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ABSTRACT

HYUNJU KIM. Isogeometric analysis and patchwise Reproducing Polynomial
Particle Method for plates.

(Under the direction of DR. HAE-SOO OH)

Isogeometric analysis (IGA) ([8, 16, 27]) is designed to combine two tasks, design

by Computer Aided Design (CAD) and Finite Element Analysis (FEA), so that it

drastically reduces the error in the representation of the computational domain and

the re-meshing by the use of “exact” CAD geometry directed at the coarsest level of

discretization. This is achieved by using B-splines or non-uniform rational B-splines

(NURBS) for the description of geometries as well as for the representation of unknown

solution fields.

In order to handle the singularities arising in the PDEs, Babuška and Oh [7]

introduced mapping techniques, called the Method of Auxiliary Mapping (MAM),

into conventional p-version of Finite Element Methods (FEM). In a similar spirit to

MAM, it is possible to construct a novel NURBS geometrical mapping that generates

singular functions resembling the singularities. The proposed mapping technique is

concerned with constructions of unconventional novel geometrical mappings by which

push-forward of B-spline functions defined on the parameter space generates singular

functions in a physical domain that resemble the given point singularities. In other

words, the pull-back of the singularity into the parameter space by the non standard

NURBS mapping becomes highly smooth.

However, the mapping technique is not able to handle in the framework of IGA.

Thus, we consider how to use the proposed mapping method in IGA of elliptic prob-

lems and elasticity containing singularities without changing the design mapping. For

this end, we embed the mapping method into the standard IGA that uses NURBS

basis functions for which h−p−k−refinements are applicable for improved computa-
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tional solution. In other words, the mapping method will be used to enrich NURBS

basis functions around neighborhood of singularities so that they can capture singular

behaviors of the solution to be approximated.

Finally, Reproducing Polynomial Particle Method (RPPM) is one of meshless

methods that use meshes minimally or do not use meshes at all. In this disserta-

tion, the RPPM is employed for free vibration and buckling of the first order shear

deformation model (FSDT), called the Reissner-Mindlin plate, and for analysis of

boundary layer of the Reissner-Mindlin plate. For numerical implementation, we use

flat-top partition of unity functions, introduced by Oh et al, and patchwise RPPM in

which approximation functions have high order polynomial reproducing property and

shape functions satisfying the Kronecker delta property. Also, we demonstrate that

our method is more effective than other existing methods in dealing with Reissner-

Mindlin plates with various material properties and boundary conditions.
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approximate solution with order of RPP k. Exact solutions, ŵexact’s are
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CHAPTER 1: INTRODUCTION

Practical engineering problems involve analysis of engineering structures such as

vehicles, airplanes, rockets, appliances, nuclear power plants and so on. Most of

these structures are designed by Computer Aided Design (CAD). To analyze solid

models which are newly designed by CAD, by means of Finite Element Analysis

(FEA), it is necessary to communicate with CAD description of geometries. For

models having complex geometry, converting data including information of geometric

configuration between CAD and FEA packages wastes most of time in the process

of engineering analysis. In order to resolve this major engineering bottleneck, most

recently, introducing non-uniform rational B-splines (NURBS) basis functions to FEA,

Hughes et al. [27] developed a new numerical method called Isogeometric Analysis

(IGA). That is, IGA is a framework bridging the gap between FEA and CAD.

IGA [8, 16, 27] are designed to combine two tasks: CAD and FEA as mentioned

above, so that it is drastically reduced the error in the representation of the computa-

tional domain for analysis by providing more accurate modeling of complex geometry

and exactly represent common engineering shapes such as conic sections. IGA makes

brief mesh refinement of compound geometries by the use of the “exact” CAD ge-

ometry directly at the coarsest level of discretization. Also, it has been introduced

new refinement sequence called “k-refinement” that increases the smoothness of basis

functions by using less degrees of freedom beyond the conventional C0-continuity of

FEA. The k-refinement results in the improvement of accuracy and efficiency com-

pared with conventional p-refinement analogue. These are archived by using B-splines

or NURBS that are briefly introduced in Chapter 2, for the description of geometry
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as well as for the representation of the unknown solution fields.

In order to handle the singularities arising in the PDEs, Babuška and Oh [7]

introduced the mapping techniques called the Method of Auxiliary Mapping (MAM)

into conventional p-FEM. In a similar spirit to MAM, it is possible to construct a

novel NURBS geometrical mapping that generates singular functions resembling the

singularities. The mapping technique proposed in [30] is concerned with constructions

of unconventional novel geometrical mapping by which push-forward functions of B-

spline functions defined on the parameter space into physical domain generate singular

functions that resemble the given point singularities. In other words, the pull-back

of the singularity into the parameter space by the non standard NURBS mapping

becomes highly smooth. In Chapter 3, we generalize the proposed mapping techniques

introduced in [30] and apply them to elasticity containing singularities.

In Chapter 3, we use NURBS basis functions only for the constructions of geo-

metrical mappings that precisely map the parameter space onto a physical domain,

however we employ B-spline basis functions (continuous piecewise polynomials) that

are interpolants at each knot for analysis.

It is important to note that the mapping technique proposed in [30] is not properly

working with neither the B-spline functions elevated by the k-refinement nor the

NURBS functions. It means that the p-refinement of B-spline piecewise polynomials

is most suitable for the mapping method. Since NURBS functions used in IGA are

generally non-polynomial rational functions, and the mapping method uses the B-

spline functions (piecewise polynomials), a direct use of the mapping method in IGA

is not expected to yield optimal results. In practice, moreover, the cracks are appeared

later because of accumulated fatigues, wear, corrosion, and so on, of the structures.

Thus NURBS basis functions generated by the design mapping are not suitable to

capture the singularity behavior of the solution along the crack faces.

In Chapter 4, we thus consider how to use the proposed mapping method in IGA
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of elliptic problems containing singularities without changing the design mapping. For

this end, we embed the mapping methods into the standard IGA that use NURBS

basis functions for which h−p−k−refinements introduced in Chapter 2, are applicable

for improved computational solution. In other words, the mapping methods are used

to enrich NURBS basis functions around neighborhood of singularities so that they

can capture the singular behaviors of the function to be approximated.

For solid models originated propagating cracks, several methods have been devel-

oped, to deal with the propagating cracks. Some of these methods are based on mesh-

free methods such as [4, 9, 10, 41] and incorporation of the extended FEM (XFEM)

with IGA, called eXtended IsoGeometric Analysis (XIGA) such as [12, 45]. In partic-

ular, XIGA framework [12] has shown the potential possibility of XFEM that can be

extended to analysis based on B-spline basis. In methodologies that adopt the idea of

XFEM [9, 12, 45], discontinuity across a crack is represented by Heaviside functions

and crack tip displacement field is reproduced by crack tip enrichment functions. In

Chapter 4, we introduce a methodology combining the proposed mapping method

with flat-top Partition of Unity (PU) functions. This methodology has features of

meshfree methods that are no use of re-meshing or rearranging of the nodal points.

Also, it is not required to alter design mapping, use Heaviside functions and crack tip

enrichment functions.

In Chapter 5, meshfree particle method are applied for analysis of thick plates,

is considered . In the early period, most of the reports concentrated on thin plates,

for which the transverse shear influences were not considered. The classical plate

theories (CPT) based on the Kirchhoff hypothesis, are often used for thin plates. But

these classical theories are inadequate to predict the gross response characteristics of

moderately thick laminated composite plates as well as plates with high anisotropy.

Usually in thicker plates, the vibration solutions are un-conservatively high. The

inaccuracy is caused by ignoring the transverse shear and normal strains in the plates.
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Thus, many shear deformation plate theories were developed to improve the analysis

of the vibration of plates, and these had led to more accurate results. The first

order shear deformation plate theory (FSDT) extends the kinematics of the CPT, in

which transverse normal and shear stresses are neglected by relaxing the normality

restriction and allowing for arbitrary but constant rotation of transverse normals.

Numerous papers and books have been published on the vibration analysis of plates

using various plate theories [38, 48, 60, 66].

The buckling analysis of plates is another class of eigenvalue problem. As is well

known, a plate may lose its ability to withstand the external loadings, when the in-

plane strain reaches a critical level. This phenomenon is the buckling of the plate,

and the corresponding critical load at which the plate starts to become unstable, is

termed the buckling load.

To analyze the buckling behavior of a thin plate, the CPT is often used. However,

similar to the vibration of plates, when the thickness of the plate increases, the trans-

verse shear-deformation effects will significantly influence the results of the buckling

analysis. Thus the CPT is not applicable, and FSDTs [61, 33] are often resorted to

analyze the buckling behavior instead of the CPT. Furthermore, the use of CPT may

result in a different buckling mode shape compared with those of other plate theories,

such as 3D elasticity theory, FSDT or higher order shear-deformation theory (HSDT).

Many methodologies have been implemented for various plate buckling and free

vibration problems. These methods include analytical and numerical techniques, such

as the Ritz method [17, 32], differential quadrature method [13, 69], finite strip meth-

ods [19], the finite element method [26, 62], and meshfree methods [37, 39] etc.

Meshless methods [3, 5, 6, 11, 35, 39, 64, 65] have several advantages over the

conventional finite element method [14, 15, 49]. Their flexibility and wide applica-

bility have gained attention from scientists and engineers to these dynamic research

areas [22, 23, 24]. Meshless methods employ flexible smooth base functions and use no
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mesh or use minimal background meshes. Actually, meshless methods have been re-

ferred to as meshfree methods [3, 5, 6], Reproducing Kernel Particle Methods (RKPM)

[25, 35, 41, 42, 43], Reproducing Kernel Element Methods (RKEM) [35, 36, 40], Gener-

alized Finite Element Methods (GFEM) (Partition or Unity Finite Element Methods

(PUFEM)) [47, 64, 65], h− p Cloud Method [20] and Element Free Galerkin Method

(EFGM) [3].

Although these approaches are applicable in solving many difficult science and

engineering problems, they have some difficulties: (1) The popular partitions of unity,

an essential ingredient of GFEM, is complicated (such as Shepard type PU functions)

or leads to singular stiffness matrix (when linear finite element bases functions are

used as PU functions); (2) These popular PU functions have limited regularities; (3)

When enriched local approximation functions are introduced, the integrations for these

functions require much longer computing times; (4) These popular PU functions do not

satisfy the Kronecker delta property except for hat functions. They have difficulties

in implementing non-homogeneous essential boundary conditions.

To overcome these difficulties, encountered in meshless methods, Oh et al intro-

duced three closed- form partition of unity (PU) functions that have flat-top: (1) Con-

volution partition of unity [56] for any partition of a given domain; Using convolution

partition of unity, Oh et al. introduced several meshless methods that are called patch-

wise RPPM, adaptive RPPM, and RSPM (Reproducing Singularity Particle Method)

in [52, 55, 56, 58]. Note that RPPM is similar to RKPM [5, 25, 35, 36, 40, 41, 42, 43].

(2) Almost everywhere partition of unity [53] that satisfies partition of unity property

except at corner points. (3) Generalized product partition of unity [54]. Using PU

functions with flat-top gives relatively small matrix condition numbers.

In Chapter 5, we apply PU function with flat-top to construct smooth local approx-

imation functions that have the reproducing polynomial property and the Kronecker

delta property, and then effectiveness of the patchwise reproducing polynomial particle
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method (Patchwise RPPM) is demonstrated with various aspect ratio of plates. Also,

the potential of the patchwise RPPM with B-splines for boundary layer problems is

referred at the last section in Chapter 5.

Finally, we concluding remarks and future works are discussed at the last Chapter

in this dissertation.



CHAPTER 2: PRELIMINARIES

2.1 B-Splines and NURBS

In this section, we briefly review definitions and terminologies about B-splines and

NURBS that are used throughout this dissertation. We follow those in the books

[16, 63, 59], and we thus refer to these texts for details.

2.1.1 B-Splines

A knot vector Ξ = {ξ1, ξ2, · · · , ξm} is a nondecreasing sequence of real numbers

in the parameter space [0, 1], and the components ξi are called knots. An open knot

vector of order p+ 1 is a knot vector that satisfies

ξ1 = · · · = ξp+1 < ξp+2 ≤ · · · ≤ ξm−p−1 < ξm−p = · · · = ξm,

in which the first and the last p+ 1 knots are repeated and the interior knots can be

repeated at most p times.

The B-spline functions Ni,k(ξ) of order k = p+ 1 corresponding to the knot vector

Ξ = {ξ1, ξ2, · · · , ξm} are piecewise polynomials of degree p which are constructed

recursively by the formula (Cox-de Boor):

Ni,1(ξ) =


1 if ξi ≤ ξ < ξi+1,

0 otherwise,

for 1 ≤ i ≤ m− 1,

Ni,t(ξ) =
ξ − ξi

ξi+t−1 − ξi
Ni,t−1(ξ) +

ξi+t − ξ
ξi+t − ξi+1

Ni+1,t−1(ξ), for 1 ≤ i ≤ m− 1, 2 ≤ t ≤ k.
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Figure 2.1: B-spline functions Ni,3(ξ), i = 1, 2, · · · , 7 of order k = 3 corresponding to
the knot vector Ξ = {0, 0, 0, 0.3, 0.3, 0.5, 0.6, 1, 1, 1}.

( There is a terminology conflict between the design and analysis community. Design-

ers will say a quadratic polynomial has degree 2 and order 3 [28, 63]). B-spline of de-

gree p have up to p−1 continuous derivatives. A repeated knot will reduce the number

of continuous derivatives by 1. When the multiplicity equals p, the B-spline function

is interpolant or nodal. For example, the piecewise quadratic polynomial B-spline

functions Ni,3(ξ) corresponding to the knot vector Ξ = {0, 0, 0, 0.3, 0.3, 0.5, 0.6, 1, 1, 1}

are depicted in Fig. 2.1.

The B-spline functions are useful in design as well as finite element analysis because

they have the following properties:

1. Non-negativity: Ni,k(ξ) ≥ 0, for all i, k and 0 ≤ ξ ≤ 1.

2. There are p+ 1 nonzero functions on a knot span [ξi, ξi+1).

3. B-spline functions satisfy the partition of unity. i.e.
∑m−k

i=1 Ni,k(ξ) = 1.

4. B-spline functions are linearly independent.

5. N1,k(0) ≡ Nm−1,k(1) ≡ 1.

6. A B-spline function Ni,k(ξ) has a compact support [ξi, ξi+k). It means that higher

order B-spline functions have support across larger portions of the domain.
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A B-spline curve is defined as follows:

C(ξ) =
m−k∑
i=1

Ni,k(ξ)Bi,

where Bi are control points that make B-spline functions draw a desired curve as

shown in Fig. 2.2(a) and corresponding B-splines 2.2(b).

B-spline curves posses the following important properties:

1. The properties of the B-spline curve follow directly from the properties of the

B-splines.

2. Moving a single control point does not affect more then p + 1 B-splines of the

curve, because the compact support of the B-splines gets passed on to the curve.

3. Non-negativity of the B-splines leads to the convex hull property. i.e. If ξ ∈

[ξi, ξi+1), then C(ξ) lies within the convex hull of the control points Pi−p, · · · ,Pi.

4. Affine invariance property is satisfied by the partition of unity property. Let x

be a point in R3, and affine transformation be denoted by f , maps from R3 to

R3, defined by

f(x) = Mx + v,

where M is a 3 × 3 matrix and v is a vector. For a given B-splie curve C(ξ)

with Bi ∈ R3, then

f(C) = M

(
m−k∑
i=1

Ni,k(ξ)Bi

)
+ v

=
m−k∑
i=1

Ni,k(ξ)MBi +
m−k∑
i=1

Ni,k(ξ)v, (∵)
m−k∑
i=1

Ni,k = 1

=
m−k∑
i=1

Ni,k

(
MBi + v

)
=

m−k∑
i=1

Ni,kf(Bi)
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Figure 2.2: (a) B-spline curve and control points on the open knot vector
{0, 0, 0, 0.25, 0.6, 0.8, 0.8, 1, 1, 1}. (b) B-spline functions corresponding to the B-spline
curve shown in (a).
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5. Variation diminishing property: no plane (line) has more intersections with the

three-dimensional (two-dimensional) curve than with the control polygon. An

example is shown in Fig. 2.3 for two-dimensional case.

Let Ξη = {η1, · · · , ηn} be an open knot vector and let pη and k′ = pη + 1, re-

spectively, be the polynomial degree and order of B-spline functions Mj,k′(η). Then a

B-spline surface is defined by

S(ξ, η) =
m−k∑
i=1

n−k′∑
j=1

Ni,k(ξ)Mj,k′(η)Bi,j,

where Bi,j are control points that make a bidirectional control net as shown in Fig.

2.4.

2.1.2 NURBS

Let {wi : i = 1, · · · ,m−k} be the set of weights. Then the corresponding NURBS

basis functions are defined by

Ri,k(ξ) =
Ni,k(ξ)wi
W (ξ)

, W (ξ) =
m−k∑
s=1

Ns,k(ξ)ws > 0.

The NURBS basis functions are now piecewise rational functions and inherit their

properties from the B-spline basis functions like continuity across knots, local support

and non-negativity.

A NURBS curve corresponding to the control points {Bi : i = 1, · · · ,m − k},

NURBS basis functions {Ri,k(ξ) : i = 1, · · · ,m − k}, and the weights {wi : i =

1, · · · ,m− k} is

C(ξ) =
m−k∑
i=1

Ri,k(ξ)Bi. (2.1)

Let {wi,j : i = 1, · · · ,m − k, j = 1, · · · , n − k′} be the set of weights. Then

NURBS basis functions corresponding to the open knot vectors Ξξ and Ξη and the
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Figure 2.3: (a) A quadratic curve on the knot vector Ξ = {0, 0, 0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1, 1}. (b) A 11th degree B-spline curve using the same
control points with (a) defined on Ξ = {0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1}
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Figure 2.4: B-spline surface and control net

weights {wi,j} are defined by

Ri,j(ξ, η) =
Ni,k(ξ)Mj,k′(η)wi,j

W (ξ, η)
,

where

W (ξ, η) =
m−k∑
s=1

n−k′∑
t=1

Ns,k(ξ)Mt,k′(η)ws,t > 0.

Let {Bi,j : i = 1, · · · ,m − k, j = 1, · · · , n − k′} be a set of control points in Rd,

d ≥ 2. Then a NURBS surface corresponding to the control points {Bi,j}, NURBS

basis functions {Ri,j(ξ, η)}, and the weights {wi,j} is

S(ξ, η) =
m−k∑
i=1

n−k′∑
j=1

Ri,j(ξ, η)Bi,j.

An example of the NURBS surface is shown in Fig. 2.5.

2.1.3 Perspective Map

In this subsection, we will represent a NURBS (rational B-spline) curve or surface

in three-dimensional space as a non-rational (piecewise polynomial) B-spline curve

in four-dimensional space using homogeneous coordinates and perspective map for

the efficient processing of algorithm and compact data storage of control points and
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Figure 2.5: NURBS surface of prow in a ship and control net

weights. Let us start with a point in three-dimensional Euclidean space, B = (x, y, z).

Then B is written as Bw = (wx,wy, wz, w) = (X, Y, Z,W ) in four-dimensional space,

w 6= 0. Now we introduce a perspective map H{Bw} from four-dimensional space to

the hyperplane W = 1, defined by

H{Bw} = H{(X, Y, Z,W )} =


(
X
W
, Y
W
, Z
W

)
if W 6= 0

direction (X, Y, Z) if W = 0

Then B is obtained from Bw through the perspective map H. Note that the per-

spective map H can be interpreted by that a map from the origin to the hyperplane

W = 1 as shown in Fig. 2.6 for two-dimensional case, B = (x, y).

Now for a given set of control points Bi, and weights, {wi}, construct the weighted

control points, Bw
i = (wixi, wiyi, wizi, wi). Then we define the non-rational (polyno-

mial) B-spline curve in four-dimensional space as

Cw(ξ) =
m−k∑
i=1

Ni,k(ξ)B
w
i (2.2)

Then applying the perspective map, H, to Cw(ξ) yields the corresponding rational

B-spline curve of Eq. (2.1), that is, writing out the coordinate functions of Eq. (2.2),
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Figure 2.6: A representation of Euclidean points on the hyperplane W = 1 through
the perspective map H

we get

X(ξ) =
m−k∑
i=1

Ni,k(ξ)wixi, Y (ξ) =
m−k∑
i=1

Ni,k(ξ)wiyi,

Z(ξ) =
m−k∑
i=1

Ni,k(ξ)wizi, W (ξ) =
m−k∑
i=1

Ni,k(ξ)wi,

Locating the curve in three-dimensional space yields

x(ξ) =
X(ξ)

W (ξ)
=

∑m−k
i=1 Ni,k(ξ)wixi∑m−k
i=1 Ni,k(ξ)wi

y(ξ) =
Y (ξ)

W (ξ)
=

∑m−k
i=1 Ni,k(ξ)wiyi∑m−k
i=1 Ni,k(ξ)wi

z(ξ) =
Z(ξ)

W (ξ)
=

∑m−k
i=1 Ni,k(ξ)wizi∑m−k
i=1 Ni,k(ξ)wi
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Using vector notation, we get

H{Cw(ξ)} = H{X(ξ), Y (ξ), Z(ξ),W (ξ)}

= (x(ξ), y(ξ), z(ξ))

=

∑m−k
i=1 Ni,k(ξ)wi(xi, yi, zi)∑m−k

i=1 Ni,k(ξ)wi

=

∑m−k
i=1 Ni,k(ξ)wiBi∑m−k
i=1 Ni,k(ξ)wi

= C(ξ).

