiplying 

dLight by cLight will result in the value d’Light, which will be considered the final 

percentage of openness for the facade panels. 

𝑑𝑑′𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑡𝑡 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑡𝑡 

For example, if cGain ≤ 0°F, then cLight would map to a ratio of 1, which would result in 

no change to the original dLight calculation. However, should cGain = 3°F, cLight would 

remap to .7, which would reduce the original dLight value by 30%. 

 
Figure 9: Flowchart Panel Adjustment 

This method of calculating panel openness innately gives a preference towards 

thermal performance. However, due to the method of input of user preferences for light 

level preferences, users can train the system to provide more open panels by providing 

the feedback of “brighter” or “more light” to the system. This process will increase the 
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initial value of dLight for the above calculation, which will result in a higher d’Light 

value, thus given preference to daylighting over thermal performance. 

 In summation, these calculations are used to generate the outputs for this system, 

as follows: 

1. Panel open/close command 

2. Recommended HVAC temperature setting 

In addition to these outputs, the system records all input values, the above outputs, and 

the actual time taken to adjust temperature. Upon completion of the initial recording 

phase of the system, where these calculations are completed at regular intervals 

throughout the day, the system converts to using a neural network to determine the likely 

user preferred settings for a given hourly interval and how long it will take the system to 

achieve all aspects of those preferences. Upon completion of that time interval’s 

transition, the system records all previously mentioned inputs, including any user 

preferences provided during the time interval. After each additional seven days beyond 

the initial recording phase, the NN is retrained in order to provide more accurate system 

settings as the following various items change: 

1. User groups, indicating some change in the personnel on a given floor 

2. Temperature change time, indicating a significant change in interior space, due to 

renovation, splitting or merging of spaces on a floor, etc. 

3. Changes in the exterior environment, indicating a change in season (pertinent for 

the first full year after system deployment) or urban landscape, such as a new 

building altering solar patterns for the building 
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3.5 Testing 

To test this system for effectiveness in learning the relationships between the 

three unknown factors and accurately predicting when changes need to occur, I devised 

three tests for my script. To aid in these tests and simulate a functioning system, I 

developed a simple NN, included in Appendix A. This NN takes a historical data set 

(simulated) and live input data (simulated) to determine the system outputs. Test 1 

assumed user input and space remain unchanged to ensure the system could properly 

record information and predict start time for the adjustment period. Test 2 assumed user 

input changed while space remained unchanged to simulate a personnel change. This 

ensured any change in user input would affect system outputs. Test 3 assumed user input 

remained unchanged while space changed by altering simulated time recordings for 

temperature change to simulate a remodel/renovation of the space. These tests ensured 

the system would alter its adjustment start time appropriately within three days. These 

tests utilized artificial user preference data (See figures 4a and 4b) and historical weather 

data to simulate live sensor readings. User preference data, regardless of collection 

method (assumed explicit temperature values and relative light values), must output to 

my system explicit temperature and light values in Fahrenheit and lux respectively. 
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Results, Conclusions, and Recommendations 

While overall successful, it should be noted that the system, due to lack of a large 

set of data, can be slightly inaccurate in the beginning, depending greatly on how variant 

the weather at the site can be. As it stands, a minimum of two days out of each month in a 

12 month cycle are required in order to generate an accurate enough preliminary teaching 

model for the system to understand how it should react to environmental data, with a 

seven to twenty-one day period of data gathering once deployed. 

While not as effective in providing an accurate weather model as the current 

Multi-Objective Optimization process in the initial stages of the building’s life, the 

continual gathering of input quickly outpaces MOO in generating site-specific readings 

and outputs. However, as previously noted, this is largely site dependent. There are many 

cities in which buildings with kinetic facades could be constructed that are standard 

enough in their climate and weather patterns that existing weather data may be all that is 

needed to generate an accurate model of a given site. At this point, it comes down to a 

cost-effectiveness analysis to make a decision between an accurate, stagnant model and 

an adaptive, learning model for weather analysis. Here, it becomes clear to me that the 

ability to include user input for the learning model gives a machine learning based system 

a clear edge, not only in its ability to create a site specific weather model and correlated 

facade response, but also in its ability to reduce the occupant’s need to utilize HVAC and 

artificial lighting to alter the internal environment of the building. This, then, brings up 

the question: what do we do with this system once it’s operational? For this, I have two 

recommendations: user satisficing and shareability of data. 
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For the former of these, a larger study should be conducted with this system to 

determine how effective user input would be in affecting the user’s satisfaction with their 

environment. Here, there are many different variables to consider. First and foremost are 

the floor plan, use type of the building, and, even more specifically, the type of business 

conducted. An easy assumption is that it is a simple office tower, but different business 

lines may have different preferences for the workspace environment. While computers 

are almost inescapable in this day and age, the tasks done on them and the amount of time 

spent at a computer in relation to other tasks could vary wildly. Software developers will 

spend most of their time at a computer staring at text and will likely prefer a darker 

background and style on their screen to reduce eye strain. As a result, brighter lights will 

produce more glare on their screens than, perhaps, an editorial business where most text 

editing programs primarily have white backgrounds and generate brighter screens. 