The perspective map will be used to enrich B-spline basis functions which were used

to construct a geometry, by refinement in order to compute new control points and

weights. For the strategy of refinement, we will see it in next section.

2.2 Refinement

The B-spline basis can be enriched by three types of refinement of which have

an analogue in standard FEM bases. These are knot insertion, degree elevation (or

order elevation) and degree and continuity elevation. The first two are equivalent to

h- and p-refinement respectively, the last one is dubbed k-refinement that does not

exist in standard FEM. In this Section, these mechanisms are discussed and examples

are shown.

2.2.1 Knot Insertion

The first mechanism by which one can enrich the basis is knot insertion. Let

Cw(ξ) =
m−k∑
i=1

Ni,k(ξ)B
w
i
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be a NURBS (rational B-spline) curve defined on Ξ = {ξ1, · · · , ξm}. Let ξ̄ ∈ [ξs, ξs+1)

and insert ξ̄ into Ξ to form the new knot vector

Ξ̄ = {ξ̄1 = ξ1, · · · , ξ̄s = ξs, ξ̄s+1 = ξ̄, ξ̄s+2 = ξs+1, · · · , ξ̄m+1 = ξm}.

Then Cw(ξ) has a representation on Ξ̄ of the form

Cw(ξ) =
m−k+1∑
i=1

N̄i,k(ξ)Q
w
i , (2.3)

where

Qw
i = αiB

w
i + (1− αi)Bw

i−1, αi =


1, if i ≤ s− p

ξ̄−ξi
ξi+p−ξi , if s− p+ 1 ≤ i ≤ s

0, if i ≥ s+ 1

,

and the {N̄i,k(ξ)} are the pth-degree B-spline basis functions on Ξ̄. The detailed

process of determining {N̄i,k(ξ)} is in [59]. Note that knot insertion is just a change

of vector space basis; the curve is not changed, either geometrically or parametrically.

2.2.2 Degree Elevation

The second mechanism by which one can enrich the basis is degree elevation. As

its name implies, the process involves raising the B-spline basis functions used to

represent the geometry. If the basis has p−mi continuous derivatives across element

boundaries where mi is a multiplicity of ith knot value, it is clear that when p is

increased, mi must also be increased if we are to preserve the discontinuities in the

various derivatives already existing in the original curve. During degree elevation, the

multiplicity of each knot value is increased by one, but no new knot values are added.

As with knot insertion, neither the geometry nor the parameterization are changed.
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(b) Quadratic B-spline basis functions after knot insertion

Figure 2.7: (a) The initial quadratic B-spline basis functions corresponding the open
knot vector Ξ = {0, 0, 0, 1, 1, 1}. (b) Quadratic B-spline basis functions after knot
insertion, corresponding the open knot vector Ξ̄ = {0, 0, 0, 0.3, 0.6, 1, 1, 1}
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(b) Quartic B-spline basis functions after degree elevation

Figure 2.8: (a) The initial quadratic B-spline basis functions corresponding the open
knot vector Ξ = {0, 0, 0, 1, 1, 1}. (b) Quartic B-spline basis functions after degree
elevation of the quadratic B-spline basis functions, corresponding the open knot vector
Ξ̄ = {0, 0, 0, 0, 0, 1, 1, 1, 1, 1}
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For the case of Bézier curve (or Bézier segment), it is simply derived to determine

new control points and weights.

Lemma 2.2.1. For the given open knot vector Ξ = {ξ1 = 0, · · · , 0︸ ︷︷ ︸
k=p+1

, 1, · · · , ξm = 1︸ ︷︷ ︸
k=p+1

}, Let

Cw(ξ) =

p+1∑
i=1

Ni,k(ξ)B
w
i (2.4)

be a pth degree Bézier curve (or Bézier segment) on the open knot vector Ξ. If we

increase the order of the B-spline basis functions, p by p + 1 in the curve Eq. (2.4),

then Cw(ξ) has a representation on Ξ̄ = {ξ̄1 = 0, · · · , 0︸ ︷︷ ︸
p+2

, 1, · · · , ξ̄m+2 = 1︸ ︷︷ ︸
p+2

} of the form

Cw(ξ) =

p+2∑
i=1

Ni,k+1(ξ)Qw
i , (2.5)

where

Qw
i =


Bw

1 , if i = 1

(p+1−i)wiBw
i +iwi−1B

w
i−1

p+1
, if 2 ≤ i ≤ p+ 1

Bw
p+1, if i = p+ 2

. (2.6)

Note that {Ni,k} are also called Bernstein polynomials of degree p which are special

instances of B-spline corresponding to the open knot vector Ξ and defined by

Ni,k(ξ) =

(
p

i− 1

)
ξi−1(1− ξ)p−i+1 for i = 1, · · · , p+ 1. (2.7)

Proof. Since the open knot vector Ξ is consist of only 0 and 1, the number of B-spline

functions (Bernstein polynomials) is p+ 1. In order to determine {Qw
i } in Eq. (2.5),

we equate (2.4) and (2.5);

Cw(ξ) =

p+1∑
i=1

Ni,k(ξ)B
w
i =

p+2∑
i=1

Ni,k+1(ξ)Qw
i (2.8)
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Rewriting the left hand side of the Eq. (2.8) by using the definition of Bernstein

polynomial, we obtain

Cw(ξ) =

p+1∑
i=1

Ni,k(ξ)B
w
i = [(1− ξ) + ξ]

p+1∑
i=1

Ni,k(ξ)B
w
i

=

p+1∑
i=1

(1− ξ)Ni,k(ξ)B
w
i +

p+2∑
i=2

ξNi−1,k(ξ)B
w
i−1

=

p+1∑
i=1

(1− ξ)
(

p

i− 1

)
(1− ξ)p+1−iξi−1Bw

i +

p+2∑
i=2

ξ

(
p

i− 2

)
(1− ξ)p+1−(i−1)ξi−2Bw

i−1

=

p+1∑
i=1

(
p

i− 1

)
(1− ξ)p+2−iξi−1Bw

i +

p+2∑
i=2

(
p

i− 2

)
(1− ξ)p+2−iξi−1Bw

i−1

=

(
p

0

)
Bw

1 (1− ξ)p+1ξ0+

[(
p

1

)
Bw

2 +

(
p

0

)
Bw

1

]
(1− ξ)pξ1 + · · ·+

[(
p

i− 1

)
Bw
i +

(
p

i− 2

)
Bw
i−1

]
(1− ξ)p+2−iξi−1 + · · ·+

[(
p

p

)
Bw
p+1 +

(
p

p− 1

)
Bw
p

]
(1− ξ)ξp+

(
p

p

)
Bw
p+2(1− ξ)0ξp+1 (2.9)

Since the Eq. (2.9) must be equal to the right hand of Eq. (2.8), we obtain the
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following result

Qw
1 = Bw

1

Qw
i =

[(
p

i− 1

)
Bw
i +

(
p

i− 2

)
Bw
i−1

]
, 2 ≤ i ≤ p+ 1

Qw
p+2 = Bw

p+1

(2.10)

The Eq. (2.10) can be expressed as the Eq. (2.6).

2.2.3 Degree and Continuity Elevation: k-refinement

We have seen the two primitive refinement strategies for B-splines are knot in-

sertion and degree elevation similar to h- and p- refinement, respectively in classical

FEM.

A potentially more powerful type of refinement which is unique to the B-spline

basis is k- refinement. Basically k-refinement is a different degree elevation strategy

taking advantage of the fact that knot insertion and degree elevation do not commute.

Inserting a unique knot value ξ̄ between two distinct knots in a knot vector Ξ corre-

sponding to B-spline curve C(ξ) of degree p, the basis corresponding to the unique

knot value ξ̄ is in Cp−1 space. Let us not that elevating the degree to q, using the

process of Section 2.2.2, increases the multiplicity of each knot so that discontinuities

in the pth derivative of the basis are preserved. Hence the basis is still in Cp−1 space.

Whereas if the above process is turned around by first elevating the curve degree to q

and then inserting the unique knot ξ̄, then the basis is in Cq−1 space. This process is

called k-refinement, see also Fig. 2.9.

Enriching the basis by k-refinement saves a significant amount of degrees of free-

dom. Let us consider a Bézier segment of degree p (similar to element in classical

FEM), and n be a total number of B-spline basis functions. Obviously, then, the

Bézier segment has n = p+1 basis functions. If we perform knot insertion to arrive at
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(a) Initial quadratic B-spline basis functions
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(b) Quartic B-spline basis functions after k-refinement

Figure 2.9: (a) The initial quadratic B-spline basis functions corresponding the
open knot vector Ξ = {0, 0, 0, 1, 1, 1}. (b) Quartic B-spline basis functions after
k-refinement of the quadratic B-spline basis functions, corresponding the open knot
vector Ξ̄ = {0, 0, 0, 0, 0, 0.3, 0.6, 1, 1, 1, 1, 1}
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a+1 Bézier segments where a represents the number of new distinct knot values which

have the multiplicity p, then the total number of B-spline basis functions n becomes

(a+ 1)p+ 1 because the number of knot values is 2(p+ 1) +ap. Like before we elevate

the degree of the B-spline basis functions up to q keeping the continuity by increasing

the multiplicity of each knot by one. This adds a basis functions per Bézier segment,

hence the total number of basis functions n is now (a+ 1)q+ 1. Whereas if we follow

k-refinement, that means we elevate the degree of the B-spline basis functions up to q

fist, then n becomes q+ 1. After q degree elevation, we insert a new and distinct knot

values which have the multiplicity 1 into the knot vector, then n will be q+ a+ 1. aq

is a larger number than q because in practice the number of Bézier segments surpasses

the polynomial degree by multiple order of magnitude. An example is shown in Fig.

2.10.

2.3 Closed-Form Partition of Unity with Flat-Top

Let Ω̄ is the closure of Ω ⊂ Rd. We define the vector space C(Ω̄) to consist of

all those functions ϕ ∈ Cm(Ω̄) for which Dαϕ(= ∂α1∂α2 · · · ∂αdϕ) is bounded and

uniformly continuous on Ω for |α| = α1 + · · · + αd ≤ m. In the following, a function

ϕ ∈ Cm(Ω̄) is said to be a Cm- function. If Ψ is a function defined on Ω, we define the

support of Ψ as

suppΨ = {x ∈ Ω|Ψ(x) 6= 0}.

A family {Uk : k ∈ D} of open subsets of Rd is said to be a point finite open

covering of Ω ⊆ Rd if there is an integer M such that any x ∈ Ω lies in at most M of

the open sets Uk and Ω ⊆
⋃
k Uk.

For a point finite open covering {Uk : k ∈ D} of a domain Ω, suppose there is a

family {ϕk : k ∈ D} of Lipschitz functions on Ω satisfying the following conditions:

1. For k ∈ D, 0 ≤ ϕk(x) ≤ 1, x ∈ Rd.
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(c) Order elevation: 1st step in k-refinement
process
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(d) Order elevation
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(e) Knot insertion: 2nd step in k-refinement
process

Figure 2.10: k-refinement versus p-refinement strategy (a) Starting with one
Béezier segment, (b) & (d) Classic p-refinement strategy: (b) knot inser-
tion is performed first to create many low-order Bézier segments correspond-
ing to the knot vector and degree Ξ = {0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1}, p = 1.
(d) Subsequent order elevation will preserve the C0-continuity across Béezier
segment boundaries. The corresponding knot vector and degree are Ξ =
{0, 0, 0, 0, 0.2, 0.2, 0.2, 0.4, 0.4, 0.4, 0.6, 0.6, 0.6, 0.8, 0.8, 0.8, 1, 1, 1, 1}, p = 3. (c) & (e)
New k-refinement strategy: (c) order elevation is performed on the coarsest discretiza-
tion corresponding to the knot vector and degree Ξ = {0, 0, 0, 0, 1, 1, 1, 1}, p = 3.
(e) Subsequent knot insertion will result in a basis which is Cp−1 across the newly
created segment boundaries. The corresponding knot vevtor and degree are Ξ =
{0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1, 1}, p = 3.
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2. The support of ϕk is contained in Uk, for each k ∈ D.

3.
∑

k∈D ϕk(x) = 1 for each x ∈ Ω.

Then {ϕk : k ∈ D} is called a partition of unity (PU) subordinate to the covering

{Uk : k ∈ Λ}. The covering sets {Uk} are called patches.

By almost everywhere partition of unity, we mean {ϕk : k ∈ D} such that the

condition 3 of a partition of unity is not satisfied only at finitely many points (2D) or

lines (3D) on a part of the boundary.

Let Q = supp(ϕ). Then

Qflt = {x ∈ Q : ϕ(x) = 1} and Qn-flt = {x ∈ Q : 0 < |ϕ(x)| < 1}

are called the flat-top part and the non flat-top part of Q, respectively. The function

ϕ is said to be a function with flat-top if the interior of Qflt is non-void. Moreover,

{ϕk : k ∈ D} is called a partition of unity with flat-top whenever it is partition of

unity and ϕk is a function with flat-top for each k ∈ D.

Notice that if f1, · · · , fn are linearly independent on Qflt 6= ∅, the product func-

tions, ϕ · f1, · · · , ϕ · fn, are also linearly independent on Q. However, if Qflt = ∅, the

product functions, ϕ · f1, · · · , ϕ · fn, could be linearly dependent. The hat functions

of the conventional finite element are PU functions without flat-top.

Let Λ be a finite index set and Ω denotes a bounded domain in Rd. Let {xj : j ∈ Λ}

be a set of a finite number of uniformly or non-uniformly spaced points in Rd, that

are called particles.

The reproducing polynomial particle method (RPPM) is a Galerkin approxima-

tion method associated with use of reproducing polynomial shape functions for local

approximation functions. Referring to [57], we introduce the following two definitions.

Definition 2.3.1. (Reproducing Polynomial Property)

Let Ω be a domain in Rn, and k ≥ 0 be an integer. The particle shape function ψj
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corresponding to the particle xj ∈ Rn, j ∈ Λ, is called reproducing polynomial of order

k on Ω (or simply, reproducing of order k on Ω) if for any x ∈ Ω,

p(x) =
∑
j∈Λ

p(xj)ψj(x) for any p ∈ Pk(Ω),

where Pk(Ω) is the space of all polynomials of degree up to k on Ω and Λ is an index

set.

Definition 2.3.2. (RPP Shape Function) Let k ≥ 0 be an integer. Let X be a set

of particles in Rn with the index set Λ. Then the function ψj associated with the

particles xj, j ∈ Λ, are called reproducing polynomial particle (RPP) shape functions

with the reproducing property of order k (or simply, of reproducing order k) if and only

if they are piecewise polynomials and satisfy the following:

For any x ∈ Ω ⊆ Rn,

∑
j∈Λ

(x− xj)βψj(x) = δ|β|,0, for all β ≤ k. (2.11)

Note that we assume that the RPP shape functions are translation invariant on

the uniformly distributed particles, unless stated otherwise.

The piecewise polynomial RPP shape functions have several features different from

Reproducing Kernel Particle (RKP) shape functions. The piecewise polynomial RPP

shape functions are constructed by solving the system (2.11) without using window

function, whereas the RKP shape functions are constructed by solving the system

ψj(x) = w(x− xj)
∑

0≤|α|≤k

(x− xj)αbα(x),

with respect to a specific window function w(x). Therefore, the RKP shape functions

are not piecewise polynomials in general. It means that the RPP shape functions have

no relevance to any specific window functions. However, both RPP and RKP shape
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functions are constructed to have the polynomial reproducing property.

Although there are particles on the boundaries because of the selected window

function, the resulting RKP shape functions are not piecewise polynomial, so that

can not be piecewise polynomial shape functions. Also, the support of the piecewise

polynomial RPP shape functions are bounded by the particles, whereas the support

of the RKP shape functions are bounded by points between two particles. Moreover,

RKP shape functions do not satisfy the Kronecker delta property, and hence they

have difficulties in dealing with Dirichlet boundary conditions. Whereas RPP shape

functions satisfy the Kronecker delta property. Hence we do not need additional

numerical scheme to impose essential boundary conditions. (See [57, 58] for more

details.)

2.3.1 Partition of Unity with Flat-top in One-Dimension

First, we define one-dimensional PU functions without flat-top, and then we modify

the PU functions to have flat-top.

For any positive integer n, Cn−1- piecewise polynomial basic PU functions are

constructed as follows: For integer n ≥ 1, we define a piecewise polynomial function

by

ϕ(pp)
gn (x) =


ϕLgn(x) := (1 + x)ngn(x) if x ∈ [−1, 0],

ϕRgn(x) := (1− x)ngn(−x) if x ∈ [0, 1],

0 if |x| ≥ 1,

where gn(x) = a
(n)
0 + a

(n)
1 (−x) + a

(n)
2 (−x)2 + · · ·+ a

(n)
n−1(−x)n−1 whose coefficients are

inductively constructed by the following recursion formula:

a
(n)
k =



1 if k = 0,
k∑
j=0

a
(n−1)
j if 0 < k ≤ n− 2,

2(a
(n)
n−2) if k = n− 1.

(2.12)
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Using the recurrence relation (2.12), gn(x) is as follows:

g1(x) = 1

g2(x) = 1− 2x

g3(x) = 1− 3x+ 6x2

g4(x) = 1− 4x+ 10x2 − x3

g5(x) = 1− 5x+ 15x2 − 35x3 + 70x4

...
...

Then, ϕ
(pp)
gn has the following properties whose proofs can be found in [56].

• ϕ(pp)
gn (x) + ϕ

(pp)
gn (x − 1) = 1 for all x ∈ [0, 1]. Hence, {ϕ(pp)

gn (x − j) | j ∈ Z} is a

partition of unity on R.

• ϕ(pp)
gn (x) is a Cn−1 - function.

• The gradient of the scaled basis PU function is bounded as follows:

d

dx
[ϕ(pp)
gn (

x

2δ
)] ≤ C

δ

Note that the constant C is ≤ 0.9 for n ≤ 3

Using the basis PU function ϕ
(pp)
gn , we construct a Cn−1 - PU function with flat-top

whose support is [a− δ, b+ δ] with (a+ δ) < b− δ as follows:

Φ
(δ,n−1)
[a,b] (x) =



ϕLgn(x−(a+δ)
2δ

) if x ∈ [a− δ, a+ δ]

1 if x ∈ [a+ δ, b− δ]

ϕRgn(x−(b−δ)
2δ

) if x ∈ [b− δ, b+ δ]

0 if x /∈ [a− δ, b+ δ].

(2.13)
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Note that we assume that δ ≤ b−a
3

to make a PU function have a flat-top.

2.4 Finite Element Spaces

In this section, we briefly review the finite element space in finite element analysis

referring to [31], and introduce finite dimensional subspace in isogeometric analysis.

Finite element spaces consist of piecewise polynomial functions on the set of ele-

ments Th = {K} of a bounded domain Ω ⊂ Rd, d = 1, 2, 3. For example, K is an

interval when d = 1, a triangle or quadrilateral when d = 2, and a tetrahedron when

d = 3.

As a practical example, we introduce the linear space

V = {v : v ∈ C0([0, 1]), v′ is a piecewise continuous, and bounded on [0, 1],

and v(0) = v(1) = 0}

We now construct a finite dimensional subspace Vh ⊂ V . To this end let

0 = x0 < x1 < · · · < xn < xn+1 = 1,

be a partition of the interval (0, 1) into subintervals Ij = (xj−1, xj) of length hj =

xj − xj−1, j = 1, . . . , n+ 1. Then Th = {Ij, j = 1, . . . , n+ 1}. We now let

Vh = {v ∈ V : v is linear on Ij, v ∈ C([0, 1]), and v(0) = v(1) = 0, j = 1, . . . , n+ 1}.

For the set of nodes N , We choose N = {xj, j = 0, . . . , n + 1}. Let us introduce

the basis functions fj(x) ∈ Vh, j = 1, . . . , n which are continuous piecewise linear
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functions that take the value 1 at node xj and the value 0 at other nodes, defined by

fj(x) =



1
hj

(x− xj) + 1 if x ∈ Ij

− 1
hj+1

(x− xj) + 1 if x ∈ Ij+1

0 if x ∈ [0, 1] \ (Ij ∪ Ij+1)

A function v ∈ Vh then has the representation

v(x) =
n∑
j=1

djfj(x), x ∈ [0, 1]

where dj = v(xj), i.e. v ∈ Vh can be written in a unique way as a linear combination

of the basis functions fj(x). In other words, Vh = span{fj, j = 1, . . . , n}.

In isogeometric analysis, for

V = {v(x, y) ∈ H1(Ω) : v|∂Ω = 0, Ω ⊂ R2}, (2.14)

the finite dimensional subspace is

Vh = span{Ri,j(ξ, η) ◦G−1(x, y) : 2 ≤ i ≤ m− 1, 2 ≤ j ≤ n− 1,∀(x, y) ∈ Ω}, (2.15)

where the NURBS surface G(ξ, η) maps from the parameter space to a physical space.

For a space with non-homogeneous boundary condition, i.e.

W = {w(x, y) ∈ H1(Ω) : w|∂Ω = g, Ω ⊂ R2}, (2.16)

we decompose the space W into

W1 = {w(x, y) ∈ H1(Ω) : w|∂Ω = 0, Ω ⊂ R2}



32

and

W2 = {w(x, y) ∈ H1(Ω) : w|∂Ω = g, Ω ⊂ R2}.

The finite dimensional subspace is

Wh =Wh
1

⊕
Wh

2 = {w1 + w2 : w1 ∈ Wh
1 , w2 ∈ Wh

2 },

Wh
1 ⊂ W1, Wh

2 ⊂ W2

Wh
1 = span{Ri,j(ξ, η) ◦G−1(x, y) : 2 ≤ i ≤ m− 1, 2 ≤ j ≤ n− 1}

Wh
2 = span{Ri,j(ξ, η) ◦G−1(x, y) : i = 1,m, j = 1, n}

(2.17)

2.5 Weak Solution in Sobolev Space

For an integer k ≥ 0, we also use the usual Sobolev space denoted by Hk(Ω). For

u ∈ Hk(Ω), the norm and the semi-norm, respectively, are

‖u‖k,Ω =

∑
|α|≤k

∫
Ω

|∂αu|2dx

1/2

, ‖u‖k,∞,Ω = max|α|≤k {ess.sup|∂αu(x)| : x ∈ Ω} ;

|u|k,Ω =

∑
|α|=k

∫
Ω

|∂αu|2dx

1/2

, |u|k,∞,Ω = max|α|=k {ess.sup|∂αu(x)| : x ∈ Ω} .

Suppose we are concerned with an elliptic boundary value problem on a domain

Ω with Dirichlet boundary condition g(x, y) along the boundary ∂Ω. Let

W = {w ∈ H1(Ω) : w|∂Ω = g} and V = {w ∈ H1(Ω) : w|∂Ω = 0}.

The variational formulation of the Dirichlet boundary value problem can be written

as: Find u ∈ W such that

B(u, v) = L(v), for all v ∈ V , (2.18)
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where B is a continuous bilinear form that is V-elliptic ([15]) and L is a linear func-

tional. The solution to (2.18) is called a weak solution which is equivalent to the

strong (classical) solution corresponding elliptic PDE whenever u is smooth enough.

The energy norm of the trial function u is defined by

‖u‖eng =

[
1

2
B(u, u)

]1/2

. (2.19)

Let Wh ⊂ W , Vh ⊂ V be finite dimensional subspaces defined in (2.15) and (2.17).

Since the NURBS basis functions do not satisfy the Kronecker delta property, in this

dissertation we approximate the non-homogenuous Dirichlet boundary condition by

the least squares method as follows: gh ∈ Wh such that

∫
∂Ω

|g − gh|2dγ = minimum.

We can write the Galerkin form (a discrete variational equation) of (2.18) as fol-

lows: Given gh, find uh = wh + gh, where wh ∈ Vh, such that

B(uh, vh) = L(vh), for all vh ∈ Vh,

which can be rewritten as: Find the trial function wh ∈ Vh such that

B(wh, vh) = L(vh)− B(gh, vh), for all test functions vh ∈ Vh. (2.20)

For the relative error (%) of the computed solutions in L∞ and L2-norm, we define

them as follow:

‖u−uh‖∞,rel(%) =
‖u− uh‖∞
‖u‖∞

×100, ‖u−uh‖L2,rel(%) =
‖u− uh‖L2

‖u‖L2

×100, (2.21)
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2.6 Elasticity

In this section, we briefly introduce the notations and equilibrium equations for

elastic materials. In elasticity, the displace field is denoted by {u} = {ux(x, y), uy(x, y)}T

and the stress field is denoted by {σ} = {σx, σy, τxy}T . Let {ε} = {εx, εy, γxy}T be the

strain field. Then the strain-displacement and the stress-strain relations are given by

{ε} = [D]{u}, {σ} = [E]{ε}, (2.22)

respectively, where [D] is the differential operator matrix,

[D] =


∂
∂x

0

0 ∂
∂y

∂
∂y

∂
∂x


and [E] is the 3×3 symmetric positive definite matrix of material constants. Material

constants are classified by the property of the material. For an isotropic elastic body,

[E] =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 for plane stress,

[E] =


ζ + 2µ ζ 0

ζ ζ + 2µ 0

0 0 µ

 for plane strain.

Here,

µ =
E

2(1 + ν)
, ζ =

νE

(1 + ν)(1− 2ν)
,
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where E is the Young’s modulus of elasticity and ν (0 ≤ ν ≤ 1/2) is Poisson’s ratio.

The equilibrium equations of elasticity are

[D]T{σ}(x, y) + {f}(x, y) = 0, (x, y) ∈ Ω, (2.23)

where {f} = {fx(x, y), fy(x, y)}T is the vector of internal sources representing the

body force per unit area.

The equilibrium equations (2.23) can be expressed in terms of the displacement

field {u} through the relations (2.22). Then we consider the following system of elliptic

differential equations in terms of the displacement field,

[D]T [E][D]{u}(x, y) + {f}(x, y) = 0, (x, y) ∈ Ω, (2.24)

subject to the boundary conditions,

[N ] {σ}(s) = {T̃}(s) = {T̄}(s) = {T̄x(s), T̄y(s)}T , s ∈ ΓN , (2.25)

{u}(s) = {ū}(s) = {ūx(s), ūy(s)}T , s ∈ ΓD, (2.26)

where ΓN ∪ ΓD = ∂Ω,

[N ] =

nx 0 ny

0 ny nx

 ,
{nx, ny}T is a unit vector normal to the boundary ∂Ω of the domain Ω.

For the Galerkin approximation to the equilibrium equations in terms of displace-

ment field (2.24), the variational form of (2.24) through (2.25) is:

find the vector {u} such that ux, uy ∈ H1(Ω), {u} = {ū} on ΓD, and

B({u}, {v}) = F({v}), for all {v} ∈ H1
0 (Ω), (2.27)
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where

B({u}, {v}) =

∫
Ω

([D]{v})T [E]([D]{u})dxdy,

F({v}) =

∫
Ω

{v}T{f}dxdy +

∮
ΓN

{v}T{T̄}ds

The finite element approximation of the solution of (2.27) is to construct approxima-

tions of each component of the vector {u}.



CHAPTER 3: MAPPING TECHNIQUES FOR IGA

3.1 NURBS Geometrical Mappings that Generate Singular Functions

In this section, we construct a NURBS geometrical mapping to deal with monotone

singularity of type rqψ(θ), where q is a rational number with 0 < q < 1, ψ(θ) is a

piecewise smooth function, (r, θ) is the polar coordinates. The construction presented

in this section is similar to those in [29]. We refer to this reference for the details.

3.1.1 Mapping Methods to Handle Singularities

The geometrical mappings we are concerned with are the NURBS surfaces defined

in Chapter 2. Suppose the physical domain Ω is a unit disk with a crack along the

positive x-axis as shown in Fig. 3.1. We now consider a NURBS geometrical mapping

from the parameter space Ω̂ = [0, 1] × [0, 1] to the physical domain Ω. Consider the

knot vectors:

Ξξ =

{
0, 0, 0,

1

4
,
1

4
,
1

2
,
1

2
,
3

4
,
3

4
, 1, 1, 1

}
, Ξη = {0, 0, · · · , 0︸ ︷︷ ︸

pη+1

, 1, 1, · · · , 1︸ ︷︷ ︸
pη+1

}.

Here, if the function to be approximated has a singularity of type O(rq) with 0 <

q = nq/mq < 1, where nq,mq ∈ Z, then the polynomial degree of B-spline functions

corresponding to Ξη is pη = mq.

Let Ni,3(ξ), i = 1, · · · , 9 be the B-splines corresponding to the knot vector Ξξ and

let Mj,pη+1(η), j = 1, · · · , pη + 1 be the B-splines corresponding to the knot vector Ξη.
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Then these B-spline functions are

N1,3(ξ) =

 (1− 4ξ)2 if ξ ∈ [0, 1
4
]

0 if ξ /∈ [0, 1
4
]

N2,3(ξ) =

 8ξ(1− 4ξ) if ξ ∈ [0, 1
4
]

0 if ξ /∈ [0, 1
4
]

N3,3(ξ) =


(4ξ)2 if ξ ∈ [0, 1

4
]

(2− 4ξ)2 if ξ ∈ [1
4
, 1

2
]

0 if ξ /∈ [0, 1
2
]

N4,3(ξ) =

 2(4ξ − 1)(2− 4ξ) if ξ ∈ [1
4
, 1

2
]

0 if ξ /∈ [1
4
, 1

2
]

N5,3(ξ) =


(4ξ − 1)2 if ξ ∈ [1

4
, 1

2
]

(3− 4ξ)2 if ξ ∈ [1
2
, 3

4
]

0 if ξ /∈ [1
4
, 3

4
]

N6,3(ξ) =

 2(4ξ − 2)(3− 4ξ) if ξ ∈ [1
2
, 3

4
]

0 if ξ /∈ [1
2
, 3

4
]

N7,3(ξ) =


(4ξ − 2)2 if ξ ∈ [1

2
, 3

4
]

(4− 4ξ)2 if ξ ∈ [3
4
, 1]

0 if ξ /∈ [1
2
, 1]

N8,3(ξ) =

 8(4ξ − 3)(1− ξ) if ξ ∈ [3
4
, 1]

0 if ξ /∈ [3
4
, 1]

N9,3(ξ) =

 (4ξ − 3)2 if ξ ∈ [3
4
, 1]

0 if ξ /∈ [3
4
, 1]

(3.1)

Mj,pη+1(η) =

(
pη
j − 1

)
ηj−1(1− η)pη−j+1 for j = 1, · · · , pη + 1, η ∈ [0, 1]. (3.2)

Here, the B-spline functions Mj,pη+1, j = 1, · · · , pη + 1, corresponding to the open

knot vector Ξη are also called the Bernstein polynomials of degree pη.

Consider the control points Bi,j and the weights wi,j for 1 ≤ i ≤ 9, 1 ≤ j ≤ pη + 1,

that are listed in Table 3.1. With the B-spline functions shown in (3.1) and (3.2), the

9(pη+1) control points and weights, we now construct a NURBS geometrical mapping

from the parameter space Ω̂ onto Ω as follows:

F(ξ, η) =
9∑
i=1

pη+1∑
j=1

Ri,j(ξ, η)Bi,j.



39

Table 3.1: Control points Bi,j and weights wi,j.

1 ≤ j ≤ pη j = pη + 1

i Bi,j wi,j Bi,j wi,j

1 (0, 0) 1 (1, 0) 1
2 (0, 0) 1√

2
(1,−1) 1√

2

3 (0, 0) 1 (0,−1) 1
4 (0, 0) 1√

2
(−1,−1) 1√

2

5 (0, 0) 1 (−1, 0) 1
6 (0, 0) 1√

2
(−1, 1) 1√

2

7 (0, 0) 1 (0, 1) 1
8 (0, 0) 1√

2
(1, 1) 1√

2

9 (0, 0) 1 (1, 0) 1

Here Ri,j(ξ, η), 1 ≤ i ≤ 9, 1 ≤ j ≤ pη + 1, are NURBS basis functions defined by

Ri,j(ξ, η) =
Ni,3(ξ)Mj,pη+1(η)wi,j

W (ξ, η)
,

where

W (ξ, η) =
9∑
s=1

pη+1∑
t=1

Ns,3(ξ)Mt,pη+1(η)ws,t.

Noting that from Table 3.1, ws,j = 1 if s = 1, 3, 5, 7, 9 and ws,j = 1/
√

2 if s = 2, 4, 6, 8,

and using the partition of unity property:
∑pη+1

t=1 Mt,pη+1(η) = 1, we have

W (ξ, η) =
9∑
s=1

Ns,3(ξ)

[
pη+1∑
t=1

Mt,pη+1(η)ws,t

]

= [N2,3(ξ) +N4,3(ξ) +N6,3(ξ) +N8,3(ξ)] /
√

2

+ [N1,3(ξ) +N3,3(ξ) +N5,3(ξ) +N7,3(ξ) +N9,3( ξ)]

≡ w(ξ),

(3.3)

which becomes a function of ξ only. Since Bi,j = (0, 0) for all i and j ≤ pη from Table
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3.1, we have

F(ξ, η) = ηpη
9∑
i=1

Ni,3(ξ)wi,3
w(ξ)

Bi,pη+1 := (x(ξ, η), y(ξ, η)),

where the coordinate functions are as follows:



x(ξ, η) =
ηpη

w(ξ)

[
N1,3 +N2,3/

√
2−N4,3/

√
2−N5,3 −N6,3/

√
2 +N8,3/

√
2 +N9,3

]
(ξ)

= ηpη
(
X(ξ)

w(ξ)

)
,

y(ξ, η) =
ηpη

w(ξ)

[
−N2,3/

√
2−N3,3 −N4,3/

√
2 +N6,3/

√
2 +N7,3 +N8,3/

√
2
]

(ξ)

= ηpη
(
Y (ξ)

w(ξ)

)
.

(3.4)

Moreover, by substituting (3.1) into (3.3), one can show that the total weight function

W (ξ, η) is bounded away from zero:

2 +
√

2

4
≤ W (ξ, η) ≡ w(ξ) ≤ 1. (3.5)

Lemma 3.1 of [29] is now generalized as follows:

Lemma 3.1.1. Suppose u(r, θ) = rqψ(θ) for a positive rational number q = nq/mq,

where nq and mq are integers, and for a smooth function ψ, where (r, θ) is the polar

coordinates. If we choose pη = mq for the geometrical mapping F of (3.4), then we

have the following:

1. rq ◦ F(ξ, η) = ηnq is a polynomial in η.

2. Let Ψ(ξ) = ψ ◦ F(ξ, η). Then Ψ(ξ) ∈ C0[0, 1] and Ψ(ξ) ∈ C∞(0, 1) unless

ξ = 1/4, 1/2, 3/4.

3. |det(J(F))| ≤ 8pη.

Proof. 1: From the control points Bi,j and the weights wi,j in Table 3.1 and section
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2.4.1.1 of [27], we have

1 =

(
X(ξ)

w(ξ)

)2

+

(
Y (ξ)

w(ξ)

)2

, (3.6)

From (3.6), the pull-back of rq onto Ω̂ becomes

rq ◦ F(ξ, η) = ηnq

[(
X(ξ)

w(ξ)

)2

+

(
Y (ξ)

w(ξ)

)2
]q/2

= ηnq .

2: The proof of the second part is similar to that of [29].

3: By (3.4), we have

| det(J(F))| =
∣∣∣∣∂x∂ξ ∂y∂η − ∂x

∂η

∂y

∂ξ

∣∣∣∣ =
pηη

2pη−1

w(ξ)2
|X ′(ξ)Y (ξ)−X(ξ)Y ′(ξ)| ,

X ′(ξ)Y (ξ)−X(ξ)Y ′(ξ) =
3∑
i=0

[
(X ′(ξ)Y (ξ)−X(ξ)Y ′(ξ))χ[i/4,(i+1)/4](ξ)

]
.

(3.7)

By (3.1), we have

2(1+
√

2) ≤
∣∣(X ′(ξ)Y (ξ)−X(ξ)Y ′(η))χ[i/4,(i+1)/4](ξ)

∣∣ ≤ 4
√

2, for i = 0, 1, 2, 3. (3.8)

Applying the lower bound of w(ξ) of (3.5) and the upper bound (3.8) to the bound of

determinant (3.7), we obtain

|det(J(F))| ≤ 32pη
√

2(3− 2
√

2) ≤ 8pη. (3.9)

Lemma 3.1.1 shows that the pull-back of a singular function rqψ(θ) by the NURBS

mapping F becomes a piecewise smooth function on the parameter space Ω̂.
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�

�

B8,p�+1

(0,0).

Figure 3.1: The parameter space and the physical domain for the NURBS mapping
F.

3.1.2 Error Estimates

The NURBS geometrical mapping F : Ω̂ −→ Ω constructed with coarse mesh on

Ω̂ = [0, 1] × [0, 1] in the previous subsection (Fig. 3.1) does not change as the mesh

on Ω̂ is further refined. Let

Sh ≡ S(Ξξ,Ξη, p
h
ξ , p

h
η) = span{Ni,phξ+1(ξ)Mj,phη+1(η)|1 ≤ i ≤ m, 1 ≤ j ≤ n},

Shξ ≡ S(Ξξ, p
h
ξ ) = span{Ni,phξ+1(ξ)|1 ≤ i ≤ m},

Vh = span{[Ni,phξ+1(ξ)Mj,phη+1(η)] ◦ F−1|1 ≤ i ≤ m, 1 ≤ j ≤ n},

(3.10)

where m+(phξ +1) is the number of knot values in Ξξ and n is similar. Here phξ and phη ,

respectively, are the polynomial degrees of B-spline basis functions in the ξ- and the

η-directions that are for approximation spaces for IGA of physical domain, whereas in

the construction of the geometrical mapping F, m = 9, n = pη + 1, pξ = 2, are fixed.

In this section, we assume the following:

• u is the weak solution of (2.18) and uh is the Galerkin approximate solution of

(2.20). Each knot value of the open knot Ξξ has multiplicity phξ . That is, each
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member in Shξ is a C0-function.

The following error estimates for the mapping method was proved in [29], to which

we refer for details:

Theorem 3.1.1. Let 0 < λ = 1/pη ≤ 1. Suppose u(r, θ) =
∑N

k=0 ckr
(λ+k)ψk(θ) with

smooth functions ψk(θ) solves the Poisson equation in a cracked unit disk. Assume

that each node in the open knot vector Ξξ for the approximation space Shξ has the

multiplicity pξ. Let uh ∈ Vh be an isogeometric finite element solution of u obtained

by the mapping method. Then under some assumptions on mesh size h, polynomial

degrees pξ, pη, we have

‖u− uh‖1,Ω ≤ C1h
p

[
N∑
l=0

cl (|Ψl|p+1,∞ + |Ψl|p+2,∞)

]
/(p!). (3.11)

|u− uh|∞,Ω ≤ C∞h
p+1

[
N∑
l=0

cl (|Ψl|p+1,∞ + |Ψl|p+2,∞)

]
/(p!), (3.12)

‖u− uh‖0,Ω ≤ C0h
p+1

[
N∑
l=0

cl (|Ψl|p+1,∞ + |Ψl|p+2,∞)

]
/(p!). (3.13)

Ψl = ψl ◦F, and |Ψl|p+i,∞ :=
∑

k |Ψl|p+i,∞,Ik , where Ψl is smooth on Ik, for each k and

∪kIk = [0, 1]. Here p = phξ is the polynomial degree of Ni,p+1(ξ) for an approximation

of the angular direction (the polynomial degree phη ≥ 2 for an approximation of the

radial direction is held fixed), and h = max{|ξi+1 − ξi|} is the maximum length of

knot spans of the open knot vector Ξξ and the constants C∞, C0, C1 are independent

of h and p.

3.2 Numerical Tests

3.2.1 The Wedge Shaped Plates

Tests of the mapping method to the Laplace equation in the wedge domains [29]

are extended to the following elasticity equation.
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Example 3.2.1. Consider a load free linear elasticity equation in a wedge-shaped do-

main as shown in Fig. 3.3,

Ω±α = {(r, θ) : r ≤ 2, −α ≤ θ ≤ α}, 0 ≤ α ≤ 90◦,

which is isotropic with Young’s modulus E = 1000 and Poisson ratio ν = 0.3 ([50]).

The displacement field given below in polar coordinate satisfies the equations of elas-

ticity in the domain Ω±α.

ur(r, θ) =
rλ

2G
{−(λ+ 1)φ(θ)}

uθ(r, θ) =
rλ

2G
{φ′(θ)}

(3.14)

where

λ = 90◦/α− 1, φ(θ) = sin(λ+ 1)θ, G =
E

2(1 + ν)
.

For the construction of the singular geometrical mapping from the parameter space

Ω̂ = [0, 1] × [0, 1] onto the wedge domain Ω±α, we use the NURBS corresponding to

the knot vectors, the control points, and the weights listed in Table C.1 in Appendix,

which is similar to Table 15 of [29]. The computational results by the mapping method

are plotted in Fig. 3.2, in which the relative errors in energy norm is followed by (2.19).

From the test of the mapping method to these elasticity problems containing sin-

gularities with various intensity, we have the following:

1. Similarly to the results obtained by MAM shown in [50], the mapping methods

yield highly accurate solutions no matter how strong singularity the problems

have.

2. By the error estimates (3.11), (3.12), and (3.13) of the mapping method, we
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have

log ‖u− uh‖1,Ω ≈ p log h+ logC1 (3.15)

log |u− uh|∞ ≈ (p+ 1) log h+ logC∞, (3.16)

log ‖u− uh‖0 ≈ (p+ 1) log h+ logC0. (3.17)

Actually, if we plot relative errors of displacement functions in the energy norm

versus mesh size h, the convergence profile has a slope p = 2 as shown in Fig.

3.2(a). Thus, this numerical results follow the error estimate (3.11). On the

other hand, if the relative errors of displacement functions in then energy norm

are plotted with respect to p-degrees, the slope become log h = −0.30103, h =

0.5, as shown on Fig. 3.2(b). In other words, the numerical results support the

theory (3.11).

3. Also, relative errors of displacement functions in the maximum norm and L2-

norm versus mesh size h are depicted in Figs. B.2 and B.3 with p = 2, and

Figs. B.1 and B.4 with p = 3. The convergence profiles have slopes 3 and 4 as

shown in Figs. B.2, B.3 and Figs. B.1, B.4, respectively. From these figures,

therefore, we can see that our numerical results support the error estimate (3.12)

and (3.13).

4. In Fig. 3.2, if the elasticity problem has a crack singularity (λ = 1/2), then the

computed strain energy is virtually the true strain every up to the machine error

when the p-degree is 14 (note: 100× (the true energy−the computed energy)1/2 =

10−5).

The mapping method presented above is effective when approximation functions

are non-rational B-splines. Moreover, the mapping method may not be effective for

the h-refinement.
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Figure 3.2: (a) The relative errors in the energy norm ×100 versus the h-sizes with
pξ = 2 fixed. (b) The relative errors in the energy norm ×100 versus polynomial
degree pξ (number of degrees of freedom) with h = 1/2 fixed.
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Figure 3.3: The control points for the wedge-shaped domain.