Studying the different types of users, their preferences, and my proposed system’s ability 

to meet and satisfice them is an important step in determining if there are any buildings 

that should not utilize this system, and to what level my system can satisfice users of 

buildings that should. 

The latter of my recommendations is only possible after my system has been 

implemented once in a given region. Neighboring buildings could then utilize collected 

data from the initial building to reduce the teaching period. The designers would 

determine to what level they want to utilize existing pairing data from surrounding 

buildings, as some amount of conversion would need to take place to accommodate any 

difference between the panel designs. This could even be taken a step further by allowing 
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the two systems to communicate to each other. Take sites A and B, 4 standard city blocks 

apart. Perhaps site A is neighbored by several other high rises, while site B only has one 

neighboring mid-rise tower. Readings from sensors in the building on site A could be 

skewed in some way by the surrounding built environment that affects site B by a lesser 

amount. While this should be taken into account, by allowing inter-building 

communication between the two systems, any reading that acts as a statistical outlier can 

be more easily identified and resolved than if the system were to be isolated. 
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Appendix A: Neural Network 

import numpy as np 
 
X = np.array(([800 , 415, 75, 72.6, 75.0], 
               [1000, 430, 76, 71.6, 72.6], 
               [1200, 445, 77, 71.1, 71.6], 
               [1600, 453, 78, 70.8, 71.1], 
               [2000, 458, 79, 70.3, 70.8], 
               [2400, 460, 79, 70.1, 70.3], 
               [1800, 456, 78, 70.8, 70.1], 
               [1500, 447, 76, 70.4, 70.8], 
               [1200, 440, 74, 70.9, 70.4], 
               [1000, 433, 73, 71.1, 70.9]), 
              dtype=float) 
y = np.array(([56], [43], [22], [14], [21], [7], [27], [19], [18], [10]), dtype=float) 
 
 
xPredicted = np.array(([1000, 420, 77, 72, 72.6]), dtype=float) 
 
X = X/np.amax(X, axis=0) 
xPredicted = xPredicted/np.amax(xPredicted, axis=0) 
y = y/100 
 
class Neural_Network(object): 
  def __init__(self): 
    self.inputSize = 5 
    self.outputSize = 1 
    self.hiddenSize = 3 
 
    self.W1 = np.random.randn(self.inputSize, self.hiddenSize) 
    self.W2 = np.random.randn(self.hiddenSize, self.outputSize) 
 
  def forward(self, X): 
    self.z = np.dot(X, self.W1) 
    self.z2 = self.sigmoid(self.z) 
    self.z3 = np.dot(self.z2, self.W2) 
    o = self.sigmoid(self.z3) 
    return o 
 
  def sigmoid(self, s): 
    return 1/(1+np.exp(-s)) 
 
  def sigmoidPrime(self, s): 
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    return s * (1 - s) 
 
  def backward(self, X, y, o): 
    self.o_error = y - o 
    self.o_delta = self.o_error*self.sigmoidPrime(o) 
 
    self.z2_error = self.o_delta.dot(self.W2.T) 
    self.z2_delta = self.z2_error*self.sigmoidPrime(self.z2) 
 
    self.W1 += X.T.dot(self.z2_delta) 
    self.W2 += self.z2.T.dot(self.o_delta) 
 
  def train(self, X, y): 
    o = self.forward(X) 
    self.backward(X, y, o) 
 
  def saveWeights(self): 
    np.savetxt("w1.txt", self.W1, fmt="%s") 
    np.savetxt("w2.txt", self.W2, fmt="%s") 
 
  def predict(self): 
    print "Predicted data based on trained weights: "; 
    print "Input (scaled): \n" + str(xPredicted); 
    print "Output: \n" + str(self.forward(xPredicted)); 
 
NN = Neural_Network() 
for i in xrange(5000): 
  print " #" + str(i) + "\n" 
  print "Input (scaled): \n" + str(X) 
  print "Actual Output: \n" + str(y) 
  print "Predicted Output: \n" + str(NN.forward(X)) 
  print "Loss: \n" + str(np.mean(np.square(y - NN.forward(X)))) 
  print "\n" 
  NN.train(X, y) 
 
NN.saveWeights() 
NN.predict()   
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Appendix B: Grasshopper Script 
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