The solution method for Example 3.2.1 is actually not a genuine IGA, but a

conventional finite element analysis (FEA) using B-spline approximation functions.

In the following section, using the mapping method for the construction of auxiliary

enrichment functions, we combine the mapping method with IGA so that the genuine

IGA with k-refinement can effectively handle the corner singularities as well as the

jump boundary data singularities.

Next we test our mapping methods to other prominent singularity problems. How-

ever, the error analysis of Theorem 3.1.1 is not applicable to these cases because we

use two Bézier segments in the η-direction when we construct NURBS geometrical

mappings, and apply p-refinement to not only ξ-direction but also η-direction. Nev-

ertheless, we observe that numerical results of these examples have good accuracies.

3.2.2 The Curved Domain

In this subsection, we consider an elasticity with more practical geometry con-

taining singularity of the type r
1
2ψ(θ). The control net and the physical elements

are illustrated in Fig. 3.4. In order to capture the behavior of the singularity, we
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construct a NURBS geometrical mapping by choosing quadratic B-spline functions in

the η-direction.

The control points and the corresponding weights to construct the geometrical

mapping for the curved domain are listed in Table C.2 in Appendix.

Example 3.2.2. (curved domain) Let ΩC be the physical domain as shown in Fig. 3.4.

and let

u(r, θ) = r1/2{sin(
θ

2
) + cos(

θ

2
) + sin(

3θ

2
) + cos(

3θ

2
)}

v(r, θ) = r1/2{sin(
5θ

2
) + cos(

5θ

2
) + sin(

7θ

2
) + cos(

7θ

2
)}

(3.18)

be a displacement field, with Young’s modulus E = 1000 and Poisson’s ratio ν = 0.3.

We assume that the ΩC is the configuration of an isotropic plane stress plate.

For the numerical solutions of Example 3.2.2, we use the p-refinement in both

ξ and η-directions. Therefore, the error bounds in the maximum norm, L2-norm,

and energy norm for Example 3.2.2 should be expressed in terms of pξ, pη, and h.

Notwithstanding, we observe that the convergence profiles in the maximum norm,

L2-norm, and energy norm depicted in Figs. 3.5 and 3.6 almost support Theorem

3.1.1 from the following aspects:

1. In Fig. 3.5(a), the convergence profile for relative errors (%) in the maximum

norm and L2-norm of computed displacement field {u, v}T almost reaches a slope

log 0.25 = −0.602, h = 0.25

2. Similarly, The convergence profile for relative errors (%) in the maximum norm

of computed stress field {σx, σy, τxy}T is almost same as a slope log 0.25 =

−0.602, h = 0.25 in Fig. 3.5(b).

3. In Fig. 3.6, we assume that the computed strain energy at pξ = pη = 14 is the

true strain energy. It is agreeable that the convergence profile for the relative
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(0,0)(-1,0) (1,0)

Figure 3.4: Curved physical domain and control net

error (%) in energy norm has a slope log 0.25 = −0.602, h = 0.25.

Table 3.2: The relative error in the maximum norm as well as in the L2-norm of
the computed displacement u and the relative error in the maximum norm of the
computed stress σx of the elasticity (3.18) in the curved domain Fig. 3.4. The degrees
are the polynomial degrees of B-spline functions. Note that the p-refinement is made
in the ξ-direction as well as in the η-direction.

(pξ, pη) dof ‖u− uh‖∞,rel(%) ‖σx − σhx‖∞,rel(%) ‖u− uh‖L2,rel(%)

(2, 2) 45 2.249E − 00 2.984E + 01 1.619E + 00
(3, 3) 91 1.334E − 00 2.056E + 01 6.254E − 01
(4, 4) 153 2.260E − 01 1.647E − 00 1.144E − 01
(5, 5) 231 8.920E − 02 1.262E − 00 3.720E − 02
(6, 6) 325 4.096E − 02 6.990E − 01 2.108E − 02
(7, 7) 435 1.099E − 02 1.180E − 01 3.776E − 03
(8, 8) 561 6.695E − 03 1.014E − 01 2.180E − 03
(9, 9) 703 5.559E − 04 1.322E − 02 2.577E − 04

(10, 10) 861 3.008E − 04 8.070E − 03 1.140E − 04
(11, 11) 1035 3.844E − 05 9.042E − 04 1.083E − 05
(12, 12) 1225 2.165E − 05 4.856E − 04 9.672E − 06
(13, 13) 1431 1.754E − 05 1.067E − 04 2.393E − 06
(14, 14) 1653 5.887E − 06 2.131E − 04 2.034E − 06
(15, 15) 1891 6.795E − 06 4.255E − 04 1.611E − 07

3.2.3 The Single Edge Cracked Elastic Domain

Example 3.2.3. (Single edge cracked elastic domain) Let us consider the equation
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Figure 3.5: (a) The relative error (%) in the maximum norm and L2-norm of computed
displacement field {u, v}T of the elasticity (3.18) in the curved domain. (b) The
relative error (%) in the maximum norm of computed stress field {σx, σy, τxy}T of the
elasticity (3.18) in the curved domain.
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Figure 3.6: The relative error (%) in the strain energy norm of computed displacement
field {u, v}T of the elasticity (3.18) in the curved domain.

Table 3.3: The relative error in the maximum norm as well as in the L2-norm of
the computed displacement v and the relative error in the maximum norm of the
computed stress σy of the elasticity (3.18) in the curved domain 3.4. The degrees are
the polynomial degrees of B-spline functions. Note that the p-refinement is made in
the ξ-direction as well as in the η-direction.

(pξ, pη) dof ‖v − vh‖∞,rel(%) ‖σy − σhy‖∞,rel(%) ‖v − vh‖L2,rel(%)

(2, 2) 45 9.110E − 00 3.765E + 01 5.710E + 00
(3, 3) 91 3.936E − 00 2.056E + 01 2.796E − 00
(4, 4) 153 7.581E − 01 2.546E − 00 5.180E − 01
(5, 5) 231 1.854E − 01 1.117E − 00 1.068E − 01
(6, 6) 325 1.830E − 01 1.265E − 00 9.440E − 02
(7, 7) 435 5.917E − 01 6.163E − 02 1.743E − 02
(8, 8) 561 2.842E − 02 1.641E − 01 9.653E − 03
(9, 9) 703 3.066E − 03 1.336E − 02 1.390E − 03

(10, 10) 861 1.077E − 03 1.108E − 02 4.643E − 04
(11, 11) 1035 2.718E − 04 2.885E − 04 8.225E − 05
(12, 12) 1225 1.430E − 04 3.849E − 04 3.941E − 05
(13, 13) 1431 8.364E − 05 1.212E − 04 1.435E − 05
(14, 14) 1653 3.361E − 05 2.064E − 04 8.309E − 06
(15, 15) 1891 1.264E − 05 3.285E − 04 1.550E − 06
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of elasticity on a domain Ω = {(r, θ) : r ≤ 2, −π ≤ θ ≤ π} with a crack along the

negative x-axis. Assume that Young’s modulus E = 1000, and Poisson’s ratio ν = 0.3.

We also assume that the following true stresses are imposed along all boundaries of

the given domain 3.7(a).

σx =
1

4
√
r

(3 cos
θ

2
+ cos

5θ

2
),

σy =
1

4
√
r

(5 cos
θ

2
− cos

5θ

2
),

τxy =
1

4
√
r

(sin
5θ

2
− sin

θ

2
).

The control points and the corresponding weights to construct the geometrical

mapping for the single edge cracked elastic domain are listed in Table C.3 in Appendix.

The relative errors (%) in maximum norm, and energy norm of the computed

stress field are shown in Table 3.4 and 3.5.

Table 3.4: The relative error(%) in the maximum norm, of the computed stress field
(with respect to a p-refinement) of the single edge cracked plate problem are listed.

(pξ, pη) dof ‖σx − σhx‖∞,rel(%) ‖σy − σhy‖∞,rel(%) ‖τxy − τhxy‖∞,rel(%)

(2, 2) 168 9.963E − 00 5.955E − 00 1.762E + 01
(3, 3) 348 2.525E − 00 1.296E − 00 2.069E − 00
(4, 4) 592 3.376E − 01 2.381E − 01 4.436E − 01
(5, 5) 900 4.691E − 02 3.980E − 02 4.249E − 02
(6, 6) 1272 1.397E − 02 1.211E − 02 1.517E − 02
(7, 7) 1708 4.319E − 03 4.914E − 03 4.860E − 03
(8, 8) 2208 1.435E − 03 2.011E − 03 1.613E − 03
(9, 9) 2772 5.874E − 04 8.174E − 04 5.740E − 04

(10, 10) 3400 2.397E − 04 3.304E − 04 2.324E − 04
(11, 11) 4092 9.754E − 05 1.347E − 04 9.404E − 05
(12, 12) 4848 3.959E − 05 5.508E − 05 3.803E − 05
(13, 13) 5668 1.603E − 05 2.246E − 05 1.538E − 05
(14, 14) 6552 6.490E − 06 9.143E − 06 6.224E − 06
(15, 15) 7500 3.838E − 05 6.880E − 05 5.119E − 05
(16, 16) 8512 1.391E − 04 5.340E − 05 1.615E − 04

We observe from Fig. 3.7(b) and Table 3.4 and 3.5 that the mapping method also
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Figure 3.7: (a) The physical domain and control points of the single edge cracked
elastic domain (b) The relative error in the maximum norm for stress field and energy
norm versus number of degrees of freedom of computed solutions of the equation of
elasticity in the single edge cracked domain Ω.
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gives highly accurate analysis for the cracked domain.

Table 3.5: The relative error(%) in the energy norm (with respect to a p-refinement)
of the single edge cracked plate problem are listed. Note that {u} = {ux, uy}T is the
displacement field.

(pξ, pη) dof ‖{u} − {uh}‖eng,rel(%) Computed energy

(2, 2) 168 7.956E − 00 7.181515817987409E − 03
(3, 3) 348 2.225E − 00 7.223684698964165E − 03
(4, 4) 592 6.766E − 01 7.226932551320604E − 03
(5, 5) 900 2.267E − 01 7.227226265109549E − 03
(6, 6) 1272 7.953E − 02 7.227258841977250E − 03
(7, 7) 1708 2.847E − 02 7.227262827382460E − 03
(8, 8) 2208 1.034E − 02 7.227263336186676E − 03
(9, 9) 2772 3.807E − 03 7.227263403083560E − 03

(10, 10) 3400 1.415E − 03 7.227263412112890E − 03
(11, 11) 4092 5.298E − 04 7.227263413357400E − 03
(12, 12) 4848 1.986E − 04 7.227263413531741E − 03
(13, 13) 5668 7.311E − 05 7.227263413556409E − 03
(14, 14) 6552 3.891E − 05 7.227263413559177E − 03
(15, 15) 7500 2.965E − 05 7.227263413560908E − 03
(16, 16) 8512 3.856E − 05 7.227263413561346E − 03

∞ 7.227263413560272E − 03



CHAPTER 4: ENRICHMENT AND BLENDING TECHNIQUES FOR IGA

4.1 Enrichment of NURBS by the Mapping Techniques for IGA

It was stated in the previous Chapter that the mapping method to deal with

elliptic problems containing singularities are not effective for NURBS basis functions.

It was also pointed out that the mapping methods do not yield optimal results for

neither the k- refinement nor the h-refinement. The p-refinement of B-spline (piecewise

polynomials) is most suitable for the mapping method. Since NURBS functions used

in IGA are generally non-polynomial functions, and the mapping method use the B-

spline functions (piecewise polynomials), a direct use of the mapping method in IGA

is not expected to yield optimal results.

In this section, we thus consider how to use the proposed mapping method in IGA

of elliptic problems containing singularities without changing the design mapping. For

this end, we embed the mapping methods into the standard IGA that use NURBS

basis functions for which h-p-k-refinements are applicable for improved computational

solution. In other words, the mapping methods will be used to enrich NURBS basis

functions around neighborhood of singularities so that they can capture the singular

behaviors of the function to be approximated. It is similar to that of X-FEM in IGA

[46], however we do not introduce any singular functions in the following enrichment

method:

Step 1. Selection of subdomains to be enriched and choice of mapping sizes:

Suppose the function to be approximated has singularities at Pk of type O(rqk)

with 0 < qk =
nk
mk

< 1, k = 0, 1, · · · , kN , as shown in Fig. 4.1.
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Figure 4.1: G is a design mapping and Fk, k = 0, 1, 2, are the singular geometrical
mappings for the enrichment to capture corner singularities.

• In Fig. 4.1, G : Ω̂ −→ Ω is the design mapping and Fk : Ω̂ −→ Ωk is the pro-

posed geometrical mapping constructed in Chapter 3 which maps the parameter

space onto a neighborhood Ωk of a point singularity Pk:

Ωk = [{(x, y)|‖(x, y)− Pk‖ ≤ rk} ∩ Ω] \ ∂Ω,

where 0 < rk ≤ 1 is not too small so that the solution outside Ωk has no influence

from the singularity at Pk.

• For each k, we choose pη = mk for control points and weights in Table 4.1 as

well as in the knot vector (4.1) for the construction of Fk.

In what follows, we present the construction of the auxiliary singular mapping F0.

The constructions of the remaining Fk, k = 1, · · · , kN , are similar.

Step 2. Construction of singular mapping F0 from the parameter space onto Ω0:

Without loss of generality, we assume Ω0 = {(r, θ) : r ≤ r0, 0 ≤ θ < 3/2π}.

We modify the singular geometrical mapping F0 : [0, 1] × [0, 1] −→ Ω0 introduced in

Chapter 3 by using the control points, the weights in Table 4.1 as shown in Fig. 4.2
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and the following knot vectors:

Ξξ = {0, 0, 0, 1/3, 1/3, 2/3, 2/3, 1, 1, 1}; (4.1)

Ξη = {0, · · · , 0︸ ︷︷ ︸
pη+1

, η1, · · · , η1︸ ︷︷ ︸
pη

, 1, · · · , 1︸ ︷︷ ︸
pη+1

}, η1 = 2/3. (4.2)

The B-spline functions corresponding to the knot vector (4.2) are altered to the fol-

lowing pη + 2 piecewise polynomials of degrees pη and 1:

M̂t(η) = Mt,pη+1(η)

=

(
pη
t− 1

)
(1− η

η1

)pη−t+1(
η

η1

)
t−1

, if 1 ≤ t ≤ pη, 0 ≤ η ≤ η1

M̂pη+1(η) =


(
η

η1

)pη for 0 ≤ η ≤ η1

1− η
1− η1

for η1 ≤ η ≤ 1,

M̂pη+2(η) =


η − η1

1− η1

for η1 ≤ η ≤ 1

0 for 0 ≤ η ≤ η1.

Note that M̂t, 1 ≤ t ≤ pη + 1, are the Bernstein polynomials of degree pη on [0, η1],

and M̂t, for pη + 1 ≤ t ≤ pη + 2, are the Bernstein polynomials of degree 1 on [η1, 1].

The partition of unity property of the Bernstein polynomials shows that the total

weight is a function of ξ only, and the corresponding NURBS functions are as follows:

W (ξ, η) =
7∑
s=1

pη+2∑
t=1

Ns,3(ξ)M̂t(η)ws,t

=
7∑

s=odd

pη+2∑
t=1

Ns,3(ξ)M̂t(η)ws,t +
6∑

s=even

pη+2∑
t=1

Ns,3(ξ)M̂t(η)ws,t

=
7∑

s=odd

Ns,3(ξ)

pη+2∑
t=1

M̂t(η) +
1√
2

6∑
s=even

Ns,3(ξ)

pη+2∑
t=1

M̂t(η)
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Figure 4.2: The NURBS geometrical mapping that generates singular functions on
Ω0 = [0, r0] × [0, 3/2π] from the parameter space Ω̂0 = [0, 1] × [0, 1] to the singular
zone Ω0. Note that µ is fixed real number with 0.5 ≤ µ ≤ 0.9.

=
7∑

s=odd

Ns,3(ξ) +
1√
2

6∑
s=even

Ns,3(ξ) = w(ξ); (4.3)

Ri,j(ξ, η) = Ni,3(ξ)M̂j(η)wi,j/w(ξ), 1 ≤ i ≤ 7, 1 ≤ j ≤ pη + 2.

Thus, by the choice of the control points in Table 4.1, the geometrical mapping be-

comes

F0(ξ, η) =
7∑
i=1

pη+2∑
j=1

Ri,j(ξ, η)Bi,j

=
7∑
i=1

{
Bi,pη+1Ri,pη+1(ξ, η) + Bi,pη+2Ri,pη+2(ξ, η)

}
=

[
M̂pη+1+1(η)

w(ξ)

]
7∑
i=1

Ni,3(ξ)wi,pη+1Bi,pη+1 +[
M̂pη+1+2(η)

w(ξ)

]
7∑
i=1

Ni,3(ξ)wi,pη+2Bi,pη+2.
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Hence, we have

F0(ξ, η) = (x(ξ, η), y(ξ, η)) = φ(η)(
X(ξ)

w(ξ)
,
Y (ξ)

w(ξ)
),

where X(ξ) and Y (ξ) are


X(ξ) = (1 + µ)

[
−r0N2,3/

√
2− r0N3,3 − r0N4,3/

√
2 + r0N6,3/

√
2 + r0N7,3

]
(ξ)

Y (ξ) = (1 + µ)
[
r0N1,3 − r0N2,3/

√
2 + r0N4,3/

√
2 + r0N5,3 + r0N6,3/

√
2
]

(ξ),

(4.4)

and

φ(η) =


φ1(η) = µr0(

η

η1

)pη , if η ∈ [0, η1],

φ2(η) = µr0[
1− η
1− η1

] + r0[
η − η1

1− η1

], if η ∈ [η1, 1]

Moreover, the determinant of Jacobian of F0 is

| det(J(F0))| =
∣∣∣∣∂x∂ξ ∂y∂η − ∂x

∂η

∂y

∂ξ

∣∣∣∣ =
h(η) |X ′(ξ)Y (ξ)−X(ξ)Y ′(ξ)|

(w(ξ))2

h(η) =


φ1
dφ1

dη
= [µr0]2

pη
η1

(
η

η1

)2pη−1, if η ∈ [0, η1],

φ2
dφ2

dη
=

[
(1− µ)r0

1− η1

][
µr0[

1− η
1− η1

] + r0[
η − η1

1− η1

]

]
, if η ∈ [η1, 1].

Therefore, the NURBS geometrical mapping corresponding to the knot vectors,

control points, and weights of Table 4.1 with η1 = 2/3, µ = 0.8, pη = 3, is given by

F0(ξ, η) = φ(η)(
X(ξ)

w(ξ)
,
Y (ξ)

w(ξ)
),
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where

φ(η) =


φ1(η) = [0.8r0(

3

2
)2]η3, if η ∈ [0, 2/3],

φ2(η) = 0.8r0

[
1− η

1− 2/3

]
+ r0

[
η − 2/3

1− 2/3

]
if η ∈ [2/3, 1]

and X(ξ), Y (ξ), w(ξ) are the same as those in (4.3) and (4.4).

Table 4.1: Control points Bi,j and weights wi,j. µ is a fixed real number with 0.5 ≤
µ ≤ 0.9.

1 ≤ j ≤ pη j = pη + 1(0.5 ≤ µ ≤ 0.9) j = pη + 2

i Bi,j wi,j Bi,j wi,j Bi,j wi,j

1 (0, 0) 1 (0,−µr0) 1 (0,−r0) 1
2 (0, 0) 1√

2
(−µr0,−µr0) 1√

2
(−r0,−r0) 1√

2

3 (0, 0) 1 (−µr0, 0) 1 (−r0, 0) 1
4 (0, 0) 1√

2
(−µr0, µr0) 1√

2
(−r0, r0) 1√

2

5 (0, 0) 1 (0, µr0) 1 (0, r0) 1
6 (0, 0) 1√

2
(µr0, µr0) 1√

2
(r0, r0) 1√

2

7 (0, 0) 1 (µr0, 0) 1 (r0, 0) 1

In addition to NURBS basis functions constructed through the design mapping,

we are going to enrich it with singular approximation functions constructed trough

the singular mapping F0, constructed in Step 2. From now on, the geometric mapping

F0 is fixed and so does pη used for the construction of F0.

Step 3. Selecting B-spline functions that are compatible with NURBS functions:

Consider the B-spline functions corresponding to the open knot vector

Ξη = {0, · · · , 0︸ ︷︷ ︸
p+1

, η1, · · · , η1︸ ︷︷ ︸
p

, 1, · · · , 1︸ ︷︷ ︸
p+1

}, η1 = 2/3, µ = 0.8. (4.5)

It is important to note that the p in (4.5) is different from the degree pη in Table

4.1 that is fixed throughout computation. In other words, the p is the degree of
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basis functions for approximations, whereas the pη represents the degree of B-spline

functions to be used for the construction of the NURBS geometrical mapping F0 :

[0, 1]× [0, 1] −→ Ω0.

Now, in order to make the enriched functions compatible with NURBS basis func-

tion constructed through the design mapping G and to minimize the number of en-

riched functions, we remove the B-spline functions whose supports are [η1, 1] among

the B-spline functions corresponding to the knot vector Ξη. Then the remaining B-

spline functions are

Mj(η) =

(
p

j − 1

)
g1(η)j−1(1− g1(η))p−j+1 for j = 1, · · · , p,

Mp+1(η) =

 g1(η)p if η ∈ [0, 2/3]

(1− g2(η))p if η ∈ [2/3, 1]

where g1 and g2 are the scaling mappings defined by

g1(η) = (3/2)η : [0, 2/3] −→ [0, 1]; g2(η) = 3(η − 2/3) : [2/3, 1] −→ [0, 1].

Let Ŝhξ be the set of B-spline functions corresponding to the open knot vector

Ξξ = {0, 0, 0, 1/3, 1/3, 2/3, 2/3, 1, 1, 1} or the h-refinement or the p-extension of these

functions. Then, for all ψ = Ni(ξ)Mj(η), 1 ≤ j ≤ p+ 1, Ni(ξ) ∈ Ŝhξ , we have

ψ ◦ F−1
0 = 0, (compatibility condition)

along the internal boundary [∂Ω0 \ ∂Ω] of a disk neighborhood Ω0 of the singularity

point.

Step 4. Calculation of Stiffness matrix:

Suppose ŜhF0
= span{Ni(ξ)×Mj(η) : Ni(ξ) ∈ Ŝh

ξ , j = 1, · · · , p+1} is an approxima-

tion space of B-spline basis functions on Ω̂0 = [0, 1]× [0, 1] in the (ξ, η)-coordinate sys-
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tem, that is the parameter space of the singular mapping F0 for enrichment. Suppose

ŜhG is an approximation space spanned by NURBS basis functions on Ω̂G = [0, 1]×[0, 1]

in the (ξ̄, η̄)-coordinate system that denotes the parameter space of the design map-

ping G.

Then our approximation space enriched around a singularity P0 by ŜhF is the span

of ŜhG ∪ ŜhF0
. Thus, we have to consider the following three cases:

• (Bilinear form for two rational NURBS functions)

If Ri,j, Rs,t ∈ ShG, and u = Ri,j ◦G−1, v = Rs,t ◦G−1, then

B(u, v) =

∫
Ω

(∇xv)T · (∇xu)dxdy

=

∫
Ω̂G

(∇ξ̄Rs,t)
T ·
[
(J(G)−1)T · J(G)−1|J(G)|

]
(∇ξ̄Ri,j)dξ̄η̄, (4.6)

where Ω̂G = supp(Ri,j) ∩ supp(Rs,t).

• (Bilinear form for two non-rational B-spline functions)

If Bi,j, Bs,t ∈ ŜhF , and u = Bi,j ◦ F−1
0 , v = Bs,t ◦ F−1

0 , then

B(u, v) =

∫
Ω

(∇xv)T · (∇xu)dxdy

=

∫
Ω̂F0

(∇ξBst)
T ·
[
(J(F0)−1)T · J(F0)−1|J(F0)|

]
(∇ξBi,j)dξdη, (4.7)

where Ω̂F0 = supp(Bi,j) ∩ supp(Bs,t).

• (Bilinear form for mixed functions: NURBS function and B-spline function) If
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Ri,j ∈ ŜhG, Bs,t ∈ ŜhF , and u = Ri,j ◦G−1, v = Bs,t ◦ F−1
0 , then

B(u, v) =

∫
Ω

(∇x(Bs,t ◦ F−1
0 ))T · (∇x(Ri,j ◦G−1))dxdy

=

∫
Ω

(∇x(Bs,t ◦ F−1
0 ))T · (∇x(Ri,j ◦G−1)) ◦G ◦G−1dxdy

=

∫
Ω

(∇x(Bs,t ◦ F−1
0 ))T · (J(G)−1 · ∇ξ̄Ri,j) ◦G−1dxdy

=

∫
Ω̂F

(∇ξBs,t)
T ·
[
(J(F0)−1)T ] · [J(G)−1 ◦ (G−1 ◦ F0)

]
·
[
∇ξ̄

(
Ri,j) ◦ (G−1 ◦ F0

)]
|J(F0)|dξdη, (4.8)

where Ω̂F = supp(Bs,t) ∩ F−1
0 (G(supp(Ri.j)).

Step 5: Gaussian quadrature on the intersection of domains, Ωmix = Ω0∩supp(Bst)∩

supp(Rij) of mixed types:

The domain F−1
0 (Ωmix) = Ω̂F = supp(Bs,t)∩F−1

0 (G(supp(Ri.j)) for the integral of

functions of mixed type is non-polygonal subset of supp(Bs,t). Thus, it is not possible

to apply the gaussian quadrature rule in a standard manner.

For all numerical examples presented in this section, we use the following simple

procedure in applying quadrature rules:

I. Divide supp(Bs,t) into nine rectangles (or 16 rectangles).

II. Gaussian quadrature rule is applied on each of nine rectangular subregions of

supp(Bs,t) as follows: for each gauss point (ξ, η),

(a) if G−1 ◦ F0(ξ, η) ∈ supp(Ri,j), choose it as an active gauss point.

(b) if G−1 ◦ F0(ξ, η) /∈ supp(Ri,j), discard (ξ, η) and it is a inactive one.

III. We use ten Gauss points in each variable (total number of gauss points ≤ 900)

because integrands are rational functions and piecewise polynomials of high

order.
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Numerical results in the subsequent sections show that we do not waste gauss

points in computing entries of the stiffness matrix.

In the enrichment approach, we joined two different sets of approximation func-

tions: non-polynomial NURBS functions related to the design mapping G and poly-

nomial B-spline functions corresponding to the singular mapping F, together. Since

a linear combination of polynomial functions can not become a rational function, the

mixed approximation functions used in the enrichment approach are linearly indepen-

dent. Thus, we expect that the condition numbers of stiffness matrices for un-enriched

IGA and enriched IGA are not much different as shown in Fig. 4.5, in which the

changes of condition numbers in the enrichment process are depicted.

In the following section, we test the proposed enrichment technique in IGA to

various singularity problems.

4.2 Numerical Tests

In order to show that the proposed enrichment methods are effective for IGA of

singularity problems, we test the enrichment method to the elliptic boundary value

problems with singularity of type

rλψ(θ), where 0 < λ < 1, and ψ is a smooth function.

For example, the crack singularity and the jump-boundary data singularity have λ =

1/2 and the interface problems and the elasticity problems with exotic boundary

conditions could have λ, close to 0.

Throughout this section, we measure the error (u− uh) of the computed solutions

obtained by the IGA enriched by our mapping method in the following norms: The

relative error in L∞-norm in percent, the relative error in L2-norm in percent, respec-

tively, defined by (2.21) and the relative error in energy norm in percent defined by
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(2.19)

For the construction of NURBS and related k-refinement, one can use existing

softwares and toolboxes such as GeoPDEs, NURBS Toolbox in MATLAB, and so on.

However, we used our own codes written by modifying the pseudo codes in [59] for the

numerical results in this section. In order to demonstrate that the proposed mapping

method for enrichment is more effective than the geometric mesh refinements, we

compare the results obtained by applying the 5-radical mesh to each examples in this

section. The 5-radical mesh technique is an application of geometric mesh refinement

to IGA in order to deal with singularity problems (refer to [67] for details).

4.2.1 The Motz Problem

Our first test problem is the Motz problem ([1, 44, 51] and references within) that

is a well known benchmark problem which contains a jump boundary data singularity

of type O(r1/2) at the origin (0, 0).

Example 4.2.1. Let Ω = [−1, 1] × [0, 1]. Consider the following Laplace’s equation

with mixed boundary conditions:

−∆u = 0 in Ω,

u = 500 on Γ2,

u = 0 on Γ5,

∇u · n = 0 on Γ1 ∪ Γ3 ∪ Γ4,

where Γ1 = [0, 1]× {0}, Γ2 = {1} × [0, 1], Γ3 = [−1, 1]× {1}, Γ4 = {−1} × [0, 1], and

Γ5 = [−1, 0]× {0}, as shown in Fig. 4.7.

In this test, we assume the folloing:
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Figure 4.3: Relative errors (%) of the Motz problem in L∞, L2, and energy norms:
(a) Enriched IGA (solid lines) and un-enriched IGA (dotted lines); (b) Enriched IGA
(solid lines) and IGA with 5-radical mesh (dotted lines).
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(a) Motz problem

(b) Unit circle

(c) L-shaped domain

Figure 4.4: (a) The 5-radical mesh for the Motz problem, (b) The 5-radical mesh
for the Laplace equation in the cracked unit disk and (c) The 5-radical mesh for the
Laplace equation in the L-shaped domain.
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Figure 4.6: Diagram of the Enriched area for Motz problem and control points.



69

�����

�������

�����

�����

����� ����

��

����

��	�
 ��	�


��	�


���	�


���	�


Figure 4.7: The domain of the Motz problem and boundary conditions. Here g =
u and h = ∂u

∂n
.

1. The true solution of the Motz problem can be expressed asymptotically as follow:

u(r, θ) =
∞∑
k=0

Akr
(1/2+k) cos ((1/2 + k)θ) . (4.9)

Oh et al. [51] introduced a benchmarking numerical solution of this problem by

accurately estimating the first 50 coefficients of the asymptotic solution (4.9).

We use this computed solution (the partial sum of the first 50 terms of (4.9))

as the true solution of the Motz problem for estimations of the errors of the

computed solutions.

2. The control points and the coarse mesh on the physical domain are illustrated

in Fig. 4.6. For the design mapping for the Motz problem, two square patches

are put together for the physical domain. Each square patch has uniform mesh

for un-enriched IGA and NURBS basis function corresponding to the open knot

vector with only one knot insertion in both variables. In other words, for un-

enriched IGA for the Motz problem, we use the k-refinement by inserting only

one knot into the open knot vector to be {0, · · · , 0︸ ︷︷ ︸
pnurb+1

, 0.5, 1, · · · , 1︸ ︷︷ ︸
pnurb+1

}.

3. The enrichment functions are the B-spline functions of the polynomial degree
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pξ = pη in both variables corresponding to the open knot vectors

{0, · · · , 0︸ ︷︷ ︸
pη+1

, 0.5, · · · , 0.5︸ ︷︷ ︸
pη

, 1, · · · , 1︸ ︷︷ ︸
pη+1

}

and

{0, · · · , 0︸ ︷︷ ︸
pξ+1

, 0.5, · · · , 0.5︸ ︷︷ ︸
pξ

, 1, · · · , 1︸ ︷︷ ︸
pξ+1

}.

4. Condition numbers in Fig. 4.5 are calculated by the MATLAB functions from

the constrained stiffness matrices.

The relative errors (%) and computed strain energy are shown in Table A.1 for the

proposed enrichment approach and in Table A.3 for the 5-radical mesh approach [67]

in Appendix. The relative errors (%) of enriched IGA and the relative errors of IGA

with 5-radical mesh are plotted in Fig. 4.3, which shows the proposed enrichment

method yields superior results over the radical mesh approach. The grid for the 5-

radical mesh is shown in Fig. 4.4.

We observe that the proposed enrichment approach yields as accurate solutions as

MAM shown in [44, 51] at lower DOF.

Next, we apply the proposed method to a problem containing singularity of type

r1/2 in the cracked unit disk:

4.2.2 The Cracked Unit Disk

Example 4.2.2. (The Laplace equation in the cracked unit disk) Consider the Laplace

equation ∆u = 0 in the unit disk Ω = [0, 1] × [0, 2π] in the polar coordinate as

shown in Fig. 4.8 with Dirichlet boundary conditions: u(r, θ) = r1/2 sin θ/2 along

∂Ω = {1} × [0, 2π] ∪ [0, 1]× {0, 2π}.

We compare the performance of IGA with k-refinement, enriched IGA, IGA with

radical mesh refinement in Figs. 4.9 and Tables A.4, A.6, and A.5 of Appendix. Here,
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: control points on the interface
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Figure 4.8: Diagram of the Enriched area for the cracked unit disk and control points.

“enriched IGA” means the relative errors of numerical solutions obtained by enriched

IGA with k-refinement, and “IGA with radical meshes” represents the relative errors

of numerical solutions obtained by using NURBS with 5-radical mesh [67]. For the

details of the 5-radical mesh shown in Fig. 4.4, we refer to [67].

From these figures and Tables, we observe the following:

1. The control points and the coarse mesh on the physical domain are illustrated

in Fig. 4.8. For the design mapping of the Laplace equation in the cracked unit

disk, four quarter patches are put together for the physical domain. NURBS

basis function corresponding to the open knot vector with only one knot insertion

is applied in both variables. In other words, for un-enriched IGA for the the

Laplace equation in the cracked unit disk, we use the k-refinement by inserting

only one knot into the open knot vector to be {0, · · · , 0︸ ︷︷ ︸
pnurb+1

, 0.5, 1, · · · , 1︸ ︷︷ ︸
pnurb+1

}. Here, the

suffix pnurbs stands for the degree of NURBS.

2. The enrichment functions are the B-spline functions of the polynomial degree
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pξ = pη in both variables corresponding to the open knot vectors

{0, · · · , 0︸ ︷︷ ︸
pη+1

, 0.5, · · · , 0.5︸ ︷︷ ︸
pη

, 1, · · · , 1︸ ︷︷ ︸
pη+1

}

and

{0, · · · , 0︸ ︷︷ ︸
pξ+1

, 0.25, · · · , 0.25︸ ︷︷ ︸
pξ

, 0.5, · · · , 0.5︸ ︷︷ ︸
pξ

, 0.75, · · · , 0.75︸ ︷︷ ︸
pξ

, 1, · · · , 1︸ ︷︷ ︸
pξ+1

}.

3. Fig. 4.9(a) and Table A.5 show that the h- p, and k- refinement in IGA do not

yield accurate approximations to the problem with the singularity of type r1/2

at lower degrees of freedom.

4. Even though IGA with radical mesh yield good numerical solutions, Fig. 4.9(b)

and Tables A.4 and A.6 show the enriched IGA yields far better results than

IGA with 5-radical mesh which is known as an optimal one of the geometrical

refinement approaches.

5. As it was shown in Figs. 4.8 and 4.4(b), the cracked unit disk is drown by

combining four one-quarter circular patches when enriched IGA is applied to

the problem, whereas the cracked unit disk is designed with one patch when

either genuine IGA or IGA with radical mesh is applied.

6. The Diagram for enriched IGA is depicted in Fig. 4.8, in which the cracked unit

disk is designed by joining four one-quarter circular patches together.

Next, we apply the proposed enrichment approach to a Laplace equation containing

corner singularities:

4.2.3 The L-Shaped Domain

Example 4.2.3. (The Laplace equation in the L-shaped domain) Consider the Laplace

equation ∆u = 0 in the L-shaped domain Ω = [−1, 1] × [0, 1] ∪ [−1, 0] × [−1, 0] as
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Figure 4.9: Relative errors (%) of the computed solutions of the Laplace equation in
the cracked unit disk in L∞, L2, and energy norms: (a) Enriched IGA (solid lines) and
un-enriched IGA (dotted lines); (b) Enriched IGA (solid lines) and IGA with 5-radical
mesh [67] (dotted lines).
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Figure 4.10: Diagram of the Enriched area for the L-shaped domain and control points

shown in Fig. 4.10 with Dirichlet boundary conditions: u(r, θ) = r3/2 sin 3θ/2 along

∂Ω.

In similar to the Example 4.2.2, we compare the performance of IGA with k-

refinement, enriched IGA, IGA with radical mesh refinement in Figs. 4.11 and Tables

A.7, A.9, A.8 of Appendix.

From these figures and Tables, we observe the following:

1. Fig. 4.11(a) and Table A.8 show that the h- p, and k- refinement in IGA do not

yield accurate approximations to the problem with corner singularity at lower

degrees of freedom.

2. IGA with radical mesh yields more accurate numerical solutions than IGA with-

out radical mesh in Fig. 4.11(a). However Fig. 4.11(b) and Tables A.7 and A.9

show the enriched IGA yields better results than IGA with 5-radical mesh [67]

at lower DOF.

3. As it was shown in Fig. 4.10, the L-shaped domain is drown by combining

three square patches. Three patches construction is for IGA as well as IGA with
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radical mesh.

4. The Diagram for enriched IGA is depicted in Fig. 4.10, in which the L-shaped

domain is designed by joining three square patches together.

4.3 Blending NURBS and B-Splines through Partition of Unity (PU) with Flat-Top

In Section 4.1, we discussed how to enrich NURBS basis functions generated from

genuine IGA, with singular functions using the proposed mapping method in [30] and

saw some examples in Section 4.2.1. In this section, we consider IGA combined with

the proposed mapping techniques in [30] through PU functions with flat-top [54].

In order to deal with analysis of propagating cracks without altering original design

mappings, we cut off NURBS basis functions, which are continuous along the cross

faces, multiplying by PU functions with flat-top. Geometrically, it can be viewed that

we cut out singular zones from a physical domain using PU functions with flat-top,

paste back B-spline basis functions generated by the mapping method, that produce

singular functions, into the singular zones. Due the supports of cut out PU and pasting

back PU functions at non-void sets which are non flat-top ares, we have blending areas

between NURBS and B-spline basis functions. To handle the blending regions, we

newly design NURBS geometrical mapping that not only generates singular functions

but also covers non flat-top belt areas of PU functions. Because of PU functions, we

do not need to consider the compatibility condition in this blending of NURBS and

B-splines.

4.3.1 Two Dimensional Partition of Unity with Flat-Top

Let a and b real numbers with 0 < a < b ≤ 1 and

δ1 =
b− a

2
; δ2 =

a+ b

2
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Figure 4.11: Relative errors (%) of the computed solutions of the Laplace equation
in the L-shaped domain in L∞, L2, and energy norms: (a) Enriched IGA (solid lines)
and un-enriched IGA (dotted lines); (b) Enriched IGA (solid lines) and IGA with
5-radical mesh [67] (dotted lines)
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We define a right step function by

ψR(−∞,b](x) =


1 if x ∈ (−∞, a],

ϕRgn

(
(x−δ2)+δ1

2δ1

)
if x ∈ [a, b],

0 if x ∈ [b,∞),

ψL[−b,∞)(x) =


0 if x ∈ (−∞,−b],

ϕLgn

(
(x+δ2)−δ1

2δ1

)
if x ∈ [−b,−a],

1 if x ∈ [−a,∞),

ψ[−b,b](x) =



ϕLgn

(
(x+δ2)−δ1

2δ1

)
if x ∈ [−b,−a],

1 if x ∈ [−a, a],

ϕRgn

(
(x−δ2)+δ1

2δ1

)
if x ∈ [a, b],

0 if x ∈ (−∞,−b] ∪ [b,∞),

where ϕRgn and ϕLgn are Cn−1-piecewise polynomial basic PU functions defined by (2.13).

We then define two dimensional Cn−1-partition of unity functions with flat-top as

follows:

Ψ̂out(x, y) = 1− Ψ̂in(x, y); Ψ̂in = ψR(−∞,b](x)× ψ[−b,b](y), for all (x, y) ∈ R2. (4.10)

An examples of PU functions defined by Eq. (4.10) on the domain represented in Fig.

4.16 are shown in Fig. 4.12.
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(a) An example of PU function Ψ̂in

(b) An example of PU function Ψ̂out

Figure 4.12: (a) An examples of PU functions with flat-top Ψ̂in and (b) Ψ̂out in the
domain shown in Fig. 4.16 with b = 1
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4.3.2 A Design of a Singular Mapping that Maps onto a Neighborhood of a Crack

In this subsection, we newly design a NURBS geometrical mapping F1(ξ, η) that

maps the parameter space into the support of Ψ̂in, and generates singular functions.

For the construction of this singular mapping, we assume the following:

1. Let

Ω̂F1 = Ω̂G = [0, 1]× [0, 1],

ΩG = Ω = G(Ω̂G)

ΩF1 = (−∞, b]× [−b, b] ∩ ΩG = F1(Ω̂F1)

2. Let F1 : Ω̂F1 → ΩF1 be a singular mapping corresponding to the knot vectors

ΞF1,ξ = {0, 0, 0, 1

8
,
1

8
,
2

8
,
2

8
,
3

8
,
3

8
,
4

8
,
4

8
,
5

8
,
5

8
,
6

8
,
6

8
,
7

8
,
7

8
, 1, 1, 1} and

ΞF1,η = {0, · · · , 0︸ ︷︷ ︸
pη+1

, η1, · · · , η1︸ ︷︷ ︸
pη

, η2, · · · , η2︸ ︷︷ ︸
pη

, 1, · · · , 1︸ ︷︷ ︸
pη+1

},

where 0.5 ≤ η1 < η2 < 1.

3. Let G : Ω̂G → ΩG be a design mapping corresponding to the knot vectors ΞG,ξ

and ΞG,η.

4. Ω has a crack along the negative x-axis with crack tip at (0, 0).

5. ΩF1 = Qnft
F1
∪ Qft

F1
, where Qnft

F1
and Qft

F1
mean non flat-top area and flat-top

area of the support Ψ̂in = ψR(−∞,b](x) × ψ[−b,b](y), respectively. For example,

Qnft
F1

=
5⋃
i=1

Qnft
F1,i

as shown in Fig. 4.13.
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Figure 4.13: Integral areas of the PU function Ψ̂in on the singular zone

6. ΩG =

nG⋃
i=1

ωG,i, where ωG,i = G(ω̂G,i), and ω̂G,i’s are meshes corresponding to

knot vectors ΞG,ξ and ΞG,η.

7. ∂ΩG∩∂ΩF1 is a straight line, and for each k = 1, 2, . . . , 5, G−1(Qnft
F1,k

) = Q̂nft
G,k is

integral areas corresponding to non flat-top areas of PU functions Ψ̂in and Ψ̂out

on the parameter space Ω̂G. An example of Q̂nft
G,k is shown in Fig. 4.14.

8. Ω̂F1 =

nF=24⋃
i=1

ω̂F1,i, where ω̂F1,i are meshes corresponding to knot vectors ΞF1,ξ

and ΞF1,η. Then ΩF1 =

nF⋃
i=1

ωF1,i, where ωF1,i = F1(ω̂F1,i).

We use the control points and weights from Table C.3 in first two Bézier segments

[0, η1] and [η1, η2]. Then our singular mapping F1(ξ, η) generates singular functions

of type O(r1/pη). For the third Bézier segment, we choose control points and weights

such that
24⋃
i=17

ωF1,i = Qnft
F1

as shown in Fig. 4.15.
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Once we design the singular mapping F1 that maps onto a neighborhood ΩF1 of a

crack, we must consider intersection areas

ωG,j ∩Qnft
F1,k
∩ ωF1,i,

where ωG,j = G(ω̂G,j) and ωF1,i = F1(ω̂F1,i), i = 1, . . . , 24, j = 1, . . . , nG, k =

1, . . . , 5.

First, let us consider intersection areas ωF1,i ∩ Q
nft
F1,k

. Then we divide ωF1,i into

two areas, for each i = 17, . . . , 24 as shown in Fig. 4.17. Actually, we do not need to

divide ωF1,18 and ωF1,23 into two areas because

ωF1,18 ∩Qnft
F1,1

= ωF1,18 and ωF1,23 ∩Qnft
F1,5

= ωF1,23,

But we divide each of them into two for the convenience of coding.

Next, we divide integral areas ω̂G,j on the parameter space Ω̂G, to satisfy the

following:

∃Jk = {jk,1, . . . , jk,mk} ⊂ N such that

jk,mk⋃
j=jk,1

ω̂G,j = Q̂nft
G,k, (4.11)

for each k, k = 1, . . . , 5,.

Now, then,

ωG,j ∩Qnft
F1,k
∩ ωF1,i = ωG,j ∩ ωF1,i,

because for each i, i = 1, . . . , 32, ∃k such that ωF1,i ⊆ Qnft
F1,k

.

If either

(ωG,j ∩ ωF1,i) ⊂ ωF1,i or (ωG,j ∩ ωF1,i) ⊂ ωG,j,
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for i = 1, . . . , 32 and j = 1, . . . , nG, then we employ the procedures (I), (II), and (III)

in Section 4.1. Otherwise, we compute numerical integrations on

either ωF1,i or ˆωF1,i, if ωG,j ∩ ωF1,i = ωF1,i, and (4.12)

either ωG,i or ω̂G,i, if ωG,j ∩ ωF1,i = ωG,i,

For PU functions Ψ̂in and Ψ̂out, and two global basis functions, B-spline Bi,j and

NURBS Rs,t,

(Bi,j ◦ F−1
1 ) · Ψ̂in and (Rs,t ◦G−1) · Ψ̂out,

become the mixed type approximation functions, whose supports have the non-void

intersection on the strip with width (b− a) along the inside boundary of ΩF1 .

Calculation of stiffness matrix is also different from that of Step 4 in Section 4.1:

• (Bilinear form for two rational NURBS functions)

If Ri,j, Rs,t ∈ ShG, and u = Ri,j ◦G−1 · Ψ̂out, v = Rs,t ◦G−1 · Ψ̂out, then

B(u, v) =

∫
Ω

(∇xv)T · (∇xu)dxdy

=

∫
Ω

[∇x(Rs,t ◦G−1) · Ψ̂out +Rs,t ◦G−1 · ∇xΨ̂
out]T ·

[∇x(Ri,j ◦G−1) · Ψ̂out +Ri,j ◦G−1 · ∇xΨ̂
out]dxdy

=

∫
Ω

[∇x(Rs,t ◦G−1) · Ψ̂out]T · [∇x(Ri,j ◦G−1) · Ψ̂out] +

[∇x(Rs,t ◦G−1) · Ψ̂out]T · [Ri,j ◦G−1 · ∇xΨ̂
out] +

[Rs,t ◦G−1 · ∇xΨ̂
out]T · [∇x(Ri,j ◦G−1) · Ψ̂out] +

[Rs,t ◦G−1 · ∇xΨ̂
out]T · [Ri,j ◦G−1 · ∇xΨ̂

out]dxdy
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=

∫
Ω̂suppG

(
[∇ξ̄Rs,t · J(G)−1 · Ψ̂out ◦G]T ·

[∇ξ̄Ri,j · J(G)−1 · Ψ̂out ◦G] +

[∇ξ̄Rs,t · J(G)−1 · Ψ̂out ◦G]T · [Ri,j · ∇xΨ̂
out ◦G] +

[Rs,t · ∇xΨ̂
out ◦G]T · [∇ξ̄Ri,j · J(G)−1 · Ψ̂out ◦G] +

[Rs,t · ∇xΨ̂
out ◦G]T · [Ri,j · ∇xΨ̂

out ◦G]
)

|J(G)|dξ̄dη̄

where Ω̂supp
G = supp(Ri,j) ∩ supp(Rs,t).

• (Bilinear form for two non-rational B-spline functions)

If Bi,j, Bs,t ∈ ŜhF , and u = Bi,j ◦ F−1
1 · Ψ̂in, v = Bs,t ◦ F−1

1 · Ψ̂in, then

B(u, v) =

∫
Ω

(∇xv)T · (∇xu)dxdy

=

∫
Ω

[∇x(Bs,t ◦ F−1
1 ) · Ψ̂in +Bs,t ◦ F−1

1 · ∇xΨ̂
in]T ·

[∇x(Bi,j ◦ F−1
1 ) · Ψ̂in +Bi,j ◦ F−1

1 · ∇xΨ̂
in]dxdy

=

∫
Ω

[∇x(Bs,t ◦ F−1
1 ) · Ψ̂in]T · [∇x(Bi,j ◦ F−1

1 ) · Ψ̂in] +

[∇x(Bs,t ◦ F−1
1 ) · Ψ̂in]T · [Bi,j ◦ F−1

1 · ∇xΨ̂
in] +

[Bs,t ◦ F−1
1 · ∇xΨ̂

in]T · [∇x(Bi,j ◦ F−1
1 ) · Ψ̂in] +

[Bs,t ◦ F−1
1 · ∇xΨ̂

in]T · [Bi,j ◦ F−1
1 · ∇xΨ̂

in]dxdy
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=

∫
Ω̂suppF1

(
[∇ξBs,t · J(F1)−1 · Ψ̂in ◦ F1]T ·

[∇ξBi,j · J(F1)−1 · Ψ̂in ◦ F1] +

[∇ξBs,t · J(F1)−1 · Ψ̂in ◦ F1]T · [Bi,j · ∇xΨ̂
in ◦ F1] +

[Bs,t · ∇xΨ̂
in ◦ F1]T · [∇ξBi,j · J(F1)−1 · Ψ̂in ◦ F1] +

[Bs,t · ∇xΨ̂
in ◦ F1]T · [Bi,j · ∇xΨ̂

in ◦ F1]
)

|J(F1)|dξdη

where Ω̂supp
F1

= supp(Bi,j) ∩ supp(Bs,t).

• (Bilinear form for mixed functions: NURBS function and non-rational B-spline

function)

If Ri,j ∈ ŜhG, Bs,t ∈ ŜhF , u = Ri,j◦G−1 ·Ψ̂out, v = Bs,t◦F−1
1 ·Ψ̂in, and ωG,l∩ωF1,k =

ωF1,k then

B(u, v) =

∫
Ω

[∇x(Bs,t ◦ F−1
1 · Ψ̂in)]T · [∇x(Ri,j ◦G−1) · Ψ̂out]dxdy

=

∫
Ω

[∇x(Bs,t ◦ F−1
1 ) · Ψ̂in +Bs,t ◦ F−1

1 · ∇xΨ̂
in]T ·

[∇x(Ri,j ◦G−1) · Ψ̂out +Ri,j ◦G−1 · ∇xΨ̂
out]dxdy

=

∫
Ω

[∇x(Bs,t ◦ F−1
1 ) · Ψ̂in]T · [∇x(Ri,j ◦G−1) · Ψ̂out] +

[∇x(Bs,t ◦ F−1
1 ) · Ψ̂in]T · [Ri,j ◦G−1 · ∇xΨ̂

out] +

[Bs,t ◦ F−1
1 · ∇xΨ̂

in]T · [∇x(Ri,j ◦G−1) · Ψ̂out] +

[Bs,t ◦ F−1
1 · ∇xΨ̂

in]T · [Ri,j ◦G−1 · ∇xΨ̂
out]dxdy

=

∫
Ω

[∇x(Bs,t ◦ F−1
1 ) · Ψ̂in]T · [∇x(Ri,j ◦G−1) ◦G ◦G−1 · Ψ̂out] +

[∇x(Bs,t ◦ F−1
1 ) · Ψ̂in]T · [Ri,j ◦G−1 · ∇xΨ̂

out] +

[Bs,t ◦ F−1
1 · ∇xΨ̂

in]T · [∇x(Ri,j ◦G−1) ◦G ◦G−1 · Ψ̂out] +

[Bs,t ◦ F−1
1 · ∇xΨ̂

in]T · [Ri,j ◦G−1 · ∇xΨ̂
out]dxdy
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=

∫
Ω̂suppF1

(
[∇ξBs,t · J(F1)−1 · Ψ̂in ◦ F1]T ·

[∇ξ̄Ri,j ◦ (G−1 ◦ F1) · J(G)−1 ◦

(G−1 ◦ F1) · Ψ̂out ◦ F1] +

[∇ξBs,t · J(F1)−1 · Ψ̂in · F1]T ·

[Ri,j ◦ (G−1 ◦ F1) · ∇xΨ̂
out ◦ F1] +

[Bs,t · ∇xΨ̂
in ◦ F1]T · [∇ξ̄Ri,j ◦ (G−1 ◦ F1) · J(G)−1 ◦

(G−1 ◦ F1) · Ψ̂out ◦ F1] + [Bs,t · ∇xΨ̂
in ◦ F1]T ·

[Ri,j ◦ (G−1 ◦ F1) · ∇xΨ̂
out ◦ F1]

)
|J(F1)|dξdη

where Ω̂supp
F1

= supp(Bs,t) ∩ F−1
1 (G(supp(Ri.j)).

4.3.3 Numerical Test

We test the proceeding method to the following Laplace equation:

Example 4.3.1. (The Laplace equation containing the crack singularity along negative

x-axis) Consider the Laplace equation ∆u = 0 in the domain ΩG = [−1, 2] × [−2, 2]

with crack along the negative x-axis, as shown in Fig. 4.16 with Dirichlet boundary

conditions: u(r, θ) = r1/2 cos θ/2 along ∂ΩG.

From the Figs. 4.16 and 4.18 we observe the following:

1. We choose δ1 = δ2 = 0.05, i.e. the thickness of the non flat-top belt area of PU

functions Ψ̂in and Ψ̂out is 0.1, and ΩF1 = (−∞,−1] × [−1, 1] ∩ ΩG which is a

neighborhood of the crack.

2. Integral areas are originally divided into 24 rectangles on the parameter space

of the singular mapping Ω̂F1 , and then we divide ω̂F1,i, i = 17, . . . , 24 more to

detect the intersection area with non flat-top area of PU functions so that we

have 32 integral supports as shown Fig. 4.17.
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Figure 4.16: The physical domain and control points for each maps F1 and G of
Example 4.3.1.

3. Initially, integral areas of NURBS functions that are used to construct the design

mapping G, are divided to satisfy (4.11). Hence, ΩG =
15⋃
j=1

ωG,j.

4. We insert one knot value with multiplicity 1 in ΞG,ξ and two knot values with

multiplicity 1 in ΞG,η while performing k-refinement, to satisfy (4.13) as shown

in Fig. 4.16.

5. We observe that the proposed combining method of enrichment through PU

functions with flat-top yields accurate results in Fig. 4.18.
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Figure 4.17: Integral areas on the parameter space Ω̂F1 of the newly designed singular
mapping F1. Note that ΩF1 corresponding to Ω̂F1 is the singular zone including non
flat-top area of PU functions in the physical domain.
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Example 4.3.1 in L∞, L2, and energy norm.



CHAPTER 5: PATCHWISE RPPM FOR THICK PLATES

5.1 Formulations for Free Vibration and Buckling

5.1.1 Governing Equations and Variational Formulation of Reissner-Mindlin Plates

Following notations in the book [61], under the Kirchoff hypothesis but relaxing the

normality condition, the displacement field of the first order theory can be expressed

in the form

u(x, y, z, t) = u0(x, y, t) + zφx(x, y, t),

v(x, y, z, t) = v0(x, y, t) + zφy(x, y, t), (5.1)

w(x, y, z, t) = w0(x, y, t).

(u0, v0, w0) denotes the displacements of a point on the plane z = 0 and φx and φy are

the rotations of a transverse normal about the y− and x− axis as shown in Fig. 5.1,

respectively

u,z = φx, v,z = φy. (5.2)

In the Reissner-Mindlin plate, bending and shear strains are only considered and

they can be expressed in the vector form as

{εb} =


φx,x

φy,y

φx,y + φy,x


and {εs} =


w0,y + φy

w0,x + φx

 , respectively. (5.3)
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The Euler-Lagrange equations of the Reissner-Mindlin plate can be derived by using

the dynamic version of the principle of virtual displacements as follows:

Mxx,x +Mxy,y −Qx =
ρh3

12
φx,tt,

Mxy,x +Myy,y −Qy =
ρh3

12
φy,tt,

Qx,x +Qy,y − κw0 + q = ρhw0,tt,

(5.4)

where Mxx, Myy, and Mxy are bending moments and Qx, Qy are transverse force

resultants, defined as follows:


Mxx

Myy

Mxy


= D{εb},


Qy

Qx

 = A{εs}. (5.5)

κ is the force constant, q is the transverse load applied at top and bottom in plate,

h is the thickness of plate. In the relations (5.5), the bending stiffness coefficients D

and the extensional stiffness coefficients A are defined as

D =


D11 D12 0

D12 D22 0

0 0 D66

 , A =

 A44 0

0 A55

 , (5.6)

where

D11 =
E1h

3

12(1− ν12ν21)
, D12 =

ν12E2h
3

12(1− ν12ν21)
, D22 =

E2h
3

12(1− ν12ν21)

D66 =
G12h

3

12
, A44 = G23h, A55 = G13h

where Ei are Young’s moduli, νij are Poisson ratios, and Gij is shear moduli.

For an isotropic plate, E ≡ E1 = E2 and ν ≡ ν12 = ν21 then (5.6) can be simplified
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as follows:

D =
Eh3

12(1− ν2)


1 ν 0

ν 1 0

0 0 (1−ν)
2

 , A =
ksEh

2(1 + ν)

 1 0

0 1

 .

Using the relations (5.3), (5.5), and (5.6) and rewriting the Euler-Lagrange equations

(5.4) in terms of the rotational displacements (5.2) , we obtain

D
{
φx,xx + νφy,yx +

(1− ν)

2
(φx,yy + φy,xy)

}
− Ah−2(w0,x + φx) = 0,

D
{
φy,yy + νφx,xy +

(1− ν)

2
(φx,yx + φy,xx)

}
− Ah−2(w0,y + φy) = 0,

−Ah−2(w0,xx + w0,yy + φx,x + φy,y) = q,

(5.7)

where D is the scaled bending modulus, E/[12(1− ν2)], A = Eks/2(1 + ν), and ks is

the transverse shear correction factor.

5.1.2 Patchwise RPP Approximation Form

Patchwise RPPM is a partition of unity finite element method (PUFEM) which

uses RPP shape functions as local approximation functions. In this section, we con-

struct local basis functions by using RPP shape functions and PU functions with

flat-top constructed in [52].

Let Ω ⊆ R2 be a polygonal domain, and let δ > 0 be a real number. Let {Ωi | i =

1, 2, · · · , N} be a convex quadrangular partition of Eδ(Ω), where Eδ(Ω) is the δ-

extension of Ω defined by

Eδ(Ω) =
⋃
x∈Ωi

(
x + [−δ,+δ]2

)
.

Ωi is called a patch. Note that the quadrangular patches Ωi are allowed to be convex
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Figure 5.1: Deformation of a transverse normal according to Kirchoff (classical),
Reissner-Mindlin (first order), and third order plate theories
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polygons, such as triangles, rectangles, non-rectangular quadrangles, pentagons, and

so on.

For each i = 1, 2, · · · , N , denote Xi = {xij ∈ R2 | j ∈ Λi} as the particles associated

with the patch Ωi. Note that the particles do not need to be in Ωi. Let {ψij | j ∈ Λi}

be the set of Cr polynomial shape functions corresponding to the particles xij .

Now we define the local approximation of the displacement filed as follows:

w(x) ≈ whi(x) =
n∑
j=1

Ψi(x)ψij(x)d
(1)
ij ,

φx(x) ≈ φhix (x) =
n∑
j=1

Ψi(x)ψij(x)d
(2)
ij ,

φy(x) ≈ φhiy (x) =
n∑
j=1

Ψi(x)ψij(x)d
(3)
ij ,

(5.8)

for i-th patch Ωi, where partition of unity with flat-top Ψi(x) is the simple form of

(2.13) in two-dimension.

Substituting (5.8) into the variational formulation obtained by Lagrange-Euler equa-

tions (5.7) with assumption of free vibration (i.e force vector is zero.), we can get the

following matrix form

Kd + Md̈ = 0, (5.9)

where

K =


[K11] [K12] [K13]

[K12] [K22] [K23]

[K13] [K23] [K33]

 , M =


[M11] 0 0

0 [M22] 0

0 0 [M33]

 , and d =


{d(1)}

{d(2)}

{d(3)}


.

(5.10)

Note that d̈ is the accelerations and submatrices [Kij] and [Mii] are symmetric.

Assuming the harmonic motion we obtain the natural frequencies and the modes of



94

vibration by solving the generalized eigenproblem [21]

(
K− ω2M

)
X = 0,

where ω is the natural frequency and X the mode of vibration.

For buckling of plate models, the strain energy for in-plane pre-buckling stresses

σ̂x, σ̂y, σ̂xy without considering external forces is the following:

U =
1

2

∫
Ω

εTb Dεbdxdy +
1

2

∫
Ω

εTsAεsdxdy +
1

2

∫
Ω

[w0,x w0,y]σ̂
0

w0,x

w0,y

 dxdy

+
1

2

∫
Ω

[φx,x φx,y]σ̂
0

φx,xφx,y

 dxdy +
1

2

∫
Ω

[φy,x φy,y]σ̂
0

φy,xφy,y

 dxdy, (5.11)

where

σ̂0 =

 σ̂x σ̂xy

σ̂xy σ̂yy

 .
We can rewrite the strain energy (5.11) as the following matrix form

Kd + λG = 0, (5.12)

where K is the global stiffness matrix defined in (5.10),

G =


[G11] 0 0

0 [G22] 0

0 0 [G33]

 ,

which is called geometrical stiffness matrix and λ is a constant by which the in-plane

loads must be multiplied to cause buckling. Thus the buckling loads can be found by

solving the eigenproblem in (5.12).
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5.2 Numerical Results

In order to show the effectiveness of the proposed meshfree method, we observe

Reissner-Mindlin plates in bending, vibration, and buckling by means of the patchwise

RPPM. Also, the comparison of our numerical results with other results are described

in the following subsections.

5.2.1 A Square Reissner-Mindlin Plate in Bending

One can compare the approximate solutions obtained by the patchwise RPPM

with conventional FEM using quadratic basis functions to see the effectiveness of the

patchwise RPPM over FEM for the square Reissner-Mindlin plate in bending. To this

end, we consider a simply-supported and clamped square plates (side a = 1) under

uniform transverse pressure (q = 1), and thickness h. Other properties of the material

are employed by ([21]). The non dimensional transverse displacement is set as

ŵ = wmaxD/qa
4,

where D is the flexural rigidity, wmax is the absolute maximum value of transverse

deflection and it occurs at center point in this problem. The numerical results in

Table 5.1 show that RPPM is highly effective than conventional FEM even though

we use less DOF for bending problem. Note that SSSS (CCCC) means that simply

(clamped) supported boundary conditions are imposed along four sides of the square

Reissner-Mindlin plate.

It verifies that the maximum transverse displacement wmax occurs at the center of

the plate as shown in Fig. 5.2(a). Moreover, the rotational displacement φy is zero

at the pair of two edges corresponding to the lines y = 0 and y = 1 because of the

simply supported boundary conditions as shown in Fig. 5.2(b). In Fig. 5.2(c), twist-
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ing moment Mxy is shown in skew-symmetric form because of the simply supported

boundary conditions.

Table 5.1: non dimensional transverse displacement ŵ of a square Reissner-Mindlin
plate for two different ratios of a/h and boundary conditions under uniform transverse
pressure (q = 1). ŵk means RPP approximate solution with order of RPP k. Exact
solutions, ŵexact’s are Navier solutions with 1000× 1000 terms for each solutions [61].

a/h 10 20

ŵ DOF SSSS CCCC SSSS CCCC

ŵ2 36 0.00404664880 0.000511155881 0.00355041532 0.00150427733
ŵ4 100 0.00427089918 0.00150075015 0.00405976679 0.00125712238
ŵ6 196 0.00427187070 0.00150406450 0.00406142190 0.00126486890
ŵFEM 961 0.004271 0.001503 0.004060 0.001264
ŵexact ∞ 0.004271866 0.00150 0.004061413 0.001260

5.2.2 Reissner-Mindlin Plates in Free Vibration and Buckling

In this subsection, we demonstrate the effectiveness of the proposed meshfree

method (RPPM) in deal with thick plates of various thickness-to-edge ratios for free

vibration and buckling. The ratios, RPP order, correction factors, non flat-top areas

of PU functions that are used for numerical tests are as follows:

1. we consider a square plate with side a with various thickness-to-width ratios and

boundary conditions in Tables 5.2 through 5.7, and a rectangular plate with side

a and length b with various length-to-width ratios as well as thickness-to-width

ratios in Table 5.8

2. we consider the Rayleigh-Ritz solutions as exact solutions [18, 33] in Tables 5.2,

5.3, and 5.8, and the Reissner-Mindlin solutions as exact solutions [26] in Tables

5.4 through 5.7

3. Thickness-to-edge, h/a is set 0.1 in Tables 5.2, 5.4, and 5.6, and 0.01 in Tables

5.3, 5.5, and 5.7.
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(a) Deformed shape of the plate along the displacement w
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(b) Deformed shape of the plate along the displacement φy
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Figure 5.2: (a) Maximum deflection of transverse displacement w occurs at the center
of the plate (b) The rotational displacement φy is zero at the pair of two edges cor-
responding to the lines y = 0 and y = 1 because of the simply supported boundary
conditions (c) It occurs in skew symmetric for the twisting moment because of simply
supported bounday conditions
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Figure 5.3: (a) Partition of rectangular plate into four patches (b) Simply supported
rectangular plates subjected to uniaxial compression

4. we use the transverse shear correction factor, ks = 0.8601 in Table 5.2, 0.833 in

Tables 5.3 and 5.4, and 0.822 in Tables 5.5, 5.6 and 5.7.

5. In Tables 5.2 through 5.7, we use RPP order 6, and we use RPP order 4 in Table

5.8. Note that particle shape functions are product of Lagrange interpolation

polynomials corresponding to particles x0, . . . , xn, n is an order of RPP shape

functions.

6. we use four patches and δ = 0.05 in all of Tables as shown in Fig. 5.3(a).

The non-dimensional natural frequency (or fundamental frequency parameter) is given

by

ω̄ = ωmna
√
ρ/G,

where ρ is the material density, G = E/2(1 + ν) is the shear modulus. m and n are

the vibration half-waves in axes x and y, respectively.

In Tables 5.2 and 5.3, the clamped boundary conditions are imposed on all sides of

the square Reissner-Mindlin plate (CCCC). With the clamped boundary conditions,
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Table 5.2: Fundamental frequency parameters ω̄mn for a CCCC square Reissner-
Mindlin plate with h/a = 0.1, ks = 0.8601, ν = 0.3

Method FEM RKPM RPPM Rayleigh-Ritz
DOF 441 289 196 ·

Mode no.(m,n)
1(1,1) 1.5955 1.5582 1.5910 1.594
2(2,1) 3.0662 3.0182 3.0390 3.039
3(1,2) 3.0662 3.0182 3.0390 3.039
4(2,2) 4.2924 4.1711 4.2627 4.265
5(3,1) 5.1232 5.1218 5.0255 5.035
6(1,3) 5.1730 5.1594 5.0731 5.078
7(3,2) 6.1587 6.0178 6.0808 ·
8(2,3) 6.1587 6.0178 6.0808 ·
9(4,1) 7.6554 7.5169 7.4204 ·
10(1,4) 7.6554 7.5169 7.4204 ·
11(3,3) 7.7703 7.7288 7.6814 ·
12(4,2) 8.4555 8.3985 8.2671 ·
13(2,4) 8.5378 8.3985 8.3426 ·

Table 5.3: Fundamental frequency parameters ω̄mn for a CCCC square Reissner-
Mindlin plate with h/a = 0.01, ks = 0.8601, ν = 0.3

Method FEM RKPM RPPM Rayleigh-Ritz
DOF 441 289 196 ·

Mode no.(m,n)
1(1,1) 0.175 0.1743 0.1753 0.1754
2(2,1) 0.3635 0.3576 0.3574 0.3576
3(1,2) 0.3635 0.3576 0.3574 0.3576
4(2,2) 0.5358 0.5240 0.5265 0.5274
5(3,1) 0.6634 0.6465 0.6401 0.6402
6(1,3) 0.6665 0.6505 0.6432 0.6402
7(3,2) 0.8266 0.8015 0.8020 ·
8(2,3) 0.8266 0.8015 0.8020 ·
9(4,1) 1.0875 1.0426 1.0317 ·
10(1,4) 1.0875 1.0426 1.0317 ·
11(3,3) 1.1049 1.0628 1.0681 ·
12(4,2) 1.2392 1.1823 1.1820 ·
13(2,4) 1.2446 1.1823 1.1872 ·
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Table 5.4: Fundamental frequency parameters ω̄mn for a SSSS square Reissner-Mindlin
plate with h/a = 0.1, ks = 0.833, ν = 0.3

Method FEM RKPM RPPM 3D solution Mindlin solution
DOF 256 289 196 · ·

Mode no.(m,n)
1(1,1) 0.9346 0.922 0.9302 0.932 0.930
2(2,1) 2.2545 2.205 2.2192 2.226 2.219
3(1,2) 2.2545 2.205 2.2192 2.226 2.219
4(2,2) 3.4592 3.377 3.4055 3.421 3.406
5(3,1) 4.3031 4.139 4.1493 4.171 4.149
6(1,3) 4.3031 4.139 4.1493 4.171 4.149
7(3,2) 5.3535 5.170 5.2054 5.239 5.206
8(2,3) 5.3535 5.170 5.2054 5.239 5.206
9(4,1) 6.9413 6.524 6.5237 · 6.520
10(1,4) 6.9413 6.524 6.5237 · 6.520
11(3,3) 7.0318 6.779 6.8338 6.889 6.834
12(4,2) 7.8261 7.416 7.4496 7.511 7.446
13(2,4) 7.8261 7.416 7.4496 7.511 7.446

two different thickness-to-edge ratios, 0.1 and 0.01 are considered. Also, the shear

correction factor is taken as ks = 0.8601. We compute the first thirteen modes of

vibration for both the plates, and the non-dimensional natural frequencies computed

by patchwise RPPM are compared with Rayleigh-Ritz solutions [17] for each plates

in Tables 5.2 and 5.3. As you can see the modes from first to sixth in Tables 5.2 and

5.3, RPPM solutions are the closest approximations to the Rayleigh-Ritz solutions

comparing with other solutions, classical Finite Element solutions using quadrilateral

elements [21] and RKP solutions [37] as a comparative numerical result. Moreover,

it is worth noticing that the proposed method use much less number of degrees of

freedom than the others.

In Tables 5.4 and 5.5, fully simply supported (SSSS) Reissner-Mindlin square plates

with different thickness-to-edge ratios, 0.1 and 0.01 are considered. Also the shear

correction factor is taken as ks = 0.833. In similar to Table 5.2 and 5.3, first thirteen

modes of vibration have been calculated. Our RPPM solutions are compared with
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Table 5.5: Fundamental frequency parameters ω̄mn for a SSSS square Reissner-Mindlin
plate with h/a = 0.01, ks = 0.833, ν = 0.3

Method FEM RKPM RPPM Mindlin solution
DOF 441 289 196 ·

Mode no.(m,n)
1(1,1) 0.0965 0.0961 0.09628 0.09629
2(2,1) 0.2430 0.2419 0.24057 0.2406
3(1,2) 0.2430 0.2419 0.24057 0.2406
4(2,2) 0.3890 0.3860 0.38470 0.3848
5(3,1) 0.4928 0.4898 0.48077 0.4809
6(1,3) 0.4928 0.4898 0.48077 0.4809
7(3,2) 0.6380 0.6315 0.62463 0.6249
8(2,3) 0.6380 0.6315 0.62463 0.6249
9(4,1) 0.8550 0.8447 0.81910 0.8167
10(1,4) 0.8550 0.8447 0.81910 0.8167
11(3,3) 0.8857 0.8726 0.86410 0.8647
12(4,2) 0.9991 0.9822 0.96229 0.9605
13(2,4) 0.9991 0.9822 0.96229 0.9605

the 3-D elasticity solutions in Table 5.4 and analytical solutions given by Mindlin [26]

in both Tables 5.4 and 5.5. The accuracy of our proposed method, patchwise RPPM

is more agreeable than other two numerical results, FE solutions using quadrilateral

elements [21] and RKP solutions [37] even though patchwise RPPM uses much less

number of degrees of freedom than the others.

In Tables 5.6 and 5.7, the clamped and simply supported boundary conditions

are imposed on each pairs of opposite sides in the square Reissner-Mindlin plates

(SCSC) with the shear correction factor ks = 0.822. RPPM solutions are compared

with Mindlin solutions [26], and we can see that our RPPM solutions return better

accuracy than the FE solutions [21].

In the buckling plate models, the non-dimensional buckling load intensity factor

(or the critical buckling factor) is defined as

Kb = Ncrb
2/(π2D),
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Table 5.6: Fundamental frequency parameters ω̄mn for a SCSC square Reissner-
Mindlin plate with h/a = 0.1, ks = 0.822, ν = 0.3

Method FEM RPPM Mindlin solution
DOF 256 196 ·
1(1, 1)Mode no.(m,n) 1.2940 1.3001 1.302
2(2,1) 2.3971 2.3939 2.398
3(1,2) 2.9290 2.8845 2.888
4(2,2) 3.8394 3.8392 3.852
5(3,1) 4.3475 4.2314 4.237
6(1,3) 5.1354 4.9355 4.936
7(3,2) 5.5094 5.4575 ·
8(2,3) 5.8974 5.7897 ·
9(4,1) 6.9384 6.5584 ·
10(1,4) 7.2939 7.2197 ·
11(3,3) 7.7968 7.3062 ·
12(4,2) 7.8516 7.5877 ·
13(2,4) 8.4308 8.0734 ·

Table 5.7: Fundamental frequency parameters ω̄mn for a SCSC square Reissner-
Mindlin plate with h/a = 0.01, ks = 0.822, ν = 0.3

Method FEM RPPM Mindlin solution
DOF 256 196 ·
1(1, 1)Mode no.(m,n) 0.1424 0.1411 0.1411
2(2,1) 0.2710 0.2667 0.2668
3(1,2) 0.3484 0.3376 0.3377
4(2,2) 0.4722 0.4604 0.4608
5(3,1) 0.5191 0.4977 0.4979
6(1,3) 0.6710 0.6279 0.6279
7(3,2) 0.7080 0.6820 ·
8(2,3) 0.7944 0.7524 ·
9(4,1) 0.8988 0.8313 ·
10(1,4) 1.0228 0.9706 ·
11(3,3) 1.0758 1.0069 ·
12(4,2) 1.1339 1.0190 ·
13(2,4) 1.2570 1.1442 ·
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Table 5.8: The critical buckling factors, Kb, of simply supported rectangular plates
with different length-to-width ratios a/b, and thickness-to-width ratios, t/b, subjected
to uniaxial compression

Method RKPM(Uniform particles) RPPM P-ver. Ritz
DOF 289 100 ·

a/b h/b
0.5 0.05 6.0405 6.0344 6.0372

0.1 5.3116 5.4604 5.4777
0.2 3.7157 3.9428 3.9963

1 0.05 3.9293 3.9437 3.9444
0.1 3.7270 3.7809 3.7865
0.2 3.1471 3.2353 3.2637

1.5 0.05 4.2116 4.2567 4.2570
0.1 3.8982 4.0179 4.0250
0.2 3.1032 3.2705 3.3048

2 0.05 3.8657 3.9441 3.9444
0.1 3.6797 3.7813 3.7865
0.2 3.0783 3.2356 3.2637

2.5 0.05 3.9600 4.1213 4.0645
0.1 3.7311 3.9038 3.8638
0.2 3.0306 3.2276 3.2421
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where b is the edge length of the plate as shown in Fig. 5.3(b), Ncr the critical buckling

load, and D the flexural rigidity. In Table 5.8, we consider a rectangular Reissner-

Mindlin plate with simply supported on each edge as shown in Fig. 5.3(b). Also,

three different thickness-to-width ratios, h/b = 0.05, 0.1, 0.2, and five width-to-length

ratios, a/b = 0.5, 1, 1.5, 2, 2.5 are considered. Our results by the proposed method are

compared with those of the Ritz method presented by Kitipornchai et al. [32] and

RKPM with uniform particles [37], and details tabulated in Table 5.8. The results

showed that the RPPM solutions are more accurate than the solutions obtained by

RKPM with much less number of degrees of freedom.

5.3 Reissner-Mindlin Plate with Boundary Layer

In the small neighborhood of boundaries the solution computed from the Kirchhoff

model can differ very substantially from the solutions computed from higher models.

This substantially different behavior of solutions in the small neighborhood of the

boundary is called the boundary layer effect or edge effect. Boundary layer effects are

important from the point of view of engineering analysis, since the goal is often to de-

termine moments and shear forces at the boundary, where the solutions corresponding

to various plate models can differ very significantly. For the Reissner-Mindlin plate

model, the transverse displacement variable does not exhibit any edge effect, but the

rotation vector exhibits a boundary layer for all the boundary value problems which

are hard and soft clamped plates, hard and soft simply supported plates, and free

plates. In particular, edge effect is strongest for the soft simply supported and free

plates, weakest for the soft clamped plates [2, 49].

5.3.1 Reissner-Mindlin Model with Boundary Layer on Semi-Infinite Plate

Consider one of examples in [2], that is, the Reissner-Mindlin model of a semi-

infinite plate which occupies the half space y > 0 loaded by q = c0 cos(x/L) where L
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Figure 5.4: Partition of of rectangular plate into three patches

is the length of the side along x-axis, c0 is a constant.

To capture the edge effect on the boundary layer around y = 0, we employ B-spline

basis functions with three patch patchwise RPPM as shown in Fig. 5.4 and apply the

following Shishkin type knot refinement:

Ξξ = {0, · · · , 0︸ ︷︷ ︸
pξ+1

, ξ1, · · · , ξnξ , 1, · · · , 1︸ ︷︷ ︸
pξ+1

} and Ξη = {0, · · · , 0︸ ︷︷ ︸
pη+1

, η1, · · · , ηnη , 1, · · · , 1︸ ︷︷ ︸
pη+1

},

where ξi = 1−(nξ+1−i)0.5hpξ
nξ

, ηj = j 0.5hpη
nη

, and h = 0.01 is the thickness of the plate.

At the Table 5.9, the coefficients c1, c2, c3, c4, which are defined for various boundary

conditions below and γ =
√

12ks + (h/L)2. Although this is a very special problem,

it illustrates well the boundary layer effects for cases where the boundary and the

loading are smooth.

In Tables 5.10 and 5.11, we reduce the domain into [0, 1]× [0, 1], and increase both

the degree of B-spline and number of knots inserted up to 8. Soft simply supported

boundary condition and free boundary condition on which edge effect strongly occurs,

is imposed in Tables 5.10 and 5.11, respectively. As we expect that, the patchwise

RPPM gives us good computational solutions with large rate of convergence. The
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Table 5.9: Solution of the Reissner-Mindlin model of the semi-infinite plate problem
with q = c0 cos(x/L) ([2])

w = c0L6

h3

[
h3

D11L2
+ h2

ksGL4 + c1e
−y/L + c2

(
2D11

ksGL2h
+ y

L

)
e−y/L − c3

h2e−y/L

ksGL4

]
cos(x/L)

φx = c0L5

h3

[
− h3

D11L2
− c1e

−y/L − c2
y
L
e−y/L + c3

h2e−y/L

ksGL4 − c4
γhe−γy/d

ksGL3

]
sin(x/L)

φy = c0L5

h3

[
−c1e

−y/L + c2

(
1− y

L

)
e−y/L + c3

h2e−y/L

ksGL4 − c4
h2eγy/L

ksGL4

]
cos(x/L)

hard
clamped

c1 = −h3/(D11L2)
c2 = {−γksGh3/D11 − γ(h/L)2 + (h/L)3} /f
c3 = −γksGL2/f
c4 = −ksGhL/f
f = γksGL2 + 2γD11/h− 2D11/L

hard
simply
supported

c1 = −h3/(D11L2)
c2 = −h3/(2D11L2)
c3 = 0
c4 = 0

soft
simply
supported

c1 = −h3/(D11L2)
c2 = [2γksGνh

4/(D11L) + (h/L− γ)2 {ksGh3/D11 + (1− ν)(h/L)2}]
/(2f)

c3 = −γksGLh(1− ν)/f
c4 = −ksGh3 {ksGL2 +D11(1− ν)/h} /(D11f)
f = −ksGL2(γ2 + (h/L)2) + (1− ν)(h/L)
{γksGL2 − (D11L/h

2)(γ − h/L)2}

free

c1 = ν {ksGh3/D11 − (γ2 + (h/L)2)} /f
c2 = ksGνh

3/(D11f)
c3 = 0
c4 = 2ksGνL2/f
f = −2ksGL2 + (1− ν) {ksGL2 − (D11L2/h

3)(γ − h/L)2}
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reason that we use B-spline functions instead of Lagrange interpolation functions, is

that because we expect that B-splines work more stably than Lagrange interpolation

functions on the boundary layer due to the property of variation diminishing.

Table 5.10: Absolute maximum norm error of displacement field (w0, φx, φy) and
energy norm error with soft simply supported boundary condition. B-splines with
Shishkin type knot refinement are employed.

Order DOF ||w0 − wh0 ||L∞ ||φx − φhx||L∞ ||φy − φhy ||L∞ ||U − Uh||Enrg

2 27 3.404E+01 3.055E+02 2.717E+02 1.735E+02
3 75 1.114E+01 6.591E+01 3.838E+01 2.363E+01
4 147 6.170E-01 3.653E+00 4.049E+00 1.895E+00
5 243 2.781E-02 2.845E-01 2.894E-01 8.748E-02
6 363 1.105E-03 1.732E-02 1.492E-02 5.057E-03
7 507 3.922E-05 3.879E-03 5.223E-04 2.955E-04
8 675 1.461E-06 8.574E-04 2.533E-05 7.127E-05

comparison of exact energy, U , with approximate energy, Uh at p = 8

U 881.69482301964786
Uh 881.69482302472773

Table 5.11: Absolute maximum norm error in displacement field (w0, φx, φy) and
absolute energy norm error with free boundary condition. B-splines with Shishkin
type knot refinement are employed.

Order DOF ||w0 − wh0 ||L∞ ||φx − φhx||L∞ ||φy − φhy ||L∞ ||U − Uh||Enrg

2 27 1.112E+02 8.202E+02 5.504E+02 4.470E+02
3 75 2.052E+01 2.067E+02 5.934E+01 5.784E+01
4 147 5.711E-01 5.089E-00 2.526E-00 1.896E-00
5 243 2.720E-02 4.347E-01 3.363E-01 1.372E-01
6 363 6.761E-04 1.559E-02 9.077E-03 5.992E-03
7 507 2.883E-05 2.369E-03 3.544E-04 2.834E-03
8 675 5.252E-07 4.444E-04 2.318E-05 4.185E-03

comparison of exact energy, U , with approximate energy, Uh at p = 8

U 4370.3953408155621
Uh 4370.3953232942567



CHAPTER 6: CONCLUSIONS AND FUTURE WORKS

We have shown numerical tests that mapping techniques using NURBS geometrical

mappings constructed by a unconventional choice of control points are effective for

numerical solutions of elliptic boundary value problems containing singularities. The

mapping method was extended to the enrichment of IGA. Furthermore, the mapping

technique was combined with IGA through partition of unity. The numerical results by

enriched IGA demonstrate that the approach is effective to deal with elliptic boundary

value problems containing singularities. Salient feature of this enrichment approach is

that it does not altering design mappings, hence there is no restriction on refinements

in IGA.

Even though the proposed mapping technique was only tested to the Poisson equa-

tion and elasticity with hypothetical solution containing one singularity, the method

can be easily implemented in fracture mechanics of elastic media containing multiple

singularities. Especially, engineers are interested in interacting cracks to capture the

behavior of singularities and observe the change of stress field between two interacting

cracks with respect to the interval of two cracks.

One of examples is an annular plate containing parallel radial cracks originating

from one of the boundaries of the plate which is subjected to a prescribed loading.

On the other hands, singular functions built in the proposed mapping technique

are in a C0 approximation space, thus it is not available to apply fourth order PDEs

such as Kirchhoff plate theory, and thin shells with Kirchhoff-Love assumptions. One

future challenge work is to develop a new numerical method to generate singular

functions in a C1 approximation space.



109

Also, we expect that the mapping techniques presented to deal with 2D singu-

larities in this dissertation can also be extended to the isogeometric analysis of 3D

elasticity problems containing singularities by a similar manner to the 3-dimensional

method of auxiliary mapping presented in [34].

In this dissertation, we proposed the patchwise Reproducing Polynomial Particle

Method to compute the non-dimensional transverse displacement ŵ, natural frequency

ω̄mn, buckling load intensity factorKb, and boundary layer problem on infinity domain.

All numerical results have been compared with computed solutions by FEM and RKP,

and analytical solutions except for the boundary layer problem. They have shown

us that the patchwise RPP approximate solutions are highly effective than other

numerical methods. Moreover, the proposed method has achieved accurate solutions

with less computational work. These features make the patchwise RPPM appealing

to obtaining the promising performance on thick plates which have various geometric

configuration such as circular, skew or triangular plates. It will be considered in future

work.

Another popular topic in solid mechanics is the shell theories. Shells have all

the characteristics of plates, along with an additional one curvature. The curvature

could be chosen as the primary classifier of a shell because a shell’s behavior under an

applied loading is primarily governed by curvature. For thin shells based on classical

linear elasticity, Kirchhoff-Love assumptions are usually applied. Also the force and

moment equilibrium for the shell element results the set of the differential equations

of static equilibrium of a shell element of the general theory of thin elastic shells

([68]). The set is coupled system of differential equations in terms of stresses. The

governing equations about the membrane forces are second order, about the bending

moments are third order, and twist moments are fourth order of differential equations.

In order to analyze the behavior of shell material, conventional finite element methods

are employed. But it is difficult to construct highly smooth approximation functions
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as well as generation of meshes in the method. However, patchwise RPPM has no

problem to construct highly smooth trial functions, applying the patchwise RPPM

to the shell theory to approximate membrane forces, bending moments, and twist

moments could yield accurate analysis of shells.
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APPENDIX A: TABLES OF NUMERICAL DATA

A.1 Numerical Data for Relative Errors of Example 4.2.1

Table A.1: The relative errors (%) of enriched IGA for the Motz problem: (i) The
first column ”(pnurb, Ck)” stands for polynomial degree of NURBS for un-enriched IGA
and the regularity of NURBS , respectively. For each k-refinement for IGA, only one
knot is inserted. We use two patches for the Motz domain. (ii) The second column
“prich” stands for the polynomial degree of B-spline functions in ξ as well as η for the
enriched basis functions. (iii) The last row “∞” indicates the strain energy of the true
solution.

(pnurb, Ck) prich DOF ‖Rel err‖∞ ‖Rel err‖L2 ‖Rel err‖eng Strain Energy

(2, 1) 2 33 2.793E-00 2.236E-00 8.756E-00 85731.6392270709
(3, 2) 3 60 4.226E-01 2.507E-01 1.857E-00 85108.6321954957
(4, 3) 4 95 1.114E-01 2.364E-02 5.299E-01 85081.6606970174
(5, 4) 5 138 2.418E-02 1.165E-02 1.981E-01 85079.6058077589
(6, 5) 6 189 6.603E-03 3.364E-03 4.685E-02 85079.2903129675
(7, 6) 7 248 1.209E-03 3.968E-04 1.360E-02 85079.2732083362
(8, 7) 8 315 5.381E-04 1.851E-04 5.758E-03 85079.2719146266
(9, 8) 9 390 1.201E-04 3.926E-05 1.485E-03 85079.2716512708
(10, 9) 10 473 3.246E-05 1.358E-05 4.192E-04 85079.2716339847
(11, 10) 11 564 9.934E-06 3.999E-06 1.426E-04 85079.2716326623
(12, 11) 12 663 2.168E-06 1.420E-06 5.283E-05 85079.2716325129

∞ 85079.2716324892

A.2 Numerical Data for Relative Errors of Example 4.2.2

A.3 Numerical Data for Relative Errors of Example 4.2.3
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Table A.2: The relative errors (%) of un-enriched IGA for the Motz problem: The
computed strain energy and their relative errors (%) of IGA of the Motz problem. The
first column is the number of polynomial degree and the number of knot insertions
with multiplicity 1 in the k-refinement of NURBS.

pξ = pη DOF ‖Rel err‖∞ ‖Rel err‖L2 ‖Rel err‖eng Strain Energy

2 36 6.591E-00 1.455E-00 1.379E+01 86697.267987072875
3 78 3.774E-00 6.424E-01 9.257E-00 85808.467637371214
4 136 2.352E-00 3.547E-01 6.915E-00 85486.130189526768
5 210 1.419E-00 2.219E-01 5.485E-00 85335.283067657336
6 300 8.322E-01 1.505E-01 4.525E-00 85253.507555096570
7 406 5.248E-01 1.080E-01 3.838E-00 85204.624317456488
8 528 4.114E-01 8.092E-02 3.324E-00 85173.276207700925
9 666 3.560E-01 6.261E-02 2.925E-00 85152.075681813716
10 820 3.297E-01 4.972E-02 2.607E-00 85137.127354482538
11 990 2.890E-01 4.033E-02 2.349E-00 85126.226913718347
12 1176 2.344E-01 3.330E-02 2.135E-00 85118.054847937659

∞ 85079.271632489165

Table A.3: The relative errors (%) of IGA with 5-radical mesh for the Motz problem:
The computed strain energy obtained by the 5-radical mesh and their relative errors
(%) of IGA of the Motz problem. The first column is the number of polynomial degree
and the number of knot insertions with multiplicity 1 in the k-refinement of NURBS.

DOF ‖Rel err‖∞ ‖Rel err‖L2 ‖Rel err‖eng Strain Energy

2 36 2.161E-00 0.860E-00 9.008E-00 85769.7665341624
3 78 0.850E-00 0.160E-00 3.932E-00 85210.8227268314
4 136 0.232E-00 4.291E-02 2.082E-00 85116.1462292704
5 210 0.118E-00 1.476E-02 1.223E-00 85092.0022359220
6 300 4.426E-02 5.628E-03 7.733E-01 85084.3600646084
7 406 1.900E-02 2.387E-03 5.176E-01 85081.5510467469
8 528 1.358E-02 1.115E-03 3.624E-01 85080.3887660094
9 666 4.027E-03 5.643E-04 2.631E-01 85079.8604302578
10 820 2.448E-03 3.053E-04 1.968E-01 85079.6011238803
11 990 1.767E-03 1.748E-04 1.509E-01 85079.4654907304
12 1176 1.022E-03 1.048E-04 1.183E-01 85079.3906139005

∞ 85079.2716324892
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Table A.4: The relative errors (%) of enriched IGA: The computed strain energy and
the relative errors (%) of the Laplace equation in the cracked unit disk. The entries of
the first column are the polynomial degrees of NURBS and regularities at the only one
inside knot in the k-refinement. The entries of the second column are the polynomial
degrees of the B-spline functions in both variables for the enrichment functions.

(pnurb, Ck) prich DOF ‖Rel err‖∞ ‖Rel err‖L2 ‖Rel err‖eng Strain Energy

(2, 1) 2 43 3.410E-00 2.140E-00 1.020E+01 0.7935728795624198
(3, 2) 3 89 6.146E-01 2.757E-01 2.341E-00 0.7858286977505032
(4, 3) 4 151 1.477E-01 3.124E-02 6.644E-01 0.7854328358417727
(5, 4) 5 229 4.110E-02 8.615E-03 2.366E-01 0.7854025607948036
(6, 5) 6 323 6.664E-03 1.574E-03 5.135E-02 0.7853983705330601
(7, 6) 7 433 1.572E-03 5.171E-04 1.915E-02 0.7853981922177851
(8, 7) 8 559 6.069E-04 2.194E-04 7.923E-03 0.7853981683280771
(9, 8) 9 701 1.794E-04 7.485E-05 2.448E-03 0.7853981638683610
(10, 9) 10 859 6.416E-05 2.954E-05 8.115E-04 0.7853981634491797
(11, 10) 11 1033 1.676E-05 1.310E-05 2.917E-04 0.7853981634041332
(12, 11) 12 1223 5.797E-06 4.433E-06 1.087E-04 0.7853981633983763

∞ 0.7853981633974482

Table A.5: The relative errors (%) of un-enriched IGA: The computed strain energy
and their relative errors (%) of IGA of the Laplace equation on the cracked unit disk.
The first column is the number of polynomial degree and the number of knot insertions
with multiplicity 1 in the k-refinement of NURBS.

DOF ‖Rel err‖∞ ‖Rel err‖L2 ‖Rel err‖eng ‖uh‖2
eng

2 85 8.004E-00 7.439E-01 1.000E+01 0.7932576910538956
3 175 5.809E-00 2.660E-01 6.002E-00 0.7882283850506779
4 297 4.611E-00 1.230E-01 4.018E-00 0.7866662238909883
5 451 3.851E-00 6.511E-02 2.834E-00 0.7860291895382055
6 637 3.324E-00 3.752E-02 2.045E-00 0.7857267687488737
7 855 2.937E-00 2.298E-02 1.472E-00 0.7855683849194441
8 1105 2.640E-00 1.480E-02 1.018E-00 0.7854796745154191
9 1387 2.405E-00 1.004E-02 6.123E-01 0.7854276164564003
10 1701 2.214E-00 7.251E-03 1.624E-01 0.7853960919858312
11 2047 2.056E-00 5.630E-03 5.234E-01 0.7853766418278368
12 2425 1.922E-00 4.713E-03 6.540E-01 0.7853645653712779

∞ 0.7853981633974482
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Table A.6: The relative errors (%) of IGA with 5-radical mesh: The computed
strain energy obtained by the 5-radical mesh and their relative errors (%) of IGA
of the Poisson equation in the L-shaped domain. The first column is the number
of polynomial degree and the number of knot insertions with multiplicity 1 in the
k-refinement of NURBS.

DOF ‖Rel err‖∞ ‖Rel err‖L2 ‖Rel err‖eng Strain Energy

2 85 1.731E-00 9.342E-01 7.557E-00 0.7898836109537649
3 175 4.895E-01 1.195E-01 2.520E-00 0.7858969275361544
4 297 1.801E-01 2.487E-02 1.091E-00 0.7854917128321975
5 451 1.032E-01 7.722E-03 5.477E-01 0.7854217287032445
6 637 6.512E-02 2.163E-03 3.075E-01 0.7854055945769168
7 855 4.396E-02 6.035E-04 1.897E-01 0.7854009906349790
8 1105 3.119E-02 1.976E-04 1.254E-01 0.7853993988363200
9 1387 2.301E-02 7.270E-05 8.729E-02 0.7853987618739750
10 1701 1.750E-02 2.984E-05 6.322E-02 0.7853984773736880
11 2047 1.365E-02 1.405E-05 4.727E-02 0.7853983389112305
12 2425 1.088E-02 7.482E-06 3.627E-02 0.7853982667252557

∞ 0.7853981633974482

Table A.7: The relative errors (%) of enriched IGA: The computed strain energy and
the relative errors (%) of the Laplace equation in the L-shaped domain. The entries of
the first column are the polynomial degrees of NURBS and regularities at the only one
inside knot in the k-refinement. The entries of the second column are the polynomial
degrees of the B-spline functions in both variables for the enrichment functions.

(pnurb, Ck) prich DOF ‖Rel err‖∞ ‖Rel err‖L2 ‖Rel err‖eng Strain Energy

(3, 2) 3 65 4.855E-01 3.545E-01 2.063E-00 0.918504156551838
(4, 3) 4 111 9.277E-02 6.677E-02 5.855E-01 0.918144814381293
(5, 4) 5 169 2.759E-02 9.854E-03 1.806E-01 0.918116326108197
(6, 5) 6 239 7.673E-03 3.961E-03 6.356E-02 0.918113701926983
(7, 6) 7 321 2.377E-03 1.103E-03 2.008E-02 0.918113367990180
(8, 7) 8 415 7.671E-04 4.651E-04 8.309E-03 0.918113337277383
(9, 8) 9 521 1.529E-04 1.148E-04 1.976E-03 0.918113331296302
(10, 9) 10 639 8.233E-05 5.165E-05 1.087E-03 0.918113331046222
(11, 10) 11 769 1.427E-05 9.837E-06 2.619E-04 0.918113330943880
(12, 11) 12 911 7.059E-06 3.549E-06 1.151E-04 0.918113330938800

∞ 0.918113330937581
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Table A.8: The relative errors (%) of un-enriched IGA: The computed strain energy
and their relative errors (%) of IGA of the Laplace equation on the L-shaped domain.
The first column is the number of polynomial degree and the number of knot insertions
with multiplicity 1 in the k-refinement of NURBS.

DOF ‖Rel err‖∞ ‖Rel err‖L2 ‖Rel err‖eng ‖uh‖2
eng

2 33 2.266E-00 2.909E-01 6.102E-00 0.921532725518123
3 85 1.171E-00 1.391E-01 3.576E-00 0.919287578474505
4 161 6.478E-01 6.710E-02 2.421E-00 0.918651789368805
5 261 3.141E-01 3.574E-02 1.777E-00 0.918403489767528
6 385 1.329E-01 2.201E-02 1.375E-00 0.918286985964129
7 533 8.510E-02 1.528E-02 1.104E-00 0.918225263709970
8 705 7.302E-02 1.131E-02 9.113E-01 0.918189588294503
9 901 5.178E-02 8.666E-03 7.685E-01 0.918167565476224
10 1121 4.966E-02 6.798E-03 6.593E-01 0.918153250947286
11 1365 4.485E-02 5.453E-03 5.737E-01 0.918143551777222
12 1633 3.370E-02 4.457E-03 5.050E-01 0.918136750938375

∞ 0.918113330937581

Table A.9: The relative errors (%) of IGA with 5-radical mesh: The computed strain
energy obtained by the 5-radical mesh and their relative errors (%) of IGA of the
Poisson equation in the L-shaped domain. The first column is the number of polyno-
mial degree and the number of knot insertions with multiplicity 1 in the k-refinement
of NURBS.

DOF ‖Rel err‖∞ ‖Rel err‖L2 ‖Rel err‖eng Strain Energy

2 33 1.150E-00 2.452E-01 4.917E-00 0.920333431266857
3 85 3.508E-01 9.260E-02 1.601E-00 0.918348667387047
4 161 1.002E-01 4.326E-02 7.325E-01 0.918162601078802
5 261 3.991E-02 2.215E-02 3.701E-01 0.918125910923199
6 385 1.376E-02 1.227E-02 2.051E-01 0.918117196208557
7 533 5.854E-03 7.241E-03 1.218E-01 0.918114693701715
8 705 3.840E-03 4.489E-03 7.642E-02 0.918113867216142
9 901 9.885E-04 2.900E-03 5.016E-02 0.918113561971368
10 1121 5.718E-04 1.938E-03 3.420E-02 0.918113438382089
11 1365 4.613E-04 1.334E-03 2.412E-02 0.918113384367126
12 1633 1.294E-04 9.417E-04 1.744E-02 0.918113358893799

∞ 0.918113330937581
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APPENDIX B: FIGURES OF NUMERICAL DATA

B.1 The Wedge-Shaped Domain in Example 3.2.1
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Figure B.1: Relative errors (%) in maximum norm of displacement u versus the h-sizes
with various intensity factors and pξ = 3 fixed.
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Figure B.2: Relative errors (%) in maximum norm of displacement v versus the h-sizes
with various intensity factors and pξ = 2 fixed.
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Figure B.3: Relative errors (%) in L2-norm of displacement u versus the h-sizes with
various intensity factors and pξ = 2 fixed.
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Figure B.4: Relative errors (%) in L2-norm of displacement v versus the h-sizes with
various intensity factors and pξ = 3 fixed.
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APPENDIX C: TABLES OF CONTROL POINTS AND WEIGHTS

C.1 The Wedge-Shaped Domain in Example 3.2.1

Table C.1: Geometric setting for wedge-shaped domain Ω(±α) (Example 3.2.1). (a)
The degree of polynomials and knot vectors for variables ξ and η, respectively. Note
that there are p + 1 zeros and p + 1 ones are presented in the knot vector Ξη. (b)
Control points and corresponding weights.

(a) Knot vectors

variables degrees knot vectors

ξ pξ = 2 Ξξ = {0, 0, 0, 1
2
, 1

2
, 1, 1, 1}

η pη = p Ξη = {0, · · · , 0, 1, · · · , 1}

(b) Control points and weights

i j Bi,j wi,j i j Bi,j wi,j

1 1, · · · , p (0, 0) 1 1 p+ 1 (cos(α), sin(α)) 1
2 1, · · · , p (0, 0) cos(α/2) 2 p+ 1 (1, tan(α/2)) cos(α/2)
3 1, · · · , p (0, 0) 1 3 p+ 1 (1, 0) 1
4 1, · · · , p (0, 0) cos(α/2) 4 p+ 1 (1,− tan(α/2)) cos(α/2)
5 1, · · · , p (0, 0) 1 5 p+ 1 (cosα,− sinα) 1

C.2 The Curved Domain in Example 3.2.2

C.3 The Single Edge Cracked Domain in Example 3.2.3

We use the quadratic polynomials for the geometrical mapping because the inten-

sity factor of the plate has r
1
2ϕ(θ). The control points and weights of the geometry

in Example 3.2.3 are similar to that of Example 5.4 in [30]. In Table C.3, the control

points Bi,j and corresponding weights wi,j for j = 1, 3, 5 are given. For the remaining
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Table C.2: Geometric data to construct the NURBS mapping to deal with the elas-
ticity containing singularity in the curved domain (Example 3.2.2). (a) The open
knot vectors. (b) Control points and corresponding weights for j = 1, 2, 3. (c) Control
points and corresponding weights for j = 4, 5. Here, β = tan(π/8) and w0 = cos(π/8).

(a) Knot vectors

variables degrees knot vectors

ξ pξ = 2 Ξξ = {0, 0, 0, 1
4
, 1

4
, 1

2
, 1

2
, 3

4
, 3

4
, 1, 1, 1}

η pη = 2 Ξη = {0, 0, 0, 1
2
, 1

2
, 1, 1, 1}

(b) Control points and weights for j = 1, 2, 3

i j Bi,j wij i j Bi,j wi,j i j Bi,j wi,j

1 1 (0, 0) 1 1 2 (0, 0) 1 1 3 (−1/2, 0) 1
2 1 (0, 0) w0 2 2 (0, 0) w0 2 3 (−1/2, β/2) w0

3 1 (0, 0) 1 3 2 (0, 0) 1 3 3 (−
√

2/4,
√

2/4) 1
4 1 (0, 0) w0 4 2 (0, 0) w0 4 3 (−β/2, 1/2) w0

5 1 (0, 0) 1 5 2 (0, 0) 1 5 3 (0, 1/2) 1
6 1 (0, 0) w0 6 2 (0, 0) w0 6 3 (β/2, 1/2) w0

7 1 (0, 0) 1 7 2 (0, 0) 1 7 3 (
√

2/4,
√

2/4) 1
8 1 (0, 0) w0 8 2 (0, 0) w0 8 3 (1/2, β/2) w0

9 1 (0, 0) 1 9 2 (0, 0) 1 9 3 (1/2, 0) 1

(c) Control points and weights for j = 4, 5

i j Bi,j wi,j i j Bi,j wi,j

1 4 1
2
(B1,3 + B1,5) 1 1 5 (−1, 0) 1

2 4 1
2
(B2,3 + B2,5) 1.2 2 5 (−0.8, β) 1.2

3 4 1
2
(B3,3 + B3,5) 1 3 5 (−1, 1) 1

4 4 1
2
(B4,3 + B4,5) 1 4 5 (−β, 1.2) 1

5 4 1
2
(B5,3 + B5,5) 1 5 5 (0, 1) 1

6 4 1
2
(B6,3 + B6,5) 1 6 5 (β, 0.8) 1

7 4 1
2
(B7,3 + B7,5) 1 7 5 (1, 1) 1

8 4 1
2
(B8,3 + B8,5) 1.4 8 5 (1.6, β) 1.4

9 4 1
2
(B9,3 + B9,5) 1 9 5 (1, 0) 1
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control points and the weights, we use

Bi,1 = Bi,2 = (0, 0) and wi,1 = wi,2 =


1 if i is odd,

w0 if i is even,

Bi,4 =
1

2
(Bi,3 + 2Bi,5) and wi,4 = wi,5 = 1.

Table C.3: Geometric setting for the single edge cracaked plate (Example 3.2.3). (a)
The degree of polynomials and knot vectors for variables ξ and η, respectively. (b)
Control points and corresponding weights for j = 1, 3, 5. Here, β = tan(π/8) and
w0 = cos(π/8).

(a) Knot vectors

variables degrees knot vectors

ξ pξ = 2 Ξξ = {0, 0, 0, 1
8
, 1

8
, 2

8
, 2

8
, 3

8
, 3

8
, 4

8
, 4

8
, 5

8
, 5

8
, 6

8
, 6

8
, 7

8
, 7

8
, 1, 1, 1}

η pη = 2 Ξη = {0, 0, 0, 1
2
, 1

2
, 1, 1, 1}

(b) Control points and weights for j = 1, 3, 5

i j Bi,j wi,j i j Bi,j wi,j i j Bi,j wi,j

1 1 (0, 0) 1 1 3 (−1/2, 0) 1 1 5 (−1, 0) 1
2 1 (0, 0) w0 2 3 (−1/2, β/2) w0 2 5 (−1, β) 1

3 1 (0, 0) 1 3 3 (−
√

2/4,
√

2/4) 1 3 5 (−1, 1) 1
4 1 (0, 0) w0 4 3 (−β/2, 1/2) w0 4 5 (−β, 1) 1
5 1 (0, 0) 1 5 3 (0, 1/2) 1 5 5 (0, 1) 1
6 1 (0, 0) w0 6 3 (β/2, 1/2) w0 6 5 (β, 1) 1

7 1 (0, 0) 1 7 3 (
√

2/4,
√

2/4) 1 7 5 (1, 1) 1
8 1 (0, 0) w0 8 3 (1/2, β/2) w0 8 5 (1, β) 1
9 1 (0, 0) 1 9 3 (1/2, 0) 1 9 5 (1, 0) 1
10 1 (0, 0) w0 10 3 (1/2,−β/2) w0 10 5 (1,−β) 1

11 1 (0, 0) 1 11 3 (
√

2/4,−
√

2/4) 1 11 5 (1,−1) 1
12 1 (0, 0) w0 12 3 (β/2,−1/2) w0 12 5 (β,−1) 1
13 1 (0, 0) 1 13 3 (0,−1/2) 1 13 5 (0,−1) 1
14 1 (0, 0) w0 14 3 (−β/2,−1/2) w0 14 5 (−β,−1) 1

15 1 (0, 0) 1 15 3 (−
√

2/4,−
√

2/4) 1 15 5 (−1,−1) 1
16 1 (0, 0) w0 16 3 (−1/2,−β/2) w0 16 5 (−1,−β) 1
17 1 (0, 0) 1 17 3 (−1/2, 0) 1 17 5 (−1, 0) 1


